Science.gov

Sample records for a1 adenosinergic agonist

  1. A1 receptor mediated adenosinergic regulation of perifornical-lateral hypothalamic area neurons in freely behaving rats

    PubMed Central

    Rai, Seema; Kumar, Sunil; Alam, Md. Aftab; Szymusiak, Ronald; McGinty, Dennis; Alam, Md. Noor

    2010-01-01

    The perifornical-lateral hypothalamic area (PF-LHA) plays a central role in the regulation of behavioral arousal. The PF-LHA contains several neuronal types including wake-active hypocretin (HCRT) neurons that have been implicated in the promotion and/or maintenance of behavioral arousal. Adenosine is an endogenous sleep factor and recent evidence suggests that activation and blockade of adenosine A1 receptors within the PF-LHA promote and suppress sleep, respectively. Although, an in vitro study indicates that adenosine inhibits HCRT neurons via A1 receptor, the in vivo effects of A1 receptor mediated adenosinergic transmission on PF-LHA neurons including HCRT neurons are not known. First, we determined the effects of N6-cyclopentyladenosine (CPA), an adenosine A1 receptor agonist, on the sleep-wake discharge activity of the PF-LHA neurons recorded via microwires placed adjacent to the microdialysis probe used for its delivery. Second, we determined the effects of CPA and that of an A1 receptor antagonist, 1,3-dipropyl-8-phenylxanthine (CPDX) into the PF-LHA on cFos-protein immunoreactivity (Fos-IR) in HCRT and non-HCRT neurons around the microdialysis probe used for their delivery. The effect of CPA was studied in rats that were kept awake during lights-off phase, whereas the effect of CPDX was examined in undisturbed rats during lights-on phase. CPA significantly suppressed the sleep-wake discharge activity of PF-LHA neurons. Doses of CPA (50μM) and CPDX (50μM) that suppressed and induced arousal, respectively, in our earlier study (Alam et al., 2009), significantly suppressed and increased Fos-IR in HCRT and non-HCRT neurons. These findings suggest that wake-promoting PF-LHA system is subject to increased endogenous adenosinergic inhibition and that adenosine acting via A1 receptors, in part, inhibits HCRT neurons to promote sleep. PMID:20109537

  2. Involvement of adenosine A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of cocaine and methamphetamine in rats.

    PubMed

    Justinova, Zuzana; Ferre, Sergi; Segal, Pavan N; Antoniou, Katerina; Solinas, Marcello; Pappas, Lara A; Highkin, Jena L; Hockemeyer, Jorg; Munzar, Patrik; Goldberg, Steven R

    2003-12-01

    Adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission. We have recently reported that nonselective adenosine receptor antagonists (caffeine and 3,7-dimethyl-1-propargylxanthine) can partially substitute for the discriminative-stimulus effects of methamphetamine. In the present study, by using more selective compounds, we investigated the involvement of A1 and A2A receptors in the adenosinergic modulation of the discriminative-stimulus effects of both cocaine and methamphetamine. The effects of the A1 receptor agonist N6-cyclopentyladenosine (CPA; 0.01-0.1 mg/kg) and antagonist 8-cyclopentyl-1,3-dimethylxanthine (CPT; 1.3-23.7 mg/kg) and the A2A receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; 0.03-0.18 mg/kg) and antagonist 3-(3-hydroxypropyl)-8-(3-methoxystyryl)-7-methyl-1-propargylxanthin phosphate disodium salt (MSX-3; 1-56 mg/kg) were evaluated in rats trained to discriminate either 1 mg/kg methamphetamine or 10 mg/kg cocaine from saline under a fixed-ratio 10 schedule of food presentation. The A1 and A2A receptor antagonists (CPT and MSX-3) both produced high levels of drug-lever selection when substituted for either methamphetamine or cocaine and significantly shifted dose-response curves of both psychostimulants to the left. Unexpectedly, the A2A receptor agonist CGS 21680 also produced drug-appropriate responding (although at lower levels) when substituted for the cocaine-training stimulus, and both CGS 21680 and the A1 receptor agonist CPA significantly shifted the cocaine dose-response curve to the left. In contrast, both agonists did not produce significant levels of drug-lever selection when substituted for the methamphetamine-training stimulus and failed to shift the methamphetamine dose-response curve. Therefore, adenosine A1 and A2A receptors appear to play important but differential roles in the modulation of the

  3. Dipyridamole attenuates ischemia reperfusion induced acute kidney injury through adenosinergic A1 and A2A receptor agonism in rats.

    PubMed

    Puri, Nikkita; Mohey, Vinita; Singh, Manjinder; Kaur, Tajpreet; Pathak, Devendra; Buttar, Harpal Singh; Singh, Amrit Pal

    2016-04-01

    Dipyridamole (DYP) is an anti-platelet agent with marked vasodilator, anti-oxidant, and anti-inflammatory activity. The present study investigated the role of adenosine receptors in DYP-mediated protection against ischemia reperfusion-induced acute kidney injury (AKI) in rats. The rats were subjected to bilateral renal ischemia for 40 min followed by reperfusion for 24 h. The renal damage induced by ischemia reperfusion injury (IRI) was assessed by measuring creatinine clearance, blood urea nitrogen, uric acid, plasma potassium, fractional excretion of sodium, and microproteinuria in rats. The oxidative stress in renal tissues was assessed by quantification of thiobarbituric acid-reactive substances, superoxide anion generation, and reduced glutathione level. The hematoxylin-eosin staining was carried out to observe histopathological changes in renal tissues. DYP (10 and 30 mg/kg, intraperitoneal, i.p.) was administered 30 min before subjecting the rats to renal IRI. In separate groups, caffeine (50 mg/kg, i.p.), an adenosinergic A1 and A2A receptor antagonist was administered with and without DYP treatment before subjecting the rats to renal IRI. The ischemia reperfusion-induced AKI was demonstrated by significant changes in serum as well as urinary parameters, enhanced oxidative stress, and histopathological changes in renal tissues. The administration of DYP demonstrated protection against AKI. The prior treatment with caffeine abolished DYP-mediated reno-protection suggesting role of A1 and A2A adenosine receptors in DYP-mediated reno-protection in rats. It is concluded that adenosine receptors find their definite involvement in DYP-mediated anti-oxidative and reno-protective effect against ischemia reperfusion-induced AKI.

  4. Functional interaction and cross-tolerance between ethanol and Δ9-THC: possible modulation by mouse cerebellar adenosinergic A1/GABAergic-A receptors.

    PubMed

    Dar, M Saeed

    2014-08-15

    We have previously shown a functional motor interaction between ethanol and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) that involved cerebellar adenosinergic A1 and GABAergic A receptor modulation. We now report the development of cross-tolerance between intracerebellar Δ(9)-THC and intraperitoneal ethanol using ataxia as the test response in male CD-1 mice. The drugs [Δ(9)-THC (20 μg), N(6)-cyclohexyladenosine, CHA (12 ng), muscimol (20 ng)] used in the study were directly microinfused stereotaxically via guide cannulas into the cerebellum except ethanol. Δ(9)-THC, infused once daily for 5 days followed 16 h after the last infusion by acute ethanol (2g/kg) and Rotorod evaluation, virtually abolished ethanol ataxia indicating development of cross-tolerance. The cross-tolerance was also observed when the order of ethanol and Δ(9)-THC treatment was reversed, i.e., ethanol injected once daily for 5 days followed 16 h after the last ethanol injection by Δ(9)-THC infusion. The cross-tolerance appeared within 24-48 h, lasted over 72 h and was maximal in 5-day ethanol/Δ(9)-THC-treated animals. Finally, tolerance in chronic ethanol/Δ(9)-THC/-treated animals developed not only to ethanol/Δ(9)-THC-induced ataxia, respectively, but also to the ataxia potentiating effect of CHA and muscimol, indicating modulation by cerebellar adenosinergic A1 and GABAA receptors. A practical implication of these results could be that marijuana smokers may experience little or no negative effects such as ataxia following alcohol consumption. Clinically, such antagonism of ethanol-induced ataxia can be observed in marijuana users thereby encouraging more alcohol consumption and thus may represent a risk factor for the development of alcoholism in this segment of population.

  5. Involvement of adenosinergic receptors in anxiety related behaviours.

    PubMed

    Kulkarni, Shrinivas K; Singh, Kulwinder; Bishnoi, Mahendra

    2007-05-01

    In the present study, the effect of adenosine (A1 and A2 receptor agonist), caffeine (A2A receptor antagonist), theophylline (A2A receptor antagonist) and their combination was studied in anxiety related behaviours using elevated zero maze and elevated plus maze paradigms and compared their various behavioural profiles. Adenosine (10, 25, 50,100 mg/kg) significantly showed anxiolytic effect at all the doses, whereas caffeine (8, 15, 30, 60 mg/kg) and theophylline (30, 60 mg/kg) showed psychostimulatory action at lower doses and anxiogenic effect at higher doses. Pretreatment with caffeine (8, 15, 30 mg/kg) and theophylline (30 mg/kg) reversed the anxiolytic effect of adenosine. The study suggested the involvement of adenosinergic receptor system in anxiety related behaviours.

  6. Adenosinergic signaling in epilepsy.

    PubMed

    Boison, Detlev

    2016-05-01

    Despite the introduction of at least 20 new antiepileptic drugs (AEDs) into clinical practice over the past decades, about one third of all epilepsies remain refractory to conventional forms of treatment. In addition, currently used AEDs have been developed to suppress neuronal hyperexcitability, but not necessarily to address pathogenic mechanisms involved in epilepsy development or progression (epileptogenesis). For those reasons endogenous seizure control mechanisms of the brain may provide alternative therapeutic opportunities. Adenosine is a well characterized endogenous anticonvulsant and seizure terminator of the brain. Several lines of evidence suggest that endogenous adenosine-mediated seizure control mechanisms fail in chronic epilepsy, whereas therapeutic adenosine augmentation effectively prevents epileptic seizures, even those that are refractory to conventional AEDs. New findings demonstrate that dysregulation of adenosinergic mechanisms are intricately involved in the development of epilepsy and its comorbidities, whereas adenosine-associated epigenetic mechanisms may play a role in epileptogenesis. The first goal of this review is to discuss how maladaptive changes of adenosinergic mechanisms contribute to the expression of seizures (ictogenesis) and the development of epilepsy (epileptogenesis) by focusing on pharmacological (adenosine receptor dependent) and biochemical (adenosine receptor independent) mechanisms as well as on enzymatic and transport based mechanisms that control the availability (homeostasis) of adenosine. The second goal of this review is to highlight innovative adenosine-based opportunities for therapeutic intervention aimed at reconstructing normal adenosine function and signaling for improved seizure control in chronic epilepsy. New findings suggest that transient adenosine augmentation can have lasting epigenetic effects with disease modifying and antiepileptogenic outcome. This article is part of the Special Issue entitled

  7. Reduced Sleep and Low Adenosinergic Sensitivity in Cacna1a R192Q Mutant Mice

    PubMed Central

    De boer, Tom; van Diepen, Hester C.; Ferrari, Michel D.; Van den Maagdenberg, Arn M. J. M.; Meijer, Johanna H.

    2013-01-01

    Study Objectives: Adenosine modulates sleep via A1 and A2A receptors. As the A1 receptor influences CaV2.1 channel functioning via G-protein inhibition, there is a possible role of the CaV2.1 channel in sleep regulation. To this end we investigated transgenic Cacna1a R192Q mutant mice that express mutant CaV2.1 channels that are less susceptible to inhibition by G-proteins. We hypothesized that Cacna1a R192Q mice could show reduced susceptibility to adenosine, which may result in a sleep phenotype characterized by decreased sleep. Design: R192Q mutant and littermate wild-type mice were subjected to a 6-h sleep deprivation, treatment with caffeine (a non-specific adenosine receptor antagonist which induces waking), or cyclopentyladenosine (CPA, an A1 receptor specific agonist which induces sleep). Measurements and Results: Under baseline conditions, Cacna1a R192Q mice showed more waking with longer waking episodes in the dark period and less non-rapid eye movement (NREM) sleep, but equal amounts of REM sleep compared to wild-type. After treatment with caffeine R192Q mice initiated sleep 30 min earlier than wild-type, whereas after CPA treatment, R192Q mice woke up 260 min earlier than wild-type. Both results indicate that Cacna1a R192Q mice are less susceptible to adenosinergic input, which may explain the larger amount of waking under undisturbed baseline conditions. Conclusion: We here show that adenosinergic sleep induction, and responses to caffeine and CPA, are modified in the R192Q mutant in a manner consistent with decreased susceptibility to inhibition by adenosine. The data suggest that the A1 receptor modulates sleep via the CaV2.1 channel. Citation: Deboer T; van Diepen HC; Ferrari MD; Van den Maagdenberg AMJM; Meijer JH. Reduced sleep and low adenosinergic sensitivity in Cacna1a R192Q mutant mice. SLEEP 2013;36(1):127-136. PMID:23288979

  8. The A1 receptor agonist R-Pia reduces the imbalance between cerebral glucose metabolism and blood flow during status epilepticus: could this mechanism be involved with neuroprotection?

    PubMed

    Silva, Iara Ribeiro; Nehlig, Astrid; Rosim, Fernanda Elisa; Vignoli, Thiago; Persike, Daniele Suzete; Ferrandon, Arielle; Sinigaglia-Coimbra, Rita; Fernandes, Maria José da Silva

    2011-01-01

    It is well known that the uncoupling between local cerebral glucose utilization (LCGU) and local cerebral blood flow (LCBF), i.e. decrease in LCBF rates with high LCGU, is frequently associated with seizure-induced neuronal damage. This study was performed to assess if the neuroprotective effect of the adenosinergic A(1) receptor agonist R-N-phenylisopropyladenosine (R-Pia) injected prior to pilocarpine is able to reduce the uncoupling between LCGU and LCBF during status epilepticus (SE). Four groups of rats were studied: Saline, Pilo, R-Pia+Saline and R-Pia+Pilo. For LCGU and LCBF studies, rats were subjected to autoradiography using [(14)C]-2-deoxyglucose and [(14)C]-iodoantypirine, respectively. Radioligands were injected 4 h after SE onset. Neuronal loss was evaluated by Fluorojade-B (FJB) at two time points after SE onset (24 h and 7 days). The results showed a significant increase in LCGU in almost all brain regions studied in the Pilo and R-Pia+Pilo groups compared to controls. However, in R-Pia pretreated rats, the uncoupling between LCGU and LCBF was moderated in a limited number of structures as substantia nigra pars reticulata and hippocampal formation rather in favor of hyperperfusion. Significant increases in LCBF were observed in the entorhinal cortex, thalamic nuclei, mammillary body, red nucleus, zona incerta, pontine nucleus and visual cortex. The neuroprotective effect of R-Pia assessed by FJB showed a lower density of degenerating cells in the hippocampal formation, piriform cortex and basolateral amygdala. In conclusion our data shows that the neuroprotective effect of R-Pia was accompanied by a compensatory metabolic input in brain areas involved with seizures generation. Published by Elsevier Inc.

  9. Adenosine-A1 Receptor Agonist Induced Hyperalgesic Priming Type II

    PubMed Central

    Araldi, Dioneia; Ferrari, Luiz F.; Levine, Jon D.

    2016-01-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin acetate salt) induces a model of the transition to chronic pain that we have termed Type II hyperalgesic priming. Similar to Type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, Type II hyperalgesic priming differs from Type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N6-Cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced Type II hyperalgesic priming. In this study we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced Type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the Type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor. PMID:26588695

  10. Adenosine-A1 receptor agonist induced hyperalgesic priming type II.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-03-01

    We have recently shown that repeated exposure of the peripheral terminal of the primary afferent nociceptor to the mu-opioid receptor (MOR) agonist DAMGO ([D-Ala, N-Me-Phe, Gly-ol]-enkephalin acetate salt) induces a model of transition to chronic pain that we have termed type II hyperalgesic priming. Similar to type I hyperalgesic priming, there is a markedly prolonged response to subsequent administration of proalgesic cytokines, prototypically prostaglandin E2 (PGE2). However, type II hyperalgesic priming differs from type I in being rapidly induced, protein kinase A (PKA), rather than PKCε dependent, not reversed by a protein translation inhibitor, occurring in female as well as in male rats, and isolectin B4-negative neuron dependent. We report that, as with the repeated injection of a MOR agonist, the repeated administration of an agonist at the A1-adenosine receptor, also a Gi-protein coupled receptor, N-cyclopentyladenosine (CPA), also produces priming similar to DAMGO-induced type II hyperalgesic priming. In this study, we demonstrate that priming induced by repeated exposure to this A1-adenosine receptor agonist shares the same mechanisms, as MOR-agonist induced priming. However, the prolongation of PGE2 hyperalgesia induced by repeated administration of CPA depends on G-protein αi subunit activation, differently from DAMGO-induced type II priming, in which it depends on the β/γ subunit. These data implicate a novel form of Gi-protein signaling pathway in the type II hyperalgesic priming induced by repeated administration of an agonist at A1-adenosine receptor to the peripheral terminal of the nociceptor.

  11. Adenosine Receptor Prodrugs: Synthesis and Biological Activity of Derivatives of Potent, A1-Selective Agonists

    PubMed Central

    Maillrad, Michel C.; Nikodijević, Olga; LaNoue, Kathryn F.; Berkich, Deborah; Xiao-duo, JI; Bartus, Raymond

    2012-01-01

    5′-Ester derivatives of the potent adenosine agonists N6-[4-[[[[4-[[[(2-acetylaminoethyl)amino] carbonyl] methyl] anilino] carbonyl] methyl] phenyl] adenosine (N-AcADAC; 1) and N6-cyclopentyladenosine (CPA; 2) were prepared as prodrugs. Both alkyl esters or carbonates (designed to enter the brain by virtue of increased lipophilicity) and 1,4-dihydro-1-methyl-3- [(pyridinylcarbonyl)oxy] esters designed to concentrate in the brain by virtue of a redox delivery system were synthesized. In the 5′-blocked form, the adenosine agonists displayed highly diminished affinity for rat brain A1-adenosine receptors in binding assays. The dihydropyridine prodrug 29 was active in an assay of locomotor depression in mice, in which adenosine agonists are highly depressant. The behavior depression was not reversible by peripheral administration of a non-central nervous system active adenosine antagonist. In an assay of the peripheral action of adenosine (i.e., the inhibition of lipolysis in rats), the parent compounds were highly potent and the dihydropyridine prodrug was much less potent. PMID:8138909

  12. The adenosine A2A receptor agonist CGS 21680 decreases ethanol self-administration in both non-dependent and dependent animals.

    PubMed

    Houchi, Hakim; Persyn, Wolfgang; Legastelois, Rémi; Naassila, Mickaël

    2013-09-01

    There is emerging evidence that the adenosinergic system might be involved in drug addiction and alcohol dependence. We have already demonstrated the involvement of A2A receptors (A2AR) in ethanol-related behaviours in mice. Here, we investigated whether the A2AR agonist CGS 21680 can reduce ethanol operant self-administration in both non-dependent and ethanol-dependent Wistar rats. To rule out a potential involvement of the A1R in the effects of CGS 21680, we also tested its effectiveness to reduce ethanol operant self-administration in both heterozygous and homozygous A1R knockout mice. Our results demonstrated that CGS 21680 (0.065, 0.095 and 0.125 mg/kg, i.p.) had a bimodal effect on 10% ethanol operant self-administration in non-dependent rats. The intermediate dose was also effective in reducing 2% sucrose self-administration. Interestingly, the intermediate dose reduced 10% ethanol self-administration in dependent animals more effectively (75% decrease) when compared with non-dependent animals (57% decrease). These results suggest that the A2AR are involved in CGS 21680 effects since the reduction of ethanol self-administration was not dependent upon the presence of A1R in mice. In conclusion, our findings demonstrated the effectiveness of the A2AR agonist CGS 21680 in a preclinical model of alcohol addiction and suggested that the adenosinergic pathway is a promising target to treat alcohol addiction.

  13. New QSAR combined strategy for the design of A1 adenosine receptor agonists.

    PubMed

    González, Maykel Pérez; Besada, Pedro; González Moa, Maria José; Teijeira, Marta; Terán, Carmen

    2008-02-15

    Combined discriminant and regression analysis was carried out on a series of 167 A1 adenosine receptor agonists to identify the best linear and nonlinear models for the design of new compounds with a better biological profile. On the basis of the best linear discriminant analysis and both linear and nonlinear Multi Layer Perceptron neural networks regression, we have designed and synthesized 14 carbonucleoside analogues of adenosine. Their biological activities were predicted and experimentally measured to demonstrate the capability of our model to avoid the prediction of false positives. A good agreement was found between the calculated and observed biological activity.

  14. Macrophage A2A Adenosinergic Receptor Modulates Oxygen-Induced Augmentation of Murine Lung Injury

    PubMed Central

    D’Alessio, Franco R.; Eto, Yoshiki; Chau, Eric; Avalos, Claudia; Waickman, Adam T.; Garibaldi, Brian T.; Mock, Jason R.; Files, Daniel C.; Sidhaye, Venkataramana; Polotsky, Vsevolod Y.; Powell, Jonathan; Horton, Maureen; King, Landon S.

    2013-01-01

    Acute respiratory distress syndrome (ARDS) causes significant morbidity and mortality. Exacerbating factors increasing the risk of ARDS remain unknown. Supplemental oxygen is often necessary in both mild and severe lung disease. The potential effects of supplemental oxygen may include augmentation of lung inflammation by inhibiting anti-inflammatory pathways in alveolar macrophages. We sought to determine oxygen-derived effects on the anti-inflammatory A2A adenosinergic (ADORA2A) receptor in macrophages, and the role of the ADORA2A receptor in lung injury. Wild-type (WT) and ADORA2A−/− mice received intratracheal lipopolysaccharide (IT LPS), followed 12 hours later by continuous exposure to 21% oxygen (control mice) or 60% oxygen for 1 to 3 days. We measured the phenotypic endpoints of lung injury and the alveolar macrophage inflammatory state. We tested an ADORA2A-specific agonist, CGS-21680 hydrochloride, in LPS plus oxygen-exposed WT and ADORA2A−/− mice. We determined the specific effects of myeloid ADORA2A, using chimera experiments. Compared with WT mice, ADORA2A−/− mice exposed to IT LPS and 60% oxygen demonstrated significantly more histologic lung injury, alveolar neutrophils, and protein. Macrophages from ADORA2A−/− mice exposed to LPS plus oxygen expressed higher concentrations of proinflammatory cytokines and cosignaling molecules. CGS-21680 prevented the oxygen-induced augmentation of lung injury after LPS only in WT mice. Chimera experiments demonstrated that the transfer of WT but not ADORA2A−/− bone marrow cells into irradiated ADORA2A−/− mice reduced lung injury after LPS plus oxygen, demonstrating myeloid ADORA2A protection. ADORA2A is protective against lung injury after LPS and oxygen. Oxygen after LPS increases macrophage activation to augment lung injury by inhibiting the ADORA2A pathway. PMID:23349051

  15. Design and pharmacological evaluation of PF-4840154, a non-electrophilic reference agonist of the TrpA1 channel.

    PubMed

    Ryckmans, Thomas; Aubdool, Aisah A; Bodkin, Jennifer V; Cox, Peter; Brain, Susan D; Dupont, Thomas; Fairman, Emma; Hashizume, Yoshinobu; Ishii, Naoko; Kato, Teruhisa; Kitching, Linda; Newman, Julie; Omoto, Kiyoyuki; Rawson, David; Strover, Jade

    2011-08-15

    TrpA1 is an ion channel involved in nociceptive and inflammatory pain. It is implicated in the detection of chemical irritants through covalent binding to a cysteine-rich intracellular region of the protein. While performing an HTS of the Pfizer chemical collection, a class of pyrimidines emerged as a non-reactive, non-covalently binding family of agonists of the rat and human TrpA1 channel. Given the issues identified with the reference agonist Mustard Oil (MO) in screening, a new, non-covalently binding agonist was optimized and proved to be a superior agent to MO for screening purposes. Compound 16a (PF-4840154) is a potent, selective agonist of the rat and human TrpA1 channel and elicited TrpA1-mediated nocifensive behaviour in mouse.

  16. Uliginosin B, a Possible New Analgesic Drug, Acts by Modulating the Adenosinergic System

    PubMed Central

    Stolz, Eveline Dischkaln; da Costa, Paola Fontoura; Medeiros, Liciane Fernandes; Souza, Andressa; Battastini, Ana Maria Oliveira; von Poser, Gilsane Lino; Bonan, Carla; Torres, Iraci L. S.; Rates, Stela Maris Kuze

    2016-01-01

    Uliginosin B (ULI) is a natural acylphloroglucinol that has been proposed as a new molecular scaffold for developing analgesic and antidepressant drugs. Its effects seem to be due to its ability to increase monoamines in the synaptic cleft by inhibiting their neuronal uptake without binding to their respective transporters, but its exact mode of action is still unknown. Considering the importance of the purinergic system to pain transmission and its modulation by monoamines availability, the aim of this study was to investigate the involvement of adenosinergic signaling in antinociceptive effect of uliginosin B. The selective adenosine A1 receptor antagonist DPCPX and the selective A2A antagonist ZM 241385 prevented the effect of ULI in the hot-plate test in mice. Pretreatment with inhibitors of adenosine reuptake (dipyridamole) or adenosine deaminase (EHNA) did not affect the ULI effect. On the other hand, its effect was completely prevented by an inhibitor of ecto-5′-nucleotidase (AMPCP). This finding was confirmed ex vivo, whereby ULI treatment increased AMP and ATP hydrolysis in spinal cord and cerebral cortex synaptosomes, respectively. Altogether, these data indicate that activation of A1 and A2A receptors and the modulation of ecto-5′-nucleotidase activity contribute to the antinociceptive effect of ULI. PMID:27087824

  17. Uliginosin B, a Possible New Analgesic Drug, Acts by Modulating the Adenosinergic System.

    PubMed

    Stolz, Eveline Dischkaln; da Costa, Paola Fontoura; Medeiros, Liciane Fernandes; Souza, Andressa; Battastini, Ana Maria Oliveira; von Poser, Gilsane Lino; Bonan, Carla; Torres, Iraci L S; Rates, Stela Maris Kuze

    2016-01-01

    Uliginosin B (ULI) is a natural acylphloroglucinol that has been proposed as a new molecular scaffold for developing analgesic and antidepressant drugs. Its effects seem to be due to its ability to increase monoamines in the synaptic cleft by inhibiting their neuronal uptake without binding to their respective transporters, but its exact mode of action is still unknown. Considering the importance of the purinergic system to pain transmission and its modulation by monoamines availability, the aim of this study was to investigate the involvement of adenosinergic signaling in antinociceptive effect of uliginosin B. The selective adenosine A1 receptor antagonist DPCPX and the selective A2A antagonist ZM 241385 prevented the effect of ULI in the hot-plate test in mice. Pretreatment with inhibitors of adenosine reuptake (dipyridamole) or adenosine deaminase (EHNA) did not affect the ULI effect. On the other hand, its effect was completely prevented by an inhibitor of ecto-5'-nucleotidase (AMPCP). This finding was confirmed ex vivo, whereby ULI treatment increased AMP and ATP hydrolysis in spinal cord and cerebral cortex synaptosomes, respectively. Altogether, these data indicate that activation of A1 and A2A receptors and the modulation of ecto-5'-nucleotidase activity contribute to the antinociceptive effect of ULI.

  18. Behavioral Effects of A1- and A2-Selective Adenosine Agonists and Antagonists: Evidence for Synergism and Antagonism

    PubMed Central

    NIKODIJEVIĆ, OLGA; SARGES, REINHARD; DALY, JOHN W.; JACOBSON, KENNETH A.

    2012-01-01

    The locomotor effects in mice of selective A1 and A2 adenosine agonists, antagonists and combinations of agonists were investigated using a computerized activity monitor. The A2-selective agonist 2-[(2-aminoethylamino)carbonylethylphenylethylamino]-5'-N-ethylcarboxamidoadenosine (APEC), an amine derivative of 2-(carboxyethylphenylethylamino)adenosine-5'-carboxamide, was a more potent locomotor depressant than its amide conjugates. The rank order of potency after i.p. injection for adenosine agonists was 5'-N-ethylcarboxamidoadenosine (NECA) (ED50, 5.8 nmol/kg) > APEC (ED50, 25 nmol/kg) > N6-cyclohexyladenosine (CHA) (ED50, 270 nmol/kg). An A1-selective, centrally acting, adenosine antagonist, 8-cyclopentyltheophylline (10 mg/kg), completely reversed the locomotor depressant effects of CHA (A1-selective) and NECA (nonselective) at doses of agonists as high as twice the ED50, and shifted the dose-response curves to the right, suggesting a primary involvement of A1 receptors. 8-cyclopentyltheophylline did not affect the depressant effects of APEC at the ED50, consistent with the A2-selectivity of APEC. The locomotor effects of APEC and CHA were completely reversed by theophylline, but not by the peripherally active 8-p-sulfophenyltheophylline, indicating central action of the adenosine agonists. The depressant effects of APEC, but not of NECA or CHA, were reversed significantly by an A2-selective adenosine receptor antagonist, 4-amino-8-chloro-1-phenyl-[1,2,4]triazol[4,3-a]quinoxaline. Low or subthreshold doses of CHA potentiated the depressant effects of APEC. A subthreshold dose of CHA did not alter the depressant effect of NECA, whereas a subthreshold dose of APEC increased the depressant effects of low doses of NECA. Thus, it appears that A1- and A2-selective adenosine agonists have separate central depressant effects, which can be potentiative. The relatively high potency of NECA in vivo could be due to a synergism between central A1 and A2receptor activation by

  19. Reversion of muscarinic autoreceptor agonist-induced acetylcholine decrease and learning impairment by dynorphin A (1–13), an endogenous κ-opioid receptor agonist

    PubMed Central

    Hiramatsu, Masayuki; Murasawa, Hiroyasu; Mori, Hiromasa; Kameyama, Tsutomu

    1998-01-01

    We investigated whether carbachol, a muscarinic receptor agonist, induces learning and memory impairment, and if so, dynorphin A (1–13), an endogenous κ-opioid receptor agonist, ameliorates the impairment of learning and memory induced by carbachol, by use of a step-through type passive avoidance task.Carbachol induced a dose-related dual response. Carbachol (1.66 pmol per rat) administered directly into the hippocampus significantly shortened the step-through latency, while lower (0.166 pmol per rat) and higher (16.6 pmol per rat) doses of carbachol did not induce learning or memory impairment.Dynorphin A (1–13) (0.5 nmol per rat, i.c.v.) administered 5 min after carbachol injection significantly reversed carbachol-induced impairment of learning and memory.Perfusion with carbachol (3×10−4 M) significantly decreased acetylcholine release in the hippocampus during perfusion as determined by in vivo brain microdialysis. This decrease in acetylcholine release was suppressed by co-perfusion with a low dose of atropine (10−7 M).Dynorphin A (1–13) (0.5 nmol per rat, i.c.v.) immediately before carbachol perfusion completely blocked this decrease in extracellular acetylcholine concentration induced by carbachol.These antagonistic effects of dynorphin A (1–13) were abolished by treatment with nor-binaltorphimine (5.44 nmol per rat, i.c.v.), a selective κ-opioid receptor antagonist, 5 min before dynorphin A (1–13) treatment.These results suggest that the neuropeptide dynorphin A (1–13) ameliorates the carbachol-induced impairment of learning and memory, accompanied by attenuation of the reductions in acetylcholine release which may be associated with dysfunction of presynaptic cholinergic neurones via κ-opioid receptors. PMID:9535021

  20. Adenosinergic regulation of the cardiovascular system in the red-eared slider Trachemys scripta.

    PubMed

    Joyce, William; Wang, Tobias

    2014-08-01

    Few studies have investigated adenosinergic regulation of the cardiovascular system in reptiles. The haemodynamic effect of a bolus intra-arterial adenosine injection (2.5 μM kg⁻¹) was investigated in nine anaesthetised red-eared sliders (Trachemys scripta). Adenosine caused a transient bradycardia, which was accompanied by systemic vasodilatation as evidenced by an increase in systemic flow and a decrease in systemic pressure. Meanwhile, pulmonary flow fell significantly. Both the bradycardia and increase in systemic conductance were significantly attenuated by theophylline (4 mg kg⁻¹), demonstrating an involvement of P₁ receptors. These results suggest that adenosine is likely to play a significant role in reptile cardiovascular physiology. In turtles specifically, adenosinergic regulation may be particularly relevant during periods of apnoea. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Antilipolytic activity of a novel partial A1 adenosine receptor agonist devoid of cardiovascular effects: comparison with nicotinic acid.

    PubMed

    Dhalla, Arvinder K; Santikul, Melissa; Smith, Michelle; Wong, Mei-Yee; Shryock, John C; Belardinelli, Luiz

    2007-04-01

    Elevated lipolysis and circulating free fatty acid (FFA) levels have been linked to the pathogenesis of insulin resistance. A1 adenosine receptor agonists are potent inhibitors of lipolysis. Several A1 agonists have been tested as potential antilipolytic agents; however, their effect on the cardiovascular system remains a potential problem for development of these agents as drugs. In the present study, we report that CVT-3619 [(2-{6-[((1R,2R)-2-hydroxycyclopentyl) amino] purin9-yl} (4S,5 S,2R,3R)5-[(2fluorophenylthio) methyl] oxolane-3,4-diol)], a novel partial A1 receptor agonist, significantly reduces circulating FFA levels without any effect on heart rate and blood pressure in awake rats. Rats were implanted with indwelling arterial and venous cannulas to obtain serial blood samples, record arterial pressure, and administer drug. CVT-3619 decreased FFA levels in a dose-dependent manner at doses from 1 up to 10 mg/kg. The FFA-lowering effect was blocked by the A1 receptor antagonist, 1,3-dipropyl-8-cyclopentylxanthine. Triglyceride (TG) levels were also significantly reduced by CVT-3619 treatment in the absence and presence of Triton. Tachyphylaxis of the antilipolytic effect of CVT-3619 (1 mg/kg i.v. bolus) was not observed with three consecutive treatments. An acute reduction of FFA by CVT-3619 was not followed by a rebound increase of FFA as seen with nicotinic acid. The potency of insulin to decrease lipolysis was increased 4-fold (p < 0.01) in the presence of CVT-3619 (0.5 mg/kg). In summary, CVT-3619 is an orally bioavailable A1 agonist that lowers circulating FFA and TG levels by inhibiting lipolysis. CVT-3619 has antilipolytic effects at doses that do not elicit cardiovascular effects.

  2. 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives as novel non-nucleoside agonists for the adenosine A1 receptor.

    PubMed

    Cosimelli, Barbara; Greco, Giovanni; Laneri, Sonia; Novellino, Ettore; Sacchi, Antonia; Trincavelli, Maria Letizia; Giacomelli, Chiara; Taliani, Sabrina; Da Settimo, Federico; Martini, Claudia

    2016-11-01

    Three 4-amino-6-alkyloxy-2-alkylthiopyrimidine derivatives (4-6) were investigated as potential non-nucleoside agonists at human adenosine receptors (ARs). When tested in competition binding experiments, these compounds exhibited low micromolar affinity (Ki values comprised between 1.2 and 1.9 μm) for the A1 AR and no appreciable affinity for the A2A and A3 ARs. Evaluation of their efficacy profiles by measurement of intracellular cAMP levels revealed that 4 and 5 behave as non-nucleoside agonists of the A1 AR with EC50 values of 0.47 and 0.87 μm, respectively. No clear concentration-response curves could be instead obtained for 6, probably because this compound modulates one or more additional targets, thus masking the putative effects exerted by its activation of A1 AR. The three compounds were not able to modulate A2B AR-mediated cAMP accumulation induced by the non-selective AR agonist NECA, thus demonstrating no affinity toward this receptor. © 2016 John Wiley & Sons A/S.

  3. Transient receptor potential a1 (TRPA1) agonists inhibit contractions of the isolated human ureter.

    PubMed

    Weinhold, Philipp; Hennenberg, Martin; Strittmatter, Frank; Stief, Christian G; Gratzke, Christian; Hedlund, Petter

    2017-07-03

    Mechanoafferent and peristaltic mechanisms of the human ureter involve transient receptor potential V1 (TRPV1)- and purinoceptor-mediated functions. Hydrogen sulphide, an endogenous TRPA1 ligand, is linked to inhibitory neurotransmission of the pig ureter. No information is available on TRPA1 activity in the human ureter. We therefore examined the distribution and function of TRPA1 in the human ureter. Expression of TRPA1 in human ureter tissue was studied by Western blot and immunofluorescence. The TRPA1 distribution was compared to TRPV1, calcitonin gene related peptide (CGRP), tyrosine hydroxylase (TH), and vimentin. Effects of the TRPA1 agonists allyl isothiocyanate (AI), cinnamaldehyde (CA), sodium hydrogen sulfide (NaHS), and capsaicin (TRPV1 agonist) on human ureter preparations were studied in organ baths. By Western blot, bands were detected at the expected molecular weight for TRPA1. TRPA1- and TRPV1-immunoreactivities were located on CGRP-positive nerves, but not on TH-positive nerves. TRPA1 was also located in vimentin-positive interstitial cells. In functional experiments, neither of the TRPA1-agonists (1-100 μM) had any direct effects on ureter tension (baseline/potassium-induced contractions). However, CA, AI, NaHS, and capsaicin (10 μM) decreased (P < 0.01-0.05) tetrodotoxin-sensitive electrically induced (2,4,8,16,32 Hz) contractions. Inhibitory activities were 50-61% (CA), 30-56% (AI), 30-40% (NaHS), and 37-67% (Capsaicin). In the human ureter, TRPA1 is located to sensory nerves and interstitial cells. TRPA1 agonists inhibited electrically induced contractions but had no direct effect on smooth muscle tension of the human ureter. A role for TRPA1 in modulating neurotransmission and possibly peristalsis of the human ureter is proposed. © 2017 Wiley Periodicals, Inc.

  4. Homeostatic action of adenosine A3 and A1 receptor agonists on proliferation of hematopoietic precursor cells.

    PubMed

    Hofer, Michal; Pospísil, Milan; Znojil, Vladimír; Holá, Jirina; Streitová, Denisa; Vacek, Antonín

    2008-07-01

    Two adenosine receptor agonists, N6-(3-iodobenzyl)adenosine-5'-N-methyluronamide (IB-MECA) and N6-cyclopentyladenosine (CPA), which selectively activate adenosine A3 and A1 receptors, respectively, were tested for their ability to influence proliferation of granulocytic and erythroid cells in femoral bone marrow of mice using morphological criteria. Agonists were given intraperitoneally to mice in repeated isomolar doses of 200 nmol/kg. Three variants of experiments were performed to investigate the action of the agonists under normal resting state of mice and in phases of cell depletion and subsequent regeneration after treatment with the cytotoxic drug 5-fluorouracil. In the case of granulopoiesis, IB-MECA 1) increased by a moderate but significant level proliferation of cells under normal resting state; 2) strongly increased proliferation of cells in the cell depletion phase; but 3) did not influence cell proliferation in the regeneration phase. CPA did not influence cell proliferation under normal resting state and in the cell depletion phase, but strongly suppressed the overshooting cell proliferation in the regeneration phase. The stimulatory effect of IB-MECA on cell proliferation of erythroid cells was observed only when this agonist was administered during the cell depletion phase. CPA did not modulate erythroid proliferation in any of the functional states investigated, probably due to the lower demand for cell production as compared with granulopoiesis. The results indicate opposite effects of the two adenosine receptor agonists on proliferation of hematopoietic cells and suggest the plasticity and homeostatic role of the adenosine receptor expression.

  5. Effects of A1 receptor agonist/antagonist on spontaneous seizures in pilocarpine-induced epileptic rats.

    PubMed

    Amorim, Beatriz Oliveira; Hamani, Clement; Ferreira, Elenn; Miranda, Maísa Ferreira; Fernandes, Maria José S; Rodrigues, Antonio M; de Almeida, Antônio-Carlos G; Covolan, Luciene

    2016-08-01

    Adenosine is an endogenous anticonvulsant that activates pre- and postsynaptic adenosine A1 receptors. A1 receptor agonists increase the latency for the development of seizures and status epilepticus following pilocarpine administration. Although hippocampal adenosine is increased in the chronic phase of the pilocarpine model, it is not known whether the modulation of A1 receptors may influence the frequency of spontaneous recurrent seizures (SRS). Here, we tested the hypothesis that the A1 receptor agonist RPia ([R]-N-phenylisopropyladenosine) and the A1 antagonist DPCPX (8-Cyclopentyl-1,3-dipropylxanthine) administered to chronic pilocarpine epileptic rats would respectively decrease and increase the frequency of SRS and hippocampal excitability. Four months after Pilo-induced SE, chronic epileptic rats were video-monitored for the recording of SRS before (basal) and after a 2-week treatment with RPia (25μg/kg) or DPCPX (50μg/kg). Following sacrifice, brain slices were studied with electrophysiology. We found that rats given RPia had a 93% nonsignificant reduction in the frequency of seizures compared with their own pretreatment baseline. In contrast, the administration of DPCPX resulted in an 87% significant increase in seizure rate. Nontreated epileptic rats had a similar frequency of seizures along the study. Corroborating our behavioral data, in vitro recordings showed that slices from animals previously given DPCPX had a shorter latency to develop epileptiform activity, longer and higher DC shifts, and higher spike amplitude compared with slices from nontreated Pilo controls. In contrast, smaller spike amplitude was recorded in slices from animals given RPia. In summary, the administration of A1 agonists reduced hippocampal excitability but not the frequency of spontaneous recurrent seizures in chronic epileptic rats, whereas A1 receptor antagonists increased both.

  6. Modulation of ischemia-evoked release of excitatory and inhibitory amino acids by adenosine A1 receptor agonist.

    PubMed

    Goda, H; Ooboshi, H; Nakane, H; Ibayashi, S; Sadoshima, S; Fujishima, M

    1998-09-18

    Adenosine has been reported to have beneficial effects against ischemic brain damage, although the mechanisms are not fully clarified. To examine the role of adenosine on the ischemia-evoked release of neurotransmitters, we applied a highly selective agonist for adenosine A1 receptor, 2-chloro-N6-cyclopentyladenosine (CCPA), into the ischemic brain using in vivo brain dialysis, which directly delivered the agonist to the local brain area. Concentrations of extracellular amino acids (glutamate, aspartate, gamma-aminobutyric acid (GABA) and taurine) and regional blood flow in the striatum of spontaneously hypertensive rats (SHRs) were monitored during cerebral ischemia elicited by bilateral carotid artery occlusion for 40 min and recirculation. Striatal blood flow and basal levels of amino acids were not affected by direct perfusion of CCPA (10 microM or 100 microM). During ischemia, concentrations of glutamate, aspartate, GABA and taurine increased up to 37-, 30-, 96- and 31-fold, respectively, when vehicle alone was administered. Administration of CCPA did not affect the changes in regional blood flow during ischemia and reperfusion. Perfusion of CCPA (100 microM), however, significantly attenuated the ischemia-evoked release of aspartate (by 70%) and glutamate (by 73%). The ischemia-induced increase of GABA tended to be decreased by CCPA, although it was not statistically significant. In contrast, both low and high concentrations of CCPA had little effect on the release of taurine during ischemia. These results suggest that stimulation of adenosine A1 receptors selectively attenuated the ischemia-evoked release of excitatory amino acids, but not of inhibitory amino acids without affecting blood flow. This modulation of the release of amino acids by adenosine A1 receptor agonists may play a protective role against ischemic neuronal damage.

  7. Determination of Adenosine A1 Receptor Agonist and Antagonist Pharmacology Using Saccharomyces cerevisiae: Implications for Ligand Screening and Functional Selectivity

    PubMed Central

    Stewart, Gregory D.; Valant, Celine; Dowell, Simon J.; Mijaljica, Dalibor; Devenish, Rodney J.; Scammells, Peter J.; Sexton, Patrick M.

    2009-01-01

    The budding yeast, Saccharomyces cerevisiae, is a convenient system for coupling heterologous G protein-coupled receptors (GPCRs) to the pheromone response pathway to facilitate empirical ligand screening and/or GPCR mutagenesis studies. However, few studies have applied this system to define GPCR-G protein-coupling preferences and furnish information on ligand affinities, efficacies, and functional selectivity. We thus used different S. cerevisiae strains, each expressing a specific human Gα/yeast Gpa1 protein chimera, and determined the pharmacology of various ligands of the coexpressed human adenosine A1 receptor. These assays, in conjunction with the application of quantitative models of agonism and antagonism, revealed that (−)-N6-(2-phenylisopropyl)adenosine was a high-efficacy agonist that selectively coupled to Gpa/1Gαo, Gpa1/Gαi1/2, and Gpa1/Gαi3, whereas the novel compound, 5′-deoxy-N6-(endo-norborn-2-yl)-5′-(2-fluorophenylthio)adenosine (VCP-189), was a lower-efficacy agonist that selectively coupled to Gpa1/Gαi proteins; the latter finding suggested that VCP-189 might be functionally selective. The affinity of the antagonist, 8-cyclopentyl-1,3-dipropylxanthine, was also determined at the various strains. Subsequent experiments performed in mammalian Chinese hamster ovary cells monitoring cAMP formation/inhibition, intracellular calcium mobilization, phosphorylation of extracellular signal-regulated kinase 1 and 2 or 35S-labeled guanosine 5′-(γ-thio)triphosphate binding, were in general agreement with the yeast data regarding agonist efficacy estimation and antagonist affinity estimation, but revealed that the apparent functional selectivity of VCP-189 could be explained by differences in stimulus-response coupling between yeast and mammalian cells. Our results suggest that this yeast system is a useful tool for quantifying ligand affinity and relative efficacy, but it may lack the sensitivity required to detect functional selectivity of

  8. Modulation of seizures and synaptic plasticity by adenosinergic receptors in an experimental model of temporal lobe epilepsy induced by pilocarpine in rats.

    PubMed

    Vianna, Eduardo Paulo Morowsky; Ferreira, Alice Teixeira; Doná, Flávia; Cavalheiro, Esper Abrão; da Silva Fernandes, Maria José

    2005-01-01

    Adenosine is a major negative neuromodulator of synaptic activity in the central nervous system and can exert anticonvulsant and neuroprotective effects in many experimental models of epilepsy. Extracellular adenosine can be formed by a membrane-anchored enzyme ecto-5'-nucleotidase. The purposes of this study were to characterize the role of adenosine receptors in modulating status epilepticus (SE) induced by pilocarpine and evaluate its neuroprotective action. Ecto-5'-nucleotidase activity was studied during the different phases of pilocarpine-induced epilepsy in rats. Adult rats were pretreated with different adenosinergic agents to evaluate the latency and incidence of SE induced by pilocarpine in rats. The neuroprotective effect also was evaluated. A proconvulsant effect was observed with DPCPX and DMPX that reduced the latency of SE in almost all rats. Pretreatment with the MRS 1220 did not alter the incidence of SE but reduced the latency to develop SE. An anticonvulsant and neuroprotective effect was detected with R-PIA. Rats pretreated with R-PIA had a decreased number of apoptotic cells in the hippocampus, whereas pretreatment with DPCPX did not modify the hippocampal damage. An intensification of neuronal death was observed in the dentate gyrus and CA3 when rats were pretreated with DMPX. MRS-1220 did not modify the number of apoptotic cells in the hippocampus. An increase in the ecto-5 -nucleotidase staining was detected in the hippocampus during silent and chronic phases. The present data show that adenosine released during pilocarpine-induced SE via A1-receptor stimulation can exhibit neuroprotective and anticonvulsant roles. Similar effects could also be inferred with A2a and A3 adenosinergic agents, but further experiments are necessary to confirm their roles. Ecto-5 -nucleotidase activity during silent and chronic phases might have a role in blocking spontaneous seizures by production of inhibitory neuromodulator adenosine, besides taking part in

  9. Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists.

    PubMed

    Louvel, Julien; Guo, Dong; Soethoudt, Marjolein; Mocking, Tamara A M; Lenselink, Eelke B; Mulder-Krieger, Thea; Heitman, Laura H; IJzerman, Adriaan P

    2015-08-28

    We report the synthesis and biological evaluation of new derivatives of Capadenoson, a former drug candidate that was previously advanced to phase IIa clinical trials. 19 of the 20 ligands show an affinity below 100 nM at the human adenosine A1 receptor (hA1AR) and display a wide range of residence times at this target (from approx. 5 min (compound 10) up to 132 min (compound 5)). Structure-affinity and structure-kinetics relationships were established, and computational studies of a homology model of the hA1AR revealed crucial interactions for both the affinity and dissociation kinetics of this family of ligands. These results were also combined with global metrics (Ligand Efficiency, cLogP), showing the importance of binding kinetics as an additional way to better select a drug candidate amongst seemingly similar leads.

  10. Effects of an A1 adenosine receptor agonist on the neurochemical, behavioral and histological consequences of ischemia.

    PubMed

    Héron, A; Lekieffre, D; Le Peillet, E; Lasbennes, F; Seylaz, J; Plotkine, M; Boulu, R G

    1994-04-04

    Untreated rats and rats given the A1 receptor adenosine agonist, R-phenylisopropyladenosine (R-PIA), were subjected to four vessel ischemia. The effect of R-PIA on hippocampal amino acid release, hippocampal neuronal damage, exploratory behavior, learning capacity and global neurological score were evaluated. R-PIA decreased by half the glutamate released during ischemia and improved the global neurological scores 3, 24, 48, 78 h and 7 days after ischemia. But R-PIA had no effect on taurine/GABA release (during ischemia), hippocampal neuronal damage (7 days post-ischemia), exploratory behavior (48 h post-ischemia) or learning capacity (7 days post-ischemia). Thus, a decrease in glutamate release by R-PIA is not systematically correlated with an improvement of histological damage or learning capacity. Reduced glutamate release is not therefore a sufficient criterion on which to evaluate the neuroprotective capacity of a drug.

  11. The CYP17A1 inhibitor abiraterone exhibits estrogen receptor agonist activity in breast cancer.

    PubMed

    Capper, Cameron P; Larios, José M; Sikora, Matthew J; Johnson, Michael D; Rae, James M

    2016-05-01

    Cytochrome P450 17A1 (CYP17A1) is the requisite enzyme for synthesis of sex steroids, including estrogens and androgens. As such, inhibition of CYP17A1 is a target for inhibiting the growth of hormone-dependent cancers including prostate and breast cancer. Abiraterone, is a first in class potent and selective CYP17A1 inhibitor that has been approved for the treatment of castration-resistant prostate cancer. Given that, androgens are the precursors for estrogen production, it has been proposed that abiraterone could be an effective form of treatment for estrogen receptor (ER)-positive breast cancer, though its utility in this context has yet to be established. Abiraterone has a core steroid-like chemical structure, and so we hypothesized that it may bind to nuclear steroid receptors including ER and have estrogenic activity. We tested this hypothesis by investigating abiraterone's ability to directly modulate ER signaling in breast cancer cell line models. We show that abiraterone directly activates ER, induces ER-target gene expression, and elicits estrogen-response-element reporter activity in the ER-positive cell lines MCF-7 and T47D. Abiraterone also induced cell proliferation by ~2.5-fold over vehicle in both MCF-7 and T47D cells. Importantly, abiraterone-induced cell proliferation and ER-activity was blocked by the selective estrogen receptor downregulator (SERD) fulvestrant, confirming that abiraterone directly acts at the ER. These data suggest that abiraterone should be combined with other ER antagonists when used for the clinical management of ER-positive breast cancer.

  12. The 5-HT2A/1A agonist psilocybin disrupts modal object completion associated with visual hallucinations.

    PubMed

    Kometer, Michael; Cahn, B Rael; Andel, David; Carter, Olivia L; Vollenweider, Franz X

    2011-03-01

    Recent findings suggest that the serotonergic system and particularly the 5-HT2A/1A receptors are implicated in visual processing and possibly the pathophysiology of visual disturbances including hallucinations in schizophrenia and Parkinson's disease. To investigate the role of 5-HT2A/1A receptors in visual processing the effect of the hallucinogenic 5-HT2A/1A agonist psilocybin (125 and 250 μg/kg vs. placebo) on the spatiotemporal dynamics of modal object completion was assessed in normal volunteers (n = 17) using visual evoked potential recordings in conjunction with topographic-mapping and source analysis. These effects were then considered in relation to the subjective intensity of psilocybin-induced visual hallucinations quantified by psychometric measurement. Psilocybin dose-dependently decreased the N170 and, in contrast, slightly enhanced the P1 component selectively over occipital electrode sites. The decrease of the N170 was most apparent during the processing of incomplete object figures. Moreover, during the time period of the N170, the overall reduction of the activation in the right extrastriate and posterior parietal areas correlated positively with the intensity of visual hallucinations. These results suggest a central role of the 5-HT2A/1A-receptors in the modulation of visual processing. Specifically, a reduced N170 component was identified as potentially reflecting a key process of 5-HT2A/1A receptor-mediated visual hallucinations and aberrant modal object completion potential. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Pharmacological postconditioning of the rabbit heart with non-selective, A1 , A2A and A3 adenosine receptor agonists.

    PubMed

    Bibli, Sophia-Iris; Iliodromitis, Efstathios K; Lambertucci, Catia; Zoga, Anastasia; Lougiakis, Nikolaos; Dagres, Nikolaos; Volpini, Rosaria; Dal Ben, Diego; Kremastinos, Dimitrios Th; Tsantili Kakoulidou, Anna; Cristalli, Gloria; Andreadou, Ioanna

    2014-08-01

    We investigated the effects of novel selective and non-selective adenosine receptor agonists (ARs) on cardioprotection. Male rabbits divided into six groups were subjected to 30-min heart ischaemia and 3-h reperfusion: (1) control group, (2) postconditioning (PostC) group, (3) group A: treated with the non-selective agonist (S)-PHPNECA, (4) group B: treated with the A1 agonist CCPA, (5) group C: treated with the A2A agonist VT 7 and (6) group D: treated with the A3 agonist AR 170. The infarcted (I) and the areas at risk (R) were estimated as %I/R. In additional rabbits of all groups, heart samples were taken for determination of Akt, eNOS and STAT 3 at the 10th reperfusion minute. (S)-PHPNECA and CCPA reduced the infarct size (17.2 ± 2.9% and 17.9 ± 2.0% vs 46.8 ± 1.9% in control, P < 0.05), conferring a benefit similar to PostC (26.4 ± 0.3%). Selective A2A and A3 receptor agonists did not reduce the infarct size (39.5 ± 0.8% and 38.7 ± 3.5%, P = NS vs control). Akt, eNOS and STAT 3 were significantly activated after non-selective A1 ARs and PostC. Non-selective and A1 but not A2A and A3 ARs agonists are essential for triggering cardioprotection. The molecular mechanism involves both RISK and the JAK/STAT pathways. © 2014 Royal Pharmaceutical Society.

  14. Involvement of cholinergic and adenosinergic systems on the branchial immune response of experimentally infected silver catfish with Streptococcus agalactiae.

    PubMed

    Baldissera, M D; Souza, C F; Doleski, P H; Moreira, K L S; da Veiga, M L; da Rocha, M I U M; Santos, R C V; Baldisserotto, B

    2017-07-12

    It has been recognized that the cholinergic and adenosinergic systems have an essential role in immune and inflammatory responses during bacterial fish pathogens, such as the enzymes acetylcholinesterase (AChE) and adenosine deaminase (ADA), which are responsible for catalysis of the anti-inflammatory molecules acetylcholine (ACh) and adenosine (Ado) respectively. Thus, the aim of this study was to investigate the involvement of the cholinergic and adenosinergic systems on the immune response and inflammatory process in gills of experimentally infected Rhamdia quelen with Streptococcus agalactiae. Acetylcholinesterase activity decreased, while ACh levels increased in gills of infected animals compared to uninfected animals. On the other hand, a significant increase in ADA activity with a concomitant decrease in Ado levels was observed in infected animals compared to uninfected animals. Based on this evidence, we concluded that infection by S. agalactiae in silver catfish alters the cholinergic and adenosinergic systems, suggesting the involvement of AChE and ADA activities on immune and inflammatory responses, regulating the ACh and Ado levels. In summary, the downregulation of AChE activity exerts an anti-inflammatory profile in an attempt to reduce or prevent the tissue damage, while the upregulation of ADA activity exerts a pro-inflammatory profile, contributing to disease pathophysiology. © 2017 John Wiley & Sons Ltd.

  15. Central adenosinergic system involvement in ethanol-induced motor incoordination in mice

    SciTech Connect

    Dar, M.S. )

    1990-12-01

    To clarify if the behavioral interaction between ethanol and adenosine reported previously occur centrally or due to a peripheral hemodynamic change, the effect of i.c.v. adenosine agonists, N6-(R-phenylisopropyl)adenosine (R-PIA), N6-(S-phenylisopropyl)adenosine, 5'-(N-cyclopropyl)-carboxamidoadenosine, antagonists, theophylline and 8-p-(sulfophenyl)theophylline as well as enprofylline on ethanol-(i.p.)-induced motor incoordination was evaluated by rotorod. Adenosine agonists and antagonists dose dependently accentuated and attenuated, respectively, ethanol-induced motor incoordination, thereby suggesting a central mechanism of adenosine modulation of this effect of ethanol and confirmed our previous reports in which adenosine agonists and antagonists were given i.p. Enprofylline, a weak adenosine antagonist but potent inhibitor of cyclic AMP phosphodiesterase, did not alter ethanol's motor incoordination, further supporting involvement of brain adenosine receptor mechanism(s) in ethanol-adenosine interactions. Results from R-PIA and N6-(S-phenylisopropyl)adenosine experiments showed nearly a 40-fold greater potency of R-vs. S-diastereoisomer, suggesting predominance of adenosine A1 subtype. However, 5'-(N-cyclopropyl)-carboxamidoadenosine data indicate complexity of the mechanism(s) and point toward an additional involvement of a yet unknown subtype of adenosine A2. No effect of ethanol on blood or brain levels of (3H)R-PIA was noted and sufficient amount of the latter entered the brain to suggest adenosine receptor activation adequate to produce behavioral interaction with ethanol. There was no escape of i.c.v.-administered (3H)R-PIA from brain to the peripheral circulation ruling out a peripheral and supporting a central mechanism of ethanol-adenosine interaction.

  16. Adenosine A1 receptor agonist N6-cyclohexyl-adenosine induced phosphorylation of delta opioid receptor and desensitization of its signaling

    PubMed Central

    Cheng, Yun; Tao, Yi-min; Sun, Jian-feng; Wang, Yu-hua; Xu, Xue-jun; Chen, Jie; Chi, Zhi-qiang; Liu, Jing-gen

    2010-01-01

    Aim: To define the effect of adenosine A1 receptor (A1R) on delta opioid receptor (DOR)-mediated signal transduction. Methods: CHO cells stably expressing HA-tagged A1R and DOR-CFP fusion protein were used. The localization of receptors was observed using confocal microscope. DOR-mediated inhibition of adenylyl cyclase was measured using cyclic AMP assay. Western blots were employed to detect the phosphorylation of Akt and the DOR. The effect of A1R agonist N6-cyclohexyladenosine (CHA) on DOR down-regulation was assessed using radioligand binding assay. Results: CHA 1 μmol/L time-dependently attenuated DOR agonist [D-Pen2,5]enkephalin (DPDPE)-induced inhibition of intracellular cAMP accumulation with a t1/2=2.56 (2.09–3.31) h. Pretreatment with 1 μmol/L CHA for 24 h caused a right shift of the dose-response curve of DPDPE-mediated inhibition of cAMP accumulation, with a significant increase in EC50 but no change in Emax. Pretreatment with 1 μmol/L CHA for 1 h also induced a significant attenuation of DPDPE-stimulated phosphorylation of Akt. Moreover, CHA time-dependently phosphorylated DOR (Ser363), and this effect was inhibited by A1R antagonist 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX) but not by DOR antagonist naloxone. However, CHA failed to produce the down-regulation of DOR, as neither receptor affinity (Kd) nor receptor density (Bmax) of DOR showed significant change after chronic CHA exposure. Conclusion: Activation of A1R by its agonist caused heterologous desensitization of DOR-mediated inhibition of intracellular cAMP accumulation and phosphorylation of Akt. Activation of A1R by its agonist also induced heterologous phosphorylation but not down-regulation of DOR. PMID:20562901

  17. Synthesis and Pharmacology of a Novel κ Opioid Receptor (KOR) Agonist with a 1,3,5-Trioxazatriquinane Skeleton

    PubMed Central

    2014-01-01

    We designed and synthesized the 1,3,5-trioxazatriquinane derivatives with m-hydroxyphenyl groups. These compounds include the phenethylamine structure within them, which is a common structure observed in morphinan derivatives like morphine. Among the synthesized compounds, (−)-8c with two m-hydroxyphenyl groups selectively bound and exerted full agonist activity toward the κ opioid receptor (KOR). Subcutaneously administered (−)-8c exhibited significant antinociceptive effects via the KOR in a dose-dependent manner. These results suggest the emergence of a novel class of KOR agonist. PMID:25147605

  18. CD73 Is a Major Regulator of Adenosinergic Signalling in Mouse Brain

    PubMed Central

    Kulesskaya, Natalia; Võikar, Vootele; Peltola, Marjaana; Yegutkin, Gennady G.; Salmi, Marko; Jalkanen, Sirpa; Rauvala, Heikki

    2013-01-01

    CD73 (ecto-5’-nucleotidase) is a cell surface enzyme that regulates purinergic signalling by desphosphorylating extracellular AMP to adenosine. 5′-nucleotidases are known to be expressed in brain, but the expression of CD73 and its putative physiological functions at this location remain elusive. Here we found, using immunohistochemistry of wild-type and CD73 deficient mice, that CD73 is prominently expressed in the basal ganglia core comprised of striatum (caudate nucleus and putamen) and globus pallidus. Furthermore, meninges and the olfactory tubercle were found to specifically express CD73. Analysis of wild type (wt) and CD73 deficient mice revealed that CD73 confers the majority of 5’-nucleotidase activity in several areas of the brain. In a battery of behavioural tests and in IntelliCage studies, the CD73 deficient mice demonstrated significantly enhanced exploratory locomotor activity, which probably reflects the prominent expression of CD73 in striatum and globus pallidus that are known to control locomotion. Furthermore, the CD73 deficient mice displayed altered social behaviour. Overall, our data provide a novel mechanistic insight into adenosinergic signalling in brain, which is implicated in the regulation of normal and pathological behaviour. PMID:23776700

  19. Effects of the adenosinergic system on the expression and acquisition of sensitization to conditioned place preference in morphine-conditioned rats.

    PubMed

    Listos, Joanna; Talarek, Sylwia; Listos, Piotr; Orzelska, Jolanta; Łupina, Małgorzata; Fidecka, Sylwia

    2016-02-01

    In the presented study, we attempt to investigate if the sensitization to conditioned place preference (CPP) induced by low doses of morphine was developed in rats which have been previously conditioned with morphine. The experiments were performed in the CPP test. Firstly, it has been demonstrated that administration of ineffective dose of morphine on the 9th day induces the increase in time spent of rats at a morphine-paired compartment, confirming that sensitization to CPP has been developed in these animals. Secondly, it has been shown that stimulation of A1 receptor significantly inhibits the expression of morphine-induced of sensitization, and blockade of these receptors produces the opposite effect. Finally, it has been indicated that both stimulation and blockade of A1 and/or A2A receptors inhibit the acquisition of sensitization to CPP. The obtained results have strongly supported the significance of adenosinergic system in both expression and acquisition of studied sensitization. These results seem to be important for the identification of connections in the central nervous system which can help finding new strategies to attenuate rewarding action of morphine.

  20. Significant Correlation between TLR2 Agonist Activity and TNF-α Induction in J774.A1 Macrophage Cells by Different Medicinal Mushroom Products.

    PubMed

    Coy, Catherine; Standish, Leanna J; Bender, Geoff; Lu, Hailing

    2015-01-01

    In the US market, there is a variety of mushroom preparations available, even within the same species of mushroom. Nonetheless, little is known about whether species or the various extraction methods affect biological activity and potency of the immune modulatory activity of mushroom extracts. After discovering that protein-bound polysaccharide-K, a hot water extract from Trametes versicolor, was a potent Toll-like receptor (TLR)-2 agonist that stimulates both innate and adaptive immunity, this study was initiated to evaluate whether other medicinal mushroom products also have TLR2 agonist activity and immune-enhancing potential as measured by the induction of tumor necrosis factor (TNF)-α in J774.A1 murine macrophage cells. Furthermore, the products were divided by extraction method and species to determine whether these factors affect their immunomodulatory activity. The results showed that the majority (75%) of mushroom products tested had TLR2 agonist activity and that there was a significant correlation between TLR2 agonist activity and TNF-α induction potential in the mushroom products analyzed. In addition, the data demonstrated that hot water mushroom extracts are more potent than ground mushroom products in activating TLR2 and inducing TNF-α. These data provide evidence that extraction methods may affect the biological activity of mushroom products; thus, further studies are warranted to investigate the structural differences between various mushroom products.

  1. The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor.

    PubMed

    Ciolino, H P; Yeh, G C

    1999-03-01

    The effect of the dietary flavonoid galangin on the metabolism of 7,12-dimethylbenz[a]anthracene (DMBA), the activity of cytochrome P450 1A1 (CYP1A1), and the expression of CYP1A1 in MCF-7 human breast carcinoma cells was investigated. Galangin inhibited the catabolic breakdown of DMBA, as measured by thin-layer chromatography, in a dose-dependent manner. Galangin also inhibited the formation of DMBA-DNA adducts, and prevented DMBA-induced inhibition of cell growth. Galangin caused a potent, dose-dependent inhibition of CYP1A1 activity, as measured by ethoxyresorufin-O-deethylase activity, in intact cells and in microsomes isolated from DMBA-treated cells. Analysis of the inhibition kinetics by double-reciprocal plot demonstrated that galangin inhibited CYP1A1 activity in a noncompetitive manner. Galangin caused an increase in the level of CYP1A1 mRNA, indicating that it may be an agonist of the aryl hydrocarbon receptor, but it inhibited the induction of CYP1A1 mRNA by DMBA or by 2,3,5,7-tetrachlorodibenzo-p-dioxin (TCDD). Galangin also inhibited the DMBA- or TCDD-induced transcription of a reporter vector containing the CYP1A1 promoter. Thus, galangin is a potent inhibitor of DMBA metabolism and an agonist/antagonist of the AhR, and may prove to be an effective chemopreventive agent.

  2. Reduced Neurobehavioral Impairment from Sleep Deprivation in Older Adults: Contribution of Adenosinergic Mechanisms

    PubMed Central

    Landolt, Hans-Peter; Rétey, Julia V.; Adam, Martin

    2012-01-01

    A night without sleep is followed by enhanced sleepiness, increased low-frequency activity in the waking EEG, and reduced vigilant attention. The magnitude of these changes is highly variable among healthy individuals. Findings in young men of low and high subjective caffeine sensitivity suggest that adenosinergic mechanisms contribute to inter-individual differences in sleep deprivation-induced changes in EEG theta activity, as well as optimal performance on the psychomotor vigilance task (PVT). In comparison to young subjects, healthy adults of older age typically feel less sleepy after sleep deprivation, and show fewer response lapses, and faster reaction times on the PVT, especially in the morning after the night without sleep. We hypothesized that age-related changes in adenosine signal transmission underlie reduced vulnerability to sleep deprivation in older individuals. To test this hypothesis, the combined effects of prolonged wakefulness and the adenosine receptor antagonist, caffeine, on an antero-posterior power gradient in EEG theta activity and PVT performance were analyzed in healthy older and caffeine-insensitive and -sensitive young men. The results show that age-related differences in sleep loss-induced changes in brain rhythmic activity and neurobehavioral functions are mirrored in young individuals of low and high sensitivity to the stimulant effects of caffeine. Moreover, the effects of sleep deprivation and caffeine on regional theta power and vigilant attention are inversely correlated across older and young age groups. Genetic variants of the adenosine A2A receptor gene contribute to individual differences in neurobehavioral performance in rested and sleep deprived state, and modulate the actions of caffeine in wakefulness and sleep. Based upon this evidence, we propose that age-related differences in A2A receptor-mediated signal transduction could be involved in age-related changes in the vulnerability to acute sleep deprivation. PMID

  3. A New Drug Design Targeting the Adenosinergic System for Huntington's Disease

    PubMed Central

    Lin, Jiun-Tsai; Lin, Chia-I; Liu, Eric Minwei; Lin, Chun-Jung; Chen, Wan-Ping; Shen, Yuh-Chiang; Chen, Hui-Mei; Chen, Jhih-Bin; Lai, Hsing-Lin; Yang, Chieh-Wen; Chiang, Ming-Chang; Wu, Yu-Shuo; Chang, Chen; Chen, Jiang-Fan; Fang, Jim-Min; Lin, Yun-Lian; Chern, Yijuang

    2011-01-01

    Background Huntington's disease (HD) is a neurodegenerative disease caused by a CAG trinucleotide expansion in the Huntingtin (Htt) gene. The expanded CAG repeats are translated into polyglutamine (polyQ), causing aberrant functions as well as aggregate formation of mutant Htt. Effective treatments for HD are yet to be developed. Methodology/Principal Findings Here, we report a novel dual-function compound, N6-(4-hydroxybenzyl)adenine riboside (designated T1-11) which activates the A2AR and a major adenosine transporter (ENT1). T1-11 was originally isolated from a Chinese medicinal herb. Molecular modeling analyses showed that T1-11 binds to the adenosine pockets of the A2AR and ENT1. Introduction of T1-11 into the striatum significantly enhanced the level of striatal adenosine as determined by a microdialysis technique, demonstrating that T1-11 inhibited adenosine uptake in vivo. A single intraperitoneal injection of T1-11 in wildtype mice, but not in A2AR knockout mice, increased cAMP level in the brain. Thus, T1-11 enters the brain and elevates cAMP via activation of the A2AR in vivo. Most importantly, addition of T1-11 (0.05 mg/ml) to the drinking water of a transgenic mouse model of HD (R6/2) ameliorated the progressive deterioration in motor coordination, reduced the formation of striatal Htt aggregates, elevated proteasome activity, and increased the level of an important neurotrophic factor (brain derived neurotrophic factor) in the brain. These results demonstrate the therapeutic potential of T1-11 for treating HD. Conclusions/Significance The dual functions of T1-11 enable T1-11 to effectively activate the adenosinergic system and subsequently delay the progression of HD. This is a novel therapeutic strategy for HD. Similar dual-function drugs aimed at a particular neurotransmitter system as proposed herein may be applicable to other neurotransmitter systems (e.g., the dopamine receptor/dopamine transporter and the serotonin receptor/serotonin transporter

  4. Effect of hyperoxic and hyperbaric conditions on the adenosinergic pathway and CD26 expression in rat.

    PubMed

    Bruzzese, Laurie; Rostain, Jean-Claude; Née, Laëtitia; Condo, Jocelyne; Mottola, Giovanna; Adjriou, Nabil; Mercier, Laurence; Berge-Lefranc, Jean-Louis; Fromonot, Julien; Kipson, Nathalie; Lucciano, Michel; Durand-Gorde, Josée-Martine; Jammes, Yves; Guieu, Régis; Ruf, Jean; Fenouillet, Emmanuel

    2015-07-15

    The nucleoside adenosine acts on the nervous and cardiovascular systems via the A2A receptor (A2AR). In response to oxygen level in tissues, adenosine plasma concentration is regulated in particular via its synthesis by CD73 and via its degradation by adenosine deaminase (ADA). The cell-surface endopeptidase CD26 controls the concentration of vasoactive and antioxidant peptides and hence regulates the oxygen supply to tissues and oxidative stress response. Although overexpression of adenosine, CD73, ADA, A2AR, and CD26 in response to hypoxia is well documented, the effects of hyperoxic and hyperbaric conditions on these elements deserve further consideration. Rats and a murine Chem-3 cell line that expresses A2AR were exposed to 0.21 bar O2, 0.79 bar N2 (terrestrial conditions; normoxia); 1 bar O2 (hyperoxia); 2 bar O2 (hyperbaric hyperoxia); 0.21 bar O2, 1.79 bar N2 (hyperbaria). Adenosine plasma concentration, CD73, ADA, A2AR expression, and CD26 activity were addressed in vivo, and cAMP production was addressed in cellulo. For in vivo conditions, 1) hyperoxia decreased adenosine plasma level and T cell surface CD26 activity, whereas it increased CD73 expression and ADA level; 2) hyperbaric hyperoxia tended to amplify the trend; and 3) hyperbaria alone lacked significant influence on these parameters. In the brain and in cellulo, 1) hyperoxia decreased A2AR expression; 2) hyperbaric hyperoxia amplified the trend; and 3) hyperbaria alone exhibited the strongest effect. We found a similar pattern regarding both A2AR mRNA synthesis in the brain and cAMP production in Chem-3 cells. Thus a high oxygen level tended to downregulate the adenosinergic pathway and CD26 activity. Hyperbaria alone affected only A2AR expression and cAMP production. We discuss how such mechanisms triggered by hyperoxygenation can limit, through vasoconstriction, the oxygen supply to tissues and the production of reactive oxygen species.

