Science.gov

Sample records for a1 adenosine receptor

  1. Differential A1 adenosine receptor reserve for two actions of adenosine on guinea pig atrial myocytes.

    PubMed

    Srinivas, M; Shryock, J C; Dennis, D M; Baker, S P; Belardinelli, L

    1997-10-01

    Adenosine activates adenosine-induced inwardly rectifying K+ current (IKAdo) and inhibits isoproterenol (100 nM)-stimulated L-type Ca2+ current (beta-ICa,L) of guinea pig atrial myocytes with EC50 values of 2.17 and 0.20 microM, respectively. We determined whether this 11-fold difference in potency of adenosine is due to the existence of a greater A1 adenosine receptor reserve for the inhibition of beta-ICa,L than for the activation of IKAdo. Atrial myocytes were pretreated with vehicle (control) or the irreversible A1 adenosine receptor antagonist 8-cyclopentyl-3-[3-[[4-(fluorosulfonyl)benzoyl]oxy]propyl]-1-propylxa nthine (FSCPX) (10 and 50 nM) for 30 min, and after a 60-min washout period, concentration-response curves were determined for the adenosine-induced activation of IKAdo and inhibition of beta-ICa,L. Pretreatment of atrial myocytes with 10 nM FSCPX reduced the maximal activation of IKAdo by 60% (7.9 +/- 0.2 to 3.2 +/- 0.1 pA/pF). In contrast, a higher concentration of FSCPX (50 nM) was required to reduce the maximal inhibition of beta-ICa,L by 39% (95 +/- 4% to 58. 7 +/- 5.6%) and caused a 15-fold increase in the EC50 value of adenosine. Values of the equilibrium dissociation constant (KA) for adenosine to activate IKAdo and inhibit beta-ICa,L, estimated according to the method of Furchgott, were 2.7 and 5.6 microM, respectively. These values were used to determine the relationship between adenosine receptor occupancy and response. Half-maximal and maximal activations of IKAdo required occupancies of 40% and 98% of A1 adenosine receptors, respectively. In contrast, occupancies of only 4% and 70%, respectively, of A1 adenosine receptors were sufficient to cause half-maximal and maximal inhibitions of beta-ICa, L. Consistent with this result, a partial agonist of the A1 adenosine receptor SHA040 inhibited beta-ICa,L by 60 +/- 3.5% but activated IKAdo by only 18.1 +/- 2.5%. The results indicate that the A1 adenosine receptor is coupled more efficiently to

  2. Spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors, are involved in antinociception by systemically administered amitriptyline.

    PubMed

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-01-05

    The present study explored a link between spinal 5-HT(7) and adenosine A(1) receptors in antinociception by systemic amitriptyline in normal and adenosine A(1) receptor knock-out mice using the 2% formalin test. In normal mice, antinociception by systemic amitriptyline 3mg/kg was blocked by intrathecal administration of the selective adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) 10 nmol. Blockade was also seen in adenosine A(1) receptor +/+ mice, but not in -/- mice lacking these receptors. In both normal and adenosine A(1) receptor +/+ mice, the selective 5-HT(7) receptor antagonist (2R)-1-[(3-hydroxyphenyl)sulfonyl]-2-[2-(4-methyl-1-piperidinyl)ethyl]pyrrolidine hydrochloride (SB269970) 3 μg blocked antinociception by systemic amitriptyline, but it did not prevent antinociception in adenosine A(1) receptor -/- mice. In normal mice, flinching was unaltered when the selective 5-HT(7) receptor agonist (2S)-(+)-5-(1,3,5-trimethylpyrazol-4-yl)-2-(dimethylamino)tetralin (AS-19) 20 μg was administered alone, but increased when co-administered intrathecally with DPCPX 10 nmol or SB269970 3 μg. Intrathecal AS-19 decreased flinching in adenosine A(1) receptor +/+ mice compared to -/- mice. Systemic amitriptyline appears to reduce nociception by activating spinal adenosine A(1) receptors secondarily to 5-HT(7) receptors. Spinal actions constitute only one aspect of antinociception by amitriptyline, as intraplantar DPCPX 10 nmol blocked antinociception by systemic amitriptyline in normal and adenosine A(1) receptor +/+, but not -/- mice. Adenosine A(1) receptor interactions are worthy of attention, as chronic oral caffeine (0.1, 0.3g/L, doses considered relevant to human intake levels) blocked antinociception by systemic amitriptyline in normal mice. In conclusion, adenosine A(1) receptors contribute to antinociception by systemic amitriptyline in both spinal and peripheral compartments.

  3. Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    PubMed Central

    Sichardt, Kathrin

    2007-01-01

    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders. PMID:18404442

  4. Adenosine transiently modulates stimulated dopamine release in the caudate putamen via A1 receptors

    PubMed Central

    Ross, Ashley E.; Venton, B. Jill

    2014-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 µM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7 %, similar to the 54 ± 6 % decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 minutes. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. PMID:25219576

  5. Adenosine transiently modulates stimulated dopamine release in the caudate-putamen via A1 receptors.

    PubMed

    Ross, Ashley E; Venton, B Jill

    2015-01-01

    Adenosine modulates dopamine in the brain via A1 and A2A receptors, but that modulation has only been characterized on a slow time scale. Recent studies have characterized a rapid signaling mode of adenosine that suggests a possible rapid modulatory role. Here, fast-scan cyclic voltammetry was used to characterize the extent to which transient adenosine changes modulate stimulated dopamine release (5 pulses at 60 Hz) in rat caudate-putamen brain slices. Exogenous adenosine was applied and dopamine concentration monitored. Adenosine only modulated dopamine when it was applied 2 or 5 s before stimulation. Longer time intervals and bath application of 5 μM adenosine did not decrease dopamine release. Mechanical stimulation of endogenous adenosine 2 s before dopamine stimulation also decreased stimulated dopamine release by 41 ± 7%, similar to the 54 ± 6% decrease in dopamine after exogenous adenosine application. Dopamine inhibition by transient adenosine was recovered within 10 min. The A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine blocked the dopamine modulation, whereas dopamine modulation was unaffected by the A2A receptor antagonist SCH 442416. Thus, transient adenosine changes can transiently modulate phasic dopamine release via A1 receptors. These data demonstrate that adenosine has a rapid, but transient, modulatory role in the brain. Here, transient adenosine was shown to modulate phasic dopamine release on the order of seconds by acting at the A1 receptor. However, sustained increases in adenosine did not regulate phasic dopamine release. This study demonstrates for the first time a transient, neuromodulatory function of rapid adenosine to regulate rapid neurotransmitter release.

  6. Evidence for an A1-adenosine receptor in the guinea-pig atrium.

    PubMed Central

    Collis, M. G.

    1983-01-01

    1 The purpose of this study was to determine whether the adenosine receptor that mediates a decrease in the force of contraction of the guinea-pig atrium is of the A1- or A2-sub-type. 2 Concentration-response curves to adenosine and a number of 5'- and N6-substituted analogues were constructed and the order of potency of the purines was: 5'-N-cyclopropylcarboxamide adenosine (NCPCA) = 5'-N-ethylcarboxamide adenosine (NECA) greater than N6cyclohexyladenosine (CHA) greater than L-N6-phenylisopropyl adenosine (L-PIA) = 2-chloroadenosine- greater than adenosine greater than D-N6-phenylisopropyl adenosine (D-PIA). 3 The difference in potency between the stereoisomers D- and L-PIA was over 100 fold. 4 The adenosine transport inhibitor, dipyridamole, potentiated submaximal responses to adenosine but had no significant effect on those evoked by the other purines. 5 Theophylline antagonized responses evoked by all purines, and with D-PIA revealed a positive inotropic effect that was abolished by atenolol. 6 The results indicate the existence of an adenosine A1-receptor in the guinea-pig atrium. PMID:6297647

  7. Caffeine reverses antinociception by oxcarbazepine by inhibition of adenosine A1 receptors: insights using knockout mice.

    PubMed

    Sawynok, Jana; Reid, Allison R; Fredholm, Bertil B

    2010-04-12

    Oxcarbazepine is an anticonvulsant drug that has been explored as a novel therapeutic agent to treat neuropathic pain in humans. It produces antinociception in several preclinical models of pain, and these actions are blocked by methylxanthine adenosine receptor antagonists which implicates adenosine it its actions. In this study, the antinociceptive effect of oxcarbazepine, and the ability of caffeine to reverse its actions, were examined using the formalin test (2%) in wild-type mice and in mice lacking adenosine A(1) receptors by way of further exploring the involvement of adenosine in its actions. Oxcarbazepine produced dose-related suppression of formalin-evoked flinching responses in wild-type mice following both systemic and intraplantar administration, and this action was reversed by systemic and intraplantar administration of caffeine, respectively. The ability of oxcarbazepine to inhibit flinching after systemic and intraplantar administration was unaltered in homozygous (-/-) and heterozygous (+/-) adenosine A(1) receptor knockout mice. However, caffeine no longer reversed this antinociception. Our results indicate that, while adenosine A(1) receptors are not required for oxcarbazepine to produce antinociception in knockout mice, such receptors are essential in order to see caffeine reversal of this antinociceptive effect. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  8. Adenosine A1 receptors presynaptically modulate excitatory synaptic input onto subiculum neurons

    PubMed Central

    Hargus, Nicholas J.; Bertram, Edward H.; Patel, Manoj K.

    2009-01-01

    Adenosine is an endogenous neuromodulator previously shown to suppress synaptic transmission and membrane excitability in the CNS. In this study we have determined the actions of adenosine on excitatory synaptic transmission in the subiculum, the main output area for the hippocampus. Adenosine (10 μM) reversibly inhibited excitatory post synaptic currents (EPSCs) recorded from subiculum neurons. These actions were mimicked by the A1 receptor specific agonist, N6-cyclopentyl-adenosine (CPA, 10 nM) and blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 500 nM), but were unaffected by the A2A antagonist ZM 241385 (50 nM). In membrane excitability experiments, bath application of adenosine and CPA reversibly inhibited action potentials (AP) in subiculum neurons that were evoked by stimulation of the pyramidal cell layer of the CA1, but not by depolarizing current injection steps in subiculum neurons, suggesting a presynaptic mechanism of action. In support, adenosine and CPA application reduced mEPSC frequency without modulating mEPSC amplitude. These studies suggest that modulation of subiculum neuron excitability by adenosine is mediated via presynaptic A1 receptors. PMID:19450566

  9. Sulfur-Containing 1,3-Dialkylxanthine Derivatives as Selective Antagonists at A1-Adenosine Receptors

    PubMed Central

    Kiriasis, Leonidas; Barone, Suzanne; Bradbury, Barton J.; Kammula, Udai; Campagne, Jean Michel; Secunda, Sherrie; Daly, John W.; Neumeyer, John L.; Pfleiderer, Wolfgang

    2012-01-01

    Sulfur-containing analogues of 8-substituted xanthines were prepared in an effort to increase selectivity or potency as antagonists at adenosine receptors. Either cyclopentyl or various aryl substituents were utilized at the 8-position, because of the association of these groups with high potency at A1-adenosine receptors. Sulfur was incorporated on the purine ring at positions 2 and/or 6, in the 8-position substituent in the form of 2- or 3-thienyl groups, or via thienyl groups separated from an 8-aryl substituent through an amide-containing chain. The feasibility of using the thienyl group as a prosthetic group for selective iodination via its Hg2+ derivative was explored. Receptor selectivity was determined in binding assays using membrane homogenates from rat cortex [[3H]-N6-(phenylisopropyl) adenosine as radioligand] or striatum [[3H]-5′-(N-ethylcarbamoyl)adenosine as radioligand] for A1- and A2-adenosine receptors, respectively. Generally, 2-thio-8-cycloalkylxanthines were at least as A1 selective as the corresponding oxygen analogue. 2-Thio-8-aryl derivatives tended to be more potent at A2 receptors than the oxygen analogue. 8-[4-[(Carboxymethyl)oxy]phenyl]-1,3-dipropyl-2-thioxanthine ethyl ester was >740-fold A1 selective. PMID:2754711

  10. Adenosine A1 and A3 receptors protect astrocytes from hypoxic damage.

    PubMed

    Björklund, Olga; Shang, Mingmei; Tonazzini, Ilaria; Daré, Elisabetta; Fredholm, Bertil B

    2008-10-31

    Brain levels of adenosine are elevated during hypoxia. Through effects on adenosine receptors (A(1), A(2A), A(2B) and A(3)) on astrocytes, adenosine can influence functions such as glutamate uptake, reactive gliosis, swelling, as well as release of neurotrophic and neurotoxic factors having an impact on the outcome of metabolic stress. We have studied the roles of these receptors in astrocytes by evaluating their susceptibility to damage induced by oxygen deprivation or exposure to the hypoxia mimic cobalt chloride (CoCl(2)). Hypoxia caused ATP breakdown and purine release, whereas CoCl(2) (0.8 mM) mainly reduced ATP by causing cell death in human D384 astrocytoma cells. Further experiments were conducted in primary astrocytes prepared from specific adenosine receptor knock-out (KO) and wild type (WT) mice. In WT cells purine release following CoCl(2) exposure was mainly due to nucleotide release, whereas hypoxia-induced intracellular ATP breakdown followed by nucleoside efflux. N-ethylcarboxamidoadenosine (NECA), an unselective adenosine receptor agonist, protected from cell death following hypoxia. Cytotoxicity was more pronounced in A(1)R KO astrocytes and tended to be higher in WT cells in the presence of the A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Genetic deletion of A(2A) receptor resulted in less prominent effects. A(3)R KO glial cells were more affected by hypoxia than WT cells. Accordingly, the A(3) receptor agonist 2-chloro-N(6)-(3-iodobenzyl)-N-methyl-5'-carbamoyladenosine (CL-IB-MECA) reduced ATP depletion caused by hypoxic conditions. It also reduced apoptosis in human astroglioma D384 cells after oxygen deprivation. In conclusion, the data point to a cytoprotective role of adenosine mediated by both A(1) and A(3) receptors in primary mouse astrocytes.

  11. Cloning and expression of an A1 adenosine receptor from rat brain

    SciTech Connect

    Mahan, L.C.; McVittie, L.D.; Smyk-Randall, E.M.; Nakata, H.; Monsma, F.J. Jr.; Gerfen, C.R.; Sibley, D.R. )

    1991-07-01

    The authors have used the polymerase chain reaction technique to selectively amplify guanine nucleotide-binding regulatory protein (G protein)-coupled receptor cDNA sequences from rat striatal mRNA, using sets of highly degenerate primers derived from transmembrane sequences of previously cloned G protein-coupled receptors. A novel cDNA fragment was identified, which exhibits considerable homology to various members of the G protein-coupled receptor family. This fragment was used to isolate a full-length cDNA from a rat striatal library. A 2.2-kilobase clone was obtained that encodes a protein of 326 amino acids with seven transmembrane domains, as predicted by hydropathy analysis. Stably transfected mouse A9-L cells and Chinese hamster ovary cells that expressed mRNA for this clone were screened with putative receptor ligands. Saturable and specific binding sites for the A1 adenosine antagonist (3H)-1,3-dipropyl-8-cyclopentylxanthine were identified on membranes from transfected cells. The rank order of potency and affinities of various adenosine agonist and antagonist ligands confirmed the identity of this cDNA clone as an A1 adenosine receptor. The high affinity binding of A1 adenosine agonists was shown to be sensitive to the nonhydrolyzable GTP analog guanylyl-5{prime}-imidodiphosphate. In adenylyl cyclase assays, adenosine agonists inhibited forskolin-stimulated cAMP production by greater than 50%, in a pharmacologically specific fashion. Northern blot and in situ hybridization analyses of receptor mRNA in brain tissues revealed two transcripts of 5.6 and 3.1 kilobases, both of which were abundant in cortex, cerebellum, hippocampus, and thalamus, with lower levels in olfactory bulb, striatum, mesencephalon, and retina. These regional distribution data are in good agreement with previous receptor autoradiographic studies involving the A1 adenosine receptor.

  12. Presynaptic GABAB and adenosine A1 receptors regulate synaptic transmission to rat substantia nigra reticulata neurones.

    PubMed Central

    Shen, K Z; Johnson, S W

    1997-01-01

    1. Patch pipettes were used to record whole-cell currents under voltage clamp in substantia nigra zona reticulata (SNR) neurones in the rat midbrain slice. Bipolar electrodes evoked synaptic currents mediated by glutamate (EPSCs) and GABAA receptors (IPSCs). 2. Baclofen reduced the amplitude of IPSCs by 48% at its IC50 value of 0.60 microM. The GABAB antagonist CGP 35348 blocked this effect with a Kd value estimated by Schild analysis of 5 microM. 3. Adenosine reduced IPSCs by 48% at its IC50 value of 56 microM. Adenosine agonists reduced IPSCs with the following rank order of potency: CPA (N6-cyclopentyladenosine) > R-PIA (R(-)N6-(2-phenylisopropyl)adenosine) > CHA (N6-cyclohexyladenosine) = NECA (5'-N-ethylcarboxamidoadenosine) > 2-CADO (2-chloroadenosine) > adenosine. Schild analysis yielded a Kd value of 0.4 nM for antagonism of CPA by the adenosine A1 receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine). 4. Both baclofen and adenosine reduced the magnitude of paired-pulse depression of IPSCs, and neither blocked currents evoked by GABA, which was pressure-ejected from micropipettes. 5. Glutamate EPSCs were reduced by baclofen (IC50 = 0.78 microM) and adenosine (IC50 = 57 microM). Schild analysis yielded a Kd value of 11 microM for antagonism of baclofen-induced inhibition of EPSCs by CGP 35348. DPCPX (1 microM) completely blocked the inhibitory effects of adenosine (100 microM) and CPA (100 nM) on EPSCs. Neither adenosine nor baclofen reduced inward currents evoked by glutamate which was pressure-ejected from micropipettes. 6. These results show that presynaptic GABAB and A1 receptors reduce glutamate and GABA release from nerve terminals in the SNR. PMID:9409479

  13. Heterologous expression of the adenosine A1 receptor in transgenic mouse retina.

    PubMed

    Li, Ning; Salom, David; Zhang, Li; Harris, Tim; Ballesteros, Juan A; Golczak, Marcin; Jastrzebska, Beata; Palczewski, Krzysztof; Kurahara, Carole; Juan, Todd; Jordan, Steven; Salon, John A

    2007-07-17

    Traditional cell-based systems used to express integral membrane receptors have yet to produce protein samples of sufficient quality for structural study. Herein we report an in vivo method that harnesses the photoreceptor system of the retina to heterologously express G protein-coupled receptors in a biochemically homogeneous and pharmacologically functional conformation. As an example we show that the adenosine A1 receptor, when placed under the influence of the mouse opsin promoter and rhodopsin rod outer segment targeting sequence, localized to the photoreceptor cells of transgenic retina. The resulting receptor protein was uniformly glycosylated and pharmacologically well behaved. By comparison, we demonstrated in a control experiment that opsin, when expressed in the liver, had a complex pattern of glycosylation. Upon solubilization, the retinal adenosine A1 receptor retained binding characteristics similar to its starting material. This expression method may prove generally useful for generating high-quality G protein-coupled receptors for structural studies.

  14. The A1 adenosine receptor as a new player in microglia physiology.

    PubMed

    Luongo, L; Guida, F; Imperatore, R; Napolitano, F; Gatta, L; Cristino, L; Giordano, C; Siniscalco, D; Di Marzo, V; Bellini, G; Petrelli, R; Cappellacci, L; Usiello, A; de Novellis, V; Rossi, F; Maione, S

    2014-01-01

    The purinergic system is highly involved in the regulation of microglial physiological processes. In addition to the accepted roles for the P2 X4,7 and P2 Y12 receptors activated by adenosine triphosphate (ATP) and adenosine diphosphate, respectively, recent evidence suggests a role for the adenosine A2A receptor in microglial cytoskeletal rearrangements. However, the expression and function of adenosine A1 receptor (A1AR) in microglia is still unclear. Several reports have demonstrated possible expression of A1AR in microglia, but a new study has refuted such evidence. In this study, we investigated the presence and function of A1AR in microglia using biomolecular techniques, live microscopy, live calcium imaging, and in vivo electrophysiological approaches. The aim of this study was to clarify the expression of A1AR in microglia and to highlight its possible roles. We found that microglia express A1AR and that it is highly upregulated upon ATP treatment. Moreover, we observed that selective stimulation of A1AR inhibits the morphological activation of microglia, possibly by suppressing the Ca(2+) influx induced by ATP treatment. Finally, we recorded the spontaneous and evoked activity of spinal nociceptive-specific neuron before and after application of resting or ATP-treated microglia, with or without preincubation with a selective A1AR agonist. We found that the microglial cells, pretreated with the A1AR agonist, exhibit lower capability to facilitate the nociceptive neurons, as compared with the cells treated with ATP alone.

  15. Adenosine Receptor Prodrugs: Synthesis and Biological Activity of Derivatives of Potent, A1-Selective Agonists

    PubMed Central

    Maillrad, Michel C.; Nikodijević, Olga; LaNoue, Kathryn F.; Berkich, Deborah; Xiao-duo, JI; Bartus, Raymond

    2012-01-01

    5′-Ester derivatives of the potent adenosine agonists N6-[4-[[[[4-[[[(2-acetylaminoethyl)amino] carbonyl] methyl] anilino] carbonyl] methyl] phenyl] adenosine (N-AcADAC; 1) and N6-cyclopentyladenosine (CPA; 2) were prepared as prodrugs. Both alkyl esters or carbonates (designed to enter the brain by virtue of increased lipophilicity) and 1,4-dihydro-1-methyl-3- [(pyridinylcarbonyl)oxy] esters designed to concentrate in the brain by virtue of a redox delivery system were synthesized. In the 5′-blocked form, the adenosine agonists displayed highly diminished affinity for rat brain A1-adenosine receptors in binding assays. The dihydropyridine prodrug 29 was active in an assay of locomotor depression in mice, in which adenosine agonists are highly depressant. The behavior depression was not reversible by peripheral administration of a non-central nervous system active adenosine antagonist. In an assay of the peripheral action of adenosine (i.e., the inhibition of lipolysis in rats), the parent compounds were highly potent and the dihydropyridine prodrug was much less potent. PMID:8138909

  16. Circadian rhythm in adenosine A1 receptor of mouse cerebral cortex

    SciTech Connect

    Florio, C.; Rosati, A.M.; Traversa, U.; Vertua, R. )

    1991-01-01

    In order to investigate diurnal variation in adenosine A1 receptors binding parameters, Bmax and Kd values of specifically bound N6-cyclohexyl-({sup 3}H)adenosine were determined in the cerebral cortex of mice that had been housed under controlled light-dark cycles for 4 weeks. Significant differences were found for Bmax values measured at 3-hr intervals across a 24-h period, with low Bmax values during the light period and high Bmax values during the dark period. The amplitude between 03.00 and 18.00 hr was 33%. No substantial rhythm was found in the Kd values. It is suggested that the changes in the density of A1 receptors could reflect a physiologically-relevant mechanism by which adenosine exerts its modulatory role in the central nervous system.

  17. Dual Effect of Adenosine A1 Receptor Activation on Renal O2 Consumption.

    PubMed

    Babich, Victor; Vadnagara, Komal; Di Sole, Francesca

    2015-12-01

    The high requirement of O2 in the renal proximal tubule stems from a high rate of Na(+) transport. Adenosine A1 receptor (A1R) activation regulates Na(+) transport in this nephron segment. Thus, the effect of the acute activation and the mechanisms of A1R on the rate of O2 consumption were evaluated. The A1R-antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPX) and adenosine deaminase (ADA), which metabolize endogenous adenosine, reduced O2 consumption (40-50%). Replacing Na(+) in the buffer reversed the ADA- or CPX-mediated reduction of O2 consumption. Blocking the Na/H-exchanger activity, which decreases O2 usage per se, did not enhance the ADA- or CPX-induced inhibition of O2 consumption. These data indicate that endogenous adenosine increases O2 usage via the activation of Na(+) transport. In the presence of endogenous adenosine, A1R was further activated by the A1R-agonist N(6)-cyclopentyladenosine (CPA); CPA inhibited O2 usage (30%) and this effect also depended on Na(+) transport. Moreover, a low concentration of CPA activated O2 usage in tissue pretreated with ADA, whereas a high concentration of CPA inhibited O2 usage; both effects depended on Na(+). Protein kinase C signaling mediated the inhibitory effect of A1R, while adenylyl cyclase mediated its stimulatory effect on O2 consumption. In summary, increasing the local concentrations of adenosine can either activate or inhibit O2 consumption via A1R, and this mechanism depends on Na(+) transport. The inhibition of O2 usage by A1R activation might restore the compromised balance between energy supply and demand under pathophysiological conditions, such as renal ischemia, which results in high adenosine production. © 2015 Wiley Periodicals, Inc.

  18. Involvement of A(1) adenosine receptors in osmotic volume regulation of retinal glial cells in mice.

    PubMed

    Wurm, Antje; Lipp, Stephan; Pannicke, Thomas; Linnertz, Regina; Färber, Katrin; Wiedemann, Peter; Reichenbach, Andreas; Bringmann, Andreas

    2009-09-12

    Osmotic swelling of Müller glial cells has been suggested to contribute to retinal edema. We determined the role of adenosine signaling in the inhibition of Müller cell swelling in the murine retina. The size of Müller cell somata was recorded before and during perfusion of retinal sections and isolated Müller cells with a hypoosmolar solution. Retinal tissues were freshly isolated from wild-type mice and mice deficient in A(1) adenosine receptors (A(1)AR(-/-)), or cultured as whole-mounts for three days. The potassium conductance of Müller cells was recorded in isolated cells, and retinal slices were immunostained against Kir4.1. Hypotonic exposure for 4 min induced a swelling of Müller cell bodies in retinal slices from A(1)AR(-/-) mice but not wild-type mice. Pharmacological inhibition of A(1) receptors or of the ecto-5'-nucleotidase induced hypoosmotic swelling of Müller cells from wild-type mice. Exogenous adenosine prevented the swelling of Müller cells from wild-type but not A(1)AR(-/-) mice. The antiinflammatory corticosteroid, triamcinolone acetonide, inhibited the swelling of Müller cells from wild-type mice; this effect was blocked by an antagonist of A(1) receptors. The potassium conductance of Müller cells and the Kir4.1 immunolabeling of retinal slices were not different between A(1)AR(-/-) and wild-type mice, both in freshly isolated tissues and retinal organ cultures. The data suggest that autocrine activation of A(1) receptors by extracellularly generated adenosine mediates the volume homeostasis of Müller cells in the murine retina. The swelling-inhibitory effect of triamcinolone is mediated by enhancement of endogenous adenosine signaling.

  19. Involvement of A1 adenosine receptors in osmotic volume regulation of retinal glial cells in mice

    PubMed Central

    Wurm, Antje; Lipp, Stephan; Pannicke, Thomas; Linnertz, Regina; Färber, Katrin; Wiedemann, Peter; Reichenbach, Andreas

    2009-01-01

    Purpose Osmotic swelling of Müller glial cells has been suggested to contribute to retinal edema. We determined the role of adenosine signaling in the inhibition of Müller cell swelling in the murine retina. Methods The size of Müller cell somata was recorded before and during perfusion of retinal sections and isolated Müller cells with a hypoosmolar solution. Retinal tissues were freshly isolated from wild-type mice and mice deficient in A1 adenosine receptors (A1AR−/−), or cultured as whole-mounts for three days. The potassium conductance of Müller cells was recorded in isolated cells, and retinal slices were immunostained against Kir4.1. Results Hypotonic exposure for 4 min induced a swelling of Müller cell bodies in retinal slices from A1AR−/− mice but not wild-type mice. Pharmacological inhibition of A1 receptors or of the ecto-5′-nucleotidase induced hypoosmotic swelling of Müller cells from wild-type mice. Exogenous adenosine prevented the swelling of Müller cells from wild-type but not A1AR−/− mice. The antiinflammatory corticosteroid, triamcinolone acetonide, inhibited the swelling of Müller cells from wild-type mice; this effect was blocked by an antagonist of A1 receptors. The potassium conductance of Müller cells and the Kir4.1 immunolabeling of retinal slices were not different between A1AR−/− and wild-type mice, both in freshly isolated tissues and retinal organ cultures. Conclusions The data suggest that autocrine activation of A1 receptors by extracellularly generated adenosine mediates the volume homeostasis of Müller cells in the murine retina. The swelling-inhibitory effect of triamcinolone is mediated by enhancement of endogenous adenosine signaling. PMID:19756184

  20. KW-3902, a selective high affinity antagonist for adenosine A1 receptors.

    PubMed Central

    Nonaka, H.; Ichimura, M.; Takeda, M.; Kanda, T.; Shimada, J.; Suzuki, F.; Kase, H.

    1996-01-01

    1. We demonstrate that 8-(noradamantan-3-yl)-1,3-dipropylxanthine (KW-3902) is a very potent and selective adenosine A1 receptor antagonist, assessed by radioligand binding and cyclic AMP response in cells. 2. In rat forebrain adenosine A1 receptors labelled with [3H]-cyclohexyladenosine (CHA), KW-3902 had a Ki value of 0.19 nM, whereas it showed a Ki value of 170 nM in rat striatal A2A receptors labelled with [3H]-2-[p-(2-carboxyethyl)-phenethylamino]-5'-N-ethylcarboxamidoad enosine (CGS21680), indicating 890 fold A1 receptor selectivity versus the A2A receptor. KW-3902 at 10 microM showed no effect on recombinant rat A3 receptors expressed on CHO cells. 3. Saturation studies with [3H]-KW-3902 revealed that it bound with high affinity (Kd = 77 pM) and limited capacity (Bmax = 470 fmol mg-1 of protein) to a single class of recognition sites. A high positive correlation was observed between the pharmacological profile of adenosine ligands inhibiting the binding of [3H]-KW-3902 and that of [3H]-CHA. 4. KW-3902 showed potent A1 antagonism against the inhibition of forskolin-induced cyclic AMP accumulation in DDT1 MF-2 cells by the A1-selective agonist, cyclopentyladenosine with a dissociation constant (KB value) of 0.34 nM. KW-3902 antagonized 5'-N-ethylcarboxamidoadenosine-elicited cyclic AMP accumulation via A2B receptors with a KB value of 52 nM. 5. KW-3902 exhibited marked species-dependent differences in the binding affinities. The highest affinity was for the rat A1 receptor (ki = 0.19 nM) and these values for guinea-pig and dog A1 receptors were 1.3 and 10 nM, respectively. PMID:8732272

  1. New QSAR combined strategy for the design of A1 adenosine receptor agonists.

    PubMed

    González, Maykel Pérez; Besada, Pedro; González Moa, Maria José; Teijeira, Marta; Terán, Carmen

    2008-02-15

    Combined discriminant and regression analysis was carried out on a series of 167 A1 adenosine receptor agonists to identify the best linear and nonlinear models for the design of new compounds with a better biological profile. On the basis of the best linear discriminant analysis and both linear and nonlinear Multi Layer Perceptron neural networks regression, we have designed and synthesized 14 carbonucleoside analogues of adenosine. Their biological activities were predicted and experimentally measured to demonstrate the capability of our model to avoid the prediction of false positives. A good agreement was found between the calculated and observed biological activity.

  2. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor.

    PubMed Central

    MacGregor, D. G.; Miller, W. J.; Stone, T. W.

    1993-01-01

    1. Systemic injections of kainic acid, 10 mg kg-1, into adult rats resulted in lesions in the hippocampus, as assessed by peripheral benzodiazepine ligand binding. Co-administration of clonazepam at 1 mg kg-1 or 0.2 mg kg-1 prevented major seizures associated with kainate injections, but did not alter significantly the production of hippocampal damage. 2. The co-administration of the adenosine A1 agonist R-phenylisopropyladenosine (R-PIA, 25 micrograms kg-1, i.p.) abolished the lesions induced by kainic acid. 3. The presence of the selective A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (250 or 50 micrograms kg-1, i.p.) abolished the R-PIA neuroprotective action. 4. The A1/A2 antagonist, 8-(p-sulphophenyl)theophylline (20 mg kg-1, i.p.) which cannot cross the blood brain barrier, did not alter significantly the neuroprotective action of R-PIA, indicating that the neuroprotective action of the purine may be predominantly central. 5. The time course of the neuroprotection was also examined. R-PIA was effective when administered 2 h before or after kainate administration. 6. The results emphasise the potential utility of systemically active adenosine A1 receptor ligands in reducing CNS gliosis induced by the activation of excitatory amino acid receptors. PMID:8220909

  3. Adenosine A1 receptors mediate inhibition of tachykinin release from perifused enteric nerve endings.

    PubMed

    Broad, R M; McDonald, T J; Brodin, E; Cook, M A

    1992-03-01

    A perifused preparation of guinea pig myenteric nerve varicosities (synaptosomes) was used to determine the characteristics of evoked tachykinin release and the inhibition of such release by adenosine analogues. Release of substance P-like immunoreactivity (SP-LI) and neurokinin A-like immunoreactivity (NKA-LI) was evoked by elevated extracellular [K+] in a reversible and repeatable manner. This release was completely abolished in the absence of extracellular Ca2+. Perifusion in the presence of 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective A1/A2 adenosine receptor agonist, decreased K(+)-evoked release of SP-LI and NKA-LI compared with that in the absence of the nucleoside. Similar decrements in peptide release were obtained with N6-cyclopentyl adenosine (CPA), a selective A1 agonist, and 2-[p-(2-carboxyethyl)]phenethylamino-5'-N-ethyl-carboxamidoadenosi ne (CGS 21680), a selective A2 agonist. Response to all nucleosides was graded. Potency order of adenosine analogues was CPA greater than NECA much greater than CGS 21680. Inhibition due to the nucleosides was diminished in the presence of the highly selective A1-receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) while perifusion in the presence of DPCPX alone did not alter evoked release of either peptide. These findings provide direct measurements of inhibitory effects of adenine nucleosides on the release, from enteric nerve endings, of endogenous neuromediators SP and NKA. The findings also directly demonstrate the presence of functional adenosine receptors of the A1 subtype on enteric nerve endings coupled negatively to release of tachykinins. The presence of A2 receptors on enteric nerve endings is neither supported nor excluded.

  4. Adenosine receptor neurobiology: overview.

    PubMed

    Chen, Jiang-Fan; Lee, Chien-fei; Chern, Yijuang

    2014-01-01

    Adenosine is a naturally occurring nucleoside that is distributed ubiquitously throughout the body as a metabolic intermediary. In the brain, adenosine functions as an important upstream neuromodulator of a broad spectrum of neurotransmitters, receptors, and signaling pathways. By acting through four G-protein-coupled receptors, adenosine contributes critically to homeostasis and neuromodulatory control of a variety of normal and abnormal brain functions, ranging from synaptic plasticity, to cognition, to sleep, to motor activity to neuroinflammation, and cell death. This review begun with an overview of the gene and genome structure and the expression pattern of adenosine receptors (ARs). We feature several new developments over the past decade in our understanding of AR functions in the brain, with special focus on the identification and characterization of canonical and noncanonical signaling pathways of ARs. We provide an update on functional insights from complementary genetic-knockout and pharmacological studies on the AR control of various brain functions. We also highlight several novel and recent developments of AR neurobiology, including (i) recent breakthrough in high resolution of three-dimension structure of adenosine A2A receptors (A2ARs) in several functional status, (ii) receptor-receptor heterodimerization, (iii) AR function in glial cells, and (iv) the druggability of AR. We concluded the review with the contention that these new developments extend and strengthen the support for A1 and A2ARs in brain as therapeutic targets for neurologic and psychiatric diseases. © 2014 Elsevier Inc. All rights reserved.

  5. Differences in adenosine A-1 and A-2 receptor density revealed by autoradiography in methylxanthine-sensitive and insensitive mice

    SciTech Connect

    Jarvis, M.F.; Williams, M.

    1988-07-01

    Two strains of inbred mice, CBA/J and SWR/J, have been identified which are, respectively, sensitive and insensitive to the behavioral and toxic effects of methylxanthines. Autoradiographic analyses of brain adenosine receptors were conducted with (/sup 3/H)CHA to label adenosine A-1 receptors and (/sup 3/H)NECA, in the presence of 50 nM CPA, to label adenosine A-2 receptors. For both mouse strains, adenosine A-1 receptors were most highly concentrated in the hippocampus and cerebellum whereas adenosine A-2 receptors were selectively localized in the striatum. CBA/J mice displayed a 30% greater density of adenosine A-1 receptors in the hippocampal CA-1 and CA-3 regions and in the cerebellum as compared to the SWR/J mice. The number of A-2 receptors (Bmax) was 40% greater in the striatum and olfactory tubercle of CBA/J as compared to SWR/J mice. No significant regional differences in A-1 or A-2 receptor affinities were observed between these inbred strains of mice. These results indicate that the differential sensitivity to methylxanthines between these mouse strains may reflect a genetically mediated difference in regional adenosine receptor densities.

  6. Genetically controlled upregulation of adenosine A(1) receptor expression enhances the survival of primary cortical neurons.

    PubMed

    Serchov, Tsvetan; Atas, Hasan-Cem; Normann, Claus; van Calker, Dietrich; Biber, Knut

    2012-10-01

    Adenosine has a key endogenous neuroprotective role in the brain, predominantly mediated by the adenosine A(1) receptor (A(1)R). This has been mainly explored using pharmacological tools and/or receptor knockout mice strains. It has long been suggested that the neuroprotective effects of A(1)R are increased following receptor upregulation, thus attenuating neuronal damage in pathological conditions. We have previously shown that the neuroprotective and neuromodulatory actions of the cytokines IL-6 and oncostatin M are mediated by induction of neuronal A(1)R expression. In order to investigate the direct effects of A(1)R upregulation in neurons, we have generated a tetracycline-regulated expression system with a bidirectional promoter, directing the simultaneous expression of the mouse A(1)R and GFP/mCherry reporter genes. In a first step, we tested the efficacy of the system in transiently transfected human embryonic kidney 293 cells. In addition, we confirmed the functional integrity of the expressed A(1)R by whole-cell patch clamp recordings. We demonstrated that A(1)R-transfected primary neurons show enhanced survival against N-methyl-D-aspartate-induced excitotoxicity. Pretreatment with an A(1)R-selective agonist additionally strongly decreased neuronal cell death, while an A(1)R antagonist completely abolished the neuroprotective effects of A(1)R upregulation. The presented data provide for the first time direct evidence that the upregulation of A(1)R enhances neuronal survival.

  7. Adenosine A1 Receptor Suppresses Tonic GABAA Receptor Currents in Hippocampal Pyramidal Cells and in a Defined Subpopulation of Interneurons.

    PubMed

    Rombo, Diogo M; Dias, Raquel B; Duarte, Sofia T; Ribeiro, Joaquim A; Lamsa, Karri P; Sebastião, Ana M

    2016-03-01

    Adenosine is an endogenous neuromodulator that decreases excitability of hippocampal circuits activating membrane-bound metabotropic A1 receptor (A1R). The presynaptic inhibitory action of adenosine A1R in glutamatergic synapses is well documented, but its influence on inhibitory GABAergic transmission is poorly known. We report that GABAA receptor (GABAAR)-mediated tonic, but not phasic, transmission is suppressed by A1R in hippocampal neurons. Adenosine A1R activation strongly inhibits GABAAR agonist (muscimol)-evoked currents in Cornu Ammonis 1 (CA1) pyramidal neurons and in a specific subpopulation of interneurons expressing axonal cannabinoid receptor type 1. In addition, A1R suppresses tonic GABAAR currents measured in the presence of elevated ambient GABA as well as in naïve slices. The inhibition of GABAergic currents involves both protein kinase A (PKA) and protein kinase C (PKC) signaling pathways and decreases GABAAR δ-subunit expression. On the contrary, no A1R-mediated modulation was detected in phasic inhibitory postsynaptic currents evoked either by afferent electrical stimulation or by spontaneous quantal release. The results show that A1R modulates extrasynaptic rather than synaptic GABAAR-mediated signaling, and that this modulation selectively occurs in hippocampal pyramidal neurons and in a specific subpopulation of inhibitory interneurons. We conclude that modulation of tonic GABAAR signaling by adenosine A1R in specific neuron types may regulate neuronal gain and excitability in the hippocampus.

  8. Caffeine Acts via A1 Adenosine Receptors to Disrupt Embryonic Cardiac Function

    PubMed Central

    Buscariollo, Daniela L.; Breuer, Gregory A.; Wendler, Christopher C.; Rivkees, Scott A.

    2011-01-01

    Background Evidence suggests that adenosine acts via cardiac A1 adenosine receptors (A1ARs) to protect embryos against hypoxia. During embryogenesis, A1ARs are the dominant regulator of heart rate, and A1AR activation reduces heart rate. Adenosine action is inhibited by caffeine, which is widely consumed during pregnancy. In this study, we tested the hypothesis that caffeine influences developing embryos by altering cardiac function. Methodology/Principal Findings Effects of caffeine and adenosine receptor-selective antagonists on heart rate were studied in vitro using whole murine embryos at E9.5 and isolated hearts at E12.5. Embryos were examined in room air (21% O2) or hypoxic (2% O2) conditions. Hypoxia decreased heart rates of E9.5 embryos by 15.8% and in E12.5 isolated hearts by 27.1%. In room air, caffeine (200 µM) had no effect on E9.5 heart rates; however, caffeine increased heart rates at E12.5 by 37.7%. Caffeine abolished hypoxia-mediated bradycardia at E9.5 and blunted hypoxia-mediated bradycardia at E12.5. Real-time PCR analysis of RNA from isolated E9.5 and E12.5 hearts showed that A1AR and A2aAR genes were expressed at both ages. Treatment with adenosine receptor-selective antagonists revealed that SCH-58261 (A2aAR-specific antagonist) had no affects on heart function, whereas DPCPX (A1AR-specific antagonist) had effects similar to caffeine treatment at E9.5 and E12.5. At E12.5, embryonic hearts lacking A1AR expression (A1AR−/−) had elevated heart rates compared to A1AR+/− littermates, A1AR−/− heart rates failed to decrease to levels comparable to those of controls. Caffeine did not significantly affect heart rates of A1AR−/− embryos. Conclusions/Significance These data show that caffeine alters embryonic cardiac function and disrupts the normal cardiac response to hypoxia through blockade of A1AR action. Our results raise concern for caffeine exposure during embryogenesis, particularly in pregnancies with increased risk of embryonic

  9. Excessive penile norepinephrine level underlies impaired erectile function in adenosine A1 receptor deficient mice.

    PubMed

    Ning, Chen; Qi, Lin; Wen, Jiaming; Zhang, Yujin; Zhang, Weiru; Wang, Wei; Blackburn, Michael; Kellems, Rodney; Xia, Yang

    2012-10-01

    Penile erection is a complex neurovascular physiological event controlled by multiple factors and signaling pathways. A considerable amount of evidence indicates that adenosine plays a significant role in cavernosal smooth muscle relaxation. However, the specific role of adenosine and its receptors in erectile physiology and pathology is not fully understood. To determine the role of the adenosine A1 receptor (ADORA1) in penile erection. Adenosine A1 receptor deficient (Adora1-/-) mice and aged-matched wild-type (WT) mice were utilized. We evaluated the in vivo erectile function by measuring the intracavernosal pressure (ICP) in response to cavernous nerve stimulation (CNS). Enzyme-linked immunosorbent assay was used to measure the norepinephrine (NE) plasma concentration in the corpus cavernosum and systemic circulation. We also evaluated the myosin light chain phosphorylation (p-MLC) in penile tissue pre- and post-CNS. The main outcome measurement of this research was the evaluation of in vivo erectile response to CNS by measuring the ICP in Adora1-/- mice and WT mice and to identify the localization and specific neuron types of ADORA1 expression by dual immunostaining and immunofluorescence co-localization. In vivo, both the ratio of CNS-induced Maximum ICP to mean arterial pressure and CNS-induced slope in Adora1-/- mice were significantly lower than WT mice. At the cellular level in penile tissue, we determined that ADORA1 was highly abundant in neuronal cells. During penile erection, Adora1-/- mice exhibited a higher level of NE plasma concentration in the penis than WT mice. And WT mice had a significantly greater reduction in p-MLC compared to Adora1-/- mice. Our results show that ADORA1 is enriched on neuron cells where it functions to control NE release. Activation of this receptor during penile erection results in reduced NE release and reduced cavernosal smooth muscle contraction, therefore facilitating penile erection. © 2012 International Society for

  10. Antinociception by systemically-administered acetaminophen (paracetamol) involves spinal serotonin 5-HT7 and adenosine A1 receptors, as well as peripheral adenosine A1 receptors.

    PubMed

    Liu, Jean; Reid, Allison R; Sawynok, Jana

    2013-03-01

    Acetaminophen (paracetamol) is a widely used analgesic, but its sites and mechanisms of action remain incompletely understood. Recent studies have separately implicated spinal adenosine A(1) receptors (A(1)Rs) and serotonin 5-HT(7) receptors (5-HT(7)Rs) in the antinociceptive effects of systemically administered acetaminophen. In the present study, we determined whether these two actions are linked by delivering a selective 5-HT(7)R antagonist to the spinal cord of mice and examining nociception using the formalin 2% model. In normal and A(1)R wild type mice, antinociception by systemic (i.p.) acetaminophen 300mg/kg was reduced by intrathecal (i.t.) delivery of the selective 5-HT(7)R antagonist SB269970 3μg. In mice lacking A(1)Rs, i.t. SB269970 did not reverse antinociception by systemic acetaminophen, indicating a link between spinal 5-HT(7)R and A(1)R mechanisms. We also explored potential roles of peripheral A(1)Rs in antinociception by acetaminophen administered both locally and systemically. In normal mice, intraplantar (i.pl.) acetaminophen 200μg produced antinociception in the formalin test, and this was blocked by co-administration of the selective A(1)R antagonist DPCPX 4.5μg. Acetaminophen administered into the contralateral hindpaw had no effect, indicating a local peripheral action. When acetaminophen was administered systemically, its antinociceptive effect was reversed by i.pl. DPCPX in normal mice; this was also observed in A(1)R wild type mice, but not in those lacking A(1)Rs. In summary, we demonstrate a link between spinal 5-HT(7)Rs and A(1)Rs in the spinal cord relevant to antinociception by systemic acetaminophen. Furthermore, we implicate peripheral A(1)Rs in the antinociceptive effects of locally- and systemically-administered acetaminophen.

  11. Activation of neuronal adenosine A1 receptors suppresses secretory reflexes in the guinea pig colon.

    PubMed

    Cooke, H J; Wang, Y; Liu, C Y; Zhang, H; Christofi, F L

    1999-02-01

    The role of adenosine A1 receptors (A1R) in reflex-evoked short-circuit current (Isc) indicative of chloride secretion was studied in the guinea pig colon. The A1R antagonist 8-cyclopentyltheophylline (CPT) enhanced reflex-evoked Isc. Adenosine deaminase and the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine enhanced and reduced reflex-induced Isc, respectively. The A1R agonist 2-chloro-N6-cyclopentyladenosine (CCPA) inhibited reflex-evoked Isc at nanomolar concentrations, and its action was antagonized by CPT. In the presence of either N-acetyl-5-hydroxytryptophyl-5-hydroxytryptophan amide to block the 5-hydroxytryptamine (5-HT)-mediated pathway or piroxicam to block the prostaglandin-mediated pathway, CCPA reduced the residual reflex-evoked Isc. CCPA reduced the response to a 5-HT pulse without affecting the tetrodotoxin-insensitive Isc responses to carbachol or forskolin. Immunoreactivity for A1R was detected in the membrane (10% of neurons) and cytoplasm (90% of neurons) of neural protein gene product 9.5-immunoreactive (or S-100-negative) submucosal neurons, in glia, and in the muscularis mucosa. A1R immunoreactivity in a majority of neurons remained elevated in the cytoplasm despite preincubation with adenosine deaminase or CPT. A1R immunoreactivity colocalized in synaptophysin-immunoreactive presynaptic varicose nerve terminals. The results indicate that endogenous adenosine binding to high-affinity A1R on submucosal neurons acts as a physiological brake to suppress reflex-evoked Isc indicative of chloride secretion.

  12. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  13. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  14. Adenosine A1, but not A2, receptor blockade increases anxiety and arousal in Zebrafish.

    PubMed

    Maximino, Caio; Lima, Monica G; Olivera, Karen R M; Picanço-Diniz, Domingos L W; Herculano, Anderson M

    2011-09-01

    Adenosinergic systems have been implicated in anxiety-like states, as caffeine can induce a state of anxiety in human beings. Caffeine is an antagonist at A(1) and A(2) adenosine receptors but it remains unclear whether anxiety is mediated by one or both of these. As the adenosinergic system is rather conserved, we opted to pursue these questions using zebrafish, a widely used model organism in genetics and developmental biology. Zebrafish adenosine 1. 2A.1 and 2A.2 receptors conserve histidine residues in TM6 and TM7 that are responsible for affinity in bovine A1 receptor. We investigated the effects of caffeine, PACPX (an A(1) receptor antagonist) and 1,3-dimethyl-1-propargylxanthine (DMPX) (an A(2) receptor antagonist) on anxiety-like behaviour and locomotor activity of zebrafish in the scototaxis test as well as evaluated the effects of these drugs on pigment aggregation. Caffeine increased anxiety at the dose of 100 mg/kg, while locomotion at the dose of 10 mg/kg was increased. Both doses of 10 and 100 mg/kg induced pigment aggregation. PACPX, on the other hand, increased anxiety at a dose of 6 mg/kg and induced pigment aggregation at the doses of 0.6 and 6 mg/kg, but did not produce a locomotor effect. DMPX, in turn, increased locomotion at the dose of 6 mg/kg but did not produce any effect on pigment aggregation or anxiety-like behaviour. These results indicate that blockade of A(1)-R, but not A(2)-R, induces anxiety and autonomic arousal, while the blockade of A(2)-R induces hyperlocomotion. Thus, as in rodents, caffeine's anxiogenic and arousing effects are probably mediated by A(1) receptors in zebrafish and its locomotor activating effect is probably mediated by A(2) receptors. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  15. Impairment of ATP hydrolysis decreases adenosine A1 receptor tonus favoring cholinergic nerve hyperactivity in the obstructed human urinary bladder.

    PubMed

    Silva-Ramos, M; Silva, I; Faria, M; Magalhães-Cardoso, M T; Correia, J; Ferreirinha, F; Correia-de-Sá, P

    2015-12-01

    This study was designed to investigate whether reduced adenosine formation linked to deficits in extracellular ATP hydrolysis by NTPDases contributes to detrusor neuromodulatory changes associated with bladder outlet obstruction in men with benign prostatic hyperplasia (BPH). The kinetics of ATP catabolism and adenosine formation as well as the role of P1 receptor agonists on muscle tension and nerve-evoked [(3)H]ACh release were evaluated in mucosal-denuded detrusor strips from BPH patients (n = 31) and control organ donors (n = 23). The neurogenic release of ATP and [(3)H]ACh was higher (P < 0.05) in detrusor strips from BPH patients. The extracellular hydrolysis of ATP and, subsequent, adenosine formation was slower (t (1/2) 73 vs. 36 min, P < 0.05) in BPH detrusor strips. The A(1) receptor-mediated inhibition of evoked [(3)H]ACh release by adenosine (100 μM), NECA (1 μM), and R-PIA (0.3 μM) was enhanced in BPH bladders. Relaxation of detrusor contractions induced by acetylcholine required 30-fold higher concentrations of adenosine. Despite VAChT-positive cholinergic nerves exhibiting higher A(1) immunoreactivity in BPH bladders, the endogenous adenosine tonus revealed by adenosine deaminase is missing. Restoration of A1 inhibition was achieved by favoring (1) ATP hydrolysis with apyrase (2 U mL(-1)) or (2) extracellular adenosine accumulation with dipyridamole or EHNA, as these drugs inhibit adenosine uptake and deamination, respectively. In conclusion, reduced ATP hydrolysis leads to deficient adenosine formation and A(1) receptor-mediated inhibition of cholinergic nerve activity in the obstructed human bladder. Thus, we propose that pharmacological manipulation of endogenous adenosine levels and/or A(1) receptor activation might be useful to control bladder overactivity in BPH patients.

  16. /sup 125/I-labeled 8-phenylxanthine derivatives: antagonist radioligands for adenosine A1 receptors

    SciTech Connect

    Linden, J.; Patel, A.; Earl, C.Q.; Craig, R.H.; Daluge, S.M.

    1988-04-01

    A series of 8-phenylxanthine derivatives has been synthesized with oxyacetic acid on the para phenyl position to increase aqueous solubility and minimize nonspecific binding and iodinatable groups on the 1- or 3-position of the xanthine ring. The structure-activity relationship for binding of these compounds to A1 adenosine receptors of bovine and rat brain and A2 receptors of human platelets was examined. The addition of arylamine or photosensitive aryl azide groups to the 3-position of xanthine had little effect on A1 binding affinity with or without iodination, whereas substitutions at the 1-position caused greatly reduced A1 binding affinity. The addition of an aminobenzyl group to the 3-position of the xanthine had little effect on A2 binding affinity, but 3-aminophenethyl substitution decreased A2 binding affinity. Two acidic 3-(arylamino)-8-phenylxanthine derivatives were labeled with /sup 125/I and evaluated as A1 receptor radioligands. The new radioligands bound to A1 receptors with KD values of 1-1.25 nM. Specific binding represented over 80% of total binding. High concentrations of NaCl or other salts increased the binding affinity of acidic but not neutral antagonists, suggesting that interactions between ionized xanthines and receptors may be affected significantly by changes in ionic strength. On the basis of binding studies with these antagonists and isotope dilution with the agonist (/sup 125/I)N6-(4-amino-3-iodobenzyl)adenosine, multiple agonist affinity states of A1 receptors have been identified.

  17. Valerian extract Ze 911 inhibits postsynaptic potentials by activation of adenosine A1 receptors in rat cortical neurons.

    PubMed

    Vissiennon, Z; Sichardt, K; Koetter, U; Brattström, A; Nieber, K

    2006-06-01

    In this study we evaluated the adenosine A1 receptor-mediated effect of valerian extract (Ze 911) on postsynaptic potentials (PSPs) in pyramidal cells of the rat cingulate cortex in a slice preparation. We first observed that N6-cyclopentyladenosine (CPA, 0.01 - 10 microM), an adenosine A1 receptor agonist, inhibited PSPs in a concentration-dependent manner. The CPA (10 microM)-induced inhibition was antagonized by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 0.1 microM), an adenosine A1 receptor antagonist. Ze 911 concentration dependently (0.1 - 15 mg/mL) inhibited PSPs in the presence of the adenosine A2A receptor antagonist 1,3,7-trimethyl-8-(3-chlorostyryl)xanthine (CSC, 0.2 microM) and adenosine deaminase (1 U/mL). The maximal inhibition induced by 10 mg/mL was completely antagonised by DPCPX (0.1 microM), an A1 receptor blocker. The data suggest that activation of adenosine A1 receptors is involved in the pharmacological effects of the valerian extract Ze 911.

  18. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  19. Paeoniflorin Promotes Non-rapid Eye Movement Sleep via Adenosine A1 Receptors.

    PubMed

    Chen, Chang-Rui; Sun, Yu; Luo, Yan-Jia; Zhao, Xin; Chen, Jiang-Fan; Yanagawa, Yuchio; Qu, Wei-Min; Huang, Zhi-Li

    2016-01-01

    Paeoniflorin (PF, C23H28O11), one of the principal active ingredients of Paeonia Radix, exerts depressant effects on the central nervous system. We determined whether PF could modulate sleep behaviors and the mechanisms involved. Electroencephalogram and electromyogram recordings in mice showed that intraperitoneal PF administered at a dose of 25 or 50 mg/kg significantly shortened the sleep latency and increased the amount of non-rapid eye movement (NREM). Immunohistochemical study revealed that PF decreased c-fos expression in the histaminergic tuberomammillary nucleus (TMN). The sleep-promoting effects and changes in c-fos induced by PF were reversed by 8-cyclopentyl-1,3-dimethylxanthine (CPT), an adenosine A1 receptor antagonist, and PF-induced sleep was not observed in adenosine A1 receptor knockout mice. Whole-cell patch clamping in mouse brain slices showed that PF significantly decreased the firing frequency of histaminergic neurons in TMN, which could be completely blocked by CPT. These results indicate that PF increased NREM sleep by inhibiting the histaminergic system via A1 receptors.

  20. Role of nitric oxide/cyclic GMP in myocardial adenosine A1 receptor-inotropic response.

    PubMed

    Sterin-Borda, Leonor; Gómez, Ricardo M; Borda, Enri

    2002-01-01

    In this study we have determined the different signalling pathways involved in adenosine A(1)-receptor (A(1)-receptor)-dependent inhibition of contractility in rat isolated atria. N-cyclopentyladenosine (CPA) stimulation of A(1)-receptor exerts: negative inotropic response, inositol phosphates accumulation, stimulation of nitric oxide synthase (NOS), increased production of nitric oxide (NO) and cyclic GMP. Inhibitors of phospholipase C (PLC), protein kinase C (PKC), calcium/calmodulin, NOS and guanylate cyclase shifted the dose-response curve of CPA on contractility to the right. Those inhibitors also attenuated the A(1)-receptor-dependent increase in cyclic GMP and activation of NOS. These results suggest that CPA activation of A(1)-receptors exerts a negative inotropic effect associated with increased production of nitric oxide and cyclic GMP. The mechanism appears to occur secondarily to stimulation of phosphoinositide turnover via PLC activation. This, in turn, triggers cascade reactions involving calcium/calmodulin and PKC, leading to activation of NOS and soluble guanylate cyclase.

  1. Role of nitric oxide/cyclic GMP in myocardial adenosine A1 receptor-inotropic response

    PubMed Central

    Sterin-Borda, Leonor; Gómez, Ricardo M; Borda, Enri

    2002-01-01

    In this study we have determined the different signalling pathways involved in adenosine A1-receptor (A1-receptor)-dependent inhibition of contractility in rat isolated atria. N-cyclopentyladenosine (CPA) stimulation of A1-receptor exerts: negative inotropic response, inositol phosphates accumulation, stimulation of nitric oxide synthase (NOS), increased production of nitric oxide (NO) and cyclic GMP. Inhibitors of phospholipase C (PLC), protein kinase C (PKC), calcium/calmodulin, NOS and guanylate cyclase shifted the dose-response curve of CPA on contractility to the right. Those inhibitors also attenuated the A1-receptor-dependent increase in cyclic GMP and activation of NOS. These results suggest that CPA activation of A1-receptors exerts a negative inotropic effect associated with increased production of nitric oxide and cyclic GMP. The mechanism appears to occur secondarily to stimulation of phosphoinositide turnover via PLC activation. This, in turn, triggers cascade reactions involving calcium/calmodulin and PKC, leading to activation of NOS and soluble guanylate cyclase. PMID:11815380

  2. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury.

    PubMed

    Winerdal, Max; Winerdal, Malin E; Wang, Ying-Qing; Fredholm, Bertil B; Winqvist, Ola; Ådén, Ulrika

    2016-03-01

    Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R(-/-)) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R(-/-) mice displayed larger infarctions (+33%, p < 0.05) and performed worse in beam walking tests (44% more mistakes, p < 0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R(-/-) versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R(-/-). Also, A1R(-/-) B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4(+) T lymphocytes including FoxP3(+) T regulatory cells, were unaffected by genotype, whereas CD8(+) T lymphocyte responses were smaller in A1R(-/-) mice. Using PCA to characterize the immune profile, we could discriminate the A1R(-/-) and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.

  3. Adenosine A1 receptors mediate inhibition of cAMP formation in vitro in the pontine, REM sleep induction zone.

    PubMed

    Marks, Gerald A; Birabil, Christian G; Speciale, Samuel G

    2005-11-09

    Microinjection of adenosine A1 receptor agonist or an inhibitor of adenylyl cyclase into the caudal, oral pontine reticular formation (PnOc) of the rat induces a long-lasting increase in REM sleep. Here, we report significant inhibition of forskolin-stimulated cAMP in dissected pontine tissue slices containing the PnOc incubated with the A1 receptor agonist, cyclohexaladenosine (10(-8) M). These data are consistent with adenosine A1 receptor agonist actions on REM sleep mediated through inhibition of cAMP.

  4. AMP-guided tumour-specific nanoparticle delivery via adenosine A1 receptor.

    PubMed

    Dai, Tongcheng; Li, Na; Han, Fajun; Zhang, Hua; Zhang, Yuanxing; Liu, Qin

    2016-03-01

    Active targeting-ligands have been increasingly used to functionalize nanoparticles for tumour-specific clinical applications. Here we utilize nucleotide adenosine 5'-monophosphate (AMP) as a novel ligand to functionalize polymer-based fluorescent nanoparticles (NPs) for tumour-targeted imaging. We demonstrate that AMP-conjugated NPs (NPs-AMP) efficiently bind to and are following internalized into colon cancer cell CW-2 and breast cancer cell MDA-MB-468 in vitro. RNA interference and inhibitor assays reveal that the targeting effects mainly rely on the specific binding of AMP to adenosine A1 receptor (A1R), which is greatly up-regulated in cancer cells than in matched normal cells. More importantly, NPs-AMP specifically accumulate in the tumour site of colon and breast tumour xenografts and are further internalized into the tumour cells in vivo via tail vein injection, confirming that the high in vitro specificity of AMP can be successfully translated into the in vivo efficacy. Furthermore, NPs-AMP exhibit an active tumour-targeting behaviour in various colon and breast cancer cells, which is positively related to the up-regulation level of A1R in cancer cells, suggesting that AMP potentially suits for more extensive A1R-overexpressing cancer models. This work establishes AMP to be a novel tumour-targeting ligand and provides a promising strategy for future diagnostic or therapeutic applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Impaired Function of Prejunctional Adenosine A1 Receptors Expressed by Perivascular Sympathetic Nerves in DOCA-Salt Hypertensive Rats

    PubMed Central

    Dong, Hua; Swain, Gregory M.; Galligan, James J.; Xu, Hui

    2013-01-01

    Increased sympathetic nervous system activity contributes to deoxycorticosterone acetate (DOCA)-salt hypertension in rats. ATP and norepinephrine (NE) are coreleased from perivascular sympathetic nerves. NE acts at prejunctional α2-adrenergic receptors (α2ARs) to inhibit NE release, and α2AR function is impaired in DOCA-salt rats. Adenosine, an enzymatic ATP degradation product, acts at prejunctional A1 adenosine receptors (A1Rs) to inhibit NE release. We tested the hypothesis that prejunctional A1R function is impaired in sympathetic nerves supplying mesenteric arteries (MAs) and veins (MVs) of DOCA-salt rats. Electrically evoked NE release and constrictions of blood vessels were studied in vitro with use of amperometry to measure NE oxidation currents and video microscopy, respectively. Immunohistochemical methods were used to localize tyrosine hydroxylase (TH) and A1Rs in perivascular sympathetic nerves. TH and A1Rs colocalized to perivascular sympathetic nerves. Adenosine and N6-cyclopentyl-adenosine (CPA, A1R agonist) constricted MVs but not MAs. Adenosine and CPA (0.001–10 µM) inhibited neurogenic constrictions and NE release in MAs and MVs. DOCA-salt arteries were resistant to adenosine and CPA-mediated inhibition of NE release and constriction. The A2A adenosine receptor agonist CGS21680 (C23H29N7O6.HCl.xH2O) (0.001–0.1 μM) did not alter NE oxidation currents. We conclude that there are prejunctional A1Rs in arteries and both pre- and postjunctional A1Rs in veins; thus, adenosine selectively constricts the veins. Prejunctional A1R function is impaired in arteries, but not veins, from DOCA-salt rats. Sympathetic autoreceptor dysfunction is not specific to α2ARs, but there is a more general disruption of prejunctional mechanisms controlling sympathetic neurotransmitter release in DOCA-salt hypertension. PMID:23397055

  6. The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors.

    PubMed

    Gonca, Ersöz; Darıcı, Faruk

    2015-01-01

    Cannabidiol (CBD) is a nonpsychoactive phytocannabinoid with anti-inflammatory activity mediated by enhancing adenosine signaling. As the adenosine A1 receptor activation confers protection against ischemia/reperfusion (I/R)-induced ventricular arrhythmias, we hypothesized that CBD may have antiarrhythmic effect through the activation of adenosine A1 receptor. Cannabidiol has recently been shown to suppress ischemia-induced ventricular arrhythmias. We aimed to research the effect of CBD on the incidence and the duration of I/R-induced ventricular arrhythmias and to investigate the role of adenosine A1 receptor activation in the possible antiarrhythmic effect of CBD. Myocardial ischemia and reperfusion was induced in anesthetized male rats by ligating the left anterior descending coronary artery for 6 minutes and by loosening the bond at the coronary artery, respectively. Cannabidiol alone was given in a dose of 50 µg/kg, 10 minutes prior to coronary artery occlusion and coadministrated with adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) in a dose of 100 µg/kg, 15 minutes prior to coronary artery occlusion to investigate whether the antiarrhythmic effect of CBD is modified by the activation of adenosine A1 receptors. The experimental groups were as follows: (1) vehicle control (n = 10), (2) CBD (n = 9), (3) DPCPX (n = 7), and (4) CBD + DPCPX group (n = 7). Cannabidiol treatment significantly decreased the incidence and the duration of ventricular tachycardia, total length of arrhythmias, and the arrhythmia scores compared to control during the reperfusion period. The DPCPX treatment alone did not affect the incidence and the duration of any type of arrhythmias. However, DPCPX aborted the antiarrhythmic effect of CBD when it was combined with it. The present results demonstrated that CBD has an antiarrhythmic effect against I/R-induced arrhythmias, and the antiarrhythmic effect of CBD may be mediated through the activation of adenosine

  7. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists.

    PubMed

    Louvel, Julien; Guo, Dong; Soethoudt, Marjolein; Mocking, Tamara A M; Lenselink, Eelke B; Mulder-Krieger, Thea; Heitman, Laura H; IJzerman, Adriaan P

    2015-08-28

    We report the synthesis and biological evaluation of new derivatives of Capadenoson, a former drug candidate that was previously advanced to phase IIa clinical trials. 19 of the 20 ligands show an affinity below 100 nM at the human adenosine A1 receptor (hA1AR) and display a wide range of residence times at this target (from approx. 5 min (compound 10) up to 132 min (compound 5)). Structure-affinity and structure-kinetics relationships were established, and computational studies of a homology model of the hA1AR revealed crucial interactions for both the affinity and dissociation kinetics of this family of ligands. These results were also combined with global metrics (Ligand Efficiency, cLogP), showing the importance of binding kinetics as an additional way to better select a drug candidate amongst seemingly similar leads.

  8. A1 and A2a receptors mediate inhibitory effects of adenosine on the motor activity of human colon.

    PubMed

    Fornai, M; Antonioli, L; Colucci, R; Ghisu, N; Buccianti, P; Marioni, A; Chiarugi, M; Tuccori, M; Blandizzi, C; Del Tacca, M

    2009-04-01

    Experimental evidence in animal models suggests that adenosine is involved in the regulation of digestive functions. This study examines the influence of adenosine on the contractile activity of human colon. Reverse transcription-polymerase chain reaction revealed A(1) and A(2a) receptor expression in colonic neuromuscular layers. Circular muscle preparations were connected to isotonic transducers to determine the effects of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; A(1) receptor antagonist), ZM 241385 (A(2a) receptor antagonist), CCPA (A(1) receptor agonist) and 2-[(p-2-carboxyethyl)-phenethylamino]-5'-N-ethyl-carboxamide-adenosine (CGS 21680; A(2a) receptor agonist) on motor responses evoked by electrical stimulation or carbachol. Electrically evoked contractions were enhanced by DPCPX and ZM 241385, and reduced by CCPA and CGS 21680. Similar effects were observed when colonic preparations were incubated with guanethidine (noradrenergic blocker), L-732,138, GR-159897 and SB-218795 (NK receptor antagonists). However, in the presence of guanethidine, NK receptor antagonists and N(omega)-propyl-L-arginine (NPA; neuronal nitric oxide synthase inhibitor), the effects of DPCPX and CCPA were still evident, while those of ZM 241385 and CGS 21680 no longer occurred. Carbachol-induced contractions were unaffected by A(2a) receptor ligands, but they were enhanced or reduced by DPCPX and CCPA, respectively. When colonic preparations were incubated with guanethidine, NK antagonists and atropine, electrically induced relaxations were partly reduced by ZM 241385 or NPA, but unaffected by DPCPX. Dipyridamole or application of exogenous adenosine reduced electrically and carbachol-evoked contractions, whereas adenosine deaminase enhanced such motor responses. In conclusion, adenosine exerts an inhibitory control on human colonic motility. A(1) receptors mediate direct modulating actions on smooth muscle, whereas A(2a) receptors operate through inhibitory nitrergic nerve pathways.

