Sample records for a1 binding site

  1. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site

    PubMed Central

    Sage, Jay M.; Cura, Anthony J.; Lloyd, Kenneth P.

    2015-01-01

    Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3-O-methylglucose uptake in human erythrocytes [Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3-O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites—the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis. PMID:25715702

  2. Autoradiographic localization of endothelin-1 binding sites in porcine skin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Y.D.; Springall, D.R.; Wharton, J.

    Autoradiographic techniques and {sup 125}I-labeled endothelin-1 were used to study the distribution of endothelin-1 binding sites in porcine skin. Specific endothelin-1 binding sites were localized to blood vessels (capillaries, deep cutaneous vascular plexus, arteries, and arterioles), the deep dermal and connective tissue sheath of hair follicles, sebaceous and sweat glands, and arrector pili muscle. Specific binding was inhibited by endothelin-2 and endothelin-3 as well as endothelin-1. Non-specific binding was found in the epidermis and the medulla of hair follicles. No binding was found in connective tissue or fat. These vascular binding sites may represent endothelin receptors, in keeping with themore » known cutaneous vasoconstrictor actions of the peptide. If all binding sites are receptors, the results suggest that endothelin could also regulate the function of sweat glands and may have trophic effects in the skin.« less

  3. DNA-binding regulates site-specific ubiquitination of IRF-1.

    PubMed

    Landré, Vivien; Pion, Emmanuelle; Narayan, Vikram; Xirodimas, Dimitris P; Ball, Kathryn L

    2013-02-01

    Understanding the determinants for site-specific ubiquitination by E3 ligase components of the ubiquitin machinery is proving to be a challenge. In the present study we investigate the role of an E3 ligase docking site (Mf2 domain) in an intrinsically disordered domain of IRF-1 [IFN (interferon) regulatory factor-1], a short-lived IFNγ-regulated transcription factor, in ubiquitination of the protein. Ubiquitin modification of full-length IRF-1 by E3 ligases such as CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and MDM2 (murine double minute 2), which dock to the Mf2 domain, was specific for lysine residues found predominantly in loop structures that extend from the DNA-binding domain, whereas no modification was detected in the more conformationally flexible C-terminal half of the protein. The E3 docking site was not available when IRF-1 was in its DNA-bound conformation and cognate DNA-binding sequences strongly suppressed ubiquitination, highlighting a strict relationship between ligase binding and site-specific modification at residues in the DNA-binding domain. Hyperubiquitination of a non-DNA-binding mutant supports a mechanism where an active DNA-bound pool of IRF-1 is protected from polyubiquitination and degradation.

  4. Twin hydroxymethyluracil-A base pair steps define the binding site for the DNA-binding protein TF1.

    PubMed

    Grove, A; Figueiredo, M L; Galeone, A; Mayol, L; Geiduschek, E P

    1997-05-16

    The DNA-bending protein TF1 is the Bacillus subtilis bacteriophage SPO1-encoded homolog of the bacterial HU proteins and the Escherichia coli integration host factor. We recently proposed that TF1, which binds with high affinity (Kd was approximately 3 nM) to preferred sites within the hydroxymethyluracil (hmU)-containing phage genome, identifies its binding sites based on sequence-dependent DNA flexibility. Here, we show that two hmU-A base pair steps coinciding with two previously proposed sites of DNA distortion are critical for complex formation. The affinity of TF1 is reduced 10-fold when both of these hmU-A base pair steps are replaced with A-hmU, G-C, or C-G steps; only modest changes in affinity result when substitutions are made at other base pairs of the TF1 binding site. Replacement of all hmU residues with thymine decreases the affinity of TF1 greatly; remarkably, the high affinity is restored when the two hmU-A base pair steps corresponding to previously suggested sites of distortion are reintroduced into otherwise T-containing DNA. T-DNA constructs with 3-base bulges spaced apart by 9 base pairs of duplex also generate nM affinity of TF1. We suggest that twin hmU-A base pair steps located at the proposed sites of distortion are key to target site selection by TF1 and that recognition is based largely, if not entirely, on sequence-dependent DNA flexibility.

  5. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin.

    PubMed

    Treuheit, Nicholas A; Beach, Muneera A; Komives, Elizabeth A

    2011-05-31

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethyl ketone to the active site serine, as well as noncovalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1; however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-l-arginine-(3-methyl-1,5-pantanediyl)amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause a similar reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or exosite 1.

  6. Thermodynamic compensation upon binding to exosite 1 and the active site of thrombin

    PubMed Central

    Treuheit, Nicholas A.; Beach, Muneera A.; Komives, Elizabeth A.

    2011-01-01

    Several lines of experimental evidence including amide exchange and NMR suggest that ligands binding to thrombin cause reduced backbone dynamics. Binding of the covalent inhibitor dPhe-Pro-Arg chloromethylketone to the active site serine, as well as non-covalent binding of a fragment of the regulatory protein, thrombomodulin, to exosite 1 on the back side of the thrombin molecule both cause reduced dynamics. However, the reduced dynamics do not appear to be accompanied by significant conformational changes. In addition, binding of ligands to the active site does not change the affinity of thrombomodulin fragments binding to exosite 1, however, the thermodynamic coupling between exosite 1 and the active site has not been fully explored. We present isothermal titration calorimetry experiments that probe changes in enthalpy and entropy upon formation of binary ligand complexes. The approach relies on stringent thrombin preparation methods and on the use of dansyl-L-arginine-(3-methyl-1,5-pantanediyl) amide and a DNA aptamer as ligands with ideal thermodynamic signatures for binding to the active site and to exosite 1. Using this approach, the binding thermodynamic signatures of each ligand alone as well as the binding signatures of each ligand when the other binding site was occupied were measured. Different exosite 1 ligands with widely varied thermodynamic signatures cause the same reduction in ΔH and a concomitantly lower entropy cost upon DAPA binding at the active site. The results suggest a general phenomenon of enthalpy-entropy compensation consistent with reduction of dynamics/increased folding of thrombin upon ligand binding to either the active site or to exosite 1. PMID:21526769

  7. A ternary metal binding site in the C2 domain of phosphoinositide-specific phospholipase C-delta1.

    PubMed

    Essen, L O; Perisic, O; Lynch, D E; Katan, M; Williams, R L

    1997-03-11

    We have determined the crystal structures of complexes of phosphoinositide-specific phospholipase C-delta1 from rat with calcium, barium, and lanthanum at 2.5-2.6 A resolution. Binding of these metal ions is observed in the active site of the catalytic TIM barrel and in the calcium binding region (CBR) of the C2 domain. The C2 domain of PLC-delta1 is a circularly permuted topological variant (P-variant) of the synaptotagmin I C2A domain (S-variant). On the basis of sequence analysis, we propose that both the S-variant and P-variant topologies are present among other C2 domains. Multiple adjacent binding sites in the C2 domain were observed for calcium and the other metal/enzyme complexes. The maximum number of binding sites observed was for the calcium analogue lanthanum. This complex shows an array-like binding of three lanthanum ions (sites I-III) in a crevice on one end of the C2 beta-sandwich. Residues involved in metal binding are contained in three loops, CBR1, CBR2, and CBR3. Sites I and II are maintained in the calcium and barium complexes, whereas sites II and III coincide with a binary calcium binding site in the C2A domain of synaptotagmin I. Several conformers for CBR1 are observed. The conformation of CBR1 does not appear to be strictly dependent on metal binding; however, metal binding may stabilize certain conformers. No significant structural changes are observed for CBR2 or CBR3. The surface of this ternary binding site provides a cluster of freely accessible liganding positions for putative phospholipid ligands of the C2 domain. It may be that the ternary metal binding site is also a feature of calcium-dependent phospholipid binding in solution. A ternary metal binding site might be a conserved feature among C2 domains that contain the critical calcium ligands in their CBR's. The high cooperativity of calcium-mediated lipid binding by C2 domains described previously is explained by this novel type of calcium binding site.

  8. FOLLITROPIN RECEPTORS CONTAIN CRYPTIC LIGAND BINDING SITES1

    PubMed Central

    Lin, Win; Bernard, Michael P.; Cao, Donghui; Myers, Rebecca V.; Kerrigan, John E.; Moyle, William R.

    2007-01-01

    Human choriogonadotropin (hCG) and follitropin (hFSH) have been shown to contact different regions of the extracellular domains of G-protein coupled lutropin (LHR) and follitropin (FSHR) receptors. We report here that hCG and hFSH analogs interact with an FSHR/LHR chimera having only two unique LHR residues similar to the manners in which they dock with LHR and FSHR, respectively. This shows that although the FSHR does not normally bind hCG, it contains a cryptic lutropin binding site that has the potential to recognize hCG in a manner similar to the LHR. The presence of this cryptic site may explain why equine lutropins bind many mammalian FSHR and why mutations in the transmembrane domain distant from the extracellular domain enable the FSHR to bind hCG. The leucine-rich repeat domain (LRD) of the FSHR also appears to contain a cryptic FSH binding site that is obscured by other parts of the extracellular domain. This will explain why contacts seen in crystals of hFSH complexed with an LRD fragment of the human FSHR are hard to reconcile with the abilities of FSH analogs to interact with membrane G-protein coupled FSHR. We speculate that cryptic lutropin binding sites in the FSHR, which are also likely to be present in thyrotropin receptors (TSHR), permit the physiological regulation of ligand binding specificity. Cryptic FSH binding sites in the LRD may enable alternate spliced forms of the FSHR to interact with FSH. PMID:17059863

  9. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    PubMed

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS.

  10. Photoaffinity labelling and solubilization on the central 5-HT1A receptor binding site.

    PubMed

    Gozlan, H; Emerit, M B; el Mestikawy, S; Cossery, J M; Marquet, A; Besselievre, R; Hamon, M

    1987-01-01

    Two complementary approaches, covalent labelling and solubilization, have been used to study the biochemical properties of the central 5-HT1A receptor binding site. We have first designed a photoaffinity ligand containing the structure of 8-OH-DPAT, a potent and specific agonist of 5-HT1A sites. Thus, 8-methoxy-2[N-n-propyl,N-3-(2-nitro-4-azido-phenyl)- aminopropyl]aminotetralin or 8-methoxy-3'-NAP-amino-PAT, was found to displace, in the dark, [3H]8-OH-DPAT from 5-HT1A sites in rat hippocampal membranes with an IC50 of 6.6 nM. Under two cumulative UV irradiations (366 nm, for 20 min at 4 degrees C), 8-methoxy-3-'-NAP-amino-PAT (30 nM) blocked irreversibly 55-60% of 5-HT1A binding sites. This blockade was specific of 5-HT1A sites since the other serotoninergic sites, 5-HT1B, 5-HT2 and also the presynaptic 5-HT3 sites were not affected by the treatment. In addition, the binding of [3H]Spiperone and [3H]7-OH-DPAT to striatal dopamine sites remained unchanged under similar photolysis conditions. The tritiated derivative of the photoaffinity ligand (92 Ci/mmol) was then synthesized for the identification of the covalently bound protein(s). SDS-PAGE of solubilized membranes irradiated in the presence of 20 nM 3H-8-methoxy-3'-NAP-amino-PAT allowed the detection of a 63 kD protein whose labelling appeared specific. Thus, 3H-incorporation into the 63 kD band could be prevented by microM concentrations of 5-HT, 8-OH-DPAT and other selective 5-HT1A ligands such as isapirone. In contrast, the 5-HT2 antagonist ketanserin, norepinephrine and dopamine-related ligands (including 7-OH-DPAT) were ineffective. Direct solubilization of 5-HT1A receptor binding sites was also attempted from rat hippocampal membranes. The best results were obtained using CHAPS (10 mM) plus NaCl (0.2 M), which led to 50% recovery of 5-HT1A sites in the 100,000 g supernatant. The pharmacological properties and sensitivity to N-ethyl-maleimide and GppNHp of soluble sites appeared near identical to those of

  11. A novel substance P binding site in bovine adrenal medulla.

    PubMed

    Geraghty, D P; Livett, B G; Rogerson, F M; Burcher, E

    1990-05-04

    Radioligand binding techniques were used to characterize the substance P (SP) binding site on membranes prepared from bovine adrenal medullae. 125I-labelled Bolton-Hunter substance P (BHSP), which recognises the C-terminally directed, SP-preferring NK1 receptor, showed no specific binding. In contrast, binding of [3H]SP was saturable (at 6 nM) and reversible, with an equilibrium dissociation constant (Kd) 1.46 +/- 0.73 nM, Bmax 0.73 +/- 0.06 pmol/g wet weight and Hill coefficient 0.98 +/- 0.01. Specific binding of [3H]SP was displaced by SP greater than neurokinin A (NKA) greater than SP(3-11) approximately SP(1-9) greater than SP(1-7) approximately SP(1-4) approximately SP(1-6), with neurokinin B (NKB) and SP(1-3) very weak competitors and SP(5-11), SP(7-11) and SP(9-11) causing negligible inhibition (up to 10 microM). This potency order is quite distinct from that seen with binding to an NK1 site, a conclusion confirmed by the lack of BHSP binding. It appears that Lys3 and/or Pro4 are critical for binding, suggesting an anionic binding site. These data suggest the existence of an unusual binding site which may represent a novel SP receptor. This site appears to require the entire sequence of the SP molecule for full recognition.

  12. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites.

    PubMed

    Chen, Baoyu; Chou, Hui-Ting; Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas; Rosen, Michael K

    2017-09-26

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly.

  13. Discovery of a small-molecule HIV-1 integrase inhibitor-binding site | Center for Cancer Research

    Cancer.gov

    The lowest energy-binding conformation of an inhibitor bound to the dimeric interface of HIV-1 integrase core domain. The yellow region represents a unique allosteric binding site identified by affinity labeling and mass spectrometry and validated through mutagenesis. This site can provide a potential platform for the rational design of inhibitors selective for disruption of

  14. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    PubMed

    Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U

    2015-01-01

    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  15. Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site.

    PubMed Central

    Liaw, S. H.; Kuo, I.; Eisenberg, D.

    1995-01-01

    Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia and glutamate to yield glutamine, ADP, and inorganic phosphate in the presence of divalent cations. Bacterial GS is an enzyme of 12 identical subunits, arranged in two rings of 6, with the active site between each pair of subunits in a ring. In earlier work, we have reported the locations within the funnel-shaped active site of the substrates glutamate and ATP and of the two divalent cations, but the site for ammonia (or ammonium) has remained elusive. Here we report the discovery by X-ray crystallography of a binding site on GS for monovalent cations, Tl+ and Cs+, which is probably the binding site for the substrate ammonium ion. Fourier difference maps show the following. (1) Tl+ and Cs+ bind at essentially the same site, with ligands being Glu 212, Tyr 179, Asp 50', Ser 53' of the adjacent subunit, and the substrate glutamate. From its position adjacent to the substrate glutamate and the cofactor ADP, we propose that this monovalent cation site is the substrate ammonium ion binding site. This proposal is supported by enzyme kinetics. Our kinetic measurements show that Tl+, Cs+, and NH4+ are competitive inhibitors to NH2OH in the gamma-glutamyl transfer reaction. (2) GS is a trimetallic enzyme containing two divalent cation sites (n1, n2) and one monovalent cation site per subunit. These three closely spaced ions are all at the active site: the distance between n1 and n2 is 6 A, between n1 and Tl+ is 4 A, and between n2 and Tl+ is 7 A. Glu 212 and the substrate glutamate are bridging ligands for the n1 ion and Tl+. (3) The presence of a monovalent cation in this site may enhance the structural stability of GS, because of its effect of balancing the negative charges of the substrate glutamate and its ligands and because of strengthening the "side-to-side" intersubunit interaction through the cation-protein bonding. (4) The presence of the cofactor ADP increases the Tl+ binding to GS

  16. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  17. Identification of a Second Substrate-binding Site in Solute-Sodium Symporters*

    PubMed Central

    Li, Zheng; Lee, Ashley S. E.; Bracher, Susanne; Jung, Heinrich; Paz, Aviv; Kumar, Jay P.; Abramson, Jeff; Quick, Matthias; Shi, Lei

    2015-01-01

    The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ∼1. In addition, the related and more experimentally tractable SSS member PutP (the Na+/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport. PMID:25398883

  18. The α-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain

    PubMed Central

    Miller, Michelle C; Klyosov, Anatole; Mayo, Kevin H

    2009-01-01

    Galectins are a sub-family of lectins, defined by their highly conserved β-sandwich structures and ability to bind to β-galactosides, like Gal β1-4 Glc (lactose). Here, we used 15N-1H HSQC and pulse field gradient (PFG) NMR spectroscopy to demonstrate that galectin-1 (gal-1) binds to the relatively large galactomannan Davanat, whose backbone is composed of β1-4-linked d-mannopyranosyl units to which single d-galactopyranosyl residues are periodically attached via α1-6 linkage (weight-average MW of 59 kDa). The Davanat binding domain covers a relatively large area on the surface of gal-1 that runs across the dimer interface primarily on that side of the protein opposite to the lactose binding site. Our data show that gal-1 binds Davanat with an apparent equilibrium dissociation constant (Kd) of 10 × 10−6 M, compared to 260 × 10−6 M for lactose, and a stiochiometry of about 3 to 6 gal-1 molecules per Davanat molecule. Mannan also interacts at the same galactomannan binding domain on gal-1, but with at least 10-fold lower avidity, supporting the role of galactose units in Davanat for relatively strong binding to gal-1. We also found that the β-galactoside binding domain remains accessible in the gal-1/Davanat complex, as lactose can still bind with no apparent loss in affinity. In addition, gal-1 binding to Davanat also modifies the supermolecular structure of the galactomannan and appears to reduce its hydrodynamic radius and disrupt inter-glycan interactions thereby reducing glycan-mediated solution viscosity. Overall, our findings contribute to understanding gal-1–carbohydrate interactions and provide insight into gal-1 function with potentially significant biological consequences. PMID:19541770

  19. Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2017-10-01

    The paper extended the TMDD model to drugs with two identical binding sites (2-1 TMDD). The quasi-steady-state (2-1 QSS), quasi-equilibrium (2-1 QE), irreversible binding (2-1 IB), and Michaelis-Menten (2-1 MM) approximations of the model were derived. Using simulations, the 2-1 QSS approximation was compared with the full 2-1 TMDD model. As expected and similarly to the standard TMDD for monoclonal antibodies (mAb), 2-1 QSS predictions were nearly identical to 2-1 TMDD predictions, except for times of fast changes following initiation of dosing, when equilibrium has not yet been reached. To illustrate properties of new equations and approximations, several variations of population PK data for mAbs with soluble (slow elimination of the complex) or membrane-bound (fast elimination of the complex) targets were simulated from a full 2-1 TMDD model and fitted to 2-1 TMDD models, to its approximations, and to the standard (1-1) QSS model. For a mAb with a soluble target, it was demonstrated that the 2-1 QSS model provided nearly identical description of the observed (simulated) free drug and total target concentrations, although there was some minor bias in predictions of unobserved free target concentrations. The standard QSS approximation also provided a good description of the observed data, but was not able to distinguish between free drug concentrations (with no target attached and both binding site free) and partially bound drug concentrations (with one of the binding sites occupied by the target). For a mAb with a membrane-bound target, the 2-1 MM approximation adequately described the data. The 2-1 QSS approximation converged 10 times faster than the full 2-1 TMDD, and its run time was comparable with the standard QSS model.

  20. Inactivation by Phenylglyoxal of the Specific Binding of 1-Naphthyl Acetic Acid with Membrane-Bound Auxin Binding Sites from Maize Coleoptiles

    PubMed Central

    Navé, Jean-François; Benveniste, Pierre

    1984-01-01

    The specific binding of 1-[3H]naphthyl acetic acid (NAA) to membrane-bound binding sites from maize (Zea mays cv INRA 258) coleoptiles is inactivated by phenylglyoxal. The inactivation obeys pseudo first-order kinetics. The rate of inactivation is proportional to phenylglyoxal concentration. Under conditions at which significant binding occurs, NAA, R and S-1-naphthyl 2-propionic acids protect the auxin binding site against inactivation by phenylglyoxal. Scatchard analysis shows that the inhibition of binding corresponds to a decrease in the concentration of sites but not in the affinity. The results of the present chemical modification study indicate that at least one arginyl residue is involved in the positively charged recognition site of the carboxylate anion of NAA. PMID:16663499

  1. Bacterial periplasmic sialic acid-binding proteins exhibit a conserved binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangi Setty, Thanuja; Cho, Christine; Govindappa, Sowmya

    2014-07-01

    Structure–function studies of sialic acid-binding proteins from F. nucleatum, P. multocida, V. cholerae and H. influenzae reveal a conserved network of hydrogen bonds involved in conformational change on ligand binding. Sialic acids are a family of related nine-carbon sugar acids that play important roles in both eukaryotes and prokaryotes. These sialic acids are incorporated/decorated onto lipooligosaccharides as terminal sugars in multiple bacteria to evade the host immune system. Many pathogenic bacteria scavenge sialic acids from their host and use them for molecular mimicry. The first step of this process is the transport of sialic acid to the cytoplasm, which oftenmore » takes place using a tripartite ATP-independent transport system consisting of a periplasmic binding protein and a membrane transporter. In this paper, the structural characterization of periplasmic binding proteins from the pathogenic bacteria Fusobacterium nucleatum, Pasteurella multocida and Vibrio cholerae and their thermodynamic characterization are reported. The binding affinities of several mutations in the Neu5Ac binding site of the Haemophilus influenzae protein are also reported. The structure and the thermodynamics of the binding of sugars suggest that all of these proteins have a very well conserved binding pocket and similar binding affinities. A significant conformational change occurs when these proteins bind the sugar. While the C1 carboxylate has been identified as the primary binding site, a second conserved hydrogen-bonding network is involved in the initiation and stabilization of the conformational states.« less

  2. Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin.

    PubMed

    Nakamura, Toshio; Tonozuka, Takashi; Ide, Azusa; Yuzawa, Takayuki; Oguma, Keiji; Nishikawa, Atsushi

    2008-02-22

    Clostridium botulinum type C 16S progenitor toxin contains a hemagglutinin (HA) subcomponent, designated HA1, which appears to play an important role in the effective internalization of the toxin in gastrointestinal epithelial cells and in creating a broad specificity for the oligosaccharide structure that corresponds to various targets. In this study, using the recombinant protein fused to glutathione S-transferase, we investigated the binding specificity of the HA1 subcomponent to sugars and estimated the binding sites of HA1 based on X-ray crystallography and soaking experiments using various sugars. N-Acetylneuraminic acid, N-acetylgalactosamine, and galactose effectively inhibited the binding that occurs between glutathione S-transferase-HA1 and mucins, whereas N-acetylglucosamine and glucose did not inhibit it. The crystal structures of HA1 complex with N-acetylneuraminic acid, N-acetylgalactosamine, and galactose were also determined. There are two sugar-binding sites, sites I and II. Site I corresponds to the electron densities noted for all sugars and is located at the C-terminal beta-trefoil domain, while site II corresponds to the electron densities noted only for galactose. An aromatic amino acid residue, Trp176, at site I has a stacking interaction with the hexose ring of the sugars. On the other hand, there is no aromatic residue at site II; thus, the interaction with galactose seems to be poor. The double mutant W176A at site I and D271F at site II has no avidity for N-acetylneuraminic acid but has avidity for galactose. In this report, the binding specificity of botulinum C16S toxin HA1 to various sugars is demonstrated based on its structural features.

  3. Assessment of ligand binding at a site relevant to SOD1 oxidation and aggregation.

    PubMed

    Manjula, Ramu; Wright, Gareth S A; Strange, Richard W; Padmanabhan, Balasundaram

    2018-05-01

    Cu/Zn superoxide dismutase-1 (SOD1) mutations are causative for a subset of amyotrophic lateral sclerosis (ALS) cases. These mutations lead to structural instability, aggregation and ultimately motor neuron death. We have determined crystal structures of SOD1 in complex with a naphthalene-catechol-linked compound which binds with low micro-molar affinity to a site important for oxidative damage-induced aggregation. SOD1 Trp32 oxidation is indeed significantly inhibited by ligand binding. Our work shows how compound linking can be applied successfully to ligand interactions on the SOD1 surface to generate relatively good binding strength. The ligand, positioned in a region important for SOD1 fibrillation, offers the possibility that it, or a similar compound, could prevent the abnormal self-association that drives SOD1 toxicity in ALS. © 2018 Federation of European Biochemical Societies.

