Science.gov

Sample records for a1 abca1 mediates

  1. ABCA1/ApoE/HDL Pathway Mediates GW3965-Induced Neurorestoration After Stroke.

    PubMed

    Cui, Xu; Chopp, Michael; Zhang, Zhenggang; Li, Rongwen; Zacharek, Alex; Landschoot-Ward, Julie; Venkat, Poornima; Chen, Jieli

    2017-02-01

    ATP-binding cassette transporter A1 (ABCA1) is a major reverse cholesterol transporter and plays critical role in the formation of brain high-density lipoprotein (HDL) cholesterol. Apolipoprotein E (ApoE) is the most abundant apolipoprotein and transports cholesterol into cells in brain. ABCA1 and ApoE are upregulated by liver-X receptors. Activation of liver-X receptors has neurorestorative benefit for stroke. The current study investigates whether ABCA1/ApoE/HDL pathway mediates GW3965, a synthetic dual liver-X receptor agonist, induced neurorestoration after stroke. Middle-aged male specific brain ABCA1-deficient (ABCA1(-B/-B)) and floxed-control (ABCA1(fl/fl)) mice were subjected to distal middle-cerebral artery occlusion (dMCAo) and gavaged with saline or GW3965 (10 mg/kg) or intracerebral infusion of artificial cerebrospinal fluid or human plasma HDL3 in ABCA1(-B/-B) stroke mice, starting 24 hours after dMCAo and daily until euthanization 14 days after dMCAo. No differences in the blood level of total cholesterol and triglyceride and lesion volume were found among the groups. Compared with ABCA1(fl/fl) ischemic mice, ABCA1(-B/-B) ischemic mice exhibited impairment functional outcome and decreased ABCA1/ApoE expression and decreased gray/white matter densities in the ischemic boundary zone 14 days after dMCAo. GW3965 treatment of ABCA1(fl/fl) ischemic mice led to increased brain ABCA1/ApoE expression, concomitantly to increased blood HDL, gray/white matter densities and oligodendrocyte progenitor cell numbers in the ischemic boundary zone, as well as improved functional outcome 14 days after dMCAo. GW3965 treatment had negligible beneficial effects in ABCA1(-B/-B) ischemic mice. However, intracerebral infusion of human plasma HDL3 significantly attenuated ABCA1(-B/-B)-induced deficits. In vitro, GW3965 treatment (5 μM) increased ABCA1/synaptophysin level and neurite/axonal outgrowth in primary cortical neurons derived from ABCA1(fl/fl) embryos, but not in

  2. ABCA1 (ATP-Binding Cassette Transporter A1) Mediates ApoA-I (Apolipoprotein A-I) and ApoA-I Mimetic Peptide Mobilization of Extracellular Cholesterol Microdomains Deposited by Macrophages.

    PubMed

    Jin, Xueting; Sviridov, Denis; Liu, Ying; Vaisman, Boris; Addadi, Lia; Remaley, Alan T; Kruth, Howard S

    2016-12-01

    We examined the function of ABCA1 (ATP-binding cassette transporter A1) in ApoA-I (apolipoprotein A-I) mobilization of cholesterol microdomains deposited into the extracellular matrix by cholesterol-enriched macrophages. We have also determined whether an ApoA-I mimetic peptide without and with complexing to sphingomyelin can mobilize macrophage-deposited cholesterol microdomains. Extracellular cholesterol microdomains deposited by cholesterol-enriched macrophages were detected with a monoclonal antibody, 58B1. ApoA-I and an ApoA-I mimetic peptide 5A mobilized cholesterol microdomains deposited by ABCA1(+/+) macrophages but not by ABCA1(-/-) macrophages. In contrast, ApoA-I mimetic peptide 5A complexed with sphingomyelin could mobilize cholesterol microdomains deposited by ABCA1(-/-) macrophages. Our findings show that a unique pool of extracellular cholesterol microdomains deposited by macrophages can be mobilized by both ApoA-I and an ApoA-I mimetic peptide but that mobilization depends on macrophage ABCA1. It is known that ABCA1 complexes ApoA-I and ApoA-I mimetic peptide with phospholipid, a cholesterol-solubilizing agent, explaining the requirement for ABCA1 in extracellular cholesterol microdomain mobilization. Importantly, ApoA-I mimetic peptide already complexed with phospholipid can mobilize macrophage-deposited extracellular cholesterol microdomains even in the absence of ABCA1. © 2016 American Heart Association, Inc.

  3. Activation of PPARγ does not contribute to macrophage ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI.

    PubMed

    Jiang, Meixiu; Li, Xiaoju

    2017-01-22

    Activation of macrophage ABCA1/G1 expression and cholesterol efflux is believed one of the mechanisms by which PPARγ inhibits atherosclerosis. PPARγ can also activate CD36 expression, a receptor for oxLDL, which may supply LXR ligands to activate LXR-ABCA1/G1 pathways. However, the controversial effects of PPARγ on ABCA1 expression have been reported. In this study, we used peritoneal macrophages isolated from wild type and CD36 deficient (CD36(-/-)) mice to clarify if PPARγ ligands can influence ABCA1 expression by CD36 function. We found that CD36 deficiency had no effect on cholesterol efflux and ABCA1/ABCG1 expression at basal levels. In both cell types, PPARγ ligands (15d-PGJ2, troglitazone and pioglitazone) reduced ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI, with most by troglitazone. LXR ligand-induced ABCA1 expression and cholesterol efflux was attenuated by PPARγ ligands. Associated with decreased ABCA1 protein levels, ABCA1 mRNA and promoter activity were reduced by PPARγ ligands. Furthermore, high expressing PPARγ reduced ABCA1 expression and LXR-activated ABCA1 promoter in a CD36-independent manner. In contrast, ABCG1 expression was induced by PPARγ ligands while inhibited by PPARγ inactivation. Taken together, our study suggests that enhancement of macrophage cholesterol metabolism by PPARγ is not contributed by activating ABCA1 expression and ABCA1-mediated cholesterol efflux to apoAI, which is not involved by CD36 expression either. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mycophenolic acid induces ATP-binding cassette transporter A1 (ABCA1) expression through the PPAR{gamma}-LXR{alpha}-ABCA1 pathway

    SciTech Connect

    Xu, Yanni; Lai, Fangfang; Xu, Yang; Wu, Yexiang; Liu, Qi; Li, Ni; Wei, Yuzhen; Feng, Tingting; Zheng, Zhihui; Jiang, Wei; Yu, Liyan; Hong, Bin; Si, Shuyi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Using an ABCA1p-LUC HepG2 cell line, we found that MPA upregulated ABCA1 expression. Black-Right-Pointing-Pointer MPA induced ABCA1 and LXR{alpha} protein expression in HepG2 cells. Black-Right-Pointing-Pointer PPAR{gamma} antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXR{alpha} protein expression. Black-Right-Pointing-Pointer The effect of MPA upregulating ABCA1 was due mainly to activation of the PPAR{gamma}-LXR{alpha}-ABCA1 pathway. -- Abstract: ATP-binding cassette transporter A1 (ABCA1) promotes cholesterol and phospholipid efflux from cells to lipid-poor apolipoprotein A-I and plays an important role in atherosclerosis. In a previous study, we developed a high-throughput screening method using an ABCA1p-LUC HepG2 cell line to find upregulators of ABCA1. Using this method in the present study, we found that mycophenolic acid (MPA) upregulated ABCA1 expression (EC50 = 0.09 {mu}M). MPA upregulation of ABCA1 expression was confirmed by real-time quantitative reverse transcription-PCR and Western blot analysis in HepG2 cells. Previous work has indicated that MPA is a potent agonist of peroxisome proliferator-activated receptor gamma (PPAR{gamma}; EC50 = 5.2-9.3 {mu}M). Liver X receptor {alpha} (LXR{alpha}) is a target gene of PPAR{gamma} and may directly regulate ABCA1 expression. Western blot analysis showed that MPA induced LXR{alpha} protein expression in HepG2 cells. Addition of PPAR{gamma} antagonist GW9662 markedly inhibited MPA-induced ABCA1 and LXR{alpha} protein expression. These data suggest that MPA increased ABCA1 expression mainly through activation of PPAR{gamma}. Thus, the effects of MPA on upregulation of ABCA1 expression were due mainly to activation of the PPAR{gamma}-LXR{alpha}-ABCA1 signaling pathway. This is the first report that the antiatherosclerosis activity of MPA is due to this mechanism.

  5. Membrane lipid domains distinct from cholesterol/sphingomyelin-rich rafts are involved in the ABCA1-mediated lipid secretory pathway.

    PubMed

    Mendez, A J; Lin, G; Wade, D P; Lawn, R M; Oram, J F

    2001-02-02

    Efflux of excess cellular cholesterol mediated by lipid-poor apolipoproteins occurs by an active mechanism distinct from passive diffusion and is controlled by the ATP-binding cassette transporter ABCA1. Here we examined whether ABCA1-mediated lipid efflux involves the selective removal of lipids associated with membrane rafts, plasma membrane domains enriched in cholesterol and sphingomyelin. ABCA1 was not associated with cholesterol and sphingolipid-rich membrane raft domains based on detergent solubility and lack of colocalization with marker proteins associated with raft domains. Lipid efflux to apoA-I was accounted for by decreases in cellular lipids not associated with cholesterol/sphingomyelin-rich membranes. Treating cells with filipin, to disrupt raft structure, or with sphingomyelinase, to digest plasma membrane sphingomyelin, did not impair apoA-I-mediated cholesterol or phosphatidylcholine efflux. In contrast, efflux of cholesterol to high density lipoproteins (HDL) or plasma was partially accounted for by depletion of cholesterol from membrane rafts. Additionally, HDL-mediated cholesterol efflux was partially inhibited by filipin and sphingomyelinase treatment. Apo-A-I-mediated cholesterol efflux was absent from fibroblasts with nonfunctional ABCA1 (Tangier disease cells), despite near normal amounts of cholesterol associated with raft domains and normal abilities of plasma and HDL to deplete cholesterol from these domains. Thus, the involvement of membrane rafts in cholesterol efflux applies to lipidated HDL particles but not to lipid-free apoA-I. We conclude that cholesterol and sphingomyelin-rich membrane rafts do not provide lipid for efflux promoted by apolipoproteins through the ABCA1-mediated lipid secretory pathway and that ABCA1 is not associated with these domains.

  6. ABCA1-Mediated Cholesterol Efflux Capacity to Cerebrospinal Fluid Is Reduced in Patients With Mild Cognitive Impairment and Alzheimer's Disease.

    PubMed

    Yassine, Hussein N; Feng, Qingru; Chiang, Jiarong; Petrosspour, Larissa M; Fonteh, Alfred N; Chui, Helena C; Harrington, Michael G

    2016-02-12

    Animal and human studies indicate that ABCA1-mediated cholesterol transport is important in Alzheimer's disease (AD). We hypothesized that the efficiency of cerebrospinal fluid (CSF) to facilitate ABCA1-mediated cholesterol efflux would be reduced in participants with mild cognitive impairment (MCI) or AD compared with cognitively healthy participants. CSF was collected from a cross-sectional study of cognitively healthy participants (n=47) and participants with MCI (n=35) or probable AD (n=26).The capacity of CSF to mediate cholesterol transport was assessed using a BHK cell line that can be induced to express the ABCA1 transporter. ABCA1-mediated cholesterol efflux capacity was 30% less in participants with MCI or AD compared with cognitively healthy participants (P<0.001 for both). Cholesterol efflux capacity correlated with CSF cholesterol content (r=0.37, P<0.001). CSF phosphatidylcholine decreased in participants with MCI and AD compared with cognitively healthy participants (9% less in MCI and 27% less in AD compared with cognitively healthy participants, P=0.01) and correlated with CSF efflux capacity (r=0.3, P=0.001). CSF sphingomyelin also correlated with the efflux capacity (r=0.24, P=0.02). Concentrations of CSF apoA-I and apoE did not significantly correlate with measures of efflux capacity. In people with MCI and AD, the capacity of CSF to facilitate ABCA1-mediated cholesterol efflux is impaired. This lesser cholesterol efflux in MCI supports a pathophysiological role for ABCA1-mediated cholesterol transport in early neurodegeneration. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  7. Association of ABCA1 with syntaxin 13 and flotillin-1 and enhanced phagocytosis in tangier cells.

    PubMed

    Bared, Salim Maa; Buechler, Christa; Boettcher, Alfred; Dayoub, Rania; Sigruener, Alexander; Grandl, Margot; Rudolph, Christian; Dada, Ashraf; Schmitz, Gerd

    2004-12-01

    The ATP-binding cassette transporter A1 (ABCA1) facilitates the cellular release of cholesterol and choline-phospholipids to apolipoprotein A-I (apoA-I) and several studies indicate that vesicular transport is associated with ABCA1 function. Syntaxins play a major role in vesicular fusion and have also been demonstrated to interact with members of the ABC-transporter family. Therefore, we focused on the identification of syntaxins that directly interact with ABCA1. The expression of syntaxins and ABCA1 in cultured human monocytes during M-CSF differentiation and cholesterol loading was investigated and syntaxins 3, 6, and 13 were found induced in foam cells together with ABCA1. Immunoprecipitation experiments revealed a direct association of syntaxin 13 and full-length ABCA1, whereas syntaxin 3 and 6 failed to interact with ABCA1. The colocalization of ABCA1 and syntaxin 13 was also shown by immunofluorescence microscopy. Silencing of syntaxin 13 by small interfering RNA (siRNA) led to reduced ABCA1 protein levels and hence to a significant decrease in apoA-I-dependent choline-phospholipid efflux. ABCA1 is localized in Lubrol WX-insoluble raft microdomains in macrophages and syntaxin 13 and flotillin-1 were also detected in these detergent resistant microdomains along with ABCA1. Syntaxin 13, flotillin-1, and ABCA1 were identified as phagosomal proteins, indicating the involvement of the phagosomal compartment in ABCA1-mediated lipid efflux. In addition, the uptake of latex phagobeads by fibroblasts with mutated ABCA1 was enhanced when compared with control cells and the recombinant expression of functional ABCA1 normalized the phagocytosis rate in Tangier fibroblasts. It is concluded that ABCA1 forms a complex with syntaxin 13 and flotillin-1, residing at the plasma membrane and in phagosomes that are partially located in raft microdomains.

  8. Association of ATP-Binding Cassette Transporter A1 (ABCA1)-565 C/T Gene Polymorphism with Hypoalphalipoproteinemia and Serum Lipids, IL-6 and CRP Levels

    PubMed Central

    Babashamsi, Mohammad Mahdi; Halalkhor, Sohrab; Moradi Firouzjah, Hamid; Parsian, Hadi; Jalali, Seyed Farzad; Babashamsi, Mohammad

    2017-01-01

    Background: ATP-binding cassette transporter A1 (ABCA1) is a membrane integral protein which plays a vital role in High Density Lipoprotein (HDL) metabolism and exerts a protective effect against Hypoalphalipoproteinemia (HA) by mediation of rate-limiting step in HDL biogenesis. In addition, this protein possesses anti-inflammatory effects by inhibiting the production of some inflammatory cytokines in macrophages. This study investigated the association of ABCA1-565 C/T gene polymorphism with HA and serum lipids, IL-6 and CRP levels. Methods: A population which consisted of 101 HA and 95 normal subjects were genotyped for ABCA1-565C/T polymorphism by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). The serum concentrations of lipids, IL-6 and high sensitive-CRP (hs-CRP) were measured by the relevant methods. Results: The frequency of T allele was significantly higher in the HA group than the controls (31.7 vs. 19.5%, p=0.002). Thus, carriers of the T allele (CT and TT genotypes) had a higher risk for HA (p=0.016, OR=2.04, 95% CI=1.14–3.63). T allele carriers demonstrated decreased HDL-C and increased triglyceride, IL-6 and CRP levels than those with the CC genotype. Conclusion: This study suggests that the-565 C/T polymorphism of ABCA1 gene is associated with an increased risk of HA, decreased HDL-C and increased TG, IL-6 and CRP. PMID:28090279

  9. Impact of android overweight or obesity and insulin resistance on basal and postprandial SR-BI and ABCA1-mediated serum cholesterol efflux capacities.

    PubMed

    Attia, Nesrine; Fournier, Natalie; Vedie, Benoît; Cambillau, Michèle; Beaune, Philippe; Ziegler, Olivier; Grynberg, Alain; Paul, Jean-Louis; Guerci, Bruno

    2010-04-01

    Since android overweight/obesity and insulin resistance are independent risk factors for cardiovascular disease, we investigated their impact on basal and postprandial scavenger receptor BI (SR-BI) and ATP binding cassette transporter A1 (ABCA1)-mediated serum cholesterol efflux. Twelve android overweight to obese and 9 normal weight controls women underwent body composition analysis by dual energy X-ray absorptiometry, a euglycemic hyperinsulinemic clamp, and an oral fat load with blood sampling at initial time (T0), 4h (T4) and 10h (T10) after the fat load. Serum lipids and HDL-parameters, capacities of serum to promote cholesterol efflux from SR-BI expressing Fu5AH hepatoma cells or from ABCA1-expressing J774 macrophages and to abilities of serum to induce a net removal of cholesterol from macrophage foam cells were measured at T0, T4 and T10. Sera from overweight/obese exhibited moderately decreased SR-BI-mediated cholesterol efflux capacities, in accordance with reduced HDL concentrations, but importantly increased ABCA1-mediated cholesterol efflux and increased cholesterol extraction capacities over the postprandial period, partly related to higher prebeta-HDL concentrations. In multiple regression analyses, android obesity-related parameters and HDL-PL or prebeta-HDL levels remained the only independent correlates for SR-BI or ABCA1-dependent fractional cholesterol efflux while only prebeta-HDL levels remained correlated to cholesterol extraction capacities. Our results suggest that android overweight/obesity may not result in an impaired cholesterol efflux capacity.

  10. Cellular Cholesterol Accumulation Facilitates Ubiquitination and Lysosomal Degradation of Cell Surface-Resident ABCA1.

    PubMed

    Mizuno, Tadahaya; Hayashi, Hisamitsu; Kusuhara, Hiroyuki

    2015-06-01

    By excreting cellular cholesterol to apolipoprotein A-I, ATP-binding cassette transporter A1 (ABCA1) mediates the biogenesis of high-density lipoprotein in hepatocytes and prevents foam cell formation from macrophages. We recently showed that cell surface-resident ABCA1 (csABCA1) undergoes ubiquitination and later lysosomal degradation through the endosomal sorting complex required for transport system. Herein, we investigated the relevance of this degradation pathway to the turnover of csABCA1 in hypercholesterolemia. Immunoprecipitation and cell surface-biotinylation studies with HepG2 cells and mouse peritoneal macrophages showed that the ubiquitination level and degradation of csABCA1 were facilitated by treatment with a liver X receptor (LXR) agonist and acetylated low-density lipoprotein. The effects of an LXR agonist and acetylated low-density lipoprotein on the degradation of csABCA1 were repressed completely by treatment with bafilomycin, an inhibitor of lysosomal degradation, and by depletion of tumor susceptibility gene 101, a major component of endosomal sorting complex required for transport-I. RNAi analysis indicated that LXRβ inhibited the accelerated lysosomal degradation of csABCA1 by the LXR agonist, regardless of its transcriptional activity. Cell surface coimmunoprecipitation with COS1 cells expressing extracellularly hemagglutinin-tagged ABCA1 showed that LXRβ interacted with csABCA1 and inhibited the ubiquitination of csABCA1. Immunoprecipitates with anti-ABCA1 antibodies from the liver plasma membranes showed less LXRβ and a higher ubiquitination level of ABCA1 in high-fat diet-fed mice than in normal chow-fed mice. Under conditions of high cellular cholesterol content, csABCA1 became susceptible to ubiquitination by dissociation of LXRβ from csABCA1, which facilitated the lysosomal degradation of csABCA1 through the endosomal sorting complex required for transport system. © 2015 American Heart Association, Inc.

  11. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages

    PubMed Central

    Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent. PMID:27120199

  12. Lactobacillus acidophilus K301 Inhibits Atherogenesis via Induction of 24 (S), 25-Epoxycholesterol-Mediated ABCA1 and ABCG1 Production and Cholesterol Efflux in Macrophages.

    PubMed

    Hong, Yi-Fan; Kim, Hangeun; Kim, Hye Sun; Park, Woo Jung; Kim, Joo-Yun; Chung, Dae Kyun

    2016-01-01

    Lactobacillus acidophilus species are well-known probiotics with the beneficial activity of regulating cholesterol levels. In this study, we showed that L. acidophilus K301 reduced the level of cholesterol through reverse transport in macrophages. L. acidophilus K301 upregulated the mRNA and protein levels of genes such as ATP-binding cassette A1 (ABCA1) and ATP-binding cassette G1 (ABCG1) under the control of liver X receptor (LXR), resulting in increased apoA-I-dependent cholesterol efflux in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1 cells. L. acidophilus K301 induced both ABCA1 and ABCG1 through the endogenous LXR agonist 24(S), 25-epoxcycholesterol, which is synthesized by intracellular cholesterol synthetic pathways. In vivo studies using L. acidophilus K301-treated ApoE-/- mice showed reduced accumulation of lipoproteins in the arterial lumen. The inhibitory effects of L. acidophilus K301 on accumulation of lipoprotein in atherosclerotic plaques were mediated by the induction of squalene reductase (SQLE) and oxidosqualene cyclase (OSC) and resulted in ABCA1-mediated cholesterol efflux. Taken together, our findings revealed that Lactobacillus acidophilus K301 regulates the expression of genes related to cholesterol reverse transport via the induction of endogenous LXR agonist, suggesting the therapeutic potential of Lactobacillus acidophilus K301 as an anti-atherosclerotic agent.

  13. Poly(ADP-ribose) Polymerase 1 Represses Liver X Receptor-mediated ABCA1 Expression and Cholesterol Efflux in Macrophages.

    PubMed

    Shrestha, Elina; Hussein, Maryem A; Savas, Jeffery N; Ouimet, Mireille; Barrett, Tessa J; Leone, Sarah; Yates, John R; Moore, Kathryn J; Fisher, Edward A; Garabedian, Michael J

    2016-05-20

    Liver X receptors (LXR) are oxysterol-activated nuclear receptors that play a central role in reverse cholesterol transport through up-regulation of ATP-binding cassette transporters (ABCA1 and ABCG1) that mediate cellular cholesterol efflux. Mouse models of atherosclerosis exhibit reduced atherosclerosis and enhanced regression of established plaques upon LXR activation. However, the coregulatory factors that affect LXR-dependent gene activation in macrophages remain to be elucidated. To identify novel regulators of LXR that modulate its activity, we used affinity purification and mass spectrometry to analyze nuclear LXRα complexes and identified poly(ADP-ribose) polymerase-1 (PARP-1) as an LXR-associated factor. In fact, PARP-1 interacted with both LXRα and LXRβ. Both depletion of PARP-1 and inhibition of PARP-1 activity augmented LXR ligand-induced ABCA1 expression in the RAW 264.7 macrophage line and primary bone marrow-derived macrophages but did not affect LXR-dependent expression of other target genes, ABCG1 and SREBP-1c. Chromatin immunoprecipitation experiments confirmed PARP-1 recruitment at the LXR response element in the promoter of the ABCA1 gene. Further, we demonstrated that LXR is poly(ADP-ribosyl)ated by PARP-1, a potential mechanism by which PARP-1 influences LXR function. Importantly, the PARP inhibitor 3-aminobenzamide enhanced macrophage ABCA1-mediated cholesterol efflux to the lipid-poor apolipoprotein AI. These findings shed light on the important role of PARP-1 on LXR-regulated lipid homeostasis. Understanding the interplay between PARP-1 and LXR may provide insights into developing novel therapeutics for treating atherosclerosis.

  14. Lysine residues of ABCA1 are required for the interaction with apoA-I.

    PubMed

    Nagao, Kohjiro; Kimura, Yasuhisa; Ueda, Kazumitsu

    2012-03-01

    ATP-binding cassette protein A1 (ABCA1) plays a pivotal role in cholesterol homeostasis by generating high-density lipoprotein (HDL). Apolipoprotein A-I (apoA-I), a lipid acceptor for ABCA1, reportedly interacts with ABCA1. However, it has also been proposed that apoA-I interacts with ABCA1-generated special domains on the plasma membrane, but apart from ABCA1, and solubilizes membrane lipids. To determine the importance of the apoA-I-ABCA1 interaction in HDL formation, the electrostatic interaction between apoA-I and ABCA1, which mediates the interaction between apoB100 in low-density lipoprotein particles (LDL) and LDL receptor, was analyzed. The apoA-I binding to ABCA1 and the cross-linking between them were inhibited by the highly charged molecules heparin and poly-L-lysine. Treating cells with membrane impermeable reagents that specifically react with primary amino groups abolished the interaction between apoA-I and ABCA1. However, these reagents did not affect the characteristic tight ATP binding to ABCA1. These results suggest that lysine residues in the extracellular domains of ABCA1 contribute to the interaction with apoA-I. The electrostatic interaction between ABCA1 and apoA-I is predicted to be the first step in HDL formation. This article is part of a Special Issue entitled Advances in high density lipoprotein formation and metabolism: a tribute to John F. Oram (1945-2010).

  15. ApoE promotes hepatic selective uptake but not RCT due to increased ABCA1-mediated cholesterol efflux to plasma.

    PubMed

    Annema, Wijtske; Dikkers, Arne; de Boer, Jan Freark; Gautier, Thomas; Rensen, Patrick C N; Rader, Daniel J; Tietge, Uwe J F

    2012-05-01

    ApoE plays an important role in lipoprotein metabolism. This study investigated the effects of adenovirus-mediated human apoE overexpression (AdhApoE3) on sterol metabolism and in vivo reverse cholesterol transport (RCT). In wild-type mice, AdhApoE3 resulted in decreased HDL cholesterol levels and a shift toward larger HDL in plasma, whereas hepatic cholesterol content increased (P < 0.05). These effects were dependent on scavenger receptor class B type I (SR-BI) as confirmed using SR-BI-deficient mice. Kinetic studies demonstrated increased plasma HDL cholesteryl ester catabolic rates (P < 0.05) and higher hepatic selective uptake of HDL cholesteryl esters in AdhApoE3-injected wild-type mice (P < 0.01). However, biliary and fecal sterol output as well as in vivo macrophage-to-feces RCT studied with (3)H-cholesterol-loaded mouse macrophage foam cells remained unchanged upon human apoE overexpression. Similar results were obtained using hApoE3 overexpression in human CETP transgenic mice. However, blocking ABCA1-mediated cholesterol efflux from hepatocytes in AdhApoE3-injected mice using probucol increased biliary cholesterol secretion (P < 0.05), fecal neutral sterol excretion (P < 0.05), and in vivo RCT (P < 0.01), specifically within neutral sterols. These combined data demonstrate that systemic apoE overexpression increases i) SR-BI-mediated selective uptake into the liver and ii) ABCA1-mediated efflux of RCT-relevant cholesterol from hepatocytes back to the plasma compartment, thereby resulting in unchanged fecal mass sterol excretion and overall in vivo RCT.

  16. Differential regulation of ABCA1 and macrophage cholesterol efflux by elaidic and oleic acids.

    PubMed

    Shao, Fei; Ford, David A

    2013-08-01

    Trans fatty acid consumption is associated with an increased risk of coronary heart disease. This increased risk has been attributed to decreased levels of HDL cholesterol and increased levels of LDL cholesterol. However, the mechanism by which trans fatty acid modulates cholesterol transit remains poorly defined. ATP-binding cassette transporter A1 (ABCA1)-mediated macrophage cholesterol efflux is the rate-limiting step initiating apolipoprotein A-I lipidation. In this study, elaidic acid, the most abundant trans fatty acid in partially hydrogenated vegetable oil, was shown to stabilize macrophage ABCA1 protein levels in comparison to that of its cis fatty acid isomer, oleic acid. The mechanism responsible for the disparate effects of oleic and elaidic acid on ABCA1 levels was through accelerated ABCA1 protein degradation in cells treated with oleic acid. In contrast, no apparent differences were observed in ABCA1 mRNA levels, and only minor changes were observed in Liver X receptor/Retinoic X receptor promoter activity in cells treated with elaidic and oleic acid. Efflux of both tracers and cholesterol mass revealed that elaidic acid slightly increased ABCA1-mediated cholesterol efflux, while oleic acid led to decreased ABCA1-mediated efflux. In conclusion, these studies show that cis and trans structural differences in 18 carbon n-9 monoenoic fatty acids variably impact cholesterol efflux through disparate effects on ABCA1 protein degradation.

  17. Cholesterol transport via ABCA1: new insights from solid-phase binding assay.

    PubMed

    Reboul, Emmanuelle; Dyka, Frank M; Quazi, Faraz; Molday, Robert S

    2013-04-01

    It is now well established that the ATP-binding cassette transporter A1 (ABCA1) plays a pivotal role in HDL metabolism, reverse cholesterol transport and net efflux of cellular cholesterol and phospholipids. We aimed to resolve some uncertainties related to the putative function of ABCA1 as a mediator of lipid transport by using a methodology developed in the laboratory to isolate a protein and study its interactions with other compounds. ABCA1 was tagged with the 1D4 peptide at the C terminus and expressed in human HEK 293 cells. Preliminary experiments showed that the tag modified neither the protein expression/localization within the cells nor the ability of ABCA1 to promote cholesterol cellular efflux to apolipoprotein A-I. ABCA1-1D4 was then purified and reconstituted in liposomes. ABCA1 displayed an ATPase activity in phospholipid liposomes that was significantly decreased by cholesterol. Finally, interactions with either cholesterol or apolipoprotein A-I were assessed by binding experiments with protein immobilized on an immunoaffinity matrix. Solid-phase binding assays showed no direct binding of cholesterol or apolipoprotein A-I to ABCA1. Overall, our data support the hypothesis that ABCA1 is able to mediate the transport of cholesterol from cells without direct interaction and that apo A-I primarily binds to membrane surface or accessory protein(s).

  18. Effect of ATP-binding Cassette Transporter A1 (ABCA1) Gene Polymorphisms on Plasma Lipid Variables and Common Demographic Parameters in Greek Nurses

    PubMed Central

    Kolovou, Vana; Marvaki, Apostolia; Boutsikou, Maria; Vasilopoulos, Georgios; Degiannis, Dimitrios; Marvaki, Christina; Kolovou, Genovefa

    2016-01-01

    Objective: The present study is on line with our previous studies evaluating the influence of ATP-binding cassette transporter A1 (ABCA1) gene polymorphisms on the lipid variables of Greek student-nurses. The current study was undertaken to (1) estimate the influence of variant(s) such as rs2066715 (V825I), R219K, R1587K, I883M of ABCA1 gene on lipid variables and (2) evaluate the effect of all four ABCA1 polymorphisms on common demographic parameters. Methods: The study population involved 432 unrelated nurses (86 men) who were genotyped for ABCA1 polymorphisms and correlated according to lipid variables [total cholesterol (TC), triglycerides (TGs), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C) and apolipoprotein (apo) A] and demographic parameters (age, gender, BMI, waist circumference). Results: According to lipid variables concentration there was no difference between genotypes and alleles of V825I, R219K and I883M polymorphisms. The LDL-C concentration was 13% lower in RR compared with RK genotype (100.7 vs. 113.9 mg/dl, p=0.013) of R1587K gene polymorphism. In regression analysis the effects of age, gender and only R1587K gene polymorphism on LDL-C concentrations were proved significant. Additionally, LDL-C was increased (by 1.29 mg/dl on average) by every year of increase of age. Moreover, females had lower LDL-C concentrations as compared with males. Conclusion: Findings suggested that only R1587K polymorphism of ABCA1 gene was associated with lipid variables, age, and gender of Greek nurses. These findings may be helpful in assessing the risk factors for premature coronary heart disease and distinct individuals with lower/higher atherosclerotic burden. PMID:27990182

  19. ABCA1 Deficiency Affects Basal Cognitive Deficits and Dendritic Density in Mice

    PubMed Central

    Fitz, Nicholas F.; Carter, Alexis Y.; Tapias, Victor; Castranio, Emilie L.; Kodali, Ravindra; Lefterov, Iliya; Koldamova, Radosveta

    2017-01-01

    ATP-binding cassette transporter A1 (ABCA1) mediates cholesterol efflux to lipid-free apolipoproteins and regulates the generation of high density lipoproteins. Previously, we have shown that lack of Abca1 significantly increases amyloid deposition and cognitive deficits in Alzheimer’s disease model mice expressing human amyloid-β protein precursor (APP). The goal of this study was to determine if ABCA1 plays a role in memory deficits caused by amyloid-β (Aβ) oligomers and examine neurite architecture of pyramidal hippocampal neurons. Our results confirm previous findings that Abca1 deficiency significantly impairs spatial memory acquisition and retention in the Morris water maze and long-term memory in novel object recognition of APP transgenic mice at a stage of early amyloid pathology. Neither test demonstrated a significant difference between Abca1ko and wild-type (WT) mice. We also examined the effect of intra-hippocampal infused Aβ oligomers on cognitive performance of Abca1ko mice, compared to control infusion of scrambled Aβ peptide. Age-matched WT mice undergoing the same infusions were also used as controls. In this model system, we found a statistically significant difference between WT and Abca1ko mice infused with scrambled Aβ, suggesting that Abca1ko mice are vulnerable to the effect of mild stresses. Moreover, examination of neurite architecture in the hippocampi revealed a significant decrease in neurite length, number of neurite segments, and branches in Abca1ko mice when compared to WT mice. We conclude that mice lacking ABCA1 have basal cognitive deficits that prevent them from coping with additional stressors, which is in part due to impairment of neurite morphology in the hippocampus. PMID:28106559

  20. A novel enzyme immunoassay specific for ABCA1 protein quantification in human tissues and cells.

    PubMed

    Paul, Vijay; Meyer, Heinrich H D; Leidl, Katharina; Soumian, Soni; Albrecht, Christiane

    2008-10-01

    ATP-binding cassette transporter A1 (ABCA1) mediates the transport of cholesterol and phospholipids from cells to lipid-poor HDL and maintains cellular lipid homeostasis. Impaired ABCA1 function plays a role in lipid disorders, cardiovascular disease, atherosclerosis, and metabolic disorders. Despite the clinical importance of ABCA1, no method is available for quantifying ABCA1 protein. We developed a sensitive indirect competitive ELISA for measuring ABCA1 protein in human tissues using a commercial ABCA1 peptide and a polyclonal anti-ABCA1 antibody. The ELISA has a detection limit of 8 ng/well (0.08 mg/l) with a working range of 9-1000 ng/well (0.09-10 mg/l). Intra- and interassay coefficient of variations (CVs) were 6.4% and 9.6%, respectively. Good linearity (r = 0.97-0.99) was recorded in serial dilutions of human arterial and placental crude membrane preparations, and fibroblast lysates. The ELISA measurements for ABCA1 quantification in reference arterial tissues corresponded well with immunoblot analysis. The assay performance and clinical utility was evaluated with arterial tissues obtained from 15 controls and 44 patients with atherosclerotic plaques. ABCA1 protein concentrations in tissue lysates were significantly lower in patients (n = 24) as compared with controls (n = 5; 9.37 +/- 0.82 vs. 17.03 +/- 4.25 microg/g tissue; P < 0.01). The novel ELISA enables the quantification of ABCA1 protein in human tissues and confirms previous semiquantitative immunoblot results.

  1. Pseudomonas aeruginosa and sPLA2 IB stimulate ABCA1-mediated phospholipid efflux via ERK-activation of PPARα–RXR

    PubMed Central

    Agassandian, Marianna; Miakotina, Olga L.; Andrews, Matthew; Mathur, Satya N.; Mallampalli, Rama K.

    2007-01-01

    Bacterial infection triggers an acute inflammatory response that might alter phospholipid metabolism. We have investigated the acute-phase response of murine lung epithelia to Pseudomonas aeruginosa infection. Ps. aeruginosa triggered secretion of the pro-inflammatory lipase, sPLA2 IB (phospholipase A2 IB), from lung epithelium. Ps. aeruginosa and sPLA2 IB each stimulated basolateral PtdCho (phosphatidylcholine) efflux in lung epithelial cells. Pre-treatment of cells with glyburide, an inhibitor of the lipid-export pump, ABCA1 (ATP-binding cassette transporter A1), attenuated Ps. aeruginosa and sPLA2 IB stimulation of PtdCho efflux. Effects of Ps. aeruginosa and sPLA2 IB were completely abolished in human Tangier disease fibroblasts, cells that harbour an ABCA1 genetic defect. Ps. aeruginosa and sPLA2 IB induced the heterodimeric receptors, PPARα (peroxisome-proliferator-activated receptor-α) and RXR (retinoid X receptor), factors known to modulate ABCA1 gene expression. Ps. aeruginosa and sPLA2 IB stimulation of PtdCho efflux was blocked with PD98059, a p44/42 kinase inhibitor. Transfection with MEK1 (mitogen-activated protein kinase/extracellular-signal-regulated kinase kinase 1), a kinase upstream of p44/42, increased PPARα and RXR expression co-ordinately with increased ABCA1 protein. These results suggest that pro-inflammatory effects of Ps. aeruginosa involve release of an sPLA2 of epithelial origin that, in part, via distinct signalling molecules, transactivates the ABCA1 gene, leading to export of phospholipid. PMID:17223797

  2. Seminal Plasma Characteristics and Expression of ATP-binding Cassette Transporter A1 (ABCA1) in Canine Spermatozoa from Ejaculates with Good and Bad Freezability.

    PubMed

    Schäfer-Somi, S; Palme, N

    2016-04-01

    The composition of seminal plasma and the localization of the ATP-binding cassette transporter A1 (ABCA1) in spermatozoa from good and bad freezers were compared to frozen-thawed spermatozoa from the same dog. Ejaculates were obtained from 31 stud dogs, and the sperm-rich fraction (SRF) was kept for analysis. One aliquot was used for the analysis of concentration, progressive motility (P; CASA), viability (V; CASA) and leucocyte count, and the analysis was performed by flow cytometry (FITC-PNA/PI), SCSA and HOST. In seminal plasma, concentration of albumin, cholesterol, calcium, inorganic phosphate, sodium, potassium, zinc and copper was measured. Semen smears were prepared and evaluated for the expression of ABCA1. The remainder of each ejaculate was frozen. After thawing, the quality assessment was repeated and further smears were prepared. According to post-thaw semen quality, dogs were assigned to good freezers (n = 20) or bad freezers (n = 11), the latter were defined as < 50% progressive motility and/or > 40% morphologically abnormal sperm and/or < 50% viability. Bad freezers were older than good freezers (5.3 vs 3.4 years, p < 0.05). In bad freezers, the percentage of sperm with ABCA1 signal in the acrosome was lower (26.3% vs 35.7%, p < 0.01) and the percentage of sperm with complete loss of ABCA1 signal higher (46.7% vs 30%, p < 0.01); the percentage of dead spermatozoa was higher (36.1% vs 25.5%, p < 0.05), and the concentration of cholesterol and sodium in seminal plasma was lower than in good freezers (p < 0.05). We conclude that in thawed bad freezer sperm, an increase in acrosome damages coincided with an increased loss of cholesterol transporters and cell death, and a lower cholesterol concentration in seminal plasma. Follow-up studies revealed whether a relation exists between these findings.

  3. Genetic variants in ABCA1 promoter affect transcription activity and plasma HDL level in pigs.

    PubMed

    Dang, Xiao-yong; Chu, Wei-wei; Shi, Heng-chuan; Yu, Shi-gang; Han, Hai-yin; Gu, Shu-Hua; Chen, Jie

    2015-01-25

    Excess accumulation of cholesterol in plasma may result in coronary artery disease. Numerous studies have demonstrated that ATP-binding cassette protein A1 (ABCA1) mediates the efflux of cholesterol and phospholipids to apolipoproteins, a process necessary for plasma high density lipoprotein (HDL) formation. Higher plasma levels of HDL are associated with lower risk for cardiovascular disease. Studies of human disease and animal models had shown that an increased hepatic ABCA1 activity relates to an enhanced plasma HDL level. In this study, we hypothesized that functional mutations in the ABCA1 promoter in pigs may affect gene transcription activity, and consequently the HDL level in plasma. The promoter region of ABCA1 was comparatively scanned by direct sequencing with pool DNA of high- and low-HDL groups (n=30 for each group). Two polymorphisms, c. - 608A>G and c. - 418T>A, were revealed with reverse allele distribution in the two groups. The two polymorphisms were completely linked and formed only G-A or A-T haplotypes when genotyped in a larger population (n=526). Furthermore, we found that the G-A/G-A genotype was associated with higher HDL and ABCA1 mRNA level than A-T/A-T genotype. Luciferase assay also revealed that G-A haplotype promoter had higher activity than A-T haplotype. Single-nucleotide mutant assay showed that c.-418T>A was the causal mutation for ABCA1 transcription activity alteration. Conclusively, we identified two completely linked SNPs in porcine ABCA1 promoter region which have influence on the plasma HDL level by altering ABCA1 gene transcriptional activity.

  4. The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice

    PubMed Central

    Joyce, Charles W.; Amar, Marcelo J. A.; Lambert, Gilles; Vaisman, Boris L.; Paigen, Beverly; Najib-Fruchart, Jamila; Hoyt, Robert F.; Neufeld, Edward D.; Remaley, Alan T.; Fredrickson, Donald S.; Brewer, H. Bryan; Santamarina-Fojo, Silvia

    2002-01-01

    Identification of mutations in the ABCA1 transporter (ABCA1) as the genetic defect in Tangier disease has generated interest in modulating atherogenic risk by enhancing ABCA1 gene expression. To investigate the role of ABCA1 in atherogenesis, we analyzed diet-induced atherosclerosis in transgenic mice overexpressing human ABCA1 (hABCA1-Tg) and spontaneous lesion formation in hABCA1-Tg × apoE-knockout (KO) mice. Overexpression of hABCA1 in C57BL/6 mice resulted in a unique anti-atherogenic profile characterized by decreased plasma cholesterol (63%), cholesteryl ester (63%), free cholesterol (67%), non-high density lipoprotein (HDL)-cholesterol (53%), and apolipoprotein (apo) B (64%) but markedly increased HDL-cholesterol (2.8-fold), apoA-I (2.2-fold), and apoE (2.8-fold) levels. These beneficial changes in the lipid profile led to significantly lower (65%) aortic atherosclerosis in hABCA1-Tg mice. In marked contrast, ABCA1 overexpression had a minimal effect on the plasma lipid profile of apoE-KO mice and resulted in a 2- to 2.6-fold increase in aortic lesion area. These combined results indicate that overexpression of ABCA1 in C57BL/6 mice on a high cholesterol diet results in an atheroprotective lipoprotein profile and decreased atherosclerosis, and thus provide previously undocumented in vivo evidence of an anti-atherogenic role for the ABCA1 transporter. In contrast, overexpression of ABCA1 in an apoE-KO background led to increased atherosclerosis, further substantiating the important role of apoE in macrophage cholesterol metabolism and atherogenesis. In summary, these results establish that, in the presence of apoE, overexpression of ABCA1 modulates HDL as well as apoB-containing lipoprotein metabolism and reduces atherosclerosis in vivo, and indicate that pharmacological agents that will increase ABCA1 expression may reduce atherogenic risk in humans. PMID:11752403

  5. Modulation of ABCA1 by an LXR Agonist Reduces Beta-Amyloid Levels and Improves Outcome after Traumatic Brain Injury

    PubMed Central

    Loane, David J.; Washington, Patricia M.; Vardanian, Lilit; Pocivavsek, Ana; Hoe, Hyang-Sook; Duff, Karen E.; Cernak, Ibolja; Rebeck, G. William; Faden, Alan I.

    2011-01-01

    Abstract Traumatic brain injury (TBI) increases brain beta-amyloid (Aβ) in humans and animals. Although the role of Aβ in the injury cascade is unknown, multiple preclinical studies have demonstrated a correlation between reduced Aβ and improved outcome. Therefore, therapeutic strategies that enhance Aβ clearance may be beneficial after TBI. Increased levels of ATP-binding cassette A1 (ABCA1) transporters can enhance Aβ clearance through an apolipoprotein E (apoE)-mediated pathway. By measuring Aβ and ABCA1 after experimental TBI in C57BL/6J mice, we found that Aβ peaked early after injury (1–3 days), whereas ABCA1 had a delayed response (beginning at 3 days). As ABCA1 levels increased, Aβ levels returned to baseline levels—consistent with the known role of ABCA1 in Aβ clearance. To test if enhancing ABCA1 levels could block TBI-induced Aβ, we treated TBI mice with the liver X-receptor (LXR) agonist T0901317. Pre- and post-injury treatment increased ABCA1 levels at 24 h post-injury, and reduced the TBI-induced increase in Aβ. This reduction in Aβ was not due to decreased amyloid precursor protein processing, or a shift in the solubility of Aβ, indicating enhanced clearance. T0901317 also limited motor coordination deficits in injured mice and reduced brain lesion volume. These data indicate that activation of LXR can reduce Aβ accumulation after TBI, and is accompanied by improved functional recovery. PMID:21175399

  6. Increased ABCA1 activity protects against atherosclerosis.

    PubMed

    Singaraja, Roshni R; Fievet, Catherine; Castro, Graciela; James, Erick R; Hennuyer, Nathalie; Clee, Susanne M; Bissada, Nagat; Choy, Jonathan C; Fruchart, Jean-Charles; McManus, Bruce M; Staels, Bart; Hayden, Michael R

    2002-07-01

    The ABC transporter ABCA1 plays a key role in the first steps of the reverse cholesterol transport pathway by mediating lipid efflux from macrophages. Previously, it was demonstrated that human ABCA1 overexpression in vivo in transgenic mice results in a mild elevation of plasma HDL levels and increased efflux of cholesterol from macrophages. In this study, we determined the effect of overexpression of ABCA1 on atherosclerosis development. Human ABCA1 transgenic mice (BAC(+)) were crossed with ApoE(-/-) mice, a strain that spontaneously develop atherosclerotic lesions. BAC(+)ApoE(-/-) mice developed dramatically smaller, less-complex lesions as compared with their ApoE(-/-) counterparts. In addition, there was increased efflux of cholesterol from macrophages isolated from the BAC(+)ApoE(-/-) mice. Although the increase in plasma HDL cholesterol levels was small, HDL particles from BAC(+)ApoE(-/-) mice were significantly better acceptors of cholesterol. Lipid analysis of HDL particles from BAC(+)ApoE(-/-) mice revealed an increase in phospholipid levels, which was correlated significantly with their ability to enhance cholesterol efflux.

  7. ABCA1 agonist peptides for the treatment of disease

    SciTech Connect

    Bielicki, John K.

    2016-02-01

    Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potential for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.

  8. ABCA1 agonist peptides for the treatment of disease

    DOE PAGES

    Bielicki, John K.

    2016-02-01

    Purpose of review The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. Recent findings Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potentialmore » for clinical use. Structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia have been identified. These may have implications for the design of other HDL mimetic peptides. Summary ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.« less

  9. Ethanolic extracts of Brazilian red propolis increase ABCA1 expression and promote cholesterol efflux from THP-1 macrophages.

    PubMed

    Iio, Akio; Ohguchi, Kenji; Maruyama, Hiroe; Tazawa, Shigemi; Araki, Yoko; Ichihara, Kenji; Nozawa, Yoshinori; Ito, Masafumi

    2012-03-15

    The ATP-binding cassette transporter A1 (ABCA1) is a membrane transporter that directly contributes to high-density lipoprotein (HDL) biogenesis by regulating the cellular efflux of cholesterol. Since ABCA1 plays a pivotal role in cholesterol homeostasis and HDL metabolism, identification of a novel substance that is capable of increasing its expression would be beneficial for the prevention and therapy of atherosclerosis. In the present study, we studied the effects of ethanolic extracts of Brazilian red propolis (EERP) on ABCA1 expression and cholesterol efflux in THP-1 macrophages. EERP enhanced PPARγ and liver X receptor (LXR) transcriptional activity at 5-15μg/ml, which was associated with upregulation of PPARγ and LXRα expression. It was also found that EERP increase the activity of the ABCA1 promoter, which is positively regulated by LXR. Consistent with these findings, treatment with EERP increased both mRNA and protein expression of ABCA1. Finally, EERP upregulated ApoA-I-mediated cholesterol efflux. Our results showed that EERP promote ApoA-I-mediated cholesterol efflux from macrophages by increasing ABCA1 expression via induction of PPARγ/LXR. Copyright © 2011 Elsevier GmbH. All rights reserved.

  10. Will Lipidation of ApoA1 through Interaction with ABCA1 at the Intestinal Level Affect the Protective Functions of HDL?

    PubMed Central

    Niesor, Eric J.

    2015-01-01

    The relationship between levels of high-density lipoprotein cholesterol (HDL-C) and cardiovascular (CV) risk is well recognized; however, in recent years, large-scale phase III studies with HDL-C-raising or -mimicking agents have failed to demonstrate a clinical benefit on CV outcomes associated with raising HDL-C, casting doubt on the “HDL hypothesis.” This article reviews potential reasons for the observed negative findings with these pharmaceutical compounds, focusing on the paucity of translational models and relevant biomarkers related to HDL metabolism that may have confounded understanding of in vivo mechanisms. A unique function of HDL is its ability to interact with the ATP-binding cassette transporter (ABC) A1 via apolipoprotein (Apo) A1. Only recently, studies have shown that this process may be involved in the intestinal uptake of dietary sterols and antioxidants (vitamin E, lutein and zeaxanthin) at the basolateral surface of enterocytes. This parameter should be assessed for HDL-raising drugs in addition to the more documented reverse cholesterol transport (RCT) from peripheral tissues to the liver. Indeed, a single mechanism involving the same interaction between ApoA1 and ABCA1 may encompass two HDL functions previously considered as separate: antioxidant through the intestinal uptake of antioxidants and RCT through cholesterol efflux from loaded cells such as macrophages. PMID:25569858

  11. ApoA-I enhances generation of HDL-like lipoproteins through interaction between ABCA1 and phospholipase Cγ in rat astrocytes.

    PubMed

    Ito, Jin-ichi; Nagayasu, Yuko; Kheirollah, Alireza; Abe-Dohmae, Sumiko; Yokoyama, Shinji

    2011-12-01

    In the previous paper, we reported that apolipoprotein (apo) A-I enhances generation of HDL-like lipoproteins in rat astrocytes to be accompanied with both increase in tyrosine phosphorylation of phospholipase Cγ (PL-Cγ) and PL-Cγ translocation to cytosolic lipid-protein particles (CLPP) fraction. In this paper, we studied the interaction between apoA-I and ATP-binding cassette transporter A1 (ABCA1) to relate with PL-Cγ function for generation of HDL-like lipoproteins in the apoA-I-stimulated astrocytes. ABCA1 co-migrated with exogenous apoA-I with apparent molecular weight over 260kDa on SDS-PAGE when rat astrocytes were treated with apoA-I and then with a cross-linker, BS3. The solubilized ABCA1 of rat astrocytes was associated with the apoA-I-immobilized Affi-Gel 15. An LXR agonist, To901317, increased the cellular level of ABCA1, association of apoA-I with ABCA1 and apoA-I-mediated lipid release in rat astrocytoma GA-1/Mock cells where ABCA1 expression at baseline is very low. PL-Cγ was co-isolated by apoA-I-immobilized Affi-Gel 15 and co-immunoprecipitated by anti-ABCA1 antibody along with ABCA1 from the solubilized membrane fraction of rat astrocytes. The SiRNA of ABCA1 suppressed not only the PL-Cγ binding to ABCA1 but also the tyrosine phosphorylation of PL-Cγ. A PL-C inhibitor, U73122, prevented generation of apoA-I-mediated HDL-like lipoproteins in rat astrocytes. To901317 increased the association of PL-Cγ with ABCA1 in GA-1/Mock cells dependently on the increase of cellular level of ABCA1 without changing that of PL-Cγ. These findings suggest that the exogenous apoA-I augments the interaction between PL-Cγ and ABCA1 to stimulate tyrosine phosphorylation and activation of PL-Cγ for generation of HDL-like lipoproteins in astrocytes.

  12. Expression and Biological Activity of ABCA1 in Alveolar Epithelial Cells

    PubMed Central

    Bates, Sandra R.; Tao, Jian-Qin; Yu, Kevin J.; Borok, Zea; Crandall, Edward D.; Collins, Heidi L.; Rothblat, George H.

    2008-01-01

    The mechanisms used by alveolar type I pneumocytes for maintenance of the lipid homeostasis necessary to sustain these large squamous cells are unknown. The processes may involve the ATP-binding cassette transporter A1 (ABCA1), a transport protein shown to be crucial in apolipoprotein A-I (apoA-I)–mediated mobilization of cellular cholesterol and phospholipid. Immunohistochemical data demonstrated the presence of ABCA1 in lung type I and type II cells and in cultured pneumocytes. Type II cells isolated from rat lungs and cultured for 5 days in 10% serum trans-differentiated toward cells with a type I–like phenotype which reacted with the type I cell–specific monoclonal antibody VIIIB2. Upon incubation of the type I–like pneumocytes with agents that up-regulate the ABCA1 gene (9-cis-retinoic acid [9cRA] and 22-hydroxycholesterol [22-OH, 9cRA/22-OH]), ABCA1 protein levels were enhanced to maximum levels after 8 to 16 hours and remained elevated for 24 hours. In the presence of apoA-I and 9cRA/22-OH, efflux of radioactive phospholipid and cholesterol from pneumocytes was stimulated 3- to 20-fold, respectively, over controls. Lipid efflux was inhibited by Probucol. Sucrose density gradient analysis of the media from stimulated cells incubated with apoA-I identified heterogeneous lipid particles that isolated at a density between 1.063 and 1.210 g/ml, with low or high apoA-I content. Thus, pneumocytes with markers for the type I phenotype contained functional ABCA1 protein, released lipid to apoA-I protein, and were capable of producing particles resembling nascent high-density lipoprotein, indicating an important role for ABCA1 in the maintenance of lung lipid homeostasis. PMID:17884990

  13. Effects of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in L-02 human hepatic cells via the PPARγ-ABCA1/CYP7A1 pathway.

    PubMed

    Lv, Ou; Wang, Lifang; Li, Jianke; Ma, Qianqian; Zhao, Wei

    2016-12-07

    To study the effect of pomegranate peel polyphenols on lipid accumulation and cholesterol metabolic transformation in human hepatic cells, purified pomegranate peel polyphenols (PPPs), their main component, punicalagin (PC), and the metabolite of PC, pomegranate ellagic acid (PEA), were chosen as the polyphenols to be tested. At the same time the human hepatocyte cell line L-02 was selected as the experimental cell and a model of steatotic L-02 hepatocytes in vitro was constructed in this paper. The results showed that PPPs, PC and PEA in different concentrations could decrease the total cholesterol (TC) content and increase the total bile acid (TBA) content, and so possess a lipid-lowering effect. The order of the lipid-lowering effect from strong to weak is PEA > PPPs > PC. The relative mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), ATP-binding cassette transporter A1 (ABCA1) and cholesterol 7α hydroxylase (CYP7A1) was up-regulated by PPPs, PC and PEA in a dose-dependent manner. The effect on the relative mRNA expression can be listed in descending order as: PEA > PPPs > PC. Similar results were found in a western blot analysis. The PPARγ protein, ABCA1 protein and CYP7A1 protein were up-regulated in L-02 cells treated with the three tested polyphenols. All the results indicated that PPPs, PC and PEA could regulate upstream the expression of PPARγ, ABCA1 and CYP7A1, both at transcript and protein levels, to activate the PPARγ-ABCA1/CYP7A1 cell signaling pathway and enhance cholesterol metabolism in L-02 cells. Therefore, PPPs, as a kind of natural material, may be paid more attention in the prevention and treatment of diseases related to excessive cholesterol accumulation.

  14. Piperine inhibits ABCA1 degradation and promotes cholesterol efflux from THP‐1‐derived macrophages

    PubMed Central

    Wang, Limei; Palme, Veronika; Rotter, Susanne; Schilcher, Nicole; Cukaj, Malsor; Wang, Dongdong; Ladurner, Angela; Heiss, Elke H.; Stangl, Herbert; Dirsch, Verena M.

    2016-01-01

    1 Scope Increased macrophage cholesterol efflux (ChE) is considered to have anti‐atherosclerotic effect counteracting cardiovascular disease. The principle pungent ingredient of the fruits of Piper nigrum, piperine, is identified in this study as a ChE inducer in THP‐1‐derived macrophages, and mechanisms underlying this effect are explored. 2 Methods and results Without affecting cell viability, piperine concentration‐dependently enhances ChE in THP‐1‐derived macrophages from 25 to 100 μM. The expression level of the key cholesterol transporter protein ATP‐binding cassette transporter A1 (ABCA1) is significantly upregulated by piperine, as revealed by western blot analyses. However, two other ChE‐mediating transporter proteins, ATP‐binding cassette transporter G1 (ABCG1) and scavenger receptor class B member 1 (SR‐B1), remain unaffected. Piperine exerts no influence on ABCA1 mRNA levels, but significantly inhibits the degradation of ABCA1, as evident by an increased half‐life of the protein in the presence of cycloheximide. Furthermore, it is found that piperine likely interferes with the calpain‐mediated ABCA1 degradation pathway and exhibits significant inhibition of calpain activity. 3 Conclusion Our findings suggest that piperine promotes ChE in THP‐1‐derived macrophages by upregulation of ABCA1, which might be mediated by inhibition of calpain activity. This novel bioactivity makes the dietary constituent piperine a good candidate to be further explored for therapeutic or preventive applications in the context of atherosclerosis. PMID:27862930

  15. Anti-cancer activity of the cholesterol exporter ABCA1 gene

    PubMed Central

    Smith, Bradley; Land, Hartmut

    2012-01-01

    Summary The ABCA1 protein mediates the transfer of cellular cholesterol across the plasma membrane to apolipoprotein A-I. Loss-of-function mutations in the ABCA1 gene induce Tangier disease and familial hypoalphalipoproteinemia, both cardio-vascular conditions characterized by abnormally low levels of serum cholesterol, increased cholesterol in macrophages and subsequent formation of vascular plaque. Increased intra-cellular cholesterol levels are also frequently found in cancer cells. Here we demonstrate anti-cancer activity of ABCA1 efflux function, which is compromised following inhibition of ABCA1 gene expression by oncogenic mutations or cancer-specific ABCA1 loss-of-function mutations. In concert with elevated cholesterol synthesis found in cancer cells, ABCA1 deficiency allows for increased mitochondrial cholesterol, inhibits release of mitochondrial cell death-promoting molecules and thus facilitates cancer cell survival, overall suggesting that elevated mitochondrial cholesterol is essential to the cancer phenotype. PMID:22981231

  16. Optimization of Rutaecarpine as ABCA1 Up-Regulator for Treating Atherosclerosis

    PubMed Central

    2014-01-01

    ATP-binding cassette transporter A1 (ABCA1) is a key transporter and receptor in promoting cholesterol efflux, and increasing the expression level of ABCA1 is antiatherogenic. In our previous study, rutaecarpine (RUT) was found to protect ApoE–/– mice from developing atherosclerosis through preferentially up-regulating ABCA1 expression. In the present work, a series of RUT derivatives were synthesized and examined as ABCA1 expression up-regulators. Compounds CD1, CD6, and BCD1–2 were found to possess the most potential activity as antiatherosclerotic agents among all compounds tested. PMID:25147608

  17. Apolipoprotein E4 Is Deficient in Inducing Macrophage ABCA1 Expression and Stimulating the Sp1 Signaling Pathway

    PubMed Central

    Okoro, Emmanuel Ugochukwu; Zhao, Yanfeng; Guo, ZhongMao; Zhou, Lichun; Lin, Xinghua; Yang, Hong

    2012-01-01

    ATP binding cassette A1 (ABCA1) is a membrane protein that promotes cellular cholesterol efflux. Using RAW 264.7 macrophages, we studied the relative effects of apolipoprotein (apo) E3 and apoE4 on ABCA1 and on the signaling pathway that regulates its expression. Both lipid-associated and lipid-free apoE4 forms induced ∼30% lower levels of ABCA1 protein and mRNA than apoE3 forms. Phosphorylated levels of phosphoinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ) and specificity protein 1 (Sp1) were also lower when treated with apoE4 compared to apoE3. The reduced ability of apoE4 to induce ABCA1 expression, PKCζ and Sp1 phosphorylation were confirmed in human THP-1 monocytes/macrophages. Sequential phosphorylation of PI3K, PKCζ and Sp1 has been suggested as a mechanism for upregulation of ABCA1 expression. Both apoE3 and apoE4 reduced total cholesterol and cholesterol esters in lipid-laden RAW 264.7 cells, and induced apoAI-mediated cholesterol efflux. However, the cholesterol esters and cholesterol efflux in apoE4-treated cells were ∼50% and ∼24% lower, respectively, compared to apoE3-treated cells. Accumulation of cholesterol esters in macrophages is a mechanism for foam cell formation. Thus the reduced ability of apoE4 to activate the PI3K-PKCζ-Sp1 signaling pathway and induce ABCA1 expression likely impairs cholesterol ester removal, and increases foam cell formation. PMID:22984509

  18. Exposure to High Glucose Concentration Decreases Cell Surface ABCA1 and HDL Biogenesis in Hepatocytes.

    PubMed

    Tsujita, Maki; Hossain, Mohammad Anwar; Lu, Rui; Tsuboi, Tomoe; Okumura-Noji, Kuniko; Yokoyama, Shinji

    2017-04-19

    To study atherosclerosis risk in diabetes, we investigated ATP-binding cassette transporter A1 (ABCA1) expression and high-density lipoprotein (HDL) biogenesis in the liver and hepatocytes under hyperglycemic conditions. In streptozotocin-induced diabetic mice, plasma HDL decreased while ABCA1 protein increased without changing its mRNA in the liver, only in the animals that responded to the treatment to show hypoinsulinemia and fasting hyperglycemia but not in the poor responders not showing those. To study the mechanism for this finding, hepatocytes were isolated from the control and diabetic mice, and they showed no difference in expression of ABCA1 protein, its mRNA, and HDL biogenesis in 1 g/l d-glucose but showed decreased HDL biogenesis in 4.5 g/l d-glucose although ABCA1 protein increased without change in its mRNA. Similar findings were confirmed in HepG2 cells with d-glucose but not with l-glucose. Thus, these cell models reproduced the in vivo findings in hyperglycemia. Labeling of cell surface protein revealed that surface ABCA1 decreased in high concentration of d-glucose in HepG2 cells despite the increase of cellular ABCA1 while not with l-glucose. Immunostaining of ABCA1 in HepG2 cells demonstrated the decrease of surface ABCA1 but increase of intracellular ABCA1 with high d-glucose. Clearance of ABCA1 was retarded both in primary hepatocytes and HepG2 cells exposed to high d-glucose but not to l-glucose, being consistent with the decrease of surface ABCA1. It is suggested that localization of ABCA1 to the cell surface is decreased in hepatocytes in hyperglycemic condition to cause decrease of HDL biogenesis.

  19. An ABCA1 truncation shows no dominant negative effect in a familial hypoalphalipoproteinemia pedigree with three ABCA1 mutations

    SciTech Connect

    Sorrenson, Brie; Suetani, Rachel J.; Bickley, Vivienne M.; George, Peter M.; Williams, Michael J.A.; Scott, Russell S.; McCormick, Sally P.A.

    2011-06-10

    Highlights: {yields} Characterisation of an ABCA1 truncation mutant, C978fsX988, in a pedigree with three ABCA1 mutations. {yields} Functional analysis of C978fsX988 in patient fibroblasts and HEK 293 cells shows no cholesterol efflux function. {yields} Allele-specific quantification shows C978fsX988 not expressed at mRNA level in fibroblasts. {yields} Unlike other ABCA1 truncations, C978fsX988 mutant shows no dominant negative effect at mRNA or protein level. -- Abstract: The ATP binding cassette transporter (ABCA1) A1 is a key determinant of circulating high density lipoprotein cholesterol (HDL-C) levels. Mutations in ABCA1 are a major genetic contributor to low HDL-C levels within the general population. Following the finding of three different ABCA1 mutations, p.C978fsX988, p.T1512M and p.N1800H in a subject with hypoalphalipoproteinemia, we aimed to establish whether the p.C978fsX988 truncation exerted a dominant negative effect on the full-length ABCA1 alleles within family members as has been reported for other ABCA1 truncations. Characterisation of the p.C978fsX988 mutant in transfected HEK 293 cells showed it to be expressed as a GFP fusion protein but lacking in cholesterol efflux function. This was in keeping with results from cholesterol efflux assays in the fibroblasts of p.C978fsX988 carriers which also showed impaired efflux. Allele- specific quantification of p.C978fsX988 mRNA and analysis of ABCA1 protein levels in the fibroblasts of p.C978fsX988 heterozygotes showed negligible levels of mRNA and protein expression. There was no evidence of a dominant negative effect on wildtype or p.N1800H protein levels. We conclude that in the case of the p.C978fsX988 truncated mutant a lack of expression precludes it from having a dominant negative effect.

  20. Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease

    PubMed Central

    Wahrle, Suzanne E.; Jiang, Hong; Parsadanian, Maia; Kim, Jungsu; Li, Aimin; Knoten, Amanda; Jain, Sanjay; Hirsch-Reinshagen, Veronica; Wellington, Cheryl L.; Bales, Kelly R.; Paul, Steven M.; Holtzman, David M.

    2008-01-01

    APOE genotype is a major genetic risk factor for late-onset Alzheimer disease (AD). ABCA1, a member of the ATP-binding cassette family of active transporters, lipidates apoE in the CNS. Abca1–/– mice have decreased lipid associated with apoE and increased amyloid deposition in several AD mouse models. We hypothesized that mice overexpressing ABCA1 in the brain would have increased lipidation of apoE-containing lipoproteins and decreased amyloid deposition. To address these hypotheses, we created PrP-mAbca1 Tg mice that overexpress mouse Abca1 throughout the brain under the control of the mouse prion promoter. We bred the PrP-mAbca1 mice to the PDAPP AD mouse model, a transgenic line overexpressing a mutant human amyloid precursor protein. PDAPP/Abca1 Tg mice developed a phenotype remarkably similar to that seen in PDAPP/Apoe–/– mice: there was significantly less amyloid β-peptide (Aβ) deposition, a redistribution of Aβ to the hilus of the dentate gyrus in the hippocampus, and an almost complete absence of thioflavine S–positive amyloid plaques. Analyses of CSF from PrP-mAbca1 Tg mice and media conditioned by PrP-mAbca1 Tg primary astrocytes demonstrated increased lipidation of apoE-containing particles. These data support the conclusions that increased ABCA1-mediated lipidation of apoE in the CNS can reduce amyloid burden and that increasing ABCA1 function may have a therapeutic effect on AD. PMID:18202749

  1. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane.

    PubMed

    Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori

    2014-01-01

    ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.

  2. Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCMO1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults

    PubMed Central

    2013-01-01

    Background In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body weight. We used a linear regression model. Selected genes corresponded to folate metabolism, vitamins B-12, A, and E, and cholesterol pathways or lipid metabolism. Methods Extracted DNA from both the Sacramento and Beltsville populations was analyzed using an allele discrimination assay with a MALDI-TOF mass spectrometry platform. The adjusted phenotype, y, was HDL levels adjusted for gender and body weight only statistical analyses were performed using the genotype association and regression modules from the SNP Variation Suite v7. Results Statistically significant SNP (where P values were adjusted for false discovery rate) included: CETP (rs7499892 and rs5882); SLC46A1 (rs37514694; rs739439); SLC19A1 (rs3788199); CD36 (rs3211956); BCMO1 (rs6564851), APOA5 (rs662799), and ABCA1 (rs4149267). Many prior association trends of the SNP with HDL were replicated in our cross-validation study. Significantly, the association of SNP in folate transporters (SLC46A1 rs37514694 and rs739439; SLC19A1 rs3788199) with HDL was identified in our study. Conclusions Given recent literature on the role of niacin in the biogenesis of HDL, focus on status and metabolism of B-vitamins and metabolites of eccentric cleavage of β-carotene with lipid metabolism is exciting for future study. PMID:23656756

  3. Excess nitric oxide impairs LXR(α)-ABCA1-dependent cholesterol efflux in macrophage foam cells.

    PubMed

    Zhao, Jin-Feng; Shyue, Song-Kun; Lin, Shing-Jong; Wei, Jeng; Lee, Tzong-Shyuan

    2014-01-01

    Excess nitric oxide (NO) promotes the progression of atherosclerosis by increasing the oxidation of low-density lipoprotein (LDL) and inflammatory responses. However, little is known about the impact of NO and its underlying molecular mechanism on lipid metabolism of macrophage foam cells. In this study, Oil-red O staining, cholesterol and triglyceride assay, Dil-oxidized LDL (oxLDL) binding assay, cholesterol efflux assay, real-time RT-PCR and Western blot analysis were used for in vitro experiments. Apolipoprotein E-deficient (apoE(-/-) ) and apoE and inducible nitric oxide synthase-deficient (apoE(-/-) iNOS(-/-) ) mice were as our in vivo models. Treatment with S-nitroso-N-acetyl-D,L-penicillamine (SNAP), an NO donor, exacerbated oxLDL-induced cholesterol accumulation in macrophages, because of reduced efficacy of cholesterol efflux. In addition, SNAP decreased the protein level of ATP-binding cassette transporter A1 (ABCA1) without affecting scavenger receptor type A (SR-A), CD36, ABCG1, or SR-B1 levels. This SNAP-mediated downregulation of ABCA1 was mainly through the effect of NO but not peroxynitrite. Furthermore, the SNAP-downregulated ABCA1 was due to the decrease in the liver X receptor α (LXRα)-dependent transcriptional regulation. Moreover, genetic deletion of iNOS increased the serum capacity of reverse cholesterol efflux and protein expression of LXRα, ABCA1, and SR-BI in aortas and retarded atherosclerosis in apoE(-/-) mice. Our findings provide new insights in the pro-atherogenic effect of excess NO on cholesterol metabolism in macrophages. © 2013 Wiley Periodicals, Inc.

  4. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells.

    PubMed

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Lee, Sei-Jung; Kim, Jeong Yeon; Lee, Sang Hun; Hwang, In Koo; Seong, Je Kyung; Han, Ho Jae

    2016-11-10

    There is an accumulation of evidence indicating that the risk of Alzheimer's disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC.

  5. High glucose upregulates BACE1-mediated Aβ production through ROS-dependent HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization in SK-N-MC cells

    PubMed Central

    Lee, Hyun Jik; Ryu, Jung Min; Jung, Young Hyun; Lee, Sei-Jung; Kim, Jeong Yeon; Lee, Sang Hun; Hwang, In Koo; Seong, Je Kyung; Han, Ho Jae

    2016-01-01

    There is an accumulation of evidence indicating that the risk of Alzheimer’s disease is associated with diabetes mellitus, an indicator of high glucose concentrations in blood plasma. This study investigated the effect of high glucose on BACE1 expression and amyloidogenesis in vivo, and we present details of the mechanism associated with those effects. Our results, using ZLC and ZDF rat models, showed that ZDF rats have high levels of amyloid-beta (Aβ), phosphorylated tau, BACE1, and APP-C99. In vitro result with mouse hippocampal neuron and SK-N-MC, high glucose stimulated Aβ secretion and apoptosis in a dose-dependent manner. In addition, high glucose increased BACE1 and APP-C99 expressions, which were reversed by a reactive oxygen species (ROS) scavenger. Indeed, high glucose increased intracellular ROS levels and HIF-1α expression, associated with regulation of BACE1 and Liver X Receptor α (LXRα). In addition, high glucose induced ATP-binding cassette transporter A1 (ABCA1) down-regulation, was associated with LXR-induced lipid raft reorganization and BACE1 localization on the lipid raft. Furthermore, silencing of BACE1 expression was shown to regulate Aβ secretion and apoptosis of SK-N-MC. In conclusion, high glucose upregulates BACE1 expression and activity through HIF-1α and LXRα/ABCA1-regulated lipid raft reorganization, leading to Aβ production and apoptosis of SK-N-MC. PMID:27829662

  6. 22(R)-hydroxycholesterol and pioglitazone synergistically decrease cholesterol ester via the PPARγ–LXRα–ABCA1 pathway in cholesterosis of the gallbladder

    SciTech Connect

    Wang, Jing-Min Wang, Dong Tan, Yu-Yan Zhao, Gang Ji, Zhen-Ling

    2014-04-25

    Highlights: • Cholesterosis is a metabolic disease characterized by excessive lipid droplets. • Lipid droplet efflux is mediated by the ABCA1 transporter. • 22(R)-hydroxycholesterol can activate LXRα and up-regulate ABCA1. • Pioglitazone up-regulates ABCA1 in a PPARγ–LXRα–ABCA1-dependent manner. • 22(R)-hydroxycholesterol and pioglitazone synergistically decrease lipid droplets. - Abstract: Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets

  7. Functional rescue of mutant ABCA1 proteins by sodium 4-phenylbutyrate[S

    PubMed Central

    Sorrenson, Brie; Suetani, Rachel J.; Williams, Michael J. A.; Bickley, Vivienne M.; George, Peter M.; Jones, Gregory T.; McCormick, Sally P. A.