  9. Control of cannabinoid CB1 receptor function on glutamate axon terminals by endogenous adenosine acting at A1 receptors.

    PubMed

    Hoffman, Alexander F; Laaris, Nora; Kawamura, Masahito; Masino, Susan A; Lupica, Carl R

    2010-01-13

    Marijuana is a widely used drug that impairs memory through interaction between its psychoactive constituent, Delta-9-tetrahydrocannabinol (Delta(9)-THC), and CB(1) receptors (CB1Rs) in the hippocampus. CB1Rs are located on Schaffer collateral (Sc) axon terminals in the hippocampus, where they inhibit glutamate release onto CA1 pyramidal neurons. This action is shared by adenosine A(1) receptors (A1Rs), which are also located on Sc terminals. Furthermore, A1Rs are tonically activated by endogenous adenosine (eADO), leading to suppressed glutamate release under basal conditions. Colocalization of A1Rs and CB1Rs, and their coupling to shared components of signal transduction, suggest that these receptors may interact. We examined the roles of A1Rs and eADO in regulating CB1R inhibition of glutamatergic synaptic transmission in the rodent hippocampus. We found that A1R activation by basal or experimentally increased levels of eADO reduced or eliminated CB1R inhibition of glutamate release, and that blockade of A1Rs with caffeine or other antagonists reversed this effect. The CB1R-A1R interaction was observed with the agonists WIN55,212-2 and Delta(9)-THC and during endocannabinoid-mediated depolarization-induced suppression of excitation. A1R control of CB1Rs was stronger in the C57BL/6J mouse hippocampus, in which eADO levels were higher than in Sprague Dawley rats, and the eADO modulation of CB1R effects was absent in A1R knock-out mice. Since eADO levels and A1R activation are regulated by homeostatic, metabolic, and pathological factors, these data identify a mechanism in which CB1R function can be controlled by the brain adenosine system. Additionally, our data imply that caffeine may potentiate the effects of marijuana on hippocampal function.

  10. Adenosine induces a cholinergic tracheal reflex contraction in guinea pigs in vivo via an adenosine A1 receptor-dependent mechanism.

    PubMed

    Reynolds, Sandra M; Docherty, Reginald; Robbins, Jon; Spina, Domenico; Page, Clive P

    2008-07-01

    Adenosine induces dyspnea, cough, and airways obstruction in asthma, a phenomenon that also occurs in various sensitized animal models in which a neuronal involvement has been implicated. Although adenosine has been suggested to activate cholinergic nerves, the precise mechanism has not been established. In the present study, the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA) induced a cholinergic reflex, causing tracheal smooth muscle contraction that was significantly inhibited by the adenosine A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 100 microg/kg) (P < 0.05) in anesthetized animals. Furthermore, the adenosine A(2) agonist 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamidoadenosine (CGS-21680) induced a small reflex, whereas the A(3) selective agonist N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine (IB-MECA) was without effect. The tracheal reflex induced by CPA was also inhibited by recurrent nerve ligation or muscarinic receptor blockade (P < 0.001), indicating that a cholinergic neuronal mechanism of action accounted for this response. The cholinergic reflex in response to aerosolized CPA was significantly greater in passively sensitized compared with naive guinea pigs (P < 0.01). Chronic capsaicin treatment, which inhibited sensory nerve function, failed to inhibit CPA-induced reflex tracheal contractions in passively sensitized guinea pigs, although the local anesthetic lidocaine inhibited CPA-induced tracheal contractions. The effects of CPA on the reflex response was not dependent on the release of histamine from tissue mast cells or endogenous prostaglandins as shown by the lack of effect of the histamine H(1) receptor antagonist pyrilamine (1 mg/kg) or the cyclooxygenase inhibitor meclofenamic acid (3 mg/kg), respectively. In conclusion, activation of pulmonary adenosine A(1) receptors can stimulate cholinergic reflexes, and these reflexes are increased in allergic guinea pigs.

  11. Stabilizing effects of G protein on the active conformation of adenosine A1 receptor differ depending on G protein type.

    PubMed

    Tateyama, Michihiro; Kubo, Yoshihiro

    2016-10-05

    G protein coupled receptors (GPCRs) trigger various cellular and physiological responses upon the ligand binding. The ligand binding induces conformational change in GPCRs which allows G protein to interact with the receptor. The interaction of G protein also affects the active conformation of GPCRs. In this study, we have investigated the effects of Gαi1, Gαo and chimeric Gαqi5 on the active conformation of the adenosine A1 receptor, as each Gα showed difference in the interaction with adenosine A1 receptor. The conformational changes in the adenosine A1 receptor were detected as the agonist-induced decreases in efficiency of Förster resonance energy transfer (FRET) between fluorescent proteins (FPs) fused at the two intracellular domains of the adenosine A1 receptor. Amplitudes of the agonist-induced FRET decreases were subtle when the FP-tagged adenosine A1 receptor was expressed alone, whereas they were significantly enhanced when co-expressed with Gαi1Gβ1Gγ22 (Gi1) or Gαqi5Gβ1Gγ22 (Gqi5) but not with GαοGβ1Gγ22 (Go). The enhancement of the agonist-induced FRET decrease in the presence of Gqi5 was significantly larger than that of Gi1. Furthermore, the FRET recovery upon the agonist removal in the presence of Gqi5 was significantly slower than that of Gi1. From these results it was revealed that the agonist-bound active conformation of adenosine A1 receptor is unstable without the binding of G protein and that the stabilizing effects of G protein differ depending on the types of G protein.

  12. (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine binding to A1 adenosine receptors of intact rat ventricular myocytes

    SciTech Connect

    Martens, D.; Lohse, M.J.; Schwabe, U.

    1988-09-01

    The purpose of the present study was the identification of A1 adenosine receptors in intact rat ventricular myocytes, which are thought to mediate the negative inotropic effects of adenosine. The adenosine receptor antagonist (/sup 3/H)-8-cyclopentyl-1,3-dipropylxanthine was used as radioligand. Binding of the radioligand to intact myocytes was rapid, reversible, and saturable with a binding capacity of 40,000 binding sites per cell. The dissociation constant of the radioligand was 0.48 nM. The adenosine receptor antagonists 8-cyclopentyl-1,3-dipropylxanthine, xanthine amine congener, and theophylline were competitive inhibitors with affinities in agreement with results obtained for A1 receptors in other tissues. Competition experiments using the adenosine receptor agonists R-N(6)-phenylisopropyladenosine, 5'-N-ethylcarboxamidoadenosine, and S-N(6)-phenylisopropyladenosine gave monophasic displacement curves with Ki values of 50 nM, 440 nM, and 4,300 nM, which agreed well with the GTP-inducible low affinity state in cardiac membranes. The low affinity for agonists was not due to agonist-induced desensitization, and correlated well with the corresponding IC50 values for the inhibition of cyclic AMP accumulation by isoprenaline. It is suggested that only a low affinity state of A1 receptors can be detected in intact rat myocytes due to the presence of high concentrations of guanine nucleotides in intact cells.

  13. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury

    PubMed Central

    Gazoni, Leo M.; Walters, Dustin M.; Unger, Eric B.; Linden, Joel; Kron, Irving L.; Laubach, Victor E.

    2010-01-01

    Objective Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion (IR) injury. We hypothesized that activation of A1, A2A, or A3 adenosine receptors would provide protection against lung IR injury. Methods Using an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours cold ischemia followed by 2 hours reperfusion. Lungs were administered either vehicle, adenosine, or selective A1, A2A, or A3 receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. Results Compared to the vehicle-treated control group, treatment with A1, A2A, or A3 agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced TNF-α production. Adenosine treatment was also protective but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A2A agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A1 or A3 agonists. Conclusions Selective activation of A1, A2A, or A3 adenosine receptors provides significant protection against lung IR injury. The decreased elaboration of the potent proinflammatory cytokine, TNF-α, and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients. PMID:20398911

  14. Modulation of N-type Ca2+ currents by A1-adenosine receptor activation in male rat pelvic ganglion neurons.

    PubMed

    Park, K S; Jeong, S W; Cha, S K; Lee, B S; Kong, I D; Ikeda, S R; Lee, J W

    2001-11-01

    Modulation of voltage-activated Ca2+ channels by adenosine was investigated in male rat major pelvic ganglion (MPG) neurons by using the whole-cell variant of the patch-clamp technique. Adenosine inhibited high voltage-activated (HVA) Ca2+ currents in a concentration-dependent manner with an EC50 of 313 nM and a maximal inhibition of 36%, respectively. Inhibition of HVA Ca2+ currents in adrenergic and cholinergic MPG neurons was similar. Adenosine did not modulate T-type Ca2+ channels present in adrenergic MPG neurons. Reverse transcription-polymerase chain reaction analysis indicated that MPG neurons express mRNAs encoding A1 and A2a receptors. Ca2+ current inhibition by adenosine was mimicked by N6-cyclopentyladenosine, an A1-selective agonist (EC50 = 63 nM) and prevented by 100 nM 8-cyclopentyl-1,3-dipropylxanthine, an A1-selective antagonist. Conversely, CGS 21680, an A2a-selective agonist, displayed a relatively low potency (EC50 = 2200 nM) for inhibiting Ca2+ currents. The action of adenosine was significantly attenuated by 2 mM guanosine-5'-thiodiphosphate or 500 ng/ml pertussis toxin. The voltage dependence of adenosine-induced current inhibition was evident by 1) a bell-shaped profile between the current inhibition and test potentials, 2) kinetic slowing in the presence of agonist, and 3) relief of the current inhibition by a conditioning prepulse to +80 mV. Finally, 1 microM omega-conotoxin GVIA occluded adenosine-induced current inhibition. Taken together, we concluded that adenosine inhibits N-type Ca2+ currents by activation of A1 receptors via a voltage-dependent and PTX-sensitive pathway in rat MPG neurons. Our data may explain how adenosine acts as an inhibitory modulator of ganglionic and neuromuscular transmission in the pelvic plexus.

  15. Electroacupuncture-induced neuroprotection against focal cerebral ischemia in the rat is mediated by adenosine A1 receptors

    PubMed Central

    Dai, Qin-xue; Geng, Wu-jun; Zhuang, Xiu-xiu; Wang, Hong-fa; Mo, Yun-chang; Xin, He; Chen, Jiang-fan; Wang, Jun-lu

    2017-01-01

    The activation of adenosine A1 receptors is important for protecting against ischemic brain injury and pretreatment with electroacupuncture has been shown to mitigate ischemic brain insult. The aim of this study was to test whether the adenosine A1 receptor mediates electroacupuncture pretreatment-induced neuroprotection against ischemic brain injury. We first performed 30 minutes of electroacupuncture pretreatment at the Baihui acupoint (GV20), delivered with a current of 1 mA, a frequency of 2/15 Hz, and a depth of 1 mm. High-performance liquid chromatography found that adenosine triphosphate and adenosine levels peaked in the cerebral cortex at 15 minutes and 120 minutes after electroacupuncture pretreatment, respectively. We further examined the effect of 15 or 120 minutes electroacupuncture treatment on ischemic brain injury in a rat middle cerebral artery-occlusion model. We found that at 24 hours reperfusion,120 minutes after electroacupuncture pretreatment, but not for 15 minutes, significantly reduced behavioral deficits and infarct volumes. Last, we demonstrated that the protective effect gained by 120 minutes after electroacupuncture treatment before ischemic injury was abolished by pretreatment with the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (1 mg/kg, intraperitoneally). Our results suggest that pretreatment with electroacupuncture at the Baihui acupoint elicits protection against transient cerebral ischemia via action at adenosine A1 receptors. PMID:28400804

  16. 2-Aminothienopyridazines as Novel Adenosine A1 Receptor Allosteric Modulators and Antagonists

    PubMed Central

    Ferguson, Gemma N.; Valant, Celine; Horne, James; Figler, Heidi; Flynn, Bernard L.; Linden, Joel; Chalmers, David K.; Sexton, Patrick M.; Christopoulos, Arthur; Scammells, Peter J.

    2008-01-01

    A pharmacophore-based screen identified 32 compounds including ethyl 5-amino-3-(4-tert-butylphenyl)-4-oxo-3,4-dihydrothieno[3,4-d]pyridazine-1-carboxylate (8) as a new allosteric modulator of the adenosine A1 receptor (A1AR). On the basis of this lead, various derivatives were prepared and evaluated for activity at the human A1AR. A number of the test compounds allosterically stabilized agonist-receptor-G protein ternary complexes in dissociation kinetic assays, but were found to be more potent as antagonists in subsequent functional assays of ERK1/2 phosphorylation. Additional experiments on the most potent antagonist, 13b, investigating A1AR-mediated [35S]GTPγS binding and [3H]CCPA equilibrium binding confirmed its antagonistic mode of action and also identified inverse agonism. This study has thus identified a new class of A1AR antagonists that can also recognize the receptor’s allosteric site with lower potency. PMID:18771255

  17. Adenosine A(1) receptors determine glomerular hyperfiltration and the salt paradox in early streptozotocin diabetes mellitus.

    PubMed

    Vallon, Volker; Schroth, Jana; Satriano, Joseph; Blantz, Roland C; Thomson, Scott C; Rieg, Timo

    2009-01-01

    In early type 1 diabetes mellitus, changes in proximal reabsorption influence glomerular filtration rate (GFR) through tubuloglomerular feedback (TGF). Due to TGF, a primary increase in proximal reabsorption causes early diabetic hyperfiltration, while a heightened sensitivity of the proximal tubule to dietary salt leads to the so-called salt paradox, where a change in dietary salt causes a reciprocal change in GFR ('tubulocentric principle'). Here, experiments were performed in adenosine A(1) receptor knockout mice (A(1)R-/-), which lack an immediate TGF response, to determine whether A(1)Rs are essential for early diabetic hyperfiltration and the salt paradox. GFR was measured by inulin disappearance in conscious A(1)R-/- and wild-type (WT) mice after 4 weeks of streptozotocin diabetes on a control NaCl diet (1%), and measurements were repeated after 6 days of equilibration on a low-NaCl (0.1%) or a high-NaCl (4%) diet. A(1)R-/- and WT were similar with respect to blood glucose, dietary intakes and body weight changes on a given diet. Diabetic hyperfiltration occurred in WT, but was blunted in A(1)R-/-. A reciprocal relationship between GFR and dietary salt was found in WT diabetics, but not A(1)R-/- diabetics or nondiabetics of either strain. A(1)Rs determine glomerular hyperfiltration and the salt paradox in early diabetes, which is consistent with the tubulocentric principle.

  18. The role of the second and third extracellular loops of the adenosine A1 receptor in activation and allosteric modulation.

    PubMed

    Peeters, M C; Wisse, L E; Dinaj, A; Vroling, B; Vriend, G; Ijzerman, A P

    2012-07-01

    The adenosine A1 receptor is a member of the large membrane protein family that signals through G proteins, the G protein-coupled receptors (GPCRs). GPCRs consist of seven transmembrane domains connected by three intracellular and three extracellular loops. Their N-terminus is extracellular, the C-terminal tail is in the cytoplasm. The transmembrane domains in receptor subfamilies that bind the same endogenous ligand, such as dopamine or adenosine, tend to be highly similar. In contrast, the loop regions can vary greatly, both in sequence and in length, and the role these loops have in the activation mechanism of the receptors remains unclear. Here, we investigated the activating role of the second and third extracellular loop of the human adenosine A1 receptor. By means of an (Ala)3 mutagenic scan in which consecutive sets of three amino acids were mutated into alanine residues in EL2 and a classical alanine scan in EL3, we revealed a strong regulatory role for the second extracellular loop (EL2) of the human adenosine A1 receptor. Besides many residues in the second and the third extracellular loops important for adenosine A1 receptor activation, we also identified two residues in EL2, a tryptophan and a glutamate, that affect the influence of the allosteric modulator PD81,723. These results, combined with a comparison of the different receptor loop regions, provide insight in the activation mechanism of this typical class A GPCR and further emphasize the unique pharmacological profile the loops can provide to individual receptors, even within subfamilies of GPCRs.

  19. Role of brainstem adenosine A1 receptors in the cardiovascular response to hypothalamic defence area stimulation in the anaesthetized rat.

    PubMed Central

    St Lambert, J. H.; Dashwood, M. R.; Spyer, K. M.

    1996-01-01

    1. The role of centrally located adenosine A1 receptors in the cardiovascular changes associated with the hypothalamic defence response has been investigated by in vitro autoradiography and the intraventricular application of an A1 receptor antagonist. 2. 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX), a highly selective adenosine A1 antagonist and its vehicle, ethanol, were administered directly into the posterior portion of the fourth ventricle of alpha-chloralose anaesthetized, paralysed and artificially ventilated rats. 3. DPCPX (0.01 to 0.3 mg kg-1) caused a dose-dependent decrease in the magnitude of the evoked pressor response (from -13 to -23 mmHg) elicited on hypothalamic defence area stimulation at a dose 10 fold lower than that required to produce an equivalent effect following systemic administration whilst ethanol, the vehicle, had no effect. 4. In vitro autoradiography revealed a heterogeneous distribution of adenosine A1 binding sites in the lower brainstem of rats. Image analysis showed the ventrolateral medulla to have the highest density of A1 receptors. Intermediate levels of binding were seen in caudal regions of the nucleus tractus solitarii and the hypoglossal nucleus. 5. These data imply that a proportion of the cardiovascular response to hypothalamic defence area stimulation are produced by the activation of adenosine A1 receptors localized close to the surface of, or adjacent to, the fourth ventricle in the immediate vicinity of the injection site. PMID:8789379

  20. Neural and humoral control of regional vascular beds via A1 adenosine receptors located in the nucleus tractus solitarii

    PubMed Central

    McClure, Joseph M.; O'Leary, Donal S.

    2011-01-01

    Our previous studies showed that stimulation of adenosine A1 receptors located in the nucleus of the solitary tract (NTS) exerts counteracting effects on the iliac vascular bed: activation of the adrenal medulla and β-adrenergic vasodilation vs. sympathetic and vasopressinergic vasoconstriction. Because NTS A1 adenosine receptors inhibit baroreflex transmission in the NTS and contribute to the pressor component of the HDR, we hypothesized that these receptors also contribute to the redistribution of blood from the visceral to the muscle vasculature via prevailing sympathetic and vasopressinergic vasoconstriction in the visceral (renal and mesenteric) vascular beds and prevailing β-adrenergic vasodilation in the somatic (iliac) vasculature. To test this hypothesis, we compared the A1 adenosine-receptor-mediated effects of each vasoactive factor triggered by NTS A1 adenosine receptor stimulation [N6-cyclopentyladenosine (CPA), 330 pmol in 50 nl] on the regional vascular responses in urethane/chloralose-anesthetized rats. The single-factor effects were separated using adrenalectomy, β-adrenergic blockade, V1 vasopressin receptor blockade, and sinoaortic denervation. In intact animals, initial vasodilation was followed by large, sustained vasoconstriction with smaller responses observed in renal vs. mesenteric and iliac vascular beds. The initial β-adrenergic vasodilation prevailed in the iliac vs. mesenteric and renal vasculature. The large and sustained vasopressinergic vasoconstriction was similar in all vascular beds. Small sympathetic vasoconstriction was observed only in the iliac vasculature in this setting. We conclude that, although A1 adenosine-receptor-mediated β-adrenergic vasodilation may contribute to the redistribution of blood from the visceral to the muscle vasculature, this effect is overridden by sympathetic and vasopressinergic vasoconstriction. PMID:21148476

  1. Caffeine reverses antinociception by amitriptyline in wild type mice but not in those lacking adenosine A1 receptors.

    PubMed

    Sawynok, Jana; Reid, Allison R; Fredholm, Bertil B

    2008-08-01

    Amitriptyline is used to treat neuropathic pain in humans. It produces antinociception in several animal models of pain, and this effect is blocked by methylxanthine adenosine receptor antagonists which implicates adenosine it its actions. Here, the antinociceptive effect of amitriptyline, and the ability of caffeine to reverse it, were examined using the formalin test (a model of persistent pain) in wild type mice and mice lacking the adenosine A(1) receptor (A1R). Amitriptyline produced dose-related suppression of flinching in wild type mice following both systemic and intraplantar drug administration; both of these effects were unaltered in A1R -/- mice. Following systemic administration, caffeine reversed the systemic effect of amitriptyline in wild type, but not A1R -/- mice; -/+ mice exhibited an intermediate effect. Intraplantar administration of caffeine also reversed the effect of intraplantar amitriptyline in A1R +/+, but not in -/- or +/- mice. These results indicate that adenosine A(1) receptors are not required in order for amitriptyline to cause antinociception in mice, but they are required to see caffeine reversal of this antinociceptive effect. When A1Rs are present, actions of amitriptyline may, however, partly depend on A1Rs.

  2. Structural Sweet Spot for A1 Adenosine Receptor Activation by Truncated (N)- Methanocarba Nucleosides: Receptor Docking and Potent Anticonvulsant Activity

    PubMed Central

    Tosh, Dilip K.; Paoletta, Silvia; Deflorian, Francesca; Phan, Khai; Moss, Steven M.; Gao, Zhan-Guo; Jiang, Xiaohui; Jacobson, Kenneth A.

    2012-01-01

    A1 adenosine receptor (AR) agonists display antiischemic and antiepileptic neuroprotective activity, but peripheral cardiovascular side effects impeded their development. SAR study of N6-cycloalkylmethyl 4′-truncated (N)-methanocarba-adenosines identified 10 (MRS5474, N6-dicyclopropylmethyl, Ki 47.9 nM) as a moderately A1AR-selective full agonist. Two stereochemically defined N6-methynyl group substituents displayed narrow SAR; larger than cyclobutyl greatly reduced AR affinity, and larger or smaller than cyclopropyl reduced A1AR selectivity. Nucleoside docking to A1AR homology model characterized distinct hydrophobic cyclopropyl subpockets, the larger “A” forming contacts with Thr270 (7.35), Tyr271 (7.36), Ile274 (7.39) and carbon chains of glutamates (EL2), and smaller subpocket “B” between TM6 and TM7. 10 suppressed minimal clonic seizures (6 Hz mouse model) without typical rotarod impairment of A1AR agonists. Truncated nucleosides, an appealing preclinical approach, have more drug-like physicochemical properties than other A1AR agonists. Thus, we identified highly restricted regions for substitution around N6 suitable for an A1AR agonist with anticonvulsant activity. PMID:22921089

  3. Adenosine A1 receptor agonist N6-cyclohexyl-adenosine induced phosphorylation of delta opioid receptor and desensitization of its signaling

    PubMed Central

    Cheng, Yun; Tao, Yi-min; Sun, Jian-feng; Wang, Yu-hua; Xu, Xue-jun; Chen, Jie; Chi, Zhi-qiang; Liu, Jing-gen

    2010-01-01

    Aim: To define the effect of adenosine A1 receptor (A1R) on delta opioid receptor (DOR)-mediated signal transduction. Methods: CHO cells stably expressing HA-tagged A1R and DOR-CFP fusion protein were used. The localization of receptors was observed using confocal microscope. DOR-mediated inhibition of adenylyl cyclase was measured using cyclic AMP assay. Western blots were employed to detect the phosphorylation of Akt and the DOR. The effect of A1R agonist N6-cyclohexyladenosine (CHA) on DOR down-regulation was assessed using radioligand binding assay. Results: CHA 1 μmol/L time-dependently attenuated DOR agonist [D-Pen2,5]enkephalin (DPDPE)-induced inhibition of intracellular cAMP accumulation with a t1/2=2.56 (2.09–3.31) h. Pretreatment with 1 μmol/L CHA for 24 h caused a right shift of the dose-response curve of DPDPE-mediated inhibition of cAMP accumulation, with a significant increase in EC50 but no change in Emax. Pretreatment with 1 μmol/L CHA for 1 h also induced a significant attenuation of DPDPE-stimulated phosphorylation of Akt. Moreover, CHA time-dependently phosphorylated DOR (Ser363), and this effect was inhibited by A1R antagonist 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) but not by DOR antagonist naloxone. However, CHA failed to produce the down-regulation of DOR, as neither receptor affinity (Kd) nor receptor density (Bmax) of DOR showed significant change after chronic CHA exposure. Conclusion: Activation of A1R by its agonist caused heterologous desensitization of DOR-mediated inhibition of intracellular cAMP accumulation and phosphorylation of Akt. Activation of A1R by its agonist also induced heterologous phosphorylation but not down-regulation of DOR. PMID:20562901

  4. Stimulation of central A1 adenosine receptors suppresses seizure and neuropathology in a soman nerve agent seizure rat model.

    PubMed

    Thomas, Thaddeus P; Shih, Tsung-Ming

    2014-09-01

    The current regimen for treating nerve agent poisoning does not sufficiently suppress the excitotoxic activity that causes severe brain damage, especially in cases where treatment is delayed and nerve agent-induced status epilepticus develops. New therapeutic targets are required to improve survivability and minimize neuropathology after irreversible acetylcholinesterase inactivation. Earlier studies have shown that systemic delivery of adenosine agonists decreases nerve agent lethality; however, the mechanism of protection remains to be understood. The primary aim of this study was to investigate the role of central adenosine receptor (AR) stimulation in neuroprotection by directly injecting (6)-cyclopentyladenosine (CPA), an adenosine agonist specific to the A1 receptor subtype (A1R), into the brain intracerebroventricularly (ICV) in a soman seizure rat model. In addition to general A1R stimulation, we hypothesized that bilateral micro-injection of CPA into the cholinergic basal forebrain (BF) could also suppress excitotoxic activity. The results from these studies demonstrated that centrally administered adenosine agonists are anti-seizure and neuroprotective. CPA-delivered ICV prevented seizure and convulsion in 100% of the animals. Moreover, neuropathological evaluation indicated that adenosine treatments reduced brain damage from severe to minimal. Inhibition of the BF via CPA had varied results. Some animals were protected by treatment; however, others displayed similar pathology to the control. Overall, these data suggest that stimulating central ARs could be an effective target for the next generation countermeasures for nerve agent intoxication.

  5. Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease.

    PubMed

    Ferrante, Antonella; Martire, Alberto; Pepponi, Rita; Varani, Katia; Vincenzi, Fabrizio; Ferraro, Luca; Beggiato, Sarah; Tebano, Maria Teresa; Popoli, Patrizia

    2014-11-01

    Adenosine A1 receptor (A1R) stimulation exerts beneficial effects in response to various insults to the brain and, although it was found neuroprotective in a lesional model of Huntington's disease (HD), the features of this receptor in genetic models of HD have never been explored. In the present study we characterized the expression, affinity and functional effects of A1Rs in R6/2 mice (the most widely used transgenic model of HD) and in a cellular model of HD. Binding studies revealed that the density of A1Rs was significantly reduced in the cortex and the striatum of R6/2 mice compared to age-matched wild-type (WT), while receptor affinity was unchanged. The selective A1R agonist cyclopentyladenosine (CPA, 300nM) was significantly more effective in reducing synaptic transmission in corticostriatal slices from symptomatic R6/2 than in age-matched WT mice. Such an effect was due to a stronger inhibition of glutamate release from the pre-synaptic terminal. The different functional activities of A1Rs in HD mice were associated also to a different intracellular signaling pathway involved in the synaptic effect of CPA. In fact, while the PKA pathway was involved in both genotypes, p38 MAPK inhibitor SB203580 partially prevented synaptic effects of CPA in R6/2, but not in WT, mice; moreover, CPA differently modulated the phosphorylation status of p38 in the two genotypes. In vitro studies confirmed a different behavior of A1Rs in HD: CPA (100 nM for 5h) modulated cell viability in STHdh(Q111/Q111) (mhttHD cells), without affecting the viability of STHdh(Q7/Q7) (wthtt cells). This effect was prevented by the application of SB203580. Our results demonstrate that in the presence of the HD mutation A1Rs undergo profound changes in terms of expression, pharmacology and functional activity. These changes have to be taken in due account when considering A1Rs as a potential therapeutic target for this disease.

  6. Diabetes-induced hyperfiltration in adenosine A(1)-receptor deficient mice lacking the tubuloglomerular feedback mechanism.

    PubMed

    Sällström, J; Carlsson, P-O; Fredholm, B B; Larsson, E; Persson, A E G; Palm, F

    2007-07-01

    Glomerular hyperfiltration is commonly found in diabetic patients early after the onset of disease. This is one of the first indications of the development of progressive diabetic nephropathy. It has been proposed that glomerular hyperfiltration is caused by decreased delivery of electrolytes to the macula densa due to the increased sodium and glucose reabsorption in the proximal tubule, which would increase the glomerular filtration rate (GFR) via the tubuloglomerular feedback (TGF) mechanism. In this study, we investigated the role of TGF in diabetes-induced glomerular hyperfiltration by inducing diabetes in adenosine A(1)-receptor knockout (A1AR(-/-)) mice known to lack a functional TGF mechanism. Diabetes was induced by alloxan (75 mg kg(-1) bw) injected into the tail vein. The 24-hour urinary electrolyte excretion was measured in metabolic cages, the GFR determined by inulin clearance under isoflurane-anaesthesia, and histological changes evaluated. All alloxan-treated animals developed hyperglycaemia (> or =20 mm). Normoglycaemic animals had a similar GFR independent of genotype (A1AR(+/+) 9.3 +/- 0.5 vs. A1AR(-/-) 10.1 +/- 0.8 microL min(-1)g(-1) bw) and diabetes resulted in similar glomerular hyperfiltration in both groups (A1AR(+/+) 14.0 +/- 1.7, n = 9 vs. A1AR(-/-) 15.3 +/- 1.9 microL min(-1)g(-1) bw). Diabetic animals had a similar tendency to develop interstitial fibrosis, whereas the glomerular volume was similar in both genotypes, and unaltered by diabetes. This study shows that the A1AR(-/-) mice develop diabetes-induced glomerular hyperfiltration, demonstrating that the TGF mechanism is not the major cause of the development of hyperfiltration. Furthermore, the hyperfiltration in the present study was not related to alterations in the glomerular filtration area.

  7. Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure.

    PubMed

    Massie, Barry M; O'Connor, Christopher M; Metra, Marco; Ponikowski, Piotr; Teerlink, John R; Cotter, Gad; Weatherley, Beth Davison; Cleland, John G F; Givertz, Michael M; Voors, Adriaan; DeLucca, Paul; Mansoor, George A; Salerno, Christina M; Bloomfield, Daniel M; Dittrich, Howard C

    2010-10-07

    Worsening renal function, which is associated with adverse outcomes, often develops in patients with acute heart failure. Experimental and clinical studies suggest that counterregulatory responses mediated by adenosine may be involved. We tested the hypothesis that the use of rolofylline, an adenosine A1-receptor antagonist, would improve dyspnea, reduce the risk of worsening renal function, and lead to a more favorable clinical course in patients with acute heart failure. We conducted a multicenter, double-blind, placebo-controlled trial involving patients hospitalized for acute heart failure with impaired renal function. Within 24 hours after presentation, 2033 patients were randomly assigned, in a 2:1 ratio, to receive daily intravenous rolofylline (30 mg) or placebo for up to 3 days. The primary end point was treatment success, treatment failure, or no change in the patient's clinical condition; this end point was defined according to survival, heart-failure status, and changes in renal function. Secondary end points were the post-treatment development of persistent renal impairment and the 60-day rate of death or readmission for cardiovascular or renal causes. Rolofylline, as compared with placebo, did not provide a benefit with respect to the primary end point (odds ratio, 0.92; 95% confidence interval, 0.78 to 1.09; P=0.35). Persistent renal impairment developed in 15.0% of patients in the rolofylline group and in 13.7% of patients in the placebo group (P=0.44). By 60 days, death or readmission for cardiovascular or renal causes had occurred in similar proportions of patients assigned to rolofylline and placebo (30.7% and 31.9%, respectively; P=0.86). Adverse-event rates were similar overall; however, only patients in the rolofylline group had seizures, a known potential adverse effect of A1-receptor antagonists. Rolofylline did not have a favorable effect with respect to the primary clinical composite end point, nor did it improve renal function or 60-day

  8. Mass spectrometry-based ligand binding assays on adenosine A1 and A2A receptors.

    PubMed

    Massink, A; Holzheimer, M; Hölscher, A; Louvel, J; Guo, D; Spijksma, G; Hankemeier, T; IJzerman, A P

    2015-12-01

    Conventional methods to measure ligand-receptor binding parameters typically require radiolabeled ligands as probes. Despite the robustness of radioligand binding assays, they carry inherent disadvantages in terms of safety precautions, expensive synthesis, special lab requirements, and waste disposal. Mass spectrometry (MS) is a method that can selectively detect ligands without the need of a label. The sensitivity of MS equipment increases progressively, and currently, it is possible to detect low ligand quantities that are usually found in ligand binding assays. We developed a label-free MS ligand binding (MS binding) assay on the adenosine A(1) and A(2A) receptors (A(1)AR and A(2A)AR), which are well-characterized members of the class A G protein-coupled receptor (GPCR) family. Radioligand binding assays for both receptors are well established, and ample data is available to compare and evaluate the performance of an MS binding assay. 1,3-Dipropyl-8-cyclopentyl-xanthine (DPCPX) and 4-(2-((7-amino-2-(furan-2-yl)-[1,2,4]triazolo[1,5-a]-[1,3,5]triazin-5-yl)amino)ethyl)phenol (ZM-241,385) are high-affinity ligands selective for the A(1)AR and A(2A)AR, respectively. To proof the feasibility of MS binding on the A(1)AR and A(2A)AR, we first developed an MS detection method for unlabeled DPCPX and ZM-241,385. To serve as internal standards, both compounds were also deuterium-labeled. Subsequently, we investigated whether the two unlabeled compounds could substitute for their radiolabeled counterparts as marker ligands in binding experiments, including saturation, displacement, dissociation, and competition association assays. Furthermore, we investigated the accuracy of these assays if the use of internal standards was excluded. The results demonstrate the feasibility of the MS binding assay, even in the absence of a deuterium-labeled internal standard, and provide great promise for the further development of label-free assays based on MS for other GPCRs.

  9. Selected C8 two-chain linkers enhance the adenosine A1/A2A receptor affinity and selectivity of caffeine.

    PubMed

    van der Walt, M M; Terre'Blanche, G

    2017-01-05

    Recent research exploring C8 substitution on the caffeine core identified 8-(2-phenylethyl)-1,3,7-trimethylxanthine as a non-selective adenosine receptor antagonist. To elaborate further, we included various C8 two-chain-length linkers to enhance adenosine receptor affinity. The results indicated that the unsubstituted benzyloxy linker (1e A1Ki = 1.52 μM) displayed the highest affinity for the A1 adenosine receptor and the para-chloro-substituted phenoxymethyl (1d A2AKi = 1.33 μM) linker the best A2A adenosine receptor affinity. The position of the oxygen revealed that the phenoxymethyl linker favoured A1 adenosine receptor selectivity over the benzyloxy linker and, by introducing a para-chloro substituent, A2A adenosine receptor selectivity was obtained. Selected compounds (1c, 1e) behaved as A1 adenosine receptor antagonists in GTP shift assays and therefore represent selective and non-selective A1 and A2A adenosine receptor antagonists that may have potential for treating neurological disorders.

  10. Adenosine A1 receptors modulate high voltage-activated Ca2+ currents and motor pattern generation in the Xenopus embryo

    PubMed Central

    Brown, Paul; Dale, Nicholas

    2000-01-01

    Adenosine causes voltage- and non-voltage-dependent inhibition of high voltage-activated (HVA) Ca2+ currents in Xenopus laevis embryo spinal neurons. As this inhibition can be blocked by 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and mimicked by N6-cyclopentyladenosine (CPA) it appears to be mediated by A1 receptors. Agents active at A2 receptors either were without effect or could be blocked by DPCPX. AMP had no agonist action on these receptors. By using ω-conotoxin GVIA we found that adenosine inhibited an N-type Ca2+ current as well as a further unidentified HVA current that was insensitive to dihydropyridines, ω-agatoxin TK and ω-conotoxin MVIIC. Both types of current were subject to voltage- and non-voltage-dependent inhibition. We used CPA and DPCPX to test whether A1 receptors regulated spinal motor pattern generation in spinalized Xenopus embryos. DPCPX caused a near doubling of, while CPA greatly shortened, the length of swimming episodes. In addition, DPCPX slowed, while CPA greatly speeded up, the rate of run-down of motor activity. Our results demonstrate a novel action of A1 receptors in modulating spinal motor activity. Furthermore they confirm that adenosine is produced continually throughout swimming episodes and acts to cause the eventual termination of activity. PMID:10856119

  11. Role of Adenosine A1 Receptor in the Perifornical-Lateral Hypothalamic Area in Sleep-Wake Regulation in Rats

    PubMed Central

    Alam, Md. Noor; Kumar, Sunil; Rai, Seema; Methippara, Melvi; Szymusiak, Ronald; McGinty, Dennis

    2009-01-01

    The perifornical-lateral hypothalamic area (PF-LHA) has been implicated in the regulation of arousal. The PF-LHA contains wake-active neurons that are quiescent during nonREM sleep and in the case of neurons expressing the peptide hypocretin (HCRT), quiescent during both nonREM and REM sleep. Adenosine is an endogenous sleep factor and recent evidence suggests that adenosine via A1 receptors may act on PF-LHA neurons to promote sleep. We examined the effects of bilateral activation as well as blockade of A1 receptors in the PF-LHA on sleep-wakefulness in freely behaving rats. The sleep-wake profiles of male Wistar rats were recorded during reverse microdialysis perfusion of artificial cerebrospinal fluid (aCSF) and two doses of adenosine A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX; 5μM and 50μM) or A1 receptor agonist, N6-cyclopentyladenosine (CPA; 5μM and 50μM) into the PF-LHA for 2h followed by 4h of aCSF perfusion. CPDX perfused into the PF-LHA during lights-on phase produced arousal (F=7.035, p <0.001) and concomitantly decreased both nonREM (F=7.295, p<0.001) and REM sleep (F=3.456, p<0.004). In contrast, CPA perfused into the PF-LHA during lights-off phase significantly suppressed arousal (F = 7.891; p <0.001) and increased nonREM (F = 8.18; p <0.001) and REM sleep (F = 30.036; p = <0.001). These results suggest that PF-LHA is one of the sites where adenosine, acting via A1 receptors, inhibits PF-LHA neurons to promote sleep. PMID:19781535

  12. Allosteric interactions at adenosine A1 and A3 receptors: new insights into the role of small molecules and receptor dimerization

    PubMed Central

    Hill, Stephen J; May, Lauren T; Kellam, Barrie; Woolard, Jeanette

    2014-01-01

    The purine nucleoside adenosine is present in all cells in tightly regulated concentrations. It is released under a variety of physiological and pathophysiological conditions to facilitate protection and regeneration of tissues. Adenosine acts via specific GPCRs to either stimulate cyclic AMP formation, as exemplified by Gs-protein-coupled adenosine receptors (A2A and A2B), or inhibit AC activity, in the case of Gi/o-coupled adenosine receptors (A1 and A3). Recent advances in our understanding of GPCR structure have provided insights into the conformational changes that occur during receptor activation following binding of agonists to orthosteric (i.e. at the same binding site as an endogenous modulator) and allosteric regulators to allosteric sites (i.e. at a site that is topographically distinct from the endogenous modulator). Binding of drugs to allosteric sites may lead to changes in affinity or efficacy, and affords considerable potential for increased selectivity in new drug development. Herein, we provide an overview of the properties of selective allosteric regulators of the adenosine A1 and A3 receptors, focusing on the impact of receptor dimerization, mechanistic approaches to single-cell ligand-binding kinetics and the effects of A1- and A3-receptor allosteric modulators on in vivo pharmacology. Linked ArticlesThis article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-5 PMID:24024783

  13. Involvement of A1 adenosine receptors in altered vascular responses and inflammation in an allergic mouse model of asthma

    PubMed Central

    Ponnoth, Dovenia S.; Nadeem, Ahmed; Tilley, Stephen

    2010-01-01

    Poor lung function and respiratory disorders like asthma have a positive correlation with the development of adverse cardiovascular events. Increased adenosine levels are associated with lung inflammation that could lead to altered vascular responses and systemic inflammation. We hypothesized that asthmatic lung inflammation has systemic effects through A1 adenosine receptors (A1AR) and investigated the effects of aerosolized adenosine on vascular reactivity and inflammation, using A1AR knockout (A1KO) and corresponding wild-type (A1WT) mice that were divided into three experimental groups each: control (CON), allergen sensitized and challenged (SEN), and SEN + aerosolized adenosine (SEN + AD). Animals were sensitized with ragweed (200 μg ip; days 1 and 6), followed by 1% ragweed aerosol challenges (days 11 to 13). On day 14, the SEN + AD groups received one adenosine aerosol challenge (6 mg/ml) for 2 min, and aortae were collected on day 15. 5′-N-ethylcarboxamidoadenosine (NECA; nonselective adenosine analog) induced concentration-dependent aortic relaxation in the A1WT CON group, which was impaired in the A1WT SEN and SEN + AD groups. All groups of A1KO mice showed similar (no significant difference) concentration-dependent relaxation to NECA. The A1WT SEN and SEN + AD groups had a significantly higher contraction to selective A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) compared with the CON group. Western blot data showed that aortic A1AR expression was significantly increased in WT SEN and SEN + AD mice compared with CON mice. Gene expression of ICAM-1 and IL-5 was significantly increased in allergic A1WT aorta and were undetected in the A1KO groups. A1WT allergic mice had significantly higher airway hyperresponsiveness (enhanced pause) to NECA, with adenosine aerosol further enhancing it. In conclusion, allergic A1WT mice showed altered vascular reactivity, increased airway hyperresponsiveness, and systemic inflammation. These data suggest that A1AR

  14. A1 adenosine receptors inhibit chloride transport in the shark rectal gland. Dissociation of inhibition and cyclic AMP.

    PubMed Central

    Kelley, G G; Poeschla, E M; Barron, H V; Forrest, J N

    1990-01-01

    In the in vitro perfused rectal gland of the dogfish shark (Squalus acanthias), the adenosine analogue 2-chloroadenosine (2Clado) completely and reversibly inhibited forskolin-stimulated chloride secretion with an IC50 of 5 nM. Other A1 receptor agonists including cyclohexyladenosine (CHA), N-ethylcarboxamideadenosine (NECA) and R-phenylisopropyl-adenosine (R-PIA) also completely inhibited forskolin stimulated chloride secretion. The "S" stereoisomer of PIA (S-PIA) was a less potent inhibitor of forskolin stimulated chloride secretion, consistent with the affinity profile of PIA stereoisomers for an A1 receptor. The adenosine receptor antagonists 8-phenyltheophylline and 8-cyclopentyltheophylline completely blocked the effect of 2Clado to inhibit forskolin-stimulated chloride secretion. When chloride secretion and tissue cyclic (c)AMP content were determined simultaneously in perfused glands, 2Clado completely inhibited secretion but only inhibited forskolin stimulated cAMP accumulation by 34-40%, indicating that the mechanism of inhibition of secretion by 2Clado is at least partially cAMP independent. Consistent with these results, A1 receptor agonists only modestly inhibited (9-15%) forskolin stimulated adenylate cyclase activity and 2Clado markedly inhibited chloride secretion stimulated by a permeant cAMP analogue, 8-chlorophenylthio cAMP (8CPT cAMP). These findings provide the first evidence for a high affinity A1 adenosine receptor that inhibits hormone stimulated ion transport in a model epithelia. A major portion of this inhibition occurs by a mechanism that is independent of the cAMP messenger system. PMID:1970583

  15. Modulation of ischemia-evoked release of excitatory and inhibitory amino acids by adenosine A1 receptor agonist.

    PubMed

    Goda, H; Ooboshi, H; Nakane, H; Ibayashi, S; Sadoshima, S; Fujishima, M

    1998-09-18

    Adenosine has been reported to have beneficial effects against ischemic brain damage, although the mechanisms are not fully clarified. To examine the role of adenosine on the ischemia-evoked release of neurotransmitters, we applied a highly selective agonist for adenosine A1 receptor, 2-chloro-N6-cyclopentyladenosine (CCPA), into the ischemic brain using in vivo brain dialysis, which directly delivered the agonist to the local brain area. Concentrations of extracellular amino acids (glutamate, aspartate, gamma-aminobutyric acid (GABA) and taurine) and regional blood flow in the striatum of spontaneously hypertensive rats (SHRs) were monitored during cerebral ischemia elicited by bilateral carotid artery occlusion for 40 min and recirculation. Striatal blood flow and basal levels of amino acids were not affected by direct perfusion of CCPA (10 microM or 100 microM). During ischemia, concentrations of glutamate, aspartate, GABA and taurine increased up to 37-, 30-, 96- and 31-fold, respectively, when vehicle alone was administered. Administration of CCPA did not affect the changes in regional blood flow during ischemia and reperfusion. Perfusion of CCPA (100 microM), however, significantly attenuated the ischemia-evoked release of aspartate (by 70%) and glutamate (by 73%). The ischemia-induced increase of GABA tended to be decreased by CCPA, although it was not statistically significant. In contrast, both low and high concentrations of CCPA had little effect on the release of taurine during ischemia. These results suggest that stimulation of adenosine A1 receptors selectively attenuated the ischemia-evoked release of excitatory amino acids, but not of inhibitory amino acids without affecting blood flow. This modulation of the release of amino acids by adenosine A1 receptor agonists may play a protective role against ischemic neuronal damage.

  16. Probing the Binding Site of the A1 Adenosine Receptor Reengineered for Orthogonal Recognition by Tailored Nucleosides

    PubMed Central

    Palaniappan, Krishnan K.; Gao, Zhan-Guo; Ivanov, Andrei A.; Greaves, Rebecca; Adachi, Hayamitsu; Besada, Pedro; Kim, Hea Ok; Kim, Ae Yil; Choe, Seung Ah; Jeong, Lak Shin; Jacobson, Kenneth A.

    2011-01-01

    His272 (7.43) in the seventh transmembrane domain (TM7) of the human A3 adenosine receptor (AR) interacts with the 3′ position of nucleosides, based on selective affinity enhancement at a H272E mutant A3 AR (neoceptor) of 3′-ureido, but not 3′-OH, adenosine analogues. Here, mutation of the analogous H278 of the human A1 AR to Ala, Asp, Glu, or Leu enhanced the affinity of novel 2′- and 3′-ureido adenosine analogues, such as 10 (N6-cyclopentyl-3′-ureido-3′-deoxyadenosine), by >100-fold, while decreasing the affinity or potency of adenosine and other 3′-OH adenosine analogues. His278 mutant receptors produced a similar enhancement regardless of the charge character of the substituted residue, implicating steric rather than electrostatic factors in the gain of function, a hypothesis supported by rhodopsin-based molecular modeling. It was also demonstrated that this interaction was orientationally specific; i.e., mutations at the neighboring Thr277 did not enhance the affinity for a series of 2′- and 3′-ureido nucleosides. Additionally, H-bonding groups placed on substituents at the N6 or 5′ position demonstrated no enhancement in the mutant receptors. These reengineered human A1 ARs revealed orthogonality similar to that of the A3 but not the A2A AR, in which mutation of the corresponding residue, His278, to Asp did not enhance nucleoside affinity. Functionally, the H278D A1 AR was detectable only in a measure of membrane potential and not in calcium mobilization. This neoceptor approach should be useful for the validation of molecular modeling and the dissection of promiscuous GPCR signaling. PMID:17542617

  17. Effects of tianeptine on onset time of pentylenetetrazole-induced seizures in mice: possible role of adenosine A1 receptors.

    PubMed

    Uzbay, Tayfun I; Kayir, Hakan; Ceyhan, Mert

    2007-02-01

    Depression is a common psychiatric problem in epileptic patients. Thus, it is important that an antidepressant agent has anticonvulsant activity. This study was organized to investigate the effects of tianeptine, an atypical antidepressant, on pentylenetetrazole (PTZ)-induced seizure in mice. A possible contribution of adenosine receptors was also evaluated. Adult male Swiss-Webster mice (25-35 g) were subjects. PTZ (80 mg/kg, i.p.) was injected to mice 30 min after tianeptine (2.5-80 mg/kg, i.p.) or saline administration. The onset times of 'first myoclonic jerk' (FMJ) and 'generalized clonic seizures' (GCS) were recorded. Duration of 600 s was taken as a cutoff time in calculation of the onset time of the seizures. To evaluate the contribution of adenosine receptors in the effect of tianeptine, a nonspecific adenosine receptor antagonist caffeine, a specific A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific A2A receptor antagonist 8-(3-chlorostyryl) caffeine (CSC) or their vehicles were administered to the mice 15 min before tianeptine (80 mg/kg) or saline treatments. Tianeptine (40 and 80 mg/kg) pretreatment significantly delayed the onset time of FMJ and GCS. Caffeine (10-60 mg/kg, i.p.) dose-dependently blocked the retarding effect of tianeptine (80 mg/kg) on the onset times of FMJ and GCS. DPCPX (20 mg/kg) but not CSC (1-8 mg/kg) blocked the effect of tianeptine (80 mg/kg) on FMJ. Our results suggest that tianeptine delayed the onset time of PTZ-induced seizures via adenosine A1 receptors in mice. Thus, this drug may be a useful choice for epileptic patients with depression.

  18. Enhanced Actions of Adenosine in Medial Entorhinal Cortex Layer II Stellate Neurons in Temporal Lobe Epilepsy are Mediated via A1 Receptor Activation

    PubMed Central

    Hargus, Nicholas J.; Jennings, Conor; Perez-Reyes, Edward; Bertram, Edward H.; Patel, Manoj K.

    2011-01-01

    Summary Purpose The adenosinergic system is known to exert an inhibitory affect in the brain and as such adenosine has been considered an endogenous anticonvulsant. Entorhinal cortex (EC) layer II neurons, which serve as the primary input to the hippocampus, are spared in temporal lobe epilepsy (TLE) and become hyperexcitable. Since these neurons also express adenosine receptors, the activity of these neurons may be controlled by adenosine, specifically during seizure activity when adenosine levels are thought to rise. In light of this, we determined if the actions of adenosine on medial EC (mEC) layer II stellate neurons are augmented in TLE and by which receptor subtype. Methods Horizontal brain slices were prepared from rats exhibiting spontaneous seizures (TLE) induced by electrical stimulation and compared with age matched control rats. mEC layer II stellate neurons were visually identified and action potentials (AP) evoked by either a series of depolarizing current injection steps or via presynaptic stimulation of mEC deep layers. The effects of adenosine were compared with actions of adenosine A1 and A2A receptor-specific agonists (CPA and CGS 21680) and antagonists (DPCPX and ZM241385) respectively. Immunohistochemical and qPCR techniques were also employed to assess relative adenosine A1 receptor message and expression. Key Findings mEC layer II stellate neurons were hyper-excitable in TLE, evoking a higher frequency of AP's when depolarized and generating bursts of AP's when synaptically stimulated. Adenosine reduced AP frequency and synaptically evoked AP's in a dose dependent manner (500 nM – 100 μM); however, in TLE, the inhibitory actions of adenosine occurred at concentrations that were without affect in control neurons. In both cases, the inhibitory actions of adenosine were mediated via activation of the A1 and not the A2A receptor subtype. qPCR and immunohistochemical experiments revealed an up-regulation of the adenosine A1 mRNA and an

  19. Homeostatic action of adenosine A3 and A1 receptor agonists on proliferation of hematopoietic precursor cells.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Streitová, Denisa; Vacek, Antonín

    2008-07-01

    Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.

  20. The Role of cGMP on Adenosine A1 Receptor-mediated Inhibition of Synaptic Transmission at the Hippocampus

    PubMed Central

    Pinto, Isa; Serpa, André; Sebastião, Ana M.; Cascalheira, José F.

    2016-01-01

    Both adenosine A1 receptor and cGMP inhibit synaptic transmission at the hippocampus and recently it was found that A1 receptor increased cGMP levels in hippocampus, but the role of cGMP on A1 receptor-mediated inhibition of synaptic transmission remains to be established. In the present work we investigated if blocking the NOS/sGC/cGMP/PKG pathway using nitric oxide synthase (NOS), protein kinase G (PKG), and soluble guanylyl cyclase (sGC) inhibitors modify the A1 receptor effect on synaptic transmission. Neurotransmission was evaluated by measuring the slope of field excitatory postsynaptic potentials (fEPSPs) evoked by electrical stimulation at hippocampal slices. N6-cyclopentyladenosine (CPA, 15 nM), a selective A1 receptor agonist, reversibly decreased the fEPSPs by 54 ± 5%. Incubation of the slices with an inhibitor of NOS (L-NAME, 200 μM) decreased the CPA effect on fEPSPs by 57 ± 9% in female rats. In males, ODQ (10 μM), an sGC inhibitor, decreased the CPA inhibitory effect on fEPSPs by 23 ± 6%, but only when adenosine deaminase (ADA,1 U/ml) was present; similar results were found in females, where ODQ decreased CPA-induced inhibition of fEPSP slope by 23 ± 7%. In male rats, the presence of the PKG inhibitor (KT5823, 1 nM) decreased the CPA effect by 45.0 ± 9%; similar results were obtained in females, where KT5823 caused a 32 ± 9% decrease on the CPA effect. In conclusion, the results suggest that the inhibitory action of adenosine A1 receptors on synaptic transmission at hippocampus is, in part, mediated by the NOS/sGC/cGMP/PKG pathway. PMID:27148059

  1. Persistent reduction of cocaine seeking by pharmacological manipulation of adenosine A1 and A2A receptors during extinction training in rats

    PubMed Central

    O’Neill, Casey E.; Hobson, Benjamin D.; Levis, Sophia C.; Bachtell, Ryan K.

    2014-01-01

    Rationale Adenosine receptor stimulation and blockade has been shown to modulate a variety of cocaine related behaviors. Objectives These studies identify the direct effects of adenosine receptor stimulation on cocaine seeking during extinction training and the persistent effects on subsequent reinstatement to cocaine seeking. Methods Rats self-administered cocaine on a fixed-ratio 1 schedule in daily sessions over 3 weeks. Following 1 week withdrawal, the direct effects of adenosine receptor modulation were tested by administering the adenosine A1 receptor agonist, CPA (0.03 mg/kg and 0.1 mg/kg), the adenosine A2A agonist, CGS 21680 (0.03 mg/kg and 0.1 mg/kg), the presynaptic adenosine A2A receptor antagonist, SCH 442416 (0.3 mg/kg, 1 mg/kg, and 3 mg/kg), or vehicle prior to each of 6 daily extinction sessions. The persistent effects of adenosine receptor modulation during extinction training were subsequently tested on reinstatement to cocaine seeking induced by cues, cocaine, and the dopamine D2 receptor agonist, quinpirole. Results All doses of CPA and CGS 21680 impaired initial extinction responding, however only CPA treatment during extinction produced persistent impairment in subsequent cocaine- and quinpirole-induced seeking. Dissociating CPA treatment from extinction did not alter extinction responding or subsequent reinstatement. Administration of SCH 442416 had no direct effects on extinction responding, but produced dose-dependent persistent impairment of cocaine- and quinpirole-induced seeking. Conclusions These findings demonstrate that adenosine A1 or A2A receptor stimulation directly impair extinction responding. Interestingly, adenosine A1 receptor stimulation or presynaptic adenosine A2A receptor blockade during extinction produces lasting changes in relapse susceptibility. PMID:24562064

  2. Repetitive systemic morphine alters activity-dependent plasticity of Schaffer-collateral-CA1 pyramidal cell synapses: involvement of adenosine A1 receptors and adenosine deaminase.

    PubMed

    Sadegh, Mehdi; Fathollahi, Yaghoub

    2014-10-01

    The effectiveness of O-pulse stimulation (TPS) for the reversal of O-pattern primed bursts (PB)-induced long-term potentiation (LTP) were examined at the Schaffer-collateral-CA1 pyramidal cell synapses of hippocampal slices derived from rats chronically treated with morphine (M-T). The results showed that slices derived from both control and M-T rats had normal field excitatory postsynaptic potential (fEPSP)-LTP, whereas PS-LTP in slices from M-T rats was significantly greater than that from control slices. When morphine was applied in vitro to slices derived from rats chronically treated with morphine, the augmentation of PS-LTP was not seen. TPS given 30 min after LTP induction failed to reverse the fEPSP- or PS-LTP in both groups of slices. However, TPS delivered in the presence of long-term in vitro morphine caused the PS-LTP reversal. This effect was blocked by the adenosine A1 receptor (A1R) antagonist CPX (200 nM) and furthermore was enhanced by the adenosine deaminase (ADA) inhibitor EHNA (10 μM). Interestingly, TPS given 30 min after LTP induction in the presence of EHNA (10 μM) can reverse LTP in morphine-exposed control slices in vitro. These results suggest adaptive changes in the hippocampus area CA1 in particular in adenosine system following repetitive systemic morphine. Chronic in vivo morphine increases A1R and reduces ADA activity in the hippocampus. Consequently, adenosine can accumulate because of a stimulus train-induced activity pattern in CA1 area and takes the opportunity to work as an inhibitory neuromodulator and also to enable CA1 to cope with chronic morphine. In addition, adaptive mechanisms are differentially working in the dendrite layer rather than the somatic layer of hippocampal CA1.

  3. Loss of Myocardial Ischemic Postconditioning in Adenosine A1 and Bradykinin B2 Receptors Gene Knockout Mice

    PubMed Central

    Xi, Lei; Das, Anindita; Zhao, Zhi-Qing; Merino, Vanessa F.; Bader, Michael; Kukreja, Rakesh C.

    2011-01-01

    Background Ischemic postconditioning (PostC) is a recently described cardioprotective modality against reperfusion injury, through series of brief re-flow interruptions applied at the very onset of reperfusion. It is proposed that PostC can activate a complex cellular signaling cascade, in which cell membrane receptors could serve as the upstream triggers of PostC. However, the exact subtypes of such receptors remain controversial or uninvestigated. To this context, the purpose of present study was to determine the definitive role of adenosine A1, bradykinin B1 and B2 receptors in PostC. Methods and Results The hearts isolated from adult male C57BL/6J wild-type mice or the mice lacking adenosine A1, or bradykinin B1 or B2 receptors subjected to zero-flow global ischemia and reperfusion in a Langendorff model. PostC, consisting of 6 cycles of 10 sec of reperfusion and 10 sec of ischemia, demonstrated significantly reduced myocardial infarct size (22.8±3.1%, Mean±SEM) as compared with the non-PostC wild-type controls (35.1±2.8%, P<0.05). The infarct-limiting protection of PostC was absent in adenosine A1 receptor knockout mice (34.9±2.7%) or bradykinin B2 receptor knockout mice (33.3±1.7%) and was partially attenuated in bradykinin B1 receptor deficient mice (25.6±2.9%; P>0.05). On the other hand, PostC did not significantly alter post-ischemic cardiac contractile function and coronary flow. Conclusions With the use of three distinctive strains of gene knockout mice, the current study has provided the first conclusive evidence showing PostC-induced infarct-limiting cardioprotection could be triggered by activation of multiple types of cell membrane receptors, which include adenosine A1 and bradykinin B2 receptors. PMID:18824766

  4. Adenosine receptor targets for pain.

    PubMed

    Sawynok, J

    2016-12-03

    The main focus for the development of adenosine targets as analgesics to date has been A1Rs due to its antinociceptive profile in various preclinical pain models. The usefulness of systemic A1R agonists may be limited by other effects (cardiovascular, motor), but enhanced selectivity for pain might occur with partial agonists, potent and highly selective agonists, or allosteric modulators. A2AR agonists exhibit some peripheral pronociceptive effects, but also act on immune cells to suppress inflammation and on spinal glia to suppress pain signaling and may be useful for inflammatory and neuropathic pain. A2BR agonists exhibit peripheral proinflammatory effects on immune cells, but also spinal antinociceptive effects similar to A2AR agonists. A3Rs are now demonstrated to produce antinociception in several preclinical neuropathic pain models, with mechanistic actions on glial cells, and may be useful for neuropathic pain. Endogenous adenosine levels can be augmented by inhibition of metabolism (via adenosine kinase) or increased generation (via nucleotidases), and these approaches have implications for pain. Endogenous adenosine contributes to antinociception by several pharmacological agents, herbal remedies, acupuncture, transcutaneous electrical nerve stimulation, exercise, joint mobilization, and water immersion via spinal and/or peripheral effects, such that this system appears to constitute a major pain regulatory system. Finally, caffeine inhibits A1-, A2A- and A3Rs with similar potency, and dietary caffeine intake will need attention in trials of: (a) agonists and/or modulators acting at these receptors, (b) some pharmacological and herbal analgesics, and (c) manipulations that enhance endogenous adenosine levels, all of which are inhibited by caffeine and/or A1R antagonists in preclinical studies. All adenosine receptors have effects on spinal glial cells in regulating nociception, and gender differences in the involvement of such cells in chronic

  5. Molecular mechanism of allosteric modulation at GPCRs: insight from a binding kinetics study at the human A1 adenosine receptor

    PubMed Central

    Guo, Dong; Venhorst, Suzanne N; Massink, Arnault; van Veldhoven, Jacobus P D; Vauquelin, Georges; IJzerman, Adriaan P; Heitman, Laura H

    2014-01-01

    Background and Purpose Many GPCRs can be allosterically modulated by small-molecule ligands. This modulation is best understood in terms of the kinetics of the ligand–receptor interaction. However, many current kinetic assays require at least the (radio)labelling of the orthosteric ligand, which is impractical for studying a range of ligands. Here, we describe the application of a so-called competition association assay at the adenosine A1 receptor for this purpose. Experimental Approach We used a competition association assay to examine the binding kinetics of several unlabelled orthosteric agonists of the A1 receptor in the absence or presence of two allosteric modulators. We also tested three bitopic ligands, in which an orthosteric and an allosteric pharmacophore were covalently linked with different spacer lengths. The relevance of the competition association assay for the binding kinetics of the bitopic ligands was also explored by analysing simulated data. Key Results The binding kinetics of an unlabelled orthosteric ligand were affected by the addition of an allosteric modulator and such effects were probe- and concentration-dependent. Covalently linking the orthosteric and allosteric pharmacophores into one bitopic molecule had a substantial effect on the overall on- or off-rate. Conclusion and Implications The competition association assay is a useful tool for exploring the allosteric modulation of the human adenosine A1 receptor. This assay may have general applicability to study allosteric modulation at other GPCRs as well. PMID:25040887

  6. Adenosine A1 Receptors in Mouse Pontine Reticular Formation Modulate Nociception Only in the Presence of Systemic Leptin

    PubMed Central

    Watson, Sarah L.; Watson, Christopher J.; Baghdoyan, Helen A.; Lydic, Ralph

    2014-01-01

    Human obesity is associated with increased leptin levels and pain, but the specific brain regions and neurochemical mechanisms underlying this association remain poorly understood. This study used adult male C57BL/6J (B6, n = 14) mice and leptin-deficient, obese B6.Cg-Lepob/J (obese, n = 10) mice to evaluate the hypothesis that nociception is altered by systemic leptin levels and by adenosine A1 receptors in the pontine reticular formation. Nociception was quantified as paw withdrawal latency (PWL) in s after onset of a thermal stimulus. PWL was converted to percent maximum possible effect (%MPE). After obtaining baseline PWL measures, the pontine reticular formation was microinjected with saline (control), three concentrations of the adenosine A1 receptor agonist N6-p-sulfophenyladenosine (SPA), or super-active mouse leptin receptor antagonist (SMLA) followed by SPA 15 min later, and PWL was again quantified. In obese, leptin-deficient mice, nociception was quantified before and during leptin replacement via subcutaneous osmotic pumps. SPA was administered into the pontine reticular formation of leptin-replaced mice and PWL testing was repeated. During baseline (before vehicle or SPA administration), PWL was significantly (p = 0.0013) lower in leptin-replaced obese mice than in B6 mice. Microinjecting SPA into the pontine reticular formation of B6 mice caused a significant (p = 0.0003) concentration-dependent increase in %MPE. SPA also significantly (p < 0.05) increased %MPE in B6 mice and in leptin-replaced obese mice, but not in leptin-deficient obese mice. Microinjection of the mouse super-active leptin antagonist (SMLA) into the pontine reticular formation before SPA did not alter PWL. The results show for the first time that pontine reticular formation administration of the adenosine A1 receptor agonist SPA produced antinociception only in the presence of systemic leptin. The concentration-response data support the interpretation that adenosine A1 receptors

  7. Regulation of hippocampal cannabinoid CB1 receptor actions by adenosine A1 receptors and chronic caffeine administration: implications for the effects of Δ9-tetrahydrocannabinol on spatial memory.

    PubMed

    Sousa, Vasco C; Assaife-Lopes, Natália; Ribeiro, Joaquim A; Pratt, Judith A; Brett, Ros R; Sebastião, Ana M

    2011-01-01

    The cannabinoid CB(1) receptor-mediated modulation of γ-aminobutyric acid (GABA) release from inhibitory interneurons is important for the integrity of hippocampal-dependent spatial memory. Although adenosine A(1) receptors have a central role in fine-tuning excitatory transmission in the hippocampus, A(1) receptors localized in GABAergic cells do not directly influence GABA release. CB(1) and A(1) receptors are the main targets for the effects of two of the most heavily consumed psychoactive substances worldwide: Δ(9)-tetrahydrocannabinol (THC, a CB(1) receptor agonist) and caffeine (an adenosine receptor antagonist). We first tested the hypothesis that an A(1)-CB(1) interaction influences GABA and glutamate release in the hippocampus. We found that A(1) receptor activation attenuated the CB(1)-mediated inhibition of GABA and glutamate release and this interaction was manifested at the level of G-protein activation. Using in vivo and in vitro approaches, we then investigated the functional implications of the adenosine-cannabinoid interplay that may arise following chronic caffeine consumption. Chronic administration of caffeine in mice (intraperitoneally, 3 mg/kg/day, for 15 days, >12 h before trials) led to an A(1)-mediated enhancement of the CB(1)-dependent acute disruptive effects of THC on a short-term spatial memory task, despite inducing a reduction in cortical and hippocampal CB(1) receptor number and an attenuation of CB(1) coupling with G protein. A(1) receptor levels were increased following chronic caffeine administration. This study shows that A(1) receptors exert a negative modulatory effect on CB(1)-mediated inhibition of GABA and glutamate release, and provides the first evidence of chronic caffeine-induced alterations on the cannabinoid system in the cortex and hippocampus, with functional implications in spatial memory.

  8. Season primes the brain in an arctic hibernator to facilitate entrance into torpor mediated by adenosine A(1) receptors.

    PubMed

    Jinka, Tulasi R; Tøien, Øivind; Drew, Kelly L

    2011-07-27

    Torpor in hibernating mammals defines the nadir in mammalian metabolic demand and body temperature that accommodates seasonal periods of reduced energy availability. The mechanism of metabolic suppression during torpor onset is unknown, although the CNS is a key regulator of torpor. Seasonal hibernators, such as the arctic ground squirrel (AGS), display torpor only during the winter, hibernation season. The seasonal character of hibernation thus provides a clue to its regulation. In the present study, we delivered adenosine receptor agonists and antagonists into the lateral ventricle of AGSs at different times of the year while monitoring the rate of O(2) consumption and core body temperature as indicators of torpor. The A(1) antagonist cyclopentyltheophylline reversed spontaneous entrance into torpor. The adenosine A(1) receptor agonist N(6)-cyclohexyladenosine (CHA) induced torpor in six of six AGSs tested during the mid-hibernation season, two of six AGSs tested early in the hibernation season, and none of the six AGSs tested during the summer, off-season. CHA-induced torpor within the hibernation season was specific to A(1)AR activation; the A(3)AR agonist 2-Cl-IB MECA failed to induce torpor, and the A(2a)R antagonist MSX-3 failed to reverse spontaneous onset of torpor. CHA-induced torpor was similar to spontaneous entrance into torpor. These results show that metabolic suppression during torpor onset is regulated within the CNS via A(1)AR activation and requires a seasonal switch in the sensitivity of purinergic signaling.