  5. Polychlorinated Biphenyls 105 and 118 Form Thyroid Hormone Receptor Agonists after Cytochrome P4501A1 Activation in Rat Pituitary GH3 Cells

    PubMed Central

    Gauger, Kelly J.; Giera, Stefanie; Sharlin, David S.; Bansal, Ruby; Iannacone, Eric; Zoeller, R. Thomas

    2007-01-01

    Background Polychlorinated biphenyls (PCBs) may interfere with thyroid hormone (TH) signaling by reducing TH levels in blood, by exerting direct effects on TH receptors (TRs), or both. Objective Our objective was to identify individual PCBs that directly affect TH signaling by acting on the TR. Methods We administered a mixture of six PCB congeners based on their ortho substitution pattern, including PCBs 77 and 126 (non-ortho), PCBs 105 and 118 (mono-ortho), and PCBs 138 and 153 (di-ortho), to pregnant Sprague-Dawley rats from gestational days (G) 6 to 16. This mixture, or various combinations of the components, was also evaluated in a transient transfection system using GH3 cells. Results The mixture reduced serum TH levels in pregnant rats on G16 but simultaneously up-regulated the expression of malic enzyme in liver. It also functioned as a TR agonist in vitro; however, none of the individual PCB congeners comprising this mixture were active in this system. Using the aryl hydrocarbon receptor (AhR) antagonist α-naphthoflavone, and the cytochrome P450 (CYP)1A1 antagonist ellipticine, we show that the effect of the mixture on the thyroid hormone response element required AhR and CYP1A1. Conclusions We propose that PCB 126 induces CYP1A1 through the AhR in GH3 cells, and that CYP1A1 activates PCB 105 and/or 118 to a form a compound that acts as a TR agonist. These data suggest that some tissues may be especially vulnerable to PCBs interfering directly with TH signaling due to their capacity to express CYP1A1 in response to coplanar PCBs (or other dioxin-like molecules) if sufficient mono-ortho PCBs are present. PMID:18007995

  6. Polychlorinated biphenyls 105 and 118 form thyroid hormone receptor agonists after cytochrome P4501A1 activation in rat pituitary GH3 cells.

    PubMed

    Gauger, Kelly J; Giera, Stefanie; Sharlin, David S; Bansal, Ruby; Iannacone, Eric; Zoeller, R Thomas

    2007-11-01

    Polychlorinated biphenyls (PCBs) may interfere with thyroid hormone (TH) signaling by reducing TH levels in blood, by exerting direct effects on TH receptors (TRs), or both. Our objective was to identify individual PCBs that directly affect TH signaling by acting on the TR. We administered a mixture of six PCB congeners based on their ortho substitution pattern, including PCBs 77 and 126 (non-ortho), PCBs 105 and 118 (mono-ortho), and PCBs 138 and 153 (di-ortho), to pregnant Sprague-Dawley rats from gestational days (G) 6 to 16. This mixture, or various combinations of the components, was also evaluated in a transient transfection system using GH3 cells. The mixture reduced serum TH levels in pregnant rats on G16 but simultaneously up-regulated the expression of malic enzyme in liver. It also functioned as a TR agonist in vitro; however, none of the individual PCB congeners comprising this mixture were active in this system. Using the aryl hydrocarbon receptor (AhR) antagonist alpha-naphthoflavone, and the cytochrome P450 (CYP)1A1 antagonist ellipticine, we show that the effect of the mixture on the thyroid hormone response element required AhR and CYP1A1. We propose that PCB 126 induces CYP1A1 through the AhR in GH3 cells, and that CYP1A1 activates PCB 105 and/or 118 to a form a compound that acts as a TR agonist. These data suggest that some tissues may be especially vulnerable to PCBs interfering directly with TH signaling due to their capacity to express CYP1A1 in response to coplanar PCBs (or other dioxin-like molecules) if sufficient mono-ortho PCBs are present.

  7. Central or peripheral delivery of an adenosine A1 receptor agonist improves mechanical allodynia in a mouse model of painful diabetic neuropathy.

    PubMed

    Katz, N K; Ryals, J M; Wright, D E

    2015-01-29

    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8 weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N(6)-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of

  8. Central or Peripheral Delivery of an Adenosine A1 Receptor Agonist Improves Mechanical Allodynia in a Mouse Model of Painful Diabetic Neuropathy

    PubMed Central

    Katz, N. K.; Ryals, J. M.; Wright, D. E.

    2014-01-01

    Diabetic peripheral neuropathy is a common complication of diabetes mellitus, and a significant proportion of individuals suffer debilitating pain that significantly affects their quality of life. Unfortunately, symptomatic treatment options have limited efficacy, and often carry significant risk of systemic adverse effects. Activation of the adenosine A1 receptor (A1R) by the analgesic small molecule adenosine has been shown to have antinociceptive benefits in models of inflammatory and neuropathic pain. The current study used a mouse model of painful diabetic neuropathy to determine the effect of diabetes on endogenous adenosine production, and if central or peripheral delivery of adenosine receptor agonists could alleviate signs of mechanical allodynia in diabetic mice. Diabetes was induced using streptozocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Hydrolysis of AMP into adenosine by ectonucleotidases was determined in the dorsal root ganglia (DRG) and spinal cord at 8-weeks post-induction of diabetes. AMP, adenosine and the specific A1R agonist, N6-cyclopentyladenosine (CPA), were administered both centrally (intrathecal) and peripherally (intraplantar) to determine the effect of activation of adenosine receptors on mechanical allodynia in diabetic mice. Eight weeks post-induction, diabetic mice displayed significantly decreased hydrolysis of extracellular AMP in the DRG; at this same time, diabetic mice displayed significantly decreased mechanical withdrawal thresholds compared to nondiabetic controls. Central delivery AMP, adenosine and CPA significantly improved mechanical withdrawal thresholds in diabetic mice. Surprisingly, peripheral delivery of CPA also improved mechanical allodynia in diabetic mice. This study provides new evidence that diabetes significantly affects endogenous AMP hydrolysis, suggesting that altered adenosine production could contribute to the development of painful

  9. Protein kinase C activation increases noradrenaline release from the rat hippocampus and modifies the inhibitory effect of alpha 2-adrenoceptor and adenosine A1-receptor agonists.

    PubMed

    Fredholm, B B; Lindgren, E

    1988-05-01

    We have studied the effect of stimulating protein kinase C with phorbol esters on the release of [3H]-noradrenaline (NA) in the absence or presence of presynaptic alpha 2-adrenoceptor blocking agents and compared that to the elevation of cyclic AMP levels more than 10-fold by a combination of rolipram and forskolin. 4-beta-Phorbol 12,13-dibutyrate (PDiBu) increased stimulated (3 Hz) [3H]-NA release markedly and in a concentration dependent manner. 4-alpha-Phorbol-12,13-didecanoate was ineffective. The effect of PDiBu was not significantly reduced by nifedipine (1 microM), but was proportionally less in the presence of an alpha 2-adrenoceptor antagonist, yohimbine. PDiBu inhibited the presynaptic effect of alpha 2-adrenoceptor agonists clonidine and UK 14304. By contrast, the presynaptic effect of the adenosine analogue R-PIA was not reduced by PDiBu. PDiBu caused an increase in cyclic AMP that depended on adenosine receptor stimulation. Elevation of cyclic AMP had a limited effect on NA release from rat hippocampus, and did not significantly decrease the presynaptic inhibitory effect of UK 14304 (0.1 microM), of morphine (1 microM) or of the adenosine A1-receptor agonist CHA (1 microM). The effect of phorbol esters and several presynaptic inhibitors of NA-release in the rat hippocampus cannot be explained by changes in cyclic AMP levels in the tissue. Phorbol esters that stimulate protein kinase C appear to interact with a target that is the site of action alpha 2-adrenoceptors in this tissue. This site is not a dihydropyridine sensitive Ca-channel and is also different from the target of presynaptic adenosine receptors. Thus, activation of protein kinase C discriminates between apparently similar presynaptic mechanisms.

  10. Skatole (3-Methylindole) Is a Partial Aryl Hydrocarbon Receptor Agonist and Induces CYP1A1/2 and CYP1B1 Expression in Primary Human Hepatocytes

    PubMed Central

    Balaguer, Patrick; Ekstrand, Bo; Daujat-Chavanieu, Martine; Gerbal-Chaloin, Sabine

    2016-01-01

    Skatole (3-methylindole) is a product of bacterial fermentation of tryptophan in the intestine. A significant amount of skatole can also be inhaled during cigarette smoking. Skatole is a pulmonary toxin that induces the expression of aryl hydrocarbon receptor (AhR) regulated genes, such as cytochrome P450 1A1 (CYP1A1), in human bronchial cells. The liver has a high metabolic capacity for skatole and is the first organ encountered by the absorbed skatole; however, the effect of skatole in the liver is unknown. Therefore, we investigated the impact of skatole on hepatic AhR activity and AhR-regulated gene expression. Using reporter gene assays, we showed that skatole activates AhR and that this is accompanied by an increase of CYP1A1, CYP1A2 and CYP1B1 expression in HepG2-C3 and primary human hepatocytes. Specific AhR antagonists and siRNA-mediated AhR silencing demonstrated that skatole-induced CYP1A1 expression is dependent on AhR activation. The effect of skatole was reduced by blocking intrinsic cytochrome P450 activity and indole-3-carbinole, a known skatole metabolite, was a more potent inducer than skatole. Finally, skatole could reduce TCDD-induced CYP1A1 expression, suggesting that skatole is a partial AhR agonist. In conclusion, our findings suggest that skatole and its metabolites affect liver homeostasis by modulating the AhR pathway. PMID:27138278

  11. Allosteric interactions between the binding sites of receptor agonists and guanine nucleotides: a comparative study of the 5-hydroxytryptamine1A and adenosine A1 receptor systems in rat hippocampal membranes.

    PubMed

    Mahle, C D; Wiener, H L; Yocca, F D; Maayani, S

    1992-12-01

    The ternary complex formed between agonist, receptor and guanine nucleotide binding protein and its destabilization by guanine nucleotides (GN) was utilized to study early events in signal transduction, by characterizing the allosteric interactions between agonist and GN binding to the receptor/guanine nucleotide binding protein, G complex for adenosine A1 and 5-hydroxytryptamine1A receptors. The functional interaction between the ternary complex and GTP was examined by assaying adenylyl cyclase activity. Binding of a full adenosine A1 agonist ([3H]-R-(-)-N6-(2-phenylisopropyl)adenosine), and a full [(+-)-[3H]-8-hydroxydipropylaminotetralin] and partial ([3H]-8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8- azaspirol[4.5]-decane-7,9-dione) 5-hydroxytryptamine1A agonist was examined in relation to the binding of GN. The amount of ternary complex formed depended upon receptor type and drug relative efficacy. The ratio between the drug's EC50 value (adenylyl cyclase) and dissociation constant (binding) was also receptor and drug relative efficacy dependent. 5'-Guanylylimidodiphosphate (100 microM) caused an approximately 50% decrease in the Bmax for all drugs without affecting Kd values. 5'-Guanylylimidodiphosphate and guanosine 5'-O-(3-thiotriphosphate) attenuated [3H]-agonist binding in a concentration-dependent and saturable manner, with IC50 values increased 2- to 6-fold with increasing receptor occupancy. IC50 values were approximately one-tenth lower at the 5-hydroxytryptamine1A receptor than adenosine A1 receptor; similar values were obtained for inhibition of (+-)-[3H]-8-hydroxydipropylaminotetralin and [3H]-8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8- azaspirol[4.5]-decane-7,9-dione binding, suggesting an independence of agonist efficacy. We propose that the stabilization of the ternary complex by hormone binding, measured by Bmax values, is related to drug-relative efficacy, thus the amount of ternary complex available for destabilization by GN is

  12. Adenosinergic modulation of respiratory neurones and hypoxic responses in the anaesthetized cat.

    PubMed Central

    Schmidt, C; Bellingham, M C; Richter, D W

    1995-01-01

    1. The modulatory effects of intracellularly injected adenosine on membrane potential, input resistance and spontaneous or evoked synaptic activity were determined in respiratory neurones of the ventral respiratory group. 2. The membrane potential hyperpolarized and sometimes reached values which were beyond the equilibrium potential of Cl(-)-dependent IPSPs. At the same time, neuronal input resistance decreased. 3. Spontaneous and stimulus-evoked postsynaptic activities were decreased, as were mean respiratory drive potentials. 4. Systemic injection of the A1 adenosine receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.01-0.05 mg kg-1) resulted in an increase in mean peak phrenic nerve activity when arterial chemoreceptors were denervated. In contrast, phrenic nerve activity decreased when arterial chemoreceptors were left intact. 5. The depressant effect of adenosine on synaptic activity was abolished after systemic DPCPX administration. DPCPX caused an increase in respiratory drive potentials, increased the amplitude of stimulus-evoked IPSPs, and hyperpolarized membrane potential. 6. Administration of DPCPX blocked the early hypoxic depression of stimulus-evoked IPSPs, doubled the delay of onset of hypoxic apnoea and shortened the time necessary for recovery of the respiratory rhythm. 7. The data indicate that adenosine acts on pre- and postsynaptic A1 receptors resulting in postsynaptic membrane hyperpolarization and depression of synaptic transmission. Blockade of A1 receptors increases respiratory activity, indicating that adenosine A1 receptors are tonically activated under control conditions. Further activation contributes to the hypoxic depression of synaptic transmission in the respiratory network. PMID:7776257

  13. From molecule to behavior: Brain aromatase (cyp19a1b) characterization, expression analysis and its relation with social status and male agonistic behavior in a Neotropical cichlid fish.

    PubMed

    Ramallo, Martín R; Morandini, Leonel; Birba, Agustina; Somoza, Gustavo M; Pandolfi, Matías

    2017-03-01

    The enzyme aromatase, responsible for the conversion of C19 androgens to C18 estrogens, exists as two paralogue copies in teleost fish: Cyp19a1a mostly expressed in the gonads, referred as gonadal aromatase, and Cyp19a1b, mostly expressed in the brain, accordingly known as brain aromatase. The neural localization of Cyp19a1b is greatly contained within the social behavior network and mesolimbic reward system in fish, suggesting a strong role of estrogen synthesis in the regulation of social behavior. In this work we aimed to analyze the variation in cyp19a1b expression in brain and pituitary of males of a highly social cichlid, Cichlasoma dimerus (locally known as chanchita), and its relation with inter-individual variability in agonistic behavior in a communal social environment. We first characterized chanchita's cyp19a1b mRNA and deduced amino acid sequence, which showed a high degree of conservation when compared to other teleost brain aromatase sequences, and its tissue expression patterns. Within the brain, Cyp19a1b was solely detected at putative radial glial cells of the forebrain, close to the brain ventricles. We then studied the relative expression levels of cyp19a1b by Real Time PCR in the brain and pituitary of males of different social status, territorial vs. non-territorial, and its relationship with an index of agonistic behavior. We found that even though, brain aromatase expression did not differ between types of males, pituitary cyp19a1b expression levels positively correlated with the index of agonistic behavior. This suggests a novel role of the pituitary in the regulation of social behavior by local estrogen synthesis.

  14. Small Molecule Agonists of the Orphan Nuclear Receptors Steroidogenic Factor-1 (SF-1, NR5A1) and Liver Receptor Homologue-1 (LRH-1, NR5A2)

    SciTech Connect

    Whitby, Richard J.; Stec, Jozef; Blind, Raymond D.; Dixon, Sally; Leesnitzer, Lisa M.; Orband-Miller, Lisa A.; Williams, Shawn P.; Willson, Timothy M.; Xu, Robert; Zuercher, William J.; Cai, Fang; Ingraham, Holly A.

    2011-09-27

    The crystal structure of LRH-1 ligand binding domain bound to our previously reported agonist 3-(E-oct-4-en-4-yl)-1-phenylamino-2-phenyl-cis-bicyclo[3.3.0]oct-2-ene 5 is described. Two new classes of agonists in which the bridgehead anilino group from our first series was replaced with an alkoxy or 1-ethenyl group were designed, synthesized, and tested for activity in a peptide recruitment assay. Both new classes gave very active compounds, particularly against SF-1. Structure-activity studies led to excellent dual-LRH-1/SF-1 agonists (e.g., RJW100) as well as compounds selective for LRH-1 (RJW101) and SF-1 (RJW102 and RJW103). The series based on 1-ethenyl substitution was acid stable, overcoming a significant drawback of our original bridgehead anilino-substituted series. Initial studies on the regulation of gene expression in human cell lines showed excellent, reproducible activity at endogenous target genes.

  15. Transport of A1 adenosine receptor agonist tecadenoson by human and mouse nucleoside transporters: evidence for blood-brain barrier transport by murine equilibrative nucleoside transporter 1 mENT1.

    PubMed

    Lepist, Eve-Irene; Damaraju, Vijaya L; Zhang, Jing; Gati, Wendy P; Yao, Sylvia Y M; Smith, Kyla M; Karpinski, Edward; Young, James D; Leung, Kwan H; Cass, Carol E

    2013-04-01

    The high density of A1 adenosine receptors in the brain results in significant potential for central nervous system (CNS)-related adverse effects with A1 agonists. Tecadenoson is a selective A1 adenosine receptor agonist with close similarity to adenosine. We studied the binding and transmembrane transport of tecadenoson by recombinant human equilibrative nucleoside transporters (hENTs) hENT1 and hENT2, and human concentrative nucleoside transporters (hCNTs) hCNT1, hCNT2, and hCNT3 in vitro and by mouse mENT1 in vivo. Binding affinities of the five recombinant human nucleoside transporters for tecadenoson differed (hENT1 > hCNT1 > hCNT3 > hENT2 > hCNT2), and tecadenoson was transported largely by hENT1. Pretreatment of mice with a phosphorylated prodrug of nitrobenzylmercaptopurine riboside, an inhibitor of mENT1, significantly decreased brain exposure to tecadenoson compared with that of the untreated (control) group, suggesting involvement of mENT1 in transport of tecadenoson across the blood-brain barrier (BBB). In summary, ENT1 was shown to mediate the transport of tecadenoson in vitro with recombinant and native human protein and in vivo with mice. The micromolar apparent Km value of tecadenoson for transport by native hENT1 in cultured cells suggests that hENT1 will not be saturated at clinically relevant (i.e., nanomolar) concentrations of tecadenoson, and that hENT1-mediated passage across the BBB may contribute to the adverse CNS effects observed in clinical trials. In contrast, in cases in which a CNS effect is desired, the present results illustrate that synthetic A1 agonists that are transported by hENT1 could be used to target CNS disorders because of enhanced delivery to the brain.

  16. Antinociceptive effect of butyl (2-phenylethynyl) selenide on formalin test in mice: Evidences for the involvement of serotonergic and adenosinergic systems.

    PubMed

    Luchese, Cristiane; Prigol, Marina; Acker, Carmine Inês; Nogueira, Cristina Wayne

    2010-10-10

    The present study investigated the effect of per oral (p.o.) administration of butyl (2-phenylethynyl) selenide (1-50mg/kg) on formalin-induced nociception in mice. The involvement of serotonergic, adenosinergic, muscarinic cholinergic and opioid mechanisms in the antinociceptive effect was also investigated. Butyl (2-phenylethynyl) selenide inhibited both neurogenic (at doses equal or higher than 10mg/kg) and inflammatory (at doses equal or higher than 25mg/kg) phases of the nociception caused by intraplantar (i.pl.) injection of 2.5% formalin solution (20 microl), with ID(50) values of 36.7 (29.28-46.0) and 20.37 (15.74-26.36) mg/kg, respectively. This compound reduced the formalin-induced paw oedema formation (55 + or - 4%) at doses equal or higher than 25mg/kg. The antinociceptive effect of compound (25mg/kg, p.o.) was reversed by ondansetron (0.5mg/kg, a 5-HT(3) receptor antagonist) and caffeine (3mg/kg, a nonselective adenosine receptor antagonist), but not by atropine (0.1mg/kg, a non selective muscarinic antagonist), WAY100635 (0.1mg/kg, a selective 5-HT(1A) receptor antagonist), ritanserin (1mg/kg, a 5-HT(2) receptor antagonist) and naloxone (1mg/kg, a non selective opioid receptor antagonist). These results indicate that butyl (2-phenylethynyl) selenide produced antinociception in the formalin test through mechanisms that involve an interaction with serotonergic (5-HT(3)) and adenosinergic systems.

  17. Modulation of agonist binding to AMPA receptors by 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546): differential effects across brain regions and GluA1-4/transmembrane AMPA receptor regulatory protein combinations.

    PubMed

    Montgomery, Kyle E; Kessler, Markus; Arai, Amy C

    2009-12-01

    Ampakines are cognitive enhancers that potentiate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor currents and synaptic responses by slowing receptor deactivation. Their efficacy varies greatly between classes of neurons and brain regions, but the factor responsible for this effect remains unclear. Ampakines also increase agonist affinity in binding tests in ways that are related to their physiological action. We therefore examined 1) whether ampakine effects on agonist binding vary across brain regions and 2) whether they differ across receptor subunits expressed alone and together with transmembrane AMPA receptor regulatory proteins (TARPs), which associate with AMPA receptors in the brain. We found that the maximal increase in agonist binding (E(max)) caused by the prototypical ampakine 1-(1,4-benzodioxan-6-ylcarbonyl)piperidine (CX546) differs significantly between brain regions, with effects in hippocampus and cerebellum being nearly three times larger than that in thalamus, brainstem, and striatum, and cortex being intermediate. These differences can be explained at least in part by regional variations in receptor subunit and TARP expression because combinations prevalent in hippocampus (GluA2 with TARPs gamma3 and gamma8) exhibited E(max) values nearly twice those of combinations abundant in thalamus (GluA4 with gamma2 or gamma4). TARPs seem to be critical because GluA2 and GluA4 alone had comparable E(max) and also because hippocampal and thalamic receptors had similar E(max) after solubilization with Triton X-100, which probably removes associated proteins. Taken together, our data suggest that variations in physiological drug efficacy, such as the 3-fold difference previously seen in recordings from hippocampus versus thalamus, may be explained by region-specific expression of GluA1-4 as well as TARPs.

  18. Increased sensitivity in the interaction of the dopaminergic/adenosinergic system at the level of the adenylate cyclase activity in the striatum of the "weaver" mouse.

    PubMed

    K, Botsakis; V, Tondikidou; N, Panagopoulos; M, Margariti; N, Matsokis; F, Angelatou

    2016-10-01

    The specific antagonistic interaction between dopamine D1 and adenosine A1 receptors (D1/A1), as well as between dopamine D2 and adenosine A2a receptors (D2/A2a) exist not only at the receptor/receptor level, but also at the level of the secondary messengers. In this study, we examined the possible changes in these interactions at the level of cAMP formation in membrane preparation from "weaver" mouse striatum (a genetic model of Parkinson disease), by using specific agonists of these receptors. We also examined in the striatum of the "weaver" mouse the interaction between D1 and D2 dopamine receptors. Our results showed that in the striatum of "weaver" mice: a) the cAMP synthesis induced by D1 receptor activation (SKF 38393), was significantly reduced compared to control mice, while A1 receptor activation (L-PIA) leaded to a more intense inhibition of the D1-induced cAMP-formation compared to the controls, b) the cAMP synthesis which was induced by A2a receptor activation (CGS 21680), was significantly increased compared to the control mice. The specific D2 receptor agonist Quinpirole, added in low concentrations, caused a significant reduction of the A2a-induced cAMP formation, which was not observed in the control mouse. Furthermore, the D1 receptor induced cAMP synthesis was significantly higher in control compared to "weaver" striatum, which was more efficiently downregulated by D2 receptor agonist Quinpirole. These results suggest that the sensitivity to D1 and A2a receptor agonists is altered and that the interaction between D1/A1 and D2/A2a receptors is enhanced in the striatum of the "weaver" mutation, while an uncoupling between D1 and D2 receptors was observed. Since the adenylate cyclase basal activity did not differ between "weaver" and control striatum, the above-mentioned changes seem to be due to alterations in the function of the adenosine/dopamine receptors and their coupling to the G-proteins.

  19. Epigenetic Determinants of CYP1A1 Induction by the Aryl Hydrocarbon Receptor Agonist 3,3',4,4',5-Pentachlorobiphenyl (PCB 126)

    PubMed Central

    Vorrink, Sabine U.; Hudachek, Danielle R.; Domann, Frederick E.

    2014-01-01

    Many enzymes involved in xenobiotic metabolism, including cytochrome P450 (CYP) 1A1, are regulated by the aryl hydrocarbon receptor (AhR). 3,3',4,4',5-Pentachlorobiphenyl (PCB 126) is a potent ligand for AhR and can thus induce the expression of CYP1A1. Interestingly, we observed that human carcinoma cell lines derived from different types of epithelial cells displayed divergent degrees of CYP1A1 induction after exposure to PCB 126. Since epigenetic mechanisms are known to be involved in cell type-specific gene expression, we sought to assess the epigenetic determinants of CYP1A1 induction in these carcinoma cell lines. In contrast to HepG2 hepatocarcinoma cells, HeLa cervical carcinoma cells showed significantly lower levels of CYP1A1 mRNA expression following PCB 126 exposure. Our results show that the two cell lines maintained differences in the chromatin architecture along the CYP1A1 promoter region. Furthermore, treatment with the epigenetic modifiers, trichostatin A (TSA) and 5-aza-2'-deoxycytidine (5-Aza-dC), significantly increased the expression of CYP1A1 after PCB 126 treatment in HeLa cells. However, we did not observe apparent differences in methylation levels or specific location of CpG DNA methylation between the two cell lines in the analyzed CYP1A1 promoter region. Taken together, our findings suggest that the differences in CYP1A1 expression between HepG2 and HeLa cells are due to differences in the chromatin architecture of the CYP1A1 promoter and thus establish a role of epigenetic regulation in cell-specific CYP1A1 expression. PMID:25116688

  20. Effects of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine on phencyclidine-induced behavior and expression of the immediate-early genes in the discrete brain regions of rats.

    PubMed

    Gotoh, Leo; Kawanami, Noriko; Nakahara, Tatsuo; Hondo, Hisao; Motomura, Keisuke; Ohta, Eiko; Kanchiku, Izumi; Kuroki, Toshihide; Hirano, Makoto; Uchimura, Hideyuki

    2002-04-30

    Because of the possible interaction between adenosine receptors and dopaminergic functions, the compound acting on the specific adenosine receptor subtype may be a candidate for novel antipsychotic drugs. To elucidate the antipsychotic potential of the selective adenosine A(1) receptor agonist N(6)-cyclopentyladenosine (CPA), we examined herein the effects of CPA on phencyclidine (PCP)-induced behavior and expression of the immediate-early genes (IEGs), arc, c-fos and jun B, in the discrete brain regions of rats. PCP (7.5 mg/kg, s.c.) increased locomotor activity and head weaving in rats and this effect was significantly attenuated by pretreatment with CPA (0.5 mg/kg, s.c.). PCP increased the mRNA levels of c-fos and jun B in the medial prefrontal cortex, nucleus accumbens and posterior cingulate cortex, while leaving the striatum and hippocampus unaffected. CPA pretreatment significantly attenuated the PCP-induced increase in c-fos mRNA levels in the medial prefrontal cortex and nucleus accumbens. CPA also significantly attenuated the PCP-induced arc expression in the medial prefrontal cortex and posterior cingulate cortex. When administered alone, CPA decreased the mRNA levels of all IEGs examined in the nucleus accumbens, but not in other brain regions. Based on the ability of CPA to inhibit PCP-induced hyperlocomotion and its interaction with neural systems in the medial prefrontal cortex, posterior cingulate cortex and nucleus accumbens, the present results provide further evidence for a significant antipsychotic effect of the adenosine A(1) receptor agonist.

  1. High-intensity swimming exercise reduces neuropathic pain in an animal model of complex regional pain syndrome type I: evidence for a role of the adenosinergic system.

    PubMed

    Martins, D F; Mazzardo-Martins, L; Soldi, F; Stramosk, J; Piovezan, A P; Santos, A R S

    2013-03-27

    This study investigated the involvement of the adenosinergic system in antiallodynia induced by exercise in an animal model of complex regional pain syndrome type I (CRPS-I). Furthermore, we analyzed the role of the opioid receptors on exercise-induced analgesia. Ischemia/reperfusion (IR) mice, nonexercised and exercised, received intraperitoneal injections of caffeine (10mg/kg, a non selective adenosine receptor antagonist), 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1mg/kg, a selective adenosine A receptor antagonist), ZM241385 (3mg/kg, a selective adenosine A receptor antagonist), adenosine deaminase inhibitor erythro-9-(2-hydroxy-3nonyl) adenine [(EHNA), 5mg/kg, an adenosine deaminase inhibitor] or naloxone (1mg/kg, a nonselective opioid receptor antagonist). The results showed that high-intensity swimming exercise reduced mechanical allodynia in an animal model of CRPS-I in mice. The antiallodynic effect caused by exercise was reversed by pretreatment with caffeine, naloxone, DPCPX but it was not modified by ZM241385 treatment. In addition, treatment with EHNA, which suppresses the breakdown of adenosine to inosine, enhanced the pain-relieving effects of the high-intensity swimming exercise. This is the first report demonstrating that repeated sessions of high-intensity swimming exercise attenuate mechanical allodynia in an animal model of CRPS-I and that the mechanism involves endogenous adenosine and adenosine A receptors. This study supports the use of high-intensity exercise as an adjunct therapy for CRPS-I treatment.

  2. Fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, attenuates experimental arthritis by activating anti-inflammatory adenosinergic pathway.

    PubMed

    Veras, Flávio P; Peres, Raphael S; Saraiva, André L L; Pinto, Larissa G; Louzada-Junior, Paulo; Cunha, Thiago M; Paschoal, Jonas A R; Cunha, Fernando Q; Alves-Filho, José C

    2015-10-19

    Fructose 1,6-bisphosphate (FBP) is an endogenous intermediate of the glycolytic pathway. Exogenous administration of FBP has been shown to exert protective effects in a variety of ischemic injury models, which are attributed to its ability to sustain glycolysis and increase ATP production. Here, we demonstrated that a single treatment with FBP markedly attenuated arthritis, assessed by reduction of articular hyperalgesia, joint swelling, neutrophil infiltration and production of inflammatory cytokines, TNF and IL-6, while enhancing IL-10 production in two mouse models of arthritis. Our mechanistic studies showed that FBP reduces joint inflammation through the systemic generation of extracellular adenosine and subsequent activation of adenosine receptor A2a (A2aR). Moreover, we showed that FBP-induced adenosine generation requires hydrolysis of extracellular ATP through the activity of the ectonucleosides triphosphate diphosphohydrolase-1 (ENTPD1, also known as CD39) and ecto-5'-nucleotidase (E5NT, also known as CD73). In accordance, inhibition of CD39 and CD73 abolished anti-arthritic effects of FBP. Taken together, our findings provide a new insight into the molecular mechanism underlying the anti-inflammatory effect of FBP, showing that it effectively attenuates experimental arthritis by activating the anti-inflammatory adenosinergic pathway. Therefore, FBP may represent a new therapeutic strategy for treatment of rheumatoid arthritis (RA).

  3. Alterations in the adenosine metabolism and CD39/CD73 adenosinergic machinery cause loss of Treg cell function and autoimmunity in ADA-deficient SCID.

    PubMed

    Sauer, Aisha V; Brigida, Immacolata; Carriglio, Nicola; Hernandez, Raisa Jofra; Scaramuzza, Samantha; Clavenna, Daniela; Sanvito, Francesca; Poliani, Pietro L; Gagliani, Nicola; Carlucci, Filippo; Tabucchi, Antonella; Roncarolo, Maria Grazia; Traggiai, Elisabetta; Villa, Anna; Aiuti, Alessandro

    2012-02-09

    Adenosine acts as anti-inflammatory mediator on the immune system and has been described in regulatory T cell (Treg)-mediated suppression. In the absence of adenosine deaminase (ADA), adenosine and other purine metabolites accumulate, leading to severe immunodeficiency with recurrent infections (ADA-SCID). Particularly ADA-deficient patients with late-onset forms and after enzyme replacement therapy (PEG-ADA) are known to manifest immune dysregulation. Herein we provide evidence that alterations in the purine metabolism interfere with Treg function, thereby contributing to autoimmune manifestations in ADA deficiency. Tregs isolated from PEG-ADA-treated patients are reduced in number and show decreased suppressive activity, whereas they are corrected after gene therapy. Untreated murine ADA(-/-) Tregs show alterations in the plasma membrane CD39/CD73 ectonucleotidase machinery and limited suppressive activity via extracellular adenosine. PEG-ADA-treated mice developed multiple autoantibodies and hypothyroidism in contrast to mice treated with bone marrow transplantation or gene therapy. Tregs isolated from PEG-ADA-treated mice lacked suppressive activity, suggesting that this treatment interferes with Treg functionality. The alterations in the CD39/CD73 adenosinergic machinery and loss of function in ADA-deficient Tregs provide new insights into a predisposition to autoimmunity and the underlying mechanisms causing defective peripheral tolerance in ADA-SCID.

  4. Vitamin-D receptor agonist calcitriol reduces calcification in vitro through selective upregulation of SLC20A2 but not SLC20A1 or XPR1

    PubMed Central

    Keasey, M. P.; Lemos, R. R.; Hagg, T.; Oliveira, J. R. M.

    2016-01-01

    Vitamin D deficiency (hypovitaminosis D) causes osteomalacia and poor long bone mineralization. In apparent contrast, hypovitaminosis D has been reported in patients with primary brain calcifications (“Fahr’s disease”). We evaluated the expression of two phosphate transporters which we have found to be associated with primary brain calcification (SLC20A2, whose promoter has a predicted vitamin D receptor binding site, and XPR1), and one unassociated (SLC20A1), in an in vitro model of calcification. Expression of all three genes was significantly decreased in calcifying human bone osteosarcoma (SaOs-2) cells. Further, we confirmed that vitamin D (calcitriol) reduced calcification as measured by Alizarin Red staining. Cells incubated with calcitriol under calcifying conditions specifically maintained expression of the phosphate transporter SLC20A2 at higher levels relative to controls, by RT-qPCR. Neither SLC20A1 nor XPR1 were affected by calcitriol treatment and remained suppressed. Critically, knockdown of SLC20A2 gene and protein with CRISPR technology in SaOs2 cells significantly ablated vitamin D mediated inhibition of calcification. This study elucidates the mechanistic importance of SLC20A2 in suppressing the calcification process. It also suggests that vitamin D might be used to regulate SLC20A2 gene expression, as well as reduce brain calcification which occurs in Fahr’s disease and normal aging. PMID:27184385

  5. Fetal ethanol exposure attenuates aversive oral effects of TrpV1, but not TrpA1 agonists in rats.

    PubMed

    Glendinning, John I; Simons, Yael M; Youngentob, Lisa; Youngentob, Steven L

    2012-03-01

    In humans, fetal ethanol exposure is highly predictive of adolescent ethanol use and abuse. Prior work in our labs indicated that fetal ethanol exposure results in stimulus-induced chemosensory plasticity in the taste and olfactory systems of adolescent rats. In particular, we found that increased ethanol acceptability could be attributed, in part, to an attenuated aversion to ethanol's aversive odor and quinine-like bitter taste quality. Here, we asked whether fetal ethanol exposure also alters the oral trigeminal response of adolescent rats to ethanol. We focused on two excitatory ligand-gated ion channels, TrpV1 and TrpA1, which are expressed in oral trigeminal neurons and mediate the aversive orosensory response to many chemical irritants. To target TrpV1, we used capsaicin, and to target TrpA1, we used allyl isothiocyanate (or mustard oil). We assessed the aversive oral effects of ethanol, together with capsaicin and mustard oil, by measuring short-term licking responses to a range of concentrations of each chemical. Experimental rats were exposed in utero by administering ethanol to dams through a liquid diet. Control rats had ad libitum access to an iso-caloric iso-nutritive liquid diet. We found that fetal ethanol exposure attenuated the oral aversiveness of ethanol and capsaicin, but not mustard oil, in adolescent rats. Moreover, the increased acceptability of ethanol was directly related to the reduced aversiveness of the TrpV1-mediated orosensory input. We propose that fetal ethanol exposure increases ethanol avidity not only by making ethanol smell and taste better, but also by attenuating ethanol's capsaicin-like burning sensations.

  6. Protein Kinase C Is Involved in the Induction of ATP-Binding Cassette Transporter A1 Expression by Liver X Receptor/Retinoid X Receptor Agonist in Human Macrophages.

    PubMed

    Huwait, Etimad A; Singh, Nishi N; Michael, Daryn R; Davies, Thomas S; Moss, Joe W E; Ramji, Dipak P

    2015-05-07

    The transcription of the ATP-binding cassette transporter A1 (ABCA1) gene, which plays a key anti-atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) in the LXRs-mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have therefore investigated a potential role for PKC in the action of LXR/RXR agonist 22-(R)-hydroxycholesterol (22-(R)-HC)/9-cis-retinoic acid (9cRA) in THP-1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein-1 (AP-1) DNA binding activity in macrophages treated with 22-(R)-HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype-specific inhibitors. These studies therefore reveal a potentially important role for PKC in the action of 22-(R)-HC and 9cRA in human macrophages. This article is protected by copyright. All rights reserved.

  7. Protein Kinase C Is Involved in the Induction of ATP-Binding Cassette Transporter A1 Expression by Liver X Receptor/Retinoid X Receptor Agonist in Human Macrophages.

    PubMed

    Huwait, Etimad A; Singh, Nishi N; Michael, Daryn R; Davies, Thomas S; Moss, Joe W E; Ramji, Dipak P

    2015-09-01

    The transcription of the ATP-binding cassette transporter A1 (ABCA1) gene, which plays a key anti-atherogenic role, is known to be induced by agonists of liver X receptors (LXRs). LXRs form obligate heterodimers with retinoid X receptors (RXRs) and interact with their recognition sequences in the regulatory regions of key genes implicated in the control of cholesterol, fatty acid and glucose homeostasis. We have previously shown a novel role for c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K) in the LXRs-mediated induction of macrophage gene expression. Protein kinase C (PKC) is often found to regulate the action of nuclear receptors and cross talk between this kinase family and JNK and/or PI3K has been shown in several settings. We have, therefore, investigated a potential role for PKC in the action of LXR/RXR agonist 22-(R)-hydroxycholesterol (22-(R)-HC)/9-cis-retinoic acid (9cRA) in THP-1 macrophages, including the induction of ABCA1 expression. The pan PKC inhibitor bisindoylmaleimide was found to attenuate the induction of ABCA1 protein expression, the activation of the JNK signaling pathway and the stimulation of activator protein-1 (AP-1) DNA binding activity in macrophages treated with 22-(R)-HC and 9cRA. The role of PKC in the action of these ligands was confirmed further by the use of more isotype-specific inhibitors. These studies, therefore, reveal a potentially important role for PKC in the action of 22-(R)-HC and 9cRA in human macrophages.

  8. β2 Agonists.

    PubMed

    Billington, Charlotte K; Penn, Raymond B; Hall, Ian P

    2017-01-01

    History suggests β agonists, the cognate ligand of the β2 adrenoceptor, have been used as bronchodilators for around 5,000 years, and β agonists remain today the frontline treatment for asthma and chronic obstructive pulmonary disease (COPD). The β agonists used clinically today are the products of significant expenditure and over 100 year's intensive research aimed at minimizing side effects and enhancing therapeutic usefulness. The respiratory physician now has a therapeutic toolbox of long acting β agonists to prophylactically manage bronchoconstriction, and short acting β agonists to relieve acute exacerbations. Despite constituting the cornerstone of asthma and COPD therapy, these drugs are not perfect; significant safety issues have led to a black box warning advising that long acting β agonists should not be used alone in patients with asthma. In addition there are a significant proportion of patients whose asthma remains uncontrolled. In this chapter we discuss the evolution of β agonist use and how the understanding of β agonist actions on their principal target tissue, airway smooth muscle, has led to greater understanding of how these drugs can be further modified and improved in the future. Research into the genetics of the β2 adrenoceptor will also be discussed, as will the implications of individual DNA profiles on the clinical outcomes of β agonist use (pharmacogenetics). Finally we comment on what the future may hold for the use of β agonists in respiratory disease.

  9. The 5-HT1A/1B-receptor agonist eltoprazine increases both catecholamine release in the prefrontal cortex and dopamine release in the nucleus accumbens and decreases motivation for reward and "waiting" impulsivity, but increases "stopping" impulsivity.

    PubMed

    Korte, S Mechiel; Prins, Jolanda; Van den Bergh, Filip S; Oosting, Ronald S; Dupree, Rudy; Korte-Bouws, Gerdien A H; Westphal, Koen G C; Olivier, Berend; Denys, Damiaan A; Garland, Alexis; Güntürkün, Onur

    2017-01-05

    The 5-HT1A/1B-receptor agonist eltoprazine has a behavioral drug signature that resembles that of a variety of psychostimulant drugs, despite the differences in receptor binding profile. These psychostimulants are effective in treating impulsivity disorders, most likely because they increase norepinephrine (NE) and dopamine (DA) levels in the prefrontal cortex. Both amphetamine and methylphenidate, however, also increase dopamine levels in the nucleus accumbens (NAc), which has a significant role in motivation, pleasure, and reward. How eltoprazine affects monoamine release in the medial prefrontal cortex (mPFC), the orbitofrontal cortex (OFC), and the NAc is unknown. It is also unknown whether eltoprazine affects different forms of impulsivity and brain reward mechanisms. Therefore, in the present study, we investigate the effects of eltoprazine in rats in the following sequence: 1) the activity of the monoaminergic systems using in vivo microdialysis, 2) motivation for reward measured using the intracranial self-stimulation (ICSS) procedure, and finally, 3) "waiting" impulsivity in the delay-aversion task, and the "stopping" impulsivity in the stop-signal task. The microdialysis studies clearly showed that eltoprazine increased DA and NE release in both the mPFC and OFC, but only increased DA concentration in the NAc. In contrast, eltoprazine decreased 5-HT release in the mPFC and NAc (undetectable in the OFC). Remarkably, eltoprazine decreased impulsive choice, but increased impulsive action. Furthermore, brain stimulation was less rewarding following eltoprazine treatment. These results further support the long-standing hypothesis that "waiting" and "stopping" impulsivity are regulated by distinct neural circuits, because 5-HT1A/1B-receptor activation decreases impulsive choice, but increases impulsive action. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Evolution of peroxisome proliferator-activated receptor agonists.

    PubMed

    Chang, Feng; Jaber, Linda A; Berlie, Helen D; O'Connell, Mary Beth

    2007-06-01

    To discuss the evolution of peroxisome proliferator-activated receptor (PPAR) agonists from single site to multiple subtype or partial agonists for the treatment of type 2 diabetes, dyslipidemia, obesity, and the metabolic syndrome. Information was obtained from MEDLINE (1966-March 2007) using search terms peroxisome proliferator-activated receptor agonist, PPAR dual agonist, PPAR alpha/gamma agonist, PPAR pan agonist, partial PPAR, and the specific compound names. Other sources included pharmaceutical companies, the Internet, and the American Diabetes Association 64th-66th Scientific Sessions abstract books. Animal data, abstracts, clinical trials, and review articles were reviewed and summarized. PPAR alpha, gamma, and delta receptors play an important role in lipid metabolism, regulation of adipocyte proliferation and differentiation, and insulin sensitivity. The PPAR dual agonists were developed to combine the triglyceride lowering and high-density lipoprotein cholesterol elevation from the PPAR-alpha agonists (fibrates) with the insulin sensitivity improvement from the PPAR-gamma agonists (thiazolidinediones). Although the dual agonists reduced hemoglobin A(1C) (A1C) and improved the lipid profile, adverse effects led to discontinued development. Currently, PPAR-delta agonists (GW501516 in Phase I trials), partial PPAR-gamma agonists (metaglidasen in Phase II and III trials), and pan agonists (alpha, gamma, delta; netoglitazone in Phase II and III trials) with improved cell and tissue selectivity are undergoing investigation to address multiple aspects of the metabolic syndrome with a single medication. By decreasing both A1C and triglycerides, metaglidasen did improve multiple aspects of the metabolic syndrome with fewer adverse effects than compared with placebo. Metaglidasen is now being compared with pioglitazone. Influencing the various PPARs results in improved glucose, lipid, and weight management, with effects dependent on full or partial agonist

  11. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor.

    PubMed

    Warne, Tony; Moukhametzianov, Rouslan; Baker, Jillian G; Nehmé, Rony; Edwards, Patricia C; Leslie, Andrew G W; Schertler, Gebhard F X; Tate, Christopher G

    2011-01-13

    β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β(1)-adrenergic receptor (β(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.

  12. Intensified Microwave-Assisted N-Acylation Procedure – Synthesis and Activity Evaluation of TRPC3 Channel Agonists with a 1,3-Dihydro-2H-benzo[d]imidazol-2-one Core

    PubMed Central

    de la Cruz, Gema Guedes; Svobodova, Barbora; Lichtenegger, Michaela; Tiapko, Oleksandra; Groschner, Klaus; Glasnov, Toma

    2017-01-01

    Upon controlled microwave heating and using cyanuric chloride as a coupling reagent, an efficient amidation procedure for the synthesis of 1,3-dihydro-2H-benzo[d]imidazol-2-one-based agonists of TRPC3/6 ion channels has been developed. Compared to the few conventional protocols, a drastic reduction in processing time from ca. 2 days down to 10 minutes was achieved accompanied by significantly improved product yields. The robustness of the method was confirmed by 18 additional examples including aromatic, aliphatic, and heterocyclic amines and acids. The obtained agonists were screened for biological activity at 1 μM concentration and few structure–activity relations have been established.

  13. Intensified Microwave-Assisted N-Acylation Procedure - Synthesis and Activity Evaluation of TRPC3 Channel Agonists with a 1,3-Dihydro-2H-benzo[d]imidazol-2-one Core.

    PubMed

    de la Cruz, Gema Guedes; Svobodova, Barbora; Lichtenegger, Michaela; Tiapko, Oleksandra; Groschner, Klaus; Glasnov, Toma

    2017-04-01

    Upon controlled microwave heating and using cyanuric chloride as a coupling reagent, an efficient amidation procedure for the synthesis of 1,3-dihydro-2H-benzo[d]imidazol-2-one-based agonists of TRPC3/6 ion channels has been developed. Compared to the few conventional protocols, a drastic reduction in processing time from ca. 2 days down to 10 minutes was achieved accompanied by significantly improved product yields. The robustness of the method was confirmed by 18 additional examples including aromatic, aliphatic, and heterocyclic amines and acids. The obtained agonists were screened for biological activity at 1 μM concentration and few structure-activity relations have been established.

  14. Identification of a novel selective peroxisome proliferator-activated receptor alpha agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674), that produces marked changes in serum lipids and apolipoprotein A-1 expression.

    PubMed

    Singh, Jai Pal; Kauffman, Raymond; Bensch, William; Wang, Guoming; McClelland, Pam; Bean, James; Montrose, Chahrzad; Mantlo, Nathan; Wagle, Asavari

    2005-09-01

    Low high-density lipoprotein-cholesterol (HDL-c) is an important risk factor of coronary artery disease (CAD). Optimum therapy for raising HDL-c is still not available. Identification of novel HDL-raising agents would produce a major impact on CAD. In this study, we have identified a potent (IC50 approximately 24 nM) and selective peroxisome proliferator-activated receptor alpha (PPARalpha) agonist, 2-methyl-2-(4-{3-[1-(4-methylbenzyl)-5-oxo-4,5-dihydro-1H-1,2,4-triazol-3-yl]propyl}phenoxy)propanoic acid (LY518674). In human apolipoprotein A-1 (apoA-1) transgenic mice, LY518674 produced a dose-dependent increase in serum HDL-c, resulting in 208 +/- 15% elevation at optimum dose. A new synthesis of apoA-1 contributed to the increase in HDL-c. LY518674 increased apoA-1 mRNA levels in liver. Moreover, liver slices from animals treated with LY518674 secreted 3- to 6-fold more apoA-1 than control liver slices. In cultured hepatocytes, LY518674 produced 50% higher apoA-1 secretion, which was associated with increase in radiolabeled methionine incorporation in apoA-1. Thus, LY518674 is a potent and selective PPARalpha agonist that produced a much greater increase in serum HDL-c than the known fibrate drugs. The increase in HDL-c was associated with de novo synthesis of apoA-1.

  15. Enhanced Actions of Adenosine in Medial Entorhinal Cortex Layer II Stellate Neurons in Temporal Lobe Epilepsy are Mediated via A1 Receptor Activation

    PubMed Central

    Hargus, Nicholas J.; Jennings, Conor; Perez-Reyes, Edward; Bertram, Edward H.; Patel, Manoj K.

    2011-01-01

    Summary Purpose The adenosinergic system is known to exert an inhibitory affect in the brain and as such adenosine has been considered an endogenous anticonvulsant. Entorhinal cortex (EC) layer II neurons, which serve as the primary input to the hippocampus, are spared in temporal lobe epilepsy (TLE) and become hyperexcitable. Since these neurons also express adenosine receptors, the activity of these neurons may be controlled by adenosine, specifically during seizure activity when adenosine levels are thought to rise. In light of this, we determined if the actions of adenosine on medial EC (mEC) layer II stellate neurons are augmented in TLE and by which receptor subtype. Methods Horizontal brain slices were prepared from rats exhibiting spontaneous seizures (TLE) induced by electrical stimulation and compared with age matched control rats. mEC layer II stellate neurons were visually identified and action potentials (AP) evoked by either a series of depolarizing current injection steps or via presynaptic stimulation of mEC deep layers. The effects of adenosine were compared with actions of adenosine A1 and A2A receptor-specific agonists (CPA and CGS 21680) and antagonists (DPCPX and ZM241385) respectively. Immunohistochemical and qPCR techniques were also employed to assess relative adenosine A1 receptor message and expression. Key Findings mEC layer II stellate neurons were hyper-excitable in TLE, evoking a higher frequency of AP's when depolarized and generating bursts of AP's when synaptically stimulated. Adenosine reduced AP frequency and synaptically evoked AP's in a dose dependent manner (500 nM – 100 μM); however, in TLE, the inhibitory actions of adenosine occurred at concentrations that were without affect in control neurons. In both cases, the inhibitory actions of adenosine were mediated via activation of the A1 and not the A2A receptor subtype. qPCR and immunohistochemical experiments revealed an up-regulation of the adenosine A1 mRNA and an

  16. [Melatonin receptor agonist].

    PubMed

    Uchiyama, Makoto

    2015-06-01

    Melatonin is a hormone secreted by the pineal gland and is involved in the regulation of human sleep-wake cycle and circadian rhythms. The melatonin MT1 and MT2 receptors located in the suprachiasmatic nucleus in the hypothalamus play a pivotal role in the sleep-wake regulation. Based on the fact that MT1 receptors are involved in human sleep onset process, melatonin receptor agonists have been developed to treat insomnia. In this article, we first reviewed functions of melatonin receptors with special reference to MT1 and MT2, and properties and clinical application of melatonin receptor agonists as hypnotics.

  17. Investigational melatonin receptor agonists.

    PubMed

    Hardeland, Rüdiger

    2010-06-01

    Melatonin is a major chronobiological regulator involved in circadian phasing, sleep, and numerous other functions including cyto-/neuroprotection, immune modulation, and energy metabolism. The suitability of melatonin as a drug is limited because of its short half-life. Therefore, various indolic and non-indolic melatonergic agonists have been developed. Frequent health problems such as sleep disturbances, neuropsychiatric disorders related to circadian dysphasing, and metabolic diseases associated with insulin resistance are targeted by melatonergic agonists. Various synthetic melatonergic drugs are compared with regard to receptor affinities, selectivity, effects on sleep, endogenous melatonin, circadian phase and insulin-related metabolism. The chemical design of melatonin receptor agonists is discussed in relation to consequences for receptor affinity, selectivity, metabolism, and spectrum of effects. Melatonergic agonists are suitable for phase-shifting circadian rhythms, and may be used for treating disorders related to circadian dysfunction including sleep difficulties. Facilitation of sleep onset is a general property, whereas promotion of sleep maintenance is demonstrable but not always fully sufficient. Details are especially available for tasimelteon. Support of insulin sensitivity may become a new area of application for compounds such as NEU-P11. Some drugs acting additionally as serotonergic antagonists display antidepressant properties.

  18. Beta-Adrenergic Agonists

    PubMed Central

    Barisione, Giovanni; Baroffio, Michele; Crimi, Emanuele; Brusasco, Vito

    2010-01-01

    Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised. PMID:27713285

  19. Melatonin agonists and insomnia.

    PubMed

    Ferguson, Sally A; Rajaratnam, Shantha M W; Dawson, Drew

    2010-02-01

    The ability of melatonin to shift biological rhythms is well known. As a result, melatonin has been used in the treatment of various circadian rhythm sleep disorders, such as advanced and delayed sleep phase disorders, jet lag and shiftwork disorder. The current evidence for melatonin being efficacious in the treatment of primary insomnia is less compelling. The development of agents that are selective for melatonin receptors provides opportunity to further elucidate the actions of melatonin and its receptors and to develop novel treatments for specific types of sleep disorders. The agonists reviewed here - ramelteon, tasimelteon and agomelatine - all appear to be efficacious in the treatment of circadian rhythm sleep disorders and some types of insomnia. However, further studies are required to understand the mechanisms of action, particularly for insomnia. Clinical application of the agonists requires a good understanding of their phase-dependent properties. Long-term effects of melatonin should be evaluated in large-scale, independent randomized controlled trials.

  20. Adenosine A1, but not A2, receptor blockade increases anxiety and arousal in Zebrafish.

    PubMed

    Maximino, Caio; Lima, Monica G; Olivera, Karen R M; Picanço-Diniz, Domingos L W; Herculano, Anderson M

    2011-09-01

    Adenosinergic systems have been implicated in anxiety-like states, as caffeine can induce a state of anxiety in human beings. Caffeine is an antagonist at A(1) and A(2) adenosine receptors but it remains unclear whether anxiety is mediated by one or both of these. As the adenosinergic system is rather conserved, we opted to pursue these questions using zebrafish, a widely used model organism in genetics and developmental biology. Zebrafish adenosine 1. 2A.1 and 2A.2 receptors conserve histidine residues in TM6 and TM7 that are responsible for affinity in bovine A1 receptor. We investigated the effects of caffeine, PACPX (an A(1) receptor antagonist) and 1,3-dimethyl-1-propargylxanthine (DMPX) (an A(2) receptor antagonist) on anxiety-like behaviour and locomotor activity of zebrafish in the scototaxis test as well as evaluated the effects of these drugs on pigment aggregation. Caffeine increased anxiety at the dose of 100 mg/kg, while locomotion at the dose of 10 mg/kg was increased. Both doses of 10 and 100 mg/kg induced pigment aggregation. PACPX, on the other hand, increased anxiety at a dose of 6 mg/kg and induced pigment aggregation at the doses of 0.6 and 6 mg/kg, but did not produce a locomotor effect. DMPX, in turn, increased locomotion at the dose of 6 mg/kg but did not produce any effect on pigment aggregation or anxiety-like behaviour. These results indicate that blockade of A(1)-R, but not A(2)-R, induces anxiety and autonomic arousal, while the blockade of A(2)-R induces hyperlocomotion. Thus, as in rodents, caffeine's anxiogenic and arousing effects are probably mediated by A(1) receptors in zebrafish and its locomotor activating effect is probably mediated by A(2) receptors. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  1. The adenosinergic system is involved in sensitization to morphine withdrawal signs in rats-neurochemical and molecular basis in dopaminergic system.

    PubMed

    Listos, Joanna; Baranowska-Bosiacka, Irena; Wąsik, Agnieszka; Talarek, Sylwia; Tarnowski, Maciej; Listos, Piotr; Łupina, Małgorzata; Antkiewicz-Michaluk, Lucyna; Gutowska, Izabela; Tkacz, Marta; Pilutin, Anna; Orzelska-Górka, Jolanta; Chlubek, Dariusz; Fidecka, Sylwia

    2016-06-01

    Experimental data informs that not only do the dose and time duration of dependent drugs affect the severity of withdrawal episodes. Previous withdrawal experiences may intensify this process, which is referred as sensitization to withdrawal signs. Adenosine and dopamine (DA) receptors may be involved in this sensitization. Rats were continuously and sporadically treated with increasing doses of morphine for 8 days. In rats, sporadically treated with morphine, morphine administration was modified by adding three morphine-free periods. Adenosine agonists were given during each of the morphine-free periods (six injections in total). On the 9th day, morphine was injected. One hour later, naloxone was administered to induce morphine withdrawal signs. Then, the animals were placed into cylinders and the number of jumpings was recorded. Next, the rats were decapitated and brain and brain structures (striatum, hippocampus, and prefrontal cortex) were dissected for neurochemical, molecular, and immunohistochemical experiments within DAergic pathways. We demonstrated that previous experiences of opioid withdrawal intensified subsequent withdrawal signs. Adenosine ligands attenuated the sensitization to withdrawal signs. In a neurochemical study, the release of DA and its metabolites was impaired in all structures. Significant alterations were also observed in mRNA and protein expression of DA receptors. Results demonstrate that intermittent treatment with morphine induces alterations in the DAergic system which may be responsible for sensitization to morphine withdrawal signs. Although adenosine ligands attenuate this type of sensitization, they are not able to fully restore the physiological brain status.

  2. [Histrelin acetate--the first once yearly LHRH agonist].

    PubMed

    Altarac, Silvio

    2011-01-01

    Long-acting synthetic luteinising hormone-releasing hormone agonists have become the mainstay for androgen-deprivation therapy, because they avoid the physical and psychological discomfort associated with orchidectomy and lack the potential cardiotoxicity associated with estrogens such as diethylstilbestrol. Currently available luteinising hormone-releasing hormone agonist analogues include leuprolide, goserelin, triptorelin, degarelix and buserelin were administered as either intramuscular or subcutaneous depot injections on a 1, 2, 3 or 6 months basis. Histrelin acetate is the first long-acting luteinising hormone-releasing hormone agonist available as a once-yearly subcutaneous implant.

  3. Synthesis and biological evaluation of a new series of 2-amino-3-aroyl thiophene derivatives as agonist allosteric modulators of the A1 adenosine receptor. A position-dependent effect study.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Lopez-Cara, Carlota; Cruz-Lopez, Olga; Moorman, Allan R; Massink, Arnault; IJzerman, Adriaan P; Vincenzi, Fabrizio; Borea, Pier Andrea; Varani, Katia

    2015-08-28

    The 2-amino-3-(p-chlorobenzoyl)thiophene scaffold has been widely employed as a pharmacophore for the identification of small molecules acting as allosteric modulators at the adenosine A1 receptor. A new series of 2-amino-3-(p-chlorobenzoyl)-4-benzyl-5-arylthiophene derivatives, characterized by the absence as well as the presence of electron-releasing or electron-withdrawing groups on the phenyl ring at the 4- and 5-positions of the thiophene ring, were identified as positive allosteric enhancers at the adenosine A1 receptor in binding (saturation, competition and dissociation kinetics) and functional assays. To better understand the positional requirements of substituents on the 2-amino-3-(p-chlorobenzoyl)thiophene core, the corresponding regioisomeric 4-aryl-5-benzylthiophene analogues were synthesized and found to possess reduced allosteric enhancer activity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  4. Agonist-activated ion channels

    PubMed Central

    Colquhoun, David

    2006-01-01

    This paper looks at ion channels as an example of the pharmacologist's stock in trade, the action of an agonist on a receptor to produce a response. Looked at in this way, ion channels have been helpful because they are still the only system which is simple enough for quantitative investigation of transduction mechanisms. A short history is given of attempts to elucidate what happens between the time when agonist first binds, and the time when the channel opens. PMID:16402101

  5. Agonist-trafficking and hallucinogens.

    PubMed

    González-Maeso, Javier; Sealfon, Stuart C

    2009-01-01

    Seven transmembrane domain receptors, also termed G protein-coupled receptors (GPCRs), represent the most common molecular target for therapeutic drugs. The generally accepted pharmacological model for GPCR activation is the ternary complex model, in which GPCRs exist in a dynamic equilibrium between the active and inactive conformational states. However, the demonstration that different agonists sometimes elicit a different relative activation of two signaling pathways downstream of the same receptor has led to a revision of the ternary complex model. According to this agonist- trafficking model, agonists stabilize distinct activated receptor conformations that preferentially activate specific signaling pathways. Hallucinogenic drugs and non-hallucinogenic drugs represent an attractive experimental system with which to study agonist-trafficking of receptor signaling. Thus many of the behavioral responses induced by hallucinogenic drugs, such as lysergic acid diethylamide (LSD), psilocybin or mescaline, depend on activation of serotonin 5-HT(2A) receptors (5-HT2ARs). In contrast, this neuropsychological state in humans is not induced by closely related chemicals, such as lisuride or ergotamine, despite their similar in vitro activity at the 5-HT2AR. In this review, we summarize the current knowledge, as well as unresolved questions, regarding agonist-trafficking and the mechanism of action of hallucinogenic drugs.

  6. Agonists for the Chemokine Receptor CXCR4

    PubMed Central

    2011-01-01

    The development of agonists for the chemokine receptor CXCR4 could provide promising therapeutic candidates. On the basis of previously forwarded two site model of chemokine–receptor interactions, we hypothesized that linking the agonistic N-terminus of SDF-1 to the T140 backbone would yield new high-affinity agonists of CXCR4. We developed chimeras with the agonistic SDF-1 N-terminus grafted to a T140 side chain and tested their binding affinity and chemotactic agonist activity. While chimeras with the peptide grafted onto position 12 of T140 remained high-affinity antagonists, those bearing the peptide on position 14 were in part agonists. One chimera was a full CXCR4 agonist with 25 nM affinity, and several chimeras showed low nanomolar affinities with partial agonist activity. Our results confirmed that we have developed high-affinity agonists of CXCR4. PMID:21841963

  7. Dopamine agonist therapy in hyperprolactinemia.

    PubMed

    Webster, J

    1999-12-01

    Introduction of the dopamine agonist bromocriptine heralded a major advance in the management of hyperprolactinemic disorders. Although its side effects of nausea, dizziness and headache and its short elimination half-life are limiting factors, its efficacy established it as a reference compound against the activity of which several dopamine agonists, like pergolide, lysuride, metergoline, terguride and dihydroergocristine, fell by the wayside. More recently, two new agents, cabergoline and quinagolide, have been introduced and appear to offer considerable advantages over bromocriptine. Cabergoline, an ergoline D2 agonist, has a long plasma half-life that enables once- or twice-weekly administration. Quinagolide, in contrast, is a nonergot D2 agonist with an elimination half-life intermediate between those of bromocriptine and cabergoline, allowing the drug to be administered once daily. Comparative studies indicate that cabergoline is clearly superior to bromocriptine in efficacy (prolactin suppression, restoration of gonadal function) and in tolerability. In similar studies, quinagolide appeared to have similar efficacy and superior tolerability to that of bromocriptine. Results of a small crossover study indicate that cabergoline is better tolerated, with a trend toward activity superior to that of quinagolide. In hyperprolactinemic men and in women not seeking to become pregnant, cabergoline may be regarded as the treatment of choice.

  8. Combining a GLP-1 receptor agonist and basal insulin: study evidence and practical considerations.

    PubMed

    Carris, Nicholas W; Taylor, James R; Gums, John G

    2014-12-01

    Most patients with diabetes mellitus require multiple medications to achieve glycemic goals. Considering this and the increasing incidence of type 2 diabetes worldwide, the need for effective combination therapy is pressing. Basal insulin and glucagon-like peptide 1 (GLP-1) receptor agonists are frequently used to treat type 2 diabetes. Though both classes of medication are exclusively injectable, which may cause initial hesitation from providers, evidence for their combined use is substantial. This review summarizes the theoretical benefit, supporting evidence, and implementation of a combined basal insulin-GLP-1 receptor agonist regimen. Basal insulin added to a GLP-1 receptor agonist reduces hemoglobin A1c (HbA1c) without weight gain or significantly increased hypoglycemia. A GLP-1 receptor agonist added to basal insulin reduces HbA1c and body weight. Compared with the addition of meal-time insulin to basal insulin, a GLP-1 receptor agonist produces similar or greater reduction in HbA1c, weight loss instead of weight gain, and less hypoglycemia. Gastrointestinal adverse events are common with GLP-1 receptor agonists, especially during initiation and titration. However, combination with basal insulin is not expected to augment expected adverse events that come with using a GLP-1 receptor agonist. Basal insulin can be added to a GLP-1 receptor agonist with a slow titration to target goal fasting plasma glucose. In patients starting a GLP-1 receptor agonist, the dose of basal insulin should be decreased by 20 % in patients with an HbA1c ≤8 %. The evidence from 15 randomized prospective studies supports the combined use of a GLP-1 receptor agonist with basal insulin in a broad range of patients with uncontrolled type 2 diabetes.

  9. Gremlin: vexing VEGF receptor agonist.

    PubMed

    Claesson-Welsh, Lena

    2010-11-04

    Gremlins are mischievous creatures in English folklore, believed to be the cause of otherwise unexplainable breakdowns (the word gremlins is derived from the Old English "gremian" or "gremman," "to vex"). Gremlin (or Gremlin-1) is also the designation of a secreted protein that is known to regulate bone formation during development. In this issue of Blood, Mitola et al report the novel role of Gremlin as a VEGFR2 agonist and the function of the Gremlin protein seems vexing indeed.

  10. Novel diazabicycloalkane delta opioid agonists.

    PubMed

    Loriga, Giovanni; Lazzari, Paolo; Manca, Ilaria; Ruiu, Stefania; Falzoi, Matteo; Murineddu, Gabriele; Bottazzi, Mirko Emilio Heiner; Pinna, Giovanni; Pinna, Gérard Aimè

    2015-09-01

    Here we report the investigation of diazabicycloalkane cores as potential new scaffolds for the development of novel analogues of the previously reported diazatricyclodecane selective delta (δ) opioid agonists, as conformationally constrained homologues of the reference δ agonist (+)-4-[(αR)-α((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (SNC80). In particular, we have simplified the diazatricyclodecane motif of δ opioid agonist prototype 1a with bridged bicyclic cores. 3,6-diazabicyclo[3.1.1]heptane, 3,8-diazabicyclo[3.2.1]octane, 3,9-diazabicyclo[3.3.1]nonane, 3,9-diazabicyclo[4.2.1]nonane, and 3,10-diazabicyclo[4.3.1]decane were adopted as core motifs of the novel derivatives. The compounds were synthesized and biologically assayed as racemic (3-5) or diastereoisomeric (6,7) mixtures. All the novel compounds 3-7 showed δ agonism behaviour and remarkable affinity to δ receptors. Amongst the novel derivatives, 3,8-diazabicyclo[3.2.1]octane based compound 4 evidenced improved δ affinity and selectivity relative to SNC80. Published by Elsevier Ltd.

  11. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists.

    PubMed

    Magnan, Rémi; Masri, Bernard; Escrieut, Chantal; Foucaud, Magali; Cordelier, Pierre; Fourmy, Daniel

    2011-02-25

    Given the importance of G-protein-coupled receptors as pharmacological targets in medicine, efforts directed at understanding the molecular mechanism by which pharmacological compounds regulate their presence at the cell surface is of paramount importance. In this context, using confocal microscopy and bioluminescence resonance energy transfer, we have investigated internalization and intracellular trafficking of the cholecystokinin-2 receptor (CCK2R) in response to both natural and synthetic ligands with different pharmacological features. We found that CCK and gastrin, which are full agonists on CCK2R-induced inositol phosphate production, rapidly and abundantly stimulate internalization. Internalized CCK2R did not rapidly recycle to plasma membrane but instead was directed to late endosomes/lysosomes. CCK2R endocytosis involves clathrin-coated pits and dynamin and high affinity and prolonged binding of β-arrestin1 or -2. Partial agonists and antagonists on CCK2R-induced inositol phosphate formation and ERK1/2 phosphorylation did not stimulate CCK2R internalization or β-arrestin recruitment to the CCK2R but blocked full agonist-induced internalization and β-arrestin recruitment. The extreme C-terminal region of the CCK2R (and more precisely phosphorylatable residues Ser(437)-Xaa(438)-Thr(439)-Thr(440)-Xaa(441)-Ser(442)-Thr(443)) were critical for β-arrestin recruitment. However, this region and β-arrestins were dispensable for CCK2R internalization. In conclusion, this study allowed us to classify the human CCK2R as a member of class B G-protein-coupled receptors with regard to its endocytosis features and identified biased agonists of the CCK2R. These new important insights will allow us to investigate the role of internalized CCK2R·β-arrestin complexes in cancers expressing this receptor and to develop new diagnosis and therapeutic strategies targeting this receptor.

  12. GLP-1 Agonists in Type 1 Diabetes Mellitus.

    PubMed

    Janzen, Kristin M; Steuber, Taylor D; Nisly, Sarah A

    2016-08-01

    To review the use of GLP-1 agonists in patients with type 1 diabetes mellitus (T1DM). A search using the MEDLINE database, EMBASE, and Cochrane Database was performed through March 2016 using the search terms glucagon-like peptide 1 (GLP-1) agonists, incretin, liraglutide, exenatide, albiglutide, dulaglutide, type 1 diabetes mellitus All English-language trials that examined glycemic end points using GLP-1 agonists in humans with T1DM were included. A total of 9 clinical trials examining the use of GLP-1 agonists in T1DM were identified. On average, hemoglobin A1C (A1C) was lower than baseline, with a maximal lowering of 0.6%. This effect was not significant when tested against a control group, with a relative decrease in A1C of 0.1% to 0.2%. In all trials examined, reported hypoglycemia was low, demonstrating no difference when compared with insulin monotherapy. Weight loss was seen in all trials, with a maximum weight loss of 6.4 kg over 24 weeks. Gastrointestinal adverse effects are potentially limiting, with a significant number of patients in trials reporting nausea. The use of GLP-1 agonists should be considered in T1DM patients who are overweight or obese and not at glycemic goals despite aggressive insulin therapy; however, tolerability of these agents is a potential concern. Liraglutide has the strongest evidence for use and would be the agent of choice for use in overweight or obese adult patients with uncontrolled T1DM. © The Author(s) 2016.

  13. Effects of adenosine agonists on consumptive behaviour and body temperature.

    PubMed

    Coupar, Ian M; Tran, Binh L T

    2002-02-01

    This study was designed to determine the effects of the A1-receptor selective agonist N6-cyclopentyladenosine (CPA), and the A2-selective agonist, 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine-hydrochloride (CGS-21680) on consumptive behaviour and body temperature in rats in relation to the non-selective A1/A2 adenosine agonist, N-ethylcarboxamidoadenosine (NECA), and to morphine. It was shown that two subcutaneous injections of 0.1 and 0.3 mg kg(-1) CPA caused a similar decrease in food consumption to NECA (2 x 0.03 mg kg(-1)) and morphine (2 x 10 mg kg(-1)). However, two doses of 0.03 mg kg(-1) CPA and 0.1 and 0.3 mg kg(-1)CGS-21680 enhanced feeding. These effects were not directly correlated to faecal output at all doses of the selective agonists, as NECA and morphine induced constipation. The doses of CPA and 0.1 and 0.3 mg kg(-1) of CGS-21680 enhanced water consumption, as did NECA, but not morphine. The stimulation of drinking by CPA was not absolutely associated with diuresis. Instead, urine output was reduced by 0.03 and 0.1 mg kg(-1) and increased by 0.3 mg kg(-1). CGS-21680 at 0.1 and 0.3 mg kg(-1) and NECA also induced diuresis, which was opposite to the effect of morphine. CPA and CGS-21680 both caused significant dose-dependent decreases in body temperature after the two-injection treatment, but their effects were significantly less after 36 h when four doses had been administered. The study indicates that highly selective A1 and A2A adenosine agonists might have the ability to interfere with consumptive behaviour, induce constipation, affect renal function and to lower body temperature.