  4. An additional substrate binding site in a bacterial phenylalanine hydroxylase

    PubMed Central

    Ronau, Judith A.; Paul, Lake N.; Fuchs, Julian E.; Corn, Isaac R.; Wagner, Kyle T.; Liedl, Klaus R.; Abu-Omar, Mahdi M.; Das, Chittaranjan

    2014-01-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes phenylalanine oxidation to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH features a regulatory domain where binding of the substrate leads to allosteric activation of the enzyme. However, existence of PAH regulation in evolutionarily distant organisms, such as certain bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum (cPAH), a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site, 15.7Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 µM for phenylalanine. Under the same conditions, no detectable binding was observed in ITC for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) lead to impaired binding, consistent with the presence of distal site binding in solution. Kinetic analysis reveals that the distal site mutants suffer a discernible loss in their catalytic activity. However, x-ray structures of Y155A and F258A, two of the mutants showing more noticeable defect in their activity, show no discernible change in their active site structure, suggesting that the effect of distal binding may transpire through protein dynamics in solution. PMID:23860686

  5. Nuclear binding of progesterone in hen oviduct. Binding to multiple sites in vitro.

    PubMed Central

    Pikler, G M; Webster, R A; Spelsberg, T C

    1976-01-01

    Steroid hormones, including progesterone, are known to bind with high affinity (Kd approximately 1x10(-10)M) to receptor proteins once they enter target cells. This complex (the progesterone-receptor) then undergoes a temperature-and/or salt-dependent activation which allows it to migrate to the cell nucleus and to bind to the deoxyribonucleoproteins. The present studies demonstrate that binding the hormone-receptor complex in vitro to isolated nuclei from the oviducts of laying hens required the same conditions as do other studies of bbinding in vitro reported previously, e.g. the hormone must be complexed to intact and activated receptor. The assay of the nuclear binding by using multiple concentrations of progesterone receptor reveals the presence of more than one class of binding site in the oviduct nuclei. The affinity of each of these classes of binding sites range from Kd approximately 1x10(-9)-1x10(-8)M. Assays using free steroid (not complexed with receptor) show no binding to these sites. The binding to each of the classes of sites, displays a differential stability to increasing ionic concentrations, suggesting primarily an ionic-type interaction for all classes. Only the highest-affinity class of binding site is capable of binding progesterone receptor under physioligical-saline conditions. This class represent 6000-10000 sites per cell nucleus and resembles the sites detected in vivo (Spelsberg, 1976, Biochem. J. 156, 391-398) which cause maximal transcriptional response when saturated with the progesterone receptor. The multiple binding sites for the progesterone receptor either are not present or are found in limited numbers in the nuclei of non-target organs. Differences in extent of binding to the nuclear material between a target tissue (oviduct) and other tissues (spleen or erythrocyte) are markedly dependent on the ionic conditions, and are probably due to binding to different classes of sites in the nuclei. PMID:182147

  6. Carbohydrate binding sites in a pancreatic alpha-amylase-substrate complex, derived from X-ray structure analysis at 2.1 A resolution.

    PubMed Central

    Qian, M.; Haser, R.; Payan, F.

    1995-01-01

    The X-ray structure analysis of a crystal of pig pancreatic alpha-amylase (PPA, EC 3.2.1.1.) that was soaked with the substrate maltopentaose showed electron density corresponding to two independent carbohydrate recognition sites on the surface of the molecule. Both binding sites are distinct from the active site described in detail in our previous high-resolution study of a complex between PPA and a carbohydrate inhibitor (Qian M, Buisson G, Duée E, Haser H, Payan F, 1994, Biochemistry 33:6284-6294). One of the binding sites previously identified in a 5-A-resolution electron density map, lies at a distance of 20 A from the active site cleft and can accommodate two glucose units. The second affinity site for sugar units is located close to the calcium binding site. The crystal structure of the maltopentaose complex was refined at 2.1 A resolution, to an R-factor of 17.5%, with an RMS deviation in bond distances of 0.007 A. The model includes all 496 residues of the enzyme, 1 calcium ion, 1 chloride ion, 425 water molecules, and 3 bound sugar rings. The binding sites are characterized and described in detail. The present complex structure provides the evidence of an increased stability of the structure upon interaction with the substrate and allows identification of an N-terminal pyrrolidonecarboxylic acid in PPA. PMID:7613472

  7. DNA breathing dynamics distinguish binding from nonbinding consensus sites for transcription factor YY1 in cells.

    PubMed

    Alexandrov, Boian S; Fukuyo, Yayoi; Lange, Martin; Horikoshi, Nobuo; Gelev, Vladimir; Rasmussen, Kim Ø; Bishop, Alan R; Usheva, Anny

    2012-11-01

    The genome-wide mapping of the major gene expression regulators, the transcription factors (TFs) and their DNA binding sites, is of great importance for describing cellular behavior and phenotypic diversity. Presently, the methods for prediction of genomic TF binding produce a large number of false positives, most likely due to insufficient description of the physiochemical mechanisms of protein-DNA binding. Growing evidence suggests that, in the cell, the double-stranded DNA (dsDNA) is subject to local transient strands separations (breathing) that contribute to genomic functions. By using site-specific chromatin immunopecipitations, gel shifts, BIOBASE data, and our model that accurately describes the melting behavior and breathing dynamics of dsDNA we report a specific DNA breathing profile found at YY1 binding sites in cells. We find that the genomic flanking sequence variations and SNPs, may exert long-range effects on DNA dynamics and predetermine YY1 binding. The ubiquitous TF YY1 has a fundamental role in essential biological processes by activating, initiating or repressing transcription depending upon the sequence context it binds. We anticipate that consensus binding sequences together with the related DNA dynamics profile may significantly improve the accuracy of genomic TF binding sites and TF binding-related functional SNPs.

  8. A 5′ Splice Site-Proximal Enhancer Binds SF1 and Activates Exon Bridging of a Microexon

    PubMed Central

    Carlo, Troy; Sierra, Rebecca; Berget, Susan M.

    2000-01-01

    Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3′ and 5′ splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5′ splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3′ splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon. PMID:10805741

  9. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function.

    PubMed

    Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M

    2018-04-15

    There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.

  10. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1.

    PubMed

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-11-14

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO3(2-)) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys(21) and Cys(22) as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO3(2-) to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Biochemical and Biophysical Characterization of the Selenium-binding and Reducing Site in Arabidopsis thaliana Homologue to Mammals Selenium-binding Protein 1*

    PubMed Central

    Schild, Florie; Kieffer-Jaquinod, Sylvie; Palencia, Andrés; Cobessi, David; Sarret, Géraldine; Zubieta, Chloé; Jourdain, Agnès; Dumas, Renaud; Forge, Vincent; Testemale, Denis; Bourguignon, Jacques; Hugouvieux, Véronique

    2014-01-01

    The function of selenium-binding protein 1 (SBP1), present in almost all organisms, has not yet been established. In mammals, SBP1 is known to bind the essential element selenium but the binding site has not been identified. In addition, the SBP family has numerous potential metal-binding sites that may play a role in detoxification pathways in plants. In Arabidopsis thaliana, AtSBP1 over-expression increases tolerance to two toxic compounds for plants, selenium and cadmium, often found as soil pollutants. For a better understanding of AtSBP1 function in detoxification mechanisms, we investigated the chelating properties of the protein toward different ligands with a focus on selenium using biochemical and biophysical techniques. Thermal shift assays together with inductively coupled plasma mass spectrometry revealed that AtSBP1 binds selenium after incubation with selenite (SeO32−) with a ligand to protein molar ratio of 1:1. Isothermal titration calorimetry confirmed the 1:1 stoichiometry and revealed an unexpectedly large value of binding enthalpy suggesting a covalent bond between selenium and AtSBP1. Titration of reduced Cys residues and comparative mass spectrometry on AtSBP1 and the purified selenium-AtSBP1 complex identified Cys21 and Cys22 as being responsible for the binding of one selenium. These results were validated by site-directed mutagenesis. Selenium K-edge x-ray absorption near edge spectroscopy performed on the selenium-AtSBP1 complex demonstrated that AtSBP1 reduced SeO32− to form a R-S-Se(II)-S-R-type complex. The capacity of AtSBP1 to bind different metals and selenium is discussed with respect to the potential function of AtSBP1 in detoxification mechanisms and selenium metabolism. PMID:25274629

  12. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  13. Characterization of nicotine binding to the rat brain P/sub 2/ preparation: the identification of multiple binding sites which include specific up-regulatory site(s)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sloan, J.W.

    1984-01-01

    These studies show that nicotine binds to the rat brain P/sub 2/ preparation by saturable and reversible processes. Multiple binding sites were revealed by the configuration of saturation, kinetic and Scatchard plots. A least squares best fit of Scatchard data using nonlinear curve fitting programs confirmed the presence of a very high affinity site, an up-regulatory site, a high affinity site and one or two low affinity sites. Stereospecificity was demonstrated for the up-regulatory site where (+)-nicotine was more effective and for the high affinity site where (-)-nicotine had a higher affinity. Drugs which selectively up-regulate nicotine binding site(s) havemore » been identified. Further, separate very high and high affinity sites were identified for (-)- and (+)-(/sup 3/H)nicotine, based on evidence that the site density for the (-)-isomer is 10 times greater than that for the (+)-isomer at these sites. Enhanced nicotine binding has been shown to be a statistically significant phenomenon which appears to be a consequence of drugs binding to specific site(s) which up-regulate binding at other site(s). Although Scatchard and Hill plots indicate positive cooperatively, up-regulation more adequately describes the function of these site(s). A separate up-regulatory site is suggested by the following: (1) Drugs vary markedly in their ability to up-regulate binding. (2) Both the affinity and the degree of up-regulation can be altered by structural changes in ligands. (3) Drugs with specificity for up-regulation have been identified. (4) Some drugs enhance binding in a dose-related manner. (5) Competition studies employing cold (-)- and (+)-nicotine against (-)- and (+)-(/sup 3/H)nicotine show that the isomers bind to separate sites which up-regulate binding at the (-)- and (+)-nicotine high affinity sites and in this regard (+)-nicotine is more specific and efficacious than (-)-nicotine.« less

  14. Virtual screening of potential inhibitors from TCM for the CPSF30 binding site on the NS1A protein of influenza A virus.

    PubMed

    Ai, Haixin; Zhang, Li; Chang, Alan K; Wei, Hongyun; Che, Yuchen; Liu, Hongsheng

    2014-03-01

    Inhibition of CPSF30 function by the effector domain of influenza A virus of non-structural protein 1 (NS1A) protein plays a critical role in the suppression of host key antiviral response. The CPSF30-binding site of NS1A appears to be a very attractive target for the development of new drugs against influenza A virus. In this study, structure-based molecular docking was utilized to screen more than 30,000 compounds from a Traditional Chinese Medicine (TCM) database. Four drug-like compounds were selected as potential inhibitors for the CPSF30-binding site of NS1A. Docking conformation analysis results showed that these potential inhibitors could bind to the CPSF30-binding site with strong hydrophobic interactions and weak hydrogen bonds. Molecular dynamics simulations and MM-PBSA calculations suggested that two of the inhibitors, compounds 32056 and 31674, could stably bind to the CPSF30-binding site with high binding free energy. These two compounds could be modified to achieve higher binding affinity, so that they may be used as potential leads in the development of new anti-influenza drugs.

  15. 1-3-A Resolution Structure of Human Glutathione S-Transferase With S-Hexyl Glutathione Bound Reveals Possible Extended Ligandin Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trong, I.Le; Stenkamp, R.E.; Ibarra, C.

    2005-08-22

    Cytosolic glutathione S-transferases (GSTs) play a critical role in xenobiotic binding and metabolism, as well as in modulation of oxidative stress. Here, the high-resolution X-ray crystal structures of homodimeric human GSTA1-1 in the apo form and in complex with S-hexyl glutathione (two data sets) are reported at 1.8, 1.5, and 1.3A respectively. At this level of resolution, distinct conformations of the alkyl chain of S-hexyl glutathione are observed, reflecting the nonspecific nature of the hydrophobic substrate binding site (H-site). Also, an extensive network of ordered water, including 75 discrete solvent molecules, traverses the open subunit-subunit interface and connects the glutathionemore » binding sites in each subunit. In the highest-resolution structure, three glycerol moieties lie within this network and directly connect the amino termini of the glutathione molecules. A search for ligand binding sites with the docking program Molecular Operating Environment identified the ordered water network binding site, lined mainly with hydrophobic residues, suggesting an extended ligand binding surface for nonsubstrate ligands, the so-called ligandin site. Finally, detailed comparison of the structures reported here with previously published X-ray structures reveal a possible reaction coordinate for ligand-dependent conformational changes in the active site and the C-terminus.« less

  16. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    DOE PAGES

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong; ...

    2016-09-01

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less

  17. Computational Analysis of the Ligand Binding Site of the Extracellular ATP Receptor, DORN1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Cuong The; Tanaka, Kiwamu; Cao, Yangrong

    DORN1 (also known as P2K1) is a plant receptor for extracellular ATP, which belongs to a large gene family of legume-type (L-type) lectin receptor kinases. Extracellular ATP binds to DORN1 with strong affinity through its lectin domain, and the binding triggers a variety of intracellular activities in response to biotic and abiotic stresses. However, information on the tertiary structure of the ligand binding site of DORN1is lacking, which hampers efforts to fully elucidate the mechanism of receptor action. Available data of the crystal structures from more than 50 L-type lectins enable us to perform an in silico study of molecularmore » interaction between DORN1 and ATP. In this study, we employed a computational approach to develop a tertiary structure model of the DORN1 lectin domain. A blind docking analysis demonstrated that ATP binds to a cavity made by four loops (defined as loops A B, C and D) of the DORN1 lectin domain with high affinity. In silico target docking of ATP to the DORN1 binding site predicted interaction with 12 residues, located on the four loops, via hydrogen bonds and hydrophobic interactions. The ATP binding pocket is structurally similar in location to the carbohydrate binding pocket of the canonical L-type lectins. However, four of the residues predicted to interact with ATP are not conserved between DORN1 and the other carbohydrate-binding lectins, suggesting that diversifying selection acting on these key residues may have led to the ATP binding activity of DORN1. Finally, the in silico model was validated by in vitro ATP binding assays using the purified extracellular lectin domain of wild-type DORN1, as well as mutated DORN1 lacking key ATP binding residues.« less

  18. Characterization of diadenosine tetraphosphate (Ap4A) binding sites in cultured chromaffin cells: evidence for a P2y site.

    PubMed Central

    Pintor, J.; Torres, M.; Castro, E.; Miras-Portugal, M. T.

    1991-01-01

    1. Diadenosine tetraphosphate (Ap4A) a dinucleotide, which is stored in secretory granules, presents two types of high affinity binding sites in chromaffin cells. A Kd value of 8 +/- 0.65 x 10(-11) M and Bmax value of 5420 +/- 450 sites per cell were obtained for the high affinity binding site. A Kd value of 5.6 +/- 0.53 x 10(-9) M and a Bmax value close to 70,000 sites per cell were obtained for the second binding site with high affinity. 2. The diadenosine polyphosphates, Ap3A, Ap4A, Ap5A and Ap6A, displaced [3H]-Ap4A from the two binding sites, the Ki values being 1.0 nM, 0.013 nM, 0.013 nM and 0.013 nM for the very high affinity binding site and 0.5 microM, 0.13 microM, 0.062 microM and 0.75 microM for the second binding site. 3. The ATP analogues displaced [3H]-Ap4A with the potency order of the P2y receptors, adenosine 5'-O-(2 thiodiphosphate) (ADP-beta-S) greater than 5'-adenylyl imidodiphosphate (AMP-PNP) greater than alpha, beta-methylene ATP (alpha, beta-MeATP), in both binding sites. The Ki values were respectively 0.075 nM, 0.2 nM and 0.75 nM for the very high affinity binding site and 0.125 microM, 0.5 microM and 0.9 microM for the second binding site. PMID:1912985

  19. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.

    PubMed

    Mudgal, Richa; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-07-01

    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology, and designing enzymes with new functional capabilities. Proteins 2017; 85:1319-1335. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Organizational requirements of the SaeR binding sites for a functional P1 promoter of the sae operon in Staphylococcus aureus.

    PubMed

    Cho, Hoonsik; Jeong, Do-Won; Li, Chunling; Bae, Taeok

    2012-06-01

    In Staphylococcus aureus, the SaeRS two-component system controls the expression of multiple virulence factors. Of the two promoters in the sae operon, P1 is autoinduced and has two binding sites for the response regulator SaeR. In this study, we examined the organizational requirements of the SaeR binding sites in P1 for transcription activation. Mutational studies showed that both binding sites are essential for binding to phosphorylated SaeR (P-SaeR) and transcription activation. When the 21-bp distance between the centers of the two SaeR binding sites was altered to 26 bp, 31 bp, 36 bp, or 41 bp, only the 31-bp mutant retained approximately 40% of the original promoter activity. When the -1-bp spacing (i.e.,1-bp overlap) between the primary SaeR binding site and the -35 promoter region was altered, all mutant P1 promoters failed to initiate transcription; however, when the first nucleotide of the -35 region was changed from A to T, the mutants with 0-bp or 22-bp spacing showed detectable promoter activity. Although P-SaeR was essential for the binding of RNA polymerase to P1, it was not essential for the binding of the enzyme to the alpha-hemolysin promoter. When the nonoptimal spacing between promoter elements in P1 or the coagulase promoter was altered to the optimal spacing of 17 bp, both promoters failed to initiate transcription. These results suggest that SaeR binding sites are under rather strict organizational restrictions and provide clues for understanding the molecular mechanism of sae-mediated transcription activation.

  1. Polymorphisms A387P in thrombospondin-4 and N700S in thrombospondin-1 perturb calcium binding sites.

    PubMed

    Stenina, Olga I; Ustinov, Valentin; Krukovets, Irene; Marinic, Tina; Topol, Eric J; Plow, Edward F

    2005-11-01

    Recent genetic studies have associated members of the thrombospondin (TSP) gene family with premature cardiovascular disease. The disease-associated polymorphisms lead to single amino acid changes in TSP-4 (A387P) and TSP-1 (N700S). These substitutions reside in adjacent domains of these highly homologous proteins. Secondary structural predictive programs and the homology of the domains harboring these amino acid substitutions to those in other proteins pointed to potential alterations of putative Ca2+ binding sites that reside in close proximity to the polymorphic amino acids. Since Ca2+ binding is critical for the structure and function of TSP family members, direct evidence for differences in Ca2+ binding by the polymorphic forms was sought. Using synthetic peptides and purified recombinant variant fragments bearing the amino acid substitutions, we measured differences in Tb3+ luminescence as an index of Ca2+ binding. The Tb3+ binding constants placed the TSP-1 region affected by N700S polymorphism among other high-affinity Ca2+ binding sites. The affinity of Ca2+ binding was lower for peptides (3.5-fold) and recombinant fragments (10-fold) containing the S700 vs. the N700 form. In TSP-4, the P387 form acquired an additional Ca2+ binding site absent in the A387 form. The results of our study suggest that both substitutions (A387P in TSP-4 and N700S in TSP-1) alter Ca2+ binding properties. Since these substitutions exert the opposite effects on Ca2+ binding, a decrease in TSP-1 and an increase in TSP-4, the two TSP variants are likely to influence cardiovascular functions in distinct but yet pathogenic ways.

  2. Genistein and bisphenol A exposure cause estrogen receptor 1 to bind thousands of sites in a cell type-specific manner

    PubMed Central

    Gertz, Jason; Reddy, Timothy E.; Varley, Katherine E.; Garabedian, Michael J.; Myers, Richard M.

    2012-01-01

    Endogenous estrogens that are synthesized in the body impact gene regulation by activating estrogen receptors in diverse cell types. Exogenous compounds that have estrogenic properties can also be found circulating in the blood in both children and adults. The genome-wide impact of these environmental estrogens on gene regulation is unclear. To obtain an integrated view of gene regulation in response to environmental and endogenous estrogens on a genome-wide scale, we performed ChIP-seq to identify estrogen receptor 1 (ESR1; previously estrogen receptor α) binding sites, and RNA-seq in endometrial cancer cells exposed to bisphenol A (BPA; found in plastics), genistein (GEN; found in soybean), or 17β-estradiol (E2; an endogenous estrogen). GEN and BPA treatment induces thousands of ESR1 binding sites and >50 gene expression changes, representing a subset of E2-induced gene regulation changes. Genes affected by E2 were highly enriched for ribosome-associated proteins; however, GEN and BPA failed to regulate most ribosome-associated proteins and instead enriched for transporters of carboxylic acids. Treatment-dependent changes in gene expression were associated with treatment-dependent ESR1 binding sites, with the exception that many genes up-regulated by E2 harbored a BPA-induced ESR1 binding site but failed to show any expression change after BPA treatment. GEN and BPA exhibited a similar relationship to E2 in the breast cancer line T-47D, where cell type specificity played a much larger role than treatment specificity. Overall, both environmental estrogens clearly regulate gene expression through ESR1 on a genome-wide scale, although with lower potency resulting in less ESR1 binding sites and less gene expression changes compared to the endogenous estrogen, E2. PMID:23019147

  3. Proflavine acts as a Rev inhibitor by targeting the high-affinity Rev binding site of the Rev responsive element of HIV-1.

    PubMed

    DeJong, Eric S; Chang, Chia-en; Gilson, Michael K; Marino, John P

    2003-07-08

    Rev is an essential regulatory HIV-1 protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome, activating the switch between viral latency and active viral replication. Previously, we have shown that selective incorporation of the fluorescent probe 2-aminopurine (2-AP) into a truncated form of the RRE sequence (RRE-IIB) allowed the binding of an arginine-rich peptide derived from Rev and aminoglycosides to be characterized directly by fluorescence methods. Using these fluorescence and nuclear magnetic resonance (NMR) methods, proflavine has been identified, through a limited screen of selected small heterocyclic compounds, as a specific and high-affinity RRE-IIB binder which inhibits the interaction of the Rev peptide with RRE-IIB. Direct and competitive 2-AP fluorescence binding assays reveal that there are at least two classes of proflavine binding sites on RRE-IIB: a high-affinity site that competes with the Rev peptide for binding to RRE-IIB (K(D) approximately 0.1 +/- 0.05 microM) and a weaker binding site(s) (K(D) approximately 1.1 +/- 0.05 microM). Titrations of RRE-IIB with proflavine, monitored using (1)H NMR, demonstrate that the high-affinity proflavine binding interaction occurs with a 2:1 (proflavine:RRE-IIB) stoichiometry, and NOEs observed in the NOESY spectrum of the 2:1 proflavine.RRE-IIB complex indicate that the two proflavine molecules bind specifically and close to each other within a single binding site. NOESY data further indicate that formation of the 2:1 proflavine.RRE-IIB complex stabilizes base pairing and stacking within the internal purine-rich bulge of RRE-IIB in a manner analogous to what has been observed in the Rev peptide.RRE-IIB complex. The observation that proflavine competes with Rev for binding to RRE-IIB by binding as a dimer to a single high-affinity site opens the possibility for rational drug design based on linking and modifying it and related compounds.

  4. Ethylene binding site affinity in ripening apples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blankenship, S.M.; Sisler, E.C.

    1993-09-01

    Scatchard plots for ethylene binding in apples (Malus domestica Borkh.), which were harvested weekly for 5 weeks to include the ethylene climacteric rise, showed C[sub 50] values (concentration of ethylene needed to occupy 50% of the ethylene binding sites) of 0.10, 0.11, 0.34, 0.40, and 0.57 [mu]l ethylene/liter[sup [minus]1], respectively, for each of the 5 weeks. Higher ethylene concentrations were required to saturate the binding sites during the climacteric rise than at other times. Diffusion of [sup 14]C-ethylene from the binding sites was curvilinear and did not show any indication of multiple binding sites. Ethylene was not metabolized by applemore » tissue.« less

  5. Clotrimazole and efaroxan inhibit red cell Gardos channel independently of imidazoline I1 and I2 binding sites.

    PubMed

    Coupry, I; Armsby, C C; Alper, S L; Brugnara, C; Parini, A

    1996-01-04

    In the present report, we investigated the potential involvement of imidazoline I1 and I2 binding sites in the inhibition of the Ca(2+)-activated K+ channel (Gardos channel) by clotrimazole in human red cells. Ca(2+)-activated 86Rb influx was inhibited by clotrimazole and efaroxan but not by the imidazoline binding site ligands clonidine, moxonidine, cirazoline and idazoxan (100 microM). Binding studies with [3H]idazoxan and [3H]p-aminoclonidine did not reveal the expression of I1 and I2 binding sites in erythrocytes. These data indicate that the effects of clotrimazole and efaroxan on the erythrocyte Ca(2+)-activated K+ channel may be mediated by a 'non-I1/non-I2' binding site.