  9. Differential Expression of Adenosine A1 and A2A Receptors After Upper Cervical (C2) Spinal Cord Hemisection in Adult Rats

    PubMed Central

    Petrov, Theodor; Kreipke, Christian; Alilain, Warren; Nantwi, Kwaku D

    2007-01-01

    Background: In an animal model of spinal cord injury, a latent respiratory motor pathway can be pharmacologically activated via adenosine receptors to restore respiratory function after cervical (C2) spinal cord hemisection that paralyzes the hemidiaphragm ipsilateral to injury. Although spinal phrenic motoneurons immunopositive for adenosine receptors have been demonstrated (C3–C5), it is unclear if adenosine receptor protein levels are altered after C2 hemisection and theophylline administration. Objective: To assess the effects of C2 spinal cord hemisection and theophylline administration on the expression of adenosine receptor proteins. Methods: Adenosine A1 and A2A receptor protein levels were assessed in adult rats classified as (a) noninjured and theophylline treated, (b) C2 hemisected, (c) C2 hemisected and administered theophylline orally (3× daily) for 3 days only, and (d) C2 hemisected and administered theophylline (3× daily for 3 days) and assessed 12 days after drug administration. Assessment of A1 protein levels was carried out via immunohistochemistry and A2A protein levels by densitometry. Results: Adenosine A1 protein levels decreased significantly (both ipsilateral and contralateral to injury) after C2 hemisection; however, the decrease was attenuated in hemisected and theophylline-treated animals. Attenuation in adenosine A1 receptor protein levels persisted when theophylline administration was stopped for 12 days prior to assessment. Adenosine A2A protein levels were unchanged by C2 hemisection; however, theophylline reduced the levels within the phrenic motoneurons. Furthermore, the decrease in A2A levels persisted 12 days after theophylline was withdrawn. Conclusion: Our findings suggest that theophylline mitigates the effects of C2 hemisection by attenuating the C2 hemisection–induced decrease in A1 protein levels. Furthermore, A2A protein levels are unaltered by C2 hemisection but decrease after continuous or interrupted theophylline

  10. Crosstalk between adenosine A1 and β1-adrenergic receptors regulates translocation of PKCε in isolated rat cardiomyocytes

    PubMed Central

    Komatsu, Satoshi; Dobson, James G.; Ikebe, Mitsuo; Shea, Lynne G.; Fenton, Richard A.

    2012-01-01

    Adenosine A1 receptor (A1R)-induced translocation of PKCε to transverse (t) tubular membranes in isolated rat cardiomyocytes is associated with a reduction in β1-adrenergic-stimulated contractile function. The PKCε-mediated activation of protein kinase D (PKD) by endothelin-1 is inhibited by β1-adrenergic stimulated protein kinase A (PKA) suggesting a similar mechanism of A1R signal transduction modulation by adrenergic agonists may exist in the heart. We have investigated the influence of β1-adrenergic stimulation on PKCε translocation elicited by A1R. Immunofluorescence imaging and Western blotting with PKCε and β-COP antibodies were used to quantify the co-localization of PKCε and t-tubular structures in isolated rat cardiomyocytes. The A1R agonist CCPA increased the co-localization of PKCε and t-tubules as detected by imaging. The β1-adrenergic receptor agonist isoproterenol (ISO) inhibited this effect of CCPA. Forskolin, a potent activator of PKA, mimicked, and H89, a pharmacological PKA inhibitor, and PKI, a membrane-permeable PKA peptide PKA inhibitor, attenuated the negative effect of ISO on the A1R-mediated PKCε translocation. Western blotting with isolated intact hearts revealed an increase in PKCε/β-COP co-localization induced by A1R. This increase was attenuated by the A1R antagonist DPCPX and ISO. The ISO-induced attenuation was reversed by H89. It is concluded that adrenergic stimulation inhibits A1R-induced PKCε translocation to the PKCε anchor site RACK2 constituent of a coatomer containing β-COP and associated with the t-tubular structures of the heart. In that this translocation has been previously associated with the antiadrenergic property of A1R, it is apparent that the interactive effects of adenosine and β1-adrenergic agonists on function are complex in the heart. PMID:22105697

  11. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors.

    PubMed

    Martín, Ricardo; Ladera, Carolina; Bartolomé-Martín, David; Torres, Magdalena; Sánchez-Prieto, José

    2008-09-01

    Neurotransmitter release is inhibited by G-protein coupled receptors (GPCRs) through signalling pathways that are negatively coupled to Ca2+ channels and adenylyl cyclase. Through Ca2+ imaging and immunocytochemistry, we have recently shown that adenosine A1, GABAB and the metabotropic glutamate type 7 receptors coexist in a subset of cerebrocortical nerve terminals. As these receptors inhibit glutamate release through common intracellular signalling pathways, their co-activation occluded each other responses. Here we have addressed whether the occlusion of receptor responses is restricted to the glutamate release mediated by N-type Ca2+ channels by analysing this process in nerve terminals from mice lacking the alpha1B subunit (Cav 2.2) of these channels. We found that glutamate release from cerebrocortical nerve terminals without these channels, in which release relies exclusively on P/Q type Ca2+ channels, is not modulated by mGlu7 receptors. Furthermore, there is no occlusion of the release inhibition by GABAB and adenosine A1. Hence, in the cerebrocortical preparation, these three receptors only appear to coexist in N-type channel containing nerve terminals. In contrast, in hippocampal nerve terminals lacking this subunit, where mGlu7 receptors modulate glutamate release via P/Q type channels, the occlusion of inhibitory responses by co-stimulation of adenosine A1, GABAB and mGlu7 receptors was observed. Thus, occlusion of the responses by the three GPCRs is independent of the Ca2+ channel type but rather, it is associated to functional mGlu7 receptors.

  12. Regulation of Hippocampal Cannabinoid CB1 Receptor Actions by Adenosine A1 Receptors and Chronic Caffeine Administration: Implications for the Effects of Δ9-Tetrahydrocannabinol on Spatial Memory

    PubMed Central

    Sousa, Vasco C; Assaife-Lopes, Natália; Ribeiro, Joaquim A; Pratt, Judith A; Brett, Ros R; Sebastião, Ana M

    2011-01-01

    The cannabinoid CB1 receptor-mediated modulation of γ-aminobutyric acid (GABA) release from inhibitory interneurons is important for the integrity of hippocampal-dependent spatial memory. Although adenosine A1 receptors have a central role in fine-tuning excitatory transmission in the hippocampus, A1 receptors localized in GABAergic cells do not directly influence GABA release. CB1 and A1 receptors are the main targets for the effects of two of the most heavily consumed psychoactive substances worldwide: Δ9-tetrahydrocannabinol (THC, a CB1 receptor agonist) and caffeine (an adenosine receptor antagonist). We first tested the hypothesis that an A1–CB1 interaction influences GABA and glutamate release in the hippocampus. We found that A1 receptor activation attenuated the CB1-mediated inhibition of GABA and glutamate release and this interaction was manifested at the level of G-protein activation. Using in vivo and in vitro approaches, we then investigated the functional implications of the adenosine–cannabinoid interplay that may arise following chronic caffeine consumption. Chronic administration of caffeine in mice (intraperitoneally, 3 mg/kg/day, for 15 days, >12 h before trials) led to an A1-mediated enhancement of the CB1-dependent acute disruptive effects of THC on a short-term spatial memory task, despite inducing a reduction in cortical and hippocampal CB1 receptor number and an attenuation of CB1 coupling with G protein. A1 receptor levels were increased following chronic caffeine administration. This study shows that A1 receptors exert a negative modulatory effect on CB1-mediated inhibition of GABA and glutamate release, and provides the first evidence of chronic caffeine-induced alterations on the cannabinoid system in the cortex and hippocampus, with functional implications in spatial memory. PMID:20927050

  13. Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy.

    PubMed

    Katz, N K; Ryals, J M; Wright, D E

    2015-01-29

    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8 weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N(6)-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of

  14. Central or Peripheral Delivery of an Adenosine A1 Receptor Agonist Improves Mechanical Allodynia in a Mouse Model of Painful Diabetic Neuropathy

    PubMed Central

    Katz, N. K.; Ryals, J. M.; Wright, D. E.

    2014-01-01

    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8-weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N6-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of painful

  15. Positive allosteric modulation of A1 adenosine receptors as a novel and promising therapeutic strategy for anxiety.

    PubMed

    Vincenzi, Fabrizio; Ravani, Annalisa; Pasquini, Silvia; Merighi, Stefania; Gessi, Stefania; Romagnoli, Romeo; Baraldi, Pier Giovanni; Borea, Pier Andrea; Varani, Katia

    2016-12-01

    Activation of A1 adenosine receptors (ARs) has been associated with anxiolytic-like effects in different behavioral tests, but development of A1AR agonists for therapeutic use has been hampered, most likely due to the presence of side effects. With the aim to identify a safer approach for the treatment of anxiety, we investigated, in mice, the anxiolytic-like properties of a novel A1AR positive allosteric modulator, TRR469. Acute administration of TRR469 (0.3-3 mg/kg) resulted in robust anxiolytic-like effects in the elevated plus maze, the dark/light box, the open field and the marble burying tests. The magnitude of the anxiolytic action of TRR469 was comparable to that obtained with benzodiazepine diazepam (1 mg/kg). The use of the A1AR antagonist DPCPX (3 mg/kg) suggested that the effects of TRR469 were mediated by this receptor subtype. In contrast to diazepam, the novel positive allosteric modulator did not potentiate the sedative effect of ethanol (3.5 g/kg) evaluated by the loss of righting reflex. While diazepam produced motor coordination impairment in the rotarod test, this effect being enhanced by the presence of ethanol (1.5 g/kg), TRR469 did not elicit locomotor disturbances either when administered alone or in the presence of ethanol. In vitro, TRR469 was able to increase the number of A1AR recognizable by the agonist radioligand [(3)H]-CCPA in mouse brain regions involved in emotional processes. TRR469 markedly increased the affinity of the agonist CCPA, suggesting the capability, in vivo, to increase the affinity of endogenous adenosine. Taken together, these findings indicate that the positive allosteric modulation of A1AR may represent a promising approach for the treatment of anxiety-related disorders.

  16. Relative binding orientations of adenosine A1 receptor ligands — A test case for Distributed Multipole Analysis in medicinal chemistry

    NASA Astrophysics Data System (ADS)

    van der Wenden, Eleonora M.; Price, Sarah L.; Apaya, Robert P.; IJzerman, Adriaan P.; Soudijn, Willem

    1995-02-01

    The electrostatic properties of adenosine-based agonists and xanthine-based antagonists for the adenosine A1 receptor were used to assess various proposals for their relative orientation in the unknown binding site. The electrostatic properties were calculated from distributed multipole representations of SCF wavefunctions. A range of methods of assessing the electrostatic similarity of the ligands were used in the comparison. One of the methods, comparing the sign of the potential around the two molecules, gave inconclusive results. The other approaches, however, provided a mutually complementary and consistent picture of the electrostatic similarity and dissimilarity of the molecules in the three proposed relative orientations. This was significantly different from the results obtained previously with MOPAC AM1 point charges. In the standard model overlay, where the aromatic nitrogen atoms of both agonists and antagonists are in the same position relative to the binding site, the electrostatic potentials are so dissimilar that binding to the same receptor site is highly unlikely. Overlaying the N6-region of adenosine with that near C8 of theophylline (the N6-C8 model) produces the greatest similarity in electrostatic properties for these ligands. However, N6-cyclopentyladenosine (CPA) and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) show greater electrostatic similarity when the aromatic rings are superimposed according to the flipped model, in which the xanthine ring is rotated around its horizontal axis. This difference is mainly attributed to the change in conformation of N6-substituted adenosines and could result in a different orientation for theophylline and DPCPX within the receptor binding site. However, it is more likely that DPCPX also binds according to the N6-C8 model, as this model gives the best steric overlay and would be favoured by the lipophilic forces, provided that the binding site residues could accommodate the different electrostatic

  17. Modulation of dopamine-mediated facilitation at the neuromuscular junction of Wistar rats: A role for adenosine A1/A2A receptors and P2 purinoceptors.

    PubMed

    Elnozahi, Neveen A; AlQot, Hadir E; Mohy El-Din, Mahmoud M; Bistawroos, Azza E; Abou Zeit-Har, Mohamed S

    2016-06-21

    This study aims to understand how dopamine and the neuromodulators, adenosine and adenosine triphosphate (ATP) modulate neuromuscular transmission. Adenosine and ATP are well-recognized for their regulatory effects on dopamine in the central nervous system. However, if similar interactions occur at the neuromuscular junction is unknown. We hypothesize that the activation of adenosine A1/A2A and/or P2 purinoceptors may influence the action of dopamine on neuromuscular transmission. Using the rat phrenic nerve hemi-diaphragm, we assessed the influence of dopamine, adenosine and ATP on the height of nerve-evoked muscle twitches. We investigated how the selective blockade of adenosine A1 receptors (2.5nM DPCPX), adenosine A2A receptors (50nM CSC) and P2 purinoceptors (100μM suramin) modified the effects of dopamine. Dopamine alone increased indirect muscle contractions while adenosine and ATP either enhanced or depressed nerve-evoked muscle twitches in a concentration-dependent manner. The facilitatory effects of 256μM dopamine were significantly reduced to 29.62±2.79% or 53.69±5.45% in the presence of DPCPX or CSC, respectively, relative to 70.03±1.57% with dopamine alone. Alternatively, the action of 256μM dopamine was potentiated from 70.03±1.57, in the absence of suramin, to 86.83±4.36%, in the presence of suramin. It can be concluded that the activation of adenosine A1 and A2A receptors and P2 purinoceptors potentially play a central role in the regulation of dopamine effects at the neuromuscular junction. Clinically this study offers new insights for the indirect manipulation of neuromuscular transmission for the treatment of disorders characterized by motor dysfunction. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Antagonist Selective Modulation of Adenosine A1 and A3 Receptor Pharmacology by the Food Dye Brilliant Black BN: Evidence for Allosteric Interactions

    PubMed Central

    May, L. T.; Briddon, S. J.

    2010-01-01

    Allosteric binding sites on the adenosine receptor family represent potential therapeutic targets for a number of conditions involving metabolic stress. This study has identified Brilliant Black BN as a novel allosteric modulator of the adenosine A1 and A3 receptors. In addition to being a food dye and pharmaceutical excipient, Brilliant Black BN is commonly used within calcium mobilization assays to quench extracellular fluorescence. Brilliant Black BN (5–500 μM) had no significant effect on the calcium mobilization stimulated by the nonselective adenosine receptor agonist 5′-(N-ethylcarboxamido)adenosine in Chinese hamster ovary cells stably transfected with the human adenosine A1 or A3 receptor. Likewise, calcium mobilization and radioligand binding assays found that Brilliant Black BN (5–500 μM) did not significantly influence the antagonism mediated by 8-cyclopentyl-1,3-dipropylxanthine (100 nM) at the A1 receptor. In contrast, the affinity of N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-yl]benzene acetamide (MRS1220) at the A3 receptor and xanthine amine congener (XAC) and XAC-X-BY630 at the A1 and A3 receptors was significantly decreased in the presence of 500 μM Brilliant Black BN. A reduction in XAC potency at the A1 and A3 receptor was achieved within 1 min of Brilliant Black BN addition, despite receptors having been pre-equilibrated with antagonist. Dissociation kinetics of the fluorescent XAC derivative, XAC-X-BY630, revealed that the decrease in affinity is probably due to a significant increase in dissociation rate of the antagonist in the presence of Brilliant Black BN. Taken together, these results suggest that Brilliant Black BN can act allosterically to modify ligand affinity at A1 and A3 receptors. PMID:20086038

  19. Caffeine occupancy of human cerebral A1 adenosine receptors: in vivo quantification with 18F-CPFPX and PET.

    PubMed

    Elmenhorst, David; Meyer, Philipp T; Matusch, Andreas; Winz, Oliver H; Bauer, Andreas

    2012-11-01

    Caffeine is the neuroactive agent in coffee and tea and is a broadly consumed stimulant. It is a nonselective antagonist of the neuromodulator adenosine and, if applied in commonly consumed doses, evokes its stimulating effects through the blockade of adenosine receptors. (18)F-8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ((18)F-CPFPX) has been established as a highly selective and affine PET ligand for the A(1) adenosine receptor (A(1)AR). The objective of the present study was to visualize and quantify the in vivo occupancy of the human cerebral A(1)AR by caffeine using (18)F-CPFPX and PET. Fifteen subjects (age range, 24-68 y) underwent a 140-min bolus-plus-constant-infusion PET experiment after at least 36 h of caffeine abstinence. Metabolite-corrected blood data were used to calculate steady-state distribution volumes (V(T)) during the baseline condition of the scan between 70 and 90 min. Subsequently, subjects received a 10-min infusion of varying concentrations (0.5-4.3 mg/kg of body weight) of caffeine at 90 min. Occupancy V(T) of the A(1)AR was thereafter estimated using data acquired between 120 and 140 min. Occupancy levels were calculated using the Lassen plot, from which the inhibitory concentrations of 50% were derived. Plasma levels of caffeine were determined at regular intervals. One subject received an intravenous vehicle as a placebo. Caffeine displaced 5%-44% of (18)F-CPFPX binding in a concentration-dependent manner. There was no change of radioligand binding after the administration of placebo. Half-maximal displacement was achieved at a plasma caffeine concentration of 67 μM, which corresponds to 450 mg in a 70-kg subject or approximately 4.5 cups of coffee. Given a biologic half-life of about 5 h, caffeine might therefore occupy up to 50% of the cerebral A(1)AR when caffeinated beverages are repeatedly consumed during a day. Furthermore, the present study provides evidence that (18)F-CPFPX PET is suitable for studying the cerebral

  20. β-Nicotinamide adenine dinucleotide acts at prejunctional adenosine A1 receptors to suppress inhibitory musculomotor neurotransmission in guinea pig colon and human jejunum

    PubMed Central

    Wang, Guo-Du; Wang, Xi-Yu; Liu, Sumei; Xia, Yun; Zou, Fei; Qu, Meihua; Needleman, Bradley J.; Mikami, Dean J.

    2015-01-01

    Intracellular microelectrodes were used to record neurogenic inhibitory junction potentials in the intestinal circular muscle coat. Electrical field stimulation was used to stimulate intramural neurons and evoke contraction of the smooth musculature. Exposure to β-nicotinamide adenine dinucleotide (β-NAD) did not alter smooth muscle membrane potential in guinea pig colon or human jejunum. ATP, ADP, β-NAD, and adenosine, as well as the purinergic P2Y1 receptor antagonists MRS 2179 and MRS 2500 and the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine, each suppressed inhibitory junction potentials in guinea pig and human preparations. β-NAD suppressed contractile force of twitch-like contractions evoked by electrical field stimulation in guinea pig and human preparations. P2Y1 receptor antagonists did not reverse this action. Stimulation of adenosine A1 receptors with 2-chloro-N6-cyclopentyladenosine suppressed the force of twitch contractions evoked by electrical field stimulation in like manner to the action of β-NAD. Blockade of adenosine A1 receptors with 8-cyclopentyl-1,3-dipropylxanthine suppressed the inhibitory action of β-NAD on the force of electrically evoked contractions. The results do not support an inhibitory neurotransmitter role for β-NAD at intestinal neuromuscular junctions. The data suggest that β-NAD is a ligand for the adenosine A1 receptor subtype expressed by neurons in the enteric nervous system. The influence of β-NAD on intestinal motility emerges from adenosine A1 receptor-mediated suppression of neurotransmitter release at inhibitory neuromuscular junctions. PMID:25813057

  1. Characterization of the binding of a novel nonxanthine adenosine antagonist radioligand, ( sup 3 H)CGS 15943, to multiple affinity states of the adenosine A1 receptor in the rat cortex

    SciTech Connect

    Jarvis, M.F.; Williams, M.; Do, U.H.; Sills, M.A. )

    1991-01-01

    The triazoloquinazoline CGS 15943 is the first reported nonxanthine adenosine antagonist that has high affinity for brain adenosine receptors. In the present study, the binding of (3H) CGS 15943 to recognition sites in rat cortical membranes was characterized. Saturation experiments revealed that (3H)CGS 15943 labeled a single class of recognition sites with high affinity and limited capacity. Competition studies revealed that the binding of (3H)CGS 15943 was consistent with the labeling of brain adenosine A1 receptors. Adenosine agonists inhibited 1 nM (3H)CGS 15943 binding with the following order of activity N6-cyclopentyladenosine (IC50 = 15 nM) greater than 2-chloroadenosine greater than (R)-N6-phenylisopropyladenosine greater than 5'-N6-ethylcarboxamidoadenosine greater than (S)N6-phenylisopropyladenosine greater than CGS 21680 greater than CV 1808 (IC50 greater than 10,000 nM). The potency order for adenosine antagonists was CGS 15943 (IC50 = 5 nM) greater than 8-phenyltheophylline greater than 1,3-dipropyl-8-(4-amino-2-chloro)phenylxanthine greater than 1,3-diethyl-8-phenylxanthine greater than theophylline = caffeine (IC50 greater than 10,000 nM). Antagonist inhibition curves were steep and best described by a one-site binding model. In contrast, adenosine A1 agonist competition curves were shallow, as indicated by Hill coefficients less than unity. Computer analysis revealed that these inhibition curves were best described by a two-site binding model. Agonist competition curves generated in the presence of 1 mM GTP resulted in a rightward shift and steepening of the inhibition-concentration curves, whereas antagonist binding was not altered in the presence of GTP. The complex binding interactions found with adenosine agonists indicate that (3H)CGS 15943 labels both high and low affinity components of the adenosine A1 receptor in the rat cortex.

  2. Adenosine A1-Receptors Modulate mTOR Signaling to Regulate White Matter Inflammatory Lesions Induced by Chronic Cerebral Hypoperfusion.

    PubMed

    Cheng, Pengfei; Zuo, Xuzheng; Ren, Yifei; Bai, Shunjie; Tang, Weiju; Chen, Xiuying; Wang, Gong; Wang, Haoxiang; Huang, Wen; Xie, Peng

    2016-12-01

    We sought to investigate the role of the adenosine A1 receptors (A1ARs) in white matter lesions under chronic cerebral hypoperfusion (CCH) and explore the potential repair mechanisms by activation of the receptors. A right unilateral common carotid artery occlusion (rUCCAO) method was used to construct a CCH model. 2-chloro-N6-cyclopentyladenosine (CCPA), a specific agonist of A1ARs, was used to explore the biological mechanisms of repair in white matter lesions under CCH. The expression of mammalian target of rapamycin (mTOR), phosphorylation of mTOR (P-mTOR), myelin basic protein (MBP, a marker of white matter myelination) were detected by Western-blot. Pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and anti-inflammatory cytokine interleukin-10 (IL-10) levels were determined by ELISA. Compared with the control groups on week 2, 4 and 6, in CCPA-treated groups, the ratio of P-mTOR/mTOR, expression of MBP and IL-10 increased markedly, while the expression of TNF-α reduced at week 6. In conclusion, A1ARs appears to reduce inflammation in white matter via the mTOR signaling pathway in the rUCCAO mice. Therefore, A1ARs may serve as a therapeutic target during the repair of white matter lesions under CCH.

  3. Partial separation of platelet and placental adenosine receptors from adenosine A2-like binding protein

    SciTech Connect

    Zolnierowicz, S.; Work, C.; Hutchison, K.; Fox, I.H. )

    1990-04-01

    The ubiquitous adenosine A2-like binding protein obscures the binding properties of adenosine receptors assayed with 5'-N-({sup 3}H)ethylcarboxamidoadenosine (({sup 3}H)NECA). To solve this problem, we developed a rapid and simple method to separate adenosine receptors from the adenosine A2-like binding protein. Human platelet and placental membranes were solubilized with 1% 3-((3-cholamidopropyl)dimethylammonio)-1-propanesulfonate. The soluble platelet extract was precipitated with polyethylene glycol and the fraction enriched in adenosine receptors was isolated from the precipitate by differential centrifugation. The adenosine A2-like binding protein was removed from the soluble placental extract with hydroxylapatite and adenosine receptors were precipitated with polyethylene glycol. The specificity of the ({sup 3}H)NECA binding is typical of an adenosine A2 receptor for platelets and an adenosine A1 receptor for placenta. This method leads to enrichment of adenosine A2 receptors for platelets and adenosine A1 receptors for placenta. This provides a useful preparation technique for pharmacologic studies of adenosine receptors.

  4. Effects of an A1 adenosine receptor agonist on the neurochemical, behavioral and histological consequences of ischemia.

    PubMed

    Héron, A; Lekieffre, D; Le Peillet, E; Lasbennes, F; Seylaz, J; Plotkine, M; Boulu, R G

    1994-04-04

    Untreated rats and rats given the A1 receptor adenosine agonist, R-phenylisopropyladenosine (R-PIA), were subjected to four vessel ischemia. The effect of R-PIA on hippocampal amino acid release, hippocampal neuronal damage, exploratory behavior, learning capacity and global neurological score were evaluated. R-PIA decreased by half the glutamate released during ischemia and improved the global neurological scores 3, 24, 48, 78 h and 7 days after ischemia. But R-PIA had no effect on taurine/GABA release (during ischemia), hippocampal neuronal damage (7 days post-ischemia), exploratory behavior (48 h post-ischemia) or learning capacity (7 days post-ischemia). Thus, a decrease in glutamate release by R-PIA is not systematically correlated with an improvement of histological damage or learning capacity. Reduced glutamate release is not therefore a sufficient criterion on which to evaluate the neuroprotective capacity of a drug.

  5. A(1) and A(3) adenosine receptors inhibit LPS-induced hypoxia-inducible factor-1 accumulation in murine astrocytes.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Fazzi, Debora; Varani, Katia; Borea, Pier Andrea

    2013-10-01

    Adenosine (Ado) exerts neuroprotective and anti-inflammatory functions by acting through four receptor subtypes A1, A2A, A2B and A3. Astrocytes are one of its targets in the central nervous system. Hypoxia-inducible factor-1 (HIF-1), a master regulator of oxygen homeostasis, is induced after hypoxia, ischemia and inflammation and plays an important role in brain injury. HIF-1 is expressed by astrocytes, however the regulatory role played by Ado on HIF-1α modulation induced by inflammatory and hypoxic conditions has not been investigated. Primary murine astrocytes were activated with lipopolysaccharide (LPS) with or without Ado, Ado receptor agonists, antagonists and receptor silencing, before exposure to normoxia or hypoxia. HIF-1α accumulation and downstream genes regulation were determined. Ado inhibited LPS-increased HIF-1α accumulation under both normoxic and hypoxic conditions, through activation of A1 and A3 receptors. In cells incubated with the blockers of p44/42 MAPK and Akt, LPS-induced HIF-1α accumulation was significantly decreased in normoxia and hypoxia, suggesting the involvement of p44/42 MAPK and Akt in this effect and Ado inhibited kinases phosphorylation. A series of angiogenesis and metabolism related genes were modulated by hypoxia in an HIF-1 dependent way, but not further increased by LPS, with the exception of GLUT-1 and hexochinase II that were elevated by LPS only in normoxia and inhibited by Ado receptors. Instead, genes involved in inflammation, like inducible nitric-oxide synthase (iNOS) and A2B receptors, were increased by LPS in normoxia, strongly stimulated by LPS in concert with hypoxia and inhibited by Ado, through A1 and A3 receptor subtypes. In conclusion A1 and A3 receptors reduce the LPS-mediated HIF-1α accumulation in murine astrocytes, resulting in a downregulation of genes involved in inflammation and hypoxic injury, like iNOS and A2B receptors, in both normoxic and hypoxic conditions.

  6. 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives as novel non-nucleoside agonists for the adenosine A1 receptor.

    PubMed

    Cosimelli, Barbara; Greco, Giovanni; Laneri, Sonia; Novellino, Ettore; Sacchi, Antonia; Trincavelli, Maria Letizia; Giacomelli, Chiara; Taliani, Sabrina; Da Settimo, Federico; Martini, Claudia

    2016-11-01

    Three 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives (4-6) were investigated as potential non-nucleoside agonists at human adenosine receptors (ARs). When tested in competition binding experiments, these compounds exhibited low micromolar affinity (Ki values comprised between 1.2 and 1.9 μm) for the A1 AR and no appreciable affinity for the A2A and A3 ARs. Evaluation of their efficacy profiles by measurement of intracellular cAMP levels revealed that 4 and 5 behave as non-nucleoside agonists of the A1 AR with EC50 values of 0.47 and 0.87 μm, respectively. No clear concentration-response curves could be instead obtained for 6, probably because this compound modulates one or more additional targets, thus masking the putative effects exerted by its activation of A1 AR. The three compounds were not able to modulate A2B AR-mediated cAMP accumulation induced by the non-selective AR agonist NECA, thus demonstrating no affinity toward this receptor. © 2016 John Wiley & Sons A/S.

  7. Inhibition of pre-ischeamic conditioning in the mouse caudate brain slice by NMDA- or adenosine A1 receptor antagonists

    PubMed Central

    Chauhan, Nikky K.; Young, Andrew M.J.; Gibson, Claire L.; Davidson, Colin

    2013-01-01

    Evidence suggests that pre-ischeamic conditioning (PIC) offers protection against a subsequent ischeamic event. Although some brain areas such as the hippocampus have received much attention, the receptor mechanisms of PIC in other brain regions are unknown. We have previously shown that 10 min oxygen and glucose deprivation (OGD) evokes tolerance to a second OGD event in the caudate. Here we further examine the effect of length of conditioning event on the second OGD event. Caudate mouse brain slices were superfused with artificial cerebro-spinal fluid (aCSF) bubbled with 95%O2/5%CO2. OGD was achieved by reducing the aCSF glucose concentration and by bubbling with 95%N2/5%CO2. After approximately 5 min OGD a large dopamine efflux was observed, presumably caused by anoxic depolarisation. On applying a second OGD event, 60 min later, dopamine efflux was delayed and reduced. We first examined the effect of varying the length of the conditioning event from 5 to 40 min and found tolerance to PIC increased with increasing duration of conditioning. We then examined the receptor mechanism(s) underlying PIC. We found that pre-incubation with either MK-801 or 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) reduced tolerance to the second OGD event. These data suggest that either N-methyl-d-aspartate (NMDA) or adenosine A1 receptor activation evokes PIC in the mouse caudate. PMID:23099254

  8. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea

    PubMed Central

    Kaur, Tejbeer; Borse, Vikrant; Sheth, Sandeep; Sheehan, Kelly; Ghosh, Sumana; Tupal, Srinivasan; Jajoo, Sarvesh; Mukherjea, Debashree; Rybak, Leonard P.

    2016-01-01

    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser727 (but not Tyr701) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways. R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. SIGNIFICANCE STATEMENT Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R

  9. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea.

    PubMed

    Kaur, Tejbeer; Borse, Vikrant; Sheth, Sandeep; Sheehan, Kelly; Ghosh, Sumana; Tupal, Srinivasan; Jajoo, Sarvesh; Mukherjea, Debashree; Rybak, Leonard P; Ramkumar, Vickram

    2016-04-06

    Cisplatin is a commonly used antineoplastic agent that produces ototoxicity that is mediated in part by increasing levels of reactive oxygen species (ROS) via the NOX3 NADPH oxidase pathway in the cochlea. Recent studies implicate ROS generation in mediating inflammatory and apoptotic processes and hearing loss by activating signal transducer and activator of transcription (STAT1). In this study, we show that the adenosine A1 receptor (A1AR) protects against cisplatin ototoxicity by suppressing an inflammatory response initiated by ROS generation via NOX3 NADPH oxidase, leading to inhibition of STAT1. Trans-tympanic administration of the A1AR agonist R-phenylisopropyladenosine (R-PIA) inhibited cisplatin-induced ototoxicity, as measured by auditory brainstem responses and scanning electron microscopy in male Wistar rats. This was associated with reduced NOX3 expression, STAT1 activation, tumor necrosis factor-α (TNF-α) levels, and apoptosis in the cochlea. In vitro studies in UB/OC-1 cells, an organ of Corti immortalized cell line, showed that R-PIA reduced cisplatin-induced phosphorylation of STAT1 Ser(727) (but not Tyr(701)) and STAT1 luciferase activity by suppressing the ERK1/2, p38, and JNK mitogen-activated protein kinase (MAPK) pathways.R-PIA also decreased the expression of STAT1 target genes, such as TNF-α, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and reduced cisplatin-mediated apoptosis. These data suggest that the A1AR provides otoprotection by suppressing NOX3 and inflammation in the cochlea and could serve as an ideal target for otoprotective drug therapy. Cisplatin is a widely used chemotherapeutic agent for the treatment of solid tumors. Its use results in significant and permanent hearing loss, for which no US Food and Drug Administration-approved treatment is currently available. In this study, we targeted the cochlear adenosine A1 receptor (A1AR) by trans-tympanic injections of the agonist R

  10. Effect of postnatal exposure to caffeine on the pattern of adenosine A1 receptor distribution in respiration-related nuclei of the rat brainstem.

    PubMed

    Gaytan, S P; Saadani-Makki, F; Bodineau, L; Frugière, A; Larnicol, N; Pásaro, R

    2006-06-30

    Caffeine, which belongs to the methylxantine family of compounds, is commonly ingested in a range of beverages such as coffee, tea, and cola drinks. It is also used therapeutically and is frequently employed in the treatment of respiratory disturbances in human neonates. The aim of the present work has been to examine the ontogeny of the adenosine A1 receptor system in the brainstem of the newborn rat following postnatal treatment with caffeine to mimic the therapeutic administration of caffeine to premature human infants. The effect of this postnatal exposure to caffeine on the gradual appearance of adenosine A1 receptors was analysed by determining immunohistochemically the distribution of the receptors. The main difference between control animals and animals exposed to caffeine was the transient increase (only at postnatal day 6) in the number of immunopositive neurons in two brainstem areas, the ventrolateral medulla and the rostral dorsolateral pons, in caffeine-treated rat pups, or more specifically, the parabrachial and Kölliker-Fuse nuclei, both of which are classically associated with respiratory control. With previous research highlighting the important role played by the rostral pons in respiratory modulation by the adenosine A1 receptor system, it is thus possible that postnatal exposure to caffeine modulates the ontogeny of the adenosine A1 receptor network. This could imply that the role of caffeine to decrease the incidence of neonatal respiratory disturbances may be due to the earlier than normal development of the adenosinergic system in the brain.

  11. Role of adenosine receptors in caffeine tolerance

    SciTech Connect

    Holtzman, S.G.; Mante, S.; Minneman, K.P. )

    1991-01-01

    Caffeine is a competitive antagonist at adenosine receptors. Receptor up-regulation during chronic drug treatment has been proposed to be the mechanism of tolerance to the behavioral stimulant effects of caffeine. This study reassessed the role of adenosine receptors in caffeine tolerance. Separate groups of rats were given scheduled access to drinking bottles containing plain tap water or a 0.1% solution of caffeine. Daily drug intake averaged 60-75 mg/kg and resulted in complete tolerance to caffeine-induced stimulation of locomotor activity, which could not be surmounted by increasing the dose of caffeine. 5'-N-ethylcarboxamidoadenosine (0.001-1.0 mg/kg) dose dependently decreased the locomotor activity of caffeine-tolerant rats and their water-treated controls but was 8-fold more potent in the latter group. Caffeine (1.0-10 mg/kg) injected concurrently with 5-N-ethylcarboxamidoadenosine antagonized the decreases in locomotor activity comparably in both groups. Apparent pA2 values for tolerant and control rats also were comparable: 5.05 and 5.11. Thus, the adenosine-antagonist activity of caffeine was undiminished in tolerant rats. The effects of chronic caffeine administration on parameters of adenosine receptor binding and function were measured in cerebral cortex. There were no differences between brain tissue from control and caffeine-treated rats in number and affinity of adenosine binding sites or in receptor-mediated increases (A2 adenosine receptor) and decreases (A1 adenosine receptor) in cAMP accumulation. These results are consistent with theoretical arguments that changes in receptor density should not affect the potency of a competitive antagonist. Experimental evidence and theoretical considerations indicate that up-regulation of adenosine receptors is not the mechanism of tolerance to caffeine-induced stimulation of locomotor activity.

  12. Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: comparison with nicotinic acid.

    PubMed

    Dhalla, Arvinder K; Santikul, Melissa; Smith, Michelle; Wong, Mei-Yee; Shryock, John C; Belardinelli, Luiz

    2007-04-01

    Elevated lipolysis and circulating free fatty acid (FFA) levels have been linked to the pathogenesis of insulin resistance. A1 adenosine receptor agonists are potent inhibitors of lipolysis. Several A1 agonists have been tested as potential antilipolytic agents; however, their effect on the cardiovascular system remains a potential problem for development of these agents as drugs. In the present study, we report that CVT-3619 [(2-{6-[((1R,2R)-2-hydroxycyclopentyl) amino] purin9-yl} (4S,5 S,2R,3R)5-[(2fluorophenylthio) methyl] oxolane-3,4-diol)], a novel partial A1 receptor agonist, significantly reduces circulating FFA levels without any effect on heart rate and blood pressure in awake rats. Rats were implanted with indwelling arterial and venous cannulas to obtain serial blood samples, record arterial pressure, and administer drug. CVT-3619 decreased FFA levels in a dose-dependent manner at doses from 1 up to 10 mg/kg. The FFA-lowering effect was blocked by the A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine. Triglyceride (TG) levels were also significantly reduced by CVT-3619 treatment in the absence and presence of Triton. Tachyphylaxis of the antilipolytic effect of CVT-3619 (1 mg/kg i.v. bolus) was not observed with three consecutive treatments. An acute reduction of FFA by CVT-3619 was not followed by a rebound increase of FFA as seen with nicotinic acid. The potency of insulin to decrease lipolysis was increased 4-fold (p < 0.01) in the presence of CVT-3619 (0.5 mg/kg). In summary, CVT-3619 is an orally bioavailable A1 agonist that lowers circulating FFA and TG levels by inhibiting lipolysis. CVT-3619 has antilipolytic effects at doses that do not elicit cardiovascular effects.

  13. Determination of Adenosine A1 Receptor Agonist and Antagonist Pharmacology Using Saccharomyces cerevisiae: Implications for Ligand Screening and Functional Selectivity

    PubMed Central

    Stewart, Gregory D.; Valant, Celine; Dowell, Simon J.; Mijaljica, Dalibor; Devenish, Rodney J.; Scammells, Peter J.; Sexton, Patrick M.

    2009-01-01

    The budding yeast, Saccharomyces cerevisiae, is a convenient system for coupling heterologous G protein-coupled receptors (GPCRs) to the pheromone response pathway to facilitate empirical ligand screening and/or GPCR mutagenesis studies. However, few studies have applied this system to define GPCR-G protein-coupling preferences and furnish information on ligand affinities, efficacies, and functional selectivity. We thus used different S. cerevisiae strains, each expressing a specific human Gα/yeast Gpa1 protein chimera, and determined the pharmacology of various ligands of the coexpressed human adenosine A1 receptor. These assays, in conjunction with the application of quantitative models of agonism and antagonism, revealed that (−)-N6-(2-phenylisopropyl)adenosine was a high-efficacy agonist that selectively coupled to Gpa/1Gαo, Gpa1/Gαi1/2, and Gpa1/Gαi3, whereas the novel compound, 5′-deoxy-N6-(endo-norborn-2-yl)-5′-(2-fluorophenylthio)adenosine (VCP-189), was a lower-efficacy agonist that selectively coupled to Gpa1/Gαi proteins; the latter finding suggested that VCP-189 might be functionally selective. The affinity of the antagonist, 8-cyclopentyl-1,3-dipropylxanthine, was also determined at the various strains. Subsequent experiments performed in mammalian Chinese hamster ovary cells monitoring cAMP formation/inhibition, intracellular calcium mobilization, phosphorylation of extracellular signal-regulated kinase 1 and 2 or 35S-labeled guanosine 5′-(γ-thio)triphosphate binding, were in general agreement with the yeast data regarding agonist efficacy estimation and antagonist affinity estimation, but revealed that the apparent functional selectivity of VCP-189 could be explained by differences in stimulus-response coupling between yeast and mammalian cells. Our results suggest that this yeast system is a useful tool for quantifying ligand affinity and relative efficacy, but it may lack the sensitivity required to detect functional selectivity of

  14. Pain-relieving prospects for adenosine receptors and ectonucleotidases

    PubMed Central

    Zylka, Mark J.

    2010-01-01

    Adenosine receptor agonists have potent antinociceptive effects in diverse preclinical models of chronic pain. In contrast, the efficacy of adenosine or adenosine receptor agonists at treating pain in humans is unclear. Two ectonucleotidases that generate adenosine in nociceptive neurons were recently identified. When injected spinally, these enzymes have long-lasting adenosine A1 receptor (A1R)-dependent antinociceptive effects in inflammatory and neuropathic pain models. Furthermore, recent findings indicate that spinal adenosine A2A receptor activation can enduringly inhibit neuropathic pain symptoms. Collectively, these studies suggest the possibility of treating chronic pain in humans by targeting specific adenosine receptor subtypes in anatomically defined regions with agonists or with ectonucleotidases that generate adenosine. PMID:21236731

  15. Combined Effects of Carbonic Anhydrase Inhibitor and Adenosine A1 Receptor Antagonist on Hemodynamic and Tubular Function in the Kidney

    PubMed Central

    Miracle, Cynthia M.; Rieg, Timo; Blantz, Roland C.; Vallon, Volker; Thomson, Scott C.

    2007-01-01

    Background Carbonic anhydrase inhibitors (CAI) reduce proximal reabsorption, activating tubuloglomerular feedback (TGF) and reducing glomerular filtration rate (GFR). Adenosine A1 receptors (A1R) mediate the TGF response and stimulate proximal reabsorption. Methods Clearance and micropuncture studies were performed in Wistar rats to determine whether blockade of A1R (KW3902 0.3 mg/kg i.v.) would prevent CAI (benzolamide 5 mg/kg i.v.) from lowering GFR, whether CAI and KW3902 exert additive effects on sodium excretion, and to what extent such interactions depend on events in the glomerulus, proximal tubule, or distal nephron. Results KW3902 raised GFR and prevented CAI from lowering GFR. KW3902 and CAI caused additive diuresis and natriuresis. KW3902 and CAI increased lithium clearance, but their effects were redundant. CAI increased the dependence of proximal reabsorption on active chloride transport. KW3902, alone, did likewise, but to a lesser extent than CAI. Adding KW3902 to CAI lessened the shift toward active chloride transport. Conclusions The data reveal that A1R mediate glomerular vascular resistance whether or not TGF is activated, that additive effects of CAI and KW3902 on salt excretion occur, in part, because KW3902 inhibits reabsorption downstream from the macula densa, and that KW3902 likely inhibits proximal reabsorption by interfering with apical sodium-hydrogen exchange. PMID:17890869

  16. Basal adenosine modulates the functional properties of AMPA receptors in mouse hippocampal neurons through the activation of A1R A2AR and A3R

    PubMed Central

    Di Angelantonio, Silvia; Bertollini, Cristina; Piccinin, Sonia; Rosito, Maria; Trettel, Flavia; Pagani, Francesca; Limatola, Cristina; Ragozzino, Davide

    2015-01-01

    Adenosine is a widespread neuromodulator within the CNS and its extracellular level is increased during hypoxia or intense synaptic activity, modulating pre- and postsynaptic sites. We studied the neuromodulatory action of adenosine on glutamatergic currents in the hippocampus, showing that activation of multiple adenosine receptors (ARs) by basal adenosine impacts postsynaptic site. Specifically, the stimulation of both A1R and A3R reduces AMPA currents, while A2AR has an opposite potentiating effect. The effect of ARs stimulation on glutamatergic currents in hippocampal cultures was investigated using pharmacological and genetic approaches. A3R inhibition by MRS1523 increased GluR1-Ser845 phosphorylation and potentiated AMPA current amplitude, increasing the apparent affinity for the agonist. A similar effect was observed blocking A1R with DPCPX or by genetic deletion of either A3R or A1R. Conversely, impairment of A2AR reduced AMPA currents, and decreased agonist sensitivity. Consistently, in hippocampal slices, ARs activation by AR agonist NECA modulated glutamatergic current amplitude evoked by AMPA application or afferent fiber stimulation. Opposite effects of AR subtypes stimulation are likely associated to changes in GluR1 phosphorylation and represent a novel mechanism of physiological modulation of glutamatergic transmission by adenosine, likely acting in normal conditions in the brain, depending on the level of extracellular adenosine and the distribution of AR subtypes. PMID:26528137

  17. Inosine reduces pain-related behavior in mice: involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways.

    PubMed

    Nascimento, Francisney P; Figueredo, Sonia M; Marcon, Rodrigo; Martins, Daniel F; Macedo, Sérgio J; Lima, Denise A N; Almeida, Rúbia C; Ostroski, Rosana M; Rodrigues, Ana Lúcia S; Santos, Adair Roberto Soares

    2010-08-01

    Inosine, an endogenous purine, is the first metabolite of adenosine in a reaction catalyzed by adenosine deaminase. This study aimed to investigate the antinociceptive effects of inosine against several models of pain in mice and rats. In mice, inosine given by systemic or central routes inhibited acetic acid-induced nociception. Furthermore, inosine also decreased the late phase of formalin-induced licking and the nociception induced by glutamate. Inosine produced inhibition (for up to 4 h) of mechanical allodynia induced by complete Freund's adjuvant (CFA) injected into the mouse's paw. Given chronically for 21 days, inosine reversed the mechanical allodynia caused by CFA. Moreover, inosine also reduced the thermal (cold stimuli) and mechanical allodynia caused by partial sciatic nerve ligation (PSNL) for 4 h; when inosine was chronically administered, it decreased the mechanical allodynia induced by PSNL for 22 days. Antinociception caused by inosine in the acetic acid test was attenuated by treatment of mice with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX; a selective adenosine A(1) receptor antagonist), 8-phenyltheophylline (8-PT; a nonselective adenosine A(1) receptor antagonist), and 4-{2- [7-amino-2-(2-furyl)[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-yl- amino]ethyl}phenol (ZM241385; a selective adenosine A(2A) receptor antagonist). In rats, inosine inhibited the mechanical and heat hyperalgesia induced by bradykinin and phorbol 12-myristate 13-acetate, without affecting similar responses caused by prostaglandin E(2) or forskolin. These results indicate that inosine induces antinociceptive, antiallodynic, and antihyperalgesic effects in rodents. The precise mechanisms through which inosine produces antinociception are currently under investigation, but involvement of adenosine A(1) and A(2A) receptors and blockade of the protein kinase C pathway seem to largely account for inosine's antinociceptive effect.

  18. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor.

    PubMed

    Liu, Hua-Qing; Zhang, Wei-Yu; Luo, Xue-Ting; Ye, Yang; Zhu, Xing-Zu

    2006-06-01

    1. This study examined whether Paeoniflorin (PF), the major active components of Chinese herb Paeoniae alba Radix, has neuroprotective effect in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease (PD). 2. Subcutaneous administration of PF (2.5 and 5 mg kg(-1)) for 11 days could protect tyrosine hydroxylase (TH)-positive substantia nigra neurons and striatal nerve fibers from death and bradykinesia induced by four-dose injection of MPTP (20 mg kg(-1)) on day 8. 3. When given at 1 h after the last dose of MPTP, and then administered once a day for the following 3 days, PF (2.5 and 5 mg kg(-1)) also significantly attenuated the dopaminergic neurodegeneration in a dose-dependent manner. Post-treatment with PF (5 mg kg(-1)) significantly attenuated MPTP-induced proinflammatory gene upregulation and microglial and astrocytic activation. 4. Pretreatment with 0.3 mg kg(-1) 8-cyclopentyl-1,3-dipropylxanthine, an adenosine A1 receptor (A1AR) antagonist, 15 min before each dose of PF, reversed the neuroprotective and antineuroinflammatory effects of PF. 5. In conclusion, this study demonstrated that PF could reduce the MPTP-induced toxicity by inhibition of neuroinflammation by activation of the A1AR, and suggested that PF might be a valuable neuroprotective agent for the treatment of PD.

  19. Adenosine A1 and A2A receptors are not upstream of caffeine's dopamine D2 receptor-dependent aversive effects and dopamine-independent rewarding effects

    PubMed Central

    Sturgess, Jessica E; Ting-A-Kee, Ryan A; Podbielski, Dominik; Sellings, Laurie HL; Chen, Jiang-Fan; van der Kooy, Derek

    2010-01-01

    Caffeine is widely consumed throughout the world, yet little is known about the mechanisms underlying its rewarding and aversive properties. We show that pharmacological antagonism of dopamine not only blocks conditioned place aversions to caffeine, but reveals dopamine blockade-induced conditioned place preferences. These aversions are mediated by the dopamine D2 receptor since knockout mice showed conditioned place preferences to doses of caffeine that C57Bl/6 mice found aversive. Further, these aversions appear to be centrally-mediated since a quaternary analogue to caffeine failed to produce conditioned place aversions. While the adenosine A2A receptor is important for caffeine's physiological effects, this receptor seems only to modulate the appetitive and aversive effects of caffeine. A2A receptor knockout mice showed stronger dopamine-dependent aversions to caffeine than C57Bl/6 animals, which partially obscured the dopamine- and A2A receptor-independent preferences. Additionally, the A1 receptor, alone or in combination with the A2A receptor, does not seem to be important for caffeine's rewarding or aversive effects. Finally, excitotoxic lesions of the tegmental pedunculopontine nucleus revealed that this brain region is not involved in dopamine blockade-induced caffeine reward. This data provides surprising new information on the mechanism of action of caffeine, indicating that adenosine receptors do not mediate caffeine's appetitive and aversive effects. We show that caffeine has an atypical reward mechanism, independent of the dopaminergic system and the tegmental pedunculopontine nucleus and provide additional evidence in support of a role for the dopaminergic system in aversive learning. PMID:20576036

  20. Inhibition of muscarinic K+ current in guinea-pig atrial myocytes by PD 81,723, an allosteric enhancer of adenosine binding to A1 receptors

    PubMed Central

    Brandts, B; Bünemann, M; Hluchy, J; Sabin, G V; Pott, L

    1997-01-01

    PD 81,723 has been shown to enhance binding of adenosine to A1 receptors by stabilizing G protein-receptor coupling (‘allosteric enhancement'). Evidence has been provided that in the perfused hearts and isolated atria PD 81,723 causes a sensitization to adenosine via this mechanism. We have studied the effect of PD 81,723 in guinea-pig isolated atrial myocytes by use of whole-cell measurement of the muscarinic K+ current (IK(ACh)) activated by different Gi-coupled receptors (A1, M2, sphingolipid). PD 81,273 caused inhibition of IK(ACh) (IC50≃5 μM) activated by either of the three receptors. Receptor-independent IK(ACh) in cells loaded with GTP-γ-S and background IK(ACh), which contributes to the resting conductance of atrial myocytes, were equally sensitive to PD 81,723. At no combination of concentrations of adenosine and PD 81,723 could an enhancing effect be detected. The compound was active from the outside only. Loading of the cells with PD 81,723 (50 μM) via the patch pipette did not affect either IK(ACh) or its sensitivity to adenosine. We suggest that PD 81,723 acts as an inhibitor of inward rectifying K+ channels; this is supported by the finding that ventricular IK1, which shares a large degree of homology with the proteins (GIRK1/GIRK4) forming IK(ACh) but is not G protein-gated, was also blocked by this compound. It is concluded that the functional effects of PD 81,723 described in the literature are not mediated by the A1 adenosine receptor-Gi-IK(ACh) pathway. PMID:9249260

  1. Adenosine receptor targeting in health and disease.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Fazzi, Debora; Stefanelli, Angela; Varani, Katia; Borea, Pier Andrea

    2011-12-01

    The adenosine receptors A(1), A(2A), A(2B) and A(3) are important and ubiquitous mediators of cellular signaling that play vital roles in protecting tissues and organs from damage. In particular, adenosine triggers tissue protection and repair by different receptor-mediated mechanisms, including increasing the oxygen supply:demand ratio, pre-conditioning, anti-inflammatory effects and the stimulation of angiogenesis. The state of the art of the role of adenosine receptors which have been proposed as targets for drug design and discovery, in health and disease, and an overview of the ligands for these receptors in clinical development. Selective ligands of A(1), A(2A), A(2B) and A(3) adenosine receptors are likely to find applications in the treatment of pain, ischemic conditions, glaucoma, asthma, arthritis, cancer and other disorders in which inflammation is a feature. The aim of this review is to provide an overview of the present knowledge regarding the role of these adenosine receptors in health and disease.

  2. Caffeine, adenosine receptors, and synaptic plasticity.

    PubMed

    Costenla, Ana Rita; Cunha, Rodrigo A; de Mendonça, Alexandre

    2010-01-01

    Few studies to date have looked at the effects of caffeine on synaptic plasticity, and those that did used very high concentrations of caffeine, whereas the brain concentrations attained by regular coffee consumption in humans should be in the low micromolar range, where caffeine exerts pharmacological actions mainly by antagonizing adenosine receptors. Accordingly, rats drinking caffeine (1 g/L) for 3 weeks, displayed a concentration of caffeine of circa 22 microM in the hippocampus. It is known that selective adenosine A1 receptor antagonists facilitate, whereas selective adenosine A2A receptor antagonists attenuate, long term potentiation (LTP) in the hippocampus. Although caffeine is a non-selective antagonist of adenosine receptors, it attenuates frequency-induced LTP in hippocampal slices in a manner similar to selective adenosine A2A receptor antagonists. These effects of low micromolar concentration of caffeine (30 microM) are maintained in aged animals, which is important when a possible beneficial effect for caffeine in age-related cognitive decline is proposed. Future studies will still be required to confirm and detail the involvement of A1 and A2A receptors in the effects of caffeine on hippocampal synaptic plasticity, using both pharmacological and genetic approaches.

  3. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    PubMed

    Buscariollo, Daniela L; Fang, Xiefan; Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A; Wendler, Christopher C

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  4. Embryonic Caffeine Exposure Acts via A1 Adenosine Receptors to Alter Adult Cardiac Function and DNA Methylation in Mice

    PubMed Central

    Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A.; Wendler, Christopher C.

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2–4 cups of coffee in humans. After dams gave birth, offspring were examined at 8–10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation. PMID:24475304

  5. Caffeine prevents antihyperalgesic effect of gabapentin in an animal model of CRPS-I: evidence for the involvement of spinal adenosine A1 receptor.

    PubMed

    Martins, Daniel F; Prado, Marcos R B; Daruge-Neto, Eduardo; Batisti, Ana P; Emer, Aline A; Mazzardo-Martins, Leidiane; Santos, Adair R S; Piovezan, Anna P

    2015-12-01

    This study was designed to determine whether 3 weeks of gabapentin treatment is effective in alleviating neuropathic pain-like behavior in animal models of complex regional pain syndrome type-I and partial sciatic nerve ligation (PSNL). We investigated the contribution of adenosine subtypes to the antihyperalgesic effect of gabapentin by examining the effect of caffeine, a non-selective adenosine A1 and A2 receptor antagonist or 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), a selective adenosine A1 subtype receptor antagonist on this effect. Neuropathic pain was produced by unilateral prolonged hind paw ischemia and reperfusion (I/R) or PSNL procedures which resulted in stimulus-evoked mechanical hyperalgesia. After procedures, animals received gabapentin (10, 30, or 100 mg/kg intraperitoneal, respectively), caffeine (10 mg/kg intraperitoneal or 150 nmol intrathecally) or DPCPX (3 µg intrathecally) alone or in combination. Mice were tested for tactile mechanical hyperalgesia at 1, 2, and 3 weeks following procedures. Gabapentin produced dose-related inhibition of mechanical hyperalgesia over a 3-week period, and this effect was blocked by concomitant caffeine or DPCPX administration 1 week after injuries. The results of this study demonstrated that the mechanism through which gabapentin produces its effect may involve the activation of adenosine A1 subtype receptor. © 2015 Peripheral Nerve Society.

  6. An orally active adenosine A1 receptor antagonist, FK838, increases renal excretion and maintains glomerular filtration rate in furosemide-resistant rats

    PubMed Central

    Schnackenberg, Christine G; Merz, Emily; Brooks, David P

    2003-01-01

    Loop and thiazide diuretics are common therapeutic agents for the treatment of sodium retention and oedema. However, resistance to diuretics and decreases in renal function can develop during diuretic therapy. Adenosine causes renal vasoconstriction, sodium reabsorption, and participates in the tubuloglomerular feedback mechanism for the regulation of glomerular filtration rate.We tested the hypothesis that the selective adenosine A1 receptor antagonist FK838 is orally active and causes diuresis and natriuresis, but maintains glomerular filtration rate in normal rats or in rats with furosemide resistance.In normal male Sprague – Dawley rats, FK838 dose-dependently increased urine flow and sodium and chloride excretion while sparing potassium. In combination with furosemide, FK838 enhanced the diuretic and natriuretic actions of furosemide to the same extent as hydrochlorothiazide and did not increase the potassium loss in normal rats. In furosemide-resistant rats, FK838 increased urine flow and electrolyte excretion to a greater extent than hydrochlorothiazide. In addition, hydrochlorothiazide significantly decreased glomerular filtration rate, whereas FK838 maintained glomerular filtration rate in furosemide-resistant rats.This study shows that the adenosine A1 receptor antagonist FK838 is orally active and causes potent diuresis and natriuresis and maintains glomerular filtration rate in normal or furosemide-resistant rats. Adenosine A1 receptor antagonists may be novel therapeutics for the treatment of oedema in normal or otherwise diuretic-resistant patients. PMID:12922924

  7. Chronic Cerebral Ischemia Induces Downregulation of A1 Adenosine Receptors During White Matter Damage in Adult Mice.

    PubMed

    Cheng, Pengfei; Ren, Yifei; Bai, Shunjie; Wu, Yu; Xu, Yi; Pan, Junxi; Chen, Jin; Zhu, Xiaofeng; Qi, Zhiguo; Shao, Weihua; Tang, Weiju; Liu, Meiling; Xie, Peng; Huang, Wen

    2015-11-01

    The role of A1 adenosine receptors (A1ARs) in the white matter under chronic cerebral ischemic conditions remains unclear. Here, we used right unilateral common carotid artery occlusion (rUCCAO) to construct a chronic cerebral ischemic mouse model. A1AR expression and proteolipid protein (PLP, a marker of white matter myelination) in the corpus callosum were observed by immunoreaction and immunohistochemistry, respectively. Pro-inflammatory interleukin-1β (IL-1β) and anti-inflammatory interleukin-10 (IL-10) levels were determined by ELISA. The Morris water maze test was employed to detect cognitive impairment. A1AR expression significantly decreased in the rUCCAO group as compared with the sham control group on weeks 2, 4, and 6, respectively. IL-10 levels in the rUCCAO group significantly declined on week 6, while there was no significant change in IL-1β expression. PLP expression significantly decreased in the rUCCAO group on weeks 2, 4, and 6. Moreover, latency time for the Morris water maze test significantly increased in the rUCCAO group on weeks 4 and 6, while the number of platform location crossing significantly decreased in the rUCCAO group on weeks 2, 4, and 6. In conclusion, this study provides the first evidence that chronic cerebral ischemia appears to induce A1AR downregulation and inhibition of IL-10 production, which may play key roles in the neuropathological mechanisms of ischemic white matter lesions. These data will facilitate future studies in formulating effective therapeutic strategies for ischemic white matter lesions.

  8. Eliminating the antilipolytic adenosine A1 receptor does not lead to compensatory changes in the antilipolytic actions of PGE2 and nicotinic acid.

    PubMed

    Johansson, S M; Yang, J-N; Lindgren, E; Fredholm, B B

    2007-05-01

    We examined whether compensatory changes after adenosine A(1) receptor knockout [A(1)R (-/-)] eliminate the antilipolytic actions mediated by this receptor. Lipolysis experiments were performed on adipocytes prepared from the wild type A(1)R (+/+), A(1)R (-/-) and heterozygous mice. Gene expression was assayed with cDNA microarray technique and real-time PCR; protein expression with immunoblotting. The A(1)R was the only adenosine receptor involved in lipolysis. The effects of adenosine deaminase and 2-chloroadenosine were abolished in A(1)R (-/-) mice. The IC(50) value of 2-chloroadenosine doubled from 16.6 to 33.6 nm when half of the A(1)Rs were eliminated. Adrenergic alpha(2) agonists had no effects on lipolysis. Prostaglandin E(2) (PGE(2)) inhibited lipolysis with an IC(50) value of 5.8 nm (4.7-7.2 nm) in the A(1)R (+/+) mice and 10.6 nm (9.0-12.6 nm) in the A(1)R (-/-) mice. Nicotinic acid inhibited lipolysis with an IC(50) value of 0.30 microm (0.19-0.46 microm) in the A(1)R (+/+) mice and 0.24 microm (0.16-0.37 microm) in the A(1)R (-/-) mice. G(i)alpha(1) mRNA was significantly up-regulated in adipose tissue from A(1)R (-/-) mice. However, immunoblotting showed that G(ialpha1) was not up-regulated at the protein level. The A(1)R mediates the antilipolytic actions of adenosine. Deletion of the A(1)R in mice does not result in compensatory increases in G-protein-mediated antilipolytic actions of PGE(2) or nicotinic acid.

  9. MOLECULAR PROBES FOR EXTRACELLULAR ADENOSINE RECEPTORS

    PubMed Central

    Jacobson, Kenneth A.; Ukena, Dieter; Padgett, William; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    Derivatives of adenosine receptor agonists (N6-phenyladenosines) and antagonists (1,3-dialkyl-8-phenylxanthines) bearing functionalized chains suitable for attachment to other molecules have been reported [Jacobson et al., J. med. Chem. 28, 1334 and 1341 (1985)]. The “functionalized congener” approach has been extended to the synthesis of spectroscopic and other probes for adenosine receptors that retain high affinity (Ki ~ 10−9 −10−8 M) in A1-receptor binding. The probes have been synthesized from an antagonist xanthine amine congener (XAC) and an adenosine amine congener (ADAC). [3H]ADAC has been synthesized and found to bind highly specifically to A1-adenosine receptors of rat and calf cerebral cortical membranes with KD values of 1.4 and 0.34 nM respectively. The higher affinity in the bovine brain, seen also with many of the probes derived from ADAC and XAC, is associated with phenyl substituents. The spectroscopic probes contain a reporter group attached at a distal site of the functionalized chain. These bifunctional ligands may contain a spin label (e.g. the nitroxyl radical TEMPO) for electron spin resonance spectroscopy, or a fluorescent dye, including fluorescein and 4-nitrobenz-2-oxa-1,3-diazole (NBD), or labels for 19F nuclear magnetic resonance spectroscopy. Potential applications of the spectroscopic probes in characterization of adenosine receptors are discussed. PMID:3036153

  10. Transporter Protein-Coupled DPCPX Nanoconjugates Induce Diaphragmatic Recovery after SCI by Blocking Adenosine A1 Receptors

    PubMed Central

    Minic, Zeljka; Zhang, Yanhua; Mao, Guangzhao

    2016-01-01

    Respiratory complications in patients with spinal cord injury (SCI) are common and have a negative impact on the quality of patients' lives. Systemic administration of drugs that improve respiratory function often cause deleterious side effects. The present study examines the applicability of a novel nanotechnology-based drug delivery system, which induces recovery of diaphragm function after SCI in the adult rat model. We developed a protein-coupled nanoconjugate to selectively deliver by transsynaptic transport small therapeutic amounts of an A1 adenosine receptor antagonist to the respiratory centers. A single administration of the nanoconjugate restored 75% of the respiratory drive at 0.1% of the systemic therapeutic drug dose. The reduction of the systemic dose may obviate the side effects. The recovery lasted for 4 weeks (the longest period studied). These findings have translational implications for patients with respiratory dysfunction after SCI. SIGNIFICANCE STATEMENT The leading causes of death in humans following SCI are respiratory complications secondary to paralysis of respiratory muscles. Systemic administration of methylxantines improves respiratory function but also leads to the development of deleterious side effects due to actions of the drug on nonrespiratory sites. The importance of the present study lies in the novel drug delivery approach that uses nanotechnology to selectively deliver recovery-inducing drugs to the respiratory centers exclusively. This strategy allows for a reduction in the therapeutic drug dose, which may reduce harmful side effects and markedly improve the quality of life for SCI patients. PMID:27013674

  11. Hyperthermia-induced seizures alter adenosine A1 and A2A receptors and 5'-nucleotidase activity in rat cerebral cortex.

    PubMed

    León-Navarro, David Agustín; Albasanz, José L; Martín, Mairena

    2015-08-01

    Febrile seizure is one of the most common convulsive disorders in children. The neuromodulator adenosine exerts anticonvulsant actions through binding adenosine receptors. Here, the impact of hyperthermia-induced seizures on adenosine A1 and A2A receptors and 5'-nucleotidase activity has been studied at different periods in the cerebral cortical area by using radioligand binding, real-time PCR, and 5'-nucleotidase activity assays. Hyperthermic seizures were induced in 13-day-old rats using a warmed air stream from a hair dryer. Neonates exhibited rearing and falling over associated with hindlimb clonus seizures (stage 5 on Racine scale criteria) after hyperthermic induction. A significant increase in A1 receptor density was observed using [(3) H]DPCPX as radioligand, and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density was detected, using [(3) H]ZM241385 as radioligand, 48 h after hyperthermia-evoked convulsions. These short-term changes in A1 and A2A receptors were also accompanied by a loss of 5'-nucleotidase activity. No significant variations either in A1 or A2A receptor density or 5'-nucleotidase were observed 5 and 20 days after hyperthermic seizures. Taken together, both regulation of A1 and A2A receptors and loss of 5'-nucleotidase in the cerebral cortex suggest the existence of a neuroprotective mechanism against seizures. Febrile seizure is one of the most common convulsive disorders in children. The consequences of hyperthermia-induced seizures (animal model of febrile seizures) on adenosine A1 and A2A receptors and 5'-nucleotidase activity have been studied at different periods in cerebral cortical area. A significant increase in A1 receptor density and mRNA coding A1 was observed 48 h after hyperthermia-induced seizures. In contrast, a significant decrease in A2A receptor density and 5'-nucleotidase activity was detected 48 h after convulsions evoked by hyperthermia

  12. Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors.

    PubMed

    López-Cruz, Laura; San-Miguel, Noemí; Bayarri, Pilar; Baqi, Younis; Müller, Christa E; Salamone, John D; Correa, Mercé

    2016-01-01

    Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A1/A2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A1 and A2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg) increasing social contact and higher doses (1.0-1.5 g/kg) reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0-60.0 mg/kg), and even blocked social preference at higher doses (30.0-60.0 mg/kg). The A1 antagonist Cyclopentyltheophylline (CPT; 3-9 mg/kg) did not modify social contact or preference on its own, and the A2A antagonist MSX-3 (1.5-6 mg/kg) increased social interaction at all doses. Ethanol at intermediate doses (0.5-1.0 g/kg) was able to reverse the reduction in social exploration induced by caffeine (15.0-30.0 mg/kg). Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol impairs the

  13. Ethanol and Caffeine Effects on Social Interaction and Recognition in Mice: Involvement of Adenosine A2A and A1 Receptors

    PubMed Central

    López-Cruz, Laura; San-Miguel, Noemí; Bayarri, Pilar; Baqi, Younis; Müller, Christa E.; Salamone, John D.; Correa, Mercé

    2016-01-01

    Ethanol and caffeine are frequently consumed in combination and have opposite effects on the adenosine system: ethanol metabolism leads to an increase in adenosine levels, while caffeine is a non-selective adenosine A1/A2A receptor antagonist. These receptors are highly expressed in striatum and olfactory tubercle, brain areas involved in exploration and social interaction in rodents. Ethanol modulates social interaction processes, but the role of adenosine in social behavior is still poorly understood. The present work was undertaken to study the impact of ethanol, caffeine and their combination on social behavior, and to explore the involvement of A1 and A2A receptors on those actions. Male CD1 mice were evaluated in a social interaction three-chamber paradigm, for preference of conspecific vs. object, and also for long-term recognition memory of familiar vs. novel conspecific. Ethanol showed a biphasic effect, with low doses (0.25 g/kg) increasing social contact and higher doses (1.0–1.5 g/kg) reducing social interaction. However, no dose changed social preference; mice always spent more time sniffing the conspecific than the object, independently of the ethanol dose. Ethanol, even at doses that did not change social exploration, produced amnestic effects on social recognition the following day. Caffeine reduced social contact (15.0–60.0 mg/kg), and even blocked social preference at higher doses (30.0–60.0 mg/kg). The A1 antagonist Cyclopentyltheophylline (CPT; 3–9 mg/kg) did not modify social contact or preference on its own, and the A2A antagonist MSX-3 (1.5–6 mg/kg) increased social interaction at all doses. Ethanol at intermediate doses (0.5–1.0 g/kg) was able to reverse the reduction in social exploration induced by caffeine (15.0–30.0 mg/kg). Although there was no interaction between ethanol and CPT or MSX-3 on social exploration in the first day, MSX-3 blocked the amnestic effects of ethanol observed on the following day. Thus, ethanol

  14. The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A 2A receptors.

    PubMed

    Kaster, Manuella P; Budni, Josiane; Gazal, Marta; Cunha, Mauricio P; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2013-09-01

    Inosine is an endogenous purine nucleoside, which is formed during the breakdown of adenosine. The adenosinergic system was already described as capable of modulating mood in preclinical models; we now explored the effects of inosine in two predictive models of depression: the forced swim test (FST) and tail suspension test (TST). Mice treated with inosine displayed higher anti-immobility in the FST (5 and 50 mg/kg, intraperitoneal route (i.p.)) and in the TST (1 and 10 mg/kg, i.p.) when compared to vehicle-treated groups. These antidepressant-like effects started 30 min and lasted for 2 h after intraperitoneal administration of inosine and were not accompanied by any changes in the ambulatory activity in the open-field test. Both adenosine A1 and A2A receptor antagonists prevented the antidepressant-like effect of inosine in the FST. In addition, the administration of an adenosine deaminase inhibitor (1 and 10 mg/kg, i.p.) also caused an antidepressant-like effect in the FST. These results indicate that inosine possesses an antidepressant-like effect in the FST and TST probably through the activation of adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.