  14. Kappa Opioid Receptor Agonist and Brain Ischemia

    PubMed Central

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury. PMID:25574482

  15. Kappa Opioid Receptor Agonist and Brain Ischemia.

    PubMed

    Chunhua, Chen; Chunhua, Xi; Megumi, Sugita; Renyu, Liu

    2014-01-01

    Opioid receptors, especially Kappa opioid receptor (KOR) play an important role in the pathophysiological process of cerebral ischemia reperfusion injury. Previously accepted KOR agonists activity has included anti-nociception, cardiovascular, anti-pruritic, diuretic, and antitussive effects, while compelling evidence from various ischemic animal models indicate that KOR agonist have neuroprotective effects through various mechanisms. In this review, we aimed to demonstrate the property of KOR agonist and its role in global and focal cerebral ischemia. Based on current preclinical research, the KOR agonists may be useful as a neuroprotective agent. The recent discovery of salvinorin A, highly selective non-opioid KOR agonist, offers a new tool to study the role of KOR in brain HI injury and the protective effects of KOR agonist. The unique pharmacological profile of salvinorin A along with the long history of human usage provides its high candidacy as a potential alternative medication for brain HI injury.

  16. Alpha2-adrenergic receptor agonists as analgesics.

    PubMed

    Boyd, R E

    2001-08-01

    Alpha2-adrenergic receptor agonists are analgesic agents, and the alpha2-adrenergic agonist clonidine has been used in clinical studies for regional analgesia after intrathecal administration. We review here recent developments concerning the structure activity relationships of a new class of potent alpha2-adrenergic agonists and their use as analgesic agents. The effect of structure upon cardiovascular side-effects is also monitored, such as the prolongation of the QT portion of the cardiac action potential.

  17. Dopamine receptor agonists, partial agonists and psychostimulant addiction.

    PubMed

    Pulvirenti, L; Koob, G F

    1994-10-01

    Despite the epidemic growth of psychostimulant addiction over the past years, few pharmacological means of intervention are available to date for clinical treatment. This is of importance since the withdrawal syndrome that follows abstinence from drugs such as cocaine and the amphetamines is characterized, among other symptoms, by intense craving for the abused drug, and this is considered a critical factor leading into relapse of drug use. In this article, Luigi Pulvirenti and George Koob focus on the modulatory role shown by drugs acting at the dopamine receptor on the various phases of psychostimulant dependence in preclinical models and in human studies, and suggest that a class of compounds with partial agonist properties at the dopamine receptor may have therapeutic potential.

  18. Dopamine agonists for cocaine dependence.

    PubMed

    Soares, B G; Lima, M S; Reisser, A A; Farrell, M

    2001-01-01

    Cocaine is a major drug of abuse. Cocaine dependence is a common and serious condition, which has become nowadays a substantial public health problem. There is a wide and well documented range of consequences associated to chronic use of this drug, such as medical, psychological and social problems, including the spread of infectious diseases (e.g. AIDS, hepatitis and tuberculosis), crime, violence and neonatal drug exposure. Therapeutic management of the cocaine addicts includes an initial period of abstinence from the drug. During this phase the subjects may experience, besides the intense craving for cocaine, symptoms such as depression, fatigue, irritability, anorexia, and sleep disturbances. It was demonstrated that the acute use of cocaine may enhance dopamine transmission and chronically it decreases dopamine concentrations in the brain. Pharmacological treatment that affects dopamine could theoretically reduce these symptoms and contribute to a more successful therapeutic approach. To evaluate the efficacy and acceptability of dopamine agonists for treating cocaine dependence. We searched: The Cochrane Controlled Trials Register (Cochrane Library, issue 4, 2000), MEDLINE (from 1966 - 2000), EMBASE (from 1980 - 2000), LILACS (from 1982 - 2000), PsycLIT (from 1974 - 2000), Biological Abstracts (1982 to 2000). Reference searching; personal communication; conference abstracts; unpublished trials from pharmaceutical industry; book chapters on treatment of cocaine dependence. The inclusion criteria for all randomised controlled trials were that they should focus on the use of dopamine agonists on the treatment of cocaine dependence. Trials including patients with additional diagnosis such as opiate dependence were also eligible. The reviewers extracted the data independently and Relative Risks, weighted mean difference and number needed to treat were estimated. The reviewers assumed that people who died or dropped out had no improvement and tested the sensitivity

  19. Dopamine agonists for cocaine dependence.

    PubMed

    Soares, B G O; Lima, M S; Reisser, A A P; Farrell, M

    2003-01-01

    Cocaine dependence is a common and serious condition, which has become nowadays a substantial public health problem. There is a wide and well documented range of consequences associated to chronic use of this drug, such as medical, psychological and social problems, including the spread of infectious diseases (e.g. AIDS, hepatitis and tuberculosis), crime, violence and neonatal drug exposure. Therapeutic management of the cocaine addicts includes an initial period of abstinence from the drug. During this phase the subjects may experience, besides the intense craving for cocaine, symptoms such as depression, fatigue, irritability, anorexia, and sleep disturbances. It was demonstrated that the acute use of cocaine may enhance dopamine transmission and chronically it decreases dopamine concentrations in the brain. Pharmacological treatment that affects dopamine could theoretically reduce these symptoms and contribute to a more successful therapeutic approach. To evaluate the efficacy and acceptability of dopamine agonists for treating cocaine dependence. Electronic searches of Cochrane Library, EMBASE, MEDLINE, PsycLIT, Biological Abstracts and LILACS; reference searching; personal communication; conference abstracts; unpublished trials from pharmaceutical industry; book chapters on treatment of cocaine dependence, was performed for the primary version of this review in 2001. Another search of the electronic databases was done in December of 2002 for this update. The specialised register of trials of the Cochrane Group on Drugs and Alcohol was searched until February 2003. The inclusion criteria for all randomised controlled trials were that they should focus on the use of dopamine agonists on the treatment of cocaine dependence. The reviewers extracted the data independently and Relative Risks, weighted mean difference and number needed to treat were estimated. The reviewers assumed that people who died or dropped out had no improvement and tested the sensitivity of

  20. Bitter taste receptor agonists alter mitochondrial function and induce autophagy in airway smooth muscle cells.

    PubMed

    Pan, Shi; Sharma, Pawan; Shah, Sushrut D; Deshpande, Deepak A

    2017-07-01

    Airway remodeling, including increased airway smooth muscle (ASM) mass, is a hallmark feature of asthma and COPD. We previously identified the expression of bitter taste receptors (TAS2Rs) on human ASM cells and demonstrated that known TAS2R agonists could promote ASM relaxation and bronchodilation and inhibit mitogen-induced ASM growth. In this study, we explored cellular mechanisms mediating the antimitogenic effect of TAS2R agonists on human ASM cells. Pretreatment of ASM cells with TAS2R agonists chloroquine and quinine resulted in inhibition of cell survival, which was largely reversed by bafilomycin A1, an autophagy inhibitor. Transmission electron microscope studies demonstrated the presence of double-membrane autophagosomes and deformed mitochondria. In ASM cells, TAS2R agonists decreased mitochondrial membrane potential and increased mitochondrial ROS and mitochondrial fragmentation. Inhibiting dynamin-like protein 1 (DLP1) reversed TAS2R agonist-induced mitochondrial membrane potential change and attenuated mitochondrial fragmentation and cell death. Furthermore, the expression of mitochondrial protein BCL2/adenovirus E1B 19-kDa protein-interacting protein 3 (Bnip3) and mitochondrial localization of DLP1 were significantly upregulated by TAS2R agonists. More importantly, inhibiting Bnip3 mitochondrial localization by dominant-negative Bnip3 significantly attenuated cell death induced by TAS2R agonist. Collectively the TAS2R agonists chloroquine and quinine modulate mitochondrial structure and function, resulting in ASM cell death. Furthermore, Bnip3 plays a central role in TAS2R agonist-induced ASM functional changes via a mitochondrial pathway. These findings further establish the cellular mechanisms of antimitogenic effects of TAS2R agonists and identify a novel class of receptors and pathways that can be targeted to mitigate airway remodeling as well as bronchoconstriction in obstructive airway diseases. Copyright © 2017 the American Physiological

  1. Beta-agonists and animal welfare

    USDA-ARS?s Scientific Manuscript database

    The use of beta-agonists in animal feed is a high profile topic within the U.S. as consumers and activist groups continue to question its safety. The only beta-agonist currently available for use in swine is ractopamine hydrochloride (RAC). This is available as Paylean™ (Elanco Animal Health – FDA a...

  2. Small Molecule Fluoride Toxicity Agonists

    PubMed Central

    Nelson1, James W.; Plummer, Mark S.; Blount, Kenneth F.; Ames, Tyler D.; Breaker, Ronald R.

    2015-01-01

    SUMMARY Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch-reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. PMID:25910244

  3. Small molecule fluoride toxicity agonists.

    PubMed

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride.

  4. [Effects of agonists and antagonists of benzodiazepine, GABA and NMDA receptors, on caffeine-induced seizures in mice].

    PubMed

    Inano, S

    1992-08-01

    In mice, tonic convulsive seizure induced by intravenous administration of caffeine (adenosine A1, A2 receptors antagonist) was significantly potentiated by any one of L-PIA (adenosine A1 receptor agonist), NECA (adenosine A2 receptor agonist) and 2-ClAd (adenosine A1, A2 receptors agonist). The caffeine-induced seizure was unaffected by diazepam (benzodiazepine receptor agonist), but was inhibited by Ro 15-1788 (antagonist or partial agonist). beta-DMCM (antagonist or inverse agonist) increased the seizure. Muscimol (GABA-a receptor agonist), baclofen (GABA-b receptor agonist) and AOAA (GABA transaminase inhibitor) did not show significant effect on caffeine-induced convulsion. Bicuculline (GABA-a receptor antagonist) and picrotoxin (chloride channel blocker) significantly potentiated the convulsion at the doses which did not induce it. Caffeine-induced convulsion was potentiated by NMDA with its non-convulsive dose. CPP (competitive NMDA receptor antagonist) and MK-801 (non-competitive NMDA receptor antagonist) significantly inhibited the seizures. These results suggest that caffeine-induced seizure is not caused by blockade of adenosine receptors. Caffeine may act to beta-carboline sensitive benzodiazepine receptor (Type 1) which has no linkage with GABA-a receptor. Furthermore, it is implied that caffeine plays some role at NMDA receptor calcium ion channel complex.

  5. Investigation of the mechanism of agonist and inverse agonist action at D2 dopamine receptors.

    PubMed

    Roberts, David J; Lin, Hong; Strange, Philip G

    2004-05-01

    This study investigated, for the D2 dopamine receptor, the relation between the ability of agonists and inverse agonists to stabilise different states of the receptor and their relative efficacies. Ki values for agonists were determined in competition versus the binding of the antagonist [3H]spiperone. Competition data were fitted best by a two-binding site model (with the exception of bromocriptine, for which a one-binding site model provided the best fit) and agonist affinities for the higher (Kh) (G protein-coupled) and lower affinity (Kl) (G protein-uncoupled) sites determined. Ki values for agonists were also determined in competition versus the binding of the agonist [3H]N-propylnorapomorphine (NPA) to provide a second estimate of Kh. Maximal agonist effects (Emax) and their potencies (EC50) were determined from concentration-response curves for agonist stimulation of guanosine-5'-O-(3-[32S]thiotriphosphate) ([35S]GTPgammaS) binding. The ability of agonists to stabilise the G protein-coupled state of the receptor (Kl/Kh determined from ligand-binding assays) did not correlate with either of two measures of relative efficacy (relative Emax, Kl/EC50) of agonists determined in [35S]GTPgammaS-binding assays, when the data for all of the compounds tested were analysed. For a subset of compounds, however, there was a relation between Kl/Kh and Emax. Competition-binding data versus [3H]spiperone and [3H]NPA for a range of inverse agonists were fitted best by a one-binding site model. Ki values for the inverse agonists tested were slightly lower in competition versus [3H]NPA compared to [3H]spiperone. These data do not provide support for the idea that inverse agonists act by binding preferentially to the ground state of the receptor.

  6. Tyrphostin analogs are GPR35 agonists.

    PubMed

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2011-06-23

    GPR35 is an orphan G protein-coupled receptor that is not well-characterized. Here we employ dynamic mass redistribution (DMR) assays to discover new GPR35 agonists. DMR assays identified tyrphostin analogs as GPR35 agonists, which were confirmed with receptor internalization, Tango β-arrestin translocation, and extracellular-signal-regulated kinase phosphorylation assays. These agonists provide pharmacological tools to study the biology and function of GPR35. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Aspirin metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Fang, Ye

    2012-07-01

    Aspirin is widely used as an anti-inflammatory, anti-platelet, anti-pyretic, and cancer-preventive agent; however, the molecular mode of action is unlikely due entirely to the inhibition of cyclooxygenases. Here, we report the agonist activity of several aspirin metabolites at GPR35, a poorly characterized orphan G protein-coupled receptor. 2,3,5-Trihydroxybenzoic acid, an aspirin catabolite, was found to be the most potent GPR35 agonist among aspirin metabolites. Salicyluric acid, the main metabolite of aspirin, was also active. These results suggest that the GPR35 agonist activity of certain aspirin metabolites may contribute to the clinical features of aspirin.

  8. [Safety of beta-agonists in asthma].

    PubMed

    Oscanoa, Teodoro J

    2014-01-01

    Beta 2 agonist bronchodilators (β2A) are very important part in the pharmacotherapy of bronchial asthma, a disease that progresses in the world in an epidemic way. The β2A are prescribed to millions of people around the world, therefore the safety aspects is of public interest. Short-Acting β2 Agonists (SABAs), such as albuterol inhaler, according to current evidence, confirming its safety when used as a quick-relief or rescue medication. The long-acting β2 agonists (LABAs) The long-acting bronchodilators β2A (Long acting β2 Agonists or LABAs) are used associated with inhaled corticosteroids as controller drugs for asthma exacerbationsaccess, for safety reasons LABAs are not recommended for use as monotherapy.

  9. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy

    PubMed Central

    Jakubík, J; Janíčková, H; El-Fakahany, EE; Doležal, V

    2011-01-01

    BACKGROUND AND PURPOSE Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5′-γ−thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M2 muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. EXPERIMENTAL APPROACH Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [35S]GTPγS and [3H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M2 muscarinic acetylcholine receptor. KEY RESULTS Agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [3H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from Gi/o G-proteins but only its dissociation from Gs/olf G-proteins. CONCLUSIONS AND IMPLICATIONS These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of Gi/o versus Gs/olf G-proteins that are not identified by conventional GTPγS binding. PMID:20958290

  10. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy.

    PubMed

    Jakubík, J; Janíčková, H; El-Fakahany, E E; Doležal, V

    2011-03-01

    Conventional determination of agonist efficacy at G-protein coupled receptors is measured by stimulation of guanosine-5'-γ-thiotriphosphate (GTPγS) binding. We analysed the role of guanosine diphosphate (GDP) in the process of activation of the M₂ muscarinic acetylcholine receptor and provide evidence that negative cooperativity between agonist and GDP binding is an alternative measure of agonist efficacy. Filtration and scintillation proximity assays measured equilibrium binding as well as binding kinetics of [³⁵S]GTPγS and [³H]GDP to a mixture of G-proteins as well as individual classes of G-proteins upon binding of structurally different agonists to the M₂ muscarinic acetylcholine receptor. Agonists displayed biphasic competition curves with the antagonist [³H]-N-methylscopolamine. GTPγS (1 µM) changed the competition curves to monophasic with low affinity and 50 µM GDP produced a similar effect. Depletion of membrane-bound GDP increased the proportion of agonist high-affinity sites. Carbachol accelerated the dissociation of [³H]GDP from membranes. The inverse agonist N-methylscopolamine slowed GDP dissociation and GTPγS binding without changing affinity for GDP. Carbachol affected both GDP association with and dissociation from G(i/o) G-proteins but only its dissociation from G(s/olf) G-proteins. These findings suggest the existence of a low-affinity agonist-receptor conformation complexed with GDP-liganded G-protein. Also the negative cooperativity between GDP and agonist binding at the receptor/G-protein complex determines agonist efficacy. GDP binding reveals differences in action of agonists versus inverse agonists as well as differences in activation of G(i/o) versus G(s/olf) G-proteins that are not identified by conventional GTPγS binding. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  11. Dopaminergic agonists in Parkinson's disease.

    PubMed

    Alonso Cánovas, A; Luquin Piudo, R; García Ruiz-Espiga, P; Burguera, J A; Campos Arillo, V; Castro, A; Linazasoro, G; López Del Val, J; Vela, L; Martínez Castrillo, J C

    2014-05-01

    Non-ergoline dopamine agonists (DA) are effective treatments for Parkinson's disease (PD). This review presents the pharmacology, evidence of efficacy and safety profile of pramipexole, ropinirole, and rotigotine, and practical recommendations are given regarding their use in clinical practice. Extended-release formulations of pramipexole and ropinirole and transdermal continuous delivery rotigotine patches are currently available; these may contribute to stabilising of plasma levels. In early PD, the three drugs significantly improve disability scales, delay time to dyskinesia and allow a later introduction of levodopa. In late PD they reduced total 'off'-time, improved Unified Parkinson's Disease Rating Scale (UPDRS) in both 'on' and 'off' state and allowed a reduction in total levodopa dosage. A significant improvement in quality of life scales has also been demonstrated. Extended-release formulations have proved to be non-inferior to the immediate release formulations and are better tolerated (ropinirole). Despite a generally good safety profile, serious adverse events, such as impulse control disorder and sleep attacks, need to be routinely monitored. Although combination therapy has not been addressed in scientific literature, certain combinations, such as apomorphine and another DA, may be helpful. Switching from one DA to another is feasible and safe, although in the first days an overlap of dopaminergic side effects may occur. When treatment with DA is stopped abruptly, dopamine withdrawal syndrome may present. Suspending any DA, especially pramipexole, has been linked to onset of apathy, which may be severe. New non-ergotine DAs are a valuable option for the treatment of both early and late PD. Despite their good safety profile, serious adverse effects may appear; these effects may have a pathoplastic effect on the course of PD and need to be monitored. Copyright © 2011 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  12. PPAR Agonists and Cardiovascular Disease in Diabetes

    PubMed Central

    Calkin, Anna C.; Thomas, Merlin C.

    2008-01-01

    Peroxisome proliferators activated receptors (PPARs) are ligand-activated nuclear transcription factors that play important roles in lipid and glucose homeostasis. To the extent that PPAR agonists improve diabetic dyslipidaemia and insulin resistance, these agents have been considered to reduce cardiovascular risk. However, data from murine models suggests that PPAR agonists also have independent anti-atherosclerotic actions, including the suppression of vascular inflammation, oxidative stress, and activation of the renin angiotensin system. Many of these potentially anti-atherosclerotic effects are thought to be mediated by transrepression of nuclear factor-kB, STAT, and activator protein-1 dependent pathways. In recent clinical trials, PPARα agonists have been shown to be effective in the primary prevention of cardiovascular events, while their cardiovascular benefit in patients with established cardiovascular disease remains equivocal. However, the use of PPARγ agonists, and more recently dual PPARα/γ coagonists, has been associated with an excess in cardiovascular events, possibly reflecting unrecognised fluid retention with potent agonists of the PPARγ receptor. Newer pan agonists, which retain their anti-atherosclerotic activity without weight gain, may provide one solution to this problem. However, the complex biologic effects of the PPARs may mean that only vascular targeted agents or pure transrepressors will realise the goal of preventing atherosclerotic vascular disease. PMID:18288280

  13. Long-term studies of dopamine agonists.

    PubMed

    Hubble, Jean P

    2002-02-26

    Dopamine agonists have long been used as adjunctive therapy for the treatment of Parkinson's disease (PD). In more recent years these drugs have also been proved safe and effective as initial therapy in lieu of levodopa in the treatment of PD. Long-term levodopa therapy is associated with motor complications, including fluctuating response patterns and dyskinesia. By initially introducing a dopamine agonist as symptomatic drug therapy, it may be possible to postpone the use of levodopa and delay or prevent the development of motor complications. Recently, four clinical trials have explored this hypothesis by comparing the long-term response and side effects of levodopa with dopamine agonist therapy. The drugs studied have included ropinirole, pramipexole, cabergoline, and pergolide. In each of these projects, the occurrence of motor complications, such as wearing off and dyskinesia, was significantly less in the subjects assigned to initiation of therapy with a dopamine agonist. The addition of levodopa could be postponed by many months or even several years. Therefore, these long-term studies of dopamine agonists support the initiation of a dopamine agonist instead of levodopa in an effort to postpone levodopa-related motor complications. This therapeutic approach may be particularly appropriate in PD patients with a long treatment horizon on the basis of age and general good health. The extension phase of the long-term study comparing pramipexole with levodopa is ongoing, and follow-up information may help to establish the value of this treatment strategy.

  14. Design and Synthesis of Dopaminergic Agonists.

    PubMed

    Matute, Maria Soledad; Matute, Rosa; Merino, Pedro

    2016-01-01

    The use of dopaminergic agonists is key in the treatment of Parkinson's disease and related central nervous system (CNS) neurodegenerative disorders. Despite there are a number of commercialized dopaminergic agonists that are currently being used successfully in the first stages of the disease, they often fail to provide sustained clinical benefit for a long period due to the appearance of side-effects such as augmentation, sleepiness, nausea, hypothension, and compulsive behaviors among others. New dopaminergic agonists with less side effects are being developed. These novel compounds offer an alternative when the disease progresses and patients fail to respond to standard dopaminergic treatments or side-effects increased. Chemistry, and in particular chemical synthesis, has played a major role in bringing synthetic dopaminergic agonists to the clinic and continues to be crucial for the development of new and necessary drugs for long-term treatments with less undesired side effects. A number of structural modifications of parent compounds have led to enhanced agonism but also partial agonism or even antagonism of one or more dopamine receptors. In some cases, these activities are accompanied by agonist effect at serotonin receptors which suggests a potential clinical application in the treatment of schizophrenia In this review, chemical synthesis of dopaminergic agents, their affinity, and the corresponding agonist/antagonist effects will be highlighted.

  15. Adverse Effects of GLP-1 Receptor Agonists

    PubMed Central

    Filippatos, Theodosios D.; Panagiotopoulou, Thalia V.; Elisaf, Moses S.

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a class of injective anti-diabetic drugs that improve glycemic control and many other atherosclerosis-related parameters in patients with type 2 diabetes (T2D). However, the use of this relatively new class of drugs may be associated with certain adverse effects. Concerns have been expressed regarding the effects of these drugs on pancreatic and thyroid tissue, since animal studies and analyses of drug databases indicate an association of GLP-1 receptor agonists with pancreatitis, pancreatic cancer, and thyroid cancer. However, several meta-analyses failed to confirm a cause-effect relation between GLP-1 receptor agonists and the development of these adverse effects. One benefit of GLP-1 receptor agonists is that they do not cause hypoglycemia when combined with metformin or thiazolidinediones, but the dose of concomitant sulphonylurea or insulin may have to be decreased to reduce the risk of hypoglycemic episodes. On the other hand, several case reports have linked the use of these drugs, mainly exenatide, with the occurrence of acute kidney injury, primarily through hemodynamic derangement due to nausea, vomiting, and diarrhea. The most common symptoms associated with the use of GLP-1 receptor agonists are gastrointestinal symptoms, mainly nausea. Other common adverse effects include injection site reactions, headache, and nasopharyngitis, but these effects do not usually result in discontinuation of the drug. Current evidence shows that GLP-1 receptor agonists have no negative effects on the cardiovascular risk of patients with T2D. Thus, GLP-1 receptor agonists appear to have a favorable safety profile, but ongoing trials will further assess their cardiovascular effects. The aim of this review is to analyze critically the available data regarding adverse events of GLP-1 receptor agonists in different anatomic systems published in Pubmed and Scopus. Whenever possible, certain differences between GLP-1

  16. Population pharmacokinetics and pharmacodynamics of peptidic erythropoiesis receptor agonist (ERA) in healthy volunteers.

    PubMed

    Woo, Sukyung; Krzyzanski, Wojciech; Duliege, Anne-Marie; Stead, Richard B; Jusko, William J

    2008-01-01

    Peptidic erythropoiesis receptor agonist is a synthetic, PEGylated peptide that can promote red blood cell production upon binding to the erythropoietin receptor. The objective of this study was to characterize the pharmacokinetics and erythropoietic effects of peptidic erythropoiesis receptor agonist in healthy volunteers. Plasma concentrations of peptidic erythropoiesis receptor agonist and pharmacodynamic responses were obtained after single intravenous injections at doses of 0.025, 0.05, and 0.1 mg/kg. Population pharmacokinetic/pharmacodynamic modeling was performed using NONMEM. Peptidic erythropoiesis receptor agonist exhibited nonlinear pharmacokinetics described by a 1-compartment model with parallel elimination by Michaelis-Menten and linear processes. A catenary, life span-based, indirect response model reflecting bone marrow erythroid and blood cells reflected the pharmacodynamics of peptidic erythropoiesis receptor agonist. A modest tolerance and rebound phenomenon in reticulocytes was modeled with negative feedback regulation related to hemoglobin. This pharmacokinetic/pharmacodynamic model well characterized the prolonged disposition, intrinsic pharmacologic parameters, and typical hematological system properties following single doses of peptidic erythropoiesis receptor agonist in normal subjects.

  17. Muscimol as an ionotropic GABA receptor agonist.

    PubMed

    Johnston, Graham A R

    2014-10-01

    Muscimol, a psychoactive isoxazole from Amanita muscaria and related mushrooms, has proved to be a remarkably selective agonist at ionotropic receptors for the inhibitory neurotransmitter GABA. This historic overview highlights the discovery and development of muscimol and related compounds as a GABA agonist by Danish and Australian neurochemists. Muscimol is widely used as a ligand to probe GABA receptors and was the lead compound in the development of a range of GABAergic agents including nipecotic acid, tiagabine, 4,5,6,7-tetrahydroisoxazolo(5,4-c)pyridin-3-ol, (Gaboxadol(®)) and 4-PIOL.

  18. Immune Response Modulation of Conjugated Agonists with Changing Linker Length.

    PubMed

    Ryu, Keun Ah; Slowinska, Katarzyna; Moore, Troy; Esser-Kahn, Aaron

    2016-12-16

    We report immune response modulation with linked Toll-like receptor (TLR) agonists. Conjugating two agonists of synergistic TLRs induce an increase in immune activity compared to equal molarity of soluble agonists. Additionally, varying the distance between the agonists by changing the linker length alters the level of macrophage NF-κB activity as well as primary bone marrow derived dendritic cell IL-6 production. This modulation is effected by the size of the agonists and the pairing of the stimulated TLRs. The sensitivity of linker-length-dependent immune activity of conjugated agonists provides the potential for developing application specific therapeutics.

  19. Adenophostins A and B: potent agonists of inositol-1,4,5-trisphosphate receptor produced by Penicillium brevicompactum. Taxonomy, fermentation, isolation, physico-chemical and biological properties.

    PubMed

    Takahashi, M; Kagasaki, T; Hosoya, T; Takahashi, S

    1993-11-01

    New inositol-1,4,5-trisphosphate (InsP3) agonists, adenophostins A(1) and B(2), were isolated from the culture broth of Penicillium brevicompactum SANK 11991 and SANK 12177. Its structures were related to adenine nucleotides. The agonistic activity of adenophostins A or B for binding to the InsP3 receptor was higher than InsP3 itself.

  20. Melatonin and its agonists: an update.

    PubMed

    Arendt, Josephine; Rajaratnam, Shantha M W

    2008-10-01

    The pineal hormone melatonin is able to shift the timing of circadian rhythms, including the sleep-wake cycle, and to promote sleep. Melatonin agonists with similar properties have therapeutic potential for the treatment of circadian rhythm sleep disorders. Depression is specifically targeted by agomelatine, which is also a serotonin-2C (5-HT(2C)) antagonist.

  1. Multiple tyrosine metabolites are GPR35 agonists.

    PubMed

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3',5'-triiodothyronine, 3,3',5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism.

  2. Corepressors of agonist-bound nuclear receptors

    SciTech Connect

    Gurevich, Igor; Aneskievich, Brian J.

    2007-09-15

    Nuclear receptors (NRs) rely on coregulator proteins to modulate transcription of target genes. NR coregulators can be broadly subdivided into coactivators which potentiate transcription and corepressors which silence gene expression. The prevailing view of coregulator action holds that in the absence of agonist the receptor interacts with a corepressor via the corepressor nuclear receptor (CoRNR, 'corner') box motifs within the corepressor. Upon agonist binding, a conformational change in the receptor causes the shedding of corepressor and the binding of a coactivator which interacts with the receptor via NR boxes within the coregulator. This view was challenged with the discovery of RIP140 which acts as a NR corepressor in the presence of agonist and utilizes NR boxes. Since then a number of other corepressors of agonist-bound NRs have been discovered. Among them are LCoR, PRAME, REA, MTA1, NSD1, and COPR1 Although they exhibit a great diversity of structure, mechanism of repression and pathophysiological function, these corepressors frequently have one or more NR boxes and often recruit histone deacetylases to exert their repressive effects. This review highlights these more recently discovered corepressors and addresses their potential functions in transcription regulation, disease pharmacologic responses and xenobiotic metabolism.

  3. Direct antiatherosclerotic effects of PPAR agonists.

    PubMed

    Jandeleit-Dahm, Karin A M; Calkin, Anna; Tikellis, Chris; Thomas, Merlin

    2009-02-01

    Peroxisome proliferator activated receptors (PPARs) are ligand-dependent transcription factors that mediate a range of important metabolic functions by transactivation, transrepression or corepression of various gene targets. PPAR agonists also have direct antiatherosclerotic effects, independent of their metabolic effects on glucose and lipid homeostasis. The purpose of this review is to evaluate the currently available evidence for a direct vasculoprotective effect of PPAR agonists. Current studies have emphasized PPAR-mediated effects on inflammatory and immune responses, oxidative stress, the renin-angiotensin system and modulation of plaque composition. Furthermore, it has become evident that the relative activation of the different PPAR isoforms and the contribution of transactivation of target genes against transrepression of transcription factors need to be considered when assessing the vasculoprotective effects of PPAR agonists. It is anticipated that the antiatherosclerotic effects of PPAR agonists observed in experimental studies will translate into reduced cardiovascular events. This promise is yet to be realized in short-to-medium term studies. Given the central role of the PPAR in gene regulation, particularly in metabolic states, it is possible that more targeted modulation of PPAR signalling may hold many rewards for the prevention of atherosclerosis.

  4. Reciprocity of agonistic support in ravens.

    PubMed

    Fraser, Orlaith N; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim's likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals.

  5. Reciprocity of agonistic support in ravens

    PubMed Central

    Fraser, Orlaith N.; Bugnyar, Thomas

    2012-01-01

    Cooperative behaviour through reciprocation or interchange of valuable services in primates has received considerable attention, especially regarding the timeframe of reciprocation and its ensuing cognitive implications. Much less, however, is known about reciprocity in other animals, particularly birds. We investigated patterns of agonistic support (defined as a third party intervening in an ongoing conflict to attack one of the conflict participants, thus supporting the other) in a group of 13 captive ravens, Corvus corax. We found support for long-term, but not short-term, reciprocation of agonistic support. Ravens were more likely to support individuals who preened them, kin and dominant group members. These results suggest that ravens do not reciprocate on a calculated tit-for-tat basis, but aid individuals from whom reciprocated support would be most useful and those with whom they share a good relationship. Additionally, dyadic levels of agonistic support and consolation (postconflict affiliation from a bystander to the victim) correlated strongly with each other, but we found no evidence to suggest that receiving agonistic support influences the victim’s likelihood of receiving support (consolation) after the conflict ends. Our findings are consistent with an emotionally mediated form of reciprocity in ravens and provide additional support for convergent cognitive evolution in birds and mammals. PMID:22298910

  6. Multiple tyrosine metabolites are GPR35 agonists

    PubMed Central

    Deng, Huayun; Hu, Haibei; Fang, Ye

    2012-01-01

    Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3′,5′-triiodothyronine, 3,3′,5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism. PMID:22523636

  7. FXR agonist activity of conformationally constrained analogs of GW 4064

    SciTech Connect

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y.; Caldwell, Richard D.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Navas, III, Frank; Parks, Derek J.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2010-09-27

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  8. Serotonergic agonists behave as partial agonists at the dopamine D2 receptor.

    PubMed

    Rinken, A; Ferré, S; Terasmaa, A; Owman, C; Fuxe, K

    1999-02-25

    RAT dopamine D2short receptors expressed in CHO cells were characterized by activation of [35S]GTPgammaS binding. There were no significant differences between the maximal effects seen in activation of [35S]GTPgammaS binding caused by dopaminergic agonists, but the effects of 5-HT, 8OH-DPAT and 5-methoxytryptamine amounted to 47 +/- 7%, 43 +/- 5% and 70 +/- 7% of the dopamine effect, respectively. The dopaminergic antagonist (+)butaclamol inhibited activations of both types of ligands with equal potency (pA2 = 8.9 +/- 0.1), indicating that only one type of receptor is involved. In competition with [3H]raclopride binding, dopaminergic agonists showed 53 +/- 2% of the binding sites in the GTP-dependent high-affinity state, whereas 5-HT showed only 20 +/- 3%. Taken together, the results indicate that serotonergic agonists behave as typical partial agonists for D2 receptors with potential antiparkinsonian activity.

  9. 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: 'Clickable' A(3) adenosine receptor-selective agonists.

    PubMed

    Tosh, Dilip K; Chinn, Moshe; Yoo, Lena S; Kang, Dong Wook; Luecke, Hans; Gao, Zhan-Guo; Jacobson, Kenneth A

    2010-01-15

    We modified a series of (N)-methanocarba nucleoside 5'-uronamides to contain dialkyne groups on an extended adenine C2 substituent, as synthetic intermediates leading to potent and selective A(3) adenosine receptor (AR) agonists. The proximal alkyne was intended to promote receptor recognition, and the distal alkyne reacted with azides to form triazole derivatives (click cycloaddition). Click chemistry was utilized to couple an octadiynyl A(3)AR agonist to azido-containing fluorescent, chemically reactive, biotinylated, and other moieties with retention of selective binding to the A(3)AR. A bifunctional thiol-reactive crosslinking reagent was introduced. The most potent and selective novel compound was a 1-adamantyl derivative (K(i) 6.5nM), although some of the click products had K(i) values in the range of 200-400nM. Other potent, selective derivatives (K(i) at A(3)AR innM) were intended as possible receptor affinity labels: 3-nitro-4-fluorophenyl (10.6), alpha-bromophenacyl (9.6), thiol-reactive isothiazolone (102), and arylisothiocyanate (37.5) derivatives. The maximal functional effects in inhibition of forskolin-stimulated cAMP were measured, indicating that this class of click adducts varied from partial to full A(3)AR agonist compared to other widely used agonists. Thus, this strategy provides a general chemical approach to linking potent and selective A(3)AR agonists to reporter groups of diverse structure and to carrier moieties.

  10. [Protective effect of adenosine receptor agonists in a model of spinal cord injury in rats].

    PubMed

    Sufianova, G Z; Usov, L A; Sufianov, A A; Perelomov, Iu P; Raevskaia, L Iu; Shapkin, A G

    2002-01-01

    Possibilities of the neuroprotector therapy using adenosine and cyclopentyladenosine (CPA), an adenosine receptor agonist, were studied on a model of spinal cord injury by compression in rats (most closely reproducing the analogous clinical pathological process in humans). The model was induced by slow, graded compression of the spinal cord at the thoracic level. Adenosine and CPA were introduced 60 min before injury by subcutaneous injections in a dose of 300 and 2.5 micrograms/kg, respectively. The protective effect was judged by comparing the neurological, electromyographic, and histopathological changes in animals with the model injury and in the control group (adenosine and CPA background). The A1-agonist CPA injections produced a pronounced, statistically significant neuroprotector effect on the given spinal cord injury model in rats. The neuroprotective effect of adenosine was significant but not as strong. It is concluded that it is expedient to use A-agonists in clinics.

  11. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. I. Acute effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Acute exposure to ethanol was found to enhance the ability of a benzodiazepine (BZ) inverse agonist, methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), to reduce muscimol-activated 36Cl- uptake by membranes isolated from mouse cerebral cortex. Pretreatment in vivo with a hypnotic dose of ethanol (but not a subhypnotic dose), or exposure to a corresponding concentration in vitro, was effective. This increase in sensitivity of gamma-aminobutyric acid receptor-operated chloride channels to the actions of DMCM was due to an increase in both the potency and efficacy of DMCM. Sensitization to DMCM was reversible and was not observed 24 hr after a single injection of ethanol. Pretreatment with ethanol (10, 50 and 100 mM) in vitro produced sensitization to DMCM in a concentration-dependent manner, similar to that produced by in vivo exposure; this increase in sensitivity did not develop if the membranes were pretreated with ethanol at 0 degrees C. Similarly, in vitro exposure to pentobarbital (200 microM) or flunitrazepam (1 microM) enhanced the actions of the inverse agonist Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,5a)(1,4)BZ-3- carboxylate). Acute ethanol exposure did not alter low-affinity gamma-aminobutyric acidA receptor binding or muscimol action, or the ability of a BZ agonist, flunitrazepam, to augment muscimol-activated chloride flux. Ethanol exposure did not alter (3H)flumazenil (Ro15-1788) binding to central BZ receptors, its displacement by DMCM or allosteric modulation of DMCM binding by muscimol (muscimol-shift).

  12. Methanocarba Analogues of Purine Nucleosides as Potent and Selective Adenosine Receptor Agonists

    PubMed Central

    Jacobson, Kenneth A.; Ji, Xiao-duo; Li, An-Hu; Melman, Neli; Siddiqui, Maqbool A.; Shin, Kye-Jung; Marquez, Victor E.; Ravi, R. Gnana

    2012-01-01

    Adenosine receptor agonists have cardioprotective, cerebroprotective, and antiinflammatory properties. We report that a carbocyclic modification of the ribose moiety incorporating ring constraints is a general approach for the design of A1 and A3 receptor agonists having favorable pharmacodynamic properties. While simple carbocyclic substitution of adenosine agonists greatly diminishes potency, methanocarba-adenosine analogues have now defined the role of sugar puckering in stabilizing the active adenosine receptor-bound conformation and thereby have allowed identification of a favored isomer. In such analogues a fused cyclopropane moiety constrains the pseudosugar ring of the nucleoside to either a Northern (N) or Southern (S) conformation, as defined in the pseudorotational cycle. In binding assays at A1, A2A, and A3 receptors, (N)-methanocarba-adenosine was of higher affinity than the (S)-analogue, particularly at the human A3 receptor (N/S affinity ratio of 150). (N)-Methanocarba analogues of various N6-substituted adenosine derivatives, including cyclopentyl and 3-iodobenzyl, in which the parent compounds are potent agonists at either A1 or A3 receptors, respectively, were synthesized. The N6-cyclopentyl derivatives were A1 receptor-selective and maintained high efficacy at recombinant human but not rat brain A1 receptors, as indicated by stimulation of binding of [35S]GTP-γ-S. The (N)-methanocarba-N6-(3-iodobenzyl)adenosine and its 2-chloro derivative had Ki values of 4.1 and 2.2 nM at A3 receptors, respectively, and were highly selective partial agonists. Partial agonism combined with high functional potency at A3 receptors (EC50 < 1 nM) may produce tissue selectivity. In conclusion, as for P2Y1 receptors, at least three adenosine receptors favor the ribose (N)-conformation. PMID:10841798

  13. Effect of postnatal exposure to caffeine on the pattern of adenosine A1 receptor distribution in respiration-related nuclei of the rat brainstem.

    PubMed

    Gaytan, S P; Saadani-Makki, F; Bodineau, L; Frugière, A; Larnicol, N; Pásaro, R

    2006-06-30

    Caffeine, which belongs to the methylxantine family of compounds, is commonly ingested in a range of beverages such as coffee, tea, and cola drinks. It is also used therapeutically and is frequently employed in the treatment of respiratory disturbances in human neonates. The aim of the present work has been to examine the ontogeny of the adenosine A1 receptor system in the brainstem of the newborn rat following postnatal treatment with caffeine to mimic the therapeutic administration of caffeine to premature human infants. The effect of this postnatal exposure to caffeine on the gradual appearance of adenosine A1 receptors was analysed by determining immunohistochemically the distribution of the receptors. The main difference between control animals and animals exposed to caffeine was the transient increase (only at postnatal day 6) in the number of immunopositive neurons in two brainstem areas, the ventrolateral medulla and the rostral dorsolateral pons, in caffeine-treated rat pups, or more specifically, the parabrachial and Kölliker-Fuse nuclei, both of which are classically associated with respiratory control. With previous research highlighting the important role played by the rostral pons in respiratory modulation by the adenosine A1 receptor system, it is thus possible that postnatal exposure to caffeine modulates the ontogeny of the adenosine A1 receptor network. This could imply that the role of caffeine to decrease the incidence of neonatal respiratory disturbances may be due to the earlier than normal development of the adenosinergic system in the brain.

  14. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  15. Agonistic and reproductive interactions in Betta splendens.

    PubMed

    Bronstein, P M

    1984-12-01

    Reproductive and agonistic behaviors in Siamese fighting fish were investigated in eight experiments, and some consequences and determinants of these sequences were isolated. First, fights and the formation of dominance-subordinancy relations were studied. Second, it was determined that large body size as well as males' prior residency in a tank produced an agonistic advantage; the magnitude of this advantage was positively related to the duration of residency. Third, the prior-residency effect in Bettas was determined by males' familiarity with visual and/or tactile cues in their home tanks. Fourth, dominant males had greater access to living space and were more likely to display at a mirror, build nests, and approach females than were subordinates. Finally, it was discovered that chemical cues associated with presumedly inert plastic tank dividers influence Bettas' social behavior.

  16. Ropinirole, a non-ergoline dopamine agonist.

    PubMed

    Jost, Wolfgang H; Angersbach, Dieter

    2005-01-01

    Dopamine agonists have become indispensable in the treatment of Parkinson's disease. In every-day practice, however, the decision to select the best compound for an individual patient is rendered difficult because of the large number of substances available on the market. This review article provides a closer look at the experimental and clinical studies with ropinirole published so far. Ropinirole is a non-ergoline dopamine agonist which has been proven to be effective in both, monotherapy and combination therapy of idiopathic Parkinson's disease. In addition to ameliorating bradykinesia, rigor, and tremor, ropinirole facilitates the daily life and improves depressive moods of patients with Parkinson's disease. The long-term complications of levodopa are avoided, and problems commonly associated with levodopa treatment are reduced. Ropinirole appears to have a neuroprotective effect. In addition to Parkinson's disease, ropinirole has also been used successfully in the treatment of restless legs syndrome.

  17. Anti-fibrogenic effect of PPAR-γ agonists in human intestinal myofibroblasts.

    PubMed

    Koo, Jun Bon; Nam, Myeong-Ok; Jung, Younshin; Yoo, Jongman; Kim, Duk Hwan; Kim, Gwangil; Shin, Sung Jae; Lee, Kee Myung; Hahm, Ki Baik; Kim, Jong Woo; Hong, Sung Pyo; Lee, Kwang Jae; Yoo, Jun Hwan

    2017-06-07

    Intestinal fibrosis is a serious complication of inflammatory bowel disease, including Crohn's disease and ulcerative colitis. There is no specific treatment for intestinal fibrosis. Studies have indicated that peroxisome proliferator-activated receptor- γ (PPAR-γ) agonists have anti-fibrogenic properties in organs besides the gut; however, their effects on human intestinal fibrosis are poorly understood. This study investigated the anti-fibrogenic properties and mechanisms of PPAR-γ agonists on human primary intestinal myofibroblasts (HIFs). HIFs were isolated from normal colonic tissue of patients undergoing resection due to colorectal cancer. HIFs were treated with TGF-β1 and co-incubated with or without one of two synthetic PPAR-γ agonists, troglitazone or rosiglitazone. mRNA and protein expression of procollagen1A1, fibronectin, and α-smooth muscle actin were determined by semiquantitative reverse transcription-polymerase chain reaction and Western blot. LY294002 (Akt inhibitor) was used to examine whether Akt phosphorylation was a downstream mechanism of TGF-β1 induced expression of procollagen1A1, fibronectin, and α-smooth muscle actin in HIFs. The irreversible PPAR-γ antagonist GW9662 was used to investigate whether the effect of PPAR-γ agonists was PPAR-γ dependent. Both PPAR-γ agonists reduced the TGF-β1-induced expression of α-smooth muscle actin which was integrated into stress fibers in HIFs, as determined by actin microfilaments fluorescent staining and α-smooth muscle actin-specific immunocytochemistry. PPAR-γ agonists also inhibited TGF-β1-induced mRNA and protein expressions of procollagen1A1, fibronectin, and α-smooth muscle actin. TGF-β1 stimulation increased phosphorylation of downstream signaling molecules Smad2, Akt, and ERK. TGF-β1 induced synthesis of procollagen1A1, fibronectin, and α-smooth muscle actin through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. PPAR-γ agonists down regulated fibrogenesis, as

  18. The identification of orally bioavailable thrombopoietin agonists.

    PubMed

    Munchhof, Michael J; Antipas, Amy S; Blumberg, Laura C; Brissette, William H; Brown, Matthew F; Casavant, Jeffrey M; Doty, Jonathan L; Driscoll, James; Harris, Thomas M; Wolf-Gouveia, Lilli A; Jones, Christopher S; Li, Qifang; Linde, Robert G; Lira, Paul D; Marfat, Anthony; McElroy, Eric; Mitton-Fry, Mark; McCurdy, Sandra P; Reiter, Lawrence A; Ripp, Sharon L; Shavnya, Andrei; Thomasco, Lisa M; Trevena, Kristen A

    2009-03-01

    Recently, we disclosed a series of potent pyrimidine benzamide-based thrombopoietin receptor agonists. Unfortunately, the structural features required for the desired activity conferred physicochemical properties that were not favorable for the development of an oral agent. The physical properties of the series were improved by replacing the aminopyrimidinyl group with a piperidine-4-carboxylic acid moiety. The resulting compounds possessed favorable in vivo pharmacokinetic properties, including good bioavailability.

  19. Withdrawal and bidirectional cross-withdrawal responses in rats treated with adenosine agonists and morphine.

    PubMed

    Coupar, I M; Tran, B L

    2001-07-06

    The aim of this study was to investigate whether the A1/A2 receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA), and the selective A1 agonist, N6-cyclopentyladenosine (CPA), induced physical dependence by quantifying specific antagonist-precipitated withdrawal syndromes in conscious rats. In addition, the presence of bidirectional cross-withdrawal was also investigated. The agonists were administered s.c. to groups of rats at 12 h intervals. Antagonists were administered s.c., 12 hours after the last dose, followed by observation and measurement of faecal output for 20 min. NECA (4 x 0.03 mg kg(-1), s.c) and CPA (4 x 0.03, 0.1 and 0.3 mg kg(-1), s.c.) induced physical dependence, as shown by the expression of a significant withdrawal syndrome when challenged with the adenosine A1/A2 receptor antagonist, 3,7-dimethyl-1-propargylxanthine (DMPX, 0.1 mg kg(-1), s.c.) and the A1 antagonist, 8-cyclopentyl-1,3-dipropylxanthine (CPDPX, 0.1 mg kg(-1), s.c.) respectively. The syndromes consisted of teeth chattering and shaking behaviours shown to occur in morphine-dependent animals withdrawn with naloxone viz, paw, body and 'wet-dog' shakes, but with the additional behaviours of head shaking and yawning. In further contrast to the opiate withdrawal syndrome, no diarrhoea occurred in the groups of animals treated with adenosine agonists and withdrawn with their respective antagonists. Bidirectional cross-withdrawal syndromes were also revealed when naloxone (3 mg kg(-1), s.c.) was administered to adenosine agonist pre-treated rats and adenosine antagonists were given to morphine pre-treated rats. This study provides further information illustrating that close links exist between the adenosine and opiate systems.

  20. Molecular recognition of agonist ligands by RXRs.

    PubMed

    Egea, Pascal F; Mitschler, André; Moras, Dino

    2002-05-01

    The nuclear receptor RXR is an obligate partner in many signal transduction pathways. We report the high-resolution structures of two complexes of the human RXRalpha ligand-binding domain specifically bound to two different and chemically unrelated agonist compounds: docosa hexaenoic acid, a natural derivative of eicosanoic acid, present in mammalian cells and recently identified as a potential endogenous RXR ligand in the mouse brain, and the synthetic ligand BMS 649. In both structures the RXR-ligand-binding domain forms homodimers and exhibits the active conformation previously observed with 9-cis-RA. Analysis of the differences in ligand-protein contacts (predominantly van der Waals forces) and binding cavity geometries and volumes for the several agonist-bound RXR structures clarifies the structural features important for ligand recognition. The L-shaped ligand-binding pocket adapts to the diverse ligands, especially at the level of residue N306, which might thus constitute a new target for drug-design. Despite its highest affinity 9-cis-RA displays the lowest number of ligand-protein contacts. These structural results support the idea that docosa hexaenoic acid and related fatty acids could be natural agonists of RXRs and question the real nature of the endogenous ligand(s) in mammalian cells.

  1. Signal Use by Octopuses in Agonistic Interactions.

    PubMed

    Scheel, David; Godfrey-Smith, Peter; Lawrence, Matthew

    2016-02-08

    Cephalopods show behavioral parallels to birds and mammals despite considerable evolutionary distance [1, 2]. Many cephalopods produce complex body patterns and visual signals, documented especially in cuttlefish and squid, where they are used both in camouflage and a range of interspecific interactions [1, 3-5]. Octopuses, in contrast, are usually seen as solitary and asocial [6, 7]; their body patterns and color changes have primarily been interpreted as camouflage and anti-predator tactics [8-12], though the familiar view of the solitary octopus faces a growing list of exceptions. Here, we show by field observation that in a shallow-water octopus, Octopus tetricus, a range of visible displays are produced during agonistic interactions, and these displays correlate with the outcome of those interactions. Interactions in which dark body color by an approaching octopus was matched by similar color in the reacting octopus were more likely to escalate to grappling. Darkness in an approaching octopus met by paler color in the reacting octopus accompanied retreat of the paler octopus. Octopuses also displayed on high ground and stood with spread web and elevated mantle, often producing these behaviors in combinations. This study is the first to document the systematic use of signals during agonistic interactions among octopuses. We show prima facie conformity of our results to an influential model of agonistic signaling [13]. These results suggest that interactions have a greater influence on octopus evolution than has been recognized and show the importance of convergent evolution in behavioral traits.

  2. Small-molecule AT2 receptor agonists.

    PubMed

    Hallberg, Mathias; Sumners, Colin; Steckelings, U Muscha; Hallberg, Anders

    2017-06-13

    The discovery of the first selective, small-molecule ATR receptor (AT2R) agonist compound 21 (C21) (8) that is now extensively studied in a large variety of in vitro and in vivo models is described. The sulfonylcarbamate derivative 8, encompassing a phenylthiofen scaffold is the drug-like agonist with the highest affinity for the AT2R reported to date (Ki = 0.4 nM). Structure-activity relationships (SAR), regarding different biaryl scaffolds and functional groups attached to these scaffolds and with a particular focus on the impact of various para substituents displacing the methylene imidazole group of 8, are discussed. Furthermore, the consequences of migration of the methylene imidazole group and presumed structural requirements for ligands that are aimed as AT2R agonists (e.g. 8) or AT2R antagonists (e.g. 9), respectively, are briefly addressed. A summary of the pharmacological actions of C21 (8) is also presented. © 2017 Wiley Periodicals, Inc.

  3. Transdermal delivery of dopamine receptor agonists.

    PubMed

    Reichmann, Heinz

    2009-12-01

    Conceptually, continuous dopaminergic stimulation is universally accepted to be the preferred therapeutic strategy to prevent or postpone dyskinesia in Parkinson's disease (PD). L-dopa has a short half-life of 2 hours and causes dyskinesia, whereas dopamine receptor agonists usually have a much longer half-life. Of the latter agents, cabergoline has the longest half-life of 68 hours and is ideal for the prevention of dyskinesia; but this is also true for other dopamine receptor agonists such as ropinirole or pramipexole, which have a shorter half-life of about 6-8 hours. Due to the possible development of valvular fibrosis, cabergoline is, however, only approved as a second-line treatment in PD, and patch technology has therefore gained major interest. So far, rotigotine is the only dopamine receptor agonist available as a patch. There is good evidence that once-daily patch usage provides patients with constant dopaminergic stimulation, and that patches are of equal potency to other oral non-ergot derivatives such as ropinirole and pramipexole. The disadvantages of patches are skin irritation and crystallization of the drug if not kept in the refrigerator. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Development of Tetrachlorophthalimides as Liver X Receptor β (LXRβ)-Selective Agonists.

    PubMed

    Nomura, Sayaka; Endo-Umeda, Kaori; Makishima, Makoto; Hashimoto, Yuichi; Ishikawa, Minoru

    2016-10-19

    Liver X receptor (LXR) agonists are candidates for the treatment of atherosclerosis via induction of ABCA1 (ATP-binding cassette A1) gene expression, which contributes to reverse cholesterol transport (RCT) and to cholesterol efflux from the liver and intestine. However, LXR agonists also induce genes involved in lipogenesis, such as SREBP-1c (sterol regulatory binding element protein 1c) and FAS (fatty acid synthase), thereby causing an undesirable increase in plasma and hepatic triglyceride (TG) levels. Recent studies indicate that LXRα contributes to lipogenesis in liver, and selective LXRβ activation improves RCT in mice. Therefore, LXRβ-selective agonists are promising candidates to improve atherosclerosis without increasing plasma or hepatic TG levels. However, the ligand-binding domains in the two LXR isoforms α/β share high sequence identity, and few LXR ligands show subtype selectivity. In this study we identified a tetrachlorophthalimide analogue as an LXRβ-selective agonist. Structural development led to (E)-4,5,6,7-tetrachloro-2-(2-styrylphenyl)isoindoline-1,3-dione (24 a), which shows potent and selective LXRβ agonistic activity in reporter gene assays. In binding assays, compound 24 a bound to LXRβ preferentially over LXRα. It also induced the expression of ABCA1 mRNA but not SREBP-1c mRNA in cells. Compound 24 a appears to be a promising lead compound for therapeutic agents to treat atherosclerosis without the side effects induced by LXRα/β dual agonists. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Cardiovascular selectivity of adenosine receptor agonists in anaesthetized dogs.

    PubMed Central

    Gerencer, R. Z.; Finegan, B. A.; Clanachan, A. S.

    1992-01-01

    1. In order to determine the relevance of adenosine (Ado) receptor classification obtained from in vitro methods to the cardiovascular actions of Ado agonists in vivo, the cardiovascular effects of adenosine 5'-monophosphate (AMP), N6-cyclohexyladenosine (CHA, 400 fold A1-selective), 5'-N-ethyl-carboxamidoadenosine (NECA, A1 approximately A2) and 2-phenylaminoadenosine (PAA, 5 fold A2-selective) were compared in open-chest, fentanyl-pentobarbitone anaesthetized dogs. 2. Graded doses of CHA (10 to 1000 micrograms kg-1), NECA (0.5 to 100 micrograms kg-1) or PAA (0.1 to 20 micrograms kg-1) were administered intravenously and changes in haemodynamics and myocardial contractility were assessed 10 min following each dose. The effects of graded infusions of AMP (200 to 1000 micrograms kg-1 min-1) were also evaluated. 3. AMP and each of the Ado analogues (NECA > PAA > CHA) increased the systemic vascular conductance index (SVCI) in a dose-dependent manner and reduced mean arterial pressure (MAP). At doses causing similar increases in SVCI, these agonists caused (i) similar reflex increases in heart rate (HR) and cardiac index (CI) and decreases in AV conduction interval (AVi) and (ii) similar increases in coronary vascular conductance (CVC). 4. After cardiac autonomic blockade with atropine (0.2 mg kg-1) and propranolol (1 mg kg-1), AMP, CHA and PAA still increased SVCI and CVC and decreased MAP. CHA and PAA had no marked effects on HR, CI or AVi. As in the absence of cardiac autonomic blockade, equieffective vasodilator doses of CHA and PAA had identical effects on CVC, CI and AVi.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1467827

  6. A formyl peptide receptor agonist suppresses inflammation and bone damage in arthritis.

    PubMed

    Kao, W; Gu, R; Jia, Y; Wei, Xuemin; Fan, H; Harris, J; Zhang, Zhiyi; Quinn, J; Morand, E F; Yang, Y H

    2014-09-01

    Annexin A1 (AnxA1) is an endogenous anti-inflammatory protein and agonist of the formyl peptide receptor 2 (FPR2). However, the potential for therapeutic FPR ligands to modify immune-mediated disease has been little explored. We investigated the effects of a synthetic FPR agonist on joint disease in the K/BxN model of rheumatoid arthritis (RA) and RA fibroblast-like synoviocytes (FLS). Arthritis was induced by injection of K/BxN serum at day 0 and 2 in wild-type (WT) or AnxA1(-/-) mice and clinical and histopathological manifestations measured 8-11 days later. WT mice were given the FPR agonist compound 43 (Cpd43) (6 or 30 mg·kg(-1) i.p.) for 4 days. Effects of AnxA1 and Cpd43 on RANKL-induced osteoclastogenesis were assessed in RAW 264.7 cells and human RA FLS and macrophages. Treatment with Cpd43 before or after the onset of arthritis reduced clinical disease severity and attenuated synovial TNF-α and osteoclast-associated gene expression. Deletion of AnxA1 in mice exacerbated arthritis severity in the K/BxN model. In vitro, Cpd43 suppressed osteoclastogenesis and NFAT activity elicited by RANKL, and inhibited IL-6 secretion by mouse macrophages. In human RA joint-derived FLS and monocyte-derived macrophages, Cpd43 treatment inhibited IL-6 release, while blocking FPR2 or silencing AnxA1 increased this release. The FPR agonist Cpd43 reduced osteoclastogenesis and inflammation in a mouse model of RA and exhibited anti-inflammatory effects in relevant human cells. These data suggest that FPR ligands may represent novel therapeutic agents capable of ameliorating inflammation and bone damage in RA. © 2014 The British Pharmacological Society.

  7. The antidepressant-like effect of inosine in the FST is associated with both adenosine A1 and A 2A receptors.

    PubMed

    Kaster, Manuella P; Budni, Josiane; Gazal, Marta; Cunha, Mauricio P; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2013-09-01

    Inosine is an endogenous purine nucleoside, which is formed during the breakdown of adenosine. The adenosinergic system was already described as capable of modulating mood in preclinical models; we now explored the effects of inosine in two predictive models of depression: the forced swim test (FST) and tail suspension test (TST). Mice treated with inosine displayed higher anti-immobility in the FST (5 and 50 mg/kg, intraperitoneal route (i.p.)) and in the TST (1 and 10 mg/kg, i.p.) when compared to vehicle-treated groups. These antidepressant-like effects started 30 min and lasted for 2 h after intraperitoneal administration of inosine and were not accompanied by any changes in the ambulatory activity in the open-field test. Both adenosine A1 and A2A receptor antagonists prevented the antidepressant-like effect of inosine in the FST. In addition, the administration of an adenosine deaminase inhibitor (1 and 10 mg/kg, i.p.) also caused an antidepressant-like effect in the FST. These results indicate that inosine possesses an antidepressant-like effect in the FST and TST probably through the activation of adenosine A1 and A2A receptors, further reinforcing the potential of targeting the purinergic system to the management of mood disorders.

  8. Beta2-adrenoceptor agonists for dysmenorrhoea.

    PubMed

    Fedorowicz, Zbys; Nasser, Mona; Jagannath, Vanitha A; Beaman, Jessica H; Ejaz, Kiran; van Zuuren, Esther J

    2012-05-16

    Dysmenorrhoea is a common gynaecological complaint that can affect as many as 50% of premenopausal women, 10% of whom suffer severely enough to be rendered incapacitated for one to three days during each menstrual cycle. Primary dysmenorrhoea is where women suffer from menstrual pain but lack any pathology in their pelvic anatomy. Beta2-adrenoceptor agonists have been used in the treatment of women with primary dysmenorrhoea but their effects are unclear. To determine the effectiveness and safety of beta2-adrenoceptor agonists in the treatment of primary dysmenorrhoea. We searched the Cochrane Menstrual Disorders and Subfertility Group Specialised Register; CENTRAL (The Cochrane Library 2011, Issue 8); MEDLINE; EMBASE; PsycINFO and the EBM Reviews databases. The last search was on 22 August 2011. Randomised controlled trials comparing beta2-adrenoceptor agonists with placebo or no treatment, each other or any other conventional treatment in women of reproductive age with primary dysmenorrhoea. Two review authors independently assessed trial quality and extracted the data. Five trials involving 187 women with an age range of 15 to 40 years were included. Oral isoxsuprine was compared with placebo in two trials; terbutaline oral spray, ritodrine chloride and oral hydroxyphenyl-orciprenalin were compared with placebo in a further three trials. Clinical diversity in the studies in terms of the interventions being evaluated, assessments at different time points and the use of different assessment tools mitigated against pooling of outcome data across studies in order to provide a summary estimate of effect for any of the comparisons. Only one study, with unclear risk of bias, reported pain relief with a combination of isoxsuprine, acetaminophen and caffeine. None of the other studies reported any significant clinical difference in effectiveness between the intervention and placebo. Adverse effects were reported with all of these medications in up to a quarter of the

  9. Agonist-directed desensitization of the β2-adrenergic receptor.

    PubMed

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M; Wu, Qi; Fang, Ye

    2011-04-26

    The β(2)-adrenergic receptor (β(2)AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β(2)AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β(2)AR desensitization at the whole cell level.

  10. Agonist-Directed Desensitization of the β2-Adrenergic Receptor

    PubMed Central

    Goral, Vasiliy; Jin, Yan; Sun, Haiyan; Ferrie, Ann M.; Wu, Qi; Fang, Ye

    2011-01-01

    The β2-adrenergic receptor (β2AR) agonists with reduced tachyphylaxis may offer new therapeutic agents with improved tolerance profile. However, receptor desensitization assays are often inferred at the single signaling molecule level, thus ligand-directed desensitization is poorly understood. Here we report a label-free biosensor whole cell assay with microfluidics to determine ligand-directed desensitization of the β2AR. Together with mechanistic deconvolution using small molecule inhibitors, the receptor desensitization and resensitization patterns under the short-term agonist exposure manifested the long-acting agonism of salmeterol, and differentiated the mechanisms of agonist-directed desensitization between a full agonist epinephrine and a partial agonist pindolol. This study reveals the cellular mechanisms of agonist-selective β2AR desensitization at the whole cell level. PMID:21541288

  11. Discovery of G Protein-Biased EP2 Receptor Agonists

    PubMed Central

    2016-01-01

    To identify G protein-biased and highly subtype-selective EP2 receptor agonists, a series of bicyclic prostaglandin analogues were designed and synthesized. Structural hybridization of EP2/4 dual agonist 5 and prostacyclin analogue 6, followed by simplification of the ω chain enabled us to discover novel EP2 agonists with a unique prostacyclin-like scaffold. Further optimization of the ω chain was performed to improve EP2 agonist activity and subtype selectivity. Phenoxy derivative 18a showed potent agonist activity and excellent subtype selectivity. Furthermore, a series of compounds were identified as G protein-biased EP2 receptor agonists. These are the first examples of biased ligands of prostanoid receptors. PMID:26985320

  12. Sports doping: emerging designer and therapeutic β2-agonists.

    PubMed

    Fragkaki, A G; Georgakopoulos, C; Sterk, S; Nielen, M W F

    2013-10-21

    Beta2-adrenergic agonists, or β2-agonists, are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptom-relievers and, in combination with inhaled corticosteroids, as disease-controllers. The use of β2-agonists is prohibited in sports by the World Anti-Doping Agency (WADA) due to claimed anabolic effects, and also, is prohibited as growth promoters in cattle fattening in the European Union. This paper reviews the last seven-year (2006-2012) literature concerning the development of novel β2-agonists molecules either by modifying the molecule of known β2-agonists or by introducing moieties producing indole-, adamantyl- or phenyl urea derivatives. New emerging β2-agonists molecules for future therapeutic use are also presented, intending to emphasize their potential use for doping purposes or as growth promoters in the near future.

  13. In vitro assays of rod and cone opsin activity: retinoid analogs as agonists and inverse agonists.

    PubMed

    Kono, Masahiro; Crouch, Rosalie K

    2010-01-01

    Upon absorption of a photon, the bound 11-cis-retinoid isomerizes to the all-trans form resulting in a protein conformational change that enables it to activate its G protein, transducin, to begin the visual signal transduction cascade. The native ligand, 11-cis-retinal, acts as an inverse agonist to both the apoproteins of rod and cone visual pigments (opsins); all-trans-retinal is an agonist. Truncated analogs of retinal have been used to characterize structure-function relationships with rod opsins, but little has been done with cone opsins. Activation of transducin by an opsin is one method to characterize the conformational state of the opsin. This chapter describes an in vitro transducin activation assay that can be used with cone opsins to determine the degree to which different ligands can act as an agonist or an inverse agonist to gain insight into the ligand-binding pocket of cone opsins and differences between the different classes of opsins. The understanding of the effects of ligands on cone opsin activity can potentially be applied to future therapeutic agents targeting opsins.

  14. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity.

    PubMed

    Gurevich, V V; Pals-Rylaarsdam, R; Benovic, J L; Hosey, M M; Onorato, J J

    1997-11-14

    The rapid decrease of a response to a persistent stimulus, often termed desensitization, is a widespread biological phenomenon. Signal transduction by numerous G protein-coupled receptors appears to be terminated by a strikingly uniform two-step mechanism, most extensively characterized for the beta2-adrenergic receptor (beta2AR), m2 muscarinic cholinergic receptor (m2 mAChR), and rhodopsin. The model predicts that activated receptor is initially phosphorylated and then tightly binds an arrestin protein that effectively blocks further G protein interaction. Here we report that complexes of beta2AR-arrestin and m2 mAChR-arrestin have a higher affinity for agonists (but not antagonists) than do receptors not complexed with arrestin. The percentage of phosphorylated beta2AR in this high affinity state in the presence of full agonists varied with different arrestins and was enhanced by selective mutations in arrestins. The percentage of high affinity sites also was proportional to the intrinsic activity of an agonist, and the coefficient of proportionality varies for different arrestin proteins. Certain mutant arrestins can form these high affinity complexes with unphosphorylated receptors. Mutations that enhance formation of the agonist-receptor-arrestin complexes should provide useful tools for manipulating both the efficiency of signaling and rate and specificity of receptor internalization.

  15. Agonistic behavior in food animals: review of research and techniques.

    PubMed

    McGlone, J J

    1986-04-01

    One type of social behavior--agonistic behavior--is commonly observed among food animals. Agonistic behaviors are those behaviors which cause, threaten to cause or seek to reduce physical damage. Agonistic behavior is comprised of threats, aggression and submission. While any one of these divisions of agonistic behavior may be observed alone, they usually are found, in sequence, from the start to the end of an interaction. Food animals may show interspecific or intraspecific agonistic behaviors. Interspecific agonistic behavior has not been extensively studied but it is agriculturally important because farm workers may become injured or killed by aggressive food animals. Types of intraspecific agonistic behavior are: when animals are brought together, intermale fighting, resource defense, inter-gender fighting and aberrant aggression. Common pitfalls in research on agonistic behavior among food animals include too few replicates to detect a biological difference, the assumptions of the analysis are not met, only aggression and not submission or other agonistic behavior components are measured, incomplete description of the behaviors are reported and a complete, quantitive ethogram did not form the basis for selecting behavioral measures.

  16. Computational modeling toward understanding agonist binding on dopamine 3.

    PubMed

    Zhao, Yaxue; Lu, Xuefeng; Yang, Chao-Yie; Huang, Zhimin; Fu, Wei; Hou, Tingjun; Zhang, Jian

    2010-09-27

    The dopamine 3 (D3) receptor is a promising therapeutic target for the treatment of nervous system disorders, such as Parkinson's disease, and current research interests primarily focus on the discovery/design of potent D3 agonists. Herein, a well-designed computational protocol, which combines pharmacophore identification, homology modeling, molecular docking, and molecular dynamics (MD) simulations, was employed to understand the agonist binding on D3 aiming to provide insights into the development of novel potent D3 agonists. We (1) identified the chemical features required in effective D3 agonists by pharmacophore modeling based upon 18 known diverse D3 agonists; (2) constructed the three-dimensional (3D) structure of D3 based on homology modeling and the pharmacophore hypothesis; (3) identified the binding modes of the agonists to D3 by the correlation between the predicted binding free energies and the experimental values; and (4) investigated the induced fit of D3 upon agonist binding through MD simulations. The pharmacophore models of the D3 agonists and the 3D structure of D3 can be used for either ligand- or receptor-based drug design. Furthermore, the MD simulations further give the insight that the long and flexible EL2 acts as a "door" for agonist binding, and the "ionic lock" at the bottom of TM3 and TM6 is essential to transduce the activation signal.

  17. Chimpanzees Extract Social Information from Agonistic Screams

    PubMed Central

    Slocombe, Katie E.; Kaller, Tanja; Call, Josep; Zuberbühler, Klaus

    2010-01-01

    Chimpanzee (Pan troglodytes) agonistic screams are graded vocal signals that are produced in a context-specific manner. Screams given by aggressors and victims can be discriminated based on their acoustic structure but the mechanisms of listener comprehension of these calls are currently unknown. In this study, we show that chimpanzees extract social information from these vocal signals that, combined with their more general social knowledge, enables them to understand the nature of out-of-sight social interactions. In playback experiments, we broadcast congruent and incongruent sequences of agonistic calls and monitored the response of bystanders. Congruent sequences were in accordance with existing social dominance relations; incongruent ones violated them. Subjects looked significantly longer at incongruent sequences, despite them being acoustically less salient (fewer call types from fewer individuals) than congruent ones. We concluded that chimpanzees categorised an apparently simple acoustic signal into victim and aggressor screams and used pragmatics to form inferences about third-party interactions they could not see. PMID:20644722

  18. D-Cycloserine: Agonist turned antagonist.

    PubMed

    Lanthorn, T H

    1994-10-01

    D-Cycloserine can enhance activation of the NMDA receptor complex and could enhance the induction of long-term potentiation (LTP). In animals and humans, D-cycloserine can enhance performance in learning and memory tasks. This enhancing effect can disappear during repeated administration. The enhancing effects are also lost when higher doses are used, and replaced by behavioral and biochemical effects like those produced by NMDA antagonists. It has been reported that NMDA agonists, applied before or after tetanic stimulation, can block the induction of LTP. This may be the result of feedback inhibition of second messenger pathways stimulated by receptor activation. This may explain the antagonist-like effects of glycine partial agonists like D-cycloserine. In clinical trials of D-cycloserine in age-associated memory impairment (AAMI) and Alzheimer's disease, chronic treatment provided few positive effects on learning and memory. This may be due to inhibition of second messenger pathways following chronic stimulation of the receptor complex.

  19. Beta-2-agonists of third generation.

    PubMed

    Palma-Carlos, A G; Palma-Carlos, G S

    1986-04-01

    Beta-adrenergic agents have been used for a long time in the treatment of asthma. For the purpose of bronchodilation the better results would be attained with the increase in Beta-2-selectivity. From the newer Beta-agonists the mot currently used are TERBUTALINE, FENOTEROL, SALBUTAMOL, CLEMBUTEROL, TOLBUTEROL, CARBUTEROL, PROCATEROL, RIMITEROL and REPROTEROL, this last combining in its molecule the structure of a beta-agonist with a Xanthine group. These agents could be used in different ways, by mouth, injection and inhalation (with a exception of Clembuterol which is effective only by oral route). The authors have, some years ago, comparatively studied the bronchodilating effect of Salbutamol and Fenoterol including 18 patients. The main increase of PFR was slightly higher after FENOTEROL but this difference was not significant. The authors have studied REPROTEROL by inhalation and oral routes in 11 asthmatic patients. After inhalation of 400 mcg of REPROTEROL the bronchodilator effect was comparable to others inhaled bronchodilators. However they could not confirm that REPROTEROL acts also as a Xanthine and only traces of Theophylline have been detected in blood of subjects taking it. These data seem to indicate that REPROTEROL do not release Theophylline in the body or only release a Xanthine like compound not detected by "EMIT" of high pressure liquid chromatography.