  6. Active sites prediction and binding analysis E1-E2 protein human papillomavirus with biphenylsulfonacetic acid

    NASA Astrophysics Data System (ADS)

    Iryani, I.; Amelia, F.; Iswendi, I.

    2018-04-01

    Cervix cancer triggered by Human papillomavirus infection is the second cause to woman death in worldwide. The binding site of E1-E2 protein of HPV 16 is not known from a 3-D structure yet, so in this study we address this issue to study the structure of E1-E2 protein from Human papillomavirus type 16 and to find its potential binding sites using biphenylsulfonacetic acid as inhibitor. Swiss model was used for 3D structure prediction and PDB: 2V9P (E1 protein) and 2NNU (E2 protein) having 52.32% and 100% identity respectively was selected as a template. The 3D model structure developed of E1 and E2 in the core and allowed regions were 99.2% and 99.5%. The ligand binding sites were predicted using online server meta pocket 2.0 and MOE 2009.10 was used for docking. E1-and E2 protein of HPV-16 has three potential binding site that can interact with the inhibitors. The Docking biphenylsulfonacetic acid using these binding sites shows that ligand interact with the protein through hydrogen bonds on Lys 403, Arg 410, His 551 in the first pocket, on Tyr 32, Leu 99 in the second pocket, and Lys 558m Lys 517 in the third pocket.

  7. Developmental regulation of collagenase-3 mRNA in normal, differentiating osteoblasts through the activator protein-1 and the runt domain binding sites

    NASA Technical Reports Server (NTRS)

    Winchester, S. K.; Selvamurugan, N.; D'Alonzo, R. C.; Partridge, N. C.

    2000-01-01

    Collagenase-3 mRNA is initially detectable when osteoblasts cease proliferation, increasing during differentiation and mineralization. We showed that this developmental expression is due to an increase in collagenase-3 gene transcription. Mutation of either the activator protein-1 or the runt domain binding site decreased collagenase-3 promoter activity, demonstrating that these sites are responsible for collagenase-3 gene transcription. The activator protein-1 and runt domain binding sites bind members of the activator protein-1 and core-binding factor family of transcription factors, respectively. We identified core-binding factor a1 binding to the runt domain binding site and JunD in addition to a Fos-related antigen binding to the activator protein-1 site. Overexpression of both c-Fos and c-Jun in osteoblasts or core-binding factor a1 increased collagenase-3 promoter activity. Furthermore, overexpression of c-Fos, c-Jun, and core-binding factor a1 synergistically increased collagenase-3 promoter activity. Mutation of either the activator protein-1 or the runt domain binding site resulted in the inability of c-Fos and c-Jun or core-binding factor a1 to increase collagenase-3 promoter activity, suggesting that there is cooperative interaction between the sites and the proteins. Overexpression of Fra-2 and JunD repressed core-binding factor a1-induced collagenase-3 promoter activity. Our results suggest that members of the activator protein-1 and core-binding factor families, binding to the activator protein-1 and runt domain binding sites are responsible for the developmental regulation of collagenase-3 gene expression in osteoblasts.

  8. Architecture of a Fur Binding Site: a Comparative Analysis

    PubMed Central

    Lavrrar, Jennifer L.; McIntosh, Mark A.

    2003-01-01

    Fur is an iron-binding transcriptional repressor that recognizes a 19-bp consensus site of the sequence 5′-GATAATGATAATCATTATC-3′. This site can be defined as three adjacent hexamers of the sequence 5′-GATAAT-3′, with the third being slightly imperfect (an F-F-F configuration), or as two hexamers in the forward orientation separated by one base pair from a third hexamer in the reverse orientation (an F-F-x-R configuration). Although Fur can bind synthetic DNA sequences containing the F-F-F arrangement, most natural binding sites are variations of the F-F-x-R arrangement. The studies presented here compared the ability of Fur to recognize synthetic DNA sequences containing two to four adjacent hexamers with binding to sequences containing variations of the F-F-x-R arrangement (including natural operator sequences from the entS and fepB promoter regions of Escherichia coli). Gel retardation assays showed that the F-F-x-R architecture was necessary for high-affinity Fur-DNA interactions and that contiguous hexamers were not recognized as effectively. In addition, the stoichiometry of Fur at each binding site was determined, showing that Fur interacted with its minimal 19-bp binding site as two overlapping dimers. These data confirm the proposed overlapping-dimer binding model, where the unit of interaction with a single Fur dimer is two inverted hexamers separated by a C:G base pair, with two overlapping units comprising the 19-bp consensus binding site required for the high-affinity interaction with two Fur dimers. PMID:12644489

  9. DISTINCT ROLES OF β1 MIDAS, ADMIDAS AND LIMBS CATION-BINDING SITES IN LIGAND RECOGNITION BY INTEGRIN α2β1*

    PubMed Central

    Valdramidou, Dimitra; Humphries, Martin J.; Mould, A. Paul

    2012-01-01

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as α2β1, ligand recognition takes place exclusively at the α subunit I domain. However, activation of the αI domain depends on its interaction with a structurally similar domain in the β subunit known as the I-like or βI domain. The top face of the βI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS) and LIMBS (ligand-associated metal binding site). The role of these sites in controlling ligand binding to the αI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to α2β1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating mAb TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between αI and βI whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of βI. An activating mutation in the α2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca2+, Mg2+ and Mn2+ on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn2+ stimulates ligand binding, whereas the LIMBS is a stimulatory Ca2+-binding site, occupancy of which increases the affinity of Mg2+ for the MIDAS. PMID:18820259

  10. Human 15-LOX-1 active site mutations alter inhibitor binding and decrease potency.

    PubMed

    Armstrong, Michelle; van Hoorebeke, Christopher; Horn, Thomas; Deschamps, Joshua; Freedman, J Cody; Kalyanaraman, Chakrapani; Jacobson, Matthew P; Holman, Theodore

    2016-11-01

    Human 15-lipoxygenase-1 (h15-LOX-1 or h12/15-LOX) reacts with polyunsaturated fatty acids and produces bioactive lipid derivatives that are implicated in many important human diseases. One such disease is stroke, which is the fifth leading cause of death and the first leading cause of disability in America. The discovery of h15-LOX-1 inhibitors could potentially lead to novel therapeutics in the treatment of stroke, however, little is known about the inhibitor/active site interaction. This study utilizes site-directed mutagenesis, guided in part by molecular modeling, to gain a better structural understanding of inhibitor interactions within the active site. We have generated eight mutants (R402L, R404L, F414I, F414W, E356Q, Q547L, L407A, I417A) of h15-LOX-1 to determine whether these active site residues interact with two h15-LOX-1 inhibitors, ML351 and an ML094 derivative, compound 18. IC 50 values and steady-state inhibition kinetics were determined for the eight mutants, with four of the mutants affecting inhibitor potency relative to wild type h15-LOX-1 (F414I, F414W, E356Q and L407A). The data indicate that ML351 and compound 18, bind in a similar manner in the active site to an aromatic pocket close to F414 but have subtle differences in their specific binding modes. This information establishes the binding mode for ML094 and ML351 and will be leveraged to develop next-generation inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. CpG methylation at the USF binding site mediates cell-specific transcription of human ascorbate transporter SVCT2 exon 1a

    PubMed Central

    Qiao, Huan; May, James M.

    2013-01-01

    SVCT2 is the major transporter mediating vitamin C uptake in most organs. Its expression is driven by two promoters (CpG-poor exon 1a promoter and CpG-rich exon 1b promoter). In this work we mapped discrete elements within the proximal CpG-poor promoter responsible for the exon 1a transcription. We identified two E boxes for USF binding and one Y box for NF-Y binding. We further show that the formation of an NFY/USF complex on the exon 1a promoter amplifies each other's ability to bind to the promoter in a cooperativity-dependent manner and is absolutely required for the full activity of the exon 1a promoter. The analysis of the CpG site located at the upstream USF binding site in the promoter showed a strong correlation between expression and demethylation. It was also shown that the exon 1a transcription was induced in cell culture treated with demethylating agent decitabine. The specific methylation of this CpG site impaired both the binding of USF and the formation of the functional NF-Y/USF complex as well as promoter activity, suggesting its importance for the cell-specific transcription. Thus CpG methylation at the upstream USF binding site functions in establishing and maintaining cell-specific transcription from the CpG-poor SVCT2 exon 1a promoter. PMID:21770893

  12. Mefloquine inhibits voltage dependent Nav1.4 channel by overlapping the local anaesthetic binding site.

    PubMed

    Paiz-Candia, Bertin; Islas, Angel A; Sánchez-Solano, Alfredo; Mancilla-Simbro, Claudia; Scior, Thomas; Millan-PerezPeña, Lourdes; Salinas-Stefanon, Eduardo M

    2017-02-05

    Mefloquine constitutes a multitarget antimalaric that inhibits cation currents. However, the effect and the binding site of this compound on Na + channels is unknown. To address the mechanism of action of mefloquine, we employed two-electrode voltage clamp recordings on Xenopus laevis oocytes, site-directed mutagenesis of the rat Na + channel, and a combined in silico approach using Molecular Dynamics and docking protocols. We found that mefloquine: i) inhibited Na v 1.4 currents (IC 50 =60μM), ii) significantly delayed fast inactivation but did not affect recovery from inactivation, iii) markedly the shifted steady-state inactivation curve to more hyperpolarized potentials. The presence of the β1 subunit significantly reduced mefloquine potency, but the drug induced a significant frequency-independent rundown upon repetitive depolarisations. Computational and experimental results indicate that mefloquine overlaps the local anaesthetic binding site by docking at a hydrophobic cavity between domains DIII and DIV that communicates the local anaesthetic binding site with the selectivity filter. This is supported by the fact that mefloquine potency significantly decreased on mutant Na v 1.4 channel F1579A and significantly increased on K1237S channels. In silico this compound docked above F1579 forming stable π-π interactions with this residue. We provide structure-activity insights into how cationic amphiphilic compounds may exert inhibitory effects by docking between the local anaesthetic binding site and the selectivity filter of a mammalian Na + channel. Our proposed synergistic cycle of experimental and computational studies may be useful for elucidating binding sites of other drugs, thereby saving in vitro and in silico resources. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Noncompetitive blocking of human GLUT1 hexose transporter by methylxanthines reveals an exofacial regulatory binding site.

    PubMed

    Ojeda, Paola; Pérez, Alejandra; Ojeda, Lorena; Vargas-Uribe, Mauricio; Rivas, Coralia I; Salas, Monica; Vera, Juan Carlos; Reyes, Alejandro M

    2012-09-01

    Glucose transporter (GLUT)1 has become an attractive target to block glucose uptake in malignant cells since most cancer cells overexpress GLUT1 and are sensitive to glucose deprivation. Methylxanthines are natural compounds that inhibit glucose uptake; however, the mechanism of inhibition remains unknown. Here, we used a combination of binding and glucose transport kinetic assays to analyze in detail the effects of caffeine, pentoxifylline, and theophylline on hexose transport in human erythrocytes. The displacement of previously bound cytochalasin B revealed a direct interaction between the methylxanthines and GLUT1. Methylxanthines behave as noncompetitive blockers (inhibition constant values of 2-3 mM) in exchange and zero-trans efflux assays, whereas mixed inhibition with a notable uncompetitive component is observed in zero-trans influx assays (inhibition constant values of 5-12 mM). These results indicate that methylxanthines do not bind to either exofacial or endofacial d-glucose-binding sites but instead interact at a different site accessible by the external face of the transporter. Additionally, infinite-cis exit assays (Sen-Widdas assays) showed that only pentoxifylline disturbed d-glucose for binding to the exofacial substrate site. Interestingly, coinhibition assays showed that methylxanthines bind to a common site on the transporter. We concluded that there is a methylxanthine regulatory site on the external surface of the transporter, which is close but distinguishable from the d-glucose external site. Therefore, the methylxanthine moiety may become an attractive framework for the design of novel specific noncompetitive facilitative GLUT inhibitors.

  14. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site*

    PubMed Central

    Ojelabi, Ogooluwa A.; Lloyd, Kenneth P.; Simon, Andrew H.; De Zutter, Julie K.; Carruthers, Anthony

    2016-01-01

    WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting glycolysis, inhibits tumor growth in mice. This study explores how WZB117 inhibits the erythrocyte sugar transporter glucose transport protein 1 (GLUT1) and examines the transporter isoform specificity of inhibition. WZB117 reversibly and competitively inhibits erythrocyte 3-O-methylglucose (3MG) uptake with Ki(app) = 6 μm but is a noncompetitive inhibitor of sugar exit. Cytochalasin B (CB) is a reversible, noncompetitive inhibitor of 3MG uptake with Ki(app) = 0.3 μm but is a competitive inhibitor of sugar exit indicating that WZB117 and CB bind at exofacial and endofacial sugar binding sites, respectively. WZB117 inhibition of GLUTs expressed in HEK293 cells follows the order of potency: insulin-regulated GLUT4 ≫ GLUT1 ≈ neuronal GLUT3. This may explain WZB117-induced murine lipodystrophy. Molecular docking suggests the following. 1) The WZB117 binding envelopes of exofacial GLUT1 and GLUT4 conformers differ significantly. 2) GLUT1 and GLUT4 exofacial conformers present multiple, adjacent glucose binding sites that overlap with WZB117 binding envelopes. 3) The GLUT1 exofacial conformer lacks a CB binding site. 4) The inward GLUT1 conformer presents overlapping endofacial WZB117, d-glucose, and CB binding envelopes. Interrogating the GLUT1 mechanism using WZB117 reveals that subsaturating WZB117 and CB stimulate erythrocyte 3MG uptake. Extracellular WZB117 does not affect CB binding to GLUT1, but intracellular WZB117 inhibits CB binding. These findings are incompatible with the alternating conformer carrier for glucose transport but are consistent with either a multisubunit, allosteric transporter, or a transporter in which each subunit presents multiple, interacting ligand binding sites. PMID:27836974

  15. Transcription initiation from the dihydrofolate reductase promoter is positioned by HIP1 binding at the initiation site.

    PubMed

    Means, A L; Farnham, P J

    1990-02-01

    We have identified a sequence element that specifies the position of transcription initiation for the dihydrofolate reductase gene. Unlike the functionally analogous TATA box that directs RNA polymerase II to initiate transcription 30 nucleotides downstream, the positioning element of the dihydrofolate reductase promoter is located directly at the site of transcription initiation. By using DNase I footprint analysis, we have shown that a protein binds to this initiator element. Transcription initiated at the dihydrofolate reductase initiator element when 28 nucleotides were inserted between it and all other upstream sequences, or when it was placed on either side of the DNA helix, suggesting that there is no strict spatial requirement between the initiator and an upstream element. Although neither a single Sp1-binding site nor a single initiator element was sufficient for transcriptional activity, the combination of one Sp1-binding site and the dihydrofolate reductase initiator element cloned into a plasmid vector resulted in transcription starting at the initiator element. We have also shown that the simian virus 40 late major initiation site has striking sequence homology to the dihydrofolate reductase initiation site and that the same, or a similar, protein binds to both sites. Examination of the sequences at other RNA polymerase II initiation sites suggests that we have identified an element that is important in the transcription of other housekeeping genes. We have thus named the protein that binds to the initiator element HIP1 (Housekeeping Initiator Protein 1).

  16. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site

    PubMed Central

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J.

    2016-01-01

    ABSTRACT Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. IMPORTANCE We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. PMID:26764003

  17. Five of Five VHHs Neutralizing Poliovirus Bind the Receptor-Binding Site.

    PubMed

    Strauss, Mike; Schotte, Lise; Thys, Bert; Filman, David J; Hogle, James M

    2016-01-13

    Nanobodies, or VHHs, that recognize poliovirus type 1 have previously been selected and characterized as candidates for antiviral agents or reagents for standardization of vaccine quality control. In this study, we present high-resolution cryo-electron microscopy reconstructions of poliovirus with five neutralizing VHHs. All VHHs bind the capsid in the canyon at sites that extensively overlap the poliovirus receptor-binding site. In contrast, the interaction involves a unique (and surprisingly extensive) surface for each of the five VHHs. Five regions of the capsid were found to participate in binding with all five VHHs. Four of these five regions are known to alter during the expansion of the capsid associated with viral entry. Interestingly, binding of one of the VHHs, PVSS21E, resulted in significant changes of the capsid structure and thus seems to trap the virus in an early stage of expansion. We describe the cryo-electron microscopy structures of complexes of five neutralizing VHHs with the Mahoney strain of type 1 poliovirus at resolutions ranging from 3.8 to 6.3Å. All five VHHs bind deep in the virus canyon at similar sites that overlap extensively with the binding site for the receptor (CD155). The binding surfaces on the VHHs are surprisingly extensive, but despite the use of similar binding surfaces on the virus, the binding surface on the VHHs is unique for each VHH. In four of the five complexes, the virus remains essentially unchanged, but for the fifth there are significant changes reminiscent of but smaller in magnitude than the changes associated with cell entry, suggesting that this VHH traps the virus in a previously undescribed early intermediate state. The neutralizing mechanisms of the VHHs and their potential use as quality control agents for the end game of poliovirus eradication are discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Oligomycin frames a common drug-binding site in the ATP synthase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Symersky, Jindrich; Osowski, Daniel; Walters, D. Eric

    We report the high-resolution (1.9 {angstrom}) crystal structure of oligomycin bound to the subunit c10 ring of the yeast mitochondrial ATP synthase. Oligomycin binds to the surface of the c10 ring making contact with two neighboring molecules at a position that explains the inhibitory effect on ATP synthesis. The carboxyl side chain of Glu59, which is essential for proton translocation, forms an H-bond with oligomycin via a bridging water molecule but is otherwise shielded from the aqueous environment. The remaining contacts between oligomycin and subunit c are primarily hydrophobic. The amino acid residues that form the oligomycin-binding site are 100%more » conserved between human and yeast but are widely different from those in bacterial homologs, thus explaining the differential sensitivity to oligomycin. Prior genetics studies suggest that the oligomycin-binding site overlaps with the binding site of other antibiotics, including those effective against Mycobacterium tuberculosis, and thereby frames a common 'drug-binding site.' We anticipate that this drug-binding site will serve as an effective target for new antibiotics developed by rational design.« less

  19. Clathrin- and AP-2-binding sites in HIP1 uncover a general assembly role for endocytic accessory proteins.

    PubMed

    Mishra, S K; Agostinelli, N R; Brett, T J; Mizukami, I; Ross, T S; Traub, L M

    2001-12-07

    Clathrin-mediated endocytosis is a major pathway for the internalization of macromolecules into the cytoplasm of eukaryotic cells. The principle coat components, clathrin and the AP-2 adaptor complex, assemble a polyhedral lattice at plasma membrane bud sites with the aid of several endocytic accessory proteins. Here, we show that huntingtin-interacting protein 1 (HIP1), a binding partner of huntingtin, copurifies with brain clathrin-coated vesicles and associates directly with both AP-2 and clathrin. The discrete interaction sequences within HIP1 that facilitate binding are analogous to motifs present in other accessory proteins, including AP180, amphiphysin, and epsin. Bound to a phosphoinositide-containing membrane surface via an epsin N-terminal homology (ENTH) domain, HIP1 associates with AP-2 to provide coincident clathrin-binding sites that together efficiently recruit clathrin to the bilayer. Our data implicate HIP1 in endocytosis, and the similar modular architecture and function of HIP1, epsin, and AP180 suggest a common role in lipid-regulated clathrin lattice biogenesis.

  20. Structural insights into substrate and inhibitor binding sites in human indoleamine 2,3-dioxygenase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis-Ballester, Ariel; Pham, Khoa N.; Batabyal, Dipanwita

    Human indoleamine 2,3-dioxygenase 1 (hIDO1) is an attractive cancer immunotherapeutic target owing to its role in promoting tumoral immune escape. However, drug development has been hindered by limited structural information. Here, we report the crystal structures of hIDO1 in complex with its substrate, Trp, an inhibitor, epacadostat, and/or an effector, indole ethanol (IDE). The data reveal structural features of the active site (Sa) critical for substrate activation; in addition, they disclose a new inhibitor-binding mode and a distinct small molecule binding site (Si). Structure-guided mutation of a critical residue, F270, to glycine perturbs the Si site, allowing structural determination ofmore » an inhibitory complex, where both the Sa and Si sites are occupied by Trp. The Si site offers a novel target site for allosteric inhibitors and a molecular explanation for the previously baffling substrate-inhibition behavior of the enzyme. Taken together, the data open exciting new avenues for structure-based drug design.« less

  1. Biological Activity and Binding Site Characteristics of the PA1b Entomotoxin on Insects from Different Orders

    PubMed Central

    Gressent, Frédéric; Duport, Gabrielle; Rahioui, Isabelle; Pauchet, Yannick; Bolland, Patrice; Specty, Olivier; Rahbe, Yvan

    2007-01-01

    The aim of this work was to investigate both the biological activity of an entomotoxin, the pea albumin 1b (PA1b), and the presence or absence of its binding site within an array of insect species. The data obtained showed that insect sensitivity was not related to its taxonomic position. Moreover, PA1b was not toxic to several tested microorganisms. However, the binding site was found to be conserved among very different insects, displaying similar thermodynamic constants regardless of the in vivo species sensitivity. The binding site alone was, therefore, not sufficient for toxicity. One exception was the pea weevil, Bruchus pisorum, which was the only tested species without any detectable binding activity. These findings indicate that the binding site probably has an important endogenous function in insects and that adaptation to pea seeds resulted in the elimination of the toxin binding activity in two independent insect lineages. Other mechanisms are likely to interact with the toxin effects, although they are still largely unknown, but there is no evidence of any specific degradation of PA1b in the midgut of insects insensitive to the toxin, such as Drosophila melanogaster or Mamestra brassicae. PMID:20331395

  2. Functional identification and characterization of sodium binding sites in Na symporters

    PubMed Central

    Loo, Donald D. F.; Jiang, Xuan; Gorraitz, Edurne; Hirayama, Bruce A.; Wright, Ernest M.

    2013-01-01

    Sodium cotransporters from several different gene families belong to the leucine transporter (LeuT) structural family. Although the identification of Na+ in binding sites is beyond the resolution of the structures, two Na+ binding sites (Na1 and Na2) have been proposed in LeuT. Na2 is conserved in the LeuT family but Na1 is not. A biophysical method has been used to measure sodium dissociation constants (Kd) of wild-type and mutant human sodium glucose cotransport (hSGLT1) proteins to identify the Na+ binding sites in hSGLT1. The Na1 site is formed by residues in the sugar binding pocket, and their mutation influences sodium binding to Na1 but not to Na2. For the canonical Na2 site formed by two –OH side chains, S392 and S393, and three backbone carbonyls, mutation of S392 to cysteine increased the sodium Kd by sixfold. This was accompanied by a dramatic reduction in the apparent sugar and phlorizin affinities. We suggest that mutation of S392 in the Na2 site produces a structural rearrangement of the sugar binding pocket to disrupt both the binding of the second Na+ and the binding of sugar. In contrast, the S393 mutations produce no significant changes in sodium, sugar, and phlorizin affinities. We conclude that the Na2 site is conserved in hSGLT1, the side chain of S392 and the backbone carbonyl of S393 are important in the first Na+ binding, and that Na+ binding to Na2 promotes binding to Na1 and also sugar binding. PMID:24191006

  3. Investigation of glucose binding sites on insulin.

    PubMed

    Zoete, Vincent; Meuwly, Markus; Karplus, Martin

    2004-05-15

    Possible insulin binding sites for D-glucose have been investigated theoretically by docking and molecular dynamics (MD) simulations. Two different docking programs for small molecules were used; Multiple Copy Simultaneous Search (MCSS) and Solvation Energy for Exhaustive Docking (SEED) programs. The configurations resulting from the MCSS search were evaluated with a scoring function developed to estimate the binding free energy. SEED calculations were performed using various values for the dielectric constant of the solute. It is found that scores emphasizing non-polar interactions gave a preferential binding site in agreement with that inferred from recent fluorescence and NMR NOESY experiments. The calculated binding affinity of -1.4 to -3.5 kcal/mol is within the measured range of -2.0 +/- 0.5 kcal/mol. The validity of the binding site is suggested by the dynamical stability of the bound glucose when examined with MD simulations with explicit solvent. Alternative binding sites were found in the simulations and their relative stabilities were estimated. The motions of the bound glucose during molecular dynamics simulations are correlated with the motions of the insulin side chains that are in contact with it and with larger scale insulin motions. These results raise the question of whether glucose binding to insulin could play a role in its activity. The results establish the complementarity of molecular dynamics simulations and normal mode analyses with the search for binding sites proposed with small molecule docking programs. Copyright 2004 Wiley-Liss, Inc.