  15. Activation of histamine H3-receptors inhibits carrier-mediated norepinephrine release during protracted myocardial ischemia. Comparison with adenosine A1-receptors and alpha2-adrenoceptors.

    PubMed

    Imamura, M; Lander, H M; Levi, R

    1996-03-01

    We previously showed that prejunctional histamine H3-receptors downregulate norepinephrine exocytosis, which is markedly enhanced in early myocardial ischemia. In the present study, we investigated whether H3-receptors modulate nonexocytotic norepinephrine release during protracted myocardial ischemia. In this setting, decreased pH(i) in sympathetic nerve endings sequentially leads to a compensatory activation of the Na+-H+ antiporter (NHE), accumulation of intracellular Na+, reversal of the neuronal uptake of norepinephrine, and thus carrier-mediated release of norepinephrine. Accordingly, norepinephrine overflow from isolated guinea pig hearts undergoing 20-minute global ischemia and 45-minute reperfusion was attenuated approximately 80% by desipramine (10 nmol/L) and 70% by 5-(N-ethyl-N-isopropyl)-amiloride (EIPA, 10 micromol/L), inhibitors of norepinephrine uptake and NHE, respectively. The H3-receptor agonist imetit (0.1 micromol/L) decreased carrier-mediated norepinephrine release by approximately 50%. This effect was blocked by the H3-receptor antagonist thioperamide (0.3 micromol/L), indicating that H-receptor activation inhibits carrier-mediated norepinephrine release. At lower concentrations, imetit (10 nmol/L) or EIPA (3 micromol/L) did not inhibit carrier-mediated norepinephrine release. However, a 25% inhibition occurred with imetit (10 nmol/L) and EIPA (3 micromol/L) combined. This synergism suggests an association between H-receptors and NHE. Conceivably, activation of H-receptors may lead to inhibition of NHE. In fact, alpha2-adrenoceptor activation, which is known to stimulate NHE, enhanced norepinephrine release, whereas alpha2-adrenoceptor blockade attenuated it. Furthermore, activation of adenosine A1-receptors markedly attenuated norepinephrine release, whereas their inhibition potentiated it. Because norepinephrine directly correlated with the severity of reperfusion arrhythmia and imetit reduced the incidence of ventricular fibrillation by 50

  16. Endogenous adenosine and adenosine receptors localized to ganglion cells of the retina

    SciTech Connect

    Braas, K.M.; Zarbin, M.A.; Snyder, S.H.

    1987-06-01

    Using specific sensitive antisera against adenosine, we have immunocytochemically localized endogenous adenosine to specific layers of rat, guinea pig, monkey, and human retina. Highest adenosine immunoreactivity was observed in ganglion cells and their processes in the optic nerve fiber layer. Substantial staining was also found throughout the inner plexiform layer and in select cells in the inner nuclear layer. Adenosine A1 receptors, labeled with the agonists L-(/sup 3/H)phenylisopropyladenosine and /sup 125/I-labeled hydroxy-phenylisopropyladenosine, were autoradiographically localized. The highest levels of binding sites occurred in the nerve fiber, ganglion cell, and inner plexiform layers of the retina in all the species examined. The distribution of adenosine A1 receptor sites closely parallels that of retinal neurons and fibers containing immunoreactive adenosine. These results suggest a role for endogenous adenosine as a coneurotransmitter in ganglion cells and their fibers in the optic nerve.

  17. Changes in the Biochemical Profiles of Mid-Cervically Located Adenosine A1 Receptors After Repeated Theophylline Administration in Adult Rats

    PubMed Central

    Saharan, Rubabe S; Nantwi, Kwaku D

    2006-01-01

    Background/Objective: Adenosine A1 receptors localized in the phrenic motoneurons (PMNs), where the axons of the descending bulbospinal respiratory make synaptic contacts, may be involved in theophylline-induced respiratory-related activity in rats. The objective of this study was to characterize the biochemical profiles of adenosine A1 receptors in 2 groups of rats: (a) naïve and (b) theophylline-treated (3-day oral administration). Methods: Biochemical binding characteristics of adenosine A1 receptors in the C3 to C5 (PMN) of adult rats were assessed in naïve (n =6) and theophylline-treated animals (n =6) using [3H]-DPCPX (10 pmol/L to 30 nmol/L), the specific adenosine A1 receptor antagonist in saturation-binding assays. Competition assays used theophylline as the competing ligand (20 mmol/L to 20 pmol/L), and protein concentration was determined with the Bradford assay using a range of standards (0.016–1.0 mg/mL). Results: In saturation-binding assays in naïve animals, the A1 receptor was characterized by a single binding site with Bmax and Kd values of 256.00 ± 32.13 fmol/mg protein and 2.89 ± 0.45 nmol/L, respectively. Analysis of the isotherm in theophylline-treated animals showed 1 site with Bmax and Kd values of 219.00 ± 26.3 fmol/mg protein and 0.60 ± 0.21 nmol/L, respectively, and a second site characterized by Bmax and Kd values of 492.6 ± 3.15 fmol/mg protein and 14.09 ± 2.06 n mol/L, respectively. Conclusions: Theophylline administration revealed 2 binding sites on receptors (characterized by the specific adenosine A1 antagonist, [3H]-DPCPX) located in the vicinity of phrenic motoneurons (C3–C5). Alteration of the receptor profiles after theophylline may underlie the respiratory-related actions of the drug. PMID:17274491

  18. Stimulation of Central A1 Adenosine Receptors Suppresses Seizure and Neuropathology in a Soman Nerve Agent Seizure Rat Model

    DTIC Science & Technology

    2014-05-22

    LV’s MTD, the total dose of CPA was buffered in 10 ml of multisol (48.5% H2O, 40% propylene glycol, 10% ethanol , and 1.5% benzyl alcohol ) and adminis...physiologic functions. It is released during normal metabolic activity into the extracel- lular space where it acts on adenosine receptors (ARs) (Ribeiro et al...brain regions following soman intoxication. J Neurochem 54:72–9. Geeraerts T, Vigue B. (2009). Cellular metabolism , temperature and brain injury. Ann

  19. Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats.

    PubMed

    Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R

    2003-12-01

    Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the

  20. The role of adenosine A1 and A2A receptors in the caffeine effect on MDMA-induced DA and 5-HT release in the mouse striatum.

    PubMed

    Górska, A M; Gołembiowska, K

    2015-04-01

    3,4-Methylenedioxymethamphetamine (MDMA, "ecstasy") popular as a designer drug is often used with caffeine to gain a stronger stimulant effect. MDMA induces 5-HT and DA release by interaction with monoamine transporters. Co-administration of caffeine and MDMA may aggravate MDMA-induced toxic effects on DA and 5-HT terminals. In the present study, we determined whether caffeine influences DA and 5-HT release induced by MDMA. We also tried to find out if adenosine A1 and A2A receptors play a role in the effect of caffeine by investigating the effect of the selective adenosine A1 and A2A receptor antagonists, DPCPX and KW 6002 on DA and 5-HT release induced by MDMA. Mice were treated with caffeine (10 mg/kg) and MDMA (20 or 40 mg/kg) alone or in combination. DA and 5-HT release in the mouse striatum was measured using in vivo microdialysis. Caffeine exacerbated the effect of MDMA on DA and 5-HT release. DPCPX or KW 6002 co-administered with MDMA had similar influence as caffeine, but KW 6002 was more potent than caffeine or DPCPX. To exclude the contribution of MAO inhibition by caffeine in the caffeine effect on MDMA-induced increase in DA and 5-HT, we also tested the effect of the nonxanthine adenosine receptor antagonist CGS 15943A lacking properties of MAO activity modification. Our findings indicate that adenosine A1 and A2A receptor blockade may account for the caffeine-induced exacerbation of the MDMA effect on DA and 5-HT release and may aggravate MDMA toxicity.

  1. Inhibition of cholinergic neurotransmission by β3-adrenoceptors depends on adenosine release and A1-receptor activation in human and rat urinary bladders.

    PubMed

    Silva, Isabel; Costa, Ana Filipa; Moreira, Sílvia; Ferreirinha, Fátima; Magalhães-Cardoso, Maria Teresa; Calejo, Isabel; Silva-Ramos, Miguel; Correia-de-Sá, Paulo

    2017-08-01

    The direct detrusor relaxant effect of β3-adrenoceptor agonists as a primary mechanism to improve overactive bladder symptoms has been questioned. Among other targets, activation of β3-adrenoceptors downmodulate nerve-evoked acetylcholine (ACh) release, but there is insufficient evidence for the presence of these receptors on bladder cholinergic nerve terminals. Our hypothesis is that adenosine formed from the catabolism of cyclic AMP in the detrusor may act as a retrograde messenger via prejunctional A1 receptors to explain inhibition of cholinergic activity by β3-adrenoceptors. Isoprenaline (1 µM) decreased [(3)H]ACh release from stimulated (10 Hz, 200 pulses) human (-47 ± 5%) and rat (-38 ± 1%) detrusor strips. Mirabegron (0.1 µM, -53 ± 8%) and CL316,243 (1 µM, -37 ± 7%) mimicked isoprenaline (1 µM) inhibition, and their effects were prevented by blocking β3-adrenoceptors with L748,337 (30 nM) and SR59230A (100 nM), respectively, in human and rat detrusor. Mirabegron and isoprenaline increased extracellular adenosine in the detrusor. Blockage of A1 receptors with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX, 100 nM) or the equilibrative nucleoside transporters (ENT) with dipyridamole (0.5 µM) prevented mirabegron and isoprenaline inhibitory effects. Dipyridamole prevented isoprenaline-induced adenosine outflow from the rat detrusor, and this effect was mimicked by the ENT1 inhibitor, S-(4-nitrobenzyl)-6-thioinosine (NBTI, 30 µM). Cystometry recordings in anesthetized rats demonstrated that SR59230A, DPCPX, dipyridamole, and NBTI reversed the decrease in the voiding frequency caused by isoprenaline (0.1-1,000 nM). Data suggest that inhibition of cholinergic neurotransmission by β3-adrenoceptors results from adenosine release via equilibrative nucleoside transporters and prejunctional A1-receptor stimulation in human and rat urinary bladder. Copyright © 2017 the American Physiological Society.

  2. Adenosine receptors and the central nervous system.

    PubMed

    Sebastião, Ana M; Ribeiro, Joaquim A

    2009-01-01

    The adenosine receptors (ARs) in the nervous system act as a kind of "go-between" to regulate the release of neurotransmitters (this includes all known neurotransmitters) and the action of neuromodulators (e.g., neuropeptides, neurotrophic factors). Receptor-receptor interactions and AR-transporter interplay occur as part of the adenosine's attempt to control synaptic transmission. A(2A)ARs are more abundant in the striatum and A(1)ARs in the hippocampus, but both receptors interfere with the efficiency and plasticity-regulated synaptic transmission in most brain areas. The omnipresence of adenosine and A(2A) and A(1) ARs in all nervous system cells (neurons and glia), together with the intensive release of adenosine following insults, makes adenosine a kind of "maestro" of the tripartite synapse in the homeostatic coordination of the brain function. Under physiological conditions, both A(2A) and A(1) ARs play an important role in sleep and arousal, cognition, memory and learning, whereas under pathological conditions (e.g., Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, stroke, epilepsy, drug addiction, pain, schizophrenia, depression), ARs operate a time/circumstance window where in some circumstances A(1)AR agonists may predominate as early neuroprotectors, and in other circumstances A(2A)AR antagonists may alter the outcomes of some of the pathological deficiencies. In some circumstances, and depending on the therapeutic window, the use of A(2A)AR agonists may be initially beneficial; however, at later time points, the use of A(2A)AR antagonists proved beneficial in several pathologies. Since selective ligands for A(1) and A(2A) ARs are now entering clinical trials, the time has come to determine the role of these receptors in neurological and psychiatric diseases and identify therapies that will alter the outcomes of these diseases, therefore providing a hopeful future for the patients who suffer from these diseases.

  3. Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice.

    PubMed

    Florian, Cédrick; Vecsey, Christopher G; Halassa, Michael M; Haydon, Philip G; Abel, Ted

    2011-05-11

    Sleep deprivation (SD) can have a negative impact on cognitive function, but the mechanism(s) by which SD modulates memory remains unclear. We have previously shown that astrocyte-derived adenosine is a candidate molecule involved in the cognitive deficits following a brief period of SD (Halassa et al., 2009). In this study, we examined whether genetic disruption of soluble N-ethylmaleimide-sensitive factor attached protein (SNARE)-dependent exocytosis in astrocytes (dnSNARE mice) or pharmacological blockade of A1 receptor signaling using an adenosine A1 receptor (A1R) antagonist, 8-cyclopentyl-1,3-dimethylxanthine (CPT), could prevent the negative effects of 6 h of SD on hippocampal late-phase long-term potentiation (L-LTP) and hippocampus-dependent spatial object recognition memory. We found that SD impaired L-LTP in wild-type mice but not in dnSNARE mice. Similarly, this deficit in L-LTP resulting from SD was prevented by a chronic infusion of CPT. Consistent with these results, we found that hippocampus-dependent memory deficits produced by SD were rescued in dnSNARE mice and CPT-treated mice. These data provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of SD on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the hippocampus-related cognitive deficits induced by sleep loss.

  4. Astrocyte-derived Adenosine and A1 Receptor Activity Contribute to Sleep Loss-Induced Deficits in Hippocampal Synaptic Plasticity and Memory in Mice

    PubMed Central

    Florian, Cédrick; Vecsey, Christopher G.; Halassa, Michael M.; Haydon, Philip G.; Abel, Ted

    2011-01-01

    Sleep deprivation (SD) can have a negative impact on cognitive function, but the mechanism(s) by which SD modulates memory remain unclear. We have previously shown that astrocyte-derived adenosine is a candidate molecule involved in the cognitive deficits following a brief period of SD (Halassa et al., 2009). In this study, we examined whether genetic disruption of SNARE-dependent exocytosis in astrocytes (dnSNARE mice) or pharmacological blockade of A1 receptor signaling using an adenosine A1 receptor (A1R) antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT) could prevent the negative effects of 6 hours of SD on hippocampal late-phase long-term potentiation (L-LTP) and hippocampus-dependent spatial object recognition memory. We found that SD impaired L-LTP in wild-type mice but not in dnSNARE mice. Similarly, this deficit in L-LTP resulting from SD was prevented by a chronic infusion of CPT. Consistent with these results, we found that hippocampus-dependent memory deficits produced by SD were rescued in dnSNARE mice and CPT-treated mice. These data provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of SD on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the hippocampus-related cognitive deficits induced by sleep loss. PMID:21562257

  5. Apparent affinity of 1,3-dipropyl-8-cyclopentylxanthine for adenosine A1 and A2 receptors in isolated tissues from guinea-pigs.

    PubMed Central

    Collis, M. G.; Stoggall, S. M.; Martin, F. M.

    1989-01-01

    1. The classification of adenosine receptor subtypes (A1 and A2) in intact tissues has been based on the order of agonist potency. In this study the apparent affinity of 1,3-dipropyl-8-cyclopentylxanthine (CPX), an antagonist which has been reported to be A1 selective, and the non-selective antagonist 1,3-dimethyl-8-phenylxanthine (8PT) has been evaluated on isolated tissues from the guinea-pig. 2. The isolated tissues used were atria (bradycardic response, proposed A1 sub-type), aorta and trachea (relaxant response, proposed A2 sub-type). 3. Both the xanthines antagonized responses to adenosine in the three tissues but had little or no effect on responses to carbachol (atria), sodium nitrite (aorta) or isoprenaline (trachea). 4. pA2 values for 8PT were similar on the three tissues (6.3-6.7), however, the pA2 value for CPX on the atria (7.9-8.4) was greater than that on the aorta (6.6) or trachea (6.6). 5. These results support the suggestion that the adenosine receptors which mediate bradycardia in the atrium are of the A1 sub-type and that those which mediate relaxation in the aorta and trachea are of the A2 type. PMID:2790383

  6. Immunogold electron microscopic evidence of in situ formation of homo- and heteromeric purinergic adenosine A1 and P2Y2 receptors in rat brain

    PubMed Central

    2010-01-01

    Background Purines such as adenosine and ATP are now generally recognized as the regulators of many physiological functions, such as neurotransmission, pain, cardiac function, and immune responses. Purines exert their functions via purinergic receptors, which are divided into adenosine and P2 receptors. Recently, we demonstrated that the Gi/o-coupled adenosine A1 receptor (A1R) and Gq/11-coupled P2Y2 receptor (P2Y2R) form a heteromeric complex with unique pharmacology in co-transfected human embryonic kidney cells (HEK293T). However, the heteromeric interaction of A1R and P2Y2R in situ in brain is still largely unknown. Findings In the present study, we visualized the surface expression and co-localization of A1R and P2Y2R in both transfected HEK293T cells and in rat brain by confocal microscopy and more precisely by immunogold electron microscopy. Immunogold electron microscopy showed the evidence for the existence of homo- and hetero-dimers among A1R and P2Y2R at the neurons in cortex, cerebellum, and particularly cerebellar Purkinje cells, also supported by co-immunoprecipitation study. Conclusion The results suggest that evidence for the existence of homo- and hetero-dimers of A1R and P2Y2R, not only in co-transfected cultured cells, but also in situ on the surface of neurons in various brain regions. While the homo-dimerization ratios displayed similar patterns in all three regions, the rates of hetero-dimerization were prominent in hippocampal pyramidal cells among the three regions. PMID:21114816

  7. Immunogold electron microscopic evidence of in situ formation of homo- and heteromeric purinergic adenosine A1 and P2Y2 receptors in rat brain.

    PubMed

    Namba, Kazunori; Suzuki, Tokiko; Nakata, Hiroyasu

    2010-11-29

    Purines such as adenosine and ATP are now generally recognized as the regulators of many physiological functions, such as neurotransmission, pain, cardiac function, and immune responses. Purines exert their functions via purinergic receptors, which are divided into adenosine and P2 receptors. Recently, we demonstrated that the Gi/o-coupled adenosine A1 receptor (A1R) and Gq/11-coupled P2Y2 receptor (P2Y2R) form a heteromeric complex with unique pharmacology in co-transfected human embryonic kidney cells (HEK293T). However, the heteromeric interaction of A1R and P2Y2R in situ in brain is still largely unknown. In the present study, we visualized the surface expression and co-localization of A1R and P2Y2R in both transfected HEK293T cells and in rat brain by confocal microscopy and more precisely by immunogold electron microscopy. Immunogold electron microscopy showed the evidence for the existence of homo- and hetero-dimers among A1R and P2Y2R at the neurons in cortex, cerebellum, and particularly cerebellar Purkinje cells, also supported by co-immunoprecipitation study. The results suggest that evidence for the existence of homo- and hetero-dimers of A1R and P2Y2R, not only in co-transfected cultured cells, but also in situ on the surface of neurons in various brain regions. While the homo-dimerization ratios displayed similar patterns in all three regions, the rates of hetero-dimerization were prominent in hippocampal pyramidal cells among the three regions.

  8. Caffeine intensifies taste of certain sweeteners: role of adenosine receptor.

    PubMed

    Schiffman, S S; Diaz, C; Beeker, T G

    1986-03-01

    Caffeine, a potent antagonist of adenosine receptors, potentiates the taste of some but not all sweeteners. It significantly enhances the taste of acesulfam-K, neohesperidin dihydrochalcone, d-tryptophan, thaumatin, stevioside, and sodium saccharin. Adenosine reverses the enhancement. Caffeine has no effect on aspartame, sucrose, fructose, and calcium cyclamate. These results suggest that the inhibitory A1 adenosine receptor plays an important local role in modulating the taste intensity of certain sweeteners and that several transduction mechanisms mediate sweet taste.

  9. Modulation of Ca2+-currents by sequential and simultaneous activation of adenosine A1 and A 2A receptors in striatal projection neurons.

    PubMed

    Hernández-González, O; Hernández-Flores, T; Prieto, G A; Pérez-Burgos, A; Arias-García, M A; Galarraga, E; Bargas, J

    2014-01-01

    D(1)- and D(2)-types of dopamine receptors are located separately in direct and indirect pathway striatal projection neurons (dSPNs and iSPNs). In comparison, adenosine A(1)-type receptors are located in both neuron classes, and adenosine A(2A)-type receptors show a preferential expression in iSPNs. Due to their importance for neuronal excitability, Ca(2+)-currents have been used as final effectors to see the function of signaling cascades associated with different G protein-coupled receptors. For example, among many other actions, D(1)-type receptors increase, while D(2)-type receptors decrease neuronal excitability by either enhancing or reducing, respectively, CaV1 Ca(2+)-currents. These actions occur separately in dSPNs and iSPNs. In the case of purinergic signaling, the actions of A(1)- and A(2A)-receptors have not been compared observing their actions on Ca(2+)-channels of SPNs as final effectors. Our hypotheses are that modulation of Ca(2+)-currents by A(1)-receptors occurs in both dSPNs and iSPNs. In contrast, iSPNs would exhibit modulation by both A(1)- and A2A-receptors. We demonstrate that A(1)-type receptors reduced Ca(2+)-currents in all SPNs tested. However, A(2A)-type receptors enhanced Ca(2+)-currents only in half tested neurons. Intriguingly, to observe the actions of A(2A)-type receptors, occupation of A(1)-type receptors had to occur first. However, A(1)-receptors decreased Ca(V)2 Ca(2+)-currents, while A(2A)-type receptors enhanced current through Ca(V)1 channels. Because these channels have opposing actions on cell discharge, these differences explain in part why iSPNs may be more excitable than dSPNs. It is demonstrated that intrinsic voltage-gated currents expressed in SPNs are effectors of purinergic signaling that therefore play a role in excitability.

  10. Actions of adenosine A1 and A2 receptor antagonists on CFTR antibody-inhibited β-adrenergic mucin secretion response

    PubMed Central

    Pereira, M M C; Lloyd Mills, C; Dormer, R L; McPherson, M A

    1998-01-01

    The cystic fibrosis gene protein, the cystic fibrosis transmembrane conductance regulator (CFTR) acts as a chloride channel and is a key regulator of mucin secretion. The mechanism by which 3-isobutyl-1-methylxanthine (IBMX) corrects the defect in CFTR mediated β-adrenergic stimulation of mucin secretion has not been determined. The present study has investigated the actions of adenosine A1 and A2 receptor antagonists to determine whether ability to stimulate mucin secretion correlates with correction of CFTR antibody inhibited β-adrenergic response and whether excessive cyclic AMP rise is required.CFTR antibodies were introduced into living rat submandibular acini by hypotonic swelling. Following recovery, mucin secretion in response to isoproterenol was measured.The adenosine A1 receptor antagonist, 8 cyclopentyltheophylline (CPT) was a less potent stimulator of mucin secretion than was the A2 receptor antagonist dimethylpropargylxanthine (DMPX). A concentration of CPT close to the Ki for A1 receptor antagonism (10 nM) did not stimulate mucin secretion.DMPX, although a potent stimulator of mucin secretion, did not correct CFTR antibody inhibited mucin secretion.CPT corrected defective CFTR antibody inhibited mucin secretion at a high (1 mM) concentration, suggesting a mechanism other than adenosine receptor antagonism.DMPX potentiated the isoproterenol induced cyclic AMP rise, whereas CPT did not.Correction of the defective CFTR mucin secretion response did not correlate with ability to stimulate mucin secretion and did not require potentiation of β-adrenergic induced increases in cyclic AMP. This affords real promise for the development of a selective drug treatment for cystic fibrosis. PMID:9831904

  11. Protein kinase C activation increases noradrenaline release from the rat hippocampus and modifies the inhibitory effect of alpha 2-adrenoceptor and adenosine A1-receptor agonists.

    PubMed

    Fredholm, B B; Lindgren, E

    1988-05-01

    We have studied the effect of stimulating protein kinase C with phorbol esters on the release of [3H]-noradrenaline (NA) in the absence or presence of presynaptic alpha 2-adrenoceptor blocking agents and compared that to the elevation of cyclic AMP levels more than 10-fold by a combination of rolipram and forskolin. 4-beta-Phorbol 12,13-dibutyrate (PDiBu) increased stimulated (3 Hz) [3H]-NA release markedly and in a concentration dependent manner. 4-alpha-Phorbol-12,13-didecanoate was ineffective. The effect of PDiBu was not significantly reduced by nifedipine (1 microM), but was proportionally less in the presence of an alpha 2-adrenoceptor antagonist, yohimbine. PDiBu inhibited the presynaptic effect of alpha 2-adrenoceptor agonists clonidine and UK 14304. By contrast, the presynaptic effect of the adenosine analogue R-PIA was not reduced by PDiBu. PDiBu caused an increase in cyclic AMP that depended on adenosine receptor stimulation. Elevation of cyclic AMP had a limited effect on NA release from rat hippocampus, and did not significantly decrease the presynaptic inhibitory effect of UK 14304 (0.1 microM), of morphine (1 microM) or of the adenosine A1-receptor agonist CHA (1 microM). The effect of phorbol esters and several presynaptic inhibitors of NA-release in the rat hippocampus cannot be explained by changes in cyclic AMP levels in the tissue. Phorbol esters that stimulate protein kinase C appear to interact with a target that is the site of action alpha 2-adrenoceptors in this tissue. This site is not a dihydropyridine sensitive Ca-channel and is also different from the target of presynaptic adenosine receptors. Thus, activation of protein kinase C discriminates between apparently similar presynaptic mechanisms.

  12. Deletion of adenosine A1 or A2A receptors reduces L-3,4-dihydroxyphenylalanine-induced dyskinesia in a model of Parkinson’s disease

    PubMed Central

    Xiao, Danqing; Cassin, Jared J.; Healy, Brian; Burdett, Thomas C.; Chen, Jiang-Fan; Fredholm, Bertil B.; Schwarzschild, Michael A.

    2010-01-01

    Adenosine A2A receptor antagonism provides a promising approach to developing nondopaminergic therapy for Parkinson’s disease (PD). Clinical trials of A2A antagonists have targeted PD patients with L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID) in an effort to improve parkinsonian symptoms. The role of adenosine in the development of LID is little known, especially regarding its actions via A1 receptors. We aimed to examine the effects of genetic deletion and pharmacological blockade of A1 and/or A2A receptors on the development of LID, on the induction of molecular markers of LID including striatal preprodynorphin and preproenkephalin (PPE), and on the integrity of dopaminergic nigrostriatal neurons in hemiparkinsonian mice. Following a unilateral 6-hydroxydopamine lesion A1, A2A and double A1-A2A knockout (KO) and wild-type littermate mice, and mice pretreated with caffeine (an antagonist of both A1 and A2A receptors) or saline were treated daily for 18–21 days with a low dose of L-DOPA. Total abnormal involuntary movements (AIMs, a measure of LID) were significantly attenuated (p<0.05) in A1 and A2A KOs, but not in A1-A2A KOs and caffeine-pretreated mice. An elevation of PPE mRNA ipsilateral to the lesion in WT mice was reduced in all KO mice. In addition, neuronal integrity assessed by striatal dopamine content was similar in all KOs and caffeine-pretreated mice following 6-hydroxydopamine lesioning. Our findings raise the possibility that A1 or A2A receptors blockade might also confer a disease-modifying benefit of reduced risk of disabling LID, whereas the effect of their combined inactivation is less clear. PMID:20828543

  13. Adenosine A1-receptor blockade impairs the ability of rat pups to autoresuscitate from primary apnea during repeated exposure to hypoxia

    PubMed Central

    Fewell, James E; Lun, Rongzhi

    2015-01-01

    Failure of gasping to bring about autoresuscitation from hypoxia-induced apnea has been suggested to play a role in sudden unexpected infant death. Little is known, however, about factors that influence the ability of gasping to restore life during severe hypoxia in newborns. Given that adenosine modulates cardiac function during hypoxia-induced apnea and that cardiac dysfunction plays a role in mediating autoresuscitation failure, the present experiments were carried out on 34, 5- to 6-, and 10- to 11-day-old rat pups to investigate their ability to autoresuscitate from hypoxia-induced apnea during repeated exposure to hypoxia after adenosine A1-receptor blockade. Each pup was placed into a temperature-controlled chamber regulated to 37 ± 1°C and repeatedly exposed to an anoxic gas mixture (97% N2 and 3% CO2) until the occurrence of autoresuscitation failure. One group was studied following administration of the selective adenosine A1-receptor antagonist 8-Cyclopentyl-1,3,-dipropylxanthine (DPCPX) and one group was studied following vehicle. DPCPX significantly attenuated bradycardia during hypoxia-induced apnea and impaired the ability of both age groups of pups to autoresuscitate during repeated exposure to hypoxia (5–6 days tolerated – vehicle 17 ± 4 vs. DPCPX 10 ± 2 hypoxia exposures [P < 0.05]; 10–11 days tolerated – vehicle 10 ± 2 vs. DPCPX 7 ± 2 hypoxia exposures [P < 0.05]). Death in all pups resulted from the inability of gasping to restore cardiovascular function during hypoxia-induced apnea although the mechanism of cardiovascular dysfunction/failure was influenced and the occurrence hastened by DPCPX. Thus, our data provide evidence that adenosine acting via adenosine A1-receptors enhances the ability of rat pups to tolerate repeated exposure to severe hypoxia during early postnatal maturation. PMID:26272732

  14. Downregulation of A(1) and A(2B) adenosine receptors in human trisomy 21 mesenchymal cells from first-trimester chorionic villi.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Stefanelli, Angela; Mirandola, Prisco; Bonfatti, Alessandra; Fini, Sergio; Sensi, Alberto; Marci, Roberto; Varani, Katia; Borea, Pier Andrea; Vesce, Fortunato

    2012-11-01

    Human reproduction is complex and prone to failure. Though causes of miscarriage remain unclear, adenosine, a proangiogenic nucleoside, may help determine pregnancy outcome. Although adenosine receptor (AR) expression has been characterized in euploid pregnancies, no information is available for aneuploidies, which, as prone to spontaneous abortion (SA), are a potential model for shedding light on the mechanism regulating this event. AR expression was investigated in 71 first-trimester chorionic villi (CV) samples and cultured mesenchymal cells (MC) from euploid and TR21 pregnancies, one of the most frequent autosomal aneuploidy, with a view to elucidating their potential role in the modulation of vascular endothelial growth factor (VEGF) and nitric oxide (NO). Compared to euploid cells, reduced A(1) and A(2B) expression was revealed in TR21 CV and MCs. The non-selective adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) increased NO, by activating, predominantly, A(1)AR and A(2A)AR through a molecular pathway involving hypoxia-inducible-factor-1 (HIF-1α), and increased VEGF, mainly through A(2B). In conclusion the adenosine transduction cascade appears to be disturbed in TR21 through reduced expression of A(2B) and A(1)ARs. These anomalies may be implicated in complications such as fetal growth restriction, malformation and/or SA, well known features of aneuploid pregnancies. Therefore A(1) and A(2B)ARs could be potential biomarkers able to provide an early indication of SA risk and their stimulation may turn out to improve fetoplacental perfusion by increasing NO and VEGF.

  15. Noninvasive limb remote ischemic preconditioning contributes neuroprotective effects via activation of adenosine A1 receptor and redox status after transient focal cerebral ischemia in rats.

    PubMed

    Hu, Sheng; Dong, Hailong; Zhang, Haopeng; Wang, Shiquan; Hou, Lichao; Chen, Shaoyang; Zhang, Jinsong; Xiong, Lize

    2012-06-12

    To investigate whether activation of adenosine A1 receptor (A1R) through limb remote ischemic preconditioning (RIPC) by a noninvasive tourniquet contribute neuroprotective effects against rat focal cerebral ischemic injury induced by transient middle cerebral artery occlusion (MCAO). One hundred twenty-eight Sprague-Dawley (SD) rats were randomly assigned into eight groups (n=16 each): MCAO, Control, 8-cyclopentyl-1,3-dipropulxanthine (DPCPX, Adenosine A1 receptor antagonist), RIPC, DPCPX+RIPC, Vehicle+RIPC, 2-chloro-N(6)-cyclopentyladenosine (CCPA, Adenosine A1 receptor agonist) and CCPA+DPCPX groups. All animals underwent right middle cerebral artery occlusion (MCAO) for 2 h. Limb RIPC consisted of three cycles of 5-minute ischemia followed by 5-minute reperfusion in right hind-limb by tourniquet application. Neurological deficit scores were evaluated 24 h after reperfusion, and then the infarct volume was assessed with diffusion weighted imaging (DWI) and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Inflammation was assessed by serum tumor necrosis factor α (TNF(α)) and NO; oxidative stress was estimated by malondialdehyde (MDA) and 4-hydroxyalkenals (4-HAD), superoxide dismutase (SOD) activity and GSH. Animals in the RIPC, Vehicle+RIPC and CCPA groups developed lower neurological deficit scores and smaller brain infarct volumes than the Control group (P<0.01). Animals in the DPCPX, DPCPX+RIPC and CCPA+DPCPX groups developed higher neurological deficit scores and larger brain infarct volumes than the RIPC, Vehicle+RIPC and CCPA groups (P<0.01). DPCPX abolished the protective effects of RIPC and CCPA. RIPC or CCPA induced a significant increase in brain MnSOD (manganese SOD) activity and NO generation, and this activity was abolished by DPCPX pretreatment. RIPC or CCPA induced a significant reduction (P<0.05) in the GSH and MDA+4HDA concentration and an accumulation in the GSSG concentration in both compartments (serum and tissue) as compared with the

  16. Carbamazepine and oxcarbazepine, but not eslicarbazepine, enhance excitatory synaptic transmission onto hippocampal CA1 pyramidal cells through an antagonist action at adenosine A1 receptors.

    PubMed

    Booker, Sam A; Pires, Nuno; Cobb, Stuart; Soares-da-Silva, Patrício; Vida, Imre

    2015-06-01

    This study assessed the anticonvulsant and seizure generation effects of carbamazepine (CBZ), oxcarbazepine (OXC) and eslicarbazepine (S-Lic) in wild-type mice. Electrophysiological recordings were made to discriminate potential cellular and synaptic mechanisms underlying anti- and pro-epileptic actions. The anticonvulsant and pro-convulsant effects were evaluated in the MES, the 6-Hz and the Irwin tests. Whole-cell patch-clamp recordings were used to investigate the effects on fast excitatory and inhibitory synaptic transmission in hippocampal area CA1. The safety window for CBZ, OXC and eslicarbazepine (ED50 value against the MES test and the dose that produces grade 5 convulsions in all mice), was 6.3, 6.0 and 12.5, respectively. At high concentrations the three drugs reduced synaptic transmission. CBZ and OXC enhanced excitatory postsynaptic currents (EPSCs) at low, therapeutically-relevant concentrations. These effects were associated with no change in inhibitory postsynaptic currents (IPSCs) resulting in altered balance between excitation and inhibition. S-Lic had no effect on EPSC or IPSC amplitudes over the same concentration range. The CBZ mediated enhancement of EPSCs was blocked by DPCPX, a selective antagonist, and occluded by CCPA, a selective agonist of the adenosine A1 receptor. Furthermore, reduction of endogenous adenosine by application of the enzyme adenosine deaminase also abolished the CBZ- and OXC-induced increase of EPSCs, indicating that the two drugs act as antagonists at native adenosine receptors. In conclusion, CBZ and OXC possess pro-epileptic actions at clinically-relevant concentrations through the enhancement of excitatory synaptic transmission. S-Lic by comparison has no such effect on synaptic transmission, explaining its lack of seizure exacerbation.

  17. Effect of Caffeine Chronically Consumed During Pregnancy on Adenosine A1 and A2A Receptors Signaling in Both Maternal and Fetal Heart from Wistar Rats.

    PubMed

    Iglesias, Inmaculada; Albasanz, Jose Luis; Martín, Mairena

    2014-12-01

    Background: Caffeine is the most widely consumed psychoactive substance in the world, even during pregnancy. Its stimulatory effects are mainly due to antagonism of adenosine actions by blocking adenosine A1 and A2A receptors. Previous studies have shown that caffeine can cross the placenta and therefore modulate these receptors not only in the fetal brain but also in the heart. Methods: In the present work, the effect of caffeine chronically consumed during pregnancy on A1 and A2A receptors in Wistar rat heart, from both mothers and their fetuses, were studied using radioligand binding, Western-blotting, and adenylyl cyclase activity assays, as well as reverse transcription polymerase chain reaction. Results: Caffeine did not significantly alter A1R neither at protein nor at gene expression level in both the maternal and fetal heart. On the contrary, A2AR significantly decreased in the maternal heart, although mRNA was not affected. Gi and Gs proteins were also preserved. Finally, A1R-mediated inhibition of adenylyl cyclase activity did not change in the maternal heart, but A2AR mediated stimulation of this enzymatic activity significantly decreased according to the detected loss of this receptor. Conclusions: Opposite to the downregulation and desensitization of the A1R/AC pathway previously reported in the brain, these results show that this pathway is not affected in rat heart after caffeine exposure during pregnancy. In addition, A2AR is downregulated and desensitized in the maternal heart, suggesting a differential modulation of these receptor-mediated pathways by caffeine.

  18. Effect of Caffeine Chronically Consumed During Pregnancy on Adenosine A1 and A2A Receptors Signaling in Both Maternal and Fetal Heart from Wistar Rats

    PubMed Central

    Iglesias, Inmaculada; Albasanz, Jose Luis

    2014-01-01

    Background: Caffeine is the most widely consumed psychoactive substance in the world, even during pregnancy. Its stimulatory effects are mainly due to antagonism of adenosine actions by blocking adenosine A1 and A2A receptors. Previous studies have shown that caffeine can cross the placenta and therefore modulate these receptors not only in the fetal brain but also in the heart. Methods: In the present work, the effect of caffeine chronically consumed during pregnancy on A1 and A2A receptors in Wistar rat heart, from both mothers and their fetuses, were studied using radioligand binding, Western-blotting, and adenylyl cyclase activity assays, as well as reverse transcription polymerase chain reaction. Results: Caffeine did not significantly alter A1R neither at protein nor at gene expression level in both the maternal and fetal heart. On the contrary, A2AR significantly decreased in the maternal heart, although mRNA was not affected. Gi and Gs proteins were also preserved. Finally, A1R-mediated inhibition of adenylyl cyclase activity did not change in the maternal heart, but A2AR mediated stimulation of this enzymatic activity significantly decreased according to the detected loss of this receptor. Conclusions: Opposite to the downregulation and desensitization of the A1R/AC pathway previously reported in the brain, these results show that this pathway is not affected in rat heart after caffeine exposure during pregnancy. In addition, A2AR is downregulated and desensitized in the maternal heart, suggesting a differential modulation of these receptor-mediated pathways by caffeine. PMID:25538864

  19. Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine

    PubMed Central

    Chen, Yunjia; Liu, Yin; Cottingham, Christopher; McMahon, Lori; Jiao, Kai; Greengard, Paul; Wang, Qin

    2012-01-01

    Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A1 receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G protein signaling 4 (RGS4), a protein known to turn off G protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ~50% rate of death in WT mice did not affect neurabin null mice or WT mice co-treated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine. PMID:22357852

  20. Neurabin scaffolding of adenosine receptor and RGS4 regulates anti-seizure effect of endogenous adenosine.

    PubMed

    Chen, Yunjia; Liu, Yin; Cottingham, Christopher; McMahon, Lori; Jiao, Kai; Greengard, Paul; Wang, Qin

    2012-02-22

    Endogenous adenosine is an essential protective agent against neural damage by various insults to the brain. However, the therapeutic potential of adenosine receptor-directed ligands for neuroprotection is offset by side effects in peripheral tissues and organs. An increase in adenosine receptor responsiveness to endogenous adenosine would enhance neuroprotection while avoiding the confounding effects of exogenous ligands. Here we report novel regulation of adenosine-evoked responses by a neural tissue-specific protein, neurabin. Neurabin attenuated adenosine A(1) receptor (A1R) signaling by assembling a complex between the A1R and the regulator of G-protein signaling 4 (RGS4), a protein known to turn off G-protein signaling. Inactivation of the neurabin gene enhanced A1R signaling and promoted the protective effect of adenosine against excitotoxic seizure and neuronal death in mice. Furthermore, administration of a small molecule inhibitor of RGS4 significantly attenuated seizure severity in mice. Notably, the dose of kainate capable of inducing an ∼50% rate of death in wild-type (WT) mice did not affect neurabin-null mice or WT mice cotreated with an RGS4 inhibitor. The enhanced anti-seizure and neuroprotective effect achieved by disruption of the A1R/neurabin/RGS4 complex is elicited by the on-site and on-demand release of endogenous adenosine, and does not require administration of A1R ligands. These data identify neurabin-RGS4 as a novel tissue-selective regulatory mechanism for fine-tuning adenosine receptor function in the nervous system. Moreover, these findings implicate the A1R/neurabin/RGS4 complex as a valid therapeutic target for specifically manipulating the neuroprotective effects of endogenous adenosine.

  1. Time and Sex-Dependent Effects of an Adenosine A2A/A1 Receptor Antagonist on Motivation to Self-Administer Cocaine in Rats

    PubMed Central

    Doyle, Susan E.; Breslin, Florence J.; Rieger, Jayson M.; Beauglehole, Anthony; Lynch, Wendy J.

    2012-01-01

    Adenosine is an important neuromodulator, known to interact with both dopaminergic and glutamatergic systems to influence psychostimulant action. In the present study, we examined the effects of ATL444, a novel adenosine receptor antagonist, on motivation for cocaine in male and female rats. Adult male and female Sprague-Dawley rats were trained to self-administer cocaine (1.5 mg/kg/infusion) on a fixed-ratio 1 schedule with a daily maximum of 20 infusions. Following 5 consecutive sessions during which all 20 available infusions were obtained, motivation for cocaine (0.5 mg/kg/infusion) was assessed under a progressive ratio (PR) schedule, and once responding stabilized, the effect of treatment with ATL444 (0, 15, and 30 mg/kg, i.p.) was examined. As a control, we also assessed its effects on PR responding for sucrose. Binding studies revealed that ATL 444 was 3-fold, 25-fold, and 400-fold more selective for the A2A receptor as compared to A1, A2B, and A3 receptors, respectively. ATL444 produced a significant increase in motivation for cocaine on the day of treatment in females with a trend for an increase in males. In addition, over the two PR sessions following ATL444 treatment a significant decrease in responding was observed in males but not females. Responding for sucrose was unaffected by ATL444 treatment. Our results reveal that adenosine receptor blockade may mediate both acute increases in the reinforcing effects of cocaine, and longer term inhibitory effects on cocaine reinforcement that differ according to sex. PMID:22579716

  2. TRR469, a potent A(1) adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice.

    PubMed

    Vincenzi, Fabrizio; Targa, Martina; Romagnoli, Romeo; Merighi, Stefania; Gessi, Stefania; Baraldi, Pier Giovanni; Borea, Pier Andrea; Varani, Katia

    2014-06-01

    A(1) adenosine receptors (ARs) have been identified as a potential target for the development of anti-nociceptive compounds. The present study explores the analgesic effects of a novel A(1)AR positive allosteric modulator, TRR469, in different models of acute and chronic pain in mice. To evaluate the allosteric enhancement, in vitro binding experiments were performed. The anti-nociceptive properties were investigated in formalin and writhing tests, and in the streptozotocin-induced diabetic neuropathic pain model. Rotarod and catalepsy tests were used to identify potential side effects, while the functional effect of TRR469 was studied using [(3)H]-d-aspartate release from synaptosomes. TRR469 effectively inhibited nociceptive responses in the formalin and writhing tests, with effects comparable to those of the reference analgesic morphine. Isobolographic analysis of the combination of TRR469 and morphine revealed an additive interaction. TRR469 was anti-allodynic in the neuropathic pain model and did not display locomotor or cataleptic side effects. TRR469 enhanced the binding of the agonist radioligand [(3)H]-CCPA and induced a 33-fold increase of adenosine affinity in spinal cord membranes. In mouse spinal cord synaptosomes, TRR469 enhanced the inhibitory effect of A(1)AR activation on [(3)H]-d-aspartate release, a non-metabolizable analogue of glutamate. In conclusion, this research demonstrates the anti-nociceptive effect of the novel compound TRR469, one of the most potent and effective A(1)AR positive allosteric modulators so far synthesized. The use of TRR469 allows for the possibility of exploiting analgesic properties of endogenous adenosine, with a minor potential to develop the various side effects often associated with the use of direct receptor agonists.

  3. Presymptomatic and symptomatic ALS SOD1(G93A) mice differ in adenosine A1 and A2A receptor-mediated tonic modulation of neuromuscular transmission.

    PubMed

    Nascimento, Filipe; Sebastião, Ana M; Ribeiro, Joaquim A

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a disease leading to neuromuscular transmission impairment. A2A adenosine receptor (A2AR) function changes with disease stage, but the role of the A(1) receptors (A1Rs) is unknown and may have a functional cross-talk with A2AR. The role of A1R in the SOD1(G93A) mouse model of ALS in presymptomatic (4-6 weeks old) and symptomatic (12-14 weeks old) phases was investigated by recording endplate potentials (EPPs), miniature endplate potentials (MEPPs), and quantal content (q.c.) of EPPs, from Mg(2+) paralyzed hemidiaphragm preparations. In presymptomatic mice, the A1R agonist, N (6)-cyclopentyladenosine (CPA) (50 nM), decreased mean EPP amplitude, MEPP frequency, and q.c. of EPPs, an effect quantitatively similar to that in age-matched wild-type (WT) mice. However, coactivation of A2AR with CGS 21680 (5 nM) prevented the effects of CPA in WT mice but not in presymptomatic SOD1(G93A) mice, suggestive of A1R/A2AR cross-talk disruption in this phase of ALS. DPCPX (50 nM) impaired CGS 21680 facilitatory action on neuromuscular transmission in WT but not in presymptomatic mice. In symptomatic animals, CPA only inhibited transmission if added in the presence of adenosine deaminase (ADA, 1 U/mL). ADA and DPCPX enhanced more transmission in symptomatic mice than in age-matched WT mice, suggestive of increase in extracellular adenosine during the symptomatic phase of ALS. The data documents that at the neuromuscular junction of presymptomatic SOD1(G93A) mice, there is a loss of A1R-A2AR functional cross-talk, while in symptomatic mice there is increased A1R tonic activation, and that with disease progression, changes in A1R-mediated adenosine modulation may act as aggravating factors during the symptomatic phase of ALS.

  4. Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a

    PubMed Central

    Serchov, Tsvetan; Clement, Hans-Willi; Schwarz, Martin K.; Iasevoli, Felice; Tosh, Dilip K.; Idzko, Marco; Jacobson, Kenneth A.; de Bartolomeis, Andrea; Normann, Claus; Biber, Knut; van Calker, Dietrich

    2016-01-01

    SUMMARY Major depressive disorder is among the most commonly diagnosed disabling mental diseases. Several non-pharmacological treatments of depression upregulate adenosine concentration and/or adenosine A1 receptors (A1R) in the brain. To test whether enhanced A1R signaling mediates antidepressant effects, we generated a transgenic mouse with enhanced doxycycline-regulated A1R expression, specifically in forebrain neurons. Upregulating A1R led to pronounced acute and chronic resilience toward depressive-like behavior in various tests. Conversely, A1R knockout mice displayed an increased depressive-like behavior and were resistant to the antidepressant effects of sleep deprivation (SD). Various antidepressant treatments increase homer1a expression in medial prefrontal cortex (mPFC). Specific siRNA knockdown of homer1a in mPFC enhanced depressive-like behavior and prevented the antidepressant effects of A1R upregulation, SD, imipramine, and ketamine treatment. In contrast, viral overexpression of homer1a in the mPFC had antidepressant effects. Thus, increased expression of homer1a is a final common pathway mediating the antidepressant effects of different antidepressant treatments. PMID:26247862

  5. Increased Signaling via Adenosine A1 Receptors, Sleep Deprivation, Imipramine, and Ketamine Inhibit Depressive-like Behavior via Induction of Homer1a.

    PubMed

    Serchov, Tsvetan; Clement, Hans-Willi; Schwarz, Martin K; Iasevoli, Felice; Tosh, Dilip K; Idzko, Marco; Jacobson, Kenneth A; de Bartolomeis, Andrea; Normann, Claus; Biber, Knut; van Calker, Dietrich

    2015-08-05

    Major depressive disorder is among the most commonly diagnosed disabling mental diseases. Several non-pharmacological treatments of depression upregulate adenosine concentration and/or adenosine A1 receptors (A1R) in the brain. To test whether enhanced A1R signaling mediates antidepressant effects, we generated a transgenic mouse with enhanced doxycycline-regulated A1R expression, specifically in forebrain neurons. Upregulating A1R led to pronounced acute and chronic resilience toward depressive-like behavior in various tests. Conversely, A1R knockout mice displayed an increased depressive-like behavior and were resistant to the antidepressant effects of sleep deprivation (SD). Various antidepressant treatments increase homer1a expression in medial prefrontal cortex (mPFC). Specific siRNA knockdown of homer1a in mPFC enhanced depressive-like behavior and prevented the antidepressant effects of A1R upregulation, SD, imipramine, and ketamine treatment. In contrast, viral overexpression of homer1a in the mPFC had antidepressant effects. Thus, increased expression of homer1a is a final common pathway mediating the antidepressant effects of different antidepressant treatments.

  6. A new class of adenosine receptors in brain: Characterization by 2-chloro( sup 3 H)adenosine binding

    SciTech Connect

    Chin, Jerome Hsicheng.

    1988-01-01

    Considerable evidence has accumulated in recent years to support a role for adenosine as an important physiological modulator in many mammalian tissues. In brain, adenosine is a potent depressant of neuronal firing and synaptic transmission. The exact mechanisms by which adenosine analogs depress nerve cell activity in the brain are not clear. Despite considerable investigation, neither the A1 nor the A2 adenosine receptors associated with adenylate cyclase have been able to account adequately for the actions of adenosine in brain. It has been proposed that additional adenosine receptors, possibly linked to calcium channels, are present in the central nervous system and are responsible for the physiological actions of adenosine. In this thesis, evidence is provided for the existence of a novel class of adenosine receptors in rat brain. The methods used to identify this new class of receptors involved radioligand binding techniques which have been successfully employed to characterize the properties of many neurotransmitter and drug receptors. 2-Chloro({sup 3}H)adenosine (Cl({sup 3}H)Ado) was selected as the ligand for these experiments since is a water-soluble, metabolically-stable analog of adenosine and a potent depressant of synaptic transmission in brain. The results demonstrate the presence of a distinct class of 2-chloro({sup 3}H)adenosine binding sites in rat forebrain membranes with an apparent K{sub D} of about 10 {mu}M and a B{sub max} of about 60 pmol per mg of protein. Specific 2-chloro ({sup 3}H)adenosine binding is highly specific for adenosine agonists and antagonists. Inhibition of binding by adenosine agonists exhibits an order of potency 2-chloroadenosine > 5{prime}-N-ethylcarboxamide adenosine > ({minus})-N{sup 6}-(R-phenylisopropyl)adenosine, which differs from that of both A1 and A2 adenosine receptors.

  7. A1 adenosine receptor–stimulated exocytosis in bladder umbrella cells requires phosphorylation of ADAM17 Ser-811 and EGF receptor transactivation

    PubMed Central

    Prakasam, H. Sandeep; Gallo, Luciana I.; Li, Hui; Ruiz, Wily G.; Hallows, Kenneth R.; Apodaca, Gerard

    2014-01-01

    Despite the importance of ADAM17-dependent cleavage in normal biology and disease, the physiological cues that trigger its activity, the effector pathways that promote its function, and the mechanisms that control its activity, particularly the role of phosphorylation, remain unresolved. Using native bladder epithelium, in some cases transduced with adenoviruses encoding small interfering RNA, we observe that stimulation of apically localized A1 adenosine receptors (A1ARs) triggers a Gi-Gβγ-phospholipase C-protein kinase C (PKC) cascade that promotes ADAM17-dependent HB-EGF cleavage, EGFR transactivation, and apical exocytosis. We further show that the cytoplasmic tail of rat ADAM17 contains a conserved serine residue at position 811, which resides in a canonical PKC phosphorylation site, and is phosphorylated in response to A1AR activation. Preventing this phosphorylation event by expression of a nonphosphorylatable ADAM17S811A mutant or expression of a tail-minus construct inhibits A1AR-stimulated, ADAM17-dependent HB-EGF cleavage. Furthermore, expression of ADAM17S811A in bladder tissues impairs A1AR-induced apical exocytosis. We conclude that adenosine-stimulated exocytosis requires PKC- and ADAM17-dependent EGFR transactivation and that the function of ADAM17 in this pathway depends on the phosphorylation state of Ser-811 in its cytoplasmic domain. PMID:25232008

  8. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Development

    PubMed Central

    Jones, Karlie R.; Choi, Uimook; Gao, Ji-Liang; Thompson, Robert D.; Rodman, Larry E.; Malech, Harry L.; Kang, Elizabeth M.

    2017-01-01

    Agonists that target the A1, A2A, A2B and A3 adenosine receptors have potential to be potent treatment options for a number of diseases, including autoimmune diseases, cardiovascular disease and cancer. Because each of these adenosine receptors plays a distinct role throughout the body, obtaining highly specific receptor agonists is essential. Of these receptors, the adenosine A2AR and A2BR share many sequence and structural similarities but highly differ in their responses to inflammatory stimuli. Our laboratory, using a combination of specially developed cell lines and calcium release analysis hardware, has created a new and faster method for determining specificity of synthetic adenosine agonist compounds for the A2A and A2B receptors in human cells. A2A receptor expression was effectively removed from K562 cells, resulting in the development of a distinct null line. Using HIV-lentivector and plasmid DNA transfection, we also developed A2A and A2B receptor over-expressing lines. As adenosine is known to cause changes in intracellular calcium levels upon addition to cell culture, calcium release can be determined in these cell lines upon compound addition, providing a functional readout of receptor activation and allowing us to isolate the most specific adenosine agonist compounds. PMID:28317879

  9. Differential A1-adenosine receptor reserve for inhibition of cyclic AMP accumulation and G-protein activation in DDT1 MF-2 cells

    PubMed Central

    Baker, Stephen P; Scammells, Peter J; Belardinelli, Luiz

    2000-01-01

    The A1-adenosine receptor (A1AdoR) reserve for N6-cyclopentyladenosine (CPA) mediated inhibition of (−)isoprenaline stimulated cyclic AMP accumulation and stimulation of [35S]-guanosine-5′-O-(thiotriphosphate) (GTPγS) binding, a measure of guanine nucleotide binding protein (G-protein) activation, was determined in DDT1 MF-2 cells. Inactivation of the A1AdoRs with the chemoreactive ligand 8-cyclopentyl-3-[3-[[4-(fluorosulphonyl)benzoyl]oxy]propyl]-1-propylxanthine (FSCPX) caused a progressive rightward shift of the concentration-response curves for CPA to inhibit cyclic AMP accumulation, with a maximum of 10 fold increase in the EC50 value. In contrast, inactivation of A1AdoR's caused only a 1.7 fold rightward shift in the CPA concentration-response for stimulation of [35S]-GTPγS binding. The A1AdoR occupancy-response relationship for CPA inhibition of cyclic AMP accumulation was hyperbolic with 43% receptor occupancy required to elicit the maximal response, i.e. a 57% A1AdoR reserve. In contrast, the A1AdoR occupancy-response relationship for CPA mediated stimulation of [35S]-GTPγS binding was linear indicating little or no receptor reserve for G-protein activation. The relationship between CPA stimulation of [35S]-GTPγS binding and cyclic AMP inhibition was also hyperbolic with 44% G-protein activation sufficient to cause maximal inhibition. The data suggest that the A1AdoR reserve for CPA mediated inhibition of cyclic AMP accumulation occurs at the level of G-protein interaction with adenylyl cyclase. However, each A1AdoR appears to activate a constant fraction of the total G-protein population suggesting signal amplification at the receptor-G-protein level which may also contribute to the receptor reserve for CPA. PMID:10882402

  10. New Pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones Fluoroderivatives as Human A1 Adenosine Receptor Ligands.

    PubMed

    Graziano, Alessia; Giovannoni, Maria Paola; Cilibrizzi, Agostino; Crocetti, Letizia; Piaz, Vittorio Dal; Vergelli, Claudia; Trincavelli, Maria Letizia; Martini, Claudia; Giacomelli, Chiara

    2012-09-01

    In this paper we report the synthesis and biological evaluation of a new series of pyrazolo[1',5':1,6]pyrimido[4,5-d]pyridazin-4(3H)-ones as human A1 adenosine receptor ligands. The tricyclic scaffold was modified at position 6 and 9 by introducing small alkyl chains and substituted phenyls. The most interesting compounds showed Ki for A1 in the submicromolar range (0.105-0.244 µM) and the most interesting term (compound 4c) combined an appreciable affinity for A1 (Ki = 0.132 µM) with a good selectivity toward A2A (43% inhibition at 10 µM) and A3 (46% inhibition at 10 µM).

  11. Frequency Facilitation at Mossy Fiber–CA3 Synapses of Freely Behaving Rats Contributes to the Induction of Persistent LTD via an Adenosine-A1 Receptor-Regulated Mechanism

    PubMed Central

    Hagena, Hardy

    2010-01-01

    Frequency facilitation (FF), comprising a rapid and multiple-fold increase in the magnitude of evoked field potentials, is elicited by low-frequency stimulation (LFS) at mossy fiber–CA3 synapses. Here, we show that in freely behaving rats, FF reliably occurs in response to 1 and 2Hz but not in response to 0.25-, 0.3-, or 0.5-Hz LFS. Strikingly, prolonged (∼600 s) FF was tightly correlated to the induction of long-term depression (LTD) in freely moving animals. Although LFS at 2 Hz elicited unstable FF and unstable LTD, application of LFS at 1 Hz elicited pronounced FF, as well as robust LTD that persisted for over 24 h. This correlation of prolonged FF with LTD was absent at stimulation frequencies that did not induce FF. The adenosine-A1 receptor appears to participate in these effects: Application of adenosine-A1, but not adenosine-A3, receptor antagonists enhanced mossy fiber synaptic transmission and occluded FF. Furthermore, adenosine-A1 receptor antagonism resulted in more stable FF at 1 or 2 Hz and elicited more potent LTD. These data support the fact that FF contributes to the enablement of long-term information storage at mossy fiber–CA3 synapses and that the adenosine-A1 receptor may regulate the thresholds for this process. PMID:19903765

  12. Effects of Long-Term Caffeine Consumption on the Adenosine A1 Receptor in the Rat Brain: an In Vivo PET Study with [(18)F]CPFPX.

    PubMed

    Nabbi-Schroeter, Danje; Elmenhorst, David; Oskamp, Angela; Laskowski, Stefanie; Bauer, Andreas; Kroll, Tina

    2017-09-11

    Caffeine, a nonselective antagonist of adenosine receptors, is the most popular psychostimulant worldwide. Recently, a protective role of moderate chronic caffeine consumption against neurodegenerative diseases such as Alzheimer's and Parkinson's disease has been discussed. Thus, aim of the present study was an in vivo investigation of effects of long-term caffeine consumption on the adenosine A1 receptor (A1AR) in the rat brain. Sixteen adult, male rats underwent five positron emission tomography (PET) scans with the highly selective A1AR radioligand [(18)F]CPFPX in order to determine A1AR availability. After the first baseline PET scan, the animals were assigned to two groups: Caffeine treatment and control group. The caffeine-treated animals received caffeinated tap water (30 mg/kg bodyweight/day, corresponding to 4-5 cups of coffee per day in humans) for 12 weeks. Subsequently, caffeine was withdrawn and repeated PET measurements were performed on day 1, 2, 4, and 7 of caffeine withdrawal. The control animals were measured according to the same time schedule. At day 1, after 4.4 h of caffeine withdrawal, a significant decrease (- 34.5%, p < 0.001) of whole brain A1AR availability was observed. Unlike all other investigated brain regions in caffeine-treated rats, the hypothalamus and nucleus accumbens showed no significant intraindividual differences between baseline and first withdrawal PET scan. After approximately 27 h of caffeine withdrawal, the region- and group-specific effects disappeared and A1AR availability settled around baseline. The present study provides evidence that chronic caffeine consumption does not lead to persistent changes in functional availability of cerebral A1ARs which have previously been associated with neuroprotective effects of caffeine. The acute and region-specific decrease in cerebral A1AR availability directly after caffeine withdrawal is most likely caused by residual amounts of caffeine metabolites disguising an

  13. Down-regulation of adenosine A1 and A2A receptors in peripheral cells from idiopathic normal-pressure hydrocephalus patients.

    PubMed

    Casati, Martina; Arosio, Beatrice; Gussago, Cristina; Ferri, Evelyn; Magni, Lorenzo; Assolari, Lara; Scortichini, Valeria; Nani, Carolina; Rossi, Paolo Dionigi; Mari, Daniela

    2016-02-15

    Idiopathic normal-pressure hydrocephalus (iNPH) is a neurological disease that usually develops in the elderly. Natural history of iNPH is still unknown. It has been hypothesized that cerebrovascular diseases could have a role in etiology of chronic hydrocephalus and studies show an increased prevalence of cardiovascular diseases in iNPH patients. Moreover, evidences show a possible alteration of immune system in iNPH patients. Adenosine (Ado) is a metabolite produced in response to metabolic stress and injury. Adenosine and its receptors play an important role in vascular protection and in the modulation of inflammatory reactions and neuroinflammation. Our aim is to evaluate gene and protein expression of A1R and A2AR in the peripheral blood mononuclear cells (PBMCs) from iNPH patients compared to control subjects. We investigate if Ado system, that plays an important role in central nervous system, in vascular system, and also in inflammation, is involved in pathophysiology of iNPH disease. Our analysis showed that A1R mRNA levels and A1R density in PBMCs from iNPH patients were significantly lower than CT subjects (0.84 ± 0.12 and 2.42 ± 0.42, p<0.001 and 0.31 ± 0.02 and 0.42 ± 0.04, p=0.043; respectively). About A2AR, the gene expression in PBMCs was significantly lower in iNPH than CT (0.65 ± 0.09 and 1.5 ± 0.14, p<0.001) as well as there was a trend in protein expression: iNPH and CT (0.51 ± 0.05 and 0.62 ± 0.03; p=0.172). This preliminary study underlines the involvement of Ado system in iNPH disease whose pathophysiology is still unclear.

  14. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine.

    PubMed

    Yang, Jiang-Ning; Chen, Jiang-Fan; Fredholm, Bertil B

    2009-04-01

    Heart rate (HR), body temperature (Temp), locomotor activity (LA), and oxygen consumption (O(2)C) were studied in awake mice lacking one or both of the adenosine A(1) or A(2A) receptors (A(1)R or A(2A)R, respectively) using telemetry and respirometry, before and after caffeine administration. All parameters were lower during day than night and higher in females than males. When compared with wild-type (WT) littermates, HR was higher in male A(1)R knockout (A(1)RKO) mice but lower in A(2A)RKO mice and intermediate in A(1)-A(2A)R double KO mice. A single dose of an unselective beta-blocker (timolol; 1 mg/kg) abolished the HR differences between these genotypes. Deletion of A(1)Rs had little effect on Temp, whereas deletion of A(2A)Rs increased it in females and decreased it in males. A(1)-A(2A)RKO mice had lower Temp than WT mice. LA was unaltered in A(1)RKO mice and lower in A(2A)RKO and A(1)-A(2A)RKO mice than in WT mice. Caffeine injection increased LA but only in mice expressing A(2A)R. Caffeine ingestion also increased LA in an A(2A)R-dependent manner in male mice. Caffeine ingestion significantly increased O(2)C in WT mice, but less in the different KO mice. Injection of 30 mg/kg caffeine decreased Temp, especially in KO mice, and hence in a manner unrelated to A(1)R or A(2A)R blockade. Selective A(2B) antagonism had little or no effect. Thus A(1)R and A(2A)R influence HR, Temp, LA, and O(2)C in mice in a sex-dependent manner, indicating effects of endogenous adenosine. The A(2A)R plays an important role in the modulation of O(2)C and LA by acute and chronic caffeine administration. There is also evidence for effects of higher doses of caffeine being independent of both A(1)R and A(2A)R.

  15. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine

    PubMed Central

    Yang, Jiang-Ning; Chen, Jiang-Fan; Fredholm, Bertil B.

    2009-01-01

    Heart rate (HR), body temperature (Temp), locomotor activity (LA), and oxygen consumption (O2C) were studied in awake mice lacking one or both of the adenosine A1 or A2A receptors (A1R or A2AR, respectively) using telemetry and respirometry, before and after caffeine administration. All parameters were lower during day than night and higher in females than males. When compared with wild-type (WT) littermates, HR was higher in male A1R knockout (A1RKO) mice but lower in A2ARKO mice and intermediate in A1-A2AR double KO mice. A single dose of an unselective β-blocker (timolol; 1 mg/kg) abolished the HR differences between these genotypes. Deletion of A1Rs had little effect on Temp, whereas deletion of A2ARs increased it in females and decreased it in males. A1-A2ARKO mice had lower Temp than WT mice. LA was unaltered in A1RKO mice and lower in A2ARKO and A1-A2ARKO mice than in WT mice. Caffeine injection increased LA but only in mice expressing A2AR. Caffeine ingestion also increased LA in an A2AR-dependent manner in male mice. Caffeine ingestion significantly increased O2C in WT mice, but less in the different KO mice. Injection of 30 mg/kg caffeine decreased Temp, especially in KO mice, and hence in a manner unrelated to A1R or A2AR blockade. Selective A2B antagonism had little or no effect. Thus A1R and A2AR influence HR, Temp, LA, and O2C in mice in a sex-dependent manner, indicating effects of endogenous adenosine. The A2AR plays an important role in the modulation of O2C and LA by acute and chronic caffeine administration. There is also evidence for effects of higher doses of caffeine being independent of both A1R and A2AR. PMID:19218506

  16. Scintillation proximity assay (SPA) as a new approach to determine a ligand's kinetic profile. A case in point for the adenosine A1 receptor.

    PubMed

    Xia, Lizi; de Vries, Henk; IJzerman, Ad P; Heitman, Laura H

    2016-03-01

    Scintillation proximity assay (SPA) is a radio-isotopic technology format used to measure a wide range of biological interactions, including drug-target binding affinity studies. The assay is homogeneous in nature, as it relies on a "mix and measure" format. It does not involve a filtration step to separate bound from free ligand as is the case in a traditional receptor-binding assay. For G protein-coupled receptors (GPCRs), it has been shown that optimal binding kinetics, next to a high affinity of a ligand, can result in more desirable pharmacological profiles. However, traditional techniques to assess kinetic parameters tend to be cumbersome and laborious. We thus aimed to evaluate whether SPA can be an alternative platform for real-time receptor-binding kinetic measurements on GPCRs. To do so, we first validated the SPA technology for equilibrium binding studies on a prototypic class A GPCR, the human adenosine A1 receptor (hA1R). Differently to classic kinetic studies, the SPA technology allowed us to study binding kinetic processes almost real time, which is impossible in the filtration assay. To demonstrate the reliability of this technology for kinetic purposes, we performed the so-called competition association experiments. The association and dissociation rate constants (k on and k off) of unlabeled hA1R ligands were reliably and quickly determined and agreed very well with the same parameters from a traditional filtration assay performed simultaneously. In conclusion, SPA is a very promising technique to determine the kinetic profile of the drug-target interaction. Its robustness and potential for high-throughput may render this technology a preferred choice for further kinetic studies.

  17. Allosteric interactions between the binding sites of receptor agonists and guanine nucleotides: a comparative study of the 5-hydroxytryptamine1A and adenosine A1 receptor systems in rat hippocampal membranes.