  20. Inverse agonist properties of atypical antipsychotic drugs.

    PubMed

    Akam, Elizabeth; Strange, Philip G

    2004-06-01

    Mechanisms of action of several atypical antipsychotic drugs have been examined at the D(2) dopamine receptor expressed in CHO cells. The drugs tested were found to exhibit inverse agonist activity at the D(2) dopamine receptor based on their effects to potentiate forskolin-stimulated cyclic AMP (cAMP) accumulation. Each of the antipsychotic drugs tested (clozapine, olanzapine, quetiapine and risperidone) increased cAMP accumulation to the same extent. The increase in cAMP was also similar to that seen with typical antipsychotic drugs. Inverse agonism at the D(2) dopamine receptor seems, therefore, to be a property common to all classes of antipsychotic drugs. The effect of sodium ions on the binding of the drugs to the receptor was also assessed. Each of the atypical antipsychotic drugs tested here bound with higher affinity in the absence of sodium ions. Previous studies have shown that some antipsychotic drugs are insensitive to sodium ions and some bind with higher affinity in the presence of sodium ions. Given that all of these antipsychotic drugs are inverse agonists, it may be concluded that this sodium ion sensitivity is unrelated to mechanisms of inverse agonism.

  1. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Development

    PubMed Central

    Jones, Karlie R.; Choi, Uimook; Gao, Ji-Liang; Thompson, Robert D.; Rodman, Larry E.; Malech, Harry L.; Kang, Elizabeth M.

    2017-01-01

    Agonists that target the A1, A2A, A2B and A3 adenosine receptors have potential to be potent treatment options for a number of diseases, including autoimmune diseases, cardiovascular disease and cancer. Because each of these adenosine receptors plays a distinct role throughout the body, obtaining highly specific receptor agonists is essential. Of these receptors, the adenosine A2AR and A2BR share many sequence and structural similarities but highly differ in their responses to inflammatory stimuli. Our laboratory, using a combination of specially developed cell lines and calcium release analysis hardware, has created a new and faster method for determining specificity of synthetic adenosine agonist compounds for the A2A and A2B receptors in human cells. A2A receptor expression was effectively removed from K562 cells, resulting in the development of a distinct null line. Using HIV-lentivector and plasmid DNA transfection, we also developed A2A and A2B receptor over-expressing lines. As adenosine is known to cause changes in intracellular calcium levels upon addition to cell culture, calcium release can be determined in these cell lines upon compound addition, providing a functional readout of receptor activation and allowing us to isolate the most specific adenosine agonist compounds. PMID:28317879

  2. Studies Toward the Pharmacophore of Salvinorin A, a Potent Kappa Opioid Receptor Agonist

    PubMed Central

    Munro, Thomas A.; Rizzacasa, Mark A.; Roth, Bryan L.; Toth, Beth A.; Yan, Feng

    2009-01-01

    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity, but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors. PMID:15658846

  3. Studies toward the pharmacophore of salvinorin A, a potent kappa opioid receptor agonist.

    PubMed

    Munro, Thomas A; Rizzacasa, Mark A; Roth, Bryan L; Toth, Beth A; Yan, Feng

    2005-01-27

    Salvinorin A (1), from the sage Salvia divinorum, is a potent and selective kappa opioid receptor (KOR) agonist. We screened other salvinorins and derivatives for binding affinity and functional activity at opioid receptors. Our results suggest that the methyl ester and furan ring are required for activity but that the lactone and ketone functionalities are not. Other salvinorins showed negligible binding affinity at the KOR. None of the compounds bound to mu or delta opioid receptors.

  4. Fates of endocytosed somatostatin sst2 receptors and associated agonists.

    PubMed Central

    Koenig, J A; Kaur, R; Dodgeon, I; Edwardson, J M; Humphrey, P P

    1998-01-01

    Somatostatin agonists are rapidly and efficiently internalized with the somatostatin sst2 receptor. The fate of internalized agonists and receptors is of critical importance because the rate of ligand recycling back to the cell surface can limit the amount of radioligand accumulated inside the cells, whereas receptor recycling might be of vital importance in providing the cell surface with dephosphorylated, resensitized receptors. Furthermore the accumulation of radioisotope-conjugated somatostatin agonists inside cancer cells resulting from receptor-mediated internalization has been used as a treatment for cancers that overexpress somatostatin receptors. In the present study, radio-iodinated agonists at the sst2 somatostatin receptor were employed to allow quantitative analysis of the fate of endocytosed agonist. After endocytosis, recycling back to the cell surface was the main pathway for both 125I-labelled somatostatin-14 (SRIF-14) and the more stable agonist 125I-labelled cyclo(N-Me-Ala-Tyr-d-Trp-Lys-Abu-Phe) (BIM-23027; Abu stands for aminobutyric acid), accounting for 75-85% of internalized ligand when re-endocytosis of radioligand was prevented. We have shown that there is a dynamic cycling of both somatostatin agonist ligands and receptors between the cell surface and internal compartments both during agonist treatment and after surface-bound agonist has been removed, unless steps are taken to prevent the re-activation of receptors by recycled agonist. Internalization leads to increased degradation of 125I-labelled SRIF-14 but not 125I-labelled BIM-23027. The concentration of recycled agonist accumulating in the extracellular medium was sufficient to re-activate the receptor, as measured both by the inhibition of forskolin-stimulated adenylate cyclase and the recovery of surface receptor number after internalization. PMID:9820803

  5. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  6. Physical Chemistry to the Rescue: Differentiating Nicotinic and Cholinergic Agonists

    ERIC Educational Resources Information Center

    King, Angela G.

    2005-01-01

    Researches suggest that two agonists can bind to the same binding site of an important transmembrane protein and elicit a biological response through strikingly different binding interactions. Evidence is provided which suggests two possible types of nicotinic acetylcholine receptor agonist binding like acetlycholine (cholinergic) or like nicotine…

  7. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  8. TOXICITY OF AHR AGONISTS TO FISH EARLY LIFE STAGES

    EPA Science Inventory

    Fish early life stages are exceptionally sensitive to the lethal toxicity of chemicals that act as arylhydrocarbon receptor (AhR) agonists. Toxicity characterizations based on 2,3,7,8-tetrachlorodibenzo-p-dioxin, generally the most potent AhR agonist, support the toxicity equiva...

  9. Estrogen receptor agonists for attenuation of neuroinflammation and neurodegeneration

    PubMed Central

    Chakrabarti, Mrinmay; Haque, Azizul; Banik, Naren L.; Nagarkatti, Prakash; Nagarkatti, Mitzi; Ray, Swapan K.

    2014-01-01

    Recent results from laboratory investigations and clinical trials indicate important roles for estrogen receptor (ER) agonists in protecting the central nervous system (CNS) from noxious consequences of neuroinflammation and neurodegeneration. Neurodegenerative processes in several CNS disorders including spinal cord injury (SCI), multiple sclerosis (MS), Parkinson's disease (PD), and Alzheimer's disease (AD) are associated with activation of microglia and astrocytes, which drive the resident neuroinflammatory response. During neurodegenerative processes, activated microglia and astrocytes cause deleterious effects on surrounding neurons. The inhibitory activity of ER agonists on microglia activation might be a beneficial therapeutic option for delaying the onset or progression of neurodegenerative injuries and diseases. Recent studies suggest that ER agonists can provide neuroprotection by modulation of cell survival mechanisms, synaptic reorganization, regenerative responses to axonal injury, and neurogenesis process. The anti-inflammatory and neuroprotective actions of ER agonists are mediated mainly via two ERs known as ERα and ERβ. Although some studies have suggested that ER agonists may be deleterious to some neuronal populations, the potential clinical benefits of ER agonists for augmenting cognitive function may triumph over the associated side effects. Also, understanding the modulatory activities of ER agonists on inflammatory pathways will possibly lead to the development of selective anti-inflammatory molecules with neuroprotective roles in different CNS disorders such as SCI, MS, PD, and AD in humans. Future studies should be concentrated on finding the most plausible molecular pathways for enhancing protective functions of ER agonists in treating neuroinflammatory and neurodegenerative injuries and diseases in the CNS. PMID:25245209

  10. Flavonoids as aryl hydrocarbon receptor agonists/antagonists: effects of structure and cell context.

    PubMed Central

    Zhang, Shu; Qin, Chunhua; Safe, Stephen H

    2003-01-01

    Chemoprotective phytochemicals exhibit multiple activities and interact with several cellular receptors, including the aryl hydrocarbon (Ah) receptor (AhR). In this study we investigated the AhR agonist/antagonist activities of the following flavonoids: chrysin, phloretin, kaempferol, galangin, naringenin, genistein, quercetin, myricetin, luteolin, baicalein, daidzein, apigenin, and diosmin. We also investigated the AhR-dependent activities of cantharidin and emodin (in herbal extracts) in Ah-responsive MCF-7 human breast cells, HepG2 human liver cancer cells, and mouse Hepa-1 cells transiently or stably transfected with plasmids expressing a luciferase reporter gene linked to multiple copies of a consensus dioxin-responsive element. The AhR agonist activities of the compounds (1 and 10 micro M) were as high as 25% of the maximal response induced by 5 nM 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), and their potencies were dependent on cell context. Galangin, genistein, daidzein, and diosmin were active only in Hepa-1 cells, and cantharidin induced activity only in human HepG2 and MCF-7 cells. Western blot analysis confirmed that baicalein and emodin also induced CYP1A1 protein in the human cancer cell lines. The AhR antagonist activities of four compounds inactive as agonists in MCF-7 and HepG2 cells (kaempferol, quercetin, myricetin, and luteolin) were also investigated. Luteolin was an AhR antagonist in both cell lines, and the inhibitory effects of the other compound were dependent on cell context. These data suggest that dietary phytochemicals exhibit substantial cell context-dependent AhR agonist as well as antagonist activities. Moreover, because phytochemicals and other AhR-active compounds in food are present in the diet at relatively high concentrations, risk assessment of dietary toxic equivalents of TCDD and related compounds should also take into account AhR agonist/antagonist activities of phytochemicals. PMID:14644660

  11. Dopamine agonist withdrawal syndrome in Parkinson disease.

    PubMed

    Rabinak, Christina A; Nirenberg, Melissa J

    2010-01-01

    To report and characterize a dopamine agonist (DA) withdrawal syndrome (DAWS) in Parkinson disease. Retrospective cohort study. Outpatient tertiary movement disorders clinic. Patients A cohort of 93 nondemented patients with Parkinson disease enrolled in a prospective study of nonmotor and motor disease manifestations. Main Outcome Measure The presence of DAWS, defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with DA withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other Parkinson disease medications, and cannot be accounted for by other clinical factors. Of 40 subjects treated with a DA, 26 underwent subsequent DA taper. Of these 26 subjects, 5 (19%) developed DAWS and 21 (81%) did not. All subjects with DAWS had baseline DA-related impulse control disorders. Symptoms of DAWS resembled those of other drug withdrawal syndromes and included anxiety, panic attacks, agoraphobia, depression, dysphoria, diaphoresis, fatigue, pain, orthostatic hypotension, and drug cravings. Subjects with DAWS as compared with those without DAWS had higher baseline DA use (mean [SD], 420 [170] vs 230 [180] DA levodopa equivalent daily doses [DA-LEDD], respectively; P = .04) and higher cumulative DA exposure (mean [SD], 1800 [1200] vs 700 [900] DA-LEDD-years, respectively; P = .03). Subjects with DAWS also had considerably lower Unified Parkinson's Disease Rating Scale motor scores than those without DAWS (mean [SD], 21 [5] vs 31 [10], respectively; P = .007), despite comparable disease duration (mean [SD], 7.3 [7] vs 6.3 [4] years, respectively; P = .77) and similar total dopaminergic medication use (mean [SD], 830 [450] vs 640 [610] total LEDD, respectively; P = .52) in the 2 groups. Dopamine agonists have a stereotyped withdrawal syndrome that can lead to profound disability in a subset of patients. Physicians should monitor patients closely when

  12. Neuroprotection by Alpha 2-Adrenergic Agonists in Cerebral Ischemia

    PubMed Central

    Zhang, Yonghua; Kimelberg, Harold K.

    2005-01-01

    Ischemic brain injury is implicated in the pathophysiology of stroke and brain trauma, which are among the top killers worldwide, and intensive studies have been performed to reduce neural cell death after cerebral ischemia. Alpha 2-adrenergic agonists have been shown to improve the histomorphological and neurological outcome after cerebral ischemic injury when administered during ischemia, and recent studies have provided considerable evidence that alpha 2-adrenergic agonists can protect the brain from ischemia/reperfusion injury. Thus, alpha 2-adrenergic agonists are promising potential drugs in preventing cerebral ischemic injury, but the mechanisms by which alpha 2-adrenergic agonists exert their neuroprotective effect are unclear. Activation of both the alpha 2-adrenergic receptor and imidazoline receptor may be involved. This mini review examines the recent progress in alpha 2-adrenergic agonists - induced neuroprotection and its proposed mechanisms in cerebral ischemic injury. PMID:18369397

  13. Discovery of Highly Potent Liver X Receptor β Agonists.

    PubMed

    Kick, Ellen K; Busch, Brett B; Martin, Richard; Stevens, William C; Bollu, Venkataiah; Xie, Yinong; Boren, Brant C; Nyman, Michael C; Nanao, Max H; Nguyen, Lam; Plonowski, Artur; Schulman, Ira G; Yan, Grace; Zhang, Huiping; Hou, Xiaoping; Valente, Meriah N; Narayanan, Rangaraj; Behnia, Kamelia; Rodrigues, A David; Brock, Barry; Smalley, James; Cantor, Glenn H; Lupisella, John; Sleph, Paul; Grimm, Denise; Ostrowski, Jacek; Wexler, Ruth R; Kirchgessner, Todd; Mohan, Raju

    2016-12-08

    Introducing a uniquely substituted phenyl sulfone into a series of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic potency improvement for induction of ATP binding cassette transporters, ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated robust LXRβ activity (>70%) with low partial LXRα agonist activity (<25%) in cell assays, providing a window between desired blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation of plasma triglycerides for agonist 15. The addition of polarity to the phenyl sulfone also reduced binding to the plasma protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination of in vitro properties, excellent pharmacokinetic parameters, and a favorable lipid profile.

  14. Glucagon-like polypeptide agonists in type 2 diabetes mellitus: efficacy and tolerability, a balance

    PubMed Central

    Tella, Sri Harsha

    2015-01-01

    Glucagon-like polypeptide (GLP-1) receptor agonist treatment has multiple effects on glucose metabolism, supports the β cell, and promotes weight loss. There are now five GLP-1 agonists in clinical use with more in development. GLP-1 treatment typically can induce a lowering of hemoglobin A1c (HbA1c) of 0.5–1.5% over time with weight loss of 2–5%. In some individuals, a progressive loss of weight occurs. There is evidence that GLP-1 therapy opposes the loss of β cells which is a feature of type 2 diabetes. The chief downside of GLP-1 treatment is the gastrointestinal motility disturbance which is one of the modes of action of the hormone; significant nausea, vomiting, and diarrhea may lead to discontinuation of treatment. Although daily injection of GLP-1 agents is successful, the development of extended release preparations allows for injection once weekly, and perhaps much longer in the future. The indication for GLP-1 use is diabetes, but now, liraglutide has been approved for primary treatment of obesity. When oral agents fail to control glucose levels in type 2 diabetes, there is a choice between long-acting insulin and GLP-1 agonists as additional treatments. The lowering of HbA1c by either modality is equivalent in most studies. Patients lose weight with GLP-1 treatment and gain weight on insulin. There is a lower incidence of hypoglycemia with GLP-1 therapy but a much higher incidence of gastrointestinal complaints. Insulin dosing is flexible while GLP-1 agents have historically been administered at fixed dosages. Now, the use of combined long-acting insulin and GLP-1 agonists is promising a major therapeutic change. Combined therapy takes advantage of the benefits of both insulin and GLP-1 agents. Furthermore, direct admixture of both in the same syringe will permit flexible dosing, improvement of glucose levels, and reduction of both hypoglycemia and gastrointestinal side effects. PMID:26137215

  15. Quantifying agonist activity at G protein-coupled receptors.

    PubMed

    Ehlert, Frederick J; Suga, Hinako; Griffin, Michael T

    2011-12-26

    When an agonist activates a population of G protein-coupled receptors (GPCRs), it elicits a signaling pathway that culminates in the response of the cell or tissue. This process can be analyzed at the level of a single receptor, a population of receptors, or a downstream response. Here we describe how to analyze the downstream response to obtain an estimate of the agonist affinity constant for the active state of single receptors. Receptors behave as quantal switches that alternate between active and inactive states (Figure 1). The active state interacts with specific G proteins or other signaling partners. In the absence of ligands, the inactive state predominates. The binding of agonist increases the probability that the receptor will switch into the active state because its affinity constant for the active state (K(b)) is much greater than that for the inactive state (K(a)). The summation of the random outputs of all of the receptors in the population yields a constant level of receptor activation in time. The reciprocal of the concentration of agonist eliciting half-maximal receptor activation is equivalent to the observed affinity constant (K(obs)), and the fraction of agonist-receptor complexes in the active state is defined as efficacy (ε) (Figure 2). Methods for analyzing the downstream responses of GPCRs have been developed that enable the estimation of the K(obs) and relative efficacy of an agonist. In this report, we show how to modify this analysis to estimate the agonist K(b) value relative to that of another agonist. For assays that exhibit constitutive activity, we show how to estimate K(b) in absolute units of M(-1). Our method of analyzing agonist concentration-response curves consists of global nonlinear regression using the operational model. We describe a procedure using the software application, Prism (GraphPad Software, Inc., San Diego, CA). The analysis yields an estimate of the product of K(obs) and a parameter proportional to efficacy (

  16. Agonistic behavior in males and females: effects of an estrogen receptor beta agonist in gonadectomized and gonadally intact mice

    PubMed Central

    Allen, Amy E. Clipperton; Cragg, Cheryl L.; Wood, Alexis J.; Pfaff, Donald W.; Choleris, Elena

    2010-01-01

    Summary Affiliative and agonistic social interactions are mediated by gonadal hormones. Research with estrogen receptor alpha (ERα) or beta (ERβ) knockout (KO) mice show that long-term inactivation of ERα decreases, while inactivation of ERβ increases, male aggression. Opposite effects were found in female αERKO and βERKO mice. The role of acute activation of ERα or ERβ in the agonistic responses of adult non-KO mice is unknown. We report here the effects of the ERβ selective agonist WAY-200070 on agonistic and social behavior in gonadally intact and gonadectomized (gonadex) male and female CD-1 mice towards a gonadex, same-sex intruder. All 15 min resident-intruder tests were videotaped for comprehensive behavioral analysis. Separate analyses assessed: 1) effects of WAY-200070 on each sex and gonadal condition; 2) differences between sexes, and between gonadally intact and gonadex mice, in untreated animals. Results show that in gonadally intact male and female mice WAY-200070 increased agonistic behaviors such as pushing down and aggressive grooming, while leaving attacks unaffected. In untreated mice, males attacked more than females, and gonadex animals showed less agonistic behavior than same-sex, gonadally intact mice. Overall, our detailed behavioral analysis suggested that in gonadally intact male and female mice, ERβ mediates patterns of agonistic behavior that are not directly involved in attacks. This suggests that specific aspects of aggressive behavior are acutely mediated by ERβ in adult mice. Our results also showed that, in resident-intruder tests, female mice spend as much time in intrasexual agonistic interactions as males, but use agonistic behaviors that involve extremely low levels of direct attacks. This non-attack aggression in females is increased by acute activation of ERβ. Thus, acute activation of ERβ similarly mediates agonistic behavior in adult male and female CD-1 mice. PMID:20129736

  17. The evolving world of GLP-1 agonist therapies for type 2 diabetes.

    PubMed

    Baynes, Kevin C R

    2010-04-01

    The glucagon-like peptide-1 (GLP-1) agonist drugs have attractions as a treatment for type 2 diabetes since they positively alter a number of key pathophysiological defects. These include increasing insulin release, reducing glucagon release, slowing gastric emptying and reducing food intake. In numerous clinical trials these agents have been shown to reduce DCCT-aligned HbA(1c) between 0.8% and 1.1% in patients with moderately controlled type 2 diabetes, whilst also being associated with some weight loss. Whilst medium-term safety and side-effect profiles are now well established, there are as yet no long-term studies on the safety of this group of drugs. The place of the GLP-1 agonists in the treatment paradigm for type 2 diabetes will evolve over the next decade.

  18. The evolving world of GLP-1 agonist therapies for type 2 diabetes

    PubMed Central

    Baynes, Kevin C. R.

    2010-01-01

    The glucagon-like peptide-1 (GLP-1) agonist drugs have attractions as a treatment for type 2 diabetes since they positively alter a number of key pathophysiological defects. These include increasing insulin release, reducing glucagon release, slowing gastric emptying and reducing food intake. In numerous clinical trials these agents have been shown to reduce DCCT-aligned HbA1c between 0.8% and 1.1% in patients with moderately controlled type 2 diabetes, whilst also being associated with some weight loss. Whilst medium-term safety and side-effect profiles are now well established, there are as yet no long-term studies on the safety of this group of drugs. The place of the GLP-1 agonists in the treatment paradigm for type 2 diabetes will evolve over the next decade. PMID:23148151

  19. The cardiovascular effects of peroxisome proliferator-activated receptor agonists.

    PubMed

    Friedland, Sayuri N; Leong, Aaron; Filion, Kristian B; Genest, Jacques; Lega, Iliana C; Mottillo, Salvatore; Poirier, Paul; Reoch, Jennifer; Eisenberg, Mark J

    2012-02-01

    Although peroxisome proliferator-activated receptor agonists are prescribed to improve cardiovascular risk factors, their cardiovascular safety is controversial. We therefore reviewed the literature to identify landmark randomized controlled trials evaluating the effect of peroxisome proliferator-activated receptor gamma agonists (pioglitazone and rosiglitazone), alpha agonists (fenofibrate and gemfibrozil), and pan agonists (bezafibrate, muraglitazar, ragaglitazar, tesaglitazar, and aleglitazar) on cardiovascular outcomes. Pioglitazone may modestly reduce cardiovascular events but also may increase the risk of bladder cancer. Rosiglitazone increases the risk of myocardial infarction and has been withdrawn in European and restricted in the United States. Fibrates improve cardiovascular outcomes only in select subgroups: fenofibrate in diabetic patients with metabolic syndrome, gemfibrozil in patients with dyslipidemia, and bezafibrate in patients with diabetes or metabolic syndrome. The cardiovascular safety of the new pan agonist aleglitazar, currently in phase II trials, remains to be determined. The heterogenous effects of peroxisome proliferator-activated receptor agonists to date highlight the importance of postmarketing surveillance. The critical question of why peroxisome proliferator-activated receptor agonists seem to improve cardiovascular risk factors without significantly improving cardiovascular outcomes requires further investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Synthetic RORγ agonists regulate multiple pathways to enhance antitumor immunity

    PubMed Central

    Hu, Xiao; Liu, Xikui; Moisan, Jacques; Wang, Yahong; Lesch, Charles A.; Spooner, Chauncey; Morgan, Rodney W.; Zawidzka, Elizabeth M.; Mertz, David; Bousley, Dick; Majchrzak, Kinga; Kryczek, Ilona; Taylor, Clarke; Van Huis, Chad; Skalitzky, Don; Hurd, Alexander; Aicher, Thomas D.; Toogood, Peter L.; Glick, Gary D.; Paulos, Chrystal M.; Zou, Weiping; Carter, Laura L.

    2016-01-01

    ABSTRACT RORγt is the key transcription factor controlling the development and function of CD4+ Th17 and CD8+ Tc17 cells. Across a range of human tumors, about 15% of the CD4+ T cell fraction in tumor-infiltrating lymphocytes are RORγ+ cells. To evaluate the role of RORγ in antitumor immunity, we have identified synthetic, small molecule agonists that selectively activate RORγ to a greater extent than the endogenous agonist desmosterol. These RORγ agonists enhance effector function of Type 17 cells by increasing the production of cytokines/chemokines such as IL-17A and GM-CSF, augmenting expression of co-stimulatory receptors like CD137, CD226, and improving survival and cytotoxic activity. RORγ agonists also attenuate immunosuppressive mechanisms by curtailing Treg formation, diminishing CD39 and CD73 expression, and decreasing levels of co-inhibitory receptors including PD-1 and TIGIT on tumor-reactive lymphocytes. The effects of RORγ agonists were not observed in RORγ−/− T cells, underscoring the selective on-target activity of the compounds. In vitro treatment of tumor-specific T cells with RORγ agonists, followed by adoptive transfer to tumor-bearing mice is highly effective at controlling tumor growth while improving T cell survival and maintaining enhanced IL-17A and reduced PD-1 in vivo. The in vitro effects of RORγ agonists translate into single agent, immune system-dependent, antitumor efficacy when compounds are administered orally in syngeneic tumor models. RORγ agonists integrate multiple antitumor mechanisms into a single therapeutic that both increases immune activation and decreases immune suppression resulting in robust inhibition of tumor growth. Thus, RORγ agonists represent a novel immunotherapy approach for cancer. PMID:28123897

  1. Dopamine agonist withdrawal syndrome: implications for patient care.

    PubMed

    Nirenberg, Melissa J

    2013-08-01

    Dopamine agonists are effective treatments for a variety of indications, including Parkinson's disease and restless legs syndrome, but may have serious side effects, such as orthostatic hypotension, hallucinations, and impulse control disorders (including pathological gambling, compulsive eating, compulsive shopping/buying, and hypersexuality). The most effective way to alleviate these side effects is to taper or discontinue dopamine agonist therapy. A subset of patients who taper a dopamine agonist, however, develop dopamine agonist withdrawal syndrome (DAWS), which has been defined as a severe, stereotyped cluster of physical and psychological symptoms that correlate with dopamine agonist withdrawal in a dose-dependent manner, cause clinically significant distress or social/occupational dysfunction, are refractory to levodopa and other dopaminergic medications, and cannot be accounted for by other clinical factors. The symptoms of DAWS include anxiety, panic attacks, dysphoria, depression, agitation, irritability, suicidal ideation, fatigue, orthostatic hypotension, nausea, vomiting, diaphoresis, generalized pain, and drug cravings. The severity and prognosis of DAWS is highly variable. While some patients have transient symptoms and make a full recovery, others have a protracted withdrawal syndrome lasting for months to years, and therefore may be unwilling or unable to discontinue DA therapy. Impulse control disorders appear to be a major risk factor for DAWS, and are present in virtually all affected patients. Thus, patients who are unable to discontinue dopamine agonist therapy may experience chronic impulse control disorders. At the current time, there are no known effective treatments for DAWS. For this reason, providers are urged to use dopamine agonists judiciously, warn patients about the risks of DAWS prior to the initiation of dopamine agonist therapy, and follow patients closely for withdrawal symptoms during dopamine agonist taper.

  2. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2008-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  3. Recent improvements in the development of A2B adenosine receptor agonists

    PubMed Central

    Tabrizi, Mojgan Aghazadeh; Fruttarolo, Francesca; Romagnoli, Romeo; Preti, Delia

    2009-01-01

    Adenosine is known to exert most of its physiological functions by acting as local modulator at four receptor subtypes named A1, A2A, A2B and A3 (ARs). Principally as a result of the difficulty in identifying potent and selective agonists, the A2B AR is the least extensively characterised of the adenosine receptors family. Despite these limitations, growing understanding of the physiological meaning of this target indicates promising therapeutic perspectives for specific ligands. As A2B AR signalling seems to be associated with pre/postconditioning cardioprotective and anti-inflammatory mechanisms, selective agonists may represent a new therapeutic group for patients suffering from coronary artery disease. Herein we present an overview of the recent advancements in identifying potent and selective A2B AR agonists reported in scientific and patent literature. These compounds can be classified into adenosine-like and nonadenosine ligands. Nucleoside-based agonists are the result of modifying adenosine by substitution at the N6-, C2-positions of the purine heterocycle and/or at the 5′-position of the ribose moiety or combinations of these substitutions. Compounds 1-deoxy-1-{6-[N′-(furan-2-carbonyl)-hydrazino]-9H-purin-9-yl}-N-ethyl-β-D-ribofuranuronamide (19, hA1Ki = 1050 nM, hA2AKi = 1550 nM, hA2B EC50 = 82 nM, hA3Ki > 5 μM) and its 2-chloro analogue 23 (hA1Ki = 3500 nM, hA2AKi = 4950 nM, hA2B EC50 = 210 nM, hA3Ki > 5 μM) were confirmed to be potent and selective full agonists in a cyclic adenosine monophosphate (cAMP) functional assay in Chinese hamster ovary (CHO) cells expressing hA2B AR. Nonribose ligands are represented by conveniently substituted dicarbonitrilepyridines, among which 2-[6-amino-3,5-dicyano-4-[4-(cyclopropylmethoxy)phenyl]pyridin-2-ylsulfanyl]acetamide (BAY-60–6583, hA1, hA2A, hA3 EC50 > 10 μM; hA2B EC50 = 3 nM) is currently under preclinical-phase investigation for treating coronary

  4. Supra-physiological efficacy at GPCRs: superstition or super agonists?

    PubMed

    Langmead, Christopher J; Christopoulos, Arthur

    2013-05-01

    The concept of 'super agonism' has been described since the discovery of peptide hormone analogues that yielded greater functional responses than the endogenous agonists, in the early 1980s. It has remained an area of debate as to whether such compounds can really display greater efficacy than an endogenous agonist. However, recent pharmacological data, combined with crystal structures of different GPCR conformations and improved analytical methods for quantifying drug action, are starting to shed light on this phenomenon and indicate that super agonists may be more than superstition. © 2013 The Authors. British Journal of Pharmacology © 2013 The British Pharmacological Society.

  5. Toll-like receptor agonists in cancer therapy

    PubMed Central

    Adams, Sylvia

    2010-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors related to the Drosophila Toll protein. TLR activation alerts the immune system to microbial products and initiates innate and adaptive immune responses. The naturally powerful immunostimulatory property of TLR agonists can be exploited for active immunotherapy against cancer. Antitumor activity has been demonstrated in several cancers, and TLR agonists are now undergoing extensive clinical investigation. This review discusses recent advances in the field and highlights potential opportunities for the clinical development of TLR agonists as single agent immunomodulators, vaccine adjuvants and in combination with conventional cancer therapies. PMID:20563267

  6. Cardiovascular effects of melatonin receptor agonists.

    PubMed

    Paulis, Ludovit; Simko, Fedor; Laudon, Moshe

    2012-11-01

    Melatonin synchronizes circadian rhythms with light/dark period and it was demonstrated to correct chronodisruption. Several melatonin receptor agonists with improved pharmacokinetics or increased receptor affinity are being developed, three of them are already in clinical use. However, the actions of melatonin extend beyond chronobiology to cardiovascular and metabolic systems as well. Given the high prevalence of cardiovascular disease and their common occurrence with chronodisruption, it is of utmost importance to classify the cardiometabolic effects of the newly approved and putative melatoninergic drugs. In the present review, the available (although very sparse) data on such effects, in particular by the approved (circadin, ramelteon, agomelatine) or clinically advanced (tasimelteon, piromelatine = Neu-P11, TIK-301) compounds are summarized. The authors have searched for an association with blood pressure, vascular reactivity, ischemia, myocardial and vascular remodeling and metabolic syndrome. The data suggest that cardiovascular effects of melatonin are at least partly mediated via MT(1)/MT(2) receptors and associated with its chronobiotic action. Therefore, despite the sparse direct evidence, it is believed that these effects will be shared by melatonin analogs as well. With the expected approval of novel melatoninergic compounds, it is suggested that the investigation of their cardiovascular effects should no longer be neglected.

  7. Adenosine A1 receptors mediate inhibition of cAMP formation in vitro in the pontine, REM sleep induction zone.

    PubMed

    Marks, Gerald A; Birabil, Christian G; Speciale, Samuel G

    2005-11-09

    Microinjection of adenosine A1 receptor agonist or an inhibitor of adenylyl cyclase into the caudal, oral pontine reticular formation (PnOc) of the rat induces a long-lasting increase in REM sleep. Here, we report significant inhibition of forskolin-stimulated cAMP in dissected pontine tissue slices containing the PnOc incubated with the A1 receptor agonist, cyclohexaladenosine (10(-8) M). These data are consistent with adenosine A1 receptor agonist actions on REM sleep mediated through inhibition of cAMP.

  8. Characterization of a novel bivalent morphinan possessing kappa agonist and micro agonist/antagonist properties.

    PubMed

    Mathews, Jennifer L; Peng, Xuemei; Xiong, Wennan; Zhang, Ao; Negus, S Stevens; Neumeyer, John L; Bidlack, Jean M

    2005-11-01

    Previous research has shown that compounds with mixed kappa and mu activity may have utility for the treatment of cocaine abuse and dependence. The present study characterizes the pharmacological profile of a bivalent morphinan that was shown to be a kappa opioid receptor agonist and a mu opioid receptor agonist/antagonist. MCL-145 [bis(N-cyclobutylmethylmorphinan) fumarate] is related to the morphinan cyclorphan and its N-cyclobutylmethyl derivative MCL-101 [3-hydroxy-N-cyclobutylmethyl morphinan S-(+)-mandelate]. MCL-145 consists of two morphinans connected by a spacer at the 3-hydroxy position. This compound had K(i) values of 0.078 and 0.20 nM for the kappa and mu opioid receptors, respectively, using radioligand binding assays as shown by Neumeyer et al. in 2003. In the guanosine 5'-O -(3-[(35) S]thiotriphosphate) binding assay, MCL-145 produced an E(max) value of 80% for the kappa opioid receptor and 42% for the mu opioid receptor. The EC(50) values obtained for this compound were 4.3 and 3.1 nM for the kappa and mu opioid receptors, respectively. In vivo MCL-145 produced a full dose-response curve in the 55 degrees C warm water tail-flick test and was equipotent to morphine. The agonist properties of MCL-145 were antagonized by the mu-selective antagonist beta-funaltrexamine and the kappa-selective antagonist nor-binaltorphimine. MCL-145 also acted as a mu antagonist, as measured by the inhibition of morphine-induced antinociception.

  9. [Status quo of opioid agonist maintenance therapy in Germany].

    PubMed

    Fischer, M; Reimer, J; Schäfer, I; Haasen, C

    2010-04-01

    Neurobiological evidence and clinical experience indicate that opioid dependence is a chronic relapsing disorder. Crisis intervention, abstinence-oriented treatment (including detoxification and relapse prevention), and agonist maintenance treatment are the current treatment options depending on the individually pursued treatment goals. Agonist maintenance therapy is considered the first-line treatment for severe chronic opioid dependence. Numerous studies demonstrated evidence of a growing number of different agonist maintenance agents, such as methadone, buprenorphine and also new options like slow-release morphine, intravenous, inhalable and oral diamorphine. Despite the proven effectiveness of agonist maintenance therapy, the number of comprehensive care facilities nationwide is still not adequate. The growing number of patients in maintenance-treatment has not been accompanied by an increase in the number of specialized German physicians actively taking part in substitution treatment. Further efforts are needed to ensure adequate health care provision for opiate addicts in Germany.

  10. Partial agonist therapy in schizophrenia: relevance to diminished criminal responsibility.

    PubMed

    Gavaudan, Gilles; Magalon, David; Cohen, Julien; Lançon, Christophe; Léonetti, Georges; Pélissier-Alicot, Anne-Laure

    2010-11-01

    Pathological gambling (PG), classified in the DSM-IV among impulse control disorders, is defined as inappropriate, persistent gaming for money with serious personal, family, and social consequences. Offenses are frequently committed to obtain money for gambling. Pathological gambling, a planned and structured behavioral disorder, has often been described as a complication of dopamine agonist treatment in patients with Parkinson's disease. It has never been described in patients with schizophrenia receiving dopamine agonists. We present two patients with schizophrenia, previously treated with antipsychotic drugs without any suggestion of PG, who a short time after starting aripiprazole, a dopamine partial agonist, developed PG and criminal behavior, which totally resolved when aripiprazole was discontinued. Based on recent advances in research on PG and adverse drug reactions to dopamine agonists in Parkinson's disease, we postulate a link between aripiprazole and PG in both our patients with schizophrenia and raise the question of criminal responsibility.

  11. (R)-(-)-10-methyl-11-hydroxyaporphine: a highly selective serotonergic agonist.

    PubMed

    Cannon, J G; Mohan, P; Bojarski, J; Long, J P; Bhatnagar, R K; Leonard, P A; Flynn, J R; Chatterjee, T K

    1988-02-01

    Prior work in these laboratories identified (+/-)-5-hydroxy-6-methyl-2- (di-n-propylamino)tetralin as a dopaminergic agonist prodrug. The ortho methyl hydroxy aromatic substitution pattern in this molecule has now been incorporated into the aporphine ring system to give a congener of the dopaminergic agonist apomorphine in which the position 10 OH group has been replaced by methyl. Preparation of the target compound involved acid-catalyzed rearrangement of the 3-(1-phenyltetrazolyl) ether of morphine and subsequent molecular modification of the product, the 10-(1-phenyltetrazolyl) ether of (R)-(-)-apomorphine. Surprisingly, the target compound elicited no responses in any assays for effects at dopamine receptors, but rather it displayed pharmacological properties consistent with its being a serotonergic agonist with a high degree of selectivity for 5-HT1A receptors similar to the serotonergic agonist 8-hydroxy-2-(di-n-propylamino)tetralin.

  12. Octopaminergic agonists for the cockroach neuronal octopamine receptor.

    PubMed

    Hirashima, Akinori; Morimoto, Masako; Kuwano, Eiichi; Eto, Morifusa

    2003-01-01

    The compounds 1-(2,6-diethylphenyl)imidazolidine-2-thione and 2-(2,6-diethylphenyl)imidazolidine showed the almost same activity as octopamine in stimulating adenylate cyclase of cockroach thoracic nervous system among 70 octopamine agonists, suggesting that only these compounds are full octopamine agonists and other compounds are partial octopamine agonists. The quantitative structure-activity relationship of a set of 22 octopamine agonists against receptor 2 in cockroach nervous tissue, was analyzed using receptor surface modeling. Three-dimensional energetics descriptors were calculated from receptor surface model/ligand interaction and these three-dimensional descriptors were used in quantitative structure-activity relationship analysis. A receptor surface model was generated using some subset of the most active structures and the results provided useful information in the characterization and differentiation of octopaminergic receptor.

  13. Selecting agonists from single cells infected with combinatorial antibody libraries.

    PubMed

    Zhang, Hongkai; Yea, Kyungmoo; Xie, Jia; Ruiz, Diana; Wilson, Ian A; Lerner, Richard A

    2013-05-23

    We describe a system for direct selection of antibodies that are receptor agonists. Combinatorial antibody libraries in lentiviruses are used to infect eukaryotic cells that contain a fluorescent reporter system coupled to the receptor for which receptor agonist antibodies are sought. In this embodiment of the method, very large numbers of candidate antibodies expressing lentivirus and eukaryotic reporter cells are packaged together in a format where each is capable of replication, thereby forging a direct link between genotype and phenotype. Following infection, cells that fluoresce are sorted and the integrated genes encoding the agonist antibodies recovered. We validated the system by illustrating its ability to generate rapidly potent antibody agonists that are complete thrombopoietin phenocopies. The system should be generalizable to any pathway where its activation can be linked to production of a selectable phenotype.

  14. Agonist Replacement for Stimulant Dependence: A Review of Clinical Research

    PubMed Central

    Stoops, William W.; Rush, Craig R.

    2013-01-01

    Stimulant use disorders are an unrelenting public health concern worldwide. Agonist replacement therapy is among the most effective strategies for managing substance use disorders including nicotine and opioid dependence. The present paper reviewed clinical data from human laboratory self-administration studies and clinical trials to determine whether agonist replacement therapy is a viable strategy for managing cocaine and/or amphetamine use disorders. The extant literature suggests that agonist replacement therapy may be effective for managing stimulant use disorders, however, the clinical selection of an agonist replacement medication likely needs to be based on the pharmacological mechanism of the medication and the stimulant abused by patients. Specifically, dopamine releasers appear most effective for reducing cocaine use whereas dopamine reuptake inhibitors appear most effective for reducing amphetamine use. PMID:23574440

  15. Agonist pharmacology of two Drosophila GABA receptor splice variants.

    PubMed Central

    Hosie, A. M.; Sattelle, D. B.

    1996-01-01

    1. The Drosophila melanogaster gamma-aminobutyric acid (GABA) receptor subunits, RDLac and DRC 17-1-2, form functional homo-oligomeric receptors when heterologously expressed in Xenopus laevis oocytes. The subunits differ in only 17 amino acids, principally in regions of the N-terminal domain which determine agonist pharmacology in vertebrate ionotropic neurotransmitter receptors. A range of conformationally restricted GABA analogues were tested on the two homo-oligomers and their agonists pharmacology compared with that of insect and vertebrate iontropic GABA receptors. 2. The actions of GABA, isoguvacine and isonipecotic acid on RDLac and DRC 17-1-2 homo-oligomers were compared, by use of two-electrode voltage-clamp. All three compounds were full agonists of both receptors, but were 4-6 fold less potent agonists of DRC 17-1-2 homo-oligomers than of RDLac. However, the relative potencies of these agonists on each receptor were very similar. 3. A more complete agonist profile was established for RDLac homo-oligomers. The most potent agonists of these receptors were GABA, muscimol and trans-aminocrotonic acid (TACA), which were approximately equipotent. RDLac homo-oligomers were fully activated by a range of GABA analogues, with the order of potency: GABA > ZAPA ((Z)-3-[(aminoiminomethyl)thio]prop-2-enoic acid) > isoguvacine > imidazole-4-acetic acid > or = isonipecotic acid > or = cis-aminocrotonic acid (CACA) > beta-alanine. 3-Aminopropane sulphonic acid (3-APS), a partial agonist of RDLac homo-oligomers, was the weakest agonist tested and 100 fold less potent than GABA. 4. SR95531, an antagonist of vertebrate GABAA receptors, competitively inhibited the GABA responses of RDLac homo-oligomers, which have previously been found to insensitive to bicuculline. However, its potency (IC50 500 microM) was much reduced when compared to GABAA receptors. 5. The agonist pharmacology of Drosophila RDLac homo-oligomers exhibits aspects of the characteristic pharmacology of

  16. Identification of M-CSF agonists and antagonists

    DOEpatents

    Pandit, Jayvardhan [Mystic, CT; Jancarik, Jarmila [Walnut Creek, CA; Kim, Sung-Hou [Moraga, CA; Koths, Kirston [El Cerrito, CA; Halenbeck, Robert [San Rafael, CA; Fear, Anna Lisa [Oakland, CA; Taylor, Eric [Oakland, CA; Yamamoto, Ralph [Martinez, CA; Bohm, Andrew [Armonk, NY

    2000-02-15

    The present invention is directed to methods for crystallizing macrophage colony stimulating factor. The present invention is also directed to methods for designing and producing M-CSF agonists and antagonists using information derived from the crystallographic structure of M-CSF. The invention is also directed to methods for screening M-CSF agonists and antagonists. In addition, the present invention is directed to an isolated, purified, soluble and functional M-CSF receptor.

  17. Beta2-agonists and exercise-induced asthma.

    PubMed

    Anderson, Sandra D; Caillaud, Corinne; Brannan, John D

    2006-01-01

    Beta2-agonists taken immediately before exercise provide significant protection against exercise- induced asthma (EIA) in most patients. However, when they are taken daily, there are some negative aspects regarding severity, control, and recovery from EIA. First, there is a significant minority (15-20%) of asthmatics whose EIA is not prevented by beta2-agonists, even when inhaled corticosteroids are used concomitantly. Second, with daily use, there is a decline in duration of the protective effect of long-acting beta2-agonists. Third, if breakthrough EIA occurs, recovery of lung function is slower in response to a beta2-agonist, and additional doses are often required to achieve pre-exercise values. If a person who takes a beta2-agonist daily experiences problems with exercise, then the physician should consider changing the treatment regimen to achieve better control of EIA. These problems likely result from desensitization of the beta2-receptor on the mast cell, which enhances mediator release, and on the bronchial smooth muscle, which enhances the bronchoconstrictor response and delays recovery from EIA. These effects are reversed within 72 h after cessation of a beta2-agonists. The important clinical question is: Are we actually compromising the beneficial effects of beta2-agonists on the prevention and recovery from EIA by prescribing them daily? Patients with EIA need to ensure that their doses of inhaled corticosteroid or other anti-inflammatory therapy are optimized so that, if necessary, a beta2-agonist can be used intermittently as prophylactic medication with greater confidence in the outcome.

  18. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-01-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs.

  19. Opioid receptor agonists reduce brain edema in stroke.

    PubMed

    Yang, Li; Wang, Hezhen; Shah, Kaushik; Karamyan, Vardan T; Abbruscato, Thomas J

    2011-04-06

    Cerebral edema is a leading cause of mortality in stroke patients. The purpose of this study was to assess a non-selective opioid receptor agonist, biphalin, in decreasing reducing brain edema formation using both in vitro and in vivo models of stroke. For the in situ model of ischemia, hippocampal slices were exposed to oxygen glucose deprivation (OGD) conditions and we observed that hippocampal water content was increased, compared to normoxia. Treatment with the mu agonist, Tyr-D-Ala', N-CH, -Phe4, Glyol-Enkephalin (DAMGO), delta opioid agonists, D-pen(2), D-phe(5) enkephalin (DPDPE), and kappa agonist, U50 488, all significantly decreased brain slice water gain. Interestingly, the non-selective agonist, biphalin, exhibited a statistically significant (P<0.01) greater effect in decreasing water content in OGD-exposed hippocampal slices, compared with mu, delta, and kappa selective opioid agonists. Moreover, biphalin exhibited anti-edematous effects in a dose responsive manner. The non-selective opioid antagonist, naloxone, returned the water content nearly back to original OGD values for all opioid agonist treatments, supporting that these effects were mediated by an opioid receptor pathway. Furthermore, biphalin significantly decreased edema (53%) and infarct (48%) ratios, and neuronal recovery from stroke, compared with the vehicle-treated groups in a 12h permanent middle cerebral artery occlusion (MCAO) model of focal ischemia. Biphalin also significantly decreased the cell volume increase in primary neuronal cells exposed to OGD condition. These data suggest that opioid receptor activation may provide neuroprotection during stroke and further investigations are needed in the development of novel opioid agonist as efficacious treatments for brain ischemia.

  20. Histamine H3-receptor inverse agonists as novel antipsychotics.

    PubMed

    Ito, Chihiro

    2009-06-01

    Schizophrenia (SZ) that is resistant to treatment with dopamine (DA) D2 antagonists may involve changes other than those in the dopaminergic system. Recently, histamine (HA), which regulates arousal and cognitive functions, has been suggested to act as a neurotransmitter in the central nervous system. Four HA receptors-H1, H2, H3, and H4-have been identified. Our recent basic and clinical studies revealed that brain HA improved the symptoms of SZ. The H3 receptor is primarily localized in the central nervous system, and it acts not only as a presynaptic autoreceptor that modulates the HA release but also as a presynaptic heteroreceptor that regulates the release of other neurotransmitters such as monoamines and amino acids. H3-receptor inverse agonists have been considered to improve cognitive functions. Many atypical antipsychotics are H3-receptor antagonists. Imidazole-containing H3-receptor inverse agonists inhibit not only cytochrome P450 but also hERG potassium channels (encoded by the human ether-a-go-go-related gene). Several imidazole H3-receptor inverse agonists also have high affinity for H4 receptors, which are expressed at high levels in mast cells and leukocytes. Clozapine is an H4-receptor agonist; this agonist activity may be related to the serious side effect of agranulocytosis caused by clozapine. Therefore, selective non-imidazole H3-receptor inverse agonists can be considered as novel antipsychotics that may improve refractory SZ.

  1. Behavioural effects of selective tachykinin agonists in midbrain dopamine regions.

    PubMed

    Stoessl, A J; Szczutkowski, E; Glenn, B; Watson, I

    1991-11-29

    The effects of selective NK-1, NK-2 and NK-3 tachykinin agonists in midbrain dopamine cell containing regions were investigated in the rat. The NK-3 agonist senktide induced locomotion, rearing and sniffing following infusion into the substantia nigra pars compacta, and to a lesser extent in the ventral tegmental area. These behavioural responses were not seen following infusion of the selective NK-1 agonist [Sar9,Met (O2)11]SP or the NK-2 agonist [N1e10]NKA4-10. In contrast, grooming was induced only by the NK-1 agonist administered into the substantia nigra. Yawning, chewing mouth movements and wet dog shakes were all seen following infusion of senktide into the ventral tegmental area. These findings suggest that (i) dopamine-mediated behavioural responses seen following tachykinin administration into the midbrain are dependent upon stimulation of NK-3 tachykinin receptors, (ii) tachykinin-induced grooming is mediated by stimulation of NK-1 receptors and (iii) some of the previously described 5-HT mediated behaviours seen following administration of NK-3 tachykinin agonists are probably generated by stimulation of 5-HT cell bodies in the ventral tegmental area.

  2. Pharmacogenetics of beta2 adrenergic receptor agonists in asthma management.

    PubMed

    Ortega, V E

    2014-07-01

    Beta2 (β2) adrenergic receptor agonists (beta agonists) are a commonly prescribed treatment for asthma despite the small increase in risk for life-threatening adverse responses associated with long-acting beta agonist (LABA). The concern for life-threatening adverse effects associated with LABA and the inter-individual variability of therapeutic responsiveness to LABA-containing combination therapies provide the rationale for pharmacogenetic studies of beta agonists. These studies primarily evaluated genes within the β2-adrenergic receptor and related pathways; however, recent genome-wide studies have identified novel loci for beta agonist response. Recent studies have identified a role for rare genetic variants in determining beta agonist response and, potentially, the risk for rare, adverse responses to LABA. Before genomics research can be applied to the development of genetic profiles for personalized medicine, it will be necessary to continue adapting to the analysis of an increasing volume of genetic data in larger cohorts with a combination of analytical methods and in vitro studies. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. A rationally designed agonist defines subfamily IIIA ABA receptors as critical targets for manipulating transpiration.

    PubMed

    Vaidya, Aditya S; Peterson, Francis C; Yarmolinsky, Dmitry; Merilo, Ebe; Verstraeten, Inge; Park, Sang-Youl; Elzinga, Dezi; Kaundal, Amita; Helander, Jonathan; Lozano-Juste, Jorge; Otani, Masato; Wu, Kevin; Jensen, Davin R; Kollist, Hannes; Volkman, Brian F; Cutler, Sean R

    2017-09-26

    Increasing drought and diminishing freshwater supplies have stimulated interest in developing chemicals that can be used to control transpiration. Receptors for the plant hormone abscisic acid (ABA) have emerged as key targets for this application, because ABA controls the apertures of stomata, which in turn regulate transpiration. Here we describe the rational design of cyanabactin, an ABA receptor agonist that preferentially activates Pyrabactin resistance 1 (PYR1) with low nM potency. A 1.63 Å X-ray crystallographic structure of cyanabactin in complex with PYR1 illustrates that cyanabactin's arylnitrile mimics ABA's cyclohexenone oxygen and engages the tryptophan lock, a key component required to stabilize activated receptors. Further, its sulfonamide and 4-methylbenzyl substructures mimic ABA's carboxylate and C-6 methyl groups respectively. Isothermal titration calorimetry measurements show that cyanabactin's compact structure provides ready access to high ligand efficiency on a relatively simple scaffold. Cyanabactin treatments reduce Arabidopsis whole-plant stomatal conductance and activate multiple ABA responses, demonstrating that its in vitro potency translates to ABA-like activity in vivo. Genetic analyses show that the effects of cyanabactin, and the previously identified agonist quinabactin, can be abolished by genetic removal of PYR1 and PYL1, which form subclade A within the dimeric subfamily III receptors. Thus, cyanabactin is a potent and selective agonist with wide-spectrum ABA-like activity that defines subfamily IIIA receptors as key target sites for manipulating transpiration.

  4. Autocrine selection of a GLP-1R G-protein biased agonist with potent antidiabetic effects

    PubMed Central

    Zhang, Hongkai; Sturchler, Emmanuel; Zhu, Jiang; Nieto, Ainhoa; Cistrone, Philip A.; Xie, Jia; He, LinLing; Yea, Kyungmoo; Jones, Teresa; Turn, Rachel; Di Stefano, Peter S.; Griffin, Patrick R.; Dawson, Philip E.; McDonald, Patricia H.; Lerner, Richard A.

    2015-01-01

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R) agonists have emerged as treatment options for type 2 diabetes mellitus (T2DM). GLP-1R signals through G-protein-dependent, and G-protein-independent pathways by engaging the scaffold protein β-arrestin; preferential signalling of ligands through one or the other of these branches is known as ‘ligand bias'. Here we report the discovery of the potent and selective GLP-1R G-protein-biased agonist, P5. We identified P5 in a high-throughput autocrine-based screening of large combinatorial peptide libraries, and show that P5 promotes G-protein signalling comparable to GLP-1 and Exendin-4, but exhibited a significantly reduced β-arrestin response. Preclinical studies using different mouse models of T2DM demonstrate that P5 is a weak insulin secretagogue. Nevertheless, chronic treatment of diabetic mice with P5 increased adipogenesis, reduced adipose tissue inflammation as well as hepatic steatosis and was more effective at correcting hyperglycaemia and lowering haemoglobin A1c levels than Exendin-4, suggesting that GLP-1R G-protein-biased agonists may provide a novel therapeutic approach to T2DM. PMID:26621478

  5. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis

    PubMed Central

    Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine

    2016-01-01

    Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate–binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. PMID:27702801

  6. LXR agonist treatment of blastic plasmacytoid dendritic cell neoplasm restores cholesterol efflux and triggers apoptosis.

    PubMed

    Ceroi, Adam; Masson, David; Roggy, Anne; Roumier, Christophe; Chagué, Cécile; Gauthier, Thierry; Philippe, Laure; Lamarthée, Baptiste; Angelot-Delettre, Fanny; Bonnefoy, Francis; Perruche, Sylvain; Biichle, Sabeha; Preudhomme, Claude; Macintyre, Elisabeth; Lagrost, Laurent; Garnache-Ottou, Francine; Saas, Philippe

    2016-12-08

    Blastic plasmacytoid dendritic cell (PDC) neoplasm (BPDCN) is an aggressive hematological malignancy with a poor prognosis that derives from PDCs. No consensus for optimal treatment modalities is available today and the full characterization of this leukemia is still emerging. We identified here a BPDCN-specific transcriptomic profile when compared with those of acute myeloid leukemia and T-acute lymphoblastic leukemia, as well as the transcriptomic signature of primary PDCs. This BPDCN gene signature identified a dysregulation of genes involved in cholesterol homeostasis, some of them being liver X receptor (LXR) target genes. LXR agonist treatment of primary BPDCN cells and BPDCN cell lines restored LXR target gene expression and increased cholesterol efflux via the upregulation of adenosine triphosphate-binding cassette (ABC) transporters, ABCA1 and ABCG1. LXR agonist treatment was responsible for limiting BPDCN cell proliferation and inducing intrinsic apoptotic cell death. LXR activation in BPDCN cells was shown to interfere with 3 signaling pathways associated with leukemic cell survival, namely: NF-κB activation, as well as Akt and STAT5 phosphorylation in response to the BPDCN growth/survival factor interleukin-3. These effects were increased by the stimulation of cholesterol efflux through a lipid acceptor, the apolipoprotein A1. In vivo experiments using a mouse model of BPDCN cell xenograft revealed a decrease of leukemic cell infiltration and BPDCN-induced cytopenia associated with increased survival after LXR agonist treatment. This demonstrates that cholesterol homeostasis is modified in BPDCN and can be normalized by treatment with LXR agonists which can be proposed as a new therapeutic approach. © 2016 by The American Society of Hematology.

  7. PPAR δ agonist GW0742 interacts weakly with multiple nuclear receptors including the vitamin D receptor

    PubMed Central

    Nandhikonda, Premchendar; Yasgar, Adam; Baranowski, Athena M.; Sidhu, Preetpal S.; McCallum, Megan M.; Pawlak, Alan J.; Teske, Kelly; Feleke, Belaynesh; Yuan, Nina Y.; Kevin, Chinedum; Bikle, Daniel D.; Ayers, Steven D.; Webb, Paul; Rai, Ganesha; Simeonov, Anton; Jadhav, Ajit; Maloney, David; Arnold, Leggy A.

    2013-01-01

    A high throughput screening campaign was conducted to identify small molecules with the ability to inhibit the interaction between the vitamin D receptor (VDR) and steroid receptor coactivator 2. These inhibitors represent novel molecular probes to modulate gene regulation mediated by VDR. The peroxisome proliferator-activated receptor δ (PPARδ) agonist GW0742 was among the identified VDR-coactivator inhibitors and has been characterized herein as a pan nuclear receptor antagonist at concentrations higher than 12.1 µM. The highest antagonist activity for GW0742 was found for VDR and the androgen receptor (AR). Surprisingly, GW0742 behaved as PPAR agonist/antagonist activating transcription at lower concentration and inhibiting this effect at higher concentrations. A unique spectroscopic property of GW0742 was identified as well. In the presence of rhodamine-derived molecules, GW0742+ increased fluorescence intensity and fluorescence polarization at an excitation wavelength of 595 nm and emission wavelength of 615 nm in a dose dependent manner. The GW0742-inhibited NR-coactivator binding resulted in a reduced expression of five different NR target genes in LNCaP cells in the presence of agonist. Especially VDR target genes CYP24A1, IGFBP-3 and TRPV6 were negatively regulated by GW0742. GW0742 is the first VDR ligand inhibitor lacking the secosteroid structure of VDR ligand antagonists. Nevertheless, the VDR-meditated downstream process of cell differentiation was antagonized by GW0742 in HL-60 cells that were pretreated with the endogenous VDR agonist 1,25-dihydroxyvitamin D3. PMID:23713684

  8. Reconstitution of high affinity. cap alpha. /sub 2/ adrenergic agonist binding by fusion with a pertussis toxin substrate

    SciTech Connect

    Kim, M.H.; Neubig, R.R.

    1986-03-05

    High affinity ..cap alpha../sub 2/ adrenergic agonist binding is thought to occur via a coupling of the ..cap alpha../sub 2/ receptor with N/sub i/, the inhibitory guanyl nucleotide binding protein. Human platelet membranes pretreated at pH 11.5 exhibit a selective inactivation of agonist binding and N/sub i/. To further study the mechanism of agonist binding, alkali treated membranes (ATM) were mixed with membranes pretreated with 10 ..mu..M phenoxybenzamine to block ..cap alpha../sub 2/ receptors (POB-M). The combined membrane pellet was incubated in 50% polyethylene glycol (PEG) to promote membrane-membrane fusion and assayed for binding to the ..cap alpha../sub 2/ agonist (/sup 3/H)UK 14,304 (UK) and the antagonist (/sup 3/H) yohimbine. PEG treatment resulted in a 2-4 fold enhancement of UK binding whereas yohimbine binding was unchanged. No enhancement of UK binding was observed in the absence of PEG treatment. The reconstitution was dependent on the addition of POB-M. They found that a 1:1 ratio of POB-M:ATM was optimal. Reconstituted binding was inhibited by GppNHp. Fusion of rat C6 glioma cell membranes, which do not contain ..cap alpha../sub 2/ receptors, also enhanced agonist binding to ATM. Fusion of C6 membranes from cells treated with pertussis toxin did not enhance (/sup 3/H) UK binding. These data show that a pertussis toxin sensitive membrane component, possibly N/sub i/, can reconstitute high affinity ..cap alpha../sub 2/ agonist binding.

  9. Identification of Determinants Required for Agonistic and Inverse Agonistic Ligand Properties at the ADP Receptor P2Y12

    PubMed Central

    Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens

    2013-01-01

    The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496

  10. Evaluation of AhR-agonists and AhR-agonist activity in sediments of Liaohe River protected areas, China.

    PubMed

    Zhang, Yun; Ke, Xin; Gui, Shaofeng; Wu, Xiaoqiong; Wang, Chunyong; Zhang, Haijun

    2017-02-15

    A total of 9 sediment samples of Liaohe River protected areas were collected to evaluate aryl hydrocarbon receptor agonists (AhR-agonists) and AhR-agonist activity via chemical analysis and in vitro H4IIE cell bioassay. Results indicated that bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents (Bio-TEQs) ranged from 89.1 to 251.1pg/g dry weight. Concentrations of 16 EPA polycyclic aromatic hydrocarbons (PAHs), 12 dioxin-like polychlorinated biphenyls (PCBs), and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) ranged from 256.8 to 560.1ng/g, 79.2 to 416.2pg/g, and 199.6 to 538.4pg/g, respectively. According to potency balance analysis, TEQchems based on PAHs, PCBs, and PCDD/Fs could contribute 16.56% to 26.11% of Bio-TEQs. This could be explained by the potential existence of unidentified AhR-agonists and the potential non-additive interactions among AhR-agonists in sediment extracts. Through the different contributions to Bio-TEQs, this study confirms that PCDD/Fs were the main pollutants that induced significantly AhR-agonist activity in sediments of Liaohe River protected areas. Copyright © 2016. Published by Elsevier Ltd.

  11. A step ahead of PPARγ full agonists to PPARγ partial agonists: therapeutic perspectives in the management of diabetic insulin resistance.

    PubMed

    Chigurupati, Sridevi; Dhanaraj, Sokkalingam A; Balakumar, Pitchai

    2015-05-15

    Described since long as a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptors (PPARs) regulate the gene expression of proteins involved in glucose and lipid metabolism. PPARs indeed regulate several physiologic processes, including lipid homeostasis, adipogenesis, inflammation, and wound healing. PPARs bind natural or synthetic PPAR ligands can function as cellular sensors to regulate the gene transcription. Dyslipidemia, and type 2 diabetes mellitus (T2DM) with insulin resistance are treated using agonists of PPARα and PPARγ, respectively. The PPARγ is a key regulator of insulin sensitization and glucose metabolism, and therefore is considered as an imperative pharmacological target to combat diabetic metabolic disease and insulin resistance. Of note, currently available PPARγ full agonists like rosiglitazone display serious adverse effects such as fluid retention/oedema, weight gain, and increased incidence of cardiovascular events. On the other hand, PPARγ partial agonists are being suggested to devoid or having less incidence of these undesirable events, and are under developmental stages. Current research is on the way for the development of novel PPARγ partial agonists with enhanced therapeutic efficacy and reduced adverse effects. This review sheds lights on the current status of development of PPARγ partial agonists, for the management of T2DM, having comparatively less or no adverse effects to that of PPARγ full agonists. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Agonists and antagonists for P2 receptors

    PubMed Central

    Jacobson, Kenneth A.; Costanzi, Stefano; Joshi, Bhalchandra V.; Besada, Pedro; Shin, Dae Hong; Ko, Hyojin; Ivanov, Andrei A.; Mamedova, Liaman

    2015-01-01

    Recent work has identified nucleotide agonists selective for P2Y1, P2Y2 and P2Y6 receptors and nucleotide antagonists selective for P2Y1, P2Y12 and P2X1 receptors. Selective non-nucleotide antagonists have been reported for P2Y1, P2Y2, P2Y6, P2Y12, P2Y13, P2X2/3/P2X3 and P2X7 receptors. For example, the dinucleotide INS 37217 (Up4dC) potently activates the P2Y2 receptor, and the non-nucleotide antagonist A-317491 is selective for P2X2/3/P2X3 receptors. Nucleotide analogues in which the ribose moiety is substituted by a variety of novel ring systems, including conformation-ally locked moieties, have been synthesized as ligands for P2Y receptors. The focus on conformational factors of the ribose-like moiety allows the inclusion of general modifications that lead to enhanced potency and selectivity. At P2Y1,2,4,11 receptors, there is a preference for the North conformation as indicated with (N)-methanocarba analogues. The P2Y1 antagonist MRS2500 inhibited ADP-induced human platelet aggregation with an IC50 of 0.95 nM. MRS2365, an (N)-methanocarba analogue of 2-MeSADP, displayed potency (EC50) of 0.4 nM at the P2Y1 receptor, with >10 000-fold selectivity in comparison to P2Y12 and P2Y13 receptors. At P2Y6 receptors there is a dramatic preference for the South conformation. Three-dimensional structures of P2Y receptors have been deduced from structure activity relationships (SAR), mutagenesis and modelling studies. Detailed three-dimensional structures of P2X receptors have not yet been proposed. PMID:16805423

  13. Dihydrocodeine/Agonists for Alcohol Dependents

    PubMed Central

    Ulmer, Albrecht; Müller, Markus; Frietsch, Bernhard

    2012-01-01

    Objective: Alcohol addiction too often remains insufficiently treated. It shows the same profile as severe chronic diseases, but no comparable, effective basic treatment has been established up to now. Especially patients with repeated relapses, despite all therapeutic approaches, and patients who are not able to attain an essential abstinence to alcohol, need a basic medication. It seems necessary to acknowledge that parts of them need any agonistic substance, for years, possibly lifelong. For >14 years, we have prescribed such substances with own addictive character for these patients. Methods: We present a documented best possible practice, no designed study. Since 1997, we prescribed Dihydrocodeine (DHC) to 102 heavily alcohol addicted patients, later, also Buprenorphine, Clomethiazole (>6 weeks), Baclofen, and in one case Amphetamine, each on individual indication. This paper focuses on the data with DHC, especially. The Clomethiazole-data has been submitted to a German journal. The number of treatments with the other substances is still low. Results: The 102 patients with the DHC treatment had 1367 medically assisted detoxifications and specialized therapies before! The 4 years-retention rate was 26.4%, including 2.8% successfully terminated treatments. In our 12-steps scale on clinical impression, we noticed a significant improvement from mean 3.7 to 8.4 after 2 years. The demand for medically assisted detoxifications in the 2 years remaining patients was reduced by 65.5%. Mean GGT improved from 206.6 U/l at baseline to 66.8 U/l after 2 years. Experiences with the other substances are similar but different in details. Conclusion: Similar to the Italian studies with GHB and Baclofen, we present a new approach, not only with new substances, but also with a new setting and much more trusting attitude. We observe a huge improvement, reaching an almost optimal, stable, long term status in around 1/4 of the patients already. Many further

  14. Reproductive pharmacology of LHRH and agonists in females and males.

    PubMed

    Corbin, A; Bex, F J

    1980-06-01

    This report reviews research supporting the anti-reproductive pharmacologic characteristics of LHRH (luteinizing hormone releasing hormone) and its agonist analogues, and their relevance to fertility regulation in the clinic. Approximately 1000 derivatives of LHRH have been synthesized since 1971. LHRH and agonistic derivatives have the ability to induce the release of pituitary LH and FSH (follicle stimulating hormone), and ovulation in a variety of animal models. These agents have been shown to produce predictable postcoital contraceptive effects, such activity and potency having been related to its basic agonist properties. This class of peptides also have the ability to 1) retard puberty; 2) disrupt the estrous cycle (delay onset of estrus and mating); 3) induce premature ovulation; 4) induce luteolysis; 5) cause ovarian and uterine regression; 6) reduce fecundity in inseminated animals; and 7) inhibit ovarian/uterine stimulation which occurs with human chorionic gonadotropin. These effects are reversible because once treatment is withdrawn, normal breeding processes resume quickly. Several LHRH agonists are also being tapped for use as a potential luteal phase-inhibiting/menses-inducing approach to contraception. In the male, however, the agonists cannot function as contraceptives due to the inappropriate dissociation between testosterone production and spermatogenesis. The antireproductive mechanisms of LHRH agonists can be traced to the 1) hypersecretion of LH; 2) dysphasic FSH and distorted prolactin secretion; 3) decrease in gonadal LH, FSH and prolactin receptors; and 4) inhibition of steroidogenesis and eventual disruption of the reproductive continuum. They may also be useful as anti-tumor agents in steroid-dependent mammary gland and prostatic neoplasms. Toxicologic, pathologic and ancillary pharmacologic studies involving varied dosing regimens show encouraging potential of selected agonists as contraceptive agents with no related side effects.

  15. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist.

    PubMed

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg(-1) ), unmasked etorphine (3 mg·kg(-1) ) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg(-1) ) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg(-1) ) and diazepam (1 mg·kg(-1) ). Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The

  16. Anti-nociception mediated by a κ opioid receptor agonist is blocked by a δ receptor agonist

    PubMed Central

    Taylor, A M W; Roberts, K W; Pradhan, A A; Akbari, H A; Walwyn, W; Lutfy, K; Carroll, F I; Cahill, C M; Evans, C J

    2015-01-01

    BACKGROUND AND PURPOSE The opioid receptor family comprises four structurally homologous but functionally distinct sub-groups, the μ (MOP), δ (DOP), κ (KOP) and nociceptin (NOP) receptors. As most opioid agonists are selective but not specific, a broad spectrum of behaviours due to activation of different opioid receptors is expected. In this study, we examine whether other opioid receptor systems influenced KOP-mediated antinociception. EXPERIMENTAL APPROACH We used a tail withdrawal assay in C57Bl/6 mice to assay the antinociceptive effect of systemically administered opioid agonists with varying selectivity at KOP receptors. Pharmacological and genetic approaches were used to analyse the interactions of the other opioid receptors in modulating KOP-mediated antinociception. KEY RESULTS Etorphine, a potent agonist at all four opioid receptors, was not anti-nociceptive in MOP knockout (KO) mice, although etorphine is an efficacious KOP receptor agonist and specific KOP receptor agonists remain analgesic in MOP KO mice. As KOP receptor agonists are aversive, we considered KOP-mediated antinociception might be a form of stress-induced analgesia that is blocked by the anxiolytic effects of DOP receptor agonists. In support of this hypothesis, pretreatment with the DOP antagonist, naltrindole (10 mg·kg−1), unmasked etorphine (3 mg·kg−1) antinociception in MOP KO mice. Further, in wild-type mice, KOP-mediated antinociception by systemic U50,488H (10 mg·kg−1) was blocked by pretreatment with the DOP agonist SNC80 (5 mg·kg−1) and diazepam (1 mg·kg−1). CONCLUSIONS AND IMPLICATIONS Systemic DOP receptor agonists blocked systemic KOP antinociception, and these results identify DOP receptor agonists as potential agents for reversing stress-driven addictive and depressive behaviours mediated through KOP receptor activation. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles

  17. A1C test

    MedlinePlus

    HbA1C test; Glycated hemoglobin test; Glycohemoglobin test; Hemoglobin A1C; Diabetes - A1C; Diabetic - A1C ... gov/pubmed/26696680 . Chernecky CC, Berger BJ. Glycosylated hemoglobin (GHb, glycohemoglobin, glycated hemoglobin, HbA1a, HbA1b, HbA1c - blood. ...

  18. GABA receptor agonists: pharmacological spectrum and therapeutic actions.

    PubMed

    Bartholini, G

    1985-01-01

    From the data discussed in this review it appears that GABA receptor agonists exhibit a variety of actions in the central nervous system, some of which are therapeutically useful (Table V). GABA receptor agonists, by changing the firing rate of the corresponding neurons accelerate noradrenaline turnover without changes in postsynaptic receptor density and diminish serotonin liberation with an up-regulation of 5HT2 receptors. These effects differ from those of tricyclic antidepressants which primarily block monoamine re-uptake and cause down-regulation of beta-adrenergic and 5HT2 receptors. The GABA receptor agonist progabide has been shown to exert an antidepressant action which is indistinguishable from that of imipramine in patients with major affective disorders. The fact that: (a) GABA receptor agonists and tricyclic antidepressants affect noradrenergic and serotonergic transmission differently; and (b) tricyclic antidepressants alter GABA-related parameters challenges the classical monoamine hypothesis of depression and suggests that GABA-mediated mechanisms play a role in mood disorders. Decreases in cellular excitability produced by GABAergic stimulation leads to control of seizures in practically all animal models of epilepsy. GABA receptor agonists have a wide spectrum as they antagonize not only seizures which are dependent on decreased GABA synaptic activity but also convulsant states which are apparently independent of alterations in GABA-mediated events. These results in animals are confirmed in a wide range of human epileptic syndromes. GABA receptor agonists decrease dopamine turnover in the basal ganglia and antagonize neuroleptic-induced increase in dopamine release. On repeated treatment, progabide prevents or reverses the neuroleptic-induced up-regulation of dopamine receptors in the rat striatum and antagonizes the concomitant supersensitivity to dopaminomimetics. Behaviorally, GABA receptor agonists diminish the stereotypies induced by

  19. Intrathecal injection of adenosine 2A receptor agonists reversed neuropathic allodynia through protein kinase (PK)A/PKC signaling.