    2013-01-01

    Mutations in the ATP-binding cassette transporter A1 (ABCA1) are a major cause of decreased HDL cholesterol (HDL-C), which infers an increased risk of cardiovascular disease (CVD). Many ABCA1 mutants show impaired localization to the plasma membrane. The aim of this study was to investigate whether the chemical chaperone, sodium 4-phenylbutyrate (4-PBA) could improve cellular localization and function of ABCA1 mutants. Nine different ABCA1 mutants (p.A594T, p.I659V, p.R1068H, p.T1512M, p.Y1767D, p.N1800H, p.R2004K, p.A2028V, p.Q2239N) expressed in HEK293 cells, displaying different degrees of mislocalization to the plasma membrane and discrete impacts on cholesterol efflux, were subject to treatment with 4-PBA. Treatment restored localization to the plasma membrane and increased cholesterol efflux function for the majority of mutants. Treatment with 4-PBA also increased ABCA1 protein expression in all transfected cell lines. In fibroblast cells obtained from low HDL-C subjects expressing two of the ABCA1 mutants (p.R1068H and p.N1800H), 4-PBA increased cholesterol efflux without any increase in ABCA1 expression. Our study is the first to investigate the effect of the chemical chaperone, 4-PBA on ABCA1 and shows that it is capable of restoring plasma membrane localization and enhancing the cholesterol efflux function of mutant ABCA1s both in vitro and ex vivo. These results suggest 4-PBA may warrant further investigation as a potential therapy for increasing cholesterol efflux and HDL-C levels. PMID:23087442

  8. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    PubMed Central

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  9. miR-758 regulates cholesterol efflux through post-transcriptional repression of ABCA1

    PubMed Central

    Ramirez, Cristina M.; Dávalos, Alberto; Goedeke, Leigh; Salerno, Alessandro G.; Warrier, Nikhil; Cirera-Salinas, Daniel; Suárez, Yajaira; Fernández-Hernando, Carlos

    2012-01-01

    Objective The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of macrophage cholesterol efflux and protects cells from excess intracellular cholesterol accumulation, however the mechanism involved in posttranscriptional regulation of ABCA1 is poorly understood. We previously showed miR-33 was one regulator. Here we investigated the potential contribution of other microRNAs (miRNAs) to post-transcriptionally regulate ABCA1 and macrophage cholesterol efflux. Methods and Results We performed a bioinformatic analaysis for identifying miRNA target prediction sites in ABCA1 gene and an unbiased genome-wide screen to identify miRNAs modulated by cholesterol excess in mouse peritoneal macrophages. Quantitative real-time RT-PCR confirmed that miR-758 is repressed in cholesterol-loaded macrophages. Under physiological conditions, high dietary fat excess in mice repressed mir-758 both in peritoneal macrophages and, to a lesser extent in the liver. In mouse and human cells in vitro, miR-758 repressed the expression of ABCA1 and conversely the inhibition of this miRNA by using anti-miR-758 increased ABCA1 expression. In mouse cells, mir-758 reduced cellular cholesterol efflux to apoA1 and anti-miR-758 increased it. miR-758 directly targets the 3′UTR of Abca1 as assessed by 3′UTR luciferase reporter assays. Interestingly, miR-758 is highly expressed in the brain where also target several genes involved in neurological functions including SLC38A1, NTM, EPHA7 and MYT1L. Conclusion We identified miR-758 as a novel miRNA that post-transcriptionally controls ABCA1 levels in different cells and regulates macrophage cellular cholesterol efflux to apoA1, opening new avenues to increase apoA1 and raise HDL levels. PMID:21885853

  10. Mifepristone treatment results in differential regulation of glycerolipid biosynthesis in baby hamster kidney cells expressing a mifepristone-inducible ABCA1.

    PubMed

    Hauff, Kristin D; Mitchell, Ryan W; Xu, Fred Y; Dembinski, Thomas; Mymin, David; Zha, Xiaohui; Choy, Patrick C; Hatch, Grant M

    2011-09-01

    ATP binding cassette A1 (ABCA1) transports cholesterol, phospholipids and lipophilic molecules to and across cellular membranes. We examined if ABCA1 expression altered cellular de novo glycerolipid biosynthesis in growing Baby hamster kidney (BHK) cells. Mock BHK cells or cells expressing a mifepristone-inducible ABCA1 (ABCA1) were incubated plus or minus mifepristone and then with [(3)H]serine or [(3)H]inositol or [(3)H]ethanolamine or [methyl-(3)H]choline or [(3)H]glycerol or [(14)C]oleate and radioactivity incorporated into glycerolipids determined. Mifepristone did not affect [1,3-(3)H]glycerol or [(14)C]oleate or [(3)H]ethanolamine or [methyl-(3)H]choline uptake in BHK cells. In contrast, [(3)H]glycerol and [(14)C]oleate incorporated into phosphatidylserine (PtdSer) were elevated 2.4-fold (p < 0.05) and 54% (p < 0.05), respectively, upon ABCA1 induction confirming increased PtdSer biosynthesis from these precursors. However, mifepristone inhibited [(3)H]serine uptake and incorporation into PtdSer indicating that PtdSer synthesis from serine in BHK cells is dependent on serine uptake. Mifepristone stimulated [(3)H]inositol uptake in mock and ABCA1 cells but not its incorporation into phosphatidylinositol indicating that its synthesis from inositol is independent of inositol uptake in BHK cells. [(3)H]glycerol and [(14)C]oleate incorporated into triacylglycerol were reduced and into diacylglycerol elevated only in mifepristone-induced ABCA1 expressing cells due to a decrease in diacylglycerol acyltransferase-1 (DGAT-1) activity. The presence of trichostatin A, a class I and II histone deacetylase inhibitor, reversed the ABCA1-mediated reduction in DGAT-1 activity but did not affect DGAT-1 mRNA expression. Thus, mifepristone has diverse effects on de novo glycerolipid synthesis. We suggest that caution should be exercised when using mifepristone-inducible systems for studies of glycerolipid metabolism in cells expressing glucocorticoid responsive receptors.

  11. Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation.

    PubMed

    Arakawa, Reijiro; Yokoyama, Shinji

    2002-06-21

    ATP-binding cassette transporter (ABC) A1 was increased by apolipoprotein A-I without an increase of its message in THP-1 cells. The pulse label study demonstrated that apoA-I retarded degradation of ABCA1. Similar changes were demonstrated by apoA-II, but the effect of high density lipoprotein was almost negligible on the basis of equivalent protein concentration. Thiol protease inhibitors (leupeptin and N-acetyl-Leu-Leu-norleucinal (ALLN)) increased ABCA1 and slowed its decay in the cells, whereas none of the proteosome-specific inhibitor lactacystin, other protease inhibitors, or the lysosomal inhibitor NH(4)Cl showed such effects. The effects of apoA-I and ALLN were additive for the increase of ABCA1, and the apoA-I-mediated cellular lipid release was enhanced by ALLN. The data suggest that ABCA1 is rapidly degraded by a thiol protease(s) in the cells unless helical apolipoproteins in their lipid-free form stabilize ABCA1 by protecting it from protease-mediated degradation.

  12. LXR driven induction of HDL-cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression.

    PubMed

    Kannisto, Kristina; Gåfvels, Mats; Jiang, Zhao-Yan; Slätis, Katharina; Hu, Xiaoli; Jorns, Carl; Steffensen, Knut R; Eggertsen, Gösta

    2014-01-01

    We investigated whether: (1) liver X receptor (LXR)-driven induction of high-density lipoprotein cholesterol (HDL-C) and other LXR-mediated effects on cholesterol metabolism depend on intestinal cholesterol absorption; and (2) combined treatment with the LXR agonist GW3965 and the cholesterol absorption inhibitor ezetimibe results in synergistic effects on cholesterol metabolism that could be beneficial for treatment of atherosclerosis. Mice were fed 0.2 % cholesterol and treated with GW3965+ezetimibe, GW3965 or ezetimibe. GW3965+ezetimibe treatment elevated serum HDL-C and Apolipoprotein (Apo) AI, effectively reduced the intestinal cholesterol absorption and increased the excretion of faecal neutral sterols. No changes in intestinal ATP-binding cassette (ABC) A1 or ABCG5 protein expression were observed, despite increased mRNA expression, while hepatic ABCA1 was slightly reduced. The combined treatment caused a pronounced down-regulation of intestinal Niemann-Pick C1-like 1 (NPC1L1) and reduced hepatic and intestinal cholesterol levels. GW3965 did not affect the intestinal cholesterol absorption, but increased serum HDL-C and ApoAI levels. GW3965 also increased Apoa1 mRNA levels in primary mouse hepatocytes and HEPA1-6 cells. Ezetimibe reduced the intestinal cholesterol absorption, ABCA1 and ABCG5, but did not affect the serum HDL-C or ApoAI levels. Thus, the LXR-driven induction of HDL-C and ApoAI was independent of the intestinal cholesterol absorption and increased expression of intestinal or hepatic ABCA1 was not required. Inhibited influx of cholesterol via NPC1L1 and/or low levels of intracellular cholesterol prevented post-transcriptional expression of intestinal ABCA1 and ABCG5, despite increased mRNA levels. Combined LXR activation and blocked intestinal cholesterol absorption induced effective faecal elimination of cholesterol.

  13. Caveolin-1 and ATP binding cassette transporter A1 and G1-mediated cholesterol efflux.

    PubMed

    Wang, Faqi; Gu, Hong-mei; Zhang, Da-wei

    2014-01-01

    Atherosclerosis is one major cause of cardiovascular diseases, the leading cause of death in industrialized countries. Reverse cholesterol transport (RCT) is thought to be one primary pathway to protect against atherosclerosis. The first and rate-limiting step of RCT is ATP-binding cassette transport A1 (ABCA1) and ABCG1-mediated cholesterol efflux from the cells. Recently, caveolin-1 (CAV1), a scaffolding protein that organizes and concentrates certain caveolin-interacting signaling molecules and receptors within caveolae membranes, has been shown to regulate ABCA1 and ABCG1-mediated cholesterol efflux probably via interacting with them. In the present review, we summarize the current knowledge and views on the regulatory role of CAV1 on the cholesterol homeostasis with emphasis on the association of CAV1 with ABCA1 and ABCG1. We conclude that the dominance of the positive regulation by CAV1 on the ABCA1 and ABCG1-mediated cholesterol efflux is depending on the species, cell types, as well as the levels of CAV1 expression.

  14. Exendin-4 Ameliorates Lipotoxicity-induced Glomerular Endothelial Cell Injury by Improving ABC Transporter A1-mediated Cholesterol Efflux in Diabetic apoE Knockout Mice.

    PubMed

    Yin, Qing-Hua; Zhang, Rui; Li, Li; Wang, Yi-Ting; Liu, Jing-Ping; Zhang, Jie; Bai, Lin; Cheng, Jing-Qiu; Fu, Ping; Liu, Fang

    2016-12-16

    ATP-binding cassette transporter A1 (ABCA1), which promotes cholesterol efflux from cells and inhibits inflammatory responses, is highly expressed in the kidney. Research has shown that exendin-4, a glucagon-like peptide-1 receptor (GLP-1R) agonist, promotes ABCA1 expression in multiple tissues and organs; however, the mechanisms underlying exendin-4 induction of ABCA1 expression in glomerular endothelial cells are not fully understood. In this study we investigated the effect of exendin-4 on ABCA1 in glomerular endothelial cells of diabetic kidney disease (DKD) and the possible mechanism. We observed a marked increase in glomerular lipid deposits in tissues of patients with DKD and diabetic apolipoprotein E knock-out (apoE(-/-)) mice by Oil Red O staining and biochemical analysis of cholesterol. We found significantly decreased ABCA1 expression in glomerular endothelial cells of diabetic apoE(-/-) mice and increased renal lipid, cholesterol, and inflammatory cytokine levels. Exendin-4 decreased renal cholesterol accumulation and inflammation and increased cholesterol efflux by up-regulating ABCA1. In human glomerular endothelial cells, GLP-1R-mediated signaling pathways (e.g. Ca(2+)/calmodulin-dependent protein kinase, cAMP/PKA, PI3K/AKT, and ERK1/2) were involved in cholesterol efflux and inflammatory responses by regulating ABCA1 expression. We propose that exendin-4 increases ABCA1 expression in glomerular endothelial cells, which plays an important role in alleviating renal lipid accumulation, inflammation, and proteinuria in mice with type 2 diabetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Differences in ABCA1 R219K Polymorphisms and Serum Indexes in Alzheimer and Parkinson Diseases in Northern China.

    PubMed

    Ya, Lagai; Lu, Zuneng

    2017-09-25

    BACKGROUND ABCA1 R219K single-nucleotide polymorphisms (SNPs) was related to Alzheimer disease (AD) but not Parkinson disease (PD). Here, we analyzed the associations among ABCA1 R219K distribution, serum biomarkers, AD, and PD in a population in northern China. MATERIAL AND METHODS We used the Mini-Mental State Examination (MMSE) and the Hoehn and Yahr scale (H-Y) to evaluate AD and PD progression, separately. ABCA1 R219K was analyzed by matrix-assisted laser desorption ionization time of flight time mass spectrometry (MALDI-TOF-MS). Serum indexes were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS ABCA1 R219K RR+RK genotype frequency in AD and PD patients was lower than that in normal controls (NC), while ABCA1 R219K KK genotype frequency was significantly higher. ABCA1 R219K RR genotype frequency in AD patients and NC was lower than that in PD patients, while ABCA1 R219K RK+KK genotype frequency was significantly higher. ABCA1 R219K RR genotype was positively correlated to MMSE value in AD patients, while ABCA1 R219K KK genotype was negatively correlated to H-Y value in PD patients. Serum factors were significantly different among AD and PD patients and NC. Serum ABCA1, ApoA1, ApoA2, ApoB, HDL, TC, IL-1β, IL-6, and TNF-α were significantly different between AD and PD patients. CONCLUSIONS ABCA1 R219K R allele was the risk factor inducing abnormal serum levels of ApoA2, LDL, and TG in AD patients, and abnormal levels of serum ABCA1, HDL, IL-1b, IL-6, and TNF-α in PD patients, while ABCA1 R219K K allele was the risk factor inducing lower ABCA1 in AD patients. IL-1β, IL-6, and TNF-α were negatively correlated to MMSE in AD patients but positively correlated to H-Y in PD patients, while HDL was positively related to H-Y in PD patients.

  16. Salvianolic acid B accelerated ABCA1-dependent cholesterol efflux by targeting PPAR-γ and LXRα

    SciTech Connect

    Yue, Jianmei; Li, Bo; Jing, Qingping; Guan, Qingbo

    2015-07-03

    Objectives: Cholesterol efflux has been thought to be the main and basic mechanism by which free cholesterol is transferred from extra hepatic cells to the liver or intestine for excretion. Salvianolic acid B (Sal B) has been widely used for the prevention and treatment of atherosclerotic diseases. Here, we sought to investigate the effects of Sal B on the cholesterol efflux in THP-1 macrophages. Methods: After PMA-stimulated THP-1 cells were exposed to 50 mg/L of oxLDL and [{sup 3}H] cholesterol (1.0 μCi/mL) for another 24 h, the effect of Sal B on cholesterol efflux was evaluated in the presence of apoA-1, HDL{sub 2} or HDL{sub 3}. The expression of ATP binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-gamma (PPAR-γ), and liver X receptor-alpha (LXRα) was detected both at protein and mRNA levels in THP-1 cells after the stimulation of Sal B. Meanwhile, specific inhibition of PPAR-γ and LXRα were performed to investigate the mechanism. Results: The results showed that Sal B significantly accelerated apoA-I- and HDL-mediated cholesterol efflux in both dose- and time-dependent manners. Meanwhile, Sal B treatment also enhanced the expression of ABCA1 at both mRNA and protein levels. Then the data demonstrated that Sal B increased the expression of PPAR-γ and LXRα. And the application of specific agonists and inhibitors of further confirmed that Sal exert the function through PPAR-γ and LXRα. Conclusion: These results demonstrate that Sal B promotes cholesterol efflux in THP-1 macrophages through ABCA1/PPAR-γ/LXRα pathway. - Highlights: • Sal B promotes the expression of ABCA1. • Sal B promotes cholesterol efflux in macrophages. • Sal B promotes the expression of ABCA1 and cholesterol efflux through PPAR-γ/LXRα signaling pathway.

  17. Acetylsalicylic acid, aging and coronary artery disease are associated with ABCA1 DNA methylation in men

    PubMed Central

    2014-01-01

    Background Previous studies have suggested that DNA methylation contributes to coronary artery disease (CAD) risk variability. DNA hypermethylation at the ATP-binding cassette transporter A1 (ABCA1) gene, an important modulator of high-density lipoprotein cholesterol and reverse cholesterol transport, has been previously associated with plasma lipid levels, aging and CAD, but the association with CAD has yet to be replicated. Results ABCA1 DNA methylation levels were measured in leucocytes of 88 men using bis-pyrosequencing. We first showed that DNA methylation at the ABCA1 gene promoter locus is associated with aging and CAD occurrence in men (P < 0.05). The latter association is stronger among older men with CAD (≥61 years old; n = 19), who showed at least 4.7% higher ABCA1 DNA methylation levels as compared to younger men with CAD (<61 years old; n = 19) or men without CAD (n = 50; P < 0.001). Higher ABCA1 DNA methylation levels in older men were also associated with higher total cholesterol (r = 0.34, P = 0.03), low-density lipoprotein cholesterol (r = 0.32, P = 0.04) and triglyceride levels (r = 0.26, P = 0.09). Furthermore, we showed that acetylsalicylic acid therapy is associated with 3.6% lower ABCA1 DNA methylation levels (P = 0.006), independent of aging and CAD status of patients. Conclusions This study provides new evidence that the ABCA1 epigenetic profile is associated with CAD and aging, and highlights that epigenetic modifications might be a significant molecular mechanism involved in the pathophysiological processes associated with CAD. Acetylsalicylic acid treatment for CAD prevention might involve epigenetic mechanisms. PMID:25093045

  18. TRAK2, a novel regulator of ABCA1 expression, cholesterol efflux and HDL biogenesis.

    PubMed

    Lake, Nicole J; Taylor, Rachael L; Trahair, Hugh; Harikrishnan, K N; Curran, Joanne E; Almeida, Marcio; Kulkarni, Hemant; Mukhamedova, Nigora; Hoang, Anh; Low, Hann; Murphy, Andrew J; Johnson, Matthew P; Dyer, Thomas D; Mahaney, Michael C; Göring, Harald H H; Moses, Eric K; Sviridov, Dmitri; Blangero, John; Jowett, Jeremy B M; Bozaoglu, Kiymet

    2017-06-26

    The recent failures of HDL-raising therapies have underscored our incomplete understanding of HDL biology. Therefore there is an urgent need to comprehensively investigate HDL metabolism to enable the development of effective HDL-centric therapies. To identify novel regulators of HDL metabolism, we performed a joint analysis of human genetic, transcriptomic, and plasma HDL-cholesterol (HDL-C) concentration data and identified a novel association between trafficking protein, kinesin binding 2 (TRAK2) and HDL-C concentration. Here we characterize the molecular basis of the novel association between TRAK2 and HDL-cholesterol concentration. Analysis of lymphocyte transcriptomic data together with plasma HDL from the San Antonio Family Heart Study (n = 1240) revealed a significant negative correlation between TRAK2 mRNA levels and HDL-C concentration, HDL particle diameter and HDL subspecies heterogeneity. TRAK2 siRNA-mediated knockdown significantly increased cholesterol efflux to apolipoprotein A-I and isolated HDL from human macrophage (THP-1) and liver (HepG2) cells by increasing the mRNA and protein expression of the cholesterol transporter ATP-binding cassette, sub-family A member 1 (ABCA1). The effect of TRAK2 knockdown on cholesterol efflux was abolished in the absence of ABCA1, indicating that TRAK2 functions in an ABCA1-dependent efflux pathway. TRAK2 knockdown significantly increased liver X receptor (LXR) binding at the ABCA1 promoter, establishing TRAK2 as a regulator of LXR-mediated transcription of ABCA1. We show, for the first time, that TRAK2 is a novel regulator of LXR-mediated ABCA1 expression, cholesterol efflux, and HDL biogenesis. TRAK2 may therefore be an important target in the development of anti-atherosclerotic therapies.

  19. Evaluation of Adenosine Triphosphate-Binding Cassette Transporter A1 (ABCA1) R219K and C-Reactive Protein Gene (CRP) +1059G/C Gene Polymorphisms in Susceptibility to Coronary Heart Disease

    PubMed Central

    Li, Jing-Fang; Peng, Dian-Ying; Ling, Mei; Yin, Yong

    2016-01-01

    Background This meta-analysis investigated the correlation of ABCA1 R219K and CRP +1059G/C gene polymorphisms with susceptibility to coronary heart disease (CHD). Material/Methods We searched PubMed, Springer link, Wiley, EBSCO, Ovid, Wanfang database, VIP database, and China National Knowledge Infrastructure (CNKI) databases to retrieve published studies by keyword. Searches were filtered using our stringent inclusion and exclusion criteria. Resultant high-quality data collected from the final selected studies were analyzed using Comprehensive Meta-analysis 2.0 software. Eleven case-control studies involving 3053 CHD patients and 3403 healthy controls met our inclusion criteria. Seven studies were conducted in Asian populations, 3 studies were done in Caucasian populations, and 1 was in an African population. Results Our major finding was that ABCA1 R219K polymorphism increased susceptibility to CHD in allele model (OR=0.729, 95% CI=0.559~0.949, P=0.019) and dominant model (OR=0.698, 95% CI=0.507~0.961, P=0.027). By contrast, we were unable to find any significant association between the CRP +1059G/C polymorphism and susceptibility to CHD (allele model: OR=1.170, 95% CI=0.782~1.751, P=0.444; dominant model: OR=1.175, 95% CI=0.768~1.797, P=0.457). Conclusions This meta-analysis provides convincing evidence that polymorphism of ABCA1 R219K is associated with susceptibility to CHD while the CRP +1059G/C polymorphism appears to have no correlation with susceptibility to CHD. PMID:27560308

  20. Evaluation of Adenosine Triphosphate-Binding Cassette Transporter A1 (ABCA1) R219K and C-Reactive Protein Gene (CRP) +1059G/C Gene Polymorphisms in Susceptibility to Coronary Heart Disease.

    PubMed

    Li, Jing-Fang; Peng, Dian-Ying; Ling, Mei; Yin, Yong

    2016-08-25

    BACKGROUND This meta-analysis investigated the correlation of ABCA1 R219K and C-Reactive Protein Gene (CRP) +1059G/C gene polymorphisms with susceptibility to coronary heart disease (CHD). MATERIAL AND METHODS We searched PubMed, Springer link, Wiley, EBSCO, Ovid, Wanfang database, VIP database, and China National Knowledge Infrastructure (CNKI) databases to retrieve published studies by keyword. Searches were filtered using our stringent inclusion and exclusion criteria. Resultant high-quality data collected from the final selected studies were analyzed using Comprehensive Meta-analysis 2.0 software. Eleven case-control studies involving 3053 CHD patients and 3403 healthy controls met our inclusion criteria. Seven studies were conducted in Asian populations, 3 studies were done in Caucasian populations, and 1 was in an African population. RESULTS Our major finding was that ABCA1 R219K polymorphism increased susceptibility to CHD in allele model (OR=0.729, 95% CI=0.559~0.949, P=0.019) and dominant model (OR=0.698, 95% CI=0.507~0.961, P=0.027). By contrast, we were unable to find any significant association between the CRP +1059G/C polymorphism and susceptibility to CHD (allele model: OR=1.170, 95% CI=0.782~1.751, P=0.444; dominant model: OR=1.175, 95% CI=0.768~1.797, P=0.457). CONCLUSIONS This meta-analysis provides convincing evidence that polymorphism of ABCA1 R219K is associated with susceptibility to CHD while the CRP +1059G/C polymorphism appears to have no correlation with susceptibility to CHD.

  1. Akt isoform-dependent regulation of ATP-Binding cassette A1 expression by apolipoprotein E.

    PubMed

    Okoro, Emmanuel U; Guo, Zhongmao; Yang, Hong

    2016-08-12

    We previously reported that apolipoprotein E (apoE) upregulates ATP-binding cassette transporter A1 (ABCA1) transcription through phosphatidylinositol 3-kinase (PI3K). Here we demonstrate that treatment of murine macrophages with human apoE3 enhanced Akt phosphorylation, and upregulated ABCA1 protein and mRNA expression. Inhibition of PI3K weakened apoE3-induced Akt phosphorylation, and ABCA1 protein and mRNA increase. In contrast, inhibition of Akt only diminished apoE-induced ABCA1 protein but not the mRNA level. Suppression of protein synthesis did not erase the ability of apoE3 to increase ABCA1 protein level. Further, apoE3 increased the resistance of ABCA1 protein to calpain-mediated degradation without affecting calpain activity. Treatment of macrophages with apoE3 selectively enhanced the phosphorylation of Akt1 and Akt2, but not Akt3. Knockdown of Akt1 or Akt2 increased and decreased ABCA1 protein level, respectively; while overexpression of these Akt isoenzymes caused changes in ABCA1 protein level opposite to those induced by knockdown of the corresponding Akt. These data imply that apoE3 guards against calpain-mediated ABCA1 degradation through Akt2.

  2. Cystathionine γ-lyase(CSE)/hydrogen sulfide system is regulated by miR-216a and influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1 pathway.

    PubMed

    Gong, Duo; Cheng, Hai-peng; Xie, Wei; Zhang, Min; Liu, Dan; Lan, Gang; Huang, Chong; Zhao, Zhen-wang; Chen, Ling-yan; Yao, Feng; Tan, Yu-lin; Li, Liang; Xia, Xiao-dan; Zheng, Xi-long; Wang, Zong-bao; Tang, Chao-ke

    2016-01-29

    This study was designed to evaluate whether CSE/H2S system, which is regulated by miR-216a, regulated ABCA1-mediated cholesterol efflux and cholesterol contents in THP-1 macrophages-derived foam cells. Our qPCR and western blotting results showed that CSE/H2S significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via PI3K/AKT pathway in foam cells derived from human THP-1 macrophages. The miR-216a directly targeted 3' untranslated region of CSE. It significantly reduced CSE and ABCA1 expression, and also decreased the phosphorylation of PI3K and AKT. Additionally, cholesterol efflux decreased, and cholesterol levels increased in THP-1 macrophage-derived foam cells in response to treatment with miR-216a. Our study demonstrates that CSE/H2S system is regulated by miR-216a, and regulates ABCA1-mediated cholesterol efflux and cholesterol levels through the PI3K/AKT pathway.

  3. EGb761 ameliorates the formation of foam cells by regulating the expression of SR-A and ABCA1: role of haem oxygenase-1.

    PubMed

    Tsai, Jin-Yi; Su, Kuo-Hui; Shyue, Song-Kun; Kou, Yu Ru; Yu, Yuan-Bin; Hsiao, Sheng-Huang; Chiang, An-Na; Wu, Yuh-Lin; Ching, Li-Chieh; Lee, Tzong-Shyuan

    2010-12-01

    Accumulation of foam cells in the intima is a hallmark of early-stage atherosclerotic lesions. Ginkgo biloba extract (EGb761) has been reported to exert anti-oxidative and anti-inflammatory properties in atherosclerosis, yet the significance and the molecular mechanisms of action of EGb761 in the formation of macrophage foam cells are not fully understood. Treatment with EGb761 resulted in a dose-dependent decrease in oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, a consequence that was due to a decrease in cholesterol uptake and an increase in cholesterol efflux. Additionally, EGb761 significantly down-regulated the mRNA and protein expression of class A scavenger receptor (SR-A) by decreasing expression of activator protein 1 (AP-1); however, EGb761 increased the protein stability of ATP-binding cassette transporter A1 (ABCA1) by reducing calpain activity without affecting ABCA1 mRNA expression. Small interfering RNA (siRNA) targeting haem oxygenase-1 (HO-1) abolished the EGb761-induced protective effects on the expression of AP-1, SR-A, ABCA1, and calpain activity. Accordingly, EGb761-mediated suppression of lipid accumulation in foam cells was also abrogated by HO-1 siRNA. Moreover, the lesion size of atherosclerosis was smaller in EGb761-treated, apolipoprotein E-deficient mice compared with the vehicle-treated mice, and the expression of HO-1, SR-A, and ABCA1 in aortas was modulated similar to that observed in macrophages. These findings suggest that EGb761 confers a protection from the formation of foam cells by a novel HO-1-dependent regulation of cholesterol homeostasis in macrophages.

  4. [Overexpression of NHE1 suppresses ABCA1 protein expression via increasing calpain activity in RAW264.7 cells].

    PubMed

    Mo, Xiangang; Wang, Lan; Guo, Jing; Hong, Wei; Long, Shiqi; Zhang, Li; Xiang, Ning; Yang, Juan

    2017-01-01

    Objective To investigate the effect of over-expressed Na(+)/H(+) exchanger 1 (NHE1) on the protein expression of adenosine three phosphate binding cassette transporter A1 (ABCA1) in RAW264.7 cells. Methods RAW264.7 cells were infected with the adenoviral vector encoding NHE1-EGFP (AdNHE1). The infected RAW264.7 cells were subjected to Western blot analysis for NHE1-EGFP fusion protein. The subcellular localization of NHE1-EGFP fusion protein was observed by confocal laser scanning microscopy. NHE1 activity was measured by the method of pH recovery in response to an acute acid pulse. Furthermore, Western blotting was performed to determine ABCA1 protein levels and calpain activity in NHE1-overexpressing RAW264.7 cells. The effect of calpain inhibitor N-acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN) on ABCA1 protein levels in the presence of TO-901317 was examined by Western blotting. Results NHE1-EGFP fusion protein was highly expressed and localized in cytoplasm and cell membrane of RAW264.7 cells infected with AdNHE1. NHE1-EGFP fusion protein reduced ABCA1 protein expression and increased calpain activity. The calpain inhibitor ALLN blocked the decrease of ABCA1 protein expression. Conclusion Overexpressed NHE1 suppresses the expression of ABCA1 protein via increasing the calpain activity in RAW264.7 cells.

  5. Urotensin II increases foam cell formation by repressing ABCA1 expression through the ERK/NF-κB pathway in THP-1 macrophages

    SciTech Connect

    Wang, Yan; Wu, Jian-Feng; Tang, Yan-Yan; Zhang, Min; Li, Yuan; Chen, Kong; Zeng, Meng-Ya; Yao, Feng; Xie, Wei; Zheng, Xi-Long; Zeng, Gao-Feng; Tang, Chao-Ke

    2014-10-03

    Highlights: • U II reduces cholesterol efflux in THP-1 macrophages. • U II decreases the expression of ABCA1. • Inhibition of the ERK/NF-κB pathway reduces U II effects on ABCA1 expression and cholesterol efflux. - Abstract: Objective: Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages. Methods and results: Cultured THP-1 macrophages were treated with U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively. Conclusion: Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.

  6. ABCA1 gene variants regulate postprandial lipid metabolism in healthy men

    PubMed Central

    Delgado-Lista, Javier; Perez-Martinez, Pablo; Perez-Jimenez, Francisco; Garcia-Rios, Antonio; Fuentes, Francisco; Marin, Carmen; Gómez-Luna, Purificación; Camargo, Antonio; Parnell, Laurence D; Ordovas, Jose Maria; Lopez-Miranda, Jose

    2010-01-01

    Objective Genetic variants of ABCA1, an ATP-binding cassette (ABC) transporter, have been linked to altered atherosclerosis progression and fasting lipid concentration, mainly high density lipoproteins (HDL) and Apolipoprotein A1 (APOA1), but results from different studies have been inconsistent. Methods and results In order to further characterize the effects of ABCA1 variants in human postprandial lipid metabolism, we studied the influence of three single nucleotide polymorphisms (SNPs) [i27943 (rs2575875); i48168 (rs4149272); R219K (rs2230806)] in the postprandial lipemia of 88 normolipidemic young men, who were given a fatty meal. For i27943 and i48168 SNPs, fasting and postprandial values of APOA1 were higher, and postprandial lipemia was much lower in homozygotes for the major alleles, for total triglycerides in plasma, and large-triglyceride rich lipoproteins (TRL) triglycerides. These persons also showed higher APOA1/APOB ratio. Major allele homozygotes for i48168 and i27943 showed additionally higher HDL and lower postprandial Apolipoprotein B (ApoB). Conclusions Our work shows that major allele homozygotes for ABCA1 SNPs i27943 and i48168 have a lower postprandial response as compared to minor allele carriers. This finding may further characterize the role of ABCA1 in lipid metabolism. PMID:20185793

  7. Liver X receptor agonist treatment significantly affects phenotype and transcriptome of APOE3 and APOE4 Abca1 haplo-deficient mice

    PubMed Central

    Fitz, Nicholas F.; Mounier, Anais; Wolfe, Cody M.; Nam, Kyong Nyon; Reeves, Valerie L.; Kamboh, Hafsa; Koldamova, Radosveta

    2017-01-01

    ATP-binding cassette transporter A1 (ABCA1) controls cholesterol and phospholipid efflux to lipid-poor apolipoprotein E (APOE) and is transcriptionally controlled by Liver X receptors (LXRs) and Retinoic X Receptors (RXRs). In APP transgenic mice, lack of Abca1 increased Aβ deposition and cognitive deficits. Abca1 haplo-deficiency in mice expressing human APOE isoforms, increased level of Aβ oligomers and worsened memory deficits, preferentially in APOE4 mice. In contrast upregulation of Abca1 by LXR/RXR agonists significantly ameliorated pathological phenotype of those mice. The goal of this study was to examine the effect of LXR agonist T0901317 (T0) on the phenotype and brain transcriptome of APP/E3 and APP/E4 Abca1 haplo-deficient (APP/E3/Abca1+/- and APP/E4/Abca1+/-) mice. Our data demonstrate that activated LXRs/RXR ameliorated APOE4-driven pathological phenotype and significantly affected brain transcriptome. We show that in mice expressing either APOE isoform, T0 treatment increased mRNA level of genes known to affect brain APOE lipidation such as Abca1 and Abcg1. In both APP/E3/Abca1+/- and APP/E4/Abca1+/- mice, the application of LXR agonist significantly increased ABCA1 protein level accompanied by an increased APOE lipidation, and was associated with restoration of APOE4 cognitive deficits, reduced levels of Aβ oligomers, but unchanged amyloid load. Finally, using Gene set enrichment analysis we show a significant APOE isoform specific response to LXR agonist treatment: Gene Ontology categories “Microtubule Based Process” and “Synapse Organization” were differentially affected in T0-treated APP/E4/Abca1+/- mice. Altogether, the results are suggesting that treatment of APP/E4/Abca1+/- mice with LXR agonist T0 ameliorates APOE4-induced AD-like pathology and therefore targeting the LXR-ABCA1-APOE regulatory axis could be effective as a potential therapeutic approach in AD patients, carriers of APOEε4. PMID:28241068

  8. Transcriptional Regulation of ATP-binding Cassette Transporter A1 Expression by a Novel Signaling Pathway*

    PubMed Central

    Chen, Xinping; Zhao, Yanfeng; Guo, Zhongmao; Zhou, Lichun; Okoro, Emmanuel U.; Yang, Hong

    2011-01-01

    ATP-binding cassette transporter A1 (ABCA1) is a membrane-bound protein that regulates the efflux of cholesterol derived from internalized lipoproteins. Using a mouse macrophage cell line, this report studied the impact of low-density lipoproteins (LDL) on ABCA1 expression and the signaling pathway responsible for lipoprotein-induced ABCA1 expression. Our data demonstrated that treatment of macrophages with LDL increased ABCA1 mRNA and protein levels 4.3- and 3.5-fold, respectively. LDL also induced an ∼2-fold increase in macrophage surface expression of ABCA1 and a 14-fold-increase in apolipoprotein AI-mediated cholesterol efflux. In addition, LDL significantly increased the level of phosphorylated specificity protein 1 (Sp1) and the amount of Sp1 bound to the ABCA1 promoter without alteration in total Sp1 protein level. Mutation of the Sp1 binding site in the ABCA1 promoter and inhibition of Sp1 DNA binding with mithramycin A suppressed the ABCA1 promoter activity and reduced the ABCA1 expression level induced by LDL. LDL treatment also elevated protein kinase C-ζ (PKC-ζ) phosphorylation and induced PKC-ζ binding with Sp1. Inhibition of PKC-ζ with kinase inhibitors or overexpression of kinase-dead PKC-ζ attenuated Sp1 phosphorylation and ABCA1 expression induced by LDL. These results demonstrate for the first time that activation of the PKCζ-Sp1 signaling cascade is a mechanism for regulation of LDL-induced ABCA1 expression. PMID:21257755

  9. Enhanced cholesterol efflux to HDL through the ABCA1 transporter in hypertriglyceridemia of type 2 diabetes.

    PubMed

    Yassine, Hussein N; Belopolskaya, Alexandra; Schall, Christina; Stump, Craig S; Lau, Serrine S; Reaven, Peter D

    2014-05-01

    Our objective was to examine the role of hypertriglyceridemia on the capacity of HDL to facilitate ABCA-1 mediated cholesterol efflux in type 2 diabetes (T2DM). HDL mediated cholesterol efflux through the ABCA-1 transporter was measured using BHK cell lines in samples of 71 participants with T2DM in the presence or absence of high triglyceride levels (TG). Additionally, HDL mediated efflux was measured in 13 diabetic and non-diabetic participants fasting and four hours after a high-fat test challenge. HDL mediated cholesterol efflux function was increased in participants with T2DM with hypertriglyceridemia when compared to participants with T2DM without hypertriglyceridemia (efflux ratio mean±standard deviation (SD), T2DM+TG: 1.17±0.25 vs. T2DM - TG: 1.03±0.19, p=0.0098). In the fat challenge study, we observed a significant increase in ABCA-1 mediated cholesterol efflux capacity following an ingestion of high-fat test meal by participants in both groups of T2DM (n=6, efflux ratio, mean±SD, pre: 0.86±0.4 vs. post: 1.34±0.6, p=0.01) and non-diabetic participants (n=7, efflux ratio mean±SD pre: 1.24±0.31 vs. post: 1.39±0.42, p=0.04) that was partly explained by the difference in CETP activity (r=0.6, p=0.03). Our study suggests that high triglyceride levels facilitate ABCA-1 mediated efflux function of HDL in part by activating CETP. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Proteomic Analysis of ABCA1-Null Macrophages Reveals a Role for Stomatin-Like Protein-2 in Raft Composition and Toll-Like Receptor Signaling*

    PubMed Central

    Chowdhury, Saiful M.; Zhu, Xuewei; Aloor, Jim J.; Azzam, Kathleen M.; Gabor, Kristin A.; Ge, William; Addo, Kezia A.; Tomer, Kenneth B.; Parks, John S.; Fessler, Michael B.

    2015-01-01

    Lipid raft membrane microdomains organize signaling by many prototypical receptors, including the Toll-like receptors (TLRs) of the innate immune system. Raft-localization of proteins is widely thought to be regulated by raft cholesterol levels, but this is largely on the basis of studies that have manipulated cell cholesterol using crude and poorly specific chemical tools, such as β-cyclodextrins. To date, there has been no proteome-scale investigation of whether endogenous regulators of intracellular cholesterol trafficking, such as the ATP binding cassette (ABC)A1 lipid efflux transporter, regulate targeting of proteins to rafts. Abca1−/− macrophages have cholesterol-laden rafts that have been reported to contain increased levels of select proteins, including TLR4, the lipopolysaccharide receptor. Here, using quantitative proteomic profiling, we identified 383 proteins in raft isolates from Abca1+/+ and Abca1−/− macrophages. ABCA1 deletion induced wide-ranging changes to the raft proteome. Remarkably, many of these changes were similar to those seen in Abca1+/+ macrophages after lipopolysaccharide exposure. Stomatin-like protein (SLP)-2, a member of the stomatin-prohibitin-flotillin-HflK/C family of membrane scaffolding proteins, was robustly and specifically increased in Abca1−/− rafts. Pursuing SLP-2 function, we found that rafts of SLP-2-silenced macrophages had markedly abnormal composition. SLP-2 silencing did not compromise ABCA1-dependent cholesterol efflux but reduced macrophage responsiveness to multiple TLR ligands. This was associated with reduced raft levels of the TLR co-receptor, CD14, and defective lipopolysaccharide-induced recruitment of the common TLR adaptor, MyD88, to rafts. Taken together, we show that the lipid transporter ABCA1 regulates the protein repertoire of rafts and identify SLP-2 as an ABCA1-dependent regulator of raft composition and of the innate immune response. PMID:25910759

  11. A Novel Function of Apolipoprotein E: Upregulation of ATP-Binding Cassette Transporter A1 Expression

    PubMed Central

    Yang, Hong; Zhou, Lichun; Okoro, Emmanuel U.; Guo, Zhongmao

    2011-01-01

    Despite the well known importance of apolipoprotein (Apo) E in cholesterol efflux, the effect of ApoE on the expression of ATP-binding cassette transporter A1 (ABCA1) has never been investigated. The objective of this study was to determine the effect of ApoE on ApoB-carrying lipoprotein-induced expression of ABCA1, a protein that mediates cholesterol efflux. Our data demonstrate that ApoB-carrying lipoproteins obtained from both wild-type and ApoE knockout mice induced ApoAI-mediated cholesterol efflux in mouse macrophages, which was associated with an enhanced ABCA1 promoter activity, and an increased ABCA1 mRNA and protein expression. In addition, these lipoproteins increased the level of phosphorylated specificity protein 1 (Sp1) and the amount of Sp1 bound to the ABCA1 promoter. However, all these inductions were significantly diminished in cells treated with ApoE-free lipoproteins, when compared to those treated with wild-type lipoproteins. Enrichment with human ApoE3 reversed the reduced inducibility of ApoE-free lipoproteins. Moreover, we observed that inhibition of Sp1 DNA-binding by mithramycin A diminished ABCA1 expression and ApoAI-mediated cholesterol efflux induced by ApoB-carrying lipoproteins, and that mutation of the Sp1-binding motif in the ABCA1 promoter region diminished ApoB-carrying lipoprotein-induced ABCA1 promoter activity. Collectively, these data suggest that ApoE associated with ApoB-carrying lipoproteins has an upregulatory role on ABCA1 expression, and that induction of Sp1 phosphorylation is a mechanism by which ApoE upregulates ABCA1 expression. PMID:21779326

  12. MicroRNA-144 Regulates Hepatic ABCA1 and Plasma HDL Following Activation of the Nuclear Receptor FXR

    PubMed Central

    de Aguiar Vallim, Thomas Q.; Tarling, Elizabeth J.; Kim, Tammy; Civelek, Mete; Baldán, Ángel; Esau, Christine; Edwards, Peter A.

    2014-01-01

    Rationale The bile acid receptor Farnesoid-X-Receptor (FXR) regulates many aspects of lipid metabolism by various complex and not fully understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. Objective To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. Methods and Results ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma High Density Lipoprotein (HDL)-cholesterol levels. Here we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lower hepatic ABCA1 and plasma HDL levels. We identified two complementary sequences to miR-144 in the 3′ untranslated region (UTR) of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I (ApoA-I) protein, whilst overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL-cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL-cholesterol. In addition, we utilized tissue-specific FXR deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal FXR. Finally, we identified functional FXR response elements (FXREs) upstream of the miR-144 locus, consistent with direct FXR regulation. Conclusion We have identified a novel pathway involving FXR, miR-144 and ABCA1 that together regulate plasma HDL cholesterol. PMID:23519696

  13. HDL and CER-001 Inverse-Dose Dependent Inhibition of Atherosclerotic Plaque Formation in apoE-/- Mice: Evidence of ABCA1 Down-Regulation

    PubMed Central

    Tardy, Claudine; Goffinet, Marine; Boubekeur, Nadia; Cholez, Guy; Ackermann, Rose; Sy, Gavin; Keyserling, Constance; Lalwani, Narendra; Paolini, John F.; Dasseux, Jean-Louis; Barbaras, Ronald; Baron, Rudi

    2015-01-01

    Objective CER-001 is a novel engineered HDL-mimetic comprised of recombinant human apoA-I and charged phospholipids that was designed to mimic the beneficial properties of nascent pre-ß HDL. In this study, we have evaluated the dose-dependent regulation of ABCA1 expression in vitro and in vivo in the presence of CER-001 and native HDL (HDL3). Methods and Results CER-001 induced cholesterol efflux from J774 macrophages in a dose-dependent manner similar to natural HDL. A strong down-regulation of the ATP-binding cassette A1 (ABCA1) transporter mRNA (- 50%) as well as the ABCA1 membrane protein expression (- 50%) was observed at higher doses of CER-001 and HDL3 compared to non-lipidated apoA-I. In vivo, in an apoE-/- mouse “flow cessation model,” in which the left carotid artery was ligatured to induce local inflammation, the inhibition of atherosclerotic plaque burden progression in response to a dose-range of every-other-day CER-001 or HDL in the presence of a high-fat diet for two weeks was assessed. We observed a U-shaped dose-response curve: inhibition of the plaque total cholesterol content increased with increasing doses of CER-001 or HDL3 up to a maximum inhibition (- 51%) at 5 mg/kg; however, as the dose was increased above this threshold, a progressively less pronounced inhibition of progression was observed, reaching a complete absence of inhibition of progression at doses of 20 mg/kg and over. ABCA1 protein expression in the same atherosclerotic plaque was decreased by-45% and-68% at 50 mg/kg for CER-001 and HDL respectively. Conversely, a-12% and 0% decrease in ABCA1 protein expression was observed at the 5 mg/kg dose for CER-001 and HDL respectively. Conclusions These data demonstrate that high doses of HDL and CER-001 are less effective at slowing progression of atherosclerotic plaque in apoE-/- mice compared to lower doses, following a U-shaped dose-response curve. A potential mechanism for this phenomenon is supported by the observation that

  14. Differential Phospholipid Substrates and Directional Transport by ATP-binding Cassette Proteins ABCA1, ABCA7, and ABCA4 and Disease-causing Mutants*♦

    PubMed Central

    Quazi, Faraz; Molday, Robert S.

    2013-01-01

    ABCA1, ABCA7, and ABCA4 are members of the ABCA subfamily of ATP-binding cassette transporters that share extensive sequence and structural similarity. Mutations in ABCA1 cause Tangier disease characterized by defective cholesterol homeostasis and high density lipoprotein (HDL) deficiency. Mutations in ABCA4 are responsible for Stargardt disease, a degenerative disorder associated with severe loss in central vision. Although cell-based studies have implicated ABCA proteins in lipid transport, the substrates and direction of transport have not been firmly established. We have purified and reconstituted ABCA1, ABCA7, and ABCA4 into liposomes for fluorescent-lipid transport studies. ABCA1 actively exported or flipped phosphatidylcholine, phosphatidylserine, and sphingomyelin from the cytoplasmic to the exocytoplasmic leaflet of membranes, whereas ABCA7 preferentially exported phosphatidylserine. In contrast, ABCA4 transported phosphatidylethanolamine in the reverse direction. The same phospholipids stimulated the ATPase activity of these ABCA transporters. The transport and ATPase activities of ABCA1 and ABCA4 were reduced by 25% in the presence of 20% cholesterol. Nine ABCA1 Tangier mutants and the corresponding ABCA4 Stargardt mutants showed significantly reduced phospholipid transport activity and subcellular mislocalization. These studies provide the first direct evidence for ABCA1 and ABCA7 functioning as phospholipid transporters and suggest that this activity is an essential step in the loading of apoA-1 with phospholipids for HDL formation. PMID:24097981

  15. Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages

    PubMed Central

    Wang, Limei; Rotter, Susanne; Ladurner, Angela; Heiss, Elke H.; Oberlies, Nicholas H.; Dirsch, Verena M.; Atanasov, Atanas G.

    2016-01-01

    Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARγ agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease. PMID:26729088

  16. Silymarin Constituents Enhance ABCA1 Expression in THP-1 Macrophages.

    PubMed

    Wang, Limei; Rotter, Susanne; Ladurner, Angela; Heiss, Elke H; Oberlies, Nicholas H; Dirsch, Verena M; Atanasov, Atanas G

    2015-12-31

    Silymarin is a hepatoprotective mixture of flavonolignans and flavonoids extracted from the seeds of milk thistle (Silybum marianum L. Gaertn). This study investigates the effect of major bioactive constituents from silymarin, silybin A, silybin B, isosilybin A, isosilybin B, silydianin, silychristin, isosilychristin, and taxifolin, on the expression of ABCA1, an important cholesterol efflux transporter, in THP-1-derived macrophages. Four of the studied compounds, isosilybin A, silybin B, silychristin and isosilychristin, were found to significantly induce ABCA1 protein expression without affecting cell viability. Moreover, isosilybin A, a partial PPARγ agonist, was found to promote cholesterol efflux from THP-1 macrophages in a concentration-dependent manner. These findings first show ABCA1 protein up-regulating activity of active constituents of silymarin and provide new avenues for their further study in the context of cardiovascular disease.

  17. Hormonal modulators of glial ABCA1 and apoE levels.

    PubMed

    Fan, Jianjia; Shimizu, Yoko; Chan, Jeniffer; Wilkinson, Anna; Ito, Ayaka; Tontonoz, Peter; Dullaghan, Edie; Galea, Liisa A M; Pfeifer, Tom; Wellington, Cheryl L

    2013-11-01

    Apolipoprotein E (apoE) is the major lipid carrier in the central nervous system. As apoE plays a major role in the pathogenesis of Alzheimer disease (AD) and also mediates repair pathways after several forms of acute brain injury, modulating the expression, secretion, or function of apoE may provide potential therapeutic approaches for several neurological disorders. Here we show that progesterone and a synthetic progestin, lynestrenol, significantly induce apoE secretion from human CCF-STTG1 astrocytoma cells, whereas estrogens and the progesterone metabolite allopregnanolone have negligible effects. Intriguingly, lynestrenol also increases expression of the cholesterol transporter ABCA1 in CCF-STTG1 astrocytoma cells, primary murine glia, and immortalized murine astrocytes that express human apoE3. The progesterone receptor inhibitor RU486 attenuates the effect of progestins on apoE expression in CCF-STTG1 astrocytoma cells but has no effect on ABCA1 expression in all glial cell models tested, suggesting that the progesterone receptor (PR) may participate in apoE but does not affect ABCA1 regulation. These results suggest that selective reproductive steroid hormones have the potential to influence glial lipid homeostasis through liver X receptor-dependent and progesterone receptor-dependent pathways.

  18. Hormonal modulators of glial ABCA1 and apoE levels[S

    PubMed Central

    Fan, Jianjia; Shimizu, Yoko; Chan, Jeniffer; Wilkinson, Anna; Ito, Ayaka; Tontonoz, Peter; Dullaghan, Edie; Galea, Liisa A. M.; Pfeifer, Tom; Wellington, Cheryl L.

    2013-01-01

    Apolipoprotein E (apoE) is the major lipid carrier in the central nervous system. As apoE plays a major role in the pathogenesis of Alzheimer disease (AD) and also mediates repair pathways after several forms of acute brain injury, modulating the expression, secretion, or function of apoE may provide potential therapeutic approaches for several neurological disorders. Here we show that progesterone and a synthetic progestin, lynestrenol, significantly induce apoE secretion from human CCF-STTG1 astrocytoma cells, whereas estrogens and the progesterone metabolite allopregnanolone have negligible effects. Intriguingly, lynestrenol also increases expression of the cholesterol transporter ABCA1 in CCF-STTG1 astrocytoma cells, primary murine glia, and immortalized murine astrocytes that express human apoE3. The progesterone receptor inhibitor RU486 attenuates the effect of progestins on apoE expression in CCF-STTG1 astrocytoma cells but has no effect on ABCA1 expression in all glial cell models tested, suggesting that the progesterone receptor (PR) may participate in apoE but does not affect ABCA1 regulation.These results suggest that selective reproductive steroid hormones have the potential to influence glial lipid homeostasis through liver X receptor-dependent and progesterone receptor-dependent pathways. PMID:23999864

  19. Difference in expression patterns of placental cholesterol transporters, ABCA1 and SR-BI, in Meishan and Yorkshire pigs with different placental efficiency

    PubMed Central

    Hong, Linjun; Xu, Xiangdong; Huang, Ji; Lei, Minggang; Xu, Dequan; Zhao, Shuhong; Yu, Mei

    2016-01-01

    Cholesterol is a key cell membrane component and precursor of steroid hormones. The maternal cholesterol is an important exogenous cholesterol source for the developing embryos and its transportation is mediated by ABCA1 and SR-BI. Here we reported that during the peri-implantation period in pigs, ABCA1 was expressed by uterine luminal epithelium (LE) and interestingly, its expression was more abundantly in LE on mesometrial side of uterus. However, SR-BI was expressed primarily by LE, glandular epithelial cells (GE) and trophoblast cells (Tr). During the placentation period, the expression levels of ABCA1 and SR-BI proteins at epithelial bilayer and placental areolae were significantly higher in Chinese Meishan pigs compared to Yorkshire pigs. Consisitently, mRNA levels of HMGCR, the rate-limiting enzyme for cholesterol synthesis, were significantly higher in Meishan placentas than in Yorkshire placentas. Our findings revealed the routes of transplacental cholesterol transport mediated by ABCA1 and SR-BI in pigs and indicated that ABCA1 related pathway may participate in anchoring the conceptus to the mesometrial side of uterus. Additionally, an ABCA1 dependent compensatory mechanism related to the placental efficiency in response to the smaller placenta size in Meishan pigs was suggested. PMID:26852751

  20. Evidence That Chromium Modulates Cellular Cholesterol Homeostasis and ABCA1 Functionality Impaired By Hyperinsulinemia

    PubMed Central

    Sealls, Whitney; Penque, Brent A.; Elmendorf, Jeffrey S.

    2011-01-01

    Objective Trivalent chromium (Cr3+) is an essential micronutrient. Findings since the 1950s suggest that Cr3+ might benefit cholesterol homeostasis. Here we present mechanistic evidence in support of this role of Cr3+. Method and Results High-density lipoprotein cholesterol generation in 3T3-L1 adipocytes, rendered ineffective by hyperinsulinemia, known to accompany disorders of lipid metabolism was corrected by Cr3+. Mechanistically, Cr3+ reversed hyperinsulinemia-induced cellular cholesterol accrual and associated defects in cholesterol transporter ABCA1 trafficking and apolipoprotein A1-mediated cholesterol efflux. Moreover, direct activation of AMP-activated protein kinase (AMPK), known to be activated by Cr3+, and/or inhibition of hexosamine biosynthesis pathway (HBP) activity, known to be elevated by hyperinsulinemia, mimics Cr3+ action. Conclusion These findings suggest a mechanism of Cr3+ action that fits with long-standing claims of its role in cholesterol homeostasis. Furthermore, these data implicate a mechanistic basis for the coexistence of dyslipidemia with hyperinsulinemia. PMID:21311039

  1. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins

    PubMed Central

    Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3′-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes. PMID:27139226

  2. A novel urotensin II receptor antagonist, KR-36676, prevents ABCA1 repression via ERK/IL-1β pathway.

    PubMed

    Kim, Mi-Young; Ilyosbek, Sattorov; Lee, Byung Ho; Yi, Kyu Yang; Jung, Yi-Sook

    2017-05-15

    Urotensin II (U-II), the most potent vasoconstrictor peptide known to date, is expressed at a high level in vascular smooth muscle cells (VSMC) and endothelial cells, whereas its receptor, urotensin (UT) receptor, is abundant in monocytes and macrophages of atherosclerotic lesions. U-II is highly present in the coronary arteries of the atherosclerotic patients compared to normal subjects. Recently, U-II was shown to down-regulate ATP binding cassette transporter-A1 (ABCA1) expression, which is responsible for reverse cholesterol transport in macrophages of atherosclerotic lesions. However, the mechanism of this observation was not clearly elucidated. Previous studies also revealed that the proinflammatory cytokine interleukin-1β (IL-1β) repressed ABCA1 expression. To clarify the signaling pathway involved with respect to U-II-induced ABCA1 down-regulation, we investigated whether IL-1ß was involved. Our results provided that U-II repressed ABCA1 through an ERK/ IL-1ß pathway. We further demonstrated that U-II receptor antagonist KR-36676 decreased IL-1ß production and significantly led to a recovery of ABCA1 expression at both mRNA and protein levels. In previous investigations, U-II receptor antagonists have been shown to protect atherosclerosis in cell and animal models. Our results imply that U-II receptor antagonist KR-36676 might be a potent candidate for treating atherosclerosis, and leading to a recovery of ABCA1 expression, affected by the ERK/IL-1ß pathway. Copyright © 2017. Published by Elsevier B.V.

  3. Smooth Muscle Cell Foam Cell Formation, Apolipoproteins, and ABCA1 in Intracranial Aneurysms: Implications for Lipid Accumulation as a Promoter of Aneurysm Wall Rupture.

    PubMed

    Ollikainen, Eliisa; Tulamo, Riikka; Lehti, Satu; Lee-Rueckert, Miriam; Hernesniemi, Juha; Niemelä, Mika; Ylä-Herttuala, Seppo; Kovanen, Petri T; Frösen, Juhana

    2016-07-01

    Saccular intracranial aneurysm (sIA) aneurysm causes intracranial hemorrhages that are associated with high mortality. Lipid accumulation and chronic inflammation occur in the sIA wall. A major mechanism for lipid clearance from arteries is adenosine triphosphate-binding cassette A1 (ABCA1)-mediated lipid efflux from foam cells to apolipoprotein A-I (apoA-I). We investigated the association of wall degeneration, inflammation, and lipid-related parameters in tissue samples of 16 unruptured and 20 ruptured sIAs using histology and immunohistochemistry. Intracellular lipid accumulation was associated with wall remodeling (p = 0.005) and rupture (p = 0.020). Foam cell formation was observed in smooth muscle cells, in addition to CD68- and CD163-positive macrophages. Macrophage infiltration correlated with intracellular lipid accumulation and apolipoproteins, including apoA-I. ApoA-I correlated with markers of lipid accumulation and wall degeneration (p = 0.01). ApoA-I-positive staining colocalized with ABCA1-positive cells particularly in sIAs with high number of smooth muscle cells (p = 0.003); absence of such colocalization was associated with wall degeneration (p = 0.017). Known clinical risk factors for sIA rupture correlated inversely with apoA-I. We conclude that lipid accumulation associates with sIA wall degeneration and risk of rupture, possibly via formation of foam cells and subsequent loss of mural cells. Reduced removal of lipids from the sIA wall via ABCA1-apoA-I pathway may contribute to this process. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  4. Smooth Muscle Cell Foam Cell Formation, Apolipoproteins, and ABCA1 in Intracranial Aneurysms: Implications for Lipid Accumulation as a Promoter of Aneurysm Wall Rupture

    PubMed Central

    Ollikainen, Eliisa; Tulamo, Riikka; Lehti, Satu; Lee-Rueckert, Miriam; Hernesniemi, Juha; Niemelä, Mika; Ylä-Herttuala, Seppo; Kovanen, Petri T.

    2016-01-01

    Saccular intracranial aneurysm (sIA) aneurysm causes intracranial hemorrhages that are associated with high mortality. Lipid accumulation and chronic inflammation occur in the sIA wall. A major mechanism for lipid clearance from arteries is adenosine triphosphate-binding cassette A1 (ABCA1)-mediated lipid efflux from foam cells to apolipoprotein A-I (apoA-I). We investigated the association of wall degeneration, inflammation, and lipid-related parameters in tissue samples of 16 unruptured and 20 ruptured sIAs using histology and immunohistochemistry. Intracellular lipid accumulation was associated with wall remodeling (p = 0.005) and rupture (p = 0.020). Foam cell formation was observed in smooth muscle cells, in addition to CD68- and CD163-positive macrophages. Macrophage infiltration correlated with intracellular lipid accumulation and apolipoproteins, including apoA-I. ApoA-I correlated with markers of lipid accumulation and wall degeneration (p = 0.01). ApoA-I-positive staining colocalized with ABCA1-positive cells particularly in sIAs with high number of smooth muscle cells (p = 0.003); absence of such colocalization was associated with wall degeneration (p = 0.017). Known clinical risk factors for sIA rupture correlated inversely with apoA-I. We conclude that lipid accumulation associates with sIA wall degeneration and risk of rupture, possibly via formation of foam cells and subsequent loss of mural cells. Reduced removal of lipids from the sIA wall via ABCA1-apoA-I pathway may contribute to this process. PMID:27283327

  5. Dietary High Cholesterol and Trace Metals in the Drinking Water Increase Levels of ABCA1 in the Rabbit Hippocampus and Temporal Cortex

    PubMed Central

    Schreurs, Bernard G.; Sparks, D. Larry

    2015-01-01

    Background Cholesterol-fed rabbits have been documented to show increased amyloid-β (Aβ) deposits in the brain that can be exacerbated by the quality of drinking water especially if rabbits drink tap water or distilled water containing copper. One mechanism of cholesterol and Aβ clearance may be through the ATP-binding cassette transporter A1 (ABCA1). Objective and Methods Using an ABCA1 antibody, we determined the number of ABCA1-immunopositive neurons in three areas of rabbit brain as a function of feeding 2% cholesterol and providing tap water, distilled water, or distilled water to which aluminum, copper, or zinc was added. Results The number of neurons with ABCA1 immunoreactivity was increased significantly as a result of dietary cholesterol in the rabbit hippocampus and inferior and superior temporal cortex. The number of neurons with ABCA1 immunoreactivity was further increased in all three areas as a result of cholesterol-fed rabbits drinking tap water or distilled water with copper. Finally, cholesterol-fed rabbits that drank distilled water with aluminum also showed an increased number of ABCA1-immunopositive neurons in inferior and superior temporal cortex. Conclusions These data suggest that ABCA1 levels increase in parallel with previously documented increases in Aβ levels as a result of high dietary cholesterol and copper in the drinking water. Addition of aluminum to distilled water may have a similar effect in the temporal cortex. ABCA1 has been proposed as a means of clearing Aβ from the brain and manipulations that increase Aβ also result in an increase of clearance machinery. PMID:26444796

  6. Dietary high cholesterol and trace metals in the drinking water increase levels of ABCA1 in the rabbit hippocampus and temporal cortex.

    PubMed

    Schreurs, Bernard G; Sparks, D Larry

    2016-01-01

    Cholesterol-fed rabbits have been documented to show increased amyloid-β (Aβ) deposits in the brain that can be exacerbated by the quality of drinking water especially if rabbits drink tap water or distilled water containing copper. One mechanism of cholesterol and Aβ clearance may be through the ATP-binding cassette transporter A1 (ABCA1). Using an ABCA1 antibody, we determined the number of ABCA1-immunopositive neurons in three areas of rabbit brain as a function of feeding 2% cholesterol and providing tap water, distilled water, or distilled water to which aluminum, copper, or zinc was added. The number of neurons with ABCA1 immunoreactivity was increased significantly as a result of dietary cholesterol in the rabbit hippocampus and inferior and superior temporal cortex. The number of neurons with ABCA1 immunoreactivity was further increased in all three areas as a result of cholesterol-fed rabbits drinking tap water or distilled water with copper. Finally, cholesterol-fed rabbits that drank distilled water with aluminum also showed an increased number of ABCA1-immunopositive neurons in inferior and superior temporal cortex. These data suggest that ABCA1 levels increase in parallel with previously documented increases in Aβ levels as a result of high dietary cholesterol and copper in the drinking water. Addition of aluminum to distilled water may have a similar effect in the temporal cortex. ABCA1 has been proposed as a means of clearing Aβ from the brain and manipulations that increase Aβ also result in an increase of clearance machinery.

  7. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in Alzheimer's disease

    PubMed Central

    ElAli, Ayman; Rivest, Serge

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects elderly persons, evolving with age to reach severe cognitive impairment. Amyloid deposits and neurofibrillary tangles constitute the main pathological hallmarks of AD. Amyloid deposits are initiated by the excessive production and accumulation of beta-amyloid (Aβ) peptides in the brain. The dysfunction of the Neurovascular Unit (NVU) has been proposed to be causative in AD development, due to an impaired clearance of Aβ from the brain. Cells forming the NVU express several Adenosine Triphosphate ATP-Binding Cassette (ABC) transporters, among which ABCB1 and ABCA1 play an important role in Aβ processing. The drug transporter ABCB1 directly transports Aβ from the brain into the blood circulation, whereas the cholesterol transporter ABCA1 neutralizes Aβ aggregation capacity in an Apolipoprotein E (ApoE)-dependent manner, facilitating Aβ subsequent elimination from the brain. In the present minireview, we will summarize the contribution of ABCB1, and ABCA1 at the NVU in Aβ clearance. Moreover, we will outline and discuss the possible collaboration of ABCB1, and ABCA1 at the NVU in mediating an efficient clearance of Aβ from the brain. PMID:23494712

  8. 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages

    PubMed Central

    2011-01-01

    Background Synthetic activators of peroxisome proliferator-activated receptors (PPARs) stimulate cholesterol removal from macrophages through PPAR-dependent up-regulation of liver × receptor α (LXRα) and subsequent induction of cholesterol exporters such as ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type 1 (SR-BI). The present study aimed to test the hypothesis that the hydroxylated derivative of linoleic acid (LA), 13-HODE, which is a natural PPAR agonist, has similar effects in RAW264.7 macrophages. Methods RAW264.7 macrophages were treated without (control) or with LA or 13-HODE in the presence and absence of PPARα or PPARγ antagonists and determined protein levels of LXRα, ABCA1, ABCG1, SR-BI, PPARα and PPARγ and apolipoprotein A-I mediated lipid efflux. Results Treatment of RAW264.7 cells with 13-HODE increased PPAR-transactivation activity and protein concentrations of LXRα, ABCA1, ABCG1 and SR-BI when compared to control treatment (P < 0.05). In addition, 13-HODE enhanced cholesterol concentration in the medium but decreased cellular cholesterol concentration during incubation of cells with the extracellular lipid acceptor apolipoprotein A-I (P < 0.05). Pre-treatment of cells with a selective PPARα or PPARγ antagonist completely abolished the effects of 13-HODE on cholesterol efflux and protein levels of genes investigated. In contrast to 13-HODE, LA had no effect on either of these parameters compared to control cells. Conclusion 13-HODE induces cholesterol efflux from macrophages via the PPAR-LXRα-ABCA1/SR-BI-pathway. PMID:22129452

  9. Betulin attenuates atherosclerosis in apoE−/− mice by up-regulating ABCA1 and ABCG1

    PubMed Central

    Gui, Yu-zhou; Yan, Hong; Gao, Fei; Xi, Cong; Li, Hui-hui; Wang, Yi-ping

    2016-01-01

    Aim: Betulin is a pentacyclic triterpenoid isolated from the bark of yellow and white birch trees with anti-cancer and anti-malaria activities. In this study we examined the effects of betulin on atherosclerosis in apoE−/− mice and the underlying mechanisms. Methods: Murine macrophage RAW264.7 cells and human monocyte-derived THP-1 cells were tested. Foam cell formation was detected with Oil Red O staining. Cholesterol efflux was assessed using [3H]-cholesterol efflux assay. The expression of ATP-binding cassette transporter A1 and G1 (ABCA1 and ABCG1) was examined using RT-PCR and Western-blotting. The ABCA1 promoter activity was evaluated using luciferase activity assay. Male apoE−/− mice fed on a high-fat-diet (HFD), and received betulin (20 and 40 mg·kg−1·d−1, ig) for 12 weeks. The macrophage content and ABCA1 expression in the aortic sinuses were evaluated with immunofluorescence staining. The hepatic, intestinal and fecal cholesterol were also analyzed in the mice. Results: In RAW264.7 cells, betulin (0.1–2.5 μg/mL) dose-dependently ameliorated oxLDL-induced cholesterol accumulation and enhanced cholesterol efflux. In both RAW264.7 and THP-1 cells, betulin increased the expression of ABCA1 and ABCG1 via suppressing the transcriptional repressors sterol-responsive element-binding proteins (SREBPs) that bound to E-box motifs in ABCA1 promoter, whereas E-box binding site mutation markedly attenuated betulin-induced ABCA1 promoter activity. In HFD-fed apoE−/− mice, betulin administration significantly reduced lesions in en face aortas and aortic sinuses. Furthermore, betulin administration significantly increased ABCA1 expression and suppressed macrophage positive areas in the aortic sinuses. Moreover, betulin administration improved plasma lipid profiles and enhanced fecal cholesterol excretion in the mice. Conclusion: Betulin attenuates atherosclerosis in apoE−/− mice by promoting cholesterol efflux in macrophages. PMID:27374487

  10. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling

    PubMed Central

    Ito, Ayaka; Hong, Cynthia; Rong, Xin; Zhu, Xuewei; Tarling, Elizabeth J; Hedde, Per Niklas; Gratton, Enrico; Parks, John; Tontonoz, Peter

    2015-01-01

    The liver X receptors (LXRs) are transcriptional regulators of lipid homeostasis that also have potent anti-inflammatory effects. The molecular basis for their anti-inflammatory effects is incompletely understood, but has been proposed to involve the indirect tethering of LXRs to inflammatory gene promoters. Here we demonstrate that the ability of LXRs to repress inflammatory gene expression in cells and mice derives primarily from their ability to regulate lipid metabolism through transcriptional activation and can occur in the absence of SUMOylation. Moreover, we identify the putative lipid transporter Abca1 as a critical mediator of LXR's anti-inflammatory effects. Activation of LXR inhibits signaling from TLRs 2, 4 and 9 to their downstream NF-κB and MAPK effectors through Abca1-dependent changes in membrane lipid organization that disrupt the recruitment of MyD88 and TRAF6. These data suggest that a common mechanism-direct transcriptional activation-underlies the dual biological functions of LXRs in metabolism and inflammation. DOI: http://dx.doi.org/10.7554/eLife.08009.001 PMID:26173179

  11. Biogenesis of HDL by SAA is dependent on ABCA1 in the liver in vivo.

    PubMed

    Hu, Wei; Abe-Dohmae, Sumiko; Tsujita, Maki; Iwamoto, Noriyuki; Ogikubo, Osamu; Otsuka, Takanobu; Kumon, Yositaka; Yokoyama, Shinji

    2008-02-01

    Serum amyloid A (SAA) was markedly increased in the plasma and in the liver upon acute inflammation induced by intraperitoneal injection of lipopolysaccharide (LPS) in mice, and SAA in the plasma was exclusively associated with HDL. In contrast, no HDL was present in the plasma and only a small amount of SAA was found in the VLDL/LDL fraction (d < 1.063 g/ml) after the induction of inflammation in ABCA1-knockout (KO) mice, although SAA increased in the liver. Primary hepatocytes isolated from LPS-treated wild-type (WT) and ABCA1-KO mice both secreted SAA into the medium. SAA secreted from WT hepatocytes was associated with HDL, whereas SAA from ABCA1-KO hepatocytes was recovered in the fraction that was >1.21 g/ml. The behavior of apolipoprotein A-I (apoA-I) was the same as that of SAA in HDL biogenesis by WT and ABCA1-KO mouse hepatocytes. Lipid-free SAA and apoA-I both stabilized ABCA1 and caused cellular lipid release in WT mouse-derived fibroblasts, but not in ABCA1-KO mouse-derived fibroblasts, in vitro when added exogenously. We conclude that both SAA and apoA-I generate HDL largely in hepatocytes only in the presence of ABCA1, likely being secreted in a lipid-free form to interact with cellular ABCA1. In the absence of ABCA1, nonlipidated SAA is seemingly removed rapidly from the extracellular space.