  4. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.

    PubMed

    Ojelabi, Ogooluwa A; Lloyd, Kenneth P; Simon, Andrew H; De Zutter, Julie K; Carruthers, Anthony

    2016-12-23

    WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting glycolysis, inhibits tumor growth in mice. This study explores how WZB117 inhibits the erythrocyte sugar transporter glucose transport protein 1 (GLUT1) and examines the transporter isoform specificity of inhibition. WZB117 reversibly and competitively inhibits erythrocyte 3-O-methylglucose (3MG) uptake with K i (app) = 6 μm but is a noncompetitive inhibitor of sugar exit. Cytochalasin B (CB) is a reversible, noncompetitive inhibitor of 3MG uptake with K i (app) = 0.3 μm but is a competitive inhibitor of sugar exit indicating that WZB117 and CB bind at exofacial and endofacial sugar binding sites, respectively. WZB117 inhibition of GLUTs expressed in HEK293 cells follows the order of potency: insulin-regulated GLUT4 ≫ GLUT1 ≈ neuronal GLUT3. This may explain WZB117-induced murine lipodystrophy. Molecular docking suggests the following. 1) The WZB117 binding envelopes of exofacial GLUT1 and GLUT4 conformers differ significantly. 2) GLUT1 and GLUT4 exofacial conformers present multiple, adjacent glucose binding sites that overlap with WZB117 binding envelopes. 3) The GLUT1 exofacial conformer lacks a CB binding site. 4) The inward GLUT1 conformer presents overlapping endofacial WZB117, d-glucose, and CB binding envelopes. Interrogating the GLUT1 mechanism using WZB117 reveals that subsaturating WZB117 and CB stimulate erythrocyte 3MG uptake. Extracellular WZB117 does not affect CB binding to GLUT1, but intracellular WZB117 inhibits CB binding. These findings are incompatible with the alternating conformer carrier for glucose transport but are consistent with either a multisubunit, allosteric transporter, or a transporter in which each subunit presents multiple, interacting ligand binding sites. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.

    PubMed

    Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N

    2016-01-01

    Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

  6. Zampanolide Binding to Tubulin Indicates Cross-Talk of Taxane Site with Colchicine and Nucleotide Sites.

    PubMed

    Field, Jessica J; Pera, Benet; Gallego, Juan Estévez; Calvo, Enrique; Rodríguez-Salarichs, Javier; Sáez-Calvo, Gonzalo; Zuwerra, Didier; Jordi, Michel; Andreu, José M; Prota, Andrea E; Ménchon, Grégory; Miller, John H; Altmann, Karl-Heinz; Díaz, J Fernando

    2018-03-23

    The marine natural product zampanolide and analogues thereof constitute a new chemotype of taxoid site microtubule-stabilizing agents with a covalent mechanism of action. Zampanolide-ligated tubulin has the switch-activation loop (M-loop) in the assembly prone form and, thus, represents an assembly activated state of the protein. In this study, we have characterized the biochemical properties of the covalently modified, activated tubulin dimer, and we have determined the effect of zampanolide on tubulin association and the binding of tubulin ligands at other binding sites. Tubulin activation by zampanolide does not affect its longitudinal oligomerization but does alter its lateral association properties. The covalent binding of zampanolide to β-tubulin affects both the colchicine site, causing a change of the quantum yield of the bound ligand, and the exchangeable nucleotide binding site, reducing the affinity for the nucleotide. While these global effects do not change the binding affinity of 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC) (a reversible binder of the colchicine site), the binding affinity of a fluorescent analogue of GTP (Mant-GTP) at the nucleotide E-site is reduced from 12 ± 2 × 10 5 M -1 in the case of unmodified tubulin to 1.4 ± 0.3 × 10 5 M -1 in the case of the zampanolide tubulin adduct, indicating signal transmission between the taxane site and the colchicine and nucleotide sites of β-tubulin.

  7. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, andmore » the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.« less

  8. Amyloid tracers detect multiple binding sites in Alzheimer's disease brain tissue.

    PubMed

    Ni, Ruiqing; Gillberg, Per-Göran; Bergfors, Assar; Marutle, Amelia; Nordberg, Agneta

    2013-07-01

    Imaging fibrillar amyloid-β deposition in the human brain in vivo by positron emission tomography has improved our understanding of the time course of amyloid-β pathology in Alzheimer's disease. The most widely used amyloid-β imaging tracer so far is (11)C-Pittsburgh compound B, a thioflavin derivative but other (11)C- and (18)F-labelled amyloid-β tracers have been studied in patients with Alzheimer's disease and cognitively normal control subjects. However, it has not yet been established whether different amyloid tracers bind to identical sites on amyloid-β fibrils, offering the same ability to detect the regional amyloid-β burden in the brains. In this study, we characterized (3)H-Pittsburgh compound B binding in autopsied brain regions from 23 patients with Alzheimer's disease and 20 control subjects (aged 50 to 88 years). The binding properties of the amyloid tracers FDDNP, AV-45, AV-1 and BF-227 were also compared with those of (3)H-Pittsburgh compound B in the frontal cortices of patients with Alzheimer's disease. Saturation binding studies revealed the presence of high- and low-affinity (3)H-Pittsburgh compound B binding sites in the frontal cortex (K(d1): 3.5 ± 1.6 nM; K(d2): 133 ± 30 nM) and hippocampus (K(d1):5.6 ± 2.2 nM; K(d2): 181 ± 132 nM) of Alzheimer's disease brains. The relative proportion of high-affinity to low-affinity sites was 6:1 in the frontal cortex and 3:1 in the hippocampus. One control showed both high- and low-affinity (3)H-Pittsburgh compound B binding sites (K(d1): 1.6 nM; K(d2): 330 nM) in the cortex while the others only had a low-affinity site (K(d2): 191 ± 70 nM). (3)H-Pittsburgh compound B binding in Alzheimer's disease brains was higher in the frontal and parietal cortices than in the caudate nucleus and hippocampus, and negligible in the cerebellum. Competitive binding studies with (3)H-Pittsburgh compound B in the frontal cortices of Alzheimer's disease brains revealed high- and low-affinity binding sites for BTA

  9. α‐Conotoxin M1 (CTx) blocks αδ binding sites of adult nicotinic receptors while ACh binding at αε sites elicits only small and short quantal synaptic currents

    PubMed Central

    Dudel, Josef

    2014-01-01

    Abstract In ‘embryonic’ nicotinic receptors, low CTx concentrations are known to block only the αδ binding site, whereas binding of ACh at the αγ‐site elicits short single channel openings and short bursts. In adult muscles the αγ‐ is replaced by the αε‐site. Quantal EPSCs (qEPSCs) were elicited in adult muscles by depolarization pulses and recorded through a perfused macropatch electrode. One to 200 nmol L−1 CTx reduced amplitudes and decay time constants of qEPSCs, but increased their rise times. CTx block at the αδ binding sites was incomplete: The qEPSCs still contained long bursts from not yet blocked receptors, whereas their average decay time constants were reduced by a short burst component generated by ACh binding to the αε‐site. Two nanomolar CTx applied for 3 h reduced the amplitudes of qEPSCs to less than half with a constant slope. The equilibrium concentration of the block is below 1 nmol L−1 and lower than that of embryonic receptors. CTx‐block increased in proportion to CTx concentrations (average rate 2 × 104 s−1·mol−1 L). Thus, the reactions of ‘embryonic’ and of adult nicotinic receptors to block by CTx are qualitatively the same. – The study of the effects of higher CTx concentrations or of longer periods of application of CTx was limited by presynaptic effects of CTx. Even low CTx concentrations severely reduced the release of quanta by activating presynaptic M2 receptors at a maximal rate of 6 × 105 s−1·mol−1 L. When this dominant inhibition was prevented by blocking the M2 receptors with methoctramine, activation of M1 receptors was unmasked and facilitated release. PMID:25501436

  10. Spectroscopic and Thermodynamic Characterization of the Metal-Binding Sites in the LH1-RC Complex from Thermophilic Photosynthetic Bacterium Thermochromatium tepidum.

    PubMed

    Kimura, Yukihiro; Yura, Yuki; Hayashi, Yusuke; Li, Yong; Onoda, Moe; Yu, Long-Jiang; Wang-Otomo, Zheng-Yu; Ohno, Takashi

    2016-12-15

    The light-harvesting 1 reaction center (LH1-RC) complex from thermophilic photosynthetic bacterium Thermochromatium (Tch.) tepidum exhibits enhanced thermostability and an unusual LH1 Q y transition, both induced by Ca 2+ binding. In this study, metal-binding sites and metal-protein interactions in the LH1-RC complexes from wild-type (B915) and biosynthetically Sr 2+ -substituted (B888) Tch. tepidum were investigated by isothermal titration calorimetry (ITC), atomic absorption (AA), and attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopies. The ITC measurements revealed stoichiometric ratios of approximately 1:1 for binding of Ca 2+ , Sr 2+ , or Ba 2+ to the LH1 αβ-subunit, indicating the presence of 16 binding sites in both B915 and B888. The AA analysis provided direct evidence for Ca 2+ and Sr 2+ binding to B915 and B888, respectively, in their purified states. Metal-binding experiments supported that Ca 2+ and Sr 2+ (or Ba 2+ ) competitively associate with the binding sites in both species. The ATR-FTIR difference spectra upon Ca 2+ depletion and Sr 2+ substitution demonstrated that dissociation and binding of Ca 2+ are predominantly responsible for metal-dependent conformational changes of B915 and B888. The present results are largely compatible with the recent structural evidence that another binding site for Sr 2+ (or Ba 2+ ) exists in the vicinity of the Ca 2+ -binding site, a part of which is shared in both metal-binding sites.

  11. From small sweeteners to sweet proteins: anatomy of the binding sites of the human T1R2_T1R3 receptor.

    PubMed

    Morini, Gabriella; Bassoli, Angela; Temussi, Piero A

    2005-08-25

    The sweet taste receptor, a heterodimeric G protein coupled receptor (GPCR) protein, formed by the T1R2 and T1R3 subunits, recognizes several sweet compounds including carbohydrates, amino acids, peptides, proteins, and synthetic sweeteners. Its similarity with the metabotropic glutamate mGluR1 receptor allowed us to build homology models. All possible dimers formed by combinations of the human T1R2 and T1R3 subunits, modeled on the A (closed) or B (open) chains of the extracellular ligand binding domain of the mGluR1 template, yield four ligand binding sites for low-molecular-weight sweeteners. These sites were probed by docking a set of molecules representative of all classes of sweet compounds and calculating the free energy of ligand binding. These sites are not easily accessible to sweet proteins, but docking experiments in silico showed that sweet proteins can bind to a secondary site without entering the deep cleft. Our models account for many experimental observations on the tastes of sweeteners, including sweetness synergy, and can help to design new sweeteners.

  12. LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.

    PubMed

    Marshall, J C; Shakespear, R A; Odell, W D

    1976-11-01

    Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.

  13. Identification of an Inhibitory Alcohol Binding Site in GABAA ρ1 Receptors

    PubMed Central

    Borghese, Cecilia M.; Ruiz, Carlos I.; Lee, Ui S.; Cullins, Madeline A.; Bertaccini, Edward J.; Trudell, James R.; Harris, R. Adron

    2016-01-01

    Alcohols inhibit γ-aminobutyric acid type A ρ1 receptor function. After introducing mutations in several positions of the second transmembrane helix in ρ1, we studied the effects of ethanol and hexanol on GABA responses using two-electrode voltage clamp electrophysiology in Xenopus laevis oocytes. The 6′ mutations produced the following effects on ethanol and hexanol responses: small increase or no change (T6′M), increased inhibition (T6′V) and small potentiation (T6′Y and T6′F). The 5′ mutations produced mainly increases in hexanol inhibition. Other mutations produced small (3′ and 9′) or no changes (2′ and L277 in the first transmembrane domain) in alcohol effects. These results suggest an inhibitory alcohol binding site near the 6′ position. Homology models of ρ1 receptors based on the X-ray structure of GluCl showed that the 2′, 5′, 6’ and 9′ residues were easily accessible from the ion pore, with 5′ and 6′ residues from neighboring subunits facing each other; L3′ and L277 also faced the neighboring subunit. We tested ethanol through octanol on single and double mutated ρ1 receptors [ρ1(I15′S), ρ1(T6′Y) and ρ1(T6′Y,I15′S)] to further characterize the inhibitory alcohol pocket in the wild-type ρ1 receptor. The pocket can only bind relatively short-chain alcohols and is eliminated by introducing Y in the 6’ position. Replacing the bulky 15′ residue with a smaller side chain introduced a potentiating binding site, more sensitive to long-chain than to short-chain alcohols. In conclusion, the net alcohol effect on the ρ1 receptor is determined by the sum of its actions on inhibitory and potentiating sites. PMID:26571107

  14. A Single Base Difference between Pit-1 Binding Sites at the hGH Promoter and Locus Control Region Specifies Distinct Pit-1 Conformations and Functions

    PubMed Central

    Shewchuk, Brian M.; Ho, Yugong; Liebhaber, Stephen A.; Cooke, Nancy E.

    2006-01-01

    Activation of the human growth hormone (hGH-N) gene in pituitary somatotropes is mediated by a locus control region (LCR). This LCR is composed of DNase I-hypersensitive sites (HS) located −14.5 kb to −32 kb relative to the hGH-N promoter. HSI, at −14.5 kb, is the dominant determinant of hGH-N expression and is essential for establishment of a 32-kb domain of histone acetylation that encompasses the active hGH locus. This activity is conferred by three binding sites for the POU domain transcription factor Pit-1. These Pit-1 elements are sufficient to activate hGH-N expression in the mouse pituitary. In contrast, Pit-1 sites at the hGH-N promoter are consistently unable to mediate similar activity. In the present study, we demonstrate that the functional difference between the promoter-proximal and the HSI Pit-1 binding sites can be attributed in part to a single base difference. This base affects the conformation of the Pit-1/DNA complex, and reciprocal exchange of the divergent bases between the two sets of Pit-1 elements results in a partial reversal of their transgenic activities. These data support a model in which the Pit-1 binding sites in the hGH LCR allosterically program the bound Pit-1 complex for chromatin activating functions. PMID:16914737

  15. Binding Site Concentration Explains the Differential Susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-Producing Rice

    PubMed Central

    Han, Chao; Liu, Zewen; Chen, Fajun; Hou, Maolin; Peng, Yufa

    2014-01-01

    Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers. PMID:24928872

  16. Binding site concentration explains the differential susceptibility of Chilo suppressalis and Sesamia inferens to Cry1A-producing rice.

    PubMed

    Han, Lanzhi; Han, Chao; Liu, Zewen; Chen, Fajun; Jurat-Fuentes, Juan Luis; Hou, Maolin; Peng, Yufa

    2014-08-01

    Chilo suppressalis and Sesamia inferens are two important lepidopteran rice pests that occur concurrently during outbreaks in paddy fields in the main rice-growing areas of China. Previous and current field tests demonstrate that the transgenic rice line Huahui 1 (HH1) producing a Cry1Ab-Cry1Ac hybrid toxin from the bacterium Bacillus thuringiensis reduces egg and larval densities of C. suppressalis but not of S. inferens. This differential susceptibility to HH1 rice correlates with the reduced susceptibility to Cry1Ab and Cry1Ac toxins in S. inferens larvae compared to C. suppressalis larvae. The goal of this study was to identify the mechanism responsible for this differential susceptibility. In saturation binding assays, both Cry1Ab and Cry1Ac toxins bound with high affinity and in a saturable manner to midgut brush border membrane vesicles (BBMV) from C. suppressalis and S. inferens larvae. While binding affinities were similar, a dramatically lower concentration of Cry1A toxin binding sites was detected for S. inferens BBMV than for C. suppressalis BBMV. In contrast, no significant differences between species were detected for Cry1Ca toxin binding to BBMV. Ligand blotting detected BBMV proteins binding Cry1Ac or Cry1Ca toxins, some of them unique to C. suppressalis or S. inferens. These data support that reduced Cry1A binding site concentration is associated with a lower susceptibility to Cry1A toxins and HH1 rice in S. inferens larvae than in C. suppressalis larvae. Moreover, our data support Cry1Ca as a candidate for pyramiding efforts with Cry1A-producing rice to extend the activity range and durability of this technology against rice stem borers. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  17. Protein-Binding RNA Aptamers Affect Molecular Interactions Distantly from Their Binding Sites

    PubMed Central

    Dupont, Daniel M.; Thuesen, Cathrine K.; Bøtkjær, Kenneth A.; Behrens, Manja A.; Dam, Karen; Sørensen, Hans P.; Pedersen, Jan S.; Ploug, Michael; Jensen, Jan K.; Andreasen, Peter A.

    2015-01-01

    Nucleic acid aptamer selection is a powerful strategy for the development of regulatory agents for molecular intervention. Accordingly, aptamers have proven their diligence in the intervention with serine protease activities, which play important roles in physiology and pathophysiology. Nonetheless, there are only a few studies on the molecular basis underlying aptamer-protease interactions and the associated mechanisms of inhibition. In the present study, we use site-directed mutagenesis to delineate the binding sites of two 2´-fluoropyrimidine RNA aptamers (upanap-12 and upanap-126) with therapeutic potential, both binding to the serine protease urokinase-type plasminogen activator (uPA). We determine the subsequent impact of aptamer binding on the well-established molecular interactions (plasmin, PAI-1, uPAR, and LRP-1A) controlling uPA activities. One of the aptamers (upanap-126) binds to the area around the C-terminal α-helix in pro-uPA, while the other aptamer (upanap-12) binds to both the β-hairpin of the growth factor domain and the kringle domain of uPA. Based on the mapping studies, combined with data from small-angle X-ray scattering analysis, we construct a model for the upanap-12:pro-uPA complex. The results suggest and highlight that the size and shape of an aptamer as well as the domain organization of a multi-domain protein such as uPA, may provide the basis for extensive sterical interference with protein ligand interactions considered distant from the aptamer binding site. PMID:25793507

  18. A Purple Cupredoxin from Nitrosopumilus maritimus Containing a Mononuclear Type 1 Copper Center with an Open Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hosseinzadeh, Parisa; Tian, Shiliang; Marshall, Nicholas M.

    2016-05-25

    Mononuclear cupredoxin proteins usually contain a coordinately saturated type 1 copper (T1Cu) center and function exclusively as electron carriers. Here we report a cupredoxin isolated from the nitrifying archaeon Nitrosopumilus maritimus SCM1, called Nmar1307, that contains a T1Cu center with an open binding site containing water. It displays a deep purple color due to strong absorptions around 413 nm (1880 M –1 cm –1) and 558 nm (2290 M –1 cm –1) in the UV–vis electronic spectrum. EPR studies suggest the protein contains two Cu(II) species of nearly equal population, one nearly axial, with hyperfine constant A∥ = 98 ×more » 10 –4 cm –1, and another more rhombic, with a smaller A∥ value of 69 × 10 –4 cm –1. The X-ray crystal structure at 1.6 Å resolution confirms that it contains a Cu atom coordinated by two His and one Cys in a trigonal plane, with an axial H2O at 2.25 Å. Both UV–vis absorption and EPR spectroscopic studies suggest that the Nmar1307 can oxidize NO to nitrite, an activity that is attributable to the high reduction potential (354 mV vs SHE) of the copper site. These results suggest that mononuclear cupredoxins can have a wide range of structural features, including an open binding site containing water, making this class of proteins even more versatile.« less

  19. A tool for calculating binding-site residues on proteins from PDB structures.

    PubMed

    Hu, Jing; Yan, Changhui

    2009-08-03

    In the research on protein functional sites, researchers often need to identify binding-site residues on a protein. A commonly used strategy is to find a complex structure from the Protein Data Bank (PDB) that consists of the protein of interest and its interacting partner(s) and calculate binding-site residues based on the complex structure. However, since a protein may participate in multiple interactions, the binding-site residues calculated based on one complex structure usually do not reveal all binding sites on a protein. Thus, this requires researchers to find all PDB complexes that contain the protein of interest and combine the binding-site information gleaned from them. This process is very time-consuming. Especially, combing binding-site information obtained from different PDB structures requires tedious work to align protein sequences. The process becomes overwhelmingly difficult when researchers have a large set of proteins to analyze, which is usually the case in practice. In this study, we have developed a tool for calculating binding-site residues on proteins, TCBRP http://yanbioinformatics.cs.usu.edu:8080/ppbindingsubmit. For an input protein, TCBRP can quickly find all binding-site residues on the protein by automatically combining the information obtained from all PDB structures that consist of the protein of interest. Additionally, TCBRP presents the binding-site residues in different categories according to the interaction type. TCBRP also allows researchers to set the definition of binding-site residues. The developed tool is very useful for the research on protein binding site analysis and prediction.

  20. Uncoupling metallonuclease metal ion binding sites via nudge mutagenesis.

    PubMed

    Papadakos, Grigorios A; Nastri, Horacio; Riggs, Paul; Dupureur, Cynthia M

    2007-05-01

    The hydrolysis of phosphodiester bonds by nucleases is critical to nucleic acid processing. Many nucleases utilize metal ion cofactors, and for a number of these enzymes two active-site metal ions have been detected. Testing proposed mechanistic roles for individual bound metal ions has been hampered by the similarity between the sites and cooperative behavior. In the homodimeric PvuII restriction endonuclease, the metal ion dependence of DNA binding is sigmoidal and consistent with two classes of coupled metal ion binding sites. We reasoned that a conservative active-site mutation would perturb the ligand field sufficiently to observe the titration of individual metal ion binding sites without significantly disturbing enzyme function. Indeed, mutation of a Tyr residue 5.5 A from both metal ions in the enzyme-substrate crystal structure (Y94F) renders the metal ion dependence of DNA binding biphasic: two classes of metal ion binding sites become distinct in the presence of DNA. The perturbation in metal ion coordination is supported by 1H-15N heteronuclear single quantum coherence spectra of enzyme-Ca(II) and enzyme-Ca(II)-DNA complexes. Metal ion binding by free Y94F is basically unperturbed: through multiple experiments with different metal ions, the data are consistent with two alkaline earth metal ion binding sites per subunit of low millimolar affinity, behavior which is very similar to that of the wild type. The results presented here indicate a role for the hydroxyl group of Tyr94 in the coupling of metal ion binding sites in the presence of DNA. Its removal causes the affinities for the two metal ion binding sites to be resolved in the presence of substrate. Such tuning of metal ion affinities will be invaluable to efforts to ascertain the contributions of individual bound metal ions to metallonuclease function.

  1. Nickel binding to NikA: an additional binding site reconciles spectroscopy, calorimetry and crystallography.

    PubMed

    Addy, Christine; Ohara, Masato; Kawai, Fumihiro; Kidera, Akinori; Ikeguchi, Mitsunori; Fuchigami, Sotaro; Osawa, Masanori; Shimada, Ichio; Park, Sam-Yong; Tame, Jeremy R H; Heddle, Jonathan G

    2007-02-01

    Intracellular nickel is required by Escherichia coli as a cofactor for a number of enzymes and is necessary for anaerobic respiration. However, high concentrations of nickel are toxic, so both import and export systems have evolved to control the cellular level of the metal. The nik operon in E. coli encodes a nickel-uptake system that includes the periplasmic nickel-binding protein NikA. The crystal structures of wild-type NikA both bound to nickel and in the apo form have been solved previously. The liganded structure appeared to show an unusual interaction between the nickel and the protein in which no direct bonds are formed. The highly unusual nickel coordination suggested by the crystal structure contrasted strongly with earlier X-ray spectroscopic studies. The known nickel-binding site has been probed by extensive mutagenesis and isothermal titration calorimetry and it has been found that even large numbers of disruptive mutations appear to have little effect on the nickel affinity. The crystal structure of a binding-site mutant with nickel bound has been solved and it is found that nickel is bound to two histidine residues at a position distant from the previously characterized binding site. This novel site immediately resolves the conflict between the crystal structures and other biophysical analyses. The physiological relevance of the two binding sites is discussed.