    PubMed

    Loram, Lisa C; Taylor, Frederick R; Strand, Keith A; Harrison, Jacqueline A; Rzasalynn, Rachael; Sholar, Paige; Rieger, Jayson; Maier, Steven F; Watkins, Linda R

    2013-10-01

    A single intrathecal dose of adenosine 2A receptor (A2AR) agonist was previously reported to produce a multi-week reversal of allodynia in a chronic constriction injury (CCI) model of neuropathic pain. We aimed to determine if this long-term reversal was induced by A2AR agonism versus more generalized across adenosine receptor subtypes, and begin to explore the intracellular signaling cascades involved. In addition, we sought to identify whether the enduring effect could be extended to other models of neuropathic pain. We tested an A1R and A2BR agonist in CCI and found the same long duration effect with A2BR but not A1R agonism. An A2AR agonist (ATL313) produced a significant long-duration reversal of mechanical allodynia induced by long established CCI (administered 6 weeks after surgery), spinal nerve ligation and sciatic inflammatory neuropathy. To determine if ATL313 had a direct effect on glia, ATL313 was coadministered with lipopolysaccharide to neonatal microglia and astrocytes in vitro. ATL313 significantly attenuated TNFα production in both microglia and astrocytes but had no effect on LPS induced IL-10. Protein kinase C significantly reversed the ATL313 effects on TNFα in vitro in microglia and astrocytes, while a protein kinase A inhibitor only effected microglia. Both intrathecal PKA and PKC inhibitors significantly reversed the effect of the A2AR agonist on neuropathic allodynia. Therefore, A2AR agonists administered IT remain an exciting novel target for the treatment of neuropathic pain.

  20. Innovations in agonist maintenance treatment of opioid-dependent patients.

    PubMed

    Haasen, Christian; van den Brink, Wim

    2006-11-01

    To provide an overview of published studies on agonist maintenance treatment options for opioid-dependent patients. The recent publication of controlled trials confirms earlier clinical evidence of the efficacy of diamorphine (heroin) in the treatment of opioid dependence. Findings show not only efficacy with respect to improvement of health, reduction of illicit drug use, reduction of criminality and stabilization of social conditions, but also cost effectiveness in the treatment of chronic treatment-resistant heroin addicts. Agonist maintenance treatment has become the first-line treatment for chronic opioid dependence. High-quality studies demonstrate the effectiveness of a growing number of different agonist maintenance treatments for opioid dependence such as methadone and buprenorphine. In addition, there is new evidence for the effectiveness of other agonists, mainly slow-release morphine, intravenous and inhalable diamorphine and possibly oral diamorphine. Maintenance treatment with intravenous or inhalable diamorphine should be implemented into the healthcare system to treat a group of severely dependent treatment-resistant patients. Furthermore, the opioid-dependent patients not under treatment need to be engaged in maintenance treatments through other harm reduction measures. Agonist maintenance treatment is very effective in stabilizing the health condition and social situation, while also reducing harm, thereby increasing life expectancy and quality of life.

  1. Sound production during agonistic behavior of male Drosophila melanogaster.

    PubMed

    Jonsson, Thorin; Kravitz, Edward A; Heinrich, Ralf

    2011-01-01

    Male Drosophila fruit flies acquire and defend territories in order to attract females for reproduction. Both, male-directed agonistic behavior and female-directed courtship consist of series of recurrent stereotypical components. Various studies demonstrated the importance of species-specific sound patterns generated by wing vibration as being critical for male courtship success. In this study we analyzed the patterns and importance of sound signals generated during agonistic interactions of male Drosophila melanogaster. In contrast to acoustic courtship signals that consist of sine and pulse patterns and are generated by one extended wing, agonistic signals lack sine-like components and are generally produced by simultaneous movements of both wings. Though intra-pulse oscillation frequencies (carrier frequency) are identical, inter-pulse intervals are twice as long and more variable in aggression signals than in courtship songs, where their precise temporal pattern serves species recognition. Acoustic signals accompany male agonistic interactions over their entire course but occur particularly often after tapping behavior which is a major way to identify the gender of the interaction partner. Since similar wing movements may either be silent or generate sound and wing movements with sound have a greater impact on the subsequent behavior of a receiver, sound producing wing movements seem to be generated intentionally to serve as a specific signal during fruit fly agonistic encounters.

  2. Honokiol: a non-adipogenic PPARγ agonist from nature.

    PubMed

    Atanasov, Atanas G; Wang, Jian N; Gu, Shi P; Bu, Jing; Kramer, Matthias P; Baumgartner, Lisa; Fakhrudin, Nanang; Ladurner, Angela; Malainer, Clemens; Vuorinen, Anna; Noha, Stefan M; Schwaiger, Stefan; Rollinger, Judith M; Schuster, Daniela; Stuppner, Hermann; Dirsch, Verena M; Heiss, Elke H

    2013-10-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators. We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists. The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain. We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo. This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine. © 2013 Elsevier B.V. All rights reserved.

  3. Honokiol: A non-adipogenic PPARγ agonist from nature☆

    PubMed Central

    Atanasov, Atanas G.; Wang, Jian N.; Gu, Shi P.; Bu, Jing; Kramer, Matthias P.; Baumgartner, Lisa; Fakhrudin, Nanang; Ladurner, Angela; Malainer, Clemens; Vuorinen, Anna; Noha, Stefan M.; Schwaiger, Stefan; Rollinger, Judith M.; Schuster, Daniela; Stuppner, Hermann; Dirsch, Verena M.; Heiss, Elke H.

    2013-01-01

    Background Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators. Methods We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists. Results The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain. Conclusion We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo. General significance This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine. PMID:23811337

  4. Modification of opiate agonist binding by pertussis toxin

    SciTech Connect

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  5. Intracerebroventricular administration of kappa-agonists induces convulsions in mice.

    PubMed

    Bansinath, M; Ramabadran, K; Turndorf, H; Shukla, V K

    1991-07-01

    Intracerebroventricular (ICV) administration of kappa-agonists (PD 117302, U-50488H and U-69593) induced convulsions in a dose-related manner in mice. The dose at which 50% of animals convulsed (CD50) was in nmol ranges for all opioids. Among the opioids used, PD 117302 was the most potent convulsant. ICV administration of either vehicle alone or U-53445E, a non-kappa-opioid (+) enantiomer of U-50488H did not induce convulsions. The convulsive response of kappa-agonists was differentially susceptible for antagonism by naloxone and/or MR 2266. Collectively, these findings support the view that convulsions induced by kappa-agonists in mice involve stereospecific opioid receptor mechanisms. Furthermore, the convulsant effect of kappa-agonists could not be modified by pretreatment with MK-801, ketamine, muscimol or baclofen. It is concluded that kappa-opioid but not NMDA or GABA receptor mechanisms are involved in convulsions induced by kappa-agonists. These results are the first experimental evidence implicating stereospecific kappa-receptor mechanisms in opioid-induced convulsions in mice.

  6. Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol

    SciTech Connect

    Buck, K.J.; Harris, R.A. )

    1990-05-01

    Mice were made tolerant to and dependent on ethanol by administration of a liquid diet. Gamma-aminobutyric acid (GABA) receptor-dependent uptake of 36Cl- by mouse cortical microsacs was used to study the actions of benzodiazepine (BZ) agonists and inverse agonists. Chronic exposure to ethanol attenuated the ability of a BZ agonist, flunitrazepam, to augment muscimol-stimulated uptake of 36Cl- and enhanced the actions of BZ inverse agonists, Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,4)-benzodiazepine - 3-carboxylate) and DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate), to inhibit GABAA receptor-operated chloride channels. Augmentation of chloride flux by pentobarbital was not reduced by chronic ethanol exposure. Attenuation of flunitrazepam efficacy was transient and returned to control levels within 6 to 24 hr after withdrawal from ethanol, but increased sensitivity to Ro15-4513 was observed as long as 8 days after withdrawal. Chronic exposure to ethanol did not alter (3H)SR 95531 (2-(3'-carbethoxy-2'propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide) binding to low-affinity GABAA receptors or muscimol stimulation of chloride flux; and did not alter (3H)Ro15-4513 or (3H)flunitrazepam binding to central BZ receptors or allosteric modulation of this binding by muscimol (i.e., muscimol-shift). These results suggest that chronic exposure to ethanol reduces coupling between BZ agonist sites and the chloride channel, and may be responsible for the development of cross-tolerance between ethanol and BZ agonists. In contrast, coupling between BZ inverse agonist sites and the chloride channel is increased.

  7. Identification of Benzothiazole Derivatives and Polycyclic Aromatic Hydrocarbons as Aryl Hydrocarbon Receptor Agonists Present in Tire Extracts

    PubMed Central

    He, Guochun; Zhao, Bin; Denison, Michael S.

    2012-01-01

    Leachate from rubber tire material contains a complex mixture of chemicals previously shown to produce toxic and biological effects in aquatic organisms. While the ability of these leachates to induce Ah receptor (AhR)-dependent cytochrome P4501A1 expression in fish indicated the presence of AhR active chemicals, the responsible chemical(s) and their direct interaction with the AhR signaling pathway were not examined. Using a combination of AhR-based bioassays, we have demonstrated the ability of tire extract to stimulate both AhR DNA binding and AhR-dependent gene expression and confirmed that the responsible chemical(s) was metabolically labile. The application of CALUX (Chemical-Activated LUciferase gene eXpression) cell bioassay-driven toxicant identification evaluation not only revealed that tire extract contained a variety of known AhR-active polycyclic aromatic hydrocarbons, but also identified 2-methylthiobenzothiazole and 2-mercaptobenzothiazole as AhR agonists. Analysis of a structurally diverse series of benzothiazoles identified many that could directly stimulate AhR DNA binding and transiently activate the AhR signaling pathway and identified benzothiazoles as a new class of AhR agonists. In addition to these compounds, the relatively high AhR agonist activity of a large number of fractions strongly suggests that tire extract contains a large number of physiochemically diverse AhR agonists whose identities and toxicological/biological significances are unknown. PMID:21590714

  8. Identification of benzothiazole derivatives and polycyclic aromatic hydrocarbons as aryl hydrocarbon receptor agonists present in tire extracts.

    PubMed

    He, Guochun; Zhao, Bin; Denison, Michael S

    2011-08-01

    Leachate from rubber tire material contains a complex mixture of chemicals previously shown to produce toxic and biological effects in aquatic organisms. The ability of these leachates to induce Ah receptor (AhR)-dependent cytochrome P4501A1 expression in fish indicated the presence of AhR active chemicals, but the responsible chemicals and their direct interaction with the AhR signaling pathway were not examined. Using a combination of AhR-based bioassays, we have demonstrated the ability of tire extract to stimulate both AhR DNA binding and AhR-dependent gene expression and confirmed that the responsible chemicals were metabolically labile. The application of CALUX (chemical-activated luciferase gene expression) cell bioassay-driven toxicant identification evaluation not only revealed that tire extract contained a variety of known AhR-active polycyclic aromatic hydrocarbons but also identified 2-methylthiobenzothiazole and 2-mercaptobenzothiazole as AhR agonists. Analysis of a structurally diverse series of benzothiazoles identified many that could directly stimulate AhR DNA binding and transiently activate the AhR signaling pathway and identified benzothiazoles as a new class of AhR agonists. In addition to these compounds, the relatively high AhR agonist activity of a large number of fractions strongly suggests that tire extract contains a large number of physiochemically diverse AhR agonists whose identities and toxicological/biological significances are unknown.

  9. Regulation of Retinoid-Mediated Signaling Involved in Skin Homeostasis by RAR and RXR Agonists/Antagonists in Mouse Skin

    PubMed Central

    Gericke, Janine; Ittensohn, Jan; Mihály, Johanna; Álvarez, Susana; Álvarez, Rosana; Töröcsik, Dániel; de Lera, Ángel R.; Rühl, Ralph

    2013-01-01

    Endogenous retinoids like all-trans retinoic acid (ATRA) play important roles in skin homeostasis and skin-based immune responses. Moreover, retinoid signaling was found to be dysregulated in various skin diseases. The present study used topical application of selective agonists and antagonists for retinoic acid receptors (RARs) α and γ and retinoid-X receptors (RXRs) for two weeks on mouse skin in order to determine the role of retinoid receptor subtypes in the gene regulation in skin. We observed pronounced epidermal hyperproliferation upon application of ATRA and synthetic agonists for RARγ and RXR. ATRA and the RARγ agonist further increased retinoid target gene expression (Rbp1, Crabp2, Krt4, Cyp26a1, Cyp26b1) and the chemokines Ccl17 and Ccl22. In contrast, a RARα agonist strongly decreased the expression of ATRA-synthesis enzymes, of retinoid target genes, markers of skin homeostasis, and various cytokines in the skin, thereby markedly resembling the expression profile induced by RXR and RAR antagonists. Our results indicate that RARα and RARγ subtypes possess different roles in the skin and may be of relevance for the auto-regulation of endogenous retinoid signaling in skin. We suggest that dysregulated retinoid signaling in the skin mediated by RXR, RARα and/or RARγ may promote skin-based inflammation and dysregulation of skin barrier properties. PMID:23638129

  10. Compulsive eating and weight gain related to dopamine agonist use.

    PubMed

    Nirenberg, Melissa J; Waters, Cheryl

    2006-04-01

    Dopamine agonists have been implicated in causing compulsive behaviors in patients with Parkinson's disease (PD). These have included gambling, hypersexuality, hobbyism, and other repetitive, purposeless behaviors ("punding"). In this report, we describe 7 patients in whom compulsive eating developed in the context of pramipexole use. All of the affected patients had significant, undesired weight gain; 4 had other comorbid compulsive behaviors. In the 5 patients who lowered the dose of pramipexole or discontinued dopamine agonist treatment, the behavior remitted and no further weight gain occurred. Physicians should be aware that compulsive eating resulting in significant weight gain may occur in PD as a side-effect of dopamine agonist medications such as pramipexole. Given the known risks of the associated weight gain and obesity, further investigation is warranted.

  11. Lorazepam discontinuation promotes 'inverse agonist' effects of benzodiazepines.

    PubMed Central

    Schatzki, A.; Lopez, F.; Greenblatt, D. J.; Shader, R. I.; Miller, L. G.

    1989-01-01

    1. The effects of lorazepam discontinuation on responses to benzodiazepine agonists and antagonists were studied in mice. 2. The convulsant dose of pentylenetetrazol was decreased after an acute dose of lorazepam (0.5 mg kg-1) at 4 days after drug discontinuation, compared to 1 or 7 days after discontinuation or to vehicle treatment. 3. The percentage of mice undergoing convulsions after an acute dose of FG 7142 (40 mg kg-1) was increased at 4 days after lorazepam discontinuation, compared to 1 or 7 days after discontinuation or to vehicle treatment. 4. After an acute dose (0.5 mg kg-1), lorazepam concentrations in cortex tended to be greater in lorazepam-treated compared to vehicle-treated mice at 4 days after discontinuation compared to 1 and 7 days. 5. These data indicate a shift toward reduced agonist sensitivity and increased inverse agonist sensitivity in mice 4 days after lorazepam discontinuation. PMID:2573401

  12. Captive female gorilla agonistic relationships with clumped defendable food resources.

    PubMed

    Scott, Jennifer; Lockard, Joan S

    2006-07-01

    Minimal feeding competition among female mountain gorillas (Gorilla gorilla beringei) has resulted in egalitarian social relationships with poorly defined agonistic dominance hierarchies. Thus, gorillas are generally viewed as non-competitive egalitarian folivores that have had little need to develop effective competitive strategies to access food resources. However, this generalization is inconsistent with more recent research indicating that most gorillas are frugivorous, feeding on patchily distributed food resources. The current study at Howletts Wild Animal Park, Kent, England, explores the effects of clumped and defendable foods on female gorilla agonistic relationships among three groups of western lowland gorillas (G. g. gorilla), conditions that are predicted to lead to well-differentiated agonistic dominance hierarchies among female primates. The Howletts gorillas foraged all day on low-energy/-nutrient, high-fiber foods widely distributed around their enclosure by the keepers. However, they also had periodic access to high-energy foods (e.g., nuts, raisins, strawberries, etc.) that the keepers would spread in a clumped and defendable patch. Frequencies of agonistic and submissive behaviors between females and proximity data were gathered. High-status females were found to monopolize the food patch and kept the low-status females at bay with cough-grunt threat vocalizations or by chasing them away. Agonistic interactions were initiated mostly by females of high status; these were directed towards females of low status and were generally not reciprocal. In addition, females of low status engaged in submissive behaviors the most often, which they directed primarily at females of high status, especially in response to aggression by the latter. Agonistic interactions between high- and low-status females had decided outcomes more often than not, with low-status females the losers. Competition over highly desirable foods distributed in defendable clumps at

  13. Insect Nicotinic Receptor Agonists as Flea Adulticides in Small Animals

    PubMed Central

    Vo, Dai Tan; Hsu, Walter H.; Martin, Richard J.

    2013-01-01

    Fleas are significant ectoparasites of small animals. They can be a severe irritant to animals and serve as a vector for a number of infectious diseases. In this article, we discuss the pharmacological characteristics of four insect nicotinic acetylcholine receptor (nAChR) agonists used as fleacides in dogs and cats, which include three neonicotinoids (imidacloprid, nitenpyram, and dinotefuran) and spinosad. Insect nAChR agonists are one of the most important new classes of insecticides, which are used to control sucking insects both on plants and on companion animals. These new compounds provide a new approach for practitioners to safely and effectively eliminate fleas. PMID:20646191

  14. Switching cannabinoid response from CB(2) agonists to FAAH inhibitors.

    PubMed

    Tourteau, Aurélien; Leleu-Chavain, Natascha; Body-Malapel, Mathilde; Andrzejak, Virginie; Barczyk, Amélie; Djouina, Madjid; Rigo, Benoit; Desreumaux, Pierre; Chavatte, Philippe; Millet, Régis

    2014-03-01

    A series of 3-carboxamido-5-aryl-isoxazoles designed as CB2 agonists were evaluated as FAAH inhibitors. The pharmacological results led to identify structure-activity relationships enabling to switch cannabinoid response from CB2 agonists to FAAH inhibitors. Two compounds were selected for their FAAH and/or CB2 activity, and evaluated in a colitis model for their anti-inflammatory activity. Results showed that compounds 10 and 11 inhibit the development of DSS-induced acute colitis in mice and then, are interesting leads to explore new drug candidates for IBD.

  15. [Effects of GLP-1 receptor agonists on carbohydrate metabolism control].

    PubMed

    Fernández-García, José Carlos; Colomo, Natalia; Tinahones, Francisco José

    2014-09-01

    Glucagon-like peptide-1 (GLP-1) receptor agonists are a new group of drugs for the treatment of type 2 diabetes mellitus (DM2). In the present article, we review the available evidence on the efficacy of GLP-1 receptor agonists as glucose-lowering agents, their place in therapeutic algorithms, and the clinical factors associated with a favorable treatment response. Finally, we describe the clinical characteristics of patients who may benefit from these drugs. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  16. Partial agonistic action of endomorphins in the mouse spinal cord.

    PubMed

    Mizoguchi, H; Wu, H E; Narita, M

    2001-09-07

    The partial agonistic properties of endogenous mu-opioid peptides endomorphin-1 and endomorphin-2 for G-protein activation were determined in the mouse spinal cord, monitoring the increases in guanosine-5'-o-(3-[35S]thio)triphosphate binding. The G-protein activation induced by endogenous opioid peptide beta-endorphin in the spinal cord was significantly, but partially, attenuated by co-incubation with endomorphin-1 or endomorphin-2. The data indicates that endomorphin-1 and endomorphin-2 are endogenous partial agonists for mu-opioid receptor in the mouse spinal cord.

  17. Synthesis and activity of small molecule GPR40 agonists.

    PubMed

    Garrido, Dulce M; Corbett, David F; Dwornik, Kate A; Goetz, Aaron S; Littleton, Thomas R; McKeown, Steve C; Mills, Wendy Y; Smalley, Terrence L; Briscoe, Celia P; Peat, Andrew J

    2006-04-01

    The first report on the identification and structure-activity relationships of a novel series of GPR40 agonists based on a 3-(4-{[N-alkyl]amino}phenyl)propanoic acid template is described. Structural modifications to the original screening hit yielded compounds with a 100-fold increase in potency at the human GPR40 receptor and pEC(50)s in the low nanomolar range. The carboxylic acid moiety is not critical for activity but typically elicits an agonistic response higher than those observed with carboxamide replacements. These compounds may prove useful in unraveling the therapeutic potential of this receptor for the treatment of Type 2 diabetes.

  18. Pyrrolo- and pyridomorphinans: non-selective opioid antagonists and delta opioid agonists/mu opioid partial agonists.

    PubMed

    Kumar, V; Clark, M J; Traynor, J R; Lewis, J W; Husbands, S M

    2014-08-01

    Opioid ligands have found use in a number of therapeutic areas, including for the treatment of pain and opiate addiction (using agonists) and alcohol addiction (using antagonists such as naltrexone and nalmefene). The reaction of imines, derived from the opioid ligands oxymorphone and naltrexone, with Michael acceptors leads to pyridomorphinans with structures similar to known pyrrolo- and indolomorphinans. One of the synthesized compounds, 5e, derived from oxymorphone had substantial agonist activity at delta opioid receptors but not at mu and/or kappa opioid receptors and in that sense profiled as a selective delta opioid receptor agonist. The pyridomorphinans derived from naltrexone and naloxone were all found to be non-selective potent antagonists and as such could have utility as treatments for alcohol abuse.

  19. [Albiglutide (Eperzan): a new once-weekly agonist of glucagon-like peptide-1 receptors].

    PubMed

    Scheen, A J

    2015-04-01

    Albiglutide (Eperzan) is a new once-weekly agonist of Glucagon-Like Peptide-1 (GLP-1) receptors that is indicated in the treatment of type 2 diabetes. Two doses are available, 30 mg and 50 mg, to be injected subcutaneously once a week. It has been extensively evaluated in the HARMONY programme of eight large randomised controlled trials that were performed at different stages of type 2 diabetes, in comparison with placebo or an active comparator. The endocrine and metabolic effects of albiglutide are similar to those of other GLP-1 receptor agonists: stimulation of insulin secretion (incretin effect) and inhibition of glucagon secretion, both in a glucose-dependent manner, retardation of gastric emptying and increase of satiety. These effects lead to a reduction in glycated haemoglobin (HbA(1c)) levels, combined with a weight reduction. The overall tolerance profile is good. Albiglutide is currently reimbursed in Belgium after failure (HbA(1c) > 7.5%) of and in combination with a dual therapy with metformin and a sulfonylurea as well as in combination with a basal insulin (with or without oral antidiabetic drugs). To avoid hypoglycaemia, a reduction in the dose of sulfonylurea or insulin may be recommended. A once-weekly administration should increase patient's acceptance of injectable therapy and improve compliance.

  20. Gi-protein-coupled 5-HT1B/D receptor agonist sumatriptan induces type I hyperalgesic priming.

    PubMed

    Araldi, Dioneia; Ferrari, Luiz F; Levine, Jon D

    2016-08-01

    We have recently described a novel form of hyperalgesic priming (type II) induced by agonists at two clinically important Gi-protein-coupled receptors (Gi-GPCRs), mu-opioid and A1-adenosine. Like mu-opioids, the antimigraine triptans, which act at 5-HT1B/D Gi-GPCRs, have been implicated in pain chronification. We determined whether sumatriptan, a prototypical 5-HT1B/D agonist, produces type II priming. Characteristic of hyperalgesic priming, intradermal injection of sumatriptan (10 ng) induced a change in nociceptor function such that a subsequent injection of prostaglandin-E2 (PGE2) induces prolonged mechanical hyperalgesia. However, onset to priming was delayed 3 days, characteristic of type I priming. Also characteristic of type I priming, a protein kinase Cε, but not a protein kinase A inhibitor attenuated the prolongation phase of PGE2 hyperalgesia. The prolongation of PGE2 hyperalgesia was also permanently reversed by intradermal injection of cordycepin, a protein translation inhibitor. Also, hyperalgesic priming did not occur in animals pretreated with pertussis toxin or isolectin B4-positive nociceptor toxin, IB4-saporin. Finally, as observed for other agonists that induce type I priming, sumatriptan did not induce priming in female rats. The prolongation of PGE2 hyperalgesia induced by sumatriptan was partially prevented by coinjection of antagonists for the 5-HT1B and 5-HT1D, but not 5-HT7, serotonin receptors and completely prevented by coadministration of a combination of the 5-HT1B and 5-HT1D antagonists. Moreover, the injection of selective agonists, for 5-HT1B and 5-HT1D receptors, also induced hyperalgesic priming. Our results suggest that sumatriptan, which signals through Gi-GPCRs, induces type I hyperalgesic priming, unlike agonists at other Gi-GPCRs, which induce type II priming.

  1. Intrinsic Relative Activities of Opioid Agonists in Activating Gα proteins and Internalizing Receptor: Differences between Human and Mouse Receptors

    PubMed Central

    DiMattio, Kelly M.; Ehlert, Frederick J.; Liu-Chen, Lee-Yuan

    2015-01-01

    Several investigators recently identified biased opioid receptor (KOP receptor) agonists. However, no comprehensive study of the functional selectivity of available KOP receptor agonists at the human and mouse KOP receptors (hKOP receptor and mKOP receptor, respectively) has been published. Here we examined the ability of over 20 KOP receptor agonists to activate G proteins and to internalize the receptor. Clonal neuro-2a mouse neuroblastoma (N2a) cells stably transfected with the hKOP receptor or mKOP receptor were used. We employed agonist-induced [35S]GTPγS binding and KOP receptor internalization as measures of activation of G protein and β-arrestin pathways, respectively. The method of Ehlert and colleagues was used to quantify intrinsic relative activities at G protein activation (RAi−G) and receptor internalization (RAi−I) and the degree of functional selectivity between the two [Log RAi−G − Log RAi−I, RAi−G/RAi−I and bias factor]. The parameter, RAi, represents a relative estimate of agonist affinity for the active receptor state that elicits a given response. The endogenous ligand dynorphin A (1–17) was designated as the balanced ligand with a bias factor of 1. Interestingly, we found that there were species differences in functional selectivity. The most striking differences were for 12-epi-salvinorin A, U69,593, and ICI-199,441. 12-Epi-salvinorin A was highly internalization-biased at the mKOP receptor, but apparently G protein-biased at hKOP receptor. U69,593 was much more internalization-biased at mKOP receptor than hKOP receptor. ICI199,441 showed internalization-biased at the mKOP receptor and G protein-biased at the hKOP receptor. Possible mechanisms for the observed species differences are discussed. PMID:26057692

  2. A nonpeptidic agonist of glucagon-like peptide 1 receptors with efficacy in diabetic db/db mice

    PubMed Central

    Chen, Desu; Liao, Jiayu; Li, Na; Zhou, Caihong; Liu, Qing; Wang, Guangxing; Zhang, Rui; Zhang, Song; Lin, Lilin; Chen, Kaixian; Xie, Xin; Nan, Fajun; Young, Andrew A.; Wang, Ming-Wei

    2007-01-01

    Peptidic mimics of the gut hormone glucagon-like peptide (GLP) 1, exemplified by the recently approved drug exenatide, show promise as therapies for type 2 diabetes. Such “incretin mimetics” regulate glucose appearance in the plasma and can restore glucose-stimulated insulin secretion without excess risk of hypoglycemia. The need for injection, which may limit the use of peptidic GLP-1 receptor (GLP-1R) agonists, has driven largely unsuccessful efforts to find smaller molecules. The failure to identify orally effective agonists has instead promoted the indirect approach of inhibiting the GLP-1-degrading enzyme dipeptidyl peptidase IV. Here we report a nonpeptidic GLP-1R agonist with sufficient activity to evoke effects in whole animals, including antidiabetic efficacy in db/db mice. Two substituted cyclobutanes (S4P and Boc5) were developed after screening a compound library against a cell line stably cotransfected with GLP-1R and a cAMP-responsive reporter. Each bound to GLP-1R and increased intracellular cAMP. Agonist effects were blocked by the GLP-1R antagonist exendin(9–39). Boc5 amplified glucose-stimulated insulin secretion in isolated rat islets. Both i.p. and oral administration of Boc5 dose-dependently inhibited food intake in mice, an effect that could be blocked by pretreatment with exendin(9–39). Daily injections of Boc5 into db/db mice reduced HbA1c to nondiabetic values, an effect not observed in ad libitum-fed or pair-fed diabetic controls. Thus, Boc5 behaved as a full GLP-1 mimetic in vitro and in vivo. The chemical genus represented by Boc5 may prompt the exploration of orally available GLP-1R agonists with potential utility in diabetes and obesity. PMID:17213311

  3. The value of short- and long-acting glucagon-like peptide-1 agonists in the management of type 2 diabetes mellitus: experience with exenatide.

    PubMed

    Guo, Xiao-Hui

    2016-01-01

    Only about half of patients with type 2 diabetes treated with antihyperglycemic drugs achieve glycemic control (HbA1c <7%), most commonly due to poor treatment adherence. Glucagon-like peptide-1 (GLP-1) receptor agonists act on multiple targets involved in glucose homeostasis and have a low risk of causing hypoglycemia. While GLP-1 receptor (GLP-1R) agonists share the same mechanism of action, clinical profiles of individual agents differ, particularly between short- and long-acting agents. In this article, recent findings regarding the pharmacology of GLP-1 agonists are reviewed, and the clinical effects of short- versus long-acting agents are compared. Relevant articles were identified through a search of PubMed using the keywords glucagon-like peptide-1, GLP-1, glucagon-like peptide-1 receptor agonist, GLP-1R agonist, and exenatide for publications up to 22 May 2015. Supporting data were obtained from additional searches for albiglutide, dulaglutide, liraglutide and lixisenatide as well as from the bibliographies of key articles. Short-acting GLP-1R agonists produce greater reductions in postprandial glucose levels by slowing gastric emptying, whereas long-acting GLP-1R agonists produce greater reductions in fasting blood glucose by stimulating insulin secretion from the pancreas. These characteristics can be exploited to provide individualized treatment to patients. A large body of evidence supports the benefits of short- and long-acting exenatide as add-on therapy in patients with inadequate glycemic control despite maximum tolerated doses of metformin and/or sulfonylurea. Exenatide is generally well tolerated and no new safety concerns were identified during long-term follow-up of up to 5 years. A limitation of this review of short-and long-acting GLP-1 receptor agonists is that it focuses on exenatide rather than all the drugs in this class. However, the focus on a single molecule helps to avoid any confusion that may be introduced as a result of differences

  4. Use of ß-adrenergic agonists in hybrid catfish

    USDA-ARS?s Scientific Manuscript database

    Ractopamine hydrochloride (RH) is a potent ß-adrenergic agonist that has been used in some species of fish to improve growth performance and dress out characteristics. While this metabolic modifier has been shown to have positive effects on growth of fish, little research has focused on the mechani...

  5. Partial Agonists Activate PPARgamma Using a Helix 12 Independent Mechanism

    SciTech Connect

    Bruning, J.B.; Chalmers, M.J.; Prasad, S.; Bushby, S.A.; Kamenecka, T.A.; He, Y.; Nettles, K.W.; Griffin, P.R.

    2009-05-28

    Binding to helix 12 of the ligand-binding domain of PPAR{gamma} is required for full agonist activity. Previously, the degree of stabilization of the activation function 2 (AF-2) surface was thought to correlate with the degree of agonism and transactivation. To examine this mechanism, we probed structural dynamics of PPAR{gamma} with agonists that induced graded transcriptional responses. Here we present crystal structures and amide H/D exchange (HDX) kinetics for six of these complexes. Amide HDX revealed each ligand induced unique changes to the dynamics of the ligand-binding domain (LBD). Full agonists stabilized helix 12, whereas intermediate and partial agonists did not at all, and rather differentially stabilized other regions of the binding pocket. The gradient of PPAR{gamma} transactivation cannot be accounted for solely through changes to the dynamics of AF-2. Thus, our understanding of allosteric signaling must be extended beyond the idea of a dynamic helix 12 acting as a molecular switch.

  6. The Agonistic Approach: Reframing Resistance in Qualitative Research

    ERIC Educational Resources Information Center

    Vitus, Kathrine

    2008-01-01

    The agonistic approach--aimed at embracing opposing perspectives as part of a qualitative research process and acknowledging that process as fundamentally political--sheds light on both the construction of and the resistance to research identities. This approach involves reflexively embedding interview situations into the ethnographic context as a…

  7. Discovery of orally available tetrahydroquinoline-based glucocorticoid receptor agonists.

    PubMed

    Hudson, Andrew R; Higuchi, Robert I; Roach, Steven L; Adams, Mark E; Vassar, Angela; Syka, Peter M; Mais, Dale E; Miner, Jeffrey N; Marschke, Keith B; Zhi, Lin

    2011-03-15

    A series of tetrahydroquinoline derivatives were synthesized and profiled for their ability to act as glucocorticoid receptor selective modulators. Structure-activity relationships of the tetrahydroquinoline B-ring lead to the discovery of orally available GR-selective agonists with high in vivo activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Role of nicotine receptor partial agonists in tobacco cessation

    PubMed Central

    Maity, Nivedita; Chand, Prabhat; Murthy, Pratima

    2014-01-01

    One in three adults in India uses tobacco, a highly addictive substance in one or other form. In addition to prevention of tobacco use, offering evidence-based cessation services to dependent tobacco users constitutes an important approach in addressing this serious public health problem. A combination of behavioral methods and pharmacotherapy has shown the most optimal results in tobacco dependence treatment. Among currently available pharmacological agents, drugs that preferentially act on the α4 β2-nicotinic acetyl choline receptor like varenicline and cytisine appear to have relatively better cessation outcomes. These drugs are in general well tolerated and have minimal drug interactions. The odds of quitting tobacco use are at the very least doubled with the use of partial agonists compared with placebo and the outcomes are also superior when compared to nicotine replacement therapy and bupropion. The poor availability of partial agonists and specifically the cost of varenicline, as well as the lack of safety data for cytisine has limited their use world over, particularly in developing countries. Evidence for the benefit of partial agonists is more robust for smoking rather than smokeless forms of tobacco. Although more studies are needed to demonstrate their effectiveness in different populations of tobacco users, present literature supports the use of partial agonists in addition to behavioral methods for optimal outcome in tobacco dependence. PMID:24574554

  9. Dopamine receptor agonists for protection and repair in Parkinson's disease.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara A; Cenini, Giovanna; Maccarinelli, Giuseppina; Grilli, Mariagrazia; Uberti, Daniela; Memo, Maurizio

    2008-01-01

    Dopamine agonists have been usually used as adjunctive therapy for the cure of Parkinson's disease. It is generally believed that treatment with these drugs is symptomatic rather than curative and it does not stop or delay the progression of neuronal degeneration. However, several dopamine agonists of the D2-receptor family have recently been shown to possess neuroprotective properties in different in vitro and in vivo experimental Parkinson's disease models. Here we summarize some recent molecular evidences underlining the wide pharmacological spectrum of dopamine agonists currently used for treating Parkinson's disease patients. In particular, the mechanism of action of different dopamine agonists does not always appear to be restricted to the stimulation of selective dopamine receptor subtypes since at least some of these drugs are endowed with antioxidant, antiapoptotic or neurotrophic properties. These neuroprotective activities are molecule-specific and may contribute to the clinical efficacy of these drugs for the treatment of chronic and progressive neurodegenerative diseases in which oxidative injury and/or protein misfolding and aggregation exert a primary role.

  10. The Agonistic Approach: Reframing Resistance in Qualitative Research

    ERIC Educational Resources Information Center

    Vitus, Kathrine

    2008-01-01

    The agonistic approach--aimed at embracing opposing perspectives as part of a qualitative research process and acknowledging that process as fundamentally political--sheds light on both the construction of and the resistance to research identities. This approach involves reflexively embedding interview situations into the ethnographic context as a…

  11. [Alpha 2-adrenoceptor agonists for the treatment of chronic pain].

    PubMed

    Kulka, P J

    1996-04-25

    The antinociceptive effect of alpha(2)-adrenoceptor agonists is mediated by activation of descending inhibiting noradrenergic systems, which modulates 'wide-dynamic-range' neurones. Furthermore, they inhibit the liberation of substance P and endorphines and activate serotoninergic neurones. Despite this variety of antinociceptive actions, there is still little experience with alpha(2)-adrenoceptor agonists as therapeutic agents for use in chronic pain syndromes. Studies in animals and patients have shown that the transdermal, epidural and intravenous administration of the alpha(2)-adrenoceptor agonist clonidine reduces pain intensity in neuropathic pain syndromes for periods varying from some hours up to 1 month. Patients suffering from lancinating or sharp pain respond best to this therapy. Topically applied clonidine (200-300 microg) relieves hyperalgesia in sympathetically maintained pain. Epidural administration of 300 microg clonidine dissolved in 5 ml NaCl 0.9 % has also been shown to be effective. In patients suffering from cancer pain tolerant to opioids, pain control has proved possible again with combinations of opioids and clonidine. In isolated cases clonidine has been administered epidurally at a dose of 1500 microg/day for almost 5 months without evidence for any histotoxic property of clonidine. Side effects often observed during administration of alpha(2)-adrenoceptor agonists are dry mouth, sedation, hypotension and bradycardia. Therapeutic interventions are usually not required.

  12. Dopamine agonists in prevention of ovarian hyperstimulation syndrome.

    PubMed

    Kasum, Miro; Vrčić, Hrvoje; Stanić, Patrik; Ježek, Davor; Orešković, Slavko; Beketić-Orešković, Lidija; Pekez, Marijeta

    2014-01-01

    The aim of this review is to analyze the efficacy of different dopamine agonists in the prevention of ovarian hyperstimulation syndrome (OHSS). Cabergoline, quinagolide and bromocriptine are the most common dopamine agonists used. There are wide clinical variations among the trials in the starting time (from the day of human chorionic gonadotrophin (hCG) to the day following oocyte retrieval); the duration of the treatment (4-21 days), the dose of cabergoline (0.5 mg or 0.25 mg orally) and in the regimens used. At present, the best known effective regimen is 0.5 mg of cabergoline for 8 days or rectal bromocriptine at a daily dose of 2.5 mg for 16 days. Dopamine agonists have shown significant evidences of their efficacy in the prevention of moderate and early-onset OHSS (9.41%), compared with a placebo (21.45%), which cannot be confirmed for the treatment of late OHSS. It would be advisable to start with the treatment on the day of hCG injection or preferably a few hours earlier. The use of dopamine agonists should be indicated in patients at high risk of OHSS, as well as in patients with a history of previous OHSS even without evident signs of the syndrome.

  13. Amylin and Amylin Agonists for Treating Psychiatric Diseases and Disorders

    USDA-ARS?s Scientific Manuscript database

    Methods and compositions for treating psychiatric diseases and disorders are disclosed. The methods provided generally involve the administration of an amylin or an amylin agonist to a subject in order to treat psychiatric diseases and disorders, and conditions associated with psychiatric diseases a...

  14. Physician perceptions of GLP-1 receptor agonists in the UK.

    PubMed

    Matza, Louis S; Curtis, Sarah E; Jordan, Jessica B; Adetunji, Omolara; Martin, Sherry A; Boye, Kristina S

    2016-05-01

    Objectives Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetes for almost a decade, and new treatments in this class have recently been introduced. The purpose of this study was to examine perceptions of GLP-1 receptor agonists among physicians who treat patients with type 2 diabetes in the UK. Methods A total of 670 physicians (226 diabetes specialists; 444 general practice [GP] physicians) completed a survey in 2014. Results Almost all physicians had prescribed GLP-1 receptor agonists (95.4% total sample; 99.1% specialists; 93.5% GP), most frequently to patients whose glucose levels are not adequately controlled with oral medications (85.9% of physicians) and obese/overweight patients (83.7%). Physicians' most common reasons for prescribing a GLP-1 receptor agonist were: associated with weight loss (65.8%), good efficacy (55.7%), less hypoglycemia risk than insulin (55.2%), not associated with weight gain (34.5%), and better efficacy than oral medications (32.7%). Factors that most commonly cause hesitation when prescribing this class were: not considered first line therapy according to guidelines (56.9%), injectable administration (44.6%), cost (36.7%), gastrointestinal side effects (33.4%), and risk of pancreatitis (26.7%). Almost all specialists (99.1%) believed they had sufficient knowledge to prescribe a GLP-1 receptor agonist, compared with 76.1% of GPs. Conclusions Results highlight the widespread use of GLP-1 receptor agonists for treatment of type 2 diabetes in the UK. However, almost a quarter of GPs reported that they do not have enough knowledge to prescribe GLP-1s, suggesting a need for increased dissemination of information to targeted groups of physicians. Study limitations were that the generalizability of the clinician sample is unknown; survey questions required clinicians to select answers from multiple response options rather than generating the responses themselves; and responses to this survey conducted

  15. Prevention of RhoA activation and cofilin-mediated actin polymerization mediates the antihypertrophic effect of adenosine receptor agonists in angiotensin II- and endothelin-1-treated cardiomyocytes.

    PubMed

    Zeidan, Asad; Gan, Xiaohong Tracey; Thomas, Ashley; Karmazyn, Morris

    2014-01-01

    Adenosine receptor activation has been shown to be associated with diminution of cardiac hypertrophy and it has been suggested that endogenously produced adenosine may serve to blunt pro-hypertrophic processes. In the present study, we determined the effects of two pro-hypertrophic stimuli, angiotensin II (Ang II, 100 nM) and endothelin-1 (ET-1, 10 nM) on Ras homolog gene family, member A (RhoA)/Rho-associated, coiled-coil containing protein kinase (ROCK) activation in cultured neonatal rat ventricular myocytes and whether the latter serves as a target for the anti-hypertrophic effect of adenosine receptor activation. Both hypertrophic stimuli potently increased RhoA activity with peak activation occurring 15-30 min following agonist addition. These effects were associated with significantly increased phosphorylation (inactivation) of cofilin, a downstream mediator of RhoA, an increase in actin polymerization, and increased activation and nuclear import of p38 mitogen activated protein kinase. The ability of both Ang II and ET-1 to activate the RhoA pathway was completely prevented by the adenosine A1 receptor agonist N (6)-cyclopentyladenosine, the A2a receptor agonist 2-p-(2-carboxyethyl)-phenethylamino-5'-N-ethylcarboxamidoadenosine, the A3 receptor agonist N (6)-(3-iodobenzyl)adenosine-5'-methyluronamide as well as the nonspecific adenosine analog 2-chloro adenosine. All effects of specific receptor agonists were prevented by their respective receptor antagonists. Moreover, all adenosine agonists prevented either Ang II- or ET-1-induced hypertrophy, a property shared by the RhoA inhibitor Clostridium botulinum C3 exoenzyme, the ROCK inhibitor Y-27632 or the actin depolymerizing agent latrunculin B. Our study therefore demonstrates that both Ang II and ET-1 can activate the RhoA pathway and that prevention of the hypertrophic response to both agonists by adenosine receptor activation is mediated by prevention of RhoA stimulation and actin polymerization.

  16. Agonists at the δ-opioid receptor modify the binding of µ-receptor agonists to the µ–δ receptor hetero-oligomer

    PubMed Central

    Kabli, N; Martin, N; Fan, T; Nguyen, T; Hasbi, A; Balboni, G; O'Dowd, BF; George, SR

    2010-01-01

    BACKGROUND AND PURPOSE µ- and δ-opioid receptors form heteromeric complexes with unique ligand binding and G protein-coupling profiles linked to G protein α z-subunit (Gαz) activation. However, the mechanism of action of agonists and their regulation of the µ–δ receptor heteromer are not well understood. EXPERIMENTAL APPROACH Competition radioligand binding, cell surface receptor internalization in intact cells, confocal microscopy and receptor immunofluorescence techniques were employed to study the regulation of the µ–δ receptor heteromer in heterologous cells with and without agonist exposure. KEY RESULTS Gαz enhanced affinity of some agonists at µ–δ receptor heteromers, independent of agonist chemical structure. δ-Opioid agonists displaced µ-agonist binding with high affinity from µ–δ heteromers, but not µ receptor homomers, suggestive of δ-agonists occupying a novel µ-receptor ligand binding pocket within the heteromers. Also, δ-agonists induced internalization of µ-opioid receptors in cells co-expressing µ- and δ-receptors, but not those expressing µ-receptors alone, indicative of µ–δ heteromer internalization. This dose-dependent, Pertussis toxin-resistant and clathrin- and dynamin-dependent effect required agonist occupancy of both µ- and δ-opioid receptors. In contrast to µ-receptor homomers, agonist-induced internalization of µ–δ heteromers persisted following chronic morphine exposure. CONCLUSIONS AND IMPLICATIONS The µ–δ receptor heteromer may contain a novel δ-agonist-detected, high-affinity, µ-receptor ligand binding pocket and is regulated differently from the µ-receptor homomer following chronic morphine exposure. Occupancy of both µ- and δ-receptor binding pockets is required for δ-agonist-induced endocytosis of µ–δ receptor heteromers. δ-Opioid agonists target µ–δ receptor heteromers, and thus have a broader pharmacological specificity than previously identified. PMID:20977461

  17. Dopamine agonists and risk: impulse control disorders in Parkinson's disease.

    PubMed

    Voon, Valerie; Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J; Hallett, Mark

    2011-05-01

    Impulse control disorders are common in Parkinson's disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a 'Sure' choice and a 'Gamble' choice of moderate risk. To commence each trial, in the 'Gain' condition, individuals started at $0 and in the 'Loss' condition individuals started at -$50 below the 'Sure' amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk ('Gamble Risk'). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the 'Gain' relative to the 'Loss' condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals.

  18. Dopamine agonists and risk: impulse control disorders in Parkinson's; disease

    PubMed Central

    Gao, Jennifer; Brezing, Christina; Symmonds, Mkael; Ekanayake, Vindhya; Fernandez, Hubert; Dolan, Raymond J.; Hallett, Mark

    2011-01-01

    Impulse control disorders are common in Parkinson's; disease, occurring in 13.6% of patients. Using a pharmacological manipulation and a novel risk taking task while performing functional magnetic resonance imaging, we investigated the relationship between dopamine agonists and risk taking in patients with Parkinson's; disease with and without impulse control disorders. During functional magnetic resonance imaging, subjects chose between two choices of equal expected value: a ‘Sure’ choice and a ‘Gamble’ choice of moderate risk. To commence each trial, in the ‘Gain’ condition, individuals started at $0 and in the ‘Loss’ condition individuals started at −$50 below the ‘Sure’ amount. The difference between the maximum and minimum outcomes from each gamble (i.e. range) was used as an index of risk (‘Gamble Risk’). Sixteen healthy volunteers were behaviourally tested. Fourteen impulse control disorder (problem gambling or compulsive shopping) and 14 matched Parkinson's; disease controls were tested ON and OFF dopamine agonists. Patients with impulse control disorder made more risky choices in the ‘Gain’ relative to the ‘Loss’ condition along with decreased orbitofrontal cortex and anterior cingulate activity, with the opposite observed in Parkinson's; disease controls. In patients with impulse control disorder, dopamine agonists were associated with enhanced sensitivity to risk along with decreased ventral striatal activity again with the opposite in Parkinson's; disease controls. Patients with impulse control disorder appear to have a bias towards risky choices independent of the effect of loss aversion. Dopamine agonists enhance sensitivity to risk in patients with impulse control disorder possibly by impairing risk evaluation in the striatum. Our results provide a potential explanation of why dopamine agonists may lead to an unconscious bias towards risk in susceptible individuals. PMID:21596771

  19. Identification of raloxifene as a novel CB2 inverse agonist.

    PubMed

    Kumar, Pritesh; Song, Zhao-Hui

    2013-05-24

    The purpose of the current study was to apply a high throughput assay to systematically screen a library of food and drug administration (FDA)-approved drugs as potential ligands for the cannabinoid receptor 2 (CB2). A cell-based, homogenous time resolved fluorescence (HTRF) method for measuring changes in intracellular cAMP levels was validated and found to be suitable for testing ligands that may act on CB2. Among the 640 FDA-approved drugs screened, raloxifene, a drug used to treat/prevent post-menopausal osteoporosis, was identified for the first time to be a novel CB2 inverse agonist. Our results demonstrated that by acting on CB2, raloxifene enhances forskolin-stimulated cAMP accumulation in a concentration-dependant manner. Furthermore, our data showed that raloxifene competes concentration-dependently for specific [(3)H]CP-55,940 binding to CB2. In addition, raloxifene pretreatment caused a rightward shift of the concentration-response curves of the cannabinoid agonists CP-55,940, HU-210, and WIN55,212-2. Raloxifene antagonism is most likely competitive in nature, as these rightward shifts were parallel and were not associated with any changes in the efficacy of cannabinoid agonists on CB2. Our discovery that raloxfiene is an inverse agonist for CB2 suggests that it might be possible to repurpose this FDA-approved drug for novel therapeutic indications for which CB2 is a target. Furthermore, identifying raloxifene as a CB2 inverse agonist also provides important novel mechanisms of actions to explain the known therapeutic effects of raloxifene.

  20. Melatonin receptor agonists: new options for insomnia and depression treatment.

    PubMed

    Spadoni, Gilberto; Bedini, Annalida; Rivara, Silvia; Mor, Marco

    2011-12-01

    The circadian nature of melatonin (MLT) secretion, coupled with the localization of MLT receptors to the suprachiasmatic nucleus, has led to numerous studies of the role of MLT in modulation of the sleep-wake cycle and circadian rhythms in humans. Although much more needs to be understood about the various functions exerted by MLT and its mechanisms of action, three therapeutic agents (ramelteon, prolonged-release MLT, and agomelatine) are already in use, and MLT receptor agonists are now appearing as new promising treatment options for sleep and circadian-rhythm related disorders. In this review, emphasis has been placed on medicinal chemistry strategies leading to MLT receptor agonists, and on the evidence supporting therapeutic efficacy of compounds undergoing clinical evaluation. A wide range of clinical trials demonstrated that ramelteon, prolonged-release MLT and tasimelteon have sleep-promoting effects, providing an important treatment option for insomnia and transient insomnia, even if the improvements of sleep maintenance appear moderate. Well-documented effects of agomelatine suggest that this MLT agonist offers an attractive alternative for the treatment of depression, combining efficacy with a favorable side effect profile. Despite a large number of high affinity nonselective MLT receptor agonists, only limited data on MT₁ or MT₂ subtype-selective compounds are available up to now. Administration of the MT₂-selective agonist IIK7 to rats has proved to decrease NREM sleep onset latency, suggesting that MT₂ receptor subtype is involved in the acute sleep-promoting action of MLT; rigorous clinical studies are needed to demonstrate this hypothesis. Further clinical candidates based on selective activation of MT₁ or MT₂ receptors are expected in coming years. © 2010 Blackwell Publishing Ltd.

  1. Pharmacogenetic characterization of indacaterol, a novel β2-adrenoceptor agonist

    PubMed Central

    Sayers, I; Hawley, J; Stewart, CE; Billington, CK; Henry, A; Leighton-Davies, JR; Charlton, SJ; Hall, IP

    2009-01-01

    Background and purpose: Indacaterol is a novel β2-adrenoceptor agonist in development for the treatment of chronic obstructive pulmonary disease. The aim of this study was to investigate the comparative pharmacology of indacaterol in recombinant cells expressing the common polymorphic variants of the human β2-adrenoceptor and in human primary airway smooth muscle (ASM) cells. Experimental approach: Chinese hamster ovarian-K1 cell lines expressing high and low levels of the common human β2-adrenoceptor variants were generated [Gly16-Glu27-Val34-Thr164(GEVT), RQVT, GQVT] and also the rare GQVI variant. Human primary ASM cells were isolated from explants of trachealis muscle. Adenosine-3′,5′-cyclic-monophosphate production was used as an outcome measure. Key results: In both the low- and high-expression recombinant GEVT ‘wild type’ cell lines indacaterol is a high-efficacy agonist. Salmeterol and formoterol were identified as low- and high-efficacy agonists, respectively, and showed similar potencies to indacaterol irrespective of the β2-adrenoceptor genotype. The I164 variant cell line was associated with a reduced capacity to generate adenosine-3′,5′-cyclic-monophosphate in response to β2-adrenoceptor agonist. In the human primary ASM cells indacaterol gave a maximal response intermediate between that of salmeterol and formoterol. Conclusions and implications: These data demonstrate that indacaterol is a high-efficacy agonist in recombinant cell systems but acts with lower efficacy in human primary ASM cells. No marked genotype-dependent effects were observed for common variants; however, changes in I164 receptor activity were identified, which were dependent on the level of expression of β2-adrenoceptors. PMID:19422388

  2. Pharmacogenetic characterization of indacaterol, a novel beta 2-adrenoceptor agonist.

    PubMed

    Sayers, I; Hawley, J; Stewart, C E; Billington, C K; Henry, A; Leighton-Davies, J R; Charlton, S J; Hall, I P

    2009-09-01

    Indacaterol is a novel beta(2)-adrenoceptor agonist in development for the treatment of chronic obstructive pulmonary disease. The aim of this study was to investigate the comparative pharmacology of indacaterol in recombinant cells expressing the common polymorphic variants of the human beta(2)-adrenoceptor and in human primary airway smooth muscle (ASM) cells. Chinese hamster ovarian-K1 cell lines expressing high and low levels of the common human beta(2)-adrenoceptor variants were generated [Gly16-Glu27-Val34-Thr164(GEVT), RQVT, GQVT] and also the rare GQVI variant. Human primary ASM cells were isolated from explants of trachealis muscle. Adenosine-3',5'-cyclic-monophosphate production was used as an outcome measure. In both the low- and high-expression recombinant GEVT 'wild type' cell lines indacaterol is a high-efficacy agonist. Salmeterol and formoterol were identified as low- and high-efficacy agonists, respectively, and showed similar potencies to indacaterol irrespective of the beta(2)-adrenoceptor genotype. The I164 variant cell line was associated with a reduced capacity to generate adenosine-3',5'-cyclic-monophosphate in response to beta(2)-adrenoceptor agonist. In the human primary ASM cells indacaterol gave a maximal response intermediate between that of salmeterol and formoterol. These data demonstrate that indacaterol is a high-efficacy agonist in recombinant cell systems but acts with lower efficacy in human primary ASM cells. No marked genotype-dependent effects were observed for common variants; however, changes in I164 receptor activity were identified, which were dependent on the level of expression of beta(2)-adrenoceptors.

  3. Novel Aryl Hydrocarbon Receptor Agonist Suppresses Migration and Invasion of Breast Cancer Cells

    PubMed Central

    Mohafez, Omar; Hairul-Islam, Villianur Ibrahim; Alzahrani, Abdullah; Bani Ismail, Mohammad; Thirugnanasambantham, Krishnaraj

    2016-01-01

    Background Despite the remarkable progress to fight against breast cancer, metastasis remains the dominant cause of treatment failure and recurrence. Therefore, control of invasiveness potential of breast cancer cells is crucial. Accumulating evidences suggest Aryl hydrocarbon receptor (Ahr), a helix-loop-helix transcription factor, as a promising target to control migration and invasion in breast cancer cells. Thus, an Ahr-based exploration was performed to identify a new Ahr agonist with inhibitory potentials on cancer cell motility. Methods For prediction of potential interactions between Ahr and candidate molecules, bioinformatics analysis was carried out. The interaction of the selected ligand with Ahr and its effects on migration and invasion were examined in vitro using the MDA-MB-231 and T47D cell lines. The silencing RNAs were transfected into cells by electroporation. Expressions of microRNAs (miRNAs) and coding genes were quantified by real-time PCR, and the protein levels were detected by western blot. Results The in silico and in vitro results identified Flavipin as a novel Ahr agonist. It induces formation of Ahr/Ahr nuclear translocator (Arnt) heterodimer to promote the expression of cytochrome P450 family 1 subfamily A member 1 (Cyp1a1). Migration and invasion of MDA-MB-231 and T47D cells were inhibited with Flavipin treatment in an Ahr-dependent fashion. Interestingly, Flavipin suppressed the pro-metastatic factor SRY-related HMG-box4 (Sox4) by inducing miR-212/132 cluster. Moreover, Flavipin inhibited growth and adhesion of both cell lines by suppressing gene expressions of B-cell lymphoma 2 (Bcl2) and integrinα4 (ITGA4). Conclusion Taken together, the results introduce Flavipin as a novel Ahr agonist, and provide first evidences on its inhibitory effects on cancer cell motility, suggesting Flavipin as a candidate to control cell invasiveness in breast cancer patients. PMID:27907195

  4. Aryl hydrocarbon receptor agonists trigger avoidance of novel food in rats.

    PubMed

    Mahiout, Selma; Pohjanvirta, Raimo

    2016-12-01

    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxicity of dioxins, but also plays important physiological roles, which are only beginning to unfold. Previous studies have surprisingly unveiled that low doses of the potent AHR agonist TCDD induce a strong and persistent avoidance of novel food items in rats. Here, we further examined the involvement of the AHR in the avoidance response in Sprague-Dawley rats with three established AHR agonists: 6-formylindolo(3,2-b)carbazole (FICZ), β-naphthoflavone (BNF) and benzo[a]pyrene (BaP); with a novel selective AHR modulator (C2); and with an activator of another nuclear receptor, CAR: 2,4,6-tryphenyldioxane-1,3 (TPD). As sensitive indices of AHR or CAR activity, we used Cyp1a1 and Cyp2b1 gene expression, as they are, respectively, the drug-metabolizing enzymes specifically regulated by them. We further attempted to address the roles played by enhanced neophobia and conditioned taste aversion (CTA) in the avoidance behaviour. All AHR agonists triggered practically total avoidance of novel chocolate, but the durations varied. Likewise, acutely subtoxic doses of C2, differing by 25-fold, all elicited a similar outcome. In contrast, TPD did not influence chocolate consumption at all. If rats were initially accustomed to chocolate for 6h after single FICZ or BNF exposure, avoidance was still clearly present two weeks later when chocolate was offered again. Hence, the avoidance response appears to specifically involve the AHR instead of being triggered by induction of intestinal or hepatic nuclear receptor signalling in general. It is also shared by both endogenous and exogenous AHR activators. Moreover, this behavioural change in rats seems to contain elements of both CTA and enhanced neophobia, but further clarification of this is still required.

  5. A1C Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Hemoglobin A1c Share this page: Was this page helpful? Also known as: A1c; HbA1c; Glycohemoglobin; Glycated Hemoglobin; Glycosylated Hemoglobin Formal name: Hemoglobin A1c Related tests: ...

  6. The Second Extracellular Loop of the Adenosine A1 Receptor Mediates Activity of Allosteric Enhancers

    PubMed Central

    Kennedy, Dylan P.; McRobb, Fiona M.; Leonhardt, Susan A.; Purdy, Michael; Figler, Heidi; Marshall, Melissa A.; Chordia, Mahendra; Figler, Robert; Linden, Joel

    2014-01-01

    Allosteric enhancers of the adenosine A1 receptor amplify signaling by orthosteric agonists. Allosteric enhancers are appealing drug candidates because their activity requires that the orthosteric site be occupied by an agonist, thereby conferring specificity to stressed or injured tissues that produce adenosine. To explore the mechanism of allosteric enhancer activity, we examined their action on several A1 receptor constructs, including (1) species variants, (2) species chimeras, (3) alanine scanning mutants, and (4) site-specific mutants. These findings were combined with homology modeling of the A1 receptor and in silico screening of an allosteric enhancer library. The binding modes of known docked allosteric enhancers correlated with the known structure-activity relationship, suggesting that these allosteric enhancers bind to a pocket formed by the second extracellular loop, flanked by residues S150 and M162. We propose a model in which this vestibule controls the entry and efflux of agonists from the orthosteric site and agonist binding elicits a conformational change that enables allosteric enhancer binding. This model provides a mechanism for the observations that allosteric enhancers slow the dissociation of orthosteric agonists but not antagonists. PMID:24217444

  7. Synthesis and SAR of potent LXR agonists containing an indole pharmacophore

    SciTech Connect

    Washburn, David G.; Hoang, Tram H.; Campobasso, Nino; Smallwood, Angela; Parks, Derek J.; Webb, Christine L.; Frank, Kelly A.; Nord, Melanie; Duraiswami, Chaya; Evans, Christopher; Jaye, Michael; Thompson, Scott K.

    2009-03-27

    A novel series of 1H-indol-1-yl tertiary amine LXR agonists has been designed. Compounds from this series were potent agonists with good rat pharmacokinetic parameters. In addition, the crystal structure of an LXR agonist bound to LXR{alpha} will be disclosed.

  8. Cathepsin G-regulated release of formyl peptide receptor agonists modulate neutrophil effector functions.

    PubMed

    Woloszynek, Josh C; Hu, Ying; Pham, Christine T N

    2012-10-05

    Neutrophil serine proteases play an important role in inflammation by modulating neutrophil effector functions. We have previously shown that neutrophils deficient in the serine proteases cathepsin G and neutrophil elastase (CG/NE neutrophils) exhibit severe defects in chemokine CXCL2 release and reactive oxygen species (ROS) production when activated on immobilized immune complex. Exogenously added active CG rescues these defects, but the mechanism remains undefined. Using a protease-based proteomic approach, we found that, in vitro, the addition of exogenous CG to immune complex-stimulated CG/NE neutrophils led to a decrease in the level of cell-associated annexin A1 (AnxA1) and cathelin-related antimicrobial peptide (CRAMP), both known inflammatory mediators. We further confirmed that, in vivo, CG was required for the extracellular release of AnxA1 and CRAMP in a subcutaneous air pouch model. In vitro, CG efficiently cleaved AnxA1, releasing the active N-terminal peptide Ac2-26, and processed CRAMP in limited fashion. Ac2-26 and CRAMP peptides enhanced the release of CXCL2 by CG/NE neutrophils in a dose-dependent manner via formyl peptide receptor (FPR) stimulation. Blockade of FPRs by an antagonist, Boc2 (t-Boc-Phe-d-Leu-Phe-d-Leu-Phe), abrogates CXCL2 release, whereas addition of FPR agonists, fMLF and F2L, relieves Boc2 inhibition. Furthermore, the addition of active CG, but not inactive CG, also relieves Boc2 inhibition. These findings suggest that CG modulates neutrophil effector functions partly by controlling the release (and proteolysis) of FPR agonists. Unexpectedly, we found that mature CRAMP, but not Ac2-26, induced ROS production through an FPR-independent pathway.

  9. Effects of an intrathecally administered benzodiazepine receptor agonist, antagonist and inverse agonist on morphine-induced inhibition of a spinal nociceptive reflex.

    PubMed Central

    Moreau, J. L.; Pieri, L.

    1988-01-01

    1. The effects of an intrathecally administered benzodiazepine receptor (BZR) agonist (midazolam, up to 50 micrograms), antagonist (flumazenil, Ro 15-1788, 5 micrograms) and inverse agonist (Ro 19-4603, 15 micrograms) on nociception and on morphine-induced antinociception were studied in rats. 2. By themselves, none of these compounds significantly altered pain threshold. 3. The BZR agonist midazolam enhanced the morphine-induced antinociceptive effect whereas the antagonist flumazenil did not alter it. In contrast, the BZR inverse agonist Ro 19-4603 decreased the morphine-induced antinociceptive effect. 4. Naloxone (1 mg kg-1 i.p.) completely reversed all these effects. 5. These results demonstrate that BZR agonists and inverse agonists are able to affect, by allosteric up- or down-modulation of gamma-aminobutyric acidA (GABAA)-receptors, the transmission of nociceptive information at the spinal cord level, when this transmission is depressed by mu-opioid receptor activation. PMID:2898960

  10. Structural Sweet Spot for A1 Adenosine Receptor Activation by Truncated (N)- Methanocarba Nucleosides: Receptor Docking and Potent Anticonvulsant Activity

    PubMed Central

    Tosh, Dilip K.; Paoletta, Silvia; Deflorian, Francesca; Phan, Khai; Moss, Steven M.; Gao, Zhan-Guo; Jiang, Xiaohui; Jacobson, Kenneth A.

    2012-01-01

    A1 adenosine receptor (AR) agonists display antiischemic and antiepileptic neuroprotective activity, but peripheral cardiovascular side effects impeded their development. SAR study of N6-cycloalkylmethyl 4′-truncated (N)-methanocarba-adenosines identified 10 (MRS5474, N6-dicyclopropylmethyl, Ki 47.9 nM) as a moderately A1AR-selective full agonist. Two stereochemically defined N6-methynyl group substituents displayed narrow SAR; larger than cyclobutyl greatly reduced AR affinity, and larger or smaller than cyclopropyl reduced A1AR selectivity. Nucleoside docking to A1AR homology model characterized distinct hydrophobic cyclopropyl subpockets, the larger “A” forming contacts with Thr270 (7.35), Tyr271 (7.36), Ile274 (7.39) and carbon chains of glutamates (EL2), and smaller subpocket “B” between TM6 and TM7. 10 suppressed minimal clonic seizures (6 Hz mouse model) without typical rotarod impairment of A1AR agonists. Truncated nucleosides, an appealing preclinical approach, have more drug-like physicochemical properties than other A1AR agonists. Thus, we identified highly restricted regions for substitution around N6 suitable for an A1AR agonist with anticonvulsant activity. PMID:22921089

  11. Illegal use of beta-adrenergic agonists: European Community.

    PubMed

    Kuiper, H A; Noordam, M Y; van Dooren-Flipsen, M M; Schilt, R; Roos, A H

    1998-01-01

    The use of veterinary medicinal products within the European Community is governed by a series of directives and regulations that describe the requirements for safety, quality, and efficacy of these products. Veterinary therapeutic use of beta-agonists has only been approved in the case of clenbuterol for bronchodilatation in horses and calves and for tocolysis in cows. No beta-agonists have been permitted in the European Community for growth-promoting purposes in farm animals. Surveillance for the presence of residues of veterinary agents in food-producing animals and meat is regulated by the Directive 86/469/EEC containing specific guidelines for sampling procedures on farms and in slaughterhouses. The level and frequency of sampling is dependent on the category of compounds and animal species. When positive samples have been identified (above certain action levels), sampling intensity is increased. Results of monitoring programs in EU member states during 1992 and 1993 for the occurrence of residues of beta-agonists in food-producing animals vary substantially with respect to the percentages of positive samples, ranging from 0 to 7%. The variability is partly explained by differences in sampling strategies, detection methods, and action levels applied. Identification of the proper matrices for sampling and detection of beta-agonists is important. In the case of clenbuterol, hair and choroid retinal tissue are appropriate tissues because clenbuterol accumulates in these matrices. A clear decrease in the use of clenbuterol in cattle has been observed in The Netherlands, Germany, Northern Ireland, and Spanish Basque Country over the last 3 yr. This is partly due to intensified surveillance activities at farms and slaughterhouses by governmental agencies and production sector organizations. There are data on human intoxication following consumption of liver or meat from cattle treated with beta-agonists. At the concentrations of clenbuterol measured in contaminated

  12. Effect of coadministration of caffeine and either adenosine agonists or cyclic nucleotides on ketorolac analgesia.

    PubMed

    Aguirre-Bañuelos, P; Castañeda-Hernández, G; López-Muñoz, F J; Granados-Soto, V

    1999-07-21

    Caffeine potentiation of ketorolac-induced antinociception in the pain-induced functional impairment model in rats was assessed. Caffeine alone was ineffective, but increased the effect of ketorolac without affecting its pharmacokinetics. Intra-articular administration of adenosine and N6-cyclohexyladenosine (CHA, an adenosine A1 receptor agonist), but not 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680, an adenosine A2A receptor agonist), significantly increased ketorolac antinociception. This effect was not local, as contralateral administration was also effective. Ipsilateral and contralateral administration of adenosine and CHA also increased antinociception by ketorolac-caffeine. Intra-articular 8-Bromo-adenosine cyclic 3',5'-hydrogen phosphate sodium or 8-Bromo-guanosine-3',5'-cyclophosphate sodium (cGMP) given ipsilaterally or contralaterally did not affect ketorolac-induced antinociception. Nevertheless, ipsilateral, but not contralateral, administration of 8-Br-cGMP significantly increased antinociception by ketorolac-caffeine, suggesting a local effect. The results suggest that caffeine potentiation of ketorolac antinociception is mediated, at least partially, by a local increase in cGMP and rule out the participation of adenosine receptor blockade.

  13. New PPARγ partial agonist improves obesity-induced metabolic alterations and atherosclerosis in LDLr(-/-) mice.

    PubMed

    Silva, Jacqueline C; César, Fernanda A; de Oliveira, Edson M; Turato, Walter M; Tripodi, Gustavo L; Castilho, Gabriela; Machado-Lima, Adriana; de Las Heras, Beatriz; Boscá, Lisardo; Rabello, Marcelo M; Hernandes, Marcelo Z; Pitta, Marina G R; Pitta, Ivan R; Passarelli, Marisa; Rudnicki, Martina; Abdalla, Dulcineia S P

    2016-02-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) regulates multiple pathways involved in the pathogenesis of obesity and atherosclerosis. Here, we evaluated the therapeutic potential of GQ-177, a new thiazolidinedione, on diet-induced obesity and atherosclerosis. The intermolecular interaction between PPARγ and GQ-177 was examined by virtual docking and PPAR activation was determined by reporter gene assay identifying GQ-177 as a partial and selective PPARγ agonist. For the evaluation of biological activity of GQ-177, low-density lipoprotein receptor-deficient (LDLr(-/-)) C57/BL6 mice were fed either a high fat diabetogenic diet (diet-induced obesity), or a high fat atherogenic diet, and treated with vehicle, GQ-177 (20mg/kg/day), pioglitazone (20mg/kg/day, diet-induced obesity model) or rosiglitazone (15mg/kg/day, atherosclerosis model) for 28 days. In diet-induced obesity mice, GQ-177 improved insulin sensitivity and lipid profile, increased plasma adiponectin and GLUT4 mRNA in adipose tissue, without affecting body weight, food consumption, fat accumulation and bone density. Moreover, GQ-177 enhanced hepatic mRNA levels of proteins involved in lipid metabolism. In the atherosclerosis mice, GQ-177 inhibited atherosclerotic lesion progression, increased plasma HDL and mRNA levels of PPARγ and ATP-binding cassette A1 in atherosclerotic lesions. GQ-177 acts as a partial PPARγ agonist that improves obesity-associated insulin resistance and dyslipidemia with atheroprotective effects in LDLr(-/-) mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Euodenine A: a small-molecule agonist of human TLR4.

    PubMed

    Neve, Juliette E; Wijesekera, Hasanthi P; Duffy, Sandra; Jenkins, Ian D; Ripper, Justin A; Teague, Simon J; Campitelli, Marc; Garavelas, Agatha; Nikolakopoulos, George; Le, Phuc V; de A Leone, Priscila; Pham, Ngoc B; Shelton, Philip; Fraser, Neil; Carroll, Anthony R; Avery, Vicky M; McCrae, Christopher; Williams, Nicola; Quinn, Ronald J

    2014-02-27

    A small-molecule natural product, euodenine A (1), was identified as an agonist of the human TLR4 receptor. Euodenine A was isolated from the leaves of Euodia asteridula (Rutaceae) found in Papua New Guinea and has an unusual U-shaped structure. It was synthesized along with a series of analogues that exhibit potent and selective agonism of the TLR4 receptor. SAR development around the cyclobutane ring resulted in a 10-fold increase in potency. The natural product demonstrated an extracellular site of action, which requires the extracellular domain of TLR4 to stimulate a NF-κB reporter response. 1 is a human-selective agonist that is CD14-independent, and it requires both TLR4 and MD-2 for full efficacy. Testing for immunomodulation in PBMC cells shows the induction of the cytokines IL-8, IL-10, TNF-α, and IL-12p40 as well as suppression of IL-5 from activated PBMCs, indicating that compounds like 1 could modulate the Th2 immune response without causing lung damage.

  15. Side-effects of mixed agonist-antagonist analgesics used in sequential anaesthesia

    PubMed Central

    Devaux, C.; Schoepffler, P.; Gauthier-Lafaye, J. P.

    1979-01-01

    1 Mixed agonist-antagonist analgesics have analgesic action but also possess a range of side-effects. 2 Narcotic antagonists do not reverse the non-specific effects of opiates. 3 Under certain circumstances the effects of agonists and mixed agonist-antagonists can be additive. 4 Chronic dosage of mixed agonist-antagonists leads to a lower level of dependence than that observed with the standard narcotics. 5 Mixed agonist-antagonists may not antagonize the respiratory effects of narcotics and may result in potentiation of such depression. PMID:465294

  16. β2-Adrenoceptor agonists in the regulation of mitochondrial biogenesis.

    PubMed

    Peterson, Yuri K; Cameron, Robert B; Wills, Lauren P; Trager, Richard E; Lindsey, Chris C; Beeson, Craig C; Schnellmann, Rick G

    2013-10-01

    The stimulation of mitochondrial biogenesis (MB) via cell surface G-protein coupled receptors is a promising strategy for cell repair and regeneration. Here we report the specificity and chemical rationale of a panel of β2-adrenoceptor agonists with regards to MB. Using primary cultures of renal cells, a diverse panel of β2-adrenoceptor agonists elicited three distinct phenotypes: full MB, partial MB, and non-MB. Full MB compounds had efficacy in the low nanomolar range and represent two chemical scaffolds containing three distinct chemical clusters. Interestingly, the MB phenotype did not correlate with reported receptor affinity or chemical similarity. Chemical clusters were then subjected to pharmacophore modeling creating two models with unique and distinct features, consisting of five conserved amongst full MB compounds were identified. The two discrete pharmacophore models were coalesced into a consensus pharmacophore with four unique features elucidating the spatial and chemical characteristics required to stimulate MB.