  12. Analysis of ABCA1 and Cholesterol Efflux in HIV-Infected Cells.

    PubMed

    Mukhamedova, Nigora; Brichacek, Beda; Darwish, Christina; Popratiloff, Anastas; Sviridov, Dmitri; Bukrinsky, Michael

    2016-01-01

    Cholesterol is an essential component of the cellular membranes and, by extension, of the HIV envelope membrane, which is derived from the host cell plasma membrane. Depletion of the cellular cholesterol has an inhibitory effect on HIV assembly, reduces infectivity of the produced virions, and makes the cell less susceptible to HIV infection. It is not surprising that the virus has evolved to gain access to cellular proteins regulating cholesterol metabolism. One of the key mechanisms used by HIV to maintain high levels of cholesterol in infected cells is Nef-mediated inhibition of cholesterol efflux and the cholesterol transporter responsible for this process, ABCA1. In this chapter, we describe methods to investigate these effects of HIV-1 infection.

  13. Multiple abnormally spliced ABCA1 mRNAs caused by a novel splice site mutation of ABCA1 gene in a patient with Tangier disease.

    PubMed

    Bocchi, Letizia; Pisciotta, Livia; Fasano, Tommaso; Candini, Chiara; Puntoni, Maria Rita; Sampietro, Tiziana; Bertolini, Stefano; Calandra, Sebastiano

    2010-04-02

    Mutations in ABCA1 gene are the cause of Tangier disease (TD) and familial high density lipoprotein (HDL) deficiency. Splice site mutations of this gene were reported infrequently. ABCA1 gene was sequenced in a TD patient and in subjects with low HDL. The effect of intronic variants on ABCA1 pre-mRNA splicing was studied in COS-1 cells expressing a mutant minigene or in patients' cells. A novel mutation in intron 20 (c.2961 -2 A>C) was found in the TD patient. To assess its effect, a mutant ABCA1 minigene, containing intron 18-intron 23 region, was expressed in COS-1 cells. The mutant minigene generated three transcripts: i) in the first (459bp) 61 nucleotides of intron 20 were retained; ii) in the second (384bp) exon 20 joined to exon 21 devoid of the first 14 nucleotides; and iii) in the third (255bp) the entire exon 21 was skipped. The first two transcripts were also observed in patient's peripheral blood mononuclear cells. These mRNAs encode truncated proteins. A variant in intron 8 (c.814 -14 ins A), identified in subjects with low HDL, had no effect on ABCA1 pre-mRNA splicing. Functional analysis is required to establish the effect of intronic mutations on ABCA1 pre-mRNA splicing. 2010 Elsevier B.V. All rights reserved.

  14. ABCA1 overexpression leads to hyperalphalipoproteinemia and increased biliary cholesterol excretion in transgenic mice

    PubMed Central

    Vaisman, Boris L.; Lambert, Gilles; Amar, Marcelo; Joyce, Charles; Ito, Toshimitsu; Shamburek, Robert D.; Cain, William J.; Fruchart-Najib, Jamila; Neufeld, Edward D.; Remaley, Alan T.; Brewer, H. Bryan; Santamarina-Fojo, Silvia

    2001-01-01

    The discovery of the ABCA1 lipid transporter has generated interest in modulating human plasma HDL levels and atherogenic risk by enhancing ABCA1 gene expression. To determine if increased ABCA1 expression modulates HDL metabolism in vivo, we generated transgenic mice that overexpress human ABCA1 (hABCA1-Tg). Hepatic and macrophage expression of hABCA1 enhanced macrophage cholesterol efflux to apoA-I; increased plasma cholesterol, cholesteryl esters (CEs), free cholesterol, phospholipids, HDL cholesterol, and apoA-I and apoB levels; and led to the accumulation of apoE-rich HDL1. ABCA1 transgene expression delayed 125I-apoA-I catabolism in both liver and kidney, leading to increased plasma apoA-I levels, but had no effect on apoB secretion after infusion of Triton WR1339. Although the plasma clearance of HDL-CE was not significantly altered in hABCA1-Tg mice, the net hepatic delivery of exogenous 3H-CEt-HDL, which is dependent on the HDL pool size, was increased 1.5-fold. In addition, the cholesterol and phospholipid concentrations in hABCA1-Tg bile were increased 1.8-fold. These studies show that steady-state overexpression of ABCA1 in vivo (a) raises plasma apoB levels without altering apoB secretion and (b) raises plasma HDL-C and apoA-I levels, facilitating hepatic reverse cholesterol transport and biliary cholesterol excretion. Similar metabolic changes may modify atherogenic risk in humans. PMID:11457883

  15. Ligand, receptor, and cell type-dependent regulation of ABCA1 and ABCG1 mRNA in prostate cancer epithelial cells

    USDA-ARS?s Scientific Manuscript database

    Recent evidence suggests that the liver X receptor (LXR) is a potential anti-cancer target in prostate carcinoma. There is little characterization, however, of how the two major isoforms LXRa or LXRß regulate the LXR-responsive genes ATP-binding cassette sub-family A 1 (ABCA1) and sub-family member ...

  16. The effects of ABCG5/G8 polymorphisms on HDL-cholesterol concentrations depend on ABCA1 genetic variants in the Boston Puerto Rican health study

    USDA-ARS?s Scientific Manuscript database

    Background and aims: ATP-binding cassette transporters G5/G8 (ABCG5/G8) are associated with HDL-C concentrations. To assess whether the effect of ABCG5/G8 genetic variants on HDL-C concentrations is dependent on ATP-binding cassette transporters A1 (ABCA1), we studied potential interactions between ...

  17. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1

    PubMed Central

    Fond, Aaron M.; Lee, Chang Sup; Schulman, Ira G.; Kiss, Robert S.; Ravichandran, Kodi S.

    2015-01-01

    Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane–initiated signaling pathway that drives a rapid upregulation of ABCA1 mRNA and protein. This pathway involves the phagocytic receptor brain-specific angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells, and the intracellular signaling intermediates engulfment cell motility 1 (ELMO1) and Rac1, as ABCA1 induction was attenuated in primary macrophages from mice lacking these molecules. Moreover, this apoptotic cell–initiated pathway functioned independently of the liver X receptor (LXR) sterol–sensing machinery that is known to regulate ABCA1 expression and cholesterol efflux. When placed on a high-fat diet, mice lacking BAI1 had increased numbers of apoptotic cells in their aortic roots, which correlated with altered lipid profiles. In contrast, macrophages from engineered mice with transgenic BAI1 overexpression showed greater ABCA1 induction in response to apoptotic cells compared with those from control animals. Collectively, these data identify a membrane-initiated pathway that is triggered by apoptotic cells to enhance ABCA1 within engulfing phagocytes and with functional consequences in vivo. PMID:26075824

  18. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    DOE PAGES

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; ...

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from themore » carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  19. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro

    PubMed Central

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  20. Novel Apo E-Derived ABCA1 Agonist Peptide (CS-6253) Promotes Reverse Cholesterol Transport and Induces Formation of preβ-1 HDL In Vitro.

    PubMed

    Hafiane, Anouar; Bielicki, John K; Johansson, Jan O; Genest, Jacques

    2015-01-01

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These mechanisms are

  1. Association between the ABCA1-565C/T gene promoter polymorphism and coronary heart disease severity and cholesterol efflux in the Chinese Han population.

    PubMed

    Qi, Li-Ping; Chen, Lian-Feng; Dang, Ai-Min; Li, Li-Yun; Fang, Quan; Yan, Xiao-Wei

    2015-07-01

    ABCA1 -565C/T gene promoter variants have been associated with the severity of coronary artery disease in Western populations. The purpose of our study was to investigate the association between the -565C/T gene polymorphism and coronary artery disease severity and cholesterol efflux in the Chinese Han population. A cohort of 298 acute coronary syndrome (ACS) patients and 541 healthy controls was genotyped using the highly sensitive ligase detection reaction. ABCA1 -565C/T genotype was correlated with the clinical features of 164 acute myocardial infarction (AMI) patients. Monocytes from patients with various -565C/T gene polymorphisms were isolated and differentiated into foam cells by coincubation with [(3)H]-labeled acetyl-low-density lipoprotein cholesterol. ABCA1 mRNA and protein expression levels were evaluated, as well as cellular cholesterol efflux. The frequency of the TT genotype in the -565C/T polymorphism of ACS patients was significantly increased when compared with controls (0.211 vs. 0.162, p<0.05). The TT genotype, but not the CT or CC genotypes, in the -565C/T gene polymorphism correlated with the severity of the coronary lesion observed in AMI patients. Patients with the TT homozygote genotype also exhibited significantly lower cellular cholesterol efflux (TT [6.37%±0.554%]) levels than controls and also had the lowest levels of ABCA1 mRNA and protein expression among the group of variants. In contrast, cholesterol efflux levels in AMI patients with CT [11.35%±3.975%] and CC ([15.32%±6.293%]) genotypes were not significantly different from controls. Impaired ABCA1-mediated cholesterol efflux in macrophages may be associated with the severity of the coronary lesions in AMI patients with the TT genotype at the -565C/T gene polymorphism.

  2. Eicosapentaenoic acid membrane incorporation impairs ABCA1-dependent cholesterol efflux via a protein kinase A signaling pathway in primary human macrophages.

    PubMed

    Fournier, Natalie; Tardivel, Sylviane; Benoist, Jean-François; Vedie, Benoît; Rousseau-Ralliard, Delphine; Nowak, Maxime; Allaoui, Fatima; Paul, Jean-Louis

    2016-04-01

    A diet rich in n-3/n-6 polyunsaturated fatty acids (PUFAs) is cardioprotective. Dietary PUFAs affect the cellular phospholipids composition, which may influence the function of membrane proteins. We investigated the impact of the membrane incorporation of several PUFAs on ABCA1-mediated cholesterol efflux, a key antiatherogenic pathway. Arachidonic acid (AA) (C20:4 n-6) and docosahexaenoic acid (DHA) (C22:6 n-3) decreased or increased cholesterol efflux from J774 mouse macrophages, respectively, whereas they had no effect on efflux from human monocyte-derived macrophages (HMDM). Importantly, eicosapentaenoic acid (EPA) (C20:5 n-3) induced a dose-dependent reduction of ABCA1 functionality in both cellular models (-28% for 70μM of EPA in HMDM), without any alterations in ABCA1 expression. These results show that PUFA membrane incorporation does not have the same consequences on cholesterol efflux from mouse and human macrophages. The EPA-treated HMDM exhibited strong phospholipid composition changes, with high levels of both EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which is associated with a decreased level of AA. In HMDM, EPA reduced the ATPase activity of the membrane transporter. Moreover, the activation of adenylate cyclase by forskolin and the inhibition of cAMP phosphodiesterase by isobutylmethylxanthine restored ABCA1 cholesterol efflux in EPA-treated human macrophages. In conclusion, EPA membrane incorporation reduces ABCA1 functionality in mouse macrophages as well as in primary human macrophages and this effect seems to be PKA-dependent in human macrophages.

  3. LXR Agonism Upregulates the Macrophage ABCA1/Syntrophin Protein Complex That Can Bind ApoA-I and Stabilized ABCA1 Protein, but Complex Loss Does Not Inhibit Lipid Efflux.

    PubMed

    Tamehiro, Norimasa; Park, Min Hi; Hawxhurst, Victoria; Nagpal, Kamalpreet; Adams, Marv E; Zannis, Vassilis I; Golenbock, Douglas T; Fitzgerald, Michael L

    2015-11-24

    Macrophage ABCA1 effluxes lipid and has anti-inflammatory activity. The syntrophins, which are cytoplasmic PDZ protein scaffolding factors, can bind ABCA1 and modulate its activity. However, many of the data assessing the function of the ABCA1-syntrophin interaction are based on overexpression in nonmacrophage cells. To assess endogenous complex function in macrophages, we derived immortalized macrophages from Abca1(+/+) and Abca1(-/-) mice and show their phenotype recapitulates primary macrophages. Abca1(+/+) lines express the CD11B and F4/80 macrophage markers and markedly upregulate cholesterol efflux in response to LXR nuclear hormone agonists. In contrast, immortalized Abca1(-/-) macrophages show no efflux to apoA-I. In response to LPS, Abca1(-/-) macrophages display pro-inflammatory changes, including an increased level of expression of cell surface CD14, and 11-26-fold higher levels of IL-6 and IL-12 mRNA. Given recapitulation of phenotype, we show with these lines that the ABCA1-syntrophin protein complex is upregulated by LXR agonists and can bind apoA-I. Moreover, in immortalized macrophages, combined α1/β2-syntrophin loss modulated ABCA1 cell surface levels and induced pro-inflammatory gene expression. However, loss of all three syntrophin isoforms known to bind ABCA1 did not impair lipid efflux in immortalized or primary macrophages. Thus, the ABCA1-syntrophin protein complex is not essential for ABCA1 macrophage lipid efflux but does directly interact with apoA-I and can modulate the pool of cell surface ABCA1 stabilized by apoA-I.

  4. Methyl protodioscin increases ABCA1 expression and cholesterol efflux while inhibiting gene expressions for synthesis of cholesterol and triglycerides by suppressing SREBP transcription and microRNA 33a/b levels.

    PubMed

    Ma, Weilie; Ding, Hang; Gong, Xiaohua; Liu, Zhen; Lin, Yalin; Zhang, Zhizhen; Lin, Guorong

    2015-04-01

    Sterol regulatory element-binding proteins (SREBPs) regulate homeostasis of LDL, HDL and triglycerides. This study was aimed to determine if inhibition of SREBPs by methyl protodioscin (MPD) regulates downstream gene and protein expressions of lipid metabolisms. In THP-1 macrophages, MPD increases levels of ABCA1 mRNA and protein in dose- and time-dependent manners, and apoA-1-mediated cholesterol efflux. The underlying mechanisms for the effects is that MPD inhibits the transcription of SREBP1c and SREBP2, and decreases levels of microRNA 33a/b hosted in the introns of SREBPs, which leads to reciprocally increase ABCA1 levels. In HepG2 cells, MPD shows the same effects as these observed in THP-1 macrophages. MPD also decreases the gene expressions of HMGCR, FAS and ACC for cholesterol and fatty acid synthesis. MPD further promotes LDL receptor through reducing the PCSK9 level. Collectively, the study demonstrates that MPD potentially increase HDL cholesterol while reducing LDL cholesterol and triglycerides. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. ABCA12 regulates ABCA1-dependent cholesterol efflux from macrophages and the development of atherosclerosis.

    PubMed

    Fu, Ying; Mukhamedova, Nigora; Ip, Sally; D'Souza, Wilissa; Henley, Katya J; DiTommaso, Tia; Kesani, Rajitha; Ditiatkovski, Michael; Jones, Lynelle; Lane, Rachael M; Jennings, Garry; Smyth, Ian M; Kile, Benjamin T; Sviridov, Dmitri

    2013-08-06

    ABCA12 is involved in the transport of ceramides in skin, but it may play a wider role in lipid metabolism. We show that, in Abca12-deficient macrophages, cholesterol efflux failed to respond to activation with LXR agonists. Abca12 deficiency caused a reduction in the abundance of Abca1, Abcg1, and Lxrβ. Overexpression of Lxrβ reversed the effects. Mechanistically, Abca12 deficiency did not affect expression of genes involved in cholesterol metabolism. Instead, a physical association between Abca1, Abca12, and Lxrβ proteins was established. Abca12 deficiency enhanced interaction between Abca1 and Lxrβ and the degradation of Abca1. Overexpression of ABCA12 in HeLa-ABCA1 cells increased the abundance and stability of ABCA1. Abca12 deficiency caused an accumulation of cholesterol in macrophages and the formation of foam cells, impaired reverse cholesterol transport in vivo, and increased the development of atherosclerosis in irradiated Apoe(-/-) mice reconstituted with Apoe(-/-)Abca12(-/-) bone marrow. Thus, ABCA12 regulates the cellular cholesterol metabolism via an LXRβ-dependent posttranscriptional mechanism.

  6. Niacin Therapy Increases High-Density Lipoprotein Particles and Total Cholesterol Efflux Capacity But Not ABCA1-Specific Cholesterol Efflux in Statin-Treated Subjects.

    PubMed

    Ronsein, Graziella E; Hutchins, Patrick M; Isquith, Daniel; Vaisar, Tomas; Zhao, Xue-Qiao; Heinecke, Jay W

    2016-02-01

    We investigated relationships between statin and niacin/statin combination therapy and the concentration of high-density lipoprotein particles (HDL-P) and cholesterol efflux capacity, 2 HDL metrics that might better assess cardiovascular disease risk than HDL-cholesterol (HDL-C) levels. In the Carotid Plaque Composition Study, 126 subjects with a history of cardiovascular disease were randomized to atorvastatin or combination therapy (atorvastatin/niacin). At baseline and after 1 year of treatment, the concentration of HDL and its 3 subclasses (small, medium, and large) were quantified by calibrated ion mobility analysis (HDL-PIMA). We also measured total cholesterol efflux from macrophages and ATP-binding cassette transporter A1 (ABCA1)-specific cholesterol efflux capacity. Atorvastatin decreased low-density lipoprotein cholesterol by 39% and raised HDL-C by 11% (P=0.0001) but did not increase HDL-PIMA or macrophage cholesterol efflux. Combination therapy raised HDL-C by 39% (P<0.0001) but increased HDL-PIMA by only 14%. Triglyceride levels did not correlate with HDL-PIMA (P=0.39), in contrast to their strongly negative correlation with HDL-C (P<0.0001). Combination therapy increased macrophage cholesterol efflux capacity (16%, P<0.0001) but not ABCA1-specific efflux. ABCA1-specific cholesterol efflux capacity decreased significantly (P=0.013) in statin-treated subjects, with or without niacin therapy. Statin therapy increased HDL-C levels but failed to increase HDL-PIMA. It also reduced ABCA1-specific cholesterol efflux capacity. Adding niacin to statin therapy increased HDL-C and macrophage efflux, but had much less effect on HDL-PIMA. It also failed to improve ABCA1-specific efflux, a key cholesterol exporter in macrophages. Our observations raise the possibility that niacin might not target the relevant atheroprotective population of HDL. © 2015 American Heart Association, Inc.

  7. Novel mutations of ABCA1 transporter in patients with Tangier disease and familial HDL deficiency.

    PubMed

    Fasano, Tommaso; Zanoni, Paolo; Rabacchi, Claudio; Pisciotta, Livia; Favari, Elda; Adorni, Maria Pia; Deegan, Patrick B; Park, Adrian; Hlaing, Thinn; Feher, Michael D; Jones, Ben; Uzak, Asli Subasioglu; Kardas, Fatih; Dardis, Andrea; Sechi, Annalisa; Bembi, Bruno; Minuz, Pietro; Bertolini, Stefano; Bernini, Franco; Calandra, Sebastiano

    2012-11-01

    The objective of the study was the characterization of ABCA1 gene mutations in 10 patients with extremely low HDL-cholesterol. Five patients (aged 6 months to 76 years) presented with splenomegaly and thrombocytopenia suggesting the diagnosis of Tangier disease (TD). Three of them were homozygous for novel mutations either in intron (c.4465-34A>G) or in exons (c.4376delT and c.5449C>T), predicted to encode truncated proteins. One patient was compound heterozygous for a nucleotide insertion (c.1758_1759insG), resulting in a truncated protein and for a nucleotide substitution c.4799A>G, resulting in a missense mutation (p.H1600R). The last TD patient, found to be heterozygous for a known mutation (p.D1009Y), had a complete defect in ABCA1-mediated cholesterol efflux in fibroblasts, suggesting the presence of a second undetected mutant allele. Among the other patients, four were asymptomatic, but one, with multiple risk factors, had severe peripheral artery disease. Three of these patients were heterozygous for known mutations (p.R130K+p.N1800H, p.R1068C, p.N1800H), while two were carriers of novel mutations (c.1195-27G>A and c.396_397insA), predicted to encode truncated proteins. The pathogenic effect of the two intronic mutations (c. 1195-27G>A and c.4465-34A>G) was demonstrated by the analysis of the transcripts of splicing reporter mutant minigenes expressed in COS-1 cells. Both mutations activated an intronic acceptor splice site which resulted in a partial intron retention in mature mRNA with the production of truncated proteins. This study confirms the allelic heterogeneity of TD and suggests that the diagnosis of TD must be considered in patients with an unexplained splenomegaly, associated with thrombocytopenia and hypocholesterolemia. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. ApoA-I induces S1P release from endothelial cells through ABCA1 and SR-BI in a positive feedback manner.

    PubMed

    Liu, Xing; Ren, Kun; Suo, Rong; Xiong, Sheng-Lin; Zhang, Qing-Hai; Mo, Zhong-Cheng; Tang, Zhen-Li; Jiang, Yue; Peng, Xiao-Shan; Yi, Guang-Hui

    2016-12-01

    Sphingosine-1-phosphate (S1P), which has emerged as a pivotal signaling mediator that participates in the regulation of multiple cellular processes, is derived from various cells, including vascular endothelial cells. S1P accumulates in lipoproteins, especially HDL, and the majority of free plasma S1P is bound to HDL. We hypothesized that HDL-associated S1P is released through mechanisms associated with the HDL maturation process. ApoA-I, a major HDL apolipoprotein, is a critical factor for nascent HDL formation and lipid trafficking via ABCA1. Moreover, apoA-I is capable of promoting bidirectional lipid movement through SR-BI. In the present study, we confirmed that apoA-I can facilitate the production and release of S1P by HUVECs. Furthermore, we demonstrated that ERK1/2 and SphK activation induced by apoA-I is involved in the release of S1P from HUVECs. Inhibitor and siRNA experiments showed that ABCA1 and SR-BI are required for S1P release and ERK1/2 phosphorylation induced by apoA-I. However, the effects triggered by apoA-I were not suppressed by inhibiting ABCA1/JAK2 or the SR-BI/Src pathway. S1P released due to apoA-I activation can stimulate the (ERK1/2)/SphK1 pathway through S1PR (S1P receptor) 1/3. These results indicated that apoA-I not only promotes S1P release through ABCA1 and SR-BI but also indirectly activates the (ERK1/2)/SphK1 pathway by releasing S1P to trigger their receptors. In conclusion, we suggest that release of S1P induced by apoA-I from endothelial cells through ABCA1 and SR-BI is a self-positive-feedback process: apoA-I-(ABCA1 and SR-BI)-(S1P release)-S1PR-ERK1/2-SphK1-(S1P production)-(more S1P release induced by apoA-I).

  9. Dysregulation of cholesterol homeostasis in human prostate cancer through loss of ABCA1

    PubMed Central

    Lee, Byron H.; Taylor, Margaret G.; Robinet, Peggy; Smith, Jonathan D.; Schweitzer, Jessica; Sehayek, Ephraim; Falzarano, Sara M.; Magi-Galluzzi, Cristina; Klein, Eric A.; Ting, Angela H.

    2012-01-01

    Recent epidemiologic data show that low serum cholesterol level as well as statin use is associated with a decreased risk of developing aggressive or advanced prostate cancer, suggesting a role for cholesterol in aggressive prostate cancer development. Intracellular cholesterol promotes prostate cancer progression as a substrate for de novo androgen synthesis and through regulation of AKT signaling. By performing next-generation sequencing-based DNA methylome analysis, we have discovered marked hypermethylation at the promoter of the major cellular cholesterol efflux transporter, ABCA1, in LNCaP prostate cancer cells. ABCA1 promoter hypermethylation renders the promoter unresponsive to trans-activation and leads to elevated cholesterol levels in LNCaP. ABCA1 promoter hypermethylation is enriched in intermediate to high grade prostate cancers and not detectable in benign prostate. Remarkably, ABCA1 down-regulation is evident in all prostate cancers examined, and expression levels are inversely correlated with Gleason grade. Our results suggest cancer-specific ABCA1 hypermethylation and loss of protein expression direct high intracellular cholesterol levels and hence contribute to an environment conducive to tumor progression. PMID:23233737

  10. Effect of compounds affecting ABCA1 expression and CETP activity on the HDL pathway involved in intestinal absorption of lutein and zeaxanthin.

    PubMed

    Niesor, Eric J; Chaput, Evelyne; Mary, Jean-Luc; Staempfli, Andreas; Topp, Andreas; Stauffer, Andrea; Wang, Haiyan; Durrwell, Alexandre

    2014-12-01

    The antioxidant xanthophylls lutein and zeaxanthin are absorbed from the diet in a process involving lipoprotein formation. Selective mechanisms exist for their intestinal uptake and tissue-selective distribution, but these are poorly understood. We investigated the role of high-density lipoprotein (HDL), apolipoprotein (apo) A1 and ATP-binding cassette transporter (ABC) A1 in intestinal uptake of lutein in a human polarized intestinal cell culture and a hamster model. Animals received dietary lutein and zeaxanthin and either a liver X receptor (LXR) agonist or statin, which up- or down-regulate intestinal ABCA1 expression, respectively. The role of HDL was studied following treatment with the cholesteryl ester transfer protein (CETP) modulator dalcetrapib or the CETP inhibitor anacetrapib. In vitro, intestinal ABCA1 at the basolateral surface of enterocytes transferred lutein and zeaxanthin to apoA1, not to mature HDL. In hamsters, plasma lutein and zeaxanthin levels were markedly increased with the LXR agonist and decreased with simvastatin. Dalcetrapib, but not anacetrapib, increased plasma and liver lutein and zeaxanthin levels. ABCA1 expression and apoA1 acceptor activity are important initial steps in intestinal uptake and maintenance of lutein and zeaxanthin levels by an HDL-dependent pathway. Their absorption may be improved by physiological and pharmacological interventions affecting HDL metabolism.

  11. Advanced Glycation in macrophages induces intracellular accumulation of 7-ketocholesterol and total sterols by decreasing the expression of ABCA-1 and ABCG-1

    PubMed Central

    2011-01-01

    Background Advanced glycation end products (AGE) alter lipid metabolism and reduce the macrophage expression of ABCA-1 and ABCG-1 which impairs the reverse cholesterol transport, a system that drives cholesterol from arterial wall macrophages to the liver, allowing its excretion into the bile and feces. Oxysterols favors lipid homeostasis in macrophages and drive the reverse cholesterol transport, although the accumulation of 7-ketocholesterol, 7alpha- hydroxycholesterol and 7beta- hydroxycholesterol is related to atherogenesis and cell death. We evaluated the effect of glycolaldehyde treatment (GAD; oxoaldehyde that induces a fast formation of intracellular AGE) in macrophages overloaded with oxidized LDL and incubated with HDL alone or HDL plus LXR agonist (T0901317) in: 1) the intracellular content of oxysterols and total sterols and 2) the contents of ABCA-1 and ABCG-1. Methods Total cholesterol and oxysterol subspecies were determined by gas chromatography/mass spectrometry and HDL receptors content by immunoblot. Results In control macrophages (C), incubation with HDL or HDL + T0901317 reduced the intracellular content of total sterols (total cholesterol + oxysterols), cholesterol and 7-ketocholesterol, which was not observed in GAD macrophages. In all experimental conditions no changes were found in the intracellular content of other oxysterol subspecies comparing C and GAD macrophages. GAD macrophages presented a 45% reduction in ABCA-1 protein level as compared to C cells, even after the addition of HDL or HDL + T0901317. The content of ABCG-1 was 36.6% reduced in GAD macrophages in the presence of HDL as compared to C macrophages. Conclusion In macrophages overloaded with oxidized LDL, glycolaldehyde treatment reduces the HDL-mediated cholesterol and 7-ketocholesterol efflux which is ascribed to the reduction in ABCA-1 and ABCG-1 protein level. This may contribute to atherosclerosis in diabetes mellitus. PMID:21957962

  12. A common variant in the ABCA1 gene is associated with a lower risk for premature coronary heart disease in familial hypercholesterolaemia

    PubMed Central

    Cenarro, A; Artieda, M; Castillo, S; Mozas, P; Reyes, G; Tejedor, D; Alonso, R; Mata, P; Pocovi, M; Civeira, F

    2003-01-01

    Familial hypercholesterolaemia (FH) is a common autosomal codominant hereditary disease caused by defects in the LDL receptor (LDLR) gene, and one of the most common characteristics of affected subjects is premature coronary heart disease (CHD). In heterozygous FH patients, the clinical expression of FH is highly variable in terms of the severity of hypercholesterolaemia and the age of onset and severity of CHD. Identification of mutations in the ATP binding cassette transporter 1 (ABCA1) gene in patients with Tangier disease, who exhibit reduced HDL cholesterol and apolipoprotein A1 concentrations and premature coronary atherosclerosis, has led us to hypothesise that ABCA1 could play a key role in the onset of premature CHD in FH. In order to know if the presence of the R219K variant in the ABCA1 gene could be a protective factor for premature CHD in FH, we have determined the presence of this genetic variant by amplification by PCR and restriction analysis in a group of 374 FH subjects, with and without premature CHD. The K allele of the R219K variant was significantly more frequent in FH subjects without premature CHD (0.32, 95% CI 0.27 to 0.37) than in FH subjects with premature CHD (0.25, 95% CI 0.21 to 0.29) (p<0.05), suggesting that the genetic variant R219K in ABCA1 could influence the development and progression of atherosclerosis in FH subjects. Moreover, the K allele of the R219K polymorphism seems to modify CHD risk without important modification of plasma HDL-C levels, and it appears to be more protective for smokers than non-smokers. PMID:12624133

  13. Inhibition of ABCA1 protein degradation promotes HDL cholesterol efflux capacity and RCT and reduces atherosclerosis in mice.

    PubMed

    Huang, LinZhang; Fan, BaoYan; Ma, Ang; Shaul, Philip W; Zhu, HaiBo

    2015-05-01

    ABCA1 plays a key role in the initial lipidation of apoA-I, which generates circulating HDL cholesterol. Whereas it is known that the transcriptional upregulation of ABCA1 promotes HDL formation and reverse cholesterol transport (RCT), it is not known how the inhibition of ABCA1 protein degradation impacts HDL function. Employing the small molecule triacetyl-3-hydroxyphenyladenosine (IMM-H007), we determined how the attenuation of ABCA1 protein degradation affects HDL cholesterol efflux capacity, RCT, and atherosclerotic lesion formation. Pulse-chase analysis revealed that IMM-H007 inhibits ABCA1 degradation and facilitates its cell-surface localization in macrophages, and additional studies in macrophages showed that IMM-H007 thereby promotes cholesterol efflux. IMM-H007 treatment of Paigen diet-fed mice caused an increase in circulating HDL level, it increased the cholesterol efflux capacity of HDL, and it enhanced in vivo RCT from macrophages to the plasma, liver, and feces. Furthermore, ABCA1 degradation suppression by IMM-H007 reduced atherosclerotic plaque formation in apoE(-/-) mice. Thus, via effects on both ABCA1-expressing cells and circulating HDL function, the inhibition of ABCA1 protein degradation by IMM-H007 promotes HDL cholesterol efflux capacity and RCT and attenuates atherogenesis. IMM-H007 potentially represents a lead compound for the development of agents to augment HDL function. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. ABCA1-dependent sterol release: sterol molecule specificity and potential membrane domain for HDL biogenesis

    PubMed Central

    Yamauchi, Yoshio; Yokoyama, Shinji; Chang, Ta-Yuan

    2016-01-01

    Mammalian cells synthesize various sterol molecules, including the C30 sterol, lanosterol, as cholesterol precursors in the endoplasmic reticulum. The build-up of precursor sterols, including lanosterol, displays cellular toxicity. Precursor sterols are found in plasma HDL. How these structurally different sterols are released from cells is poorly understood. Here, we show that newly synthesized precursor sterols arriving at the plasma membrane (PM) are removed by extracellular apoA-I in a manner dependent on ABCA1, a key macromolecule for HDL biogenesis. Analysis of sterol molecules by GC-MS and tracing the fate of radiolabeled acetate-derived sterols in normal and mutant Niemann-Pick type C cells reveal that ABCA1 prefers newly synthesized sterols, especially lanosterol, as the substrates before they are internalized from the PM. We also show that ABCA1 resides in a cholesterol-rich membrane domain resistant to the mild detergent, Brij 98. Blocking ACAT activity increases the cholesterol contents of this domain. Newly synthesized C29/C30 sterols are transiently enriched within this domain, but rapidly disappear from this domain with a half-life of less than 1 h. Our work shows that substantial amounts of precursor sterols are transported to a certain PM domain and are removed by the ABCA1-dependent pathway. PMID:26497474

  15. ABCA1 gene variants regulate posprandial lipid metabolism in healthy men

    USDA-ARS?s Scientific Manuscript database

    Objective: Genetic variants of ABCA1, a member of a large family of conserved transmembrane proteins, have been linked to altered atherosclerosis progression and fasting lipid concentration, mainly HDL and Apolipoprotein A, but results from different studies have been inconsistent. Methods and res...

  16. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    SciTech Connect

    Ohara, Kazuaki; Wakabayashi, Hideyuki; Taniguchi, Yoshimasa; Shindo, Kazutoshi; Yajima, Hiroaki; Yoshida, Aruto

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  17. Loss-of-Function Mutations in ABCA1 and Enhanced β-Cell Secretory Capacity in Young Adults

    PubMed Central

    Goeser, Eugen S.; Fuller, Carissa; Lord, Christine; Bowler, Anne M.; Doliba, Nicolai M.; Hegele, Robert A.

    2015-01-01

    Loss-of-function mutations affecting the cholesterol transporter ATP-binding cassette transporter subfamily A member 1 (ABCA1) impair cellular cholesterol efflux and are associated with reduced HDL-cholesterol (HDL-C) levels. ABCA1 may also be important in regulating β-cell cholesterol homeostasis and insulin secretion. We sought to determine whether loss-of-function ABCA1 mutations affect β-cell secretory capacity in humans by performing glucose-potentiated arginine tests in three subjects homozygous for ABCA1 mutations (age 25 ± 11 years), eight heterozygous subjects (28 ± 7 years), and eight normal control subjects pair-matched to the heterozygous carriers. To account for any effect of low HDL-C on insulin secretion, we studied nine subjects with isolated low HDL-C with no ABCA1 mutations (age 26 ± 6 years) and nine pair-matched control subjects. Homozygotes for ABCA1 mutations exhibited enhanced oral glucose tolerance and dramatically increased β-cell secretory capacity that was also greater in ABCA1 heterozygous subjects than in control subjects, with no differences in insulin sensitivity. Isolated low HDL-C subjects also demonstrated an increase in β-cell secretory capacity but in contrast to those with ABCA1 mutations, exhibited impaired insulin sensitivity, supporting β-cell compensation for increased insulin demand. These data indicate that loss-of-function mutations in ABCA1 in young adults may be associated with enhanced β-cell secretory capacity and normal insulin sensitivity and support the importance of cellular cholesterol homeostasis in regulating β-cell insulin secretion. PMID:25125487

  18. Novel apo E-derived ABCA1 agonist peptide (CS-6253) promotes reverse cholesterol transport and induces formation of preβ-1 HDL in vitro

    SciTech Connect

    Hafiane, Anouar; Bielicki, John K.; Johansson, Jan O.; Genest, Jacques; Zhu, Xuewei

    2015-07-24

    Apolipoprotein (apo) mimetic peptides replicate some aspects of HDL function. We have previously reported the effects of compound ATI-5261 on its ability to replicate many functions of native apo A-I in the process of HDL biogenesis. ATI-5261 induced muscle toxicity in wild type C57Bl/6 mice, increased CPK, ALT and AST and increase in triglyceride (Tg) levels. Aromatic phenylalanine residues on the non-polar face of ATI-5261, together with positively charged arginine residues at the lipid-water interface were responsible for these effects. This information was used to create a novel analog (CS-6253) that was non-toxic. We evaluated this peptide designed from the carboxyl terminus of apo E, in its ability to mimic apo A-I functionality. Our data shows that the lipidated particles generated by incubating cells overexpressing ABCA1 with lipid free CS-6253 enhances the rate of ABCA1 lipid efflux with high affinity interactions with native ABCA1 oligomeric forms and plasma membrane micro-domains. Interaction between ABCA1 and lipid free CS-6253 resulted in formation of nascent HDL-CS-6253 particles that are actively remodeled in plasma. Mature HDL-CS-6253 particles deliver cholesterol to liver cells via SR-BI in-vitro. CS-6253 significantly increases cholesterol efflux in murine macrophages and in human THP-1 macrophage-derived foam cells expressing ABCA1. Addition of CS-6253 to plasma dose-dependently displaced apo A-I from α-HDL particles and led to de novo formation of preβ-1 HDL that stimulates ABCA1 dependent cholesterol efflux efficiently. When incubated with human plasma CS-6253 was also found to bind with HDL and LDL and promoted the transfer of cholesterol from HDL to LDL predominantly. Our data shows that CS-6253 mimics apo A-I in its ability to promote ABCA1-mediated formation of nascent HDL particles, and enhances formation of preβ-1 HDL with increase in the cycling of apo A-I between the preβ and α-HDL particles in-vitro. These

  19. Amphipathic polyproline peptides stimulate cholesterol efflux by the ABCA1 transporter.

    PubMed

    Sviridov, D O; Drake, S K; Freeman, L A; Remaley, A T

    2016-03-18

    ApoA-I mimetics are short synthetic peptides that contain an amphipathic α-helix and stimulate cholesterol efflux by the ABCA1 transporter in a detergent-like extraction mechanism. We investigated the use of amphipathic peptides with a polypro helix for stimulating cholesterol efflux by ABCA1. Polypro peptides were synthesized with modified prolines, containing either a hydrophobic phenyl group (Prop) or a polar N-acetylgalactosamine (Prog) attached to the pyrrolidine ring and were designated as either PP-2, 3, 4, or 5, depending on the number of 3 amino acid repeat units (Prop-Prog-Prop). Based on molecular modeling, these peptides were predicted to be relatively rigid and to bind to a phospholipid bilayer. By CD spectroscopy, PP peptides formed a Type-II polypro helix in an aqueous solution. PP-2 was inactive in promoting cholesterol efflux, but peptides with more than 2 repeat units were active. PP-4 showed a similar Vmax as a much longer amphipathic α-helical peptide, containing 37 amino acids, but had a Km that was approximately 20-fold lower. PP peptides were specific in that they did not stimulate cholesterol efflux from cells not expressing ABCA1 and were also non-cytotoxic. Addition of PP-3, 4 and 5 to serum promoted the formation of smaller size HDL species (7 nM) and increased its capacity for ABCA1-dependent cholesterol efflux by approximately 20-35% (p < 0.05). Because of their relatively small size and increased potency, amphipathic peptides with a polypro helix may represent an alternative structural motif for the development of apoA-I mimetic peptides.

  20. Tertiary-butylhydroquinone upregulates expression of ATP-binding cassette transporter A1 via nuclear factor E2-related factor 2/heme oxygenase-1 signaling in THP-1 macrophage-derived foam cells.

    PubMed

    Lu, Qian; Tang, Shi-Lin; Liu, Xiao-Yan; Zhao, Guo-Jun; Ouyang, Xin-Ping; Lv, Yun-Cheng; He, Ping-Ping; Yao, Feng; Chen, Wu-Jun; Tang, Yan-Yan; Zhang, Min; Zhang, Da-Wei; Yin, Kai; Tang, Chao-Ke

    2013-01-01

    Tert-butylhydroquinone (tBHQ), a synthetic phenolic antioxidant, is commonly used as a food preservative because of its potent antilipid peroxidation activity. Several lines of evidence have demonstrated that dietary supplementation with antioxidants has an antiatherogenic function through reducing cholesterol uptake or promoting reverse cholesterol transport. In this study, we investigated whether tBHQ affects expression of ATP-binding cassette transporter A1 (ABCA1) and the potential subsequent effect on cellular cholesterol homeostasis. tBHQ increased ABCA1 protein levels and markedly enhanced cholesterol efflux from THP-1 macrophage-derived foam cells. Furthermore, tBHQ reduced calpain-mediated ABCA1 proteolysis via activation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). Inhibition of HO-1 with a pharmacological inhibitor or siRNA and knockdown of Nrf2 suppressed the stimulatory effects of tBHQ on ABCA1 expression and calpain activity. Nrf2/HO-1 signaling is required for the regulation by tBHQ of ABCA1 expression and cholesterol efflux in macrophage-derived foam cells and an antiatherogenic role of tBHQ is suggested.

  1. Helix stabilization of amphipathic peptides by hydrocarbon stapling increases cholesterol efflux by the ABCA1 transporter.

    PubMed

    Sviridov, D O; Ikpot, I Z; Stonik, J; Drake, S K; Amar, M; Osei-Hwedieh, D O; Piszczek, G; Turner, S; Remaley, A T

    2011-07-08

    Apolipoprotein mimetic peptides are short amphipathic peptides that efflux cholesterol from cells by the ABCA1 transporter and are being investigated as therapeutic agents for cardiovascular disease. We examined the role of helix stabilization of these peptides in cholesterol efflux. A 23-amino acid long peptide (Ac-VLEDSFKVSFLSALEEYTKKLNTQ-NH2) based on the last helix of apoA-I (A10) was synthesized, as well as two variants, S1A10 and S2A10, in which the third and fourth and third and fifth turn of each peptide, respectively, were covalently joined by hydrocarbon staples. By CD spectroscopy, the stapled variants at 24 °C were more helical in aqueous buffer than A10 (A10 17%, S1A10 62%, S2A10 97%). S1A10 and S2A10 unlike A10 were resistant to proteolysis by pepsin and chymotrypsin. S1A10 and S2A10 showed more than a 10-fold increase in cholesterol efflux by the ABCA1 transporter compared to A10. In summary, hydrocarbon stapling of amphipathic peptides increases their helicity, makes them resistant to proteolysis and enhances their ability to promote cholesterol efflux by the ABCA1 transporter, indicating that this peptide modification may be useful in the development of apolipoprotein mimetic peptides.

  2. Synergistic effect between polymorphisms of PPARA and ABCA1 genes on the premature coronary artery disease.

    PubMed

    Balcerzyk, Anna; Zak, Iwona; Krauze, Jolanta

    2007-06-01

    Progression of atherosclerosis, the main reason of cardiovascular diseases, depends on multiple genetic and environmental factors. Polymorphic variants of genes involved in the lipids metabolism may genetically differentiate human populations and determine a susceptibility to the disease. The aim of the present study was to evaluate a possible interaction between R219K polymorphism of ABCA1 gene and G > C polymorphism in intron 7 of PPARA gene in determining the risk of the CAD. We studied 358 subjects: 178 patients with angiographically confirmed CAD and 180 blood donors without history of CAD. Polymorphisms were genotyped using the PCR-RFLP method. In spite of a small or no correlation between single polymorphism and CAD we observed that the frequencies of AA + GC,CC genotype pattern (ABCA1 and PPARA gene) were significantly higher in CAD group than in controls. OR values were especially high in multiple logistic regression and were higher for male subgroups. The synergy index value equals 3.98 and indicates a quite strong synergistic effect between the analysed polymorphisms. We also observed that C allele carriers of PPARA gene had a significantly lower total and LDL-cholesterol level. The present study shows that R219K polymorphism of ABCA1 gene and G > C polymorphism in intron 7 of PPARA gene act cumulatively and synergistically in determining the risk of premature CAD.

  3. Rutaecarpine suppresses atherosclerosis in ApoE-/- mice through upregulating ABCA1 and SR-BI within RCT.

    PubMed

    Xu, Yanni; Liu, Qi; Xu, Yang; Liu, Chang; Wang, Xiao; He, Xiaobo; Zhu, Ningyu; Liu, Jikai; Wu, Yexiang; Li, Yongzhen; Li, Ni; Feng, Tingting; Lai, Fangfang; Zhang, Murui; Hong, Bin; Jiang, Jian-Dong; Si, Shuyi

    2014-08-01

    ABCA1 and scavenger receptor class B type I (SR-BI)/CD36 and lysosomal integral membrane protein II analogous 1 (CLA-1) are the key transporter and receptor in reverse cholesterol transport (RCT). Increasing the expression level of ABCA1 and SR-BI/CLA-1 is antiatherogenic. The aim of the study was to find novel antiatherosclerotic agents upregulating expression of ABCA1 and SR-BI/CLA-1 from natural compounds. Using the ABCA1p-LUC and CLA-1p-LUC HepG2 cell lines, we found that rutaecarpine (RUT) triggered promoters of ABCA1 and CLA-1 genes. RUT increased ABCA1 and SR-BI/CLA-1 expression in vitro related to liver X receptor alpha and liver X receptor beta. RUT induced cholesterol efflux in RAW264.7 cells. ApoE-deficient (ApoE(-/-)) mice treated with RUT for 8 weeks showed ∼68.43, 70.23, and 85.56% less en face lesions for RUT (L), RUT (M), and RUT (H) groups, respectively, compared with the model group. Mouse macrophage-specific antibody and filipin staining indicated that RUT attenuated macrophages and cholesterol accumulations in atherosclerotic lesions, respectively. Additionally, ABCA1 and SR-BI expression was highly induced by RUT in livers of ApoE(-/-) mice. Meanwhile, RUT treatment significantly increased the fecal (3)H-cholesterol excretion, which demonstrated that RUT could promote RCT in vivo. RUT was identified to be a candidate that protected ApoE(-/-) mice from developing atherosclerosis through preferentially promoting activities of ABCA1 and SR-BI within RCT. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  4. Effects of Chinese Herbal Compound “Xuemai Ning”on Rabbit Atherosclerosis Model and Expression of ABCA1

    PubMed Central

    Chen, Min

    2013-01-01

    Objective: To observe the lipid and the pathological changes of carotid artery smooth muscle cells in atherosclerotic rabbits, verification of Chinese herbal compound which has improve blood lipid and anti atherosclerosis effects, focus on ABCA1 as the key receptor which participated in reverse cholesterol transport, to study the mechanism of Chinese herbal compound (Xuemai Ning). Materials and methods: 30 rabbits were randomly divided into blank group, model group and Chinese herbal compound (Xuemai Ning) group, The model group and the Xuemai Ning group with high fat diet and injection of vitamin D3, causing atherosclerosis model 4 weeks after the intervention of traditional Chinese medicine group, In the 4th week after Xuemai Ning group received the intervention of Chinese herbal compound. Blood lipid, the carotid artery pathological changes and expression of ABCA1 gene and protein in peritoneal macrophage surface were detected after 8 weeks. Results: The carotid artery atherosclerotic plaque formation of the model group was obvious, the carotid atherosclerotic changes of the Xuemai Ning group rabbit significantly lighter than the model group. The serum lipid of model group and Xuemai Ning group were higher than that of the blank group; and the traditional Chinese medicine can up the expression of ABCA1 protein, higher than those in the model group. Expression of macrophage ABCA1 in model group was significantly up regulated at protein level higher than the blank group; and the traditional Chinese medicine can up regulate the expression of ABCA1 protein, higher than those in the model group. Expression of ABCA1 mRNA was significantly up regulated in model group, ABCA1 mRNA of Xuemai Ning group raised more significantly. Conclusion: Xuemai Ning can reduce triglyceride, total cholesterol and low density lipoprotein of hyperlipidemia model in rabbits serum, increase high density lipoprotein, remove foam cells in atherosclerotic cells, improve pathological of AS and

  5. Correction of Apolipoprotein A-I-mediated Lipid Efflux and High Density Lipoprotein Particle Formation in Human Niemann-Pick Type C Disease Fibroblasts

    USDA-ARS?s Scientific Manuscript database

    Impaired cell cholesterol trafficking in Niemann-Pick type C (NPC) disease results in the first known instance of impaired regulation of the ATP-binding cassette transporter A1 (ABCA1), a lipid transporter mediating the rate-limiting step in high density lipoprotein (HDL) formation, as a cause of lo...

  6. Cholesterol Transporters ABCA1 and ABCG1 Gene Expression in Peripheral Blood Mononuclear Cells in Patients with Metabolic Syndrome

    PubMed Central

    Tavoosi, Zahra; Moradi-Sardareh, Hemen; Saidijam, Massoud; Yadegarazari, Reza; Borzuei, Shiva; Soltanian, Alireza; Goodarzi, Mohammad Taghi

    2015-01-01

    ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran) during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75%) compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P < 0.05). Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression. PMID:26788366

  7. Up-Regulation of the ATP-Binding Cassette Transporter A1 Inhibits Hepatitis C Virus Infection

    PubMed Central

    Gondeau, Claire; Douam, Florian; Lebreton, Stéphanie; Lagaye, Sylvie; Pol, Stanislas; Helle, François; Plengpanich, Wanee; Guérin, Maryse; Bourgine, Maryline; Michel, Marie Louise; Lavillette, Dimitri; Roingeard, Philippe; le Goff, Wilfried; Budkowska, Agata

    2014-01-01

    Hepatitis C virus (HCV) establishes infection using host lipid metabolism pathways that are thus considered potential targets for indirect anti-HCV strategies. HCV enters the cell via clathrin-dependent endocytosis, interacting with several receptors, and virus-cell fusion, which depends on acidic pH and the integrity of cholesterol-rich domains of the hepatocyte membrane. The ATP-binding Cassette Transporter A1 (ABCA1) mediates cholesterol efflux from hepatocytes to extracellular Apolipoprotein A1 and moves cholesterol within cell membranes. Furthermore, it generates high-density lipoprotein (HDL) particles. HDL protects against arteriosclerosis and cardiovascular disease. We show that the up-regulation of ABCA1 gene expression and its cholesterol efflux function in Huh7.5 hepatoma cells, using the liver X receptor (LXR) agonist GW3965, impairs HCV infection and decreases levels of virus produced. ABCA1-stimulation inhibited HCV cell entry, acting on virus-host cell fusion, but had no impact on virus attachment, replication, or assembly/secretion. It did not affect infectivity or properties of virus particles produced. Silencing of the ABCA1 gene and reduction of the specific cholesterol efflux function counteracted the inhibitory effect of the GW3965 on HCV infection, providing evidence for a key role of ABCA1 in this process. Impaired virus-cell entry correlated with the reorganisation of cholesterol-rich membrane microdomains (lipid rafts). The inhibitory effect could be reversed by an exogenous cholesterol supply, indicating that restriction of HCV infection was induced by changes of cholesterol content/distribution in membrane regions essential for virus-cell fusion. Stimulation of ABCA1 expression by GW3965 inhibited HCV infection of both human primary hepatocytes and isolated human liver slices. This study reveals that pharmacological stimulation of the ABCA1-dependent cholesterol efflux pathway disrupts membrane cholesterol homeostasis, leading to the

  8. Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice.

    PubMed

    Calpe-Berdiel, Laura; Rotllan, Noemi; Palomer, Xavier; Ribas, Vicent; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2005-12-30

    The ATP-binding cassette transporter A1 (ABCA1) is a key regulator of high-density lipoprotein (HDL) metabolism. There is strong evidence that ABCA1 is a key regulator of reverse cholesterol transport (RCT). However, this could not be proved in vivo since hepatobiliary cholesterol transport was unchanged in ABCA1-deficient mice (ABCA1-/-). We used ABCA1-/- mice to test the hypothesis that ABCA1 is a critical determinant of macrophage-specific RCT. Although this cell-specific RCT only accounts for a tiny part of total RCT, it is widely accepted that it may have a major impact on atherosclerosis susceptibility. [(3)H]cholesterol-labeled endogenous macrophages were injected intraperitoneally into wild-type ABCA1+/+, ABCA1+/- and ABCA1-/- mice maintained on a chow diet. A direct relationship was observed between ABCA1 gene dose and plasma [(3)H]cholesterol at 24 and 48 h after the injection of tracer into the mice. Forty-eight hours after this injection, ABCA1-/- mice had significantly reduced [(3)H]cholesterol in liver (2.8-fold), small intestine enterocytes (1.7-fold) and feces (2-fold). To our knowledge, this is the first direct in vivo quantitative evidence that ABCA1 is a critical determinant of macrophage-specific RCT.

  9. Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury

    PubMed Central

    Pedigo, Christopher E.; Ducasa, Gloria Michelle; Leclercq, Farah; Sloan, Alexis; Hashmi, Tahreem; Molina-David, Judith; Ge, Mengyuan; Lassenius, Mariann I.; Groop, Per-Henrik; Kretzler, Matthias; Martini, Sebastian; Reich, Heather; Wahl, Patricia; Ghiggeri, GianMarco; Burke, George W.; Kretz, Oliver; Huber, Tobias B.; Mendez, Armando J.; Merscher, Sandra

    2016-01-01

    High levels of circulating TNF and its receptors, TNFR1 and TNFR2, predict the progression of diabetic kidney disease (DKD), but their contribution to organ damage in DKD remains largely unknown. Here, we investigated the function of local and systemic TNF in podocyte injury. We cultured human podocytes with sera collected from DKD patients, who displayed elevated TNF levels, and focal segmental glomerulosclerosis (FSGS) patients, whose TNF levels resembled those of healthy patients. Exogenous TNF administration or local TNF expression was equally sufficient to cause free cholesterol–dependent apoptosis in podocytes by acting through a dual mechanism that required a reduction in ATP-binding cassette transporter A1mediated (ABCA1-mediated) cholesterol efflux and reduced cholesterol esterification by sterol-O-acyltransferase 1 (SOAT1). TNF-induced albuminuria was aggravated in mice with podocyte-specific ABCA1 deficiency and was partially prevented by cholesterol depletion with cyclodextrin. TNF-stimulated free cholesterol–dependent apoptosis in podocytes was mediated by nuclear factor of activated T cells 1 (NFATc1). ABCA1 overexpression or cholesterol depletion was sufficient to reduce albuminuria in mice with podocyte-specific NFATc1 activation. Our data implicate an NFATc1/ABCA1-dependent mechanism in which local TNF is sufficient to cause free cholesterol–dependent podocyte injury irrespective of TNF, TNFR1, or TNFR2 serum levels. PMID:27482889

  10. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line.

    PubMed

    Lee, Seung-Min; Moon, Jiyoung; Cho, Yoonsu; Chung, Ji Hyung; Shin, Min-Jeong

    2013-02-01

    Cholesterol-laden macrophages trigger accumulation of foam cells and increase the risk of developing atherosclerosis. We hypothesized that quercetin could lower the content of cholesterol in macrophages by regulating the expression of the ATP binding cassette transporter A1 (ABCA1) gene in differentiated human acute monocyte leukemia cell line (THP-1) cells and thereby reducing the chance of forming foam cells. Quercetin, in concentrations up to 30 μM, was not cytotoxic to differentiated THP-1 cells. Quercetin up-regulated both ABCA1 messenger RNA and protein expression in differentiated THP-1 cells, and its maximum effects were demonstrated at 0.3 μM for 4 to 8 hours in incubation. In addition, quercetin increased protein levels of peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptor α (LXRα) within 2 hours of treatment. Because PPARγ and LXRα are important transcriptional factors for ABCA1, quercetin-induced up-regulation of ABCA1 may be mediated by increased expression levels of the PPARγ and LXRα genes. Furthermore, quercetin-enhanced cholesterol efflux from differentiated THP-1 cells to both high-density lipoprotein (HDL) and apolipoprotein A1. Quercetin at the dose of 0.15 μM elevated the cholesterol efflux only for HDL. At the dose of 0.3 μM, quercetin demonstrated effects both on HDL and apolipoprotein A1. Our data demonstrated that quercetin increased the expressions of PPARγ, LXRα, and ABCA1 genes and cholesterol efflux from THP-1 macrophages. Quercetin-induced expression of PPARγ and LXRα might subsequently affect up-regulation of their target gene ABCA1. Taken together, ingestion of quercetin or quercetin-rich foods could be an effective way to improve cholesterol efflux from macrophages, which would contribute to lowering the risk of atherosclerosis.

  11. miR-27b inhibits LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels in mice

    PubMed Central

    Goedeke, Leigh; Rotllan, Noemi; Ramírez, Cristina M.; Aranda, Juan F.; Canfrán-Duque, Alberto; Araldi, Elisa; Fernández-Hernando, Ana; Langhi, Cedric; de Cabo, Rafael; Baldán, Ángel; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-01-01

    Rationale Recently, there has been significant interest in the therapeutic administration of miRNA mimics and inhibitors to treat cardiovascular disease. In particular, miR-27b has emerged as a regulatory hub in cholesterol and lipid metabolism and potential therapeutic target for treating atherosclerosis. Despite this, the impact of miR-27b on lipid levels in vivo remains to be determined. As such, here we set out to further characterize the role of miR-27b in regulating cholesterol metabolism in vitro and to determine the effect of miR-27b overexpression and inhibition on circulating and hepatic lipids in mice. Methods and Results Our results identify miR-27b as an important regulator of LDLR activity in human and mouse hepatic cells through direct targeting of LDLR and LDLRAP1. In addition, we report that modulation of miR-27b expression affects ABCA1 protein levels and cellular cholesterol efflux to ApoA1 in human hepatic Huh7 cells. Overexpression of pre-miR-27b in the livers of wild-type mice using AAV8 vectors increased pre-miR-27b levels 50–fold and reduced hepatic ABCA1 and LDLR expression by 50% and 20%, respectively, without changing circulating and hepatic cholesterol and triglycerides. To determine the effect of endogenous miR-27b on circulating lipids, wild-type mice were fed a Western diet for one month and injected with 5 mg/kg of LNA control or LNA anti-miR-27b oligonucleotides. Following two weeks of treatment, the expression of ABCA1 and LDLR were increased by 10–20% in the liver, demonstrating effective inhibition of miR-27b function. Intriguingly, no differences in circulating and hepatic lipids were observed between treatment groups. Conclusions The results presented here provide evidence that short-term modulation of miR-27b expression in wild-type mice regulates hepatic LDLR and ABCA1 expression but does not influence plasma and hepatic lipid levels. PMID:26520906

  12. Inhibition of ABCA1 Protein Expression and Cholesterol Efflux by TNF α in MLO-Y4 Osteocytes.

    PubMed

    Wehmeier, Kent R; Kurban, William; Chandrasekharan, Chandrikha; Onstead-Haas, Luisa; Mooradian, Arshag D; Haas, Michael J

    2016-06-01

    Hip fracture and myocardial infarction cause significant morbidity and mortality. In vivo studies raising serum cholesterol levels as well as pro-inflammatory cytokines such as TNF α manifest bone loss and atherosclerotic vascular disease, suggesting that abnormalities of cholesterol transport may contribute to osteoporosis. We used the mouse osteocyte cell line (MLO-Y4) to investigate the effects of TNF α on the expression of cholesterol acceptor proteins such as apolipoprotein A-I (apo A-I) and apolipoprotein E (apo E), as well as on the cholesterol transporters ATP-binding cassette-1 (ABCA1), scavenger receptor class B type 1 (SRB1), and cluster of differentiation 36 (CD36). MLO-Y4 cells do not express apo A-I or apo E; however, they do express all three cholesterol transporters (ABCA1, SRB1, and CD36). Treatment of MLO-Y4 cells with TNF α had no effect on SRB1, CD36, and osteocalcin levels; however, TNF α reduced ABCA1 protein levels in a dose-dependent manner and cholesterol efflux to apo A-I. Interestingly, TNF α treatment increased ABCA1 promoter activity and ABCA1 mRNA levels, and increased liver X receptor α protein expression, but had no effect on retinoid X receptor α and retinoic acid receptor α levels. Pharmacological inhibition of p38 mitogen-activated protein (MAP) kinase, but not c-jun-N-terminal kinase 1 or mitogen-activated protein kinase (MEK), restored ABCA1 protein levels in TNF α-treated cells. These results suggest that pro-inflammatory cytokines regulate cholesterol metabolism in osteocytes in part by suppressing ABCA1 levels post-translationally in a p38 MAP kinase-dependent manner.

  13. Lipid abnormalities in alpha/beta2-syntrophin null mice are independent from ABCA1

    PubMed Central

    Hebel, Tobias; Eisinger, Kristina; Neumeier, Markus; Rein-Fischboeck, Lisa; Pohl, Rebekka; Meier, Elisabeth M.; Boettcher, Alfred; Froehner, Stanley C.; Adams, Marvin E.; Liebisch, Gerhard; Krautbauer, Sabrina; Buechler, Christa

    2015-01-01

    The syntrophins alpha (SNTA) and beta 2 (SNTB2) are molecular adaptor proteins shown to stabilize ABCA1, an essential regulator of HDL cholesterol. Furthermore, SNTB2 is involved in glucose stimulated insulin release. Hyperglycemia and dyslipidemia are characteristic features of the metabolic syndrome, a serious public health problem with rising prevalence. Therefore, it is important to understand the role of the syntrophins herein. Mice deficient for both syntrophins (SNTA/B2−/−) have normal insulin and glucose tolerance, hepatic ABCA1 protein and cholesterol. When challenged with a HFD, wild type and SNTA/B2−/− mice have similar weight gain, adiposity, serum and liver triglycerides. Hepatic ABCA1, serum insulin and insulin sensitivity are normal while glucose tolerance is impaired. Liver cholesterol is reduced, and expression of SREBP2 and HMG-CoA-R is increased in the knockout mice. Scavenger receptor-BI (SR-BI) protein is strongly diminished in the liver of SNTA/B2−/− mice while SR-BI binding protein NHERF1 is not changed and PDZK1 is even induced. Knock-down of SNTA, SNTB2 or both has no effect on hepatocyte SR-BI and PDZK1 proteins. Further, SR-BI levels are not reduced in brown adipose tissue of SNTA/B2−/− mice excluding that syntrophins directly stabilize SR-BI. SR-BI stability is regulated by MAPK and phosphorylated ERK2 is induced in the liver of the knock-out mice. Blockage of ERK activity upregulates hepatocyte SR-BI showing that increased MAPK activity contributes to low SR-BI. Sphingomyelin which is well described to regulate cholesterol metabolism is reduced in the liver and serum of the knock-out mice while the size of serum lipoproteins is not affected. Current data exclude a major function of these syntrophins in ABCA1 activity and insulin release but suggest a role in regulating glucose uptake, ERK and SR-BI levels, and sphingomyelin metabolism in obesity. PMID:25625330

  14. An ABCA1-independent pathway for recycling a poorly lipidated 8.1 nm apolipoprotein E particle from glia

    PubMed Central

    Fan, Jianjia; Stukas, Sophie; Wong, Charmaine; Chan, Jennifer; May, Sharon; DeValle, Nicole; Hirsch-Reinshagen, Veronica; Wilkinson, Anna; Oda, Michael N.; Wellington, Cheryl L.

    2011-01-01

    Lipid transport in the brain is coordinated by glial-derived lipoproteins that contain apolipoprotein E (apoE) as their primary protein. Here we show that apoE is secreted from wild-type (WT) primary murine mixed glia as nascent lipoprotein subspecies ranging from 7.5 to 17 nm in diameter. Negative-staining electron microscropy (EM) revealed rouleaux, suggesting a discoidal structure. Potassium bromide (KBr) density gradient ultracentrifugation showed that all subspecies, except an 8.1 nm particle, were lipidated. Glia lacking the cholesterol transporter ABCA1 secreted only 8.1 nm particles, which were poorly lipidated and nondiscoidal but could accept lipids to form the full repertoire of WT apoE particles. Receptor-associated-protein (RAP)-mediated inhibition of apoE receptor function blocked appearance of the 8.1 nm species, suggesting that this particle may arise through apoE recycling. Selective deletion of the LDL receptor (LDLR) reduced the level of 8.1 nm particle production by approximately 90%, suggesting that apoE is preferentially recycled through the LDLR. Finally, apoA-I stimulated secretion of 8.1 nm particles in a dose-dependent manner. These results suggest that nascent glial apoE lipoproteins are secreted through multiple pathways and that a greater understanding of these mechanisms may be relevant to several neurological disorders. PMID:21705806

  15. Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 assimilate cholesterol and modulate ABCA1, CD36, NPC1L1 and SCARB1 in vitro.

    PubMed

    Lim, F T; Lim, S M; Ramasamy, K

    2017-02-07

    There is growing interest in the use of probiotic lactic acid bacteria (LAB) for prevention of hypercholesterolaemia. This study assessed the cholesterol lowering ability of Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 in growth media. Both LAB yielded >98% (39.2 μg/ml) cholesterol lowering in growth media. Nile Red staining indicated direct assimilation of cholesterol by the LAB. The LAB were then explored for their prophylactic (pre-treatment of HT29 cells with LAB prior to cholesterol exposure) and biotherapeutic (treatment of HT29 cells with LAB after exposure to cholesterol) use against short and prolonged exposure of HT29 cells to cholesterol, respectively. For HT29 cells pre-treated with LAB, cholesterol lowering was accompanied by down-regulation of ATP-binding cassette family transporter-type A1 (ABCA1), cluster of differentiation 36 (CD36) and scavenger receptor class B member 1 (SCARB1). HT29 cells treated with LAB after prolonged exposure to cholesterol source, on the other hand, was associated with up-regulation of ABCA1, restoration of CD36 to basal level and down-regulation of Neimann-Pick C1-Like 1 (NPC1L1). The present findings implied the potential use of LAB4 and LAB12 as part of the strategies in prevention and management of hypercholesterolaemia.

  16. Plasma Membrane Profiling Reveals Upregulation of ABCA1 by Infected Macrophages Leading to Restriction of Mycobacterial Growth

    PubMed Central

    Long, Jing; Basu Roy, Robindra; Zhang, Yanjia J.; Antrobus, Robin; Du, Yuxian; Smith, Duncan L.; Weekes, Michael P.; Javid, Babak

    2016-01-01

    The plasma membrane represents a critical interface between the internal and extracellular environments, and harbors multiple proteins key receptors and transporters that play important roles in restriction of intracellular infection. We applied plasma membrane profiling, a technique that combines quantitative mass spectrometry with selective cell surface aminooxy-biotinylation, to Bacille Calmette–Guérin (BCG)-infected THP-1 macrophages. We quantified 559 PM proteins in BCG-infected THP-1 cells. One significantly upregulated cell-surface protein was the cholesterol transporter ABCA1. We showed that ABCA1 was upregulated on the macrophage cell-surface following infection with pathogenic mycobacteria and knockdown of ABCA1 resulted in increased mycobacterial survival within macrophages, suggesting that it may be a novel mycobacterial host-restriction factor. PMID:27462310

  17. Subfraction analysis of circulating lipoproteins in a patient with Tangier disease due to a novel ABCA1 mutation.

    PubMed

    Murano, Takeyoshi; Yamaguchi, Takashi; Tatsuno, Ichiro; Suzuki, Masayo; Noike, Hirofumi; Takanami, Tarou; Yoshida, Tomoe; Suzuki, Mitsuya; Hashimoto, Ryuya; Maeno, Takatoshi; Terai, Kensuke; Tokuyama, Wataru; Hiruta, Nobuyuki; Schneider, Wolfgang J; Bujo, Hideaki

    2016-01-15

    Tangier disease, characterized by low or absent high-density lipoprotein (HDL), is a rare hereditary lipid storage disorder associated with frequent, but not obligatory, severe premature atherosclerosis due to disturbed reverse cholesterol transport from tissues. The reasons for the heterogeneity in atherogenicity in certain dyslipidemias have not been fully elucidated. Here, using high-performance liquid chromatography with a gel filtration column (HPLC-GFC), we have studied the lipoprotein profile of a 17-year old male patient with Tangier disease who to date has not developed manifest coronary atherosclerosis. The patient was shown to be homozygous for a novel mutation (Leu1097Pro) in the central cytoplasmic region of ATP-binding cassette transporter A1 (ABCA1). Serum total and HDL-cholesterol levels were 59mg/dl and 2mg/dl, respectively. Lipoprotein electrophoretic analyses on agarose and polyacrylamide gels showed the presence of massively abnormal lipoproteins. Further analysis by HPLC-GFC identified significant amounts of lipoproteins in low-density lipoprotein (LDL) subfractions. The lipoprotein particles found in the peak subfraction were smaller than normal LDL, were rich in triglycerides, but poor in cholesterol and phospholipids. These findings in an adolescent Tangier patient suggest that patients in whom these triglyceride-rich, cholesterol- and phospholipid-poor LDL-type particles accumulate over time, would experience an increased propensity for developing atherosclerosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Up-regulation of ATP Binding Cassette Transporter A1 Expression by Very Low Density Lipoprotein Receptor and Apolipoprotein E Receptor 2*

    PubMed Central

    Chen, Xinping; Guo, Zhongmao; Okoro, Emmanuel U.; Zhang, Hongfeng; Zhou, LiChun; Lin, Xinhua; Rollins, Allman T.; Yang, Hong

    2012-01-01

    Activation of very low density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (apoER2) results in either pro- or anti-atherogenic effects depending on the ligand. Using reelin and apoE as ligands, we studied the impact of VLDLR- and apoER2-mediated signaling on the expression of ATP binding cassette transporter A1 (ABCA1) and cholesterol efflux using RAW264.7 cells. Treatment of these mouse macrophages with reelin or human apoE3 significantly increased ABCA1 mRNA and protein levels, and apoAI-mediated cholesterol efflux. In addition, both reelin and apoE3 significantly increased phosphorylated disabled-1 (Dab1), phosphatidylinositol 3-kinase (PI3K), protein kinase Cζ (PKCζ), and specificity protein 1 (Sp1). This reelin- or apoER2-mediated up-regulation of ABCA1 expression was suppressed by 1) knockdown of Dab1, VLDLR, and apoER2 with small interfering RNAs (siRNAs), 2) inhibition of PI3K and PKC with kinase inhibitors, 3) overexpression of kinase-dead PKCζ, and 4) inhibition of Sp1 DNA binding with mithramycin A. Activation of the Dab1-PI3K signaling pathway has been implicated in VLDLR- and apoER2-mediated cellular functions, whereas the PI3K-PKCζ-Sp1 signaling cascade has been implicated in the regulation of ABCA1 expression induced by apoE/apoB-carrying lipoproteins. Taken together, these data support a model in which activation of VLDLR and apoER2 by reelin and apoE induces ABCA1 expression and cholesterol efflux via a Dab1-PI3K-PKCζ-Sp1 signaling cascade. PMID:22170052

  19. A Novel Mutation in ABCA1 Gene Causing Tangier Disease in an Italian Family with Uncommon Neurological Presentation

    PubMed Central

    Ceccanti, Marco; Cambieri, Chiara; Frasca, Vittorio; Onesti, Emanuela; Biasiotta, Antonella; Giordano, Carla; Bruno, Sabina M.; Testino, Giancarlo; Lucarelli, Marco; Arca, Marcello; Inghilleri, Maurizio

    2016-01-01

    Tangier disease is an autosomal recessive disorder characterized by severe reduction in high-density lipoprotein cholesterol and peripheral lipid storage. We describe a family with c.5094C > A p.Tyr1698* mutation in the ABCA1 gene, clinically characterized by syringomyelic-like anesthesia, demyelinating multineuropathy, and reduction in intraepidermal small fibers innervation. In the proband patient, cardiac involvement determined a myocardial infarction; lipid storage was demonstrated in gut, cornea, and aortic wall. The reported ABCA1 mutation has never been described before in a Tangier family. PMID:27853448

  20. The effect of ABCG5/G8 polymorphisms on plasma HDL cholesterol levels depends on the ABCA1 gene variation in the Boston Puerto Rican Health Study

    USDA-ARS?s Scientific Manuscript database

    Background: ATP-binding cassette transporters G5/G8 have shown an association with HDL-C. One of the most likely mechanisms to explain those associations is through ABCA1. Objective: To assess whether the effect of ABCG5/G8 polymorphisms on HDL-C is dependent on ABCA1, we studied potential interacti...

  1. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway

    PubMed Central

    Sun, Liqiang; Li, En; Wang, Feng; Wang, Tao; Qin, Zhiping; Niu, Shaohui; Qiu, Chunguang

    2015-01-01

    The accumulation of cholesterol in macrophages could induce the formation of foam cells and increase the risk of developing atherosclerosis. We wonder if quercetin, one of flavonoids with anti-inflammation functions in different cell types, could elevate the development of foam cells formation in atherosclerosis. We treated foam cells derived from oxLDL induced THP-1 cells with quercetin, and evaluated the foam cells formation, cholesterol content and apoptosis of the cells. We found that quercetin induced the expression of ABCA1 in differentiated THP-1 cells, and increased the cholesterol efflux from THP-1 cell derived foam cells. Eventually, cholesterol level and the formation of foam cell derived from THP-1 cells decreased after quercetin treatment. In addition, quercetin activated PPARγ-LXRα pathway to upregulate ABCA1 expression through increasing protein level of PPARγ and its transcriptional activity. Inhibition of PPARγ activity by siRNA knockdown or the addition of chemical inhibitor, GW9662, abolished quercetin induced ABCA1 expression and cholesterol efflux in THP-1 derived macrophages. Our data demonstrated that quercetin increased cholesterol efflux from macrophages through upregulating the expressions of PPARγ and ABCA1. Taken together, increasing uptake of quercetin or quercetin-rich foods would be an effective way to lower the risk of atherosclerosis. PMID:26617799

  2. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARγ-ABCA1 pathway.