  2. Volatile anesthetics compete for common binding sites on bovine serum albumin: a 19F-NMR study.

    PubMed Central

    Dubois, B W; Cherian, S F; Evers, A S

    1993-01-01

    There is controversy as to the molecular nature of volatile anesthetic target sites. One proposal is that volatile anesthetics bind directly to hydrophobic binding sites on certain sensitive target proteins. Consistent with this hypothesis, we have previously shown that a fluorinated volatile anesthetic, isoflurane, binds saturably [Kd (dissociation constant) = 1.4 +/- 0.2 mM, Bmax = 4.2 +/- 0.3 sites] to fatty acid-displaceable domains on serum albumin. In the current study, we used 19F-NMR T2 relaxation to examine whether other volatile anesthetics bind to the same sites on albumin and, if so, whether they vary in their affinity for these sites. We show that three other fluorinated volatile anesthetics bind with varying affinity to fatty acid-displaceable domains on serum albumin: halothane, Kd = 1.3 +/- 0.2 mM; methoxyflurane, Kd = 2.6 +/- 0.3 mM; and sevoflurane, Kd = 4.5 +/- 0.6 mM. These three anesthetics inhibit isoflurane binding in a competitive manner: halothane, K(i) (inhibition constant) = 1.3 +/- 0.2 mM; methoxyflurane, K(i) = 2.5 +/- 0.4 mM; and sevoflurane, K(i) = 5.4 +/- 0.7 mM--similar to each anesthetic's respective Kd of binding to fatty acid displaceable sites. These results illustrate that a variety of volatile anesthetics can compete for binding to specific sites on a protein. PMID:8341659

  3. Characterization of a ( sub 3 H)-5-hydroxtyryptamine binding site in rabbit caudate nucleus that differs from the 5-HT sub 1A , 5-HT sub 1B , 5-HT sub 1C and 5-HT sub 1D subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Wencheng; Nelson, D.L.

    1989-01-01

    ({sup 3}H)5-HT binding sites were analyzed in membranes prepared from the rabbit caudate nucleus (CN). ({sup 3}H)5-HT labeled both 5-HT{sub 1A} and 5-HT{sub 1C} recognition sites, defined by nanomolar affinity for 8-OH-DPAT and mesulergine respectively; however, these represented only a fraction of total specific ({sup 3}H)5-HT binding. Saturation experiments of ({sup 3}H)5-HT binding in the presence of 100 nM 8-OH-DPAT and 100 nM mesulergine to block 5-HT{sub 1A} and 5-HT{sub 1C} sites revealed that non-5-HT{sub 1A}/non-5-HT{sub 1C} sites represented about 60% of the total 5-HT{sub 1} sites and that they exhibited saturable, high affinity, and homogeneous binding. The pharmacological profilemore » of the non-5-HT{sub 1A}/non-5-HT{sub 1C} sites (designated 5-HT{sub 1R}) also differed from that of 5-HT{sub 1B} and 5-HT{sub 2} sites, but was similar to that of the 5-HT{sub 1D} site. However, significant differences existed between the 5-HT{sub 1D} and 5-HT{sub 1B} sites for their K{sub i} values for spiperone, spirilene, metergoline, and methiothepin. The study of modulatory agents also showed differences between the 5-HT{sub 1R} and 5-HT{sub 1D} sites. In addition, calcium enhanced the effects of GTP on the 5-HT{sub 1R} sites, whereas calcium inhibited the GTP effect on the 5-HT{sub 1D} sites.« less

  4. Isolation of a High Affinity Neutralizing Monoclonal Antibody against 2009 Pandemic H1N1 Virus That Binds at the ‘Sa’ Antigenic Site

    PubMed Central

    Mishra, Arpita; Yeolekar, Leena; Dhere, Rajeev; Kapre, Subhash; Varadarajan, Raghavan; Gupta, Satish Kumar

    2013-01-01

    Influenza virus evades host immunity through antigenic drift and shift, and continues to circulate in the human population causing periodic outbreaks including the recent 2009 pandemic. A large segment of the population was potentially susceptible to this novel strain of virus. Historically, monoclonal antibodies (MAbs) have been fundamental tools for diagnosis and epitope mapping of influenza viruses and their importance as an alternate treatment option is also being realized. The current study describes isolation of a high affinity (K D = 2.1±0.4 pM) murine MAb, MA2077 that binds specifically to the hemagglutinin (HA) surface glycoprotein of the pandemic virus. The antibody neutralized the 2009 pandemic H1N1 virus in an in vitro microneutralization assay (IC50 = 0.08 µg/ml). MA2077 also showed hemagglutination inhibition activity (HI titre of 0.50 µg/ml) against the pandemic virus. In a competition ELISA, MA2077 competed with the binding site of the human MAb, 2D1 (isolated from a survivor of the 1918 Spanish flu pandemic) on pandemic H1N1 HA. Epitope mapping studies using yeast cell-surface display of a stable HA1 fragment, wherein ‘Sa’ and ‘Sb’ sites were independently mutated, localized the binding site of MA2077 within the ‘Sa’ antigenic site. These studies will facilitate our understanding of antigen antibody interaction in the context of neutralization of the pandemic influenza virus. PMID:23383214

  5. Evidence for a G protein-coupled diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) receptor binding site in lung membranes from rat.

    PubMed

    Laubinger, W; Reiser, G

    1999-01-29

    Nucleotide receptors are of considerable importance in the treatment of lung diseases, such as cystic fibrosis. Because diadenosine polyphosphates may also be of significance as signalling molecules in lung, as they are in a variety of tissues, in the present work we investigated the binding sites for [3H]diadenosine-5',5'''-P1,P4-tetraphosphate (Ap4A) in plasma membranes from rat lung and studied their possible coupling to G proteins. We present evidence for a single high-affinity binding site for [3H]Ap4A with similar affinity for other diadenosine polyphosphates ApnA (n = 2 to 6). Displacement studies with different nucleotides revealed that the [3H]Ap4A binding site was different from P2X and P2Y2 receptor binding sites. Pretreatment of lung membranes with GTPgammaS or GTP in the presence of Mg2+ increased the Ki for Ap4A from 91 nM to 5.1 microM, which is indicative of G protein coupling. The putative coupling to G proteins was further confirmed by the enhancement of [35S]GTPgammaS binding (to Galpha proteins) to lung membranes by Ap4A (63% increase over basal) in a concentration-dependent manner. Therefore, our data for the first time provide evidence of a G protein-coupled Ap4A binding site in lung membranes.

  6. The retrovirus HTLV-1 inserts an ectopic CTCF-binding site into the human genome.

    PubMed

    Satou, Yorifumi; Miyazato, Paola; Ishihara, Ko; Yaguchi, Hiroko; Melamed, Anat; Miura, Michi; Fukuda, Asami; Nosaka, Kisato; Watanabe, Takehisa; Rowan, Aileen G; Nakao, Mitsuyoshi; Bangham, Charles R M

    2016-03-15

    Human T-lymphotropic virus type 1 (HTLV-1) is a retrovirus that causes malignant and inflammatory diseases in ∼10% of infected people. A typical host has between 10(4) and 10(5) clones of HTLV-1-infected T lymphocytes, each clone distinguished by the genomic integration site of the single-copy HTLV-1 provirus. The HTLV-1 bZIP (HBZ) factor gene is constitutively expressed from the minus strand of the provirus, whereas plus-strand expression, required for viral propagation to uninfected cells, is suppressed or intermittent in vivo, allowing escape from host immune surveillance. It remains unknown what regulates this pattern of proviral transcription and latency. Here, we show that CTCF, a key regulator of chromatin structure and function, binds to the provirus at a sharp border in epigenetic modifications in the pX region of the HTLV-1 provirus in T cells naturally infected with HTLV-1. CTCF is a zinc-finger protein that binds to an insulator region in genomic DNA and plays a fundamental role in controlling higher order chromatin structure and gene expression in vertebrate cells. We show that CTCF bound to HTLV-1 acts as an enhancer blocker, regulates HTLV-1 mRNA splicing, and forms long-distance interactions with flanking host chromatin. CTCF-binding sites (CTCF-BSs) have been propagated throughout the genome by transposons in certain primate lineages, but CTCF binding has not previously been described in present-day exogenous retroviruses. The presence of an ectopic CTCF-BS introduced by the retrovirus in tens of thousands of genomic locations has the potential to cause widespread abnormalities in host cell chromatin structure and gene expression.

  7. A purple cupredoxin from Nitrosopumilus maritimus containing a mononuclear type 1 copper center with an open binding site

    DOE PAGES

    Hosseinzadeh, Parisa; Tian, Shiliang; Marshall, Nicholas M.; ...

    2016-04-27

    Mononuclear cupredoxin proteins usually contain a coordinately saturated type 1 copper (T1Cu) center and function exclusively as electron carriers. Here we report a cupredoxin isolated from the nitrifying archaeon Nitrosopumilus maritimus SCM1, called Nmar1307, that contains a T1Cu center with an open binding site containing water. It displays a deep purple color due to strong absorptions around 413 nm (1880 M –1 cm –1) and 558 nm (2290 M –1 cm –1) in the UV–vis electronic spectrum. EPR studies suggest the protein contains two Cu(II) species of nearly equal population, one nearly axial, with hyperfine constant A ∥ = 98more » × 10 –4 cm –1, and another more rhombic, with a smaller A ∥ value of 69 × 10 –4 cm –1. The X-ray crystal structure at 1.6 Å resolution confirms that it contains a Cu atom coordinated by two His and one Cys in a trigonal plane, with an axial H 2O at 2.25 Å. Both UV–vis absorption and EPR spectroscopic studies suggest that the Nmar1307 can oxidize NO to nitrite, an activity that is attributable to the high reduction potential (354 mV vs SHE) of the copper site. Lastly, these results suggest that mononuclear cupredoxins can have a wide range of structural features, including an open binding site containing water, making this class of proteins even more versatile.« less

  8. Identification of a putative binding site critical for general anesthetic activation of TRPA1.

    PubMed

    Ton, Hoai T; Phan, Thieu X; Abramyan, Ara M; Shi, Lei; Ahern, Gerard P

    2017-04-04

    General anesthetics suppress CNS activity by modulating the function of membrane ion channels, in particular, by enhancing activity of GABA A receptors. In contrast, several volatile (isoflurane, desflurane) and i.v. (propofol) general anesthetics excite peripheral sensory nerves to cause pain and irritation upon administration. These noxious anesthetics activate transient receptor potential ankyrin repeat 1 (TRPA1), a major nociceptive ion channel, but the underlying mechanisms and site of action are unknown. Here we exploit the observation that pungent anesthetics activate mammalian but not Drosophila TRPA1. Analysis of chimeric Drosophila and mouse TRPA1 channels reveal a critical role for the fifth transmembrane domain (S5) in sensing anesthetics. Interestingly, we show that anesthetics share with the antagonist A-967079 a potential binding pocket lined by residues in the S5, S6, and the first pore helix; isoflurane competitively disrupts A-967079 antagonism, and introducing these mammalian TRPA1 residues into dTRPA1 recapitulates anesthetic agonism. Furthermore, molecular modeling predicts that isoflurane and propofol bind to this pocket by forming H-bond and halogen-bond interactions with Ser-876, Met-915, and Met-956. Mutagenizing Met-915 or Met-956 selectively abolishes activation by isoflurane and propofol without affecting actions of A-967079 or the agonist, menthol. Thus, our combined experimental and computational results reveal the potential binding mode of noxious general anesthetics at TRPA1. These data may provide a structural basis for designing drugs to counter the noxious and vasorelaxant properties of general anesthetics and may prove useful in understanding effects of anesthetics on related ion channels.

  9. Molecular blueprint of allosteric binding sites in a homologue of the agonist-binding domain of the α7 nicotinic acetylcholine receptor

    PubMed Central

    Spurny, Radovan; Debaveye, Sarah; Farinha, Ana; Veys, Ken; Vos, Ann M.; Gossas, Thomas; Atack, John; Bertrand, Sonia; Bertrand, Daniel; Danielson, U. Helena; Tresadern, Gary; Ulens, Chris

    2015-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) belongs to the family of pentameric ligand-gated ion channels and is involved in fast synaptic signaling. In this study, we take advantage of a recently identified chimera of the extracellular domain of the native α7 nicotinic acetylcholine receptor and acetylcholine binding protein, termed α7-AChBP. This chimeric receptor was used to conduct an innovative fragment-library screening in combination with X-ray crystallography to identify allosteric binding sites. One allosteric site is surface-exposed and is located near the N-terminal α-helix of the extracellular domain. Ligand binding at this site causes a conformational change of the α-helix as the fragment wedges between the α-helix and a loop homologous to the main immunogenic region of the muscle α1 subunit. A second site is located in the vestibule of the receptor, in a preexisting intrasubunit pocket opposite the agonist binding site and corresponds to a previously identified site involved in positive allosteric modulation of the bacterial homolog ELIC. A third site is located at a pocket right below the agonist binding site. Using electrophysiological recordings on the human α7 nAChR we demonstrate that the identified fragments, which bind at these sites, can modulate receptor activation. This work presents a structural framework for different allosteric binding sites in the α7 nAChR and paves the way for future development of novel allosteric modulators with therapeutic potential. PMID:25918415

  10. Detecting cis-regulatory binding sites for cooperatively binding proteins

    PubMed Central

    van Oeffelen, Liesbeth; Cornelis, Pierre; Van Delm, Wouter; De Ridder, Fedor; De Moor, Bart; Moreau, Yves

    2008-01-01

    Several methods are available to predict cis-regulatory modules in DNA based on position weight matrices. However, the performance of these methods generally depends on a number of additional parameters that cannot be derived from sequences and are difficult to estimate because they have no physical meaning. As the best way to detect cis-regulatory modules is the way in which the proteins recognize them, we developed a new scoring method that utilizes the underlying physical binding model. This method requires no additional parameter to account for multiple binding sites; and the only necessary parameters to model homotypic cooperative interactions are the distances between adjacent protein binding sites in basepairs, and the corresponding cooperative binding constants. The heterotypic cooperative binding model requires one more parameter per cooperatively binding protein, which is the concentration multiplied by the partition function of this protein. In a case study on the bacterial ferric uptake regulator, we show that our scoring method for homotypic cooperatively binding proteins significantly outperforms other PWM-based methods where biophysical cooperativity is not taken into account. PMID:18400778

  11. MONKEY: Identifying conserved transcription-factor binding sitesin multiple alignments using a binding site-specific evolutionarymodel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Chiang, Derek Y.; Pollard, Daniel A.

    2004-10-28

    We introduce a method (MONKEY) to identify conserved transcription-factor binding sites in multispecies alignments. MONKEY employs probabilistic models of factor specificity and binding site evolution, on which basis we compute the likelihood that putative sites are conserved and assign statistical significance to each hit. Using genomes from the genus Saccharomyces, we illustrate how the significance of real sites increases with evolutionary distance and explore the relationship between conservation and function.

  12. OnTheFly: a database of Drosophila melanogaster transcription factors and their binding sites.

    PubMed

    Shazman, Shula; Lee, Hunjoong; Socol, Yakov; Mann, Richard S; Honig, Barry

    2014-01-01

    We present OnTheFly (http://bhapp.c2b2.columbia.edu/OnTheFly/index.php), a database comprising a systematic collection of transcription factors (TFs) of Drosophila melanogaster and their DNA-binding sites. TFs predicted in the Drosophila melanogaster genome are annotated and classified and their structures, obtained via experiment or homology models, are provided. All known preferred TF DNA-binding sites obtained from the B1H, DNase I and SELEX methodologies are presented. DNA shape parameters predicted for these sites are obtained from a high throughput server or from crystal structures of protein-DNA complexes where available. An important feature of the database is that all DNA-binding domains and their binding sites are fully annotated in a eukaryote using structural criteria and evolutionary homology. OnTheFly thus provides a comprehensive view of TFs and their binding sites that will be a valuable resource for deciphering non-coding regulatory DNA.

  13. [3H]MK-801 binding sites in post-mortem human frontal cortex.

    PubMed

    Kornhuber, J; Mack-Burkhardt, F; Kornhuber, M E; Riederer, P

    1989-03-29

    The binding of [3H]MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate) was investigated in extensively washed homogenates of post-mortem human frontal cortex. The association of [3H]MK-801 proceeded slowly (t1/2 = 553 min) and reached equilibrium only after a prolonged incubation (greater than 24 h). The dissociation of [3H]MK-801 from the binding site was also slow (t1/2 = 244 min). Glutamate, glycine and magnesium markedly increased the rate of association (t1/2 = 14.8 min) and dissociation (t1/2 = 36.5 min). At equilibrium, the binding was not altered by these substances. Specific binding was linear with protein concentration, was saturable, reversible, stereoselective, heat-labile and was nearly absent in the white matter. Scatchard analysis of the saturation curves obtained at equilibrium indicated that there was a high-affinity (Kd1 1.39 +/- 0.21 nM, Bmax1 0.483 +/- 0.084 pmol/mg protein) and a low-affinity (Kd2 116.25 +/- 50.79 nM, Bmax2 3.251 +/- 0.991 pmol/mg protein) binding site. All competition curves obtained with (+)-MK-801, (-)-MK-801, phencyclidine and ketamine had Hill coefficients of less than unity and were best explained by a two-site model. Thus, our results demonstrate the presence of binding sites for MK-801 in post-mortem human brains and provide evidence for binding site heterogeneity. Furthermore, glutamate, glycine and magnesium accelerate the association and dissociation of [3H]MK-801 to and from its binding sites. The results add support to the hypothesis that MK-801, glutamate, glycine and magnesium all bind to different sites on the NMDA receptor-ion channel complex.

  14. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    PubMed

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive

  15. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report themore » isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to

  16. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    PubMed Central

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Abdool Karim, Salim S.; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.

    2016-01-01

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site

  17. How Force Might Activate Talin's Vinculin Binding Sites: SMD Reveals a Structural Mechanism

    PubMed Central

    Hytönen, Vesa P; Vogel, Viola

    2008-01-01

    Upon cell adhesion, talin physically couples the cytoskeleton via integrins to the extracellular matrix, and subsequent vinculin recruitment is enhanced by locally applied tensile force. Since the vinculin binding (VB) sites are buried in the talin rod under equilibrium conditions, the structural mechanism of how vinculin binding to talin is force-activated remains unknown. Taken together with experimental data, a biphasic vinculin binding model, as derived from steered molecular dynamics, provides high resolution structural insights how tensile mechanical force applied to the talin rod fragment (residues 486–889 constituting helices H1–H12) might activate the VB sites. Fragmentation of the rod into three helix subbundles is prerequisite to the sequential exposure of VB helices to water. Finally, unfolding of a VB helix into a completely stretched polypeptide might inhibit further binding of vinculin. The first events in fracturing the H1–H12 rods of talin1 and talin2 in subbundles are similar. The proposed force-activated α-helix swapping mechanism by which vinculin binding sites in talin rods are exposed works distinctly different from that of other force-activated bonds, including catch bonds. PMID:18282082

  18. Studies on the regulation of the human E1 subunit of the 2-oxoglutarate dehydrogenase complex, including the identification of a novel calcium-binding site.

    PubMed

    Armstrong, Craig T; Anderson, J L Ross; Denton, Richard M

    2014-04-15

    The regulation of the 2-oxoglutarate dehydrogenase complex is central to intramitochondrial energy metabolism. In the present study, the active full-length E1 subunit of the human complex has been expressed and shown to be regulated by Ca2+, adenine nucleotides and NADH, with NADH exerting a major influence on the K0.5 value for Ca2+. We investigated two potential Ca2+-binding sites on E1, which we term site 1 (D114ADLD) and site 2 (E139SDLD). Comparison of sequences from vertebrates with those from Ca2+-insensitive non-vertebrate complexes suggest that site 1 may be the more important. Consistent with this view, a mutated form of E1, D114A, shows a 6-fold decrease in sensitivity for Ca2+, whereas variant ∆site1 (in which the sequence of site 1 is replaced by A114AALA) exhibits an almost complete loss of Ca2+ activation. Variant ∆site2 (in which the sequence is replaced with A139SALA) shows no measurable change in Ca2+ sensitivity. We conclude that site 1, but not site 2, forms part of a regulatory Ca2+-binding site, which is distinct from other previously described Ca2+-binding sites.

  19. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter.

    PubMed

    Means, A L; Slansky, J E; McMahon, S L; Knuth, M W; Farnham, P J

    1992-03-01

    The transcription rate of the dihydrofolate reductase (DHFR) gene increases at the G1/S boundary of the proliferative cell cycle. Through analysis of transiently and stably transfected NIH 3T3 cells, we have now demonstrated that DHFR promoter sequences extending from -270 to +20 are sufficient to confer similar regulation on a reporter gene. Mutation of a protein binding site that spans sequences from -16 to +11 in the DHFR promoter resulted in loss of the transcriptional increase at the G1/S boundary. Purification of an activity from HeLa nuclear extract that binds to this region enriched for a 180-kDa polypeptide (HIP1). Using this HIP1 preparation, we have identified specific positions within the binding site that are critical for efficient protein-DNA interactions. An analysis of association and dissociation rates suggests that bound HIP1 protein can exchange rapidly with free protein. This rapid exchange may facilitate the burst of transcriptional activity from the DHFR promoter at the G1/S boundary.

  20. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter.

    PubMed Central

    Means, A L; Slansky, J E; McMahon, S L; Knuth, M W; Farnham, P J

    1992-01-01

    The transcription rate of the dihydrofolate reductase (DHFR) gene increases at the G1/S boundary of the proliferative cell cycle. Through analysis of transiently and stably transfected NIH 3T3 cells, we have now demonstrated that DHFR promoter sequences extending from -270 to +20 are sufficient to confer similar regulation on a reporter gene. Mutation of a protein binding site that spans sequences from -16 to +11 in the DHFR promoter resulted in loss of the transcriptional increase at the G1/S boundary. Purification of an activity from HeLa nuclear extract that binds to this region enriched for a 180-kDa polypeptide (HIP1). Using this HIP1 preparation, we have identified specific positions within the binding site that are critical for efficient protein-DNA interactions. An analysis of association and dissociation rates suggests that bound HIP1 protein can exchange rapidly with free protein. This rapid exchange may facilitate the burst of transcriptional activity from the DHFR promoter at the G1/S boundary. Images PMID:1545788

  1. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2.

    PubMed

    Subramanian, Nandhitha; Scopelitti, Amanda J; Carland, Jane E; Ryan, Renae M; O'Mara, Megan L; Vandenberg, Robert J

    2016-01-01

    The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10.