  17. Assays for Inverse Agonists in the Visual System

    PubMed Central

    Kono, Masahiro

    2013-01-01

    Visual pigment proteins belong to the superfamily of G protein-coupled receptors and are the light-sensitive molecules in rod and cone photoreceptor cells. The protein moiety is known as opsin and the ligand in the dark is 11-cis retinal, which serves as both the photon detector and an inverse agonist. While much is known about properties of the rod pigment rhodopsin, much less is understood about cone visual pigments. Being able to identify ligands that effect opsins give an insight into structure–activity relationships. The action of some ligands indicates that there are differences between not only rod and cone opsins but also among the different classes of cone opsins. Furthermore, inverse agonists of cone opsins may have potential therapeutic uses under conditions when the native 11-cis retinal ligand is absent. A method for determining the effects of ligands on rod and cone opsin activity is described. PMID:21050919

  18. Agonist-antagonist combinations in opioid dependence: a translational approach

    PubMed Central

    Mannelli, P.

    2011-01-01

    Summary The potential therapeutic benefits of co-administering opiate agonist and antagonist agents remain largely to be investigated. This paper focuses on the mechanisms of very low doses of naltrexone that help modulate the effects of methadone withdrawal and review pharmacological properties of the buprenorphine/naltrexone combination that support its clinical investigation. The bench-to-bedside development of the very low dose naltrexone treatment can serve as a translational paradigm to investigate and treat drug addiction. Further research on putative mechanisms elicited by the use of opioid agonist-antagonist combinations may lead to effective pharmacological alternatives to the gold standard methadone treatment, also useful for the management of the abuse of non opioid drugs and alcohol. PMID:22448305

  19. A Potent and Site-Selective Agonist of TRPA1.

    PubMed

    Takaya, Junichiro; Mio, Kazuhiro; Shiraishi, Takuya; Kurokawa, Tatsuki; Otsuka, Shinya; Mori, Yasuo; Uesugi, Motonari

    2015-12-23

    TRPA1 is a member of the transient receptor potential (TRP) cation channel family that is expressed primarily on sensory neurons. This chemosensor is activated through covalent modification of multiple cysteine residues with a wide range of reactive compounds including allyl isothiocyanate (AITC), a spicy component of wasabi. The present study reports on potent and selective agonists of TRPA1, discovered through screening 1657 electrophilic molecules. In an effort to validate the mode of action of hit molecules, we noted a new TRPA1-selective agonist, JT010 (molecule 1), which opens the TRPA1 channel by covalently and site-selectively binding to Cys621 (EC50 = 0.65 nM). The results suggest that a single modification of Cys621 is sufficient to open the TRPA1 channel. The TRPA1-selective probe described herein might be useful for further mechanistic studies of TRPA1 activation.

  20. Integrating costimulatory agonists to optimize immune-based cancer therapies.

    PubMed

    Pardee, Angela D; Wesa, Amy K; Storkus, Walter J

    2009-03-01

    While immunotherapy for cancer has become increasingly popular, clinical benefits for such approaches remain limited. This is likely due to tumor-associated immune suppression, particularly in the advanced-disease setting. Thus, a major goal of novel immunotherapeutic design has become the coordinate reversal of existing immune dysfunction and promotion of specific tumoricidal T-cell function. Costimulatory members of the TNF-receptor family are important regulators of T-cell-mediated immunity. Notably, agonist ligation of these receptors restores potent antitumor immunity in the tumor-bearing host. Current Phase I/II evaluation of TNF-receptor agonists as single-modality therapies will illuminate their safety, mechanism(s) of action, and best use in prospective combinational immunotherapy approaches capable of yielding superior benefits to cancer patients.

  1. Integrating costimulatory agonists to optimize immune-based cancer therapies

    PubMed Central

    Pardee, Angela D; Wesa, Amy K

    2009-01-01

    While immunotherapy for cancer has become increasingly popular, clinical benefits for such approaches remain limited. This is likely due to tumor-associated immune suppression, particularly in the advanced-disease setting. Thus, a major goal of novel immunotherapeutic design has become the coordinate reversal of existing immune dysfunction and promotion of specific tumoricidal T-cell function. Costimulatory members of the TNF-receptor family are important regulators of T-cell-mediated immunity. Notably, agonist ligation of these receptors restores potent antitumor immunity in the tumor-bearing host. Current Phase I/II evaluation of TNF-receptor agonists as single-modality therapies will illuminate their safety, mechanism(s) of action, and best use in prospective combinational immunotherapy approaches capable of yielding superior benefits to cancer patients. PMID:20046961

  2. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy.

    PubMed

    Keane, Fergus; Egan, Aoife M; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare.Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas.GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma.

  3. Improving the developability profile of pyrrolidine progesterone receptor partial agonists

    SciTech Connect

    Kallander, Lara S.; Washburn, David G.; Hoang, Tram H.; Frazee, James S.; Stoy, Patrick; Johnson, Latisha; Lu, Qing; Hammond, Marlys; Barton, Linda S.; Patterson, Jaclyn R.; Azzarano, Leonard M.; Nagilla, Rakesh; Madauss, Kevin P.; Williams, Shawn P.; Stewart, Eugene L.; Duraiswami, Chaya; Grygielko, Eugene T.; Xu, Xiaoping; Laping, Nicholas J.; Bray, Jeffrey D.; Thompson, Scott K.

    2010-09-17

    The previously reported pyrrolidine class of progesterone receptor partial agonists demonstrated excellent potency but suffered from serious liabilities including hERG blockade and high volume of distribution in the rat. The basic pyrrolidine amine was intentionally converted to a sulfonamide, carbamate, or amide to address these liabilities. The evaluation of the degree of partial agonism for these non-basic pyrrolidine derivatives and demonstration of their efficacy in an in vivo model of endometriosis is disclosed herein.

  4. Pharmacological Studies of NOP Receptor Agonists as Novel Analgesics

    DTIC Science & Technology

    2009-05-01

    found in hot- chili peppers that evokes pain sensation by activating at the TRPV1. TRPV1 and the up-regulation of its expression have been strongly... anti - nociception against capsaicin-induced allodynia in mon- keys (Figure 3). Capsaicin evokes pain sensation by activating at the vanilloid receptor... activation of the NOP receptor produces strong antinociception without abuse liability, and (3) NOP receptor agonists possess a promising therapeutic

  5. Pharmacological Studies of NOP Receptor Agonists as Novel Analgesics

    DTIC Science & Technology

    2010-05-01

    irritant found in hot- chili peppers that evokes pain sensation by activating at the TRPV1. TRPV1 and the up-regulation of its expression have been 5...Capsaicin is a natural irritant found in hot- chili peppers that evokes pain sensation by activating at the TRPV1. TRPV1 and the up-regulation of its...2) activation of the NOP receptor produces strong antinociception without abuse liability, and (3) NOP receptor agonists possess a promising

  6. Dehydroepiandrosterone Derivatives as Potent Antiandrogens with Marginal Agonist Activity

    DTIC Science & Technology

    2010-07-01

    or 9), although these compounds still showed anti-DHT effects (lanes 2 vs. 6, 8, or 10). Figure 4 . The effects of DHEA derivatives on PSA...2009 - 30 JUN 2010 4 . TITLE AND SUBTITLE Dehydroepiandrosterone Derivatives as Potent Antiandrogens 5a. CONTRACT NUMBER with Marginal Agonist...words) We hypothesized that dehydroepiandrosterone ( DHEA ) metabolites or their synthetic derivatives are able to bind to the androgen receptor with

  7. Gonadotropin-releasing hormone agonist-induced pituitary apoplexy

    PubMed Central

    Keane, Fergus; Navin, Patrick; Brett, Francesca; Dennedy, Michael C

    2016-01-01

    Summary Pituitary apoplexy represents an uncommon endocrine emergency with potentially life-threatening consequences. Drug-induced pituitary apoplexy is a rare but important consideration when evaluating patients with this presentation. We describe an unusual case of a patient with a known pituitary macroadenoma presenting with acute-onset third nerve palsy and headache secondary to tumour enlargement and apoplexy. This followed gonadotropin-releasing hormone (GNRH) agonist therapy used to treat metastatic prostate carcinoma. Following acute management, the patient underwent transphenoidal debulking of his pituitary gland with resolution of his third nerve palsy. Subsequent retrospective data interpretation revealed that this had been a secretory gonadotropinoma and GNRH agonist therapy resulted in raised gonadotropins and testosterone. Hence, further management of his prostate carcinoma required GNRH antagonist therapy and external beam radiotherapy. This case demonstrates an uncommon complication of GNRH agonist therapy in the setting of a pituitary macroadenoma. It also highlights the importance of careful, serial data interpretation in patients with pituitary adenomas. Finally, this case presents a unique insight into the challenges of managing a hormonal-dependent prostate cancer in a patient with a secretory pituitary tumour. Learning points While non-functioning gonadotropinomas represent the most common form of pituitary macroadenoma, functioning gonadotropinomas are exceedingly rare. Acute tumour enlargement, with potential pituitary apoplexy, is a rare but important adverse effect arising from GNRH agonist therapy in the presence of both functioning and non-functioning pituitary gonadotropinomas. GNRH antagonist therapy represents an alternative treatment option for patients with hormonal therapy-requiring prostate cancer, who also have diagnosed with a pituitary gonadotropinoma. PMID:27284452

  8. Newspapers and Newspaper Ink Contain Agonists for the Ah Receptor

    PubMed Central

    Bohonowych, Jessica E. S.; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T.; Denison, Michael S.

    2010-01-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [3H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed. PMID:18203687

  9. Antipsychotic Induced Symptomatic Hyperprolactinemia: Are Dopamine Agonists Safe?

    PubMed

    Lertxundi, Unax; Domingo-Echaburu, Saioa; Peral, Javier; García, Montserrat

    2011-09-15

    Published literature shows that dopamine agonists can reverse antipsychotic-induced hyperprolactinemia without worsening psychotic symptoms in the majority of schizophrenic patients. However, psychiatrists have been reluctant to use drugs with dopaminergic properties for fear of exacerbating psychiatric symptoms. There are reported cases of psychosis worsening published for both cabergoline and bromocriptine. Cabergoline has proven to be more effective and safe when used to treat hyperprolactinemia, but whether cabergoline is also safer than bromocriptine in antipsychotic induced hyperprolactinemia remains unproven.

  10. Antipsychotic Induced Symptomatic Hyperprolactinemia: Are Dopamine Agonists Safe?

    PubMed Central

    Lertxundi, Unax; Domingo-Echaburu, Saioa; Peral, Javier; García, Montserrat

    2011-01-01

    Published literature shows that dopamine agonists can reverse antipsychotic-induced hyperprolactinemia without worsening psychotic symptoms in the majority of schizophrenic patients. However, psychiatrists have been reluctant to use drugs with dopaminergic properties for fear of exacerbating psychiatric symptoms. There are reported cases of psychosis worsening published for both cabergoline and bromocriptine. Cabergoline has proven to be more effective and safe when used to treat hyperprolactinemia, but whether cabergoline is also safer than bromocriptine in antipsychotic induced hyperprolactinemia remains unproven. PMID:27738363

  11. Newspapers and newspaper ink contain agonists for the ah receptor.

    PubMed

    Bohonowych, Jessica E S; Zhao, Bin; Timme-Laragy, Alicia; Jung, Dawoon; Di Giulio, Richard T; Denison, Michael S

    2008-04-01

    Ligand-dependent activation of the aryl hydrocarbon receptor (AhR) pathway leads to a diverse array of biological and toxicological effects. The best-studied ligands for the AhR include polycyclic and halogenated aromatic hydrocarbons, the most potent of which is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). However, as new AhR ligands are identified and characterized, their structural and physiochemical diversity continues to expand. Our identification of AhR agonists in crude extracts from diverse materials raises questions as to the magnitude and extent of human exposure to AhR ligands through normal daily activities. We have found that solvent extracts of newspapers from countries around the world stimulate the AhR signaling pathway. AhR agonist activity was observed for dimethyl sulfoxide (DMSO), ethanol, and water extracts of printed newspaper, unprinted virgin paper, and black printing ink, where activation of luciferase reporter gene expression was transient, suggesting that the AhR active chemical(s) was metabolically labile. DMSO and ethanol extracts also stimulated AhR transformation and DNA binding, and also competed with [(3)H]TCDD for binding to the AhR. In addition, DMSO extracts of printed newspaper induced cytochrome P450 1A associated 7-ethoxyresorufin-O-deethylase activity in zebrafish embryos in vivo. Although the responsible bioactive chemical(s) remain to be identified, our results demonstrate that newspapers and printing ink contain relatively potent metabolically labile agonists of the AhR. Given the large amount of recycling and reprocessing of newspapers throughout the world, release of these easily extractable AhR agonists into the environment should be examined and their potential effects on aquatic organisms assessed.

  12. Glucagon-like peptide-1 receptors agonists (GLP1 RA).

    PubMed

    Kalra, Sanjay

    2013-10-01

    The glucagon-like peptide-1 receptors agonists (GLP1RA) are a relatively new class of drugs, used for management of type 2 diabetes. This review studies the characteristics of these drugs, focusing upon their mechanism of action, intra-class differences, and utility in clinical practice. It compares them with other incretin based therapies, the dipeptidyl peptidase-IV inhibitors, and predicts future developments in the use of these molecules, while highlighting the robust indications for the use of these drugs.

  13. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond.

    PubMed

    Xia, Yang; Kellems, Rodney E

    2013-06-21

    Hypertensive disorders are life-threatening diseases with high morbidity and mortality, affecting billions of individuals worldwide. A multitude of underlying conditions may contribute to hypertension, thus the need for a plethora of treatment options to identify the approach that best meets the needs of individual patients. A growing body of evidence indicates that (1) autoantibodies that bind to and activate the major angiotensin II type I (AT₁) receptor exist in the circulation of patients with hypertensive disorders, (2) these autoantibodies contribute to disease pathophysiology, (3) antibody titers correlate to the severity of the disease, and (4) efforts to block or remove these pathogenic autoantibodies have therapeutic potential. These autoantibodies, termed AT₁ agonistic autoantibodies have been extensively characterized in preeclampsia, a life-threatening hypertensive condition of pregnancy. As reviewed here, these autoantibodies cause symptoms of preeclampsia when injected into pregnant mice. Somewhat surprisingly, these auto antibodies also appear in 3 animal models of preeclampsia. However, the occurrence of AT₁ agonistic autoantibodies is not restricted to pregnancy. These autoantibodies are prevalent among kidney transplant recipients who develop severe transplant rejection and malignant hypertension during the first week after transplantation. AT₁ agonistic autoantibodies are also highly abundant among a group of patients with essential hypertension that are refractory to standard therapy. More recently these autoantibodies have been seen in patients with the autoimmune disease, systemic sclerosis. These 3 examples extend the clinical impact of AT₁ agonistic autoantibodies beyond pregnancy. Research reviewed here raises the intriguing possibility that preeclampsia and other hypertensive conditions are autoimmune diseases characterized by the presence of pathogenic autoantibodies that activate the major angiotensin receptor, AT₁. These

  14. Thermodynamic analysis of antagonist and agonist interactions with dopamine receptors.

    PubMed

    Duarte, E P; Oliveira, C R; Carvalho, A P

    1988-03-01

    The binding of [3H]spiperone to dopamine D-2 receptors and its inhibition by antagonists and agonists were examined in microsomes derived from the sheep caudate nucleus, at temperatures between 37 and 1 degree C, and the thermodynamic parameters of the binding were evaluated. The affinity of the receptor for the antagonists, spiperone and (+)-butaclamol, decreased as the incubation temperature decreased; the affinity for haloperidol did not further decrease at temperatures below 15 degrees C. The binding of the antagonists was associated with very large increases in entropy, as expected for hydrophobic interactions. The enthalpy and entropy changes associated with haloperidol binding were dependent on temperature, in contrast to those associated with spiperone and (+)-butaclamol. The magnitude of the entropy increase associated with the specific binding of the antagonists did not correlate with the degree of lipophilicity of these drugs. The data suggest that, in addition to hydrophobic forces, other forces are also involved in the antagonist-dopamine receptor interactions, and that a conformational change of the receptor could occur when the antagonist binds. Agonist binding data are consistent with a two-state model of the receptor, a high-affinity state (RH) and a low-affinity state (RL). The affinity of dopamine binding to the RH decreased with decreasing temperatures below 20 degrees C, whereas the affinity for the RL increased at low temperatures. In contrast, the affinity of apomorphine for both states of receptor decreased as the temperature decreased from 30 to 8 degrees C. A clear distinction between the energetics of high-affinity and low-affinity agonist binding was observed. The formation of the high-affinity complex was associated with larger increases in enthalpy and entropy than the interaction with the low-affinity state was. The results suggest that the interaction of the receptor with the G-proteins, induced or stabilized by the binding of

  15. Dopamine agonists and the suppression of impulsive motor actions in Parkinson disease.

    PubMed

    Wylie, Scott A; Claassen, Daniel O; Huizenga, Hilde M; Schewel, Kerilyn D; Ridderinkhof, K Richard; Bashore, Theodore R; van den Wildenberg, Wery P M

    2012-08-01

    The suppression of spontaneous motor impulses is an essential facet of cognitive control that is linked to frontal-BG circuitry. BG dysfunction caused by Parkinson disease (PD) disrupts the proficiency of action suppression, but how pharmacotherapy for PD impacts impulsive motor control is poorly understood. Dopamine agonists improve motor symptoms of PD but can also provoke impulsive-compulsive behaviors (ICB). We investigated whether dopamine agonist medication has a beneficial or detrimental effect on impulsive action control in 38 PD patients, half of whom had current ICB. Participants performed the Simon conflict task, which measures susceptibility to acting on spontaneous action impulses as well as the proficiency of suppressing these impulses. Compared with an off-agonist state, patients on their agonists were no more susceptible to reacting impulsively but were less proficient at suppressing the interference from the activation of impulsive actions. Importantly, agonist effects depended on baseline performance in the off-agonist state; more proficient suppressors off agonist experienced a reduction in suppression on agonist, whereas less-proficient suppressors off agonist showed improved suppression on agonist. Patients with active ICB were actually less susceptible to making fast, impulsive response errors than patients without ICB, suggesting that behavioral problems in this subset of patients may be less related to impulsivity in motor control. Our findings provide further evidence that dopamine agonist medication impacts specific cognitive control processes and that the direction of its effects depends on individual differences in performance off medication.

  16. Ligand Binding Ensembles Determine Graded Agonist Efficacies at a G Protein-coupled Receptor*

    PubMed Central

    Bock, Andreas; Bermudez, Marcel; Krebs, Fabian; Matera, Carlo; Chirinda, Brian; Sydow, Dominique; Dallanoce, Clelia; Holzgrabe, Ulrike; De Amici, Marco; Lohse, Martin J.; Wolber, Gerhard; Mohr, Klaus

    2016-01-01

    G protein-coupled receptors constitute the largest family of membrane receptors and modulate almost every physiological process in humans. Binding of agonists to G protein-coupled receptors induces a shift from inactive to active receptor conformations. Biophysical studies of the dynamic equilibrium of receptors suggest that a portion of receptors can remain in inactive states even in the presence of saturating concentrations of agonist and G protein mimetic. However, the molecular details of agonist-bound inactive receptors are poorly understood. Here we use the model of bitopic orthosteric/allosteric (i.e. dualsteric) agonists for muscarinic M2 receptors to demonstrate the existence and function of such inactive agonist·receptor complexes on a molecular level. Using all-atom molecular dynamics simulations, dynophores (i.e. a combination of static three-dimensional pharmacophores and molecular dynamics-based conformational sampling), ligand design, and receptor mutagenesis, we show that inactive agonist·receptor complexes can result from agonist binding to the allosteric vestibule alone, whereas the dualsteric binding mode produces active receptors. Each agonist forms a distinct ligand binding ensemble, and different agonist efficacies depend on the fraction of purely allosteric (i.e. inactive) versus dualsteric (i.e. active) binding modes. We propose that this concept may explain why agonist·receptor complexes can be inactive and that adopting multiple binding modes may be generalized also to small agonists where binding modes will be only subtly different and confined to only one binding site. PMID:27298318

  17. LHRH Agonists for the Treatment of Prostate Cancer: 2012.

    PubMed

    Lepor, Herbert; Shore, Neal D

    2012-01-01

    The most recent guidelines on prostate cancer screening from the American Urological Association (2009), the National Comprehensive Cancer Network (2011), and the European Association of Urology (2011), as well as treatment and advances in disease monitoring, have increased the androgen deprivation therapy (ADT) population and the duration of ADT usage as the first-line treatment for metastatic prostate cancer. According to the European Association of Urology, gonadotropin-releasing hormone (GnRH) agonists have become the leading therapeutic option for ADT because they avoid the physical and psychological discomforts associated with orchiectomy. However, GnRH agonists display several shortcomings, including testosterone (T) surge ("clinical flare") and microsurges. T surge delays the intended serologic endpoint of T suppression and may exacerbate clinical symptoms. Furthermore, ADT manifests an adverse-event spectrum that can impact quality of life with its attendant well-documented morbidities. Strategies to improve ADT tolerability include a holistic management approach, improved diet and exercise, and more specific monitoring to detect and prevent T depletion toxicities. Intermittent ADT, which allows hormonal recovery between treatment periods, has become increasingly utilized as a methodology for improving quality of life while not diminishing chronic ADT efficacy, and may also provide healthcare cost savings. This review assesses the present and potential future role of GnRH agonists in prostate cancer and explores strategies to minimize the adverse-event profile for patients receiving ADT.

  18. Suppression of atherosclerosis by synthetic REV-ERB agonist

    SciTech Connect

    Sitaula, Sadichha; Billon, Cyrielle; Kamenecka, Theodore M.; Solt, Laura A.; Burris, Thomas P.

    2015-05-08

    The nuclear receptors for heme, REV-ERBα and REV-ERBβ, play important roles in the regulation of metabolism and inflammation. Recently it was demonstrated that reduced REV-ERBα expression in hematopoetic cells in LDL receptor null mice led to increased atherosclerosis. We sought to determine if synthetic REV-ERB agonists that we have developed might have the ability to suppress atherosclerosis in this model. A previously characterized synthetic REV-ERB agonist, SR9009, was used to determine if activation of REV-ERB activity would affect atherosclerosis in LDL receptor deficient mice. Atherosclerotic plaque size was significantly reduced (p < 0.05) in mice administered SR9009 (100 mg/kg) for seven weeks compared to control mice (n = 10 per group). SR9009 treatment of bone marrow-derived mouse macrophages (BMDM) reduced the polarization of BMDMs to proinflammatory M1 macrophage while increasing the polarization of BMDMs to anti-inflammatory M2 macrophages. Our results suggest that pharmacological targeting of REV-ERBs may be a viable therapeutic option for treatment of atherosclerosis. - Highlights: • Synthetic REV-ERB agonist treatment reduced atherosclerosis in a mouse model. • Pharmacological activation of REV-ERB decreased M1 macrophage polarization. • Pharmacological activation of REV-ERB increased M2 macrophage polarization.

  19. Novel nonsecosteroidal VDR agonists with phenyl-pyrrolyl pentane skeleton.

    PubMed

    Shen, Wei; Xue, Jingwei; Zhao, Zekai; Zhang, Can

    2013-11-01

    In order to find the vitamin D receptor (VDR) ligand whose VDR agonistic activity is separated from the calcemic activity sufficiently, novel nonsecosteroidal analogs with phenyl-pyrrolyl pentane skeleton were synthesized and evaluated for the VDR binding affinity, antiproliferative activity in vitro and serum calcium raising ability in vivo (tacalcitol used as control). Among them, several compounds showed varying degrees of VDR agonistic and growth inhibition activities of the tested cell lines. The most effective compound 2g (EC₅₀: 1.06 nM) exhibited stronger VDR agonistic activity than tacalcitol (EC₅₀: 7.05 nM), inhibited the proliferations of HaCaT and MCF-7 cells with IC₅₀ of 2.06 μM and 0.307 μM (tacalcitol: 2.07 μM and 0.057 μM) and showed no significant effect on serum calcium. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  20. Pharmacophore-driven identification of PPARγ agonists from natural sources

    NASA Astrophysics Data System (ADS)

    Petersen, Rasmus K.; Christensen, Kathrine B.; Assimopoulou, Andreana N.; Fretté, Xavier; Papageorgiou, Vassilios P.; Kristiansen, Karsten; Kouskoumvekaki, Irene

    2011-02-01

    In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.

  1. LHRH Agonists for the Treatment of Prostate Cancer: 2012

    PubMed Central

    Lepor, Herbert; Shore, Neal D

    2012-01-01

    The most recent guidelines on prostate cancer screening from the American Urological Association (2009), the National Comprehensive Cancer Network (2011), and the European Association of Urology (2011), as well as treatment and advances in disease monitoring, have increased the androgen deprivation therapy (ADT) population and the duration of ADT usage as the first-line treatment for metastatic prostate cancer. According to the European Association of Urology, gonadotropin-releasing hormone (GnRH) agonists have become the leading therapeutic option for ADT because they avoid the physical and psychological discomforts associated with orchiectomy. However, GnRH agonists display several shortcomings, including testosterone (T) surge (“clinical flare”) and microsurges. T surge delays the intended serologic endpoint of T suppression and may exacerbate clinical symptoms. Furthermore, ADT manifests an adverse-event spectrum that can impact quality of life with its attendant well-documented morbidities. Strategies to improve ADT tolerability include a holistic management approach, improved diet and exercise, and more specific monitoring to detect and prevent T depletion toxicities. Intermittent ADT, which allows hormonal recovery between treatment periods, has become increasingly utilized as a methodology for improving quality of life while not diminishing chronic ADT efficacy, and may also provide healthcare cost savings. This review assesses the present and potential future role of GnRH agonists in prostate cancer and explores strategies to minimize the adverse-event profile for patients receiving ADT. PMID:23172994

  2. Covalent agonists for studying G protein-coupled receptor activation

    PubMed Central

    Weichert, Dietmar; Kruse, Andrew C.; Manglik, Aashish; Hiller, Christine; Zhang, Cheng; Hübner, Harald; Kobilka, Brian K.; Gmeiner, Peter

    2014-01-01

    Structural studies on G protein-coupled receptors (GPCRs) provide important insights into the architecture and function of these important drug targets. However, the crystallization of GPCRs in active states is particularly challenging, requiring the formation of stable and conformationally homogeneous ligand-receptor complexes. Native hormones, neurotransmitters, and synthetic agonists that bind with low affinity are ineffective at stabilizing an active state for crystallogenesis. To promote structural studies on the pharmacologically highly relevant class of aminergic GPCRs, we here present the development of covalently binding molecular tools activating Gs-, Gi-, and Gq-coupled receptors. The covalent agonists are derived from the monoamine neurotransmitters noradrenaline, dopamine, serotonin, and histamine, and they were accessed using a general and versatile synthetic strategy. We demonstrate that the tool compounds presented herein display an efficient covalent binding mode and that the respective covalent ligand-receptor complexes activate G proteins comparable to the natural neurotransmitters. A crystal structure of the β2-adrenoreceptor in complex with a covalent noradrenaline analog and a conformationally selective antibody (nanobody) verified that these agonists can be used to facilitate crystallogenesis. PMID:25006259

  3. PPARgamma agonists as therapeutics for the treatment of Alzheimer's disease.

    PubMed

    Landreth, Gary; Jiang, Qingguang; Mandrekar, Shweta; Heneka, Michael

    2008-07-01

    Alzheimer's disease (AD) is characterized by the deposition of beta-amyloid within the brain parenchyma and is accompanied by the impairment of neuronal metabolism and function, leading to extensive neuronal loss. The disease involves the perturbation of synaptic function, energy, and lipid metabolism. The development of amyloid plaques results in the induction of a microglial-mediated inflammatory response. The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor whose biological actions are to regulate glucose and lipid metabolism and suppress inflammatory gene expression. Thus, agonists of this receptor represent an attractive therapeutic target for AD. There is now an extensive body of evidence that has demonstrated the efficacy of PPARgamma agonists in ameliorating disease-related pathology and improved learning and memory in animal models of AD. Recent clinical trials of the PPARgamma agonist rosiglitazone have shown significant improvement in memory and cognition in AD patients. Thus, PPARgamma represents an important new therapeutic target in treating AD.

  4. Emerging strategies for exploiting cannabinoid receptor agonists as medicines.

    PubMed

    Pertwee, Roger G

    2009-02-01

    Medicines that activate cannabinoid CB(1) and CB(2) receptor are already in the clinic. These are Cesamet (nabilone), Marinol (dronabinol; Delta(9)-tetrahydrocannabinol) and Sativex (Delta(9)-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol can also be prescribed to stimulate appetite, while Sativex is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB(2) receptors; or (v) 'multi-targeting'. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed.

  5. TLR agonists: our best frenemy in cancer immunotherapy

    PubMed Central

    Kaczanowska, Sabina; Joseph, Ann Mary; Davila, Eduardo

    2013-01-01

    Various TLR agonists are currently under investigation in clinical trials for their ability to orchestrate antitumor immunity. The antitumor responses are largely attributed to their aptitude to stimulate APCs such as DCs which in turn, activate tumor-specific T cell responses. However, there is a potential for TLR signaling to occur on cells other than professional APCs that could negate antitumor responses or even worse, promote tumor growth. The impetus for this review is twofold. First, there is accumulating data demonstrating that the engagement of TLRs on different T cell subsets and different cancer types could promote tumor growth or conversely, contribute to antitumor responses. Second, the efficacy of TLR agonists as monotherapies to treat cancer patients has been limited. In this review, we discuss how TLR signaling within different T cell subsets and cancer cells can potentially impact the generation of antitumor responses. Based on evidence from preclinical models and clinical trials, we draw attention to several criteria that we believe must be considered when selecting TLR agonists for developing effective immunotherapeutic strategies against cancer. PMID:23475577

  6. [Alpha-2 adrenergic agonists in the treatment of glaucoma].

    PubMed

    Apătăchioae, I; Chiseliţă, D

    1999-01-01

    The study represent an up-to-date of the role and place of alpha 2-adrenergic agonists in glaucoma treatment. The first available alpha 2-agonist, clonidine is of historical importance today. Apraclonidine decrease the aqueous humor secretion and episcleral venous pressure. It is employed to prevent or blunt the acute intraocular pressure rise after ocular laser therapy. It is not recommended as long term therapy due to its high incidence of local adverse reactions and tachyphylaxis. Brimonidine became the alpha 2-agonist of choice in glaucoma chronic treatment, acting by decreasing aqueous humor secretion and increasing uveoscleral outflow. It has a lower incidence of the ocular adverse effects because of greater alpha 2 selectivity. Brimonidine has neuroprotective effect, which is an important feature in the new contexts of glaucoma pathogenesis. Brimonidine has hypotensor effect similar with timolol but with a greater incidence of adverse local reactions. It has been no effects on cardiopulmonary function. Brimonidine would be of value as first-line therapy in patients who have contraindications to beta-blockers.

  7. Purines, a new class of agonists in salivary glands?

    PubMed

    Dehaye, J P; Moran, A; Marino, A

    1999-05-01

    The response of rat submandibular glands to extracellular purines was tested. In crude cellular suspensions, ATP increased the [Ca2+]i mostly by promoting uptake of extracellular calcium. ATP caused the pHi to drop, a response blocked by chloride channel inhibitors. ATP also inhibited the basal and isoproterenol-stimulated activity of the Na+ -K+ -2Cl-cotransporter. These effects were reproduced by benzoyl-ATP, an agonist of ionotropic purinoceptors. In pure ductal suspensions, ATP activated a metabotropic P2Y1 purinergic receptor coupled to phospholipase C and opened a non-specific cation channel coupled to a P2X7 receptor. Activation of these receptors stimulated a Ca2+ -dependent and a Ca2+ -independent phospholipase A2, the latter resulting in kallikrein secretion. We conclude that purinergic agonists can modulate the activity of both acinar and ductal phases of secretion. Activation of metabotropic receptors coupled to phospholipase C could lead to responses resembling those to muscarinic or adrenergic agonists. Activation of ionotropic receptors could stimulate new intracellular responses also involved in secretory function.

  8. Benzocyclobutane, benzocycloheptane and heptene derivatives as melatonin agonists and antagonists.

    PubMed

    Tsotinis, Andrew; Afroudakis, Pandelis A; Garratt, Peter J; Bocianowska-Zbrog, Alina; Sugden, David

    2014-10-01

    Two series of analogues were designed, synthesised and evaluated as potential human melatonin type 1 and 2 receptor (hMT1 and hMT2 ) ligands. Their biological effects were assessed by a well-established, specific model of melatonin action, the pigment response of Xenopus laevis melanophores. Compounds containing a benzocyclobutane scaffold and a methoxy group in the "melatonin" orientation were found to be potent agonists, with one of the analogues exhibiting activity comparable to melatonin. In contrast, analogues with a methoxy group in non-melatonin positions or with multiple methoxy groups showed either weaker agonist activity or were antagonists. Benzocycloheptene derivatives with one methoxy group are found to be weak agonists, whereas those with two methoxy groups were found to be antagonists, as were all of the benzocycloheptane derivatives evaluated. The most active compounds were assessed in a human receptor radio ligand binding assay but showed little discrimination between MT1 and MT2 . These results again show that the indole nitrogen of melatonin is not a necessary component for analogue activity and also illustrate that replacement of the indole ring with a 4-membered carbocycle can provide highly active compounds when the methoxy group is in the melatonin position. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Intracerebral adrenoceptor agonists influence rat duodenal mucosal bicarbonate secretion.

    PubMed

    Larson, G M; Jedstedt, G; Nylander, O; Flemström, G

    1996-11-01

    We have studied the effects of intracerebral administration of selective alpha-adrenergic agonists on duodenal bicarbonate secretion. Duodenum free of Brunner's glands was cannulated in situ in anesthetized rats, and bicarbonate secretion into the luminal reperfusate was continuously titrated by pH stat. Infusion of the alpha 1-selective adrenoceptor agonist, phenylephrine (1,000-2,500 micrograms.kg-1.h-1), into a lateral brain ventricle increased (P < 0.01) duodenal bicarbonate secretion. Pretreatment with prazosin, an alpha 1-antagonist, significantly (P < 0.01) reduced the stimulatory effect when infused into the lateral ventricle (30 micrograms.kg-1.h-1), but not when administered intravenously (1,000 micrograms.kg-1.h-1). Hexamethonium (10 mg.kg-1.h-1 iv) abolished stimulation, whereas cervical vagotomy, epidural blockade, and naloxone were each without effect. Vasopressin, vasopressin antagonists, ts, and oxytocin did not affect basal secretion. Intracerebro-ventricular administration of the alpha 2-adrenoceptor agonist, clonidine (1,000 micrograms.kg-1.h-1), in contrast to alpha 1-receptor activation, decreased (P < 0.01) the secretion. Thus central nervous adrenoceptors influence duodenal mucosal bicarbonate te secretion, and alpha 1-adrenoceptor stimulation may provide protection against luminal acid. This potent stimulation was not mediated by the vagal nerves, spinal cord pathways, or the release of beta-endorphin but involves nicotinic, possibly enteric nervous transmission.

  10. Contact- and agonist-regulated microvesiculation of human platelets.

    PubMed

    Zhang, Yanjun; Liu, Xiao; Liu, Li; Zaske, Ana-Maria; Zhou, Zhou; Fu, Yuanyuan; Yang, Xi; Conyers, Jodie L; Li, Min; Dong, Jing-fei; Zhang, Jianning

    2013-08-01

    After exposure to an agonist, platelets are activated and become aggregated. They also shed membrane microparticles that participate in the pathogenesis of thrombosis, hyper-coagulation and inflammation. However, microvesiculation can potentially disrupt the integrity of platelet aggregation by shedding the membrane receptors and phosphatidylserine critical for forming and stabilising a platelet clot. We tested the hypothesis that adhesion and microvesiculation are functions of different subsets of platelets at the time of haemostasis by real-time monitoring of agonist-induced morphological changes and microvesiculation of human platelets.We identified two types of platelets that are adherent to fibrinogen: a high density bubble shape (HDBS) and low-density spread shape (LDSS). Adenosine diphosphate (ADP) predominantly induced HDBS platelets to vesiculate, whereas LDSS platelets were highly resistant to such vesiculation. Thrombin-receptor activating peptide (TRAP) stabilised platelets against microvesiculation by promoting a rapid HDBS-to-LDSS morphological transition. These activities of ADP and TRAP were reversed for platelets in suspension, independent of an engagement integrin αIIbβ3. As the result of membrane contact, LDSS platelets inhibited the microvesiculation of HDBS platelets in response to ADP. Aspirin and clopidogrel inhibited ADP-induced microvesiculation through different mechanisms. These results suggest that platelet aggregation and microvesiculation occur in different subsets of platelets and are differently regulated by agonists, platelet-platelets and platelet-fibrinogen interactions.

  11. Agonistic sounds signal male quality in the Lusitanian toadfish.

    PubMed

    Amorim, M Clara P; Conti, Carlotta; Modesto, Teresa; Gonçalves, Amparo; Fonseca, Paulo J

    2015-10-01

    Acoustic communication during agonistic behaviour is widespread in fishes. Yet, compared to other taxa, little is known on the information content of fish agonistic calls and their effect on territorial defence. Lusitanian toadfish males (Halobatrachus didactylus) are highly territorial during the breeding season and use sounds (boatwhistles, BW) to defend nests from intruders. BW present most energy in either the fundamental frequency, set by the contraction rate of the sonic muscles attached to the swimbladder, or in the harmonics, which are multiples of the fundamental frequency. Here we investigated if temporal and spectral features of BW produced during territorial defence reflect aspects of male quality that may be important in resolving disputes. We found that higher mean pulse period (i.e. lower fundamental frequency) reflected higher levels of 11-ketotestosterone (11KT), the main teleost androgen which, in turn, was significantly related with male condition (relative body mass and glycogen content). BW dominant harmonic mean and variability decreased with sonic muscle lipid content. We found no association between BW duration and male quality. Taken together, these results suggest that the spectral content of fish agonistic sounds may signal male features that are key in fight outcome.

  12. Emerging strategies for exploiting cannabinoid receptor agonists as medicines

    PubMed Central

    Pertwee, Roger G

    2009-01-01

    Medicines that activate cannabinoid CB1 and CB2 receptor are already in the clinic. These are Cesamet® (nabilone), Marinol® (dronabinol; Δ9-tetrahydrocannabinol) and Sativex® (Δ9-tetrahydrocannabinol with cannabidiol). The first two of these medicines can be prescribed to reduce chemotherapy-induced nausea and vomiting. Marinol® can also be prescribed to stimulate appetite, while Sativex® is prescribed for the symptomatic relief of neuropathic pain in adults with multiple sclerosis and as an adjunctive analgesic treatment for adult patients with advanced cancer. One challenge now is to identify additional therapeutic targets for cannabinoid receptor agonists, and a number of potential clinical applications for such agonists are mentioned in this review. A second challenge is to develop strategies that will improve the efficacy and/or the benefit-to-risk ratio of a cannabinoid receptor agonist. This review focuses on five strategies that have the potential to meet either or both of these objectives. These are strategies that involve: (i) targeting cannabinoid receptors located outside the blood-brain barrier; (ii) targeting cannabinoid receptors expressed by a particular tissue; (iii) targeting up-regulated cannabinoid receptors; (iv) targeting cannabinoid CB2 receptors; or (v) ‘multi-targeting’. Preclinical data that justify additional research directed at evaluating the clinical importance of each of these strategies are also discussed. PMID:19226257

  13. Detection of beta 2-agonists in milk replacer.

    PubMed

    Caloni, F; Montana, M; Pasqualucci, C; Brambilla, G; Pompa, G

    1995-01-01

    beta 2-Agonist drugs may be illegally used as growth promoters for feedlot calves, when mixed into milk replacer immediately before feeding. To check for the presence of clenbuterol, salbutamol and terbutaline in such food, an analytical system was established using a screening method based on two commercial qualitative competitive ELISA tests, with antibodies raised against the arylamino group and the t-butyl group. The extraction procedure was based on precipitation of the milk samples with acetonitrile followed by filtration. The absence of any significant interference by other substances in the filtrate allowed detection of beta 2-agonist drugs in spiked samples at the lowest concentration having a repartitioning effect (50 ppb for clenbuterol, mabuterol and terbutaline, 500 ppb for salbutamol). In view of a false positive response with tetracycline in milk samples and a cross-reaction between clenbuterol and mabuterol, an HPLC-MS technique was developed which, after extraction and purification of the samples with SPE C18 Polar Plus, was able to confirm the presence of these drugs. The good recovery after extraction (ranging from 84% to 90.2%) and the low detection limit with this method (250 ng/ml for clenbuterol, mabuterol and terbutaline, and 2.5 micrograms/ml for salbutamol) allowed easy confirmation and simultaneous detection of the four beta 2-agonists at the lowest concentrations at which they are used in adulterated milk for calves.

  14. Endorphins and food intake: kappa opioid receptor agonists and hyperphagia.

    PubMed

    Cooper, S J; Jackson, A; Kirkham, T C

    1985-11-01

    Evidence from studies which utilise either opiate receptor agonists and antagonists strongly indicate a role for endorphinergic mechanisms in the control of feeding responses. Two means by which these compounds may exert an effect on feeding can be singled-out. Firstly, emerging evidence suggests that the process of achieving satiety (terminating a meal, or choice of a commodity) may be accelerated following treatments with opiate receptor antagonists. Secondly, the preference for highly palatable solutions (sweet solutions have received most attention) in two-bottle tests is blocked after injection of opiate receptor antagonists. This finding has been interpreted in terms of the abolition of the reward or incentive quality associated with the particularly attractive flavour. These two mechanisms of action may represent two aspects of a single, fundamental process. Following an introduction to rat urination model of in vivo kappa agonist activity, the consistent effect of several kappa agonists (including the highly selective U-50,488H) to stimulate food consumption is described. Recognising that members of the dynorphin group of endogenous opioid peptides are kappa receptor ligands, some with a high degree of selectivity, and the evidence the dynorphins and neo-endorphins produce hyperphagia in rats is particularly interesting. Such lines of evidence lead to the hypothesis that peptides of the dynorphin group may act endogenously to promote the expression of normal feeding behaviour.

  15. Pregnane X receptor agonists impair postprandial glucose tolerance.

    PubMed

    Rysä, J; Buler, M; Savolainen, M J; Ruskoaho, H; Hakkola, J; Hukkanen, J

    2013-06-01

    We conducted a randomized, open, placebo-controlled crossover trial to investigate the effects of the pregnane X receptor (PXR) agonist rifampin on an oral glucose tolerance test (OGTT) in 12 healthy volunteers. The subjects were administered 600 mg rifampin or placebo once daily for 7 days, and OGTT was performed on the eighth day. The mean incremental glucose and insulin areas under the plasma concentration-time curves (AUC(incr)) increased by 192% (P = 0.008) and 45% (P = 0.031), respectively. The fasting glucose, insulin, and C-peptide, and the homeostasis model assessment for insulin resistance, were not affected. The glucose AUC(incr) during OGTT was significantly increased in rats after 4-day treatment with pregnenolone 16α-carbonitrile (PCN), an agonist of the rat PXR. The hepatic level of glucose transporter 2 (Glut2) mRNA was downregulated by PCN. In conclusion, both human and rat PXR agonists elicited postprandial hyperglycemia, suggesting a detrimental role of PXR activation on glucose tolerance.

  16. Pharmacogenomics of long-acting β2-agonists.

    PubMed

    Blake, Kathryn; Lima, John

    2015-01-01

    Long-acting β2-agonists are an effective class of drugs, when combined with inhaled corticosteroids, for reducing symptoms and exacerbations in patients with asthma that is not adequately controlled by inhaled corticosteroids alone. However, because this class of drugs has been associated with severe adverse events, including hospitalization and death in small numbers of patients, efforts to identify a pharmacogenetic profile for patients at risk has been diligently investigated. The PubMed search engine of the National Library of Medicine was used to identify English-language and non-English language articles published from 1947 to March 2015 pertinent to asthma, pharmacogenomics, and long-acting β2-agonists. Keywords and topics included: asthma, asthma control, long-acting β2-agonists, salmeterol, formoterol, pharmacogenetics, and pharmacogenomics. This strategy was also used for the Cochrane Library Database and CINAHL. Reference types were randomized controlled trials, reviews, and editorials. Additional publications were culled from reference lists. The publications were reviewed by the authors and those most relevant were used to support the topics covered in this review. Children, who carry the ADRB2 Arg16Arg genotype, may be at greater risk than adults for severe adverse events. Rare ADRB2 variants appear to provide better clues for identifying the at-risk population of asthmatics.

  17. Beta2-Agonist Doping Control and Optical Isomer Challenges.

    PubMed

    Jacobson, Glenn A; Fawcett, J Paul

    2016-12-01

    The World Anti-Doping Agency (WADA) currently allows therapeutic use of the beta2-agonists salbutamol, formoterol and salmeterol when delivered via inhalation despite some evidence suggesting these anti-asthma drugs may be performance enhancing. Beta2-agonists are usually administered as 50:50 racemic mixtures of two enantiomers (non-superimposable mirror images), one of which demonstrates significant beta2-adrenoceptor-mediated bronchodilation while the other appears to have little or no pharmacological activity. For salbutamol and formoterol, urine thresholds have been adopted to limit supratherapeutic dosing and to discriminate between inhaled (permitted) and oral (prohibited) use. However, chiral switches have led to the availability of enantiopure (active enantiomer only) preparations of salbutamol and formoterol, which effectively doubles their urine thresholds and provides a means for athletes to take supratherapeutic doses for doping purposes. Given the availability of these enantiopure beta2-agonists, the analysis of these drugs using enantioselective assays should now become routine. For salmeterol, there is currently only a therapeutic dose threshold and adoption of a urinary threshold should be a high priority for doping control.

  18. [Treatment of Parkinson disease: therapeutic reserve of the dopaminergic agonist].

    PubMed

    Linazasoro, G; van Blercom, N

    2006-09-01

    Parkinson's disease (PD) is a neurodegenerative, chronic and progressive disease whose evolutive course changed significantly after the introduction of levodopa. However, no antiparkinsonian drug has been able to stop the progression of PD. Thus, as the years have passed, greater drug doses have been necessary, either alone or in different combinations. Therefore, it is useful to have drugs with a wide threshold between effective dose and maximum tolerated dose. The concept of therapeutic reserve (TR) can be considered equivalent to therapeutic index or therapeutic window and could be defined as the difference between the dose needed to achieve an optimum therapeutic response at a given time and the dose that causes adverse events (maximum recommended dose or "ceiling dose"). This difference indicates the threshold that makes it possible to use higher doses as the disease advances to maintain an optimum clinical effect without the appearance of adverse events. This concept is important in the case of dopaminergic agonists whose efficacy seems to be similar in the daily clinical practice. Although there are no direct comparative studies, the analysis of the results of different studies suggests that the TR of ropinirole is superior to that of other dopaminergic agonists. The first effective dose, defined as an improvement superior to 30 % is observed with 9 mg/day in 75 % of the patients while the maximum recommended dose is 24 mg/day. This threshold is less with other dopamine agonists.

  19. Molecular impact of juvenile hormone agonists on neonatal Daphnia magna.

    PubMed

    Toyota, Kenji; Kato, Yasuhiko; Miyakawa, Hitoshi; Yatsu, Ryohei; Mizutani, Takeshi; Ogino, Yukiko; Miyagawa, Shinichi; Watanabe, Hajime; Nishide, Hiroyo; Uchiyama, Ikuo; Tatarazako, Norihisa; Iguchi, Taisen

    2014-05-01

    Daphnia magna has been used extensively to evaluate organism- and population-level responses to pollutants in acute toxicity and reproductive toxicity tests. We have previously reported that exposure to juvenile hormone (JH) agonists results in a reduction of reproductive function and production of male offspring in a cyclic parthenogenesis, D. magna. Recent advances in molecular techniques have provided tools to understand better the responses to pollutants in aquatic organisms, including D. magna. DNA microarray was used to evaluate gene expression profiles of neonatal daphnids exposed to JH agonists: methoprene (125, 250 and 500 ppb), fenoxycarb (0.5, 1 and 2 ppb) and epofenonane (50, 100 and 200 ppb). Exposure to these JH analogs resulted in chemical-specific patterns of gene expression. The heat map analyses based on hierarchical clustering revealed a similar pattern between treatments with a high dose of methoprene and with epofenonane. In contrast, treatment with low to middle doses of methoprene resulted in similar profiles to fenoxycarb treatments. Hemoglobin and JH epoxide hydrolase genes were clustered as JH-responsive genes. These data suggest that fenoxycarb has high activity as a JH agonist, methoprene shows high toxicity and epofenonane works through a different mechanism compared with other JH analogs, agreeing with data of previously reported toxicity tests. In conclusion, D. magna DNA microarray is useful for the classification of JH analogs and identification of JH-responsive genes.

  20. Neuroprotective effects mediated by dopamine receptor agonists against malonate-induced lesion in the rat striatum.

    PubMed

    Fancellu, R; Armentero, M-T; Nappi, G; Blandini, F

    2003-10-01

    In rats, intrastriatal injection of malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces a lesion similar to that observed following focal ischemia or in Huntington's disease. In this study we used the malonate model to explore the neuroprotective potential of dopamine agonists. Rats were injected intraperitoneally with increasing concentrations of D1, D2, or mixed D1/D2 dopamine agonists prior to intrastriatal injection of malonate. Administration of increasing doses of the D2-specific agonist quinpirole resulted in increased protection against malonate toxicity. Conversely, the D1-specific agonist SKF-38393, as well as the mixed D1/D2 agonist apomorphine, conferred higher neuroprotection at lower than at higher drug concentrations. Our data suggest that malonate- induced striatal toxicity can be attenuated by systemic administration of dopamine agonists, with D1 and D2 agonists showing different profiles of efficacy.

  1. The β2-adrenoceptor agonist formoterol stimulates mitochondrial biogenesis.

    PubMed

    Wills, Lauren P; Trager, Richard E; Beeson, Gyda C; Lindsey, Christopher C; Peterson, Yuri K; Beeson, Craig C; Schnellmann, Rick G

    2012-07-01

    Mitochondrial dysfunction is a common mediator of disease and organ injury. Although recent studies show that inducing mitochondrial biogenesis (MB) stimulates cell repair and regeneration, only a limited number of chemicals are known to induce MB. To examine the impact of the β-adrenoceptor (β-AR) signaling pathway on MB, primary renal proximal tubule cells (RPTC) and adult feline cardiomyocytes were exposed for 24 h to multiple β-AR agonists: isoproterenol (nonselective β-AR agonist), (±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL 37344) (selective β(3)-AR agonist), and formoterol (selective β(2)-AR agonist). The Seahorse Biosciences (North Billerica, MA) extracellular flux analyzer was used to quantify carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-uncoupled oxygen consumption rate (OCR), a marker of maximal electron transport chain activity. Isoproterenol and BRL 37244 did not alter mitochondrial respiration at any of the concentrations examined. Formoterol exposure resulted in increases in both FCCP-uncoupled OCR and mitochondrial DNA (mtDNA) copy number. The effect of formoterol on OCR in RPTC was inhibited by the β-AR antagonist propranolol and the β(2)-AR inverse agonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol hydrochloride (ICI-118,551). Mice exposed to formoterol for 24 or 72 h exhibited increases in kidney and heart mtDNA copy number, peroxisome proliferator-activated receptor γ coactivator 1α, and multiple genes involved in the mitochondrial electron transport chain (F0 subunit 6 of transmembrane F-type ATP synthase, NADH dehydrogenase subunit 1, NADH dehydrogenase subunit 6, and NADH dehydrogenase [ubiquinone] 1β subcomplex subunit 8). Cheminformatic modeling, virtual chemical library screening, and experimental validation identified nisoxetine from the Sigma Library of Pharmacologically Active Compounds and two compounds from the ChemBridge DIVERSet

  2. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)alpha agonist fenofibrate and the PPARgamma agonist pioglitazone.

    PubMed

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-03-30

    All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARgamma agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARalpha agonist fenofibrate (FENO) and the PPARgamma agonist pioglitazone (PIO) on bone in intact female rats. Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. We show opposite skeletal effects of PPARalpha and gamma agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARalpha activation.

  3. Different skeletal effects of the peroxisome proliferator activated receptor (PPAR)α agonist fenofibrate and the PPARγ agonist pioglitazone

    PubMed Central

    Syversen, Unni; Stunes, Astrid K; Gustafsson, Björn I; Obrant, Karl J; Nordsletten, Lars; Berge, Rolf; Thommesen, Liv; Reseland, Janne E

    2009-01-01

    Background All the peroxisome proliferator activated receptors (PPARs) are found to be expressed in bone cells. The PPARγ agonist rosiglitazone has been shown to decrease bone mass in mice and thiazolidinediones (TZDs) have recently been found to increase bone loss and fracture risk in humans treated for type 2 diabetes mellitus. The aim of the study was to examine the effect of the PPARα agonist fenofibrate (FENO) and the PPARγ agonist pioglitazone (PIO) on bone in intact female rats. Methods Rats were given methylcellulose (vehicle), fenofibrate or pioglitazone (35 mg/kg body weight/day) by gavage for 4 months. BMC, BMD, and body composition were measured by DXA. Histomorphometry and biomechanical testing of excised femurs were performed. Effects of the compounds on bone cells were studied. Results The FENO group had higher femoral BMD and smaller medullary area at the distal femur; while trabecular bone volume was similar to controls. Whole body BMD, BMC, and trabecular bone volume were lower, while medullary area was increased in PIO rats compared to controls. Ultimate bending moment and energy absorption of the femoral shafts were reduced in the PIO group, while similar to controls in the FENO group. Plasma osteocalcin was higher in the FENO group than in the other groups. FENO stimulated proliferation and differentiation of, and OPG release from, the preosteoblast cell line MC3T3-E1. Conclusion We show opposite skeletal effects of PPARα and γ agonists in intact female rats. FENO resulted in significantly higher femoral BMD and lower medullary area, while PIO induced bone loss and impairment of the mechanical strength. This represents a novel effect of PPARα activation. PMID:19331671

  4. Superagonist, Full Agonist, Partial Agonist, and Antagonist Actions of Arylguanidines at 5-Hydroxytryptamine-3 (5-HT3) Subunit A Receptors.

    PubMed

    Alix, Katie; Khatri, Shailesh; Mosier, Philip D; Casterlow, Samantha; Yan, Dong; Nyce, Heather L; White, Michael M; Schulte, Marvin K; Dukat, Małgorzata

    2016-11-16

    Introduction of minor variations to the substitution pattern of arylguanidine 5-hydroxytryptamine-3 (5-HT3) receptor ligands resulted in a broad spectrum of functionally-active ligands from antagonist to superagonist. For example, (i) introduction of an additional Cl-substituent(s) to our lead full agonist N-(3-chlorophenyl)guanidine (mCPG, 2; efficacy % = 106) yielded superagonists 7-9 (efficacy % = 186, 139, and 129, respectively), (ii) a positional isomer of 2, p-Cl analog 11, displayed partial agonist actions (efficacy % = 12), and (iii) replacing the halogen atom at the meta or para position with an electron donating OCH3 group or a stronger electron withdrawing (i.e., CF3) group resulted in antagonists 13-16. We posit based on combined mutagenesis, crystallographic, and computational analyses that for the 5-HT3 receptor, the arylguanidines that are better able to simultaneously engage the primary and complementary subunits, thus keeping them in close proximity, have greater agonist character while those that are deficient in this ability are antagonists.

  5. Virtual screening of CB(2) receptor agonists from bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features.

    PubMed

    Renault, Nicolas; Laurent, Xavier; Farce, Amaury; El Bakali, Jamal; Mansouri, Roxane; Gervois, Philippe; Millet, Régis; Desreumaux, Pierre; Furman, Christophe; Chavatte, Philippe

    2013-04-01

    The relevance of CB(2)-mediated therapeutics is well established in the treatment of pain, neurodegenerative and gastrointestinal tract disorders. Recent works such as the crystallization of class-A G-protein-coupled receptors in a range of active states and the identification of specific anchoring sites for CB(2) agonists challenged us to design a reliable agonist-bound homology model of CB(2) receptor. Docking-scoring enrichment tests of a high-throughput virtual screening of 140 compounds led to 13 hits within the micromolar affinity range. Most of these hits behaved as CB(2) agonists, among which two novel full agonists emerged. Although the main challenge was a high-throughput docking run targeting an agonist-bound state of a CB(2) model, a prior 2D ligand-based Bayesian network was computed to enrich the input commercial library for 3D screening. The exclusive discovery of agonists illustrates the reliability of this agonist-bound state model for the identification of polar and aromatic amino acids as new agonist-modulated CB(2) features to be integrated in the wide activation pathway of G-protein-coupled receptors.

  6. Activation of A1, A2A, or A3 adenosine receptors attenuates lung ischemia-reperfusion injury

    PubMed Central

    Gazoni, Leo M.; Walters, Dustin M.; Unger, Eric B.; Linden, Joel; Kron, Irving L.; Laubach, Victor E.

    2010-01-01

    Objective Adenosine and the activation of specific adenosine receptors are implicated in the attenuation of inflammation and organ ischemia-reperfusion (IR) injury. We hypothesized that activation of A1, A2A, or A3 adenosine receptors would provide protection against lung IR injury. Methods Using an isolated, ventilated, blood-perfused rabbit lung model, lungs underwent 18 hours cold ischemia followed by 2 hours reperfusion. Lungs were administered either vehicle, adenosine, or selective A1, A2A, or A3 receptor agonists (CCPA, ATL-313, or IB-MECA, respectively) alone or with their respective antagonists (DPCPX, ZM241385, or MRS1191) during reperfusion. Results Compared to the vehicle-treated control group, treatment with A1, A2A, or A3 agonists significantly improved function (increased lung compliance and oxygenation and decreased pulmonary artery pressure), decreased neutrophil infiltration by myeloperoxidase activity, decreased edema, and reduced TNF-α production. Adenosine treatment was also protective but not to the level of the agonists. When each agonist was paired with its respective antagonist, all protective effects were blocked. The A2A agonist reduced pulmonary artery pressure and myeloperoxidase activity and increased oxygenation to a greater degree than the A1 or A3 agonists. Conclusions Selective activation of A1, A2A, or A3 adenosine receptors provides significant protection against lung IR injury. The decreased elaboration of the potent proinflammatory cytokine, TNF-α, and decreased neutrophil sequestration likely contribute to the overall improvement in pulmonary function. These results provide evidence for the therapeutic potential of specific adenosine receptor agonists in lung transplant recipients. PMID:20398911

  7. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR{alpha} agonist WY14643 in rat hepatocytes

    SciTech Connect

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.; Kuna, M.; Andres, J.; Carnevali, L.C.; Hirsch-Ernst, K.I.; Pueschel, G.P.

    2009-10-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR{alpha} agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR{alpha} agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR{alpha} agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR{alpha}-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR{alpha} ligands. The synergism of the PPAR{alpha} agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  8. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPAR alpha agonist WY14643 in rat hepatocytes.

    PubMed

    Wieneke, N; Neuschäfer-Rube, F; Bode, L M; Kuna, M; Andres, J; Carnevali, L C; Hirsch-Ernst, K I; Püschel, G P

    2009-10-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPAR alpha agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPAR alpha agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPAR alpha agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPAR alpha-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPAR alpha ligands. The synergism of the PPAR alpha agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  9. Switching subtype-selectivity: Fragment replacement strategy affords novel class of peroxisome proliferator-activated receptor α/δ (PPARα/δ) dual agonists.

    PubMed

    Shioi, Ryuta; Okazaki, Shogo; Noguchi-Yachide, Tomomi; Ishikawa, Minoru; Makishima, Makoto; Hashimoto, Yuichi; Yamaguchi, Takao

    2017-07-15

    Peroxisome proliferator-activated receptors (PPARs) are important drug targets for treatment of dyslipidemia, type 2 diabetes, cardiovascular disease, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and great efforts have been made to develop novel PPAR ligands. However, most existing PPAR ligands contain a carboxylic acid (CA) or thiazolidinedione (TZD) structure (acidic head group) that is essential for activity. We recently discovered non-CA/TZD class PPARα/δ partial agonists, which contain an acetamide moiety and adjacent methyl group, linked to a 1,2,4-oxadiazole ring ("fragment a"). We hypothesized that the acetamide structure might interact with the CA/TZD-binding pocket. To test this idea, we firstly replaced fragment a in one of our compounds with the α-alkoxy-CA structure often found in PPAR agonists. Secondly, we replaced the α-alkoxy-CA head group of several reported PPAR agonists with our acetamide-based fragment a. The agonistic activities of the synthesized hybrid compounds toward PPARs (PPARα, PPARγ and PPARδ) were evaluated by means of cell-based reporter gene assays. All the hybrid molecules showed PPAR-agonistic activities, but replacement of the α-alkoxy-CA head group altered the maximum efficacy and the subtype-specificity. The acetamide-based hybrid molecules showed partial agonism toward PPARα and PPARδ, whereas the α-alkoxy-CA-based molecules were generally selective for PPARα and PPARγ, with relatively high activation efficacies. Thus, the fragment replacement strategy appears promising for the development of novel acetamide-based PPARα/δ dual agonists. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Competitive interaction of agonists and antagonists with 5-HT3 recognition sites in membranes of neuroblastoma cells labelled with (/sup 3/H)ICS 205-930

    SciTech Connect

    Hoyer, D.; Neijt, H.C.; Karpf, A.

    1989-01-01

    (3H)ICS 205-930 labelled 5-HT3 recognition sites in membranes prepared from murine neuroblastoma N1E-115 cells. Binding was rapid, reversible, saturable and stereoselective to an apparently homogeneous population of sites. Kinetic studies revealed that agonists and antagonists produced a monophasic dissociation reaction of (3H)ICS 205-930 from its recognition sites. The dissociation rate constant of the radioligand was similar whether the dissociation was induced by an agonist or an antagonist. Competition studies carried out with agonists and antagonists also suggested the presence of a homogeneous population of (3H)ICS 205-930 recognition sites. Competition curves were best fit for a 1 site model. (3H)ICS 205-930 binding sites displayed the pharmacological profile of a 5-HT3 receptor. The interactions of agonists and antagonists with (3H)ICS 205-930 recognition sites were apparently competitive in nature, as demonstrated in kinetic and equilibrium experiments. In saturation experiments carried out with (3H)ICS 205-930 in the presence and the absence of unlabelled agonists and antagonists, apparent Bmax values were not reduced whereas apparent Kd values were increased in the presence of competing ligands. There was a good agreement between apparent pKB values calculated for the competing ligands in saturation experiments and pKd values calculated from competition experiments. The present data demonstrate that (3H)ICS 205-930 labels a homogeneous population of sites at which agonists and antagonists interact competitively.

  11. Treatment potential of the GLP-1 receptor agonists in type 2 diabetes mellitus: a review.

    PubMed

    Østergaard, L; Frandsen, Christian S; Madsbad, S

    2016-01-01

    Over the last decade, the discovery of glucagon-like peptide 1 receptor agonists (GLP-1 RAs) has increased the treatment options for patients with type 2 diabetes mellitus (T2DM). GLP-1 RAs mimic the effects of native GLP-1, which increases insulin secretion, inhibits glucagon secretion, increases satiety and slows gastric emptying. This review evaluates the phase III trials for all approved GLP-1 RAs and reports that all GLP-1 RAs decrease HbA1c, fasting plasma glucose, and lead to a reduction in body weight in the majority of trials. The most common adverse events are nausea and other gastrointestinal discomfort, while hypoglycaemia is rarely reported when GLP-1 RAs not are combined with sulfonylurea or insulin. Treatment options in the near future will include co-formulations of basal insulin and a GLP-1 RA.

  12. Oxysterols are agonist ligands of RORγt and drive Th17 cell differentiation

    PubMed Central

    Soroosh, Pejman; Wu, Jiejun; Xue, Xiaohua; Song, Jiao; Sutton, Steven W.; Sablad, Marciano; Yu, Jingxue; Nelen, Marina I.; Liu, Xuejun; Castro, Glenda; Luna, Rosa; Crawford, Shelby; Banie, Homayon; Dandridge, Rose A.; Deng, Xiaohu; Bittner, Anton; Kuei, Chester; Tootoonchi, Mandana; Rozenkrants, Natasha; Herman, Krystal; Gao, Jingjin; Yang, Xia V.; Sachen, Kacey; Ngo, Karen; Fung-Leung, Wai-Ping; Nguyen, Steven; de Leon-Tabaldo, Aimee; Blevitt, Jonathan; Zhang, Yan; Cummings, Maxwell D.; Rao, Tadimeti; Mani, Neelakandha S.; Liu, Changlu; McKinnon, Murray; Milla, Marcos E.; Fourie, Anne M.; Sun, Siquan

    2014-01-01

    The RAR-related orphan receptor gamma t (RORγt) is a nuclear receptor required for generating IL-17–producing CD4+ Th17 T cells, which are essential in host defense and may play key pathogenic roles in autoimmune diseases. Oxysterols elicit profound effects on immune and inflammatory responses as well as on cholesterol and lipid metabolism. Here, we describe the identification of several naturally occurring oxysterols as RORγt agonists. The most potent and selective activator for RORγt is 7β, 27-dihydroxycholesterol (7β, 27-OHC). We show that these oxysterols reverse the inhibitory effect of an RORγt antagonist, ursolic acid, in RORγ- or RORγt-dependent cell-based reporter assays. These ligands bind directly to recombinant RORγ ligand binding domain (LBD), promote recruitment of a coactivator peptide, and reduce binding of a corepressor peptide to RORγ LBD. In primary cells, 7β, 27-OHC and 7α, 27-OHC enhance the differentiation of murine and human IL-17–producing Th17 cells in an RORγt-dependent manner. Importantly, we showed that Th17, but not Th1 cells, preferentially produce these two oxysterols. In vivo, administration of 7β, 27-OHC in mice enhanced IL-17 production. Mice deficient in CYP27A1, a key enzyme in generating these oxysterols, showed significant reduction of IL-17–producing cells, including CD4+ and γδ+ T cells, similar to the deficiency observed in RORγt knockout mice. Our results reveal a previously unknown mechanism for selected oxysterols as immune modulators and a direct role for CYP27A1 in generating these RORγt agonist ligands, which we propose as RORγt endogenous ligands, driving both innate and adaptive IL-17–dependent immune responses. PMID:25092323

  13. Identification of a naturally occurring retinoid X receptor agonist from Brazilian green propolis.

    PubMed

    Nakashima, Ken-Ichi; Murakami, Tohru; Tanabe, Hiroki; Inoue, Makoto

    2014-10-01

    Brazilian green propolis (BGP), a resinous substance produced from Baccharis dracunculifolia by Africanized honey bees (Apis mellifera), is used as a folk medicine. Our present study explores the retinoid X receptor (RXR) agonistic activity of BGP and the identification of an RXR agonist in its extract. RXRα agonistic activity was evaluated using a luciferase reporter gene assay. Isolation of the RXRα agonist from the ethanolic extract of BGP was performed using successive silica gel and a reversed phase column chromatography. The interaction between the isolated RXRα agonist and RXRα protein was predicted by a receptor-ligand docking simulation. The nuclear receptor (NR) cofactor assay was used to estimate whether the isolated RXRα agonist bound to various NRs, including RXRs and peroxisome proliferator-activated receptors (PPARs). We further examined its effect on adipogenesis in 3T3-L1 fibroblasts. We identified drupanin as an RXRα agonist with an EC50 value of 4.8 ± 1.0 μM. Drupanin activated three RXR subtypes by a similar amount and activated PPARγ moderately. Additionally, drupanin induced adipogenesis and elevated aP2 mRNA levels in 3T3-L1 fibroblasts. Drupanin, a component of BGP, is a novel RXR agonist with slight PPARγ agonistic activity. This study revealed for the first time that BGP activates RXR and drupanin is an RXR agonist in its extract. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Computational Structure-activity Relationship Analysis of Small-Molecule Agonists for Human Formyl Peptide Receptors

    PubMed Central

    Khlebnikov, Andrei I.; Schepetkin, Igor A; Quinn, Mark T.

    2010-01-01

    N-formyl peptide receptors (FPR) are important in host defense. Because of the potential for FPRs as therapeutic targets, recent efforts have focused on identification of non-peptide agonists for two FPR subtypes, FPR1 and FPR2. Given that a number of specific small molecule agonists have recently been identified, we hypothesized that computational structure-activity relationship (SAR) analysis of these molecules could provide new information regarding molecular features required for activity. We used a training set of 71 compounds, including 10 FPR1-specific agonists, 36 FPR2-specific agonists, and 25 non-active analogs. A sequence of (1) one-way analysis of variance selection, (2) cluster analysis, (3) linear discriminant analysis, and (4) classification tree analysis led to the derivation of SAR rules with high (95.8%) accuracy for correct classification of compounds. These SAR rules revealed key features distinguishing FPR1 versus FPR2 agonists. To verify predictive ability, we evaluated a test set of 17 additional FPR agonists, and found that the majority of these agonists (>94%) were classified correctly as agonists. This study represents the first successful application of classification tree methodology based on atom pairs to SAR analysis of FPR agonists. Importantly, these SAR rules represent a relatively simple classification approach for virtual screening of FPR1/FPR2 agonists. PMID:20870313

  15. A1C

    MedlinePlus

    A1C is a blood test for type 2 diabetes and prediabetes. It measures your average blood glucose, or blood sugar, level over the past 3 ... A1C alone or in combination with other diabetes tests to make a diagnosis. They also use the ...

  16. Activation of single heteromeric GABAA receptor ion channels by full and partial agonists

    PubMed Central

    Mortensen, Martin; Kristiansen, Uffe; Ebert, Bjarke; Frølund, Bente; Krogsgaard-Larsen, Povl; Smart, Trevor G

    2004-01-01

    The linkage between agonist binding and the activation of a GABAA receptor ion channel is yet to be resolved. This aspect was examined on human recombinant α1β2γ2S GABAA receptors expressed in human embryonic kidney cells using the following series of receptor agonists: GABA, isoguvacine, 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), isonipecotic acid, piperidine-4-sulphonic acid (P4S), imidazole-4-acetic acid (IAA), 5-(4-piperidyl)-3-isothiazolol (thio-4-PIOL) and 5-(4-piperidyl)-3-isoxazolol (4-PIOL). Whole-cell concentration–response curves enabled the agonists to be categorized into four classes based upon their maximum responses. Single channel analyses revealed that the channel conductance of 25–27 pS was unaffected by the agonists. However, two open states were resolved from the open period distributions with mean open times reduced 5-fold by the weakest partial agonists. Using saturating agonist concentrations, estimates of the channel shutting rate, α, ranged from 200 to 600 s−1. The shut period distributions were described by three or four components and for the weakest partial agonists, the interburst shut periods increased whilst the mean burst durations and longest burst lengths were reduced relative to the full agonists. From the burst analyses, the opening rates for channel activation, β, and the total dissociation rates, k−1, for the agonists leaving the receptor were estimated. The agonist efficacies were larger for the full agonists (E ∼7−9) compared to the weak partial agonists (∼0.4–0.6). Overall, changes in agonist efficacy largely determined the different agonist profiles with contributions from the agonist affinities and the degree of receptor desensitization. From this we conclude that GABAA receptor activation does not occur in a switch-like manner since the agonist recognition sites are flexible, accommodating diverse agonist structures which differentially influence the opening and shutting rates of the ion

  17. PPARgamma agonist pioglitazone does not enhance performance in mice.

    PubMed

    Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Martinez-Bello, Vladimir E

    2014-09-01

    Peroxisome-proliferator-activated receptor (PPAR) delta and adenosine monophosphate (AMP)-activated protein kinases (AMPKs) regulate the metabolic and contractile characteristics of myofibres. PPAR proteins are nuclear receptors that function as transcription factors and regulate the expression of multiple genes. AMPK has been described as a master metabolic regulator which also controls gene expression through the direct phosphorylation of some nuclear proteins. Since it was discovered that both PPARdelta agonists (GW1516) and AMPK activators (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside, known as AICAR) are very effective performance-enhancing substances in sedentary mice, the World Anti-doping Agency (WADA) included AICAR and GW1516 in the prohibited list of substances as metabolic modulators in the class 'Hormone and metabolic modulators'. Thiazolidinediones are PPARgamma agonists that can induce similar biological effects to those of PPARdelta and PPARdelta-AMPK agonists. Thus in this study, the effects of pioglitazone on mitochondrial biogenesis and performance were evaluated. Blood glucose levels and the protein expression of the intermediates involved in the mitochondrial biogenesis pathway and the citrate synthase activity were determined in both gastrocnemius and soleus muscles. Maximal aerobic velocity (MAV), endurance capacity, and grip strength before and after the training period were also determined. The MAV endurance capacity and grip strength of trained animals significantly increased. We found that the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and the nuclear respiratory factor-1 (NRF-1) protein content and citrate synthase activity significantly increased in the soleus muscle of trained animals. No effect of treatment was found. Therefore in our study, pioglitazone administration did not affect mitochondrial biogenesis signaling pathway. Copyright © 2013 John Wiley & Sons, Ltd.