    PubMed

    Sun, Liqiang; Li, En; Wang, Feng; Wang, Tao; Qin, Zhiping; Niu, Shaohui; Qiu, Chunguang

    2015-01-01

    The accumulation of cholesterol in macrophages could induce the formation of foam cells and increase the risk of developing atherosclerosis. We wonder if quercetin, one of flavonoids with anti-inflammation functions in different cell types, could elevate the development of foam cells formation in atherosclerosis. We treated foam cells derived from oxLDL induced THP-1 cells with quercetin, and evaluated the foam cells formation, cholesterol content and apoptosis of the cells. We found that quercetin induced the expression of ABCA1 in differentiated THP-1 cells, and increased the cholesterol efflux from THP-1 cell derived foam cells. Eventually, cholesterol level and the formation of foam cell derived from THP-1 cells decreased after quercetin treatment. In addition, quercetin activated PPARγ-LXRα pathway to upregulate ABCA1 expression through increasing protein level of PPARγ and its transcriptional activity. Inhibition of PPARγ activity by siRNA knockdown or the addition of chemical inhibitor, GW9662, abolished quercetin induced ABCA1 expression and cholesterol efflux in THP-1 derived macrophages. Our data demonstrated that quercetin increased cholesterol efflux from macrophages through upregulating the expressions of PPARγ and ABCA1. Taken together, increasing uptake of quercetin or quercetin-rich foods would be an effective way to lower the risk of atherosclerosis.

  3. Multi-Layer Identification of Highly-Potent ABCA1 Up-Regulators Targeting LXRβ Using Multiple QSAR Modeling, Structural Similarity Analysis, and Molecular Docking.

    PubMed

    Chen, Meimei; Yang, Fafu; Kang, Jie; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2016-11-29

    In this study, in silico approaches, including multiple QSAR modeling, structural similarity analysis, and molecular docking, were applied to develop QSAR classification models as a fast screening tool for identifying highly-potent ABCA1 up-regulators targeting LXRβ based on a series of new flavonoids. Initially, four modeling approaches, including linear discriminant analysis, support vector machine, radial basis function neural network, and classification and regression trees, were applied to construct different QSAR classification models. The statistics results indicated that these four kinds of QSAR models were powerful tools for screening highly potent ABCA1 up-regulators. Then, a consensus QSAR model was developed by combining the predictions from these four models. To discover new ABCA1 up-regulators at maximum accuracy, the compounds in the ZINC database that fulfilled the requirement of structural similarity of 0.7 compared to known potent ABCA1 up-regulator were subjected to the consensus QSAR model, which led to the discovery of 50 compounds. Finally, they were docked into the LXRβ binding site to understand their role in up-regulating ABCA1 expression. The excellent binding modes and docking scores of 10 hit compounds suggested they were highly-potent ABCA1 up-regulators targeting LXRβ. Overall, this study provided an effective strategy to discover highly potent ABCA1 up-regulators.

  4. The Carboxy-Terminal Region of apoA-I is Required for the ABCA1-Dependent Formation of α-HDL but not preβ-HDL Particles In Vivo

    PubMed Central

    Chroni, Angeliki; Koukos, Georgios; Duka, Adelina; Zannis, Vassilis I.

    2008-01-01

    ABCA1-mediated lipid efflux to lipid poor apoA-I results in the gradual lipidation of apoA-I. This leads to the formation of discoidal HDL which are subsequently converted to spherical HDL by the action of LCAT. We have investigated the effect of point mutations and deletions in the carboxy-terminal region of apoA-I on the biogenesis of HDL using adenovirus-mediated gene transfer in apoA-I deficient mice. It was found that the plasma HDL levels were greatly reduced in mice expressing the carboxy-terminal deletion mutants apoA-I[Δ(185-243)] and apoA-I[Δ(220-243)], shown previously to diminish the ABCA1-mediated lipid efflux. The HDL levels were normal in mice expressing the WT apoA-I, the apoA-I[Δ(232-243)] deletion mutant or the apoA-I[E191A/H193A/K195A] point mutant, which promote normal ABCA1-mediated lipid efflux. Electron microscopy and two-dimensional gel electrophoresis showed that the apoA-I[Δ(185-243)] and apoA-I[Δ(220-243)] mutants formed mainly preβ-HDL particles and few spherical particles enriched in apoE, while WT apoA-I, apoA-I[Δ(232-243)] and apoA-I[E191A/H193A/K195A] formed spherical α-HDL particles. The findings establish that a) deletions that eliminate the 220-231 region of apoA-I prevent the synthesis of α-HDL, but allow the synthesis of preβ-HDL particles in vivo, b) the amino-terminal segment 1-184 of apoA-I can promote synthesis of preβ-HDL type particles in an ABCA1-independent process and c) the charged residues in the 191-195 region of apoA-I do not influence the biogenesis of HDL. PMID:17447731

  5. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages.

    PubMed

    Zhu, Xuewei; Lee, Ji-Young; Timmins, Jenelle M; Brown, J Mark; Boudyguina, Elena; Mulya, Anny; Gebre, Abraham K; Willingham, Mark C; Hiltbold, Elizabeth M; Mishra, Nilamadhab; Maeda, Nobuyo; Parks, John S

    2008-08-22

    Macrophage-specific Abca1 knock-out (Abca1(-)(M)(/-)(M)) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1(-)(M)(/-)(M) and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1(-)(M)(/-)(M) macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1(-)(M)(/-)(M) macrophages exhibited enhanced expression of pro-inflammatory cytokines and increased activation of the NF-kappaB and MAPK pathways, which could be diminished by silencing MyD88 or by chemical inhibition of NF-kappaB or MAPK. In vivo LPS injection also resulted in a higher pro-inflammatory response in Abca1(-)(M)(/-)(M) mice compared with WT mice. Furthermore, cholesterol depletion of macrophages with methyl-beta-cyclodextrin normalized FC content between the two genotypes and their response to LPS; cholesterol repletion of macrophages resulted in increased cellular FC accumulation and enhanced cellular response to LPS. Our results suggest that macrophage ABCA1 expression may protect against atherosclerosis by facilitating the net removal of excess lipid from macrophages and dampening pro-inflammatory MyD88-dependent signaling pathways by reduction of cell membrane FC and lipid raft content.

  6. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans

    PubMed Central

    Acuña-Alonzo, Víctor; Flores-Dorantes, Teresa; Kruit, Janine K.; Villarreal-Molina, Teresa; Arellano-Campos, Olimpia; Hünemeier, Tábita; Moreno-Estrada, Andrés; Ortiz-López, Ma Guadalupe; Villamil-Ramírez, Hugo; León-Mimila, Paola; Villalobos-Comparan, Marisela; Jacobo-Albavera, Leonor; Ramírez-Jiménez, Salvador; Sikora, Martin; Zhang, Lin-Hua; Pape, Terry D.; de Ángeles Granados-Silvestre, Ma; Montufar-Robles, Isela; Tito-Alvarez, Ana M.; Zurita-Salinas, Camilo; Bustos-Arriaga, José; Cedillo-Barrón, Leticia; Gómez-Trejo, Celta; Barquera-Lozano, Rodrigo; Vieira-Filho, Joao P.; Granados, Julio; Romero-Hidalgo, Sandra; Huertas-Vázquez, Adriana; González-Martín, Antonio; Gorostiza, Amaya; Bonatto, Sandro L.; Rodríguez-Cruz, Maricela; Wang, Li; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A.; Lisker, Ruben; Moises, Regina S.; Menjivar, Marta; Salzano, Francisco M.; Knowler, William C.; Bortolini, M. Cátira; Hayden, Michael R.; Baier, Leslie J.; Canizales-Quinteros, Samuel

    2010-01-01

    It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 × 10−11) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations. PMID:20418488

  7. A functional ABCA1 gene variant is associated with low HDL-cholesterol levels and shows evidence of positive selection in Native Americans.

    PubMed

    Acuña-Alonzo, Víctor; Flores-Dorantes, Teresa; Kruit, Janine K; Villarreal-Molina, Teresa; Arellano-Campos, Olimpia; Hünemeier, Tábita; Moreno-Estrada, Andrés; Ortiz-López, Ma Guadalupe; Villamil-Ramírez, Hugo; León-Mimila, Paola; Villalobos-Comparan, Marisela; Jacobo-Albavera, Leonor; Ramírez-Jiménez, Salvador; Sikora, Martin; Zhang, Lin-Hua; Pape, Terry D; Granados-Silvestre, Ma de Angeles; Montufar-Robles, Isela; Tito-Alvarez, Ana M; Zurita-Salinas, Camilo; Bustos-Arriaga, José; Cedillo-Barrón, Leticia; Gómez-Trejo, Celta; Barquera-Lozano, Rodrigo; Vieira-Filho, Joao P; Granados, Julio; Romero-Hidalgo, Sandra; Huertas-Vázquez, Adriana; González-Martín, Antonio; Gorostiza, Amaya; Bonatto, Sandro L; Rodríguez-Cruz, Maricela; Wang, Li; Tusié-Luna, Teresa; Aguilar-Salinas, Carlos A; Lisker, Ruben; Moises, Regina S; Menjivar, Marta; Salzano, Francisco M; Knowler, William C; Bortolini, M Cátira; Hayden, Michael R; Baier, Leslie J; Canizales-Quinteros, Samuel

    2010-07-15

    It has been suggested that the higher susceptibility of Hispanics to metabolic disease is related to their Native American heritage. A frequent cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) gene variant (R230C, rs9282541) apparently exclusive to Native American individuals was associated with low high-density lipoprotein cholesterol (HDL-C) levels, obesity and type 2 diabetes in Mexican Mestizos. We performed a more extensive analysis of this variant in 4405 Native Americans and 863 individuals from other ethnic groups to investigate genetic evidence of positive selection, to assess its functional effect in vitro and to explore associations with HDL-C levels and other metabolic traits. The C230 allele was found in 29 of 36 Native American groups, but not in European, Asian or African individuals. C230 was observed on a single haplotype, and C230-bearing chromosomes showed longer relative haplotype extension compared with other haplotypes in the Americas. Additionally, single-nucleotide polymorphism data from the Human Genome Diversity Panel Native American populations were enriched in significant integrated haplotype score values in the region upstream of the ABCA1 gene. Cells expressing the C230 allele showed a 27% cholesterol efflux reduction (P< 0.001), confirming this variant has a functional effect in vitro. Moreover, the C230 allele was associated with lower HDL-C levels (P = 1.77 x 10(-11)) and with higher body mass index (P = 0.0001) in the combined analysis of Native American populations. This is the first report of a common functional variant exclusive to Native American and descent populations, which is a major determinant of HDL-C levels and may have contributed to the adaptive evolution of Native American populations.

  8. Common Pesticide, Dichlorodiphenyltrichloroethane (DDT), Increases Amyloid-β Levels by Impairing the Function of ABCA1 and IDE: Implication for Alzheimer's Disease.

    PubMed

    Li, Gongbo; Kim, Chaeyoung; Kim, Jaekwang; Yoon, Hyejin; Zhou, Huadong; Kim, Jungsu

    2015-01-01

    While early-onset familial Alzheimer's disease (AD) is caused by a genetic mutation, the vast majority of late-onset AD is likely caused by the combination of genetic and environmental factors. Unlike genetic studies, potential environmental factors affecting AD pathogenesis have not yet been thoroughly investigated. Among environmental factors, pesticides seem to be one of critical environmental contributors to late-onset AD. Recent studies reported that the serum and brains of AD patients have dramatically higher levels of a metabolite of dichlorodiphenyltrichloroethane (DDT). While these epidemiological studies provided initial clues to the environmental risks potentially contributing to disease pathogenesis, a functional approach is required to determine whether they actually have a causal role in disease development. In our study, we addressed this critical knowledge gap by investigating possible mechanisms by which DDT affects amyloid-β (Aβ) levels. We treated H4-AβPPswe or H4 cells with DDT to analyze its effect on Aβ metabolism using Aβ production, clearance, and degradation assays. We found that DDT significantly increased the levels of amyloid-β protein precursor (AβPP) and β-site AβPP-cleaving enzyme1 (BACE1), affecting Aβ synthesis pathway in H4-AβPPswe cells. Additionally, DDT impaired the clearance and extracellular degradation of Aβ peptides. Most importantly, we identified for the first time that ATP-binding cassette transporter A1 (ABCA1) and insulin-degrading enzyme (IDE) are the downstream target genes adversely affected by DDT. Our findings provide insight into the molecular mechanisms by which DDT exposure may increase the risk of AD, and it further supports that ABCA1 and IDE may be potential therapeutic targets.

  9. Asymptomatic individuals with high HDL-C levels overexpress ABCA1 and ABCG1 and present miR-33a dysregulation in peripheral blood mononuclear cells.

    PubMed

    Scherrer, D Z; Zago, V H S; Parra, E S; Avansini, S; Panzoldo, N B; Alexandre, F; Baracat, J; Nakandakare, E R; Quintão, E C R; de Faria, E C

    2015-10-01

    Considering the growing knowledge and perspectives on microRNAs (miRNAs) that control high-density lipoprotein cholesterol (HDL-C) levels and metabolism, this study aimed at evaluating whether hsa-miR-33a and hsa-miR-128a are differentially expressed in peripheral blood mononuclear cells from asymptomatic individuals with low and high HDL-C, as well as at investigating the potential relationships with ATP binding cassete transporter A1 (ABCA1) expression, cholesterol efflux capacity and other parameters related with reverse cholesterol transport. In addition, the associations with cardiovascular risk were investigated by carotid-intima media thickness (cIMT). Asymptomatic volunteers of both genders (n=51) were classified according to HDL-C (mg/dL) in hypoalphalipoproteinemics (hypo, HDL-C ≤3 9), hyperalphalipoproteinemics (hyper, HDL-C ≥ 68) and controls (CTL, HDL-C ≥ 40<68). cIMT, lipids, lipoproteins, HDL size and volume, C reactive protein and insulin were determined, as well as the activities of several proteins and enzymes related to HDL metabolism. In a subgroup of 19 volunteers the cellular cholesterol efflux and HDL composition were determined. Total RNA was extracted from peripheral blood mononuclear cells for relative quantification experiments. Hypo volunteers presented significantly higher levels of triglycerides, VLDL-C and insulin; in addition, HDL size and volume decreased when compared with CTL and hyper. Regarding gene expression analysis, the hyper group presented a decrease of 72% in hsa-miR-33a and higher mRNA expression of ABCA1 and ABCG1 when compared with CTL. No significant differences in hsa-miR-128a expression, cholesterol efflux, cIMT or plaques were found. Further studies are necessary to elucidate the mechanisms underlying the complex miRNA network, regulating cellular cholesterol homeostasis in humans and its clinical repercussions.

  10. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    USDA-ARS?s Scientific Manuscript database

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  11. MicroRNA-19b promotes macrophage cholesterol accumulation and aortic atherosclerosis by targeting ATP-binding cassette transporter A1.

    PubMed

    Lv, Yun-Cheng; Tang, Yan-Yan; Peng, Juan; Zhao, Guo-Jun; Yang, Jing; Yao, Feng; Ouyang, Xin-Ping; He, Ping-Ping; Xie, Wei; Tan, Yu-Lin; Zhang, Min; Liu, Dan; Tang, Deng-Pei; Cayabyab, Francisco S; Zheng, Xi-Long; Zhang, Da-Wei; Tian, Guo-Ping; Tang, Chao-Ke

    2014-09-01

    Macrophage accumulation of cholesterol leads to foam cell formation which is a major pathological event of atherosclerosis. Recent studies have shown that microRNA (miR)-19b might play an important role in cholesterol metabolism and atherosclerotic diseases. Here, we have identified miR-19b binding to the 3'UTR of ATP-binding cassette transporter A1 (ABCA1) transporters, and further determined the potential roles of this novel interaction in atherogenesis. To investigate the molecular mechanisms involved in a miR-19b promotion of macrophage cholesterol accumulation and the development of aortic atherosclerosis. We performed bioinformatics analysis using online websites, and found that miR-19b was highly conserved during evolution and directly bound to ABCA1 mRNA with very low binding free energy. Luciferase reporter assay confirmed that miR-19b bound to 3110-3116 sites within ABCA1 3'UTR. MiR-19b directly regulated the expression levels of endogenous ABCA1 in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by qRT-PCR and western blot. Cholesterol transport assays revealed that miR-19b dramatically suppressed apolipoprotein AI-mediated ABCA1-dependent cholesterol efflux, resulting in the increased levels of total cholesterol (TC), free cholesterol (FC) and cholesterol ester (CE) as revealed by HPLC. The excretion of (3)H-cholesterol originating from cholesterol-laden MPMs into feces was decreased in mice overexpressing miR-19b. Finally, we evaluated the proatherosclerotic role of miR-19b in apolipoprotein E deficient (apoE(-/-)) mice. Treatment with miR-19b precursor reduced plasma high-density lipoprotein (HDL) levels, but increased plasma low-density lipoprotein (LDL) levels. Consistently, miR-19b precursor treatment increased aortic plaque size and lipid content, but reduced collagen content and ABCA1 expression. In contrast, treatment with the inhibitory miR-19b antisense oligonucleotides (ASO) prevented or

  12. Accurate prediction of the functional significance of single nucleotide polymorphisms and mutations in the ABCA1 gene.

    PubMed

    Brunham, Liam R; Singaraja, Roshni R; Pape, Terry D; Kejariwal, Anish; Thomas, Paul D; Hayden, Michael R

    2005-12-01

    The human genome contains an estimated 100,000 to 300,000 DNA variants that alter an amino acid in an encoded protein. However, our ability to predict which of these variants are functionally significant is limited. We used a bioinformatics approach to define the functional significance of genetic variation in the ABCA1 gene, a cholesterol transporter crucial for the metabolism of high density lipoprotein cholesterol. To predict the functional consequence of each coding single nucleotide polymorphism and mutation in this gene, we calculated a substitution position-specific evolutionary conservation score for each variant, which considers site-specific variation among evolutionarily related proteins. To test the bioinformatics predictions experimentally, we evaluated the biochemical consequence of these sequence variants by examining the ability of cell lines stably transfected with the ABCA1 alleles to elicit cholesterol efflux. Our bioinformatics approach correctly predicted the functional impact of greater than 94% of the naturally occurring variants we assessed. The bioinformatics predictions were significantly correlated with the degree of functional impairment of ABCA1 mutations (r2 = 0.62, p = 0.0008). These results have allowed us to define the impact of genetic variation on ABCA1 function and to suggest that the in silico evolutionary approach we used may be a useful tool in general for predicting the effects of DNA variation on gene function. In addition, our data suggest that considering patterns of positive selection, along with patterns of negative selection such as evolutionary conservation, may improve our ability to predict the functional effects of amino acid variation.

  13. Overexpression of the ATP binding cassette gene ABCA1 determines resistance to Curcumin in M14 melanoma cells.

    PubMed

    Bachmeier, Beatrice E; Iancu, Cristina M; Killian, Peter H; Kronski, Emanuel; Mirisola, Valentina; Angelini, Giovanna; Jochum, Marianne; Nerlich, Andreas G; Pfeffer, Ulrich

    2009-12-23

    Curcumin induces apoptosis in many cancer cells and it reduces xenograft growth and the formation of lung metastases in nude mice. Moreover, the plant derived polyphenol has been reported to be able to overcome drug resistance to classical chemotherapy. These features render the drug a promising candidate for tumor therapy especially for cancers known for their high rates concerning therapy resistance like melanoma. We show here that the melanoma cell line M14 is resistant to Curcumin induced apoptosis, which correlates with the absence of any effect on NFkappaB signaling. We show that CXCL1 a chemokine that is down regulated in breast cancer cells by Curcumin in an NFkappaB dependent manner is expressed at variable levels in human melanomas. Yet in M14 cells, CXCL1 expression did not change upon Curcumin treatment. Following the hypothesis that Curcumin is rapidly removed from the resistant cells, we analyzed expression of known multi drug resistance genes and cellular transporters in M14 melanoma cells and in the Curcumin sensitive breast cancer cell line MDA-MB-231. ATP-binding cassette transporter ABCA1, a gene involved in the cellular lipid removal pathway is over-expressed in resistant M14 melanoma as compared to the sensitive MDA-MB-231 breast cancer cells. Gene silencing of ABCA1 by siRNA sensitizes M14 cells to the apoptotic effect of Curcumin most likely as a result of reduced basal levels of active NFkappaB. Moreover, ABCA1 silencing alone also induces apoptosis and reduces p65 expression. Resistance to Curcumin thus follows classical pathways and ABCA1 expression should be considered as response marker.

  14. Interaction between FTO rs9939609 and the Native American-origin ABCA1 rs9282541 affects BMI in the admixed Mexican population.

    PubMed

    Villalobos-Comparán, Marisela; Antuna-Puente, Bárbara; Villarreal-Molina, María Teresa; Canizales-Quinteros, Samuel; Velázquez-Cruz, Rafael; León-Mimila, Paola; Villamil-Ramírez, Hugo; González-Barrios, Juan Antonio; Merino-García, José Luis; Thompson-Bonilla, María Rocío; Jarquin, Diego; Sánchez-Hernández, Osvaldo Erik; Rodríguez-Arellano, Martha Eunice; Posadas-Romero, Carlos; Vargas-Alarcón, Gilberto; Campos-Pérez, Francisco; Quiterio, Manuel; Salmerón-Castro, Jorge; Carnevale, Alessandra; Romero-Hidalgo, Sandra

    2017-05-02

    The aim of this study was to explore whether interactions between FTO rs9939609 and ABCA1 rs9282541 affect BMI and waist circumference (WC), and could explain previously reported population differences in FTO-obesity and FTO-BMI associations in the Mexican and European populations. A total of 3938 adults and 636 school-aged children from Central Mexico were genotyped for both polymorphisms. Subcutaneous and visceral adipose tissue biopsies from 22 class III obesity patients were analyzed for FTO and ABCA1 mRNA expression. Generalized linear models were used to test for associations and gene-gene interactions affecting BMI, WC and FTO expression. FTO and ABCA1 risk alleles were not individually associated with higher BMI or WC. However, in the absence of the ABCA1 risk allele, the FTO risk variant was significantly associated with higher BMI (P = 0.043) and marginally associated with higher WC (P = 0.067), as reported in Europeans. The gene-gene interaction affecting BMI and WC was statistically significant only in adults. FTO mRNA expression in subcutaneous abdominal adipose tissue according to ABCA1 genotype was consistent with these findings. This is the first report showing evidence of FTO and ABCA1 gene variant interactions affecting BMI, which may explain previously reported population differences. Further studies are needed to confirm this interaction.

  15. Differential Effects of apoE4 and Activation of ABCA1 on Brain and Plasma Lipoproteins

    PubMed Central

    Harats, Dror; Shaish, Aviv; Levkovitz, Hana; Bielicki, John K.; Johansson, Jan O.; Michaelson, Daniel M.

    2016-01-01

    Apolipoprotein E4 (apoE4), the leading genetic risk factor for Alzheimer's disease (AD), is less lipidated compared to the most common and AD-benign allele, apoE3. We have recently shown that i.p. injections of the ATP-binding cassette A1 (ABCA1) agonist peptide CS-6253 to apoE mice reverse the hypolipidation of apoE4 and the associated brain pathology and behavioral deficits. While in the brain apoE is the main cholesterol transporter, in the periphery apoE and apoA-I both serve as the major cholesterol transporters. We presently investigated the extent to which apoE genotype and CS-6253 treatment to apoE3 and apoE4-targeted replacement mice affects the plasma levels and lipid particle distribution of apoE, and those of plasma and brain apoA-I and apoJ. This revealed that plasma levels of apoE4 were lower and eluted faster following FPLC than plasma apoE3. Treatment with CS-6253 increased the levels of plasma apoE4 and rendered the elution profile of apoE4 similar to that of apoE3. Similarly, the levels of plasma apoA-I were lower in the apoE4 mice compared to apoE3 mice, and this effect was partially reversed by CS-6253. Conversely, the levels of apoA-I in the brain which were higher in the apoE4 mice, were unaffected by CS-6253. The plasma levels of apoJ were higher in apoE4 mice than apoE3 mice and this effect was abolished by CS-6253. Similar but less pronounced effects were obtained in the brain. In conclusion, these results suggest that apoE4 affects the levels of apoA-I and apoJ and that the anti-apoE4 beneficial effects of CS-6253 may be related to both central and peripheral mechanisms. PMID:27824936

  16. Effect of garlic extract on some serum biochemical parameters and expression of npc1l1, abca1, abcg5 and abcg8 genes in the intestine of hypercholesterolemic mice.

    PubMed

    Mohammadi, Abbas; Bazrafshani, Mohamad Reza; Oshaghi, Ebrahim Abbasi

    2013-12-01

    Some compounds in the garlic inhibit cholesterol synthesis, resulting in lowering of serum cholesterol and triglycerides and increase in HDL level. However, the mechanism of this specific effect is not fully understood. In the small intestine, ATP-binding cassette transporters G5, G8 and A1 (ABCG5, ABCG8 and ABCA1), as well as Niemann-Pick C1 like 1 (NPC1L1) protein have important roles in cholesterol metabolism. In this study, we evaluated the beneficial effect of aqueous extract of garlic on lipid profile and also expression of npc1l1, abca1, abcg5 and abcg8 genes in the intestine of N-Marry mice fed a high cholesterol diet as a possible mechanism of garlic effect. Twenty-four mice were randomly divided into three groups: Group 1: hypercholesterolmic (received chow + 2% cholesterol + 0.5% cholic acid); Group 2: garlic (received chow + 4% (w/w) garlic extract + 2% cholesterol + 0.5% cholic acid); and Group 3: received chow only. After one month, mice were anesthetized and blood was collected from their heart. The jejunum was removed, washed with PBS and entrocytes were scraped and used for the experiments. Serum lipids were measured enzymatically and expression of mRNA levels for the above-mentioned proteins was determined by semi-quantitative RT-PCR. Garlic extract significantly reduced serum lipids (p < 0.05), compared with the hypercholesterolemic group. Expression of the intestinal npc1l1 was significantly decreased (p < 0.01) in the garlic group, compared with the chow group, while abcg5 (p < 0.01), abcg8 (p < 0.01) and abca1 (p < 0.05) expressions were significantly increased. In conclusion, this study reveals a possible mechanism for the beneficial effects of the garlic in lowering serum lipids by decreasing the intestinal lipid absorption and increasing excretion of cholesterol back into the intestinal lumen.

  17. EEPD1 Is a Novel LXR Target Gene in Macrophages Which Regulates ABCA1 Abundance and Cholesterol Efflux

    PubMed Central

    Nelson, Jessica Kristine; Koenis, Duco Steven; Scheij, Saskia; Cook, Emma Clare Laura; Moeton, Martina; Santos, Ana; Lobaccaro, Jean-Marc Adolphe; Baron, Silvere

    2017-01-01

    Objective— The sterol-responsive nuclear receptors, liver X receptors α (LXRα, NR1H3) and β (LXRβ, NR1H2), are key determinants of cellular cholesterol homeostasis. LXRs are activated under conditions of high cellular sterol load and induce expression of the cholesterol efflux transporters ABCA1 and ABCG1 to promote efflux of excess cellular cholesterol. However, the full set of genes that contribute to LXR-stimulated cholesterol efflux is unknown, and their identification is the objective of this study. Approach and Results— We systematically compared the global transcriptional response of macrophages to distinct classes of LXR ligands. This allowed us to identify both common and ligand-specific transcriptional responses in macrophages. Among these, we identified endonuclease–exonuclease–phosphatase family domain containing 1 (EEPD1/KIAA1706) as a direct transcriptional target of LXRs in human and murine macrophages. EEPD1 specifically localizes to the plasma membrane owing to the presence of a myristoylation site in its N terminus. Accordingly, the first 10 amino acids of EEPD1 are sufficient to confer plasma membrane localization in the context of a chimeric protein with GFP. Functionally, we report that silencing expression of EEPD1 blunts maximal LXR-stimulated Apo AI-dependent efflux and demonstrate that this is the result of reduced abundance of ABCA1 protein in human and murine macrophages. Conclusions— In this study, we identify EEPD1 as a novel LXR-regulated gene in macrophages and propose that it promotes cellular cholesterol efflux by controlling cellular levels and activity of ABCA1. PMID:28082258

  18. EEPD1 Is a Novel LXR Target Gene in Macrophages Which Regulates ABCA1 Abundance and Cholesterol Efflux.

    PubMed

    Nelson, Jessica Kristine; Koenis, Duco Steven; Scheij, Saskia; Cook, Emma Clare Laura; Moeton, Martina; Santos, Ana; Lobaccaro, Jean-Marc Adolphe; Baron, Silvere; Zelcer, Noam

    2017-03-01

    The sterol-responsive nuclear receptors, liver X receptors α (LXRα, NR1H3) and β (LXRβ, NR1H2), are key determinants of cellular cholesterol homeostasis. LXRs are activated under conditions of high cellular sterol load and induce expression of the cholesterol efflux transporters ABCA1 and ABCG1 to promote efflux of excess cellular cholesterol. However, the full set of genes that contribute to LXR-stimulated cholesterol efflux is unknown, and their identification is the objective of this study. We systematically compared the global transcriptional response of macrophages to distinct classes of LXR ligands. This allowed us to identify both common and ligand-specific transcriptional responses in macrophages. Among these, we identified endonuclease-exonuclease-phosphatase family domain containing 1 (EEPD1/KIAA1706) as a direct transcriptional target of LXRs in human and murine macrophages. EEPD1 specifically localizes to the plasma membrane owing to the presence of a myristoylation site in its N terminus. Accordingly, the first 10 amino acids of EEPD1 are sufficient to confer plasma membrane localization in the context of a chimeric protein with GFP. Functionally, we report that silencing expression of EEPD1 blunts maximal LXR-stimulated Apo AI-dependent efflux and demonstrate that this is the result of reduced abundance of ABCA1 protein in human and murine macrophages. In this study, we identify EEPD1 as a novel LXR-regulated gene in macrophages and propose that it promotes cellular cholesterol efflux by controlling cellular levels and activity of ABCA1. © 2017 The Authors.

  19. Lipid Absorption Defects in Intestine-specific Microsomal Triglyceride Transfer Protein and ATP-binding Cassette Transporter A1-deficient Mice*

    PubMed Central

    Iqbal, Jahangir; Parks, John S.; Hussain, M. Mahmood

    2013-01-01

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92–95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations. PMID:24019513

  20. Lipid absorption defects in intestine-specific microsomal triglyceride transfer protein and ATP-binding cassette transporter A1-deficient mice.

    PubMed

    Iqbal, Jahangir; Parks, John S; Hussain, M Mahmood

    2013-10-18

    We have previously described apolipoprotein B (apoB)-dependent and -independent cholesterol absorption pathways and the role of microsomal triglyceride transfer protein (MTP) and ATP-binding cassette transporter A1 (ABCA1) in these pathways. To assess the contribution of these pathways to cholesterol absorption and to determine whether there are other pathways, we generated mice that lack MTP and ABCA1, individually and in combination, in the intestine. Intestinal deletions of Mttp and Abca1 decreased plasma cholesterol concentrations by 45 and 24%, respectively, whereas their combined deletion reduced it by 59%. Acute cholesterol absorption was reduced by 28% in the absence of ABCA1, and it was reduced by 92-95% when MTP was deleted in the intestine alone or together with ABCA1. MTP deficiency significantly reduced triglyceride absorption, although ABCA1 deficiency had no effect. ABCA1 deficiency did not affect cellular lipids, but Mttp deficiency significantly increased intestinal levels of triglycerides and free fatty acids. Accumulation of intestinal free fatty acids, but not triglycerides, in Mttp-deficient intestines was prevented when mice were also deficient in intestinal ABCA1. Combined deficiency of these genes increased intestinal fatty acid oxidation as a consequence of increased expression of peroxisome proliferator-activated receptor-γ (PPARγ) and carnitine palmitoyltransferase 1α (CPT1α). These studies show that intestinal MTP and ABCA1 are critical for lipid absorption and are the main determinants of plasma and intestinal lipid levels. Reducing their activities might lower plasma lipid concentrations.

  1. Proteomic analysis of HDL from inbred mouse strains implicates APOE associated with HDL in reduced cholesterol efflux capacity via the ABCA1 pathway[S

    PubMed Central

    Pamir, Nathalie; Hutchins, Patrick; Ronsein, Graziella; Vaisar, Tomas; Reardon, Catherine A.; Getz, Godfrey S.; Lusis, Aldons J.; Heinecke, Jay W.

    2016-01-01

    Cholesterol efflux capacity associates strongly and negatively with the incidence and prevalence of human CVD. We investigated the relationships of HDL’s size and protein cargo with its cholesterol efflux capacity using APOB-depleted serum and HDLs isolated from five inbred mouse strains with different susceptibilities to atherosclerosis. Like humans, mouse HDL carried >70 proteins linked to lipid metabolism, the acute-phase response, proteinase inhibition, and the immune system. HDL’s content of specific proteins strongly correlated with its size and cholesterol efflux capacity, suggesting that its protein cargo regulates its function. Cholesterol efflux capacity with macrophages strongly and positively correlated with retinol binding protein 4 (RBP4) and PLTP, but not APOA1. In contrast, ABCA1-specific cholesterol efflux correlated strongly with HDL’s content of APOA1, APOC3, and APOD, but not RBP4 and PLTP. Unexpectedly, APOE had a strong negative correlation with ABCA1-specific cholesterol efflux capacity. Moreover, the ABCA1-specific cholesterol efflux capacity of HDL isolated from APOE-deficient mice was significantly greater than that of HDL from wild-type mice. Our observations demonstrate that the HDL-associated APOE regulates HDL’s ABCA1-specific cholesterol efflux capacity. These findings may be clinically relevant because HDL’s APOE content associates with CVD risk and ABCA1 deficiency promotes unregulated cholesterol accumulation in human macrophages. PMID:26673204

  2. Common variants near ABCA1, AFAP1 and GMDS confer risk of primary open-angle glaucoma

    PubMed Central

    Fogarty, Rhys; Sharma, Shiwani; Hewitt, Alex W.; Martin, Sarah; Law, Matthew H.; Cremin, Katie; Bailey, Jessica N. Cooke; Loomis, Stephanie J.; Pasquale, Louis R.; Haines, Jonathan L.; Hauser, Michael A.; Viswanathan, Ananth C.; McGuffin, Peter; Topouzis, Fotis; Foster, Paul J.; Graham, Stuart L; Casson, Robert J; Chehade, Mark; White, Andrew J; Zhou, Tiger; Souzeau, Emmanuelle; Landers, John; Fitzgerald, Jude T; Klebe, Sonja; Ruddle, Jonathan B; Goldberg, Ivan; Healey, Paul R; Mills, Richard A.; Wang, Jie Jin; Montgomery, Grant W.; Martin, Nicholas G.; Radford-Smith, Graham; Whiteman, David C.; Brown, Matthew A.; Wiggs, Janey L.; Mackey, David A; Mitchell, Paul; MacGregor, Stuart; Craig, Jamie E.

    2014-01-01

    Primary open-angle glaucoma (POAG) is a major cause of irreversible blindness worldwide. We performed a genome-wide association study in an Australian discovery cohort comprising 1,155 advanced POAG cases and 1,992 controls. Association of the top SNPs from the discovery stage was investigated in two Australian replication cohorts (total 932 cases, 6,862 controls) and two US replication cohorts (total 2,616 cases, 2,634 controls). Meta-analysis of all cohorts revealed three novel loci associated with development of POAG. These loci are located upstream of ABCA1 (rs2472493 [G] OR=1.31, P= 2.1 × 10−19), within AFAP1 (rs4619890 [G] OR=1.20, P= 7.0 × 10−10) and within GMDS (rs11969985 [G] OR=1.31, and P= 7.7 × 10−10). Using RT-PCR and immunolabelling, we also showed that these genes are expressed within human retina, optic nerve and trabecular meshwork and that ABCA1 and AFAP1 are also expressed in retinal ganglion cells. PMID:25173105

  3. Group X Secretory Phospholipase A2 Negatively Regulates ABCA1 and ABCG1 expression and cholesterol efflux in macrophages

    PubMed Central

    Shridas, Preetha; Bailey, William M; Gizard, Florence; Oslund, Rob C; Gelb, Michael H; Bruemmer, Dennis; Webb, Nancy R

    2010-01-01

    Objectives Group X secretory phospholipase A2 (GX sPLA2) potently hydrolyzes plasma membranes to generate lysophospholipids and free fatty acids and has been implicated in inflammatory diseases including atherosclerosis. Here we identify a novel role for GX sPLA2 in modulating ABCA1 and ABCG1 expression and hence macrophage cholesterol efflux. Methods and Results Overexpression or exogenous addition of GX sPLA2 significantly reduced ABCA1 and ABCG1 expression in J774 macrophage-like cells, whereas GX sPLA2 deficiency in mouse peritoneal macrophages (MPMs) was associated with enhanced expression. Altered ABC transporter expression led to reduced cholesterol efflux in GX sPLA2 overexpressing J774 cells, and increased efflux in GX sPLA2-deficient MPMs. Gene regulation was dependent on GX sPLA2 catalytic activity, mimicked by arachidonic acid, abrogated when LXRα/β expression was suppressed, and partially reversed by the LXR agonist T0901317. Reporter assays indicated that GX sPLA2 suppresses the ability of LXR to trans-activate its promoters through a mechanism involving the C-terminal portion of LXR spanning the ligand binding domain. Conclusions GX sPLA2 modulates gene expression in macrophages by generating lipolytic products that suppress LXR activation. GX sPLA2 may play a previously unrecognized role in atherosclerotic lipid accumulation by negatively regulating genes critical for cellular cholesterol efflux. PMID:20844270

  4. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.

    PubMed

    Yan, Jin-quan; Tan, Chun-zhi; Wu, Jin-hua; Zhang, Dong-cui; Chen, Ji-ling; Zeng, Bin-yuan; Jiang, Yu-ping; Nie, Jin; Liu, Wei; Liu, Qin; Dai, Hao

    2013-07-01

    To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.

  5. Hepatic miR-33a/miR-144 and their target gene ABCA1 are associated with steatohepatitis in morbidly obese subjects.

    PubMed

    Vega-Badillo, Joel; Gutiérrez-Vidal, Roxana; Hernández-Pérez, Hugo A; Villamil-Ramírez, Hugo; León-Mimila, Paola; Sánchez-Muñoz, Fausto; Morán-Ramos, Sofía; Larrieta-Carrasco, Elena; Fernández-Silva, Itzel; Méndez-Sánchez, Nahúm; Tovar, Armando R; Campos-Pérez, Francisco; Villarreal-Molina, Teresa; Hernández-Pando, Rogelio; Aguilar-Salinas, Carlos A; Canizales-Quinteros, Samuel

    2016-09-01

    Abnormal cholesterol metabolism may contribute to the pathogenesis of non-alcoholic steatohepatitis (NASH) and fibrosis. miR-33 and miR-144 regulate adenosine triphosphate binding cassette transporter (ABCA1) and other target genes involved in cholesterol efflux, fatty acid oxidation and inflammation. We explored relationships between non-alcoholic fatty liver disease (NAFLD) and the hepatic expression of ABCA1/ABCG1, as well as other target genes regulated by miR-33 (carnitine O-octanoyltransferase, CROT and hydroxyacyl-CoA-dehydrogenase β-subunit, HADHB) and miR-144 (toll-like receptor-2, TLR2). Moreover, we evaluated whether the expression of these genes is correlated with miR-33a/b and miR-144 expression in Mexican individuals with morbid obesity. Eighty-four morbidly obese subjects undergoing bariatric surgery were included in this study. Liver biopsies were obtained to measure hepatic triglyceride and free cholesterol contents, as well as ABCA1, ABCG1, CROT, HADHB, TLR2, miR-33a/b and miR-144 expression. Hepatic free cholesterol content was significantly increased in NASH as compared to non-NASH subjects, while ABCA1 and ABCG1 protein levels significantly decreased with NASH and fibrosis progression. The relative expression of miR-33a and miR-144 correlated inversely with ABCA1 but not with ABCG1 protein levels. Moreover, both miRNAs increased significantly in NASH individuals. miR-33 target genes CROT and HADHB correlated inversely with miR-33a. However, the expression of these genes was not associated with NASH. miR-33a/144 and their target gene ABCA1 may contribute to the pathogenesis of NASH in morbidly obese subjects. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.

    PubMed

    Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei

    2017-09-01

    ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE(-/-) mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Lower Expression of SLC27A1 Enhances Intramuscular Fat Deposition in Chicken via Down-Regulated Fatty Acid Oxidation Mediated by CPT1A

    PubMed Central

    Qiu, Fengfang; Xie, Liang; Ma, Jing-e; Luo, Wen; Zhang, Li; Chao, Zhe; Chen, Shaohao; Nie, Qinghua; Lin, Zhemin; Zhang, Xiquan

    2017-01-01

    Intramuscular fat (IMF) is recognized as the predominant factor affecting meat quality due to its positive correlation with tenderness, juiciness, and flavor. Chicken IMF deposition depends on the balance among lipid synthesis, transport, uptake, and subsequent metabolism, involving a lot of genes and pathways, however, its precise molecular mechanisms remain poorly understood. In the present study, the breast muscle tissue of female Wenchang chickens (WC) (higher IMF content, 1.24 in D120 and 1.62 in D180) and female White Recessive Rock chickens (WRR; lower IMF content, 0.53 in D120 and 0.90 in D180) were subjected to RNA-sequencing (RNA-seq) analysis. Results showed that many genes related to lipid catabolism, such as SLC27A1, LPL, ABCA1, and CPT1A were down-regulated in WC chickens, and these genes were involved in the PPAR signaling pathway and formed an IPA® network related to lipid metabolism. Furthermore, SLC27A1 was more down-regulated in WRR.D180.B than in WRR.D120.B. Decreased cellular triglyceride (TG) and up-regulated CPT1A were observed in the SLC27A1 overexpression QM-7 cells, and increased cellular triglyceride (TG) and down-regulated CPT1A were observed in the SLC27A1 knockdown QM-7 cells. These results suggest that lower lipid catabolism exists in WC chickens but not in WRR chickens, and lower expression of SLC27A1 facilitate IMF deposition in chicken via down-regulated fatty acid oxidation mediated by CPT1A. These findings indicate that reduced lipid catabolism, rather than increased lipid anabolism, contributes to chicken IMF deposition. PMID:28706492

  8. Niacin increases HDL biogenesis by enhancing DR4-dependent transcription of ABCA1 and lipidation of apolipoprotein A-I in HepG2 cells

    PubMed Central

    Zhang, Lin-Hua; Kamanna, Vaijinath S.; Ganji, Shobha H.; Xiong, Xi-Ming; Kashyap, Moti L.

    2012-01-01

    The lipidation of apoA-I in liver greatly influences HDL biogenesis and plasma HDL levels by stabilizing the secreted apoA-I. Niacin is the most effective lipid-regulating agent clinically available to raise HDL. This study was undertaken to identify regulatory mechanisms of niacin action in hepatic lipidation of apoA-I, a critical event involved in HDL biogenesis. In cultured human hepatocytes (HepG2), niacin increased: association of apoA-I with phospholipids and cholesterol by 46% and 23% respectively, formation of lipid-poor single apoA-I molecule-containing particles up to ∼ 2.4-fold, and pre β 1 and α migrating HDL particles. Niacin dose-dependently stimulated the cell efflux of phospholipid and cholesterol and increased transcription of ABCA1 gene and ABCA1 protein. Mutated DR4, a binding site for nuclear factor liver X receptor alpha (LXR α ) in the ABCA1 promoter, abolished niacin stimulatory effect. Further, knocking down LXR α or ABCA1 by RNA interference eliminated niacin-stimulated apoA-I lipidation. Niacin treatment did not change apoA-I gene expression. The present data indicate that niacin increases apoA-I lipidation by enhancing lipid efflux through a DR4-dependent transcription of ABCA1 gene in HepG2 cells. A stimulatory role of niacin in early hepatic formation of HDL particles suggests a new mechanism that contributes to niacin action to increase the stability of newly synthesized circulating HDL. PMID:22389325

  9. Deficiency of brain ATP-binding cassette transporter A-1 exacerbates blood-brain barrier and white matter damage after stroke.

    PubMed

    Cui, Xu; Chopp, Michael; Zacharek, Alex; Karasinska, Joanna M; Cui, Yisheng; Ning, Ruizhuo; Zhang, Yi; Wang, Yun; Chen, Jieli

    2015-03-01

    The ATP-binding cassette transporter A-1 (ABCA1) gene is a key target of the transcription factors liver X receptors. Liver X receptor activation has anti-inflammatory and neuroprotective effects in animal ischemic stroke models. Here, we tested the hypothesis that brain ABCA1 reduces blood-brain barrier (BBB) and white matter (WM) impairment in the ischemic brain after stroke. Adult brain-specific ABCA1-deficient (ABCA1(-B/-B)) and floxed-control (ABCA1(fl/fl)) mice were subjected to permanent distal middle cerebral artery occlusion and were euthanized 7 days after distal middle cerebral artery occlusion. Functional outcome, infarct volume, BBB leakage, and WM damage were analyzed. Compared with ABCA1(fl/fl) mice, ABCA1(-B/-B) mice showed marginally (P=0.052) increased lesion volume but significantly increased BBB leakage and WM damage in the ischemic brain and more severe neurological deficits. Brain ABCA1-deficient mice exhibited increased the level of matrix metalloproteinase-9 and reduced the level of insulin-like growth factor 1 in the ischemic brain. BBB leakage was inversely correlated (r=-0.073; P<0.05) with aquaporin-4 expression. Reduction of insulin-like growth factor 1 and aquaporin-4, but upregulation of matrix metalloproteinase-9 expression were also found in the primary astrocyte cultures derived from ABCA1(-B/-B) mice. Cultured primary cortical neurons derived from C57BL/6 wild-type mice with ABCA1(-B/-B) astrocyte-conditioned medium exhibited decreased neurite outgrowth compared with culture with ABCA1(fl/fl) astrocyte-conditioned medium. ABCA1(-B/-B) primary cortical neurons show significantly decreased neurite outgrowth, which was attenuated by insulin-like growth factor 1 treatment. We demonstrate that brain ABCA1 deficiency increases BBB leakage, WM/axonal damage, and functional deficits after stroke. Concomitant reduction of insulin-like growth factor 1 and upregulation of matrix metalloproteinase-9 may contribute to brain ABCA1 deficiency

  10. The Effects of Rope Training on Lymphocyte ABCA1 Expression, Plasma ApoA-I and HDL-c in Boy Adolescents

    PubMed Central

    Ghorbanian, Bahloul; Ravassi, Aliasghar; Kordi, Mohammad Reza; Hedayati, Mahdi

    2013-01-01

    Background Early obesity and its transfer to the adulthood, increases likelihood incidence of coronary artery disease (CAD). ATP-binding cassette transporter (ABCA1) as a member of the ABC transporters family plays a crucial role in reverse cholesterol transport and CAD prevention. Objective The current study aimed to investigate ABCA1 expression in lymphocytes, plasma apolipoprotein A-I and HDL-C in response to eight-week interval endurance rope training in overweight and obese boy adolescents. Patients and Methods Thirty students (17.3 ± 1.1 yr, 85.73 ± 11.68 kg and 28.41 ± 2.36 kg / m²) volunteered and were randomly assigned into training (n= 15) and control (n = 15) groups. Exercise protocol was interval endurance rope training (8 wk, 4 d/wk and 40 min/d). Cell hemolysis and sensitive Elisa method was used for Lymphocyte ABAC1 protein expression.t-test was employed. Results The independent-samples T-Test results showed that after 8 weeks IERT, the levels of lymphocyte ABCA1 expression (P = 0/001) and VO2max(P = 0/001) significantly increased and plasma levels of TG (P = 0.017), TC (P = 0.001), LDL-c/HDL-c (P = 0.026),TC/HDL-c (P = 0.002) and measures of BF% (P = 0/015) and BMI (P = 0.042) as anthropometric indicators significantly decreased. Changes of other variables such as increase in ApoA-I, HDL-c and decrease in LDL-c, body weight, were not significant. Conclusions The findings of this study proved that eight-week interval endurance rope training can have positive effects on lymphocyte ABCA1 protein expression (as gatekeeper of reverse cholesterol process) and lipid profiles among overweight and obese boy adolescents. PMID:23825977

  11. The ABCA1 Gene R230C Variant Is Associated with Decreased Risk of Premature Coronary Artery Disease: The Genetics of Atherosclerotic Disease (GEA) Study

    PubMed Central

    Villarreal-Molina, Teresa; Posadas-Romero, Carlos; Romero-Hidalgo, Sandra; Antúnez-Argüelles, Erika; Bautista-Grande, Araceli; Vargas-Alarcón, Gilberto; Kimura-Hayama, Eric; Canizales-Quinteros, Samuel; Juárez-Rojas, Juan Gabriel; Posadas-Sánchez, Rosalinda; Cardoso-Saldaña, Guillermo; Medina-Urrutia, Aída; González-Salazar, María del Carmen; Martínez-Alvarado, Rocío; Jorge-Galarza, Esteban; Carnevale, Alessandra

    2012-01-01

    Background ABCA1 genetic variation is known to play a role in HDL-C levels and various studies have also implicated ABCA1 variation in cardiovascular risk. The functional ABCA1/R230C variant is frequent in the Mexican population and has been consistently associated with low HDL-C concentrations. Although it has been associated with other cardiovascular risk factors such as obesity and type 2 diabetes mellitus, it is not known whether it is associated with coronary artery disease (CAD). Aim The purpose of the study was to analyze whether the ABCA1/R230C variant is associated with premature CAD in a case-control association study (GEA or Genetics of Atherosclerotic Disease), and to explore whether BMI modulates the effect of the C230 allele on other metabolic traits using a population-based design. Results The C230 allele was significantly associated with both lower HDL-C levels and a lower risk of premature CAD as compared to controls (OR = 0.566; Padd = 1.499×10−5). In addition, BMI modulated the effect of R230C on body fat distribution, as the correlation between BMI and visceral to subcutaneous adipose tissue (a metric of the propensity to store fat viscerally as compared to subcutaneously) was negative in RR homozygous individuals, but positive in premenopausal women bearing the C230 allele, with a statistically significant interaction (P = 0.005). BMI-R230C interaction was also significant for triglyceride levels in women regardless of their menopausal status (P = 0.036). Conclusion This is the first study assessing the effect of the R230C/ABCA1 variant in remature CAD. C230 was associated with both decreased HDL-C levels and a lower risk of premature CAD, and gender-specific BMI-R230C interactions were observed for different metabolic traits. These interactions may help explain inconsistencies in associations, and underscore the need to further analyze interactions of this functional and frequent variant with diet, exercise and other

  12. Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoAI-dependent efflux stimulated by an internal promoter containing liver X receptor response elements in intron 1.

    PubMed

    Singaraja, R R; Bocher, V; James, E R; Clee, S M; Zhang, L H; Leavitt, B R; Tan, B; Brooks-Wilson, A; Kwok, A; Bissada, N; Yang, Y Z; Liu, G; Tafuri, S R; Fievet, C; Wellington, C L; Staels, B; Hayden, M R

    2001-09-07

    By using BAC transgenic mice, we have shown that increased human ABCA1 protein expression results in a significant increase in cholesterol efflux in different tissues and marked elevation in high density lipoprotein (HDL)-cholesterol levels associated with increases in apoAI and apoAII. Three novel ABCA1 transcripts containing three different transcription initiation sites that utilize sequences in intron 1 have been identified. In BAC transgenic mice there is an increased expression of ABCA1 protein, but the distribution of the ABCA1 product in different cells remains similar to wild type mice. An internal promoter in human intron 1 containing liver X response elements is functional in vivo and directly contributes to regulation of the human ABCA1 gene in multiple tissues and to raised HDL cholesterol, apoAI, and apoAII levels. A highly significant relationship between raised protein levels, increased efflux, and level of HDL elevation is evident. These data provide proof of the principle that increased human ABCA1 efflux activity is associated with an increase in HDL levels in vivo.

  13. Increased maternal and fetal cholesterol efflux capacity and placental CYP27A1 expression in preeclampsia.

    PubMed

    Mistry, Hiten D; Kurlak, Lesia O; Mansour, Yosef T; Zurkinden, Line; Mohaupt, Markus G; Escher, Geneviève

    2017-06-01

    Preeclampsia is a pregnancy-specific condition that leads to increased cardiovascular risk in later life. A decrease in cholesterol efflux capacity is linked to CVD. We hypothesized that in preeclampsia there would be a disruption of maternal/fetal plasma to efflux cholesterol, as well as differences in the concentrations of both placental sterol 27-hydroxylase (CYP27A1) and apoA1 binding protein (AIBP). Total, HDL-, and ABCA1-mediated cholesterol effluxes were performed with maternal and fetal plasma from women with preeclampsia and normotensive controls (both n = 17). apoA1 and apoE were quantified by chemiluminescence, and 27-hydroxycholesterol (27-OHC) by GC-MS. Immunohistochemistry was used to determine placental expression/localization of CYP27A1, AIBP, apoA1, apoE, and SRB1. Maternal and fetal total and HDL-mediated cholesterol efflux capacities were increased in preeclampsia (by 10-20%), but ABCA1-mediated efflux was decreased (by 20-35%; P < 0.05). Maternal and fetal apoE concentrations were higher in preeclampsia. Fetal plasma 27-OHC levels were decreased in preeclamptic samples (P < 0.05). Placental protein expression of both CYP27A1 and AIBP were localized around fetal vessels and significantly increased in preeclampsia (P = 0.04). Placental 27-OHC concentrations were also raised in preeclampsia (P < 0.05). Increased HDL-mediated cholesterol efflux capacity and placental CYP27A1/27-OHC could be a rescue mechanism in preeclampsia, to remove cholesterol from cells to limit lipid peroxidation and increase placental angiogenesis. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Protective Effects of Platycodin D on Lipopolysaccharide-Induced Acute Lung Injury by Activating LXRα–ABCA1 Signaling Pathway

    PubMed Central

    Hu, Xiaoyu; Fu, Yunhe; Lu, Xiaojie; Zhang, Zecai; Zhang, Wenlong; Cao, Yongguo; Zhang, Naisheng

    2017-01-01

    The purpose of this study was to investigate the protective effects of platycodin D (PLD) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and clarify the possible mechanism. An LPS-induced ALI model was used to confirm the anti-inflammatory activity of PLD in vivo. The A549 lung epithelial cells were used to investigate the molecular mechanism and targets of PLD in vitro. In vivo, the results showed that PLD significantly attenuated lung histopathologic changes, myeloperoxidase activity, and pro-inflammatory cytokines levels, including TNF-α, IL-1β, and IL-6. In vitro, PLD inhibited LPS-induced IL-6 and IL-8 production in LPS-stimulated A549 lung epithelial cells. Western blot analysis showed that PLD suppressed LPS-induced NF-κB and IRF3 activation. Moreover, PLD did not act though affecting the expression of TLR4. We also showed that PLD disrupted the formation of lipid rafts by depleting cholesterol and prevented LPS-induced TLR4 trafficking to lipid rafts, thereby blocking LPS-induced inflammatory response. Finally, PLD activated LXRα–ABCA1-dependent cholesterol efflux. Knockdown of LXRα abrogated the anti-inflammatory effects of PLD. The anti-inflammatory effects of PLD was associated with upregulation of the LXRα–ABCA1 pathway, which resulted in disrupting lipid rafts by depleting cholesterol and reducing translocation of TLR4 to lipid rafts. PMID:28096801

  15. FXR-mediated down-regulation of CYP7A1 dominates LXRalpha in long-term cholesterol-fed NZW rabbits.

    PubMed

    Xu, Guorong; Li, Hai; Pan, Lu-Xing; Shang, Quan; Honda, Akira; Ananthanarayanan, M; Erickson, Sandra K; Shneider, Benjamin L; Shefer, Sarah; Bollineni, Jaya; Forman, Barry M; Matsuzaki, Yasushi; Suchy, Frederick J; Tint, G Stephen; Salen, Gerald

    2003-10-01

    We investigated how cholesterol feeding regulates cholesterol 7alpha-hydroxylase (CYP7A1) via the nuclear receptors farnesoid X receptor (FXR) and liver X receptor alpha (LXRalpha) in New Zealand white rabbits. After 1 day of 2% cholesterol feeding, when the bile acid pool size had not expanded, mRNA levels of the FXR target genes short-heterodimer partner (SHP) and sterol 12alpha-hydroxylase (CYP8B) were unchanged, indicating that FXR activation remained constant. In contrast, the mRNA levels of the LXRalpha target genes ATP binding cassette transporter A1 (ABCA1) and cholesteryl ester transfer protein (CETP) increased 5-fold and 2.3-fold, respectively, associated with significant increases in hepatic concentrations of oxysterols. Activity and mRNA levels of CYP7A1 increased 2.4 times and 2.2 times, respectively. After 10 days of cholesterol feeding, the bile acid pool size increased nearly 2-fold. SHP mRNA levels increased 4.1-fold while CYP8B declined 64%. ABCA1 mRNA rose 8-fold and CETP mRNA remained elevated. Activity and mRNA of CYP7A1 decreased 60% and 90%, respectively. Feeding cholesterol for 1 day did not enlarge the ligand pool size or change FXR activation, while LXRalpha was activated highly secondary to increased hepatic oxysterols. As a result, CYP7A1 was up-regulated. After 10 days of cholesterol feeding, the bile acid (FXR ligand) pool size increased, which activated FXR and inhibited CYP7A1 despite continued activation of LXRalpha. Thus, in rabbits, when FXR and LXRalpha are activated simultaneously, the inhibitory effect of FXR overrides the stimulatory effect of LXRalpha to suppress CYP7A1 mRNA expression.

  16. Evidence that chromium modulates cellular cholesterol homeostasis and ABCA1 functionality impaired by hyperinsulinemia--brief report.

    PubMed

    Sealls, Whitney; Penque, Brent A; Elmendorf, Jeffrey S

    2011-05-01

    Trivalent chromium (Cr3+) is an essential micronutrient. Findings since the 1950s suggest that Cr3+ might benefit cholesterol homeostasis. Here we present mechanistic evidence in support of this role of Cr3+. High-density lipoprotein cholesterol generation in 3T3-L1 adipocytes, which are rendered ineffective by the hyperinsulinemia that is known to accompany disorders of lipid metabolism, was corrected by Cr3+. Mechanistically, Cr3+ reversed hyperinsulinemia-induced cellular cholesterol accrual and associated defects in cholesterol transporter ATP-binding cassette transporter-A1 trafficking and apolipoprotein A1-mediated cholesterol efflux. Moreover, direct activation of AMP-activated protein kinase, which is known to be activated by Cr3+, or inhibition of hexosamine biosynthesis pathway activity, which is known to be elevated by hyperinsulinemia, mimics Cr3+ action. These findings suggest a mechanism of Cr3+ action that fits with long-standing claims of its role in cholesterol homeostasis. Furthermore, these data imply a mechanistic basis for the coexistence of dyslipidemia with hyperinsulinemia.

  17. Heart ABCA1 and PPAR- α Genes Expression Responses in Male rats: Effects of High Intensity Treadmill Running Training and Aqueous Extraction of Black Crataegus-Pentaegyna.

    PubMed

    Ghanbari-Niaki, Abbass; Ghanbari-Abarghooi, Safieyh; Rahbarizadeh, Fatemeh; Zare-Kookandeh, Navabeh; Gholizadeh, Monireh; Roudbari, Fatemeh; Zare-Kookandeh, Asghar

    2013-11-01

    Heart as a high metabolic and aerobic tissue is consuming lipid as a fuel for its energy provision at rest during light and moderate exercise, except when lactate level is higher in blood circulation. It has been shown that any type of regular exercise and crataegus species would improve cardiovascular function and minimizes several risk factors via stimulating lipid metabolism by acting on enzymes and genes expression such as ABCA1 and PPAR α which are involving in this process. Twenty Wistar male rats (4-6 weeks old, 140-173 g weight) were used. Animals were randomly classified into training (n = 10) and control (n = 10) groups and then divided into saline-control (SC), saline-training (ST), Crataegus-Pentaegyna -control (CPC), and Crataegus-Pentaegyna -training (CPT) groups. Training groups have performed a high-intensity running program (at 34 m/min (0% grade), 60 min/day, 5 days/week) on a motor-driven treadmill for eight weeks. Animals were orally fed with Crataegus-Pentaegyna extraction (500mg/kg) and saline solution for six weeks. Seventy- two hours after the last training session, rats were sacrificed, hearts were excised, cleaned and immediately frozen in liquid nitrogen and stored at -80 °C until RNA extraction. Plasma also was collected for plasma variable measurements. Statistical analysis was performed using a two way analysis of variance, and significance was accepted at P < 0.05. A non-significant (P < 0.4, P < 0.79, respectively) increase in ABCA1 and PPAR α genes expression was accompanied by a significant (P < 0.01, P < 0.04, P < 0.04, respectively) reduction in TC, TG, and VLDL-C levels in Crataegus-Pentaegyna groups. Our findings show that a high intensity treadmill running was able to express ABCA1 and PPAR α in rat heart. Data also possibly indicate that the Crataeguse-Pentaegyna supplementation solely could mimic training effect on the mentioned genes and lipid profiles via different mechanism(s).

  18. Heart ABCA1 and PPAR- α Genes Expression Responses in Male rats: Effects of High Intensity Treadmill Running Training and Aqueous Extraction of Black Crataegus-Pentaegyna

    PubMed Central

    Ghanbari-Niaki, Abbass; Ghanbari-Abarghooi, Safieyh; Rahbarizadeh, Fatemeh; Zare-Kookandeh, Navabeh; Gholizadeh, Monireh; Roudbari, Fatemeh; Zare-Kookandeh, Asghar

    2013-01-01

    Introduction: Heart as a high metabolic and aerobic tissue is consuming lipid as a fuel for its energy provision at rest during light and moderate exercise, except when lactate level is higher in blood circulation. It has been shown that any type of regular exercise and crataegus species would improve cardiovascular function and minimizes several risk factors via stimulating lipid metabolism by acting on enzymes and genes expression such as ABCA1 and PPAR α which are involving in this process. Materials and Methods: Twenty Wistar male rats (4-6 weeks old, 140-173 g weight) were used. Animals were randomly classified into training (n = 10) and control (n = 10) groups and then divided into saline-control (SC), saline-training (ST), Crataegus-Pentaegyna -control (CPC), and Crataegus-Pentaegyna -training (CPT) groups. Training groups have performed a high-intensity running program (at 34 m/min (0% grade), 60 min/day, 5 days/week) on a motor-driven treadmill for eight weeks. Animals were orally fed with Crataegus-Pentaegyna extraction (500mg/kg) and saline solution for six weeks. Seventy- two hours after the last training session, rats were sacrificed, hearts were excised, cleaned and immediately frozen in liquid nitrogen and stored at -80 °C until RNA extraction. Plasma also was collected for plasma variable measurements. Statistical analysis was performed using a two way analysis of variance, and significance was accepted at P < 0.05. Results: A non-significant (P < 0.4, P < 0.79, respectively) increase in ABCA1 and PPAR α genes expression was accompanied by a significant (P < 0.01, P < 0.04, P < 0.04, respectively) reduction in TC, TG, and VLDL-C levels in Crataegus-Pentaegyna groups. Conclusions: Our findings show that a high intensity treadmill running was able to express ABCA1 and PPAR α in rat heart. Data also possibly indicate that the Crataeguse-Pentaegyna supplementation solely could mimic training effect on the mentioned genes and lipid profiles via

  19. Kaempferol suppresses lipid accumulation in macrophages through the downregulation of cluster of differentiation 36 and the upregulation of scavenger receptor class B type I and ATP-binding cassette transporters A1 and G1.

    PubMed

    Li, Xiu-Ying; Kong, Ling-Xi; Li, Juan; He, Hai-Xia; Zhou, Yuan-Da

    2013-02-01

    The accumulation of foam cells in atherosclerotic lesions is a hallmark of early-stage atherosclerosis. Kaempferol has been shown to inhibit oxidized low-density lipoprotein (oxLDL) uptake by macrophages; however, the underlying molecular mechanisms are not yet fully investigated. In this study, we shown that treatment with kaempferol markedly suppresses oxLDL-induced macrophage foam cell formation, which occurs due to a decrease in lipid accumulation and an increase in cholesterol efflux from THP-1-derived macrophages. Additionally, the kaempferol treatment of macrophages led to the downregulation of cluster of differentiation 36 (CD36) protein levels, the upregulation of ATP-binding cassette (ABC) transporter A1 (ABCA1), scavenger receptor class B type I (SR-BI) and ABCG1 protein levels, while no effects on scavenger receptor A (SR-A) expression were observed. Kaempferol had similar effects on the mRNA and protein expression of ABCA1, SR-BI, SR-A, CD36 and ABCG1. The reduced CD36 expression following kaempferol treatment involved the inhibition of c-Jun-activator protein-1 (AP-1) nuclear translocation. The inhibition of AP-1 using the inhibitor, SP600125, confirmed this involvement, as the AP-1 inhibition significantly augmented the kaempferol-induced reduction in CD36 expression. Accordingly, the kaempferol-mediated suppression of lipid accumulation in macrophages was also augmented by SP600125. The increased expression of ABCA1, SR-BI and ABCG1 following kaempferol treatment was accompanied by the enhanced protein expression of heme oxygenase-1 (HO-1). This increase was reversed following the knockdown of the HO-1 gene using small hairpin RNA (shRNA). Moreover, the kaempferol-mediated attenuation of lipid accumulation and the promotion of cholesterol efflux was also inhibited by HO-1 shRNA. In conclusion, the c-Jun-AP‑1-dependent downregulation of CD36 and the HO-1-dependent upregulation of ABCG1, SR-BI and ABCA1 may mediate the beneficial effects of

  20. The ATP-binding cassette transporter A1 regulates phosphoantigen release and Vγ9Vδ2 T cell activation by dendritic cells

    PubMed Central

    Castella, Barbara; Kopecka, Joanna; Sciancalepore, Patrizia; Mandili, Giorgia; Foglietta, Myriam; Mitro, Nico; Caruso, Donatella; Novelli, Francesco; Riganti, Chiara; Massaia, Massimo

    2017-01-01

    Vγ9Vδ2 T cells are activated by phosphoantigens, such as isopentenyl pyrophosphate (IPP), which is generated in the mevalonate pathway of antigen-presenting cells. IPP is released in the extracellular microenvironment via unknown mechanisms. Here we show that the ATP-binding cassette transporter A1 (ABCA1) mediates extracellular IPP release from dendritic cells (DC) in cooperation with apolipoprotein A-I (apoA-I) and butyrophilin-3A1. IPP concentrations in the supernatants are sufficient to induce Vγ9Vδ2 T cell proliferation after DC mevalonate pathway inhibition with zoledronic acid (ZA). ZA treatment increases ABCA1 and apoA-I expression via IPP-dependent LXRα nuclear translocation and PI3K/Akt/mTOR pathway inhibition. These results close the mechanistic gap in our understanding of extracellular IPP release from DC and provide a framework to fine-tune Vγ9Vδ2 T cell activation via mevalonate and PI3K/Akt/mTOR pathway modulation. PMID:28580927

  1. RAGE Suppresses ABCG1-Mediated Macrophage Cholesterol Efflux in Diabetes

    PubMed Central

    Daffu, Gurdip; Shen, Xiaoping; Senatus, Laura; Thiagarajan, Devi; Abedini, Andisheh; Hurtado del Pozo, Carmen; Rosario, Rosa; Song, Fei; Friedman, Richard A.; Ramasamy, Ravichandran

    2015-01-01

    Diabetes exacerbates cardiovascular disease, at least in part through suppression of macrophage cholesterol efflux and levels of the cholesterol transporters ATP binding cassette transporter A1 (ABCA1) and ABCG1. The receptor for advanced glycation end products (RAGE) is highly expressed in human and murine diabetic atherosclerotic plaques, particularly in macrophages. We tested the hypothesis that RAGE suppresses macrophage cholesterol efflux and probed the mechanisms by which RAGE downregulates ABCA1 and ABCG1. Macrophage cholesterol efflux to apolipoprotein A1 and HDL and reverse cholesterol transport to plasma, liver, and feces were reduced in diabetic macrophages through RAGE. In vitro, RAGE ligands suppressed ABCG1 and ABCA1 promoter luciferase activity and transcription of ABCG1 and ABCA1 through peroxisome proliferator–activated receptor-γ (PPARG)–responsive promoter elements but not through liver X receptor elements. Plasma levels of HDL were reduced in diabetic mice in a RAGE-dependent manner. Laser capture microdissected CD68+ macrophages from atherosclerotic plaques of Ldlr−/− mice devoid of Ager (RAGE) displayed higher levels of Abca1, Abcg1, and Pparg mRNA transcripts versus Ager-expressing Ldlr−/− mice independently of glycemia or plasma levels of total cholesterol and triglycerides. Antagonism of RAGE may fill an important therapeutic gap in the treatment of diabetic macrovascular complications. PMID:26253613

  2. Protein Kinase C Is Involved in the Induction of ATP-Binding Cassette Transporter A1 Expression by Liver X Receptor/Retinoid X Receptor Agonist in Human Macrophages.

    PubMed

    Huwait, Etimad A; Singh, Nishi N; Michael, Daryn R; Davies, Thomas S; Moss, Joe W E; Ramji, Dipak P

    2015-05-07

    The transcription of the ATP-binding cassette transporter A1 (ABCA1) gene, which plays a key anti-atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) in the LXRs-mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have therefore investigated a potential role for PKC in the action of LXR/RXR agonist 22-(R)-hydroxycholesterol (22-(R)-HC)/9-cis-retinoic acid (9cRA) in THP-1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein-1 (AP-1) DNA binding activity in macrophages treated with 22-(R)-HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype-specific inhibitors. These studies therefore reveal a potentially important role for PKC in the action of 22-(R)-HC and 9cRA in human macrophages. This article is protected by copyright. All rights reserved.

  3. Protein Kinase C Is Involved in the Induction of ATP-Binding Cassette Transporter A1 Expression by Liver X Receptor/Retinoid X Receptor Agonist in Human Macrophages.

    PubMed

    Huwait, Etimad A; Singh, Nishi N; Michael, Daryn R; Davies, Thomas S; Moss, Joe W E; Ramji, Dipak P

    2015-09-01

    The transcription of the ATP-binding cassette transporter A1 (ABCA1) gene, which plays a key anti-atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) in the LXRs-mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have, therefore, investigated a potential role for PKC in the action of LXR/RXR agonist 22-(R)-hydroxycholesterol (22-(R)-HC)/9-cis-retinoic acid (9cRA) in THP-1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein-1 (AP-1) DNA binding activity in macrophages treated with 22-(R)-HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype-specific inhibitors. These studies, therefore, reveal a potentially important role for PKC in the action of 22-(R)-HC and 9cRA in human macrophages.

  4. [Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis].

    PubMed

    Demina, E P; Miroshnikova, V V; Schwarzman, A L

    2016-01-01

    Atherosclerosis is one of the most common causes of death worldwide. Epidemiology studies firmly established an inverse relationship between atherogenesis and distorted lipid metabolism, in particular, higher levels of total cholesterol, an accumulation of CH-laden macrophages (foam cells), and lower plasma levels of antiatherogenic high density lipoprotein (HDL). It is believed that the reverse cholesterol transport, a process that removes excess cholesterol from peripheral tissues/cells including macrophages to circulating HDL, is one of the main mechanisms responsible for anti-atherogenic properties of HDL. The key proteins of reverse cholesterol transport-ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1)-mediate the cholesterol efflux from macrophages and prevent their transformation into foam cells. This review focuses on the role of ABC transporters A1 and G1 in the pathogenesis of atherosclerosis.

  5. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor.