    PubMed

    Mahle, C D; Wiener, H L; Yocca, F D; Maayani, S

    1992-12-01

    The ternary complex formed between agonist, receptor and guanine nucleotide binding protein and its destabilization by guanine nucleotides (GN) was utilized to study early events in signal transduction, by characterizing the allosteric interactions between agonist and GN binding to the receptor/guanine nucleotide binding protein, G complex for adenosine A1 and 5-hydroxytryptamine1A receptors. The functional interaction between the ternary complex and GTP was examined by assaying adenylyl cyclase activity. Binding of a full adenosine A1 agonist ([3H]-R-(-)-N6-(2-phenylisopropyl)adenosine), and a full [(+-)-[3H]-8-hydroxydipropylaminotetralin] and partial ([3H]-8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8- azaspirol[4.5]-decane-7,9-dione) 5-hydroxytryptamine1A agonist was examined in relation to the binding of GN. The amount of ternary complex formed depended upon receptor type and drug relative efficacy. The ratio between the drug's EC50 value (adenylyl cyclase) and dissociation constant (binding) was also receptor and drug relative efficacy dependent. 5'-Guanylylimidodiphosphate (100 microM) caused an approximately 50% decrease in the Bmax for all drugs without affecting Kd values. 5'-Guanylylimidodiphosphate and guanosine 5'-O-(3-thiotriphosphate) attenuated [3H]-agonist binding in a concentration-dependent and saturable manner, with IC50 values increased 2- to 6-fold with increasing receptor occupancy. IC50 values were approximately one-tenth lower at the 5-hydroxytryptamine1A receptor than adenosine A1 receptor; similar values were obtained for inhibition of (+-)-[3H]-8-hydroxydipropylaminotetralin and [3H]-8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8- azaspirol[4.5]-decane-7,9-dione binding, suggesting an independence of agonist efficacy. We propose that the stabilization of the ternary complex by hormone binding, measured by Bmax values, is related to drug-relative efficacy, thus the amount of ternary complex available for destabilization by GN is

  18. A1 adenosine receptor-mediated GIRK channels contribute to the resting conductance of CA1 neurons in the dorsal hippocampus

    PubMed Central

    Kim, Chung Sub

    2015-01-01

    The dorsal and ventral hippocampi are functionally and anatomically distinct. Recently, we reported that dorsal Cornu Ammonis area 1 (CA1) neurons have a more hyperpolarized resting membrane potential and a lower input resistance and fire fewer action potentials for a given current injection than ventral CA1 neurons. Differences in the hyperpolarization-activated cyclic nucleotide-gated cation conductance between dorsal and ventral neurons have been reported, but these differences cannot fully account for the different resting properties of these neurons. Here, we show that coupling of A1 adenosine receptors (A1ARs) to G-protein-coupled inwardly rectifying potassium (GIRK) conductance contributes to the intrinsic membrane properties of dorsal CA1 neurons but not ventral CA1 neurons. The block of GIRKs with either barium or the more specific blocker Tertiapin-Q revealed that there is more resting GIRK conductance in dorsal CA1 neurons compared with ventral CA1 neurons. We found that the higher resting GIRK conductance in dorsal CA1 neurons was mediated by tonic A1AR activation. These results demonstrate that the different resting membrane properties between dorsal and ventral CA1 neurons are due, in part, to higher A1AR-mediated GIRK activity in dorsal CA1 neurons. PMID:25652929

  19. N9-benzyl-substituted 1,3-dimethyl- and 1,3-dipropyl-pyrimido[2,1-f]purinediones: synthesis and structure-activity relationships at adenosine A1 and A2A receptors.

    PubMed

    Drabczyńska, Anna; Müller, Christa E; Karolak-Wojciechowska, Janina; Schumacher, Britta; Schiedel, Anke; Yuzlenko, Olga; Kieć-Kononowicz, Katarzyna

    2007-07-15

    Synthesis and physicochemical properties of N-benzyl pyrimido[2,1-f]purinediones are described. These derivatives were synthesized by the cyclization of 7-chloropropylo-8-bromo-1,3-dimethyl- or 1,3-dipropyl xanthine derivatives with corresponding (un)substituted benzylamines. Dipropyl derivatives were obtained under microwave irradiation conditions either. The obtained compounds (1-20) were evaluated for their affinity to adenosine A1 and A2A receptors, selected compounds were additionally investigated for affinity to the A3 receptor subtype. The results of the radioligand binding assays to A1 and A2A adenosine receptors showed that most of the 1,3-dimethyl-9-benzylpyrimidopurinediones exhibited selective affinity to A2A receptors at micromolar or submicromolar concentrations (for example, derivative 9 with o-methoxy substituent displayed a Ki value of 0.699 microM at rat A2A receptor with more than 36-fold selectivity). Contrary to previously described arylpyrimido[2,1-f]purinediones dipropyl derivatives (compounds 15-20) showed affinity to both kinds of receptors increased, however A1 affinity increased to a larger extent, with the result that A2A selectivity was abolished. The best adenosine A1 receptor ligand was m-chlorobenzyl derivative 18 (Ki=0.089 microM and 5-fold A1 selectivity). Structure-activity relationships were discussed with the analysis of lipophilic and spatial properties of the investigated compounds. Pharmacophore model of adenosine A1 receptor antagonist was adopted for this purpose.

  20. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.

    PubMed

    Acevedo, JeanMarie; Santana-Almansa, Alexandra; Matos-Vergara, Nikol; Marrero-Cordero, Luis René; Cabezas-Bou, Ernesto; Díaz-Ríos, Manuel

    2016-02-01

    Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.

  1. Ion Fluxes through KCa2 (SK) and Cav1 (L-type) Channels Contribute to Chronoselectivity of Adenosine A1 Receptor-Mediated Actions in Spontaneously Beating Rat Atria

    PubMed Central

    Bragança, Bruno; Oliveira-Monteiro, Nádia; Ferreirinha, Fátima; Lima, Pedro A.; Faria, Miguel; Fontes-Sousa, Ana P.; Correia-de-Sá, Paulo

    2016-01-01

    Impulse generation in supraventricular tissue is inhibited by adenosine and acetylcholine via the activation of A1 and M2 receptors coupled to inwardly rectifying GIRK/KIR3.1/3.4 channels, respectively. Unlike M2 receptors, bradycardia produced by A1 receptors activation predominates over negative inotropy. Such difference suggests that other ion currents may contribute to adenosine chronoselectivity. In isolated spontaneously beating rat atria, blockade of KCa2/SK channels with apamin and Cav1 (L-type) channels with nifedipine or verapamil, sensitized atria to the negative inotropic action of the A1 agonist, R-PIA, without affecting the nucleoside negative chronotropy. Patch-clamp experiments in the whole-cell configuration mode demonstrate that adenosine, via A1 receptors, activates the inwardly-rectifying GIRK/KIR3.1/KIR3.4 current resulting in hyperpolarization of atrial cardiomyocytes, which may slow down heart rate. Conversely, the nucleoside inactivates a small conductance Ca2+-activated KCa2/SK outward current, which eventually reduces the repolarizing force and thereby prolong action potentials duration and Ca2+ influx into cardiomyocytes. Immunolocalization studies showed that differences in A1 receptors distribution between the sinoatrial node and surrounding cardiomyocytes do not afford a rationale for adenosine chronoselectivity. Immunolabelling of KIR3.1, KCa2.2, KCa2.3, and Cav1 was also observed throughout the right atrium. Functional data indicate that while both A1 and M2 receptors favor the opening of GIRK/KIR3.1/3.4 channels modulating atrial chronotropy, A1 receptors may additionally restrain KCa2/SK activation thereby compensating atrial inotropic depression by increasing the time available for Ca2+ influx through Cav1 (L-type) channels. PMID:27014060

  2. Mechanism of A2 adenosine receptor activation. I. Blockade of A2 adenosine receptors by photoaffinity labeling

    SciTech Connect

    Lohse, M.J.; Klotz, K.N.; Schwabe, U.

    1991-04-01

    It has previously been shown that covalent incorporation of the photoreactive adenosine derivative (R)-2-azido-N6-p-hydroxy-phenylisopropyladenosine ((R)-AHPIA) into the A1 adenosine receptor of intact fat cells leads to a persistent activation of this receptor, resulting in a reduction of cellular cAMP levels. In contrast, covalent incorporation of (R)-AHPIA into human platelet membranes, which contain only stimulatory A2 adenosine receptors, reduces adenylate cyclase stimulation via these receptors. This effect of (R)-AHPIA is specific for the A2 receptor and can be prevented by the adenosine receptor antagonist theophylline. Binding studies indicate that up to 90% of A2 receptors can be blocked by photoincorporation of (R)-AHPIA. However, the remaining 10-20% of A2 receptors are sufficient to mediate an adenylate cyclase stimulation of up to 50% of the control value. Similarly, the activation via these 10-20% of receptors occurs with a half-life that is only 2 times longer than that in control membranes. This indicates the presence of a receptor reserve, with respect to both the extent and the rate of adenylate cyclase stimulation. These observations require a modification of the models of receptor-adenylate cyclase coupling.

  3. Adenosine A1( )receptors are selectively coupled to Gα(i-3) in postmortem human brain cortex: Guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding/immunoprecipitation study.

    PubMed

    Odagaki, Yuji; Kinoshita, Masakazu; Ota, Toshio; Meana, J Javier; Callado, Luis F; García-Sevilla, Jesús A

    2015-10-05

    By means of guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding assay combined with immunoprecipitation using anti-Gα subunit antibody, we recently reported 5-HT2A receptor- and M1 muscarinic acetylcholine receptor-mediated Gαq activation in rat cerebral cortical membranes (Odagaki et al., 2014). In the present study, this method has been applied to postmortem human brains, with focusing on adenosine receptor-mediated G-protein activation. In the exploratory experiments using a series of agonists and the antibodies specific to each Gα subtypes in the presence of low (10 nM) or high (50 μM) concentration of GDP, the most prominent increases in specific [(35)S]GTPγS binding in the membranes prepared from human prefrontal cortex were obtained for the combinations of adenosine (1mM)/anti-Gαi-3 in the presence of 50 μM GDP as well as 5-HT (100 μM)/anti-Gαq and carbachol (1mM)/anti-Gαq in the presence of 10nM GDP. Adenosine-induced activation of Gαi-3 emerged only when GDP concentrations were increased higher than 10 μM, and the following experiments were performed in the presence of 300 μM GDP. Adenosine increased specific [(35)S]GTPγS binding to Gαi-3 in a concentration-dependent manner to 251.4% of the basal unstimulated binding, with an EC50 of 1.77 μM. The involvement of adenosine A1 receptor was verified by the experiments using selective agonists and antagonists at adenosine A1 or A3 receptor. Among the α subunits of Gi/o class (Gαi-1, Gαi-2, Gαi-3, and Gαo.), only Gαi-3 was activated by 1mM adenosine, indicating that human brain adenosine A1 receptor is coupled preferentially, if not exclusively, to Gαi-3. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Adenosine receptors as drug targets — what are the challenges?

    PubMed Central

    Chen, Jiang-Fan; Eltzschig, Holger K.; Fredholm, Bertil B.

    2014-01-01

    Adenosine signalling has long been a target for drug development, with adenosine itself or its derivatives being used clinically since the 1940s. In addition, methylxanthines such as caffeine have profound biological effects as antagonists at adenosine receptors. Moreover, drugs such as dipyridamole and methotrexate act by enhancing the activation of adenosine receptors. There is strong evidence that adenosine has a functional role in many diseases, and several pharmacological compounds specifically targeting individual adenosine receptors — either directly or indirectly — have now entered the clinic. However, only one adenosine receptor-specific agent — the adenosine A2A receptor agonist regadenoson (Lexiscan; Astellas Pharma) — has so far gained approval from the US Food and Drug Administration (FDA). Here, we focus on the biology of adenosine signalling to identify hurdles in the development of additional pharmacological compounds targeting adenosine receptors and discuss strategies to overcome these challenges. PMID:23535933

  5. Pharmacological postconditioning of the rabbit heart with non-selective, A1 , A2A and A3 adenosine receptor agonists.

    PubMed

    Bibli, Sophia-Iris; Iliodromitis, Efstathios K; Lambertucci, Catia; Zoga, Anastasia; Lougiakis, Nikolaos; Dagres, Nikolaos; Volpini, Rosaria; Dal Ben, Diego; Kremastinos, Dimitrios Th; Tsantili Kakoulidou, Anna; Cristalli, Gloria; Andreadou, Ioanna

    2014-08-01

    We investigated the effects of novel selective and non-selective adenosine receptor agonists (ARs) on cardioprotection. Male rabbits divided into six groups were subjected to 30-min heart ischaemia and 3-h reperfusion: (1) control group, (2) postconditioning (PostC) group, (3) group A: treated with the non-selective agonist (S)-PHPNECA, (4) group B: treated with the A1 agonist CCPA, (5) group C: treated with the A2A agonist VT 7 and (6) group D: treated with the A3 agonist AR 170. The infarcted (I) and the areas at risk (R) were estimated as %I/R. In additional rabbits of all groups, heart samples were taken for determination of Akt, eNOS and STAT 3 at the 10th reperfusion minute. (S)-PHPNECA and CCPA reduced the infarct size (17.2 ± 2.9% and 17.9 ± 2.0% vs 46.8 ± 1.9% in control, P < 0.05), conferring a benefit similar to PostC (26.4 ± 0.3%). Selective A2A and A3 receptor agonists did not reduce the infarct size (39.5 ± 0.8% and 38.7 ± 3.5%, P = NS vs control). Akt, eNOS and STAT 3 were significantly activated after non-selective A1 ARs and PostC. Non-selective and A1 but not A2A and A3 ARs agonists are essential for triggering cardioprotection. The molecular mechanism involves both RISK and the JAK/STAT pathways. © 2014 Royal Pharmaceutical Society.

  6. Remifentanil-induced preconditioning has cross-talk with A1 and A2B adenosine receptors in ischemic-reperfused rat heart.

    PubMed

    Lee, Yong-Cheol; Jung, Jiyoon; Park, Sang-Jin

    2016-01-01

    The purpose of this study was to determine whether there is a cross-talk between opioid receptors (OPRs) and adenosine receptors (ADRs) in remifentanil preconditioning (R-Pre) and, if so, to investigate the types of ADRs involved in the cross-talk. Isolated rat hearts received 30 min of regional ischemia followed by 2 hr of reperfusion. OPR and ADR antagonists were perfused from 10 min before R-Pre until the end of R-Pre. The heart rate, left ventricular developed pressure (LVDP),velocity of contraction (+dP/dtmax), and coronary flow (CF) were recorded. The area at risk and area of necrosis were measured. After reperfusion, the LVDP, +dP/dtmax,and CF showed a significant increase in the R-Pre group compared with the control group (no intervention before or after regional ischemia). These increases in the R-Pre group were blocked by naloxone, a nonspecific ADR antagonist, an A1 ADR antagonist, and an A2B ADR antagonist. The infarct size was reduced significantly in the R-Pre group compared with the control group. The infarct-reducing effect in the R-Pre group was blocked by naloxone, the nonspecific ADR antagonist, the A1 ADR antagonist, and the A2B ADR antagonist. The results of this study demonstrate that there is cross-talk between ADRs and OPRs in R-Pre and that A1 ADR and A2B ADR appear to be involved in the cross-talk.

  7. Altered expression of adenosine A1 and A2A receptors in the carotid body and nucleus tractus solitarius of adult male and female rats following neonatal caffeine treatment.

    PubMed

    Bairam, Aida; Joseph, Vincent; Lajeunesse, Yves; Kinkead, Richard

    2009-09-01

    Neonatal caffeine treatment (adenosine receptor antagonist, 15 mg/kg/day, between postnatal days 3 and 12) affects respiratory patterns in adult male but not female rats as shown by an increase in the respiratory frequency in the early phase of response to hypoxia and an increase in the tidal volume in the late phase of response. Here, we tested the hypothesis that these changes are correlated with modified expression of adenosine receptors in the chemoreflex pathway. Carotid bodies, nucleus tractus solitarii, and superior cervical ganglia were collected from 3-month-old male and female rats that were either naive (not manipulated during the neonatal period) or treated with caffeine (NCT) or water (NWT) between postnatal days 3 and 12 by gavage. Western blot analysis was used to assess the expression of adenosine A(1) and A(2A) receptors and tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis. In male rats, there was a 37% increase in the level of A(2A) receptor and a 17% decrease in tyrosine hydroxylase in the carotid body of NCT (p<0.001) as compared to NWT rats. In the nucleus tractus solitarius, we found a 13% and 19% decrease in A(1) receptor expression in NWT and NCT rats (p<0.01), respectively, compared to naive rats. In the superior cervical ganglion, there was no change in A(1) receptor, A(2A) receptor, and tyrosine hydroxylase expression. In female rats, the only changes observed were decreases of 12% and 15% in A(1) receptor levels in the nucleus tractus solitarius of NWT and NCT rats (p<0.01), respectively, compared to naive rats. We conclude that NCT induces long-term changes in the adenosine receptor system. These changes may partially explain the modifications of the respiratory pattern induced by NCT in adults. The increased expression of the adenosine A(2A) receptor (specific to male rats), combined with the decreased tyrosine hydroxylase expression in the carotid body, suggests that NCT affects adenosine-dopamine interactions

  8. Adenosine A2 receptors modulate haloperidol-induced catalepsy in rats.

    PubMed

    Mandhane, S N; Chopde, C T; Ghosh, A K

    1997-06-11

    The effect of adenosine A1 and A2 receptor agonists and antagonists was investigated on haloperidol-induced catalepsy in rats. Pretreatment (i.p.) with the non-selective adenosine receptor antagonist, theophylline, or the selective adenosine A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX), significantly reversed haloperidol-induced catalepsy, whereas the selective adenosine A1 receptor antagonists, 8-phenyltheophylline and 8-cyclopentyl-1,3-dipropylxanthine produced no effect. Similar administration of the adenosine A2 receptor agonists, 5'-(N-cyclopropyl)-carboxamidoadenosine and 5'-N-ethylcarboxamidoadenosine (NECA), and the mixed agonists with predominantly A1 site of action, N6-(2-phenylisopropyl) adenosine or 2-chloroadenosine, potentiated haloperidol-induced catalepsy. Higher doses of the adenosine agonists produced catalepsy when given alone. However, N6-cyclopentyladenosine, a highly selective adenosine A1 receptor agonist, was ineffective in these respects. The per se cataleptic effect of adenosine agonists was blocked by DMPX and the centrally acting anticholinergic agent, scopolamine. Scopolamine also attenuated the potentiation of haloperidol-induced catalepsy by adenosine agonists. Further, i.c.v. administration of NECA and DMPX produced a similar effect as that produced after their systemic administration. These findings demonstrate the differential influence of adenosine A1 and A2 receptors on haloperidol-induced catalepsy and support the hypothesis that the functional interaction between adenosine and dopamine mechanisms might occur through adenosine A2 receptors at the level of cholinergic neurons. The results suggest that adenosine A2, but not A1, receptor antagonists may be of potential use in the treatment of Parkinson's disease.

  9. Role of A3 adenosine receptor in diabetic neuropathy.

    PubMed

    Yan, Heng; Zhang, Enshui; Feng, Chang; Zhao, Xin

    2016-10-01

    Neuropathy is the most common diabetic complication. Although the A1 and A2A adenosine receptors are important pharmacological targets in alleviating diabetic neuropathy, the role of the A3 adenosine receptor remains unknown. Because the A3 adenosine receptor regulates pain induced by chronic constriction injury or chemotherapy, its stimulation might also attenuate diabetic neuropathy. This study examines the effects of systemic treatment with the A3 adenosine receptor agonist 1-deoxy-1-[6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-N-methyl-β-d-ribofuranuronamide (IB-MECA) on diabetic neuropathy and explores the putative mechanisms underlying its pharmacological effects. We show that IB-MECA alleviated mechanical hyperalgesia and thermal hypoalgesia in mice 2 weeks but not 4 weeks after streptozocin (STZ) treatment. Furthermore, IB-MECA prevented the reduction in sciatic motor nerve conduction velocity and sensory nerve conduction velocity in diabetic mice 2 weeks but not 4 weeks after STZ treatment. Similarly, IB-MECA inhibited the activation of nuclear factor-κB and decreased the generation of tumor necrosis factor-α in the spinal cord of mice 2 weeks but not 4 weeks after STZ treatment. These phenomena were associated with reduction of A3 adenosine receptor expression in the spinal cord after long-term diabetes. Our results suggest that the A3 adenosine receptor plays a critical role in regulating diabetic neuropathy and that reduction in A3 adenosine receptor expression/function might contribute to the progression of diabetic neuropathy. © 2016 Wiley Periodicals, Inc.

  10. Acute saline expansion increases nephron filtration and distal flow rate but maintains tubuloglomerular feedback responsiveness: role of adenosine A1 receptors

    PubMed Central

    Singh, Prabhleen; Deng, Aihua; Thomson, Scott C.; Vallon, Volker

    2012-01-01

    Temporal adaptation of tubuloglomerular feedback (TGF) permits readjustment of the relationship of nephron filtration rate [single nephron glomerular filtration rate (SNGFR)] and early distal tubular flow rate (VED) while maintaining TGF responsiveness. We used closed-loop assessment of TGF in hydropenia and after acute saline volume expansion (SE; 10% body wt over 1 h) to determine whether 1) temporal adaptation of TGF occurs, 2) adenosine A1 receptors (A1R) mediate TGF responsiveness, and 3) inhibition of TGF affects SNGFR, VED, or urinary excretion under these conditions. SNGFR was evaluated in Fromter-Wistar rats by micropuncture in 1) early distal tubules (ambient flow at macula densa), 2) recollected from early distal tubules while 12 nl/min isotonic fluid was added to late proximal tubule (increased flow to macula densa), and 3) from proximal tubules of same nephrons (zero flow to macula densa). SE increased both ambient SNGFR and VED compared with hydropenia, whereas TGF responsiveness (proximal-distal difference in SNGFR, distal SNGFR response to adding fluid to proximal tubule) was maintained, demonstrating TGF adaptation. A1R blockade completely inhibited TGF responsiveness during SE and made VED more susceptible to perturbation in proximal tubular flow, but did not alter ambient SNGFR or VED. Greater urinary excretion of fluid and Na+ with A1R blockade may reflect additional effects on the distal nephron in hydropenia and SE. In conclusion, A1R-independent mechanisms adjust SNGFR and VED to higher values after SE, which facilitates fluid and Na+ excretion. Concurrently, TGF adapts and stabilizes early distal delivery at the new setpoint in an A1R-dependent mechanism. PMID:22622464

  11. Adenosine receptors and diabetes: Focus on the A(2B) adenosine receptor subtype.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Gessi, Stefania

    2015-09-01

    Over the last two decades, diabetes mellitus has become one of the most challenging health problems worldwide. Diabetes mellitus, classified as type I and II, is a pathology concerning blood glucose level in the body. The nucleoside adenosine has long been known to affect insulin secretion, glucose homeostasis and lipid metabolism, through activation of four G protein coupled adenosine receptors (ARs), named A1, A2A, A2B and A3. Currently, the novel promising subtype to develop new drugs for diabetes treatment is the A2BAR subtype. The use of selective agonists and antagonists for A2BAR subtype in various diabetic animal models allowed us to identify several effects of A2BAR signaling in cell metabolism. In particular, the focus of this review is to summarize the studies on purinergic signaling associated with diabetes through A2BARs modulation.

  12. Modulation of adenylyl cyclase by FPP and adenosine involves stimulatory and inhibitory adenosine receptors and g proteins.

    PubMed

    Fraser, L R; Adeoya-Osiguwa, S

    1999-08-01

    FPP and adenosine modulate the adenylyl cyclase (AC)/cAMP signal transduction pathway in mammalian spermatozoa to elicit a biphasic response, initially stimulating capacitation and then inhibiting spontaneous acrosome loss. This study addressed the hypothesis that responses to FPP involve interactions between receptors for FPP and adenosine, the biphasic responses involving stimulatory and inhibitory adenosine receptors. Gln-FPP, a competitive inhibitor of FPP, significantly inhibited binding of an adenosine analogue and responses to adenosine, especially in capacitated suspensions, consistent with interaction between FPP and adenosine receptors. CGS-21680 (1 microM), a stimulatory A2a adenosine receptor agonist, significantly stimulated capacitation and cAMP in uncapacitated cells, while cyclopentyl adenosine (1 microM), an inhibitory A1 adenosine receptor agonist only affected capacitated cells, inhibiting spontaneous acrosome loss. Responses to FPP and adenosine were inhibited in uncapacitated cells by a selective A2a antagonist and in capacitated cells by a selective A1 antagonist; subsequent investigations indicated possible involvement of G proteins. Like FPP, cholera toxin stimulated capacitation and cAMP production in uncapacitated cells, suggesting involvement of a G protein with a Galphas subunit. In contrast, pertussis toxin prevented FPP's inhibition of both spontaneous acrosome loss and cAMP production, suggesting involvement of a Galphai/o subunit. Immunoblotting evidence revealed the presence of proteins of the appropriate molecular weights for Galphas, Galphai2, Galpha i3, and Galphao subunits. This study provides the first direct evidence suggesting the involvement of two different types of adenosine receptors and both Galphas and Galphai/o subunits in the regulation of capacitation, resulting in modulation of AC activity and availability of cAMP. Copyright 1999 Wiley-Liss, Inc.

  13. Ligand-, structure- and pharmacophore-based molecular fingerprints: a case study on adenosine A1, A2A, A2B, and A3 receptor antagonists

    NASA Astrophysics Data System (ADS)

    Sirci, Francesco; Goracci, Laura; Rodríguez, David; van Muijlwijk-Koezen, Jacqueline; Gutiérrez-de-Terán, Hugo; Mannhold, Raimund

    2012-11-01

    FLAP fingerprints are applied in the ligand-, structure- and pharmacophore-based mode in a case study on antagonists of all four adenosine receptor (AR) subtypes. Structurally diverse antagonist collections with respect to the different ARs were constructed by including binding data to human species only. FLAP models well discriminate "active" (=highly potent) from "inactive" (=weakly potent) AR antagonists, as indicated by enrichment curves, numbers of false positives, and AUC values. For all FLAP modes, model predictivity slightly decreases as follows: A2BR > A2AR > A3R > A1R antagonists. General performance of FLAP modes in this study is: ligand- > structure- > pharmacophore- based mode. We also compared the FLAP performance with other common ligand- and structure-based fingerprints. Concerning the ligand-based mode, FLAP model performance is superior to ECFP4 and ROCS for all AR subtypes. Although focusing on the early first part of the A2A, A2B and A3 enrichment curves, ECFP4 and ROCS still retain a satisfactory retrieval of actives. FLAP is also superior when comparing the structure-based mode with PLANTS and GOLD. In this study we applied for the first time the novel FLAPPharm tool for pharmacophore generation. Pharmacophore hypotheses, generated with this tool, convincingly match with formerly published data. Finally, we could demonstrate the capability of FLAP models to uncover selectivity aspects although single AR subtype models were not trained for this purpose.

  14. The A3 adenosine receptor: history and perspectives.

    PubMed

    Borea, Pier Andrea; Varani, Katia; Vincenzi, Fabrizio; Baraldi, Pier Giovanni; Tabrizi, Mojgan Aghazadeh; Merighi, Stefania; Gessi, Stefania

    2015-01-01

    By general consensus, the omnipresent purine nucleoside adenosine is considered a major regulator of local tissue function, especially when energy supply fails to meet cellular energy demand. Adenosine mediation involves activation of a family of four G protein-coupled adenosine receptors (ARs): A(1), A(2)A, A(2)B, and A(3). The A(3) adenosine receptor (A(3)AR) is the only adenosine subtype to be overexpressed in inflammatory and cancer cells, thus making it a potential target for therapy. Originally isolated as an orphan receptor, A(3)AR presented a twofold nature under different pathophysiologic conditions: it appeared to be protective/harmful under ischemic conditions, pro/anti-inflammatory, and pro/antitumoral depending on the systems investigated. Until recently, the greatest and most intriguing challenge has been to understand whether, and in which cases, selective A(3) agonists or antagonists would be the best choice. Today, the choice has been made and A(3)AR agonists are now under clinical development for some disorders including rheumatoid arthritis, psoriasis, glaucoma, and hepatocellular carcinoma. More specifically, the interest and relevance of these new agents derives from clinical data demonstrating that A(3)AR agonists are both effective and safe. Thus, it will become apparent in the present review that purine scientists do seem to be getting closer to their goal: the incorporation of adenosine ligands into drugs with the ability to save lives and improve human health.

  15. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride.

    PubMed

    Giunta, Salvatore; Andriolo, Violetta; Castorina, Alessandro

    2014-09-01

    In a previous work we have shown that exposure to aluminum (Al) chloride (AlCl3) enhanced the neurotoxicity of the amyloid beta(25-35) fragment (Abeta(25-35)) in neuroblastoma cells and affected the expression of Alzheimer's disease (AD)-related genes. Caffein, a compound endowed with beneficial effects against AD, exerts neuroprotection primarily through its antagonist activity on A2A adenosine receptors (A2AR), although it also inhibits A1Rs with similar potency. Still, studies on the specific involvement of these receptors in neuroprotection in a model of combined neurotoxicity (Abeta(25-35)+AlCl3) are missing. To address this issue, cultured SH-SY5Y cells exposed to Abeta(25-35)+AlCl3 were assessed for cell viability, morphology, intracellular ROS activity and expression of apoptosis-, stress- and AD-related proteins. To define the role of A1R and A2ARs, pretreatment with caffein, specific receptor antagonists (DPCPX or SCH58261) or siRNA-mediated gene knockdown were delivered. Results indicate that AlCl3 treatment exacerbated Abeta(25-35) toxicity, increased ROS production, lipid peroxidation, β-secretase-1 (BACE1) and amyloid precursor protein (APP). Interestingly, SCH58261 successfully prevented toxicity associated to Abeta(25-35) only, whereas pretreatment with both DPCPX and SCH58261 was required to fully avert Abeta(25-35)+AlCl3-induced damage, suggesting that A1Rs might also be critically involved in protection during combined toxicity. The effects of caffein were mimicked by both N-acetyl cysteine, an antioxidant, and desferrioxamine, likely acting through distinct mechanisms. Altogether, our data establish a novel protective function associated with A1R inhibition in the setting of combined Abeta(25-35)+AlCl3 neurotoxicity, and expand our current knowledge on the potential beneficial role of caffein to prevent AD progression in subjects environmentally exposed to aluminum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors

    PubMed Central

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    2016-01-01

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32–35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR. PMID:27668428

  17. N6-(2-Hydroxyethyl)-Adenosine Exhibits Insecticidal Activity against Plutella xylostella via Adenosine Receptors.

    PubMed

    Fang, Ming; Chai, Yiqiu; Chen, Guanjv; Wang, Huidong; Huang, Bo

    The diamondback moth, Plutella xylostella, is one of the most important pests of cruciferous crops. We have earlier shown that N6-(2-hydroxyethyl)-adenosine (HEA) exhibits insecticidal activity against P. xylostella. In the present study we investigated the possible mechanism of insecticidal action of HEA on P. xylostella. HEA is a derivative of adenosine, therefore, we speculated whether it acts via P. xylostella adenosine receptor (PxAdoR). We used RNAi approach to silence PxAdoR gene and used antagonist of denosine receptor (AdoR) to study the insecticidal effect of HEA. We cloned the whole sequence of PxAdoR gene. A BLAST search using NCBI protein database showed a 61% identity with the Drosophila adenosine receptor (DmAdoR) and a 32-35% identity with human AdoR. Though the amino acids sequence of PxAdoR was different compared to other adenosine receptors, most of the amino acids that are known to be important for adenosine receptor ligand binding and signaling were present. However, only 30% binding sites key residues was similar between PxAdoR and A1R. HEA, at a dose of 1 mg/mL, was found to be lethal to the second-instar larvae of P. xylostella, and a significant reduction of mortality and growth inhibition ratio were obtained when HEA was administered to the larvae along with PxAdoR-dsRNA or antagonist of AdoR (SCH58261) for 36, 48, or 60 h. Especially at 48 h, the rate of growth inhibition of the PxAdoR knockdown group was 3.5-fold less than that of the HEA group, and the corrected mortality of SCH58261 group was reduced almost 2-fold compared with the HEA group. Our findings show that HEA may exert its insecticidal activity against P. xylostella larvae via acting on PxAdoR.

  18. Adenosine modulates cell growth in the human breast cancer cells via adenosine receptors.

    PubMed

    Panjehpour, Mojtaba; Karami-Tehrani, Fatemeh

    2007-01-01

    Adenosine modulates the proliferation, survival, and apoptosis of many different cell types. The present study was performed to investigate the role of adenosine receptors in the human breast cancer cell lines MCF-7 and MDA-MB468. The biological effects of adenosine on the cells were analyzed by adenylyl cyclase and cell viability assay as well as RT-PCR of adenosine receptors. RT-PCR results show the expression of the transcript of all adenosine receptors in both cell lines. By using adenosine and selective adenosine receptor agonists or antagonists, we found that A3 stimulation reduced cell viability, which was abolished by pretreatment with A3 receptor antagonist. Moreover, we demonstrated that adenosine (natural agonist) triggers a cytotoxic signal via A3 receptor activation that was not seen for other subclasses of adenosine receptors. Intracellular cAMP concentration was changed significantly only for A3 and A2B receptor-selective agonists, which indicates the functional form of these receptors on the cell surface. In conclusion, our findings revealed the role of adenosine receptors in breast cancer cell lines on growth modulation role of A3 and functional form of A2B, although its involvement in cell growth modulation was not seen. Theses findings as well as data by others may provide a possible application of adenosine receptor agonists/antagonists in breast malignancies.

  19. Targeting adenosine receptors to prevent inflammatory skin diseases.

    PubMed

    Gessi, Stefania; Merighi, Stefania; Borea, Pier Andrea

    2014-08-01

    Adenosine mediates its effects through activation of a family of four G-protein-coupled receptors, named A1 , A2A , A2B and A3 . This nucleoside plays an important role in immunity and inflammation, and the A2A adenosine receptor subtype has a key role in the inhibition of inflammatory processes besides promoting wound healing. In this issue of Experimental Dermatology, Arasa et al. show that the topical application of a selective A2A agonist, CGS 21680, to mouse skin reduced epidermal hyperplasia as well as skin inflammation, similarly to topical corticoids, without side effects like skin atrophy. Rigorously following up this work is important for the development of novel treatment strategies for chronic hyperproliferative inflammatory dermatoses, such as targeting the A2A adenosine receptor family.

  20. Involvement of cAMP-PKA pathway in adenosine A1 and A2A receptor-mediated regulation of acetaldehyde-induced activation of HSCs.

    PubMed

    Yang, Yaru; Wang, He; Lv, Xiongwen; Wang, Qi; Zhao, Han; Yang, Feng; Yang, Yan; Li, Jun

    2015-08-01

    The present study was undertaken to investigate the mechanism by which adenosine receptors (ARs)-mediated the cAMP/PKA/CREB signal pathway regulates the activation of acetaldehyde-induced hepatic stellate cells (HSCs). Primary HSCs were isolated from SD rats, cultured in vitro, and activated with different concentrations of acetaldehyde at different time points. Quantitative real-time PCR and Western blotting were used to quantify both protein and mRNA levels of the four AR (A1R, A2AR, A2BR, and A3R) in rat HSCs. Selective inhibitors of PDEs and the Gi/o protein pathway, general AR agonists, and AR subtype specific agents were used to study the AR signaling. The level of cAMP was measured by radio-immunoassay, and the expression of α-SMA, collagen type I and III, PKA and p-CREB were also detected by Western blotting. Acetaldehyde could significantly promote HSC proliferation, with a maximum stimulatory effect observed at 48 h after exposure to 200 μM acetaldehyde. All four AR subtypes could be present in rat HSCs, and the mRNA and protein expression levels for A2AR and A1R in much greater abundance than those for A2BR and A3R. The expression of A2AR and A1R was significantly increased in acetaldehyde-induced HSCs as compared with that of control group, whereas the expression of A2BR and A3R remained unaffected by the addition of acetaldehyde. Curiously, there is coupling of A2AR to the Gs-AC signaling, as well as coupling of A1R to the Gi/o-AC signaling pathway in acetaldehyde-induced HSCs. Both the A2AR and A1R antagonists could suppress the activation of HSC, although they have opposing effects on cAMP signal transduction. These results suggested that a combination of cAMP/PKA/CREB signals via A2AR and A1R likely mediate the activation of acetaldehyde-induced HSCs, and A1R coupled to the Gi/o-AC signaling pathway may be masked by the more predominant A2AR that coupled to the Gs-AC signaling pathway.

  1. Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A1 adenosine receptor. A position-dependent effect study.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Lopez-Cara, Carlota; Cruz-Lopez, Olga; Moorman, Allan R; Massink, Arnault; IJzerman, Adriaan P; Vincenzi, Fabrizio; Borea, Pier Andrea; Varani, Katia

    2015-08-28

    The 2-amino-3-(p-chlorobenzoyl)thiophene scaffold has been widely employed as a pharmacophore for the identification of small molecules acting as allosteric modulators at the adenosine A1 receptor. A new series of 2-amino-3-(p-chlorobenzoyl)-4-benzyl-5-arylthiophene derivatives, characterized by the absence as well as the presence of electron-releasing or electron-withdrawing groups on the phenyl ring at the 4- and 5-positions of the thiophene ring, were identified as positive allosteric enhancers at the adenosine A1 receptor in binding (saturation, competition and dissociation kinetics) and functional assays. To better understand the positional requirements of substituents on the 2-amino-3-(p-chlorobenzoyl)thiophene core, the corresponding regioisomeric 4-aryl-5-benzylthiophene analogues were synthesized and found to possess reduced allosteric enhancer activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  2. The pacemaker current If in single human atrial myocytes and the effect of β-adrenoceptor and A1-adenosine receptor stimulation

    PubMed Central

    Porciatti, Francesco; Pelzmann, Brigitte; Cerbai, Elisabetta; Schaffer, Peter; Pino, Roberto; Bernhart, Eva; Koidl, Bernd; Mugelli, Alessandro

    1997-01-01

    We used single human atrial myocytes to study If occurrence, properties and pharmacological modulation. Cells were obtained by chunk enzymatic digestion from samples of right atrial appendages of patients undergoing corrective cardiac surgery. Patch-clamped cells in the whole-cell configuration were superfused with a modified Tyrode solution to reduce contamination by interfering currents and to amplify If. The average cell membrane capacitance was 85.06±2.41 pF (n=531). Data were consistent with the geometrical dimensions of the cells (length 94.2±1.89 μm, width 17.9±0.42 μm, n=126). When hyperpolarizing to −120 mV from a holding potential of −40 mV, 252 of 306 tested cells (82%) expressed a hyperpolarization-activated inward current (If density =3.77±0.25 pA pF−1); the current was considered to be present in a given cell if its density at −120 mV was larger than 0.5 pA pF−1. Current activation was sigmoidal and fitted a Boltzmann model; the average activation curve (n=25) showed a maximum current amplitude of 205.97±19.94 pA, corresponding to 3.87±0.63 pA pF−1, voltage of half-maximal activation (V1/2) at −86.68±2.19 mV and a slope of −11.39±0.69 mV. The reversal potential of If measured by tail-current analysis was −13.07±1.92 mV (n=6). The addition of CsCl (5 mM) fully and reversibly blocked the current. In the presence of the β-adrenoceptor agonist isoprenaline (Iso, 1 μM), V1/2 was significantly shifted toward less negative potentials by 6.06±1.96 mV (n=16, P=0.0039). The selective A1-adenosine receptor agonist cyclopentyladenosine (CPA, 1 μM) caused a statistically significant shift of V1/2 toward more negative potentials with respect to the control curve, both in the absence (−7.37±1.83 mV, P=0.0005, n=11) and in the presence of 1 μM Iso (−4.97±1.78, P=0.031, n=6). These results demonstrate that a current with the properties of If described in cardiac primary and secondary

  3. Effects of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine on phencyclidine-induced behavior and expression of the immediate-early genes in the discrete brain regions of rats.

    PubMed

    Gotoh, Leo; Kawanami, Noriko; Nakahara, Tatsuo; Hondo, Hisao; Motomura, Keisuke; Ohta, Eiko; Kanchiku, Izumi; Kuroki, Toshihide; Hirano, Makoto; Uchimura, Hideyuki

    2002-04-30

    Because of the possible interaction between adenosine receptors and dopaminergic functions, the compound acting on the specific adenosine receptor subtype may be a candidate for novel antipsychotic drugs. To elucidate the antipsychotic potential of the selective adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), we examined herein the effects of CPA on phencyclidine (PCP)-induced behavior and expression of the immediate-early genes (IEGs), arc, c-fos and jun B, in the discrete brain regions of rats. PCP (7.5 mg/kg, s.c.) increased locomotor activity and head weaving in rats and this effect was significantly attenuated by pretreatment with CPA (0.5 mg/kg, s.c.). PCP increased the mRNA levels of c-fos and jun B in the medial prefrontal cortex, nucleus accumbens and posterior cingulate cortex, while leaving the striatum and hippocampus unaffected. CPA pretreatment significantly attenuated the PCP-induced increase in c-fos mRNA levels in the medial prefrontal cortex and nucleus accumbens. CPA also significantly attenuated the PCP-induced arc expression in the medial prefrontal cortex and posterior cingulate cortex. When administered alone, CPA decreased the mRNA levels of all IEGs examined in the nucleus accumbens, but not in other brain regions. Based on the ability of CPA to inhibit PCP-induced hyperlocomotion and its interaction with neural systems in the medial prefrontal cortex, posterior cingulate cortex and nucleus accumbens, the present results provide further evidence for a significant antipsychotic effect of the adenosine A(1) receptor agonist.

  4. Adenosine receptor antagonists alter the stability of human epileptic GABAA receptors

    PubMed Central

    Roseti, Cristina; Martinello, Katiuscia; Fucile, Sergio; Piccari, Vanessa; Mascia, Addolorata; Di Gennaro, Giancarlo; Quarato, Pier Paolo; Manfredi, Mario; Esposito, Vincenzo; Cantore, Gianpaolo; Arcella, Antonella; Simonato, Michele; Fredholm, Bertil B.; Limatola, Cristina; Miledi, Ricardo; Eusebi, Fabrizio

    2008-01-01

    We examined how the endogenous anticonvulsant adenosine might influence γ-aminobutyric acid type A (GABAA) receptor stability and which adenosine receptors (ARs) were involved. Upon repetitive activation (GABA 500 μM), GABAA receptors, microtransplanted into Xenopus oocytes from neurosurgically resected epileptic human nervous tissues, exhibited an obvious GABAA-current (IGABA) run-down, which was consistently and significantly reduced by treatment with the nonselective adenosine receptor antagonist CGS15943 (100 nM) or with adenosine deaminase (ADA) (1 units/ml), that inactivates adenosine. It was also found that selective antagonists of A2B (MRS1706, 10 nM) or A3 (MRS1334, 30 nM) receptors reduced IGABA run-down, whereas treatment with the specific A1 receptor antagonist DPCPX (10 nM) was ineffective. The selective A2A receptor antagonist SCH58261 (10 nM) reduced or potentiated IGABA run-down in ≈40% and ≈20% of tested oocytes, respectively. The ADA-resistant, AR agonist 2-chloroadenosine (2-CA) (10 μM) potentiated IGABA run-down but only in ≈20% of tested oocytes. CGS15943 administration again decreased IGABA run-down in patch-clamped neurons from either human or rat neocortex slices. IGABA run-down in pyramidal neurons was equivalent in A1 receptor-deficient and wt neurons but much larger in neurons from A2A receptor-deficient mice, indicating that, in mouse cortex, GABAA-receptor stability is tonically influenced by A2A but not by A1 receptors. IGABA run-down from wt mice was not affected by 2-CA, suggesting maximal ARs activity by endogenous adenosine. Our findings strongly suggest that cortical A2–A3 receptors alter the stability of GABAA receptors, which could offer therapeutic opportunities. PMID:18809912

  5. Adenosine A1 receptor-mediated changes in basal and histamine-stimulated levels of intracellular calcium in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1995-01-01

    1. The effects of adenosine A1 receptor stimulation on basal and histamine-stimulated levels of intracellular free calcium ion concentration ([Ca2+]i) have been investigated in primary astrocyte cultures derived from neonatal rat forebrains. 2. Histamine (0.1 microM-1 mM) caused rapid, concentration-dependent increases in [Ca2+]i over basal levels in single type-2 astrocytes in the presence of extracellular calcium. A maximum mean increase of 1,468 +/- 94 nM over basal levels was recorded in 90% of type-2 cells treated with 1 mM histamine (n = 49). The percentage of type-2 cells exhibiting calcium increases in response to histamine appeared to vary in a concentration-dependent manner. However, the application of 1 mM histamine to type-1 astrocytes had less effect, eliciting a mean increase in [Ca2+]i of 805 +/- 197 nM over basal levels in only 30% of the cells observed (n = 24). 3. In the presence of extracellular calcium, the A1 receptor-selective agonist, N6-cyclopentyladenosine (CPA, 10 microM), caused a maximum mean increase in [Ca2+]i of 1,110 +/- 181 nM over basal levels in 30% of type-2 astrocytes observed (n = 53). The size of this response was concentration-dependent; however, the percentage of type-2 cells exhibiting calcium increases in response to CPA did not appear to vary in a concentration-dependent manner. A mean calcium increase of 605 +/- 89 nM over basal levels was also recorded in 23% of type-1 astrocytes treated with 10 microM CPA (n = 30). 4. In the absence of extracellular calcium, in medium containing 0.1 mM EGTA, a mean increase in [Ca2+]i of 504 +/- 67 nM over basal levels was recorded in 41% of type-2 astrocytes observed (n = 41) after stimulation with 1 microM CPA. However, in the presence of extracellular calcium, pretreatment with the A1 receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, for 5-10 min before stimulation with 1 microM CPA, completely antagonized the response in 100% of the cells observed. 5. In type-2

  6. Interactions between adenosine and metabotropic glutamate receptors in the rat hippocampal slice

    PubMed Central

    Shahraki, Ali; Stone, Trevor W

    2003-01-01

    We have examined excitatory postsynaptic potentials and paired-pulse interactions in rat hippocampal slices to obtain more information about the site and mechanism of interactions between metabotropic glutamate receptors and adenosine receptors. The results show that the suppression of adenosine sensitivity is explained by a selectively reduced responsiveness to A1 receptor stimulation, and does not involve any facilitation of A2A adenosine receptors, since it can be obtained in the absence of endogenous adenosine and is not prevented by the A2A receptor blocker ZM241385. The glutamate receptors involved are of the group I class since the suppression of adenosine sensitivity is produced by ACPD and the group I selective compound DHPG. Furthermore, the effects of DHPG could be prevented by LY367385, a selective antagonist at the mGlu1a subtype of group I receptors. The selective antagonist at mGlu5 receptors, SIB1893, did not prevent the suppression of adenosine sensitivity by DHPG. Blockade of the DHPG/adenosine interaction was also obtained by superfusion with the protein kinasae C inhibitor chelerythrine. Since the suppression of adenosine responses by metabotropic receptor agonists was seen in the paired-pulse paradigm, we conclude that the observed interactions occur at the level of the presynaptic terminals. The interaction with adenosine receptors is not specific, but applies also to a suppression of responses mediated by the GABAB receptor agonist baclofen. We conclude that activation of the mGlu1a subtype of receptor can suppress responses mediated via adenosine A1 receptors, probably by activating protein kinase C. Since the changes induced by metabotropic glutamate receptor agonists last for at least 60 min, the data also imply that these interactions could play an important role in changes of synaptic function long after even transient increases of glutamate release in the CNS. PMID:12684261

  7. New chromene scaffolds for adenosine A(2A) receptors: synthesis, pharmacology and structure-activity relationships.

    PubMed

    Areias, Filipe; Costa, Marta; Castro, Marián; Brea, José; Gregori-Puigjané, Elisabet; Proença, M Fernanda; Mestres, Jordi; Loza, María I

    2012-08-01

    In silico screening of a collection of 1584 academic compounds identified a small molecule hit for the human adenosine A(2A) receptor (pK(i) = 6.2) containing a novel chromene scaffold (3a). To explore the structure-activity relationships of this new chemical series for adenosine receptors, a focused library of 43 2H-chromene-3-carboxamide derivatives was synthesized and tested in radioligand binding assays at human adenosine A(1), A(2A), A(2B) and A(3) receptors. The series was found to be enriched with bioactive compounds for adenosine receptors, with 14 molecules showing submicromolar affinity (pK(i) ≥ 6.0) for at least one adenosine receptor subtype. These results provide evidence that the chromene scaffold, a core structure present in natural products from a wide variety of plants, vegetables, and fruits, constitutes a valuable source for novel therapeutic agents. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  8. Adenosine receptors and dyskinesia in pathophysiology.

    PubMed

    Tomiyama, Masahiko

    2014-01-01

    First, the recent progress in the pathogenesis of levodopa-induced dyskinesia was described. Serotonin neurons play an important role in conversion from levodopa to dopamine and in the release of converted dopamine into the striatum in the Parkinsonian state. Since serotonin neurons lack buffering effects on synaptic dopamine concentration, the synaptic dopamine markedly fluctuates depending on the fluctuating levodopa concentration in the serum after taking levodopa. The resultant pulsatile stimulation makes the striatal direct-pathway neurons get potential that releases excessive GABA into the output nuclei of the basal ganglia. When levodopa is administered, the stored GABA is released, the output nuclei become hypoactive, and then dyskinesias emerge. Second, effects of adenosine A2A receptor antagonists on dyskinesia were described. It has been demonstrated that the expression of adenosine A2A receptors is increased in Parkinson's disease (PD) patients with dyskinesias, suggesting that blockade of A2A receptors is beneficial for dyskinesias. Preclinical studies have shown that A2A receptor antagonists reduce liability of dyskinesias in PD models. Clinical trials have demonstrated that A2A antagonists increase functional ON-time (ON without troublesome dyskinesia) in PD patients suffering from wearing-off phenomenon, although they may increase dyskinesia in patients with advanced PD.

  9. Adenosine receptor expression and function in rat striatal cholinergic interneurons.

    PubMed

    Preston, Z; Lee, K; Widdowson, L; Freeman, T C; Dixon, A K; Richardson, P J

    2000-06-01

    Cholinergic neurons were identified in rat striatal slices by their size, membrane properties, sensitivity to the NK(1) receptor agonist (Sar(9), Met(O(2))(11)) Substance P, and expression of choline acetyltransferase mRNA. A(1) receptor mRNA was detected in 60% of the neurons analysed, and A(2A) receptor mRNA in 67% (n=15). The A(1) receptor agonist R-N(6)-(2-phenylisopropyl)adenosine (R-PIA) hyperpolarized cholinergic neurons in a concentration dependent manner sensitive to the A(1) antagonist 8-cyclopentyl-1, 3-dipropylxanthine (DPCPX, 100 nM). In dual stimulus experiments, the A(2A) receptor antagonist 8-(3-chlorostyryl)caffeine (CSC, 500 nM) decreased release of [(3)H]-acetylcholine from striatal slices (S2/S1 0.78+/-0.07 versus 0.95+/-0.05 in control), as did adenosine deaminase (S2/S1 ratio 0.69+/-0.05), whereas the A(1) receptor antagonist DPCPX (100 nM) had no effect (S2/S1 1.05+/-0.14). In the presence of adenosine deaminase the adenosine A(2A) receptor agonist 2-p-((carboxyethyl)phenylethylamino)-5'-N-ethylcarboxamidoadeno sin e (CGS21680, 10 nM) increased release (S2/S1 ratio 1.03+/-0.05 versus 0.88+/-0.05 in control), an effect blocked by the antagonist CSC (500 nM, S2/S1 0.68+/-0.05, versus 0.73+/-0.08 with CSC alone). The combined superfusion of bicuculline (10 microM), saclofen (1 microM) and naloxone (10 microM) had no effect on the stimulation by CGS21680 (S2/S1 ratio 0.99+/-0.04). The A(1) receptor agonist R-PIA (100 nM) inhibited the release of [(3)H]-acetylcholine (S2/S1 ratio 0.70+/-0.03), an effect blocked by DPCPX (S2/S1 ratio 1.06+/-0.07). It is concluded that both A(1) and A(2A) receptors are expressed on striatal cholinergic neurons where they are functionally active.

  10. Roles of adenosine and its receptors in sleep-wake regulation.

    PubMed

    Huang, Zhi-Li; Zhang, Ze; Qu, Wei-Min

    2014-01-01

    This chapter summarizes the current knowledge about the role of adenosine in the sleep-wake regulation with a focus on adenosine in the brain, regulation of adenosine levels, adenosine receptors, and manipulations of the adenosine system by the use of pharmacological and molecular biological tools. Adenosine is neither stored nor released as a classical neurotransmitter and is thought to be formed inside cells or on their surface, mostly by breakdown of adenine nucleotides. The extracellular level of adenosine increases in the cortex and basal forebrain (BF) during prolonged wakefulness and decreases during the sleep-recovery period. Therefore, adenosine is proposed to act as a homeostatic regulator of sleep. The endogenous somnogen prostaglandin (PG) D2 increases the extracellular level of adenosine under the subarachnoid space of the BF and promotes physiological sleep. There are four adenosine receptor subtypes: adenosine A1 receptor (R, A1R), A2AR, A2BR, and A3R. Both the A1R and the A2AR have been reported to be involved in sleep induction. The A2AR plays an important role in the somnogenic effects of PGD2. Activation of A2AR by its agonist infused into the brain potently increases sleep and the arousal effect of caffeine, an A1R and A2AR antagonist, was shown to be dependent on the A2AR. On the other hand, inhibition of wake-promoting neurons via the A1R also mediates the sleep-inducing effects of adenosine, whereas activation of A1R in the lateral preoptic area induces wakefulness. These findings indicate that A2AR plays a predominant role in sleep induction, whereas A1R regulates the sleep-wake cycle in a site-dependent manner. © 2014 Elsevier Inc. All rights reserved.

  11. Methanocarba Analogues of Purine Nucleosides as Potent and Selective Adenosine Receptor Agonists

    PubMed Central

    Jacobson, Kenneth A.; Ji, Xiao-duo; Li, An-Hu; Melman, Neli; Siddiqui, Maqbool A.; Shin, Kye-Jung; Marquez, Victor E.; Ravi, R. Gnana

    2012-01-01

    Adenosine receptor agonists have cardioprotective, cerebroprotective, and antiinflammatory properties. We report that a carbocyclic modification of the ribose moiety incorporating ring constraints is a general approach for the design of A1 and A3 receptor agonists having favorable pharmacodynamic properties. While simple carbocyclic substitution of adenosine agonists greatly diminishes potency, methanocarba-adenosine analogues have now defined the role of sugar puckering in stabilizing the active adenosine receptor-bound conformation and thereby have allowed identification of a favored isomer. In such analogues a fused cyclopropane moiety constrains the pseudosugar ring of the nucleoside to either a Northern (N) or Southern (S) conformation, as defined in the pseudorotational cycle. In binding assays at A1, A2A, and A3 receptors, (N)-methanocarba-adenosine was of higher affinity than the (S)-analogue, particularly at the human A3 receptor (N/S affinity ratio of 150). (N)-Methanocarba analogues of various N6-substituted adenosine derivatives, including cyclopentyl and 3-iodobenzyl, in which the parent compounds are potent agonists at either A1 or A3 receptors, respectively, were synthesized. The N6-cyclopentyl derivatives were A1 receptor-selective and maintained high efficacy at recombinant human but not rat brain A1 receptors, as indicated by stimulation of binding of [35S]GTP-γ-S. The (N)-methanocarba-N6-(3-iodobenzyl)adenosine and its 2-chloro derivative had Ki values of 4.1 and 2.2 nM at A3 receptors, respectively, and were highly selective partial agonists. Partial agonism combined with high functional potency at A3 receptors (EC50 < 1 nM) may produce tissue selectivity. In conclusion, as for P2Y1 receptors, at least three adenosine receptors favor the ribose (N)-conformation. PMID:10841798

  12. Novel adenosine A1 receptor antagonists. Synthesis and structure-activity relationships of a novel series of 3-(2-cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazolo[1,5 -a]pyridines.

    PubMed

    Kuroda, S; Akahane, A; Itani, H; Nishimura, S; Durkin, K; Tenda, Y; Sakane, K

    2000-01-01

    A novel series of 3-(2-cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-phenylpyrazol o[1,5-a]pyridines was synthesized and evaluated for in vitro adenosine A1 and A2A receptor binding activities. Most of the cyclohexenyl derivatives (7a-e, 8a-s) were found to be potent adenosine A1 receptor antagonists. In a series of analogues of FR166124 (3a), alcohol 7c, nitrile 7e and amide derivatives (7d, 8c, 8r) were found to be more potent A1 antagonists with higher A2A/A1 selectivity than FR166124. Amongst them, 8r showed considerable water solubility (33.3 mg/mL), but lower than that of the sodium salt of FR166124 (> 200 mg/mL). Additionally, FR166124 had strong diuretic activity by both p.o. and iv administration in rats (minimum effective dose=0.1 and 0.032 mg/kg, respectively).

  13. Transport of A1 adenosine receptor agonist tecadenoson by human and mouse nucleoside transporters: evidence for blood-brain barrier transport by murine equilibrative nucleoside transporter 1 mENT1.

    PubMed

    Lepist, Eve-Irene; Damaraju, Vijaya L; Zhang, Jing; Gati, Wendy P; Yao, Sylvia Y M; Smith, Kyla M; Karpinski, Edward; Young, James D; Leung, Kwan H; Cass, Carol E

    2013-04-01

    The high density of A1 adenosine receptors in the brain results in significant potential for central nervous system (CNS)-related adverse effects with A1 agonists. Tecadenoson is a selective A1 adenosine receptor agonist with close similarity to adenosine. We studied the binding and transmembrane transport of tecadenoson by recombinant human equilibrative nucleoside transporters (hENTs) hENT1 and hENT2, and human concentrative nucleoside transporters (hCNTs) hCNT1, hCNT2, and hCNT3 in vitro and by mouse mENT1 in vivo. Binding affinities of the five recombinant human nucleoside transporters for tecadenoson differed (hENT1 > hCNT1 > hCNT3 > hENT2 > hCNT2), and tecadenoson was transported largely by hENT1. Pretreatment of mice with a phosphorylated prodrug of nitrobenzylmercaptopurine riboside, an inhibitor of mENT1, significantly decreased brain exposure to tecadenoson compared with that of the untreated (control) group, suggesting involvement of mENT1 in transport of tecadenoson across the blood-brain barrier (BBB). In summary, ENT1 was shown to mediate the transport of tecadenoson in vitro with recombinant and native human protein and in vivo with mice. The micromolar apparent Km value of tecadenoson for transport by native hENT1 in cultured cells suggests that hENT1 will not be saturated at clinically relevant (i.e., nanomolar) concentrations of tecadenoson, and that hENT1-mediated passage across the BBB may contribute to the adverse CNS effects observed in clinical trials. In contrast, in cases in which a CNS effect is desired, the present results illustrate that synthetic A1 agonists that are transported by hENT1 could be used to target CNS disorders because of enhanced delivery to the brain.

  14. ADENOSINE RECEPTORS AS TARGETS FOR THERAPEUTIC INTERVENTION IN ASTHMA AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE

    PubMed Central

    Polosa, Riccardo; Blackburn, Michael R.

    2009-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are pulmonary disorders characterized by various degrees of inflammation and tissue remodeling. Adenosine is a signaling molecule that is elevated in the lungs of patients with asthma and COPD. Adenosine elicits its actions by engaging cell surface adenosine receptors, and substantial preclinical evidence suggests that targeting these receptors will provide novel approaches for the treatment of asthma and COPD. Studies in animal models of airway disease suggest that there may be clinical benefit to the use of A1, A3 and A2B adenosine receptor antagonists in the treatment of features of asthma and/or COPD, while A2A agonists may also prove effective. Several adenosine receptor based pharmacologic agents have entered clinical development for the treatment of asthma and COPD; however, the studies have been limited and the efficacy of such approaches is not yet clear. PMID:19762093

  15. Adenosine acts as an inhibitor of lymphoma cell growth: a major role for the A3 adenosine receptor.

    PubMed

    Fishman, P; Bar-Yehuda, S; Ohana, G; Pathak, S; Wasserman, L; Barer, F; Multani, A S

    2000-07-01

    In this study, we demonstrated several mechanisms exploring the inhibitory effect of low-dose adenosine on lymphoma cell growth. Adenosine, a purine nucleoside present in plasma and other extracellular fluids, acts as a regulatory molecule, by binding to G-protein associated cell-surface receptors, A1, A2 and A3. Recently we showed that low-dose adenosine released by muscle cells, inhibits tumour cell growth and thus attributes to the rarity of muscle metastases. In the present work, a cytostatic effect of adenosine on the proliferation of the Nb2-11C rat lymphoma cell line was demonstrated. This effect was mediated through the induction of cell cycle arrest in the G0/G1 phase and by decreasing the telomeric signal in these cells. Adenosine was found to exert its antiproliferative effect mainly through binding to its A3 receptor. The cytostatic anticancer activity, mediated through the A3 adenosine receptor, turns it into a potential target for the development of anticancer therapies.

  16. IL-11 Is Required for A1 Adenosine Receptor–Mediated Protection against Ischemic AKI

    PubMed Central

    Kim, Joo Yun; Kim, Mihwa; Ham, Ahrom; Brown, Kevin M.; Greene, Robert W.; D’Agati, Vivette D.

    2013-01-01

    A1 adenosine receptor activation ameliorates ischemic AKI through the induction of renal proximal tubular sphingosine kinase-1. However, systemic adverse effects may limit A1 adenosine receptor–based therapy for ischemic AKI, indicating a need to identify alternative therapeutic targets within this pathway. Here, we evaluated the function of renal proximal tubular IL-11, a clinically approved hematopoietic cytokine, in A1 adenosine receptor–mediated induction of sphingosine kinase-1 and renal protection. Treatment of human proximal tubule epithelial (HK-2) cells with a selective A1 adenosine receptor agonist, chloro-N(6)-cyclopentyladenosine (CCPA), induced the expression of IL-11 mRNA and protein in an extracellular signal–regulated kinase–dependent manner, and administration of CCPA in mice induced renal synthesis of IL-11. Pretreatment with CCPA protected against renal ischemia-reperfusion injury in wild-type mice, but not in IL-11 receptor–deficient mice. Administration of an IL-11–neutralizing antibody abolished the renal protection provided by CCPA. Similarly, CCPA did not induce renal IL-11 expression or protect against renal ischemia-reperfusion injury in mice lacking the renal proximal tubular A1 adenosine receptor. Finally, treatment with CCPA induced sphingosine kinase-1 in HK-2 cells and wild-type mice, but not in IL-11 receptor–deficient or renal proximal tubule A1 adenosine receptor–deficient mice. Taken together, these results suggest that induction of renal proximal tubule IL-11 is a critical intermediary in A1 adenosine receptor–mediated renal protection that warrants investigation as a novel therapeutic target for the treatment of ischemic AKI. PMID:23813214

  17. Adenosine receptor control of cognition in normal and disease.

    PubMed

    Chen, Jiang-Fan

    2014-01-01

    Adenosine and adenosine receptors (ARs) are increasingly recognized as important therapeutic targets for controlling cognition under normal and disease conditions for its dual roles of neuromodulation as well as of homeostatic function in the brain. This chapter first presents the unique ability of adenosine, by acting on the inhibitory A1 and facilitating A2A receptor, to integrate dopamine, glutamate, and BNDF signaling and to modulate synaptic plasticity (e.g., long-term potentiation and long-term depression) in brain regions relevant to learning and memory, providing the molecular and cellular bases for adenosine receptor (AR) control of cognition. This led to the demonstration of AR modulation of social recognition memory, working memory, reference memory, reversal learning, goal-directed behavior/habit formation, Pavlovian fear conditioning, and effort-related behavior. Furthermore, human and animal studies support that AR activity can also, through cognitive enhancement and neuroprotection, reverse cognitive impairments in animal models of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease, and schizophrenia. Lastly, epidemiological evidence indicates that regular human consumption of caffeine, the most widely used psychoactive drug and nonselective AR antagonists, is associated with the reduced cognitive decline in aging and AD patients, and with the reduced risk in developing PD. Thus, there is a convergence of the molecular studies revealing AR as molecular targets for integrating neurotransmitter signaling and controlling synaptic plasticity, with animal studies demonstrating the strong procognitive impact upon AR antagonism in normal and disease brains and with epidemiological and clinical evidences in support of caffeine and AR drugs for therapeutic modulation of cognition. Since some of adenosine A2A receptor antagonists are already in phase III clinical trials for motor benefits in PD patients with remarkable safety profiles

  18. Adenosine receptor modulation: potential implications in veterinary medicine.

    PubMed

    Dip, Ramiro G

    2009-01-01

    Adenosine is a purine nucleoside whose concentration increases during inflammation and hypoxia and the many roles of this molecule are becoming better understood. Increased reactivity to adenosine of the airways of asthmatic but not of normal subjects underlines the role of adenosine in airway inflammation. The identification and pharmacological characterisation of different adenosine receptors have stimulated the search for subtype-specific ligands able to modulate the effects of this molecule in a directed way. Several compounds of different chemical classes have been identified as having potential drawbacks, including side effects resulting from the broad distribution of the receptors across the organism, have prevented clinical application. In this article, the effects of adenosine's different receptors and the intracellular signalling pathways are reviewed. The potential of adenosine receptor modulation as a therapeutic target for chronic airway inflammation is considered, taking equine recurrent airway disease and feline asthma as examples of naturally occurring airway obstructive diseases. Other potential applications for adenosine receptor modulation are also discussed. As the intrinsic molecular events of adenosine's mechanism of action become uncovered, new concrete therapeutic approaches will become available for the treatment of various conditions in veterinary medicine.

  19. Adenosine Signaling Increases Proinflammatory and Profibrotic Mediators through Activation of a Functional Adenosine 2B Receptor in Renal Fibroblasts.

    PubMed

    Wilkinson, Patrick F; Farrell, Francis X; Morel, Diane; Law, William; Murphy, Suzanne

    2016-07-01

    Interstitial renal fibrosis is a major pathophysiological manifestation of patients diagnosed with Chronic Kidney Disease (CKD), Diabetic Nephropathy (DN) and other inflammatory diseases. Adenosine signaling is an innate autocrine and paracrine cellular signaling pathway involving several key mediators that are elevated in the blood and kidneys of patients with DN. In these studies, we hypothesized that extracellular adenosine signals through one or more functional adenosine GPCRs on renal fibroblasts which increases profibrotic and proinflammatory mediators by inducing an activated fibroblast phenotype. Utilizing the renal fibroblast cell line NRK-49F, the presence and relative abundance of adenosine receptors (AR) A1, A2A, A2B, and A3 were quantified by RT-PCR. Under normal homeostatic conditions, only AR1 and AR2B were detected. The functionality of each receptor was then assessed by receptor specific pharmacological agonism and antagonism and assessed for modulation of the GPCR associated secondary messenger molecule, cyclic adenosine monophosphate (cAMP). Agonism of the AR2B receptor resulted in increased intracellular cAMP while agonism of the AR1 receptor inhibited cAMP modulation. Upon direct agonism of the AR2B receptor, transcripts for profibrotic and inflammatory mediators including SMA-α, IL-6, TGF-β, CTGF, and fibronectin were elevated between 2-4 fold. These data indicate that renal fibroblasts express a functional AR1 receptor that inhibits cAMP upon stimulation, leading to a functional AR2B receptor that increases cAMP upon stimulation and also induces an activated fibroblast phenotype resulting in increased fibrotic and inflammatory mediators.

  20. Preferential activation of excitatory adenosine receptors at rat hippocampal and neuromuscular synapses by adenosine formed from released adenine nucleotides.

    PubMed Central

    Cunha, R. A.; Correia-de-Sá, P.; Sebastião, A. M.; Ribeiro, J. A.

    1996-01-01

    1. In the present work, we investigated the action of adenosine originating from extracellular catabolism of adenine nucleotides, in two preparations where synaptic transmission is modulated by both inhibitory A1 and excitatory A(2a)-adenosine receptors, the rat hippocampal Schaffer fibres/CA1 pyramid synapses and the rat innervated hemidiaphragm. 2. Endogenous adenosine tonically inhibited synaptic transmission, since 0.5-2 u ml-1 of adenosine deaminase increased both the population spike amplitude (30 +/- 4%) and field excitatory post-synaptic potential (f.e.p.s.p.) slope (27 +/- 4%) recorded from hippocampal slices and the evoked [3H]-acetylcholine ([3H]-ACh) release from the motor nerve terminals (25 +/- 2%). 3. alpha, beta-Methylene adenosine diphosphate (AOPCP) in concentrations (100-200 microM) that almost completely inhibited the formation of adenosine from the extracellular catabolism of AMP, decreased population spike amplitude by 39 +/- 5% and f.e.p.s.p. slope by 32 +/- 3% in hippocampal slices and [3H]-ACh release from motor nerve terminals by 27 +/- 3%. 4. Addition of exogenous 5'-nucleotidase (5 u ml-1) prevented the inhibitory effect of AOPCP on population spike amplitude and f.e.p.s.p. slope by 43-57%, whereas the P2 antagonist, suramin (100 microM), did not modify the effect of AOPCP. 5. In both preparations, the effect of AOPCP resulted from prevention of adenosine formation since it was no longer evident when accumulation of extracellular adenosine was hindered by adenosine deaminase (0.5-2 u ml-1). The inhibitory effect of AOPCP was still evident when A1 receptors were blocked by 1,3-dipropyl-8-cyclopentylxanthine (2.5-5 nM), but was abolished by the A2 antagonist, 3,7-dimethyl-1-propargylxanthine (10 microM). 6. These results suggest that adenosine originating from catabolism of released adenine nucleotides preferentially activates excitatory A2 receptors in hippocampal CAI pyramid synapses and in phrenic motor nerve endings. PMID:8886406

  1. Adenosine receptors and asthma in humans.

    PubMed

    Wilson, C N

    2008-10-01

    According to an executive summary of the GINA dissemination committee report, it is now estimated that approximately 300 million people (5% of the global population or 1 in 20 persons) have asthma. Despite the scientific progress made over the past several decades toward improving our understanding of the pathophysiology of asthma, there is still a great need for improved therapies, particularly oral therapies that enhance patient compliance and that target new mechanisms of action. Adenosine is an important signalling molecule in human asthma. By acting on extracellular G-protein-coupled ARs on a number of different cell types important in the pathophysiology of human asthma, adenosine affects bronchial reactivity, inflammation and airway remodelling. Four AR subtypes (A(1), A(2a), A(2b) and A(3)) have been cloned in humans, are expressed in the lung, and are all targets for drug development for human asthma. This review summarizes what is known about these AR subtypes and their function in human asthma as well as the pros and cons of therapeutic approaches to these AR targets. A number of molecules with high affinity and high selectivity for the human AR subtypes have entered clinical trials or are poised to enter clinical trials as anti-asthma treatments. With the availability of these molecules for testing in humans, the function of ARs in human asthma, as well as the safety and efficacy of approaches to the different AR targets, can now be determined.