  2. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    PubMed

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  3. Shared Midgut Binding Sites for Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac and Cry1Fa Proteins from Bacillus thuringiensis in Two Important Corn Pests, Ostrinia nubilalis and Spodoptera frugiperda

    PubMed Central

    Hernández-Rodríguez, Carmen Sara; Hernández-Martínez, Patricia; Van Rie, Jeroen; Escriche, Baltasar; Ferré, Juan

    2013-01-01

    First generation of insect-protected transgenic corn (Bt-corn) was based on the expression of Cry1Ab or Cry1Fa proteins. Currently, the trend is the combination of two or more genes expressing proteins that bind to different targets. In addition to broadening the spectrum of action, this strategy helps to delay the evolution of resistance in exposed insect populations. One of such examples is the combination of Cry1A.105 with Cry1Fa and Cry2Ab to control O. nubilalis and S. frugiperda. Cry1A.105 is a chimeric protein with domains I and II and the C-terminal half of the protein from Cry1Ac, and domain III almost identical to Cry1Fa. The aim of the present study was to determine whether the chimeric Cry1A.105 has shared binding sites either with Cry1A proteins, with Cry1Fa, or with both, in O. nubilalis and in S. frugiperda. Brush-border membrane vesicles (BBMV) from last instar larval midguts were used in competition binding assays with 125I-labeled Cry1A.105, Cry1Ab, and Cry1Fa, and unlabeled Cry1A.105, Cry1Aa, Cry1Ab, Cry1Ac, Cry1Fa, Cry2Ab and Cry2Ae. The results showed that Cry1A.105, Cry1Ab, Cry1Ac and Cry1Fa competed with high affinity for the same binding sites in both insect species. However, Cry2Ab and Cry2Ae did not compete for the binding sites of Cry1 proteins. Therefore, according to our results, the development of cross-resistance among Cry1Ab/Ac, Cry1A.105, and Cry1Fa proteins is possible in these two insect species if the alteration of shared binding sites occurs. Conversely, cross-resistance between these proteins and Cry2A proteins is very unlikely in such case. PMID:23861865

  4. Binding Sites Analyser (BiSA): Software for Genomic Binding Sites Archiving and Overlap Analysis

    PubMed Central

    Khushi, Matloob; Liddle, Christopher; Clarke, Christine L.; Graham, J. Dinny

    2014-01-01

    Genome-wide mapping of transcription factor binding and histone modification reveals complex patterns of interactions. Identifying overlaps in binding patterns by different factors is a major objective of genomic studies, but existing methods to archive large numbers of datasets in a personalised database lack sophistication and utility. Therefore we have developed transcription factor DNA binding site analyser software (BiSA), for archiving of binding regions and easy identification of overlap with or proximity to other regions of interest. Analysis results can be restricted by chromosome or base pair overlap between regions or maximum distance between binding peaks. BiSA is capable of reporting overlapping regions that share common base pairs; regions that are nearby; regions that are not overlapping; and average region sizes. BiSA can identify genes located near binding regions of interest, genomic features near a gene or locus of interest and statistical significance of overlapping regions can also be reported. Overlapping results can be visualized as Venn diagrams. A major strength of BiSA is that it is supported by a comprehensive database of publicly available transcription factor binding sites and histone modifications, which can be directly compared to user data. The documentation and source code are available on http://bisa.sourceforge.net PMID:24533055

  5. Influence of sulfhydryl sites on metal binding by bacteria

    NASA Astrophysics Data System (ADS)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low

  6. An external sodium ion binding site controls allosteric gating in TRPV1 channels

    PubMed Central

    Jara-Oseguera, Andres; Bae, Chanhyung; Swartz, Kenton J

    2016-01-01

    TRPV1 channels in sensory neurons are integrators of painful stimuli and heat, yet how they integrate diverse stimuli and sense temperature remains elusive. Here, we show that external sodium ions stabilize the TRPV1 channel in a closed state, such that removing the external ion leads to channel activation. In studying the underlying mechanism, we find that the temperature sensors in TRPV1 activate in two steps to favor opening, and that the binding of sodium to an extracellular site exerts allosteric control over temperature-sensor activation and opening of the pore. The binding of a tarantula toxin to the external pore also exerts control over temperature-sensor activation, whereas binding of vanilloids influences temperature-sensitivity by largely affecting the open/closed equilibrium. Our results reveal a fundamental role of the external pore in the allosteric control of TRPV1 channel gating and provide essential constraints for understanding how these channels can be tuned by diverse stimuli. DOI: http://dx.doi.org/10.7554/eLife.13356.001 PMID:26882503

  7. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11

    PubMed Central

    Ngondo-Mbongo, Richard Patryk; Myslinski, Evelyne; Aster, Jon C.; Carbon, Philippe

    2013-01-01

    ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation. PMID:23408857

  8. Identification of an inhibitory Zn2+ binding site on the human glycine receptor α1 subunit

    PubMed Central

    Harvey, Robert J; Thomas, Philip; James, Colin H; Wilderspin, Andrew; Smart, Trevor G

    1999-01-01

    Whole-cell glycine-activated currents were recorded from human embryonic kidney (HEK) cells expressing wild-type and mutant recombinant homomeric glycine receptors (GlyRs) to locate the inhibitory binding site for Zn2+ ions on the human α1 subunit. Glycine-activated currents were potentiated by low concentrations of Zn2+ (<10 μm) and inhibited by higher concentrations (>100 μm) on wild-type α1 subunit GlyRs. Lowering the external pH from 7.4 to 5.4 inhibited the glycine responses in a competitive manner. The inhibition caused by Zn2+ was abolished leaving an overt potentiating effect at 10 μm Zn2+ that was exacerbated at 100 μm Zn2+. The identification of residues involved in the formation of the inhibitory binding site was also assessed using diethylpyrocarbonate (DEPC), which modifies histidines. DEPC (1 mm) abolished Zn2+-induced inhibition and also the potentiation of glycine-activated currents by Zn2+. The reduction in glycine-induced whole-cell currents in the presence of high (100 μm) concentrations of Zn2+ did not increase the rate of glycine receptor desensitisation. Systematic mutation of extracellular histidine residues in the GlyR α1 subunit revealed that mutations H107A or H109A completely abolished inhibition of glycine-gated currents by Zn2+. However, mutation of other external histidines, H210, H215 and H419, failed to prevent inhibition by Zn2+ of glycine-gated currents. Thus, H107 and H109 in the extracellular domain of the human GlyR α1 subunit are major determinants of the inhibitory Zn2+ binding site. An examination of Zn2+ co-ordination in metalloenzymes revealed that the histidine- hydrophobic residue-histidine motif found to be responsible for binding Zn2+ in the human GlyR α1 subunit is also shared by some of these enzymes. Further comparison of the structure and location of this motif with a generic model of the GlyR α1 subunit suggests that H107 and H109 participate in the formation of the inhibitory Zn2+ binding site at the

  9. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins†

    PubMed Central

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.

    2011-01-01

    Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and a R122L/S124A mutant in which electrostatic interactions viewed as essential to fatty acid binding were removed. For wild-type LFABP the results compared favorably with previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, 1H/15N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family. PMID:21226535

  10. Calpha methylation in molecular recognition. Application to substance P and the two neurokinin-1 receptor binding sites.

    PubMed

    Sagan, S; Lequin, O; Frank, F; Convert, O; Ayoub, M; Lavielle, S; Chassaing, G

    2001-05-01

    Two binding sites NK-1M (major, more abundant) and NK-1m (minor) are associated with the neurokinin-1 receptor. For the first time with a bioactive peptide, the Calpha methylation constraint, shown to be a helix stabiliser in model peptides, was systematically used to probe the molecular requirements of NK-1M and NK-1m binding sites and the previously postulated bioactive helical conformation of substance P (SP). Seven Calpha methylated analogues of the undecapeptide SP (from position 5-11) have been assayed for their affinities and their potencies to stimulate second messenger production. The consequences of Calpha methylation on the structure of SP have been analysed by circular dichroism and nuclear magnetic resonance combined with restrained molecular dynamics. The decreased potencies of six out of these seven Calpha methylated SP analogues do not allow the identification of any clear-cut differences in the structural requirements between the two binding sites. Strikingly, the most active analogue, [alphaMeMet5]SP, leads to variable subnanomolar affinity and potency when interacting with the NK-1m binding site. The conformational analyses show that the structural consequences associated with Calpha methylation of SP are sequence dependent. Moreover, a single Calpha methylation is not sufficient by itself to drastically stabilize a helical structure even pre-existing in solution, except when Gly9 is substituted by an alpha-aminoisobutyric acid. Furthermore, Calpha methylation of residues 5 and 6 of SP in the middle of the postulated helix does not stabilize, but decreases (to different extents) the stability of the helical structure previously observed in the 4-8 domain of other potent SP analogues.

  11. Differences in the distribution and characteristics of tachykinin NK1 binding sites between human and guinea pig lung.

    PubMed Central

    Walsh, D A; Salmon, M; Featherstone, R; Wharton, J; Church, M K; Polak, J M

    1994-01-01

    1. The distribution and characteristics of tachykinin NK1 binding sites have been compared in human and guinea pig lung using quantitative in vitro receptor autoradiography with [125I]-Bolton Hunter-labelled substance P ([125I]-BH-SP). In addition, the effects on these sites of ovalbumin sensitization and challenge have been determined in guinea pig lung. 2. [125I]-BH-SP bound specifically and with high affinity to microvascular endothelium in both human and guinea pig lung, but to bronchial smooth muscle and pulmonary artery media in only guinea pig lung. 3. Specific binding of [125I]-BH-SP to guinea pig bronchial smooth muscle was positively correlated with airway diameter in the range 150-800 microns and was less dense in trachea than in main bronchi. 4. [125I]-BH-SP binding was inhibited by tachykinins with rank orders of affinity of SP > NKA > NKB (human microvessels) and SP > NKA = NKB (guinea pig bronchi and pulmonary arteries). NKA displayed a higher affinity for [125I]-BH-SP binding sites in human microvessels than in guinea pig tissues (P < 0.0001), indicating differences in selectivity for tachykinins between human and guinea pig NK1 receptors. 5. In both human and guinea pig lung, [125I]-BH-SP binding was inhibited by the specific tachykinin receptor antagonists FK888 (NK1 selective antagonist) and FK224 (mixed NK1/NK2 antagonist), with FK888 displaying equal affinity to SP and > 500 times higher affinity than FK224. SP, NKA, NKB and FK888 exhibited similar affinities for [125I]-BH-SP binding sites in both guinea pig arteries and bronchi.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 Figure 2 PMID:7534186

  12. Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels*

    PubMed Central

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S.; Dong, Ke

    2016-01-01

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. PMID:26637352

  13. A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1.

    PubMed

    Stewart, James J P

    2016-11-01

    A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol -1 to ±0.1 kcal mol -1 . This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated-an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.

  14. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lummis, S.C.R.; Johnston, G.A.R.; Nicoletti, G.

    1991-01-01

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial ({sup 3}H)diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli ({sup 3}H)diazepam binding are those that are active in displacing ({sup 3}H)benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligandmore » spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed.« less

  15. Site Selective Binding of Zn(ll) ot Metallo-b-Lactamase L1 from Stenotrophomonas Maltophilia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costello,A.; Periyannan, G.; Yang, K.

    2006-01-01

    Extended X-ray absorption fine structure studies of the metallo-{beta}-lactamase L1 from Stenotrophomonas maltophilia containing 1 and 2 equiv of Zn(II) and containing 2 equiv of Zn(II) plus hydrolyzed nitrocefin are presented. The data indicate that the first, catalytically dominant metal ion is bound by L1 at the consensus Zn1 site. The data further suggest that binding of the first metal helps preorganize the ligands for binding of the second metal ion. The di-Zn enzyme displays a well-defined metal-metal interaction at 3.42 Angstroms. Reaction with the {beta}-lactam antibiotic nitrocefin results in a product-bound species, in which the ring-opened lactam rotates inmore » the active site to present the S1 sulfur atom of nitrocefin to one of the metal ions for coordination. The product bridges the two metal ions, with a concomitant lengthening of the Zn-Zn interaction to 3.62 Angstroms.« less

  16. Binding site stoichiometry and the effects of phosphorylation on human α1 homomeric glycine receptors

    PubMed Central

    Gentet, Luc J; Clements, John D

    2002-01-01

    The kinetic properties of the human α1 homomeric glycine receptor were investigated. Receptors were expressed in HEK 293 cells, and glycine was applied to outside-out membrane patches with sub-millisecond solution exchange. The activation time course of the glycine response was used to investigate receptor stoichiometry. The unbinding of three strychnine molecules and the cooperative binding of two glycine molecules were required to activate the channel. The effects of phosphorylation on glycine receptor kinetics were investigated by pretreating cells with phosphorylators or with phosphatases. Phosphorylation accelerated desensitisation, but slowed deactivation and recovery from desensitisation. A chemical-kinetic model was developed that reproduced the experimental observations. The model suggests that only three binding sites on the glycine channel are functional, while the remaining two binding sites are ‘silent’, possibly due to strong negative cooperativity. PMID:12356883

  17. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen P.

    2006-10-17

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  18. RNA binding protein and binding site useful for expression of recombinant molecules

    DOEpatents

    Mayfield, Stephen

    2000-01-01

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  19. AtSPX1 affects the AtPHR1-DNA-binding equilibrium by binding monomeric AtPHR1 in solution.

    PubMed

    Qi, Wanjun; Manfield, Iain W; Muench, Stephen P; Baker, Alison

    2017-10-23

    Phosphorus is an essential macronutrient for plant growth and is deficient in ∼50% of agricultural soils. The transcription factor phosphate starvation response 1 (PHR1) plays a central role in regulating the expression of a subset of phosphate starvation-induced (PSI) genes through binding to a cis -acting DNA element termed P1BS (PHR1-binding sequences). In Arabidopsis and rice, activity of AtPHR1/OsPHR2 is regulated in part by their downstream target SPX ( S yg1, P ho81, X pr1) proteins through protein-protein interaction. Here, we provide kinetic and affinity data for interaction between AtPHR1 and P1BS sites. Using surface plasmon resonance, a tandem P1BS sequence showed ∼50-fold higher affinity for MBPAtdPHR1 (a fusion protein comprising the DNA-binding domain and coiled-coil domain of AtPHR1 fused to maltose-binding protein) than a single site. The affinity difference was largely reflected in a much slower dissociation rate from the 2× P1BS-binding site, suggesting an important role for protein co-operativity. Injection of AtSPX1 in the presence of phosphate or inositol hexakisphosphate (InsP6) failed to alter the MBPAtdPHR1-P1BS dissociation rate, while pre-mixing of these two proteins in the presence of either 5 mM Pi or 500 µM InsP6 resulted in a much lower DNA-binding signal from MBPAtdPHR1. These data suggest that, in the Pi-restored condition, AtSPX1 can bind to monomeric AtPHR1 in solution and therefore regulate PSI gene expression by tuning the AtPHR1-DNA-binding equilibrium. This Pi-dependent regulation of AtPHR1-DNA-binding equilibrium also generates a negative feedback loop on the expression of AtSPX1 itself, providing a tight control of PSI gene expression. © 2017 The Author(s).

  20. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    PubMed

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  1. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    PubMed Central

    Harada, Yoichiro; Li, Hua; Li, Huilin; Lennarz, William J.

    2009-01-01

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of ≈1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings, we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes. PMID:19365066

  2. Bioinformatic and experimental survey of 14-3-3-binding sites

    PubMed Central

    Johnson, Catherine; Crowther, Sandra; Stafford, Margaret J.; Campbell, David G.; Toth, Rachel; MacKintosh, Carol

    2010-01-01

    More than 200 phosphorylated 14-3-3-binding sites in the literature were analysed to define 14-3-3 specificities, identify relevant protein kinases, and give insights into how cellular 14-3-3/phosphoprotein networks work. Mode I RXX(pS/pT)XP motifs dominate, although the +2 proline residue occurs in less than half, and LX(R/K)SX(pS/pT)XP is prominent in plant 14-3-3-binding sites. Proline at +1 is rarely reported, and such motifs did not stand up to experimental reanalysis of human Ndel1. Instead, we discovered that 14-3-3 interacts with two residues that are phosphorylated by basophilic kinases and located in the DISC1 (disrupted-in-schizophrenia 1)-interacting region of Ndel1 that is implicated in cognitive disorders. These data conform with the general findings that there are different subtypes of 14-3-3-binding sites that overlap with the specificities of different basophilic AGC (protein kinase A/protein kinase G/protein kinase C family) and CaMK (Ca2+/calmodulin-dependent protein kinase) protein kinases, and a 14-3-3 dimer often engages with two tandem phosphorylated sites, which is a configuration with special signalling, mechanical and evolutionary properties. Thus 14-3-3 dimers can be digital logic gates that integrate more than one input to generate an action, and coincidence detectors when the two binding sites are phosphorylated by different protein kinases. Paired sites are generally located within disordered regions and/or straddle either side of functional domains, indicating how 14-3-3 dimers modulate the conformations and/or interactions of their targets. Finally, 14-3-3 proteins bind to members of several multi-protein families. Two 14-3-3-binding sites are conserved across the class IIa histone deacetylases, whereas other protein families display differential regulation by 14-3-3s. We speculate that 14-3-3 dimers may have contributed to the evolution of such families, tailoring regulatory inputs to different physiological demands. PMID:20141511

  3. VKORC1 and VKORC1L1 have distinctly different oral anticoagulant dose-response characteristics and binding sites

    PubMed Central

    Czogalla, Katrin J.; Liphardt, Kerstin; Höning, Klara; Hornung, Veit; Biswas, Arijit; Watzka, Matthias

    2018-01-01

    Vitamin K reduction is catalyzed by 2 enzymes in vitro: the vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) and its isozyme VKORC1-like1 (VKORC1L1). In vivo, VKORC1 reduces vitamin K to sustain γ-carboxylation of vitamin K-dependent proteins, including coagulation factors. Inhibition of VKORC1 by oral anticoagulants (OACs) is clinically used in therapy and in prevention of thrombosis. However, OACs also inhibit VKORC1L1, which was previously shown to play a role in intracellular redox homeostasis in vitro. Here, we report data for the first time on specific inhibition of both VKOR enzymes for various OACs and rodenticides examined in a cell-based assay. Effects on endogenous VKORC1 and VKORC1L1 were independently investigated in genetically engineered HEK 293T cells that were knocked out for the respective genes by CRISPR/Cas9 technology. In general, dose-responses for 4-hydroxycoumarins and 1,3-indandiones were enzyme-dependent, with lower susceptibility for VKORC1L1 compared with VKORC1. In contrast, rodenticides exhibited nearly identical dose-responses for both enzymes. To explain the distinct inhibition pattern, we performed in silico modeling suggesting different warfarin binding sites for VKORC1 and VKORC1L1. We identified arginine residues at positions 38, 42, and 68 in the endoplasmatic reticulum luminal loop of VKORC1L1 responsible for charge-stabilized warfarin binding, resulting in a binding pocket that is diametrically opposite to that of VKORC1. In conclusion, our findings provide insight into structural and molecular drug binding on VKORC1, and especially on VKORC1L1. PMID:29581108

  4. Characterization of the catalytic and noncatalytic ADP binding sites of the F1-ATPase from the thermophilic bacterium, PS3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, M.; Allison, W.S.

    1986-05-05

    Two classes of ADP binding sites at 20 degrees C have been characterized in the F1-ATPase from the thermophilic bacterium, PS3 (TF1). One class is comprised of three sites which saturate with (/sup 3/H)ADP in less than 10 s with a Kd of 10 microM which, once filled, exchange rapidly with medium ADP. The binding of ADP to these sites is dependent on Mg2+. (/sup 3/H)ADP bound to these sites is removed by repeated gel filtrations on centrifuge columns equilibrated with ADP free medium. The other class is comprised of a single site which saturates with (/sup 3/H)ADP in 30more » min with a Kd of 30 microM. (/sup 3/H)ADP bound to this site does not exchange with medium ADP nor does it dissociate on gel filtration through centrifuge columns equilibrated with ADP free medium. Binding of (/sup 3/H)ADP to this site is weaker in the presence of Mg2+ where the Kd for ADP is about 100 microM. (/sup 3/H)ADP dissociated from this site when ATP plus Mg2+ was added to the complex while it remained bound in the presence of ATP alone or in the presence of ADP, Pi, or ADP plus Pi with or without added Mg2+. Significant amounts of ADP in the 1:1 TF1.ADP complex were converted to ATP in the presence of Pi, Mg2+, and 50% dimethyl sulfoxide. Enzyme-bound ATP synthesis was abolished by chemical modification of a specific glutamic acid residue by dicyclohexylcarbodiimide, but not by modification of a specific tyrosine residue with 7-chloro-4-nitrobenzofurazan. Difference circular dichroism spectra revealed that the three Mg2+ -dependent, high affinity ADP binding sites that were not stable to gel filtration were on the alpha subunits and that the single ADP binding site that was stable to gel filtration was on one of the three beta subunits.« less

  5. Characterization of the [125I]-neurokinin A binding site in the circular muscle of human colon

    PubMed Central

    Warner, Fiona J; Comis, Alfio; Miller, Robert C; Burcher, Elizabeth

    1999-01-01

    Neurokinin A (NKA) is a potent contractile agonist of human colon circular muscle. These responses are mediated predominantly through tachykinin NK2 receptors. In the present study, the NK2 receptor radioligand [125I]-NKA has been used to characterize binding sites in this tissue, using tachykinin agonists and antagonists. 125INKA labelled a single, high affinity binding site. Specific binding (95% of total binding) of [125I]-NKA was saturable (KD 0.47±0.05 nM), of high capacity (Bmax 2.1±0.1 fmol mg−1 wet weight tissue) and reversible (kinetically derived KD 0.36±0.07 nM). The rank order of agonists competing for the [125I]-NKA binding site was neuropeptide γ (NPγ)≥NKA≥[Lys5,MeLeu9,Nle10]NKA (4–10) (NK2 agonist)>>substance P (SP)>neurokinin B (NKB)≥[Pro9]SP (NK1 agonist)>>senktide (NK3 agonist), indicating binding to an NK2 site. The nonpeptide selective NK2 antagonist SR48968 showed higher affinity for the [125I]-NKA site than selective peptide NK2 antagonists. The rank order of potency for NK2 antagonists was SR48968≥MEN11420>GR94800≥MEN10627>MEN10376≥R396. The NK1 antagonist SR140333 was a weak competitor. The competition curve for SP could be resolved into two sites. When experiments were repeated in the presence of SR140333 (0.1 μM), the curve for SP became monophasic and showed a significant shift to the right, whereas curves to NKA and NKB were unaffected. In conclusion, binding of the radioligand [125I]-NKA to membranes from circular muscle is predominantly to the NK2 receptor. There may be a small component of binding to the NK1 receptor. The NK2 receptor mediates circular muscle contraction, whereas the role of the NK1 receptor in circular muscle is unclear. PMID:10455255

  6. High-affinity cannabinoid binding site in brain: A possible marijuana receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nye, J.S.

    The mechanism by which delta{sup 9} tetrahydrocannabinol (delta{sup 9}THC), the major psychoactive component of marijuana or hashish, produces its potent psychological and physiological effects is unknown. To find receptor binding sites for THC, we designed a water-soluble analog for use as a radioligand. 5{prime}-Trimethylammonium-delta{sup 8}THC (TMA) is a positively charged analog of delta-{sup 8}THC modified on the 5{prime} carbon, a portion of the molecule not important for its psychoactivity. We have studied the binding of ({sup 3}H)-5{prime}-trimethylammonium-delta-{sup 8}THC (({sup 3}H)TMA) to rat neuronal membranes. ({sup 3}H)TMA binds saturably and reversibly to brain membranes with high affinity to apparently one classmore » of sites. Highest binding site density occurs in brain, but several peripheral organs also display specific binding. Detergent solubilizes the sites without affecting their pharmacologial properties. Molecular sieve chromatography reveals a bimodal peak of ({sup 3}H)TMA binding activity of approximately 60,000 daltons apparent molecular weight.« less

  7. Identification of a 3rd Na+ Binding Site of the Glycine Transporter, GlyT2

    PubMed Central

    Subramanian, Nandhitha; Scopelitti, Amanda J.; Carland, Jane E.; Ryan, Renae M.; O’Mara, Megan L.; Vandenberg, Robert J.

    2016-01-01

    The Na+/Cl- dependent glycine transporters GlyT1 and GlyT2 regulate synaptic glycine concentrations. Glycine transport by GlyT2 is coupled to the co-transport of three Na+ ions, whereas transport by GlyT1 is coupled to the co-transport of only two Na+ ions. These differences in ion-flux coupling determine their respective concentrating capacities and have a direct bearing on their functional roles in synaptic transmission. The crystal structures of the closely related bacterial Na+-dependent leucine transporter, LeuTAa, and the Drosophila dopamine transporter, dDAT, have allowed prediction of two Na+ binding sites in GlyT2, but the physical location of the third Na+ site in GlyT2 is unknown. A bacterial betaine transporter, BetP, has also been crystallized and shows structural similarity to LeuTAa. Although betaine transport by BetP is coupled to the co-transport of two Na+ ions, the first Na+ site is not conserved between BetP and LeuTAa, the so called Na1' site. We hypothesized that the third Na+ binding site (Na3 site) of GlyT2 corresponds to the BetP Na1' binding site. To identify the Na3 binding site of GlyT2, we performed molecular dynamics (MD) simulations. Surprisingly, a Na+ placed at the location consistent with the Na1' site of BetP spontaneously dissociated from its initial location and bound instead to a novel Na3 site. Using a combination of MD simulations of a comparative model of GlyT2 together with an analysis of the functional properties of wild type and mutant GlyTs we have identified an electrostatically favorable novel third Na+ binding site in GlyT2 formed by Trp263 and Met276 in TM3, Ala481 in TM6 and Glu648 in TM10. PMID:27337045

  8. Trench-shaped binding sites promote multiple classes of interactions between collagen and the adherence receptors, alpha(1)beta(1) integrin and Staphylococcus aureus cna MSCRAMM.