    PubMed

    de Aguiar Vallim, Thomas Q; Tarling, Elizabeth J; Kim, Tammy; Civelek, Mete; Baldán, Ángel; Esau, Christine; Edwards, Peter A

    2013-06-07

    The bile acid receptor farnesoid X receptor (FXR) regulates many aspects of lipid metabolism by variouscomplex and incompletely understood molecular mechanisms. We set out to investigate the molecular mechanisms for FXR-dependent regulation of lipid and lipoprotein metabolism. To identify FXR-regulated microRNAs that were subsequently involved in regulating lipid metabolism. ATP binding cassette transporter A1 (ABCA1) is a major determinant of plasma high-density lipoprotein (HDL)-cholesterol levels. Here, we show that activation of the nuclear receptor FXR in vivo increases hepatic levels of miR-144, which in turn lowers hepatic ABCA1 and plasma HDL levels. We identified 2 complementary sequences to miR-144 in the 3' untranslated region of ABCA1 mRNA that are necessary for miR-144-dependent regulation. Overexpression of miR-144 in vitro decreased both cellular ABCA1 protein and cholesterol efflux to lipid-poor apolipoprotein A-I protein, whereas overexpression in vivo reduced hepatic ABCA1 protein and plasma HDL-cholesterol. Conversely, silencing miR-144 in mice increased hepatic ABCA1 protein and HDL-cholesterol. In addition, we used tissue-specific FXR-deficient mice to show that induction of miR-144 and FXR-dependent hypolipidemia requires hepatic, but not intestinal, FXR. Finally, we identified functional FXR response elements upstream of the miR-144 locus, consistent with direct FXR regulation. We have identified a novel pathway involving FXR, miR-144, and ABCA1 that together regulate plasma HDL-cholesterol.

  6. HDL-cholesterol concentration in pregnant Chinese Han women of late second trimester associated with genetic variants in CETP, ABCA1, APOC3, and GALNT2.

    PubMed

    Cui, Mingxuan; Li, Wei; Ma, Liangkun; Ping, Fan; Liu, Juntao; Wu, Xueyan; Mao, Jiangfeng; Wang, Xi; Nie, Min

    2017-08-22

    To investigate whether HDL-C level in pregnant Chinese Han women of late second trimester correlated with loci in high-density lipoprotein-cholesterol (HDL-C)-related genes found in genome-wide association studies (GWAS). Seven single-nucleotide polymorphisms (rs3764261 in CETP, rs1532085 in LIPC, rs7241918 in LIPG, rs1883025 in ABCA1, rs4225 in APOC3, rs1059611 in LPL, and rs16851339 in GALNT2) were genotyped using the Sequenom MassArray system for 1,884 pregnant women. The following polymorphisms were statistically associated with HDL-C level after adjusting for age, gestational week, pre-pregnancy BMI and state of GDM or HOMAIR: (i) rs3764261 (b = -0.055 mmol/L, 95% CI -0.101 to -0.008, p = 0.021), (ii) rs1883025 (b = -0.054 mmol/L, 95% CI -0.097 to -0.012, p = 0.013), (iii) rs4225 (b = -0.071 mmol/L, 95% CI -0.116 to -0.027, p = 1.79E-3) and (iv) rs16851339 (b = -0.064 mmol/L, 95% CI -0.120 to -0.008, p = 0.025). The more risk alleles the pregnant women have, the lower the plasma HDL-C levels of the subjects are. Several risk alleles found to be related to HDL-C in GWAS are also associated with HDL-C levels in pregnant Chinese Han women and these risk loci contribute additively to low HDL-C levels.

  7. Annexin A1 Complex Mediates Oxytocin Vesicle Transport

    PubMed Central

    Makani, Vishruti; Sultana, Rukhsana; Sie, Khin Sander; Orjiako, Doris; Tatangelo, Marco; Dowling, Abigail; Cai, Jian; Pierce, William; Butterfield, D. Allan; Hill, Jennifer; Park, Joshua

    2013-01-01

    Oxytocin is a major neuropeptide that modulates the brain functions involved in social behavior and interaction. Despite of the importance of oxytocin for neural control of social behavior, little is known about the molecular mechanism(s) by which oxytocin secretion in the brain is regulated. Pro-oxytocin is synthesized in the cell bodies of hypothalamic neurons in the supraoptic and paraventricular nuclei and processed to a 9-amino-acid mature form during post-Golgi transport to the secretion sites at the axon terminals and somatodendritic regions. Oxytocin secreted from the somatodendritic regions diffuses throughout the hypothalamus and its neighboring brain regions. Some oxytocin-positive axons innervate and secrete oxytocin to the brain regions distal to the hypothalamus. Brain oxytocin binds to its receptors in the brain regions involved in social behavior. Oxytocin is also secreted from the axon terminal at the posterior pituitary gland into the blood circulation. We have discovered a new molecular complex consisting of annexin A1 (ANXA1), A-kinase anchor protein 150 (AKAP150), and microtubule motor, that controls the distribution of oxytocin vesicles between the axon and the cell body in a protein kinase A (PKA)- and protein kinase C (PKC)-sensitive manner. ANXA1 showed significant co-localization with oxytocin vesicles. Activation of PKA enhanced the association of kinesin-2 with ANXA1, thus increasing the axon-localization of oxytocin vesicles. Conversely, activation of PKC decreased the binding of kinesin-2 to ANXA1, thus attenuating the axon-localization of oxytocin vesicles. Our study suggests that ANXA1 complex coordinates the actions of PKA and PKC to control the distribution of oxytocin vesicles between the axon and the cell body. PMID:24118254

  8. Novel association of the R230C variant of the ABCA1 gene with high triglyceride levels and low high-density lipoprotein cholesterol levels in Mexican school-age children with high prevalence of obesity.

    PubMed

    Gamboa-Meléndez, Marco Alberto; Galindo-Gómez, Carlos; Juárez-Martínez, Liliana; Gómez, F Enrique; Diaz-Diaz, Eulises; Ávila-Arcos, Marco Antonio; Ávila-Curiel, Abelardo

    2015-08-01

    Metabolic syndrome (MetS) is a disorder that includes a cluster of several risk factors for the development of type 2 diabetes and cardiovascular disease. The R230C variant of the ABCA1 gene has been associated with low HDL-cholesterol in several studies, but its association with MetS in children remains to be determined. The aim of this study was to analyze the association of the R230C variant with MetS and other metabolic traits in school-aged Mexican children. The study was performed in seven urban primary schools in the State of Mexico. Four hundred thirty-two Mexican school-age children 6-13 years old were recruited. MetS was identified using the International Diabetes Federation definition. The R230C variant of the ABCA1 gene was genotyped to seek associations with MetS and other metabolic traits. The prevalence of MetS was 29% in children aged 10-13 years. The R230C variant was not associated with MetS (OR = 1.65; p = 0.139). Furthermore, in the whole population, the R230C variant was associated with low HDL-cholesterol levels (β coefficient = -3.28, p <0.001). Interestingly, in the total population we found a novel association of this variant with high triglyceride levels (β coefficient = 14.34; p = 0.027). We found a new association of the R230C variant of the ABCA1 gene with high triglyceride levels. Our findings also replicate the association of this variant with low HDL-cholesterol levels in Mexican school-age children. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.

  9. ABCG1-mediated generation of extracellular cholesterol microdomains[S

    PubMed Central

    Freeman, Sebastian R.; Jin, Xueting; Anzinger, Joshua J.; Xu, Qing; Purushothaman, Sonya; Fessler, Michael B.; Addadi, Lia; Kruth, Howard S.

    2014-01-01

    Previous studies have demonstrated that the ATP-binding cassette transporters (ABC)A1 and ABCG1 function in many aspects of cholesterol efflux from macrophages. In this current study, we continued our investigation of extracellular cholesterol microdomains that form during enrichment of macrophages with cholesterol. Human monocyte-derived macrophages and mouse bone marrow-derived macrophages, differentiated with macrophage colony-stimulating factor (M-CSF) or granulocyte macrophage colony-stimulation factor (GM-CSF), were incubated with acetylated LDL (AcLDL) to allow for cholesterol enrichment and processing. We utilized an anti-cholesterol microdomain monoclonal antibody to reveal pools of unesterified cholesterol, which were found both in the extracellular matrix and associated with the cell surface, that we show function in reverse cholesterol transport. Coincubation of AcLDL with 50 μg/ml apoA-I eliminated all extracellular and cell surface-associated cholesterol microdomains, while coincubation with the same concentration of HDL only removed extracellular matrix-associated cholesterol microdomains. Only at an HDL concentration of 200 µg/ml did HDL eliminate the cholesterol microdomains that were cell-surface associated. The deposition of cholesterol microdomains was inhibited by probucol, but it was increased by the liver X receptor (LXR) agonist TO901317, which upregulates ABCA1 and ABCG1. Extracellular cholesterol microdomains did not develop when ABCG1-deficient mouse bone marrow-derived macrophages were enriched with cholesterol. Our findings show that generation of extracellular cholesterol microdomains is mediated by ABCG1 and that reverse cholesterol transport occurs not only at the cell surface but also within the extracellular space. PMID:24212237

  10. Associations of common variants in the SLC16A11, TCF7L2, and ABCA1 genes with pediatric-onset type 2 diabetes and related glycemic traits in families: A case-control and case-parent trio study.

    PubMed

    Miranda-Lora, América L; Cruz, Miguel; Molina-Díaz, Mario; Gutiérrez, Jorge; Flores-Huerta, Samuel; Klünder-Klünder, Miguel

    2017-01-19

    There is evidence of associations of single-nucleotide polymorphisms (SNPs) with type 2 diabetes (T2D) and related glycemic traits in adults, but there is a little information about such associations in youths. The aim of this study was to evaluate the associations of SNPs in the TCF7L2, SLC16A11, and ABCA1 genes with T2D and related glycemic traits in Mexican children and adolescents. A total of 99 families with children with T2D (n = 327) and 83 families with children without the disease (n = 212). The associations between SNPs of TCF7L2 (rs7903146 and rs12255372), SLC16A11 (rs13342232), and ABCA1 (rs9282541) with T2D were analyzed. We also evaluated the effects of SNPs on quantitatively related glycemic traits after adjusting for age, sex, and the presence of overweight or obesity. The G allele of SLC16A1 /rs13342232 was associated with T2D in adults (adjusted odds ratio [ORadj] = 1.89; 95% confidence interval [CI]: 1.18; 3.06) and children (ORadj = 1.94; 95% CI: 1.25; 3.00). In addition, the combined analysis of case-control and case-parent trio was also significant (OR = 1.43; 95% CI: 1.12; 1.74). After adjusting for known confounding factors, we found a significant association between TCF7L2/rs122555372 and C-peptide (β = -0.76, P = .005) in patients with diabetes and between fasting glucose (β = 2.05, P = .039) and homeostatic model assessment of β-cell function (β = -32.14, P = .025) levels in individuals without diabetes. The results suggest that SLC16A1 /rs13342232 might be involved in the risk of pediatric-onset T2D in Mexican families. Moreover, TCF7L2/rs122555372 was associated with pancreatic reserve in patients with T2D and with fasting glucose and β-cell function in individuals without diabetes. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Interplay between the prostaglandin transporter OATP2A1 and prostaglandin E2-mediated cellular effects.

    PubMed

    Bujok, Krystyna; Glaeser, Hartmut; Schuh, Wolfgang; Rau, Tilman T; Schmidt, Ingrid; Fromm, Martin F; Mandery, Kathrin

    2015-03-01

    Prostaglandins such as prostaglandin E2 (PGE2) play a pivotal role in physiological and pathophysiological pathways in gastric mucosa. Little is known about the interrelation of the prostaglandin E (EP) receptors with the prostaglandin transporter OATP2A1 in the gastric mucosa and gastric carcinoma. Therefore, we first investigated the expression of OATP2A1 and EP4 in normal and carcinoma gastric mucosa. Different PGE2-mediated cellular pathways and mechanisms were investigated using human embryonic kidney cells (HEK293) and the human gastric carcinoma cell line AGS stably transfected with OATP2A1. Colocalization and expression of OATP2A1 and EP4 were detected in mucosa of normal gastric tissue and of gastric carcinomas. OATP2A1 reduced the PGE2-mediated cAMP production in HEK293 and AGS cells overexpressing EP4 and OATP2A1. The expression of OATP2A1 in AGS cells resulted in a reduction of [(3)H]-thymidine incorporation which was in line with a higher accumulation of AGS-OATP2A1 cells in S-phase of the cell cycle compared to control cells. In contrast, the expression of OATP2A1 in HEK293 cells had no influence on the distribution in the S-phase compared to control cells. OATP2A1 also diminished the PGE2-mediated expression of interleukin-8 mRNA (IL-8) and hypoxia-inducible-factor 1α (HIF1α) protein in AGS-OATP2A1 cells. The expression of OATP2A1 increased the sensitivity of AGS cells against irinotecan which led to reduced cell viability. Taken together, these data show that OATP2A1 influences PGE2-mediated cellular pathways. Therefore, OATP2A1 needs to be considered as a key determinant for the understanding of the physiology and pathophysiology of prostaglandins in healthy and tumorous gastric mucosa.

  12. An abundant dysfunctional apolipoprotein A1 in human atheroma

    PubMed Central

    Huang, Ying; DiDonato, Joseph A.; Levison, Bruce S.; Schmitt, Dave; Li, Lin; Wu, Yuping; Buffa, Jennifer; Kim, Timothy; Gerstenecker, Gary; Gu, Xiaodong; Kadiyala, Chandra; Wang, Zeneng; Culley, Miranda K.; Hazen, Jennie E.; DiDonato, Anthony J.; Fu, Xiaoming; Berisha, Stela; Peng, Daoquan; Nguyen, Truc; Liang, Shaohong; Chuang, Chia-Chi; Cho, Leslie; Plow, Edward F.; Fox, Paul L.; Gogonea, Valentin; Tang, W.H. Wilson; Parks, John S.; Fisher, Edward A.; Smith, Jonathan D.; Hazen, Stanley L.

    2014-01-01

    Recent studies indicate high density lipoproteins (HDL) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma, are dysfunctional and extensively oxidized by myeloperoxidase (MPO), while in vitro oxidation of apoA1/HDL by MPO impairs its cholesterol acceptor function. We developed a high affinity monoclonal antibody (mAb) that specifically recognizes apoA1/HDL modified by the MPO/H2O2/Cl-system using phage display affinity maturation. An oxindolyl alanine (2-OH-Trp) moiety at tryptophan 72 of apoA1 is the immunogenic epitope. Mutagenesis studies confirm a critical role for apoA1 Trp72 in MPO-mediated inhibition of ABCA1-dependent cholesterol acceptor activity of apoA1 in vitro and in vivo. ApoA1 containing a 2-OH-Trp72 group (oxTrp72-apoA1) is in low abundance within the circulation, but accounts for 20% of the apoA1 in atherosclerotic plaque. OxTrp72-apoA1 recovered from human atheroma or plasma was lipid-poor, virtually devoid of cholesterol acceptor activity, and demonstrated both potent pro-inflammatory activities on endothelial cells and impaired HDL biogenesis activity in vivo. Elevated oxTrp72-apoA1 levels in subjects presenting to a cardiology clinic (n=627) were associated with increased cardiovascular disease risk. Circulating oxTrp72-apoA1 levels may serve as a way to monitor a pro-atherogenic process in the artery wall. PMID:24464187

  13. Association of ATP-Binding Cassette Transporter A1 Gene Polymorphisms in Type 2 Diabetes Mellitus among Malaysians.

    PubMed

    Haghvirdizadeh, Polin; Ramachandran, Vasudevan; Etemad, Ali; Heidari, Farzad; Ghodsian, Nooshin; Bin Ismail, Norzian; Ismail, Patimah

    2015-01-01

    Type 2 diabetes mellitus (T2DM) is a complex polygenic disorder characterized by impaired insulin resistance, insulin secretion, and dysregulation of lipid and protein metabolism with environmental and genetic factors. ATP-binding cassette transporter A1 (ABCA1) gene polymorphisms are reported as the one of the genetic risk factors for T2DM in various populations with conflicting results. This study was conducted based on PCR-HRM to determine the frequency of ABCA1 gene by rs2230806 (R219K), rs1800977 (C69T), and rs9282541 (R230C) polymorphisms Malaysian subjects. A total of 164 T2DM and 165 controls were recruited and their genotypes for ABCA1 gene polymorphisms were determined based on the real time high resolution melting analysis. There was a significant difference between the subjects in terms of age, BMI, FPG, HbA1c, HDL, LDL, and TG (P < 0.05). There was a significant association between HOM of R219K (P = 0.005), among Malaysian subjects; moreover, allele frequency revealed the significant difference in A allele of R219K (P = 0.003). But, there was no significant difference in genotypic and allelic frequencies of C69T and R230C polymorphism. R219K polymorphism of ABCA1 gene can be considered as a genetic risk factor for T2DM subjects among Malaysians.

  14. Association of ATP-Binding Cassette Transporter A1 Gene Polymorphisms in Type 2 Diabetes Mellitus among Malaysians

    PubMed Central

    Haghvirdizadeh, Polin; Etemad, Ali; Heidari, Farzad; Ghodsian, Nooshin; Bin Ismail, Norzian

    2015-01-01

    Background. Type 2 diabetes mellitus (T2DM) is a complex polygenic disorder characterized by impaired insulin resistance, insulin secretion, and dysregulation of lipid and protein metabolism with environmental and genetic factors. ATP-binding cassette transporter A1 (ABCA1) gene polymorphisms are reported as the one of the genetic risk factors for T2DM in various populations with conflicting results. This study was conducted based on PCR-HRM to determine the frequency of ABCA1 gene by rs2230806 (R219K), rs1800977 (C69T), and rs9282541 (R230C) polymorphisms Malaysian subjects. Methods. A total of 164 T2DM and 165 controls were recruited and their genotypes for ABCA1 gene polymorphisms were determined based on the real time high resolution melting analysis. Results. There was a significant difference between the subjects in terms of age, BMI, FPG, HbA1c, HDL, LDL, and TG (P < 0.05). There was a significant association between HOM of R219K (P = 0.005), among Malaysian subjects; moreover, allele frequency revealed the significant difference in A allele of R219K (P = 0.003). But, there was no significant difference in genotypic and allelic frequencies of C69T and R230C polymorphism. Conclusion. R219K polymorphism of ABCA1 gene can be considered as a genetic risk factor for T2DM subjects among Malaysians. PMID:26451383

  15. HDL from apoA1 transgenic mice expressing the 4WF isoform is resistant to oxidative loss of function[S

    PubMed Central

    Berisha, Stela Z.; Brubaker, Greg; Kasumov, Takhar; Hung, Kimberly T.; DiBello, Patricia M.; Huang, Ying; Li, Ling; Willard, Belinda; Pollard, Katherine A.; Nagy, Laura E.; Hazen, Stanley L.; Smith, Jonathan D.

    2015-01-01

    HDL functions are impaired by myeloperoxidase (MPO), which selectively targets and oxidizes human apoA1. We previously found that the 4WF isoform of human apoA1, in which the four tryptophan residues are substituted with phenylalanine, is resistant to MPO-mediated loss of function. The purpose of this study was to generate 4WF apoA1 transgenic mice and compare functional properties of the 4WF and wild-type human apoA1 isoforms in vivo. Male mice had significantly higher plasma apoA1 levels than females for both isoforms of human apoA1, attributed to different production rates. With matched plasma apoA1 levels, 4WF transgenics had a trend for slightly less HDL-cholesterol versus human apoA1 transgenics. While 4WF transgenics had 31% less reverse cholesterol transport (RCT) to the plasma compartment, equivalent RCT to the liver and feces was observed. Plasma from both strains had similar ability to accept cholesterol and facilitate ex vivo cholesterol efflux from macrophages. Furthermore, we observed that 4WF transgenic HDL was partially (∼50%) protected from MPO-mediated loss of function while human apoA1 transgenic HDL lost all ABCA1-dependent cholesterol acceptor activity. In conclusion, the structure and function of HDL from 4WF transgenic mice was not different than HDL derived from human apoA1 transgenic mice. PMID:25561462

  16. Human macrophage cathepsin B-mediated C-terminal cleavage of apolipoprotein A-I at Ser228 severely impairs antiatherogenic capacity.

    PubMed

    Dinnes, Donna Lee M; White, Melanie Y; Kockx, Maaike; Traini, Mathew; Hsieh, Victar; Kim, Mi-Jurng; Hou, Liming; Jessup, Wendy; Rye, Kerry-Anne; Thaysen-Andersen, Morten; Cordwell, Stuart J; Kritharides, Leonard

    2016-12-01

    Apolipoprotein A-I (apoA-I) is the major component of HDL and central to the ability of HDL to stimulate ATP-binding cassette transporter A1 (ABCA1)-dependent, antiatherogenic export of cholesterol from macrophage foam cells, a key player in the pathology of atherosclerosis. Cell-mediated modifications of apoA-I, such as chlorination, nitration, oxidation, and proteolysis, can impair its antiatherogenic function, although it is unknown whether macrophages themselves contribute to such modifications. To investigate this, human monocyte-derived macrophages (HMDMs) were incubated with human apoA-I under conditions used to induce cholesterol export. Two-dimensional gel electrophoresis and Western blot analysis identified that apoA-I is cleaved (∼20-80%) by HMDMs in a time-dependent manner, generating apoA-I of lower MW and isoelectric point. Mass spectrometry analysis identified a novel C-terminal cleavage site of apoA-I between Ser(228)-Phe(229) Recombinant apoA-I truncated at Ser(228) demonstrated profound loss of capacity to solubilize lipid and to promote ABCA1-dependent cholesterol efflux. Protease inhibitors, small interfering RNA knockdown in HMDMs, mass spectrometry analysis, and cathepsin B activity assays identified secreted cathepsin B as responsible for apoA-I cleavage at Ser(228) Importantly, C-terminal cleavage of apoA-I was also detected in human carotid plaque. Cleavage at Ser(228) is a novel, functionally important post-translational modification of apoA-I mediated by HMDMs that limits the antiatherogenic properties of apoA-I.-Dinnes, D. L. M., White, M. Y., Kockx, M., Traini, M., Hsieh, V., Kim, M.-J., Hou, L., Jessup, W., Rye, K.-A., Thaysen-Andersen, M., Cordwell, S. J., Kritharides, L. Human macrophage cathepsin B-mediated C-terminal cleavage of apolipoprotein A-I at Ser(228) severely impairs antiatherogenic capacity. © FASEB.

  17. Collisionally-Mediated Singlet-Triplet Crossing in ˜{a}1A1 CH_2 Revisited: (010) Coupling

    NASA Astrophysics Data System (ADS)

    Le, Anh T.; Hall, Gregory; Sears, Trevor

    2014-06-01

    Methylene, CH2, possesses a ground ˜{X}3B1 ground electronic state and an excited ˜{a}1A1 state only 3150cm-1 higher in energy. The collision-induced singlet-triplet crossing in the gaseous mixtures is important in determining overall reaction rates and chemical behavior. Accidental near-degeneracies between rotational levels of the singlet state and the vibrationally excited triplet state result in a few gateway rotational levels that mediate collision-induced intersystem crossing. The mixed states can be recognized and quantified by deperturbation, knowing the zero-order singlet and triplet energy levels. Hyperfine structure can be used as alternative indicator of singlet-triplet mixing. Non-zero mixing will induce hyperfine splittings intermediate between the unresolved hyperfine structure of pure singlet and the resolvable (≈50MHz) splittings of pure triplet, arising from the (I\\cdotS) interaction in the ortho states, where nuclear spin I=1. Collision-induced intersystem crossing rates from the (010) state are comparable to those for (000), yet the identities and characters of the presumed gateway states are unknown. A new spectrometer is under construction to investigate triplet mixing rotational levels of ˜{a}1A1(010) by sub-Doppler measurements of perturbation-induced hyperfine splittings. Their observation will permit the identification of gateway states and quantification of the degree of triplet contamination of the singlet wavefunction. Progress in the measurements and the analysis of rotational energy transfer in (010) will be reported. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. C.-H. Chang, G. E. Hall, T. J. Sears, J. Chem. Phys 133, 144310(2010) G. E. Hall, A. V. Komissarov, and T. J. Sears, J. Phys. Chem. A 108 7922-7927 (2004)

  18. IL-11 Is Required for A1 Adenosine Receptor–Mediated Protection against Ischemic AKI

    PubMed Central

    Kim, Joo Yun; Kim, Mihwa; Ham, Ahrom; Brown, Kevin M.; Greene, Robert W.; D’Agati, Vivette D.

    2013-01-01

    A1 adenosine receptor activation ameliorates ischemic AKI through the induction of renal proximal tubular sphingosine kinase-1. However, systemic adverse effects may limit A1 adenosine receptor–based therapy for ischemic AKI, indicating a need to identify alternative therapeutic targets within this pathway. Here, we evaluated the function of renal proximal tubular IL-11, a clinically approved hematopoietic cytokine, in A1 adenosine receptor–mediated induction of sphingosine kinase-1 and renal protection. Treatment of human proximal tubule epithelial (HK-2) cells with a selective A1 adenosine receptor agonist, chloro-N(6)-cyclopentyladenosine (CCPA), induced the expression of IL-11 mRNA and protein in an extracellular signal–regulated kinase–dependent manner, and administration of CCPA in mice induced renal synthesis of IL-11. Pretreatment with CCPA protected against renal ischemia-reperfusion injury in wild-type mice, but not in IL-11 receptor–deficient mice. Administration of an IL-11–neutralizing antibody abolished the renal protection provided by CCPA. Similarly, CCPA did not induce renal IL-11 expression or protect against renal ischemia-reperfusion injury in mice lacking the renal proximal tubular A1 adenosine receptor. Finally, treatment with CCPA induced sphingosine kinase-1 in HK-2 cells and wild-type mice, but not in IL-11 receptor–deficient or renal proximal tubule A1 adenosine receptor–deficient mice. Taken together, these results suggest that induction of renal proximal tubule IL-11 is a critical intermediary in A1 adenosine receptor–mediated renal protection that warrants investigation as a novel therapeutic target for the treatment of ischemic AKI. PMID:23813214

  19. Macrophage-mediated cholesterol handling in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2016-01-01

    Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.

  20. Proresolving Actions of Synthetic and Natural Protease Inhibitors Are Mediated by Annexin A1.

    PubMed

    Vago, Juliana P; Tavares, Luciana P; Sugimoto, Michelle A; Lima, Graziele Letícia N; Galvão, Izabela; de Caux, Thais R; Lima, Kátia M; Ribeiro, Ana Luíza C; Carneiro, Fernanda S; Nunes, Fernanda Freire C; Pinho, Vanessa; Perretti, Mauro; Teixeira, Mauro M; Sousa, Lirlândia P

    2016-02-15

    Annexin A1 (AnxA1) is a glucocorticoid-regulated protein endowed with anti-inflammatory and proresolving properties. Intact AnxA1 is a 37-kDa protein that may be cleaved in vivo at the N-terminal region by neutrophil proteases including elastase and proteinase-3, generating the 33-kDa isoform that is largely inactive. In this study, we investigated the dynamics of AnxA1 expression and the effects of synthetic (sivelestat [SIV]; Eglin) and natural (secretory leukocyte protease inhibitor [SLPI]; Elafin) protease inhibitors on the resolution of LPS-induced inflammation. During the settings of LPS inflammation AnxA1 cleavage associated closely with the peak of neutrophil and elastase expression and activity. SLPI expression increased during resolving phase of the pleurisy. Therapeutic treatment of LPS-challenge mice with recombinant human SLPI or Elafin accelerated resolution, an effect associated with increased numbers of apoptotic neutrophils in the pleural exudates, inhibition of elastase, and modulation of the survival-controlling proteins NF-κB and Mcl-1. Similar effects were observed with SIV, which dose-dependently inhibited neutrophil elastase and shortened resolution intervals. Mechanistically, SIV-induced resolution was caspase-dependent, associated to increased levels of intact AnxA1 and decreased expression of NF-κB and Mcl-1. The proresolving effect of antiproteases was also observed in a model of monosodium urate crystals-induced inflammation. SIV skewed macrophages toward resolving phenotypes and enhanced efferocytosis of apoptotic neutrophils. A neutralizing antiserum against AnxA1 and a nonselective antagonist of AnxA1 receptor abolished the accelerated resolution promoted by SIV. Collectively, these results show that elastase inhibition not only inhibits inflammation but actually promotes resolution, and this response is mediated by protection of endogenous intact AnxA1 with ensuing augmentation of neutrophil apoptosis.

  1. Human Scavenger Receptor A1-Mediated Inflammatory Response to Silica Particle Exposure Is Size Specific.

    PubMed

    Nishijima, Nobuo; Hirai, Toshiro; Misato, Kazuki; Aoyama, Michihiko; Kuroda, Etsushi; Ishii, Ken J; Higashisaka, Kazuma; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2017-01-01

    The application of nanotechnology in the health care setting has many potential benefits; however, our understanding of the interactions between nanoparticles and our immune system remains incomplete. Although many of the biological effects of nanoparticles are negatively correlated with particle size, some are clearly size specific and the mechanisms underlying these size-specific biological effects remain unknown. Here, we examined the pro-inflammatory effects of silica particles in THP-1 cells with respect to particle size; a large overall size range with narrow intervals between particle diameters (particle diameter: 10, 30, 50, 70, 100, 300, and 1,000 nm) was used. Secretion of the pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced by exposure to the silica particles had a bell-shaped distribution, where the maximal secretion was induced by silica nanoparticles with a diameter of 50 nm and particles with smaller or larger diameters had progressively less effect. We found that blockade of IL-1β secretion markedly inhibited TNF-α secretion, suggesting that IL-1β is upstream of TNF-α in the inflammatory cascade induced by exposure to silica particles, and that the induction of IL-1β secretion was dependent on both the NLRP3 inflammasome and on uptake of the silica particles into the cells via endocytosis. However, a quantitative analysis of silica particle uptake showed that IL-1β secretion was not correlated with the amount of silica particles taken up by the cells. Further investigation revealed that the induction of IL-1β secretion and uptake of silica nanoparticles with diameters of 50 or 100 nm, but not of 10 or 1,000 nm, was dependent on scavenger receptor (SR) A1. In addition, of the silica particles examined, only those with a diameter of 50 nm induced strong IL-1β secretion via activation of Mer receptor tyrosine kinase, a signal mediator of SR A1. Together, our results suggest that the SR A1

  2. Mutual Regioselective Inhibition of Human UGT1A1-Mediated Glucuronidation of Four Flavonoids

    PubMed Central

    Ma, Guo; Wu, Baojian; Gao, Song; Yang, Zhen; Ma, Yong; Hu, Ming

    2013-01-01

    UDP-glucuronosyltransferase (UGT) 1A1-catalyzed glucuronidation is an important elimination pathway of flavonoids, and mutually inhibitory interactions may occur when two or more flavonoids are co-administered. Our recent research suggested that glucuronidation of flavonoids displayed distinct positional preferences, but whether this will lead to the mutually regioselective inhibition of UGT1A1-mediated glucuronidation of flavonoids is unknown. Therefore, we chose three monohydroxyflavone isomers 3-hydroxyflavone (3HF), 7-hydroxyflavone (7HF), 4′-hydroxyflavone (4′HF) and one trihydroxyflavone 3,7,4′-trihydroxyflavone (3,7,4′THF) as the model compounds to characterize the possible mutually regioselective inhibition of glucuronidation using expressed human UGT1A1. Apparent kinetic parameters [e.g., reaction velocity (V), Michaelis-Menten constant (Km), maximum rate of metabolism (Vmax), concentration at which inhibitor achieve 50% inhibition or IC50] and the Lineweaver-Burk plots were used to evaluate the apparent kinetic mechanisms of inhibition of glucuronidation. The results showed that UGT1A1-mediated glucuronidation of three monohydroxyflavones (i.e., 3HF, 7HF and 4′HF) and 3,7,4′THF was mutually inhibitory, and the mechanisms of inhibition appeared to be the mixed-typed inhibition. Specifically, the inhibitory effects displayed certain positional preference. Glucuronidation of 3HF was more easily inhibited by 3,7,4′THF than that of 7HF or 4′HF. Compared to 7-O-glucuronidation of 3,7,4′THF, 3-O-glucuronidation of 3,7,4′THF was more inhibited by 3HF and 4′HF, whereas glucuronidation at both 3-OH and 7-OH positions of 3,7,4′THF was more easily inhibited by 7HF than by 3HF and 4′HF. In conclusion, 3HF, 7HF, 4′HF and 3,7,4′THF were both substrates and inhibitors of UGT1A1, and they exhibited mutually regioselective inhibition of UGT1A1-mediated glucuronidation via a mixed-type inhibitory mechanism. PMID:23786524

  3. Single nucleotide polymorphisms in CETP, SLC46A1, SLC19A1, CD36, BCOM1, APOA5, and ABCA1 are significant predictors of plasma HDL in healthy adults

    USDA-ARS?s Scientific Manuscript database

    In a marker-trait association study we estimated the statistical significance of 65 single nucleotide polymorphisms (SNP) in 23 candidate genes on HDL levels of two independent Caucasian populations. Each population consisted of men and women and their HDL levels were adjusted for gender and body we...

  4. Annexin A1 mediates hydrogen sulfide properties in the control of inflammation.

    PubMed

    Brancaleone, Vincenzo; Mitidieri, Emma; Flower, Roderick J; Cirino, Giuseppe; Perretti, Mauro

    2014-10-01

    Hydrogen sulfide (H2S) is a gaseous mediator synthesized in mammalian tissues by three main enzymes-cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE), and 3-mercaptopyruvate-sulfurtransferase-and its levels increase under inflammatory conditions or sepsis. Since H2S and H2S-releasing molecules afford inhibitory properties in leukocyte trafficking, we tested whether endogenous annexin A1 (AnxA1), a glucocorticoid-regulated inhibitor of inflammation acting through formylated-peptide receptor 2 (ALX), could display intermediary functions in the anti-inflammatory profile of H2S. We first investigated whether endogenous AnxA1 could modulate H2S biosynthesis. To this end, a marked increase in CBS and/or CSE gene products was quantified by quantitative real-time polymerase chain reaction in aortas, kidneys, and spleens collected from AnxA1(-/-) mice, as compared with wild-type animals. When lipopolysaccharide-stimulated bone marrow-derived macrophages were studied, H2S-donor sodium hydrosulfide (NaHS) counteracted the increased expression of inducible nitric oxide synthase and cyclooxygenase 2 mRNA evoked by the endotoxin, yet it was inactive in macrophages harvested from AnxA1(-/-) mice. Next we studied the effect of in vivo administration of NaHS in a model of interleukin-1β (IL-1β)-induced mesenteric inflammation. AnxA1(+/+) mice treated with NaHS (100 μmol/kg) displayed inhibition of IL-1β-induced leukocyte adhesion/emigration in the inflamed microcirculation, not observed in AnxA1(-/-) animals. These results were translated by testing human neutrophils, where NaHS (10-100 μM) prompted an intense mobilization (>50%) of AnxA1 from cytosol to cell surface, an event associated with inhibition of cell/endothelium interaction under flow. Taken together, these data strongly indicate the existence of a positive interlink between AnxA1 and H2S pathway, with nonredundant functions in the control of experimental inflammation.

  5. Artemisinin induces ROS-mediated caspase3 activation in ASTC-a-1 cells

    NASA Astrophysics Data System (ADS)

    Xiao, Feng-Lian; Chen, Tong-Sheng; Qu, Jun-Le; Liu, Cheng-Yi

    2010-02-01

    Artemisinin (ART), an antimalarial phytochemical from the sweet wormwood plant or a naturally occurring component of Artemisia annua, has been shown a potential anticancer activity by apoptotic pathways. In our report, cell counting kit (CCK-8) assay showed that treatment of human lung adenocarcinoma (ASTC-a-1) cells with ART effectively increase cell death by inducing apoptosis in a time- and dose-dependent fashion. Hoechst 33258 staining was used to detect apoptosis as well. Reactive oxygen species (ROS) generation was observed in cells exposed to ART at concentrations of 400 μM for 48 h. N-acetyl-L-cysteine (NAC), an oxygen radical scavenger, suppressed the rate of ROS generation and inhibited the ART-induced apoptosis. Moreover, AFC assay (Fluorometric assay for Caspase3 activity) showed that ROS was involved in ART-induced caspase3 acitvation. Taken together, our data indicate that ART induces ROS-mediated caspase3 activation in a time-and dose-dependent way in ASCT-a-1 cells.

  6. Folate and Thiamine Transporters mediated by Facilitative Carriers (SLC19A1-3 and SLC46A1) and Folate Receptors

    PubMed Central

    Zhao, Rongbao; Goldman, I. David

    2013-01-01

    The reduced folate carrier (RFC,SLC19A1), thiamine transporter-1 (ThTr1,SLC19A2) and thiamine transporter-2 (ThTr2,SLC19A3) evolved from the same family of solute carriers. SLC19A1 transports folates but not thiamine. SLC19A2 and SLC19A3 transport thiamine but not folates. SLC19A1 and SLC19A2 deliver their substrates to systemic tissues; SLC19A3 mediates intestinal thiamine absorption. The proton-coupled folate transporter (PCFT,SLC46A1) is the mechanism by which folates are absorbed across the apical-brush-border membrane of the proximal small intestine. Two folate receptors (FOLR1 and FOLR2) mediate folate transport across epithelia by an endocytic process. Folate transporters are routes of delivery of drugs for the treatment of cancer and inflammatory diseases. There are autosomal recessive disorders associated with mutations in genes encoded for SLC46A1 (hereditary folate malabsorption), FOLR1 (cerebral folate deficiency), SLC19A2 (thiamine-responsive megaloblastic anemia), and SLC19A3 (biotin-responsive basal ganglia disease). PMID:23506878

  7. Effects of DHA Supplementation on Vascular Function, Telomerase Activity in PBMC, Expression of Inflammatory Cytokines, and PPARγ-LXRα-ABCA1 Pathway in Patients With Type 2 Diabetes Mellitus: Study Protocol for Randomized Controlled Clinical Trial.

    PubMed

    Toupchian, Omid; Sotoudeh, Gity; Mansoori, Anahita; Djalali, Mahmoud; Keshavarz, Seyyed Ali; Nasli-Esfahani, Ensieh; Alvandi, Ehsan; Koohdani, Fariba

    2016-07-01

    Docosahexaenoic acid (DHA), as an omega-3 fatty acid, in a natural ligand of peroxisome proliferator-activated receptors (PPARs). Regarding the combinative effects of Nutrigenomics and Nutrigenetics and due to the lack of in vivo studies conducted using natural ligands of PPARs, we aimed to evaluate the effects of DHA supplementation on vascular function, telomerase activity, and PPARγ-LXRα-ABCA1 pathway, in patients with type 2 diabetes mellitus (T2DM), based on the Pro12Ala polymorphism in PPARγ encoding gene. 72 T2DM patients (36 dominant and 36 recessive allele carriers), aged 30-70, with body mass index of 18.5 to 35 kg/m2, will be participated in this double blind randomized controlled trial. In each group, stratification will be performed based on sex and age and participants will be randomly assigned to receive 2.4 g/day DHA or placebo (paraffin) for 8 weeks. PPARγ genotyping will be carried out using PCR-RFLP method; Telomerase activity will be estimated by PCR-ELISA TRAP assay; mRNA expression levels of target genes will be assessed using real time PCR. Serum levels of ADMA, sCD163 and adiponectin, will be measured using ELISA commercial kits. The present study is designed in order to help T2DM patients to modify their health conditions based on their genetic backgrounds, and to recommend the proper food ingredients as the natural agonists for PPARs in order to prevent and treat metabolic abnormalities of the disease.

  8. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe.

    PubMed

    During, Alexandrine; Dawson, Harry D; Harrison, Earl H

    2005-10-01

    Data suggest that intestinal carotenoid absorption is a facilitated process. The present study was conducted to determine whether carotenoids and cholesterol share common pathways (transporters) for their intestinal absorption. Differentiated Caco-2 cells on membranes were incubated (16 h) with a carotenoid (1 micromol/L) with or without ezetimibe (EZ; Zetia, an inhibitor of cholesterol transport), and with or without antibodies against the receptors, cluster determinant 36 (CD36) and scavenger receptor class B, type I (SR-BI). Carotenoid transport in Caco-2 cells (cellular uptake + secretion) was decreased by EZ (10 mg/L) as follows: beta-carotene approximately alpha-carotene (50% inhibition) > beta-cryptoxanthin approximately lycopene (20%) > lutein:zeaxanthin (1:1) (7%). EZ reduced cholesterol transport by 31%, but not retinol transport. beta-Carotene transport was also inhibited by anti-SR-BI, but not by anti-CD36. The inhibitory effects of EZ and anti-SR-BI on beta-carotene transport were additive, indicating that they may have different targets. Finally, differentiated Caco-2 cells treated with EZ showed a significant decrease in mRNA expression for the surface receptors SR-BI, Niemann-Pick type C1 Like 1 protein (NPC1L1), and ATP-binding cassette transporter, subfamily A (ABCA1) and for the nuclear receptors retinoid acid receptor (RAR)gamma, sterol-regulatory element binding proteins (SREBP)-1 and -2, and liver X receptor (LXR)beta as assessed by real-time PCR analysis. The data indicate that 1) EZ is an inhibitor of carotenoid transport, an effect that decreases with increasing polarity of the carotenoid molecule, 2) SR-BI is involved in carotenoid transport, and 3) EZ may act, not only by interacting physically with cholesterol transporters as previously suggested, but also by downregulating expression of these proteins. The cellular uptake and efflux of carotenoids, like that of cholesterol, likely involve more than one transporter.

  9. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases.

    PubMed

    Perucci, Luiza Oliveira; Sugimoto, Michelle Amantéa; Gomes, Karina Braga; Dusse, Luci Maria; Teixeira, Mauro Martins; Sousa, Lirlândia Pires

    2017-09-01

    The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.

  10. Stimulation of CD36 and the key effector of reverse cholesterol transport ATP-binding cassette A1 in monocytoid cells by niacin.

    PubMed

    Rubic, Tina; Trottmann, Matthias; Lorenz, Reinhard L

    2004-02-01

    Niacin, the first lipid lowering drug shown to improve survival after myocardial infarction, decreases LDL and increases HDL cholesterol levels. These effects cannot fully be explained by its suspected mechanism of action, inhibition of lipolysis and hepatic VLDL synthesis. Niacin has also been shown to interfere with the cyclic AMP (cAMP)/protein kinase A (PKA) pathway and massively stimulate prostaglandin D2 (PGD2) formation. The major metabolite of PGD2, 15-deoxy-Delta(12,14)-prostaglandin J2 (15d-PGJ2), was recently identified as the most potent endogenous PPARgamma activator. We, therefore, studied the effects of niacin on the PPARgamma- and cAMP-dependent expression of receptors promoting reverse cholesterol transport. The transcription of PPARgamma-, HDL-, LDL- and scavenger-receptors and the sterol exporter ABCA1, were measured by quantitative RT-PCR and cellular cholesterol efflux and PPARgamma activation studied in macrophage and hepatocyte models. Niacin stimulated the translocation of PPARgamma and the transcription of PPARgamma, CD36 and ABCA1 in monocytoid cells, whereas the LDL-receptor (LDL-R) was unchanged. Thereby niacin enhanced HDL-mediated cholesterol efflux from the cells resulting in a reduced cellular cholesterol content. The niacin effect on CD36 but not on ABCA1 was prevented by cyclooxygenase inhibition, whereas the niacin effect on ABCA1 but not on CD36 was prevented by PKA inhibition, suggesting mediation by the 15d-PGJ2/PPARgamma and the cAMP/PKA pathways, respectively. These new actions of niacin on several key effectors of reverse cholesterol transport out of the vessel wall provide a rational to expect regression of atherosclerosis and test the combination of niacin with statins for an overadditive clinical benefit.

  11. Adenosine A1 receptors mediate inhibition of cAMP formation in vitro in the pontine, REM sleep induction zone.

    PubMed

    Marks, Gerald A; Birabil, Christian G; Speciale, Samuel G

    2005-11-09

    Microinjection of adenosine A1 receptor agonist or an inhibitor of adenylyl cyclase into the caudal, oral pontine reticular formation (PnOc) of the rat induces a long-lasting increase in REM sleep. Here, we report significant inhibition of forskolin-stimulated cAMP in dissected pontine tissue slices containing the PnOc incubated with the A1 receptor agonist, cyclohexaladenosine (10(-8) M). These data are consistent with adenosine A1 receptor agonist actions on REM sleep mediated through inhibition of cAMP.

  12. High-Density Lipoprotein-Mediated Transcellular Cholesterol Transport in Mouse Aortic Endothelial Cells

    PubMed Central

    Miao, LiXia; Okoro, Emmanuel U.; Cao, ZhiJan; Yang, Hong; Motley-Johnson, Evangeline; Guo, Zhongmao

    2015-01-01

    Accumulation of unesterified cholesterol-rich lipid vesicles in the subendothelial space contributes to atherogenesis. Transport of cholesterol from the subendothelial intima back to the circulating blood inhibits atherosclerosis development; however, the mechanism for this process has not been fully defined. Using cultured mouse aortic endothelial cells (MAECs), we observed that unesterified cholesterol can be transported across the endothelial cell monolayer from the basolateral to the apical compartment. Administration of high-density lipoprotein (HDL) or apolipoprotein AI (apoAI) to the apical compartment enhanced transendothelial cholesterol transport in a concentration-dependent manner. Knockdown of ATP-binding cassette transporter G1 (ABCG1) or scavenger receptor class B type I (SR-B1), or inhibition of SR-B1 diminished HDL-induced transendothelial cholesterol transport; while knockdown of ABCA1 reduced apoAI-mediated cholesterol transport. HDL enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt in MAECs. However, inhibition PI3K or Akt did not reduce HDL-induced transendothelial cholesterol transport. These results suggest that HDL enhances transendothelial cholesterol transport by activation of a mechanism involving ABCA1, ABCA1 and SR-B1 but not involving PI3K and Akt. PMID:26255968

  13. Heterogeneous nuclear ribonucleoprotein A1 regulates rhythmic synthesis of mouse Nfil3 protein via IRES-mediated translation

    PubMed Central

    Kim, Hyo-Jin; Lee, Hwa-Rim; Seo, Ji-Young; Ryu, Hye Guk; Lee, Kyung-Ha; Kim, Do-Yeon; Kim, Kyong-Tai

    2017-01-01

    Nuclear factor, interleukin 3, regulated (Nfil3, also known as E4 Promoter-Binding Protein 4 (E4BP4)) protein is a transcription factor that binds to DNA and generally represses target gene expression. In the circadian clock system, Nfil3 binds to a D-box element residing in the promoter of clock genes and contributes to their robust oscillation. Here, we show that the 5′-untranslated region (5′-UTR) of Nfil3 mRNA contains an internal ribosome entry site (IRES) and that IRES-mediated translation occurs in a phase-dependent manner. We demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) binds to a specific region of Nfil3 mRNA and regulates IRES-mediated translation. Knockdown of hnRNP A1 almost completely abolishes protein oscillation without affecting mRNA oscillation. Moreover, we observe that intracellular calcium levels, which are closely related to bone formation, depend on Nfil3 levels in osteoblast cell lines. We suggest that the 5′-UTR mediated cap-independent translation of Nfil3 mRNA contributes to the rhythmic expression of Nfil3 by interacting with the RNA binding protein hnRNP A1. These data provide new evidence that the posttranscriptional regulation of clock gene expression is important during bone metabolism. PMID:28220845

  14. Heterogeneous nuclear ribonucleoprotein A1 regulates rhythmic synthesis of mouse Nfil3 protein via IRES-mediated translation.

    PubMed

    Kim, Hyo-Jin; Lee, Hwa-Rim; Seo, Ji-Young; Ryu, Hye Guk; Lee, Kyung-Ha; Kim, Do-Yeon; Kim, Kyong-Tai

    2017-02-21

    Nuclear factor, interleukin 3, regulated (Nfil3, also known as E4 Promoter-Binding Protein 4 (E4BP4)) protein is a transcription factor that binds to DNA and generally represses target gene expression. In the circadian clock system, Nfil3 binds to a D-box element residing in the promoter of clock genes and contributes to their robust oscillation. Here, we show that the 5'-untranslated region (5'-UTR) of Nfil3 mRNA contains an internal ribosome entry site (IRES) and that IRES-mediated translation occurs in a phase-dependent manner. We demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) binds to a specific region of Nfil3 mRNA and regulates IRES-mediated translation. Knockdown of hnRNP A1 almost completely abolishes protein oscillation without affecting mRNA oscillation. Moreover, we observe that intracellular calcium levels, which are closely related to bone formation, depend on Nfil3 levels in osteoblast cell lines. We suggest that the 5'-UTR mediated cap-independent translation of Nfil3 mRNA contributes to the rhythmic expression of Nfil3 by interacting with the RNA binding protein hnRNP A1. These data provide new evidence that the posttranscriptional regulation of clock gene expression is important during bone metabolism.

  15. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments.

    PubMed

    Delloye-Bourgeois, Céline; Jacquier, Arnaud; Charoy, Camille; Reynaud, Florie; Nawabi, Homaira; Thoinet, Karine; Kindbeiter, Karine; Yoshida, Yutaka; Zagar, Yvrick; Kong, Youxin; Jones, Yvonne E; Falk, Julien; Chédotal, Alain; Castellani, Valérie

    2015-01-01

    Robo-Slit and Plexin-Semaphorin signaling participate in various developmental and pathogenic processes. During commissural axon guidance in the spinal cord, chemorepulsion by Semaphorin3B and Slits controls midline crossing. Slit processing generates an N-terminal fragment (SlitN) that binds to Robo1 and Robo2 receptors and mediates Slit repulsive activity, as well as a C-terminal fragment (SlitC) with an unknown receptor and bioactivity. We identified PlexinA1 as a Slit receptor and found that it binds the C-terminal Slit fragment specifically and transduces a SlitC signal independently of the Robos and the Neuropilins. PlexinA1-SlitC complexes are detected in spinal cord extracts, and ex vivo, SlitC binding to PlexinA1 elicits a repulsive commissural response. Analysis of various ligand and receptor knockout mice shows that PlexinA1-Slit and Robo-Slit signaling have complementary roles during commissural axon guidance. Thus, PlexinA1 mediates both Semaphorin and Slit signaling, and Slit processing generates two active fragments, each exerting distinct effects through specific receptors.

  16. Diabetes susceptibility in Mayas: Evidence for the involvement of polymorphisms in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes.

    PubMed

    Lara-Riegos, J C; Ortiz-López, M G; Peña-Espinoza, B I; Montúfar-Robles, I; Peña-Rico, M A; Sánchez-Pozos, K; Granados-Silvestre, M A; Menjivar, M

    2015-07-01

    Association of type 2 diabetes (T2D) with common variants in HHEX, HNF4α, KCNJ11, PPARγ, CDKN2A/2B, SLC30A8, CDC123/CAMK1D, TCF7L2, ABCA1 and SLC16A11 genes have been reported, mainly in populations of European and Asian ancestry and to a lesser extent in Latin Americans. Thus, we aimed to investigate the contribution of rs1111875 (HHEX), rs1800961 (HNF4α), rs5219 (KCNJ11), rs1801282 (PPARγ), rs10811661 (CDKN2A/2B), rs13266634 (SLC30A8), rs12779790 (CDC123/CAMK1D), rs7903146 (TCF7L2), rs9282541 (ABCA1) and rs13342692 (SLC16A11) polymorphisms in the genetic background of Maya population to associate their susceptibility to develop T2D. This is one of the first studies designed specifically to investigate the inherited component of T2D in the indigenous population of Mexico. SNPs were genotyped by allelic discrimination method in 575 unrelated Maya individuals. Two SNPs rs10811661 and rs928254 were significantly associated with T2D after adjusting for BMI; rs10811661 in a recessive and rs9282541 in a dominant model. Additionally, we found phenotypical alterations associated with genetic variants: HDL to rs9282541 and insulin to rs13342692. In conclusion, these findings support an association of genetic polymorphisms to develop T2D in Maya population.

  17. Adenosine A1 receptors mediate inhibition of tachykinin release from perifused enteric nerve endings.

    PubMed

    Broad, R M; McDonald, T J; Brodin, E; Cook, M A

    1992-03-01

    A perifused preparation of guinea pig myenteric nerve varicosities (synaptosomes) was used to determine the characteristics of evoked tachykinin release and the inhibition of such release by adenosine analogues. Release of substance P-like immunoreactivity (SP-LI) and neurokinin A-like immunoreactivity (NKA-LI) was evoked by elevated extracellular [K+] in a reversible and repeatable manner. This release was completely abolished in the absence of extracellular Ca2+. Perifusion in the presence of 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective A1/A2 adenosine receptor agonist, decreased K(+)-evoked release of SP-LI and NKA-LI compared with that in the absence of the nucleoside. Similar decrements in peptide release were obtained with N6-cyclopentyl adenosine (CPA), a selective A1 agonist, and 2-[p-(2-carboxyethyl)]phenethylamino-5'-N-ethyl-carboxamidoadenosi ne (CGS 21680), a selective A2 agonist. Response to all nucleosides was graded. Potency order of adenosine analogues was CPA greater than NECA much greater than CGS 21680. Inhibition due to the nucleosides was diminished in the presence of the highly selective A1-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) while perifusion in the presence of DPCPX alone did not alter evoked release of either peptide. These findings provide direct measurements of inhibitory effects of adenine nucleosides on the release, from enteric nerve endings, of endogenous neuromediators SP and NKA. The findings also directly demonstrate the presence of functional adenosine receptors of the A1 subtype on enteric nerve endings coupled negatively to release of tachykinins. The presence of A2 receptors on enteric nerve endings is neither supported nor excluded.

  18. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  19. DVL3 Alleles Resulting in a -1 Frameshift of the Last Exon Mediate Autosomal-Dominant Robinow Syndrome.

    PubMed

    White, Janson J; Mazzeu, Juliana F; Hoischen, Alexander; Bayram, Yavuz; Withers, Marjorie; Gezdirici, Alper; Kimonis, Virginia; Steehouwer, Marloes; Jhangiani, Shalini N; Muzny, Donna M; Gibbs, Richard A; van Bon, Bregje W M; Sutton, V Reid; Lupski, James R; Brunner, Han G; Carvalho, Claudia M B

    2016-03-03

    Robinow syndrome is a rare congenital disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features. Recent reports have identified, in individuals with dominant Robinow syndrome, a specific type of variant characterized by being uniformly located in the penultimate exon of DVL1 and resulting in a -1 frameshift allele with a premature termination codon that escapes nonsense-mediated decay. Here, we studied a cohort of individuals who had been clinically diagnosed with Robinow syndrome but who had not received a molecular diagnosis from variant studies of DVL1, WNT5A, and ROR2. Because of the uniform location of frameshift variants in DVL1-mediated Robinow syndrome and the functional redundancy of DVL1, DVL2, and DVL3, we elected to pursue direct Sanger sequencing of the penultimate exon of DVL1 and its paralogs DVL2 and DVL3 to search for potential disease-associated variants. Remarkably, targeted sequencing identified five unrelated individuals harboring heterozygous, de novo frameshift variants in DVL3, including two splice acceptor mutations and three 1 bp deletions. Similar to the variants observed in DVL1-mediated Robinow syndrome, all variants in DVL3 result in a -1 frameshift, indicating that these highly specific alterations might be a common cause of dominant Robinow syndrome. Here, we review the current knowledge of these peculiar variant alleles in DVL1- and DVL3-mediated Robinow syndrome and further elucidate the phenotypic features present in subjects with DVL1 and DVL3 frameshift mutations. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  1. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    PubMed Central

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  2. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1.

    PubMed

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L; Rahman, Pattanathu K S M; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l(-1)). Specifically, the low molecular weight compounds, i.e., C10-C14 were completely degraded, while C15-C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment.

  3. Evidence that cytochrome b{sub 5} acts as a redox donor in CYP17A1 mediated androgen synthesis

    SciTech Connect

    Duggal, Ruchia; Liu, Yilin; Gregory, Michael C.; Denisov, Ilia G.; Kincaid, James R.; Sligar, Stephen G.

    2016-08-19

    Fe−S vibrational frequency. Thus, although Mn-b{sub 5} binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b{sub 5} has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis. - Highlights: • Cyt b{sub 5} role in human CYP17A1 mediated androgen synthesis was probed in Nanodiscs. • Native cyt b{sub 5} enhances androgen synthesis by CYP17A1. • Redox inactive Mn cyt b{sub 5} does not enhance androgen synthesis by CYP17A1. • Interactions with Cyt b{sub 5} perturb Fe−S and heme Raman modes of CYP17A1. • Cyt b{sub 5} acts as a redox donor for CYP17A1 mediated androgen synthesis.

  4. IS26-Mediated Precise Excision of the IS26-aphA1a Translocatable Unit

    PubMed Central

    Harmer, Christopher J.

    2015-01-01

    ABSTRACT We recently showed that, in the absence of RecA-dependent homologous recombination, the Tnp26 transposase catalyzes cointegrate formation via a conservative reaction between two preexisting IS26, and this is strongly preferred over replicative transposition to a new site. Here, the reverse reaction was investigated by assaying for precise excision of the central region together with a single IS26 from a compound transposon bounded by IS26. In a recA mutant strain, Tn4352, a kanamycin resistance transposon carrying the aphA1a gene, was stable. However, loss of kanamycin resistance due to precise excision of the translocatable unit (TU) from the closely related Tn4352B, leaving behind the second IS26, occurred at high frequency. Excision occurred when Tn4352B was in either a high- or low-copy-number plasmid. The excised circular segment, known as a TU, was detected by PCR. Excision required the IS26 transposase Tnp26. However, the Tnp26 of only one IS26 in Tn4352B was required, specifically the IS26 downstream of the aphA1a gene, and the excised TU included the active IS26. The frequency of Tn4352B TU loss was influenced by the context of the transposon, but the critical determinant of high-frequency excision was the presence of three G residues in Tn4352B replacing a single G in Tn4352. These G residues are located immediately adjacent to the two G residues at the left end of the IS26 that is upstream of the aphA1a gene. Transcription of tnp26 was not affected by the additional G residues, which appear to enhance Tnp26 cleavage at this end. PMID:26646012

  5. Elongation Factor 1A-1 Is a Mediator of Hepatocyte Lipotoxicity Partly through Its Canonical Function in Protein Synthesis

    PubMed Central

    Stoianov, Alexandra M.; Robson, Debra L.; Hetherington, Alexandra M.; Sawyez, Cynthia G.; Borradaile, Nica M.

    2015-01-01

    Elongation factor 1A-1 (eEF1A-1) has non-canonical functions in regulation of the actin cytoskeleton and apoptosis. It was previously identified through a promoter-trap screen as a mediator of fatty acid-induced cell death (lipotoxicity), and was found to participate in this process downstream of ER stress. Since ER stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), we investigated the mechanism of action of eEF1A-1 in hepatocyte lipotoxicity. HepG2 cells were exposed to excess fatty acids, followed by assessments of ER stress, subcellular localization of eEF1A-1, and cell death. A specific inhibitor of eEF1A-1 elongation activity, didemnin B, was used to determine whether its function in protein synthesis is involved in lipotoxicity. Within 6 h, eEF1A-1 protein was modestly induced by high palmitate, and partially re-localized from its predominant location at the ER to polymerized actin at the cell periphery. This early induction and subcellular redistribution of eEF1A-1 coincided with the onset of ER stress, and was later followed by cell death. Didemnin B did not prevent the initiation of ER stress by high palmitate, as indicated by eIF2α phosphorylation. However, consistent with sustained inhibition of eEF1A-1-dependent elongation activity, didemnin B prevented the recovery of protein synthesis and increase in GRP78 protein that are normally associated with later phases of the response to ongoing ER stress. This resulted in decreased palmitate-induced cell death. Our data implicate eEF1A-1, and its function in protein synthesis, in hepatocyte lipotoxicity. PMID:26102086

  6. Elongation Factor 1A-1 Is a Mediator of Hepatocyte Lipotoxicity Partly through Its Canonical Function in Protein Synthesis.

    PubMed

    Stoianov, Alexandra M; Robson, Debra L; Hetherington, Alexandra M; Sawyez, Cynthia G; Borradaile, Nica M

    2015-01-01

    Elongation factor 1A-1 (eEF1A-1) has non-canonical functions in regulation of the actin cytoskeleton and apoptosis. It was previously identified through a promoter-trap screen as a mediator of fatty acid-induced cell death (lipotoxicity), and was found to participate in this process downstream of ER stress. Since ER stress is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD), we investigated the mechanism of action of eEF1A-1 in hepatocyte lipotoxicity. HepG2 cells were exposed to excess fatty acids, followed by assessments of ER stress, subcellular localization of eEF1A-1, and cell death. A specific inhibitor of eEF1A-1 elongation activity, didemnin B, was used to determine whether its function in protein synthesis is involved in lipotoxicity. Within 6 h, eEF1A-1 protein was modestly induced by high palmitate, and partially re-localized from its predominant location at the ER to polymerized actin at the cell periphery. This early induction and subcellular redistribution of eEF1A-1 coincided with the onset of ER stress, and was later followed by cell death. Didemnin B did not prevent the initiation of ER stress by high palmitate, as indicated by eIF2α phosphorylation. However, consistent with sustained inhibition of eEF1A-1-dependent elongation activity, didemnin B prevented the recovery of protein synthesis and increase in GRP78 protein that are normally associated with later phases of the response to ongoing ER stress. This resulted in decreased palmitate-induced cell death. Our data implicate eEF1A-1, and its function in protein synthesis, in hepatocyte lipotoxicity.

  7. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine

    PubMed Central

    Xia, Yan; Portugal, George S.; Fakira, Amanda K.; Melyan, Zara; Neve, Rachael; Lee, H. Thomas; Russo, Scott J.; Liu, Jie; Morón, Jose A.

    2011-01-01

    Glutamatergic systems, including α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic AMPAR expression in the hippocampus, a brain area that is critically involved in learning and memory. These changes could be observed one week after the treatment, but only when mice developed context-dependent behavioral sensitization to morphine in which morphine treatment was associated with drug administration environment. Context-dependent behavioral sensitization to morphine was also associated with increased basal synaptic transmission and disrupted hippocampal long-term potentiation (LTP), whereas these effects were less robust when morphine administration was not paired with the drug administration environment. Interestingly, some effects may be related to the prior history of morphine exposure in the drug-associated environment, since alterations of AMPAR expression, basal synaptic transmission, and LTP were observed in mice that received a saline challenge one week after discontinuation of morphine treatment. Furthermore, we demonstrated that phosphorylation of GluA1 AMPAR subunit plays a critical role in the acquisition and expression of context-dependent behavioral sensitization, as this behavior is blocked by a viral vector that disrupts GluA1 phosphorylation. These data provide evidence that glutamatergic signaling in the hippocampus plays an important role in context-dependent sensitization to morphine and supports further investigation of glutamate-based strategies for treating opiate addiction. PMID:22072679

  8. Hippocampal GluA1-containing AMPA receptors mediate context-dependent sensitization to morphine.

    PubMed

    Xia, Yan; Portugal, George S; Fakira, Amanda K; Melyan, Zara; Neve, Rachael; Lee, H Thomas; Russo, Scott J; Liu, Jie; Morón, Jose A

    2011-11-09

    Glutamatergic systems, including AMPA receptors (AMPARs), are involved in opiate-induced neuronal and behavioral plasticity, although the mechanisms underlying these effects are not fully understood. In the present study, we investigated the effects of repeated morphine administration on AMPAR expression, synaptic plasticity, and context-dependent behavioral sensitization to morphine. We found that morphine treatment produced changes of synaptic AMPAR expression in the hippocampus, a brain area that is critically involved in learning and memory. These changes could be observed 1 week after the treatment, but only when mice developed context-dependent behavioral sensitization to morphine in which morphine treatment was associated with drug administration environment. Context-dependent behavioral sensitization to morphine was also associated with increased basal synaptic transmission and disrupted hippocampal long-term potentiation (LTP), whereas these effects were less robust when morphine administration was not paired with the drug administration environment. Interestingly, some effects may be related to the prior history of morphine exposure in the drug-associated environment, since alterations of AMPAR expression, basal synaptic transmission, and LTP were observed in mice that received a saline challenge 1 week after discontinuation of morphine treatment. Furthermore, we demonstrated that phosphorylation of GluA1 AMPAR subunit plays a critical role in the acquisition and expression of context-dependent behavioral sensitization, as this behavior is blocked by a viral vector that disrupts GluA1 phosphorylation. These data provide evidence that glutamatergic signaling in the hippocampus plays an important role in context-dependent sensitization to morphine and supports further investigation of glutamate-based strategies for treating opiate addiction.

  9. OCD candidate gene SLC1A1/EAAT3 impacts basal ganglia-mediated activity and stereotypic behavior.

    PubMed

    Zike, Isaac D; Chohan, Muhammad O; Kopelman, Jared M; Krasnow, Emily N; Flicker, Daniel; Nautiyal, Katherine M; Bubser, Michael; Kellendonk, Christoph; Jones, Carrie K; Stanwood, Gregg; Tanaka, Kenji Fransis; Moore, Holly; Ahmari, Susanne E; Veenstra-VanderWeele, Jeremy

    2017-05-30

    Obsessive-compulsive disorder (OCD) is a chronic, disabling condition with inadequate treatment options that leave most patients with substantial residual symptoms. Structural, neurochemical, and behavioral findings point to a significant role for basal ganglia circuits and for the glutamate system in OCD. Genetic linkage and association studies in OCD point to SLC1A1, which encodes the neuronal glutamate/aspartate/cysteine transporter excitatory amino acid transporter 3 (EAAT3)/excitatory amino acid transporter 1 (EAAC1). However, no previous studies have investigated EAAT3 in basal ganglia circuits or in relation to OCD-related behavior. Here, we report a model of Slc1a1 loss based on an excisable STOP cassette that yields successful ablation of EAAT3 expression and function. Using amphetamine as a probe, we found that EAAT3 loss prevents expected increases in (i) locomotor activity, (ii) stereotypy, and (iii) immediate early gene induction in the dorsal striatum following amphetamine administration. Further, Slc1a1-STOP mice showed diminished grooming in an SKF-38393 challenge experiment, a pharmacologic model of OCD-like grooming behavior. This reduced grooming is accompanied by reduced dopamine D1 receptor binding in the dorsal striatum of Slc1a1-STOP mice. Slc1a1-STOP mice also exhibit reduced extracellular dopamine concentrations in the dorsal striatum both at baseline and following amphetamine challenge. Viral-mediated restoration of Slc1a1/EAAT3 expression in the midbrain but not in the striatum results in partial rescue of amphetamine-induced locomotion and stereotypy in Slc1a1-STOP mice, consistent with an impact of EAAT3 loss on presynaptic dopaminergic function. Collectively, these findings indicate that the most consistently associated OCD candidate gene impacts basal ganglia-dependent repetitive behaviors.

  10. Electroacupuncture-induced neuroprotection against focal cerebral ischemia in the rat is mediated by adenosine A1 receptors

    PubMed Central

    Dai, Qin-xue; Geng, Wu-jun; Zhuang, Xiu-xiu; Wang, Hong-fa; Mo, Yun-chang; Xin, He; Chen, Jiang-fan; Wang, Jun-lu

    2017-01-01

    The activation of adenosine A1 receptors is important for protecting against ischemic brain injury and pretreatment with electroacupuncture has been shown to mitigate ischemic brain insult. The aim of this study was to test whether the adenosine A1 receptor mediates electroacupuncture pretreatment-induced neuroprotection against ischemic brain injury. We first performed 30 minutes of electroacupuncture pretreatment at the Baihui acupoint (GV20), delivered with a current of 1 mA, a frequency of 2/15 Hz, and a depth of 1 mm. High-performance liquid chromatography found that adenosine triphosphate and adenosine levels peaked in the cerebral cortex at 15 minutes and 120 minutes after electroacupuncture pretreatment, respectively. We further examined the effect of 15 or 120 minutes electroacupuncture treatment on ischemic brain injury in a rat middle cerebral artery-occlusion model. We found that at 24 hours reperfusion,120 minutes after electroacupuncture pretreatment, but not for 15 minutes, significantly reduced behavioral deficits and infarct volumes. Last, we demonstrated that the protective effect gained by 120 minutes after electroacupuncture treatment before ischemic injury was abolished by pretreatment with the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 mg/kg, intraperitoneally). Our results suggest that pretreatment with electroacupuncture at the Baihui acupoint elicits protection against transient cerebral ischemia via action at adenosine A1 receptors. PMID:28400804

  11. Genomic Basis of Aromatase Excess Syndrome: Recombination- and Replication-Mediated Rearrangements Leading to CYP19A1 Overexpression

    PubMed Central

    Tsuchiya, Takayoshi; Vollbach, Heike; Brown, Kristy A.; Abe, Shuji; Ohtsu, Shigeyuki; Wabitsch, Martin; Burger, Henry; Simpson, Evan R.; Umezawa, Akihiro; Shihara, Daizou; Nakabayashi, Kazuhiko; Bulun, Serdar E.; Shozu, Makio; Ogata, Tsutomu

    2013-01-01

    Context: Genomic rearrangements at 15q21 have been shown to cause overexpression of CYP19A1 and resultant aromatase excess syndrome (AEXS). However, mutation spectrum, clinical consequences, and underlying mechanisms of these rearrangements remain to be elucidated. Objective: The aim of the study was to clarify such unsolved matters. Design, Setting, and Methods: We characterized six new rearrangements and investigated clinical outcome and local genomic environments of these rearrangements and of three previously reported duplications/deletions. Results: Novel rearrangements included simple duplication involving exons 1–10 of CYP19A1 and simple and complex rearrangements that presumably generated chimeric genes consisting of the coding region of CYP19A1 and promoter-associated exons of neighboring genes. Clinical severities were primarily determined by the copy number of CYP19A1 and the property of the fused promoters. Sequences at the fusion junctions suggested nonallelic homologous recombination, nonhomologous end-joining, and replication-based errors as the underlying mechanisms. The breakpoint-flanking regions were not enriched with GC content, palindromes, noncanonical DNA structures, or known rearrangement-associated motifs. The rearrangements resided in early-replicating segments. Conclusions: These results indicate that AEXS is caused by duplications involving CYP19A1 and simple and complex rearrangements that presumably lead to the usage of cryptic promoters of several neighboring genes. Our data support the notion that phenotypes depend on the dosage of CYP19A1 and the characteristics of the fused promoters. Furthermore, we show that the rearrangements in AEXS are generated by both recombination- and replication-mediated mechanisms, independent of the known rearrangement-inducing DNA features or late-replication timing. Thus, AEXS represents a unique model for human genomic disorders. PMID:24064691

  12. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats

    PubMed Central

    Rai, Seema; Kumar, Sunil; Alam, Md. Aftab; Szymusiak, Ronald; McGinty, Dennis; Alam, Md. Noor

    2010-01-01

    The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50μM) and CPDX (50μM) that suppressed and induced arousal, respectively, in our earlier study (Alam et al., 2009), significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep. PMID:20109537

  13. Retrolinkin cooperates with endophilin A1 to mediate BDNF-TrkB early endocytic trafficking and signaling from early endosomes.

    PubMed

    Fu, Xiuping; Yang, Yanrui; Xu, Chenchang; Niu, Yang; Chen, Tielin; Zhou, Qin; Liu, Jia-Jia

    2011-10-01

    Brain-derived neurotrophic factor (BDNF) binds to its cell surface receptor TrkB to regulate differentiation, development, synaptic plasticity, and functional maintenance of neuronal cells. Binding of BDNF triggers TrkB dimerization and autophosphorylation, which provides docking sites for adaptor proteins to recruit and activate downstream signaling molecules. The molecular mechanisms underlying BDNF-TrkB endocytic trafficking crucial for spatiotemporal control of signaling pathways remain to be elucidated. Here we show that retrolinkin, a transmembrane protein, interacts with endophilin A1 and mediates BDNF-activated TrkB (pTrk) trafficking and signaling in CNS neurons. We find that activated TrkB colocalizes and interacts with the early endosome marker APPL1. Both retrolinkin and endophilin A1 are required for BDNF-induced dendrite development and acute extracellular signal-regulated kinase activation from early endosomes. Suppression of retrolinkin expression not only blocks BDNF-triggered TrkB internalization, but also prevents recruitment of endophilin A1 to pTrk vesicles trafficking through APPL1-positive endosomes. These findings reveal a novel mechanism for BDNF-TrkB to regulate signaling both in time and space through a specific membrane trafficking pathway.