  2. Binding of β4γ5 by Adenosine A1 and A2A Receptors Determined by Stable Isotope Labeling with Amino Acids in Cell Culture and Mass Spectrometry†

    PubMed Central

    Wang, Dora Bigler; Sherman, Nicholas E.; Shannon, John D.; Leonhardt, Susan A.; Mayeenuddin, Linnia H.; Yeager, Mark; McIntire, William E.

    2011-01-01

    Characterization of G protein βγ dimer isoform expression in different cellular contexts has been impeded by low levels of protein expression, broad isoform heterogeneity, and antibodies of limited specificity, sensitivity or availability. As a new approach, we used quantitative mass spectrometry to characterize native βγ dimers associated with adenosine A1:αi1 and adenosine A2A:αS receptor fusion proteins expressed in HEK-293 cells. Cells expressing A1:αi1 were cultured in media containing [13C6] Arg and [13C6] Lys, and βγ labeled with heavy isotopes purified. Heavy βγ was combined with either recombinant βγ purified from Sf9 cells, βγ purified from the A2A:αS expressed in HEK-293 cells cultured in standard media, or an enriched βγ fraction from HEK-293 cells. Samples were separated by SDS-PAGE, and protein bands containing β and γ were excised, digested with trypsin, separated by HPLC and isotope ratios analyzed by mass spectrometry. Three β isoforms, β1, β2 and β4, and seven γ isoforms, γ2, γ4, γ5, γ7, γ10, γ11 and γ12 were identified in the analysis. β1 and γ5 were most abundant in the enriched βγ fraction, and this βγ profile was generally mirrored in the fusion proteins. However, both A2A:αS and A1:αi1 bound more β4 and γ5 compared to the enriched βγ fraction; also, more β4 was associated with A2A:αS than A1:αi1. Both fusion proteins also contained less γ2, γ10 and γ12 than the enriched βγ fraction. These results suggest that preferences for particular βγ isoforms may be driven in part by structural motifs common to adenosine receptor family members. PMID:21128647

  3. 1,3-Dipropyl-8-[2-(5,6-epoxy)norbornyl]xanthine, a potent, specific and selective A1 adenosine receptor antagonist in the guinea pig heart and brain and in DDT1MF-2 cells.

    PubMed

    Belardinelli, L; Shryock, J C; Zhang, Y; Scammells, P J; Olsson, R; Dennis, D; Milner, P; Pfister, J; Baker, S P

    1995-12-01

    The objective of this study was to characterize the adenosine receptor (AdoR) antagonistic properties of a newly synthesized alkylxanthine, 1,3-dipropyl-8[2-(5,6-epoxy)norbornyl]xanthine (ENX), and compare them to those of 1,3-dipropyl-8-(cyclo-pentyl)xanthine (CPX), 1,3-dipropyl-8-(3-noradamantyl)xanthine (NAX) and (+/-)-N6-endo-norbornan-2-yl-9-methyladenine (N-0861). The potencies and selectivities of ENX, CPX, NAX and N-0861 were determined by functional studies of guinea pig isolated perfused hearts, and by radioligand binding assays for A1 and A2a AdoRs in the guinea pig forebrain and striatum. ENX competitively antagonized A1 AdoR-mediated prolongations of atrioventricular nodal conduction time caused by Ado or by 2-chloro-N6-cyclopentyladenosine, but not those caused by carbachol (0.14 microM) or MgCl2 (3 mM). Schild analysis of 2-chloro-N6-cyclopentyladenosine-antagonist competition curves yielded pA2 values for ENX, CPX and NAX of 8.45 +/- 0.19, 8.55 +/- 0.28 and 8.79 +/- 0.15, respectively. ENX (30 microM) and N-0861 (30 microM) did not attenuate the A2 AdoR-mediated increase in coronary conductance caused by adenosine. CPX and NAX attenuated the coronary vasodilation caused by adenosine with IC50 values of 1.5 and 7.1 microM, respectively. Radioligand binding assays revealed that ENX, CPX and NAX and N-0861 had a 400-, 209-, 110- and 10-fold greater affinity, respectively, for A1 than for A2a AdoRs of guinea pig brain membranes. Thus, ENX was equipotent with CPX and NAX and more potent than N-0861 (pA2 = 6.2) as an antagonist at A1 AdoRs, but had lower affinity for A2 AdoRs in guinea pig hearts and brain striatum than did either CPX or NAX. In DDT1 MF-2 cells, all three alkylxanthines had similar affinities for A1 AdoRs, whereas the affinity of N-0861 for A1 AdoRs was significantly lower. ENX appears to be the most A1 AdoR subtype-selective of the alkylxanthine class of AdoR antagonists reported to date.

  4. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    PubMed Central

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  5. Effect of chronic salt loading on adenosine metabolism and receptor expression in renal cortex and medulla in rats.

    PubMed

    Zou, A P; Wu, F; Li, P L; Cowley, A W

    1999-01-01

    Previous studies have shown that chronic salt loading increased renal interstitial adenosine concentrations and desensitized renal effects of adenosine, a phenomenon that could facilitate sodium excretion. However, the mechanisms responsible for the increased adenosine production and decreased adenosine response are poorly understood. This study examined the effects of the dietary high salt intake on adenosine metabolism and receptor expression in the renal cortex and medulla in Sprague Dawley rats. Fluorescent high-performance liquid chromatography analyses were performed to determine adenosine levels in snap-frozen kidney tissues. Comparing rats fed a normal (1% NaCl) versus high salt (4% NaCl) diet, renal adenosine concentrations in rats fed a high salt diet were significantly higher (cortex: 43+/-3 versus 85+/-4, P<0.05; medulla: 183+/-4 versus 302+/-8 nmol/g wet tissue, P<0.05). Increased adenosine concentrations were not associated with changes in the 5'-nucleotidase or adenosine deaminase activity, as determined by quantitative isoelectric focusing and gel electrophoresis. Western blot analyses showed that a high salt diet (4% NaCl for 3 weeks) downregulated A1 receptors (antinatriuretic type), did not alter A2A and A2B receptors (natriuretic type), and upregulated A3 receptors (function unknown) in both renal cortex and medulla. The data show that stimulation of adenosine production and downregulation of A1 receptors with salt loading may play an important role in adaptation in the kidney to promote sodium excretion.

  6. Caffeine and propranolol block the increase in rat pineal melatonin production produced by stimulation of adenosine receptors.

    PubMed

    Babey, A M; Palmour, R M; Young, S N

    1994-07-18

    The adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) injected i.p. during the light period increased rat pineal melatonin levels and this increase was blocked by simultaneous administration of the non-selective adenosine receptor antagonist caffeine. A single dose of the adenosine A1 agonist cyclopentyladenosine had no effect on nocturnal melatonin production. The NECA-stimulated increase was also blocked by the beta-adrenergic receptor antagonist propranolol. Given alone, neither caffeine nor propranolol had any effect on melatonin levels. The results point to an intermediate role for beta-adrenergic receptors in the adenosine-stimulated increase of melatonin production.

  7. Adenosine receptor ligands: differences with acute versus chronic treatment

    PubMed Central

    Jacobson, Kenneth A.; von Lubitz, Dag K. J. E.; Daly, John W.; Fredholm, Bertil B.

    2012-01-01

    Adenosine receptors have been the target of intense research with respect to potential use of selective ligands in a variety of therapeutic areas. Caffeine and theophylline are adenosine receptor antagonists, and over the past three decades a wide range of selective agonists and antagonists for adenosine receptor subtypes have been developed. A complication to the therapeutic use of adenosine receptor ligands is the observation that the effects of acute administration of a particular ligand can be diametrically opposite to the chronic effects of the same ligand. This ‘effect inversion’ is discussed here by Ken Jecobson and colleagues, and has been observed for effects on cognitive processes, seizures and ischaemic damage. PMID:8936347

  8. Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line

    PubMed Central

    Merighi, Stefania; Varani, Katia; Gessi, Stefania; Cattabriga, Elena; Iannotta, Valeria; Ulouglu, Canan; Leung, Edward; Borea, Pier Andrea

    2001-01-01

    The present work characterizes, from a pharmacological and biochemical point of view, adenosine receptors in the human malignant melanoma A375 cell line. Adenosine receptors were detected by RT – PCR experiments. A1 receptors were characterized using [3H]-DPCPX binding with a KD of 1.9±0.2 nM and Bmax of 23±7 fmol mg−1 of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a KD of 5.1±0.2 nM and a Bmax of 220±7 fmol mg−1 of protein. A3 receptors were studied with the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with KD of 3.3±0.7 nM and Bmax of 291±50 fmol mg−1 of protein. The pharmacological profile of radioligand binding on A375 cells was established using typical adenosine ligands which displayed a rank order of potency typical of the different adenosine receptor subtype. Thermodynamic data indicated that radioligand binding to adenosine receptor subtypes in A375 cells was entropy- and enthalpy-driven. In functional assays the high affinity A2A agonists HE-NECA, CGS 21680 and A2A – A2B agonist NECA were able to increase cyclic AMP accumulation in A375 cells whereas A3 agonists Cl-IB-MECA, IB-MECA and NECA were able to stimulate Ca2+ mobilization. In conclusion, all these data indicate, for the first time, that adenosine receptors with a pharmacological and biochemical profile typical of the A1, A2A, A2B and A3 receptor subtype are present on A375 melanoma cell line. PMID:11704641

  9. The PROTECT pilot study: a randomized, placebo-controlled, dose-finding study of the adenosine A1 receptor antagonist rolofylline in patients with acute heart failure and renal impairment.

    PubMed

    Cotter, Gad; Dittrich, Howard C; Weatherley, Beth Davison; Bloomfield, Daniel M; O'Connor, Christopher M; Metra, Marco; Massie, Barry M

    2008-10-01

    Rolofylline, an adenosine A(1) receptor antagonist, facilitates diuresis and preserves renal function in patients with acute heart failure (AHF) with renal impairment. Although not powered around any specific hypothesis, this pilot study was designed to identify an efficacious dose while refining inclusion criteria and end points. A total of 301 patients hospitalized for AHF with an estimated creatinine clearance of 20 to 80 mL/min and elevated natriuretic peptide levels were enrolled within 24 hours of presentation to placebo or rolofylline 10, 20, or 30 mg administered as 4-hour infusions for 3 days in addition to intravenously administered loop diuretics. Post hoc analyses for end points chosen for subsequent Phase III studies were performed. Compared with placebo, rolofylline produced trends toward greater proportions of patients with marked or moderately improved dyspnea and fewer patients with worsening heart failure or renal function. Serum creatinine increased in patients receiving placebo and remained stable or tended to decrease in those receiving rolofylline. On day 14 the absolute differences between placebo and rolofylline for change in creatinine increased with increasing rolofylline dose, reflecting the lesser increase in creatinine in rolofylline-treated patients (r = -0.12, P = .030). Treatment with 30 mg, the dose selected for the pivotal trials, was associated with a trend toward reduced 60-day mortality or readmission for cardiovascular or renal cause (hazard ratio, 0.55; 95% confidence interval, 0.28-1.04). These results demonstrate that adenosine A(1) receptor blockade with rolofylline can prevent renal impairment in patients with AHF and may positively affect acute symptoms and 60-day outcome. A 2000-patient trial of this agent is now under way.

  10. Adenosine receptors: Modulators of lipid availability that are controlled by lipid levels.

    PubMed

    Leiva, Andrea; Guzmán-Gutiérrez, Enrique; Contreras-Duarte, Susana; Fuenzalida, Bárbara; Cantin, Claudette; Carvajal, Lorena; Salsoso, Rocío; Gutiérrez, Jaime; Pardo, Fabián; Sobrevia, Luis

    2017-06-01

    Adenosine as well as agonists and antagonists for the four adenosine receptor subtypes (A1R, A2AR, A2BR and A3R) play a role in several key physiological and pathophysiological processes, including the regulation of vascular tone, thrombosis, immune response, inflammation, and angiogenesis. This review focuses on the adenosine-mediated regulation of lipid availability in the cell and in the systemic circulation as well in humans and animal models. Therefore, adenosine, mainly by acting on A1R, inhibits lipolysis activity, leading to reduction of the circulating fatty acid levels. This nucleoside can also participate in the early development of atherosclerosis by inhibiting the formation of foam cells via stimulation of cholesterol efflux through A2AR expressed on macrophages and reduction of the inflammatory process by activating A2AR and A2BR. Adenosine also appears to modulate intracellular cholesterol availability in Niemann-Pick type C1 disease and Alzheimer disease via A2AR and A3, respectively. Remarkably, the role of adenosine receptors in the regulation of plasma total cholesterol and triglyceride levels has been studied in animal models. Thus, an anti-atherogenic role for A2BR as well as a pro-atherogenic role of A2AR and A1 have been proposed; A3R has not been shown to participate in the control of lipid levels or the development of atherosclerosis. Surprisingly, and despite the role of A2A in the inhibition of foam cell formation among isolated cells, this receptor appears to be pro-atherogenic in mice. Remarkably, the role of adenosine receptors in human dyslipidaemia and atherosclerosis must to be elucidated. Additionally, it has been reported that increased lipid levels impair the effects of adenosine/adenosine receptors in controlling vascular tone, and we speculate on the possibility that this impairment could be due to alterations in the composition of the membrane microdomains where the adenosine receptors are located. Finally, a possible role for

  11. In vivo assessment of coronary flow and cardiac function after bolus adenosine injection in adenosine receptor knockout mice.

    PubMed

    Teng, Bunyen; Tilley, Stephen L; Ledent, Catherine; Mustafa, S Jamal

    2016-06-01

    Bolus injections of adenosine and the A2A adenosine receptor (AR) selective agonist (regadenoson) are used clinically as a substitute for a stress test in people who cannot exercise. Using isolated tissue preparations, our lab has shown that coronary flow and cardiac effects of adenosine are mostly regulated by the AR subtypes A1, A2A, and A2B In this study, we used ultrasound imaging to measure the in vivo effects of adenosine on coronary blood flow (left coronary artery) and cardiac function in anesthetized wild-type, A1 knockout (KO), A2AKO, A2BKO, A3KO, A1, and A3 double KO (A1/3 DKO) and A2A and A2B double KO (A2A/2B DKO) mice in real time. Echocardiographic and Doppler studies were performed using a Visualsonic Vevo 2100 ultrasound system. Coronary blood flow (CBF) baseline data were obtained when animals were anesthetized with 1% isoflourane. Diameter (D) and velocity time integral (VTI) were measured on the left coronary arteries (CBF = ((π/4) × D(2) × VTI × HR)/1000). CBF changes were the highest within 2 min of injection (about 10 mg/kg). Heart rate, cardiac output, and stroke volume were measured by tracing the left ventricle long axis. Our data support a role for the A2 AR in CBF and further support our conclusions of previous studies from isolated tissues. Adenosine-mediated decreases in cardiac output and stroke volume may be A2B and/or A3 AR-mediated; however, the A1 and A2 ARs also play roles in overall cardiac function. These data further provide a powerful translational tool in studying the cardiovascular effects of adenosine in disease states.

  12. Adenosine 2A receptors in acute kidney injury.

    PubMed

    Vincent, I S; Okusa, M D

    2015-07-01

    Acute kidney injury (AKI) is an important clinical problem that may lead to death and for those who survive, the sequelae of AKI include loss of quality of life, chronic kidney disease and end-stage renal disease. The incidence of AKI continues to rise without clear successes in humans for the pharmacological prevention of AKI or treatment of established AKI. Dendritic cells and macrophages are critical early initiators of innate immunity in the kidney and orchestrate inflammation subsequent to ischaemia-reperfusion injury. These innate cells are the most abundant leucocytes present in the kidney, and they represent a heterogeneous population of cells that are capable of responding to cues from the microenvironment derived from pathogens or endogenous inflammatory mediators such as cytokines or anti-inflammatory mediators such as adenosine. Lymphocyte subsets such as natural killer T cells and Tregs also play roles in regulating ischaemic injury by promoting and suppressing inflammation respectively. Adenosine, produced in response to IR, is generally considered as a protective signalling molecule and elicits its physiological responses through four distinct adenosine receptors. However, its short half-life, lack of specificity and rapid metabolism limit the use of adenosine as a therapeutic agent. These adenosine receptors play various roles in regulating the activity of the aforementioned hematopoietic cells in elevated levels of adenosine such as during hypoxia. This review focuses on the importance of one receptor, the adenosine 2A subtype, in blocking inflammation associated with AKI.

  13. [Protective effect of adenosine receptor agonists in a model of spinal cord injury in rats].

    PubMed

    Sufianova, G Z; Usov, L A; Sufianov, A A; Perelomov, Iu P; Raevskaia, L Iu; Shapkin, A G

    2002-01-01

    Possibilities of the neuroprotector therapy using adenosine and cyclopentyladenosine (CPA), an adenosine receptor agonist, were studied on a model of spinal cord injury by compression in rats (most closely reproducing the analogous clinical pathological process in humans). The model was induced by slow, graded compression of the spinal cord at the thoracic level. Adenosine and CPA were introduced 60 min before injury by subcutaneous injections in a dose of 300 and 2.5 micrograms/kg, respectively. The protective effect was judged by comparing the neurological, electromyographic, and histopathological changes in animals with the model injury and in the control group (adenosine and CPA background). The A1-agonist CPA injections produced a pronounced, statistically significant neuroprotector effect on the given spinal cord injury model in rats. The neuroprotective effect of adenosine was significant but not as strong. It is concluded that it is expedient to use A-agonists in clinics.

  14. Caffeine inhibits antinociception by acetaminophen in the formalin test by inhibiting spinal adenosine A₁ receptors.

    PubMed

    Sawynok, Jana; Reid, Allison R

    2012-01-15

    The present study examined effects of caffeine on antinociception by acetaminophen in the formalin test in mice. It demonstrates that caffeine 10mg/kg inhibits antinociception produced by acetaminophen 300 mg/kg i.p. against phase 2 flinches. Chronic administration of caffeine in the drinking water (0.1, 0.3g/l) for 8 days also inhibits the action of acetaminophen. The selective adenosine A(1) receptor antagonist DPCPX 1mg/kg i.p. mimics the action of caffeine, but the selective adenosine A(2A) receptor antagonist SCH58261 3mg/kg i.p. does not. While acetaminophen produced the same effect in mice that were +/+, +/- and -/- for adenosine A(1) receptors, inhibition of antinociception by caffeine was seen only in +/+ and +/- mice. A higher dose of caffeine, 40 mg/kg, produced an intrinsic antinociception against formalin-evoked flinches, an effect also seen when caffeine was administered intrathecally. SCH58261 30 nmol, but not DPCPX 10 nmol, also produced antinociception when administered intrathecally indicating involvement of adenosine A(2A) receptors in spinal antinociception. Caffeine reversal of acetaminophen results from actions in the spinal cord, as intrathecal DPCPX 10 nmol inhibited antinociception by systemic acetaminophen; this was also observed in +/+ but not in -/- adenosine A(1) receptor mice. We propose that spinal adenosine A(1) receptors contribute to the action of acetaminophen secondarily to involvement of descending serotonin pathways and release of adenosine within the spinal cord. Inhibition of acetaminophen antinociception by doses of caffeine relevant to dietary human intake levels suggests a more detailed consideration of acetaminophen-caffeine interactions in humans is warranted. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Pertussis toxin-sensitive guanine nucleotide-binding protein(S) couple adenosine A1 and 5-hydroxytryptamine1A receptors to the same effector systems in rat hippocampus: biochemical and electrophysiological studies.

    PubMed

    Zgombick, J M; Beck, S G; Mahle, C D; Craddock-Royal, B; Maayani, S

    1989-04-01

    Distinct membrane receptors that elicit similar cellular responses may share elements of signal transduction. In the present study, rat hippocampal adenosine (AD) and 5-hydroxytryptamine (5-HT) receptors were chosen to test this possibility using biochemical and electrophysiological techniques. Responses elicited by the AD receptor that mediates the inhibition of forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes and hyperpolarization of resting membrane potential (RMP) in rat hippocampal pyramidal cells were characterized and compared, in the same preparation, with those analogous responses elicited by the 5-HT1A receptor. A series of AD agonists including the selective AD A1 agonist (R)-phenylisopropyladenosine [(R)-PIA] inhibited forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes in a concentration-dependent manner. Cyclopentyltheophylline (CPT), a selective AD A1 antagonist, was a potent, competitive antagonist of this response with a dissociation constant (Kb) of 6 nM (Schild analysis). The rank order of agonist EC50 values and antagonist Kb values, as well as stereoselectivity, are consistent with the classification of this receptor as the AD A1 receptor. Spiperone, a potent 5-HT1A antagonist, competitively antagonized 5-HT-mediated inhibition of forskolin-stimulated adenylyl cyclase activity in rat hippocampal membranes with a Kb value of 14 nM. Intracellular recording techniques revealed that AD, (R)-PIA, 5-HT, and 5-carboxyamidotryptamine (5-CT) elicited concentration-dependent hyperpolarization of RMP within the same hippocampal pyramidal cell. The maximal hyperpolarization obtained for the AD or 5-HT analogs was the same for individual pyramidal cells. CPT and spiperone antagonized the hyperpolarization by (R)-PIA and 5-CT, respectively. Saturating concentrations of spiperone failed to antagonize (R)-PIA-mediated responses and CPT did not block responses elicited by 5-HT in either the biochemical or

  16. Autoradiographic localization of adenosine receptors in rat brain using (/sup 3/H)cyclohexyladenosine

    SciTech Connect

    Goodman, R.R.; Synder, S.H.

    1982-09-01

    Adenosine (A1) receptor binding sites have been localized in rat brain by an in vitro light microscopic autoradiographic method. The binding of (/sup 3/H)N6-cyclohexyladenosine to slide-mounted rat brain tissue sections has the characteristics of A1 receptors. It is saturable with high affinity and has appropriate pharmacology and stereospecificity. The highest densities of adenosine receptors occur in the molecular layer of the cerebellum, the molecular and polymorphic layers of the hippocampus and dentate gyrus, the medial geniculate body, certain thalamic nuclei, and the lateral septum. High densities also are observed in certain layers of the cerebral cortex, the piriform cortex, the caudate-putamen, the nucleus accumbens, and the granule cell layer of the cerebellum. Most white matter areas, as well as certain gray matter areas, such as the hypothalamus, have negligible receptor concentrations. These localizations suggest possible central nervous system sites of action of adenosine.

  17. Cloning of two adenosine receptor subtypes from mouse bone marrow-derived mast cells.

    PubMed

    Marquardt, D L; Walker, L L; Heinemann, S

    1994-05-01

    Adenosine potentiates the stimulated release of mast cell mediators. Pharmacologic studies suggest the presence of two adenosine receptors, one positively coupled to adenylate cyclase and the other coupled to phospholipase C activation. To identify mast cell adenosine receptor subtypes, cDNAs for the A1 and A2a adenosine receptors were obtained by screening a mouse brain cDNA library with the use of PCR-derived probes. Mouse bone marrow-derived mast cell cDNA libraries were constructed and screened with the use of A1 and A2a cDNA probes, which revealed the presence of A2a, but not A1, receptor clones. A putative A2b receptor was identified by using low stringency mast cell library screening. Northern blotting of mast cell poly(A)+ RNA with the use of receptor subtype probes labeled single mRNA bands of 2.4 kb and 1.8 kb for the A2a and A2b receptors, respectively. In situ cells. An A2a receptor-specific agonist failed to enhance mast cell mediator release, which suggests that the secretory process is modulated through the A2b and/or another receptor subtype. By using RNase protection assays, we found that mast cells that had been cultured in the presence of N-ethylcarboxamidoadenosine for 24 h exhibited a decrease in both A2a and A2b receptor RNA levels. Cells that had been cultured for 1 to 2 days in the presence of dexamethasone demonstrated increased amounts of A2a receptor mRNA, but no identifiable change in A2b receptor mRNA. Mast cells possess at least two adenosine receptor subtypes that may be differentially regulated.

  18. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  19. The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3-d]pyrimidine core in affecting adenosine A1 and A2A receptor affinity and selectivity profiles.

    PubMed

    Squarcialupi, Lucia; Betti, Marco; Catarzi, Daniela; Varano, Flavia; Falsini, Matteo; Ravani, Annalisa; Pasquini, Silvia; Vincenzi, Fabrizio; Salmaso, Veronica; Sturlese, Mattia; Varani, Katia; Moro, Stefano; Colotta, Vittoria

    2017-12-01

    New 7-amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives, substituted at the 5-position with aryl(alkyl)amino- and 4-substituted-piperazin-1-yl- moieties, were synthesized with the aim of targeting human (h) adenosine A1 and/or A2A receptor subtypes. On the whole, the novel derivatives 1-24 shared scarce or no affinities for the off-target hA2B and hA3 ARs. The 5-(4-hydroxyphenethylamino)- derivative 12 showed both good affinity (Ki = 150 nM) and the best selectivity for the hA2A AR while the 5-benzylamino-substituted 5 displayed the best combined hA2A (Ki = 123 nM) and A1 AR affinity (Ki = 25 nM). The 5-phenethylamino moiety (compound 6) achieved nanomolar affinity (Ki = 11 nM) and good selectivity for the hA1 AR. The 5-(N(4)-substituted-piperazin-1-yl) derivatives 15-24 bind the hA1 AR subtype with affinities falling in the high nanomolar range. A structure-based molecular modeling study was conducted to rationalize the experimental binding data from a molecular point of view using both molecular docking studies and Interaction Energy Fingerprints (IEFs) analysis.[Formula: see text].

  20. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus.

    PubMed Central

    Morton, R A; Davies, C H

    1997-01-01

    1. Intracellular current clamp recordings were made from CA1 pyramidal neurones in rat hippocampal slices. Experiments were performed in the presence of ionotropic glutamate receptor antagonists and gamma-aminobutyric acid (GABA) receptor antagonists to block all fast excitatory and inhibitory synaptic transmission. A single stimulus, delivered extracellularly in the stratum oriens, caused a reduction in spike frequency adaptation in response to a depolarizing current step delivered 2 s after the stimulus. A 2- to 10-fold increase in stimulus intensity evoked a slow excitatory postsynaptic potential (EPSP) which was associated with a small increase in input resistance. The peak amplitude of the EPSP occurred approximately 2.5 s after the stimulus and its magnitude (up to 30 mV) and duration (10-50 s) increased with increasing stimulus intensity. 2. The slow EPSP was unaffected by the metabotropic glutamate receptor antagonist (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG; 1000 microM) but was greatly enhanced by the acetylcholinesterase inhibitor physostigmine (1-5 microM). Both the slow EPSP and the stimulus-evoked reduction in spike frequency adaptation were inhibited by the muscarinic acetylcholine receptor (mAChR) antagonist atropine (1-5 microM). These results are consistent with these effects being mediated by mAChRs. 3. Both the mAChR-mediated EPSP (EPSPm) and the associated reduction in spike frequency adaptation were reversibly depressed (up to 97%) by either adenosine (100 microM) or its non-hydrolysable analogue 2-chloroadenosine (CADO; 0.1-5.0 microM). These effects were often accompanied by postsynaptic hyperpolarization (up to 8 mV) and a reduction in input resistance (up to 11%). The selective adenosine A1 receptor agonists 2-chloro-N6-cyclopentyladenosine (CCPA; 0.1-0.4 microM) and R(-)N6-(2-phenylisopropyl)-adenosine (R-PIA; 1 microM) both depressed the EPSPm. In contrast, the adenosine A2A receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5

  1. A Functionalized Congener Approach to Adenosine Receptor Antagonists: Amino Acid Conjugates of 1,3-Dipropylxanthine

    PubMed Central

    JACOBSON, KENNETH A.; KIRK, KENNETH L.; PADGETT, WILLIAM L.; DALY, JOHN W.

    2012-01-01

    SUMMARY 1,3-Dipropyl-8-phenylxanthine, a synthetic analog of theophylline and a potent antagonist of adenosine at A1 and A2-adenosine receptors, has been attached covalently through a functionalized chain to amino acids and oligopeptides. The xanthine conjugates have been studied as competitive inhibitors of the specific binding of [3H]N6-cyclohexyladenosine to A1-receptors of rat cerebral cortical membranes and for inhibition of cyclic AMP accumulation elicited by 2-chloroadenosine in guinea pig brain slices through A2-receptors. A free amino group on the extended chain generally resulted in high potency at A1-receptors. The potency (in some cases extending into the subnanomolar range) and selectivity for A1-receptors (up to 200-fold) suggest that this approach can yield a versatile class of “functionalized congeners” of adenosine receptor antagonists in which distal modifications of the attached moiety (“carrier”) can serve also to improve pharmacodynamic and pharmacokinetic parameters. The water solubility in many of the more potent analogs has been enhanced by two orders of magnitude over that of simple, uncharged 8-phenyl xanthine derivatives. Analogs in which the carrier contains d-tyrosine have potential for development of iodinated radioligands for adenosine receptors. The functionalized congener approach is potentially applicable to other drugs and for development of prodrugs. PMID:3005825

  2. Adenosine A2A receptors in diffuse dermal fibrosis: pathogenic role in human dermal fibroblasts and in a murine model of scleroderma.

    PubMed

    Chan, E S L; Fernandez, P; Merchant, A A; Montesinos, M C; Trzaska, S; Desai, A; Tung, C F; Khoa, D N; Pillinger, M H; Reiss, A B; Tomic-Canic, M; Chen, J F; Schwarzschild, M A; Cronstein, B N

    2006-08-01

    Adenosine regulates inflammation and tissue repair, and adenosine A2A receptors promote wound healing by stimulating collagen matrix production. We therefore examined whether adenosine A2A receptors contribute to the pathogenesis of dermal fibrosis. Collagen production by primary human dermal fibroblasts was analyzed by real-time polymerase chain reaction, 14C-proline incorporation, and Sircol assay. Intracellular signaling for dermal collagen production was investigated using inhibitors of MEK-1 and by demonstration of ERK phosphorylation. In vivo effects were studied in a bleomycin-induced dermal fibrosis model using adenosine A2A receptor-deficient wild-type littermate mice, C57BL/6 mice, and mice treated with adenosine A2A receptor antagonist. Morphometric features and levels of hydroxyproline were determined as measures of dermal fibrosis. Adenosine A2A receptor occupancy promoted collagen production by primary human dermal fibroblasts, which was blocked by adenosine A2A, but not A1 or A2B, receptor antagonism. Adenosine A2A receptor ligation stimulated ERK phosphorylation, and A2A receptor-mediated collagen production by dermal fibroblasts was blocked by MEK-1 inhibitors. Adenosine A2A receptor-deficient and A2A receptor antagonist-treated mice were protected from developing bleomycin-induced dermal fibrosis. These results demonstrate that adenosine A2A receptors play an active role in the pathogenesis of dermal fibrosis and suggest a novel therapeutic target in the treatment and prevention of dermal fibrosis in diseases such as scleroderma.

  3. Modulation of Adenosine Receptors by [60]Fullerene Hydrosoluble Derivative in SK-N-MC Cells

    PubMed Central

    2011-01-01

    The most known fullerenes are spherical carbon compounds composed of 60 carbon atoms. C60 fullerenes have shown biochemical and biomedical properties in the last years such as as blockade of apoptosis and neuroprotection. The nucleoside adenosine has a neuroprotective role mainly due to inhibition of glutamate release, which is a neurotransmitter related to excitotoxicity and cell death. In the present work, we have determined the presence of adenosine receptors in SK-N-MC cells, a neuroepithelioma human cell line, and analyzed the effect of fullerenes in these receptors by using radioligand binding, immunoblotting, and quantitative real time PCR assays. Results demonstrated that SK-N-MC cells endogenously express adenosine receptors. Fullerene exposure of these cells did not affect cell viability measured by MTT reduction assay. However, adenosine A1 and A2A receptors were both increased in SK-N-MC cells after treatment. These results suggest for the first time the modulation of adenosine receptors after C60 fullerenes exposure. PMID:22816023

  4. The impact of adenosine and A(2B) receptors on glucose homoeostasis.

    PubMed

    Rüsing, D; Müller, C E; Verspohl, E J

    2006-12-01

    Adenosine and adenosine receptor antagonists are involved in glucose homoeostasis. The participating receptors are not known, mainly due to a lack of specific agonists and antagonists, but are reasonable targets for anti-diabetic therapy. The stable, albeit nonselective, adenosine analogue NECA (5'-N-ethylcarboxamidoadenosine) (10 microM) reduced glucose-stimulated insulin release from INS-1 cells. This was mimicked by A(1)-(CHA), A(2A)-(CGS-21680) and A(3)-receptor agonists (Cl-IB-MECA). Two newly synthesized A(2B)-receptor antagonists, PSB-53 and PSB-1115, counteracted the inhibitory effect of NECA. These in-vitro effects were mirrored by in-vivo data with respect to CHA, CGS and Cl-IB-MECA. Distinct concentrations of either PSB-53 or PSB-1115 reversed the decrease in plasma insulin induced by NECA. This was not mimicked by a corresponding change in blood glucose. The effect of PSB-1115 was also obvious in diabetic GotoKakizaki rats: plasma insulin was increased whereas blood glucose was unchanged. During most experiments the effects on blood glucose were not impressive probably because of the physiologically necessary homoeostasis. The adenosine levels were not different in normal Wistar rats and in diabetic GotoKakzaki rats. Altogether the A(2B)-receptor antagonists showed an anti-diabetic potential mainly by increasing plasma insulin levels under conditions when the adenosine tonus was elevated in-vivo and increased insulin release in-vitro.

  5. Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury

    PubMed Central

    Sun, Chun-Xiao; Zhong, Hongyan; Mohsenin, Amir; Morschl, Eva; Chunn, Janci L.; Molina, Jose G.; Belardinelli, Luiz; Zeng, Dewan; Blackburn, Michael R.

    2006-01-01

    Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase–deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883–treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy. PMID:16841096

  6. Trifunctional Agents as a Design Strategy for Tailoring Ligand Properties: Irreversible Inhibitors of A1 Adenosine Receptors†

    PubMed Central

    Boring, Daniel L.; Ji, Xiao-Duo; Zimmet, Jeff; Taylor, Kirk E.; Stiles, Gary L.

    2012-01-01

    The 1,3-phenylene diisothiocyanate conjugate of XAC (8-[4-[[[[(2-aminoethyl)amino]carbonyl]methyl]-oxy]phenyl]-l,3-dipropylxanthine, a potent A1 selective adenosine antagonist) has been characterized as an irreversible inhibitor of A1 adenosine receptors. To further extend this work, a series of analogues were prepared containing a third substituent in the phenyl isothiocyanate ring, incorporated to modify the physiochemical or spectroscopic properties of the conjugate. Symmetrical trifunctional cross-linking reagents bearing two isothiocyanate groups were prepared as general intermediates for cross-linking functionalized congeners and receptors. Xanthine isothiocyanate derivatives containing hydrophilic, fluorescent, or reactive substituents, linked via an amide, thiourea, or methylene group in the 5-position, were synthesized and found to be irreversible inhibitors of A1 adenosine receptors. The effects of the 5-substituent on water solubility and on the A1/A2 selectivity ratio derived from binding assays in rat brain membranes were examined. Inhibition of binding of [3H]-N6-(2-phenylisopropyl)-adenosine and [3H]CGS21680 (2-[[2-[4-(2-carboxyethyl)phenyl]ethyl]amino]adenosine-5′-N-ethylcarboxamide) at central A1 and A2 adenosine receptors, respectively, was measured. A conjugate of XAC and 1,3,5-triisothiocyanatobenzene was 894-fold selective for A1 receptors. Reporter groups, such as fluorescent dyes and a spin-label, were included as chain substituents in the irreversibly binding analogues, which were designed for spectroscopic assays, histochemical characterization, and biochemical characterization of the receptor protein. PMID:1868116

  7. Investigating real-time activation of adenosine receptors by bioluminescence resonance energy transfer technique

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Zheng, Liqin; Chen, Jiangxu; Wang, Yuhua; Li, Hui; Xie, Shusen

    2013-02-01

    Adenosine receptors play important roles in many physiological and pathological processes, for example regulating myocardial oxygen consumption and the release of neurotransmitters. The activations of adenosine receptors have been studied by some kinds of techniques, such as western blot, immunohistochemistry, etc. However, these techniques cannot reveal the dynamical response of adenosine receptors under stimulation. In this paper, bioluminescence resonance energy transfer technique was introduced to study the real-time activation of adenosine receptors by monitoring the dynamics of cyclic adenosine monophosphate (cAMP) level. The results showed that there were significant differences between adenosine receptors on real-time responses under stimulation. Moreover, the dynamics of cAMP level demonstrated that competition between adenosine receptors existed. Taken together, our study indicates that monitoring the dynamics of cAMP level using bioluminescence resonance energy transfer technique could be one potential approach to investigate the mechanism of competitions between adenosine receptors.

  8. Cardiovascular selectivity of adenosine receptor agonists in anaesthetized dogs.

    PubMed Central

    Gerencer, R. Z.; Finegan, B. A.; Clanachan, A. S.

    1992-01-01

    1. In order to determine the relevance of adenosine (Ado) receptor classification obtained from in vitro methods to the cardiovascular actions of Ado agonists in vivo, the cardiovascular effects of adenosine 5'-monophosphate (AMP), N6-cyclohexyladenosine (CHA, 400 fold A1-selective), 5'-N-ethyl-carboxamidoadenosine (NECA, A1 approximately A2) and 2-phenylaminoadenosine (PAA, 5 fold A2-selective) were compared in open-chest, fentanyl-pentobarbitone anaesthetized dogs. 2. Graded doses of CHA (10 to 1000 micrograms kg-1), NECA (0.5 to 100 micrograms kg-1) or PAA (0.1 to 20 micrograms kg-1) were administered intravenously and changes in haemodynamics and myocardial contractility were assessed 10 min following each dose. The effects of graded infusions of AMP (200 to 1000 micrograms kg-1 min-1) were also evaluated. 3. AMP and each of the Ado analogues (NECA > PAA > CHA) increased the systemic vascular conductance index (SVCI) in a dose-dependent manner and reduced mean arterial pressure (MAP). At doses causing similar increases in SVCI, these agonists caused (i) similar reflex increases in heart rate (HR) and cardiac index (CI) and decreases in AV conduction interval (AVi) and (ii) similar increases in coronary vascular conductance (CVC). 4. After cardiac autonomic blockade with atropine (0.2 mg kg-1) and propranolol (1 mg kg-1), AMP, CHA and PAA still increased SVCI and CVC and decreased MAP. CHA and PAA had no marked effects on HR, CI or AVi. As in the absence of cardiac autonomic blockade, equieffective vasodilator doses of CHA and PAA had identical effects on CVC, CI and AVi.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467827

  9. A2BR Adenosine Receptor Modulates Sweet Taste in Circumvallate Taste Buds

    PubMed Central

    Yang, Dan; Shultz, Nicole; Vandenbeuch, Aurelie; Ravid, Katya; Kinnamon, Sue C.; Finger, Thomas E.

    2012-01-01

    In response to taste stimulation, taste buds release ATP, which activates ionotropic ATP receptors (P2X2/P2X3) on taste nerves as well as metabotropic (P2Y) purinergic receptors on taste bud cells. The action of the extracellular ATP is terminated by ectonucleotidases, ultimately generating adenosine, which itself can activate one or more G-protein coupled adenosine receptors: A1, A2A, A2B, and A3. Here we investigated the expression of adenosine receptors in mouse taste buds at both the nucleotide and protein expression levels. Of the adenosine receptors, only A2B receptor (A2BR) is expressed specifically in taste epithelia. Further, A2BR is expressed abundantly only in a subset of taste bud cells of posterior (circumvallate, foliate), but not anterior (fungiform, palate) taste fields in mice. Analysis of double-labeled tissue indicates that A2BR occurs on Type II taste bud cells that also express Gα14, which is present only in sweet-sensitive taste cells of the foliate and circumvallate papillae. Glossopharyngeal nerve recordings from A2BR knockout mice show significantly reduced responses to both sucrose and synthetic sweeteners, but normal responses to tastants representing other qualities. Thus, our study identified a novel regulator of sweet taste, the A2BR, which functions to potentiate sweet responses in posterior lingual taste fields. PMID:22253866

  10. Activation of Adenosine A2A Receptors Inhibits Neutrophil Transuroepithelial Migration ▿

    PubMed Central

    Säve, Susanne; Mohlin, Camilla; Vumma, Ravi; Persson, Katarina

    2011-01-01

    Adenosine has been identified as a significant inhibitor of inflammation by acting on adenosine A2A receptors. In this study, we examined the role of adenosine and A2A receptors in the transmigration of human neutrophils across an in vitro model of the transitional bladder urothelium. Human uroepithelial cells (UROtsa) were grown on transwell inserts; uropathogenic Escherichia coli (UPEC) and neutrophils were added to the transwell system; and the number of migrating neutrophils was evaluated. Reverse transcription-PCR (RT-PCR), immunohistochemistry, and flow cytometry were used to investigate the expression of adenosine receptors, the epithelial adhesion molecule ICAM-1, and the neutrophil integrin CD11b. Levels of proinflammatory interleukin-8 (IL-8) and phosphorylated IκBα were measured by enzyme-linked immunosorbent assays (ELISA) and Luminex assays, respectively. The neutrophils expressed all four adenosine receptor subtypes (A1, A2A, A2B, and A3 receptors), but A3 receptors were not expressed by UROtsa cells. UPEC stimulated neutrophil transuroepithelial migration, which was significantly decreased in response to the specific A2A receptor agonist CGS 21680. The inhibitory effect of CGS 21680 on neutrophil migration was reversed by the A2A receptor antagonist SCH 58261. The production of chemotactic IL-8 and the expression of the adhesion molecule ICAM-1 or CD11b were not significantly affected by CGS 21680. However, a significant decrease in the level of phosporylated IκBα was revealed in response to CGS 21680. In conclusion, UPEC infection in vitro evoked neutrophil migration through a multilayered human uroepithelium. The UPEC-evoked neutrophil transmigration decreased in response to A2A receptor activation, possibly through inhibition of NF-κB signaling pathways. PMID:21646447

  11. Binary Drugs: Conjugates of Purines and a Peptide That Bind to Both Adenosine and Substance P Receptors

    PubMed Central

    Jacobson, Kenneth A.; Lipkowski, Andrzej W.; Moody, Terry W.; Padgett, William; Pijl, Evelyn; Kirk, Kenneth L.; Daly, John W.

    2012-01-01

    A “functionalized congener” approach to adenosine receptor antagonists has provided a means to synthesize highly potent peptide conjugates of 1,3-dialkylxanthines. The antagonist XAC, such a functionalized xanthine amine congener, has been attached to a segment derived from the neurotransmitter peptide substance P (SP) to form a binary drug that binds to both receptors with Ki values of 35 nM (central A1-adenosine) and 300 nM (striatal SP). Coupling of the functionalized adenosine agonist N6-[p-(carboxymethyl)phenyl]adenosine to an SP C-terminal peptide also resulted in a binary drug that binds to both receptors. The demonstration that the biochemical properties of two unrelated drugs, both of which act through binding at extracellular receptors, may be combined in the same molecule suggests a novel strategy for drug design. In principle, a combined effect of the two different substances that produce the same final effect (e.g., hypotension by adenosine agonists and by SP analogues) might occur in vivo. Adenosine analogues have analgesic properties, and the binary drug derived from substance P and adenosine agonists or antagonists might provide useful tools for probing interrelationships of SP pathways and sites for the antinociceptive action of adenosine. PMID:2441057

  12. Agonist Derived Molecular Probes for A2A Adenosine Receptors

    PubMed Central

    Jacobson, Kenneth A.; Pannell, Lewis K.; Ji, Xiao-duo; Jarvis, Michael F.; Williams, Michael; Hutchison, Alan J.; Barrington, William W.; Stiles, Gary L.

    2011-01-01

    The adenosine agonist 2-(4-(2-carboxyethyl)phenylethylamino)-5′-N-ethylcarboxamidoadenosine (CGS21680) was recently reported to be selective for the A2A adenosine receptor subtype, which mediates its hypotensive action. To investigate structurelactivity relationships at a distal site, CGS21680 was derivatized using a functionalized congener approach. The carboxylic group of CGS21680 has been esterified to form a methyl ester, which was then treated with ethylenediamine to produce an amine congener. The amine congener was an intermediate for acylation reactions, in which the reactive acyl species contained a reported group, or the precursor for such. For radioiodination, derivatives of p-hydroxyphenylpropionic, 2-thiophenylacetic, and p-aminophenylacetic acids were prepared. The latter derivative (PAPA-APEC) was iodinated electrophilically using [125I]iodide resulting in a radioligand which was used for studies of competition of binding to striatal A, adenosine receptors in bovine brain. A biotin conjugate and an aryl sulfonate were at least 350-fold selective for A, receptors. For spectroscopic detection, a derivative of the stable free radical tetramethyl-1-piperidinyloxy (TEMPO) was prepared. For irreversible inhibition of receptors, meta- and para-phenylenediisothiocyanate groups were incorporated in the analogs. We have demonstrated that binding at A2A receptors is relatively insensitive to distal structural changes at the 2-position, and we report high affinity molecular probes for receptor characterization by radioactive, spectroscopic and affinity labelling methodology. PMID:2561548

  13. Ligands and therapeutic perspectives of adenosine A(2A) receptors.

    PubMed

    Diniz, C; Borges, F; Santana, L; Uriarte, E; Oliveira, J M A; Gonçalves, J; Fresco, P

    2008-01-01

    Adenosine A(2A) receptors are members of the G protein-coupled receptor family and mediate multiple physiological effects of adenosine, both at the central nervous system (CNS) and at peripheral tissues, by activating several pathways or interacting with other receptors or proteins. Increasing evidence relate A(2A) receptors with pharmacological stress testing, neurodegenerative disorders (such as Parkinson's disease) and inflammation, renewing the interest in these receptors, increasingly viewed as promising therapeutic targets. Series of agonists and antagonists have been developed by medicinal chemistry artwork either by structure activity relationship (SAR) or quantitative structure activity relationship (QSAR) studies. These studies have allowed identification of the structural and electrostatic requirements for high affinity A(2A) receptor binding and, therefore, contributing to the rational design of A(2A) receptor ligands. Additional rational chemical modifications of the existing A(2A) receptor ligands may further improve their affinity/selectivity. The purpose of this review is to analize and summarize aspects related to the medicinal chemistry of A(2A) receptor ligands, their present and potencial therapeutic applications by exploring the molecular structure and physiological and pathophysiological roles of A(2A) receptors.

  14. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1994-01-01

    1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC50 > 10 microM). The presence of 0.5 microM dipyridamole, an adenosine uptake blocker, had no effect on the potency of adenosine. 3. The response to 10 microM NECA was antagonized in a concentration-dependent manner by the non-selective adenosine receptor antagonists, xanthine amine congener (apparent KD = 12 nM), PD 115,199 (apparent KD = 134 nM) and 8-phenyltheophylline (apparent KD = 126 nM). However, the A1-receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, had no significant effect on the responses to NECA or 2-chloroadenosine at concentrations up to 1 microM. 4. Stimulation of A1-receptors with the selective agonist, N6-cyclopentyladenosine, did not alter the basal accumulation of [3H]-cyclic AMP but inhibited a forskolin-mediated elevation of [3H]-cyclic AMP accumulation by a maximal value of 42%. This inhibition was fully reversed in the presence of 0.1 microM, 8-cyclopentyl-1,3-dipropylxanthine. 5. The time course for NECA-mediated [3H]-cyclic AMP accumulation was investigated. The results suggest that there is a substantial efflux of cyclic AMP from the cells in addition to the rapid and sustained elevation of intracellular cyclic AMP (5 fold over basal) which was also observed. 6. These data indicate that rat astrocytes in primary culture express an A2B-adenosine receptor coupled positively to adenylyl cyclase. Furthermore, the presence of A1-receptors negatively coupled to adenylyl cyclase appears to have no significant effect on the A2B-receptor

  15. Functional role of adenosine receptor subtypes in the regulation of blood-brain barrier permeability: possible implications for the design of synthetic adenosine derivatives.

    PubMed

    Schaddelee, Marloes P; Voorwinden, Heleen L; van Tilburg, Erica W; Pateman, Tony J; Ijzerman, Adriaan P; Danhof, Meindert; de Boer, Albertus G

    2003-05-01

    The objective of this investigation was to determine the functional role of adenosine receptor subtypes in the regulation of blood-brain barrier (BBB) permeability. The presence of the equilibrative es and ei nucleoside transporters at the BBB was also determined. Studies were conducted in an experimental in vitro BBB model comprising bovine brain capillary endothelial cells (BCECs) and rat astrocytes (RAs). The presence of the receptors and transporters was investigated by a combination of RT-PCR and radioligand binding assays. Changes in paracellular permeability were investigated on basis of changes in trans-endothelial-electrical-resistance (TEER) and transport of paracellular markers. In BCECs the presence of A(2A) and A(3) receptors and the es nucleoside transporter was demonstrated. The A(1) receptor was absent, while the presence of the A(2B) receptor and the ei nucleoside transporter remained uncertain. In RAs the presence of all four receptor subtypes and the es and ei nucleoside transporters was demonstrated. Upon application of selective agonists no significant changes in TEER or the transport of the paracellular markers were observed. The functional role of adenosine receptor subtypes in regulating the paracellular permeability of the BBB is probably small. It is unlikely therefore that the BBB transport of synthetic adenosine analogues is modified by permeability changes. The es nucleoside transporter might play a role in the BBB transport of synthetic adenosine analogues.

  16. Heteromeric association creates a P2Y-like adenosine receptor.

    PubMed

    Yoshioka, K; Saitoh, O; Nakata, H

    2001-06-19

    Adenosine and its endogenous precursor ATP are main components of the purinergic system that modulates cellular and tissue functions via specific adenosine and ATP receptors (P1 and P2 receptors), respectively. Although adenosine inhibits excitability and ATP functions as an excitatory transmitter in the central nervous system, little is known about the ability of P1 and P2 receptors to form new functional structures such as a heteromer to control the complex purinergic cascade. Here we have shown that G(i/o) protein-coupled A1 adenosine receptor (A1R) and Gq protein-coupled P2Y1 receptor (P2Y1R) coimmunoprecipitate in cotransfected HEK293T cells, suggesting the oligomeric association between distinct G protein-coupled P1 and P2 receptors. A1R and P2Y2 receptor, but not A1R and dopamine D2 receptor, also were found to coimmunoprecipitate in cotransfected cells. A1R agonist and antagonist binding to cell membranes were reduced by coexpression of A1R and P2Y1R, whereas a potent P2Y1R agonist adenosine 5'-O-(2-thiotriphosphate) (ADPbetaS) revealed a significant potency to A1R binding only in the cotransfected cell membranes. Moreover, the A1R/P2Y1R coexpressed cells showed an ADPbetaS-dependent reduction of forskolin-evoked cAMP accumulation that was sensitive to pertussis toxin and A1R antagonist, indicating that ADPbetaS binds A1R and inhibits adenylyl cyclase activity via G(i/o) proteins. Also, a high degree of A1R and P2Y1R colocalization was demonstrated in cotransfected cells by double immunofluorescence experiments with confocal laser microscopy. These results suggest that oligomeric association of A1R with P2Y1R generates A1R with P2Y1R-like agonistic pharmacology and provides a molecular mechanism for an increased diversity of purine signaling.

  17. Elevated adenosine signaling via adenosine A2B receptor induces normal and sickle erythrocyte sphingosine kinase 1 activity.

    PubMed

    Sun, Kaiqi; Zhang, Yujin; Bogdanov, Mikhail V; Wu, Hongyu; Song, Anren; Li, Jessica; Dowhan, William; Idowu, Modupe; Juneja, Harinder S; Molina, Jose G; Blackburn, Michael R; Kellems, Rodney E; Xia, Yang

    2015-03-05

    Erythrocyte possesses high sphingosine kinase 1 (SphK1) activity and is the major cell type supplying plasma sphingosine-1-phosphate, a signaling lipid regulating multiple physiological and pathological functions. Recent studies revealed that erythrocyte SphK1 activity is upregulated in sickle cell disease (SCD) and contributes to sickling and disease progression. However, how erythrocyte SphK1 activity is regulated remains unknown. Here we report that adenosine induces SphK1 activity in human and mouse sickle and normal erythrocytes in vitro. Next, using 4 adenosine receptor-deficient mice and pharmacological approaches, we determined that the A2B adenosine receptor (ADORA2B) is essential for adenosine-induced SphK1 activity in human and mouse normal and sickle erythrocytes in vitro. Subsequently, we provide in vivo genetic evidence that adenosine deaminase (ADA) deficiency leads to excess plasma adenosine and elevated erythrocyte SphK1 activity. Lowering adenosine by ADA enzyme therapy or genetic deletion of ADORA2B significantly reduced excess adenosine-induced erythrocyte SphK1 activity in ADA-deficient mice. Finally, we revealed that protein kinase A-mediated extracellular signal-regulated kinase 1/2 activation functioning downstream of ADORA2B underlies adenosine-induced erythrocyte SphK1 activity. Overall, our findings reveal a novel signaling network regulating erythrocyte SphK1 and highlight innovative mechanisms regulating SphK1 activity in normal and SCD.

  18. Adenosine receptor modulation of seizure susceptibility in rats

    SciTech Connect

    Szot, P.

    1987-01-01

    Adenosine is considered to be a neuromodulator or cotransmitter in the periphery and CNS. This neuromodulatory action of adenosine may be observed as an anticonvulsant effect. Dose-response curves for R-phenylisopropyladenosine (PIA), cycohexyladenosine (CHA), 2-chloroadenosine (2-ClAdo), N-ethylcarboxamidoadenosine (NECA) and S-PIA were generated against PTZ seizure thresholds in the rat. The rank order of potency for adenosine agonists to elevate PTZ seizure threshold was R-PIA > 2-ClAdo > NECA > CHA > S-PIA. R-PIA was approximately 80-fold more potent than S-PIA. This 80-fold difference in potency between the diasteriomers of PIA was consistent with an A{sub 1} adenoise receptor-mediated response. The anticonvulsant action of 2-ClAdo was reversed by pretreatment with theoplylline. Chronic administration of theophylline significantly increased the specific binding of {sup 3}H-cyclohexyladenosine in membranes of the cerebral cortex and cerebellum of the rat. Chronic exposure to theophylline produced a significant increase in the densities of both the high- and low-affinity forms of A{sub 1} adenosine receptors in the cerebral cortex.

  19. Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis

    PubMed Central

    Ng, Seng kah; Higashimori, Haruki; Tolman, Michaela; Yang, Yongjie

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR+/−) significantly protect ESMN from SOD1G93A+ astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS. PMID:25779930

  20. Suppression of adenosine 2a receptor (A2aR)-mediated adenosine signaling improves disease phenotypes in a mouse model of amyotrophic lateral sclerosis.

    PubMed

    Ng, Seng Kah; Higashimori, Haruki; Tolman, Michaela; Yang, Yongjie

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease in which the majority of upper and lower motor neurons are degenerated. Despite intensive efforts to identify drug targets and develop neuroprotective strategies, effective therapeutics for ALS remains unavailable. The identification and characterization of novel targets and pathways remain crucial in the development of ALS therapeutics. Adenosine is a major neuromodulator that actively regulates synaptic transmission. Interestingly, adenosine levels are significantly elevated in the cerebrospinal fluid (CSF) of progressing human ALS patients. In the current study, we showed that adenosine 2a receptor (A2aR), but not adenosine 1 receptor (A1R), is highly enriched in spinal (motor) neurons. A2aR expression is also selectively increased at the symptomatic onset in the spinal cords of SOD1G93A mice and end-stage human ALS spinal cords. Interestingly, we found that direct adenosine treatment is sufficient to induce embryonic stem cell-derived motor neuron (ESMN) cell death in cultures. Subsequent pharmacological inhibition and partial genetic ablation of A2aR (A2aR(+/-)) significantly protect ESMN from SOD1G93A(+) astrocyte-induced cell death and delay disease progression of SOD1G93A mice. Taken together, our results provide compelling novel evidence that A2aR-mediated adenosine signaling contributes to the selective spinal motor neuron degeneration observed in the SOD1G93A mouse model of ALS.

  1. Adenosine Receptor Regulation of Coronary Blood Flow in Ossabaw Miniature SwineS⃞

    PubMed Central

    Long, Xin; Mokelke, Eric A.; Neeb, Zachary P.; Alloosh, Mouhamad; Edwards, Jason M.

    2010-01-01

    Adenosine clearly regulates coronary blood flow (CBF); however, contributions of specific adenosine receptor (AR) subtypes (A1, A2A, A2B, A3) to CBF in swine have not been determined. ARs generally decrease (A1, A3) or increase (A2A, A2B) cyclic adenosine monophosphate, a major mediator of vasodilation. We hypothesized that A1 antagonism potentiates coronary vasodilation and coronary stent deployment in dyslipidemic Ossabaw swine elicits impaired vasodilation to adenosine that is associated with increased A1/A2A expression. The left main coronary artery was accessed with a guiding catheter allowing intracoronary infusions. After placement of a flow wire into the left circumflex coronary artery the responses to bolus infusions of adenosine were obtained. Steady-state infusion of AR-specific agents was achieved by using a small catheter fed over the flow wire in control pigs. CBF was increased by the A2-nonselective agonist 2-phenylaminoadenosine (CV1808) in a dose-dependent manner. Baseline CBF was increased by the highly A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), but not changed by other AR-specific agents. The nonselective A2 antagonist 3,7-dimethyl-1-propargylxanthine and A2A-selective antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385) abolished adenosine-induced CBF, whereas A2B and A3 antagonism had no effect. Dyslipidemia and stenting decreased adenosine-induced CBF ∼70%, whereas A1, A2A, and A2B mRNA were up-regulated in dyslipidemic versus control >5-fold and there was no change in the ratio of A1/A2A protein in microvessels distal to the stent. In control Ossabaw swine A1 antagonism by DPCPX positively regulated basal CBF. Impaired adenosine-induced CBF after stenting in dyslipidemia is most likely caused by the altered balance between A1 and A2A signaling, not receptor expression. PMID:20855445

  2. Identification of Novel Adenosine A2A Receptor Antagonists by Virtual Screening

    PubMed Central

    2012-01-01

    Virtual screening was performed against experimentally enabled homology models of the adenosine A2A receptor, identifying a diverse range of ligand efficient antagonists (hit rate 9%). By use of ligand docking and Biophysical Mapping (BPM), hits 1 and 5 were optimized to potent and selective lead molecules (11–13 from 5, pKI = 7.5–8.5, 13- to >100-fold selective versus adenosine A1; 14–16 from 1, pKI = 7.9–9.0, 19- to 59-fold selective). PMID:22250781

  3. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers

    PubMed Central

    Brozmanova, M.; Mazurova, L.; Ru, F.; Tatar, M.; Hu, Y.; Yu, S.

    2015-01-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10–60 mmHg) in a concentration-dependent fashion (1–100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1. PMID:26564719

  4. Mechanisms of the adenosine A2A receptor-induced sensitization of esophageal C fibers.

    PubMed

    Brozmanova, M; Mazurova, L; Ru, F; Tatar, M; Hu, Y; Yu, S; Kollarik, M

    2016-02-01

    Clinical studies indicate that adenosine contributes to esophageal mechanical hypersensitivity in some patients with pain originating in the esophagus. We have previously reported that the esophageal vagal nodose C fibers express the adenosine A2A receptor. Here we addressed the hypothesis that stimulation of the adenosine A2A receptor induces mechanical sensitization of esophageal C fibers by a mechanism involving transient receptor potential A1 (TRPA1). Extracellular single fiber recordings of activity originating in C-fiber terminals were made in the ex vivo vagally innervated guinea pig esophagus. The adenosine A2A receptor-selective agonist CGS21680 induced robust, reversible sensitization of the response to esophageal distention (10-60 mmHg) in a concentration-dependent fashion (1-100 nM). At the half-maximally effective concentration (EC50: ≈3 nM), CGS21680 induced an approximately twofold increase in the mechanical response without causing an overt activation. This sensitization was abolished by the selective A2A antagonist SCH58261. The adenylyl cyclase activator forskolin mimicked while the nonselective protein kinase inhibitor H89 inhibited mechanical sensitization by CGS21680. CGS21680 did not enhance the response to the purinergic P2X receptor agonist α,β-methylene-ATP, indicating that CGS21680 does not nonspecifically sensitize to all stimuli. Mechanical sensitization by CGS21680 was abolished by pretreatment with two structurally different TRPA1 antagonists AP18 and HC030031. Single cell RT-PCR and whole cell patch-clamp studies in isolated esophagus-specific nodose neurons revealed the expression of TRPA1 in A2A-positive C-fiber neurons and demonstrated that CGS21682 potentiated TRPA1 currents evoked by allylisothiocyanate. We conclude that stimulation of the adenosine A2A receptor induces mechanical sensitization of nodose C fibers by a mechanism sensitive to TRPA1 antagonists indicating the involvement of TRPA1.

  5. Synthesis of novel chromene scaffolds for adenosine receptors.

    PubMed

    Costa, Marta; Areias, Filipe; Castro, Marian; Brea, Jose; Loza, María I; Proença, Fernanda

    2011-06-07

    A one-pot procedure was developed for the synthesis of novel 3-[amino(methoxy)methylene]-2-oxo-3,4-dihydro-2H-chromen-4-yl)-3-cyanoacetamides and chromeno[3,4-c]pyridine-1-carbonitriles from the reaction of 2-oxo-2H-chromene-3-carbonitriles and cyanoacetamides. These chromene derivatives were identified as new scaffolds for adenosine receptors and the hits 3a, 3c, 5a, and 5b were found.

  6. The A3 adenosine receptor attenuates the calcium rise triggered by NMDA receptors in retinal ganglion cells.

    PubMed

    Zhang, Mei; Hu, Huiling; Zhang, Xiulan; Lu, Wennan; Lim, Jason; Eysteinsson, Thor; Jacobson, Kenneth A; Laties, Alan M; Mitchell, Claire H

    2010-01-01

    The A(3) adenosine receptor is emerging as an important regulator of neuronal signaling, and in some situations receptor stimulation can limit excitability. As the NMDA receptor frequently contributes to neuronal excitability, this study examined whether A(3) receptor activation could alter the calcium rise accompanying NMDA receptor stimulation. Calcium levels were determined from fura-2 imaging of isolated rat retinal ganglion cells as these neurons possess both receptor types. Brief application of glutamate or NMDA led to repeatable and reversible elevations of intracellular calcium. The A(3) agonist Cl-IB-MECA reduced the response to both glutamate and NMDA. While adenosine mimicked the effect of Cl-IB-MECA, the A(3) receptor antagonist MRS 1191 impeded the block by adenosine, implicating a role for the A(3) receptor in response to the natural agonist. The A(1) receptor antagonist DPCPX provided additional inhibition, implying a contribution from both A(1) and A(3) adenosine receptors. The novel A(3) agonist MRS 3558 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(3-chlorobenzylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide and mixed A(1)/A(3) agonist MRS 3630 (1'S,2'R,3'S,4'R,5'S)-4-(2-chloro-6-(cyclopentylamino)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0] hexane-1-carboxamide also inhibited the calcium rise induced by NMDA. Low levels of MRS 3558 were particularly effective, with an IC(50) of 400 pM. In all cases, A(3) receptor stimulation inhibited only 30-50% of the calcium rise. In summary, stimulation of the A(3) adenosine receptor by either endogenous or synthesized agonists can limit the calcium rise accompanying NMDA receptor activation. It remains to be determined if partial block of the calcium rise by A(3) agonists can modify downstream responses to NMDA receptor stimulation.

  7. Characterization of [125I]ZM 241385 binding to adenosine A2A receptors in the pineal of sheep brain.

    PubMed

    Yan, X; Koos, B J; Kruger, L; Linden, J; Murray, T F

    2006-06-22

    Adenosine is a ubiquitous neuromodulator and homeostatic regulator that exerts its physiologic actions through activation of A(1), A(2A), A(2B) and A(3) adenosine receptor subtypes. In the central nervous system, adenosine's action in neurons is manifested in its modulation of tonic inhibitory control. Adenosine released in the brain during hypoxia has critical depressant effects on breathing in fetal and newborn mammals, an action suggested to be mediated by A(2A) receptors in the posteromedial thalamus. In an effort to more accurately define the spatial distribution of adenosine A(2A) receptors in fetal sheep diencephalon, we have used a receptor autoradiographic technique utilizing an iodinated radioligand [(125)I]ZM 241385, which has greater sensitivity and resolution than the tritiated compound. The distribution of ligand binding sites in the fetal sheep diencephalon indicated that the highest levels of binding were in select thalamic nuclei, including those implicated in hypoxic depression of fetal breathing, and the pineal. Given the high density of labeled A(2A) receptors in the pineal, these sites were characterized more fully in homogenate radioligand binding assays. These data indicate that [(125)I]ZM 241385 binding sites display a pharmacological signature consistent with that of adenosine A(2A) receptors and are expressed at similar levels in fetal, lamb and adult ovine brain. The adenosine A(2A) receptor pharmacologic signature of the [(125)I]ZM 241385 binding site in pineal cell membranes generalized to the site characterized in membranes derived from other portions of the lamb thalamus, including the sector involved in hypoxic inhibition of fetal breathing. These results have important implications for the functional roles of adenosine A(2A) receptors in the thalamus and pineal of sheep brain.

  8. Dissecting striatal adenosine-cannabinoid receptor interactions. New clues from rats over-expressing adenosine A2A receptors.

    PubMed

    Ferré, Sergi; Sebastião, Ana Maria

    2016-03-01

    This Editorial highlights a study by Chiodi et al. () showing that the effects mediated by cannabinoid CB1 receptor (CB1R) activation in the striatum are significantly reduced in rats with neuronal over-expression of adenosine A2A receptors (A2AR). Two hypotheses are derived from that study. Hypothesis A: two subpopulations of pre-synaptic CB1R in corticostriatal glutamatergic terminals exist, one forming and another not forming heteromers with A2AR. Hypothesis B: CB1R are predominantly forming heteromers with A2AR. In the case of hypothesis A, the A2AR might be required for CB1R-A2AR heteromeric signaling, whereas non-heteromeric CB1R activity is inhibited by A2ARs. In the case of hypothesis B, up-regulation of A2ARs may perturb heteromeric stoichiometry, thus reducing CB1R functioning. In any case, pre-synaptic striatal A2AR-CB1R heteromers emerge as important targets of the effects of cannabinoids demonstrated at the neuronal and behavioral level. Read the highlighted article 'Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors' on page 907. © 2016 International Society for Neurochemistry.

  9. Adenosine receptor blockade reduces splanchnic hyperemia in cirrhotic rats.

    PubMed

    Lee, S S; Chilton, E L; Pak, J M

    1992-06-01

    To explore a possible role for adenosine in the pathogenesis of the splanchnic hyperemia of cirrhosis, we administered 8-phenyltheophylline, a specific adenosine receptor antagonist, to rats with biliary cirrhosis caused by bile duct ligation and to control sham-operated rats. Micro-Doppler flow studies showed that a 10-mumol/kg dose of 8-phenyltheophylline completely abolished the superior mesenteric hyperemic response to infusions of exogenous adenosine in both cirrhotic and control rats. Analysis of regional blood flows by radioactive microspheres demonstrated that this dose of 8-phenyltheophylline in cirrhotic rats significantly increased portal tributary vascular resistance by 60% and decreased portal tributary blood flow by 26%. This decrease was entirely the result of a 42% reduction in the intestinal blood flow. 8-phenyltheophylline did not affect cardiac output, arterial pressure or any other extrasplanchnic hemodynamic variables in cirrhotic rats. No detectable effect of 8-phenyltheophylline was seen in sham-operated rats. These results suggest that adenosine may be involved in the genesis of splanchnic hyperemia in cirrhotic rats.