  18. Melatonin and Melatonin Agonists as Adjunctive Treatments in Bipolar Disorders.

    PubMed

    Geoffroy, Pierre Alexis; Etain, Bruno; Franchi, Jean-Arthur Micoulaud; Bellivier, Frank; Ritter, Philipp

    2015-01-01

    Bipolar disorders (BD) present with abnormalities of circadian rhythmicity and sleep homeostasis, even during phases of remission. These abnormalities are linked to the underlying neurobiology of genetic susceptibility to BD. Melatonin is a pineal gland secreted neurohormone that induces circadian-related and sleep-related responses. Exogenous melatonin has demonstrated efficacy in treating primary insomnia, delayed sleep phase disorder, improving sleep parameters and overall sleep quality, and some psychiatric disorders like autistic spectrum disorders. In order to evaluate the efficacy of melatonin among patients with BD, this comprehensive review emphasizes the abnormal melatonin function in BD, the rationale of melatonin action in BD, the available data about the exogenous administration of melatonin, and melatonin agonists (ramelteon and tasimelteon), and recommendations of use in patients with BD. There is a scientific rationale to propose melatonin-agonists as an adjunctive treatment of mood stabilizers in treating sleep disorders in BD and thus to possibly prevent relapses when administered during remission phases. We emphasized the need to treat insomnia, sleep delayed latencies and sleep abnormalities in BD that are prodromal markers of an emerging mood episode and possible targets to prevent future relapses. An additional interesting adjunctive therapeutic effect might be on preventing metabolic syndrome, particularly in patients treated with antipsychotics. Finally, melatonin is well tolerated and has little dependence potential in contrast to most available sleep medications. Further studies are expected to be able to produce stronger evidence-based therapeutic guidelines to confirm and delineate the routine use of melatonin-agonists in the treatment of BD.

  19. Biased signaling by peptide agonists of protease activated receptor 2.

    PubMed

    Jiang, Yuhong; Yau, Mei-Kwan; Kok, W Mei; Lim, Junxian; Wu, Kai-Chen; Liu, Ligong; Hill, Timothy A; Suen, Jacky Y; Fairlie, David P

    2017-02-07

    Protease activated receptor 2 (PAR2) is associated with metabolism, obesity, inflammatory, respiratory and gastrointestinal disorders, pain, cancer and other diseases. The extracellular N-terminus of PAR2 is a common target for multiple proteases, which cleave it at different sites to generate different N-termini that activate different PAR2-mediated intracellular signaling pathways. There are no synthetic PAR2 ligands that reproduce the same signaling profiles and potencies as proteases. Structure-activity relationships here for 26 compounds spanned a signaling bias over 3 log units, culminating in three small ligands as biased agonist tools for interrogating PAR2 functions. DF253 (2f-LAAAAI-NH2) triggered PAR2-mediated calcium release (EC50 2 μM) but not ERK1/2 phosphorylation (EC50 > 100 μM) in CHO cells transfected with hPAR2. AY77 (Isox-Cha-Chg-NH2) was a more potent calcium-biased agonist (EC50 40 nM, Ca2+; EC50 2 μM, ERK1/2), while its analogue AY254 (Isox-Cha-Chg-A-R-NH2) was an ERK-biased agonist (EC50 2 nM, ERK1/2; EC50 80 nM, Ca2+). Signaling bias led to different functional responses in human colorectal carcinoma cells (HT29). AY254, but not AY77 or DF253, attenuated cytokine-induced caspase 3/8 activation, promoted scratch-wound healing and induced IL-8 secretion, all via PAR2-ERK1/2 signaling. Different ligand components were responsible for different PAR2 signaling and functions, clues that can potentially lead to drugs that modulate different pathway-selective cellular and physiological responses.

  20. Thiazolidinediones are Partial Agonists for the Glucocorticoid Receptor

    PubMed Central

    Matthews, L; Berry, A; Tersigni, M; D’Acquisto, F; Ianaro, A; Ray, D

    2014-01-01

    Although thiazolidinediones were designed as specific PPARγ-ligands there is evidence for some off-target effects mediated by a non-PPARγ mechanism. Previously we have shown that Rosiglitazone has anti-inflammatory actions not explicable by activation of PPARγ, but possibly by the glucocorticoid receptor (GR). Rosiglitazone induces nuclear translocation both of GR-GFP, and endogenous GR in HeLa and U20S cells but with slower kinetics than Dexamethasone. Rosiglitazone also induces GR phosphorylation (Ser211), a GR ligand-binding specific effect. Rosiglitazone drives luciferase expression from a simple GRE containing reporter gene in a GR-dependent manner (EC50 4μM), with a similar amplitude response to the partial GR agonist RU486. Rosiglitazone also inhibits Dexamethasone driven reporter gene activity (IC50 2.9μM) in a similar fashion to RU486, suggesting partial agonist activity. Importantly we demonstrate a similar effect in PPARγ-null cells suggesting both GR-dependence and PPARγ-independence. Rosiglitazone also activates a GAL4-GR chimera, driving a UAS promoter, demonstrating DNA template sequence independence, and furthermore enhanced SRC1-GR interaction, measured by a mammalian two-hybrid assay. Both Ciglitazone and Pioglitazone, structurally related to Rosiglitazone, show similar effects on the GR. The antiproliferative effect of Rosiglitazone is increased in U20S cells that overexpress GR, suggesting a biologically important GR-dependent component of Rosiglitazone action. Rosiglitazone is a partial GR agonist, affecting GR activation and trafficking to influence engagement of target genes and affect cell function. This novel mode of action may explain some off-target effects observed in vivo. Additionally, antagonism of glucocorticoid action may contribute to the anti-diabetic actions of Rosiglitazone. PMID:18801908

  1. Comparative endpoint sensitivity of in vitro estrogen agonist assays.

    PubMed

    Dreier, David A; Connors, Kristin A; Brooks, Bryan W

    2015-07-01

    Environmental and human health implications of endocrine disrupting chemicals (EDCs), particularly xenoestrogens, have received extensive study. In vitro assays are increasingly employed as diagnostic tools to comparatively evaluate chemicals, whole effluent toxicity and surface water quality, and to identify causative EDCs during toxicity identification evaluations. Recently, the U.S. Environmental Protection Agency (USEPA) initiated ToxCast under the Tox21 program to generate novel bioactivity data through high throughput screening. This information is useful for prioritizing chemicals requiring additional hazard information, including endocrine active chemicals. Though multiple in vitro and in vivo techniques have been developed to assess estrogen agonist activity, the relative endpoint sensitivity of these approaches and agreement of their conclusions remain unclear during environmental diagnostic applications. Probabilistic hazard assessment (PHA) approaches, including chemical toxicity distributions (CTD), are useful for understanding the relative sensitivity of endpoints associated with in vitro and in vivo toxicity assays by predicting the likelihood of chemicals eliciting undesirable outcomes at or above environmentally relevant concentrations. In the present study, PHAs were employed to examine the comparative endpoint sensitivity of 16 in vitro assays for estrogen agonist activity using a diverse group of compounds from the USEPA ToxCast dataset. Reporter gene assays were generally observed to possess greater endpoint sensitivity than other assay types, and the Tox21 ERa LUC BG1 Agonist assay was identified as the most sensitive in vitro endpoint for detecting an estrogenic response. When the sensitivity of this most sensitive ToxCast in vitro endpoint was compared to the human MCF-7 cell proliferation assay, a common in vitro model for biomedical and environmental monitoring applications, the ERa LUC BG1 assay was several orders of magnitude less

  2. Peripheral biomarkers of cognitive response to dopamine receptor agonist treatment.

    PubMed

    Ersche, Karen D; Roiser, Jonathan P; Lucas, Mark; Domenici, Enrico; Robbins, Trevor W; Bullmore, Edward T

    2011-04-01

    Using biological markers to objectively measure addiction severity or to identify individuals who might benefit most from pro-cognitive treatment could potentially revolutionize neuropsychopharmacology. We investigated the use of dopamine receptor mRNA levels in circulating blood cells as predictors of cognitive response following dopamine agonist treatment, and as biomarkers of the severity of stimulant drug dependence. We employed a double-blind, placebo-controlled cross-over design, administering a single dose of the selective dopamine D(2/3) receptor agonist pramipexole (0.5 mg) to increase dopamine transmission in one session and a placebo treatment in another session in 36 volunteers. Half the volunteers had a formal diagnosis of stimulant dependence, while half had no psychiatric history. Participants performed neurocognitive tests from the CANTAB battery on both occasions, and stimulant-dependent individuals rated drug craving using visual analog scales. Whole-blood mRNA levels were measured for three dopamine-related genes: DRD3 and DRD4 (dopamine receptors), and catechol-O-methyltransferase (COMT; a dopamine catabolic enzyme). Stimulant users performed worse than healthy volunteers on the cognitive tests. The variation in peripheral dopamine D(3) receptor mRNA expression explained over one quarter of the variation in response to pramipexole on the spatial working memory test across all participants. The severity of stimulant dependence was also significantly associated with peripheral COMT mRNA expression in stimulant users. Peripheral expression of dopamine-related genes may be useful as a biomarker of cognitive response to dopamine agonist drugs and of severity of addiction to dopamine-releasing stimulant drugs.

  3. Atherosclerosis and cardiovascular risk reduction with PPAR agonists.

    PubMed

    Kuusisto, Johanna; Andrulionyte, Laura; Laakso, Markku

    2007-10-01

    Peroxisome proliferator-activated receptors (PPARs) are transcriptional factors belonging to the nuclear receptor superfamily. Three isoforms, PPARalpha, PPARgamma, and PPARdelta, which are encoded by separate genes, have been identified. The PPARs act as gene regulators of various metabolic pathways in energy and lipid metabolism, glucose homeostasis, adipogenesis, and inflammation. Two key classes of synthetic compounds, fibrates and thiazolidinediones (glitazones), activate PPARalpha and PPARgamma, respectively. Both of these drugs have several properties that prevent atherosclerosis in the vascular wall and reduce the levels of risk factors for cardiovascular disease. However, clinical trials have not produced convincing evidence that cardiovascular disease is prevented with the use of PPARalpha and PPARgamma agonists.

  4. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  5. Clenbuterol, a beta(2)-agonist, retards atrophy in denervated muscles

    NASA Technical Reports Server (NTRS)

    Zeman, Richard J.; Ludemann, Robert; Etlinger, Joseph D.

    1987-01-01

    The effects of a beta(2) agonist, clenbuterol, on the protein content as well as on the contractile strength and the muscle fiber cross-sectional area of various denervated muscles from rats were investigated. It was found that denervated soleus, anterior tibialis, and gastrocnemius muscles, but not the extensor digitorum longus, of rats treated for 2-3 weeks with clenbuterol contained 95-110 percent more protein than denervated controls. The twofold difference in the protein content of denervated solei was paralleled by similar changes in contractile strength and muscle fiber cross-sectional area.

  6. Dehydroepiandrosterone Derivatives as Potent Antiandrogens with Marginal Agonist Activity

    DTIC Science & Technology

    2013-07-01

    DATES COVERED 01 July 2012 – 30 June 2013 4 . TITLE AND SUBTITLE Dehydroepiandrosterone Derivatives as Potent Antiandrogens with Marginal Agonist...Page Introduction…………………………………………………………….………..….. 1 Body………………………………………………………………………………….. 1- 4 Key Research...In addition, we previously found that androstenediol (Adiol), a physiological metabolite from dehydroepiandrosterone ( DHEA ) and a precursor of

  7. Muscarinic and nicotinic cholinergic agonists: structural analogies and discrepancies.

    PubMed

    Bikádi, Zsolt; Simonyi, Miklós

    2003-12-01

    Acetylcholine, the first identified neurotransmitter acts on both types of cholinergic receptors. Both rigid and flexible derivatives of acetylcholine could either be selective muscarinic or selective nicotinic agonists while some compounds show activity at both receptor subclasses. Earlier structure-activity considerations are revisited. Ligand and receptor based calculations have been applied in the hope to identify characteristic geometrical and steric requirements for the activity on the receptor subtypes. Results are treated critically and applied cautiously for predicting selective structural requirements by the cholinergic receptor subclasses.

  8. Discovery of a highly potent series of TLR7 agonists.

    PubMed

    Jones, Peter; Pryde, David C; Tran, Thien-Duc; Adam, Fiona M; Bish, Gerwyn; Calo, Frederick; Ciaramella, Guiseppe; Dixon, Rachel; Duckworth, Jonathan; Fox, David N A; Hay, Duncan A; Hitchin, James; Horscroft, Nigel; Howard, Martin; Laxton, Carl; Parkinson, Tanya; Parsons, Gemma; Proctor, Katie; Smith, Mya C; Smith, Nicholas; Thomas, Amy

    2011-10-01

    The discovery of a series of highly potent and novel TLR7 agonist interferon inducers is described. Structure-activity relationships are presented, along with pharmacokinetic studies of a lead molecule from this series of N9-pyridylmethyl-8-oxo-3-deazapurine analogues. A rationale for the very high potency observed is offered. An investigation of the clearance mechanism of this class of compounds in rat was carried out, resulting in aldehyde oxidase mediated oxidation being identified as a key component of the high clearance observed. A possible solution to this problem is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Melatonin enhances antinociceptive effects of delta-, but not mu-opioid agonist in mice.

    PubMed

    Li, Shi-rong; Wang, Ting; Wang, Rui; Dai, Xu; Chen, Qiang; Li, Ren-de

    2005-05-10

    This present study examines the effect of melatonin on antinociceptive action induced by opioid agonists in mice using the tail-flick test. When injected either by intraperitoneal (i.p.) (1, 5, 25 mg/kg) or by intracerebroventricular (i.c.v.) (0.25, 0.5, 1 mg/kg) routes, melatonin significantly enhanced the delta-opioid agonist deltorphin I induced antinociception, but not mu-opioid agonist endomorphin-1. Further investigation showed that i.c.v. luzindole (0.5 mg/kg) (an antagonist of melatonin receptor) significantly antagonized the enhanced antinociceptive effect of i.c.v. melatonin. These results demonstrated that melatonin can specifically enhance the antinociception induced by specific opioid receptor agonist (i.e., delta opioid agonist) acting on melatonin receptor and that melatonin may have augmentation effect on analgesia with delta-, but not mu-opioid agonists in mice.

  10. Is there a justification for classifying GLP-1 receptor agonists as basal and prandial?

    PubMed

    Miñambres, Inka; Pérez, Antonio

    2017-01-01

    Several GLP-1 receptor agonists are currently available for treatment of type 2 diabetic patients. Based on their pharmacokinetic/pharmacodynamic profile, these drugs are classified as short-acting GLP-1 receptor agonists (exenatide and lixisenatide) or long-acting GLP-1 receptor agonists (exenatide-LAR, liraglutide, albiglutide, and dulaglutide). In clinical practice, they are also classified as basal or prandial GLP-1 receptor agonists to differentiate between patients who would benefit more from one or another based on characteristics such as previous treatment and the predominance of fasting or postprandial hyperglycemia. In the present article we examine available data on the pharmacokinetic characteristics of the various GLP-1 agonists and compare their effects with respect to the main parameters used to evaluate glycemic control. The article also analyzes whether the differences between the different GLP-1 agonists justify their classification as basal or prandial.

  11. Advantages and guidelines for using alpha-2 agonists as anesthetic adjuvants.

    PubMed

    Tranquilli, W J; Benson, G J

    1992-03-01

    Xylazine and medetomidine produce reliable sedation, muscle relaxation, and analgesia in dogs and cats. In addition, alpha-2 agonists have proved very effective as sedative-analgesic adjuncts when coadministered with benzodiazepine or opioid agonists. Alpha-2 agonists should not be classified as monoanesthetics. They are excellent anesthetic adjuncts when combined with dissociatives and opioids. Because of the acute alterations in cardiopulmonary function commonly induced by alpha-2 agonists, it is suggested that their use be restricted to the young healthy patient undergoing routine surgical or diagnostic procedure. The development of more specific and selective alpha-2 agonists will continue to enhance the safety and reliability of this novel class of compounds. The unique spectrum of anesthetic properties induced by alpha-2 agonists has assured them of an increasingly prominent role in the development of new and sophisticated ways of achieving anesthesia.

  12. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface

    NASA Astrophysics Data System (ADS)

    Gerszten, Robert E.; Chen, Ji; Ishli, Maki; Ishil, Kenji; Wang, Ling; Nanevicz, Tania; Turck, Christoph W.; Vu, Thien-Khai H.; Coughlin, Shaun R.

    1994-04-01

    G-PROTEIN-COUPLED receptors for catecholamines and some other small ligands are activated when agonists bind to the transmem-brane region of the receptor1. The docking interactions through which peptide agonists activate their receptors are less well characterized2-7. The thrombin receptor is a specialized peptide receptor. It is activated by binding its tethered ligand domain, which is unmasked upon receptor cleavage by thrombin8,9. Human and Xenopus thrombin receptor homologues are each selectively activated by the agonist peptide representing their respective tethered ligand domains. Here we identify receptor domains that confer this agonist specificity by replacing the Xenopus receptor's amino-terminal exodomain and three extracellular loops with the corresponding human structures. This switches receptor specificity from Xenopus to human. The specificity of these thrombin receptors for their respective peptide agonists is thus determined by their extracellular surfaces. Our results indicate that agonist interaction with extracellular domains is important for thrombin receptor activation.

  13. Antidepressant-like Effects of δ Opioid Receptor Agonists in Animal Models

    PubMed Central

    Saitoh, Akiyoshi; Yamada, Mitsuhiko

    2012-01-01

    Recently, δ opioid receptor agonists have been proposed to be attractive targets for the development of novel antidepressants. Several studies revealed that single treatment of δ opioid receptor agonists produce antidepressant-like effects in the forced swimming test, which is one of the most popular animal models for screening antidepressants. In addition, subchronic treatment with δ opioid receptor agonists has been shown to completely attenuate the hyperemotional responses found in olfactory bulbectomized rats. This animal model exhibits hyperemotional behavior that may mimic the anxiety, aggression, and irritability found in depressed patients, suggesting that δ opioid receptor agonists could be effective in the treatment of these symptoms in depression. On the other hand, prototype δ opioid receptor agonists produce convulsive effects, which limit their therapeutic potential and clinical development. In this review, we presented the current knowledge regarding the antidepressant-like effects of δ opioid receptor agonists, which include some recently developed drugs lacking convulsive effects. PMID:23449756

  14. Electrophysiological perspectives on the therapeutic use of nicotinic acetylcholine receptor partial agonists.

    PubMed

    Papke, Roger L; Trocmé-Thibierge, Caryn; Guendisch, Daniela; Al Rubaiy, Shehd Abdullah Abbas; Bloom, Stephen A

    2011-05-01

    Partial agonist therapies rely variously on two hypotheses: the partial agonists have their effects through chronic low-level receptor activation or the partial agonists work by decreasing the effects of endogenous or exogenous full agonists. The relative significance of these activities probably depends on whether acute or chronic effects are considered. We studied nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes to test a model for the acute interactions between acetylcholine (ACh) and weak partial agonists. Data were best-fit to a basic competition model that included an additional factor for noncompetitive inhibition. Partial agonist effects were compared with the nAChR antagonist bupropion in prolonged bath application experiments that were designed to mimic prolonged drug exposure typical of therapeutic drug delivery. A primary effect of prolonged application of nicotine was to decrease the response of all nAChR subtypes to acute applications of ACh. In addition, nicotine, cytisine, and varenicline produced detectable steady-state activation of α4β2* [(α4)(2)(β2)(3), (α4)(3)(β2)(2), and (α4)(2)(β2)(2)α5)] receptor subtypes that was not seen with other test compounds. Partial agonists produced no detectable steady-state activation of α7 nAChR, but seemed to show small potentiation of ACh-evoked responses; however, "run-up" of α7 ACh responses was also sometimes observed under control conditions. Potential off-target effects of the partial agonists therefore included the modulation of α7 responses by α4β2 partial agonists and decreases in α4β2* responses by α7-selective agonists. These data indicate the dual effects expected for α4β2* partial agonists and provide models and insights for utility of partial agonists in therapeutic development.

  15. Contamination with retinoic acid receptor agonists in two rivers in the Kinki region of Japan.

    PubMed

    Inoue, Daisuke; Nakama, Koki; Sawada, Kazuko; Watanabe, Taro; Takagi, Mai; Sei, Kazunari; Yang, Min; Hirotsuji, Junji; Hu, Jianying; Nishikawa, Jun-ichi; Nakanishi, Tsuyoshi; Ike, Michihiko

    2010-04-01

    This study was conducted to investigate the agonistic activity against human retinoic acid receptor (RAR) alpha in the Lake Biwa-Yodo River and the Ina River in the Kinki region of Japan. To accomplish this, a yeast two-hybrid assay was used to elucidate the spatial and temporal variations and potential sources of RARalpha agonist contamination in the river basins. RARalpha agonistic activity was commonly detected in the surface water samples collected along two rivers at different periods, with maximum all-trans retinoic acid (atRA) equivalents of 47.6 ng-atRA/L and 23.5 ng-atRA/L being observed in Lake Biwa-Yodo River and Ina River, respectively. The results indicated that RARalpha agonists are always present and widespread in the rivers. Comparative investigation of RARalpha and estrogen receptor alpha agonistic activities at 20 stations along each river revealed that the spatial variation pattern of RARalpha agonist contamination was entirely different from that of the estrogenic compound contamination. This suggests that the effluent from municipal wastewater treatment plants, a primary source of estrogenic compounds, seemed not to be the cause of RARalpha agonist contamination in the rivers. Fractionation using high performance liquid chromatography (HPLC) directed by the bioassay found two bioactive fractions from river water samples, suggesting the presence of at least two RARalpha agonists in the rivers. Although a trial conducted to identify RARalpha agonists in the major bioactive fraction was not completed as part of this study, comparison of retention times in HPLC analysis and quantification with liquid chromatography-mass spectrometry analysis revealed that the major causative contaminants responsible for the RARalpha agonistic activity were not RAs (natural RAR ligands) and 4-oxo-RAs, while 4-oxo-RAs were identified as the major RAR agonists in sewage in Beijing, China. These findings suggest that there are unknown RARalpha agonists with high

  16. β‐Arrestin 2 dependence of δ opioid receptor agonists is correlated with alcohol intake

    PubMed Central

    Chiang, T; Sansuk, K

    2016-01-01

    Background and Purpose δ Opioid receptor agonists are being developed as potential treatments for depression and alcohol use disorders. This is particularly interesting as depression is frequently co‐morbid with alcohol use disorders. Yet we have previously shown that δ receptor agonists range widely in their ability to modulate alcohol intake; certain δ receptor agonists actually increase alcohol consumption in mice. We propose that variations in β‐arrestin 2 recruitment contribute to the differential behavioural profile of δ receptor agonists. Experimental Approach We used three diarylmethylpiperazine‐based non‐peptidic δ receptor selective agonists (SNC80, SNC162 and ARM390) and three structurally diverse δ receptor agonists (TAN‐67, KNT127 and NIH11082). We tested these agonists in cAMP and β‐arrestin 2 recruitment assays and a behavioural assay of alcohol intake in male C57BL/6 mice. We used β‐arrestin 2 knockout mice and a model of depression‐like behaviour to further study the role of β‐arrestin 2 in δ receptor pharmacology. Key Results All six tested δ receptor agonists were full agonists in the cAMP assay but displayed distinct β‐arrestin 2 recruitment efficacy. The efficacy of δ receptor agonists to recruit β‐arrestin 2 positively correlated with their ability to increase alcohol intake (P < 0.01). The effects of the very efficacious recruiter SNC80 on alcohol intake, alcohol place preference and depression‐like behaviour were β‐arrestin 2‐dependent. Conclusions and Implications Our finding that δ receptor agonists that strongly recruit β‐arrestin 2 can increase alcohol intake carries important ramifications for drug development of δ receptor agonists for treatment of alcohol use disorders and depressive disorders. © 2015 The British Pharmacological Society PMID:26507558

  17. β-Arrestin 2 dependence of δ opioid receptor agonists is correlated with alcohol intake.

    PubMed

    Chiang, T; Sansuk, K; van Rijn, R M

    2016-01-01

    δ Opioid receptor agonists are being developed as potential treatments for depression and alcohol use disorders. This is particularly interesting as depression is frequently co-morbid with alcohol use disorders. Yet we have previously shown that δ receptor agonists range widely in their ability to modulate alcohol intake; certain δ receptor agonists actually increase alcohol consumption in mice. We propose that variations in β-arrestin 2 recruitment contribute to the differential behavioural profile of δ receptor agonists. We used three diarylmethylpiperazine-based non-peptidic δ receptor selective agonists (SNC80, SNC162 and ARM390) and three structurally diverse δ receptor agonists (TAN-67, KNT127 and NIH11082). We tested these agonists in cAMP and β-arrestin 2 recruitment assays and a behavioural assay of alcohol intake in male C57BL/6 mice. We used β-arrestin 2 knockout mice and a model of depression-like behaviour to further study the role of β-arrestin 2 in δ receptor pharmacology. All six tested δ receptor agonists were full agonists in the cAMP assay but displayed distinct β-arrestin 2 recruitment efficacy. The efficacy of δ receptor agonists to recruit β-arrestin 2 positively correlated with their ability to increase alcohol intake (P < 0.01). The effects of the very efficacious recruiter SNC80 on alcohol intake, alcohol place preference and depression-like behaviour were β-arrestin 2-dependent. Our finding that δ receptor agonists that strongly recruit β-arrestin 2 can increase alcohol intake carries important ramifications for drug development of δ receptor agonists for treatment of alcohol use disorders and depressive disorders. © 2015 The British Pharmacological Society

  18. Peroxisome Proliferators Activated Receptor (PPAR) agonists activate hepatitis B virus replication in vivo.

    PubMed

    Du, Lingyao; Ma, Yuanji; Liu, Miao; Yan, Libo; Tang, Hong

    2017-05-25

    PPAR agonists are often used in HBV infected patients with metabolic disorders. However, as liver-enriched transcriptional factors, PPARs would activate HBV replication. Risks exsit in such patients. This study aimed to assess the influence of commonly used synthetic PPAR agonists on hepatitis B virus (HBV) transcription, replication and expression through HBV replicative mouse models, providing information for physicians to make necessary monitoring and therapeutic adjustment when HBV infected patients receive PPAR agonists treatment. The HBV replicative mouse model was established by hydrodynamic injection of HBV replicative plasmid and the mice were divided into four groups and treated daily for 3 days with saline, PPAR pan-agonist (bezafibrate), PPARα agonist (fenofibrate) and PPARγ agonist (rosiglitazone) respectively. Their serum samples were collected for ECLIA analysis of HBsAg and HBeAg and real-time PCR analysis of Serum HBV DNA. The liver samples were collected for DNA (Southern) filter hybridization of HBV replication intermediates, real-time PCR analysis of HBV mRNA and immunohistochemistry (IHC) analysis of hepatic HBcAg. The alternation of viral transcription, replication and expression were compared in these groups. Serum HBsAg, HBeAg and HBV DNA were significantly elevated after PPAR agonist treatment. So did the viral replication intermediates in mouse livers. HBV mRNA was also significantly increased by these PPAR agonists, implying that PPAR agonists activate HBV replication at transcription level. Moreover, hepatic HBcAg expression in mouse livers with PPAR agonist treatment was elevated as well. Our in vivo study proved that synthetic PPAR agonists bezafibrate, fenofibrate and rosiglitazone would increase HBV replication. It suggested that when HBV infected patients were treated with PPARs agonists because of metabolic diseases, HBV viral load should be monitored and regimens may need to be adjusted, an antiviral therapy may be added.

  19. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment

    PubMed Central

    Yang, Li; Islam, Mohammad R; Karamyan, Vardan T.; Abbruscato, Thomas J.

    2015-01-01

    To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10 nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10 nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype. PMID:25801116

  20. Binding of agonists, antagonists and inverse agonists to the human delta-opioid receptor produces distinctly different conformational states distinguishable by plasmon-waveguide resonance spectroscopy.

    PubMed

    Salamon, Z; Hruby, V J; Tollin, G; Cowell, S

    2002-12-01

    Structural changes induced by the binding of agonists, antagonists and inverse agonists to the cloned delta-opioid receptor from human brain immobilized in a solid-supported lipid bilayer were monitored using plasmon-waveguide resonance (PWR) spectroscopy. Agonist (e.g. deltorphin II) binding causes an increase in membrane thickness because of receptor elongation, a mass density increase due to an influx of lipid molecules into the bilayer, and an increase in refractive index anisotropy due to transmembrane helix and fatty acyl chain ordering. In contrast, antagonist (e.g. TIPPpsi) binding produces no measurable change in either membrane thickness or mass density, and a significantly larger increase in refractive index anisotropy, the latter thought to be due to a greater extent of helix and acyl chain ordering within the membrane interior. These results are closely similar to those reported earlier for another agonist (DPDPE) and antagonist (naltrindol) [Salamon et al. (2000) Biophys. J.79, 2463-2474]. In addition, we now find that an inverse agonist (TMT-Tic) produces membrane thickness, mass density and refractive index anisotropy increases which are similar to, but considerably smaller than, those generated by agonists. Thus, a third conformational state is produced by this ligand, different from those formed by agonists and antagonists. These results shed new light on the mechanisms of ligand-induced G-protein-coupled receptor functioning. The potential utilization of this new biophysical method to examine structural changes both parallel and perpendicular to the membrane normal for GPCRs is emphasized.

  1. In vitro and in vivo efficacy of a potent opioid receptor agonist, biphalin, compared to subtype-selective opioid receptor agonists for stroke treatment.

    PubMed

    Yang, Li; Islam, Mohammad R; Karamyan, Vardan T; Abbruscato, Thomas J

    2015-06-03

    To meet the challenge of identification of new treatments for stroke, this study was designed to evaluate a potent, nonselective opioid receptor (OR) agonist, biphalin, in comparison to subtype selective OR agonists, as a potential neuroprotective drug candidate using in vitro and in vivo models of ischemic stroke. Our in vitro approach included mouse primary neuronal cells that were challenged with glutamate and hypoxic/aglycemic (H/A) conditions. We observed that 10nM biphalin, exerted a statistically significant neuroprotective effect after glutamate challenge, compared to all selective opioid agonists, according to lactate dehydrogenase (LDH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Moreover, 10nM biphalin provided superior neuroprotection after H/A-reoxygenation compared to selective opioid agonists in all cases. Our in vitro investigations were supported by in vivo studies which indicate that the nonselective opioid agonist, biphalin, achieves enhanced neuroprotective potency compared to any of the selective opioid agonists, evidenced by reduced edema and infarct ratios. Reduction of edema and infarction was accompanied by neurological improvement of the animals in two independent behavioral tests. Collectively these data strongly suggest that concurrent agonist stimulation of mu, kappa and delta ORs with biphalin is neuroprotective and superior to neuroprotection by activation of any single OR subtype.

  2. Pathological hypersexuality predominantly linked to adjuvant dopamine agonist therapy in Parkinson's disease and multiple system atrophy.

    PubMed

    Klos, Kevin J; Bower, James H; Josephs, Keith A; Matsumoto, Joseph Y; Ahlskog, J Eric

    2005-09-01

    Pathological hypersexuality developed in 13 patients with PD and two patients ultimately diagnosed clinically with MSA. Hypersexuality began within 8 months after starting dopamine agonist therapy in 14 of 15 cases, including four on agonist monotherapy. It resolved in the four cases where the agonist was stopped, despite continued levodopa therapy. This was not an isolated behavioral problem in most, with additional compulsive or addictive behaviors coinciding in nine patients (60%). A systematic literature review of pathological hypersexuality in PD revealed similar medication histories; combining these cases with our series, 26 of 29 patients (90%) were on adjuvant dopamine agonists.

  3. Agonist signalling properties of radiotracers used for imaging of dopamine D2/3 receptors

    PubMed Central

    2014-01-01

    Background Dopamine D2/3 receptor (D2/3R) agonist radiopharmaceuticals are considered superior to antagonists to detect dopamine release, e.g. induced by amphetamines. Agonists bind preferentially to the high-affinity state of the dopamine D2R, which has been proposed as the reason why agonists are more sensitive to detect dopamine release than antagonist radiopharmaceuticals, but this theory has been challenged. Interestingly, not all agonists similarly activate the classic cyclic adenosine mono phosphate (cAMP) and the ?-arrestin-2 pathway, some stimulate preferentially one of these pathways; a phenomenon called biased agonism. Because these pathways can be affected separately by pathologies or drugs (including dopamine releasers), it is important to know how agonist radiotracers act on these pathways. Therefore, we characterized the intracellular signalling of the well-known D2/3R agonist radiopharmaceuticals NPA and PHNO and of several novel D2/3R agonists. Methods cAMP accumulation and ?-arrestin-2 recruitment were measured on cells expressing human D2R. Results All tested agonists showed (almost) full agonism in both pathways. Conclusions The tested D2/3R agonist radiopharmaceuticals did not exhibit biased agonism in vitro. Consequently, it is likely that drugs (including psychostimulants like amphetamines) and/or pathologies that influence the cAMP and/or the ?-arrestin-2 pathway may influence the binding of these radiopharmaceuticals. PMID:25977878

  4. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy.

    PubMed

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-03-01

    Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy.

  5. The pharmacology of epanolol (ICI 141292)--a new beta 1-selective adrenoceptor partial agonist.

    PubMed

    Bilski, A J; Hadfield, S E; Wale, J L

    1988-08-01

    The clinical benefit of beta-adrenoceptor partial agonists is still debated. To clarify the situation, epanolol, ICI 141,292 [N-[-2-(3-o-cyanophenoxy-2-hydroxypropylamino)ethyl]-4- hydroxyphenylactamide], has been developed to assess the role of modest beta-adrenoceptor partial agonist activity in humans. Animal studies have shown that epanolol is a potent beta-adrenoceptor partial agonist with a greater affinity for beta 1- than beta 2-adrenoceptors. In vitro, the PA2 values obtained for espanolol at atrial and tracheal beta-adrenoceptors were 8.42 and 6.33, respectively (isoproterenol as agonist), giving a selectivity ratio of 123. The potency was studied in vivo in the dog, where it was also shown that as an antagonist at the cardiac beta 1-adrenoceptor, it was 18 and 40 times more potent than atenolol and practolol, respectively. Espanolol has less partial agonist activity in the rat than pindolol, but more than practolol. In this species, it is also a classical partial agonist, exhibiting agonist activity at all beta-adrenoceptor blocking doses. This is in contrast to pindolol, which caused predominantly beta-adrenoceptor blockade at low doses and partial agonist activity at higher doses. These differences were confirmed in haemodynamic studies in the dog. In contrast to many other partial agonists, the partition coefficient, log P, of epanolol in octanol and water is low (0.92).

  6. Analysis of agonist dissociation constants as assessed by functional antagonism in guinea pig left atria

    SciTech Connect

    Molenaar, P.; Malta, E.

    1986-04-01

    In electrically driven guinea pig left atria, positive inotropic responses to (-)-isoprenaline and the selective beta 1-adrenoceptor agonist RO363 were obtained in the absence and in the presence of the functional antagonists adenosine, carbachol, gallopamil, nifedipine, and Ro 03-7894. Each of the functional antagonists reduced the maximum response to both agonists and produced nonparallel rightward shifts in the cumulative concentration effect curves. For both agonists, dissociation constants (KA) were calculated using the equation described by Furchgott (1966) for irreversible antagonism. For RO363, which is a partial agonist with high agonist activity, the equations outlined for functional interaction by Mackay (1981) were also employed to calculate KA values. The KA values obtained by each method were compared with the dissociation constants (KD) for the two agonists determined from their ability to displace the radioligand (-)-(/sup 125/I)iodocyanopindolol from beta 1-adrenoceptors in guinea pig left atrial membrane preparations. The estimates of KA varied substantially from KD values. The KD values were taken as more accurate estimates of the true values for the dissociation constants because a high degree of correlation exists between pKD and pD2 values for a number of other beta-adrenoceptor agonists that behave as partial agonists and between pKD and pKB values for a number of beta-adrenoceptor antagonists. Thus, it appears that there are serious limitations in the current theory for using functional antagonism as a means of obtaining agonist dissociation constants.

  7. Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy

    PubMed Central

    Iribarren, Kristina; Bloy, Norma; Buqué, Aitziber; Cremer, Isabelle; Eggermont, Alexander; Fridman, Wolf Hervé; Fucikova, Jitka; Galon, Jérôme; Špíšek, Radek; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    ABSTRACT Accumulating preclinical evidence indicates that Toll-like receptor (TLR) agonists efficiently boost tumor-targeting immune responses (re)initiated by most, if not all, paradigms of anticancer immunotherapy. Moreover, TLR agonists have been successfully employed to ameliorate the efficacy of various chemotherapeutics and targeted anticancer agents, at least in rodent tumor models. So far, only three TLR agonists have been approved by regulatory agencies for use in cancer patients. Moreover, over the past decade, the interest of scientists and clinicians in these immunostimulatory agents has been fluctuating. Here, we summarize recent advances in the preclinical and clinical development of TLR agonists for cancer therapy. PMID:27141345

  8. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  9. Long-Acting Beta Agonists Enhance Allergic Airway Disease

    PubMed Central

    Knight, John M.; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O.; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A.; Milner, Joshua D.; Zhang, Yuan; Mandal, Pijus K.; Luong, Amber; Kheradmand, Farrah

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6. PMID:26605551

  10. Agonist-stimulated alveolar macrophages: apoptosis and phospholipid signaling.

    PubMed

    Lütjohann, J; Spiess, A N; Gercken, G

    1998-08-01

    Bovine alveolar macrophages (BAM) were labeled with [3H]-choline or [3H]-ethanolamine and exposed to quartz dust, metal oxide-coated silica particles, Escherichia coli-derived lipopolysaccharide (LPS) or tumor promotor 12-O-tetradecanoyl phorbol 13-acetate (PMA). The activation of phospholipases A2, C and D (PLA2, PLC and PLD) acting on phosphatidylcholine and phosphatidylethanolamine was determined by high performance liquid chromatography (HPLC) separation and liquid scintillation counting of water- and lipid-soluble phospholipid metabolites. Exposure of BAM to quartz dust, metal oxide-coated silica particles, and LPS led to a transient PLD activation while treatment with PMA caused a prolonged rise in PLD activity. LPS and quartz dust induced a short-term increase of PLC cleavage products. All agonists caused a transient activation of PLA2. To induce apoptosis, BAM were stimulated with C8-ceramide, calcium-ionophore 23187, or gliotoxin. Apoptosis was investigated by qualitative and quantitative methods like flow cytometry, propidium iodide/Hoechst 33258 double staining, Cell Death Detection ELISA, and electrophoretical detection of DNA fragmentation. All three agonists led to apoptosis of BAM in a time- and concentration-dependent manner. After stimulation with gliotoxin an increase in ceramide and a drastic decrease in sphingosine-1-phosphate levels were observed, suggesting an involvement of these sphingolipids in gliotoxin-mediated apoptosis.

  11. Mood Disorders, Circadian Rhythms, Melatonin and Melatonin Agonists

    PubMed Central

    Quera Salva, M.A.; Hartley, S.

    2012-01-01

    Recent advances in the understanding of circadian rhythms have led to an interest in the treatment of major depressive disorder with chronobiotic agents. Many tissues have autonomous circadian rhythms, which are orchestrated by the master clock, situated in the suprachiasmatic nucleus (SNC). Melatonin (N-acetyl-5-hydroxytryptamine) is secreted from the pineal gland during darkness. Melatonin acts mainly on MT1 and MT2 receptors, which are present in the SNC, regulating physiological and neuroendocrine functions, including circadian entrainment, referred to as the chronobiotic effet. Circadian rhythms has been shown to be either misaligned or phase shifted or decreased in amplitude in both acute episodes and relapse of major depressive disorder (MDD) and bipolar disorder. Manipulation of circadian rhythms either using physical treatments (such as high intensity light) or behavioral therapy has shown promise in improving symptoms. Pharmacotherapy using melatonin and pure melatonin receptor agonists, while improving sleep, has not been shown to improve symptoms of depression. A novel antidepressant, agomelatine, combines 5HT2c antagonist and melatonin agonist action, and has shown promise in both acute treatment of MDD and in preventing relapse. PMID:23650464

  12. Muscarinic agonists and antagonists: effects on the urinary bladder.

    PubMed

    Sellers, Donna J; Chess-Williams, Russ

    2012-01-01

    Voiding of the bladder is the result of a parasympathetic muscarinic receptor activation of the detrusor smooth muscle. However, the maintenance of continence and a normal bladder micturition cycle involves a complex interaction of cholinergic, adrenergic, nitrergic and peptidergic systems that is currently little understood. The cholinergic component of bladder control involves two systems, acetylcholine (ACh) released from parasympathetic nerves and ACh from non-neuronal cells within the urothelium. The actions of ACh on the bladder depend on the presence of muscarinic receptors that are located on the detrusor smooth muscle, where they cause direct (M₃) and indirect (M₂) contraction; pre-junctional nerve terminals where they increase (M₁) or decrease (M₄) the release of ACh and noradrenaline (NA); sensory nerves where they influence afferent nerve activity; umbrella cells in the urothelium where they stimulate the release of ATP and NO; suburothelial interstitial cells with unknown function; and finally, other unidentified sites in the urothelium from where prostaglandins and inhibitory/relaxatory factors are released. Thus, the actions of muscarinic receptor agonists and antagonists on the bladder may be very complex even when considering only local muscarinic actions. Clinically, muscarinic antagonists remain the mainstay of treatment for the overactive bladder (OAB), while muscarinic agonists have been used to treat hypoactive bladder. The antagonists are effective in treating OAB, but their precise mechanisms and sites of action (detrusor, urothelium, and nerves) have yet to be established. Potentially more selective agents may be developed when the cholinergic systems within the bladder are more fully understood.

  13. Cannabidiol, a novel inverse agonist for GPR12.

    PubMed

    Brown, Kevin J; Laun, Alyssa S; Song, Zhao-Hui

    2017-09-06

    GPR12 is a constitutively active, Gs protein-coupled receptor that currently has no confirmed endogenous ligands. GPR12 may be involved in physiological processes such as maintenance of oocyte meiotic arrest and brain development, as well as pathological conditions such as metastatic cancer. In this study, the potential effects of various classes of cannabinoids on GPR12 were tested using a cAMP accumulation assay. Our data demonstrate that cannabidiol (CBD), a major non-psychoactive phytocannabinoid, acted as an inverse agonist to inhibit cAMP accumulation stimulated by the constitutively active GPR12. Thus, GPR12 is a novel molecular target for CBD. The structure-activity relationship studies of CBD indicate that both the free hydroxyl and the pentyl side chain are crucial for the effects of CBD on GPR12. Furthermore, studies using cholera toxin, which blocks Gs protein and pertussis toxin, which blocks Gi protein, revealed that Gs, but not Gi is involved in the inverse agonism of CBD on GPR12. CBD is a promising novel therapeutic agent for cancer, and GPR12 has been shown to alter viscoelasticity of metastatic cancer cells. Since we have demonstrated that CBD is an inverse agonist for GPR12, this provides novel mechanism of action for CBD, and an initial chemical scaffold upon which highly potent and efficacious agents acting on GPR12 may be developed with the ultimate goal of blocking cancer metastasis. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  15. Toll-Like Receptor 9 Agonists for Cancer Therapy

    PubMed Central

    Melisi, Davide; Frizziero, Melissa; Tamburrino, Anna; Zanotto, Marco; Carbone, Carmine; Piro, Geny; Tortora, Giampaolo

    2014-01-01

    The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs) have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC) and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs) have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required. PMID:28548068

  16. Toll-Like Receptor 9 Agonists for Cancer Therapy.

    PubMed

    Melisi, Davide; Frizziero, Melissa; Tamburrino, Anna; Zanotto, Marco; Carbone, Carmine; Piro, Geny; Tortora, Giampaolo

    2014-08-04

    The immune system has acquired increasing importance as a key player in cancer maintenance and growth. Thus, modulating anti-tumor immune mediators has become an attractive strategy for cancer treatment. Toll-like receptors (TLRs) have gradually emerged as potential targets of newer immunotherapies. TLR-9 is preferentially expressed on endosome membranes of B-cells and plasmacytoid dendritic cells (pDC) and is known for its ability to stimulate specific immune reactions through the activation of inflammation-like innate responses. Several synthetic CpG oligonucleotides (ODNs) have been developed as TLR-9 agonists with the aim of enhancing cancer immune surveillance. In many preclinical models, CpG ODNs were found to suppress tumor growth and proliferation both in monotherapy and in addition to chemotherapies or target therapies. TLR-9 agonists have been also tested in several clinical trials in patients with solid tumors. These agents showed good tolerability and usually met activity endpoints in early phase trials. However, they have not yet been demonstrated to significantly impact survival, neither as single agent treatments, nor in combination with chemotherapies or cancer vaccines. Further investigations in larger prospective studies are required.

  17. Melatonin and melatonin agonist for delirium in the elderly patients.

    PubMed

    Chakraborti, Dwaipayan; Tampi, Deena J; Tampi, Rajesh R

    2015-03-01

    The objective of this review is to summarize the available data on the use of melatonin and melatonin agonist for the prevention and management of delirium in the elderly patients from randomized controlled trials (RCTs). A systematic search of 5 major databases PubMed, MEDLINE, PsychINFO, Embase, and Cochrane Library was conducted. This search yielded a total of 2 RCTs for melatonin. One study compared melatonin to midazolam, clonidine, and control groups for the prevention and management of delirium in individuals who were pre- and posthip post-hip arthroplasty. The other study compared melatonin to placebo for the prevention of delirium in older adults admitted to an inpatient internal medicine service. Data from these 2 studies indicate that melatonin may have some benefit in the prevention and management of delirium in older adults. However, there is no evidence that melatonin reduces the severity of delirium or has any effect on behaviors or functions in these individuals. Melatonin was well tolerated in these 2 studies. The search for a melatonin agonist for delirium in the elderly patients yielded 1 study of ramelteon. In this study, ramelteon was found to be beneficial in preventing delirium in medically ill individuals when compared to placebo. Ramelteon was well tolerated in this study.

  18. Behavioural determinants of agonistic success in invasive crayfish.

    PubMed

    Hudina, Sandra; Hock, Karlo

    2012-09-01

    Ecosystems today increasingly suffer invasions by multiple invasive species, some of which may share similar advantageous life history traits and ecological niche. In such cases, direct competition can influence invasion success of both species, and provide insights into competition without co-evolution in species equally novel to the environment. We used two widespread crayfish invaders of freshwater ecosystems of Europe, signal crayfish (Pacifastacus leniusculus) and spiny cheek crayfish (Orconectes limosus), to investigate how behavioural decisions in agonistic encounters contribute to competitive advantages in the absence of adaptation to either opponents or an environment. In direct competition against novel but comparable opponents, the key factor for establishing clear dominance of P. leniusculus in interspecific bouts was its greater tendency towards continued engagement in high-intensity fights. With O. limosus individuals consistently retreating from staged bouts as fights became more intense, P. leniusculus individuals did not need to adapt their strategy to be successful, suggesting that their agonistic behaviour intrinsically predisposed them to win. While both species are detrimental to invaded ecosystems, our results indicate that aggressive behaviour of P. leniusculus against unfamiliar opponents could allow it to more easily outcompete other comparable species and consequently present a potentially greater threat for native ecosystems. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Trial Watch: Toll-like receptor agonists in oncological indications.

    PubMed

    Aranda, Fernando; Vacchelli, Erika; Obrist, Florine; Eggermont, Alexander; Galon, Jérôme; Sautès-Fridman, Catherine; Cremer, Isabelle; Henrik Ter Meulen, Jan; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2014-01-01

    Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.

  20. Cariprazine:New dopamine biased agonist for neuropsychiatric disorders.

    PubMed

    De Deurwaerdère, P

    2016-02-01

    Cariprazine (RGH-188, MP-214, Vraylar[TM]) is a new dopamine receptor ligand developed for the treatment of several neuropsychiatric diseases including schizophrenia and bipolar disorders. Cariprazine displays higher affinity at dopamine D3 receptors and a similar affinity at D2 and 5-HT2B receptors. At variance with some atypical antipsychotics, its affinity at 5-HT1A, 5-HT2A and histamine H1 receptors is modest compared with its three main targets. Cariprazine could correspond to a biased agonist at dopamine receptors, displaying either antagonist or partial agonist properties depending on the signaling pathways linked to D2/D3 receptors. The compound crosses the blood-brain barrier, as revealed by positron emission tomography and pharmacokinetic studies in various species. Two main metabolites result mainly from the activity of CYP34A and display properties similar to those of the parent drug. Behavioral data report that cariprazine is efficacious in animal models addressing positive, negative and cognitive symptoms of schizophrenia with no extrapyramidal side effects. In September 2015, the FDA approved the use of cariprazine for the treatment of schizophrenia and type I bipolar disorder. The efficacy of cariprazine in other neuropsychiatric diseases is currently being evaluated in preclinical and clinical studies. Side effects have been observed in humans, including extrapyramidal side effects and akathisia of mild to moderate intensity. Copyright 2016 Prous Science, S.A.U. or its licensors. All rights reserved.

  1. The evolution of histamine H₃ antagonists/inverse agonists.

    PubMed

    Lebois, Evan P; Jones, Carrie K; Lindsley, Craig W

    2011-01-01

    This article describes our efforts along with recent advances in the development, biological evaluation and clinical proof of concept of small molecule histamine H₃ antagonists/inverse agonists. The H3 receptor is a presynaptic autoreceptor within the Class A GPCR family, but also functions as a heteroreceptor modulating levels of neurotransmitters such as dopamine, acetylcholine, norepinephrine, serotonin, GABA and glutamate. Thus, H₃R has garnered a great deal of interest from the pharmaceutical industry for the possible treatment of obesity, epilepsy, sleep/wake, schizophrenia, Alzheimer's disease, neuropathic pain and ADHD. Within the two main classes of H₃ ligands, both imidazole and non-imidazole derived, have shown sufficient potency and specificity which culminated with efficacy in preclinical models for various CNS disorders. Importantly, conserved elements have been identified within the small molecule H₃ ligand scaffolds that resulted in a highly predictive pharmacophore model. Understanding of the pharmacophore model has allowed several groups to dial H₃R activity into scaffolds designed for other CNS targets, and engender directed polypharmacology. Moreover, Abbott, GSK, Pfizer and several others have reported positive Phase I and/or Phase II data with structurally diverse H₃R antagonists/inverse agonists.

  2. Identification of agonists for a group of human odorant receptors

    PubMed Central

    Gonzalez-Kristeller, Daniela C.; do Nascimento, João B. P.; Galante, Pedro A. F.; Malnic, Bettina

    2015-01-01

    Olfaction plays a critical role in several aspects of the human life. Odorants are detected by hundreds of odorant receptors (ORs) which belong to the superfamily of G protein-coupled receptors. These receptors are expressed in the olfactory sensory neurons of the nose. The information provided by the activation of different combinations of ORs in the nose is transmitted to the brain, leading to odorant perception and emotional and behavioral responses. There are ~400 intact human ORs, and to date only a small percentage of these receptors (~10%) have known agonists. The determination of the specificity of the human ORs will contribute to a better understanding of how odorants are discriminated by the olfactory system. In this work, we aimed to identify human specific ORs, that is, ORs that are present in humans but absent from other species, and their corresponding agonists. To do this, we first selected 22 OR gene sequences from the human genome with no counterparts in the mouse, rat or dog genomes. Then we used a heterologous expression system to screen a subset of these human ORs against a panel of odorants of biological relevance, including foodborne aroma volatiles. We found that different types of odorants are able to activate some of these previously uncharacterized human ORs. PMID:25784876

  3. GLP-1 receptor agonist-induced polyarthritis: a case report.

    PubMed

    Ambrosio, Maria Luisa; Monami, Matteo; Sati, Lavinia; Marchionni, Niccolò; Di Bari, Mauro; Mannucci, Edoardo

    2014-08-01

    Occasional cases of bilateral, symmetrical, seronegative polyarthritis have been reported in patients treated with dipeptidyl peptidase-4 inhibitors (Crickx et al. in Rheumatol Int, 2013). We report here a similar case observed during treatment with a GLP-1 receptor agonist. A 42-year-old man with type 2 diabetes treated with metformin 1,500 mg/day and liraglutide 1.8 mg/day. After 6 months from the beginning of treatment, the patient complained of bilateral arthralgia (hands, feet, ankles, knees, and hips). Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and leukocytes were increased. Rheumatoid factor, anticyclic citrullinated protein antibody, antinuclear antibodies, anti-Borrelia, and burgdorferi antibodies were all negative, and myoglobin and calcitonin were normal. Liraglutide was withdrawn, and the symptoms completely disappeared within 1 week, with normalization of ESR, CRP, fibrinogen, and leukocytes. Previously described cases of polyarthritis associated with DPP4 inhibitors had been attributed to a direct effect of the drugs on inflammatory cells expressing the enzyme. The present case, occurred during treatment with a GLP-1 receptor agonists, suggests a possibly different mechanism, mediated by GLP-1 receptor stimulation, which deserved further investigation.

  4. Muscarinic Receptor Agonists and Antagonists: Effects on Cancer

    PubMed Central

    2012-01-01

    Many epithelial and endothelial cells express a cholinergic autocrine loop in which acetylcholine acts as a growth factor to stimulate cell growth. Cancers derived from these tissues similarly express a cholinergic autocrine loop and ACh secreted by the cancer or neighboring cells interacts with M3 muscarinic receptors expressed on the cancer cells to stimulate tumor growth. Primary proliferative pathways involve MAPK and Akt activation. The ability of muscarinic agonists to stimulate, and M3 antagonists to inhibit tumor growth has clearly been demonstrated for lung and colon cancer. The ability of muscarinic agonists to stimulate growth has been shown for melanoma, pancreatic, breast, ovarian, prostate and brain cancers, suggesting that M3 antagonists will also inhibit growth of these tumors as well. As yet no clinical trials have proven the efficacy of M3 antagonists as cancer therapeutics, though the widespread clinical use and low toxicity of M3 antagonists support the potential role of these drugs as adjuvants to current cancer therapies. PMID:22222710

  5. Serotonergic agonists stimulate inositol lipid metabolism in rabbit platelets

    SciTech Connect

    Schaechter, M.; Godfrey, P.P.; Minchin, M.C.W.; McClue, S.J.; Young, M.M.

    1985-10-28

    The metabolism of inositol phospholipids in response to serotonergic agonists was investigated in rabbit platelets. In platelets prelabelled with (/sup 3/H)-inositol, in a medium containing 10 mM LiCl which blocks the enzyme inositol-1-phosphatase, 5-hydroxytryptamine (5-HT) caused a dose-dependent accumulation of inositol phosphates (IP). This suggests a phospholipase-C-mediated breakdown of phosphoinositides. Ketanserin, a selective 5-HT/sub 2/ antagonist, was a potent inhibitor of the 5-HT response, with a Ki of 28 nM, indicating that 5-HT is activating receptors of the 5-HT/sub 2/ type in the platelet. Lysergic acid diethylamide (LSD) and quipazine also caused dose-related increases in inositol phosphate levels, though these were considerably less than those produced by 5-HT. These results show that relatively small changes in phosphoinositide metabolism induced by serotonergic agonists can be investigated in the rabbit platelet, and this cell may therefore be a useful model for the study of some 5-HT receptors. 30 references, 4 figures.

  6. Cold Suppresses Agonist-induced Activation of TRPV1

    PubMed Central

    Chung, M.-K.; Wang, S.

    2011-01-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction. PMID:21666106

  7. Cold suppresses agonist-induced activation of TRPV1.

    PubMed

    Chung, M-K; Wang, S

    2011-09-01

    Cold therapy is frequently used to reduce pain and edema following acute injury or surgery such as tooth extraction. However, the neurobiological mechanisms of cold therapy are not completely understood. Transient receptor potential vanilloid 1 (TRPV1) is a capsaicin- and heat-gated nociceptive ion channel implicated in thermosensation and pathological pain under conditions of inflammation or injury. Although capsaicin-induced nociception, neuropeptide release, and ionic currents are suppressed by cold, it is not known if cold suppresses agonist-induced activation of recombinant TRPV1. We demonstrate that cold strongly suppressed the activation of recombinant TRPV1 by multiple agonists and capsaicin-evoked currents in trigeminal ganglia neurons under normal and phosphorylated conditions. Cold-induced suppression was partially impaired in a TRPV1 mutant that lacked heat-mediated activation and potentiation. These results suggest that cold-induced suppression of TRPV1 may share a common molecular basis with heat-induced potentiation, and that allosteric inhibition may contribute, in part, to the cold-induced suppression. We also show that combination of cold and a specific antagonist of TRPV1 can produce an additive suppression. Our results provide a mechanistic basis for cold therapy and may enhance anti-nociceptive approaches that target TRPV1 for managing pain under inflammation and tissue injury, including that from tooth extraction.

  8. Pharmacology and toxicology of Cannabis derivatives and endocannabinoid agonists.

    PubMed

    Gerra, Gilberto; Zaimovic, Amir; Gerra, Maria L; Ciccocioppo, Roberto; Cippitelli, Andrea; Serpelloni, Giovanni; Somaini, Lorenzo

    2010-01-01

    For centuries Cannabis sativa and cannabis extracts have been used in natural medicine. Delta(9)-tetrahydrocannabinol (THC) is the main active ingredient of Cannabis. THC seems to be responsible for most of the pharmacological and therapeutic actions of cannabis. In a few countries THC extracts (i.e. Sativex) or THC derivatives such as nabilone, and dronabinol are used in the clinic for the treatment of several pathological conditions like chemotherapy-induced nausea and vomiting, multiple sclerosis and glaucoma. On the other hand the severe side effects and the high abuse liability of these agents represent a serious limitation in their medical use. In addition, diversion in the use of these active ingredients for recreational purpose is a concern. Over recent years, alternative approaches using synthetic cannabinoid receptor agonists or agents acting as activators of the endocannabinoid systems are under scrutiny with the hope to develop more effective and safer clinical applications. Likely, in the near future few of these new molecules will be available for clinical use. The present article review recent study and patents with focus on the cannabinoid system as a target for the treatment of central nervous system disorders with emphasis on agonists.

  9. How does agonistic behaviour differ in albino and pigmented fish?

    PubMed Central

    Horký, Pavel; Wackermannová, Marie

    2016-01-01

    In addition to hypopigmentation of the skin and red iris colouration, albino animals also display distinct physiological and behavioural alterations. However, information on the social interactions of albino animals is rare and has mostly been limited to specially bred strains of albino rodents and animals from unique environments in caves. Differentiating between the effects of albinism and domestication on behaviour in rodents can be difficult, and social behaviour in cave fish changes according to species-specific adaptations to conditions of permanent darkness. The agonistic behaviours of albino offspring of pigmented parents have yet to be described. In this study, we observed agonistic behaviour in albino and pigmented juvenile Silurus glanis catfish. We found that the total number of aggressive interactions was lower in albinos than in pigmented catfish. The distance between conspecifics was also analysed, and albinos showed a tendency towards greater separation from their same-coloured conspecifics compared with pigmented catfish. These results demonstrate that albinism can be associated with lower aggressiveness and with reduced shoaling behaviour preference, as demonstrated by a tendency towards greater separation of albinos from conspecifics. PMID:27114883

  10. Selective Allosteric Enhancement of Agonist Binding and Function at Human A3 Adenosine Receptors by a Series of Imidazoquinoline Derivatives

    PubMed Central

    Gao, Zhan-Guo; Kim, Seong Gon; Soltysiak, Kelly A.; Melman, Neli; Ijzerman, Adriaan P.; Jacobson, Kenneth A.

    2014-01-01

    We have identified a series of 1H-imidazo-[4,5-c]quinolines as selective allosteric enhancers of human A3 adenosine receptors. Several of these compounds potentiated both the potency and maximal efficacy of agonist-induced responses and selectively decreased the dissociation of the agonist N6-(4-amino-3-[125I]iodobenzyl)-5′-N-methylcarboxamidoadenosine from human A3 adenosine receptors. There was no effect on the dissociation of the antagonist [3H]8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2.1-i]purin-5-one (PSB-11) from the A3 receptors, as well as [3H]N6-[(R)-phenylisopropy-l]adenosine from rat brain A1 receptors and [3H]2-[p-(2-carboxyethyl)phenyl-ethylamino]-5′-N-ethylcarboxamidoad-enosine from rat striatal A2A receptors, suggesting the selective enhancement of agonist binding at A3 receptors. The analogs were tested as antagonists of competitive binding at human A3 receptors, and Ki values ranging from 120 nM to 101 μM were observed; as for many allosteric modulators of G protein-coupled receptors, an orthosteric effect was also present. The most promising leads from the present set of analogs seem to be the 2-cyclopentyl-1H-imidazo[4,5-c]quinoline derivatives, of which the 4-phenylamino analog DU124183 had the most favorable degree of allosteric modulation versus receptor antagonism. The inhibition of forskolin-stimulated cyclic AMP accumulation in intact cells that express human A3 receptors was employed as a functional index of A3 receptor activation. The enhancer DU124183 caused a marked leftward shift of the concentration-response curve of the A3 receptor agonists in the presence of antagonist and, surprisingly, a potentiation of the maximum agonist efficacy by approximately 30%. Thus, we have identified a novel structural lead for developing allosteric enhancers of A3 adenosine receptors; such enhancers may be useful for treating brain ischemia and other hypoxic conditions. PMID:12065758

  11. The effects of the dopamine agonist rotigotine on hemispatial neglect following stroke

    PubMed Central

    Gorgoraptis, Nikos; Mah, Yee-Haur; Machner, Bjoern; Singh-Curry, Victoria; Malhotra, Paresh; Hadji-Michael, Maria; Cohen, David; Simister, Robert; Nair, Ajoy; Kulinskaya, Elena; Ward, Nick; Greenwood, Richard

    2012-01-01

    Hemispatial neglect following right-hemisphere stroke is a common and disabling disorder, for which there is currently no effective pharmacological treatment. Dopamine agonists have been shown to play a role in selective attention and working memory, two core cognitive components of neglect. Here, we investigated whether the dopamine agonist rotigotine would have a beneficial effect on hemispatial neglect in stroke patients. A double-blind, randomized, placebo-controlled ABA design was used, in which each patient was assessed for 20 testing sessions, in three phases: pretreatment (Phase A1), on transdermal rotigotine for 7–11 days (Phase B) and post-treatment (Phase A2), with the exact duration of each phase randomized within limits. Outcome measures included performance on cancellation (visual search), line bisection, visual working memory, selective attention and sustained attention tasks, as well as measures of motor control. Sixteen right-hemisphere stroke patients were recruited, all of whom completed the trial. Performance on the Mesulam shape cancellation task improved significantly while on rotigotine, with the number of targets found on the left side increasing by 12.8% (P = 0.012) on treatment and spatial bias reducing by 8.1% (P = 0.016). This improvement in visual search was associated with an enhancement in selective attention but not on our measures of working memory or sustained attention. The positive effect of rotigotine on visual search was not associated with the degree of preservation of prefrontal cortex and occurred even in patients with significant prefrontal involvement. Rotigotine was not associated with any significant improvement in motor performance. This proof-of-concept study suggests a beneficial role of dopaminergic modulation on visual search and selective attention in patients with hemispatial neglect following stroke. PMID:22761293

  12. PPAR-α Agonist Fenofibrate Decreased RANTES Levels in Type 2 Diabetes Patients with Hypertriglyceridemia

    PubMed Central

    Feng, Xiaomeng; Gao, Xia; Jia, Yumei; Zhang, Heng; Xu, Yuan; Wang, Guang

    2016-01-01

    Background Regulated upon activation, normal T cells expressed and secreted (RANTES) is associated with inflammation and atherosclerosis. We investigated the effect of fenofibrate, a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, on RANTES in type 2 diabetes mellitus (T2DM) patients with hypertriglyceridemia. Material/Methods This study evaluated cross-sectional and interventional studies of 25 T2DM patients with hypertriglyceridemia (group A) and 32 controls (group B). Group A was treated with fenofibrate (200 mg/day) for 8 weeks. Serum RANTES and clinical characteristics were examined. Results Serum RANTES was significantly higher in group A compared with group B (59.04±16.74 vs. 38.57±12.98 ng/ml, P<0.001) and correlated with triglycerides (TG) (r=0.535, P<0.001), fasting blood glucose (FBG) (r=0.485, P<0.001), glycosylated hemoglobin (HbA1c) (r=0.485, P<0.001), homocysteine (Hcy) (r=0.520, P<0.001), and high-sensitivity C-reactive protein (hsCRP) (r=0.701, P<0.001). In multiple regression analysis after controlling for confounders, increased hsCRP levels (β=7.430, P<0.001) and T2DM with hypertriglyceridemia (β=11.496, P=0.002) were independently related to high serum RANTES levels. After 8 weeks of fenofibrate treatment, serum RANTES significantly decreased in group A compared with baseline (52.75±17.41 vs. 59.04±16.74 ng/ml, P=0.018). Conclusions Fenofibrate decreased serum RANTES levels in T2DM patients with hypertriglyceridemia, indicating that PPAR-α agonists may play an important role in inhibiting inflammatory responses. PMID:26944934

  13. PPAR-α Agonist Fenofibrate Decreased RANTES Levels in Type 2 Diabetes Patients with Hypertriglyceridemia.

    PubMed

    Feng, Xiaomeng; Gao, Xia; Jia, Yumei; Zhang, Heng; Xu, Yuan; Wang, Guang

    2016-03-05

    BACKGROUND Regulated upon activation, normal T cells expressed and secreted (RANTES) is associated with inflammation and atherosclerosis. We investigated the effect of fenofibrate, a peroxisome proliferator-activated receptor-α (PPAR-α) agonist, on RANTES in type 2 diabetes mellitus (T2DM) patients with hypertriglyceridemia. MATERIAL AND METHODS This study evaluated cross-sectional and interventional studies of 25 T2DM patients with hypertriglyceridemia (group A) and 32 controls (group B). Group A was treated with fenofibrate (200 mg/day) for 8 weeks. Serum RANTES and clinical characteristics were examined. RESULTS Serum RANTES was significantly higher in group A compared with group B (59.04±16.74 vs. 38.57±12.98 ng/ml, P<0.001) and correlated with triglycerides (TG) (r=0.535, P<0.001), fasting blood glucose (FBG) (r=0.485, P<0.001), glycosylated hemoglobin (HbA1c) (r=0.485, P<0.001), homocysteine (Hcy) (r=0.520, P<0.001), and high-sensitivity C-reactive protein (hsCRP) (r=0.701, P<0.001). In multiple regression analysis after controlling for confounders, increased hsCRP levels (β=7.430, P<0.001) and T2DM with hypertriglyceridemia (β=11.496, P=0.002) were independently related to high serum RANTES levels. After 8 weeks of fenofibrate treatment, serum RANTES significantly decreased in group A compared with baseline (52.75±17.41 vs. 59.04±16.74 ng/ml, P=0.018). CONCLUSIONS Fenofibrate decreased serum RANTES levels in T2DM patients with hypertriglyceridemia, indicating that PPAR-a agonists may play an important role in inhibiting inflammatory responses.

  14. Naturally occurring marine brominated indoles are aryl hydrocarbon receptor ligands/agonists.

    PubMed

    DeGroot, Danica E; Franks, Diana G; Higa, Tatsuo; Tanaka, Junichi; Hahn, Mark E; Denison, Michael S

    2015-06-15

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as brominated indoles) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat, and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [(3)H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these results indicate that marine-derived brominated indoles are members of a new class of naturally occurring AhR agonists.

  15. Naturally-Occurring Marine Brominated Indoles are Aryl Hydrocarbon Receptor Ligands/Agonists

    PubMed Central

    DeGroot, Danica E.; Franks, Diana G.; Higa, Tatsuo; Tanaka, Junichi; Hahn, Mark E.; Denison, Michael S.

    2015-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the toxic and biological effects of structurally diverse chemicals, including the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). As part of a larger effort to identify the full spectrum of chemicals that can bind to and activate the AhR, we have examined the ability of several naturally-occurring marine-derived brominated indoles and brominated (methylthio)indoles (collectively referred to as “brominated indoles”) to bind to the AhR and stimulate AhR-dependent gene expression. Incubation of mouse, rat and guinea pig recombinant cell lines containing a stably transfected AhR-responsive luciferase reporter gene with eight brominated indoles revealed that all compounds stimulated luciferase reporter gene activity, although some species-specific differences were observed. All compounds induced significantly more luciferase activity when incubated with cells for 4 h as compared to 24 h, demonstrating that these compounds are transient activators of the AhR signaling pathway. Three of the brominated indoles induced CYP1A1 mRNA in human HepG2 cells in vitro and Cyp1a mRNA in zebrafish embryos in vivo. The identification of the brominated indoles as direct ligands and activators/agonists of the AhR was confirmed by their ability to compete with [3H]TCDD for binding to the AhR and to stimulate AhR transformation and DNA binding in vitro. Taken together, these marine-derived brominated indoles are members of a new class of naturally-occurring AhR agonists. PMID:26001051

  16. CXCR2 agonists in ADPKD liver cyst fluids promote cell proliferation.

    PubMed

    Amura, Claudia R; Brodsky, Kelley S; Gitomer, Berenice; McFann, Kim; Lazennec, Gwendal; Nichols, Matthew T; Jani, Alkesh; Schrier, Robert W; Doctor, R Brian

    2008-03-01

    Autosomal dominant polycystic kidney disease (ADPKD) is a highly prevalent genetic disease that results in cyst formation in kidney and liver. Cytokines and growth factors secreted by the cyst-lining epithelia are positioned to initiate autocrine/paracrine signaling and promote cyst growth. Comparative analyses of human kidney and liver cyst fluids revealed disparate cytokine/growth factor profiles. CXCR2 agonists, including IL-8, epithelial neutrophil-activating peptide (ENA-78), growth-related oncogene-alpha (GRO-alpha), are potent proliferative agents that were found at high levels in liver but not kidney cyst fluids. Liver cysts are lined by epithelial cells derived from the intrahepatic bile duct (i.e., cholangiocytes). In polarized pkd2(WS25/-) mouse liver cyst epithelial monolayers, CXCR2 agonists were released both apically and basally, indicating that they may act both on the endothelial and epithelial cells within or lining the cyst wall. IL-8 and human liver cyst fluid induced cell proliferation of HMEC-1 cells, a human microvascular endothelial cell line, and Mz-ChA1 cells, a human cholangiocyte cell model. IL-8 expression can be regulated by specific stresses. Hypoxia and mechanical stretch, two likely stressors acting on the liver cyst epithelia, significantly increased IL-8 secretion and promoter activity. AP-1, c/EBP, and NF-kappaB were required but not sufficient to drive the stress-induced increase in IL-8 transcription. An upstream element between -272 and -1,481 bp allowed for the stress-induced increase in IL-8 transcription. These studies support the hypothesis that CXCR2 signaling promotes ADPKD liver cyst growth.

  17. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: A review

    PubMed Central

    Rivera-Oliver, Marla; Díaz-Ríos, Manuel

    2014-01-01

    Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases. PMID:24530739

  18. Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review.