  14. Identification of endocrine disrupting chemicals activating SXR-mediated transactivation of CYP3A and CYP7A1.

    PubMed

    Zhou, Tingting; Cong, Shuyan; Sun, Shiying; Sun, Hongmiao; Zou, Renlong; Wang, Shengli; Wang, Chunyu; Jiao, Jiao; Goto, Kiminobu; Nawata, Hajime; Yanase, Toshihiko; Zhao, Yue

    2013-01-05

    Endocrine disrupting chemicals (EDCs) have emerged as a major public health issue because of their potentially disruptive effects on physiological hormonal actions. SXR (steroid xenobiotic receptor), also known as NR1I2, regulates CYP3A expression in response to exogenous chemicals, such as EDCs, after binding to SXRE (SXR response element). In our study, luciferase assay showed that 14 out of 55 EDCs could enhance SXR-mediated rat or human CYP3A gene transcription nearly evenly, and could also activate rat CYP7A1 gene transcription by cross-interaction of SXR and LXRE (LXRα response element). SXR diffused in the nucleus without ligand, whereas intranuclear foci of liganded SXR were produced. Furthermore, endogenous mRNA expression of CYP3A4 gene was enhanced by the 14 positive EDCs. Our results suggested a probable mechanism of EDCs disrupting the steroid or xenobiotic metabolism homeostasis via SXR.

  15. Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver X receptor α activation, and expression of the basolateral sterol exporter ATP-binding cassette A1 in Caco-2 enterocytes.

    PubMed

    Brauner, Reinhard; Johannes, Christian; Ploessl, Florian; Bracher, Franz; Lorenz, Reinhard L

    2012-06-01

    Phytosterol-enriched foods are increasingly marketed to lower cholesterol levels and atherosclerosis in the general population. Phytosterols reduce cholesterol absorption, but the molecular mechanism is controversial. We therefore investigated the phytosterol effects on cholesterol metabolism in human enterocyte, hepatocyte, and macrophage models relevant for sterol absorption, reverse transport, and excretion. Isomolar sitosterol (50 μmol/L) was less effectively taken up by enterocytes than cholesterol but suppressed apical cholesterol uptake by 50% (P < 0.01) and basolateral secretion by two-thirds (P < 0.01) whether added in micelles or ethanol or complexed to cyclodextrin. In contrast, enterocytes handled nanomolar (3)H-sitosterol similarly to cholesterol. Enterocytes selectively oxidized all sterols to 27-hydroxy- and 27-carboxy-sterols. Conversion rates were much lower for sitosterol (0.05 ± 0.02 nmol/mg protein) and campesterol (0.48 ± 0.10) compared with cholesterol (3.73 ± 0.60) (P < 0.001). 27-Hydroxycholesterol (27OH-C) activated liver-X-receptor alpha (LXRα) (P < 0.01) and stimulated ATP-binding cassette transporter (ABC) A1 expression (P < 0.001) and basolateral systemic cholesterol secretion from enterocytes (P < 0.05). In co-incubations, phytosterols inhibited 27OH-C generation by sterol 27-hydroxylase (P < 0.001) and reduced LXRα-mediated ABCA1 expression (P < 0.01) and basolateral systemic cholesterol secretion. In contrast, ABCG8 transcription and apical sterol resecretion was unchanged by LXRα activation in human enterocytes. Exogenous LXRα agonists reverted sterol selectivity and phytosterol cholesterol interaction. Due to constitutive apical expression of ABCG5/G8 and LXRα-enhanced basolateral expression of ABCA1 in enterocytes, interference of phytosterols with the generation of the dominating LXRα-agonist 27OH-C blocks the self-priming component of cholesterol absorption. This local LXRα antagonism of dietary phytosterols

  16. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    PubMed Central

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  17. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  18. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression

    PubMed Central

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-IL; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y.L.; Choi, Hueng-Sik

    2017-01-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ -binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. PMID:26348907

  19. Orphan nuclear receptor oestrogen-related receptor γ (ERRγ) plays a key role in hepatic cannabinoid receptor type 1-mediated induction of CYP7A1 gene expression.

    PubMed

    Zhang, Yaochen; Kim, Don-Kyu; Lee, Ji-Min; Park, Seung Bum; Jeong, Won-Il; Kim, Seong Heon; Lee, In-Kyu; Lee, Chul-Ho; Chiang, John Y L; Choi, Hueng-Sik

    2015-09-01

    Bile acids are primarily synthesized from cholesterol in the liver and have important roles in dietary lipid absorption and cholesterol homoeostasis. Detailed roles of the orphan nuclear receptors regulating cholesterol 7α-hydroxylase (CYP7A1), the rate-limiting enzyme in bile acid synthesis, have not yet been fully elucidated. In the present study, we report that oestrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of CYP7A1 expression. Activation of cannabinoid receptor type 1 (CB1 receptor) signalling induced ERRγ-mediated transcription of the CYP7A1 gene. Overexpression of ERRγ increased CYP7A1 expression in vitro and in vivo, whereas knockdown of ERRγ attenuated CYP7A1 expression. Deletion analysis of the CYP7A1 gene promoter and a ChIP assay revealed an ERRγ-binding site on the CYP7A1 gene promoter. Small heterodimer partner (SHP) inhibited the transcriptional activity of ERRγ and thus regulated CYP7A1 expression. Overexpression of ERRγ led to increased bile acid levels, whereas an inverse agonist of ERRγ, GSK5182, reduced CYP7A1 expression and bile acid synthesis. Finally, GSK5182 significantly reduced hepatic CB1 receptor-mediated induction of CYP7A1 expression and bile acid synthesis in alcohol-treated mice. These results provide the molecular mechanism linking ERRγ and bile acid metabolism. © 2015 Authors; published by Portland Press Limited.

  20. [The effect of soy isoflavones on ATP binding cassette A1 expression level in rats without ovaries with atherosclerotic plaque].

    PubMed

    Li, Xian-biao; Ji, Li-li; Li, Yong; Zhang, Yu-mei

    2009-10-01

    To study the effect of soy isoflavones (SI) on ATP binding cassette A1 (ABCA1) expression in rats without ovary with atherosclerosis. After they were raised for a week by given basic feed, the ovaries of 50 12-week old SPF rats were removed. The rats were randomly divided into groups by weight. Ten rats were selected as the basic control group (A) that basic feed was given all through the research. The other 40 rats were given high-fat diets and at the end of 4 weeks, these rats were randomly divided into four groups by blood lipid level: atherosclerotic model group (B) that was given high-fat diets through the research, low isoflavones group (C) that was given high-fat diets plus 30 mg/kg SI, middle isoflavones group (D) that was given high-fat diets plus 90 mg/kg SI, and high isoflavones group (E) that was given high-fat diets plus 270 mg/kg SI. After 22 weeks, all rats were executed to measure morphological change on the aorta wall, assessing the ABCA1 gene expression in aorta wall by real-time PCR and protein expression by Western blotting in aorta wall, small intestine and liver. Serum lipid level of A, B, C, D, E groups: TC levels were (6.82 +/- 0.22), (15.73 +/- 1.51), (10.77 +/- 1.12), (9.95 +/- 1.18), (9.11 +/- 1.12) mmol/L respectively (F = 72.882, P < 0.01); TG levels were: (2.49 +/- 0.24), (0.78 +/- 0.13), (0.39 +/- 0.08), (0.29 +/- 0.09), (0.24 +/- 0.09) mmol/L respectively (F = 378.515, P < 0.01); LDL-C levels were (1.29 +/- 0.08), (14.76 +/- 1.23), (8.18 +/- 0.80), (7.85 +/- 0.72), (7.16 +/- 0.64)mmol/L respectively (F = 320.936, P < 0.01); HDL-C levels were (1.94 +/- 0.18), (1.04 +/- 0.10), (1.55 +/- 0.14), (1.88 +/- 0.17), (2.11 +/- 0.22) mmol/L respectively (F = 49.450, P < 0.01). ABCA1 protein expression in intestine, liver and aorta: for A, B, C, E groups in intestine were 96.577 +/- 9.743, 5.218 +/- 2.048, 18.060 +/- 5.179, 54.725 +/- 8.960, respectively (F = 172.272, P < 0.01); ABCA1 protein expression in liver of groups of A, B, C, E were: 13

  1. Common and unique cis-acting elements mediate xanthotoxin and flavone induction of the generalist P450 CYP321A1.

    PubMed

    Zhang, Chunni; Wong, Andrew; Zhang, Yalin; Ni, Xinzhi; Li, Xianchun

    2014-09-29

    How polyphagous herbivores up-regulate their counterdefense genes in response to a broad range of structurally different allelochemicals remains largely unknown. To test whether this is accomplished by having more allelochemical-response elements or the similar number of functionally more diverse elements, we mapped out the cis-acting elements mediating the induction of the allelochemical-metabolizing CYP321A1 from the generalist Helicoverpa zea by xanthotoxin and flavone, two structurally distinct allelochemicals with very different encounter rate by this species. Seven xanthotoxin-responsive elements were localized by analyzing promoter activities of varying length of CYP321A1 promoter in H. zea fatbody cells. Compared with the 5 flavone-responsive elements mapped out previously, there are four common elements (1 essential element, 2 enhancers, and 1 negative element) mediating induction of CYP321A1 by both of the two allelochemicals. The remaining four elements (3 enhancers and 1 negative element), however, only regulate induction of CYP321A1 by either of the two allelochemicals. Co-administration of the two allelochemicals resulted in an induction fold that is significantly lower than the expected additive value of the two allelochemicals. These results indicate that xanthotoxin- and flavone-induced expressions of CYP321A1 are mediated mainly by the functionally more diverse common elements although the allelochemical-unique elements also play a role.

  2. P2X-mediated AMPA receptor internalization and synaptic depression is controlled by two CaMKII phosphorylation sites on GluA1 in hippocampal neurons

    PubMed Central

    Pougnet, Johan-Till; Compans, Benjamin; Martinez, Audrey; Choquet, Daniel; Hosy, Eric; Boué-Grabot, Eric

    2016-01-01

    Plasticity at excitatory synapses can be induced either by synaptic release of glutamate or the release of gliotransmitters such as ATP. Recently, we showed that postsynaptic P2X2 receptors activated by ATP released from astrocytes downregulate synaptic AMPAR, providing a novel mechanism by which glial cells modulate synaptic activity. ATP- and lNMDA-induced depression in the CA1 region of the hippocampus are additive, suggesting distinct molecular pathways. AMPARs are homo-or hetero-tetramers composed of GluA1-A4. Here, we first show that P2X2-mediated AMPAR inhibition is dependent on the subunit composition of AMPAR. GluA3 homomers are insensitive and their presence in heteromers alters P2X-mediated inhibition. Using a mutational approach, we demonstrate that the two CaMKII phosphorylation sites S567 and S831 located in the cytoplasmic Loop1 and C-terminal tail of GluA1 subunits, respectively, are critical for P2X2-mediated AMPAR inhibition recorded from co-expressing Xenopus oocytes and removal of surface AMPAR at synapses of hippocampal neurons imaged by the super-resolution dSTORM technique. Finally, using phosphorylation site-specific antibodies, we show that P2X-induced depression in hippocampal slices produces a dephosphorylation of the GluA1 subunit at S567, contrary to NMDAR-mediated LTD. These findings indicate that GluA1 phosphorylation of S567 and S831 is critical for P2X2-mediated AMPAR internalization and ATP-driven synaptic depression. PMID:27624155

  3. Liver X receptor alpha mediated genistein induction of human dehydroepiandrosterone sulfotransferase (hSULT2A1) in Hep G2 cells

    SciTech Connect

    Chen, Yue; Zhang, Shunfen; Zhou, Tianyan; Huang, Chaoqun; McLaughlin, Alicia; Chen, Guangping

    2013-04-15

    Cytosolic sulfotransferases are one of the major families of phase II drug metabolizing enzymes. Sulfotransferase-catalyzed sulfonation regulates hormone activities, metabolizes drugs, detoxifies xenobiotics, and bioactivates carcinogens. Human dehydroepiandrosterone sulfotransferase (hSULT2A1) plays important biological roles by sulfating endogenous hydroxysteroids and exogenous xenobiotics. Genistein, mainly existing in soy food products, is a naturally occurring phytoestrogen with both chemopreventive and chemotherapeutic potential. Our previous studies have shown that genistein significantly induces hSULT2A1 in Hep G2 and Caco-2 cells. In this study, we investigated the roles of liver X receptor (LXRα) in the genistein induction of hSULT2A1. LXRs have been shown to induce expression of mouse Sult2a9 and hSULT2A1 gene. Our results demonstrate that LXRα mediates the genistein induction of hSULT2A1, supported by Western blot analysis results, hSULT2A1 promoter driven luciferase reporter gene assay results, and mRNA interference results. Chromatin immunoprecipitation (ChIP) assay results demonstrate that genistein increase the recruitment of hLXRα binding to the hSULT2A1 promoter. These results suggest that hLXRα plays an important role in the hSULT2A1 gene regulation. The biological functions of phytoestrogens may partially relate to their induction activity toward hydroxysteroid SULT. - Highlights: ► Liver X receptor α mediated genistein induction of hSULT2A1 in Hep G2 cells. ► LXRα and RXRα dimerization further activated this induction. ► Western blot results agreed well with luciferase reporter gene assay results. ► LXRs gene silencing significantly decreased hSULT2A1 expression. ► ChIP analysis suggested that genistein enhances hLXRα binding to the hSULT2A1 promoter.

  4. Carnosol, a Constituent of Zyflamend, Inhibits Aryl Hydrocarbon Receptor-Mediated Activation of CYP1A1 and CYP1B1 Transcription and Mutagenesis

    PubMed Central

    Mohebati, Arash; Guttenplan, Joseph B.; Kochhar, Amit; Zhao, Zhong-Lin; Kosinska, Wieslawa; Subbaramaiah, Kotha; Dannenberg, Andrew J.

    2012-01-01

    The aryl hydrocarbon receptor (AhR), a ligand-activated member of the basic-helix-loop-helix family of transcription factors, plays a significant role in polycyclic aromatic hydrocarbon (PAH) induced carcinogenesis. In the upper aerodigestive tract of humans, tobacco smoke, a source of PAHs, activates the AhR leading to increased expression of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. Inhibitors of Hsp90 ATPase cause a rapid decrease in levels of AhR, an Hsp90 client protein, and thereby block PAH-mediated induction of CYP1A1 and CYP1B1. The main objective of this study was to determine whether Zyflamend, a polyherbal preparation, suppressed PAH-mediated induction of CYP1A1 and CYP1B1 and inhibited DNA adduct formation and mutagenesis. We also investigated whether carnosol, one of multiple phenolic antioxidants in Zyflamend, had similar inhibitory effects. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) and skin (HaCaT) with benzo[a]pyrene (B[a]P), a prototypic PAH, induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Both Zyflamend and carnosol suppressed these effects of B[a]P. Notably, both Zyflamend and carnosol inhibited Hsp90 ATPase activity and caused a rapid reduction in AhR levels. The formation of B[a]P induced DNA adducts and mutagenesis were also inhibited by Zyflamend and carnosol. Collectively, these results show that Zyflamend and carnosol inhibit Hsp90 ATPase leading to reduced levels of AhR, suppression of B[a]P-mediated induction of CYP1A1 and CYP1B1 and inhibition of mutagenesis. Carnosol-mediated inhibition of Hsp90 ATPase activity can help explain the chemopreventive activity of herbs such as Rosemary, which contain this phenolic antioxidant. PMID:22374940

  5. Regulations of the key mediators in inflammation and atherosclerosis by aspirin in human macrophages.

    PubMed

    Lu, Li; Liu, Hong; Peng, Jiahe; Gan, Lin; Shen, Lili; Zhang, Qian; Li, Liangpeng; Zhang, Li; Su, Chang; Jiang, Yu

    2010-02-06

    Although its role to prevent secondary cardiovascular complications has been well established, how acetyl salicylic acid (ASA, aspirin) regulates certain key molecules in the atherogenesis is still not known. Considering the role of matrix metalloproteinase-9 (MMP-9) to destabilize the atherosclerotic plaques, the roles of the scavenger receptor class BI (SR-BI) and ATP-binding cassette transporter A1 (ABCA1) to promote cholesterol efflux in the foam cells at the plaques, and the role of NF-kappaB in the overall inflammation related to the atherosclerosis, we addressed whether these molecules are all related to a common mechanism that may be regulated by acetyl salicylic acid. We investigated the effect of ASA to regulate the expressions and activities of these molecules in THP-1 macrophages. Our results showed that ASA inhibited MMP-9 mRNA expression, and caused the decrease in the MMP-9 activities from the cell culture supernatants. In addition, it inhibited the nuclear translocation of NF-kappaB p65 subunit, thus the activity of this inflammatory molecule. On the contrary, acetyl salicylic acid induced the expressions of ABCA1 and SR-BI, two molecules known to reduce the progression of atherosclerosis, at both mRNA and protein levels. It also stimulated the cholesterol efflux out of macrophages. These data suggest that acetyl salicylic acid may alleviate symptoms of atherosclerosis by two potential mechanisms: maintaining the plaque stability via inhibiting activities of inflammatory molecules MMP-9 and NF-kappaB, and increasing the cholesterol efflux through inducing expressions of ABCA1 and SR-BI.

  6. Expectancies mediate the relationship between perceived injustice and return to work following whiplash injury: A 1-year prospective study.

    PubMed

    Carriere, J S; Thibault, P; Adams, H; Milioto, M; Ditto, B; Sullivan, M J L

    2017-08-01

    Emerging evidence suggests that perceived injustice is a risk factor for work disability in individuals with whiplash injury. At present, however, little is known about the processes by which perceived injustice impacts on return to work. The purpose of this study was to examine whether expectancies mediated the relationship between perceived injustice and return to work in patients with whiplash injury. One hundred and fifty-two individuals (81 men, 71 women) with a primary diagnosis of whiplash injury completed self-report measures of pain intensity, perceived injustice and return-to-work expectancies following admission to a rehabilitation programme. Work status was assessed 1 year after discharge. Consistent with previous research, high scores on a measure of perceived injustice were associated with prolonged work disability. Results indicated that high perceptions of injustice were associated with low return-to-work expectancies. Causal mediation analyses revealed that expectancies fully mediated the relationship between perceived injustice and return to work. The findings suggest that intervention techniques designed to target expectancies could improve return-to-work outcomes in patients with whiplash injury. Discussion addresses the processes by which expectancies might impact on return-to-work outcomes and the manner in which negative return-to-work expectancies might be modified through intervention. The study confirms that expectancies are the mechanism through which perceived injustice impacts return to work following whiplash injury. The findings suggest that interventions designed to specifically target return-to-work expectancies might improve rehabilitation outcomes in patients with whiplash injury. © 2017 European Pain Federation - EFIC®.

  7. High-density lipoprotein-mediated transcellular cholesterol transport in mouse aortic endothelial cells.

    PubMed

    Miao, LiXia; Okoro, Emmanuel U; Cao, ZhiJan; Yang, Hong; Motley-Johnson, Evangeline; Guo, Zhongmao

    2015-09-18

    Accumulation of unesterified cholesterol-rich lipid vesicles in the subendothelial space contributes to atherogenesis. Transport of cholesterol from the subendothelial intima back to the circulating blood inhibits atherosclerosis development; however, the mechanism for this process has not been fully defined. Using cultured mouse aortic endothelial cells (MAECs), we observed that unesterified cholesterol can be transported across the endothelial cell monolayer from the basolateral to the apical compartment. Administration of high-density lipoprotein (HDL) or apolipoprotein AI (apoAI) to the apical compartment enhanced transendothelial cholesterol transport in a concentration-dependent manner. Knockdown of ATP-binding cassette transporter G1 (ABCG1) or scavenger receptor class B type I (SR-B1), or inhibition of SR-B1 diminished HDL-induced transendothelial cholesterol transport; while knockdown of ABCA1 reduced apoAI-mediated cholesterol transport. HDL enhanced phosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt in MAECs. However, inhibition of PI3K or Akt did not reduce HDL-induced transendothelial cholesterol transport. These results suggest that HDL enhances transendothelial cholesterol transport by activation of a mechanism involving ABCA1, ABCG1 and SR-B1 but not involving PI3K and Akt.

  8. A1 adenosine receptor-mediated GIRK channels contribute to the resting conductance of CA1 neurons in the dorsal hippocampus

    PubMed Central

    Kim, Chung Sub

    2015-01-01

    The dorsal and ventral hippocampi are functionally and anatomically distinct. Recently, we reported that dorsal Cornu Ammonis area 1 (CA1) neurons have a more hyperpolarized resting membrane potential and a lower input resistance and fire fewer action potentials for a given current injection than ventral CA1 neurons. Differences in the hyperpolarization-activated cyclic nucleotide-gated cation conductance between dorsal and ventral neurons have been reported, but these differences cannot fully account for the different resting properties of these neurons. Here, we show that coupling of A1 adenosine receptors (A1ARs) to G-protein-coupled inwardly rectifying potassium (GIRK) conductance contributes to the intrinsic membrane properties of dorsal CA1 neurons but not ventral CA1 neurons. The block of GIRKs with either barium or the more specific blocker Tertiapin-Q revealed that there is more resting GIRK conductance in dorsal CA1 neurons compared with ventral CA1 neurons. We found that the higher resting GIRK conductance in dorsal CA1 neurons was mediated by tonic A1AR activation. These results demonstrate that the different resting membrane properties between dorsal and ventral CA1 neurons are due, in part, to higher A1AR-mediated GIRK activity in dorsal CA1 neurons. PMID:25652929

  9. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors.

    PubMed

    Jinka, Tulasi R; Tøien, Øivind; Drew, Kelly L

    2011-07-27

    Torpor in hibernating mammals defines the nadir in mammalian metabolic demand and body temperature that accommodates seasonal periods of reduced energy availability. The mechanism of metabolic suppression during torpor onset is unknown, although the CNS is a key regulator of torpor. Seasonal hibernators, such as the arctic ground squirrel (AGS), display torpor only during the winter, hibernation season. The seasonal character of hibernation thus provides a clue to its regulation. In the present study, we delivered adenosine receptor agonists and antagonists into the lateral ventricle of AGSs at different times of the year while monitoring the rate of O(2) consumption and core body temperature as indicators of torpor. The A(1) antagonist cyclopentyltheophylline reversed spontaneous entrance into torpor. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA) induced torpor in six of six AGSs tested during the mid-hibernation season, two of six AGSs tested early in the hibernation season, and none of the six AGSs tested during the summer, off-season. CHA-induced torpor within the hibernation season was specific to A(1)AR activation; the A(3)AR agonist 2-Cl-IB MECA failed to induce torpor, and the A(2a)R antagonist MSX-3 failed to reverse spontaneous onset of torpor. CHA-induced torpor was similar to spontaneous entrance into torpor. These results show that metabolic suppression during torpor onset is regulated within the CNS via A(1)AR activation and requires a seasonal switch in the sensitivity of purinergic signaling.

  10. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor.

    PubMed Central

    MacGregor, D. G.; Miller, W. J.; Stone, T. W.

    1993-01-01

    1. Systemic injections of kainic acid, 10 mg kg-1, into adult rats resulted in lesions in the hippocampus, as assessed by peripheral benzodiazepine ligand binding. Co-administration of clonazepam at 1 mg kg-1 or 0.2 mg kg-1 prevented major seizures associated with kainate injections, but did not alter significantly the production of hippocampal damage. 2. The co-administration of the adenosine A1 agonist R-phenylisopropyladenosine (R-PIA, 25 micrograms kg-1, i.p.) abolished the lesions induced by kainic acid. 3. The presence of the selective A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (250 or 50 micrograms kg-1, i.p.) abolished the R-PIA neuroprotective action. 4. The A1/A2 antagonist, 8-(p-sulphophenyl)theophylline (20 mg kg-1, i.p.) which cannot cross the blood brain barrier, did not alter significantly the neuroprotective action of R-PIA, indicating that the neuroprotective action of the purine may be predominantly central. 5. The time course of the neuroprotection was also examined. R-PIA was effective when administered 2 h before or after kainate administration. 6. The results emphasise the potential utility of systemically active adenosine A1 receptor ligands in reducing CNS gliosis induced by the activation of excitatory amino acid receptors. PMID:8220909

  11. Diosgenin inhibits atherosclerosis via suppressing the MiR-19b-induced downregulation of ATP-binding cassette transporter A1.

    PubMed

    Lv, Yun-cheng; Yang, Jing; Yao, Feng; Xie, Wei; Tang, Yan-yan; Ouyang, Xin-ping; He, Ping-ping; Tan, Yu-lin; Li, Liang; Zhang, Min; Liu, Dan; Cayabyab, Francisco S; Zheng, Xi-Long; Tang, Chao-ke

    2015-05-01

    Diosgenin (Dgn), a structural analogue of cholesterol, has been reported to have the hypolipidemic and antiatherogenic properties, but the underlying mechanisms are not fully understood. Given the key roles of macrophages in cholesterol metabolism and atherogenesis, it is critical to investigate macrophage cholesterol efflux and development of atherosclerotic lesion after Dgn treatment. This study was designed to evaluate the potential effects of Dgn on macrophage cholesterol metabolism and the development of aortic atherosclerosis, and to explore its underlying mechanisms. Dgn significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) protein, but didn't affect liver X receptor α levels in foam cells derived from human THP-1 macrophages and mouse peritoneal macrophages (MPMs) as determined by western blotting. The miR-19b levels were markedly down-regulated in Dgn-treated THP-1 macrophages/MPM-derived foam cells. Cholesterol transport assays revealed that treatment with Dgn alone or together with miR-19b inhibitor notably enhanced ABCA1-dependent cholesterol efflux, resulting in the reduced levels of total cholesterol, free cholesterol and cholesterol ester as determined by high-performance liquid chromatography. The fecal 3H-sterol originating from cholesterol-laden MPMs was increased in apolipoprotein E knockout mice treated with Dgn or both Dgn and antagomiR-19b. Treatment with Dgn alone or together with antagomiR-19b elevated plasma high-density lipoprotein levels, but reduced plasma low-density lipoprotein levels. Accordingly, aortic lipid deposition and plaque area were reduced, and collagen content and ABCA1 expression were increased in mice treated with Dgn alone or together with antagomiR-19b. However, miR-19b overexpression abrogated the lipid-lowering and atheroprotective effects induced by Dgn. The present study demonstrates that Dgn enhances ABCA1-dependent cholesterol efflux and inhibits aortic atherosclerosis

  12. EphrinA1-EphA2 interaction-mediated apoptosis and Flt3L-induced immunotherapy inhibits tumor growth in a breast cancer mouse model

    PubMed Central

    Tandon, Manish; Vemula, Sai V.; Sharma, Anurag; Ahi, Yadvinder S.; Mittal, Shalini; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Background The receptor tyrosine kinase EphA2 is overexpressed in several types of cancers and is currently being pursued as a target for breast cancer therapeutics. The EphA2 ligand EphrinA1 induces EphA2 phosphorylation and intracellular internalization and degradation, thus inhibiting tumor progression. The hematopoietic growth factor, FMS-like tyrosine kinase receptor ligand (Flt3L), promotes expansion and mobilization of functional dendritic cells. Methods We tested the EphrinA1-EphA2 interaction in MDA-MB-231 breast cancer cells focusing on the receptor-ligand-mediated apoptosis of breast cancer cells. In order to determine whether the EphrinA1-EphA2 interaction-associated apoptosis and Flt3L-mediated immunotherapy would have an additive effect in inhibiting tumor growth, we used an immunocompetent mouse model of breast cancer to evaluate intratumoral (i.t.) inoculation strategies with human adenovirus (HAd) vectors expressing either EphrinA1 (HAd-EphrinA1-Fc), Flt3L (HAd-Flt3L) or a combination of EphrinA1-Fc + Flt3L (HAd-EphrinA1-Fc + HAd-Flt3L). Results In vitro analysis demonstrated that an EphrinA1-EphA2 interaction led to apoptosis-related changes in breast cancer cells. In vivo, three i.t. inoculations of HAd-EphrinA1-Fc showed potent inhibition of tumor growth. Furthermore, increased inhibition in tumor growth was observed with the combination of HAd-EphrinA1-Fc and HAd-Flt3L accompanied by the generation of an anti-tumor adaptive immune response. Conclusions The results indicating induction of apoptosis and inhibition of mammary tumor growth show the potential therapeutic benefits of HAd-EphrinA1-Fc. In combination with HAd-Flt3L, this represents a promising strategy to effectively induce mammary tumor regression by HAd vector-based therapy. PMID:22228563

  13. Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum.

    PubMed

    Selley, Dana E; Cassidy, Michael P; Martin, Billy R; Sim-Selley, Laura J

    2004-11-01

    Cannabinoid CB(1) receptors in the cerebellum mediate the inhibitory effects of Delta(9)-tetrahydrocannabinol (THC) on motor coordination. Intracellular effects of CB(1) receptors include inhibition of adenylyl cyclase via activation of G(i/o) proteins. There is evidence for the convergence of other neuronal receptors, such as adenosine A(1) and GABA(B), with the cannabinoid system on this signaling pathway to influence motor function. Previous studies have shown that brain CB(1) receptors are desensitized and down-regulated by long-term THC treatment, but few studies have examined the effects of long-term THC treatment on downstream effector activity in brain. Therefore, these studies examined the relationship between CB(1), adenosine A(1), and GABA(B) receptors in cerebella of mice undergoing prolonged treatment with vehicle or THC at the level of G protein activation and adenylyl cyclase inhibition. In control cerebella, CB(1) receptors produced less than additive inhibition of adenylyl cyclase with GABA(B) and A(1) receptors, indicating that these receptors are localized on overlapping populations of cells. Long-term THC treatment produced CB(1) receptor down-regulation and desensitization of both cannabinoid agonist-stimulated G protein activation and inhibition of forskolin-stimulated adenylyl cyclase. However, G protein activation by GABA(B) or A(1) receptors was unaffected. It is noteworthy that heterologous attenuation of GABA(B) and A(1) receptor-mediated inhibition of adenylyl cyclase was observed, even though absolute levels of basal and forskolin- or G(s)-stimulated activity were unchanged. These results indicate that long-term THC administration produces a disruption of inhibitory receptor control of cerebellar adenylyl cyclase and suggest a potential mechanism of cross-tolerance to the motor incoordinating effects of cannabinoid, GABA(B), and A(1) agonists.

  14. QKI5-mediated alternative splicing of the histone variant macroH2A1 regulates gastric carcinogenesis

    PubMed Central

    Li, Feng; Yi, Ping; Pi, Jingnan; Li, Lanfang; Hui, Jingyi; Wang, Fang; Liang, Aihua; Yu, Jia

    2016-01-01

    Alternative pre-mRNA splicing is a key mechanism for increasing proteomic diversity and modulating gene expression. Emerging evidence indicated that the splicing program is frequently dysregulated during tumorigenesis. Cancer cells produce protein isoforms that can promote growth and survival. The RNA-binding protein QKI5 is a critical regulator of alternative splicing in expanding lists of primary human tumors and tumor cell lines. However, its biological role and regulatory mechanism are poorly defined in gastric cancer (GC) development and progression. In this study, we demonstrated that the downregulation of QKI5 was associated with pTNM stage and pM state of GC patients. Re-introduction of QKI5 could inhibit GC cell proliferation, migration, and invasion in vitro and in vivo, which might be due to the altered splicing pattern of macroH2A1 pre-mRNA, leading to the accumulation of macroH2A1.1 isoform. Furthermore, QKI5 could inhibit cyclin L1 expression via promoting macroH2A1.1 production. Thus, this study identified a novel regulatory axis involved in gastric tumorigenesis and provided a new strategy for GC therapy. PMID:27092877

  15. Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice

    PubMed Central

    Nishio, Miki; Sugimachi, Keishi; Goto, Hiroki; Wang, Jia; Morikawa, Takumi; Miyachi, Yosuke; Takano, Yusuke; Hikasa, Hiroki; Itoh, Tohru; Suzuki, Satoshi O.; Kurihara, Hiroki; Aishima, Shinichi; Leask, Andrew; Sasaki, Takehiko; Nakano, Toru; Nishina, Hiroshi; Nishikawa, Yuji; Sekido, Yoshitaka; Nakao, Kazuwa; Shin-ya, Kazuo; Mimori, Koshi; Suzuki, Akira

    2016-01-01

    Mps One Binder Kinase Activator (MOB)1A/1B are core components of the Hippo pathway that coactivate large tumor suppressor homolog (LATS) kinases. Mob1a/1b double deficiency in mouse liver (LMob1DKO) results in hyperplasia of oval cells and immature cholangiocytes accompanied by inflammatory cell infiltration and fibrosis. More than half of mutant mice die within 3 wk of birth. All survivors eventually develop liver cancers, particularly combined hepatocellular and cholangiocarcinomas (cHC-CCs) and intrahepatic cholangiocellular carcinomas (ICCs), and die by age 60 wk. Because this phenotype is the most severe among mutant mice lacking a Hippo signaling component, MOB1A/1B constitute the critical hub of Hippo signaling in mammalian liver. LMob1DKO liver cells show hyperproliferation, increased cell saturation density, hepatocyte dedifferentiation, enhanced epithelial–mesenchymal transition and cell migration, and elevated transforming growth factor beta(TGF-β)2/3 production. These changes are strongly dependent on Yes-Associated Protein-1 (Yap1) and partially dependent on PDZ-binding motif (Taz) and Tgfbr2, but independent of connective tissue growth factor (Ctgf). In human liver cancers, YAP1 activation is frequent in cHC-CCs and ICCs and correlates with SMAD family member 2 activation. Drug screening revealed that antiparasitic macrocyclic lactones inhibit YAP1 activation in vitro and in vivo. Targeting YAP1/TAZ with these drugs in combination with inhibition of the TGF-β pathway may be effective treatment for cHC-CCs and ICCs. PMID:26699479

  16. Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide

    PubMed Central

    Jacob, Laurent; Goetz, Jacky; Vermot, Julien; Fernandez, Aurore; Baumlin, Nadège; Aci-Sèche, Samia; Orend, Gertraud; Roussel, Guy; Crémel, Gérard; Genest, Monique; Hubert, Pierre; Bagnard, Dominique

    2016-01-01

    The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients. We next identified a developmental and tumor-associated pro-angiogenic role of Plexin-A1. Hence, by using molecular simulations and a two-hybrid like assay in parallel with biochemical and cellular assays we developed a specific Plexin-A1 peptidic antagonist disrupting transmembrane domain-mediated oligomerization of the receptor and subsequent signaling and functional activity. We found that this peptide exhibits anti-tumor activity in vivo on different human glioblastoma models including glioma cancer stem cells. Thus, screening Plexin-A1 expression and targeting Plexin-A1 in glioblastoma patients exhibit diagnostic and therapeutic value. PMID:27506939

  17. Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide.

    PubMed

    Jacob, Laurent; Sawma, Paul; Garnier, Norbert; Meyer, Lionel A T; Fritz, Justine; Hussenet, Thomas; Spenlé, Caroline; Goetz, Jacky; Vermot, Julien; Fernandez, Aurore; Baumlin, Nadège; Aci-Sèche, Samia; Orend, Gertraud; Roussel, Guy; Crémel, Gérard; Genest, Monique; Hubert, Pierre; Bagnard, Dominique

    2016-09-06

    The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients. We next identified a developmental and tumor-associated pro-angiogenic role of Plexin-A1. Hence, by using molecular simulations and a two-hybrid like assay in parallel with biochemical and cellular assays we developed a specific Plexin-A1 peptidic antagonist disrupting transmembrane domain-mediated oligomerization of the receptor and subsequent signaling and functional activity. We found that this peptide exhibits anti-tumor activity in vivo on different human glioblastoma models including glioma cancer stem cells. Thus, screening Plexin-A1 expression and targeting Plexin-A1 in glioblastoma patients exhibit diagnostic and therapeutic value.

  18. Plexin-A1 is required for Toll-like receptor-mediated microglial activation in the development of lipopolysaccharide-induced encephalopathy

    PubMed Central

    ITO, TAKUJI; YOSHIDA, KENJI; NEGISHI, TAKAYUKI; MIYAJIMA, MASAYASU; TAKAMATSU, HYOTA; KIKUTANI, HITOSHI; KUMANOGOH, ATSUSHI; YUKAWA, KAZUNORI

    2014-01-01

    Recent investigations have suggested that semaphorins, which are known repulsive axon guidance molecules, may play a crucial role in maintaining brain homeostasis by regulating microglial activity. Sema3A, secreted in higher amounts from injured neurons, is considered to suppress excessive inflammatory responses by inducing microglial apoptosis through its binding to Plexin-A1 receptors on activated microglia. To clarify the in vivo role of Plexin-A1-mediated signaling in lipopolysaccharide (LPS)-induced injury in mouse brain, we examined the neuroinflammatory changes initiated by LPS administration to the cerebral ventricles of wild-type (WT) and Plexin-A1-deficient (−/−) mice. WT mice administered LPS exhibited a significantly higher expression of COX-2, iNOS, IL-1β and TNF-α in the hippocampus, and a significantly greater ventricular enlargement and intracerebral infiltration of leukocytes, as compared with the saline-treated group. By contrast, Plexin-A1−/− mice administered LPS did not exhibit a significantly increased expression of COX-2, iNOS, IL-1β or TNF-α in the hippocampus as compared with the saline-treated group. Plexin-A1−/− mice administered LPS did not show significant increases in ventricle size or infiltration of leukocytes into the brain, as compared with the saline-treated group. In WT, but not in the Plexin-A1−/− primary microglia treated with LPS, Sema3A induced significantly more nitric oxide production than in the immunoglobulin G control. These results revealed the crucial role of the Sema3A-Plexin-A1 interaction in the Toll-like receptor 4-mediated signaling of the LPS-induced activation of microglia. Thus, results of the present study revealed the essential role of Plexin-A1 in the development of LPS-induced neuroinflammation in mice, suggesting the possible application of microglial control of the semaphorin-plexin signaling system to the treatment of LPS-induced encephalopathy and other psychiatric diseases

  19. Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine A1-receptors and alpha2-adrenoceptors.

    PubMed

    Imamura, M; Lander, H M; Levi, R

    1996-03-01

    We previously showed that prejunctional histamine H3-receptors downregulate norepinephrine exocytosis, which is markedly enhanced in early myocardial ischemia. In the present study, we investigated whether H3-receptors modulate nonexocytotic norepinephrine release during protracted myocardial ischemia. In this setting, decreased pH(i) in sympathetic nerve endings sequentially leads to a compensatory activation of the Na+-H+ antiporter (NHE), accumulation of intracellular Na+, reversal of the neuronal uptake of norepinephrine, and thus carrier-mediated release of norepinephrine. Accordingly, norepinephrine overflow from isolated guinea pig hearts undergoing 20-minute global ischemia and 45-minute reperfusion was attenuated approximately 80% by desipramine (10 nmol/L) and 70% by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA, 10 micromol/L), inhibitors of norepinephrine uptake and NHE, respectively. The H3-receptor agonist imetit (0.1 micromol/L) decreased carrier-mediated norepinephrine release by approximately 50%. This effect was blocked by the H3-receptor antagonist thioperamide (0.3 micromol/L), indicating that H-receptor activation inhibits carrier-mediated norepinephrine release. At lower concentrations, imetit (10 nmol/L) or EIPA (3 micromol/L) did not inhibit carrier-mediated norepinephrine release. However, a 25% inhibition occurred with imetit (10 nmol/L) and EIPA (3 micromol/L) combined. This synergism suggests an association between H-receptors and NHE. Conceivably, activation of H-receptors may lead to inhibition of NHE. In fact, alpha2-adrenoceptor activation, which is known to stimulate NHE, enhanced norepinephrine release, whereas alpha2-adrenoceptor blockade attenuated it. Furthermore, activation of adenosine A1-receptors markedly attenuated norepinephrine release, whereas their inhibition potentiated it. Because norepinephrine directly correlated with the severity of reperfusion arrhythmia and imetit reduced the incidence of ventricular fibrillation by 50

  20. Phosphatidic acid phospholipase A1 mediates ER–Golgi transit of a family of G protein–coupled receptors

    PubMed Central

    Kunduri, Govind; Yuan, Changqing; Parthibane, Velayoudame; Nyswaner, Katherine M.; Kanwar, Ritu; Nagashima, Kunio; Britt, Steven G.; Mehta, Nickita; Kotu, Varshika; Porterfield, Mindy; Tiemeyer, Michael; Dolph, Patrick J.; Acharya, Usha

    2014-01-01

    The coat protein II (COPII)–coated vesicular system transports newly synthesized secretory and membrane proteins from the endoplasmic reticulum (ER) to the Golgi complex. Recruitment of cargo into COPII vesicles requires an interaction of COPII proteins either with the cargo molecules directly or with cargo receptors for anterograde trafficking. We show that cytosolic phosphatidic acid phospholipase A1 (PAPLA1) interacts with COPII protein family members and is required for the transport of Rh1 (rhodopsin 1), an N-glycosylated G protein–coupled receptor (GPCR), from the ER to the Golgi complex. In papla1 mutants, in the absence of transport to the Golgi, Rh1 is aberrantly glycosylated and is mislocalized. These defects lead to decreased levels of the protein and decreased sensitivity of the photoreceptors to light. Several GPCRs, including other rhodopsins and Bride of sevenless, are similarly affected. Our findings show that a cytosolic protein is necessary for transit of selective transmembrane receptor cargo by the COPII coat for anterograde trafficking. PMID:25002678

  1. Inhibition of Human UGT1A1-Mediated Bilirubin Glucuronidation by Polyphenolic Acids Impact Safety of Popular Salvianolic Acid A/B-Containing Drugs and Herbal Products.

    PubMed

    Ma, Guo; Zhang, Ying; Chen, Wenyan; Tang, Zhifang; Xin, Xiaoming; Yang, Ping; Liu, Xiaoqin; Cai, Weimin; Hu, Ming

    2017-09-05

    Bilirubin-related adverse reactions (ADR, e.g., jaundice and hyperbilirubinemia) induced by herbs rich in certain polyphenolic acids are widely reported. However, the causes and the mechanisms underlying these ADR are not well understood. The purpose of this article is to determine the mechanism by which certain polyphenolic acids inhibit UGT1A1-mediated bilirubin glucuronidation, leading to jaundice or hyperbilirubinemia. We investigated in vitro inhibitory effects on bilirubin glucuronidation of salvianolic acid A (SAA), salvianolic acid B (SAB), danshensu (DSS), protocatechuic aldehyde (PA), and rosmarinic acid (RA), as well as two Salvia miltiorrhiza injections (DSI and CDI) rich in polyphenolic acids. The results showed that average formation rates of three bilirubin glucuronides displayed a significant difference (p < 0.05) and the formation of monoglucuronide was favored regardless if an inhibitor was present or not. SAA, SAB, DSI, and CDI, but not DSS, PA, and RA, significantly inhibited human UGT1A1-mediated bilirubin glucuronidation via a mixed-type inhibitory mechanism. Average IC50 values of SAA, SAB, DSI, and CDI-mediated inhibition of bilirubin glucuronidation were bilirubin concentration-dependent, and their values (against total bilirubin glucuronidation) were in the range 0.44 ± 0.02 to 0.86 ± 0.04 μg/mL (for SAA), 4.22 ± 0.30 to 12.50 ± 0.93 μg/mL (for SAB), 9.29 ± 0.76 to 18.82 ± 0.63 μg/mL (for DSI), and 9.18 ± 2.00 to 22.36 ± 1.39 μg/mL (for CDI), respectively. In conclusion, SAA and its analog SAB are the main ingredients responsible for inhibition of bilirubin glucuronidation by DSI and CDI, whose use is associated with many high bilirubin-related ADR.

  2. Involvement of cAMP-PKA pathway in adenosine A1 and A2A receptor-mediated regulation of acetaldehyde-induced activation of HSCs.

    PubMed

    Yang, Yaru; Wang, He; Lv, Xiongwen; Wang, Qi; Zhao, Han; Yang, Feng; Yang, Yan; Li, Jun

    2015-08-01

    The present study was undertaken to investigate the mechanism by which adenosine receptors (ARs)-mediated the cAMP/PKA/CREB signal pathway regulates the activation of acetaldehyde-induced hepatic stellate cells (HSCs). Primary HSCs were isolated from SD rats, cultured in vitro, and activated with different concentrations of acetaldehyde at different time points. Quantitative real-time PCR and Western blotting were used to quantify both protein and mRNA levels of the four AR (A1R, A2AR, A2BR, and A3R) in rat HSCs. Selective inhibitors of PDEs and the Gi/o protein pathway, general AR agonists, and AR subtype specific agents were used to study the AR signaling. The level of cAMP was measured by radio-immunoassay, and the expression of α-SMA, collagen type I and III, PKA and p-CREB were also detected by Western blotting. Acetaldehyde could significantly promote HSC proliferation, with a maximum stimulatory effect observed at 48 h after exposure to 200 μM acetaldehyde. All four AR subtypes could be present in rat HSCs, and the mRNA and protein expression levels for A2AR and A1R in much greater abundance than those for A2BR and A3R. The expression of A2AR and A1R was significantly increased in acetaldehyde-induced HSCs as compared with that of control group, whereas the expression of A2BR and A3R remained unaffected by the addition of acetaldehyde. Curiously, there is coupling of A2AR to the Gs-AC signaling, as well as coupling of A1R to the Gi/o-AC signaling pathway in acetaldehyde-induced HSCs. Both the A2AR and A1R antagonists could suppress the activation of HSC, although they have opposing effects on cAMP signal transduction. These results suggested that a combination of cAMP/PKA/CREB signals via A2AR and A1R likely mediate the activation of acetaldehyde-induced HSCs, and A1R coupled to the Gi/o-AC signaling pathway may be masked by the more predominant A2AR that coupled to the Gs-AC signaling pathway.

  3. Cambrian origin of the CYP27C1-mediated vitamin A1-to-A2 switch, a key mechanism of vertebrate sensory plasticity

    USGS Publications Warehouse

    Morshedian, Ala; Toomery, Matthew B.; Pollock, Gabriel E.; Frederiksen, Rikard; Enright, Jennifer; McCormick, Stephen; Cornwall, M. Carter; Fain, Gordon L.; Corbo, Joseph C.

    2017-01-01

    The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A1 into vitamin A2, thereby shifting the ratio of vitamin A1-based rhodopsin to red-shifted vitamin A2-based porphyropsin in the eye. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx. 500 Ma), dynamically shifts its photoreceptor spectral sensitivity via vitamin A1-to-A2 chromophore exchange as it transitions between photically divergent aquatic habitats. We further show that this shift correlates with high-level expression of the lamprey orthologue of CYP27C1, specifically in the retinal pigment epithelium as in jawed vertebrates. Our results suggest that the CYP27C1-mediated vitamin A1-to-A2 switch is an evolutionarily ancient mechanism of sensory plasticity that appeared not long after the origin of vertebrates.

  4. Cambrian origin of the CYP27C1-mediated vitamin A1-to-A2 switch, a key mechanism of vertebrate sensory plasticity.

    PubMed

    Morshedian, Ala; Toomey, Matthew B; Pollock, Gabriel E; Frederiksen, Rikard; Enright, Jennifer M; McCormick, Stephen D; Cornwall, M Carter; Fain, Gordon L; Corbo, Joseph C

    2017-07-01

    The spectral composition of ambient light varies across both space and time. Many species of jawed vertebrates adapt to this variation by tuning the sensitivity of their photoreceptors via the expression of CYP27C1, an enzyme that converts vitamin A1 into vitamin A2, thereby shifting the ratio of vitamin A1-based rhodopsin to red-shifted vitamin A2-based porphyropsin in the eye. Here, we show that the sea lamprey (Petromyzon marinus), a jawless vertebrate that diverged from jawed vertebrates during the Cambrian period (approx. 500 Ma), dynamically shifts its photoreceptor spectral sensitivity via vitamin A1-to-A2 chromophore exchange as it transitions between photically divergent aquatic habitats. We further show that this shift correlates with high-level expression of the lamprey orthologue of CYP27C1, specifically in the retinal pigment epithelium as in jawed vertebrates. Our results suggest that the CYP27C1-mediated vitamin A1-to-A2 switch is an evolutionarily ancient mechanism of sensory plasticity that appeared not long after the origin of vertebrates.

  5. Mimicking the membrane-mediated conformation of dynorphin A-(1-13)-peptide: Circular dichroism and nuclear magnetic resonance studies in methanolic solution

    SciTech Connect

    Lancaster, C.R.D.; Hughes, D.W.; Epand, R.M. ); Mishra, P.K.; Bothner-By, A.A. ); St.Pierre, S.A. )

    1991-05-14

    The structural requirements for the binding of dynorphin to the {kappa}-opioid receptor are of profound clinical interest in the search for a powerful nonaddictive analgesic. These requirements are thought to be met by the membrane-mediated conformation of the opioid peptide dynorphin A-(1-13)-peptide, Tyr{sup 1}-Gly{sup 2}-Gly{sup 3}-Phe{sup 4}-Leu{sup 5}-Arg{sup 6}-Arg{sup 7}-Ile{sup 8}-Arg{sup 9}-Pro{sup 10}-Lys{sup 11}-Leu{sup 12}-Lys{sup 13}. Schwyzer has proposed an essentially {alpha}-helical membrane-mediated conformation of the 13 amino acid peptide. In the present study, circular dichroism (CD) studies on dynorphin A-(1-13)-peptide bound to an anionic phospholipid signified negligible helical content of the peptide. CD studies also demonstrated that the aqueous-membraneous interphase may be mimicked by methanol. The 500- and 620-MHz {sup 1}H nuclear magnetic resonance (NMR) spectra of dynorphin A-(1-13)-peptide in methanolic solution were sequence-specifically assigned with the aid of correlated spectroscopy (COSY), double-quantum filtered phase-sensitive COSY (DQF-COSY), relayed COSY (RELAY), and nuclear Overhauser enhancement spectroscopy (NOESY). 2-D CAMELSPIN/ROESY experiments indicated that at least the part of the molecule from Arg{sup 7} to Arg{sup 9} was in an extended or {beta}-strand conformation, which agreed with deuterium-exchange and temperature-dependence studies of the amide protons and analysis of the vicinal spin-spin coupling constants {sup 3}J{sub HN{alpha}}. The results clearly demonstrated the absence of extensive {alpha}-helix formation. {chi}{sub 1} rotamer analysis of the {sup 3}J{sub {alpha}{beta}} demonstrated no preferred side-chain conformations.

  6. High-level tetracycline resistance mediated by efflux pumps Tet(A) and Tet(A)-1 with two start codons.

    PubMed

    Wang, Weixia; Guo, Qinglan; Xu, Xiaogang; Sheng, Zi-ke; Ye, Xinyu; Wang, Minggui

    2014-11-01

    Efflux is the most common mechanism of tetracycline resistance. Class A tetracycline efflux pumps, which often have high prevalence in Enterobacteriaceae, are encoded by tet(A) and tet(A)-1 genes. These genes have two potential start codons, GTG and ATG, located upstream of the genes. The purpose of this study was to determine the start codon(s) of the class A tetracycline resistance (tet) determinants tet(A) and tet(A)-1, and the tetracycline resistance level they mediated. Conjugation, transformation and cloning experiments were performed and the genetic environment of tet(A)-1 was analysed. The start codons in class A tet determinants were investigated by site-directed mutagenesis of ATG and GTG, the putative translation initiation codons. High-level tetracycline resistance was transferred from the clinical strain of Klebsiella pneumoniae 10-148 containing tet(A)-1 plasmid pHS27 to Escherichia coli J53 by conjugation. The transformants harbouring recombinant plasmids that carried tet(A) or tet(A)-1 exhibited tetracycline MICs of 256-512 µg ml(-1), with or without tetR(A). Once the ATG was mutated to a non-start codon, the tetracycline MICs were not changed, while the tetracycline MICs decreased from 512 to 64 µg ml(-1) following GTG mutation, and to ≤4 µg ml(-1) following mutation of both GTG and ATG. It was presumed that class A tet determinants had two start codons, which are the primary start codon GTG and secondary start codon ATG. Accordingly, two putative promoters were predicted. In conclusion, class A tet determinants can confer high-level tetracycline resistance and have two start codons. © 2014 The Authors.

  7. Hypocholesterolemic activity of grape seed proanthocyanidin is mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

    PubMed

    Jiao, Rui; Zhang, Zesheng; Yu, Hongjian; Huang, Yu; Chen, Zhen-Yu

    2010-11-01

    Interest in grape seed proanthocyanidin (GSP) as a cholesterol-lowering nutraceutical is growing. This study was to investigate the effect of GSP on blood cholesterol level and gene expression of cholesterol-regulating enzymes in Golden Syrian hamsters maintained on a 0.1% cholesterol diet. Results affirmed supplementation of 0.5% or 1.0% GSP could decrease plasma total cholesterol and triacylglycerol level. Western blot and real-time polymerase chain reaction analyses demonstrated GSP did not affect sterol regulatory element binding protein-2 and low-density lipoprotein receptor; however, it increased mRNA 3-hydroxy-3-methylglutaryl coenzyme A reductase. GSP had no effect on the protein mass of liver X receptor alpha (LXRα) but it decreased mRNA LXRα. Most importantly, GSP increased not only the protein level of cholesterol-7α-hydroxylase (CYP7A1) but also mRNA CYP7A1. It was concluded that the hypocholesterolemic activity of GSP was most likely mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

  8. Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission.

    PubMed

    Nascimento, Filipe; Sebastião, Ana M; Ribeiro, Joaquim A

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a disease leading to neuromuscular transmission impairment. A2A adenosine receptor (A2AR) function changes with disease stage, but the role of the A(1) receptors (A1Rs) is unknown and may have a functional cross-talk with A2AR. The role of A1R in the SOD1(G93A) mouse model of ALS in presymptomatic (4-6 weeks old) and symptomatic (12-14 weeks old) phases was investigated by recording endplate potentials (EPPs), miniature endplate potentials (MEPPs), and quantal content (q.c.) of EPPs, from Mg(2+) paralyzed hemidiaphragm preparations. In presymptomatic mice, the A1R agonist, N (6)-cyclopentyladenosine (CPA) (50 nM), decreased mean EPP amplitude, MEPP frequency, and q.c. of EPPs, an effect quantitatively similar to that in age-matched wild-type (WT) mice. However, coactivation of A2AR with CGS 21680 (5 nM) prevented the effects of CPA in WT mice but not in presymptomatic SOD1(G93A) mice, suggestive of A1R/A2AR cross-talk disruption in this phase of ALS. DPCPX (50 nM) impaired CGS 21680 facilitatory action on neuromuscular transmission in WT but not in presymptomatic mice. In symptomatic animals, CPA only inhibited transmission if added in the presence of adenosine deaminase (ADA, 1 U/mL). ADA and DPCPX enhanced more transmission in symptomatic mice than in age-matched WT mice, suggestive of increase in extracellular adenosine during the symptomatic phase of ALS. The data documents that at the neuromuscular junction of presymptomatic SOD1(G93A) mice, there is a loss of A1R-A2AR functional cross-talk, while in symptomatic mice there is increased A1R tonic activation, and that with disease progression, changes in A1R-mediated adenosine modulation may act as aggravating factors during the symptomatic phase of ALS.

  9. The TCN2 variant of rs9606756 [Ile23Val] acts as risk loci for obesity-related traits and mediates by interacting with Apo-A1.

    PubMed

    Hebbar, Prashantha; Alkayal, Fadi; Nizam, Rasheeba; Melhem, Motasem; Elkum, Naser; John, Sumi Elsa; Abufarha, Mohamed; Alsmadi, Osama; Thanaraj, Thangavel Alphonse

    2017-06-01

    Despite alarming obesity levels in the Arabian Peninsula, its population lacks convincingly identified genetic determinants of obesity. A genome-wide association study was performed for obesity-related anthropometric traits in Arabs and to decipher mechanisms by which the variants mediate traits. The Illumina HumanOmniExpress BeadChip was used to genotype 1,353 Arab individuals (largely with Class I obesity) from Kuwait. Genome-wide association tests for obesity-related anthropometric traits were performed. Top associations were tested for replication in an independent cohort (1,176 unrelated Arabs). Resultant variants were investigated for interactions with obesity-related plasma biomarkers. Pathway analysis was performed on genes harboring markers in linkage disequilibrium (LD) with identified variants. The rs9606756[c.67A>G,p.Ile23Val] variant from TCN2 was associated with waist circumference (WC) at nearly genome-wide significance (P = 8.92E-08). WC was inversely related with Apo-A1 or high-density lipoprotein levels; individuals with the AG genotype exhibited stronger relationship than those with the reference AA genotype. Interaction involving the AG genotype (effect allele = G) significantly contributed to an increase in anthropometric traits (particularly WC). Genes harboring single-nucleotide polymorphisms in LD with rs9606756 mapped onto an interaction network (with TP53 as central element) of established obesity/diabetes-related protein components. The TCN2 variant acts as a risk factor for WC in the Arab population. The variant mediates obesity-related anthropometric traits via interactions with Apo-A1/high-density lipoprotein or TP53. © 2017 The Obesity Society.

  10. Enhanced Actions of Adenosine in Medial Entorhinal Cortex Layer II Stellate Neurons in Temporal Lobe Epilepsy are Mediated via A1 Receptor Activation

    PubMed Central

    Hargus, Nicholas J.; Jennings, Conor; Perez-Reyes, Edward; Bertram, Edward H.; Patel, Manoj K.

    2011-01-01

    Summary Purpose The adenosinergic system is known to exert an inhibitory affect in the brain and as such adenosine has been considered an endogenous anticonvulsant. Entorhinal cortex (EC) layer II neurons, which serve as the primary input to the hippocampus, are spared in temporal lobe epilepsy (TLE) and become hyperexcitable. Since these neurons also express adenosine receptors, the activity of these neurons may be controlled by adenosine, specifically during seizure activity when adenosine levels are thought to rise. In light of this, we determined if the actions of adenosine on medial EC (mEC) layer II stellate neurons are augmented in TLE and by which receptor subtype. Methods Horizontal brain slices were prepared from rats exhibiting spontaneous seizures (TLE) induced by electrical stimulation and compared with age matched control rats. mEC layer II stellate neurons were visually identified and action potentials (AP) evoked by either a series of depolarizing current injection steps or via presynaptic stimulation of mEC deep layers. The effects of adenosine were compared with actions of adenosine A1 and A2A receptor-specific agonists (CPA and CGS 21680) and antagonists (DPCPX and ZM241385) respectively. Immunohistochemical and qPCR techniques were also employed to assess relative adenosine A1 receptor message and expression. Key Findings mEC layer II stellate neurons were hyper-excitable in TLE, evoking a higher frequency of AP's when depolarized and generating bursts of AP's when synaptically stimulated. Adenosine reduced AP frequency and synaptically evoked AP's in a dose dependent manner (500 nM – 100 μM); however, in TLE, the inhibitory actions of adenosine occurred at concentrations that were without affect in control neurons. In both cases, the inhibitory actions of adenosine were mediated via activation of the A1 and not the A2A receptor subtype. qPCR and immunohistochemical experiments revealed an up-regulation of the adenosine A1 mRNA and an

  11. A widespread sequence-specific mRNA decay pathway mediated by hnRNPs A1 and A2/B1

    PubMed Central

    Geissler, Rene; Simkin, Alfred; Floss, Doreen; Patel, Ravi; Fogarty, Elizabeth A.; Scheller, Jürgen; Grimson, Andrew

    2016-01-01

    3′-untranslated regions (UTRs) specify post-transcriptional fates of mammalian messenger RNAs (mRNAs), yet knowledge of the underlying sequences and mechanisms is largely incomplete. Here, we identify two related novel 3′ UTR motifs in mammals that specify transcript degradation. These motifs are interchangeable and active only within 3′ UTRs, where they are often preferentially conserved; furthermore, they are found in hundreds of transcripts, many encoding regulatory proteins. We found that degradation occurs via mRNA deadenylation, mediated by the CCR4–NOT complex. We purified trans factors that recognize the motifs and identified heterogeneous nuclear ribonucleoproteins (hnRNPs) A1 and A2/B1, which are required for transcript degradation, acting in a previously unknown manner. We used RNA sequencing (RNA-seq) to confirm hnRNP A1 and A2/B1 motif-dependent roles genome-wide, profiling cells depleted of these factors singly and in combination. Interestingly, the motifs are most active within the distal portion of 3′ UTRs, suggesting that their role in gene regulation can be modulated by alternative processing, resulting in shorter 3′ UTRs. PMID:27151978

  12. Heat shock protein 90 inhibitors suppress aryl hydrocarbon receptor-mediated activation of CYP1A1 and CYP1B1 transcription and DNA adduct formation.

    PubMed

    Hughes, Duncan; Guttenplan, Joseph B; Marcus, Craig B; Subbaramaiah, Kotha; Dannenberg, Andrew J

    2008-11-01

    The aryl hydrocarbon receptor (AhR), a client protein of heat shock protein 90 (HSP90), plays a significant role in polycyclic aromatic hydrocarbon (PAH)-induced carcinogenesis. Tobacco smoke, a source of PAHs, activates the AhR, leading to enhanced transcription of CYP1A1 and CYP1B1, which encode proteins that convert PAHs to genotoxic metabolites. The main objectives of this study were to determine whether HSP90 inhibitors suppress PAH-mediated induction of CYP1A1 and CYP1B1 or block benzo(a)pyrene [B(a)P]-induced formation of DNA adducts. Treatment of cell lines derived from oral leukoplakia (MSK-Leuk1) or esophageal squamous cell carcinoma (KYSE450) with a saline extract of tobacco smoke, B(a)P, or dioxin induced CYP1A1 and CYP1B1 transcription, resulting in enhanced levels of message and protein. Inhibitors of HSP90 [17-allylamino-17-demethoxygeldanamycin (17-AAG); celastrol] suppressed these inductive effects of PAHs. Treatment with 17-AAG and celastrol also caused a rapid and marked decrease in amounts of AhR protein without modulating levels of HSP90. The formation of B(a)P-induced DNA adducts in MSK-Leuk1 cells was inhibited by 17-AAG, celastrol, and alpha-naphthoflavone, a known AhR antagonist. The reduction in B(a)P-induced DNA adducts was due, at least in part, to reduced metabolic activation of B(a)P. Collectively, these results suggest that 17-AAG and celastrol, inhibitors of HSP90, suppress the activation of AhR-dependent gene expression, leading, in turn, to reduced formation of B(a)P-induced DNA adducts. Inhibitors of HSP90 may have a role in chemoprevention in addition to cancer therapy.

  13. BEX1/ARF1A1C is required for BFA-sensitive recycling of PIN auxin transporters and auxin-mediated development in Arabidopsis.

    PubMed

    Tanaka, Hirokazu; Nodzyłski, Tomasz; Kitakura, Saeko; Feraru, Mugurel I; Sasabe, Michiko; Ishikawa, Tomomi; Kleine-Vehn, Jürgen; Kakimoto, Tatsuo; Friml, Jiři

    2014-04-01

    Correct positioning of membrane proteins is an essential process in eukaryotic organisms. The plant hormone auxin is distributed through intercellular transport and triggers various cellular responses. Auxin transporters of the PIN-FORMED (PIN) family localize asymmetrically at the plasma membrane (PM) and mediate the directional transport of auxin between cells. A fungal toxin, brefeldin A (BFA), inhibits a subset of guanine nucleotide exchange factors for ADP-ribosylation factor small GTPases (ARF GEFs) including GNOM, which plays a major role in localization of PIN1 predominantly to the basal side of the PM. The Arabidopsis genome encodes 19 ARF-related putative GTPases. However, ARF components involved in PIN1 localization have been genetically poorly defined. Using a fluorescence imaging-based forward genetic approach, we identified an Arabidopsis mutant, bfa-visualized exocytic trafficking defective1 (bex1), in which PM localization of PIN1-green fluorescent protein (GFP) as well as development is hypersensitive to BFA. We found that in bex1 a member of the ARF1 gene family, ARF1A1C, was mutated. ARF1A1C localizes to the trans-Golgi network/early endosome and Golgi apparatus, acts synergistically to BEN1/MIN7 ARF GEF and is important for PIN recycling to the PM. Consistent with the developmental importance of PIN proteins, functional interference with ARF1 resulted in an impaired auxin response gradient and various developmental defects including embryonic patterning defects and growth arrest. Our results show that ARF1A1C is essential for recycling of PIN auxin transporters and for various auxin-dependent developmental processes.

  14. Transgenic Overexpression of Aryl Hydrocarbon Receptor Repressor (AhRR) and AhR-Mediated Induction of CYP1A1, Cytokines, and Acute Toxicity

    PubMed Central

    Vogel, Christoph F.A.; Chang, W.L. William; Kado, Sarah; McCulloh, Kelly; Vogel, Helena; Wu, Dalei; Haarmann-Stemmann, Thomas; Yang, GuoXiang; Leung, Patrick S.C.; Matsumura, Fumio; Gershwin, M. Eric

    2016-01-01

    Background: The aryl hydrocarbon receptor repressor (AhRR) is known to repress aryl hydrocarbon receptor (AhR) signaling, but very little is known regarding the role of the AhRR in vivo. Objective: This study tested the role of AhRR in vivo in AhRR overexpressing mice on molecular and toxic end points mediated through a prototypical AhR ligand. Methods: We generated AhRR-transgenic mice (AhRR Tg) based on the genetic background of C57BL/6J wild type (wt) mice. We tested the effect of the prototypical AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the expression of cytochrome P450 (CYP)1A1 and cytokines in various tissues of mice. We next analyzed the infiltration of immune cells in adipose tissue of mice after treatment with TCDD using flow cytometry. Results: AhRR Tg mice express significantly higher levels of AhRR compared to wt mice. Activation of AhR by TCDD caused a significant increase of the inflammatory cytokines Interleukin (IL)-1β, IL-6 and IL-10, and CXCL chemokines in white epididymal adipose tissue from both wt and AhRR Tg mice. However, the expression of IL-1β, CXCL2 and CXCL3 were significantly lower in AhRR Tg versus wt mice following TCDD treatment. Exposure to TCDD caused a rapid accumulation of neutrophils and macrophages in white adipose tissue of wt and AhRR Tg mice. Furthermore we found that male AhRR Tg mice were protected from high-dose TCDD-induced lethality associated with a reduced inflammatory response and liver damage as indicated by lower levels of TCDD-induced alanine aminotransferase and hepatic triglycerides. Females from both wt and AhRR Tg mice were less sensitive than male mice to acute toxicity induced by TCDD. Conclusion: In conclusion, the current study identifies AhRR as a previously uncharacterized regulator of specific inflammatory cytokines, which may protect from acute toxicity induced by TCDD. Citation: Vogel CF, Chang WL, Kado S, McCulloh K, Vogel H, Wu D, Haarmann-Stemmann T, Yang GX, Leung PS, Matsumura F

  15. Burkholderia pseudomallei Evades Nramp1 (Slc11a1)- and NADPH Oxidase-Mediated Killing in Macrophages and Exhibits Nramp1-Dependent Virulence Gene Expression

    PubMed Central

    Muangsombut, Veerachat; Withatanung, Patoo; Srinon, Varintip; Chantratita, Narisara; Stevens, Mark P.; Blackwell, Jenefer M.; Korbsrisate, Sunee

    2017-01-01

    Bacterial survival in macrophages can be affected by the natural resistance-associated macrophage protein 1 (Nramp1; also known as solute carrier family 11 member a1 or Slc11a1) which localizes to phagosome membranes and transports divalent cations, including iron. Little is known about the role of Nramp1 in Burkholderia infection, in particular whether this differs for pathogenic species like Burkholderia pseudomallei causing melioidosis or non-pathogenic species like Burkholderia thailandensis. Here we show that transfected macrophages stably expressing wild-type Nramp1 (Nramp1+) control the net replication of B. thailandensis, but not B. pseudomallei. Control of B. thailandensis was associated with increased cytokine responses, and could be abrogated by blocking NADPH oxidase-mediated production of reactive oxygen species but not by blocking generation of reactive nitrogen species. The inability of Nramp1+ macrophages to control B. pseudomallei was associated with rapid escape of bacteria from phagosomes, as indicated by decreased co-localization with LAMP1 compared to B. thailandensis. A B. pseudomallei bipB mutant impaired in escape from phagosomes was controlled to a greater extent than the parent strain in Nramp1+ macrophages, but was also attenuated in Nramp1− cells. Consistent with reduced escape from phagosomes, B. thailandensis formed fewer multinucleated giant cells in Nramp1+ macrophages at later time points compared to B. pseudomallei. B. pseudomallei exhibited elevated transcription of virulence-associated genes of Type VI Secretion System cluster 1 (T6SS-1), the Bsa Type III Secretion System (T3SS-3) and the bimA gene required for actin-based motility in Nramp1+ macrophages. Nramp1+ macrophages were found to contain decreased iron levels that may impact on expression of such genes. Our data show that B. pseudomallei is able to evade Nramp1- and NADPH oxidase-mediated killing in macrophages and that expression of virulence-associated genes by

  16. Characteristics and Functional Relevance of Apolipoprotein-A1 and Cholesterol Binding in Mammary Gland Tissues and Epithelial Cells

    PubMed Central

    Ontsouka, Edgar Corneille; Huang, Xiao; Stieger, Bruno; Albrecht, Christiane

    2013-01-01

    Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of 125I-apoA-I and 3H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular 3H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell® plates. The amounts of isolated EPM and the maximal binding capacity of 125I-apoA-I to EPM differed depending on the MG’s physiological state, while the kinetics of 3H-cholesterol and 125I-apoA-I binding were similar. 3H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of 125I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of 125I-apoA-I ranged between 40–74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and 125I-apoA-I binding. The ABCA1 inhibitor Probucol displaced 125I-apoA-I binding to EPM and reduced 3H-cholesterol efflux in MeBo. Time-dependent 3H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell® plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of 3H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the

  17. Characteristics and functional relevance of apolipoprotein-A1 and cholesterol binding in mammary gland tissues and epithelial cells.

    PubMed

    Ontsouka, Edgar Corneille; Huang, Xiao; Stieger, Bruno; Albrecht, Christiane

    2013-01-01

    Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of (125)I-apoA-I and (3)H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular (3)H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell(®) plates. The amounts of isolated EPM and the maximal binding capacity of (125)I-apoA-I to EPM differed depending on the MG's physiological state, while the kinetics of (3)H-cholesterol and (125)I-apoA-I binding were similar. (3)H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of (125)I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of (125)I-apoA-I ranged between 40-74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and (125)I-apoA-I binding. The ABCA1 inhibitor Probucol displaced (125)I-apoA-I binding to EPM and reduced (3)H-cholesterol efflux in MeBo. Time-dependent (3)H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell(®) plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of (3)H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects

  18. The human sodium-dependent ascorbic acid transporters SLC23A1 and SLC23A2 do not mediate ascorbic acid release in the proximal renal epithelial cell

    PubMed Central

    Eck, Peter; Kwon, Oran; Chen, Shenglin; Mian, Omar; Levine, Mark

    2013-01-01

    Sodium-dependent ascorbic acid membrane transporters SLC23A1 and SLC23A2 mediate ascorbic acid (vitamin C) transport into cells. However, it is unknown how ascorbic acid undergoes cellular release, or efflux. We hypothesized that SLC23A1 and SLC23A2 could serve a dual role, mediating ascorbic acid cellular efflux as well as uptake. Renal reabsorption is required for maintaining systemic vitamin C concentrations. Because efflux from nephron cells is necessary for reabsorption, we studied whether SLC23A1 and SLC23A2 mediate efflux of ascorbic acid in the human renal nephron. We found high gene expression of SLC23A1 but no expression of SLC23A2 in the proximal convoluted and straight tubules of humans. These data rule out SLC23A2 as the ascorbic acid release protein in the renal proximal tubular epithelia cell. We utilized a novel dual transporter-based Xenopus laevis oocyte system to investigate the function of the SLC23A1 protein, and found that no ascorbate release was mediated by SLC23A1. These findings were confirmed in mammalian cells overexpressing SLC23A1. Taken together, the data for SLC23A1 show that it too does not have a role in cellular release of ascorbic acid across the basolateral membrane of the proximal tubular epithelial cell, and that SLC23A1 alone is responsible for ascorbic acid uptake across the apical membrane. These findings reiterate the physiological importance of proper functioning of SLC23A1 in maintaining vitamin C levels for health and disease prevention. The ascorbate efflux mechanism in the proximal tubule of the kidney remains to be characterized. PMID:24400138

  19. Dietary cholesterol stimulates CYP7A1 in rats because farnesoid X receptor is not activated.

    PubMed

    Xu, Guorong; Pan, Lu-Xing; Li, Hai; Shang, Quan; Honda, Akira; Shefer, Sarah; Bollineni, Jaya; Matsuzaki, Yasushi; Tint, G Stephen; Salen, Gerald

    2004-05-01

    Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-alpha) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were investigated in rats. Studies were carried out in four groups (n = 12/group) of male Sprague-Dawley rats fed regular chow (control), 2% Ch, 2% Ch + 1% CA, and 1% CA alone for 1 wk. Changes in mRNA expression of short heterodimer partner (SHP) and bile salt export pump (BSEP), target genes for FXR, were determined to indicate FXR activation, whereas the expression of ABCA1 and lipoprotein lipase (LPL), target genes for LXR-alpha, reflected activation. CYP7A1 mRNA and activity increased twofold and 70%, respectively, in rats fed Ch alone when the bile acid pool size was stable but decreased 43 and 49%, respectively, after CA was added to the Ch diet, which expanded the bile acid pool 3.4-fold. SHP and BSEP mRNA levels did not change after feeding Ch but increased 88 and 37% in rats fed Ch + CA. This indicated that FXR was activated by the expanded bile acid pool. When Ch or Ch + CA were fed, hepatic concentrations of oxysterols, ligands for LXR-alpha increased to activate LXR-alpha, as evidenced by increased mRNA levels of ABCA1 and LPL. Feeding CA alone enlarged the bile acid pool threefold and increased the expression of both SHP and BSEP. These results suggest that LXR-alpha was activated in rats fed both Ch or Ch + CA, whereas CYP7A1 mRNA and activity were induced only in Ch-fed rats where the bile acid pool was not enlarged such that FXR was not activated. In rats fed Ch + CA, the bile acid pool expanded, which activated FXR to offset the stimulatory effects of LXR-alpha on CYP7A1.