  10. The ability of denbufylline to inhibit cyclic nucleotide phosphodiesterase and its affinity for adenosine receptors and the adenosine re-uptake site.

    PubMed Central

    Nicholson, C. D.; Jackman, S. A.; Wilke, R.

    1989-01-01

    1. Denbufylline has been examined for its ability to inhibit cyclic nucleotide phosphodiesterase isoenzymes from rat cardiac ventricle and cerebrum, as well as for its affinity for adenosine A1 and A2 receptors and the re-uptake site. For comparison, SK&F 94120, theophylline and 3-isobutyl-1-methyl-xanthine (IBMX) were examined as phosphodiesterase inhibitors whilst N6-cyclohexyladenosine, R(-)-N6-(2-phenylisopropyl)-adenosine, 5'-N-ethylcarboxamido-adenosine, 2-nitrobenzylthioinosine, theophylline and IBMX were examined for their affinity for adenosine binding sites. 2. This investigation confirmed the presence of four phosphodiesterase activities in rat cardiac ventricle; in rat cerebrum only three were present. 3. Denbufylline selective inhibited one form of Ca2+-independent, low Km cyclic AMP phosphodiesterase. The form inhibited was one of two present in cardiac ventricle and the sole one in cerebrum. This form was not inhibited by cyclic GMP. The inotropic agent SK&F 94120 selectively inhibited the form of cyclic AMP phosphodiesterase which was inhibited by cyclic GMP present in cardiac ventricle. Theophylline and IBMX were relatively non-selective phosphodiesterase inhibitors. 4. Denbufylline was a less potent inhibitor of ligand binding to adenosine receptors than of cyclic AMP phosphodiesterase. This contrasted with theophylline, which had a higher affinity for adenosine receptors, and IBMX which showed no marked selectivity. Denbufylline, theophylline and IBMX all had a low affinity for the adenosine re-uptake site. 5. Denbufylline is being developed as an agent for the therapy of multi-infarct dementia. The selective inhibition of a particular low Km cyclic AMP phosphodiesterase may account for the activity of this compound. PMID:2474352

  11. Role of adenosine receptors in the adipocyte-macrophage interaction during obesity.

    PubMed

    Meriño, Miguel; Briones, Lautaro; Palma, Verónica; Herlitz, Kurt; Escudero, Carlos

    Lipoinflamation is the inflammation generated in the adipose tissue. It can contribute to the development of insulin resistance. The lipoinflammation-associated mechanisms are related to the function of adipocytes and macrophages present in the adipose tissue. In this regard, the level of nucleoside adenosine is increased in individuals with obesity. Causes or consequences of this increase are unknown. Although, adenosine activating its receptors (A1, A2A, A2B and A3) is able to differentially modulate the function of adipocytes and macrophages, in order to avoid the reduction of insulin sensitivity and generate an anti-inflammatory state in subject with obesity. In this review we propose that adenosine could be a key element in the development of new strategies for limit lipoinflammation and regulate metabolic homeostasis through modulation of adipocyte-macrophage dialogue. Copyright © 2017 SEEN. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Methyl xanthines enhance taste: evidence for modulation of taste by adenosine receptor.

    PubMed

    Schiffman, S S; Gill, J M; Diaz, C

    1985-02-01

    The methyl xanthines (MX), theophylline, caffeine, and theobromine, are potent antagonists of adenosine receptors. Adaptation of the human tongue to methyl xanthines at concentrations ranging from 10(-5) M to 10(-2) M was found to potentiate taste. The artificial sweetener acesulfam-K, which has a bitter component, was potentiated the most by MX, i.e., approximately 100%. This increase in perceived intensity for acesulfam-K occurred at 10(-5) M MX, a concentration known to inhibit adenosine receptors but below that required to inhibit phosphodiesterase. Increasing the concentration of MX as high as 10(-2) M did not increase the degree of enhancement appreciably. Taste enhancement was found for NaCl and quinine hydrochloride as well. When 10(-5) M adenosine was added to the MX, the potentiation was reversed. The human results were confirmed by animal studies in which single unit extracellular recordings were made from the nucleus of the solitary tract. These results suggest that the inhibitory A1 adenosine receptor plays an important local role in taste perception.

  13. Cardiac myocyte–secreted cAMP exerts paracrine action via adenosine receptor activation

    PubMed Central

    Sassi, Yassine; Ahles, Andrea; Truong, Dong-Jiunn Jeffery; Baqi, Younis; Lee, Sang-Yong; Husse, Britta; Hulot, Jean-Sébastien; Foinquinos, Ariana; Thum, Thomas; Müller, Christa E.; Dendorfer, Andreas; Laggerbauer, Bernhard; Engelhardt, Stefan

    2014-01-01

    Acute stimulation of cardiac β-adrenoceptors is crucial to increasing cardiac function under stress; however, sustained β-adrenergic stimulation has been implicated in pathological myocardial remodeling and heart failure. Here, we have demonstrated that export of cAMP from cardiac myocytes is an intrinsic cardioprotective mechanism in response to cardiac stress. We report that infusion of cAMP into mice averted myocardial hypertrophy and fibrosis in a disease model of cardiac pressure overload. The protective effect of exogenous cAMP required adenosine receptor signaling. This observation led to the identification of a potent paracrine mechanism that is dependent on secreted cAMP. Specifically, FRET-based imaging of cAMP formation in primary cells and in myocardial tissue from murine hearts revealed that cardiomyocytes depend on the transporter ABCC4 to export cAMP as an extracellular signal. Extracellular cAMP, through its metabolite adenosine, reduced cardiomyocyte cAMP formation and hypertrophy by activating A1 adenosine receptors while delivering an antifibrotic signal to cardiac fibroblasts by A2 adenosine receptor activation. Together, our data reveal a paracrine role for secreted cAMP in intercellular signaling in the myocardium, and we postulate that secreted cAMP may also constitute an important signal in other tissues. PMID:25401477

  14. Adenosine receptor antagonist and augmented vasodilation during hypoxic exercise.

    PubMed

    Casey, Darren P; Madery, Brandon D; Pike, Tasha L; Eisenach, John H; Dietz, Niki M; Joyner, Michael J; Wilkins, Brad W

    2009-10-01

    We tested the hypothesis that adenosine contributes to augmented skeletal muscle vasodilation during hypoxic exercise. In separate protocols, subjects performed incremental rhythmic forearm exercise (10% and 20% of maximum) during normoxia and normocapnic hypoxia (80% arterial O2 saturation). In protocol 1 (n = 8), subjects received an intra-arterial administration of saline (control) and aminophylline (adenosine receptor antagonist). In protocol 2 (n = 10), subjects received intra-arterial phentolamine (alpha-adrenoceptor antagonist) and combined phentolamine and aminophylline administration. Forearm vascular conductance (FVC; in ml x min(-1).100 mmHg(-1)) was calculated from forearm blood flow (in ml/min) and blood pressure (in mmHg). In protocol 1, the change in FVC (DeltaFVC; change from normoxic baseline) during hypoxic exercise with saline was 172 +/- 29 and 314 +/- 34 ml x min(-1) x 100 mmHg(-1) (10% and 20%, respectively). Aminophylline administration did not affect DeltaFVC during hypoxic exercise at 10% (190 +/- 29 ml x min(-1)x100 mmHg(-1), P = 0.4) or 20% (287 +/- 48 ml x min(-1) x 100 mmHg(-1), P = 0.3). In protocol 2, DeltaFVC due to hypoxic exercise with phentolamine infusion was 313 +/- 30 and 453 +/- 41 ml x min(-1) x 100 mmHg(-1) (10% and 20% respectively). DeltaFVC was similar at 10% (352 +/- 39 ml min(-1) x 100 mmHg(-1), P = 0.8) and 20% (528 +/- 45 ml x min(-1) x 100 mmHg(-1), P = 0.2) hypoxic exercise with combined phentolamine and aminophylline. In contrast, DeltaFVC to exogenous adenosine was reduced by aminophylline administration in both protocols (P < 0.05 for both). These observations suggest that adenosine receptor activation is not obligatory for the augmented hyperemia during hypoxic exercise in humans.

  15. Adenosine through the A2A adenosine receptor increases IL-1β in the brain contributing to anxiety

    PubMed Central

    Chiu, Gabriel S.; Darmody, Patrick T.; Walsh, John P.; Moon, Morgan L.; Kwakwa, Kristin A.; Bray, Julie K.; McCusker, Robert H.; Freund, Gregory G.

    2014-01-01

    Anxiety is one of the most commonly reported psychiatric conditions, but its pathogenesis is poorly understood. Ailments associated with activation of the innate immune system, however, are increasingly linked to anxiety disorders. In adult male mice, we found that adenosine doubled caspase-1 activity in brain by a pathway reliant on ATP-sensitive potassium (KATP) channels, protein kinase A (PKA) and the A2A adenosine receptor (AR). In addition, adenosine-dependent activation of caspase-1 increased interleukin (IL)-1β in the brain by two-fold. Peripheral administration of adenosine in wild-type (WT) mice led to a 2.3-fold increase in caspase-1 activity in the amygdala and to a 33% and 42% reduction in spontaneous locomotor activity and food intake, respectively, that were not observed in caspase-1 knockout (KO), IL-1 receptor type 1 (IL-1R1) KO and A2A AR KO mice or in mice administered a caspase-1 inhibitor centrally. Finally, adenosine administration increased anxiety-like behaviors in WT mice by 28% in the open field test and by 55% in the elevated zero-maze. Caspase-1 KO mice, IL-1R1 KO mice, A2A AR KO mice and WT mice treated with the KATP channel blocker, glyburide, were resistant to adenosine-induced anxiety-like behaviors. Thus, our results indicate that adenosine can act as an anxiogenic by activating caspase-1 and increasing IL-1β in the brain. PMID:24907587

  16. Bench-to-bedside review: Adenosine receptors – promising targets in acute lung injury?

    PubMed Central

    Schepp, Carsten P; Reutershan, Jörg

    2008-01-01

    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening disorders that have substantial adverse effects on outcomes in critically ill patients. ALI/ARDS develops in response to pulmonary or extrapulmonary injury and is characterized by increased leakage from the pulmonary microvasculature and excessive infiltration of polymorphonuclear cells into the lung. Currently, no therapeutic strategies are available to control these fundamental pathophysiological processes in human ALI/ARDS. In a variety of animal models and experimental settings, the purine nucleoside adenosine has been demonstrated to regulate both endothelial barrier integrity and polymorphonuclear cell trafficking in the lung. Adenosine exerts its effects through four G-protein-coupled receptors (A1, A2A, A2B, and A3) that are expressed on leukocytes and nonhematopoietic cells, including endothelial and epithelial cells. Each type of adenosine receptor (AR) is characterized by a unique pharmacological and physiological profile. The development of selective AR agonists and antagonists, as well as the generation of gene-deficient mice, has contributed to a growing understanding of the cellular and molecular processes that are critically involved in the development of ALI/ARDS. Adenosine-dependent pathways are involved in both protective and proinflammatory effects, highlighting the need for a detailed characterization of the distinct pathways. This review summarizes current experimental observations on the role of adenosine signaling in the development of acute lung injury and illustrates that adenosine and ARs are promising targets that may be exploited in the development of innovative therapeutic strategies. PMID:18828873

  17. Regulation of cyclic AMP formation in cultures of human foetal astrocytes by beta 2-adrenergic and adenosine receptors.

    PubMed

    Woods, M D; Freshney, R I; Ball, S G; Vaughan, P F

    1989-09-01

    Two cell cultures, NEP2 and NEM2, isolated from human foetal brain have been maintained through several passages and found to express some properties of astrocytes. Both cell cultures contain adenylate cyclase stimulated by catecholamines with a potency order of isoprenaline greater than adrenaline greater than salbutamol much greater than noradrenaline, which is consistent with the presence of beta 2-adrenergic receptors. This study reports that the beta 2-adrenergic-selective antagonist ICI 118,551 is approximately 1,000 times more potent at inhibiting isoprenaline stimulation of cyclic AMP (cAMP) formation in both NEP2 and NEM2 than the beta 1-adrenergic-selective antagonist practolol. This observation confirms the presence of beta 2-adrenergic receptors in these cell cultures. The formation of cAMP in NEP2 is also stimulated by 5'-(N-ethylcarboxamido)adenosine (NECA) more potently than by either adenosine or N6-(L-phenylisopropyl)adenosine (L-PIA), which suggests that this foetal astrocyte expresses adenosine A2 receptors. Furthermore, L-PIA and NECA inhibit isoprenaline stimulation of cAMP formation, a result suggesting the presence of adenosine A1 receptors on NEP2. The presence of A1 receptors is confirmed by the observation that the A1-selective antagonist 8-cyclopentyl-1,3-dipropylxanthine reverses the inhibition of isoprenaline stimulation of cAMP formation by L-PIA and NECA. Additional evidence that NEP2 expresses adenosine receptors linked to the adenylate cyclase-inhibitory GTP-binding protein is provided by the finding that pretreatment of these cells with pertussis toxin reverses the adenosine inhibition of cAMP formation stimulated by either isoprenaline or forskolin.

  18. Action of adenosine receptor antagonists on the cardiovascular response to defence area stimulation in the rat.

    PubMed Central

    St Lambert, J H; Dawid-Milner, M S; Silva-Carvalho, L; Spyer, K M

    1994-01-01

    1. The action of adenosine in the mediation of the cardiovascular changes associated with the defence reaction has been investigated in the rat using two A1 receptor antagonists. 2. Cumulative doses of 1,3 dipropyl-cyclopentylxanthine (DPCPX) (0.3-3 mg kg-1) and ethanol (0.03-0.25 ml) and bolus doses of DPCPX (3 mg kg-1) and 8-sulphophenyltheophylline (8-SPT) (20 mg kg-1) were given into alpha-chloralose, paralysed and artificially ventilated rats. Recordings were made of arterial blood pressure and heart rate. 3. Ethanol, the vehicle for DPCPX, failed to modify the magnitude of the defence response; however, cumulative doses of DPCPX produced a dose-dependent decrease in the HDA (hypothalamic defence area)-evoked increase in arterial blood pressure, accompanied by a similar fall in the magnitude of the evoked heart rate response. 4. The evoked rise in arterial blood pressure was reduced significantly by intravenous injection of DPCPX (3 mg kg-1) but not 8-SPT (20 mg kg-1), a purely peripherally acting adenosine antagonist. 5. These results suggest that adenosine acting at A1 receptors located in the central nervous system, is involved in the HDA-evoked pressor response. Whilst the site of action of the A1 receptors is not known, possible locations are discussed. PMID:7812606

  19. Photomodulation of G protein-coupled adenosine receptors by a novel light-switchable ligand.

    PubMed

    Bahamonde, María Isabel; Taura, Jaume; Paoletta, Silvia; Gakh, Andrei A; Chakraborty, Saibal; Hernando, Jordi; Fernández-Dueñas, Víctor; Jacobson, Kenneth A; Gorostiza, Pau; Ciruela, Francisco

    2014-10-15

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N(6) substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities.

  20. Photomodulation of G Protein-Coupled Adenosine Receptors by a Novel Light-Switchable Ligand

    PubMed Central

    2015-01-01

    The adenosinergic system operates through G protein-coupled adenosine receptors, which have become promising therapeutic targets for a wide range of pathological conditions. However, the ubiquity of adenosine receptors and the eventual lack of selectivity of adenosine-based drugs have frequently diminished their therapeutic potential. Accordingly, here we aimed to develop a new generation of light-switchable adenosine receptor ligands that change their intrinsic activity upon irradiation, thus allowing the spatiotemporal control of receptor functioning (i.e., receptor activation/inactivation dependent on location and timing). Therefore, we synthesized an orthosteric, photoisomerizable, and nonselective adenosine receptor agonist, nucleoside derivative MRS5543 containing an aryl diazo linkage on the N6 substituent, which in the dark (relaxed isomer) behaved as a full adenosine A3 receptor (A3R) and partial adenosine A2A receptor (A2AR) agonist. Conversely, upon photoisomerization with blue light (460 nm), it remained a full A3R agonist but became an A2AR antagonist. Interestingly, molecular modeling suggested that structural differences encountered within the third extracellular loop of each receptor could modulate the intrinsic, receptor subtype-dependent, activity. Overall, the development of adenosine receptor ligands with photoswitchable activity expands the pharmacological toolbox in support of research and possibly opens new pharmacotherapeutic opportunities. PMID:25248077

  1. Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders.

    PubMed

    Cunha, Rodrigo A; Ferré, Sergi; Vaugeois, Jean-Marie; Chen, Jiang-Fan

    2008-01-01

    The interest on targeting adenosine A(2A) receptors in the realm of psychiatric diseases first arose based on their tight physical and functional interaction with dopamine D(2) receptors. However, the role of central A(2A) receptors is now viewed as much broader than just controlling D(2) receptor function. Thus, there is currently a major interest in the ability of A(2A) receptors to control synaptic plasticity at glutamatergic synapses. This is due to a combined ability of A(2A) receptors to facilitate the release of glutamate and the activation of NMDA receptors. Therefore, A(2A) receptors are now conceived as a normalizing device promoting adequate adaptive responses in neuronal circuits, a role similar to that fulfilled, in essence, by dopamine. This makes A(2A) receptors particularly attractive targets to manage psychiatric disorders since adenosine may act as go-between glutamate and dopamine, two of the key players in mood processing. Furthermore, A(2A) receptors also control glia function and brain metabolic adaptation, two other emerging mechanisms to understand abnormal processing of mood, and A(2A) receptors are important players in controlling the demise of neurodegeneration, considered an amplificatory loop in psychiatric disorders. Current data only provide an indirect confirmation of this putative role of A(2A) receptors, based on the effects of caffeine (an antagonist of both A(1) and A(2A) receptors) in psychiatric disorders. However, the introduction of A(2A) receptors antagonists in clinics as anti-parkinsonian agents is hoped to bolster our knowledge on the role of A(2A) receptors in mood disorders in the near future.

  2. Adenosine A2A receptors play a role in the pathogenesis of hepatic cirrhosis

    PubMed Central

    Chan, Edwin S L; Montesinos, Maria Carmen; Fernandez, Patricia; Desai, Avani; Delano, David L; Yee, Herman; Reiss, Allison B; Pillinger, Michael H; Chen, Jiang-Fan; Schwarzschild, Michael A; Friedman, Scott L; Cronstein, Bruce N

    2006-01-01

    Adenosine is a potent endogenous regulator of inflammation and tissue repair. Adenosine, which is released from injured and hypoxic tissue or in response to toxins and medications, may induce pulmonary fibrosis in mice, presumably via interaction with a specific adenosine receptor. We therefore determined whether adenosine and its receptors contribute to the pathogenesis of hepatic fibrosis. As in other tissues and cell types, adenosine is released in vitro in response to the fibrogenic stimuli ethanol (40 mg dl−1) and methotrexate (100 nM). Adenosine A2A receptors are expressed on rat and human hepatic stellate cell lines and adenosine A2A receptor occupancy promotes collagen production by these cells. Liver sections from mice treated with the hepatotoxins carbon tetrachloride (CCl4) (0.05 ml in oil, 50 : 50 v : v, subcutaneously) and thioacetamide (100 mg kg−1 in PBS, intraperitoneally) released more adenosine than those from untreated mice when cultured ex vivo. Adenosine A2A receptor-deficient, but not wild-type or A3 receptor-deficient, mice are protected from development of hepatic fibrosis following CCl4 or thioacetamide exposure. Similarly, caffeine (50 mg kg−1 day−1, po), a nonselective adenosine receptor antagonist, and ZM241385 (25 mg kg−1 bid), a more selective antagonist of the adenosine A2A receptor, diminished hepatic fibrosis in wild-type mice exposed to either CCl4 or thioacetamide. These results demonstrate that hepatic adenosine A2A receptors play an active role in the pathogenesis of hepatic fibrosis, and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. PMID:16783407

  3. Elevated Adenosine Induces Placental DNA Hypomethylation Independent of A2B Receptor Signaling in Preeclampsia.

    PubMed

    Huang, Aji; Wu, Hongyu; Iriyama, Takayuki; Zhang, Yujin; Sun, Kaiqi; Song, Anren; Liu, Hong; Peng, Zhangzhe; Tang, Lili; Lee, Minjung; Huang, Yun; Ni, Xin; Kellems, Rodney E; Xia, Yang

    2017-07-01

    Preeclampsia is a prevalent pregnancy hypertensive disease with both maternal and fetal morbidity and mortality. Emerging evidence indicates that global placental DNA hypomethylation is observed in patients with preeclampsia and is linked to altered gene expression and disease development. However, the molecular basis underlying placental epigenetic changes in preeclampsia remains unclear. Using 2 independent experimental models of preeclampsia, adenosine deaminase-deficient mice and a pathogenic autoantibody-induced mouse model of preeclampsia, we demonstrate that elevated placental adenosine not only induces hallmark features of preeclampsia but also causes placental DNA hypomethylation. The use of genetic approaches to express an adenosine deaminase minigene specifically in placentas, or adenosine deaminase enzyme replacement therapy, restored placental adenosine to normal levels, attenuated preeclampsia features, and abolished placental DNA hypomethylation in adenosine deaminase-deficient mice. Genetic deletion of CD73 (an ectonucleotidase that converts AMP to adenosine) prevented the elevation of placental adenosine in the autoantibody-induced preeclampsia mouse model and ameliorated preeclampsia features and placental DNA hypomethylation. Immunohistochemical studies revealed that elevated placental adenosine-mediated DNA hypomethylation predominantly occurs in spongiotrophoblasts and labyrinthine trophoblasts and that this effect is independent of A2B adenosine receptor activation in both preeclampsia models. Extending our mouse findings to humans, we used cultured human trophoblasts to demonstrate that adenosine functions intracellularly and induces DNA hypomethylation without A2B adenosine receptor activation. Altogether, both mouse and human studies reveal novel mechanisms underlying placental DNA hypomethylation and potential therapeutic approaches for preeclampsia. © 2017 American Heart Association, Inc.

  4. Behavioral Effects of A1- and A2-Selective Adenosine Agonists and Antagonists: Evidence for Synergism and Antagonism

    PubMed Central

    NIKODIJEVIĆ, OLGA; SARGES, REINHARD; DALY, JOHN W.; JACOBSON, KENNETH A.

    2012-01-01

    The locomotor effects in mice of selective A1 and A2 adenosine agonists, antagonists and combinations of agonists were investigated using a computerized activity monitor. The A2-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5'-N-ethylcarboxamidoadenosine (APEC), an amine derivative of 2-(carboxyethylphenylethylamino)adenosine-5'-carboxamide, was a more potent locomotor depressant than its amide conjugates. The rank order of potency after i.p. injection for adenosine agonists was 5'-N-ethylcarboxamidoadenosine (NECA) (ED50, 5.8 nmol/kg) > APEC (ED50, 25 nmol/kg) > N6-cyclohexyladenosine (CHA) (ED50, 270 nmol/kg). An A1-selective, centrally acting, adenosine antagonist, 8-cyclopentyltheophylline (10 mg/kg), completely reversed the locomotor depressant effects of CHA (A1-selective) and NECA (nonselective) at doses of agonists as high as twice the ED50, and shifted the dose-response curves to the right, suggesting a primary involvement of A1 receptors. 8-cyclopentyltheophylline did not affect the depressant effects of APEC at the ED50, consistent with the A2-selectivity of APEC. The locomotor effects of APEC and CHA were completely reversed by theophylline, but not by the peripherally active 8-p-sulfophenyltheophylline, indicating central action of the adenosine agonists. The depressant effects of APEC, but not of NECA or CHA, were reversed significantly by an A2-selective adenosine receptor antagonist, 4-amino-8-chloro-1-phenyl-[1,2,4]triazol[4,3-a]quinoxaline. Low or subthreshold doses of CHA potentiated the depressant effects of APEC. A subthreshold dose of CHA did not alter the depressant effect of NECA, whereas a subthreshold dose of APEC increased the depressant effects of low doses of NECA. Thus, it appears that A1- and A2-selective adenosine agonists have separate central depressant effects, which can be potentiative. The relatively high potency of NECA in vivo could be due to a synergism between central A1 and A2receptor activation by

  5. Impact on monoclonal antibody production in murine hybridoma cell cultures of adenosine receptor antagonists and phosphodiesterase inhibitors.

    PubMed

    Kelso, Geoffrey F; Kazi, Shahid A; Harris, Simon J; Boysen, Reinhard I; Chowdhury, Jamil; Hearn, Milton T W

    2016-01-15

    The effects of different adenosine receptor antagonists and cyclic nucleotide phosphodiesterase (PDE) inhibitors on monoclonal antibody (mAb) titer and cell viability of murine hybridoma cells in culture were measured as part of our investigations to discover additives that enhance mAb production. Specific adenosine receptor antagonists and PDE inhibitors were found to enhance or decrease the titer of immunoglobulin G1 (IgG1) mAbs relative to negative controls, depending on the specific compound and cell line employed. The observed enhancements or decreases in IgG1 mAb titer appeared to be mainly due to an increase or decrease in specific productivity rates (ngmAb/cell), respectively. The different effects of the selective adenosine antagonists suggest that antagonism at the level of the adenosine A2A and A1 or the adenosine A3 receptors result in either enhancement or suppression of IgG1 mAb production by hybridoma cells. Overall, these studies have identified hitherto unknown activities of specific adenosine antagonists and PDE inhibitors which indicate they may have valuable roles as cell culture additives in industrial biomanufacturing processes designed to enhance the yields of mAbs or other recombinant proteins produced by mammalian cell culture procedures.

  6. Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics

    PubMed Central

    May, Lauren T.; Bridge, Lloyd J.; Stoddart, Leigh A.; Briddon, Stephen J.; Hill, Stephen J.

    2011-01-01

    A growing awareness indicates that many G-protein-coupled receptors (GPCRs) exist as homodimers, but the extent of the cooperativity across the dimer interface has been largely unexplored. Here, measurement of the dissociation kinetics of a fluorescent agonist (ABA-X-BY630) from the human A1 or A3 adenosine receptors expressed in CHO-K1 cells has provided evidence for highly cooperative interactions between protomers of the A3-receptor dimer in single living cells. In the absence of competitive ligands, the dissociation rate constants of ABA-X-BY630 from A1 and A3 receptors were 1.45 ± 0.05 and 0.57 ± 0.07 min−1, respectively. At the A3 receptor, this could be markedly increased by both orthosteric agonists and antagonists [15-, 9-, and 19-fold for xanthine amine congener (XAC), 5′-(N-ethyl carboxamido)adenosine (NECA), and adenosine, respectively] and reduced by coexpression of a nonbinding (N250A) A3-receptor mutant. The changes in ABA-X-BY630 dissociation were much lower at the A1 receptor (1.5-, 1.4-, and 1.5-fold). Analysis of the pEC50 values of XAC, NECA, and adenosine for the ABA-X-BY630-occupied A3-receptor dimer yielded values of 6.0 ± 0.1, 5.9 ± 0.1, and 5.2 ± 0.1, respectively. This study provides new insight into the spatial and temporal specificity of drug action that can be provided by allosteric modulation across a GPCR homodimeric interface.—May, L. T., Bridge, L. J., Stoddart, L. A., Briddon, S. J., Hill, S. J. Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics. PMID:21715680

  7. Role of adenosine A2b receptor overexpression in tumor progression.

    PubMed

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  8. Adenosine A2 receptor-mediated regulation of renal hemodynamics and glomerular filtration rate is abolished in diabetes.

    PubMed

    Persson, Patrik; Hansell, Peter; Palm, Fredrik

    2013-01-01

    Alterations in glomerular filtration rate (GFR) are one of the earliest indications of altered kidney function in diabetes. Adenosine regulates GFR through tubuloglomerular feedback mechanism acting on adenosine A1 receptor. In addition, adenosine can directly regulate vascular tone by acting on A1 and A2 receptors expressed in afferent and efferent arterioles. Opposite to A1 receptors, A2 receptors mediate vasorelaxation. This study investigates the involvement of adenosine A2 receptors in regulation of renal blood flow (RBF) and GFR in control and diabetic kidneys. GFR was measured by inulin clearance and RBF by a transonic flow probe placed around the renal artery. Measurements were performed in isoflurane-anesthetized normoglycemic and alloxan-diabetic C57BL/6 mice during baseline and after acute administration of 3,7-dimethyl-1-propargylxanthine (DMPX), a selective A2 receptor antagonist. GFR and RBF were lower in diabetic mice compared to control (258 ± 61 vs. 443 ± 33 μl min(-1) and 1,083 ± 51 vs. 1,405 ± 78 μl min(-1)). In control animals, DMPX decreased RBF by -6%, whereas GFR increased +44%. DMPX had no effects on GFR and RBF in diabetic mice. Sodium excretion increased in diabetic mice after A2 receptor blockade (+78%). In conclusion, adenosine acting on A2 receptors mediates an efferent arteriolar dilatation which reduces filtration fraction (FF) and maintains GFR within normal range in normoglycemic mice. However, this regulation is absent in diabetic mice, which may contribute to reduced oxygen availability in the diabetic kidney.

  9. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review

    PubMed Central

    Rivera-Oliver, Marla; Díaz-Ríos, Manuel

    2014-01-01

    Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases. PMID:24530739

  10. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review.

    PubMed

    Rivera-Oliver, Marla; Díaz-Ríos, Manuel

    2014-04-17

    Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Pyrazolo-triazolo-pyrimidines as adenosine receptor antagonists: Effect of the N-5 bond type on the affinity and selectivity at the four adenosine receptor subtypes

    PubMed Central

    Bolcato, Chiara; Cusan, Claudia; Pastorin, Giorgia; Cacciari, Barbara; Klotz, Karl Norbert; Morizzo, Erika

    2007-01-01

    In the last few years, many efforts have been made to search for potent and selective human A3 adenosine antagonists. In particular, one of the most promising human A3 adenosine receptor antagonists is represented by the pyrazolo-triazolo-pyrimidine family. This class of compounds has been strongly investigated from the point of view of structure-activity relationships. In particular, it has been observed that fundamental requisites for having both potency and selectivity at the human A3 adenosine receptors are the presence of a small substituent at the N8 position and an unsubstitued phenyl carbamoyl moiety at the N5 position. In this study, we report the role of the N5-bond type on the affinity and selectivity at the four adenosine receptor subtypes. The observed structure-activity relationships of this class of antagonists are also exhaustively rationalized using the recently published ligand-based homology modeling approach. PMID:18368532

  12. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    PubMed Central

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  13. Postsynaptic Adenosine A2A Receptors Modulate Intrinsic Excitability of Pyramidal Cells in the Rat Basolateral Amygdala

    PubMed Central

    Rau, Andrew R.; Ariwodola, Olusegun J.

    2015-01-01

    Background: The basolateral amygdala plays a critical role in the etiology of anxiety disorders and addiction. Pyramidal neurons, the primary output cells of this region, display increased firing following exposure to stressors, and it is thought that this increase in excitability contributes to stress responsivity and the expression of anxiety-like behaviors. However, much remains unknown about the underlying mechanisms that regulate the intrinsic excitability of basolateral amygdala pyramidal neurons. Methods: Ex vivo gramicidin perforated patch recordings were conducted in current clamp mode where hyper- and depolarizing current steps were applied to basolateral amygdala pyramidal neurons to assess the effects of adenosine A2A receptor modulation on intrinsic excitability. Results: Activation of adenosine A2A receptors with the selective A2A receptor agonist CGS-21680 significantly increased the firing rate of basolateral amygdala pyramidal neurons in rat amygdala brain slices, likely via inhibition of the slow afterhyperpolarization potential. Both of these A2A receptor-mediated effects were blocked by preapplication of a selective A2A receptor antagonist (ZM-241385) or by intra-pipette infusion of a protein kinase A inhibitor, suggesting a postsynaptic locus of A2A receptors on basolateral amygdala pyramidal neurons. Interestingly, bath application of the A2A receptor antagonist alone significantly attenuated basolateral amygdala pyramidal cell firing, consistent with a role for tonic adenosine in the regulation of the intrinsic excitability of these neurons. Conclusions: Collectively, these data suggest that adenosine, via activation of A2A receptors, may directly facilitate basolateral amygdala pyramidal cell output, providing a possible balance for the recently described inhibitory effects of adenosine A1 receptor activation on glutamatergic excitation of basolateral amygdala pyramidal cells. PMID:25716780

  14. High salt diet exacerbates vascular contraction in the absence of adenosine A2A receptor

    PubMed Central

    Pradhan, Isha; Zeldin, Darryl C.; Ledent, Catherine; Mustafa, S. Jamal; Falck, John R.; Nayeem, Mohammed A

    2014-01-01

    High salt (4%NaCl, HS) diet modulates adenosine-induced vascular response through adenosine A2A-receptor (A2AAR). Evidence suggests A2AAR stimulates cyp450-epoxygenases, leading to epoxyeicosatrienoic acids (EETs) generation. The aim of this study was to understand the vascular reactivity to HS and underlying signaling mechanism in the presence or absence of A2AAR. Therefore, we hypothesized that HS enhances adenosine-induced relaxation through EETs in A2AAR+/+, but exaggerates contraction in A2AAR−/−. Organ-bath and Western-blot experiments were conducted in HS and normal salt (NS, 0.18% NaCl)-fed A2AAR+/+ and A2AAR−/− mice aortae. HS produced concentration-dependent relaxation to non-selective adenosine analog, NECA in A2AAR+/+, whereas contraction was observed in A2AAR−/− mice and this was attenuated by A1AR antagonist (DPCPX). CGS-21680 (selective A2AAR-agonist) enhanced relaxation in HS-A2AAR+/+ vs. NS-A2AAR+/+, that was blocked by EETs antagonist (14,15-EEZE). Compared to NS, HS significantly upregulated expression of vasodilators A2AAR and cyp2c29, while vasoconstrictors A1AR and cyp4a in A2AAR+/+ were downregulated. In A2AAR−/− mice, however, HS significantly downregulated the expression of cyp2c29, while A1AR and cyp4a were upregulated compared to A2AAR+/+ mice. Hence, our data suggest that in A2AAR+/+, HS enhances A2AAR-induced relaxation through increased cyp-expoxygenases-derived EETs and decreased A1AR levels, whereas in A2AAR−/−, HS exaggerates contraction through decreased cyp-epoxygenases and increased A1AR levels. PMID:24390173

  15. Adenosine preferentially suppresses serotonin2A receptor-enhanced excitatory postsynaptic currents in layer V neurons of the rat medial prefrontal cortex.

    PubMed

    Stutzmann, G E; Marek, G J; Aghajanian, G K

    2001-01-01

    Serotonin induces 'spontaneous' (non-electrically evoked) excitatory postsynaptic currents in layer V pyramidal neurons in the prefrontal cortex. This is likely due to a serotonin2A receptor-mediated focal release of glutamate onto apical dendrites. In addition, activation of the serotonin2A receptor selectively enhances late components of electrically evoked excitatory postsynaptic currents. In this study, using in vitro intracellular and whole-cell recording in rat brain slices, we examined the role of adenosine in modulating serotonin2A-enhanced 'spontaneous' and electrically evoked excitatory postsynaptic currents in layer V pyramidal neurons in the medial prefrontal cortex. Adenosine and N6-cyclopentyladenosine, an A1 adenosine agonist, markedly suppressed the serotonin2A-induced ('spontaneous') excitatory postsynaptic currents. However, adenosine had no effect on spontaneous miniature (tetrodotoxin-insensitive) postsynaptic potentials. Adenosine also blocked the late excitatory postsynaptic currents induced by the serotonin2A/2C agonist R(-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride. Surprisingly, in contrast to other regions, adenosine had a relatively small effect on electrically evoked fast excitatory postsynaptic currents. These findings represent a novel demonstration of adenosine's ability to preferentially modulate serotonin2A-mediated synaptic events in the medial prefrontal cortex. As the serotonin2A receptor is closely linked with the effects of atypical antipsychotics and hallucinogens, further understanding of the modulators of this receptor such as adenosine may provide useful therapeutic applications.

  16. Adenosine A2A receptors in ventral striatum, hypothalamus and nociceptive circuitry. Implications for drug addiction, sleep and pain

    PubMed Central

    Ferré, S.; Diamond, I.; Goldberg, S.R.; Yao, L.; Hourani, S.M.O.; Huang, Z.L.; Urade, Y.; Kitchen, I.

    2007-01-01

    Adenosine A2A receptors localized in the dorsal striatum are considered as a new target for the development of antiparkinsonian drugs. Co-administration of A2A receptor antagonists has shown a significant improvement of the effects of L-DOPA. The present review emphasizes the possible application of A2A receptor antagonists in pathological conditions other than parkinsonism, including drug addiction, sleep disorders and pain. In addition to the dorsal striatum, the ventral striatum (nucleus accumbens) contains a high density of A2A receptors, which presynaptically and postsynaptically regulate glutamatergic transmission in the cortical glutamatergic projections to the nucleus accumbens. It is currently believed that molecular adaptations of the cortico-accumbens glutamatergic synapses are involved in compulsive drug seeking and relapse. Here we review recent experimental evidence suggesting that A2A antagonists could become new therapeutic agents for drug addiction. Morphological and functional studies have identified lower levels of A2A receptors in brain areas other than the striatum, such as the ventrolateral preoptic area of the hypothalamus, where adenosine plays an important role in sleep regulation. Although initially believed to be mostly dependent on A1 receptors, here we review recent studies that demonstrate that the somnogenic effects of adenosine are largely mediated by hypothalamic A2A receptors. A2A receptor antagonists could therefore be considered as a possible treatment for narcolepsy and other sleep-related disorders. Finally, nociception is another adenosine-regulated neural function previously thought to mostly involve A1 receptors. Although there is some conflicting literature on the effects of agonists and antagonists, which may partly be due to the lack of selectivity of available drugs, the studies in A2A receptor knockout mice suggest that A2A receptor antagonists might have some therapeutic potential in pain states, in particular where

  17. [60]Fullerene derivative modulates adenosine and metabotropic glutamate receptors gene expression: a possible protective effect against hypoxia

    PubMed Central

    2014-01-01

    Background Glutamate, the main excitatory neurotransmitter, is involved in learning and memory processes but at higher concentration results excitotoxic causing degeneration and neuronal death. Adenosine is a nucleoside that exhibit neuroprotective effects by modulating of glutamate release. Hypoxic and related oxidative conditions, in which adenosine and metabotropic glutamate receptors are involved, have been demonstrated to contribute to neurodegenerative processes occurring in certain human pathologies. Results Human neuroblastoma cells (SH-SY5Y) were used to evaluate the long time (24, 48 and 72 hours) effects of a [60]fullerene hydrosoluble derivative (t3ss) as potential inhibitor of hypoxic insult. Low oxygen concentration (5% O2) caused cell death, which was avoided by t3ss exposure in a concentration dependent manner. In addition, gene expression analysis by real time PCR of adenosine A1, A2A and A2B and metabotropic glutamate 1 and 5 receptors revealed that t3ss significantly increased A1 and mGlu1 expression in hypoxic conditions. Moreover, t3ss prevented the hypoxia-induced increase in A2A mRNA expression. Conclusions As t3ss causes overexpression of adenosine A1 and metabotropic glutamate receptors which have been shown to be neuroprotective, our results point to a radical scavenger protective effect of t3ss through the enhancement of these neuroprotective receptors expression. Therefore, the utility of these nanoparticles as therapeutic target to avoid degeneration and cell death of neurodegenerative diseases is suggested. PMID:25123848

  18. Insulin Restores Gestational Diabetes Mellitus–Reduced Adenosine Transport Involving Differential Expression of Insulin Receptor Isoforms in Human Umbilical Vein Endothelium

    PubMed Central

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-01-01

    OBJECTIVE To determine whether insulin reverses gestational diabetes mellitus (GDM)–reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). RESEARCH DESIGN AND METHODS Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine1177 phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-NG-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A2A-adenosine receptor antagonist). RESULTS Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO–dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. CONCLUSIONS GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A2A-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM. PMID:21515851

  19. Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium.

    PubMed

    Westermeier, Francisco; Salomón, Carlos; González, Marcelo; Puebla, Carlos; Guzmán-Gutiérrez, Enrique; Cifuentes, Fredi; Leiva, Andrea; Casanello, Paola; Sobrevia, Luis

    2011-06-01

    To determine whether insulin reverses gestational diabetes mellitus (GDM)-reduced expression and activity of human equilibrative nucleoside transporters 1 (hENT1) in human umbilical vein endothelium cells (HUVECs). Primary cultured HUVECs from full-term normal (n = 44) and diet-treated GDM (n = 44) pregnancies were used. Insulin effect was assayed on hENT1 expression (protein, mRNA, SLC29A1 promoter activity) and activity (initial rates of adenosine transport) as well as endothelial nitric oxide (NO) synthase activity (serine(1177) phosphorylation, l-citrulline formation). Adenosine concentration in culture medium and umbilical vein blood (high-performance liquid chromatography) as well as insulin receptor A and B expression (quantitative PCR) were determined. Reactivity of umbilical vein rings to adenosine and insulin was assayed by wire myography. Experiments were in the absence or presence of l-N(G)-nitro-l-arginine methyl ester (l-NAME; NO synthase inhibitor) or ZM-241385 (an A(2A)-adenosine receptor antagonist). Umbilical vein blood adenosine concentration was higher, and the adenosine- and insulin-induced NO/endothelium-dependent umbilical vein relaxation was lower in GDM. Cells from GDM exhibited increased insulin receptor A isoform expression in addition to the reported NO-dependent inhibition of hENT1-adenosine transport and SLC29A1 reporter repression, and increased extracellular concentration of adenosine and NO synthase activity. Insulin reversed all these parameters to values in normal pregnancies, an effect blocked by ZM-241385 and l-NAME. GDM and normal pregnancy HUVEC phenotypes are differentially responsive to insulin, a phenomenon where insulin acts as protecting factor for endothelial dysfunction characteristic of this syndrome. Abnormal adenosine plasma levels, and potentially A(2A)-adenosine receptors and insulin receptor A, will play crucial roles in this phenomenon in GDM.

  20. Desensitization of adenosine receptor-mediated inhibition of lipolysis. The mechanism involves the development of enhanced cyclic adenosine monophosphate accumulation in tolerant adipocytes.

    PubMed Central

    Hoffman, B B; Chang, H; Dall'Aglio, E; Reaven, G M

    1986-01-01

    Adipocytes contain adenosine receptors, termed A1 receptors, which inhibit lipolysis by decreasing adenylate cyclase activity. The inhibition of lipolysis by adenosine agonists in vivo acutely suppresses the plasma concentrations of free fatty acids (FFA) and triglycerides. We have found that infusions of the adenosine receptor agonist phenylisopropyladenosine (PIA) initially decreases plasma FFA concentrations; however, with prolonged exposure (6 d), rats become very tolerant to the effects of the drug. Adipocytes isolated from epididymal fat pads from PIA-infused rats have altered lipolytic responses. When lipolysis is stimulated with a relatively high concentration of isoproterenol (10(-7) M), PIA does not inhibit lipolysis in adipocytes from the infused animals. However, PIA inhibits isoproterenol-stimulated cyclic AMP (cAMP) accumulation in adipocytes from the infused rats although with decreased sensitivity compared with controls. The explanation for the impaired antilipolytic effect appears to be due to the fact that isoproterenol-stimulated cAMP accumulation is markedly increased in cells from infused rats. Indeed, basal lipolysis and lipolysis stimulated with lower concentrations of isoproterenol (10(-9), 10(-8) M) are effectively inhibited by PIA. cAMP accumulation is greatly increased in adipocytes from infused rats when stimulated by isoproterenol, ACTH, and forskolin. The results have some striking analogies to changes induced in nerve cells by prolonged exposure to narcotics. These data suggest that tolerance to PIA develops in adipocytes as a consequence of enhanced cAMP accumulation. PMID:3013937

  1. Creatine, similarly to ketamine, affords antidepressant-like effects in the tail suspension test via adenosine A₁ and A2A receptor activation.

    PubMed

    Cunha, Mauricio P; Pazini, Francis L; Rosa, Julia M; Ramos-Hryb, Ana B; Oliveira, Ágatha; Kaster, Manuella P; Rodrigues, Ana Lúcia S

    2015-06-01

    The benefits of creatine supplementation have been reported in a broad range of central nervous systems diseases, including depression. A previous study from our group demonstrated that creatine produces an antidepressant-like effect in the tail suspension test (TST), a predictive model of antidepressant activity. Since depression is associated with a dysfunction of the adenosinergic system, we investigated the involvement of adenosine A1 and A2A receptors in the antidepressant-like effect of creatine in the TST. The anti-immobility effect of creatine (1 mg/kg, po) or ketamine (a fast-acting antidepressant, 1 mg/kg, ip) in the TST was prevented by pretreatment of mice with caffeine (3 mg/kg, ip, nonselective adenosine receptor antagonist), 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) (2 mg/kg, ip, selective adenosine A1 receptor antagonist), and 4-(2-[7-amino-2-{2-furyl}{1,2,4}triazolo-{2,3-a}{1,3,5}triazin-5-yl-amino]ethyl)-phenol (ZM241385) (1 mg/kg, ip, selective adenosine A2A receptor antagonist). In addition, the combined administration of subeffective doses of creatine and adenosine (0.1 mg/kg, ip, nonselective adenosine receptor agonist) or inosine (0.1 mg/kg, ip, nucleoside formed by the breakdown of adenosine) reduced immobility time in the TST. Moreover, the administration of subeffective doses of creatine or ketamine combined with N-6-cyclohexyladenosine (CHA) (0.05 mg/kg, ip, selective adenosine A1 receptor agonist), N-6-[2-(3,5-dimethoxyphenyl)-2-(methylphenyl)ethyl]adenosine (DPMA) (0.1 mg/kg, ip, selective adenosine A2A receptor agonist), or dipyridamole (0.1 μg/mouse, icv, adenosine transporter inhibitor) produced a synergistic antidepressant-like effect in the TST. These results indicate that creatine, similarly to ketamine, exhibits antidepressant-like effect in the TST probably mediated by the activation of both adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.

  2. Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes.

    PubMed

    Zeidan, Asad; Gan, Xiaohong Tracey; Thomas, Ashley; Karmazyn, Morris

    2014-01-01

    Adenosine receptor activation has been shown to be associated with diminution of cardiac hypertrophy and it has been suggested that endogenously produced adenosine may serve to blunt pro-hypertrophic processes. In the present study, we determined the effects of two pro-hypertrophic stimuli, angiotensin II (Ang II, 100 nM) and endothelin-1 (ET-1, 10 nM) on Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK) activation in cultured neonatal rat ventricular myocytes and whether the latter serves as a target for the anti-hypertrophic effect of adenosine receptor activation. Both hypertrophic stimuli potently increased RhoA activity with peak activation occurring 15-30 min following agonist addition. These effects were associated with significantly increased phosphorylation (inactivation) of cofilin, a downstream mediator of RhoA, an increase in actin polymerization, and increased activation and nuclear import of p38 mitogen activated protein kinase. The ability of both Ang II and ET-1 to activate the RhoA pathway was completely prevented by the adenosine A1 receptor agonist N (6)-cyclopentyladenosine, the A2a receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine, the A3 receptor agonist N (6)-(3-iodobenzyl)adenosine-5'-methyluronamide as well as the nonspecific adenosine analog 2-chloro adenosine. All effects of specific receptor agonists were prevented by their respective receptor antagonists. Moreover, all adenosine agonists prevented either Ang II- or ET-1-induced hypertrophy, a property shared by the RhoA inhibitor Clostridium botulinum C3 exoenzyme, the ROCK inhibitor Y-27632 or the actin depolymerizing agent latrunculin B. Our study therefore demonstrates that both Ang II and ET-1 can activate the RhoA pathway and that prevention of the hypertrophic response to both agonists by adenosine receptor activation is mediated by prevention of RhoA stimulation and actin polymerization.

  3. Potentiation by tonic A2a-adenosine receptor activation of CGRP-facilitated [3H]-ACh release from rat motor nerve endings.

    PubMed Central

    Correia-de-Sá, P.; Ribeiro, J. A.

    1994-01-01

    1. The effect of calcitonin gene-related peptide (CGRP) on [3H]-acetylcholine ([3H]-ACh) release from motor nerve endings and its interaction with presynaptic facilitatory A2a-adenosine and nicotinic acetylcholine receptors was studied on rat phrenic nerve-hemidiaphragm preparations loaded with [3H]-choline. 2. CGRP (100-400 nM) increased electrically evoked [3H]-ACh release from phrenic nerve endings in a concentration-dependent manner. 3. The magnitude of CGRP excitation increased with the increase of the stimulation pulse duration from 40 microseconds to 1 ms, keeping the frequency, the amplitude and the train length constants. With 1 ms pulses, the evoked [3H]-ACh release was more intense than with 40 microseconds pulse duration. 4. Both the nicotinic acetylcholine receptor agonist, 1,1-dimethyl-4-phenylpiperazinium, and the A2a adenosine receptor agonist, CGS 21680C, increased evoked [3H]-ACh release, but only CGS 21680C potentiated the facilitatory effect of CGRP. This potentiation was prevented by the A2a adenosine receptor antagonist, PD 115,199. 5. Adenosine deaminase prevented the excitatory effect of CGRP (400 nM) on [3H]-ACh release. This effect was reversed by the non-hydrolysable A2a-adenosine receptor agonist, CGS 21680C. 6. The nicotinic antagonist, tubocurarine, did not significantly change, whereas the A2-adenosine receptor antagonist, PD 115,199, blocked the CGRP facilitation. The A1-adenosine receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine, potentiated the CGRP excitatory effect. 7. The results suggest that the facilitatory effect of CGRP on evoked [3H]-ACh release from rat phrenic motor nerve endings depends on the presence of endogenous adenosine which tonically activates A2a-adenosine receptors.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8004402

  4. Adenosine receptors as markers of brain iron deficiency: Implications for Restless Legs Syndrome.

    PubMed

    Quiroz, César; Gulyani, Seema; Ruiqian, Wan; Bonaventura, Jordi; Cutler, Roy; Pearson, Virginia; Allen, Richard P; Earley, Christopher J; Mattson, Mark P; Ferré, Sergi

    2016-12-01

    Deficits of sensorimotor integration with periodic limb movements during sleep (PLMS) and hyperarousal and sleep disturbances in Restless Legs Syndrome (RLS) constitute two pathophysiologically distinct but interrelated clinical phenomena, which seem to depend mostly on alterations in dopaminergic and glutamatergic neurotransmission, respectively. Brain iron deficiency is considered as a main pathogenetic mechanism in RLS. Rodents with brain iron deficiency represent a valuable pathophysiological model of RLS, although they do not display motor disturbances. Nevertheless, they develop the main neurochemical dopaminergic changes found in RLS, such as decrease in striatal dopamine D2 receptor density. On the other hand, brain iron deficient mice exhibit the characteristic pattern of hyperarousal in RLS, providing a tool to find the link between brain iron deficiency and sleep disturbances in RLS. The present study provides evidence for a role of the endogenous sleep-promoting factor adenosine. Three different experimental preparations, long-term (22 weeks) severe or moderate iron-deficient (ID) diets (3- or 7-ppm iron diet) in mice and short-term (3 weeks) severe ID diet (3-ppm iron diet) in rats, demonstrated a significant downregulation (Western blotting in mouse and radioligand binding saturation experiments in rat brain tissue) of adenosine A1 receptors (A1R) in the cortex and striatum, concomitant to striatal D2R downregulation. On the other hand, the previously reported upregulation of adenosine A2A receptors (A2AR) was only observed with severe ID in both mice and rats. The results suggest a key role for A1R downregulation in the PLMS and hyperarousal in RLS.

  5. Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle.

    PubMed Central

    Vergauwen, L; Hespel, P; Richter, E A

    1994-01-01

    The role of adenosine receptors in the regulation of muscle glucose uptake by insulin and contractions was studied in isolated rat hindquarters that were perfused with a standard medium containing no insulin or a submaximal concentration of 100 microU/ml. Adenosine receptor antagonism was induced by caffeine or 8-cyclopentyl-1,3-dipropylxantine (CPDPX). Glucose uptake and transport were measured before and during 30 min of electrically induced muscle contractions. Caffeine nor CPDPX affected glucose uptake in resting hindquarters. In contrast, the contraction-induced increase in muscle glucose uptake was inhibited by 30-50% by caffeine, as well as by CPDPX, resulting in a 20-25% decrease in the absolute rate of glucose uptake during contractions, compared with control values. This inhibition was independent of the rate of perfusate flow and only occurred in hindquarters perfused with insulin added to the medium. Thus, adenosine receptor antagonism inhibited glucose uptake during simultaneous exposure to insulin and contractions only. Accordingly, caffeine inhibited 3-O-methylglucose uptake during contractions only in oxidative muscle fibers that are characterized by a high sensitivity to insulin. In conclusion, the present data demonstrate A1 receptors to regulate insulin-mediated glucose transport in contracting skeletal muscle. The findings provide evidence that stimulation of sarcolemmic adenosine receptors during contractions is involved in the synergistic stimulation of muscle glucose transport by insulin and by contractions. PMID:8132783

  6. Deregulation of Adenosine Receptors in Psoriatic Epidermis: An Option for Therapeutic Treatment.

    PubMed

    Merighi, Stefania; Borea, Pier Andrea; Varani, Katia; Gessi, Stefania

    2017-01-01

    Purinergic signaling is involved in psoriasis, a chronic skin disease characterized by increased epidermis cell growth. In particular, Andrés et al. focus on the keratinocyte biology modulated by adenosine receptors providing evidence that the A2B subtype plays a prominent role in the reduction of keratinocyte proliferation whereas A2A and A2B agonists have antiinflammatory effects independent of adenosine receptors. The authors report that psoriatic epidermis presents a deregulated adenosine receptor expression profile with reduced A2B and increased A2A.

  7. GABAergic involvement in motor effects of an adenosine A(2A) receptor agonist in mice.

    PubMed

    Khisti, R T; Chopde, C T; Abraham, E

    2000-04-03

    Adenosine A(2A) agonists are known to induce catalepsy and inhibit dopamine mediated motor hyperactivity. An antagonistic interaction between adenosine A(2A) and dopamine D(2) receptors is known to regulate GABA-mediated neurotransmission in striatopallidal neurons. Stimulation of adenosine A(2A) and dopamine D(2) receptors has been shown to increase and inhibit GABA release respectively in pallidal GABAergic neurons. However, the role of GABAergic neurotransmission in the motor effects of adenosine A(2A) receptors is not yet known. Therefore in the present study the effect of GABAergic agents on adenosine A(2A) receptor agonist (NECA- or CGS 21680) induced catalepsy and inhibition of amphetamine elicited motor hyperactivity was examined. Pretreatment with GABA, the GABA(A) agonist muscimol or the GABA(B) agonist baclofen potentiated whereas the GABA(A) antagonist bicuculline attenuated NECA- or CGS 21680-induced catalepsy. However, the GABA(B) antagonists phaclophen and delta-aminovaleric acid had no effect. Administration of NECA or CGS 21680 not only reduced spontaneous locomotor activity but also antagonized amphetamine elicited motor hyperactivity. These effects of NECA and CGS 21680 were potentiated by GABA or muscimol and antagonized by bicuculline. These findings provide behavioral evidence for the role of GABA in the motor effects of adenosine A(2A) receptor agonists. Activation of adenosine A(2A) receptors increases GABA release which could reduce dopaminergic tone and induce catalepsy or inhibit amphetamine mediated motor hyperactivity.

  8. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2008-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  9. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2009-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  10. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors.

    PubMed

    Carlin, Jesse Lea; Tosh, Dilip K; Xiao, Cuiying; Piñol, Ramón A; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A; Reitman, Marc L

    2016-02-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist-induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non-brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia.

  11. Peripheral Adenosine A3 Receptor Activation Causes Regulated Hypothermia in Mice That Is Dependent on Central Histamine H1 Receptors

    PubMed Central

    Carlin, Jesse Lea; Tosh, Dilip K.; Xiao, Cuiying; Piñol, Ramón A.; Chen, Zhoumou; Salvemini, Daniela; Gavrilova, Oksana; Jacobson, Kenneth A.

    2016-01-01

    Adenosine can induce hypothermia, as previously demonstrated for adenosine A1 receptor (A1AR) agonists. Here we use the potent, specific A3AR agonists MRS5698, MRS5841, and MRS5980 to show that adenosine also induces hypothermia via the A3AR. The hypothermic effect of A3AR agonists is independent of A1AR activation, as the effect was fully intact in mice lacking A1AR but abolished in mice lacking A3AR. A3AR agonist–induced hypothermia was attenuated by mast cell granule depletion, demonstrating that the A3AR hypothermia is mediated, at least in part, via mast cells. Central agonist dosing had no clear hypothermic effect, whereas peripheral dosing of a non–brain-penetrant agonist caused hypothermia, suggesting that peripheral A3AR-expressing cells drive the hypothermia. Mast cells release histamine, and blocking central histamine H1 (but not H2 or H4) receptors prevented the hypothermia. The hypothermia was preceded by hypometabolism and mice with hypothermia preferred a cooler environmental temperature, demonstrating that the hypothermic state is a coordinated physiologic response with a reduced body temperature set point. Importantly, hypothermia is not required for the analgesic effects of A3AR agonists, which occur with lower agonist doses. These results support a mechanistic model for hypothermia in which A3AR agonists act on peripheral mast cells, causing histamine release, which stimulates central histamine H1 receptors to induce hypothermia. This mechanism suggests that A3AR agonists will probably not be useful for clinical induction of hypothermia. PMID:26606937

  12. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain

    PubMed Central

    WEISSHAUPT, ANGELA; WEDEKIND, FRANZISKA; KROLL, TINA; MCCARLEY, ROBERT W.

    2015-01-01

    SUMMARY Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day–1 for 5 consecutive days (SR1–SR5), followed by 3 unrestricted recovery sleep days (R1–R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26–31% from SR1 to R1). A decrease in b-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction. PMID:25900125

  13. Chronic sleep restriction induces long-lasting changes in adenosine and noradrenaline receptor density in the rat brain.

    PubMed

    Kim, Youngsoo; Elmenhorst, David; Weisshaupt, Angela; Wedekind, Franziska; Kroll, Tina; Mccarley, Robert W; Strecker, Robert E; Bauer, Andreas

    2015-10-01

    Although chronic sleep restriction frequently produces long-lasting behavioural and physiological impairments in humans, the underlying neural mechanisms are unknown. Here we used a rat model of chronic sleep restriction to investigate the role of brain adenosine and noradrenaline systems, known to regulate sleep and wakefulness, respectively. The density of adenosine A1 and A2a receptors and β-adrenergic receptors before, during and following 5 days of sleep restriction was assessed with autoradiography. Rats (n = 48) were sleep-deprived for 18 h day(-1) for 5 consecutive days (SR1-SR5), followed by 3 unrestricted recovery sleep days (R1-R3). Brains were collected at the beginning of the light period, which was immediately after the end of sleep deprivation on sleep restriction days. Chronic sleep restriction increased adenosine A1 receptor density significantly in nine of the 13 brain areas analysed with elevations also observed on R3 (+18 to +32%). In contrast, chronic sleep restriction reduced adenosine A2a receptor density significantly in one of the three brain areas analysed (olfactory tubercle which declined 26-31% from SR1 to R1). A decrease in β-adrenergic receptors density was seen in substantia innominata and ventral pallidum which remained reduced on R3, but no changes were found in the anterior cingulate cortex. These data suggest that chronic sleep restriction can induce long-term changes in the brain adenosine and noradrenaline receptors, which may underlie the long-lasting neurocognitive impairments observed in chronic sleep restriction.

  14. 2-Aralkynyl and 2-heteroalkynyl derivatives of adenosine-5'-N-ethyluronamide as selective A2a adenosine receptor agonists.

    PubMed

    Cristalli, G; Camaioni, E; Vittori, S; Volpini, R; Borea, P A; Conti, A; Dionisotti, S; Ongini, E; Monopoli, A

    1995-04-28

    A series of new 2-aralkynyl and 2-heteroaralkynyl derivatives of NECA were synthesized and studied in binding and functional assays to assess their potency for the A2a compared to A1 adenosine receptors. Compounds bearing an aromatic or heteroaromatic ring, conjugated to the triple bond, showed generally weaker activity at the A2a receptor and lower selectivity (A2a vs A1) than the alkylakynyl derivatives previously reported. However, the (4-formylphenyl)-ethynyl derivative 17 showed affinity in the low nanomolar range and high selectivity (about 160-fold) for the A2a receptor. The presence of heteroatoms improved vasorelaxant activity, the 2-thiazolylethynyl derivative 30 being the most potent in the series. Introduction of methylene groups between the triple bond and the phenyl ring favored the A2a binding affinity, and the 5-phenyl-1-pentynyl derivative 24 was found to be highly potent and selective (about 180-fold) at A2a receptors. With regard to antiplatelet activity, the presence of aromatic or heteroaromatic rings decreased potency in comparison with that of NECA and of N-ethyl-1'-deoxy-1'-(6-amino-2-hexynyl-9H-purin-9-yl)-beta-D-ribofura nuronamide (HENECA). Introduction of a methylene group was effective in increasing antiaggregatory potency only when this group is linked to a heteroatom (31-35). From these data and those previously reported, the structure-activity relationships derived for the 2-alkynyl-substituted ribose uronamides would indicate that potentiation of A2a receptor affinity could be obtained by aromatic rings not conjugated with the triple bond or by heteroaromatic groups. As for A2a receptors on platelets, the presence of aromatic rings, either conjugated or unconjugated to the triple bond, is detrimental for the antiaggregatory activity. However, the introduction of polar groups alpha to the triple bond strongly increases the potency when steric hindrance is avoided. Some of the compounds included in this series retain interesting

  15. Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy

    PubMed Central

    Beavis, Paul A.; Henderson, Melissa A.; Giuffrida, Lauren; Mills, Jane K.; Sek, Kevin; Cross, Ryan S.; Davenport, Alexander J.; John, Liza B.; Mardiana, Sherly; Slaney, Clare Y.; Johnstone, Ricky W.; Trapani, Joseph A.; Stagg, John; Loi, Sherene; Kats, Lev; Gyorki, David; Kershaw, Michael H.; Darcy, Phillip K.

    2017-01-01

    Chimeric antigen receptor (CAR) T cells have been highly successful in treating hematological malignancies, including acute and chronic lymphoblastic leukemia. However, treatment of solid tumors using CAR T cells has been largely unsuccessful to date, partly because of tumor-induced immunosuppressive mechanisms, including adenosine production. Previous studies have shown that adenosine generated by tumor cells potently inhibits endogenous antitumor T cell responses through activation of adenosine 2A receptors (A2ARs). Herein, we have observed that CAR activation resulted in increased A2AR expression and suppression of both murine and human CAR T cells. This was reversible using either A2AR antagonists or genetic targeting of A2AR using shRNA. In 2 syngeneic HER2+ self-antigen tumor models, we found that either genetic or pharmacological targeting of the A2AR profoundly increased CAR T cell efficacy, particularly when combined with PD-1 blockade. Mechanistically, this was associated with increased cytokine production of CD8+ CAR T cells and increased activation of both CD8+ and CD4+ CAR T cells. Given the known clinical relevance of the CD73/adenosine pathway in several solid tumor types, and the initiation of phase I trials for A2AR antagonists in oncology, this approach has high translational potential to enhance CAR T cell efficacy in several cancer types. PMID:28165340

  16. Pharmacological characterisation of the adenosine receptor mediating increased ion transport in the mouse isolated trachea and the effect of allergen challenge

    PubMed Central

    Kornerup, Kristin N; Page, Clive P; Moffatt, James D

    2005-01-01

    The effect of adenosine on transepithelial ion transport was investigated in isolated preparations of murine trachea mounted in Ussing chambers. The possible regulation of adenosine receptors in an established model of allergic airway inflammation was also investigated. Mucosally applied adenosine caused increases in short-circuit current (ISC) that corresponded to approximately 50% of the response to the most efficacious secretogogue, ATP (ΔISC 69.5±6.7 μA cm2). In contrast, submucosally applied adenosine caused only small (<20%) increases in ISC, which were not investigated further. The A1-selective (N6-cyclopentyladenosine, CPA, 1 nM–10 μM), A2A-selective (2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxoamido adenosine; CGS 21680; 0.1–100 μM) and A3-selective (1-deoxy-1-[6-[[(3-iodophenyl)-methyl]amino]-9H-purin-9-yl]-N-methyl-β-D-ribofuranuronamide; IB-MECA; 30 nM–100 μM) adenosine receptor agonists were either equipotent or less potent than adenosine, suggesting that these receptors do not mediate the response to adenosine. The A1 receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 10 nM–1 μM) caused a rightward shift of the adenosine concentration–effect curve only at 1 μM. The mixed A2A/A2B receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) also caused rightward shift of the adenosine concentration–effect curve, again only at micromolar concentrations, suggestive of the involvement of A2B receptors. In preparations from animals sensitised to ovalbumin and challenged over 3 days with aerosol ovalbumin, a decrease in baseline ISC was observed and responses to ATP were diminished. Similarly, the amplitude of responses to adenosine were attenuated although there was no change in potency. These results suggest that the A2B receptor mediates the ISC response to adenosine in the mouse trachea. This receptor does not appear to be

  17. Pharmacological characterisation of the adenosine receptor mediating increased ion transport in the mouse isolated trachea and the effect of allergen challenge.

    PubMed

    Kornerup, Kristin N; Page, Clive P; Moffatt, James D

    2005-04-01

    The effect of adenosine on transepithelial ion transport was investigated in isolated preparations of murine trachea mounted in Ussing chambers. The possible regulation of adenosine receptors in an established model of allergic airway inflammation was also investigated. Mucosally applied adenosine caused increases in short-circuit current (I(SC)) that corresponded to approximately 50% of the response to the most efficacious secretogogue, ATP (delta I(SC) 69.5 +/- 6.7 microA cm2). In contrast, submucosally applied adenosine caused only small (<20%) increases in I(SC), which were not investigated further. The A1-selective (N6-cyclopentyladenosine, CPA, 1 nM-10 microM), A2A-selective (2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxoamido adenosine; CGS 21680; 0.1-100 microM) and A3-selective (1-deoxy-1-[6-[[(3-iodophenyl)-methyl]amino]-9H-purin-9-yl]-N-methyl-beta-D-ribofuranuronamide; IB-MECA; 30 nM-100 microM) adenosine receptor agonists were either equipotent or less potent than adenosine, suggesting that these receptors do not mediate the response to adenosine. The A1 receptor selective antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 10 nM-1 microM) caused a rightward shift of the adenosine concentration-effect curve only at 1 microM. The mixed A2A/A2B receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385) also caused rightward shift of the adenosine concentration-effect curve, again only at micromolar concentrations, suggestive of the involvement of A2B receptors. In preparations from animals sensitised to ovalbumin and challenged over 3 days with aerosol ovalbumin, a decrease in baseline I(SC) was observed and responses to ATP were diminished. Similarly, the amplitude of responses to adenosine were attenuated although there was no change in potency. These results suggest that the A2B receptor mediates the I(SC) response to adenosine in the mouse trachea. This receptor does not appear to be

  18. Chemical Modification and Irreversible Inhibition of Striatal A2a Adenosine Receptors

    PubMed Central

    JACOBSON, KENNETH A.; STILES, GARY L.; JI, XIAO-DUO

    2012-01-01

    SUMMARY The ligand recognition site of A2a-adenosine receptors in rabbit striatal membranes was probed using non-site-directed labeling reagents and specific affinity labels. Exposure of membranes to diethylpyrocarbonate at a concentration of 2.5 mm, followed by washing, was found to inhibit the binding of [3H]CGS 21680 and [3H]xanthine amine congener to A2a receptors, by 86 and 30%, respectively. Protection from diethylpyrocarbonate inactivation by an adenosine receptor agonist, 5′-N-ethylcarboxamidoadenosine, and an antagonist, theophylline, suggested the presence of two histidyl residues on the receptor, one associated with agonist binding and the other with antagonist binding. Binding of [3H]CGS 21680 or [3H]xanthine amine congener was partially restored after incubation with 250 mm hydroxylamine, further supporting histidine as the modification site. Preincubation with disulfide-reactive reagents, dithiothreitol or sodium dithionite, at >5 mm inhibited radioligand binding, indicating the presence of essential disulfide bridges in A2a receptors, whereas the concentration of mercaptoethanol required to inhibit binding was >50 mm. A number of isothiocyanate-bearing affinity labels derived from the A2a-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5′-N-ethylcarboxamidoadenosine (APEC) were synthesized and found to inhibit A2a receptor binding in rabbit and bovine striatal membranes. Binding to rabbit A1 receptors was not inhibited. Preincubation with the affinity label 4-isothiocyanatophenylaminothiocarbonyl-APEC (100 nm) diminished the Bmax for [3H]CGS 21680 binding by 71%, and the Kd was unaffected, suggesting a direct modification of the ligand binding site. Reversal of 4-isothiocyanatophenylaminothiocarbonyl-APEC inhibition of [3H]CGS 21680 binding with hydroxylamine suggested that the site of modification by the isothiocyanate is a cysteine residue. A bromoacetyl derivative of APEC was ineffective as an affinity label at

  19. Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts.