    PubMed

    Rich, R L; Deivanayagam, C C; Owens, R T; Carson, M; Höök, A; Moore, D; Symersky, J; Yang, V W; Narayana, S V; Höök, M

    1999-08-27

    Most mammalian cells and some pathogenic bacteria are capable of adhering to collagenous substrates in processes mediated by specific cell surface adherence molecules. Crystal structures of collagen-binding regions of the human integrin alpha(2)beta(1) and a Staphylococcus aureus adhesin reveal a "trench" on the surface of both of these proteins. This trench can accommodate a collagen triple-helical structure and presumably represents the ligand-binding site (Emsley, J., King, S. L., Bergelson, J. M., and Liddington, R. C. (1997) J. Biol. Chem. 272, 28512-28517; Symersky, J., Patti, J. M., Carson, M., House-Pompeo, K., Teale, M., Moore, D., Jin, L., Schneider, A., DeLucas, L. J., Höök, M., and Narayana, S. V. L. (1997) Nat. Struct. Biol. 4, 833-838). We report here the crystal structure of the alpha subunit I domain from the alpha(1)beta(1) integrin. This collagen-binding protein also contains a trench on one face in which the collagen triple helix may be docked. Furthermore, we compare the collagen-binding mechanisms of the human alpha(1) integrin I domain and the A domain from the S. aureus collagen adhesin, Cna. Although the S. aureus and human proteins have unrelated amino acid sequences, secondary structure composition, and cation requirements for effective ligand binding, both proteins bind at multiple sites within one collagen molecule, with the sites in collagen varying in their affinity for the adherence molecule. We propose that (i) these evolutionarily dissimilar adherence proteins recognize collagen via similar mechanisms, (ii) the multisite, multiclass protein/ligand interactions observed in these two systems result from a binding-site trench, and (iii) this unusual binding mechanism may be thematic for proteins binding extended, rigid ligands that contain repeating structural motifs.

  9. Preorganization of molecular binding sites in designed diiron proteins.

    PubMed

    Maglio, Ornella; Nastri, Flavia; Pavone, Vincenzo; Lombardi, Angela; DeGrado, William F

    2003-04-01

    De novo protein design provides an attractive approach to critically test the features that are required for metalloprotein structure and function. Previously we designed and crystallographically characterized an idealized dimeric model for the four-helix bundle class of diiron and dimanganese proteins [Dueferri 1 (DF1)]. Although the protein bound metal ions in the expected manner, access to its active site was blocked by large bulky hydrophobic residues. Subsequently, a substrate-access channel was introduced proximal to the metal-binding center, resulting in a protein with properties more closely resembling those of natural enzymes. Here we delineate the energetic and structural consequences associated with the introduction of these binding sites. To determine the extent to which the binding site was preorganized in the absence of metal ions, the apo structure of DF1 in solution was solved by NMR and compared with the crystal structure of the di-Zn(II) derivative. The overall fold of the apo protein was highly similar to that of the di-Zn(II) derivative, although there was a rotation of one of the helices. We also examined the thermodynamic consequences associated with building a small molecule-binding site within the protein. The protein exists in an equilibrium between folded dimers and unfolded monomers. DF1 is a highly stable protein (K(diss) = 0.001 fM), but the dissociation constant increases to 0.6 nM (deltadeltaG = 5.4 kcalmol monomer) as the active-site cavity is increased to accommodate small molecules.

  10. B cell recognition of the conserved HIV-1 co-receptor binding site is altered by endogenous primate CD4.

    PubMed

    Forsell, Mattias N E; Dey, Barna; Mörner, Andreas; Svehla, Krisha; O'dell, Sijy; Högerkorp, Carl-Magnus; Voss, Gerald; Thorstensson, Rigmor; Shaw, George M; Mascola, John R; Karlsson Hedestam, Gunilla B; Wyatt, Richard T

    2008-10-03

    The surface HIV-1 exterior envelope glycoprotein, gp120, binds to CD4 on the target cell surface to induce the co-receptor binding site on gp120 as the initial step in the entry process. The binding site is comprised of a highly conserved region on the gp120 core, as well as elements of the third variable region (V3). Antibodies against the co-receptor binding site are abundantly elicited during natural infection of humans, but the mechanism of elicitation has remained undefined. In this study, we investigate the requirements for elicitation of co-receptor binding site antibodies by inoculating rabbits, monkeys and human-CD4 transgenic (huCD4) rabbits with envelope glycoprotein (Env) trimers possessing high affinity for primate CD4. A cross-species comparison of the antibody responses showed that similar HIV-1 neutralization breadth was elicited by Env trimers in monkeys relative to wild-type (WT) rabbits. In contrast, antibodies against the co-receptor site on gp120 were elicited only in monkeys and huCD4 rabbits, but not in the WT rabbits. This was supported by the detection of high-titer co-receptor antibodies in all sera from a set derived from human volunteers inoculated with recombinant gp120. These findings strongly suggest that complexes between Env and (high-affinity) primate CD4 formed in vivo are responsible for the elicitation of the co-receptor-site-directed antibodies. They also imply that the naïve B cell receptor repertoire does not recognize the gp120 co-receptor site in the absence of CD4 and illustrate that conformational stabilization, imparted by primary receptor interaction, can alter the immunogenicity of a type 1 viral membrane protein.

  11. An alternate binding site for PPARγ ligands

    PubMed Central

    Hughes, Travis S.; Giri, Pankaj Kumar; de Vera, Ian Mitchelle S.; Marciano, David P.; Kuruvilla, Dana S.; Shin, Youseung; Blayo, Anne-Laure; Kamenecka, Theodore M.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.

    2014-01-01

    PPARγ is a target for insulin sensitizing drugs such as glitazones, which improve plasma glucose maintenance in patients with diabetes. Synthetic ligands have been designed to mimic endogenous ligand binding to a canonical ligand-binding pocket to hyperactivate PPARγ. Here we reveal that synthetic PPARγ ligands also bind to an alternate site, leading to unique receptor conformational changes that impact coregulator binding, transactivation and target gene expression. Using structure-function studies we show that alternate site binding occurs at pharmacologically relevant ligand concentrations, and is neither blocked by covalently bound synthetic antagonists nor by endogenous ligands indicating non-overlapping binding with the canonical pocket. Alternate site binding likely contributes to PPARγ hyperactivation in vivo, perhaps explaining why PPARγ full and partial or weak agonists display similar adverse effects. These findings expand our understanding of PPARγ activation by ligands and suggest that allosteric modulators could be designed to fine tune PPARγ activity without competing with endogenous ligands. PMID:24705063

  12. Alcohol binding in the C1 (C1A + C1B) domain of protein kinase C epsilon

    PubMed Central

    Pany, Satyabrata; Das, Joydip

    2015-01-01

    Background Alcohol regulates the expression and function of protein kinase C epsilon (PKCε). In a previous study we identified an alcohol binding site in the C1B, one of the twin C1 subdomains of PKCε. Methods In this study, we investigated alcohol binding in the entire C1 domain (combined C1A and C1B) of PKCε. Fluorescent phorbol ester, SAPD and fluorescent diacylglycerol (DAG) analog, dansyl-DAG were used to study the effect of ethanol, butanol, and octanol on the ligand binding using fluorescence resonance energy transfer (FRET). To identify alcohol binding site(s), PKCεC1 was photolabeled with 3-azibutanol and 3-azioctanol, and analyzed by mass spectrometry. The effects of alcohols and the azialcohols on PKCε were studied in NG108-15 cells. Results In the presence of alcohol, SAPD and dansyl-DAG showed different extent of FRET, indicating differential effects of alcohol on the C1A and C1B subdomains. Effects of alcohols and azialcohols on PKCε in NG108-15 cells were comparable. Azialcohols labeled Tyr-176 of C1A and Tyr-250 of C1B. Inspection of the model structure of PKCεC1 reveals that these residues are 40 Å apart from each other indicating that these residues form two different alcohol binding sites. Conclusions The present results provide evidence for the presence of multiple alcohol-binding sites on PKCε and underscore the importance of targeting this PKC isoform in developing alcohol antagonists. PMID:26210390

  13. ATP binding at noncatalytic sites of soluble chloroplast F1-ATPase is required for expression of the enzyme activity.

    PubMed

    Milgrom, Y M; Ehler, L L; Boyer, P D

    1990-11-05

    The F1-ATPase from chloroplasts (CF1) lacks catalytic capacity for ATP hydrolysis if ATP is not bound at noncatalytic sites. CF1 heat activated in the presence of ADP, with less than one ADP and no ATP at non-catalytic sites, shows a pronounced lag in the onset of ATP hydrolysis after exposure to 5-20 microM ATP. The onset of activity correlates well with the binding of ATP at the last two of the three noncatalytic sites. The dependence of activity on the presence of ATP at non-catalytic sites is shown at relatively low or high free Mg2+ concentrations, with or without bicarbonate as an activating anion, and when the binding of ATP at noncatalytic sites is slowed 3-4-fold by sulfate. The latent CF1 activated by dithiothreitol also requires ATP at noncatalytic sites for ATPase activity. A similar requirement by other F1-ATPases and by ATP synthases seems plausible.

  14. Evidence for Dual Binding Sites for 1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) in Insect Sodium Channels.

    PubMed

    Du, Yuzhe; Nomura, Yoshiko; Zhorov, Boris S; Dong, Ke

    2016-02-26

    1,1,1-Trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), the first organochlorine insecticide, and pyrethroid insecticides are sodium channel agonists. Although the use of DDT is banned in most of the world due to its detrimental impact on the ecosystem, indoor residual spraying of DDT is still recommended for malaria control in Africa. Development of resistance to DDT and pyrethroids is a serious global obstacle for managing disease vectors. Mapping DDT binding sites is necessary for understanding mechanisms of resistance and modulation of sodium channels by structurally different ligands. The pioneering model of the housefly sodium channel visualized the first receptor for pyrethroids, PyR1, in the II/III domain interface and suggested that DDT binds within PyR1. Previously, we proposed the second pyrethroid receptor, PyR2, at the I/II domain interface. However, whether DDT binds to both pyrethroid receptor sites remains unknown. Here, using computational docking of DDT into the Kv1.2-based mosquito sodium channel model, we predict that two DDT molecules can bind simultaneously within PyR1 and PyR2. The bulky trichloromethyl group of each DDT molecule fits snugly between four helices in the bent domain interface, whereas two p-chlorophenyl rings extend into two wings of the interface. Model-driven mutagenesis and electrophysiological analysis confirmed these propositions and revealed 10 previously unknown DDT-sensing residues within PyR1 and PyR2. Our study proposes a dual DDT-receptor model and provides a structural background for rational development of new insecticides. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Mapping the UDP-Glucuronic Acid Binding Site in UDP-Glucuronosyltransferase-1 A10 by Homology-based Modeling: Confirmation with Biochemical Evidence†

    PubMed Central

    Banerjee, Rajat; Pennington, Matthew W.; Garza, Amanda; Owens, Ida S.

    2008-01-01

    The UDP-glucuronosyltransferase (UGT) isozyme system is critical for protecting the body against endogenous and exogenous chemicals by linking glucuronic acid donated by UDP-glucuronic acid to a lipophilic acceptor substrate. UGTs convert metabolites, dietary constituents and environmental toxicants to highly excretable glucuronides. Because of difficulties associated with purifying endoplasmic reticulum-bound UGTs for structural studies, we carried out homology-based computer modeling to aid analysis. The search found structural homology in Escherichia coli UDP-galactose 4-epimerase. Consistent with predicted similarities involving the common UDP-moiety in substrates, UDP-glucose and UDP-hexanol amine caused competitive inhibition by Lineweaver-Burk plots. Among predicted binding sites N292, K314, K315 and K404 in UGT1A10, two informative sets of mutants K314R/Q/A/E /G and K404R/E had null activities or 2.7-fold higher/50% less activity, respectively. Scatchard analysis of binding data of affinity-ligand, 5-azido-uridine-[β-32P]-diphosphoglucuronic acid, to purified UGT1A10-His or UGT1A7-His revealed high and low affinity binding sites. 2-Nitro 5-thiocyanobenzoic acid-digested UGT1A10-His bound with radiolabeled affinity-ligand revealed an 11.3- and 14.3-kDa peptide associated with K314 and K404, respectively, in a discontinuous SDS-PAGE system. Similar treatment of 1A10His-K314A bound with the ligand lacked both peptides; 1A10-HisK404R- and 1A10-HisK404E showed 1.3-fold greater- and 50% less-label in the 14.3-kDa peptide, respectively, compared to 1A10-His without affecting the 11.3-kDa peptide. Scatchard analysis of binding data of affinity-ligand to 1A10His-K404R and -K404E showed a 6-fold reduction and a large increase in Kd, respectively. Our results indicate: K314 and K404 are required UDP-glcA binding sites in 1A10, that K404 controls activity and high affinity sites and that K314 and K404 are strictly conserved in 70 aligned UGTs, except for S321

  16. Oligosaccharyltransferase directly binds to ribosome at a location near the translocon-binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harada, Y.; Li, H.; Li, Hua

    2009-04-28

    Oligosaccharyltransferase (OT) transfers high mannose-type glycans to the nascent polypeptides that are translated by the membrane-bound ribosome and translocated into the lumen of the endoplasmic reticulum through the Sec61 translocon complex. In this article, we show that purified ribosomes and OT can form a binary complex with a stoichiometry of {approx}1 to 1 in the presence of detergent. We present evidence that OT may bind to the large ribosomal subunit near the site where nascent polypeptides exit. We further show that OT and the Sec61 complex can simultaneously bind to ribosomes in vitro. Based on existing data and our findings,more » we propose that cotranslational translocation and N-glycosylation of nascent polypeptides are mediated by a ternary supramolecular complex consisting of OT, the Sec61 complex, and ribosomes.« less

  17. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain.

    PubMed

    Shengjuler, Djoshkun; Chan, Yan Mei; Sun, Simou; Moustafa, Ibrahim M; Li, Zhen-Lu; Gohara, David W; Buck, Matthias; Cremer, Paul S; Boehr, David D; Cameron, Craig E

    2017-12-05

    Some viruses use phosphatidylinositol phosphate (PIP) to mark membranes used for genome replication or virion assembly. PIP-binding motifs of cellular proteins do not exist in viral proteins. Molecular-docking simulations revealed a putative site of PIP binding to poliovirus (PV) 3C protein that was validated using nuclear magnetic resonance spectroscopy. The PIP-binding site was located on a highly dynamic α helix, which also functions in RNA binding. Broad PIP-binding activity was observed in solution using a fluorescence polarization assay or in the context of a lipid bilayer using an on-chip, fluorescence assay. All-atom molecular dynamics simulations of the 3C protein-membrane interface revealed PIP clustering and perhaps PIP-dependent conformations. PIP clustering was mediated by interaction with residues that interact with the RNA phosphodiester backbone. We conclude that 3C binding to membranes will be determined by PIP abundance. We suggest that the duality of function observed for 3C may extend to RNA-binding proteins of other viruses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Impact of disruption of secondary binding site S2 on dopamine transporter function.

    PubMed

    Zhen, Juan; Reith, Maarten E A

    2016-09-01

    The structures of the leucine transporter, drosophila dopamine transporter, and human serotonin transporter show a secondary binding site (designated S2 ) for drugs and substrate in the extracellular vestibule toward the membrane exterior in relation to the primary substrate recognition site (S1 ). The present experiments are aimed at disrupting S2 by mutating Asp476 and Ile159 to Ala. Both mutants displayed a profound decrease in [(3) H]DA uptake compared with wild-type associated with a reduced turnover rate kcat . This was not caused by a conformational bias as the mutants responded to Zn(2+) (10 μM) similarly as WT. The dopamine transporters with either the D476A or I159A mutation both displayed a higher Ki for dopamine for the inhibition of [3H](-)-2-β-carbomethoxy-3-β-(4-fluorophenyl)tropane binding than did the WT transporter, in accordance with an allosteric interaction between the S1 and S2 sites. The results provide evidence in favor of a general applicability of the two-site allosteric model of the Javitch/Weinstein group from LeuT to dopamine transporter and possibly other monoamine transporters. X-ray structures of transporters closely related to the dopamine (DA) transporter show a secondary binding site S2 in the extracellular vestibule proximal to the primary binding site S1 which is closely linked to one of the Na(+) binding sites. This work examines the relationship between S2 and S1 sites. We found that S2 site impairment severely reduced DA transport and allosterically reduced S1 site affinity for the cocaine analog [(3) H]CFT. Our results are the first to lend direct support for the application of the two-site allosteric model, advanced for bacterial LeuT, to the human DA transporter. The model states that, after binding of the first DA molecule (DA1 ) to the primary S1 site (along with Na(+) ), binding of a second DA (DA2 ) to the S2 site triggers, through an allosteric interaction, the release of DA1 and Na(+) into the cytoplasm. © 2016

  19. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites.

    PubMed

    Jenal, Mathias; Elkon, Ran; Loayza-Puch, Fabricio; van Haaften, Gijs; Kühn, Uwe; Menzies, Fiona M; Oude Vrielink, Joachim A F; Bos, Arnold J; Drost, Jarno; Rooijers, Koos; Rubinsztein, David C; Agami, Reuven

    2012-04-27

    Alternative cleavage and polyadenylation (APA) is emerging as an important layer of gene regulation. Factors controlling APA are largely unknown. We developed a reporter-based RNAi screen for APA and identified PABPN1 as a regulator of this process. Genome-wide analysis of APA in human cells showed that loss of PABPN1 resulted in extensive 3' untranslated region shortening. Messenger RNA transcription, stability analyses, and in vitro cleavage assays indicated enhanced usage of proximal cleavage sites (CSs) as the underlying mechanism. Using Cyclin D1 as a test case, we demonstrated that enhanced usage of proximal CSs compromises microRNA-mediated repression. Triplet-repeat expansion in PABPN1 (trePABPN1) causes autosomal-dominant oculopharyngeal muscular dystrophy (OPMD). The expression of trePABPN1 in both a mouse model of OPMD and human cells elicited broad induction of proximal CS usage, linked to binding to endogenous PABPN1 and its sequestration in nuclear aggregates. Our results elucidate a novel function for PABPN1 as a suppressor of APA. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. The spacing between adjacent binding sites in the family of repeats affects the functions of Epstein-Barr nuclear antigen 1 in transcription activation and stable plasmid maintenance.

    PubMed

    Hebner, Christy; Lasanen, Julie; Battle, Scott; Aiyar, Ashok

    2003-07-05

    Epstein-Barr virus (EBV) and the closely related Herpesvirus papio (HVP) are stably replicated as episomes in proliferating latently infected cells. Maintenance and partitioning of these viral plasmids requires a viral sequence in cis, termed the family of repeats (FR), that is bound by a viral protein, Epstein-Barr nuclear antigen 1 (EBNA1). Upon binding FR, EBNA1 maintains viral genomes in proliferating cells and activates transcription from viral promoters required for immortalization. FR from either virus encodes multiple binding sites for the viral maintenance protein, EBNA1, with the FR from the prototypic B95-8 strain of EBV containing 20 binding sites, and FR from HVP containing 8 binding sites. In addition to differences in the number of EBNA1-binding sites, adjacent binding sites in the EBV FR are typically separated by 14 base pairs (bp), but are separated by 10 bp in HVP. We tested whether the number of binding sites, as well as the distance between adjacent binding sites, affects the function of EBNA1 in transcription activation or plasmid maintenance. Our results indicate that EBNA1 activates transcription more efficiently when adjacent binding sites are separated by 10 bp, the spacing observed in HVP. In contrast, using two separate assays, we demonstrate that plasmid maintenance is greatly augmented when adjacent EBNA1-binding sites are separated by 14 bp, and therefore, presumably lie on the same face of the DNA double helix. These results provide indication that the functions of EBNA1 in transcription activation and plasmid maintenance are separable.

  1. Facilitated dissociation of transcription factors from single DNA binding sites

    PubMed Central

    Kamar, Ramsey I.; Banigan, Edward J.; Erbas, Aykut; Giuntoli, Rebecca D.; Olvera de la Cruz, Monica; Johnson, Reid C.; Marko, John F.

    2017-01-01

    The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate ∼1×104 M−1s−1, establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap. PMID:28364020

  2. Solubilization and characterization of haloperidol-sensitive (+)-( sup 3 H)SKF-10,047 binding sites (sigma sites) from rat liver membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCann, D.J.; Su, T.P.

    1991-05-01

    The zwitterionic detergent 3-((3-cholamidopropyl)dimethylamino)-1-propanesulfonate (CHAPS) produced optimal solubilization of (+)-({sup 3}H)SKF-10,047 binding sites from rat liver membranes at a concentration of 0.2%, well below the critical micellular concentration of the detergent. The pharmacological selectivity of the liver (+)-({sup 3}H)SKF-10,047 binding sites corresponds to that of sigma sites from rat and guinea pig brain. When the affinities of 18 different drugs at (+)-({sup 3}H)SKF-10,047 binding sites in membranes and solubilized preparations were compared, a correlation coefficient of 0.99 and a slope of 1.03 were obtained, indicating that the pharmacological selectivity of rat liver sigma sites is retained after solubilization. In addition,more » the binding of 20 nM ({sup 3}H)progesterone to solubilized rat liver preparations was found to exhibit a pharmacological selectivity appropriate for sigma sites. A stimulatory effect of phenytoin on (+)-({sup 3}H)SKF-10,047 binding to sigma sites persisted after solubilization. When the solubilized preparation was subjected to molecular sizing chromatography, a single peak exhibiting specific (+)-({sup 3}H)SKF-10,047 binding was obtained. The binding activity of this peak was stimulated symmetrically when assays were performed in the presence of 300 microM phenytoin. The molecular weight of the CHAPS-solubilized sigma site complex was estimated to be 450,000 daltons. After solubilization with CHAPS, rat liver sigma sites were enriched to 12 pmol/mg of protein. The present results demonstrate a successful solubilization of sigma sites from rat liver membranes and provide direct evidence that the gonadal steroid progesterone binds to sigma sites. The results also suggest that the anticonvulsant phenytoin binds to an associated allosteric site on the sigma site complex.« less

  3. Acceleration of Binding Site Comparisons by Graph Partitioning.

    PubMed

    Krotzky, Timo; Klebe, Gerhard

    2015-08-01

    The comparison of protein binding sites is a prominent task in computational chemistry and has been studied in many different ways. For the automatic detection and comparison of putative binding cavities the Cavbase system has been developed which uses a coarse-grained set of pseudocenters to represent the physicochemical properties of a binding site and employs a graph-based procedure to calculate similarities between two binding sites. However, the comparison of two graphs is computationally quite demanding which makes large-scale studies such as the rapid screening of entire databases hardly feasible. In a recent work, we proposed the method Local Cliques (LC) for the efficient comparison of Cavbase binding sites. It employs a clique heuristic to detect the maximum common subgraph of two binding sites and an extended graph model to additionally compare the shape of individual surface patches. In this study, we present an alternative to further accelerate the LC method by partitioning the binding-site graphs into disjoint components prior to their comparisons. The pseudocenter sets are split with regard to their assigned phyiscochemical type, which leads to seven much smaller graphs than the original one. Applying this approach on the same test scenarios as in the former comprehensive way results in a significant speed-up without sacrificing accuracy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Regulation of CCL2 expression by an upstream TALE homeodomain protein-binding site that synergizes with the site created by the A-2578G SNP.

    PubMed

    Page, Stephen H; Wright, Edward K; Gama, Lucio; Clements, Janice E

    2011-01-01

    CC Chemokine Ligand 2 (CCL2) is a potent chemoattractant produced by macrophages and activated astrocytes during periods of inflammation within the central nervous system. Increased CCL2 expression is correlated with disease progression and severity, as observed in pulmonary tuberculosis, HCV-related liver disease, and HIV-associated dementia. The CCL2 distal promoter contains an A/G polymorphism at position -2578 and the homozygous -2578 G/G genotype is associated with increased CCL2 production and inflammation. However, the mechanisms that contribute to the phenotypic differences in CCL2 expression are poorly understood. We previously demonstrated that the -2578 G polymorphism creates a TALE homeodomain protein binding site (TALE binding site) for PREP1/PBX2 transcription factors. In this study, we identified the presence of an additional TALE binding site 22 bp upstream of the site created by the -2578 G polymorphism and demonstrated the synergistic effects of the two sites on the activation of the CCL2 promoter. Using chromatin immunoprecipitation (ChIP) assays, we demonstrated increased binding of the TALE proteins PREP1 and PBX2 to the -2578 G allele, and binding of IRF1 to both the A and G alleles. The presence of TALE binding sites that form inverted repeats within the -2578 G allele results in increased transcriptional activation of the CCL2 distal promoter while the presence of only the upstream TALE binding site within the -2578 A allele exerts repression of promoter activity.

  5. Purification and sequencing of the active site tryptic peptide from penicillin-binding protein 1b of Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicholas, R.A.; Suzuki, H.; Hirota, Y.