  20. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line

    PubMed Central

    Li, Xiaoming; Xu, Min; Wang, Fei; Ji, Yong; DavidsoN, W. Sean; Li, Zongfang; Tso, Patrick

    2015-01-01

    We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis. PMID:26556724

  1. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line.

    PubMed

    Li, Xiaoming; Xu, Min; Wang, Fei; Ji, Yong; DavidsoN, W Sean; Li, Zongfang; Tso, Patrick

    2015-01-01

    We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis.

  2. Medication Adherence Mediates the Association between Type D Personality and High HbA1c Level in Chinese Patients with Type 2 Diabetes Mellitus: A Six-Month Follow-Up Study

    PubMed Central

    Li, Xuemei; Gao, Min; Zhang, Shengfa; Xu, Huiwen; Zhou, Huixuan; Wang, Xiaohua; Qu, Zhiyong; Guo, Jing

    2017-01-01

    Aims. To examine the association between Type D personality and HbA1c level and to explore the mediating role of medication adherence between them in patients with type 2 diabetes mellitus (T2DM). Methods. 330 patients went on to complete a self-report measure of medication adherence and the HbA1c tests. Chi-square test, T test, Ordinary Least Square Regression (OLS), and Recentered Influence Function Regression (RIF) were employed. Results. Patients with Type D personality had significantly higher HbA1c value (P < 0.01). When Type D personality was operationalized as a categorical variable, SI was associated with HbA1c (P < 0.01). When NA, SI, and their interaction term were entered into regression, all of them were no longer associated with HbA1c level (P > 0.1). On the other hand, when Type D personality was operationalized as a continuous variable, only SI trait was associated with HbA1c level (P < 0.01). When NA, SI, and NA × SI term together were entered into regression, only SI was not related to HbA1c level. Furthermore, medication adherence had a significant mediation effect between Type D personality and HbA1c, accounting for 54.43% of the total effect. Conclusion. Type D personality was associated with HbA1c in direct and indirect ways, and medication adherence acted as a mediator role. PMID:28280745

  3. Occurrence of the Plasmid-Mediated Fluoroquinolone Resistance qepA1 Gene in Two Clonal Clinical Isolates of CTX-M-15-Producing Escherichia coli from Algeria.

    PubMed

    Yanat, Betitera; Dali Yahia, Radia; Yazi, Leila; Machuca, Jesús; Díaz-De-Alba, Paula; Touati, Abdelaziz; Pascual, Álvaro; Rodríguez-Martínez, José-Manuel

    2017-06-01

    QepA is a plasmid-mediated quinolone resistance determinant of low prevalence described worldwide, mainly in Enterobacteriaceae. This study describes, for the first time in Algeria, two clonally related, QepA-producing Escherichia coli clinical isolates positive for CTX-M-15. The clonal spread of these multidrug-resistant isolates is a major public health concern.

  4. Transient receptor potential cation channel A1 (TRPA1) mediates decrements in cardiac mechanical function and dysrhythmia caused by a single air pollution exposure in mice

    EPA Science Inventory

    This work, which will be presented at SOT 2014, demonstrates that a single exposure to either ozone or acrolein causes decrements in cardiac function and altered electrical activity (i.e. arrhythmia). The results suggest that this effect is mediated by the airway sensor TRPA1. ...

  5. Transient receptor potential cation channel A1 (TRPA1) mediates decrements in cardiac mechanical function and dysrhythmia caused by a single air pollution exposure in mice

    EPA Science Inventory

    This work, which will be presented at SOT 2014, demonstrates that a single exposure to either ozone or acrolein causes decrements in cardiac function and altered electrical activity (i.e. arrhythmia). The results suggest that this effect is mediated by the airway sensor TRPA1. ...

  6. Peroxisome proliferator-activated receptor alpha (PPARalpha)-mediated regulation of multidrug resistance 2 (Mdr2) expression and function in mice.

    PubMed Central

    Kok, Tineke; Bloks, Vincent W; Wolters, Henk; Havinga, Rick; Jansen, Peter L M; Staels, Bart; Kuipers, Folkert

    2003-01-01

    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a nuclear receptor that controls expression of genes involved in lipid metabolism and is activated by fatty acids and hypolipidaemic fibrates. Fibrates induce the hepatic expression of murine multidrug resistance 2 ( Mdr2 ), encoding the canalicular phospholipid translocator. The physiological role of PPARalpha in regulation of Mdr2 and other genes involved in bile formation is unknown. We found no differences in hepatic expression of the ATP binding cassette transporter genes Mdr2, Bsep (bile salt export pump), Mdr1a / 1b, Abca1 and Abcg5 / Abcg8 (implicated in cholesterol transport), the bile salt-uptake systems Ntcp (Na(+)-taurocholate co-transporting polypeptide gene) and Oatp1 (organic anion-transporting polypeptide 1 gene) or in bile formation between wild-type and Ppar alpha((-/-)) mice. Upon treatment of wild-type mice with ciprofibrate (0.05%, w/w, in diet for 2 weeks), the expression of Mdr2 (+3-fold), Mdr1a (+6-fold) and Mdr1b (+11-fold) mRNAs was clearly induced, while that of Oatp1 (-5-fold) was reduced. Mdr2 protein levels were increased, whereas Bsep, Ntcp and Oatp1 were drastically decreased. Exposure of cultured wild-type mouse hepatocytes to PPARalpha agonists specifically induced Mdr2 mRNA levels and did not affect expression of Mdr1a / 1b. Altered transporter expression in fibrate-treated wild-type mice was associated with a approximately 400% increase in bile flow: secretion of phospholipids and cholesterol was increased only during high-bile-salt infusions. No fibrate effects were observed in Ppar alpha((-/-)) mice. In conclusion, our results show that basal bile formation is not affected by PPARalpha deficiency in mice. The induction of Mdr2 mRNA and Mdr2 protein levels by fibrates is mediated by PPARalpha, while the induction of Mdr1a / 1b in vivo probably reflects a secondary phenomenon related to chronic PPARalpha activation. PMID:12381268

  7. Bacterial IgA protease-mediated degradation of agIgA1 and agIgA1 immune complexes as a potential therapy for IgA Nephropathy

    PubMed Central

    Wang, Li; Li, Xueying; Shen, Hongchun; Mao, Nan; Wang, Honglian; Cui, Luke; Cheng, Yuan; Fan, Junming

    2016-01-01

    Mesangial deposition of aberrantly glycosylated IgA1 (agIgA1) and its immune complexes is a key pathogenic mechanism of IgA nephropathy (IgAN). However, treatment of IgAN remains ineffective. We report here that bacteria-derived IgA proteases are capable of degrading these pathogenic agIgA1 and derived immune complexes in vitro and in vivo. By screening 14 different bacterial strains (6 species), we found that 4 bacterial IgA proteases from H. influenzae, N. gonorrhoeae and N. meningitidis exhibited high cleaving activities on serum agIgA1 and artificial galactose-depleted IgA1 in vitro and the deposited agIgA1-containing immune complexes in the mesangium of renal biopsy from IgAN patients and in a passive mouse model of IgAN in vitro. In the modified mouse model of passive IgAN with abundant in situ mesangial deposition of the agIgA-IgG immune complexes, a single intravenous delivery of IgA protease from H. influenzae was able to effectively degrade the deposited agIgA-IgG immune complexes within the glomerulus, demonstrating a therapeutic potential for IgAN. In conclusion, the bacteria-derived IgA proteases are biologically active enzymes capable of cleaving the circulating agIgA and the deposited agIgA-IgG immune complexes within the kidney of IgAN. Thus, the use of such IgA proteases may represent a novel therapy for IgAN. PMID:27485391

  8. Bacterial IgA protease-mediated degradation of agIgA1 and agIgA1 immune complexes as a potential therapy for IgA Nephropathy.

    PubMed

    Wang, Li; Li, Xueying; Shen, Hongchun; Mao, Nan; Wang, Honglian; Cui, Luke; Cheng, Yuan; Fan, Junming

    2016-08-03

    Mesangial deposition of aberrantly glycosylated IgA1 (agIgA1) and its immune complexes is a key pathogenic mechanism of IgA nephropathy (IgAN). However, treatment of IgAN remains ineffective. We report here that bacteria-derived IgA proteases are capable of degrading these pathogenic agIgA1 and derived immune complexes in vitro and in vivo. By screening 14 different bacterial strains (6 species), we found that 4 bacterial IgA proteases from H. influenzae, N. gonorrhoeae and N. meningitidis exhibited high cleaving activities on serum agIgA1 and artificial galactose-depleted IgA1 in vitro and the deposited agIgA1-containing immune complexes in the mesangium of renal biopsy from IgAN patients and in a passive mouse model of IgAN in vitro. In the modified mouse model of passive IgAN with abundant in situ mesangial deposition of the agIgA-IgG immune complexes, a single intravenous delivery of IgA protease from H. influenzae was able to effectively degrade the deposited agIgA-IgG immune complexes within the glomerulus, demonstrating a therapeutic potential for IgAN. In conclusion, the bacteria-derived IgA proteases are biologically active enzymes capable of cleaving the circulating agIgA and the deposited agIgA-IgG immune complexes within the kidney of IgAN. Thus, the use of such IgA proteases may represent a novel therapy for IgAN.

  9. Irreversible aggregation of the Fc fragment derived from polymeric but not monomeric serum IgA1--implications in IgA-mediated disease.

    PubMed

    Almogren, Adel; Kerr, Michael A

    2008-01-01

    IgA is by far the most abundant immunoglobulin in humans. It is found in serum and in secretions (SIgA). Unlike any other class of immunoglobulin, each form of IgA occurs naturally in different polymerisation states. In serum, the predominant form of IgA is IgA1 of which around 90% is monomeric and 10% is dimeric or polymeric. The proportion of dimeric/polymeric IgA increases in a number of important diseases, such as IgA nephropathy and in chronic liver disease. In both, there is evidence that further aggregation of dimeric/polymeric IgA is the cause of the characteristic tissue deposition. To investigate the effect of role of IgA polymerisation on the structure and function of IgA, we purified different molecular forms of IgA1 from myeloma serum (monomer, dimer and trimer) and SIgA1 from colostrum. Structural features of these different IgA1 forms were examined following proteolysis using Neisseria gonorrhoeae IgA1 type 2 protease and Streptococcus pneumoniae IgA1 protease. These IgA1 proteases cleave IgA1 at the hinge region and produce Fcalpha and Fab fragments. Western blot analysis demonstrated that the Fcalpha fragments of serum dimeric and trimeric but not monomeric IgA1 aggregated to form multimers resistant to disruption in SDS-PAGE under non-reducing conditions. Size exclusion chromatography under native conditions of cleaved serum dimeric IgA1 demonstrated that aggregation occurs because of structural changes in the IgA per se and was not an effect of the SDS-PAGE system. In the same assay, SIgA1 (dimeric) did not aggregate after digestion. The results suggest an important, previously unrecognised, property of dimeric/polymeric serum IgA1, which might explain its propensity to aggregate and deposit in tissues.

  10. PLD1 activation mediates Amb a 1-induced Th2-associated cytokine expression via the JNK/ATF-2 pathway in BEAS-2B cells.

    PubMed

    Kim, Joo-Hwa; Choi, Hye-Jin; Oh, Cheong-Hae; Oh, Jae-Won; Han, Joong-Soo

    2015-01-01

    The purpose of this study was to identify the role of phospholipase D1 (PLD1) in Amb a 1-induced IL-5 and IL-13 expression. When BEAS-2B cells were stimulated with Amb a 1, PLD activity increased, and knockdown of PLD1 decreased Amb a 1-induced IL-5 and IL-13 expression. Amb a 1 also activated the PLCγ/p70S6K/JNK pathway. Furthermore, Amb a 1-induced PLD activation was also attenuated by PLCγ inhibition, and knockdown of PLD1 decreased Amb a 1-induced activation of P70S6K and JNK. When ATF-2 activity was blocked with ATF-2 siRNA, Amb a 1-induced IL-5 and IL-13 expression was completely abolished, indicating that ATF-2 is a transcriptional factor required for the expression of IL-5 and IL-13 in response to Amb a 1. Taken together, we suggest that PLD1 acts as an important regulator in Amb a 1-induced expression of IL-5 and IL-13 via a PLCγ/p70S6K/JNK/ATF-2 pathway in BEAS-2B cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparative evaluation of cow β-casein variants (A1/A2) consumption on Th2-mediated inflammatory response in mouse gut.

    PubMed

    Ul Haq, Mohammad Raies; Kapila, Rajeev; Sharma, Rohit; Saliganti, Vamshi; Kapila, Suman

    2014-06-01

    Recently, apprehension has been raised regarding "A1/A2 hypothesis" suggesting relationship between consumption of A1 "like" variants of cow β-casein and various physiological disorders. The information available is based on either the human epidemiological data of milk consumption or in vitro trials on cell lines with β-casomorphin peptides. The direct scientific evidence establishing the link between consumption of A1/A2 "like" milk and health is scanty. Thus, under present investigation, in vivo trials in mice were undertaken to study the effect of feeding three genetic variants (A1A1, A1A2 and A2A2) of cow β-casein milk on gastrointestinal immune system as it is the first and foremost site of immunological interactions. Animals were divided into four groups for feeding with basal diet (control) and β-casein isolated from milk of genotyped (A1A1, A1A2 and A2A2) dairy animals, respectively. Gut immune response was analyzed by spectrophotometric assessment of MPO activity, quantitative sandwich ELISA of inflammatory cytokines (MCP-1 and IL-4), antibodies (total IgE, IgG, sIgA, IgG1 and IgG2a) and qRT-PCR of mRNA expression for toll-like receptors (TLR-2 and TLR-4). Histological enumeration of goblet cells, total leukocytes and IgA(+) cells was also carried out. It was observed that consumption of A1 "like" variants (A1A1 and A1A2) significantly increased (p < 0.01) the levels of MPO, MCP-1, IL-4, total IgE, IgG, IgG1, IgG2a and leukocyte infiltration in intestine. TLR-2 and TLR-4 mRNA expression was also up-regulated (p < 0.01) on administration of A1 "like" variants. However, no changes in sIgA, IgA(+) and goblet cell numbers were recorded on consumption of any of the β-casein variants. It is reasonable to conclude that consumption of A1 "like" variants of β-casein induced inflammatory response in gut by activating Th2 pathway as compared to A2A2 variants. The present study thus supports the purported deleterious impacts of consumption of A1 "like

  12. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus)

    PubMed Central

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-01-01

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts. PMID:25976364

  13. Retinoic acid homeostasis through aldh1a2 and cyp26a1 mediates meiotic entry in Nile tilapia (Oreochromis niloticus).

    PubMed

    Feng, Ruijuan; Fang, Lingling; Cheng, Yunying; He, Xue; Jiang, Wentao; Dong, Ranran; Shi, Hongjuan; Jiang, Dongneng; Sun, Lina; Wang, Deshou

    2015-05-15

    Meiosis is a process unique to the differentiation of germ cells. Retinoic acid (RA) is the key factor controlling the sex-specific timing of meiotic initiation in tetrapods; however, the role of RA in meiotic initiation in teleosts has remained unclear. In this study, the genes encoding RA synthase aldh1a2, and catabolic enzyme cyp26a1 were isolated from Nile tilapia (Oreochromis niloticus), a species without stra8. The expression of aldh1a2 was up-regulated and expression of cyp26a1 was down-regulated before the meiotic initiation in ovaries and in testes. Treatment with RA synthase inhibitor or disruption of Aldh1a2 by CRISPR/Cas9 resulted in delayed meiotic initiation, with simultaneous down-regulation of cyp26a1 and up-regulation of sycp3. By contrast, treatment with an inhibitor of RA catabolic enzyme and disruption of cyp26a1 resulted in earlier meiotic initiation, with increased expression of aldh1a2 and sycp3. Additionally, treatment of XY fish with estrogen (E2) and XX fish with fadrozole led to sex reversal and reversion of meiotic initiation. These results indicate that RA is indispensable for meiotic initiation in teleosts via a stra8 independent signaling pathway where both aldh1a2 and cyp26a1 are critical. In contrast to mammals, E2 is a major regulator of sex determination and meiotic initiation in teleosts.

  14. Forkhead box A1 (FOXA1) is a key mediator of insulin-like growth factor I (IGF-I) activity.

    PubMed

    Potter, Adam S; Casa, Angelo J; Lee, Adrian V

    2012-01-01

    The insulin-like growth factor receptor (IGF-IR) has been implicated in a number of human tumors, including breast cancer. Data from human breast tumors has demonstrated that IGF-IR is over-expressed and hyper-phosphorylated. Additionally, microarray analysis has shown that IGF-I treatment of MCF7 cells leads to a gene signature comprised of induced and repressed genes, which correlated with luminal B tumors. FOXA1, a forkhead family transcription factor, has been shown to be crucial for mammary ductal morphogenesis, similar to IGF-IR, and expressed at high levels in luminal subtype B breast tumors. Here, we investigated the relationship between FOXA1 and IGF-I action in breast cancer cells. We show that genes regulated by IGF-I are enriched for FOXA1 binding sites, and knock down of FOXA1 blocked the ability of IGF-I to regulate gene expression. IGF-I treatment of MCF7 cells increased the half-life of FOXA1 protein and this increase in half-life appeared to be dependent on canonical IGF-I signal transduction through both MAPK and AKT pathways. Finally, knock down of FOXA1 led to a decreased ability of IGF-I to induce proliferation and protect against apoptosis. Together, these results demonstrate that IGF-I can increase the stability of FOXA1 protein expression and place it as a critical mediator of IGF-I regulation of gene expression and IGF-I-mediated biological responses. Copyright © 2011 Wiley Periodicals, Inc.

  15. Direct interaction between Tks proteins and the N-terminal proline-rich region (PRR) of NoxA1 mediates Nox1-dependent ROS generation.

    PubMed

    Gianni, Davide; DerMardirossian, Céline; Bokoch, Gary M

    2011-01-01

    NADPH oxidase (Nox) family enzymes are one of the main sources of cellular reactive oxygen species (ROS), which have been implicated in several physiological and pathophysiological processes. To date seven members of this family have been reported, including Nox1-5 and Duox1 and 2. With the exception of Nox2, the regulation of the Nox enzymes is still poorly understood. Nox1 is highly expressed in the colon, and requires two cytosolic regulators, the organizer subunit NoxO1 and the activator subunit NoxA1, as well as the binding of Rac1 GTPase, for its activity. Recently, we identified the c-Src substrate proteins Tks4 and Tks5 as functional members of a p47(phox)-related organizer superfamily. As a functional consequence of this interaction, Nox1 localizes to invadopodia, actin-rich membrane protrusions of cancer cells which facilitate pericellular proteolysis and invasive behavior. Here, we report that Tks4 and Tks5 directly bind to NoxA1. Moreover, the integrity of the N-terminal PRR of NoxA1 is essential for this direct interaction with the Tks proteins. When the PRR in NoxA1 is disrupted, Tks proteins cannot bind NoxA1 and lose their ability to support Nox1-dependent ROS generation. Consistent with this, Tks4 and Tks5 are unable to act as organizers for Nox2 because of their inability to interact with p67(phox), which lacks the N-terminal PRR, thus conferring a unique specificity to Tks4 and 5. Taken together, these results clarify the molecular basis for the interaction between NoxA1 and the Tks proteins and may provide new insights into the pharmacological design of a more effective anti-metastatic strategy.

  16. Dexmedetomidine Protects PC12 Cells from Lidocaine-Induced Cytotoxicity Through Downregulation of COL3A1 Mediated by miR-let-7b.

    PubMed

    Wang, Qiong; She, Yingjun; Bi, Xiaobao; Zhao, Baisong; Ruan, Xiangcai; Tan, Yonghong

    2017-07-01

    Safety concerns of some local anesthetics, such as lidocaine, have been raised in recent years due to potential neurological impairment. Dexmedetomidine may protect humans from neurotoxicity, and miR-let-7b is activated by nerve injury; however, the roles of miR-let-7b and its target gene in lidocaine-induced cytotoxicity are not well known. Through bioinformatics and a luciferase reporter assay, COL3A1 was suggested as a direct target gene of miR-let-7b. Here, we confirmed by measuring mRNA and protein levels that miR-let-7b was downregulated and COL3A1 was upregulated in lidocaine-treated cells, an observation that was reversed by dexmedetomidine. Similar to miR-let-7b mimics or knockdown of COL3A1, dexmedetomidine treatment reduced the expression of COL3A1, suppressed cell apoptosis and cell migration/invasion ability, and induced cell cycle progression and cell proliferation in PC12 cells, effects that were reversed by the miR-let-7b inhibitor. Meanwhile, proteins involved in cell apoptosis, such as Bcl2 and caspase 3, were impacted as well. Taken together, dexmedetomidine may protect PC12 cells from lidocaine-induced cytotoxicity through miR-let-7b and COL3A1, while also increasing Bcl2 and inhibiting caspase 3. Therefore, miR-let-7b and COL3A1 might play critical roles in neuronal injury, and they are potential therapeutic targets.

  17. Identification of cyclins A1, E1 and vimentin as downstream targets of heme oxygenase-1 in vascular endothelial growth factor-mediated angiogenesis

    PubMed Central

    Bauer, Andrea; Mylroie, Hayley; Thornton, C. Clare; Calay, Damien; Birdsey, Graeme M.; Kiprianos, Allan P.; Wilson, Garrick K.; Soares, Miguel P.; Yin, Xiaoke; Mayr, Manuel; Randi, Anna M.; Mason, Justin C.

    2016-01-01

    Angiogenesis is an essential physiological process and an important factor in disease pathogenesis. However, its exploitation as a clinical target has achieved limited success and novel molecular targets are required. Although heme oxygenase-1 (HO-1) acts downstream of vascular endothelial growth factor (VEGF) to modulate angiogenesis, knowledge of the mechanisms involved remains limited. We set out identify novel HO-1 targets involved in angiogenesis. HO-1 depletion attenuated VEGF-induced human endothelial cell (EC) proliferation and tube formation. The latter response suggested a role for HO-1 in EC migration, and indeed HO-1 siRNA negatively affected directional migration of EC towards VEGF; a phenotype reversed by HO-1 over-expression. EC from Hmox1−/− mice behaved similarly. Microarray analysis of HO-1-depleted and control EC exposed to VEGF identified cyclins A1 and E1 as HO-1 targets. Migrating HO-1-deficient EC showed increased p27, reduced cyclin A1 and attenuated cyclin-dependent kinase 2 activity. In vivo, cyclin A1 siRNA inhibited VEGF-driven angiogenesis, a response reversed by Ad-HO-1. Proteomics identified structural protein vimentin as an additional VEGF-HO-1 target. HO-1 depletion inhibited VEGF-induced calpain activity and vimentin cleavage, while vimentin silencing attenuated HO-1-driven proliferation. Thus, vimentin and cyclins A1 and E1 represent VEGF-activated HO-1-dependent targets important for VEGF-driven angiogenesis. PMID:27388959

  18. The antihypercholesterolemic effect of columbamine from Rhizoma Coptidis in HFHC-diet induced hamsters through HNF-4α/FTF-mediated CYP7A1 activation.

    PubMed

    Wang, Yue; Han, Yulong; Chai, Fangni; Xiang, Hongmei; Huang, Tao; Kou, Shuming; Han, Bing; Gong, Xiaobao; Ye, Xiaoli

    2016-12-01

    The aim of this study was to investigate the antihypercholesterolemic activity and potential molecular mechanism of columbamine (COL) that was prepared by extraction from Rhizoma Coptidis in hamsters and HepG2 cells. The results displayed that the COL from Rhizoma Coptidis was a safe natural compound with a LD50 0f 1524.6mg/kg and no detectable toxic symptoms during the observation of chronic toxicity. COL dose-dependently reversed the abnormal lipid levels induced by HFHC diet. Specifically, COL(M) and COL(H) significantly reduced the blood lipid levels(TC, TG and LDL-c) and enhanced the fecal contents of TBA by 21.8% and 25.1% respectively in hamsters. COL up-regulated the genes of CYP8B1, CYP7A1 and LDLR in mRNA and protein level, and down-regulated those of HMGCR to a different degree. Especially, CYP7A1 were significantly up-regulated by COL in hamsters (p<0.01). Further analysis indicated that COL obviously activated the mRNA and protein expression of the transcription factors FTF, HNF-4α, and inhibited those of SHP. Promoter luciferase assay showed that COL induced the expression of FTF and HNF-4α, further transactivating CYP7A1, which accelerated the conversion of liver cholesterol to bile acids. It concluded that the COL showed high lipid-lowering activities through indirectly transactivating CYP7A1 by upregulating FTF and HNF-4α, and directly activating CYP7A1 catalytic activity by strongly interacting with receptor and ligand, therefore promoting cholesterol catabolism and accelerating the excretion of bile acids.

  19. Pulmonary Inflammation Impacts on CYP1A1-Mediated Respiratory Tract DNA Damage Induced by the Carcinogenic Air Pollutant Benzo[a]pyrene

    PubMed Central

    Arlt, Volker M.; Krais, Annette M.; Godschalk, Roger W.; Riffo-Vasquez, Yanira; Mrizova, Iveta; Roufosse, Candice A.; Corbin, Charmaine; Shi, Quan; Frei, Eva; Stiborova, Marie; van Schooten, Frederik-Jan; Phillips, David H.; Spina, Domenico

    2015-01-01

    Pulmonary inflammation can contribute to the development of lung cancer in humans. We investigated whether pulmonary inflammation alters the genotoxicity of polycyclic aromatic hydrocarbons (PAHs) in the lungs of mice and what mechanisms are involved. To model nonallergic acute inflammation, mice were exposed intranasally to lipopolysaccharide (LPS; 20 µg/mouse) and then instilled intratracheally with benzo[a]pyrene (BaP; 0.5 mg/mouse). BaP-DNA adduct levels, measured by 32P-postlabeling analysis, were approximately 3-fold higher in the lungs of LPS/BaP-treated mice than in mice treated with BaP alone. Pulmonary Cyp1a1 enzyme activity was decreased in LPS/BaP-treated mice relative to BaP-treated mice suggesting that pulmonary inflammation impacted on BaP-induced Cyp1a1 activity in the lung. Our results showed that Cyp1a1 appears to be important for BaP detoxification in vivo and that the decrease of pulmonary Cyp1a1 activity in LPS/BaP-treated mice results in a decrease of pulmonary BaP detoxification, thereby enhancing BaP genotoxicity (ie, DNA adduct formation) in the lung. Because less BaP was detoxified by Cyp1a1 in the lungs of LPS/BaP-treated mice, more BaP circulated via the blood to extrapulmonary tissues relative to mice treated with BaP only. Indeed, we observed higher BaP-DNA adduct levels in livers of LPS/BaP-treated mice compared with BaP-treated mice. Our results indicate that pulmonary inflammation could be a critical determinant in the induction of genotoxicity in the lung by PAHs like BaP. Cyp1a1 appears to be involved in both BaP bioactivation and detoxification although the contribution of other enzymes to BaP-DNA adduct formation in lung and liver under inflammatory conditions remains to be explored. PMID:25911668

  20. PacCYP707A2 negatively regulates cherry fruit ripening while PacCYP707A1 mediates drought tolerance.

    PubMed

    Li, Qian; Chen, Pei; Dai, Shengjie; Sun, Yufei; Yuan, Bing; Kai, Wenbin; Pei, Yuelin; He, Suihuan; Liang, Bin; Zhang, Yushu; Leng, Ping

    2015-07-01

    Sweet cherry is a non-climacteric fruit and its ripening is regulated by abscisic acid (ABA) during fruit development. In this study, four cDNAs (PacCYP707A1-4) encoding 8'-hydroxylase, a key enzyme in the oxidative catabolism of ABA, were identified in sweet cherry fruits using tobacco rattle virus-induced gene silencing (VIGS) and particle bombardment approaches. Quantitative real-time PCR confirmed significant down-regulation of target gene transcripts in VIGS-treated cherry fruits. In PacCYP707A2-RNAi-treated fruits, ripening and fruit colouring were promoted relative to control fruits, and both ABA accumulation and PacNCED1 transcript levels were up-regulated by 140%. Silencing of PacCYP707A2 by VIGS significantly altered the transcripts of both ABA-responsive and ripening-related genes, including the ABA metabolism-associated genes NCED and CYP707A, the anthocyanin synthesis genes PacCHS, PacCHI, PacF3H, PacDFR, PacANS, and PacUFGT, the ethylene biosynthesis gene PacACO1, and the transcription factor PacMYBA. The promoter of PacMYBA responded more strongly to PacCYP707A2-RNAi-treated fruits than to PacCYP707A1-RNAi-treated fruits. By contrast, silencing of PacCYP707A1 stimulated a slight increase in fruit colouring and enhanced resistance to dehydration stress compared with control fruits. These results suggest that PacCYP707A2 is a key regulator of ABA catabolism that functions as a negative regulator of fruit ripening, while PacCYP707A1 regulates ABA content in response to dehydration during fruit development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. A linear polyethylenimine mediated siRNA-based therapy targeting human epidermal growth factor receptor in SPC-A1 xenograft mice.

    PubMed

    Zhang, Pinghai; Xu, Nuo; Zhou, Lei; Xu, Xin; Wang, Yuehong; Li, Ka; Zeng, Zhaochong; Wang, Xiangdong; Zhang, Xin; Bai, Chunxue

    2013-12-01

    Linear polyethylenimine (LPEI) is considered as a desirable gene in vivo delivery system, but whether it could deliver the specific siRNA targeted EGFR to the tumor site to inhibit the growth of NSCLC xenograft in nude mice still needs to be examined. In this study, LPEI/siRNA was made into a complex and SPC-A1-xenografted mice model was established. Then, stable LPEI/siRNA-EGFR complexes were intraperitoneally administrated. Afterwards, tumor growth was measured every 3 days. At the end of the experiment, tumor volume was calculated, and tumors were weighed, and examined for EGFR expression, proliferation, and apoptosis evaluations. By using blood samples, toxicity tests including aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea and creatinine (Cr) were measured for liver and renal function evaluation. Serum concentrations of TNF-α and IFN-γ were also examined. Our results demonstrated that LPEI/siRNA-EGFR complexes could downregulate EGFR expression in SPC-A1 xenografted tumor upon single i.p. injection. LPEI/siRNA-EGFR complexes inhibited tumor growth and did not induce organ toxicity in SPC-A1-xenografted mice. At the end of the experiment no significant IFN-α increase was detected in LPEI/siRNA complexes or glucose-treated groups. The novel modality of siRNA-based therapy targeting EGFR may be of great potential in NSCLC treatment.

  2. Correction of Recessive Dystrophic Epidermolysis Bullosa by Transposon-Mediated Integration of COL7A1 in Transplantable Patient-Derived Primary Keratinocytes.

    PubMed

    Latella, Maria Carmela; Cocchiarella, Fabienne; De Rosa, Laura; Turchiano, Giandomenico; Gonçalves, Manuel A F V; Larcher, Fernando; De Luca, Michele; Recchia, Alessandra

    2017-04-01

    Recessive dystrophic epidermolysis bullosa (RDEB) is caused by defects in type-VII collagen (C7), a protein encoded by the COL7A1 gene and essential for anchoring fibril formation at the dermal-epidermal junction. Gene therapy of RDEB is based on transplantation of autologous epidermal grafts generated from gene-corrected keratinocytes sustaining C7 deposition at the dermal-epidermal junction. Transfer of the COL7A1 gene is complicated by its very large size and repetitive sequence. This article reports a gene delivery approach based on the Sleeping beauty transposon, which allows integration of a full-length COL7A1 cDNA and secretion of C7 at physiological levels in RDEB keratinocytes without rearrangements or detrimental effects on their clonogenic potential. Skin equivalents derived from gene-corrected RDEB keratinocytes were tested in a validated preclinical model of xenotransplantation on immunodeficient mice, where they showed normal deposition of C7 at the dermal-epidermal junction and restoration of skin adhesion properties. These results indicate the feasibility and efficacy of a transposon-based gene therapy approach to RDEB. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Intra- and Interspecies Signaling between Streptococcus salivarius and Streptococcus pyogenes Mediated by SalA and SalA1 Lantibiotic Peptides

    PubMed Central

    Upton, M.; Tagg, J. R.; Wescombe, P.; Jenkinson, H. F.

    2001-01-01

    Streptococcus salivarius 20P3 produces a 22-amino-acid residue lantibiotic, designated salivaricin A (SalA), that inhibits the growth of a range of streptococci, including all strains of Streptococcus pyogenes. Lantibiotic production is associated with the sal genetic locus comprising salA, the lantibiotic structural gene; salBCTX genes encoding peptide modification and export machinery proteins; and salYKR genes encoding a putative immunity protein and two-component sensor-regulator system. Insertional inactivation of salB in S. salivarius 20P3 resulted in abrogation of SalA peptide production, of immunity to SalA, and of salA transcription. Addition of exogenous SalA peptide to salB mutant cultures induced dose-dependent expression of salA mRNA (0.2 kb), demonstrating that SalA production was normally autoregulated. Inactivation of salR encoding the response regulator of the SalKR two-component system led to reduced production of, and immunity to, SalA. The sal genetic locus was also present in S. pyogenes SF370 (M type 1), but because of a deletion across the salBCT genes, the corresponding lantibiotic peptide, designated SalA1, was not produced. However, in S. pyogenes T11 (M type 4) the sal locus gene complement was apparently complete, and active SalA1 peptide was synthesized. Exogenously added SalA1 peptide from S. pyogenes T11 induced salA1 transcription in S. pyogenes SF370 and in an isogenic S. pyogenes T11 salB mutant and salA transcription in S. salivarius 20P3 salB. Thus, SalA and SalA1 are examples of streptococcal lantibiotics whose production is autoregulated. These peptides act as intra- and interspecies signaling molecules, modulating lantibiotic production and possibly influencing streptococcal population ecology in the oral cavity. PMID:11395456

  4. Staphylococcus aureus protein A binding to von Willebrand factor A1 domain is mediated by conserved IgG binding regions.

    PubMed

    O'Seaghdha, Maghnus; van Schooten, Carina J; Kerrigan, Steven W; Emsley, Jonas; Silverman, Gregg J; Cox, Dermot; Lenting, Peter J; Foster, Timothy J

    2006-11-01

    Protein A (Spa) is a surface-associated protein of Staphylococcus aureus best known for its ability to bind to the Fc region of IgG. Spa also binds strongly to the Fab region of the immunoglobulins bearing V(H)3 heavy chains and to von Willebrand factor (vWF). Previous studies have suggested that the protein A-vWF interaction is important in S. aureus adherence to platelets under conditions of shear stress. We demonstrate that Spa expression is sufficient for adherence of bacteria to immobilized vWF under low fluid shear. The full length recombinant Ig-binding region of protein A, Spa-EDABC, fused to glutathione-S-transferase (GST), bound recombinant vWF in a dose-dependent and saturable fashion with half maximal binding of about 30 nm in immunosorbent assays. Full length-Spa did not bind recombinant vWF A3 domain but displayed binding to recombinant vWF domains A1 and D'-D3 (half maximal binding at 100 nm and 250 nm, respectively). Each recombinant protein A Ig-binding domain bound to the A1 domain in a similar manner to the full length-Spa molecule (half maximal binding 100 nm). Amino acid substitutions were introduced in the GST-SpaD protein at sites known to be involved in IgG Fc or in V(H)3 Fab binding. Mutants altered in residues that recognized IgG Fc but not those that recognized V(H)3 Fab had reduced binding to vWF A1 and D'-D3. This indicated that both vWF regions recognized a region on helices I and II that overlapped the IgG Fc binding site.

  5. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors.

    PubMed

    Elnozahi, Neveen A; AlQot, Hadir E; Mohy El-Din, Mahmoud M; Bistawroos, Azza E; Abou Zeit-Har, Mohamed S

    2016-06-21

    This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent mechanism.

    PubMed

    Kunze, Michael M; Benz, Fabienne; Brauß, Thilo F; Lampe, Sebastian; Weigand, Julia E; Braun, Johannes; Richter, Florian M; Wittig, Ilka; Brüne, Bernhard; Schmid, Tobias

    2016-07-01

    Translation is an energy-intensive process and tightly regulated. Generally, translation is initiated in a cap-dependent manner. Under stress conditions, typically found within the tumor microenvironment in association with e.g. nutrient deprivation or hypoxia, cap-dependent translation decreases, and alternative modes of translation initiation become more important. Specifically, internal ribosome entry sites (IRES) facilitate translation of specific mRNAs under otherwise translation-inhibitory conditions. This mechanism is controlled by IRES trans-acting factors (ITAF), i.e. by RNA-binding proteins, which interact with and determine the activity of selected IRESs. We aimed at characterizing the translational regulation of the IL-33 decoy receptor sST2, which was enhanced by fibroblast growth factor 2 (FGF2). We identified and verified an IRES within the 5'UTR of sST2. Furthermore, we found that MEK/ERK signaling contributes to FGF2-induced, sST2-IRES activation and translation. Determination of the sST2-5'UTR structure by in-line probing followed by deletion analyses identified 23 nucleotides within the sST2-5'UTR to be required for optimal IRES activity. Finally, we show that the RNA-binding protein heterogeneous ribonucleoprotein A1 (hnRNP A1) binds to the sST2-5'UTR, acts as an ITAF, and thus controls the activity of the sST2-IRES and consequently sST2 translation. Specifically, FGF2 enhances nuclear-cytoplasmic translocation of hnRNP A1, which requires intact MEK/ERK activity. In summary, we provide evidence that the sST2-5'UTR contains an IRES element, which is activated by a MEK/ERK-dependent increase in cytoplasmic localization of hnRNP A1 in response to FGF2, enhancing the translation of sST2. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Co-expression of plasmid-mediated quinolone resistance-qnrA1 and blaVEB-1 gene in a Providencia stuartii strain.

    PubMed

    Nazik, Hasan; Bektöre, Bayhan; Öngen, Betigül; Özyurt, Mustafa; Baylan, Orhan; Haznedaroğlu, Tunçer

    2011-04-01

    An extended-spectrum B-lactamase (ESBL)-producing Providencia stuartii isolate was studied. A qnrA1 gene co-expressing blaVEB-1 gene was detected. Both genes were transferred to the recipient strain. The ciprofloxacin MIC of recipient strain increased tenfold. The blaVEB-1 gene persisted in microorganisms in Turkey but it also spread with PMQR genes to other species. The combination of PMQR with multidrug resistant isolates producing ESBLs may compromise the use of valuable antibiotics. Serious efforts are necessary to detect PMQR determinants not only with common B-lactamases in widespread pathogens but also with uncommon forms that are encountered infrequently.

  8. The effect of ephrin-A1 on resistance to Photofrin-mediated photodynamic therapy in esophageal squamous cell carcinoma cells.

    PubMed

    Yang, Pei-Wen; Chiang, Tzu-Hsuan; Hsieh, Ching-Yueh; Huang, Ya-Chuan; Wong, Li-Fan; Hung, Mien-Chie; Tsai, Jui-Chang; Lee, Jang-Ming

    2015-12-01

    Esophageal squamous cell carcinoma (ESCC), the most prevalent cell type of esophageal cancer, remains a dismal disease with poor prognosis. Photodynamic therapy (PDT) is a minimally invasive treatment option for early esophageal cancer. To explore possible factors involved in resistance to PDT in esophageal cancer cells, we selected PDT-resistant subcell lines by repeated treatment of CE48T/VGH (CE48T) ESCC cells with Photofrin-PDT and then analyzed the global gene modulations in the PDT-resistant cells by whole-genome microarray. More than 700 genes reached a fold change greater than 1.5 in each of the PDT-resistant cells compared to parental cells. Among these genes, both tumor necrosis factor (TNF) and EFNA1 genes were significantly upregulated in resistant cell lines. However, they were significantly downregulated in Photofrin-PDT-treated cells compared to untreated cells. The observations made in the microarray analysis were further confirmed by quantitative PCR. We observed that recombinant tumor necrosis factor alpha (TNF-α) activated the gene expression of EFNA1 at both the messenger RNA (mRNA) level and the protein level in CE48T cells. Functional analysis showed that when incubated with oligomeric and monomeric ephrin-A1 simultaneously, ESCC cells became significantly resistant to Photofrin-PDT. Functional analysis further suggested that transmembrane and soluble ephrin-A1 may cooperate to enhance resistance to Photofrin-PDT in ESCC cells.

  9. Artemisinin induces caspase-8/9-mediated and Bax/Bak-independent apoptosis in human lung adenocarcinoma (ASTC-a-1) cells.

    PubMed

    Xiao, Feng-Lian; Gao, Wei-Jie; Liu, Cheng-Yi; Wang, Xiao-Ping; Chen, Tong-Sheng

    2011-01-01

    Artemisinin (ARTE), an antimalarial phytochemical component from the sweet wormwood plant, has been shown a potential anticancer activity by inducing cell apoptosis. The aim of this report is to explore the mechanism of ARTE-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. Cell counting kit (CCK-8) assay showed that ARTE induced cytotoxcity in a dose- and time-dependent manner. Confocal microscopy fluorescence imaging of cells stained with Hoechst 33258 and flow cytometry (FCM) analysis of cells stained with Annexin V-FITC/propidium iodide (PI) showed that ARTE induced reactive oxygen species (ROS)-dependent apoptosis. Confocal fluorescence resonance energy transfer (FRET) imaging of single living cells expressing SCAT3, SCAT9 or CFP-Bid-YFP and fluorometic substrate assay showed that ARTE induced the activation of caspase-3, -8 and -9. Moreover, inhibition of caspase-8 or -9 completely blocked ARTE-induced apoptosis which was only partially attenuated by caspase-3 inhibitor. Interestingly, silencing Bax and Bak by RNA interference (RNAi) did not attenuate ARTE-induced apoptosis. Collectively, ARTE induces caspase-dependent but Bax/Bak-independent apoptosis in ASTC-a-1 cells.

  10. NiO spacer mediated magnetic anisotropy in L 10-FePt /NiO /A 1 -FePt trilayer structures

    NASA Astrophysics Data System (ADS)

    Gao, Tenghua; Harumoto, Takashi; Zhang, Song; Tu, Rong; Zhang, Lianmeng; Nakamura, Yoshio; Shi, Ji

    2017-04-01

    L 10-FePt /NiO /A 1 -FePt trilayers have been grown on MgO(001) substrate, in which the top FePt layer is of A 1 structure, and the bottom FePt layer is of L 10 structure with 001 preferred orientation and strong perpendicular anisotropy. This structure gives rise to a 90∘ spin alignment configuration of the two ferromagnetic layers across the NiO spacer. To further manipulate the spin configurations of the trilayer structure, we performed an in-plane field cooling (FC). The subsequent hysteresis measurements for the top FePt layer show unambiguous angular dependence of remanent magnetization relative to the direction of the field during FC; i.e., in-plane anisotropy is induced. Taking into account the spin-flop configuration predicted in previous theoretical study, the coupling at the lower interface makes the Ni spins cant out of the (1 ¯1 ¯1 ) easy plane, and difficult to rotate around the axis perpendicular to the film plane. Correspondingly, the induced anisotropy after FC is considered to result from the realignment of Ni spins and enhancement of the coupling at the upper interface. The magnetic domain imaging results for the bottom perpendicular magnetized FePt layer strongly support this consideration; some of the stripe domains tend to be along the direction of the applied field during FC with reduced stripe width.

  11. Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP-glucuronosyltransferase and cytochrome P450 1A1 expression in rat liver.

    PubMed

    Iwano, Hidetomo; Ujita, Wakako; Nishikawa, Miyu; Ishii, Satomi; Inoue, Hiroki; Yokota, Hiroshi

    2014-03-01

    Xenobiotic-metabolizing enzymes (XMEs) play an important role in the elimination and detoxification of xenobiotics and drugs. A variety of natural dietary agents are known to protect against cancer by inducing XME. To elucidate the molecular mechanism of XME induction, we examined the effect of dietary eugenol (4-allyl-1-hydroxy-2-methoxybenzene) on xenobiotic metabolism. In this study, rats were administered dietary eugenol for 4 weeks to investigate the various effects of UDP-glucuronosyltransferase (UGT) and cytochrome P450 (CYP) expression. In rats administered dietary eugenol, expression levels of hepatic CYP1A 1 were reduced to 40% than of the controls, while expression of hepatic UGT1A6, UGT1A7 and UGT2B1 increased to 2-3 times than observed in the controls. Hepatic protein levels of UGT1A6 and 2B1 were also elevated in the eugenol-treated rats. These results suggest that the natural compound eugenol improves the xenobiotic-metabolizing systems that suppress and induce the expression of CYP1A1 and UGT, respectively.

  12. Prevalence of plasmid-mediated quinolone resistance determinants in ESBL Enterobacteriaceae clinical isolates over a 1-year period in a French hospital.

    PubMed

    Crémet, L; Caroff, N; Dauvergne, S; Reynaud, A; Lepelletier, D; Corvec, S

    2011-06-01

    The prevalence of plasmid-mediated quinolone resistance (PMQR) determinants (qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA) was investigated in a collection of 47 extended-spectrum β-lactamase (ESBL) producing enterobacterial isolates with reduced susceptibility to fluoroquinolones, recovered at Nantes University hospital, in 2006. qnr, aac(6')-Ib-cr, and qepA genes were screened by PCR, and positive results were subsequently confirmed by sequencing. The epidemiological relationship between positive isolates was studied by pulsed-field gel electrophoresis (PFGE). qnr-positive isolates were analyzed for antimicrobial susceptibility and presence of mutations in the quinolone resistance-determining region (QRDR) of gyrA and parC genes. ESBL genes were characterized by PCR and sequencing. Conjugation experiments were performed to determine whether the qnr-carrying plasmids were self-transferable. Two Klebsiella pneumoniae isolates (4.3%), not clonally related, harboured a qnrS1 gene, whereas no qnrA- or qnrB-positive isolate was detected. The aac(6')-Ib-cr gene was detected in 11 Escherichia coli and one K. pneumoniae isolates. None of the 47 isolates carried the qepA gene. ESBLs associated with QnrS1 were CTX-M-14 and CTX-M-15. The CTX-M-15 producing isolate was highly resistant to fluoroquinolones and harboured three mutations in the QRDR and two PMQR determinants (qnrS1 and aac(6')-Ib-cr). The CTX-M-14-producing isolate exhibited reduced susceptibility or resistance to fluoroquinolones without resistance to nalidixic acid. This strain harboured only a qnr gene on a single 170 kb transferable plasmid, without any mutation in the QRDR. In conclusion, our study showed that aac(6')-Ib-cr gene had occurred in multiclonal ESBL-producing enterobacterial isolates collected at Nantes University hospital in 2006, with a higher prevalence than qnr genes. Copyright © 2009 Elsevier Masson SAS. All rights reserved.

  13. Adenosine A1 receptor-mediated changes in basal and histamine-stimulated levels of intracellular calcium in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1995-01-01

    1. The effects of adenosine A1 receptor stimulation on basal and histamine-stimulated levels of intracellular free calcium ion concentration ([Ca2+]i) have been investigated in primary astrocyte cultures derived from neonatal rat forebrains. 2. Histamine (0.1 microM-1 mM) caused rapid, concentration-dependent increases in [Ca2+]i over basal levels in single type-2 astrocytes in the presence of extracellular calcium. A maximum mean increase of 1,468 +/- 94 nM over basal levels was recorded in 90% of type-2 cells treated with 1 mM histamine (n = 49). The percentage of type-2 cells exhibiting calcium increases in response to histamine appeared to vary in a concentration-dependent manner. However, the application of 1 mM histamine to type-1 astrocytes had less effect, eliciting a mean increase in [Ca2+]i of 805 +/- 197 nM over basal levels in only 30% of the cells observed (n = 24). 3. In the presence of extracellular calcium, the A1 receptor-selective agonist, N6-cyclopentyladenosine (CPA, 10 microM), caused a maximum mean increase in [Ca2+]i of 1,110 +/- 181 nM over basal levels in 30% of type-2 astrocytes observed (n = 53). The size of this response was concentration-dependent; however, the percentage of type-2 cells exhibiting calcium increases in response to CPA did not appear to vary in a concentration-dependent manner. A mean calcium increase of 605 +/- 89 nM over basal levels was also recorded in 23% of type-1 astrocytes treated with 10 microM CPA (n = 30). 4. In the absence of extracellular calcium, in medium containing 0.1 mM EGTA, a mean increase in [Ca2+]i of 504 +/- 67 nM over basal levels was recorded in 41% of type-2 astrocytes observed (n = 41) after stimulation with 1 microM CPA. However, in the presence of extracellular calcium, pretreatment with the A1 receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, for 5-10 min before stimulation with 1 microM CPA, completely antagonized the response in 100% of the cells observed. 5. In type-2

  14. Controlling fibrous capsule formation through long-term down-regulation of collagen type I (COL1A1) expression by nanofiber-mediated siRNA gene silencing

    PubMed Central

    Rujitanaroj, Pim-on; Jao, Brian; Yang, Junghoon; Wang, Feng; Anderson, James M.; Wang, Jun; Chew, Sing Yian

    2012-01-01

    The foreign body reaction often interferes with the long-term functionality and performance of implanted biomedical devices through fibrous capsule formation. While many implant modification techniques have been adopted in attempts to control fibrous encapsulation, the outcomes remained sub-optimal. Nanofiber scaffold-mediated RNA interference may serve as an alternative approach through the localized and sustained delivery of siRNA at implant sites. In this study, we investigated the efficacy of siRNA-PCLEEP (poly(caprolactone-co-ethylethylene phosphate) nanofibers in controlling fibrous capsule formation through the down-regulation of Collagen type I (COL1A1) in vitro and in vivo. By encapsulating complexes of COL1A1 siRNA with a transfection reagent (Transit TKO) or cell penetrating peptides (CPPs), CADY or MPG, within the nanofibers (550–650 nm in diameter), a sustained release of siRNA was obtained for at least 28 days (loading efficiency ~ 60–67%). Scaffold-mediated transfection significantly enhanced cellular uptake of oligonucleotides and prolonged in vitro gene silencing duration by at least 2–3 times as compared to conventional bolus delivery of siRNA (14 days vs 5–7 days by bolus delivery). In vivo subcutaneous implantation of siRNA scaffolds revealed a significant decrease in fibrous capsule thickness at weeks 2 and 4 as compared to plain nanofibers (p < 0.05). Taken together, the results demonstrated the efficacy of scaffold-mediated siRNA gene-silencing in providing effective long-term control of fibrous capsule formation. PMID:23036951

  15. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRα signalling pathway in oxLDL-loaded macrophages.

    PubMed

    Xu, Xiaoyang; Zhang, Aolin; Halquist, Matthew S; Yuan, Xinxu; Henderson, Scott C; Dewey, William L; Li, Pin-Lan; Li, Ningjun; Zhang, Fan

    2017-02-01

    Statins, 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors, are the first-line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol-lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi-photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low-density lipoprotein but had little effect in reducing the sizes of cholesteryl ester-containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome-compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro-inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up-regulation of Niemann-Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7-hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up-regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis.

  16. ATP-binding cassette sterol transporters are differentially expressed in normal and diseased human gallbladder.

    PubMed

    Yoon, Jai Hoon; Choi, Ho Soon; Jun, Dae Won; Yoo, Kyo-Sang; Lee, Jin; Yang, Sun Young; Kuver, Rahul

    2013-02-01

    Gallbladder epithelial cells (GBEC) are exposed to high cholesterol concentrations in bile, and export cholesterol via an ATP-binding cassette (ABC) transporter-mediated pathway in vitro. These findings suggest that aberrant expression and/or function of ABC sterol transporters may be associated with cholesterol-related gallbladder diseases (CAGD). In this study, we investigated the relative levels of the sterol transporters ABCA1, ABCG5, and ABCG8 in human gallbladders in CAGD, and the relationship between ABCA1 and inflammation. Expression of ABCA1, ABCG5, and ABCG8 was evaluated in 31 gallbladders with CAGD and 6 normal gallbladders by western blotting and immunohistochemistry. RT-PCR was used to measure ABCA1 mRNA expression. To investigate the relationship between ABCA1 and inflammation, wWestern blots were performed on cultured dog GBEC treated with lipopolysaccharide (LPS) using an anti-ABCA1 antibody. Immunohistochemistry showed ABCA1 to be localized predominantly to the basolateral membrane, while ABCG8 formed a diffuse intracellular pattern at the apical pole of human GBEC. ABCA1 and ABCG8 expression was more prominent in GBEC that were surrounded by cholesterol-laden macrophages. ABCA1 and ABCG8 expression was increased in gallbladders with CAGD. Western blots showed increased ABCA1, ABCG5, and ABCG8 expression in CAGD. ABCA1 mRNA levels were increased in all gallbladders with CAGD. LPS treatment of cultured dog GBEC enhanced ABCA1 expression. The sterol transporters ABCA1, ABCG5, and ABCG8 may play a role in the pathogenesis of human CAGD. Inflammation appears to be a key factor that increases ABCA1 expression and activity in the human gallbladder.

  17. Loss of MYC and E-box3 binding contributes to defective MYC-mediated transcriptional suppression of human MC-let-7a-1~let-7d in glioblastoma.

    PubMed

    Wang, Zifeng; Lin, Sheng; Zhang, Ji; Xu, Zhenhua; Xiang, Yu; Yao, Hong; Ge, Lei; Xie, Dan; Kung, Hsiang-Fu; Lu, Gang; Poon, Wai Sang; Liu, Quentin; Lin, Marie Chia-Mi

    2016-08-30

    Previously, we reported that MYC oncoprotein down-regulates the transcription of human MC-let-7a-1~let-7d microRNA cluster in hepatocarcinoma (HCC). Surprisingly, in silico analysis indicated that let-7 miRNA expression levels are not reduced in glioblastoma (GBM). Here we investigated the molecular basis of this differential expression. Using human GBM U87 and U251 cells, we first demonstrated that forced over-expression of MYC indeed could not down-regulate the expression of human MC-let-7a-1~let-7d microRNA cluster in GBM. Furthermore, analysis of MC-let-7a-1~let-7d promoter in GBM indicated that MYC failed to inhibit the promoter activity. Pearson's correlation and Linear Regression analysis using the expression data from GSE55092 (HCC) and GSE4290 (GBM) demonstrated a converse relationship of MC-let-7a-1~let-7d and MYC only in HCC but not in GBM. To understand the underlying mechanisms, we examined whether MYC could bind to the non-canonical E-box 3 located in the promoter of MC-let-7a-1~let-7d. Results from both chromatin immune-precipitation (ChIP) and super-shift assays clearly demonstrated the loss of MYC and E-box 3 binding in GBM, suggesting for the first time that a defective MYC and E-box3 binding in GBM is responsible for the differential MYC mediated transcriptional inhibition of MC-let-7a-1~let-7d and potentially other tumor suppressors. MYC and let-7 are key oncoprotein and tumor suppressor, respectively. Understanding the molecular mechanisms of their regulations will provide new insight and have important implications in the therapeutics of GBM as well as other cancers.

  18. Loss of MYC and E-box3 binding contributes to defective MYC-mediated transcriptional suppression of human MC-let-7a-1~let-7d in glioblastoma

    PubMed Central

    Wang, Zifeng; Lin, Sheng; Zhang, Ji; Xu, Zhenhua; Xiang, Yu; Yao, Hong; Ge, Lei; Xie, Dan; Kung, Hsiang-fu; Lu, Gang; Poon, Wai Sang; Liu, Quentin; Lin, Marie Chia-mi

    2016-01-01

    Previously, we reported that MYC oncoprotein down-regulates the transcription of human MC-let-7a-1~let-7d microRNA cluster in hepatocarcinoma (HCC). Surprisingly, in silico analysis indicated that let-7 miRNA expression levels are not reduced in glioblastoma (GBM). Here we investigated the molecular basis of this differential expression. Using human GBM U87 and U251 cells, we first demonstrated that forced over-expression of MYC indeed could not down-regulate the expression of human MC-let-7a-1~let-7d microRNA cluster in GBM. Furthermore, analysis of MC-let-7a-1~let-7d promoter in GBM indicated that MYC failed to inhibit the promoter activity. Pearson's correlation and Linear Regression analysis using the expression data from GSE55092 (HCC) and GSE4290 (GBM) demonstrated a converse relationship of MC-let-7a-1~let-7d and MYC only in HCC but not in GBM. To understand the underlying mechanisms, we examined whether MYC could bind to the non-canonical E-box 3 located in the promoter of MC-let-7a-1~let-7d. Results from both chromatin immune-precipitation (ChIP) and super-shift assays clearly demonstrated the loss of MYC and E-box 3 binding in GBM, suggesting for the first time that a defective MYC and E-box3 binding in GBM is responsible for the differential MYC mediated transcriptional inhibition of MC-let-7a-1~let-7d and potentially other tumor suppressors. MYC and let-7 are key oncoprotein and tumor suppressor, respectively. Understanding the molecular mechanisms of their regulations will provide new insight and have important implications in the therapeutics of GBM as well as other cancers. PMID:27409345

  19. Genetic variant of V825I in the ATP-binding cassette transporter A1 gene and serum lipid levels in the Guangxi Bai Ku Yao and Han populations

    PubMed Central

    2011-01-01

    Background Several genetic variants in the ATP-binding cassette transporter A1 (ABCA1) gene have associated with modifications of serum high-density lipoprotein cholesterol (HDL-C) levels and the susceptibility for coronary heart disease, but the findings are still controversial in diverse racial/ethnic groups. Bai Ku Yao is an isolated subgroup of the Yao minority in southern China. The present study was undertaken to detect the possible association of V825I (rs2066715) polymorphism in the ABCA1 gene and several environmental factors with serum lipid levels in the Guangxi Bai Ku Yao and Han populations. Methods A total of 677 subjects of Bai Ku Yao and 646 participants of Han Chinese were randomly selected from our previous stratified randomized cluster samples. Polymerase chain reaction and restriction fragment length polymorphism assay combined with gel electrophoresis were performed for the genotyping of V825I variant, and then confirmed by direct sequencing. Results The levels of serum total cholesterol (TC), HDL-C, apolipoprotein (Apo) AI and ApoB were lower in Bai Ku Yao than in Han (P < 0.01 for all). The frequency of G and A alleles was 57.4% and 42.6% in Bai Ku Yao, and 57.7% and 42.3% in Han (P > 0.05); respectively. The frequency of GG, GA and AA genotypes was 33.7%, 47.4% and 18.9% in Bai Ku Yao, and 33.4%, 48.6% and 18.0% in Han (P > 0.05); respectively. There was no difference in the genotypic and allelic frequencies between males and females in the both ethnic groups. The subjects with AA genotype in Bai Ku Yao had higher serum TC levels than the subjects with GG and GA genotypes (P < 0.05). The participants with AA genotype in Han had lower serum HDL-C and ApoAI levels than the participants with GG and GA genotypes (P < 0.05 for each), but these results were found in males but not in females. Multivariate linear regression analysis showed that the levels of TC in Bai Ku Yao and HDL-C and ApoAI in male Han were correlated with genotypes (P < 0

  20. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene

    PubMed Central

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by 32P-postlabeling was characterized as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP. PMID:27404282

  1. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene.

    PubMed

    Stiborová, Marie; Indra, Radek; Moserová, Michaela; Frei, Eva; Schmeiser, Heinz H; Kopka, Klaus; Philips, David H; Arlt, Volker M

    2016-08-15

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.

  2. Cellular Cholesterol Transport Proteins in Diabetic Nephropathy

    PubMed Central

    Tsun, Joseph G. S.; Yung, Susan; Chau, Mel K. M.; Shiu, Sammy W. M.; Chan, Tak Mao; Tan, Kathryn C. B.

    2014-01-01

    Background Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy. Methods Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes. Results ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters. Conclusion Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy. PMID:25181357

  3. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line

    PubMed Central

    Fahrmayr, C; König, J; Auge, D; Mieth, M; Münch, K; Segrestaa, J; Pfeifer, T; Treiber, A; Fromm, MF

    2013-01-01

    Background and Purpose Hepatic uptake (e.g. by OATP1B1), phase I and II metabolism (e.g. by CYP3A4, UGT1A1) and subsequent biliary excretion (e.g. by MRP2) are key determinants for the pharmacokinetics of numerous drugs. However, stably transfected cell models for the simultaneous investigation of transport and phase I and II metabolism of drugs are lacking. Experimental Approach A newly established quadruple-transfected MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 cell line was used to investigate metabolism and transcellular transport of the endothelin receptor antagonist bosentan. Key Results Intracellular accumulation of bosentan equivalents (i.e. parent compound and metabolites) was significantly lower in all cell lines expressing MRP2 compared to cell lines lacking this transporter (P < 0.001). Accordingly, considerably higher amounts of bosentan equivalents were detectable in the apical compartments of cell lines with MRP2 expression (P < 0.001). HPLC and LC-MS measurements revealed that mainly unchanged bosentan accumulated in intracellular and apical compartments. Furthermore, the phase I metabolites Ro 48–5033 and Ro 47–8634 were detected intracellularly in cell lines expressing CYP3A4. Additionally, a direct glucuronide of bosentan could be identified intracellularly in cell lines expressing UGT1A1 and in the apical compartments of cell lines expressing UGT1A1 and MRP2. Conclusions and Implications These in vitro data indicate that bosentan is a substrate of UGT1A1. Moreover, the efflux transporter MRP2 mediates export of bosentan and most likely also of bosentan glucuronide in the cell system. Taken together, cell lines simultaneously expressing transport proteins and metabolizing enzymes represent additional useful tools for the investigation of the interplay of transport and metabolism of drugs. PMID:23387445

  4. Phase I and II metabolism and MRP2-mediated export of bosentan in a MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 quadruple-transfected cell line.

    PubMed

    Fahrmayr, C; König, J; Auge, D; Mieth, M; Münch, K; Segrestaa, J; Pfeifer, T; Treiber, A; Fromm, Mf

    2013-05-01

    Hepatic uptake (e.g. by OATP1B1), phase I and II metabolism (e.g. by CYP3A4, UGT1A1) and subsequent biliary excretion (e.g. by MRP2) are key determinants for the pharmacokinetics of numerous drugs. However, stably transfected cell models for the simultaneous investigation of transport and phase I and II metabolism of drugs are lacking. A newly established quadruple-transfected MDCKII-OATP1B1-CYP3A4-UGT1A1-MRP2 cell line was used to investigate metabolism and transcellular transport of the endothelin receptor antagonist bosentan. Intracellular accumulation of bosentan equivalents (i.e. parent compound and metabolites) was significantly lower in all cell lines expressing MRP2 compared to cell lines lacking this transporter (P < 0.001). Accordingly, considerably higher amounts of bosentan equivalents were detectable in the apical compartments of cell lines with MRP2 expression (P < 0.001). HPLC and LC-MS measurements revealed that mainly unchanged bosentan accumulated in intracellular and apical compartments. Furthermore, the phase I metabolites Ro 48-5033 and Ro 47-8634 were detected intracellularly in cell lines expressing CYP3A4. Additionally, a direct glucuronide of bosentan could be identified intracellularly in cell lines expressing UGT1A1 and in the apical compartments of cell lines expressing UGT1A1 and MRP2. These in vitro data indicate that bosentan is a substrate of UGT1A1. Moreover, the efflux transporter MRP2 mediates export of bosentan and most likely also of bosentan glucuronide in the cell system. Taken together, cell lines simultaneously expressing transport proteins and metabolizing enzymes represent additional useful tools for the investigation of the interplay of transport and metabolism of drugs. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  5. Apolipoprotein A-I Mimetic Peptide D-4F Reduces Cardiac Hypertrophy and Improves Apolipoprotein A-I-Mediated Reverse Cholesterol Transport From Cardiac Tissue in LDL Receptor-null Mice Fed a Western Diet.

    PubMed

    Han, Jie; Zhang, Song; Ye, Ping; Liu, Yong-Xue; Qin, Yan-Wen; Miao, Dong-Mei

    2016-05-01

    Epidemiological studies have suggested that hypercholesterolemia is an independent determinant of increased left ventricular (LV) mass. Because high-density lipoprotein and its major protein apolipoprotein A-I (apoA-I) mediate reverse cholesterol transport (RCT) and have cardiac protective effects, we hypothesized that the apoA-I mimetic peptide D-4F could promote RCT in cardiac tissue and decrease cardiac hypertrophy induced by hypercholesterolemia. Low-density lipoprotein receptor-null mice were fed by a Western diet for 18 weeks and then randomized to receive water, or D-4F 0.3 mg/mL, or D-4F 0.5 mg/mL added to drinking water for 6 weeks. After D-4F administration, an increase in high-density lipoprotein cholesterol and a decrease in low-density lipoprotein cholesterol, total cholesterol, and triglyceride in a trend toward dose-responsivity were found in cardiac tissue. Ultrasound biomicroscopy revealed a reduction in LV posterior wall end-diastolic dimension, and an increase in mitral valve E/A ratio and LV ejection fraction. Hematoxylin-eosin staining showed reduced LV wall thickness and myocardial cell diameter. The protein levels of ABCA1 and LXRα were elevated in cardiac tissue of D-4F treated mice compared with the controls (P < 0.05). These results demonstrated that D-4F treatment reduced cardiac hypertrophy, and improved cardiac performance in low-density lipoprotein receptor-null mice fed a Western diet, presumably through the LXRα-ABCA1 pathway associated with enhanced myocardial RCT.

  6. PKCγ-mediated phosphorylation of GluA1 in the PSD of spinal dorsal horn neurons accompanies neuropathic pain and dephosphorylation by calcineurin is associated with prolonged analgesia

    PubMed Central

    Miletic, Gordana; Hermes, Jessie L.; Bosscher, Georgia L.; Meier, Brenton M.; Miletic, Vjekoslav

    2015-01-01

    Loss of calcineurin (protein phosphatase 3) activity and protein content in the post-synaptic density (PSD) of spinal dorsal horn neurons was associated with pain behavior following chronic constriction injury (CCI) of the rat sciatic nerve, and intrathecal administration of the phosphatase provided prolonged analgesia (Miletic et al., Pain 2013;154:2024-2033). In this study we examined if one consequence of the loss of calcineurin was the persistent phosphorylation of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid receptors (AMPAR) in the PSD. This would allow continual activation of AMPAR at the synapse to help maintain a long-lasting enhancement of synaptic function, i.e., neuropathic pain. We also investigated if the phosphorylation was mediated by protein kinase A (PKA), protein kinase C gamma (PKCγ) or calcium-calmodulin dependent kinase II (CaMKII), and if the prolonged calcineurin analgesia was associated with GluA1 dephosphorylation. Mechanical thresholds and thermal latencies were obtained before CCI. Seven days later the behavioral testing was repeated before saline, calcineurin or the specific peptide inhibitors of PKA (PKI-tide), PKCγ (PKC 19-31) or CaMKII (AIP-2) were injected intrathecally. The behavior was retested before the animals were euthanized and their PSD isolated. All CCI animals developed mechanical and thermal hypersensitivity. This was associated with phosphorylation of GluA1 in the ipsilateral PSD at Ser831 (but not Ser845) by PKCγ and not by PKA or CaMKII. Intrathecal treatment with calcineurin provided prolonged analgesia and this was accompanied by GluA1 dephosphorylation. Therapy with calcineurin may prove useful in the prolonged clinical management of well-established neuropathic pain. PMID:26270583

  7. Protein kinase C gamma-mediated phosphorylation of GluA1 in the postsynaptic density of spinal dorsal horn neurons accompanies neuropathic pain, and dephosphorylation by calcineurin is associated with prolonged analgesia.

    PubMed

    Miletic, Gordana; Hermes, Jessie L; Bosscher, Georgia L; Meier, Brenton M; Miletic, Vjekoslav

    2015-12-01

    Loss of calcineurin (protein phosphatase 3) activity and protein content in the postsynaptic density (PSD) of spinal dorsal horn neurons was associated with pain behavior after chronic constriction injury (CCI) of the rat sciatic nerve, and intrathecal administration of the phosphatase provided prolonged analgesia (Miletic et al. 2013). In this study, we examined whether one consequence of the loss of calcineurin was the persistent phosphorylation of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropioinic acid (AMPAR) receptors in the PSD. This would allow continual activation of AMPAR receptors at the synapse to help maintain a long-lasting enhancement of synaptic function, ie, neuropathic pain. We also investigated if the phosphorylation was mediated by protein kinase A (PKA), protein kinase C gamma (PKCγ), or calcium-calmodulin dependent kinase II (CaMKII), and if the prolonged calcineurin analgesia was associated with GluA1 dephosphorylation. Mechanical thresholds and thermal latencies were obtained before CCI. Seven days later, the behavioral testing was repeated before saline, calcineurin, or the specific peptide inhibitors of PKA (PKI-tide), PKCγ (PKC 19-31), or CaMKII (autocamtide-2-related inhibitory peptide) were injected intrathecally. The behavior was retested before the animals were euthanized and their PSD isolated. All CCI animals developed mechanical and thermal hypersensitivity. This was associated with phosphorylation of GluA1 in the ipsilateral PSD at Ser831 (but not Ser845) by PKCγ and not by PKA or CaMKII. Intrathecal treatment with calcineurin provided prolonged analgesia, and this was accompanied by GluA1 dephosphorylation. Therapy with calcineurin may prove useful in the prolonged clinical management of well-established neuropathic pain.

  8. Postprandial lipemia enhances the capacity of large HDL2 particles to mediate free cholesterol efflux via SR-BI and ABCG1 pathways in type IIB hyperlipidemia.

    PubMed

    Julia, Zélie; Duchene, Emilie; Fournier, Natalie; Bellanger, Natacha; Chapman, M John; Le Goff, Wilfried; Guerin, Maryse

    2010-11-01

    Lipid and cholesterol metabolism in the postprandial phase is associated with both quantitative and qualitative remodeling of HDL particle subspecies that may influence their anti-atherogenic functions in the reverse cholesterol transport pathway. We evaluated the capacity of whole plasma or isolated HDL particles to mediate cellular free cholesterol (FC) efflux, cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer, and selective hepatic CE uptake during the postprandial phase in subjects displaying type IIB hyperlipidemia (n = 16). Postprandial, large HDL2 displayed an enhanced capacity to mediate FC efflux via both scavenger receptor class B type I (SR-BI)-dependent (+12%; P < 0.02) and ATP binding cassette transporter G1 (ABCG1)-dependent (+31%; P < 0.008) pathways in in vitro cell systems. In addition, the capacity of whole postprandial plasma (4 h and 8 h postprandially) to mediate cellular FC efflux via the ABCA1-dependent pathway was significantly increased (+19%; P < 0.0003). Concomitantly, postprandial lipemia was associated with elevated endogenous CE transfer rates from HDL2 to apoB lipoproteins and with attenuated capacity (-17%; P < 0.02) of total HDL to deliver CE to hepatic cells. Postprandial lipemia enhanced SR-BI and ABCG1-dependent efflux to large HDL2 particles. However, postprandial lipemia is equally associated with deleterious features by enhancing formation of CE-enriched, triglyceride-rich lipoprotein particles through the action of CETP and by reducing the direct return of HDL-CE to the liver.