    PubMed

    Zhou, Zhichao; Rajamani, Uthra; Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Teng, Bunyen; Mustafa, S Jamal

    2015-06-01

    Adenosine increases coronary flow mainly through the activation of A2A and A2B adenosine receptors (ARs). However, the mechanisms for the regulation of coronary flow are not fully understood. We previously demonstrated that adenosine-induced increase in coronary flow is in part through NADPH oxidase (Nox) activation, which is independent of activation of either A1 or A3ARs. In this study, we hypothesize that adenosine-mediated increase in coronary flow through Nox activation depends on A2A but not A2BARs. Functional studies were conducted using isolated Langendorff-perfused mouse hearts. Hydrogen peroxide (H2O2) production was measured in isolated coronary arteries from WT, A2AAR knockout (KO), and A2BAR KO mice using dichlorofluorescein immunofluorescence. Adenosine-induced concentration-dependent increase in coronary flow was attenuated by the specific Nox2 inhibitor gp91 ds-tat or reactive oxygen species (ROS) scavenger EUK134 in both WT and A2B but not A2AAR KO isolated hearts. Similarly, the A2AAR selective agonist CGS-21680-induced increase in coronary flow was significantly blunted by Nox2 inhibition in both WT and A2BAR KO, while the A2BAR selective agonist BAY 60-6583-induced increase in coronary flow was not affected by Nox2 inhibition in WT. In intact isolated coronary arteries, adenosine-induced (10 μM) increase in H2O2 formation in both WT and A2BAR KO mice was attenuated by Nox2 inhibition, whereas adenosine failed to increase H2O2 production in A2AAR KO mice. In conclusion, adenosine-induced increase in coronary flow is partially mediated by Nox2-derived H2O2, which critically depends upon the presence of A2AAR.

  20. Adenosine 2A receptors modulate reward behaviours for methamphetamine.

    PubMed

    Chesworth, Rose; Brown, Robyn M; Kim, Jee Hyun; Ledent, Catherine; Lawrence, Andrew J

    2016-03-01

    Addiction to methamphetamine (METH) is a global health problem for which there are no approved pharmacotherapies. The adenosine 2A (A2 A ) receptor presents a potential therapeutic target for METH abuse due to its modulatory effects on striatal dopamine and glutamate transmission. Notably, A2 A receptor signalling has been implicated in the rewarding effects of alcohol, cocaine and opiates; yet, the role of this receptor in METH consumption and seeking is essentially unknown. Therefore, the current study used A2 A knockout (KO) mice to assess the role of A2 A in behaviours relevant to METH addiction. METH conditioned place preference was absent in A2 A KO mice compared with wild-type (WT) littermates. Repeated METH treatment produced locomotor sensitization in both genotypes; however, sensitization was attenuated in A2 A KO mice in a dose-related manner. METH intravenous self-administration was intact in A2 A KO mice over a range of doses and schedules of reinforcement. However, the motivation to self-administer was reduced in A2 A KO mice. Regression analysis further supported the observation that the motivation to self-administer METH was reduced in A2 A KO mice even when self-administration was similar to WT mice. Sucrose self-administration was also reduced in A2 A KO mice but only at higher schedules of reinforcement. Collectively, these data suggest that A2 A signalling is critically required to integrate rewarding and motivational properties of both METH and natural rewards. © 2015 Society for the Study of Addiction.

  1. Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells

    PubMed Central

    Gessi, Stefania; Varani, Katia; Merighi, Stefania; Morelli, Anna; Ferrari, Davide; Leung, Edward; Baraldi, Pier Giovanni; Spalluto, Giampiero; Borea, Pier Andrea

    2001-01-01

    The present work was devoted to the study of A3 adenosine receptors in Jurkat cells, a human leukemia line. The A3 subtype was found by means of RT-PCR experiments and characterized by using the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with KD of 1.9±0.2 nM and Bmax of 1.3±0.1 pmol mg−1 of protein. The pharmacological profile of [3H]-MRE 3008F20 binding on Jurkat cells was established using typical adenosine ligands which displayed a rank order of potency typical of the A3 subtype. Thermodynamic data indicated that [3H]-MRE 3008F20 binding to A3 subtype in Jurkat cells was entropy- and enthalpy-driven, according with that found in cells expressing the recombinant human A3 subtype. In functional assays the high affinity A3 agonists Cl-IB-MECA and IB-MECA were able to inhibit cyclic AMP accumulation and stimulate Ca2+ release from intracellular Ca2+ pools followed by Ca2+ influx. The presence of the other adenosine subtypes was investigated in Jurkat cells. A1 receptors were characterized using [3H]-DPCPX binding with a KD of 0.9±0.1 nM and Bmax of 42±3 fmol mg−1 of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a KD of 2.5±0.3 nM and a Bmax of 1.4±0.2 pmol mg−1 of protein. In conclusion, by means of the first antagonist radioligand [3H]-MRE 3008F20 we could demonstrate the existence of functional A3 receptors on Jurkat cells. PMID:11522603

  2. Glutamate-induced depression of EPSP-spike coupling in rat hippocampal CA1 neurons and modulation by adenosine receptors.

    PubMed

    Ferguson, Alexandra L; Stone, Trevor W

    2010-04-01

    The presence of high concentrations of glutamate in the extracellular fluid following brain trauma or ischaemia may contribute substantially to subsequent impairments of neuronal function. In this study, glutamate was applied to hippocampal slices for several minutes, producing over-depolarization, which was reflected in an initial loss of evoked population potential size in the CA1 region. Orthodromic population spikes recovered only partially over the following 60 min, whereas antidromic spikes and excitatory postsynaptic potentials (EPSPs) showed greater recovery, implying a change in EPSP-spike coupling (E-S coupling), which was confirmed by intracellular recording from CA1 pyramidal cells. The recovery of EPSPs was enhanced further by dizocilpine, suggesting that the long-lasting glutamate-induced change in E-S coupling involves NMDA receptors. This was supported by experiments showing that when isolated NMDA-receptor-mediated EPSPs were studied in isolation, there was only partial recovery following glutamate, unlike the composite EPSPs. The recovery of orthodromic population spikes and NMDA-receptor-mediated EPSPs following glutamate was enhanced by the adenosine A1 receptor blocker DPCPX, the A2A receptor antagonist SCH58261 or adenosine deaminase, associated with a loss of restoration to normal of the glutamate-induced E-S depression. The results indicate that the long-lasting depression of neuronal excitability following recovery from glutamate is associated with a depression of E-S coupling. This effect is partly dependent on activation of NMDA receptors, which modify adenosine release or the sensitivity of adenosine receptors. The results may have implications for the use of A1 and A2A receptor ligands as cognitive enhancers or neuroprotectants.

  3. Caffeine, Adenosine Receptors and Estrogen in Toxin Models of Parkinson’s Disease

    DTIC Science & Technology

    2010-10-30

    0881 TITLE: Caffeine , Adenosine Receptors and Estrogen in Toxin Models of Parkinson’s Disease PRINCIPAL INVESTIGATOR: Michael A... Caffeine , Adenosine Receptors and Estrogen 5a. CONTRACT NUMBER W81XWH-04-1-0881 in Toxin Models of...models of PD. Recently we showed that caffeine also confers protection in a chronic pesticide model of PD. SA#2: We have validated a powerful (AAV

  4. Contribution of Adenosine A2B Receptors in Clostridium difficile Intoxication and Infection

    PubMed Central

    Li, Yuesheng; Calabrese, Gina M.; Freire, Rosemayre S.; Zaja-Milatovic, Snjezana; van Opstal, Edward; Figler, Robert A.; Linden, Joel; Guerrant, Richard L.

    2012-01-01

    Clostridium difficile toxins A (TcdA) and B (TcdB) induce a pronounced systemic and intestinal inflammatory response. A2B adenosine receptors (A2BARs) are the predominant adenosine receptors in the intestinal epithelium. We investigated whether A2BARs are upregulated in human intestinal cells by TcdA or TcdB and whether blockade of A2BARs can ameliorate C. difficile TcdA-induced enteritis and alter the outcome of C. difficile infection (CDI). Adenosine receptor subtype (A1, A2A, A2B, and A3) mRNAs were assayed in HCT-8 cells. Ileal loops from wild-type rabbits and mice and A2BAR−/− mice were treated with TcdA, with or without the selective A2BAR antagonist ATL692 or PSB1115. A murine model of CDI was used to determine the effect of A2BAR deletion or blockade with the orally available agent ATL801, on clinical outcome, histopathology and intestinal interleukin-6 (IL-6) expression from infection. TcdA and TcdB upregulated A2BAR gene expression in HCT-8 cells. ATL692 decreased TcdA-induced secretion and epithelial injury in rabbit ileum. Deletion of A2BARs reduced secretion and histopathology in TcdA-challenged mouse ileum. Deletion or blockade of A2BARs reduced histopathology, IL-6 expression, weight loss, diarrhea, and mortality in C. difficile-infected mice. A2BARs mediate C. difficile toxin-induced enteritis and disease. Inhibition of A2BAR activation may be a potential strategy to limit morbidity and mortality from CDI. PMID:23045479

  5. The A2B adenosine receptor impairs the maturation and immunogenicity of dendritic cells.

    PubMed

    Wilson, Jeffrey M; Ross, William G; Agbai, Oma N; Frazier, Renea; Figler, Robert A; Rieger, Jayson; Linden, Joel; Ernst, Peter B

    2009-04-15

    The endogenous purine nucleoside adenosine is an important antiinflammatory mediator that contributes to the control of CD4(+) T cell responses. While adenosine clearly has direct effects on CD4(+) T cells, it remains to be determined whether actions on APC such as dendritic cells (DC) are also important. In this report we characterize DC maturation and function in BMDC stimulated with LPS in the presence or absence of the nonselective adenosine receptor agonist NECA (5'-N-ethylcarboxamidoadenosine). We found that NECA inhibited TNF-alpha and IL-12 in a concentration-dependent manner, whereas IL-10 production was increased. NECA-treated BMDC also expressed reduced levels of MHC class II and CD86 and were less effective at stimulating CD4(+) T cell proliferation and IL-2 production compared with BMDC exposed to vehicle control. Based on real-time RT-PCR, the A(2A) adenosine receptor (A(2A)AR) and A(2B)AR were the predominant adenosine receptors expressed in BMDC. Using adenosine receptor subtype selective antagonists and BMDC derived from A(2A)AR(-/-) and A(2B)AR(-/-)mice, it was shown that NECA modulates TNF-alpha, IL-12, IL-10, and CD86 responses predominantly via A(2B)AR. These data indicate that engagement of A(2B)AR modifies murine BMDC maturation and suggest that adenosine regulates CD4(+) T cell responses by selecting for DC with impaired immunogencity.

  6. Activation of Adenosine1 Receptors Induces Antidepressant-Like, Anti-Impulsive Effects on Differential Reinforcement of Low-Rate 72-s Behavior in Rats

    PubMed Central

    2012-01-01

    Stress and psychiatric illness have been associated with a dysregulation of glutamatergic neurotransmission. Recently, positive allosteric modulators (PAMs) of the metabotropic glutamate 2 (mGlu2) receptor have been found to exert antidepressant-like activity in rats performing under a differential reinforcement of low rate (DRL) 72-s schedule. An autoreceptor role at glutamatergic synapses is the most salient physiological role played by the mGlu2 receptor. Adenosine A1 receptors play a heteroreceptor role at many of the same forebrain synapses where mGlu2 autoreceptors are found. Agonists and/or PAMs of mGlu2 receptors act similarly to adenosine A1 receptor agonists with respect to a wide range of electrophysiological, biochemical, and behavioral responses mediated by limbic circuitry thought to play a role in the pathophysiology of neuropsychiatric disease and to mediate therapeutic drug effects. Therefore, the role of adenosine A1 receptor activation on rat DRL 72-s behavior was explored to provide preclinical evidence consistent or inconsistent with potential antidepressant effects. The adenosine A1 receptor agonist N6-cyclohexyladenosine (CHA) increased the reinforcement rate, decreased the response rate, and induced a rightward shift in inter-response time distributions in a dose-dependent fashion similar to most known antidepressant drugs. The adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) blocked these antidepressant-like effects. These novel observations with CHA and DPCPX suggest that activation of adenosine A1 receptors could contribute to antidepressant effects, in addition to previous preclinical reports of anxiolytic and antipsychotic effects. By implication, targeting a dysregulated glutamatergic system may be an important principle in discovering novel antidepressant agents that may also possess anti-impulsive activity. PMID:22323824

  7. Effects of adenosine A2A receptor stimulation on cocaine-seeking behavior in rats.

    PubMed

    Bachtell, Ryan K; Self, David W

    2009-10-01

    Dopamine (DA) receptor stimulation in the nucleus accumbens (NAc) plays an important role in regulating cocaine-seeking behavior. Adenosine receptors antagonize the effects of DA receptor stimulation on intracellular signaling, neuronal output, and behavior. The goal of the present study is to determine the effects of adenosine A(2A) receptor stimulation on reinstatement of cocaine-seeking behavior in rats. Rats were trained to lever press for cocaine in daily self-administration sessions on a fixed-ratio 1 schedule for 3 weeks. After 1 week of abstinence, lever pressing was extinguished in six daily extinction sessions. We subsequently assessed the effects of the adenosine A(2A) receptor agonist, CGS 21680, on cocaine-, quinpirole (D(2) agonist)-, and cue-induced reinstatement to cocaine seeking. We also assessed the effects of CGS 21680 on sucrose seeking in rats extinguished from sucrose self-administration. Pretreatment of CGS 21680 dose-dependently blunted cocaine-induced reinstatement (15 mg/kg, i.p.). Pretreatment with CGS 21680 (0.03 mg/kg, i.p.) also attenuated quinpirole- and cue-induced reinstatement. A minimally effective dose of CGS 21680 failed to alter cocaine-induced locomotor activity or sucrose seeking. Stimulation of adenosine A(2A) receptors antagonizes reinstatement of cocaine seeking elicited by cocaine, DA D(2)-receptor stimulation, and cocaine-conditioned cues. These findings suggest that adenosine A(2A) receptor stimulation may oppose DA D(2) receptor signaling in the NAc that mediates cocaine relapse.

  8. Differential trafficking of adenosine receptors in hippocampal neurons monitored using GFP- and super-ecliptic pHluorin-tagged receptors.

    PubMed

    Baines, A E; Corrêa, S A L; Irving, A J; Frenguelli, B G

    2011-01-01

    Adenosine receptors (ARs) modulate many cellular and systems-level processes in the mammalian CNS. However, little is known about the trafficking of ARs in neurons, despite their importance in controlling seizure activity and in neuroprotection in cerebral ischaemia. To address this we examined the agonist-dependent internalisation of C-terminal GFP-tagged A(1)Rs, A(2A)Rs and A(3)Rs in primary hippocampal neurons. Furthermore, we developed a novel super-ecliptic pHluorin (SEP)-tagged A(1)R which, via the N-terminal SEP tag, reports the cell-surface expression and trafficking of A(1)Rs in real-time. We demonstrate the differential trafficking of ARs in neurons: A(3)Rs internalise more rapidly than A1Rs, with little evidence of appreciable A(2A)R trafficking over the time-course of the experiments. Furthermore, the novel SEP-A(1)R construct revealed the time-course of internalisation and recovery of cell-surface expression to occur within minutes of agonist exposure and removal, respectively. These observations highlight the labile nature of A(1)R and A(3)Rs when expressed at the neuronal plasma membrane. Given the high levels of adenosine in the brain during ischaemia and seizures, internalisation of the inhibitory A(1)R may result in hyperexcitability, increased brain damage and the development of chronic epileptic states.

  9. A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients.

    PubMed

    Vincenzi, Fabrizio; Corciulo, Carmen; Targa, Martina; Casetta, Ilaria; Gentile, Mauro; Granieri, Enrico; Borea, Pier Andrea; Popoli, Patrizia; Varani, Katia

    2013-09-01

    Adenosine, a purine nucleoside interacting with A1, A2A, A2B and A3 adenosine receptors (ARs), is a potent endogenous modulator of inflammatory and neuronal processes involved in the pathophysiology of several neurodegenerative diseases. In the present study, ARs were investigated in lymphocytes from patients with amyotrophic lateral sclerosis (ALS) and compared with age-matched healthy subjects. In ALS patients A2AARs were analysed by using RT-PCR, Western blotting and saturation binding experiments. The effect of A2AAR stimulation on cyclic AMP levels was evaluated in lymphocytes from ALS patients and healthy subjects. An up-regulation of A2AARs was observed in ALS patients with respect to healthy subjects while A1, A2B and A3AR affinity and density did not change. In ALS patients, the A2AAR density values correlated with the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Furthermore, the stimulation of A2AARs mediated a significant increase in cyclic AMP levels in lymphocytes from ALS patients, with a higher potency than in lymphocytes from healthy subjects. In conclusion, the positive correlation between A2AAR density and ALSFRS-R scores could indicate a possible protective effect of this receptor subtype, representing an interesting starting point for the study of alternative therapeutic approaches for ALS based on A2AAR modulation.

  10. Adenosine receptor inhibition with theophylline attenuates the skin blood flow response to local heating in humans.

    PubMed

    Fieger, Sarah M; Wong, Brett J

    2010-09-01

    Mechanisms underlying the robust cutaneous vasodilatation in response to local heating of human skin remain unresolved. Adenosine receptor activation has been shown to induce vasodilatation via nitric oxide, and a substantial portion of the plateau phase to local heating of human skin has been shown to be dependent on nitric oxide. The purpose of this study was to investigate a potential role for adenosine receptor activation in cutaneous thermal hyperaemia in humans. Six subjects were equipped with four microdialysis fibres on the ventral forearm. Sites were randomly assigned to receive one of the following four treatments: (1) lactated Ringer solution to serve as a control; (2) 4 mM theophylline, a competitive, non-selective A(1)/A(2) adenosine receptor antagonist; (3) 10 mM Nomega(-)-nitro-L-arginine methyl ester (L-NAME) to inhibit NO synthase; or (4) combined 4 mm theophylline + 10 mM L-NAME. Following baseline measurements, each site was locally heated from a baseline temperature of 33 degrees C to 42 degrees C at a rate of 1 degrees C (10 s)(-1), and skin blood flow was monitored via laser-Doppler flowmetry (LDF). Cutaneous vascular conductance (CVC) was calculated as LDF divided by mean arterial pressure and normalized to maximal values (CVC(max)) via local heating to 43 degrees C and infusion of 28 mM sodium nitroprusside. The initial peak was significantly reduced in theophylline (68 +/- 2% CVC(max)) and L-NAME sites (54 +/- 5% CVC(max)) compared with control sites (81 +/- 2% CVC(max); P < 0.01 and P < 0.001, respectively). Combined theophylline + L-NAME (52 +/- 5% CVC(max)) reduced the initial peak compared with control and theophylline sites, but was not significantly different compared with L-NAME sites. The secondary plateau was attenuated in theophylline (77 +/- 2% CVC(max)), L-NAME (60 +/- 2% CVC(max)) and theophylline + L-NAME (53 +/- 1% CVC(max)) compared with control sites (94 +/- 2% CVC(max); P < 0.001 for all conditions). The secondary plateau

  11. Pharmacological evidence for different populations of postsynaptic adenosine A2A receptors in the rat striatum

    PubMed Central

    Orrú, Marco; Quiroz, César; Guitart, Xavier; Ferré, Sergi

    2011-01-01

    Adenosine A2A receptors (A2ARs) are highly concentrated in the striatum. Two pharmacological different functional populations of A2ARs have been recently described based on their different affinities for the A2AR antagonist SCH-442416. This compound has high affinity for A2ARs not forming heteromers or forming heteromers with adenosine A1 receptors (A1Rs) while showing very low affinity for A2ARs forming heteromers with dopamine D2 receptors (D2Rs). It has been widely described that striatal A1R-A2AR heteromers are preferentially localized presynaptically in the glutamatergic terminals that contact GABAergic dynorphinergic neurons, and that A2AR-D2R heteromers are localized postsynaptically in GABAergic enkephalinergic neurons. In the present study we provide evidence suggesting that SCH-442416 also targets postsynaptic A2AR not forming heteromers with D2R, which are involved in the motor depressant effects induced by D2R antagonists. SCH-442416 counteracted motor depression in rats induced by the D2R antagonist raclopride at a dose that did not produce motor activation or that blocked motor depression induced by an A2AR agonist. Furthermore, we re-evaluated the recently suggested key role of cannabinoid CB1 receptors (CB1Rs) in the effects of A2AR antagonists acting at postsynaptic A2ARs. By recording locomotor activity and monitoring striatal glutamate release induced by cortical electrical stimulation in rats after administration of A2AR and CB1R antagonists, we did not find evidence for any significant role of endocannabinoids in the post- or presynaptic effects of A2AR antagonists. The present results further suggest the existence of at least two functionally and pharmacologically different populations of striatal postsynaptic A2ARs. PMID:21752341

  12. Latest QSAR study of adenosine A[Formula: see text] receptor affinity of xanthines and deazaxanthines.

    PubMed

    Pérez-Garrido, Alfonso; Rivero-Buceta, Virginia; Cano, Gaspar; Kumar, Sanjay; Pérez-Sánchez, Horacio; Bautista, Marta Teijeira

    2015-11-01

    Adenosine, a widespread and endogenous nucleoside that acts as a powerful neuromodulator in the nervous system, is a promising therapeutic target in a wide range of conditions. The structural similarity between xanthine derivatives and neurotransmitter adenosine has led to the derivatives of the heterocyclic ring being among the most abundant chemical classes of ligand antagonists of adenosine receptor subtypes. Small changes in the xanthine scaffold have resulted in a wide array of adenosine receptor antagonists. In this work, we developed a QSAR model for the [Formula: see text] subtype, which is, as yet, not well characterized, with two purposes in mind: to predict adenosine [Formula: see text] antagonist activity and to offer a substructural interpretation of this group of xanthines. The QSAR model provided good classifications of both the test and external sets. In addition, most of the contributions to adenosine [Formula: see text] receptor affinity derived by subfragmentation of the molecules in the training set agree with the relationships observed in the literature. These two factors mean that this QSAR ensemble could be used as a model to predict future adenosine [Formula: see text] antagonist candidates.

  13. Chronic Caffeine Alters the Density of Adenosine, Adrenergic, Cholinergic, GABA, and Serotonin Receptors and Calcium Channels in Mouse Brain

    PubMed Central

    Shi, Dan; Nikodijević, Olga; Jacobson, Kenneth A.; Daly, John W.

    2012-01-01

    SUMMARY 1. Chronic ingestion of caffeine by male NIH strain mice alters the density of a variety of central receptors. 2. The density of cortical A1 adenosine receptors is increased by 20%, while the density of striatal A2A adenosine receptors is unaltered. 3. The densities of cortical β1 and cerebellar β2 adrenergic receptors are reduced by ca. 25%, while the densities of cortical α1 and α2 adrenergic receptors are not significantly altered. Densities of striatal D1 and D2 dopaminergic receptors are unaltered. The densities of cortical 5 HT1 and 5 HT2 serotonergic receptors are increased by 26–30%. Densities of cortical muscarinic and nicotinic receptors are increased by 40–50%. The density of cortical benzodiazepine-binding sites associated with GABAA receptors is increased by 65%, and the affinity appears slightly decreased. The density of cortical MK-801 sites associated with NMDA-glutaminergic receptors appear unaltered. 4. The density of cortical nitrendipine-binding sites associated with calcium channels is increased by 18%. 5. The results indicate that chronic ingestion of caffeine equivalent to about 100 mg/kg/day in mice causes a wide range of biochemical alterations in the central nervous system. PMID:8242688

  14. Influence of adenosine receptors on the development of caerulein-induced acute pancreatitis.

    PubMed

    Szczerbiński, Mariusz; Celiński, Krzysztof; Słomka, Maria; Kasztelan-Szczerbińska, Beata; Cichoz-Lach, Halina

    2002-01-01

    Acute pancreatitis leads to hypoxia caused by vasoconstriction and to activation of lysosomal and digestive enzymes resulting in pancreas autodigestion and damage. This causes activation of leucocytes and increased expression of adhesive molecules enabling margination and adhesion of activated leucocytes to the endothelium. Activated leucocytes are the source of proinflammatory cytokins and oxygen-free radicals which intensify the inflammatory response. The reports indicating that adenosine may prevent activation of the above-mentioned processes in ischaemia prompted us to undertake this study. The study was performed in two stages. The first stage was to evaluate the effects of agonists and antagonists of adenosine receptors on normal pancreas while the second one was to determine the influence of these substances on the development of caerulein-induced acute pancreatitis. During the first stage, the animals were injected intraperitoneally with the substances examined: the A1 receptor antagonist--DPCPX, the A2 receptor agonist--CGS 21680, the A2 receptor antagonist--ZM 241385 and the A3 receptor agonist--IB-MECA and then received intravenous saline. The control animals were subjected only to the 12 h intravenous infusion of 0.15 M NaCl. During the second stage, after the intraperitoneal administration of adenosine receptor agonists and antagonists (as in the first stage), acute pancreatitis was induced with the 12 h intravenous infusion of 5 micrograms/kg/h caerulein. Identical acute pancreatitis was induced in the control animals, however no other substances were administered. The pancreatic tissue samples were collected directly after intravenous infusion. The severity of inflammatory processes in the pancreas was evaluated on the basis of the plasma amylase activity, pancreatic weight and enhancement of histopathological changes observed in this organ. In the animals infused with saline alone, no effects of the substances examined on the pancreatic weight

  15. A covalent antagonist for the human adenosine A2A receptor.

    PubMed

    Yang, Xue; Dong, Guo; Michiels, Thomas J M; Lenselink, Eelke B; Heitman, Laura; Louvel, Julien; IJzerman, Ad P

    2016-12-03

    The structure of the human A2A adenosine receptor has been elucidated by X-ray crystallography with a high affinity non-xanthine antagonist, ZM241385, bound to it. This template molecule served as a starting point for the incorporation of reactive moieties that cause the ligand to covalently bind to the receptor. In particular, we incorporated a fluorosulfonyl moiety onto ZM241385, which yielded LUF7445 (4-((3-((7-amino-2-(furan-2-yl)-[1, 2, 4]triazolo[1,5-a][1, 3, 5]triazin-5-yl)amino)propyl)carbamoyl)benzene sulfonyl fluoride). In a radioligand binding assay, LUF7445 acted as a potent antagonist, with an apparent affinity for the hA2A receptor in the nanomolar range. Its apparent affinity increased with longer incubation time, suggesting an increasing level of covalent binding over time. An in silico A2A-structure-based docking model was used to study the binding mode of LUF7445. This led us to perform site-directed mutagenesis of the A2A receptor to probe and validate the target lysine amino acid K153 for covalent binding. Meanwhile, a functional assay combined with wash-out experiments was set up to investigate the efficacy of covalent binding of LUF7445. All these experiments led us to conclude LUF7445 is a valuable molecular tool for further investigating covalent interactions at this receptor. It may also serve as a prototype for a therapeutic approach in which a covalent antagonist may be needed to counteract prolonged and persistent presence of the endogenous ligand adenosine.

  16. Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice.

    PubMed

    Dall'Igna, Oscar P; Fett, Paulo; Gomes, Marcio W; Souza, Diogo O; Cunha, Rodrigo A; Lara, Diogo R

    2007-01-01

    Consumption of caffeine, an adenosine receptor antagonist, was found to be inversely associated with the incidence of Alzheimer's disease. Moreover, caffeine protects cultured neurons against beta-amyloid-induced toxicity, an effect mimicked by adenosine A(2A) but not A(1) receptor antagonists. We now tested if caffeine administration would prevent beta-amyloid-induced cognitive impairment in mice and if this was mimicked by A(2A) receptor blockade. One week after icv administration of the 25-35 fragment of beta-amyloid (Abeta, 3 nmol), mice displayed impaired performance in both inhibitory avoidance and spontaneous alternation tests. Prolonged treatment with caffeine (1 mg/ml) had no effect alone but prevented the Abeta-induced cognitive impairment in both tasks when associated with acute caffeine (30 mg/kg) 30 min treatment before Abeta administration. The same protective effect was observed after subchronic (4 days) treatment with daily injections of either caffeine (30 mg/kg) or the selective adenosine A(2A) receptor antagonist SCH58261 (0.5 mg/kg). This provides the first direct in vivo evidence that caffeine and A(2A) receptor antagonists afford a protection against Abeta-induced amnesia, which prompts their interest for managing Alzheimer's disease.

  17. Evidence that the positive inotropic effects of the alkylxanthines are not due to adenosine receptor blockade.

    PubMed Central

    Collis, M. G.; Keddie, J. R.; Torr, S. R.

    1984-01-01

    We investigated the possibility that the positive inotropic effects of the alkylxanthines are due to adenosine receptor blockade. The potency of 8-phenyltheophylline, theophylline and enprofylline as adenosine antagonists was assessed in vitro, using the guinea-pig isolated atrium, and in vivo, using the anaesthetized dog. The order of potency of the alkylxanthines as antagonists of the negative inotropic response to 2-chloroadenosine in vitro, and of the hypotensive response to adenosine in vivo was 8-phenyltheophylline greater than theophylline greater than enprofylline. The order of potency of the alkylxanthines as positive inotropic and chronotropic agents in the anaesthetized dog was enprofylline greater than theophylline greater than 8-phenyltheophylline. The results of this study indicate that the inotropic effects of the alkylxanthines in the anaesthetized dog are not due to adenosine receptor blockade. PMID:6322898

  18. Early exposure to caffeine affects gene expression of adenosine receptors, DARPP-32 and BDNF without affecting sensibility and morphology of developing zebrafish (Danio rerio).

    PubMed

    Capiotti, Katiucia Marques; Menezes, Fabiano Peres; Nazario, Luiza Reali; Pohlmann, Julhana Bianchini; de Oliveira, Giovanna M T; Fazenda, Lidiane; Bogo, Maurício Reis; Bonan, Carla Denise; Da Silva, Rosane Souza

    2011-01-01

    Adenosine receptors are the most important biochemical targets of caffeine, a common trimethylxanthine found in food and beverages. Adenosine plays modulatory action during the development through adenosine receptors and their intracellular pathways activation. In this study, we aimed to evaluate if caffeine gave to zebrafish in the very first steps of development is able to affect its direct targets, through the adenosine receptors mRNA expression evaluation, and latter indirect targets, through evaluation of the pattern of dopamine and cAMP-regulated phosphoprotein and brain-derived neurotrophic factor (BDNF) mRNA expression. Here, we demonstrate that zebrafish express adenosine receptor subtypes (A1, A2A1, A2A2 and A2B) since 24h post-fertilization (hpf) and that caffeine exposure is able to affect the expression of these receptors. Caffeine exposure from 1 hpf is able to increase A1 expression at 72-96 hpf and A2A1 expression at 72 hpf. No alterations occurred in A2A2 and A2B expression after caffeine treatment. DARPP-32, a phosphoprotein involved in adenosine intracellular pathway is also expressed since 24 hpf and early exposure to caffeine increased DARPP-32 expression at 168 hpf. We also evaluate the expression of BDNF as one of the targets of adenosine intracellular pathway activation. BDNF was also expressed since 24 hpf and caffeine treatment increased its expression at 48 and 72 hpf. No morphological alterations induced by caffeine treatment were registered by the check of general body features and total body length. Assessment of tactile sensibility also demonstrated no alterations by caffeine treatment. Altogether, these results suggest that caffeine is able to affect expression of its cellular targets since early phases of development in zebrafish without affect visible features. The up-regulation of direct and indirect targets of caffeine presents as a compensatory mechanism of maintenance of adenosinergic modulation during the developmental phase

  19. Adenosine enhances sweet taste through A2B receptors in the taste bud.

    PubMed

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D

    2012-01-04

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.

  20. Adenosine enhances sweet taste through A2B receptors in the taste bud

    PubMed Central

    Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.

    2012-01-01

    Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293

  1. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria

    2013-01-01

    Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Reduced striatal adenosine A2A receptor levels define a molecular subgroup in schizophrenia.

    PubMed

    Villar-Menéndez, Izaskun; Díaz-Sánchez, Sara; Blanch, Marta; Albasanz, José Luis; Pereira-Veiga, Thais; Monje, Alfonso; Planchat, Luis Maria; Ferrer, Isidre; Martín, Mairena; Barrachina, Marta

    2014-04-01

    Schizophrenia (SZ) is a mental disorder of unknown origin. Some scientific evidence seems to indicate that SZ is not a single disease entity, since there are patient groups with clear symptomatic, course and biomarker differences. SZ is characterized by a hyperdopaminergic state related to high dopamine D2 receptor activity. It has also been proposed that there is a hypoadenosynergic state. Adenosine is a nucleoside widely distributed in the organism with neuromodulative and neuroprotective activity in the central nervous system. In the brain, the most abundant adenosine receptors are A1R and A2AR. In the present report, we characterize the presence of both receptors in human postmortem putamens of patients suffering SZ with real time TaqMan PCR, western blotting and radioligand binding assay. We show that A1R levels remain unchanged with respect to age-matched controls, whereas nearly fifty percent of patients have reduced A2AR, at the transcriptional and translational levels. Moreover, we describe how DNA methylation plays a role in the pathological A2AR levels with the bisulfite-sequencing technique. In fact, an increase in 5-methylcytosine percentage in the 5' UTR region of ADORA2A was found in those SZ patients with reduced A2AR levels. Interestingly, there was a relationship between the A2A/β-actin ratio and motor disturbances as assessed with some items of the PANSS, AIMS and SAS scales. Therefore, there may be a subgroup of SZ patients with reduced striatal A2AR levels accompanied by an altered motor phenotype.

  3. Adenosine Receptor Stimulation Improves Glucocorticoid-Induced Osteoporosis in a Rat Model.

    PubMed

    Pizzino, Gabriele; Irrera, Natasha; Galfo, Federica; Oteri, Giacomo; Atteritano, Marco; Pallio, Giovanni; Mannino, Federica; D'Amore, Angelica; Pellegrino, Enrica; Aliquò, Federica; Anastasi, Giuseppe P; Cutroneo, Giuseppina; Squadrito, Francesco; Altavilla, Domenica; Bitto, Alessandra

    2017-01-01

    Glucocorticoid-induced osteoporosis (GIO) is a secondary cause of bone loss. Bisphosphonates approved for GIO, might induce jaw osteonecrosis; thus additional therapeutics are required. Adenosine receptor agonists are positive regulators of bone remodeling, thus the efficacy of adenosine receptor stimulation for treating GIO was tested. In a preventive study GIO was induced in Sprague-Dawley rats by methylprednisolone (MP) for 60 days. Animals were randomly assigned to receive polydeoxyribonucleotide (PDRN), an adenosine A2 receptor agonist, or PDRN and DMPX (3,7-dimethyl-1-propargylxanthine, an A2 antagonist), or vehicle (0.9% NaCl). Another set of animals was used for a treatment study, following the 60 days of MP-induction rats were randomized to receive (for additional 60 days) PDRN, or PDRN and DMPX (an adenosine A2 receptor antagonist), or zoledronate (as control for gold standard treatment), or vehicle. Control animals were administered with vehicle for either 60 or 120 days. Femurs were analyzed after treatments for histology, imaging, and breaking strength analysis. MP treatment induced severe bone loss, the concomitant use of PDRN prevented the developing of osteoporosis. In rats treated for 120 days, PDRN restored bone architecture and bone strength; increased b-ALP, osteocalcin, osteoprotegerin and stimulated the Wnt canonical and non-canonical pathway. Zoledronate reduced bone resorption and ameliorated the histological features, without significant effects on bone formation. Our results suggest that adenosine receptor stimulation might be useful for preventing and treating GIO.

  4. Selective Allosteric Enhancement of Agonist Binding and Function at Human A3 Adenosine Receptors by a Series of Imidazoquinoline Derivatives

    PubMed Central

    Gao, Zhan-Guo; Kim, Seong Gon; Soltysiak, Kelly A.; Melman, Neli; Ijzerman, Adriaan P.; Jacobson, Kenneth A.

    2014-01-01

    We have identified a series of 1H-imidazo-[4,5-c]quinolines as selective allosteric enhancers of human A3 adenosine receptors. Several of these compounds potentiated both the potency and maximal efficacy of agonist-induced responses and selectively decreased the dissociation of the agonist N6-(4-amino-3-[125I]iodobenzyl)-5′-N-methylcarboxamidoadenosine from human A3 adenosine receptors. There was no effect on the dissociation of the antagonist [3H]8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2.1-i]purin-5-one (PSB-11) from the A3 receptors, as well as [3H]N6-[(R)-phenylisopropy-l]adenosine from rat brain A1 receptors and [3H]2-[p-(2-carboxyethyl)phenyl-ethylamino]-5′-N-ethylcarboxamidoad-enosine from rat striatal A2A receptors, suggesting the selective enhancement of agonist binding at A3 receptors. The analogs were tested as antagonists of competitive binding at human A3 receptors, and Ki values ranging from 120 nM to 101 μM were observed; as for many allosteric modulators of G protein-coupled receptors, an orthosteric effect was also present. The most promising leads from the present set of analogs seem to be the 2-cyclopentyl-1H-imidazo[4,5-c]quinoline derivatives, of which the 4-phenylamino analog DU124183 had the most favorable degree of allosteric modulation versus receptor antagonism. The inhibition of forskolin-stimulated cyclic AMP accumulation in intact cells that express human A3 receptors was employed as a functional index of A3 receptor activation. The enhancer DU124183 caused a marked leftward shift of the concentration-response curve of the A3 receptor agonists in the presence of antagonist and, surprisingly, a potentiation of the maximum agonist efficacy by approximately 30%. Thus, we have identified a novel structural lead for developing allosteric enhancers of A3 adenosine receptors; such enhancers may be useful for treating brain ischemia and other hypoxic conditions. PMID:12065758

  5. The A2a adenosine receptor modulates the reinforcement efficacy and neurotoxicity of MDMA.

    PubMed

    Ruiz-Medina, Jessica; Ledent, Catherine; Carretón, Olga; Valverde, Olga

    2011-04-01

    Adenosine is an endogenous purine nucleoside that plays a neuromodulatory role in the central nervous system. A2a adenosine receptors have been involved in reward-related processes, inflammatory phenomena and neurotoxicity reactions. In the present study, we investigated the role of A2a adenosine receptors on the acute pharmacological effects, reinforcement and neuroinflammation induced by MDMA administration. First, the acute effects of MDMA on body temperature, locomotor activity and anxiety-like responses were measured in A2a knockout mice and wild-type littermates. Second, MDMA reinforcing properties were evaluated using the intravenous self-administration paradigm. Finally, we assessed striatal astrogliosis and microgliosis as markers of MDMA neurotoxicity. Our results showed that acute MDMA produced a biphasic effect on body temperature and increased locomotor activity and anxiogenic-like responses in both genotypes. However, MDMA reinforcing properties were dramatically affected by the lack of A2a adenosine receptors. Thus, wild-type mice maintained MDMA self-administration under a fixed ratio 1 reinforcement schedule, whereas the operant response appeared completely abolished in A2a knockout mice. In addition, the MDMA neurotoxic regime produced an enhanced inflammatory response in striatum of wild-type mice, revealed by a significant increase in glial expression, whereas such activation was attenuated in mutant mice. This is the first report indicating that A2a adenosine receptors play a key role in reinforcement and neuroinflammation induced by the widely used psychostimulant.

  6. Lung injury pathways: Adenosine receptor 2B signaling limits development of ischemic bronchiolitis obliterans organizing pneumonia.

    PubMed

    Densmore, John C; Schaid, Terry R; Jeziorczak, Paul M; Medhora, Meetha; Audi, Said; Nayak, Shraddha; Auchampach, John; Dwinell, Melinda R; Geurts, Aron M; Jacobs, Elizabeth R

    2017-02-01

    Purpose/Aim of the Study: Adenosine signaling was studied in bronchiolitis obliterans organizing pneumonia (BOOP) resulting from unilateral lung ischemia. Ischemia was achieved by either left main pulmonary artery or complete hilar ligation. Sprague-Dawley (SD) rats, Dahl salt sensitive (SS) rats and SS mutant rat strains containing a mutation in the A2B adenosine receptor gene (Adora2b) were studied. Adenosine concentrations were measured in bronchoalveolar lavage (BAL) by HPLC. A2A (A2AAR) and A2B adenosine receptor (A2BAR) mRNA and protein were quantified. Twenty-four hours after unilateral PA ligation, BAL adenosine concentrations from ischemic lungs were increased relative to contralateral lungs in SD rats. A2BAR mRNA and protein concentrations were increased after PA ligation while miR27a, a negatively regulating microRNA, was decreased in ischemic lungs. A2AAR mRNA and protein concentrations remained unchanged following ischemia. A2BAR protein was increased in PA ligated lungs of SS rats after 7 days, and 4 h after complete hilar ligation in SD rats. SS-Adora2b mutants showed a greater extent of BOOP relative to SS rats, and greater inflammatory changes. Increased A2BAR and adenosine following unilateral lung ischemia as well as more BOOP in A2BAR mutant rats implicate a protective role for A2BAR signaling in countering ischemic lung injury.

  7. Adenosine A2A and A2B Receptors Differentially Modulate Keratinocyte Proliferation: Possible Deregulation in Psoriatic Epidermis.

    PubMed

    Andrés, Rosa M; Terencio, María Carmen; Arasa, Jorge; Payá, Miguel; Valcuende-Cavero, Francisca; Navalón, Pedro; Montesinos, María Carmen

    2017-01-01

    Adenosine is a potent regulator of inflammation and immunity, but the role of adenosine receptors in keratinocytes remains controversial. We determined that in addition to A2B receptors, human epidermal keratinocytes also express A2A receptors, although to a lower extent. Through the use of selective adenosine receptor agonists and antagonists, we showed that physiological concentrations of adenosine activate A2B receptors in normal human keratinocytes, inducing cell cycle arrest through the increase of intracellular calcium but not through cAMP signaling. In contrast, the selective activation of A2A receptors by CGS-21680 induces keratinocyte proliferation via p38-mitogen-activated protein kinase activation. Adenosine and selective A2A and A2B agonists presented anti-inflammatory profiles independent of adenosine receptors but mediated by membrane phosphatase activation. Finally, keratinocyte exposure to diverse inflammatory cytokines altered adenosine receptor expression by reducing A2B and increasing A2A, a pattern also observed in psoriatic epidermis. Because increased epidermal turnover and inflammatory response are characteristics of psoriatic disease, further studies are needed to assess the role and consequences of the altered adenosine receptor expression in lesional and nonlesional psoriatic keratinocytes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Behavioural and neurochemical characterization of the adenosine A2A receptor antagonist ST1535.

    PubMed

    Galluzzo, Mariangela; Pintor, Anita; Pèzzola, Antonella; Grieco, Rosa; Borsini, Franco; Popoli, Patrizia

    2008-01-28

    ST1535 (2-butyl-9-methyl-8-(2H-1,2,3-triazol 2-yl)-9 H-purin-6-ylamine) is a novel compound showing a preferential adenosine A(2A) receptor antagonist profile. To explore the potential neuroprotective profile of this compound, we evaluated whether ST1535 prevented quinolinic acid (QA)-induced glutamate outflow in the rat striatum (a reliable index of neuroprotective activity in vivo). Microdialysis experiments were performed in naive Wistar rats. In these experiments, a behaviourally active and inactive doses of ST1535 were used. Both doses significantly prevented QA-induced glutamate outflow in the striatum. These results show that ST1535 protects towards striatal excitotoxicity, even though its reduced A(2A)/A(1) selectivity might limit its actual neuroprotective potential.

  9. Involvement of adenosine A2A receptors in depression and anxiety.

    PubMed

    Yamada, Koji; Kobayashi, Minoru; Kanda, Tomoyuki

    2014-01-01

    When administered to normal healthy patients, a nonselective adenosine A1/A2A antagonist, caffeine, tended to improve anxiety and depression at low doses and to exacerbate anxiety at high doses. Caffeine also appears to enhance anxiety-related symptoms in patients with panic disorder, and A2A receptor-deficient mice have been reported to exhibit higher anxiety-like behaviors, as well as a lower incidence of depression-like behaviors. Some selective A2A antagonists were reported to ameliorate anxiety-like behaviors in rodents, while others did not affect these behaviors. In addition, most A2A antagonists showed inhibitory effects on depression-like behaviors. The mechanisms underlying the relationship between A2A receptor antagonists and anxiety and depression remain unclear at the present time, although many studies have produced hypotheses. Given that a selective A2A receptor antagonist has recently become available for use in humans, research on the role of A2A receptors in the treatment of mental illness should progress in the near future. © 2014 Elsevier Inc. All rights reserved.

  10. Neuroprotection by caffeine and A(2A) adenosine receptor inactivation in a model of Parkinson's disease.

    PubMed

    Chen, J F; Xu, K; Petzer, J P; Staal, R; Xu, Y H; Beilstein, M; Sonsalla, P K; Castagnoli, K; Castagnoli, N; Schwarzschild, M A

    2001-05-15

    Recent epidemiological studies have established an association between the common consumption of coffee or other caffeinated beverages and a reduced risk of developing Parkinson's disease (PD). To explore the possibility that caffeine helps prevent the dopaminergic deficits characteristic of PD, we investigated the effects of caffeine and the adenosine receptor subtypes through which it may act in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin model of PD. Caffeine, at doses comparable to those of typical human exposure, attenuated MPTP-induced loss of striatal dopamine and dopamine transporter binding sites. The effects of caffeine were mimicked by several A(2A) antagonists (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH 58261), 3,7-dimethyl-1-propargylxanthine, and (E)-1,3-diethyl-8 (KW-6002)-(3,4-dimethoxystyryl)-7-methyl-3,7-dihydro-1H-purine-2,6-dione) (KW-6002) and by genetic inactivation of the A(2A) receptor, but not by A(1) receptor blockade with 8-cyclopentyl-1,3-dipropylxanthine, suggesting that caffeine attenuates MPTP toxicity by A(2A) receptor blockade. These data establish a potential neural basis for the inverse association of caffeine with the development of PD, and they enhance the potential of A(2A) antagonists as a novel treatment for this neurodegenerative disease.

  11. Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia

    PubMed Central

    Pedata, Felicita; Pugliese, Anna Maria; Coppi, Elisabetta; Dettori, Ilaria; Maraula, Giovanna; Cellai, Lucrezia; Melani, Alessia

    2014-01-01

    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke. PMID:25165414

  12. GABAB and adenosine receptors mediate enhancement of the K+ current, IAHP, by reducing adenylyl cyclase activity in rat CA3 hippocampal neurons.

    PubMed

    Gerber, U; Gähwiler, B H

    1994-11-01

    1. Gamma-aminobuturic acid-B (GABAB) and adenosine A1 receptors, which are expressed in hippocampal pyramidal cells, are linked to pertussis toxin-sensitive G-proteins known to be coupled negatively to the enzyme adenylyl cyclase. This study investigates the electrophysiological consequences of adenylyl cyclase inhibition in response to stimulation of these receptors. 2. Single-electrode voltage-clamp recordings were obtained from CA3 pyramidal cells in rat hippocampal slice cultures in presence of tetrodotoxin. The calcium-dependent potassium current (IAHP), which is very sensitive to intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP), was used as an electrophysiological indicator of adenylyl cyclase activity. 3. Application of baclofen (10 microM), a selective agonist at GABAB receptors, or adenosine (50 microM) each resulted in a transient decrease followed by a significant enhancement in the amplitude of evoked IAHP. The initial reduction in amplitude of IAHP probably reflects inadequacies in voltage clamp of electronically distant dendritic sites, due to the shunting caused by concomitant activation of potassium conductance by baclofen/adenosine. Comparable increases in membrane conductance in response to the GABAA agonist, muscimol, caused a similar reduction in IAHP. The enhancement of IAHP is consistent with an inhibition of constitutively active adenylyl cyclase. 4. The receptor mediating the responses to adenosine was identified as belonging to the A1 subtype on the basis of its sensitivity to the selective antagonist 8-cyclopentyl-1,3-dipropylxanthine.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Identification of the A2 adenosine receptor binding subunit by photoaffinity crosslinking

    SciTech Connect

    Barrington, W.W.; Jacobson, K.A.; Hutchison, A.J.; Williams, M.; Stiles, G.L. )

    1989-09-01

    A high-affinity iodinated agonist radioligand for the A2 adenosine receptor has been synthesized to facilitate studies of the A2 adenosine receptor binding subunit. The radioligand 125I-labeled PAPA-APEC (125I-labeled 2-(4-(2-(2-((4- aminophenyl)methylcarbonylamino)ethylaminocarbonyl)- ethyl)phenyl)ethylamino-5'-N-ethylcarboxamidoadenosine) was synthesized and found to bind to the A2 adenosine receptor in bovine striatal membranes with high affinity (Kd = 1.5 nM) and A2 receptor selectivity. Competitive binding studies reveal the appropriate A2 receptor pharmacologic potency order with 5'-N-ethylcarboxamidoadenosine (NECA) greater than (-)-N6-((R)-1-methyl- 2-phenylethyl)adenosine (R-PIA) greater than (+)-N6-((S)-1-methyl-2- phenylethyl)adenosine (S-PIA). Adenylate cyclase assays, in human platelet membranes, demonstrate a dose-dependent stimulation of cAMP production. PAPA-APEC (1 microM) produces a 43% increase in cAMP production, which is essentially the same degree of increase produced by 5'-N- ethylcarboxamidoadenosine (the prototypic A2 receptor agonist). These findings combined with the observed guanine nucleotide-mediated decrease in binding suggest that PAPA-APEC is a full A2 agonist. The A2 receptor binding subunit was identified by photoaffinity-crosslinking studies using 125I-labeled PAPA-APEC and the heterobifunctional crosslinking agent N-succinimidyl 6-(4'-azido-2'-nitrophenylamino)hexanoate (SANPAH). After covalent incorporation, a single specifically radiolabeled protein with an apparent molecular mass of 45 kDa was observed on NaDodSO4/PAGE/autoradiography. Incorporation of 125I-labeled PAPA-APEC into this polypeptide is blocked by agonists and antagonists with the expected potency for A2 receptors and is decreased in the presence of 10(-4) M guanosine 5'-(beta, gamma-imido)triphosphate.

  14. Long-term administration of Delta9-tetrahydrocannabinol desensitizes CB1-, adenosine A1-, and GABAB-mediated inhibition of adenylyl cyclase in mouse cerebellum.

    PubMed

    Selley, Dana E; Cassidy, Michael P; Martin, Billy R; Sim-Selley, Laura J

    2004-11-01

    Cannabinoid CB(1) receptors in the cerebellum mediate the inhibitory effects of Delta(9)-tetrahydrocannabinol (THC) on motor coordination. Intracellular effects of CB(1) receptors include inhibition of adenylyl cyclase via activation of G(i/o) proteins. There is evidence for the convergence of other neuronal receptors, such as adenosine A(1) and GABA(B), with the cannabinoid system on this signaling pathway to influence motor function. Previous studies have shown that brain CB(1) receptors are desensitized and down-regulated by long-term THC treatment, but few studies have examined the effects of long-term THC treatment on downstream effector activity in brain. Therefore, these studies examined the relationship between CB(1), adenosine A(1), and GABA(B) receptors in cerebella of mice undergoing prolonged treatment with vehicle or THC at the level of G protein activation and adenylyl cyclase inhibition. In control cerebella, CB(1) receptors produced less than additive inhibition of adenylyl cyclase with GABA(B) and A(1) receptors, indicating that these receptors are localized on overlapping populations of cells. Long-term THC treatment produced CB(1) receptor down-regulation and desensitization of both cannabinoid agonist-stimulated G protein activation and inhibition of forskolin-stimulated adenylyl cyclase. However, G protein activation by GABA(B) or A(1) receptors was unaffected. It is noteworthy that heterologous attenuation of GABA(B) and A(1) receptor-mediated inhibition of adenylyl cyclase was observed, even though absolute levels of basal and forskolin- or G(s)-stimulated activity were unchanged. These results indicate that long-term THC administration produces a disruption of inhibitory receptor control of cerebellar adenylyl cyclase and suggest a potential mechanism of cross-tolerance to the motor incoordinating effects of cannabinoid, GABA(B), and A(1) agonists.

  15. Activation of Th1 and Tc1 cell adenosine A2A receptors directly inhibits IL-2 secretion in vitro and IL-2-driven expansion in vivo.

    PubMed

    Erdmann, Andreas A; Gao, Zhan-Guo; Jung, Unsu; Foley, Jason; Borenstein, Todd; Jacobson, Kenneth A; Fowler, Daniel H

    2005-06-15

    To evaluate the direct effect of adenosine on cytokine-polarized effector T cells, murine type 1 helper T cells (Th1) and type 1 cytotoxic T lymphocytes (Tc1) and Th2/Tc2 cells were generated using an antigen-presenting cell (APC)-free method. Tc1 and Tc2 cells had similar adenosine signaling, as measured by intracellular cyclic AMP (cAMP) increase upon adenosine A(2A) receptor agonism by CGS21680 (CGS). CGS greatly reduced Tc1 and Tc2 cell interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-alpha) secretion, with nominal effect on interferon gamma (IFN-gamma) secretion. Tc2 cell IL-4 and IL-5 secretion was not reduced by CGS, and IL-10 secretion was moderately reduced. Agonist-mediated inhibition of IL-2 and TNF-alpha secretion occurred via A(2A) receptors, with no involvement of A(1), A(2B), or A(3) receptors. Adenosine agonist concentrations that abrogated cytokine secretion did not inhibit Tc1 or Tc2 cell cytolytic function. Adenosine modulated effector T cells in vivo, as CGS administration reduced CD4(+)Th1 and CD8(+)Tc1 cell expansion to alloantigen and, in a separate model, reduced antigen-specific CD4(+) Th1 cell numbers. Remarkably, agonist-mediated T-cell inhibition was abrogated by in vivo IL-2 therapy. Adenosine receptor activation therefore preferentially inhibits type I cytokine secretion, most notably IL-2. Modulation of adenosine receptors may thus represent a suitable target primarily for inflammatory conditions mediated by Th1 and Tc1 cells.

  16. Interactions between responses mediated by activation of adenosine A2 receptors and alpha 1-adrenoceptors in the rabbit isolated aorta.

    PubMed

    Wiener, H L; Thalody, G P; Maayani, S

    1993-06-01

    1. This paper describes aspects of the functional antagonism between the responses mediated by activated alpha 1-adrenoceptors and adenosine A2 receptors in the adventitia- and endothelium-denuded aorta of the rabbit. 2. Adenosine A2 receptor agonists relaxed aortic rings pre-contracted with phenylephrine. The relaxation response was agonist concentration-dependent and saturable. The respective contractile and relaxation responses were stable, reproducible, and reversible. 3. Increasing the phenylephrine concentration caused a progressive attenuation of the action of adenosine A2 receptor agonists, consisting of a decreased maximal response and a dextral shift of the adenosine agonist concentration-response curve. This functional antagonism could be completely reversed upon removal of adenosine by either the addition of adenosine deaminase or by wash-out of the adenosine agonist from the tissue. The relaxation response to the adenosine A2 receptor partial agonists, N6-cyclohexyladenosine and R-(-)-N6-(2-phenylisopropyl)adenosine, was abolished at higher phenylephrine concentrations (e.g. 30 EC50). 4. A 1000 fold increase in the adenosine concentration was required to shift the value of the EC50 of phenylephrine six fold, while a similar increase in the value of the EC50 of adenosine could be elicited by only a 32 fold increase in the phenylephrine concentration. A 30 fold increase in the phenylephrine concentration shifted the value of the EC50 of 5'-N-ethylcarboxamidoadenosine four fold. 5. Analysis of the functional antagonism between the responses mediated by these receptors using the Black & Leff (1983) operational model of agonism allowed for the estimation of the agonist dissociation constant, KA, and the apparent efficacy, tau, for both phenylephrine and adenosine A2 receptor agonists. Increasing the concentration of phenylephrine reduced the value of tau for adenosine agonists in a concentration-dependent and saturable manner. Similarly, increasing the

  17. Interactions between responses mediated by activation of adenosine A2 receptors and alpha 1-adrenoceptors in the rabbit isolated aorta.

    PubMed Central

    Wiener, H. L.; Thalody, G. P.; Maayani, S.

    1993-01-01

    1. This paper describes aspects of the functional antagonism between the responses mediated by activated alpha 1-adrenoceptors and adenosine A2 receptors in the adventitia- and endothelium-denuded aorta of the rabbit. 2. Adenosine A2 receptor agonists relaxed aortic rings pre-contracted with phenylephrine. The relaxation response was agonist concentration-dependent and saturable. The respective contractile and relaxation responses were stable, reproducible, and reversible. 3. Increasing the phenylephrine concentration caused a progressive attenuation of the action of adenosine A2 receptor agonists, consisting of a decreased maximal response and a dextral shift of the adenosine agonist concentration-response curve. This functional antagonism could be completely reversed upon removal of adenosine by either the addition of adenosine deaminase or by wash-out of the adenosine agonist from the tissue. The relaxation response to the adenosine A2 receptor partial agonists, N6-cyclohexyladenosine and R-(-)-N6-(2-phenylisopropyl)adenosine, was abolished at higher phenylephrine concentrations (e.g. 30 EC50). 4. A 1000 fold increase in the adenosine concentration was required to shift the value of the EC50 of phenylephrine six fold, while a similar increase in the value of the EC50 of adenosine could be elicited by only a 32 fold increase in the phenylephrine concentration. A 30 fold increase in the phenylephrine concentration shifted the value of the EC50 of 5'-N-ethylcarboxamidoadenosine four fold. 5. Analysis of the functional antagonism between the responses mediated by these receptors using the Black & Leff (1983) operational model of agonism allowed for the estimation of the agonist dissociation constant, KA, and the apparent efficacy, tau, for both phenylephrine and adenosine A2 receptor agonists. Increasing the concentration of phenylephrine reduced the value of tau for adenosine agonists in a concentration-dependent and saturable manner. Similarly, increasing the

  18. Molecular Determinants of CGS21680 Binding to the Human Adenosine A2A Receptor.

    PubMed

    Lebon, Guillaume; Edwards, Patricia C; Leslie, Andrew G W; Tate, Christopher G

    2015-06-01

    The adenosine A2A receptor (A(2A)R) plays a key role in transmembrane signaling mediated by the endogenous agonist adenosine. Here, we describe the crystal structure of human A2AR thermostabilized in an active-like conformation bound to the selective agonist 2-[p-(2-carboxyethyl)phenylethyl-amino]-5'-N-ethylcarboxamido adenosine (CGS21680) at a resolution of 2.6 Å. Comparison of A(2A)R structures bound to either CGS21680, 5'-N-ethylcarboxamido adenosine (NECA), UK432097 [6-(2,2-diphenylethylamino)-9-[(2R,3R,4S,5S)-5-(ethylcarbamoyl)-3,4-dihydroxy-tetrahydrofuran-2-yl]-N-[2-[[1-(2-pyridyl)-4-piperidyl]carbamoylamino]ethyl]purine-2-carboxamide], or adenosine shows that the adenosine moiety of the ligands binds to the receptor in an identical fashion. However, an extension in CGS21680 compared with adenosine, the (2-carboxyethyl)phenylethylamino group, binds in an extended vestibule formed from transmembrane regions 2 and 7 (TM2 and TM7) and extracellular loops 2 and 3 (EL2 and EL3). The (2-carboxyethyl)phenylethylamino group makes van der Waals contacts with side chains of amino acid residues Glu169(EL2), His264(EL3), Leu267(7.32), and Ile274(7.39), and the amine group forms a hydrogen bond with the side chain of Ser67(2.65). Of these residues, only Ile274(7.39) is absolutely conserved across the human adenosine receptor subfamily. The major difference between the structures of A(2A)R bound to either adenosine or CGS21680 is that the binding pocket narrows at the extracellular surface when CGS21680 is bound, due to an inward tilt of TM2 in that region. This conformation is stabilized by hydrogen bonds formed by the side chain of Ser67(2.65) to CGS21680, either directly or via an ordered water molecule. Mutation of amino acid residues Ser67(2.65), Glu169(EL2), and His264(EL3), and analysis of receptor activation either in the presence or absence of ligands implicates this region in modulating the level of basal activity of A(2A)R.

  19. 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: 'Clickable' A(3) adenosine receptor-selective agonists.

    PubMed

    Tosh, Dilip K; Chinn, Moshe; Yoo, Lena S; Kang, Dong Wook; Luecke, Hans; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-01-15

    We modified a series of (N)-methanocarba nucleoside 5'-uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A(3) adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A(3)AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A(3)AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (K(i) 6.5nM), although some of the click products had K(i) values in the range of 200-400nM. Other potent, selective derivatives (K(i) at A(3)AR innM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), alpha-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A(3)AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A(3)AR agonists to reporter groups of diverse structure and to carrier moieties.

  20. Modulation of GABA transport by adenosine A1R-A2AR heteromers, which are coupled to both Gs- and G(i/o)-proteins.

    PubMed

    Cristóvão-Ferreira, Sofia; Navarro, Gemma; Brugarolas, Marc; Pérez-Capote, Kamil; Vaz, Sandra H; Fattorini, Giorgia; Conti, Fiorenzo; Lluis, Carmen; Ribeiro, Joaquim A; McCormick, Peter J; Casadó, Vicent; Franco, Rafael; Sebastião, Ana M

    2011-11-02

    Astrocytes play a key role in modulating synaptic transmission by controlling the available extracellular GABA via the GAT-1 and GAT-3 GABA transporters (GATs). Using primary cultures of rat astrocytes, we show here that an additional level of regulation of GABA uptake occurs via modulation of the GATs by the adenosine A(1) (A(1)R) and A(2A) (A(2A)R) receptors. This regulation occurs through a complex of heterotetramers (two interacting homodimers) of A(1)R-A(2A)R that signal via two different G-proteins, G(s) and G(i/o), and either enhances (A(2A)R) or inhibits (A(1)R) GABA uptake. These results provide novel mechanistic insight into how G-protein-coupled receptor heteromers signal. Furthermore, we uncover a previously unknown mechanism in which adenosine, in a concentration-dependent manner, acts via a heterocomplex of adenosine receptors in astrocytes to significantly contribute to neurotransmission at the tripartite (neuron-glia-neuron) synapse.

  1. Agonist Dynamics and Conformational Selection during Microsecond Simulations of the A2A Adenosine Receptor

    PubMed Central

    Lee, Ji Young; Lyman, Edward

    2012-01-01

    The G-protein-coupled receptors (GPCRs) are a ubiquitous family of signaling proteins of exceptional pharmacological importance. The recent publication of structures of several GPCRs cocrystallized with ligands of differing activity offers a unique opportunity to gain insight into their function. To that end, we performed microsecond-timescale simulations of the A2A adenosine receptor bound to either of two agonists, adenosine or UK432097. Our data suggest that adenosine is highly dynamic when bound to A2A, in stark contrast to the case with UK432097. Remarkably, adenosine finds an alternate binding pose in which the ligand is inverted relative to the crystal structure, forming relatively stable interactions with helices I and II. Our observations suggest new experimental tests to validate our predictions and deepen our understanding of GPCR signaling. Overall, our data suggest an intriguing hypothesis: that the 100- to 1000-fold greater efficacy of UK432097 relative to adenosine arises because UK432097 stabilizes a much tighter neighborhood of active conformations, which manifests as a greater likelihood of G-protein activation per unit time. PMID:22824275

  2. Synergistic Up-Regulation of Vascular Endothelial Growth Factor Expression in Murine Macrophages by Adenosine A2A Receptor Agonists and Endotoxin

    PubMed Central

    Leibovich, Samuel Joseph; Chen, Jiang-Fan; Pinhal-Enfield, Grace; Belem, Paula C.; Elson, Genie; Rosania, Anthony; Ramanathan, Madhuri; Montesinos, Carmen; Jacobson, Marlene; Schwarzschild, Michael A.; Fink, J. Stephen; Cronstein, Bruce

    2002-01-01

    Under normoxic conditions, macrophages from C57BL mice produce low levels of vascular endothelial growth factor (VEGF). Hypoxia stimulates VEGF expression by ∼500%; interferon-γ (IFN-γ) with endotoxin [lipopolysaccharide (LPS)] also stimulates VEGF expression by ∼50 to 150% in an inducible nitric oxide synthase (iNOS)-dependent manner. Treatment of normoxic macrophages with 5′-N-ethyl-carboxamido-adenosine (NECA), a nonselective adenosine A2 receptor agonist, or with 2-[p-(2-carboxyethyl)-phenylethyl amino]-5′-N-ethyl-carboxamido-adenosine (CGS21680), a specific adenosine A2A receptor agonist, modestly increases VEGF expression, whereas 2-chloro-N6-cyclopentyl adenosine (CCPA), an adenosine A1 agonist, does not. Treatment with LPS (0 to 1000 ng/ml), or with IFN-γ (0 to 300 U/ml), does not affect VEGF expression. In the presence of LPS (EC50 < 10 ng/ml), but not of IFN-γ, both NECA and CGS21680 synergistically up-regulate VEGF expression by as much as 10-fold. This VEGF is biologically active in vivo in the rat corneal bioassay of angiogenesis. Inhibitors of iNOS do not affect this synergistic induction of VEGF, and macrophages from iNOS−/− mice produce similar levels of VEGF as wild-type mice, indicating that NO does not play a role in this induction. Under hypoxic conditions, VEGF expression is slightly increased by adenosine receptor agonists but adenosine A2 or A1 receptor antagonists 3,7-dimethyl-1-propargyl xanthine (DMPX), ZM241385, and 8-cyclopentyl-1,3-dipropylxanthine (DCPCX) do not modulate VEGF expression. VEGF expression is also not reduced in hypoxic macrophages from A3−/− and A2A−/− mice. Thus, VEGF expression by hypoxic macrophages does not seem to depend on endogenously released or exogenous adenosine. VEGF expression is strongly up-regulated by LPS/NECA in macrophages from A3−/− but not A2A−/− mice, confirming the role of adenosine A2A receptors in this pathway. LPS with NECA strongly up-regulates VEGF expression by

  3. Untangling dopamine-adenosine receptor-receptor assembly in experimental parkinsonism in rats

    PubMed Central

    Fernández-Dueñas, Víctor; Taura, Jaume J.; Cottet, Martin; Gómez-Soler, Maricel; López-Cano, Marc; Ledent, Catherine; Watanabe, Masahiko; Trinquet, Eric; Pin, Jean-Philippe; Luján, Rafael; Durroux, Thierry; Ciruela, Francisco

    2015-01-01

    Parkinson’s disease (PD) is a dopaminergic-related pathology in which functioning of the basal ganglia is altered. It has been postulated that a direct receptor-receptor interaction – i.e. of dopamine D2 receptor (D2R) with adenosine A2A receptor (A2AR) (forming D2R-A2AR oligomers) – finely regulates this brain area. Accordingly, elucidating whether the pathology prompts changes to these complexes could provide valuable information for the design of new PD therapies. Here, we first resolved a long-standing question concerning whether D2R-A2AR assembly occurs in native tissue: by means of different complementary experimental approaches (i.e. immunoelectron microscopy, proximity ligation assay and TR-FRET), we unambiguously identified native D2R-A2AR oligomers in rat striatum. Subsequently, we determined that, under pathological conditions (i.e. in a rat PD model), D2R-A2AR interaction was impaired. Collectively, these results provide definitive evidence for alteration of native D2R-A2AR oligomers in experimental parkinsonism, thus conferring the rationale for appropriate oligomer-based PD treatments. PMID:25398851

  4. A critical evaluation of adenosine A2A receptors as potentially "druggable" targets in Huntington's disease.

    PubMed

    Popoli, Patrizia; Blum, David; Domenici, Maria Rosaria; Burnouf, Sylvie; Chern, Yijuang

    2008-01-01

    Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by the expansion of a polymorphic CAG trinucleotide repeat encoding a poly-glutamine tract within the Huntingtin protein. GABAergic enkephalin neurons of the basal ganglia, which show the highest levels of expression of adenosine A(2A) receptors, are the most vulnerable in HD. Such a selective neuronal vulnerability, which occurs despite ubiquitous expression of mutant and normal Huntingtin, has suggested that adenosine A(2A) receptors might play a pathogenetic role in HD. In agreement, changes in A(2A) receptor expression and signaling have been reported in various experimental models of HD. The interpretation of the functional significance of the aberrant A(2A) receptor phenotype in HD mice is however complicated by the conflicting data so far reported on the potential neuroprotective and neurodegenerative effects of these receptors in the brain, with some data sugg