    PubMed

    Rivera-Oliver, Marla; Díaz-Ríos, Manuel

    2014-04-17

    Caffeine is the most consumed pychostimulant in the world, and it is known to affect basic and fundamental human processes such as sleep, arousal, cognition and learning and memory. It works as a nonselective blocker of adenosine receptors (A1, A2a, A2b and A3) and has been related to the regulation of heart rate, the contraction/relaxation of cardiac and smooth muscles, and the neural signaling in the central nervous system (CNS). Since the late 1990s, studies using adenosine receptor antagonists, such as Caffeine, to block the A1 and A2a adenosine receptor subtypes have shown to reduce the physical, cellular and molecular damages caused by a spinal cord injury (SCI) or a stroke (cerebral infarction) and by other neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Interestingly, other studies using adenosine receptor agonists have also shown to provide a neuroprotective effect on various models of neurodegenerative diseases through the reduction of excitatory neurotransmitter release, apoptosis and inflammatory responses, among others. The seemingly paradoxical use of both adenosine receptor agonists and antagonists as neuroprotective agents has been attributed to differences in dosage levels, drug delivery method, extracellular concentration of excitatory neurotransmitters and stage of disease progression. We discuss and compare recent findings using both antagonists and agonists of adenosine receptors in animal models and patients that have suffered spinal cord injuries, brain strokes, and Parkinson's and Alzheimer's diseases. Additionally, we propose alternative interpretations on the seemingly paradoxical use of these drugs as potential pharmacological tools to treat these various types of neurodegenerative diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Small Molecules with Similar Structures Exhibit Agonist, Neutral Antagonist or Inverse Agonist Activity toward Angiotensin II Type 1 Receptor

    PubMed Central

    Hanzawa, Hiroyuki; Nakao, Naoki; Fujino, Masahiro; Imaizumi, Satoshi; Matsuo, Yoshino; Yanagisawa, Hiroaki; Koike, Hiroyuki; Komuro, Issei; Karnik, Sadashiva S.; Saku, Keijiro

    2012-01-01

    Small differences in the chemical structures of ligands can be responsible for agonism, neutral antagonism or inverse agonism toward a G-protein-coupled receptor (GPCR). Although each ligand may stabilize the receptor conformation in a different way, little is known about the precise conformational differences. We synthesized the angiotensin II type 1 receptor blocker (ARB) olmesartan, R239470 and R794847, which induced inverse agonism, antagonism and agonism, respectively, and then investigated the ligand-specific changes in the receptor conformation with respect to stabilization around transmembrane (TM)3. The results of substituted cysteine accessibility mapping studies support the novel concept that ligand-induced changes in the conformation of TM3 play a role in stabilizing GPCR. Although the agonist-, neutral antagonist and inverse agonist-binding sites in the AT1 receptor are similar, each ligand induced specific conformational changes in TM3. In addition, all of the experimental data were obtained with functional receptors in a native membrane environment (in situ). PMID:22719858

  20. Coupling between agonist and chloride ionophore sites of the GABA(A) receptor: agonist/antagonist efficacy of 4-PIOL.

    PubMed

    Rabe, H; Picard, R; Uusi-Oukari, M; Hevers, W; Lüddens, H; Korpi, E R

    2000-12-15

    Eight gamma-aminobutyric acid (GABA) mimetics were tested on their ability to differentiate native GABA(A) receptor subtypes present in various rat brain regions. In rat brain cryostat sections, little regional variations by the agonistic actions of muscimol, thiomuscimol, 4,5,6,7-tetrahydroisoazolo(5,4-c)pyridin-3-ol, piperidine-4-sulphonic acid, taurine and beta-alanine on [35S]t-butylbicyclophosphorothionate ([35S]TBPS) binding to GABA(A) receptor channels were found. They were very similar to those found for GABA itself and indicated no direct correlation with single subunit distributions for any of these compounds. Only the low-efficacy GABA mimetic 5-(4-piperidyl)isoxazol-3-ol (4-PIOL) acted like a weak partial agonist or antagonist depending on the brain area. As the cerebellar granule cell layer was relatively insensitive to both modes of action, we tested 4-PIOL in recombinant alpha1beta2gamma2 (widespread major subtype) and alpha6beta2gamma2 (cerebellar granule cell restricted) receptors where it had different effects on GABA-modulated [35S]TBPS binding and on electrophysiological responses. 4-PIOL may thus serve as a potential lead for receptor subtype selective compounds.

  1. Discriminative stimulus properties of indorenate, a serotonin agonist.

    PubMed Central

    Velázquez-Martínez, D N; López Cabrera, M; Sánchez, H; Ramírez, J I; Hong, E

    1999-01-01

    OBJECTIVE: To determine whether indorenate, a serotonin-receptor agonist, can exert discriminative control over operant responses, to establish the temporal course of discriminative control and to compare its stimulus properties to a (5-HT)IA receptor agonist. [3H]-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT). DESIGN: Prospective animal study. ANIMALS: Ten male Wistar rats. INTERVENTIONS: Rats were trained to press either of 2 levers for sucrose solution according to a fixed ratio schedule, which was gradually increased. Rats were given injections of either indorenate or saline solution during discrimination training. Once they had achieved an 83% accuracy rate, rats underwent generalization tests after having received a different dose of indorenate, the training dose of indorenate at various intervals before the test, various doses of 8-OH-DPT, or NAN-190 administered before indorenate or 8-OH-DPAT. OUTCOME MEASURES: Distribution of responses between the 2 levers before the first reinforcer of the session, response rate for all the responses in the session, and a discrimination index that expressed the drug-appropriate responses as a proportion of the total responses. RESULTS: Indorenate administration resulted in discriminative control over operant responses, maintained at fixed ratio 10, at a dose of 10.0 mg/kg (but not 3.0 mg/kg). When the interval between the administration of indorenate and the start of the session was varied, the time course of its cue properties followed that of its described effects on 5-HT turnover. In generalization tests, the discrimination index was a function of the dose of indorenate employed; moreover, administration of 8-OH-DPAT (from 0.1 to 1.0 mg/kg) fully mimicked the stimulus properties of indorenate in a dose-dependent way. The (5-HT)IA antagonist NAN-190 prevented the stimulus generalization from indorenate to 8-OH-DPAT. Also, NAN-190 antagonized the stimulus control of indorenate when administered 45 minutes before

  2. New Small Molecule Agonists to the Thyrotropin Receptor

    PubMed Central

    Ali, M. Rejwan; Ma, Risheng; David, Martine; Morshed, Syed A.; Ohlmeyer, Michael; Felsenfeld, Dan P.; Lau, Zerlina; Mezei, Mihaly; Davies, Terry F.

    2015-01-01

    Background Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. Methods To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. Results We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor–expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10−8 M, and molecule MS438 had an EC50 of 5.3×10−8 M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of

  3. Discriminative stimulus properties of indorenate, a serotonin agonist.

    PubMed

    Velázquez-Martínez, D N; López Cabrera, M; Sánchez, H; Ramírez, J I; Hong, E

    1999-03-01

    To determine whether indorenate, a serotonin-receptor agonist, can exert discriminative control over operant responses, to establish the temporal course of discriminative control and to compare its stimulus properties to a (5-HT)IA receptor agonist. [3H]-8-hydroxy-2-(di-N-propylamino) tetralin (8-OH-DPAT). Prospective animal study. Ten male Wistar rats. Rats were trained to press either of 2 levers for sucrose solution according to a fixed ratio schedule, which was gradually increased. Rats were given injections of either indorenate or saline solution during discrimination training. Once they had achieved an 83% accuracy rate, rats underwent generalization tests after having received a different dose of indorenate, the training dose of indorenate at various intervals before the test, various doses of 8-OH-DPT, or NAN-190 administered before indorenate or 8-OH-DPAT. Distribution of responses between the 2 levers before the first reinforcer of the session, response rate for all the responses in the session, and a discrimination index that expressed the drug-appropriate responses as a proportion of the total responses. Indorenate administration resulted in discriminative control over operant responses, maintained at fixed ratio 10, at a dose of 10.0 mg/kg (but not 3.0 mg/kg). When the interval between the administration of indorenate and the start of the session was varied, the time course of its cue properties followed that of its described effects on 5-HT turnover. In generalization tests, the discrimination index was a function of the dose of indorenate employed; moreover, administration of 8-OH-DPAT (from 0.1 to 1.0 mg/kg) fully mimicked the stimulus properties of indorenate in a dose-dependent way. The (5-HT)IA antagonist NAN-190 prevented the stimulus generalization from indorenate to 8-OH-DPAT. Also, NAN-190 antagonized the stimulus control of indorenate when administered 45 minutes before the session, but not when administered 105 minutes before the session (i

  4. Stimulation of chloride secretion by P1 purinoceptor agonists in cystic fibrosis phenotype airway epithelial cell line CFPEo-.

    PubMed Central

    Chao, A. C.; Zifferblatt, J. B.; Wagner, J. A.; Dong, Y. J.; Gruenert, D. C.; Gardner, P.

    1994-01-01

    1. P1 purinoceptor agonists like adenosine have been shown to stimulate Cl- transport in secretory epithelia. In the present study, we investigated whether P1 agonist-induced Cl- secretion is preserved in cystic fibrosis airway epithelium and which signalling mechanism is involved. The effects of purinoceptor agonists on Cl- secretion were examined in a transformed cystic fibrosis airway phenotype epithelial cell line, CFPEo-. 2. Addition of adenosine (ADO; 0.1-1 mM) markedly increased 125I efflux rate. The rank order of potency of purinoceptor agonists in stimulating 125I efflux was ADO > AMP > ADP approximately equal to ATP. A similar order of potency was seen in transformed cystic fibrosis nasal polyp cells, CFNPEo- (ADO > ATP > AMP > ADP). These results are consistent with the activation of Cl- secretion via a P1 purinoceptor. 3. The P1 agonists tested (at 0.01 and 0.1 mM) revealed a rank order of potency of 5'-N-ethylcarboxamine adenosine (NECA) > 2-chloro-adenosine (2-Cl-ADO) > R-phenylisopropyl adenosine (R-PIA). 4. The known potent A2 adenosine receptor (A2AR) agonist, 5'-(N-cyclopropyl) carboxamidoadenosine (CPCA, 2 microM) but not the A1 adenosine receptor agonist, N6-phenyl adenosine (N6-phenyl ADO, 10 microM) markedly increased 125I efflux rate (baseline, 5.9 +/- 2.0% min-1, + CPCA, 10.9 +/- 0.6% min-1; P < 0.01). The stimulant effect of CPCA (10 microM) was abolished by addition of the A2AR antagonist 3,7-dimethyl-1-propargylxanthine (DMPX) (100 microM; reported K(i) = 11 +/- 3 microM). These results favour the involvement of A2AR. 5. ADO (0.1-mM) and CPCA (2 microM) both induced a marked increase in intracellular [Ca2+] ([Ca2+]i); the effect of the latter was again abolished by pretreatment of the cells with DMPX. By contrast, N6-phenyl ADO did not affect [Ca2+]i. 6. In patch-clamp experiments, ADO (1 mM) induced an outwardly-rectified whole-cell Cl- current (baseline, 2.5 +/- 0.8 pA pF-1, + ADO, 78.4 +/- 23.8 pA pF-1; P < 0.02), which was largely

  5. Analysis of full and partial agonists binding to beta2-adrenergic receptor suggests a role of transmembrane helix V in agonist-specific conformational changes.

    PubMed

    Katritch, Vsevolod; Reynolds, Kimberly A; Cherezov, Vadim; Hanson, Michael A; Roth, Christopher B; Yeager, Mark; Abagyan, Ruben

    2009-01-01

    The 2.4 A crystal structure of the beta(2)-adrenergic receptor (beta(2)AR) in complex with the high-affinity inverse agonist (-)-carazolol provides a detailed structural framework for the analysis of ligand recognition by adrenergic receptors. Insights into agonist binding and the corresponding conformational changes triggering G-protein coupled receptor (GPCR) activation mechanism are of special interest. Here we show that while the carazolol pocket captured in the beta(2)AR crystal structure accommodates (-)-isoproterenol and other agonists without steric clashes, a finite movement of the flexible extracellular part of TM-V helix (TM-Ve) obtained by receptor optimization in the presence of docked ligand can further improve the calculated binding affinities for agonist compounds. Tilting of TM-Ve towards the receptor axis provides a more complete description of polar receptor-ligand interactions for full and partial agonists, by enabling optimal engagement of agonists with two experimentally identified anchor sites, formed by Asp113/Asn312 and Ser203/Ser204/Ser207 side chains. Further, receptor models incorporating a flexible TM-V backbone allow reliable prediction of binding affinities for a set of diverse ligands, suggesting potential utility of this approach to design of effective and subtype-specific agonists for adrenergic receptors. Systematic differences in capacity of partial, full and inverse agonists to induce TM-V helix tilt in the beta(2)AR model suggest potential role of TM-V as a conformational "rheostat" involved in the whole spectrum of beta(2)AR responses to small molecule signals.

  6. Impact of efficacy at the μ-opioid receptor on antinociceptive effects of combinations of μ-opioid receptor agonists and cannabinoid receptor agonists.

    PubMed

    Maguire, David R; France, Charles P

    2014-11-01

    Cannabinoid receptor agonists, such as Δ(9)-tetrahydrocannabinol (Δ(9)-THC), enhance the antinociceptive effects of μ-opioid receptor agonists, which suggests that combining cannabinoids with opioids would improve pain treatment. Combinations with lower efficacy agonists might be preferred and could avoid adverse effects associated with large doses; however, it is unclear whether interactions between opioids and cannabinoids vary across drugs with different efficacy. The antinociceptive effects of μ-opioid receptor agonists alone and in combination with cannabinoid receptor agonists were studied in rhesus monkeys (n = 4) using a warm water tail withdrawal procedure. Etorphine, fentanyl, morphine, buprenorphine, nalbuphine, Δ(9)-THC, and CP 55,940 (2-[(1R,2R,5R)-5-hydroxy-2-(3-hydroxypropyl) cyclohexyl]-5-(2-methyloctan-2-yl)phenol) each increased tail withdrawal latency. Pretreatment with doses of Δ(9)-THC (1.0 mg/kg) or CP 55,940 (0.032 mg/kg) that were ineffective alone shifted the fentanyl dose-effect curve leftward 20.6- and 52.9-fold, respectively, and the etorphine dose-effect curve leftward 12.4- and 19.6-fold, respectively. Δ(9)-THC and CP 55,940 shifted the morphine dose-effect curve leftward only 3.4- and 7.9-fold, respectively, and the buprenorphine curve only 5.4- and 4.1-fold, respectively. Neither Δ(9)-THC nor CP 55,940 significantly altered the effects of nalbuphine. Cannabinoid receptor agonists increase the antinociceptive potency of higher efficacy opioid receptor agonists more than lower efficacy agonists; however, because much smaller doses of each drug can be administered in combinations while achieving adequate pain relief and that other (e.g., abuse-related) effects of opioids do not appear to be enhanced by cannabinoids, these results provide additional support for combining opioids with cannabinoids to treat pain.

  7. The pharmacological properties of the imidazobenzodiazepine, FG 8205, a novel partial agonist at the benzodiazepine receptor

    PubMed Central

    Tricklebank, M.D.; Honoré, T.; Iversen, S.D.; Kemp, J.A.; Knight, A.R.; Marshall, G.R.; Rupniak, N.M.J.; Singh, L.; Tye, S.; Watjen, F.; Wong, E.H.F.

    1990-01-01

    1 The pharmacological properties of the benzodiazepine receptor ligand, FG 8205 (7-chloro-5,6-dihydro-5-methyl-6-oxo-3-(5-isopropyl-1,2,4-oxadiazol-3-yl)-4H- imidazol[1,5a][1,4]benzodiazepine) have been examined. 2 FG 8205 potently displaced [3H]-flumazenil binding in rat cortical membranes with a K1 of 3.3 nM, but was inactive at 13 neurotransmitter recognition sites. 3 Consistent with a partial agonist profile, the affinity of FG 8205 for the benzodiazepine recognition site was increased in the presence of γ-aminobutyric acid (GABA, 300μM) by a degree (—log [IC50 in the presence of GABA/IC50 alone] = 0.34) significantly less than found for diazepam (0.46). FG 8205 also potentiated the inhibitory potency of the GABAA-receptor agonist, isoguvacine, on the hippocampal CA1 population spike and, again, the maximum shift (—log dose-ratio = 0.2) was significantly less than that seen with diazepam (0.4). 4 In anticonvulsant studies, the ED50 doses of FG 8205 and diazepam needed to antagonize seizures induced by pentylenetetrazol (PTZ) or by sound in audiogenic seizure prone mice were similar with values of 0.2–0.3 mgkg-1, i.p. However, even high doses of FG 8205 (50 mgkg-1) did not protect against seizures induced by electroshock. 5 FG 8205 released responding suppressed by footshock in a rat operant conditioned emotional response task over the dose range 0.5–50 mgkg-1 (i.p.). Similar doses of FG 8205 had a marked taming effect in cynomolgus monkeys. However, measures of sedation and ataxia (as measured by rotarod in the mouse, climbing behaviour in the rat, and by scoring arousal and co-ordination in primates) were slight and only transiently affected by FG 8205, and FG 8205 significantly antagonized the rotarod performance deficit induced by diazepam in the mouse. 6 While the potentiation by FG 8205 of the response to isoguvacine in the rat hippocampal slice and the anxiolytic-like effects of the compound in both rats and primates were reversed by the

  8. Sensitivity of GBM cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling

    PubMed Central

    Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo

    2016-01-01

    In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM. PMID:27906173

  9. Sensitivity of GBM cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling.

    PubMed

    Daniel, Paul M; Filiz, Gulay; Mantamadiotis, Theo

    2016-12-01

    In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM.

  10. Marketed New Drug Delivery Systems for Opioid Agonists/Antagonists Administration: A Rapid Overview

    PubMed Central

    Soltani, Hoda; Pardakhty, Abbas

    2016-01-01

    Novel drug delivery systems for controlled-release of opioid agonists as a long time painkillers or opioid antagonists for opium, heroin, and alcohol addiction are under development or in clinical use today. In this article, the field of “new drug delivery systems” is momentarily reviewed from the viewpoint of the marketed opioid agonists/antagonists dosage forms today. PMID:27882209

  11. Use-dependent inhibition of P2X3 receptors by nanomolar agonist.

    PubMed

    Pratt, Emily B; Brink, Thaddeus S; Bergson, Pamela; Voigt, Mark M; Cook, Sean P

    2005-08-10

    P2X3 receptors desensitize within 100 ms of channel activation, yet recovery from desensitization requires several minutes. The molecular basis for this slow rate of recovery is unknown. We designed experiments to test the hypothesis that this slow recovery is attributable to the high affinity (< 1 nM) of desensitized P2X3 receptors for agonist. We found that agonist binding to the desensitized state provided a mechanism for potent inhibition of P2X3 current. Sustained applications of 0.5 nM ATP inhibited > 50% of current to repetitive applications of P2X3 agonist. Inhibition occurred at 1000-fold lower agonist concentrations than required for channel activation and showed strong use dependence. No inhibition occurred without previous activation and desensitization. Our data are consistent with a model whereby inhibition of P2X3 by nanomolar [agonist] occurs by the rebinding of agonist to desensitized channels before recovery from desensitization. For several ATP analogs, the concentration required to inhibit P2X3 current inversely correlated with the rate of recovery from desensitization. This indicates that the affinity of the desensitized state and recovery rate primarily depend on the rate of agonist unbinding. Consistent with this hypothesis, unbinding of [32P]ATP from desensitized P2X3 receptors mirrored the rate of recovery from desensitization. As expected, disruption of agonist binding by site-directed mutagenesis increased the IC50 for inhibition and increased the rate of recovery.

  12. Retinoic acid receptor β2 agonists restore glycaemic control in diabetes and reduce steatosis.

    PubMed

    Trasino, S E; Tang, X-H; Jessurun, J; Gudas, L J

    2016-02-01

    To investigate the effects of specific retinoic acid receptor (RAR) agonists in diabetes and fatty liver disease. Synthetic agonists for RARβ2 were administered to wild-type (wt) mice in a model of high-fat-diet (HFD)-induced type 2 diabetes (T2D) and to ob/ob and db/db mice (genetic models of obesity-associated T2D). We show that administration of synthetic agonists for RARβ2 to either wt mice in a model of HFD-induced T2D or to ob/ob and db/db mice reduces hyperglycaemia, peripheral insulin resistance and body weight. Furthermore, RARβ2 agonists dramatically reduce steatosis, lipid peroxidation and oxidative stress in the liver, pancreas and kidneys of obese, diabetic mice. RARβ2 agonists also lower levels of mRNAs involved in lipogenesis, such as sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase, and increase mRNAs that mediate mitochondrial fatty acid β-oxidation, such as CPT1α, in these organs. RARβ2 agonists lower triglyceride levels in these organs, and in muscle. Collectively, our data show that orally active, rapid-acting, high-affinity pharmacological agonists for RARβ2 improve the diabetic phenotype while reducing lipid levels in key insulin target tissues. We suggest that RARβ2 agonists should be useful drugs for T2D therapy and for treatment of hepatic steatosis. © 2015 John Wiley & Sons Ltd.

  13. Cancer immunotherapy: activating innate and adaptive immunity through CD40 agonists.

    PubMed

    Beatty, Gregory L; Li, Yan; Long, Kristen B

    2017-02-01

    CD40 is a promising therapeutic target for cancer immunotherapy. In patients with advanced solid malignancies, CD40 agonists have demonstrated some anti-tumor activity and a manageable toxicity profile. A 2(nd) generation of CD40 agonists has now been designed with optimized Fc receptor (FcR) binding based on preclinical evidence suggesting a critical role for FcR engagement in defining the potency of CD40 agonists in vivo. Areas covered: We provide a comprehensive review using PubMed and Google Patent databases on the current clinical status of CD40 agonists, strategies for applying CD40 agonists in cancer therapy, and the preclinical data that supports and is guiding the future development of CD40 agonists. Expert commentary: There is a wealth of preclinical data that provide rationale on several distinct approaches for using CD40 agonists in cancer immunotherapy. This data illustrates the need to strategically combine CD40 agonists with other clinically active treatment regimens in order to realize the full potential of activating CD40 in vivo. Thus, critical to the success of this class of immune-oncology drugs, which have the potential to restore both innate and adaptive immunosurveillance, will be the identification of biomarkers for monitoring and predicting responses as well as informing mechanisms of treatment resistance.

  14. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms.

    PubMed

    Randáková, Alena; Dolejší, Eva; Rudajev, Vladimír; Zimčík, Pavel; Doležal, Vladimír; El-Fakahany, Esam E; Jakubík, Jan

    2015-07-01

    We mutated key amino acids of the human variant of the M1 muscarinic receptor that target ligand binding, receptor activation, and receptor-G protein interaction. We compared the effects of these mutations on the action of two atypical M1 functionally preferring agonists (N-desmethylclozapine and xanomeline) and two classical non-selective orthosteric agonists (carbachol and oxotremorine). Mutations of D105 in the orthosteric binding site and mutation of D99 located out of the orthosteric binding site decreased affinity of all tested agonists that was translated as a decrease in potency in accumulation of inositol phosphates and intracellular calcium mobilization. Mutation of D105 decreased the potency of the atypical agonist xanomeline more than that of the classical agonists carbachol and oxotremorine. Mutation of the residues involved in receptor activation (D71) and coupling to G-proteins (R123) completely abolished the functional responses to both classical and atypical agonists. Our data show that both classical and atypical agonists activate hM1 receptors by the same molecular switch that involves D71 in the second transmembrane helix. The principal difference among the studied agonists is rather in the way they interact with D105 in the orthosteric binding site. Furthermore, our data demonstrate a key role of D105 in xanomeline wash-resistant binding and persistent activation of hM1 by wash-resistant xanomeline. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice

    PubMed Central

    Sharma, Pawan; Yi, Roslyn; Nayak, Ajay P.; Wang, Nadan; Tang, Francesca; Knight, Morgan J.; Pan, Shi; Oliver, Brian; Deshpande, Deepak A.

    2017-01-01

    Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma. PMID:28397820

  16. Bitter Taste Receptor Agonists Mitigate Features of Allergic Asthma in Mice.

    PubMed

    Sharma, Pawan; Yi, Roslyn; Nayak, Ajay P; Wang, Nadan; Tang, Francesca; Knight, Morgan J; Pan, Shi; Oliver, Brian; Deshpande, Deepak A

    2017-04-11

    Asthma is characterized by airway inflammation, mucus secretion, remodeling and hyperresponsiveness (AHR). Recent research has established the bronchodilatory effect of bitter taste receptor (TAS2R) agonists in various models. Comprehensive pre-clinical studies aimed at establishing effectiveness of TAS2R agonists in disease models are lacking. Here we aimed to determine the effect of TAS2R agonists on features of asthma. Further, we elucidated a mechanism by which TAS2R agonists mitigate features of asthma. Asthma was induced in mice using intranasal house dust mite or aerosol ova-albumin challenge, and chloroquine or quinine were tested in both prophylactic and treatment models. Allergen challenge resulted in airway inflammation as evidenced by increased immune cells infiltration and release of cytokines and chemokines in the lungs, which were significantly attenuated in TAS2R agonists treated mice. TAS2R agonists attenuated features of airway remodeling including smooth muscle mass, extracellular matrix deposition and pro-fibrotic signaling, and also prevented mucus accumulation and development of AHR in mice. Mechanistic studies using human neutrophils demonstrated that inhibition of immune cell chemotaxis is a key mechanism by which TAS2R agonists blocked allergic airway inflammation and exerted anti-asthma effects. Our comprehensive studies establish the effectiveness of TAS2R agonists in mitigating multiple features of allergic asthma.

  17. Dopamine receptor agonists mediate neuroprotection in malonate-induced striatal lesion in the rat.

    PubMed

    Armentero, Marie-Thérèse; Fancellu, Roberto; Nappi, Giuseppe; Blandini, Fabio

    2002-12-01

    Mitochondrial bioenergetic defects are involved in neurological disorders associated with neuronal damage in the striatum, such as Huntington's disease and cerebral ischemia. The striatal release of neurotransmitters, in particular dopamine, may contribute to the development of the neuronal damage. Recent studies have shown that dopamine agonists may exert neuroprotective effects via multiple mechanisms, including modulation of dopamine release from nigrostriatal dopaminergic terminals. In rats, intrastriatal injection of malonate, a reversible inhibitor of the mitochondrial enzyme succinate dehydrogenase, induces a lesion similar to that observed following focal ischemia or in Huntington's disease. In this study, we used the malonate model to explore the neuroprotective potential of dopamine agonists. Sprague-Dawley rats were injected systemically with increasing concentrations of D(1), D(2), or mixed D(1)/D(2) dopamine agonists prior to malonate intrastriatal insult. Administration of increasing doses of the D(2)-specific agonist quinpirole resulted in increased protection against malonate toxicity. Conversely, the D(1)-specific agonist SKF-38393, as well as the mixed D(1)/D(2) agonist apomorphine, conferred higher neuroprotection at lower than at higher concentrations. Our data suggest that malonate-induced striatal toxicity can be attenuated by systemic administration of dopamine agonists, with D(1) and D(2) agonists showing different profiles of efficacy.

  18. The dopamine D1 receptor agonist SKF-82958 effectively increases eye blinking count in common marmosets.

    PubMed

    Kotani, Manato; Kiyoshi, Akihiko; Murai, Takeshi; Nakako, Tomokazu; Matsumoto, Kenji; Matsumoto, Atsushi; Ikejiri, Masaru; Ogi, Yuji; Ikeda, Kazuhito

    2016-03-01

    Eye blinking is a spontaneous behavior observed in all mammals, and has been used as a well-established clinical indicator for dopamine production in neuropsychiatric disorders, including Parkinson's disease and Tourette syndrome [1,2]. Pharmacological studies in humans and non-human primates have shown that dopamine agonists/antagonists increase/decrease eye blinking rate. Common marmosets (Callithrix jacchus) have recently attracted a great deal of attention as suitable experimental animals in the psychoneurological field due to their more developed prefrontal cortex than rodents, easy handling compare to other non-human primates, and requirement for small amounts of test drugs. In this study, we evaluated the effects of dopamine D1-4 receptors agonists on eye blinking in common marmosets. Our results show that the dopamine D1 receptor agonist SKF-82958 and the non-selective dopamine receptor agonist apomorphine significantly increased common marmosets eye blinking count, whereas the dopamine D2 agonist (+)-PHNO and the dopamine D3 receptor agonist (+)-PD-128907 produced somnolence in common marmosets resulting in a decrease in eye blinking count. The dopamine D4 receptor agonists PD-168077 and A-41297 had no effect on common marmosets' eye blinking count. Finally, the dopamine D1 receptor antagonist SCH 39166 completely blocked apomorphine-induced increase in eye blinking count. These results indicate that eye blinking in common marmosets may be a useful tool for in vivo screening of novel dopamine D1 receptor agonists as antipsychotics.

  19. Prolonging Survival of Corneal Transplantation by Selective Sphingosine-1-Phosphate Receptor 1 Agonist

    PubMed Central

    Gao, Min; Liu, Yong; Xiao, Yang; Han, Gencheng; Jia, Liang; Wang, Liqiang; Lei, Tian; Huang, Yifei

    2014-01-01

    Corneal transplantation is the most used therapy for eye disorders. Although the cornea is somewhat an immune privileged organ, immune rejection is still the major problem that reduces the success rate. Therefore, effective chemical drugs that regulate immunoreactions are needed to improve the outcome of corneal transplantations. Here, a sphingosine-1-phosphate receptor 1 (S1P1) selective agonist was systematically evaluated in mouse allogeneic corneal transplantation and compared with the commonly used immunosuppressive agents. Compared with CsA and the non-selective sphingosine 1-phosphate (S1P) receptor agonist FTY720, the S1P1 selective agonist can prolong the survival corneal transplantation for more than 30 days with a low immune response. More importantly, the optimal dose of the S1P1 selective agonist was much less than non-selective S1P receptor agonist FTY720, which would reduce the dose-dependent toxicity in drug application. Then we analyzed the mechanisms of the selected S1P1 selective agonist on the immunosuppression. The results shown that the S1P1 selective agonist could regulate the distribution of the immune cells with less CD4+ T cells and enhanced Treg cells in the allograft, moreover the expression of anti-inflammatory cytokines TGF-β1 and IL-10 unregulated which can reduce the immunoreactions. These findings suggest that S1P1 selective agonist may be a more appropriate immunosuppressive compound to effectively prolong mouse allogeneic corneal grafts survival. PMID:25216235

  20. Pleiotropic behavior of 5-HT2A and 5-HT2C receptor agonists.

    PubMed

    Berg, K A; Maayani, S; Goldfarb, J; Clarke, W P

    1998-12-15

    There is now considerable evidence that a single receptor subtype can couple to multiple effector pathways within a cell. Recently, Kenakin proposed a new concept, termed "agonist-directed trafficking of receptor stimulus", that suggests that agonists may be able to selectively activate a subset of multiple signaling pathways coupled to a single receptor subtype. 5-HT2A and 5-HT2C receptors couple to phospholipase C-(PLC) mediated inositol phosphate (IP) accumulation and PLA2-mediated arachidonic acid (AA) release. Relative efficacies of agonists (referenced to 5-HT) differed depending upon whether IP accumulation or AA release was measured. For the 5-HT2C receptor system, some agonists (e.g. TFMPP) preferentially activated the PLC-IP pathway, whereas others (e.g. LSD) favored PLA2-AA. As expected, EC50's of agonists did not differ between pathways. For the 5-HT2A receptor system, all agonists tested had greater relative efficacy for PLA2-AA than for PLC-IP. In contrast, relative efficacies were not different for 5-HT2A agonists when sequential effects in a pathway were measured (IP accumulation vs. calcium mobilization). These data strongly support the agonist-directed trafficking hypothesis.

  1. Modulation of [3H]diazepam binding in rat cortical membranes by GABAA agonists.

    PubMed

    Wong, E H; Iversen, L L

    1985-04-01

    GABAA receptor agonists modulate [3H]diazepam binding in rat cortical membranes with different efficacies. At 23 degrees C, the relative potencies for enhancement of [3H]diazepam binding by agonists parallel their potencies in inhibiting [3H]gamma-aminobutyric acid [( 3H]GABA) binding. The agonist concentrations needed for enhancement of [3H]diazepam binding are up to 35 times higher than for [3H]GABA binding and correspond closely to the concentrations required for displacement of [3H]bicuculline methochloride (BMC) binding. The maximum enhancement of [3H]diazepam varied among agonists: muscimol = GABA greater than isoguvacine greater than 3-aminopropane sulphonic acid (3APS) = imidazoleacetic acid (IAA) greater than 4,5,6,7-tetrahydroisoxazolo (4,5,6)-pyridin-3-ol (THIP) = taurine greater than piperidine 4-sulphonic acid (P4S). At 37 degrees C, the potencies of agonists remained unchanged, but isoguvacine, 3 APS, and THIP acquired efficacies similar to GABA, whereas IAA, taurine, and P4S maintained their partial agonist profiles. At both temperatures the agonist-induced enhancement of [3H]diazepam binding was reversible by bicuculline methobromide and by the steroid GABA antagonist RU 5135. These results stress the importance of studying receptor-receptor interaction under near-physiological conditions and offer an in vitro assay that may predict the agonist status of putative GABA receptor ligands.

  2. Design, synthesis, and evaluation of phenylglycinols and phenyl amines as agonists of GPR88.

    PubMed

    Dzierba, Carolyn D; Bi, Yingzhi; Dasgupta, Bireshwar; Hartz, Richard A; Ahuja, Vijay; Cianchetta, Giovanni; Kumi, Godwin; Dong, Li; Aleem, Saadat; Fink, Cynthia; Garcia, Yudith; Green, Michael; Han, Jianxin; Kwon, Soojin; Qiao, Ying; Wang, Jiancheng; Zhang, Yulian; Liu, Ying; Zipp, Greg; Liang, Zhi; Burford, Neil; Ferrante, Meredith; Bertekap, Robert; Lewis, Martin; Cacace, Angela; Grace, James; Wilson, Alan; Nouraldeen, Amr; Westphal, Ryan; Kimball, David; Carson, Kenneth; Bronson, Joanne J; Macor, John E

    2015-04-01

    Small molecule modulators of GPR88 activity (agonists, antagonists, or modulators) are of interest as potential agents for the treatment of a variety of psychiatric disorders including schizophrenia. A series of phenylglycinol and phenylamine analogs have been prepared and evaluated for their GPR88 agonist activity and pharmacokinetic (PK) properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Marketed New Drug Delivery Systems for Opioid Agonists/Antagonists Administration: A Rapid Overview.

    PubMed

    Soltani, Hoda; Pardakhty, Abbas

    2016-04-01

    Novel drug delivery systems for controlled-release of opioid agonists as a long time painkillers or opioid antagonists for opium, heroin, and alcohol addiction are under development or in clinical use today. In this article, the field of "new drug delivery systems" is momentarily reviewed from the viewpoint of the marketed opioid agonists/antagonists dosage forms today.

  4. Agonist-induced platelet procoagulant activity requires shear and a Rac1-dependent signaling mechanism

    PubMed Central

    Delaney, Michael Keegan; Liu, Junling; Kim, Kyungho; Shen, Bo; Stojanovic-Terpo, Aleksandra; Zheng, Yi; Cho, Jaehyung

    2014-01-01

    Activated platelets facilitate blood coagulation by exposing phosphatidylserine (PS) and releasing microvesicles (MVs). However, the potent physiological agonists thrombin and collagen poorly induce PS exposure when a single agonist is used. To obtain a greater procoagulant response, thrombin is commonly used in combination with glycoprotein VI agonists. However, even under these conditions, only a percentage of platelets express procoagulant activity. To date, it remains unclear why platelets poorly expose PS even when stimulated with multiple agonists and what the signaling pathways are of soluble agonist-induced platelet procoagulant activity. Here we show that physiological levels of shear present in blood significantly enhance agonist-induced platelet PS exposure and MV release, enabling low doses of a single agonist to induce full-scale platelet procoagulant activity. PS exposed on the platelet surface was immediately released as MVs, revealing a tight coupling between the 2 processes under shear. Using platelet-specific Rac1−/− mice, we discovered that Rac1 plays a common role in mediating the low-dose agonist-induced procoagulant response independent of platelet aggregation, secretion, and the apoptosis pathway. Platelet-specific Rac1 function was not only important for coagulation in vitro but also for fibrin accumulation in vivo following laser-induced arteriolar injury. PMID:25079357

  5. Yawning and locomotor behavior induced by dopamine receptor agonists in mice and rats.

    PubMed

    Li, Su-Min; Collins, Gregory T; Paul, Noel M; Grundt, Peter; Newman, Amy H; Xu, Ming; Grandy, David K; Woods, James H; Katz, Jonathan L

    2010-05-01

    Dopaminergic (DA) agonist-induced yawning in rats seems to be mediated by DA D3 receptors, and low doses of several DA agonists decrease locomotor activity, an effect attributed to presynaptic D2 receptors. Effects of several DA agonists on yawning and locomotor activity were examined in rats and mice. Yawning was reliably produced in rats, and by the cholinergic agonist, physostigmine, in both the species. However, DA agonists were ineffective in producing yawning in Swiss-Webster or DA D2R and DA D3R knockout or wild-type mice. The drugs significantly decreased locomotor activity in rats at one or two low doses, with activity returning to control levels at higher doses. In mice, the drugs decreased locomotion across a 1000-10 000-fold range of doses, with activity at control levels (U-91356A) or above control levels [(+/-)-7-hydroxy-2-dipropylaminotetralin HBr, quinpirole] at the highest doses. Low doses of agonists decreased locomotion in all mice except the DA D2R knockout mice, but were not antagonized by DA D2R or D3R antagonists (L-741 626, BP 897, or PG01037). Yawning does not provide a selective in-vivo indicator of DA D3R agonist activity in mice. Decreases in mouse locomotor activity by the DA agonists seem to be mediated by D2 DA receptors.

  6. TSH and Thyrotropic Agonists: Key Actors in Thyroid Homeostasis

    PubMed Central

    Dietrich, Johannes W.; Landgrafe, Gabi; Fotiadou, Elisavet H.

    2012-01-01

    This paper provides the reader with an overview of our current knowledge of hypothalamic-pituitary-thyroid feedback from a cybernetic standpoint. Over the past decades we have gained a plethora of information from biochemical, clinical, and epidemiological investigation, especially on the role of TSH and other thyrotropic agonists as critical components of this complex relationship. Integrating these data into a systems perspective delivers new insights into static and dynamic behaviour of thyroid homeostasis. Explicit usage of this information with mathematical methods promises to deliver a better understanding of thyrotropic feedback control and new options for personalised diagnosis of thyroid dysfunction and targeted therapy, also by permitting a new perspective on the conundrum of the TSH reference range. PMID:23365787

  7. Basal Insulin Use With GLP-1 Receptor Agonists.

    PubMed

    Anderson, Sarah L; Trujillo, Jennifer M

    2016-08-01

    IN BRIEF The combination of basal insulin and a glucagon-like peptide 1 receptor agonist is becoming increasingly common and offers several potential benefits to patients with type 2 diabetes. Clinical studies have demonstrated improved glycemic control and low risks of hypoglycemia and weight gain with the combination, which provides a safe and effective alternative to basal-bolus insulin with less treatment burden. Fixed-ratio combination products that administer both agents in a single injection are in the pipeline and will offer additional options for clinicians and patients. This review focuses on the rationale for, clinical evidence on, and implications of using this combination of therapies in the treatment of type 2 diabetes.

  8. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-09-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  9. [Safety and tolerability of GLP-1 receptor agonists].

    PubMed

    Soldevila, Berta; Puig-Domingo, Manel

    2014-01-01

    Glucagon-like peptide-1 receptor agonists (GLP-1ra) are a new group of drugs with a glucose-lowering action due to their incretin effect. The GLP-1 receptor is expressed in various human tissues, which could be related to the pleiotropic effects of human GLP-1, as well as to the adverse effects described in patients treated with GLP-1ra. The risk of hypoglycaemia is low, which is one of the main considerations in the safety of this family of compounds and is also important to patients with diabetes. The most frequent adverse effect is nausea, which usually occurs at the start of treatment and is transient in 20-60% of affected patients. This article also reviews the information available on antibody formation, the potential effect on the thyroid gland, and the controversial association between this group of drugs with pancreatitis and cancer.

  10. INSIGHT AGONISTES: A READING OF SOPHOCLES'S OEDIPUS THE KING.

    PubMed

    Mahon, Eugene J

    2015-07-01

    In this reading of Sophocles's Oedipus the King, the author suggests that insight can be thought of as the main protagonist of the tragedy. He personifies this depiction of insight, calling it Insight Agonistes, as if it were the sole conflicted character on the stage, albeit masquerading at times as several other characters, including gods, sphinxes, and oracles. This psychoanalytic reading of the text lends itself to an analogy between psychoanalytic process and Sophocles's tragic hero. The author views insight as always transgressing against, always at war with a conservative, societal, or intrapsychic chorus of structured elements. A clinical vignette is presented to illustrate this view of insight. © 2015 The Psychoanalytic Quarterly, Inc.

  11. Design of anticancer lysophosphatidic acid agonists and antagonists.

    PubMed

    Parrill, Abby L

    2014-05-01

    Lysophosphatidic acid (LPA) and its receptors, LPA1-6, are integral parts of signaling pathways involved in cellular proliferation, migration and survival. These signaling pathways are of therapeutic interest for the treatment of multiple types of cancer and to reduce cancer metastasis and side effects. Validated therapeutic potential of key receptors, as well as recent structure-activity relationships yielding compounds with low nanomolar potencies are exciting recent advances in the field. Some compounds have proven efficacious in vivo against tumor proliferation and metastasis, bone cancer pain and the pulmonary fibrosis that can result as a side effect of pulmonary cancer radiation treatment. However, recent studies have identified that LPA contributes through multiple pathways to the development of chemotherapeutic resistance suggesting new applications for LPA antagonists in cancer treatment. This review summarizes the roles of LPA signaling in cancer pathophysiology and recent progress in the design and evaluation of LPA agonists and antagonists.

  12. Locomotion induced by ventral tegmental microinjections of a nicotinic agonist.

    PubMed

    Museo, E; Wise, R A

    1990-03-01

    Bilateral microinjections of the nicotinic agonist cytisine (0.1, 1 or 10 nanomoles per side) into the ventral tegmental area increased locomotor activity. This increase in locomotion was antagonized by mecamylamine (2 mg/kg, IP), a nicotinic antagonist that readily crosses the blood-brain barrier, and by pimozide (0.3 mg/kg, IP), a central dopaminergic antagonist. Hexamethonium (2 mg/kg, IP), a nicotinic antagonist that, unlike mecamylamine, does not cross the blood-brain barrier, had no effect; this suggests that mecamylamine's attenuation of cytisine-induced locomotor activity resulted from a blockade of central and not peripheral nicotinic receptors. The data support the notion that nicotinic and dopaminergic substrates interact at the level of the VTA to produce increases in locomotor activity.

  13. The GLP-1 agonist, liraglutide, as a pharmacotherapy for obesity

    PubMed Central

    Crane, James; McGowan, Barbara

    2015-01-01

    There is a global obesity epidemic that will continue to be a financial burden on healthcare systems around the world. Tackling obesity through diet and exercise should always be the first intervention, but this has not proved to be effective for a large number of patients. Pharmacotherapeutic options have been limited and many previously available drugs have been withdrawn due to safety concerns. Currently, only bariatric surgery has the capability to induce both substantial and durable weight loss. This article briefly reviews the history of pharmacotherapy for obesity before focusing on the clinical trial evidence for the use of the GLP-1 agonist liraglutide as a weight loss agent and comparing its efficacy with other emerging drug therapies for obesity. PMID:26977279

  14. Postmortem stability and interpretation of beta 2-agonist concentrations.

    PubMed

    Couper, F J; Drummer, O H

    1999-05-01

    This paper describes a series of stability and redistribution studies aimed at understanding the presence and significance of beta 2-agonists in asthma deaths. Salbutamol and terbutaline were shown to be stable in postmortem blood at 23 degrees C for 1 week, 4 degrees C for 6 months and -20 degrees C for 1 to 2 years. However, fenoterol was shown to degrade at 23 degrees C (83% loss), 4 degrees C (93% loss) and -20 degrees C (66% loss) over the same time. Salbutamol concentrations detected in blood taken at the time of body admission to the mortuary were not significantly different from the concentrations detected in blood taken from the same cases at the time of autopsy (45 h later). This suggests that significant postmortem redistribution of salbutamol is unlikely to occur during this period. Postmortem blood concentrations of at least salbutamol are likely to reflect the concentration of these drugs in the body at the time of death.

  15. Anti-fibrotic Potential of AT2 Receptor Agonists

    PubMed Central

    Wang, Yan; Del Borgo, Mark; Lee, Huey W.; Baraldi, Dhaniel; Hirmiz, Baydaa; Gaspari, Tracey A.; Denton, Kate M.; Aguilar, Marie-Isabel; Samuel, Chrishan S.; Widdop, Robert E.

    2017-01-01

    There are a number of therapeutic targets to treat organ fibrosis that are under investigation in preclinical models. There is increasing evidence that stimulation of the angiotensin II type 2 receptor (AT2R) is a novel anti-fibrotic strategy and we have reviewed the published in vivo preclinical data relating to the effects of compound 21 (C21), which is the only nonpeptide AT2R agonist that is currently available for use in chronic preclinical studies. In particular, the differential influence of AT2R on extracellular matrix status in various preclinical fibrotic models is discussed. Collectively, these studies demonstrate that pharmacological AT2R stimulation using C21 decreases organ fibrosis, which has been most studied in the setting of cardiovascular and renal disease. In addition, AT2R-mediated anti-inflammatory effects may contribute to the beneficial AT2R-mediated anti-fibrotic effects seen in preclinical models. PMID:28912715

  16. Saralasin and Sarile Are AT2 Receptor Agonists

    PubMed Central

    2014-01-01

    Saralasin and sarile, extensively studied over the past 40 years as angiotensin II (Ang II) receptor blockers, induce neurite outgrowth in a NG108-15 cell assay to a similar extent as the endogenous Ang II. In their undifferentiated state, these cells express mainly the AT2 receptor. The neurite outgrowth was inhibited by preincubation with the AT2 receptor selective antagonist PD 123,319, which suggests that the observed outgrowth was mediated by the AT2 receptor. Neither saralasin nor sarile reduced the neurite outgrowth induced by Ang II proving that the two octapeptides do not act as antagonists at the AT2 receptor and may be considered as AT2 receptor agonists. PMID:25313325

  17. Tricyclic Spirolactones as Modular TRPV1 Synthetic Agonists.

    PubMed

    Mostinski, Yelena; Noy, Gilad; Kumar, Rakesh; Tsvelikhovsky, Dmitry; Priel, Avi

    2017-08-16

    TRPV1 is a prominent signal integrator of the pain system, known to be activated by vanilloids, a family of endogenous and exogenous pain-evoking molecules, through the vanilloid-binding site (VBS). The extensive preclinical profiling of small molecule inhibitors provides intriguing evidence that TRPV1 inhibition can be a useful therapeutic approach. However, the dissimilarity of chemical species that activate TRPV1 creates a major obstacle to understanding the molecular mechanism of pain induction, which is viewed as a pivotal trait of the somatosensory system. Here, we establish the existence of a unique family of synthetic agonists that interface with TRPV1 through the VBS, containing none of the molecular domains previously believed to be required for this interaction. The overarching value obtained from our inquiry is the novel advancement of the existing TRPV1 activation model. These findings uncover new potential in the area of pain treatment, providing a novel synthetic platform.

  18. Agonistic and antagonistic estrogens in licorice root (Glycyrrhiza glabra).

    PubMed

    Simons, Rudy; Vincken, Jean-Paul; Mol, Loes A M; The, Susan A M; Bovee, Toine F H; Luijendijk, Teus J C; Verbruggen, Marian A; Gruppen, Harry

    2011-07-01

    The roots of licorice (Glycyrrhiza glabra) are a rich source of flavonoids, in particular, prenylated flavonoids, such as the isoflavan glabridin and the isoflavene glabrene. Fractionation of an ethyl acetate extract from licorice root by centrifugal partitioning chromatography yielded 51 fractions, which were characterized by liquid chromatography-mass spectrometry and screened for activity in yeast estrogen bioassays. One third of the fractions displayed estrogenic activity towards either one or both estrogen receptors (ERs; ERα and ERβ). Glabrene-rich fractions displayed an estrogenic response, predominantly to the ERα. Surprisingly, glabridin did not exert agonistic activity to both ER subtypes. Several fractions displayed higher responses than the maximum response obtained with the reference compound, the natural hormone 17β-estradiol (E(2)). The estrogenic activities of all fractions, including this so-called superinduction, were clearly ER-mediated, as the estrogenic response was inhibited by 20-60% by known ER antagonists, and no activity was found in yeast cells that did not express the ERα or ERβ subtype. Prolonged exposure of the yeast to the estrogenic fractions that showed superinduction did, contrary to E(2), not result in a decrease of the fluorescent response. Therefore, the superinduction was most likely the result of stabilization of the ER, yeast-enhanced green fluorescent protein, or a combination of both. Most fractions displaying superinduction were rich in flavonoids with single prenylation. Glabridin displayed ERα-selective antagonism, similar to the ERα-selective antagonist RU 58668. Whereas glabridin was able to reduce the estrogenic response of E(2) by approximately 80% at 6 × 10(-6) M, glabrene-rich fractions only exhibited agonistic responses, preferentially on ERα.

  19. Kappa Agonists as a Novel Therapy for Menopausal Hot Flashes

    PubMed Central

    Oakley, Amy E.; Steiner, Robert A.; Chavkin, Charles; Clifton, Donald K.; Ferrara, Laura K.; Reed, Susan D.

    2015-01-01

    Objective Postmenopausal hot flash etiology is poorly understood, making it difficult to develop and target ideal therapies. A network of hypothalamic estrogen-sensitive neurons producing Kisspeptin, Neurokinin B, and Dynorphin (KNDy neurons), located adjacent to the thermoregulatory center, regulate pulsatile secretion of GnRH and LH. Dynorphin may inhibit this system by binding kappa opioid receptors within the vicinity of KNDy neurons. We hypothesize that hot flashes are reduced by KNDy neuron manipulation. Methods A double-blind, cross-over, placebo-controlled pilot study evaluated the effect of a kappa agonist (KA).Hot flash frequency was the primary outcome. Twelve healthy postmenopausal women with moderate-severe hot flashes, ages 48-60 years, were randomized. Eight women with sufficient baseline hot flashes for statistical analysis completed all 3 interventions: placebo, standard Pentazocine/Naloxone (50/0.5 mg) or low-dose Pentazocine/Naloxone (25/0.25 mg). In an inpatient research setting, each participant received the 3 interventions, in randomized order, on 3 separate days. On each day, an intravenous catheter was inserted for luteinizing hormone (LH) blood sampling, and skin conductance and Holter monitors were placed. Subjective hot flash frequency and severity were recorded. Results Mean hot flash frequency 2-7 hours following therapy initiation was lower than that for placebo (KA standard-dose: 4.75 ± 0.67; KA low-dose: 4.50 ± 0.57; and placebo: 5.94 ± 0.78 hot flashes/5 hours; p =0.025). Hot flash intensity did not vary between interventions. LH pulsatility mirrored objective hot flashes in some, but not all women. Conclusions This pilot suggests that kappa agonists may affect menopausal vasomotor symptoms. PMID:25988798

  20. Interaction of a radiolabeled agonist with cardiac muscarinic cholinergic receptors

    SciTech Connect

    Harden, T.K.; Meeker, R.B.; Martin, M.W.

    1983-12-01

    The interaction of a radiolabeled muscarinic cholinergic receptor agonist, (methyl-/sup 3/H)oxotremorine acetate ((/sup 3/H)OXO), with a washed membrane preparation derived from rat heart, has been studied. In binding assays at 4 degrees C, the rate constants for association and dissociation of (/sup 3/H)OXO were 2 X 10(7) M-1 min-1 and 5 X 10(-3) min-1, respectively, Saturation binding isotherms indicated that binding was to a single population of sites with a Kd of approximately 300 pM. The density of (/sup 3/H)OXO binding sites (90-100 fmol/mg of protein) was approximately 75% of that determined for the radiolabeled receptor antagonist (/sup 3/H)quinuclidinyl benzilate. Both muscarinic receptor agonists and antagonists inhibited the binding of (/sup 3/H)OXO with high affinity and Hill slopes of approximately one. Guanine nucleotides completely inhibited the binding of (/sup 3/H)OXO. This effect was on the maximum binding (Bmax) of (/sup 3/H)OXO with no change occurring in the Kd; the order of potency for five nucleotides was guanosine 5'-O-(3-thio-triphosphate) greater than 5'-guanylylimidodiphosphate greater than GTP greater than or equal to guanosine/diphosphate greater than GMP. The (/sup 3/H)OXO-induced interaction of muscarinic receptors with a guanine nucleotide binding protein was stable to solubilization. That is, membrane receptors that were prelabeled with (/sup 3/H)OXO could be solubilized with digitonin, and the addition of guanine nucleotides to the soluble, (/sup 3/H)OXO-labeled complex resulted in dissociation of (/sup 3/H)OXO from the receptor. Pretreatment of membranes with relatively low concentrations of N-ethylmaleimide inhibited (/sup 3/H)OXO binding by 85% with no change in the Kd of (/sup 3/H)OXO, and with no effect on (/sup 3/H)quinuclidinyl benzilate binding.

  1. Could dopamine agonists aid in drug development for anorexia nervosa?

    PubMed

    Frank, Guido K W

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways.

  2. Differential opioid agonist regulation of the mouse mu opioid receptor.

    PubMed

    Blake, A D; Bot, G; Freeman, J C; Reisine, T

    1997-01-10

    Mu opioid receptors mediate the analgesia induced by morphine. Prolonged use of morphine causes tolerance development and dependence. To investigate the molecular basis of tolerance and dependence, the cloned mouse mu opioid receptor with an amino-terminal epitope tag was stably expressed in human embryonic kidney (HEK) 293 cells, and the effects of prolonged opioid agonist treatment on receptor regulation were examined. In HEK 293 cells the expressed mu receptor showed high affinity, specific, saturable binding of radioligands and a pertussis toxin-sensitive inhibition of adenylyl cyclase. Pretreatment (1 h, 3 h, or overnight) of cells with 1 microM morphine or [D-Ala2MePhe4,Gly(ol)5]enkephalin (DAMGO) resulted in no apparent receptor desensitization, as assessed by opioid inhibition of forskolin-stimulated cAMP levels. In contrast, the morphine and DAMGO pretreatments (3 h) resulted in a 3-4-fold compensatory increase in forskolin-stimulated cAMP accumulation. The opioid agonists methadone and buprenorphine are used in the treatment of addiction because of a markedly lower abuse potential. Pretreatment of mu receptor-expressing HEK 293 cells with methadone or buprenorphine abolished the ability of opioids to inhibit adenylyl cyclase. No compensatory increase in forskolin-stimulated cAMP accumulation was found with methadone or buprenorphine; these opioids blocked the compensatory effects observed with morphine and DAMGO. Taken together, these results indicate that methadone and buprenorphine interact differently with the mouse mu receptor than either morphine or DAMGO. The ability of methadone and buprenorphine to desensitize the mu receptor and block the compensatory rise in forskolin-stimulated cAMP accumulation may be an underlying mechanism by which these agents are effective in the treatment of morphine addiction.

  3. Recent advances in the development of farnesoid X receptor agonists

    PubMed Central

    Carey, Elizabeth J.; Lindor, Keith D.

    2015-01-01

    Farnesoid X receptors (FXRs) are nuclear hormone receptors expressed in high amounts in body tissues that participate in bilirubin metabolism including the liver, intestines, and kidneys. Bile acids (BAs) are the natural ligands of the FXRs. FXRs regulate the expression of the gene encoding for cholesterol 7 alpha-hydroxylase, which is the rate-limiting enzyme in BA synthesis. In addition, FXRs play a critical role in carbohydrate and lipid metabolism and regulation of insulin sensitivity. FXRs also modulate live growth and regeneration during liver injury. Preclinical studies have shown that FXR activation protects against cholestasis-induced liver injury. Moreover, FXR activation protects against fatty liver injury in animal models of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH), and improved hyperlipidemia, glucose intolerance, and insulin sensitivity. Obeticholic acid (OCA), a 6α-ethyl derivative of the natural human BA chenodeoxycholic acid (CDCA) is the first-in-class selective FXR agonist that is ~100-fold more potent than CDCA. Preliminary human clinical trials have shown that OCA is safe and effective. In a phase II clinical trial, administration of OCA was well-tolerated, increased insulin sensitivity and reduced markers of liver inflammation and fibrosis in patients with type II diabetes mellitus and NAFLD. In two clinical trials of OCA in patients with primary biliary cirrhosis (PBC), a progressive cholestatic liver disease, OCA significantly reduced serum alkaline phosphatase (ALP) levels, an important disease marker that correlates well with clinical outcomes of patients with PBC. Together, these studies suggest that FXR agonists could potentially be used as therapeutic tools in patients suffering from nonalcoholic fatty and cholestatic liver diseases. Larger and Longer-term studies are currently ongoing. PMID:25705637

  4. Concentric agonist-antagonist robots for minimally invasive surgeries

    NASA Astrophysics Data System (ADS)

    Oliver-Butler, Kaitlin; Epps, Zane H.; Rucker, Daniel Caleb

    2017-03-01

    We present a novel continuum robot design concept, Concentric Agonist-Antagonist Robots (CAAR), that uses push-pull, agonist-antagonist action of a pair of concentric tubes. The CAAR tubes are designed to have noncentral, offset neutral axes, and they are fixed together at their distal ends. Axial base translations then induce bending in the device. A CAAR segment can be created by selectively cutting asymmetric notches into the profile of two stock tubes, which relocates the neutral bending plane away from the center of the inner lumen. Like conventional concentric-tube robots (CTRs) based on counter-rotating precurved tubes, a CAAR can be made at very small scales and contain a large, open lumen. In contrast with CTRs, the CAAR concept has no elastic stability issues, offers a larger range of motion, and has lower overall stiffness. Furthermore, by varying the position of the neutral axes along the length of each tube, arbitrary, variable curvature actuation modes can be achieved. Precurving the tubes can additionally increase the workspace of a single segment. A single two-tube assembly can be used to create 3 degree-of-freedom (DOF) robot segments, and multiple segments can be deployed concentrically. Both additive manufacturing and traditional machining of stock tubes can create and customize the geometry and performance of the CAAR. In this paper, we explore the CAAR concept, provide kinematic and static models, and experimentally evaluate the model with a both a straight and a precurved CAAR. We conclude with a discussion of the significance and our plans for future work.

  5. GITR agonist enhances vaccination responses in lung cancer.

    PubMed

    Zhu, Li X; Davoodi, Michael; Srivastava, Minu K; Kachroo, Puja; Lee, Jay M; St John, Maie; Harris-White, Marni; Huang, Min; Strieter, Robert M; Dubinett, Steven; Sharma, Sherven

    2015-04-01

    An immune tolerant tumor microenvironment promotes immune evasion of lung cancer. Agents that antagonize immune tolerance will thus aid the fight against this devastating disease. Members of the tumor necrosis factor receptor (TNFR) family modulate the magnitude, duration and phenotype of immune responsiveness to antigens. Among these, GITR expressed on immune cells functions as a key regulator in inflammatory and immune responses. Here, we evaluate the GITR agonistic antibody (DTA-1) as a mono-therapy and in combination with therapeutic vaccination in murine lung cancer models. We found that DTA-1 treatment of tumor-bearing mice increased: (i) the frequency and activation of intratumoral natural killer (NK) cells and T lymphocytes, (ii) the antigen presenting cell (APC) activity in the tumor, and (iii) systemic T-cell specific tumor cell cytolysis. DTA-1 treatment enhanced tumor cell apoptosis as quantified by cleaved caspase-3 staining in the tumors. DTA-1 treatment increased expression of IFNγ, TNFα and IL-12 but reduced IL-10 levels in tumors. Furthermore, increased anti-angiogenic chemokines corresponding with decreased pro-angiogenic chemokine levels correlated with reduced expression of the endothelial cell marker Meca 32 in the tumors of DTA-1 treated mice. In accordance, there was reduced tumor growth (8-fold by weight) in the DTA-1 treatment group. NK cell depletion markedly inhibited the antitumor response elicited by DTA-1. DTA-1 combined with therapeutic vaccination caused tumor rejection in 38% of mice and a 20-fold reduction in tumor burden in the remaining mice relative to control. Mice that rejected tumors following therapy developed immunological memory against subsequent re-challenge. Our data demonstrates GITR agonist antibody activated NK cell and T lymphocyte activity, and enhanced therapeutic vaccination responses against lung cancer.

  6. Could Dopamine Agonists Aid in Drug Development for Anorexia Nervosa?

    PubMed Central

    Frank, Guido K. W.

    2014-01-01

    Anorexia nervosa is a severe psychiatric disorder most commonly starting during the teenage-years and associated with food refusal and low body weight. Typically there is a loss of menses, intense fear of gaining weight, and an often delusional quality of altered body perception. Anorexia nervosa is also associated with a pattern of high cognitive rigidity, which may contribute to treatment resistance and relapse. The complex interplay of state and trait biological, psychological, and social factors has complicated identifying neurobiological mechanisms that contribute to the illness. The dopamine D1 and D2 neurotransmitter receptors are involved in motivational aspects of food approach, fear extinction, and cognitive flexibility. They could therefore be important targets to improve core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists has shown little benefit, and it is possible that antagonists over time increase an already hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, application of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particularly effective during underweight and low gonadal hormone states. This article provides evidence that the dopamine receptor system could be a key factor in the pathophysiology of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms of the disorder. This review is a theoretical approach that primarily focuses on dopamine receptor function as this system has been mechanistically better described than other neurotransmitters that are altered in anorexia nervosa. However, those proposed dopamine mechanisms in anorexia nervosa also warrant further study with respect to their interaction with other neurotransmitter systems, such as serotonin pathways. PMID:25988121

  7. Transient receptor potential channel A1 and noxious cold responses in rat cutaneous nociceptors

    PubMed Central

    Dunham, J.P.; Leith, J.L.; Lumb, B.M.; Donaldson, L.F.

    2010-01-01

    The role of transient receptor potential channel A1 (TRPA1) in noxious cold sensation remains unclear. Some data support the hypothesis that TRPA1 is a transducer of noxious cold whilst other data contest it. In this study we investigated the role of TRPA1 in cold detection in cutaneous nociceptors in vivo using complementary experimental approaches. We used noxious withdrawal reflex electromyography, and single fibre recordings in vivo, to test the hypothesis that TRPA1-expressing primary afferents mediate noxious cold responses in anaesthetised rats. TRPV1 and TRPM8 agonists sensitise their cognate receptors to heat and cold stimuli respectively. Herein we show that the TRPA1 agonist cinnamaldehyde applied to the skin in anaesthetised rats did not sensitise noxious cold evoked hind limb withdrawal. In contrast, cinnamaldehyde did sensitise the C fibre-mediated noxious heat withdrawal, indicated by a significant drop in the withdrawal temperature. TRPA1 agonist thus sensitised the noxious reflex withdrawal to heat, but not cold. Thermal stimuli also sensitise transient receptor potential (TRP) channels to agonist. Activity evoked by capsaicin in teased primary afferent fibres showed a significant positive correlation with receptive field temperature, in both normal and Freund's complete adjuvant-induced cutaneous inflammation. Altering the temperature of the receptive field did not modulate TRPA1 agonist evoked-activity in cutaneous primary afferents, in either normal or inflamed skin. In addition, block of the TRPA1 channel with Ruthenium Red did not inhibit cold evoked activity in either cinnamaldehyde sensitive or insensitive cold responsive nociceptors. In cinnamaldehyde-sensitive–cold-sensitive afferents, although TRPA1 agonist-evoked activity was totally abolished by Ruthenium Red, cold evoked activity was unaffected by channel blockade. We conclude that these results do not support the hypothesis that TRPA1-expressing cutaneous afferents play an important

  8. Transient receptor potential channel A1 and noxious cold responses in rat cutaneous nociceptors.

    PubMed

    Dunham, J P; Leith, J L; Lumb, B M; Donaldson, L F

    2010-02-17

    The role of transient receptor potential channel A1 (TRPA1) in noxious cold sensation remains unclear. Some data support the hypothesis that TRPA1 is a transducer of noxious cold whilst other data contest it. In this study we investigated the role of TRPA1 in cold detection in cutaneous nociceptors in vivo using complementary experimental approaches. We used noxious withdrawal reflex electromyography, and single fibre recordings in vivo, to test the hypothesis that TRPA1-expressing primary afferents mediate noxious cold responses in anaesthetised rats. TRPV1 and TRPM8 agonists sensitise their cognate receptors to heat and cold stimuli respectively. Herein we show that the TRPA1 agonist cinnamaldehyde applied to the skin in anaesthetised rats did not sensitise noxious cold evoked hind limb withdrawal. In contrast, cinnamaldehyde did sensitise the C fibre-mediated noxious heat withdrawal, indicated by a significant drop in the withdrawal temperature. TRPA1 agonist thus sensitised the noxious reflex withdrawal to heat, but not cold. Thermal stimuli also sensitise transient receptor potential (TRP) channels to agonist. Activity evoked by capsaicin in teased primary afferent fibres showed a significant positive correlation with receptive field temperature, in both normal and Freund's complete adjuvant-induced cutaneous inflammation. Altering the temperature of the receptive field did not modulate TRPA1 agonist evoked-activity in cutaneous primary afferents, in either normal or inflamed skin. In addition, block of the TRPA1 channel with Ruthenium Red did not inhibit cold evoked activity in either cinnamaldehyde sensitive or insensitive cold responsive nociceptors. In cinnamaldehyde-sensitive-cold-sensitive afferents, although TRPA1 agonist-evoked activity was totally abolished by Ruthenium Red, cold evoked activity was unaffected by channel blockade. We conclude that these results do not support the hypothesis that TRPA1-expressing cutaneous afferents play an important

  9. Influence of beta-adrenoceptor agonists and antagonists on baclofen-induced memory impairment in mice.

    PubMed

    Zarrindast, M R; Haidari, H; Jafari, M R; Djahanguiri, B

    2004-07-01

    Post-training administration of different doses of baclofen (a GABAB agonist) has been shown to impair memory retention, in a step-down passive avoidance test in mice. We have studied the effects of beta-adrenergic agonists and antagonists on baclofen-induced memory impairment in mice. Dobutamine (a beta 1-agonist) or salbutamol (a beta 2-agonist) reversed the memory impairment induced by baclofen without exhibiting intrinsic actions on memory when administered alone. The administration of atenolol (a beta 1-antagonist) or propranolol (a beta-antagonist) produced a memory impairment. When co-administered with baclofen, both atenolol and propranolol exacerbated the memory impairment induced by the GABAB agonist. It is concluded that beta-adrenergic mechanisms may be involved in the modulation of memory via GABAB receptors.

  10. beta-Adrenergic receptor polymorphisms: relationship to the beta-agonist controversy and clinical implications.

    PubMed

    Taylor, D Robin

    2007-12-01

    Aspects of the 'beta-agonist controversy' have recently re-emerged with the publication of data implicating the long-acting beta-agonist salmeterol in increased mortality from asthma. The reasons underlying the adverse effects of beta2-agonists as a class are unclear. Polymorphisms of the beta2 adrenoceptor (ADRB2), notably the variant associated with an arginine moiety at position 16 of the ADRB2 protein result in changes in in vitro receptor function. There is now consistent clinical evidence showing that, in vivo, patients with asthma harbouring the Arg-16 genotype may experience reduced lung function and an increased frequency of exacerbations when treated with regular short-acting beta-agonists. This may, in part, explain why beta-agonists have been associated with adverse outcomes in the past. ADRB2 genotyping of patients with severe or difficult-to-control asthma may shed light on a possible contributor to their clinical instability.

  11. Rate constants of agonist binding to muscarinic receptors in rat brain medulla. Evaluation by competition kinetics

    SciTech Connect

    Schreiber, G.; Henis, Y.I.; Sokolovsky, M.

    1985-07-25

    The method of competition kinetics, which measures the binding kinetics of an unlabeled ligand through its effect on the binding kinetics of a labeled ligand, was employed to investigate the kinetics of muscarinic agonist binding to rat brain medulla pons homogenates. The agonists studied were acetylcholine, carbamylcholine, and oxotremorine, with N-methyl-4-(TH)piperidyl benzilate employed as the radiolabeled ligand. Our results suggested that the binding of muscarinic agonists to the high affinity sites is characterized by dissociation rate constants higher by 2 orders of magnitude than those of antagonists, with rather similar association rate constants. Our findings also suggest that isomerization of the muscarinic receptors following ligand binding is significant in the case of antagonists, but not of agonists. Moreover, it is demonstrated that in the medulla pons preparation, agonist-induced interconversion between high and low affinity bindings sites does not occur to an appreciable extent.

  12. A-1 to Constellation

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The A-1 Test Stand at NASA Stennis Space Center near Bay St. Louis, Miss., was the focus of a ceremony held Thursday to transition the storied facility to a new program of work: testing the J-2X engines that will power the agency's next generation spacecraft, Ares I & V. Standing before the historic structure, with a plaque commemorating the change, are (from left) SSC Center Director Richard Gilbrech; NASA Associate Administrator for Exploration Systems Scott Horowitz; and NASA Space Operations Deputy Associate Administrator for Program Integration Michael Hawes. Ares vehicles are the crew and cargo launch vehicles being developed under NASA's Constellation Program.

  13. A-1 to Constellation

    NASA Image and Video Library

    2006-11-09

    The A-1 Test Stand at NASA Stennis Space Center near Bay St. Louis, Miss., was the focus of a ceremony held Thursday to transition the storied facility to a new program of work: testing the J-2X engines that will power the agency's next generation spacecraft, Ares I & V. Standing before the historic structure, with a plaque commemorating the change, are (from left) SSC Center Director Richard Gilbrech; NASA Associate Administrator for Exploration Systems Scott Horowitz; and NASA Space Operations Deputy Associate Administrator for Program Integration Michael Hawes. Ares vehicles are the crew and cargo launch vehicles being developed under NASA's Constellation Program.

  14. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases.

    PubMed

    Yu, Shan; Li, Sijia; Henke, Adam; Muse, Evan D; Cheng, Bo; Welzel, Gustav; Chatterjee, Arnab K; Wang, Danling; Roland, Jason; Glass, Christopher K; Tremblay, Matthew

    2016-07-01

    Liver X receptor (LXR), a nuclear hormone receptor, is an essential regulator of immune responses. Activation of LXR-mediated transcription by synthetic agonists, such as T0901317 and GW3965, attenuates progression of inflammatory disease in animal models. However, the adverse effects of these conventional LXR agonists in elevating liver lipids have impeded exploitation of this intriguing mechanism for chronic therapy. Here, we explore the ability of a series of sterol-based LXR agonists to alleviate inflammatory conditions in mice without hepatotoxicity. We show that oral treatment with sterol-based LXR agonists in mice significantly reduces dextran sulfate sodium colitis-induced body weight loss, which is accompanied by reduced expression of inflammatory markers in the large intestine. The anti-inflammatory property of these agonists is recapitulated in vitro in mouse lamina propria mononuclear cells, human colonic epithelial cells, and human peripheral blood mononuclear cells. In addition, treatment with LXR agonists dramatically suppresses inflammatory cytokine expression in a model of traumatic brain injury. Importantly, in both disease models, the sterol-based agonists do not affect the liver, and the conventional agonist T0901317 results in significant liver lipid accumulation and injury. Overall, these results provide evidence for the development of sterol-based LXR agonists as novel therapeutics for chronic inflammatory diseases.-Yu, S., Li, S., Henke, A., Muse, E. D., Cheng, B., Welzel, G., Chatterjee, A. K., Wang, D., Roland, J., Glass, C. K., Tremblay, M. Dissociated sterol-based liver X receptor agonists as therapeutics for chronic inflammatory diseases. © FASEB.

  15. Agonist activation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Gill, Jaskiran K; Savolainen, Mari; Young, Gareth T; Zwart, Ruud; Sher, Emanuele; Millar, Neil S

    2011-04-05

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular "orthosteric" binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site.

  16. Interleukin-24 as a target cytokine of environmental aryl hydrocarbon receptor agonist exposure in the lung.

    PubMed

    Luo, Yueh-Hsia; Kuo, Yu-Chun; Tsai, Ming-Hsien; Ho, Chia-Chi; Tsai, Hui-Ti; Hsu, Chin-Yu; Chen, Yu-Cheng; Lin, Pinpin

    2017-06-01

    Exposure to environmental aryl hydrocarbon receptor (AhR) agonists, such as halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs), has great impacts on the development of various lung diseases. As emerging molecular targets for AhR agonists, cytokines may contribute to the inflammatory or immunotoxic effects of environmental AhR agonists. However, general cytokine expression may not specifically indicate environmental AhR agonist exposure. By comparing cytokine and chemokine expression profiles in human lung adenocarcinoma cell line CL5 treated with AhR agonists and the non-AhR agonist polychlorinated biphenyl (PCB) 39, we identified a target cytokine of environmental AhR agonist exposure of in the lungs. Thirteen cytokine and chemokine genes were altered in the AhR agonists-treated cells, but none were altere