  9. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I.

    PubMed

    Sultana, Afroza; Cochran, Blake J; Tabet, Fatiha; Patel, Mili; Torres, Luisa Cuesta; Barter, Philip J; Rye, Kerry-Anne

    2016-06-01

    Activation of inflammatory signaling pathways links obesity with metabolic disorders. TLR4-mediated activation of MAPKs and NF-κB are 2 such pathways implicated in obesity-induced inflammation. Apolipoprotein A-I (apoA-I) exerts anti-inflammatory effects on adipocytes by effluxing cholesterol from the cells via the ATP binding cassette transporter A1 (ABCA1). It is not known if these effects involve inhibition of inflammatory signaling pathways by apoA-I. This study asks if apoA-I inhibits activation of MAPKs and NF-κB in mouse 3T3-L1 adipocytes and whether this inhibition is ABCA1 dependent. Incubation of differentiated 3T3-L1 adipocytes with apoA-I decreased cell surface expression of TLR4 by 16 ± 2% and synthesis of the TLR4 adaptor protein, myeloid differentiation primary response 88, by 24 ± 4% in an ABCA1-dependent manner. ApoA-I also inhibited downstream activation of MAPKs, such as ERK, p38MAPK, and JNK, as well as expression of proinflammatory adipokines in bacterial LPS-stimulated 3T3-L1 adipocytes in an ABCA1-dependent manner. ApoA-I, by contrast, suppressed nuclear localization of the p65 subunit of NF-κB by 30 ± 3% in LPS-stimulated 3T3-L1 adipocytes in an ABCA1-independent manner. In conclusion, apoA-I inhibits TLR4-mediated inflammatory signaling pathways in adipocytes by preventing MAPK and NF-κB activation.-Sultana, A., Cochran, B. J., Tabet, F., Patel, M., Cuesta Torres, L., Barter, P. J., Rye, K.-A. Inhibition of inflammatory signaling pathways in 3T3-L1 adipocytes by apolipoprotein A-I. © FASEB.

  10. Cell lipid metabolism modulators 2-bromopalmitate, D609, monensin, U18666A and probucol shift discoidal HDL formation to the smaller-sized particles: implications for the mechanism of HDL assembly.

    PubMed

    Quach, Duyen; Vitali, Cecilia; La, Fiona M; Xiao, Angel X; Millar, John S; Tang, Chongren; Rader, Daniel J; Phillips, Michael C; Lyssenko, Nicholas N

    2016-12-01

    ATP-binding cassette transporter A1 (ABCA1) mediates formation of disc-shaped high-density lipoprotein (HDL) from cell lipid and lipid-free apolipoprotein A-I (apo A-I). Discoidal HDL particles are heterogeneous in physicochemical characteristics for reasons that are understood incompletely. Discoidal lipoprotein particles similar in characteristics and heterogeneity to cell-formed discoidal HDL can be reconstituted from purified lipids and apo A-I by cell-free, physicochemical methods. The heterogeneity of reconstituted HDL (rHDL) is sensitive to the lipid composition of the starting lipid/apo A-I mixture. To determine whether the heterogeneity of cell-formed HDL is similarly sensitive to changes in cell lipids, we investigated four compounds that have well-established effects on cell lipid metabolism and ABCA1-mediated cell cholesterol efflux. 2-Bromopalmitate, D609, monensin and U18666A decreased formation of the larger-sized, but dramatically increased formation of the smaller-sized HDL. 2-Bromopalmitate did not appear to affect ABCA1 activity, subcellular localization or oligomerization, but induced dissolution of the cholesterol-phospholipid complexes in the plasma membrane. Arachidonic and linoleic acids shifted HDL formation to the smaller-sized species. Tangier disease mutations and inhibitors of ABCA1 activity wheat germ agglutinin and AG 490 reduced formation of both larger-sized and smaller-sized HDL. The effect of probucol was similar to the effect of 2-bromopalmitate. Taking rHDL formation as a paradigm, we propose that ABCA1 mutations and activity inhibitors reduce the amount of cell lipid available for HDL formation, and the compounds in the 2-bromopalmitate group and the polyunsaturated fatty acids change cell lipid composition from one that favors formation of the larger-sized HDL particles to one that favors formation of the smaller-sized species. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Inhibition of soluble epoxide hydrolase in mice promotes reverse cholesterol transport and regression of atherosclerosis.

    PubMed

    Shen, Li; Peng, Hongchun; Peng, Ran; Fan, Qingsong; Zhao, Shuiping; Xu, Danyan; Morisseau, Christophe; Chiamvimonvat, Nipavan; Hammock, Bruce D

    2015-04-01

    Adipose tissue is the body largest free cholesterol reservoir and abundantly expresses ATP binding cassette transporter A1 (ABCA1), which maintains plasma high-density lipoprotein (HDL) levels. HDLs have a protective role in atherosclerosis by mediating reverse cholesterol transport (RCT). Soluble epoxide hydrolase (sEH) is a cytosolic enzyme whose inhibition has various beneficial effects on cardiovascular disease. The sEH is highly expressed in adipocytes, and it converts epoxyeicosatrienoic acids (EETs) into less bioactive dihydroxyeicosatrienoic acids. We previously showed that increasing EETs levels with a sEH inhibitor (sEHI) (t-AUCB) resulted in elevated ABCA1 expression and promoted ABCA1-mediated cholesterol efflux from 3T3-L1 adipocytes. The present study investigates the impacts of t-AUCB in mice deficient for the low density lipoprotein (LDL) receptor (Ldlr(-/-) mice) with established atherosclerotic plaques. The sEH inhibitor delivered in vivo for 4 weeks decreased the activity of sEH in adipose tissue, enhanced ABCA1 expression and cholesterol efflux from adipose depots, and consequently increased HDL levels. Furthermore, t-AUCB enhanced RCT to the plasma, liver, bile and feces. It also showed the reduction of plasma LDL-C levels. Consistently, t-AUCB-treated mice showed reductions in the size of atherosclerotic plaques. These studies establish that raising adipose ABCA1 expression, cholesterol efflux, and plasma HDL levels with t-AUCB treatment promotes RCT, decreasing LDL-C and atherosclerosis regression, suggesting that sEH inhibition may be a promising strategy to treat atherosclerotic vascular disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway

    SciTech Connect

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  13. Utility of Oatp1a/1b-knockout and OATP1B1/3-humanized mice in the study of OATP-mediated pharmacokinetics and tissue distribution: case studies with pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein.

    PubMed

    Higgins, J William; Bao, Jing Q; Ke, Alice B; Manro, Jason R; Fallon, John K; Smith, Philip C; Zamek-Gliszczynski, Maciej J

    2014-01-01

    Although organic anion transporting polypeptide (OATP)-mediated hepatic uptake is generally conserved between rodents and humans at a gross pharmacokinetic level, the presence of three major hepatic OATPs with broad overlap in substrate and inhibitor affinity, and absence of rodent-human orthologs preclude clinical translation of single-gene knockout/knockin findings. At present, changes in pharmacokinetics and tissue distribution of pravastatin, atorvastatin, simvastatin, and carboxydichlorofluorescein were studied in oatp1a/1b-knockout mice lacking the three major hepatic oatp isoforms, and in knockout mice with liver-specific knockin of human OATP1B1 or OATP1B3. Relative to wild-type controls, oatp1a/1b-knockout mice exhibited 1.6- to 19-fold increased intravenous and 2.1- to 115-fold increased oral drug exposure, due to 33%-75% decreased clearance, 14%-60% decreased volume of distribution, and ≤74-fold increased oral bioavailability, with the magnitude of change depending on the contribution of oatp1a/1b to pharmacokinetics. Hepatic drug distribution was 4.2- to 196-fold lower in oatp1a/1b-knockout mice; distributional attenuation was less notable in kidney, brain, cardiac, and skeletal muscle. Knockin of OATP1B1 or OATP1B3 partially restored control clearance, volume, and bioavailability values (24%-142% increase, ≤47% increase, and ≤77% decrease vs. knockout, respectively), such that knockin pharmacokinetic profiles were positioned between knockout and wild-type mice. Consistent with liver-specific humanization, only hepatic drug distribution was partially restored (1.3- to 6.5-fold increase vs. knockout). Exposure and liver distribution changes in OATP1B1-humanized versus knockout mice predicted the clinical impact of OATP1B1 on oral exposure and contribution to human hepatic uptake of statins within 1.7-fold, but only after correcting for human/humanized mouse liver relative protein expression factor (OATP1B1 = 2.2, OATP1B3 = 0.30).

  14. Annexin A1 down-regulation in head and neck squamous cell carcinoma is mediated via transcriptional control with direct involvement of miR-196a/b.

    PubMed

    Álvarez-Teijeiro, Saúl; Menéndez, Sofía T; Villaronga, M Ángeles; Pena-Alonso, Emma; Rodrigo, Juan P; Morgan, Reginald O; Granda-Díaz, Rocío; Salom, Cecilia; Fernandez, M Pilar; García-Pedrero, Juana M

    2017-07-28

    Annexin A1 (ANXA1) down-regulation is an early and frequent event in the development of head and neck squamous cell carcinomas (HNSCC). In an attempt to identify the underlying mechanisms of reduced ANXA1 protein expression, this study investigated ANXA1 mRNA expression in HNSCC specimens by both in situ hybridization and RT-qPCR. Results showed a perfect concordance between the pattern of ANXA1 mRNA and protein detected by immunofluorescence in tumors, precancerous lesions and normal epithelia, reflecting that ANXA1 down-regulation occurs at transcriptional level. We also found that both miR-196a and miR-196b levels inversely correlated with ANXA1 mRNA levels in paired HNSCC tissue samples and patient-matched normal mucosa. In addition, endogenous levels of ANXA1 mRNA and protein were consistently and significantly down-regulated upon miR-196a and miR-196b over-expression in various HNSCC-derived cell lines. The direct interaction of both mature miR-196a and miR-196b was further confirmed by transfection with Anxa1 3'UTR constructs. Combined bioinformatics and functional analysis of ANXA1 promoter activity contributed to identify key regions and potential mediators of ANXA1 transcriptional control. This study unveils that, in addition to miR-196a, miR-196b also directly targets ANXA1 in HNSCC.

  15. Pre-β1 HDL in type 2 diabetes mellitus.

    PubMed

    Shiu, S W; Wong, Y; Tan, K C

    2017-08-01

    Pre-β1 HDL, being a major acceptor of free cholesterol from cells, plays an important role in reverse cholesterol transport. This study was performed to determine whether abnormalities in pre-β1 HDL concentration were present in type 2 diabetes irrespective of their HDL-cholesterol levels, and the impact on cholesterol efflux. 640 type 2 diabetic patients with or without cardiovascular disease (CVD) and 360 non-diabetic controls matched for serum HDL-cholesterol levels were recruited. Plasma pre-β1 HDL was measured by ELISA, and cholesterol efflux to serum, mediated by ATP-binding cassette transporter A1 (ABCA1), was determined by measuring the transfer of [3H]cholesterol from cultured cells expressing ABCA1 to the medium containing the tested serum. Despite the diabetic subjects having matched HDL-cholesterol and total apoA1 as controls, plasma pre-β1 HDL was significantly reduced in both male (p < 0.01) and female diabetic patients (p < 0.05), and patients with CVD had the lowest pre-β1 HDL level. Serum capacity to induce ABCA1-mediated cholesterol efflux was impaired in the diabetic group (p < 0.01) and cholesterol efflux correlated with pre-β1 HDL (Pearson's r = 0.38, p < 0.01), and this association remained significantly even after controlling for age, gender, body mass index, diabetes status, smoking, apoA1, triglyceride and LDL. Plasma pre-β1 HDL level was significantly decreased in type 2 diabetes and was associated with a reduction in cholesterol efflux mediated by ABCA1. Our data would suggest that low pre-β1 HDL might cause impairment in reverse cholesterol transport in type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Mediation Analysis

    PubMed Central

    MacKinnon, David P.; Fairchild, Amanda J.; Fritz, Matthew S.

    2010-01-01

    Mediating variables are prominent in psychological theory and research. A mediating variable transmits the effect of an independent variable on a dependent variable. Differences between mediating variables and confounders, moderators, and covariates are outlined. Statistical methods to assess mediation and modern comprehensive approaches are described. Future directions for mediation analysis are discussed. PMID:16968208

  17. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1−/− mice fed low levels of cholic acid

    PubMed Central

    Jones, Ryan D.; Repa, Joyce J.; Russell, David W.; Dietschy, John M.

    2012-01-01

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that coverts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1−/−) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1−/− mice and matching Cyp7a1+/+ controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15–18 days. A level of just 0.03% provided a CA intake of ∼12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1−/− mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1+/+ mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models. PMID:22628034

  18. Delineation of biochemical, molecular, and physiological changes accompanying bile acid pool size restoration in Cyp7a1(-/-) mice fed low levels of cholic acid.

    PubMed

    Jones, Ryan D; Repa, Joyce J; Russell, David W; Dietschy, John M; Turley, Stephen D

    2012-07-15

    Cholesterol 7α-hydroxylase (CYP7A1) is the initiating and rate-limiting enzyme in the neutral pathway that converts cholesterol to primary bile acids (BA). CYP7A1-deficient (Cyp7a1(-/-)) mice have a depleted BA pool, diminished intestinal cholesterol absorption, accelerated fecal sterol loss, and increased intestinal cholesterol synthesis. To determine the molecular and physiological effects of restoring the BA pool in this model, adult female Cyp7a1(-/-) mice and matching Cyp7a1(+/+) controls were fed diets containing cholic acid (CA) at modest levels [0.015, 0.030, and 0.060% (wt/wt)] for 15-18 days. A level of just 0.03% provided a CA intake of ~12 μmol (4.8 mg) per day per 100 g body wt and was sufficient in the Cyp7a1(-/-) mice to normalize BA pool size, fecal BA excretion, fractional cholesterol absorption, and fecal sterol excretion but caused a significant rise in the cholesterol concentration in the small intestine and liver, as well as a marked inhibition of cholesterol synthesis in these organs. In parallel with these metabolic changes, there were marked shifts in intestinal and hepatic expression levels for many target genes of the BA sensor farnesoid X receptor, as well as genes involved in cholesterol transport, especially ATP-binding cassette (ABC) transporter A1 (ABCA1) and ABCG8. In Cyp7a1(+/+) mice, this level of CA supplementation did not significantly disrupt BA or cholesterol metabolism, except for an increase in fecal BA excretion and marginal changes in mRNA expression for some BA synthetic enzymes. These findings underscore the importance of using moderate dietary BA levels in studies with animal models.

  19. Reduction in 7,12-dimethylbenz[a]anthracene-induced hepatic cytochrome-P450 1A1 expression following soy consumption in female rats is mediated by degradation of the aryl hydrocarbon receptor

    USDA-ARS?s Scientific Manuscript database

    Consumption of a soy diet has been found to reduce cancer incidence in animals and is associated with reduced cancer risk in humans. In this study, the effect of consuming soy protein isolate (SPI) on the aryl hydrocarbon receptor (AhR)-mediated signaling pathway was investigated. Female Sprague-Daw...

  20. Static pressure accelerates ox-LDL-induced cholesterol accumulation via SREBP-1-mediated caveolin-1 downregulation in cultured vascular smooth muscle cells

    SciTech Connect

    Luo, Di-xian; Xia, Cheng-lai; Li, Jun-mu; Xiong, Yan; Yuan, Hao-yu; TANG, Zhen-Wang; Zeng, Yixin; Liao, Duan-fang

    2010-12-03

    Research highlights: {yields} Vertical static pressure accelerates ox-LDL-induced cholesterol accumulation in cultured vascular smooth muscle cells. {yields} Static pressure induces SREBP-1 activation. {yields} Static pressure downregulates the expressions of caveolin-1 by activating SREBP-1. {yields} Static pressure also downregulates the transcription of ABCA1 by activating SREBP-1. {yields} Static pressure increases ox-LDL-induced cholesterol accumulation by SREBP-1-mediated caveolin-1 downregulation in vascular smooth muscle cells cultured in vitro. -- Abstract: Objective: To investigate the effect of static pressure on cholesterol accumulation in vascular smooth muscle cells (VSMCs) and its mechanism. Methods: Rat-derived VSMC cell line A10 treated with 50 mg/L ox-LDL and different static pressures (0, 60, 90, 120, 150, 180 mm Hg) in a custom-made pressure incubator for 48 h. Intracellular lipid droplets and lipid levels were assayed by oil red O staining and HPLC; The mRNA levels of caveolin-1 and ABCA1, the protein levels of caveolin-1 SREBP-1 and mature SREBP-1 were respectively detected by RT-PCR or western blot. ALLN, an inhibitor of SREBP metabolism, was used to elevate SREBP-1 protein level in VSMCs treated with static pressure. Results: Static pressures significantly not only increase intracellular lipid droplets in VSMCs, but also elevate cellular lipid content in a pressure-dependent manner. Intracellular free cholesterol (FC), cholesterol ester (CE), total cholesterol (TC) were respectively increased from 60.5 {+-} 2.8 mg/g, 31.8 {+-} 0.7 mg/g, 92.3 {+-} 2.1 mg/g at atmosphere pressure (ATM, 0 mm Hg) to 150.8 {+-} 9.4 mg/g, 235.9 {+-} 3.0 mg/g, 386.7 {+-} 6.4 mg/g at 180 mm Hg. At the same time, static pressures decrease the mRNA and protein levels of caveolin-1, and induce the activation and nuclear translocation of SREBP-1. ALLN increases the protein level of mature SREBP-1 and decreases caveolin-1 expression, so that cellular lipid levels were

  1. Interference with distinct steps of sphingolipid synthesis and signaling attenuates proliferation of U87MG glioma cells

    PubMed Central

    Bernhart, Eva; Damm, Sabine; Wintersperger, Andrea; Nusshold, Christoph; Brunner, Anna Martina; Plastira, Ioanna; Rechberger, Gerald; Reicher, Helga; Wadsack, Christian; Zimmer, Andreas; Malle, Ernst; Sattler, Wolfgang

    2015-01-01

    Glioblastoma is the most common malignant brain tumor, which, despite combined radio- and chemotherapy, recurs and is invariably fatal for affected patients. Members of the sphingolipid (SL) family are potent effectors of glioma cell proliferation. In particular sphingosine-1-phosphate (S1P) and the corresponding G protein-coupled S1P receptors transmit proliferative signals to glioma cells. To investigate the contribution to glioma cell proliferation we inhibited the first step of de novo SL synthesis in p53wt and p53mut glioma cells, and interfered with S1P signaling specifically in p53wt U87MG cells. Subunit silencing (RNAi) or pharmacological antagonism (using myriocin) of serine palmitoyltransferase (SPT; catalyzing the first committed step of SL biosynthesis) reduced proliferation of p53wt but not p53mut GBM cells. In U87MG cells these observations were accompanied by decreased ceramide, sphingomyelin, and S1P content. Inhibition of SPT upregulated p53 and p21 expression and induced an increase in early and late apoptotic U87MG cells. Exogenously added S1P (complexed to physiological carriers) increased U87MG proliferation. In line, silencing of individual members of the S1P receptor family decreased U87MG proliferation. Silencing and pharmacological inhibition of the ATP-dependent cassette transporter A1 (ABCA1) that facilitates S1P efflux in astrocytes attenuated U87MG growth. Glyburide-mediated inhibition of ABCA1 resulted in intracellular accumulation of S1P raising the possibility that ABCA1 promotes S1P efflux in U87MG glioma cells thereby contributing to inside-out signaling. Our findings indicate that de novo SL synthesis, S1P receptor-mediated signaling, and ABCA1-mediated S1P efflux could provide pharmacological targets to interfere with glioma cell proliferation. PMID:26002572

  2. Single-cell analysis of dihydroartemisinin-induced apoptosis through reactive oxygen species-mediated caspase-8 activation and mitochondrial pathway in ASTC-a-1 cells using fluorescence imaging techniques

    NASA Astrophysics Data System (ADS)

    Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li

    2010-07-01

    Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.

  3. The inhibition of the human cholesterol 7alpha-hydroxylase gene (CYP7A1) promoter by fibrates in cultured cells is mediated via the liver x receptor alpha and peroxisome proliferator-activated receptor alpha heterodimer.

    PubMed

    Gbaguidi, G Franck; Agellon, Luis B

    2004-01-01

    In previous work, we showed that the binding of the liver x receptor alpha:peroxisome proliferator-activated receptor alpha (LXRalpha:PPARalpha) heterodimer to the murine Cyp7a1 gene promoter antagonizes the stimulatory effect of their respective ligands. In this study, we determined if LXRalpha:PPARalpha can also regulate human CYP7A1 gene promoter activity. Co-expression of LXRalpha and PPARalpha in McArdle RH7777 hepatoma cells decreased the activity of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol. In vitro, the human CYP7A1 Site I bound LXRalpha:PPARalpha, although with substantially less affinity compared with the murine Cyp7a1 Site I. The binding of LXRalpha:PPARalpha to human CYP7A1 Site I was increased in the presence of either LXRalpha or PPARalpha ligands. In HepG2 hepatoblastoma cells, fibrates and 25-hydroxycholesterol inhibited the expression of the endogenous CYP7A1 gene as well as the human CYP7A1 gene promoter when co-transfected with plasmids encoding LXRalpha and PPARalpha. However, a derivative of the human CYP7A1 gene promoter that contains a mutant form of Site I that does not bind LXRalpha:PPARalpha was not inhibited by WY 14,643 or 25-hydroxycholesterol in both McArdle RH7777 and HepG2 cells. The ligand-dependent recruitment of LXRalpha:PPARalpha heterodimer onto the human CYP7A1 Site I can explain the inhibition of the human CYP7A1 gene promoter in response to fibrates and 25-hydroxycholesterol.

  4. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    PubMed

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Citrulline increases cholesterol efflux from macrophages in vitro and ex vivo via ATP-binding cassette transporters

    PubMed Central

    Uto-Kondo, Harumi; Ayaori, Makoto; Nakaya, Kazuhiro; Takiguchi, Shunichi; Yakushiji, Emi; Ogura, Masatsune; Terao, Yoshio; Ozasa, Hideki; Sasaki, Makoto; Komatsu, Tomohiro; Sotherden, Grace Megumi; Hosoai, Tamaki; Sakurada, Masami; Ikewaki, Katsunori

    2014-01-01

    Reverse cholesterol transport (RCT) is a mechanism critical to the anti-atherogenic property of HDL. Although citrulline contributes to the amelioration of atherosclerosis via endothelial nitric oxide production, it remains unclear whether it affects RCT. This study was undertaken to clarify the effects of citrulline on expressions of specific transporters such as ATP binding cassette transporters (ABC)A1 and ABCG1, and the cholesterol efflux from macrophages to apolipoprotein (apo) A-I or HDL in vitro and ex vivo. Citrulline increased ABCA1 and ABCG1 mRNA and protein levels in THP-1 macrophages, translating into enhanced apoA-I- and HDL-mediated cholesterol efflux. In the human crossover study, 8 healthy male volunteers (age 30–49 years) consumed either 3.2 g/day citrulline or placebo for 1 week. Citrulline consumption brought about significant increases in plasma levels of citrulline and arginine. Supporting the in vitro data, monocyte-derived macrophages (MDM) differentiated under autologous post-citrulline sera demonstrated enhancement of both apoA-I- and HDL-mediated cholesterol efflux through increased ABCA1 and ABCG1 expressions, compared to MDM differentiated under pre-citrulline sera. However, the placebo did not modulate these parameters. Therefore, in addition to improving endothelium function, citrulline might have an anti-atherogenic property by increasing RCT of HDL. PMID:25120277

  6. Suppressive effects of alpha-Hederin on 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated murine Cyp1a-1 expression in the mouse hepatoma Hepa-1c1c7 cells.

    PubMed

    Jeong, H G; Lee, S S

    1999-04-26

    Cultured mouse hepatoma cell line Hepa-1c1c7 cells were treated with alpha-Hederin to assess the role of alpha-Hederin in the process of Cyp1a-1 induction. Treatment of Hepa-1c1c7 cultures with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced Cyp1a-1, as indicated by analysis of 7-ethoxyresorufin O-deethylation (EROD) activity and Cyp1a-1 protein. When alpha-Hederin and TCDD were both added to cultures, TCDD-inducible EROD activity was greatly suppressed by alpha-Hederin in a dose-dependent manner. TCDD-induced Cyp1a-1 protein and mRNA levels were markedly reduced in the concomitant treatment of TCDD and alpha-Hederin consistent with EROD activity. Electrophoretic mobility shift assay using nuclear extraction of cells revealed that alpha-Hederin reduced transformation of the Ah receptor to a form capable of specifically binding to an oligonucleotide containing a dioxin-response element (DRE) sequence of the Cyp1a-1 gene. These results suggest that the suppressive effect of alpha-Hederin on TCDD-induced Cyp1a-1 gene expression in Hepa-1c1c7 cells might be an antagonist of the DNA binding potential of a nuclear Ah receptor.

  7. Lck Inhibits Heat Shock Protein 65-Mediated Reverse Cholesterol Transport in T Cells.

    PubMed

    Luo, Tiantian; Hu, Jing; Xi, Dan; Xiong, Haowei; He, Wenshuai; Liu, Jichen; Li, Menghao; Lu, Hao; Zhao, Jinzhen; Lai, Wenyan; Guo, Zhigang

    2016-11-15

    Previously, we reported that heat shock protein (HSP)65 impairs the effects of high-density lipoprotein on macrophages. We also showed that immune response activation adversely affects reverse cholesterol transport (RCT). In this study, we investigated the effects of the Src family kinase lymphocyte-specific protein tyrosine kinase (Lck) and elucidated the mechanism underlying HSP65-regulated cholesterol efflux in T cells. We evaluated cell proliferation, Lck expression, and inflammatory cytokine production in Jurkat cells and CD4(+) T cells. HSP65-mediated inhibition of RCT was assessed by evaluating ABCA1, ABCG1, SR-BI, PPAR-γ, and liver X receptor-α expression. A dose-dependent relationship was found between the levels of these proteins and the suppression of cholesterol efflux. Stimulation of Lck-silenced T cells with ionomycin resulted in a decrease in intracellular calcium levels. Treatment of Jurkat cells with PP2, an inhibitor of Src family kinase, inhibited calcium-induced, but not PMA-induced, ERK phosphorylation. NF-κB activation in response to PMA was minimally inhibited in cells stimulated with PP2. HSP65 failed to trigger downstream ERK or JNK phosphorylation or to activate NF-κB or protein kinase C-γ in Lck-silenced cells. Additionally, elevation of intracellular calcium was also impaired. However, HSP65 significantly enhanced cholesterol efflux and decreased cellular cholesterol content by inducing the expression of cholesterol transport proteins in Lck-silenced cells. The treatment of Jurkat cells with PP2 also inhibited cell proliferation and promoted RCT. In conclusion, Lck is a key molecule in the TCR signaling cascade that inhibits cholesterol efflux and upregulates intracellular cholesterol ester content in T cells. Our results demonstrate that the immune response plays a previously unrecognized role in RCT. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria

    PubMed Central

    Bragança, Bruno; Oliveira-Monteiro, Nádia; Ferreirinha, Fátima; Lima, Pedro A.; Faria, Miguel; Fontes-Sousa, Ana P.; Correia-de-Sá, Paulo

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type) channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca2+-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration and Ca2+ influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3, and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca2+ influx through Cav1 (L-type) channels. PMID:27014060

  9. 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice.

    PubMed

    Monaca, Christelle; Boutrel, Benjamin; Hen, René; Hamon, Michel; Adrien, Joëlle

    2003-05-01

    Selective serotonin reuptake inhibitors (SSRIs) are extensively used for the treatment of depression. Aside from their antidepressant properties, they provoke a deficit in paradoxical sleep (PS) that is most probably mediated by the transporter blockade-induced increase in serotonin concentration in the extracellular space. Such an effect can be accounted for by the action of serotonin at various types of serotonergic receptors involved in PS regulation, among which the 5-HT(1A) and 5-HT(1B) types are the best candidates. According to this hypothesis, we examined the effects of citalopram, the most selective SSRI available to date, on sleep in the mouse after inactivation of 5-HT(1A) or 5-HT(1B) receptors, either by homologous recombination of their encoding genes, or pharmacological blockade with selective antagonists. For this purpose, sleep parameters of knockout mice that do not express these receptors and their wild-type counterparts were monitored during 8 h after injection of citalopram alone or in association with 5-HT(1A) or 5-HT(1B) receptor antagonists. Citalopram induced mainly a dose-dependent inhibition of PS during 2-6 h after injection, which was observed in wild-type and 5-HT(1B)-/- mice, but not in 5-HT(1A)-/- mutants. This PS inhibition was fully antagonized by pretreatment with the 5-HT(1A) antagonist WAY 100635, but only partially with the 5-HT(1B) antagonist GR 127935. These data indicate that the action of the SSRI citalopram on sleep in the mouse is essentially mediated by 5-HT(1A) receptors. Such a mechanism of action provides further support to the clinical strategy of antidepressant augmentation by 5-HT(1A) antagonists, because the latter would also counteract the direct sleep-inhibitory side-effects of SSRIs.

  10. Lysosomal-mediated waste clearance in retinal pigment epithelial cells is regulated by CRYBA1/βA3/A1-crystallin via V-ATPase-MTORC1 signaling

    PubMed Central

    Valapala, Mallika; Wilson, Christine; Hose, Stacey; Bhutto, Imran A; Grebe, Rhonda; Dong, Aling; Greenbaum, Seth; Gu, Limin; Sengupta, Samhita; Cano, Marisol; Hackett, Sean; Xu, Guotong; Lutty, Gerard A; Dong, Lijin; Sergeev, Yuri; Handa, James T; Campochiaro, Peter; Wawrousek, Eric; Zigler, Jr, J Samuel; Sinha, Debasish

    2014-01-01

    In phagocytic cells, including the retinal pigment epithelium (RPE), acidic compartments of the endolysosomal system are regulators of both phagocytosis and autophagy, thereby helping to maintain cellular homeostasis. The acidification of the endolysosomal system is modulated by a proton pump, the V-ATPase, but the mechanisms that direct the activity of the V-ATPase remain elusive. We found that in RPE cells, CRYBA1/βA3/A1-crystallin, a lens protein also expressed in RPE, is localized to lysosomes, where it regulates endolysosomal acidification by modulating the V-ATPase, thereby controlling both phagocytosis and autophagy. We demonstrated that CRYBA1 coimmunoprecipitates with the ATP6V0A1/V0-ATPase a1 subunit. Interestingly, in mice when Cryba1 (the gene encoding both the βA3- and βA1-crystallin forms) is knocked out specifically in RPE, V-ATPase activity is decreased and lysosomal pH is elevated, while cathepsin D (CTSD) activity is decreased. Fundus photographs of these Cryba1 conditional knockout (cKO) mice showed scattered lesions by 4 months of age that increased in older mice, with accumulation of lipid-droplets as determined by immunohistochemistry. Transmission electron microscopy (TEM) of cryba1 cKO mice revealed vacuole-like structures with partially degraded cellular organelles, undigested photoreceptor outer segments and accumulation of autophagosomes. Further, following autophagy induction both in vivo and in vitro, phospho-AKT and phospho-RPTOR/Raptor decrease, while pMTOR increases in RPE cells, inhibiting autophagy and AKT-MTORC1 signaling. Impaired lysosomal clearance in the RPE of the cryba1 cKO mice also resulted in abnormalities in retinal function that increased with age, as demonstrated by electroretinography. Our findings suggest that loss of CRYBA1 causes lysosomal dysregulation leading to the impairment of both autophagy and phagocytosis. PMID:24468901

  11. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Quinone-mediated induction of cytochrome P450 1A1 in HepG2 cells through increased interaction of aryl hydrocarbon receptor with aryl hydrocarbon receptor nuclear translocator.

    PubMed

    Abiko, Yumi; Lin, Fang-Yu; Lee, Hsinyu; Puga, Alvaro; Kumagai, Yoshito

    2016-01-01

    While it has long been believed that benzenes and naphthalenes are unable to activate the aryl hydrocarbon receptor (AhR) because they are poor ligands, we recently reported that these quinoid metabolites upregulated cytochrome P450 1A1 (CYP1A1) in Hepa1c1c7 cells (Abiko et al., 2015). In the current study, AhR activation, measured with a bioluminescence-based cell free assay, was induced by 1,2-naphthoquinone (1,2-NQ), a metabolite of naphthalene. Consistent with this, 1,4-benzoquinone (1,4-BQ), tert-butyl-1,4-BQ, and 1,4-NQ, as well as 1,2-NQ, all electrophilic mono- and bi-cyclic quinones, upregulated CYP1A1 mRNA and protein in HepG2 cells, whereas their parent aromatic hydrocarbons had little effect. Furthermore, immunofluorescence analysis confirmed that these quinones enhanced translocation of AhR to the nucleus.

  13. A1C test

    MedlinePlus

    HbA1C test; Glycated hemoglobin test; Glycohemoglobin test; Hemoglobin A1C; Diabetes - A1C; Diabetic - A1C ... gov/pubmed/26696680 . Chernecky CC, Berger BJ. Glycosylated hemoglobin (GHb, glycohemoglobin, glycated hemoglobin, HbA1a, HbA1b, HbA1c - blood. ...

  14. Adenosine triphosphate-binding cassette transporter genes up-regulation in untreated hepatocellular carcinoma is mediated by cellular microRNAs.

    PubMed

    Borel, Florie; Han, Ruiqi; Visser, Allerdien; Petry, Harald; van Deventer, Sander J H; Jansen, Peter L M; Konstantinova, Pavlina

    2012-03-01

    Adenosine triphosphate (ATP)-binding cassette (ABC) transporters are drug efflux pumps responsible for the multidrug resistance phenotype causing hepatocellular carcinoma (HCC) treatment failure. Here we studied the expression of 15 ABC transporters relevant for multidrug resistance in 19 paired HCC patient samples (16 untreated, 3 treated by chemotherapeutics). Twelve ABC transporters showed up-regulation in HCC compared with adjacent healthy liver. These include ABCA2, ABCB1, ABCB6, ABCC1, ABCC2, ABCC3, ABCC4, ABCC5, ABCC10, ABCC11, ABCC12, and ABCE1. The expression profile and function of some of these transporters have not been associated with HCC thus far. Because cellular microRNAs (miRNAs) are involved in posttranscriptional gene silencing, we hypothesized that regulation of ABC expression in HCC might be mediated by miRNAs. To study this, miRNAs were profiled and dysregulation of 90 miRNAs was shown in HCC compared with healthy liver, including up-regulation of 11 and down-regulation of 79. miRNA target sites in ABC genes were bioinformatically predicted and experimentally verified in vitro using luciferase reporter assays. In total, 13 cellular miRNAs were confirmed that target ABCA1, ABCC1, ABCC5, ABCC10, and ABCE1 genes and mediate changes in gene expression. Correlation analysis between ABC and miRNA expression in individual patients revealed an inverse relationship, providing an indication for miRNA regulation of ABC genes in HCC. Up-regulation of ABC transporters in HCC occurs prior to chemotherapeutic treatment and is associated with miRNA down-regulation. Up-regulation of five ABC genes appears to be mediated by 13 cellular miRNAs in HCC patient samples. miRNA-based gene therapy may be a novel and promising way to affect the ABC profile and overcome clinical multidrug resistance. Copyright © 2011 American Association for the Study of Liver Diseases.

  15. Apolipoprotein E metabolism and functions in brain and its role in Alzheimer's disease

    PubMed Central

    Liao, Fan; Yoon, Hyejin; Kim, Jungsu

    2017-01-01

    Purpose of review APOE4 genotype is the strongest genetic risk factor for Alzheimer's disease. Prevailing evidence suggests that amyloid β plays a critical role in Alzheimer's disease. The objective of this article is to review the recent findings about the metabolism of apolipoprotein E (ApoE) and amyloid β and other possible mechanisms by which ApoE contributes to the pathogenesis of Alzheimer's disease. Recent findings ApoE isoforms have differential effects on amyloid β metabolism. Recent studies demonstrated that ApoE-interacting proteins, such as ATP-binding cassette A1 (ABCA1) and LDL receptor, may be promising therapeutic targets for Alzheimer's disease treatment. Activation of liver X receptor and retinoid X receptor pathway induces ABCA1 and other genes, leading to amyloid β clearance. Inhibition of the negative regulators of ABCA1, such as microRNA-33, also induces ABCA1 and decreases the levels of ApoE and amyloid β. In addition, genetic inactivation of an E3 ubiquitin ligase, myosin regulatory light chain interacting protein, increases LDL receptor levels and inhibits amyloid accumulation. Although amyloid β-dependent pathways have been extensively investigated, there have been several recent studies linking ApoE with vascular function, neuroinflammation, metabolism, synaptic plasticity, and transcriptional regulation. For example, ApoE was identified as a ligand for a microglial receptor, TREM2, and studies suggested that ApoE may affect the TREM2-mediated microglial phagocytosis. Summary Emerging data suggest that ApoE affects several amyloid β-independent pathways. These underexplored pathways may provide new insights into Alzheimer's disease pathogenesis. However, it will be important to determine to what extent each mechanism contributes to the pathogenesis of Alzheimer's disease. PMID:27922847

  16. High-throughput screening of dipeptide utilization mediated by the ABC transporter DppBCDF and its substrate-binding proteins DppA1-A5 in Pseudomonas aeruginosa.

    PubMed

    Pletzer, Daniel; Lafon, Corinne; Braun, Yvonne; Köhler, Thilo; Page, Malcolm G P; Mourez, Michael; Weingart, Helge

    2014-01-01

    In this study, we show that the dppBCDF operon of Pseudomonas aeruginosa PA14 encodes an ABC transporter responsible for the utilization of di/tripeptides. The substrate specificity of ABC transporters is determined by its associated substrate-binding proteins (SBPs). Whereas in E. coli only one protein, DppA, determines the specificity of the transporter, five orthologous SBPs, DppA1-A5 are present in P. aeruginosa. Multiple SBPs might broaden the substrate specificity by increasing the transporter capacity. We utilized the Biolog phenotype MicroArray technology to investigate utilization of di/tripeptides in mutants lacking either the transport machinery or all of the five SBPs. This high-throughput method enabled us to screen hundreds of dipeptides with various side-chains, and subsequently, to determine the substrate profile of the dipeptide permease. The substrate spectrum of the SBPs was elucidated by complementation of a penta mutant, deficient of all five SBPs, with plasmids carrying individual SBPs. It became apparent that some dipeptides were utilized with different affinity for each SBP. We found that DppA2 shows the highest flexibility on substrate recognition and that DppA2 and DppA4 have a higher tendency to utilize tripeptides. DppA5 was not able to complement the penta mutant under our screening conditions. Phaseolotoxin, a toxic tripeptide inhibiting the enzyme ornithine carbamoyltransferase, is also transported into P. aeruginosa via the DppBCDF permease. The SBP DppA1, and with much greater extend DppA3, are responsible for delivering the toxin to the permease. Our results provide a first overview of the substrate pattern of the ABC dipeptide transport machinery in P. aeruginosa.

  17. High-Throughput Screening of Dipeptide Utilization Mediated by the ABC Transporter DppBCDF and Its Substrate-Binding Proteins DppA1-A5 in Pseudomonas aeruginosa

    PubMed Central

    Pletzer, Daniel; Lafon, Corinne; Braun, Yvonne; Köhler, Thilo; Page, Malcolm G. P.; Mourez, Michael; Weingart, Helge

    2014-01-01

    In this study, we show that the dppBCDF operon of Pseudomonas aeruginosa PA14 encodes an ABC transporter responsible for the utilization of di/tripeptides. The substrate specificity of ABC transporters is determined by its associated substrate-binding proteins (SBPs). Whereas in E. coli only one protein, DppA, determines the specificity of the transporter, five orthologous SBPs, DppA1–A5 are present in P. aeruginosa. Multiple SBPs might broaden the substrate specificity by increasing the transporter capacity. We utilized the Biolog phenotype MicroArray technology to investigate utilization of di/tripeptides in mutants lacking either the transport machinery or all of the five SBPs. This high-throughput method enabled us to screen hundreds of dipeptides with various side-chains, and subsequently, to determine the substrate profile of the dipeptide permease. The substrate spectrum of the SBPs was elucidated by complementation of a penta mutant, deficient of all five SBPs, with plasmids carrying individual SBPs. It became apparent that some dipeptides were utilized with different affinity for each SBP. We found that DppA2 shows the highest flexibility on substrate recognition and that DppA2 and DppA4 have a higher tendency to utilize tripeptides. DppA5 was not able to complement the penta mutant under our screening conditions. Phaseolotoxin, a toxic tripeptide inhibiting the enzyme ornithine carbamoyltransferase, is also transported into P. aeruginosa via the DppBCDF permease. The SBP DppA1, and with much greater extend DppA3, are responsible for delivering the toxin to the permease. Our results provide a first overview of the substrate pattern of the ABC dipeptide transport machinery in P. aeruginosa. PMID:25338022

  18. 2,3,7,8 Tetrachlorodibenzo-p-dioxin-induced RNA abundance changes identify Ackr3, Col18a1, Cyb5a and Glud1 as candidate mediators of toxicity.

    PubMed

    Watson, John D; Prokopec, Stephenie D; Smith, Ashley B; Okey, Allan B; Pohjanvirta, Raimo; Boutros, Paul C

    2017-01-01

    2,3,7,8 Tetrachlorodibenzo-p-dioxin (TCDD) is an aromatic, long-lived environmental contaminant. While the pathogenesis of TCDD-induced toxicity is poorly understood, it has been shown that the aryl hydrocarbon receptor (AHR) is required. However, the specific transcriptomic changes that lead to toxic outcomes have not yet been identified. We previously identified a panel of 33 genes that respond to TCDD treatment in two TCDD-sensitive rodent species. To identify genes involved in the onset of hepatic toxicity, we explored 25 of these in-depth using liver from two rat strains: the TCDD-resistant Han/Wistar (H/W) and the TCDD-sensitive Long-Evans (L-E). Time course and dose-response analyses of mRNA abundance following TCDD insult indicate that eight genes are similarly regulated in livers of both strains of rat, suggesting that they are not central to the severe L-E-specific TCDD-induced toxicities. The remaining 17 genes exhibited various divergent mRNA abundances between L-E and H/W strains after TCDD treatment. Several genes displayed a biphasic response where the initial response to TCDD treatment was followed by a secondary response, usually of larger magnitude in L-E liver. This secondary response was most often an exaggeration of the original TCDD-induced response. Only cytochrome b5 type A (microsomal) (Cyb5a) had equivalent TCDD sensitivity to the prototypic AHR-responsive cytochrome P450, family 1, subfamily a, polypeptide 1 (Cyp1a1), while six genes were less sensitive. Four genes showed an early inter-strain difference that was sustained throughout most of the time course (atypical chemokine receptor 3 (Ackr3), collagen, type XVIII, alpha 1 (Col18a1), Cyb5a and glutamate dehydrogenase 1 (Glud1)), and of those genes examined in this study, are most likely to represent genes involved in the pathogenesis of TCDD-induced hepatotoxicity in L-E rats.

  19. An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2.

    PubMed

    Slominski, Andrzej; Semak, Igor; Wortsman, Jacobo; Zjawiony, Jordan; Li, Wei; Zbytek, Blazej; Tuckey, Robert C

    2006-07-01

    We report an alternative, hydroxylating pathway for the metabolism of vitamin D2 in a cytochrome P450 side chain cleavage (P450scc; CYP11A1) reconstituted system. NMR analyses identified solely 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2 derivatives. 20-Hydroxyvitamin D2 was produced at a rate of 0.34 mol x min(-1) x mol(-1) P450scc, and 17,20-dihydroxyvitamin D2 was produced at a rate of 0.13 mol x min(-1) x mol(-1). In adrenal mitochondria, vitamin D2 was metabolized to six monohydroxy products. Nevertheless, aminoglutethimide (a P450scc inhibitor) inhibited this adrenal metabolite formation. Initial testing of metabolites for biological activity showed that, similar to vitamin D2, 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2 inhibited DNA synthesis in human epidermal HaCaT keratinocytes, although to a greater degree. 17,20-Dihydroxyvitamin D2 stimulated transcriptional activity of the involucrin promoter, again to a significantly greater extent than vitamin D2, while the effect of 20-hydroxyvitamin D2 was statistically insignificant. Thus, P450scc can metabolize vitamin D2 to generate novel products, with intrinsic biological activity (at least in keratinocytes).

  20. An alternative pathway of vitamin D2 metabolism Cytochrome P450scc (CYP11A1)-mediated conversion to 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2

    PubMed Central

    Slominski, Andrzej; Semak, Igor; Wortsman, Jacobo; Zjawiony, Jordan; Li, Wei; Zbytek, Blazej; Tuckey, Robert C.

    2007-01-01

    We report an alternative, hydroxylating pathway for the metabolism of vitamin D2 in a cytochrome P450 side chain cleavage (P450scc; CYP11A1) reconstituted system. NMR analyses identified solely 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2 derivatives. 20-Hydroxyvitamin D2 was produced at a rate of 0.34 mol·min−1·mol−1 P450scc, and 17,20-dihydroxyvitamin D2 was produced at a rate of 0.13 mol·min−1·mol−1. In adrenal mitochondria, vitamin D2 was metabolized to six monohydroxy products. Nevertheless, aminoglutethimide (a P450scc inhibitor) inhibited this adrenal metabolite formation. Initial testing of metabolites for biological activity showed that, similar to vitamin D2, 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2 inhibited DNA synthesis in human epidermal HaCaT keratinocytes, although to a greater degree. 17,20-Dihydroxyvitamin D2 stimulated transcriptional activity of the involucrin promoter, again to a significantly greater extent than vitamin D2, while the effect of 20-hydroxyvitamin D2 was statistically insignificant. Thus, P450scc can metabolize vitamin D2 to generate novel products, with intrinsic biological activity (at least in keratinocytes). PMID:16817851

  1. Suppressive effects of estradiol on 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated transcriptional activation of murine Cyp1a-1 in mouse hepatoma Hepa 1c1c7 cells.

    PubMed

    Jeong, H G; Lee, S S

    1998-11-27

    Cultured mouse hepatoma Hepa lclc7 cells were treated with either estradiol or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or in combination to assess the role of estradiol in the process of Cypla-1 induction. Estradiol at a concentration as high as 1 microM slightly increased the activity of Cypla-1-specific 7-ethoxyresorufin O-deethylase (EROD); in contrast, TCDD-induced EROD activity and Cypla-1 mRNA levels were markedly reduced in the concomitant treatment of TCDD and estradiol in a dose-dependent manner. Treatment with tamoxifen, an anti-estrogen which acts through the estrogen receptor, did not affect the suppressive effects of estradiol on TCDD-induced EROD activity. Electrophoretic mobility shift assay using nuclear extract of cells revealed that estradiol reduced transformation of the Ah receptor to the form capable of specifically binding to an oligonucleotide containing dioxin-response element (DRE) sequence. Consistent with this, estradiol decreased TCDD-induced increased chloramphenicol acetyltransferase (CAT) activity from a DRE-containing CAT reporter plasmid after transient transfection into the cells. The levels of the cytosolic [3H]TCDD-Ah receptor complex were reduced by estradiol in competitive Ah receptor binding assay using [3H]TCDD. This study demonstrated that estradiol acts as an antagonist to TCDD and can regulate Cyp1a-1 expression in an Ah receptor-dependent manner but not through estradiol receptor in Hepa 1c1c7 cells.

  2. Mediating Ebonics.

    ERIC Educational Resources Information Center

    Coleman, Robin R. Means; Daniel, Jack L.

    2000-01-01

    Suggests that Ebonics has been mediated in ways that clearly reveal American racial politics, which remain hostile to African Americans, describing the dominant strategies used to mediate Ebonics and locating those media strategies within the cultural context of racist circumstances, the racist political history of African Americans, and African…

  3. The negative effects of bile acids and tumor necrosis factor-alpha on the transcription of cholesterol 7alpha-hydroxylase gene (CYP7A1) converge to hepatic nuclear factor-4: a novel mechanism of feedback regulation of bile acid synthesis mediated by nuclear receptors.

    PubMed

    De Fabiani, E; Mitro, N; Anzulovich, A C; Pinelli, A; Galli, G; Crestani, M

    2001-08-17

    Bile acids regulate the cholesterol 7alpha-hydroxylase gene (CYP7A1), which encodes the rate-limiting enzyme in the classical pathway of bile acid synthesis. Here we report a novel mechanism whereby bile acid feedback regulates CYP7A1 transcription through the nuclear receptor hepatocyte nuclear factor-4 (HNF-4), which binds to the bile acid response element (BARE) at nt -149/-118 relative to the transcription start site. Using transient transfection assays of HepG2 cells with Gal4-HNF-4 fusion proteins, we show that chenodeoxycholic acid (CDCA) dampened the transactivation potential of HNF-4. Overexpression of a constitutive active form of MEKK1, an upstream mitogen-activated protein kinase (MAPK) module triggered by stress signals, strongly repressed the promoter activity of CYP7A1 via the consensus sequence for HNF-4 embedded in the BARE. Similarly, MEKK1 inhibited the activity of HNF-4 in the Gal4-based assay. The involvement of the MEKK1-dependent pathway in the bile acid-mediated repression of CYP7A1 was confirmed by co-transfecting a dominant negative form of the stress-activated protein kinase kinase, SEK, which abolished the effect of CDCA upon CYP7A1 transcription. Treatment of transfected HepG2 cells with tumor necrosis factor alpha (TNF-alpha), an activator of the MEKK1 pathway, led to the repression of CYP7A1 via the HNF-4 site in the BARE. TNF-alpha also inhibited the transactivation potential of HNF-4. Collectively, our results demonstrate for the first time that HNF-4, in combination with a MAPK signaling pathway, acts as a bile acid sensor in the liver. Furthermore, the effects of CDCA and TNF-alpha converge to HNF-4, which binds to the BARE of CYP7A1, suggesting a link between the cascades elicited by bile acids and pro-inflammatory stimuli in the liver.

  4. Apolipoprotein M expression increases the size of nascent pre beta HDL formed by ATP binding cassette transporter A1.

    PubMed

    Mulya, Anny; Seo, Jeongmin; Brown, Amanda L; Gebre, Abraham K; Boudyguina, Elena; Shelness, Gregory S; Parks, John S

    2010-03-01

    Apolipoprotein M (apoM) is a novel apolipoprotein that is reportedly necessary for pre beta HDL formation; however, its detailed function remains unknown. We investigated the biogenesis and properties of apoM and its effects on the initial steps of nascent pre beta HDL assembly by ABCA1 in HEK293 cells. Transiently transfected apoM was localized primarily in the endomembrane compartment. Pulse-chase analyses demonstrated that apoM is inefficiently secreted, relative to human serum albumin, and that approximately 50% remains membrane-associated after extraction with sodium carbonate, pH 11.5. To investigate the role of apoM in nascent pre beta HDL formation, ABCA1-expressing or control cells, transfected with empty vector, apoM, or C-terminal epitope-tagged apoM (apoM-C-FLAG), were incubated with (125)I-apoA-I for 24 h. Conditioned media were harvested and fractionated by fast-protein liquid chromatography (FPLC) to monitor HDL particle size. Pre beta HDL particles were formed effectively in the absence of apoM expression; however, increased apoM expression stimulated the formation of larger-sized nascent pre beta HDLs. Immunoprecipitation with anti-apoA-I antibody followed by apoM Western blot analysis revealed that little secreted apoM was physically associated with pre beta HDL. Our results suggest that apoM is an atypical secretory protein that is not necessary for ABCA1-dependent pre beta HDL formation but does stimulate the formation of larger-sized pre beta HDL. We propose that apoM may function catalytically at an intracellular site to transfer lipid onto pre beta HDL during or after their formation by ABCA1.

  5. A1C Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Hemoglobin A1c Share this page: Was this page helpful? Also known as: A1c; HbA1c; Glycohemoglobin; Glycated Hemoglobin; Glycosylated Hemoglobin Formal name: Hemoglobin A1c Related tests: ...

  6. Detection of an ABCA1 Variant Associated with Type 2 Diabetes Mellitus Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Legorreta-Herrera, M.; Mosqueda-Romo, N. A.; Hernández-Clemente, F.; Soto-Cruz, I.

    2013-01-01

    We selected diabetes mellitus for this laboratory exercise to provide students with an explicit model for scientific research concerning the association between the R230C polymorphism and susceptibility to type 2 diabetes mellitus, which is highly prevalent in the Mexican population. We used a collaborative project-based learning to engage…

  7. Detection of an ABCA1 Variant Associated with Type 2 Diabetes Mellitus Susceptibility for Biochemistry and Genetic Laboratory Courses

    ERIC Educational Resources Information Center

    Legorreta-Herrera, M.; Mosqueda-Romo, N. A.; Hernández-Clemente, F.; Soto-Cruz, I.

    2013-01-01

    We selected diabetes mellitus for this laboratory exercise to provide students with an explicit model for scientific research concerning the association between the R230C polymorphism and susceptibility to type 2 diabetes mellitus, which is highly prevalent in the Mexican population. We used a collaborative project-based learning to engage…

  8. Mediator deathwork.

    PubMed

    Walter, Tony

    2005-06-01

    The most discussed and analyzed form of deathwork is the dyadic therapist--client relationship, but this far from exhausts the various types of professional work involving the dead. Mediator deathwork is where the professional gleans or constructs information about the dead, edits and polishes it, and publicly presents the edited version in a public rite; this entails a triadic flow of information: the dead--the mediator--public rite. Examples include pathologists, coroners, American funeral directors, funeral celebrants, obituary writers, spiritualist mediums, and museum curators. Other types include barrier deathwork (in which the professional insulates the living from the dead--the dead | the living--as in British funeral directing), and intercessory deathwork in which priests send prayers the other way, from the living to, or on behalf of, the dead: mourner--priest--the dead. The article focuses on mediator deathwork because, though it is the most widespread form of deathwork, it is the least discussed and analyzed.

  9. Mediator Deathwork

    ERIC Educational Resources Information Center

    Walter, Tony

    2005-01-01

    The most discussed and analyzed form of deathwork is the dyadic "therapist" [double arrow] "client" relationship, but this far from exhausts the various types of professional work involving the dead. Mediator deathwork is where the professional gleans or constructs information about the dead, edits and polishes it, and publicly…

  10. Mediator Deathwork

    ERIC Educational Resources Information Center

    Walter, Tony

    2005-01-01

    The most discussed and analyzed form of deathwork is the dyadic "therapist" [double arrow] "client" relationship, but this far from exhausts the various types of professional work involving the dead. Mediator deathwork is where the professional gleans or constructs information about the dead, edits and polishes it, and publicly…

  11. Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB

    PubMed Central

    Li, Xuesong; Zhang, Xin; Zheng, Longbin; Kou, Jiayuan; Zhong, Zhaoyu; Jiang, Yueqing; Wang, Wei; Dong, Zengxiang; Liu, Zhongni; Han, Xiaobo; Li, Jing; Tian, Ye; Zhao, Yajun; Yang, Liming

    2016-01-01

    Lipid catabolism disorder is the primary cause of atherosclerosis. Transcription factor EB (TFEB) prevents atherosclerosis by activating macrophage autophagy to promote lipid degradation. Hypericin-mediated sonodynamic therapy (HY-SDT) has been proved non-invasively inducing THP-1-derived macrophage apoptosis; however, it is unknown whether macrophage autophagy could be triggered by HY-SDT to influence cellular lipid catabolism via regulating TFEB. Here, we report that HY-SDT resulted in the time-dependent THP-1-derived macrophage autophagy activation through AMPK/AKT/mTOR pathway. Besides, TFEB nuclear translocation in macrophage was triggered by HY-SDT to promote autophagy activation and lysosome regeneration which enhanced lipid degradation in response to atherogenic lipid stressors. Moreover, following HY-SDT, the ABCA1 expression level was increased to promote lipid efflux in macrophage, and the expression levels of CD36 and SR-A were decreased to inhibit lipid uptake, both of which were prevented by TFEB knockdown. These results indicated that TFEB nuclear translocation activated by HY-SDT was not only the key regulator of autophagy activation and lysosome regeneration in macrophage to promote lipolysis, but also had a crucial role in reverse cholesterol transporters to decrease lipid uptake and increase lipid efflux. Reactive oxygen species (ROS) were adequately generated in macrophage by HY-SDT. Further, ROS scavenger N-acetyl-l-cysteine abolished HY-SDT-induced TFEB nuclear translocation and autophagy activation, implying that ROS were the primary upstream factors responsible for these effects during HY-SDT. In summary, our data indicate that HY-SDT decreases lipid content in macrophage by promoting ROS-dependent nuclear translocation of TFEB to influence consequent autophagy activation and cholesterol transporters. Thus, HY-SDT may be beneficial for atherosclerosis via TFEB regulation to ameliorate lipid overload in atherosclerotic plaques. PMID:28005078

  12. A1C

    MedlinePlus

    A1C is a blood test for type 2 diabetes and prediabetes. It measures your average blood glucose, or blood sugar, level over the past 3 ... A1C alone or in combination with other diabetes tests to make a diagnosis. They also use the ...

  13. Role of APOE Isforms in the Pathogenesis of TBI Induced Alzheimer’s Disease

    DTIC Science & Technology

    2014-10-01

    the inheritance of APOe4 is the only proven genetic risk factor for sporadic Alzheimer disease (AD). Importantly, TBI is a risk factor for the...mediated through ABCA1. 2 Keywords Traumatic brain injury, APOE isoforms, ABCA1, Alzheimer disease, APPmice, amyloid beta, axonal injury, inflamma...parallel sequencing on mRNA libraries. Bexarotene is a small molecule RXR ligand, FDA approved for treatment of certain types of skin cancer. 3 3.3 Actual

  14. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages

    PubMed Central

    Moran, George; Sun, Tao; Gotto, Antonio M.; Hajjar, David P.

    2016-01-01

    There is emerging evidence identifying microRNAs (miRNAs) as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1) in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30%) by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122) and down-regulated (107) in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin). Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs. PMID:27415822

  15. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    SciTech Connect

    Halvorsen, Bente; Holm, Sverre; Yndestad, Arne; Scholz, Hanne; Sagen, Ellen Lund; Nebb, Hilde; Holven, Kirsten B.; Dahl, Tuva B.; Aukrust, Pål

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  16. Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized low-density lipoprotein-loaded human macrophages.

    PubMed

    Jiang, Zhengming; Sang, Haiqiang; Fu, Xin; Liang, Ying; Li, Ling

    2015-01-01

    Alpinetin is a natural flavonoid abundantly present in the ginger family. Here, we investigated the effect of alpinetin on cholesterol efflux and lipid accumulation in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages and human peripheral blood monocyte-derived macrophages (HMDMs). After exposing THP-1 macrophages to alpinetin, cholesterol efflux was determined by liquid scintillator. The mRNA and protein levels of peroxisome proliferator-activated receptor gamma (PPAR-γ), liver X receptor alpha (LXR-α), ATP-binding cassette transporter A1 (ABCA1), and ABCG1 and scavenger receptor class B member 1 were determined by reverse-transcriptase PCR (RT-PCR) and Western blot analysis, respectively. Alpinetin promoted apolipoprotein A-I- and high-density-lipoprotein-mediated cholesterol efflux and elevated PPAR-γ and LXR-α mRNA and protein expression in a dose-dependent fashion in ox-LDL-treated THP-1 macrophages and HMDMs. Small interfering RNA-mediated silencing of PPAR-γ or LXR-α dose dependently reversed alpinetin-increased cholesterol efflux in THP-1 macrophages, indicating the involvement of PPAR-γ and LXR-α in alpinetin-promoted cholesterol efflux. Alpinetin inhibited ox-LDL-induced lipid accumulation and enhanced the expression of ABCA1 and ABCG1 mRNA and protein, which was reversed by specific knockdown of PPAR-γ or LXR-α. Taken together, our results reveal that alpinetin exhibits positive effects on cholesterol efflux and inhibits ox-LDL-induced lipid accumulation, which might be through PPAR-γ/LXR-α/ABCA1/ABCG1 pathway.

  17. Short-term cooling increases serum triglycerides and small high-density lipoprotein levels in humans.

    PubMed

    Hoeke, Geerte; Nahon, Kimberly J; Bakker, Leontine E H; Norkauer, Sabine S C; Dinnes, Donna L M; Kockx, Maaike; Lichtenstein, Laeticia; Drettwan, Diana; Reifel-Miller, Anne; Coskun, Tamer; Pagel, Philipp; Romijn, Fred P H T M; Cobbaert, Christa M; Jazet, Ingrid M; Martinez, Laurent O; Kritharides, Leonard; Berbée, Jimmy F P; Boon, Mariëtte R; Rensen, Patrick C N

    Cold exposure and β3-adrenergic receptor agonism, which both activate brown adipose tissue, markedly influence lipoprotein metabolism by enhancing lipoprotein lipase-mediated catabolism of triglyceride-rich lipoproteins and increasing plasma high-density lipoprotein (HDL) levels and functionality in mice. However, the effect of short-term cooling on human lipid and lipoprotein metabolism remained largely elusive. The objective was to assess the effect of short-term cooling on the serum lipoprotein profile and HDL functionality in men. Body mass index-matched young, lean men were exposed to a personalized cooling protocol for 2 hours. Before and after cooling, serum samples were collected for analysis of lipids and lipoprotein composition by (1)H-nuclear magnetic resonance. Adenosine triphosphate-binding cassette A1 (ABCA1)-mediated cholesterol efflux capacity of HDL was measured using [(3)H]cholesterol-loaded ABCA1-transfected Chinese hamster ovary cells. Short-term cooling increased serum levels of free fatty acids, triglycerides, and cholesterol. Cooling increased the concentration of large very low-density lipoprotein (VLDL) particles accompanied by increased mean size of VLDL particles. In addition, cooling enhanced the concentration of small LDL and small HDL particles as well as the cholesterol levels within these particles. The increase in small HDL was accompanied by increased ABCA1-dependent cholesterol efflux in vitro. Our data show that short-term cooling increases the concentration of large VLDL particles and increases the generation of small LDL and HDL particles. We interpret that cooling increases VLDL production and turnover, which results in formation of surface remnants that form small HDL particles that attract cellular cholesterol. Copyright © 2017 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  18. A-1 to Constellation

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The A-1 Test Stand at NASA Stennis Space Center near Bay St. Louis, Miss., was the focus of a ceremony held Thursday to transition the storied facility to a new program of work: testing the J-2X engines that will power the agency's next generation spacecraft, Ares I & V. Standing before the historic structure, with a plaque commemorating the change, are (from left) SSC Center Director Richard Gilbrech; NASA Associate Administrator for Exploration Systems Scott Horowitz; and NASA Space Operations Deputy Associate Administrator for Program Integration Michael Hawes. Ares vehicles are the crew and cargo launch vehicles being developed under NASA's Constellation Program.

  19. A-1 to Constellation

    NASA Image and Video Library

    2006-11-09

    The A-1 Test Stand at NASA Stennis Space Center near Bay St. Louis, Miss., was the focus of a ceremony held Thursday to transition the storied facility to a new program of work: testing the J-2X engines that will power the agency's next generation spacecraft, Ares I & V. Standing before the historic structure, with a plaque commemorating the change, are (from left) SSC Center Director Richard Gilbrech; NASA Associate Administrator for Exploration Systems Scott Horowitz; and NASA Space Operations Deputy Associate Administrator for Program Integration Michael Hawes. Ares vehicles are the crew and cargo launch vehicles being developed under NASA's Constellation Program.

  20. Alterations in Cholesterol Metabolism Restrict HIV-1 Trans Infection in Nonprogressors

    PubMed Central

    Jais, Mariel; Piazza, Paolo; Reinhart, Todd A.; Berendam, Stella J.; Garcia-Exposito, Laura; Gupta, Phalguni; Rinaldo, Charles R.

    2014-01-01

    ABSTRACT HIV-1-infected nonprogressors (NP) inhibit disease progression for years without antiretroviral therapy. Defining the mechanisms for this resistance to disease progression could be important in determining strategies for controlling HIV-1 infection. Here we show that two types of professional antigen-presenting cells (APC), i.e., dendritic cells (DC) and B lymphocytes, from NP lacked the ability to mediate HIV-1 trans infection of CD4+ T cells. In contrast, APC from HIV-1-infected progressors (PR) and HIV-1-seronegative donors (SN) were highly effective in mediating HIV-1 trans infection. Direct cis infection of T cells with HIV-1 was comparably efficient among NP, PR, and SN. Lack of HIV-1 trans infection in NP was linked to lower cholesterol levels and an increase in the levels of the reverse cholesterol transporter ABCA1 (ATP-binding cassette transporter A1) in APC but not in T cells. Moreover, trans infection mediated by APC from NP could be restored by reconstitution of cholesterol and by inhibiting ABCA1 by mRNA interference. Importantly, this appears to be an inherited trait, as it was evident in APC obtained from NP prior to their primary HIV-1 infection. The present study demonstrates a new mechanism wherein enhanced lipid metabolism in APC results in remarkable control of HIV-1 trans infection that directly relates to lack of HIV-1 disease progression. PMID:24781743

  1. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport

    PubMed Central

    Ikhlef, Souade; Berrougui, Hicham; Kamtchueng Simo, Olivier; Zerif, Echarki

    2017-01-01

    This study was aimed to investigate the effect of human PON1 overexpression in mice on cholesterol efflux and reverse cholesterol transport. PON1 overexpression in PON1-Tg mice induced a significant 3-fold (p<0.0001) increase in plasma paraoxonase activity and a significant ~30% (p<0.0001) increase in the capacity of HDL to mediate cholesterol efflux from J774 macrophages compared to wild-type mice. It also caused a significant 4-fold increase (p<0.0001) in the capacity of macrophages to transfer cholesterol to apoA-1, a significant 2-fold (p<0.0003) increase in ABCA1 mRNA and protein expression, and a significant increase in the expression of PPARγ (p<0.0003 and p<0.04, respectively) and LXRα (p<0.0001 and p<0.01, respectively) mRNA and protein compared to macrophages from wild-type mice. Moreover, transfection of J774 macrophages with human PON1 also increased ABCA1, PPARγ and LXRα protein expression and stimulates macrophages cholesterol efflux to apo A1. In vivo measurements showed that the overexpression of PON1 significantly increases the fecal elimination of macrophage-derived cholesterol in PON1-Tg mice. Overall, our results suggested that the overexpression of PON1 in mice may contribute to the regulation of the cholesterol homeostasis by improving the capacity of HDL to mediate cholesterol efflux and by stimulating reverse cholesterol transport. PMID:28278274

  2. Annexin A1: Shifting the balance towards resolution and repair

    PubMed Central

    Leoni, Giovanna; Nusrat, Asma

    2017-01-01

    Epithelial barriers play an important role in regulating mucosal homeostasis. Upon injury, the epithelium and immune cells orchestrate repair mechanisms that re-establish homeostasis. This process is highly regulated by protein and lipid mediators such as Annexin A1. In this review, we focus on the pro-repair properties of Annexin A1. PMID:27232634

  3. An LXR–NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux

    PubMed Central

    Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A

    2015-01-01

    LXR–cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3–LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux. PMID:25755249

  4. An LXR-NCOA5 gene regulatory complex directs inflammatory crosstalk-dependent repression of macrophage cholesterol efflux.

    PubMed

    Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A

    2015-05-05

    LXR-cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3-LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux.

  5. Hypoxanthine induces cholesterol accumulation and incites atherosclerosis in apolipoprotein E-deficient mice and cells.

    PubMed

    Ryu, Hye-Myung; Kim, You-Jin; Oh, Eun-Joo; Oh, Se-Hyun; Choi, Ji-Young; Cho, Jang-Hee; Kim, Chan-Duck; Park, Sun-Hee; Kim, Yong-Lim

    2016-11-01

    Reactive oxygen species (ROS) generation during purine metabolism is associated with xanthine oxidase and uric acid. However, the direct effect of hypoxanthine on ROS generation and atherosclerosis has not been evaluated. Smoking and heavy drinking are associated with elevated levels of hypoxanthine. In this study, we investigated the role of hypoxanthine on cholesterol synthesis and atherosclerosis development, particularly in apolipoprotein E (APOE)-deficient mice. The effect of hypoxanthine on the regulation of cholesterol synthesis and atherosclerosis were evaluated in Apoe knockout (KO) mice and cultured HepG2 cells. Hypoxanthine markedly increased serum cholesterol levels and the atherosclerotic plaque area in Apoe KO mice. In HepG2 cells, hypoxanthine increased intracellular ROS production. Hypoxanthine increased cholesterol accumulation and decreased APOE and ATP-binding cassette transporter A1 (ABCA1) mRNA and protein expression in HepG2 cells. Furthermore, H2 O2 also increased cholesterol accumulation and decreased APOE and ABCA1 expression. This effect was partially reversible by treatment with the antioxidant N-acetyl cysteine and allopurinol. Hypoxanthine and APOE knockdown using APOE-siRNA synergistically induced cholesterol accumulation and reduced APOE and ABCA1 expression. Hypoxanthine induces cholesterol accumulation in hepatic cells through alterations in enzymes that control lipid transport and induces atherosclerosis in APOE-deficient cells and mice. These effects are partially mediated through ROS produced in response to hypoxanthine. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  6. Human aldehyde dehydrogenase 3A1 (ALDH3A1) exhibits chaperone-like function.

    PubMed

    Voulgaridou, Georgia-Persephoni; Tsochantaridis, Ilias; Mantso, Theodora; Franco, Rodrigo; Panayiotidis, Mihalis I; Pappa, Aglaia

    2017-08-01

    Aldehyde dehydrogenase 3A1 (ALDH3A1) is a metabolic enzyme that catalyzes the oxidation of various aldehydes. Certain types of epithelial tissues in mammals, especially those continually exposed to environmental stress (e.g., corneal epithelium), express ALDH3A1 at high levels and its abundance in such tissues is perceived to help to maintain cellular homeostasis under conditions of oxidative stress. Metabolic as well as non-metabolic roles for ALDH3A1 have been associated with its mediated resistance to cellular oxidative stress. In this study, we provide evidence that ALDH3A1 exhibits molecular chaperone-like activity further supporting its multifunctional role. Specifically, we expressed and purified the human ALDH3A1 in E. coli and used the recombinant protein to investigate its in vitro ability to protect SmaI and citrate synthase (from precipitation and/or deactivation) under thermal stress conditions. Our results indicate that recombinant ALDH3A1 exhibits significant chaperone function in vitro. Furthermore, over-expression of the fused histidine-tagged ALDH3A1 confers host E. coli cells with enhanced resistance to thermal shock, while ALDH3A1 over-expression in the human corneal cell line HCE-2 was sufficient for protecting them from the cytotoxic effects of both hydrogen peroxide and tert-butyl hydroperoxide. These results further support the chaperone-like function of human ALDH3A1. Taken together, ALDH3A1, in addition to its primary metabolic role in fundamental cellular detoxification processes, appears to play an essential role in protecting cellular proteins against aggregation under stress conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Opposing effects of Apoe/Apoa1 double deletion on amyloid-β pathology and cognitive performance in APP mice

    PubMed Central

    Fitz, Nicholas F.; Tapias, Victor; Cronican, Andrea A.; Castranio, Emilie L.; Saleem, Muzamil; Carter, Alexis Y.; Lefterova, Martina

    2015-01-01

    See Corona and Landreth (doi:10.1093/awv300) for a scientific commentary on this article. ATP binding cassette transporter A1 (encoded by ABCA1) regulates cholesterol efflux from cells to apolipoproteins A-I and E (ApoA-I and APOE; encoded by APOA1 and APOE, respectively) and the generation of high density lipoproteins. In Abca1 knockout mice (Abca1ko), high density lipoproteins and ApoA-I are virtually lacking, and total APOE and APOE-containing lipoproteins in brain substantially decreased. As the ε4 allele of APOE is the major genetic risk factor for late-onset Alzheimer’s disease, ABCA