    This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed thatmore » the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.« less

  6. Rate constants for proteins binding to substrates with multiple binding sites using a generalized forward flux sampling expression

    NASA Astrophysics Data System (ADS)

    Vijaykumar, Adithya; ten Wolde, Pieter Rein; Bolhuis, Peter G.

    2018-03-01

    To predict the response of a biochemical system, knowledge of the intrinsic and effective rate constants of proteins is crucial. The experimentally accessible effective rate constant for association can be decomposed in a diffusion-limited rate at which proteins come into contact and an intrinsic association rate at which the proteins in contact truly bind. Reversely, when dissociating, bound proteins first separate into a contact pair with an intrinsic dissociation rate, before moving away by diffusion. While microscopic expressions exist that enable the calculation of the intrinsic and effective rate constants by conducting a single rare event simulation of the protein dissociation reaction, these expressions are only valid when the substrate has just one binding site. If the substrate has multiple binding sites, a bound enzyme can, besides dissociating into the bulk, also hop to another binding site. Calculating transition rate constants between multiple states with forward flux sampling requires a generalized rate expression. We present this expression here and use it to derive explicit expressions for all intrinsic and effective rate constants involving binding to multiple states, including rebinding. We illustrate our approach by computing the intrinsic and effective association, dissociation, and hopping rate constants for a system in which a patchy particle model enzyme binds to a substrate with two binding sites. We find that these rate constants increase as a function of the rotational diffusion constant of the particles. The hopping rate constant decreases as a function of the distance between the binding sites. Finally, we find that blocking one of the binding sites enhances both association and dissociation rate constants. Our approach and results are important for understanding and modeling association reactions in enzyme-substrate systems and other patchy particle systems and open the way for large multiscale simulations of such systems.

  7. A New Glycan-Dependent CD4-Binding Site Neutralizing Antibody Exerts Pressure on HIV-1 In Vivo

    PubMed Central

    Freund, Natalia T.; Horwitz, Joshua A.; Nogueira, Lilian; Sievers, Stuart A.; Scharf, Louise; Scheid, Johannes F.; Gazumyan, Anna; Liu, Cassie; Velinzon, Klara; Goldenthal, Ariel; Sanders, Rogier W.; Moore, John P.; Bjorkman, Pamela J.; Seaman, Michael S.; Walker, Bruce D.; Klein, Florian; Nussenzweig, Michel C.

    2015-01-01

    The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 μg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans. PMID:26516768

  8. LTRs of Endogenous Retroviruses as a Source of Tbx6 Binding Sites.

    PubMed

    Yasuhiko, Yukuto; Hirabayashi, Yoko; Ono, Ryuichi

    2017-01-01

    Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C, and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box TFs. Moreover, by comparing gene expression between control mice (Tbx6 +/-) and Tbx6-deficient mice (Tbx6 -/-), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1 , and Nfxl1 , are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis.

  9. LTRs of endogenous retroviruses as a source of Tbx6 binding sites

    NASA Astrophysics Data System (ADS)

    Yasuhiko, Yukuto; Hirabayashi, Yoko; Ono, Ryuichi

    2017-06-01

    Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box transcription factors. Moreover, by comparing gene expression between control mice (Tbx6 +/-) and Tbx6-deficient mice (Tbx6 -/-), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1, and Nfxl1, are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis.

  10. Homology modeling, binding site identification and docking study of human angiotensin II type I (Ang II-AT1) receptor.

    PubMed

    Vyas, Vivek K; Ghate, Manjunath; Patel, Kinjal; Qureshi, Gulamnizami; Shah, Surmil

    2015-08-01

    Ang II-AT1 receptors play an important role in mediating virtually all of the physiological actions of Ang II. Several drugs (SARTANs) are available, which can block the AT1 receptor effectively and lower the blood pressure in the patients with hypertension. Currently, there is no experimental Ang II-AT1 structure available; therefore, in this study we modeled Ang II-AT1 receptor structure using homology modeling followed by identification and characterization of binding sites and thereby assessing druggability of the receptor. Homology models were constructed using MODELLER and I-TASSER server, refined and validated using PROCHECK in which 96.9% of 318 residues were present in the favoured regions of the Ramachandran plots. Various Ang II-AT1 receptor antagonist drugs are available in the market as antihypertensive drug, so we have performed docking study with the binding site prediction algorithms to predict different binding pockets on the modeled proteins. The identification of 3D structures and binding sites for various known drugs will guide us for the structure-based drug design of novel compounds as Ang II-AT1 receptor antagonists for the treatment of hypertension. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  11. Ubiquitin vinyl methyl ester binding orients the misaligned active site of the ubiquitin hydrolase UCHL1 into productive conformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, David A.; Maiti, Tushar K.; Davies, Christopher W.

    Ubiquitin carboxy-terminal hydrolase L1 (UCHL1) is a Parkinson disease-associated, putative cysteine protease found abundantly and selectively expressed in neurons. The crystal structure of apo UCHL1 showed that the active-site residues are not aligned in a canonical form, with the nucleophilic cysteine being 7.7 {angstrom} from the general base histidine, an arrangement consistent with an inactive form of the enzyme. Here we report the crystal structures of the wild type and two Parkinson disease-associated variants of the enzyme, S18Y and I93M, bound to a ubiquitin-based suicide substrate, ubiquitin vinyl methyl ester. These structures reveal that ubiquitin vinyl methyl ester binds primarilymore » at two sites on the enzyme, with its carboxy terminus at the active site and with its amino-terminal {beta}-hairpin at the distal site - a surface-exposed hydrophobic crevice 17 {angstrom} away from the active site. Binding at the distal site initiates a cascade of side-chain movements in the enzyme that starts at a highly conserved, surface-exposed phenylalanine and is relayed to the active site resulting in the reorientation and proximal placement of the general base within 4 {angstrom} of the catalytic cysteine, an arrangement found in productive cysteine proteases. Mutation of the distal-site, surface-exposed phenylalanine to alanine reduces ubiquitin binding and severely impairs the catalytic activity of the enzyme. These results suggest that the activity of UCHL1 may be regulated by its own substrate.« less

  12. Insulin Mimetic Peptide Disrupts the Primary Binding Site of the Insulin Receptor*

    PubMed Central

    Lawrence, Callum F.; Margetts, Mai B.; Menting, John G.; Smith, Nicholas A.; Smith, Brian J.; Ward, Colin W.; Lawrence, Michael C.

    2016-01-01

    Sets of synthetic peptides that interact with the insulin receptor ectodomain have been discovered by phage display and reported in the literature. These peptides were grouped into three classes termed Site 1, Site 2, and Site 3 based on their mutual competition of binding to the receptor. Further refinement has yielded, in particular, a 36-residue Site 2-Site 1 fusion peptide, S519, that binds the insulin receptor with subnanomolar affinity and exhibits agonist activity in both lipogenesis and glucose uptake assays. Here, we report three-dimensional crystallographic detail of the interaction of the C-terminal, 16-residue Site 1 component (S519C16) of S519 with the first leucine-rich repeat domain (L1) of the insulin receptor. Our structure shows that S519C16 binds to the same site on the L1 surface as that occupied by a critical component of the primary binding site, namely the helical C-terminal segment of the insulin receptor α-chain (termed αCT). In particular, the two phenylalanine residues within the FYXWF motif of S519C16 are seen to engage the insulin receptor L1 domain surface in a fashion almost identical to the respective αCT residues Phe701 and Phe705. The structure provides a platform for the further development of peptidic and/or small molecule agents directed toward the insulin receptor and/or the type 1 insulin-like growth factor receptor. PMID:27281820

  13. The effects of para-chloromercuribenzoic acid and different oxidative and sulfhydryl agents on a novel, non-AT1, non-AT2 angiotensin binding site identified as neurolysin

    PubMed Central

    Santos, Kira L.; Vento, Megan A; Wright, John W.; Speth, Robert C.

    2013-01-01

    A novel, non-AT1, non-AT2 brain binding site for angiotensin peptides that is unmasked by p-chloromercuribenzoate (PCMB) has been identified as a membrane associated variant of neurolysin. The ability of different organic and inorganic oxidative and sulfhydryl reactive agents to unmask or inhibit 125I-Sar1Ile8 angiotensin II (SI-Ang II) binding to this site was presently examined. In tissue membranes from homogenates of rat brain and testis incubated in assay buffer containing losartan (10 μM) and PD123319 (10 μM) plus 100 μM PCMB, 5 of the 39 compounds tested inhibited 125I-SI Ang II binding in brain and testis. Mersalyl acid, mercuric chloride (HgCl2) and silver nitrate (AgNO3) most potently inhibited 125I-SI Ang II binding with IC50’s ~1–20 μM This HgCl2 inhibition was independent of any interaction of HgCl2 with angiotensin II (Ang II) based on the lack of effect of HgCl2 on the dipsogenic effects of intracerebroventricularly administered Ang II and 125I-SI Ang II binding to AT1 receptors in the liver. Among sulfhydryl reagents, cysteamine and reduced glutathione (GSH), but not oxidized glutathione (GSSG) up to 1 mM, inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis. Thimerosal and 4-hydroxymercuribenzoate moderately inhibited PCMB-unmasked 125I-SI Ang II binding in brain and testis at 100 μM; however, they also unmasked non-AT1, non-AT2 binding independent of PCMB. 4-hydroxybenzoic acid did not promote 125 I-SI Ang II binding to this binding site indicating that only specific organomercurial compounds can unmask the binding site. The common denominator for all of these interacting substances is the ability to bind to protein cysteine sulfur. Comparison of cysteines between neurolysin and the closely related enzyme thimet oligopeptidase revealed an unconserved cysteine (cys650, based on the full length variant) in the proposed ligand binding channel (Brown et al., 2001) [1] near the active site of neurolysin. It is proposed that the

  14. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  15. Identification and characterization of Hoxa9 binding sites in hematopoietic cells

    PubMed Central

    Huang, Yongsheng; Sitwala, Kajal; Bronstein, Joel; Sanders, Daniel; Dandekar, Monisha; Collins, Cailin; Robertson, Gordon; MacDonald, James; Cezard, Timothee; Bilenky, Misha; Thiessen, Nina; Zhao, Yongjun; Zeng, Thomas; Hirst, Martin; Hero, Alfred; Jones, Steven

    2012-01-01

    The clustered homeobox proteins play crucial roles in development, hematopoiesis, and leukemia, yet the targets they regulate and their mechanisms of action are poorly understood. Here, we identified the binding sites for Hoxa9 and the Hox cofactor Meis1 on a genome-wide level and profiled their associated epigenetic modifications and transcriptional targets. Hoxa9 and the Hox cofactor Meis1 cobind at hundreds of highly evolutionarily conserved sites, most of which are distant from transcription start sites. These sites show high levels of histone H3K4 monomethylation and CBP/P300 binding characteristic of enhancers. Furthermore, a subset of these sites shows enhancer activity in transient transfection assays. Many Hoxa9 and Meis1 binding sites are also bound by PU.1 and other lineage-restricted transcription factors previously implicated in establishment of myeloid enhancers. Conditional Hoxa9 activation is associated with CBP/P300 recruitment, histone acetylation, and transcriptional activation of a network of proto-oncogenes, including Erg, Flt3, Lmo2, Myb, and Sox4. Collectively, this work suggests that Hoxa9 regulates transcription by interacting with enhancers of genes important for hematopoiesis and leukemia. PMID:22072553

  16. LTRs of Endogenous Retroviruses as a Source of Tbx6 Binding Sites

    PubMed Central

    Yasuhiko, Yukuto; Hirabayashi, Yoko; Ono, Ryuichi

    2017-01-01

    Retrotransposons are abundant in mammalian genomes and can modulate the gene expression of surrounding genes by disrupting endogenous binding sites for transcription factors (TFs) or providing novel TFs binding sites within retrotransposon sequences. Here, we show that a (C/T)CACACCT sequence motif in ORR1A, ORR1B, ORR1C, and ORR1D, Long Terminal Repeats (LTRs) of MaLR endogenous retrovirus (ERV), is the direct target of Tbx6, an evolutionary conserved family of T-box TFs. Moreover, by comparing gene expression between control mice (Tbx6 +/−) and Tbx6-deficient mice (Tbx6 −/−), we demonstrate that at least four genes, Twist2, Pitx2, Oscp1, and Nfxl1, are down-regulated with Tbx6 deficiency. These results suggest that ORR1A, ORR1B, ORR1C and ORR1D may contribute to the evolution of mammalian embryogenesis. PMID:28664156

  17. DNA hypomethylation of a transcription factor binding site within the promoter of a gout risk gene NRBP1 upregulates its expression by inhibition of TFAP2A binding.

    PubMed

    Zhu, Zaihua; Meng, Weida; Liu, Peiru; Zhu, Xiaoxia; Liu, Yun; Zou, Hejian

    2017-01-01

    Genome-wide association studies (GWASs) have identified dozens of loci associated with gout, but for most cases, the risk genes and the underlying molecular mechanisms contributing to these associations are unknown. This study sought to understand the molecular mechanism of a common genetic variant, rs780093, in the development of gout, both in vitro and in vivo. Nuclear receptor binding protein 1 ( NRBP1 ), as a gout risk gene, and its regulatory region, 72 bp upstream of the transcription start site, designated as B1, were identified through integrative analyses of genome-wide genotype and DNA methylation data. We observed elevated NRBP1 expression in human peripheral blood mononuclear cells (PBMCs) from gout patients. In vitro luciferase reporter and protein pulldown assay results showed that DNA methylation could increase the binding of the transcription factor TFAP2A to B1, leading to suppressed gene expression. There results were further confirmed by in vivo bisulfite pyrosequencing showing that hypomethylation on B1 is associated with increased NRBP1 expression in gout patients. Hypomethylation at the promoter region of NRBP1 reduces the binding of TFAP2A and thus leads to elevated NRBP1 expression, which might contribute to the development of gout.

  18. Biophysical Fitness Landscapes for Transcription Factor Binding Sites

    PubMed Central

    Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.

    2014-01-01

    Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228

  19. Evidence that Chemical Chaperone 4-Phenylbutyric Acid Binds to Human Serum Albumin at Fatty Acid Binding Sites

    PubMed Central

    James, Joel; Shihabudeen, Mohamed Sham; Kulshrestha, Shweta; Goel, Varun; Thirumurugan, Kavitha

    2015-01-01

    Endoplasmic reticulum stress elicits unfolded protein response to counteract the accumulating unfolded protein load inside a cell. The chemical chaperone, 4-Phenylbutyric acid (4-PBA) is a FDA approved drug that alleviates endoplasmic reticulum stress by assisting protein folding. It is found efficacious to augment pathological conditions like type 2 diabetes, obesity and neurodegeneration. This study explores the binding nature of 4-PBA with human serum albumin (HSA) through spectroscopic and molecular dynamics approaches, and the results show that 4-PBA has high binding specificity to Sudlow Site II (Fatty acid binding site 3, subdomain IIIA). Ligand displacement studies, RMSD stabilization profiles and MM-PBSA binding free energy calculation confirm the same. The binding constant as calculated from fluorescence spectroscopic studies was found to be kPBA = 2.69 x 105 M-1. Like long chain fatty acids, 4-PBA induces conformational changes on HSA as shown by circular dichroism, and it elicits stable binding at Sudlow Site II (fatty acid binding site 3) by forming strong hydrogen bonding and a salt bridge between domain II and III of HSA. This minimizes the fluctuation of HSA backbone as shown by limited conformational space occupancy in the principal component analysis. The overall hydrophobicity of W214 pocket (located at subdomain IIA), increases upon occupancy of 4-PBA at any FA site. Descriptors of this pocket formed by residues from other subdomains largely play a role in compensating the dynamic movement of W214. PMID:26181488

  20. Modeling Complex Equilibria in ITC Experiments: Thermodynamic Parameters Estimation for a Three Binding Site Model

    PubMed Central

    Le, Vu H.; Buscaglia, Robert; Chaires, Jonathan B.; Lewis, Edwin A.

    2013-01-01

    Isothermal Titration Calorimetry, ITC, is a powerful technique that can be used to estimate a complete set of thermodynamic parameters (e.g. Keq (or ΔG), ΔH, ΔS, and n) for a ligand binding interaction described by a thermodynamic model. Thermodynamic models are constructed by combination of equilibrium constant, mass balance, and charge balance equations for the system under study. Commercial ITC instruments are supplied with software that includes a number of simple interaction models, for example one binding site, two binding sites, sequential sites, and n-independent binding sites. More complex models for example, three or more binding sites, one site with multiple binding mechanisms, linked equilibria, or equilibria involving macromolecular conformational selection through ligand binding need to be developed on a case by case basis by the ITC user. In this paper we provide an algorithm (and a link to our MATLAB program) for the non-linear regression analysis of a multiple binding site model with up to four overlapping binding equilibria. Error analysis demonstrates that fitting ITC data for multiple parameters (e.g. up to nine parameters in the three binding site model) yields thermodynamic parameters with acceptable accuracy. PMID:23262283

  1. Functional characterization of transcription factor binding sites for HNF1-alpha, HNF3-beta (FOXA2), HNF4-alpha, Sp1 and Sp3 in the human prothrombin gene enhancer.

    PubMed

    Ceelie, H; Spaargaren-Van Riel, C C; De Jong, M; Bertina, R M; Vos, H L

    2003-08-01

    Prothrombin is a key component in blood coagulation. Overexpression of prothrombin leads to an increased risk of venous thrombosis. Therefore, the study of the transcriptional regulation of the prothrombin gene may help to identify mechanisms of overexpression. The aim of our study was to localize the regions within the prothrombin enhancer responsible for its activity, to identify the proteins binding to these regions, and to establish their functional importance. We constructed a set of prothrombin promoter 5' deletion constructs containing the firefly luciferase reporter gene, which were transiently transfected in HepG2, HuH7 and HeLa cells. Putative transcription factor (TF) binding sites were evaluated by electrophoretic mobility shift assays. The functional importance of each TF binding site was evaluated by site directed mutagenesis and transient transfection of the mutant constructs. We confirmed the major contribution of the enhancer region to the transcriptional activity of the prothrombin promoter. Analysis of this region revealed putative binding sites for hepatocyte nuclear factor HNF4, HNF3-beta and specificity protein(Sp)1. We identified six different TFs binding to three evolutionary conserved sites in the enhancer: HNF4-alpha (site 1), HNF1-alpha, HNF3-beta and an as yet unidentified TF (site 2) and the ubiquitously expressed TFs Sp1 and Sp3 (site 3). Mutagenesis studies showed that loss of binding of HNF3-beta resulted in a considerable decrease of enhancer activity, whereas loss of HNF4-alpha or Sp1/Sp3 resulted in milder reductions. The prothrombin enhancer plays a major role in regulation of prothrombin expression. Six different TFs are able to bind to this region. At least three of these TFs, HNF4-alpha, HNF3-beta and Sp1/Sp3, are important in regulation of prothrombin expression.

  2. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    PubMed

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  3. Selective increases in serotonin 5-HT1B/1D and 5-HT2A/2C binding sites in adult rat basal ganglia following lesions of serotonergic neurons.

    PubMed

    Compan, V; Segu, L; Buhot, M C; Daszuta, A

    1998-05-18

    Quantitative autoradiography was used to examine possible adaptive changes in serotonin 5-HT1B/1D and 5-HT2A/2C receptor binding sites in adult rat basal ganglia, after partial or severe lesions of serotonergic neurons produced by intraraphe injections of variable amounts of 5,7-dihydroxytryptamine. In controls, the 5-HT1B/1D sites labeled with S-CM-G[125I]TNH2 were evenly distributed in the core and the shell of the nucleus accumbens. The density of 5-HT1B/1D sites was higher in the ventral than dorsal part of the striatum and no regional differences were detected along the rostrocaudal axis of the structure. The 5-HT2A/2C sites labeled with [125I]DOI were preferentially distributed in the mediodorsal striatum and higher densities were detected in the shell than core of the nucleus accumbens. Following 5,7-dihydroxytryptamine injections, there were no changes in binding of either receptor subtype after partial lesions entailing 80-90% 5-HT depletions. After severe 5-HT depletions (over 95%), large increases in 5-HT1B/1D binding were observed in the substantia nigra (78%), but no changes took place in the globus pallidus. Increases in 5-HT1B/1D binding were also detected in the shell of the nucleus accumbens (27%). Similar sized increases in 5-HT2A/2C binding (22%) were restricted to the medial striatum. The present results suggest a preferential association between 5-HT1B/1D receptors and the striatonigral neurons containing substance P, as indicated by the striatal distribution of these receptors and their selective increases in the substantia nigra after severe 5-HT deprivation. We recently proposed a similar relationship between the 5-HT4 receptors and the striatopallidal neurons containing met-enkephalin. Moreover, the increases in 5-HT1B/1D binding in the substantia nigra and in the shell of the nucleus accumbens reinforce the view of an implication of this receptor subtype in motor functions. In contrast, the prominent increases in 5-HT2A/2C binding after

  4. Down-regulation of tryptamine binding sites following chronic molindone administration. A comparison with responses of dopamine and 5-hydroxytryptamine receptors.

    PubMed

    Nguyen, T V; Juorio, A V

    1989-10-01

    The present study assessed changes of tryptamine, dopamine D2, 5-HT1 and 5-HT2 binding sites in rat brain following chronic treatment with low (5 mg/kg/day) and high (40 mg/kg/day) doses of molindone, a clinically effective psychotropic drug. The high-dose molindone treatment produced a decrease in the number of tryptamine binding sites while both high and low doses caused an increase in the number of dopamine D2 binding sites in the striatum. No significant changes were observed in either 5-HT1 or 5-HT2 binding sites in the cerebral cortex. Competition binding experiments showed that molindone was a potent inhibitor at dopamine D2 but less effective at tryptamine, 5-HT1 and 5-HT2 binding sites. The inhibition activity of molindone towards type A monoamine oxidase produced a significant increase in endogenous tryptamine accumulation rate which was much higher than that of dopamine and 5-HT. These findings suggest that the reduction in the number of tryptamine binding sites produced by chronic molindone administration is related to monoamine oxidase inhibition and that the increase in the number of dopamine D2 binding sites is correlated to receptor blocking activity of the drug.

  5. The second Cu(II)-binding site in a proton-rich environment interferes with the aggregation of amyloid-beta(1-40) into amyloid fibrils.

    PubMed

    Jun, Sangmi; Gillespie, Joel R; Shin, Byong-kyu; Saxena, Sunil

    2009-11-17

    The overall morphology and Cu(II) ion coordination for the aggregated amyloid-beta(1-40) [Abeta(1-40)] in N-ethylmorpholine (NEM) buffer are affected by Cu(II) ion concentration. This effect is investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM), and electron spin echo envelope modulation (ESEEM) spectroscopy. At lower than equimolar concentrations of Cu(II) ions, fibrillar aggregates of Abeta(1-40) are observed. At these concentrations of Cu(II), the monomeric and fibrillar Abeta(1-40) ESEEM data indicate that the Cu(II) ion is coordinated by histidine residues. For aggregated Abeta(1-40) at a Cu(II):Abeta molar ratio of 2:1, TEM and AFM images show both linear fibrils and granular amorphous aggregates. The ESEEM spectra show that the multi-histidine coordination for Cu(II) ion partially breaks up and becomes exposed to water or exchangeable protons of the peptide at a higher Cu(II) concentration. Since the continuous-wave electron spin resonance results also suggest two copper-binding sites in Abeta(1-40), the proton ESEEM peak may arise from the second copper-binding site, which may be significantly involved in the formation of granular amorphous aggregates. Thioflavin T fluorescence and circular dichroism experiments also show that Cu(II) inhibits the formation of fibrils and induces a nonfibrillar beta-sheet conformation. Therefore, we propose that Abeta(1-40) has a second copper-binding site in a proton-rich environment and the second binding Cu(II) ion interferes with a conformational transition into amyloid fibrils, inducing the formation of granular amorphous aggregates.

  6. Thermodynamic Linkage Between Calmodulin Domains Binding Calcium and Contiguous Sites in the C-Terminal Tail of CaV1.2

    PubMed Central

    Evans, T. Idil Apak; Hell, Johannes; Shea, Madeline A.

    2011-01-01

    Calmodulin (CaM) binding to the intracellular C-terminal tail (CTT) of the cardiac L-type Ca2+ channel (CaV1.2) regulates Ca2+ entry by recognizing sites that contribute to negative feedback mechanisms for channel closing. CaM associates with CaV1.2 under low resting [Ca2+], but is poised to change conformation and position when intracellular [Ca2+] rises. CaM binding Ca2+, and the domains of CaM binding the CTT are linked thermodynamic functions. To better understand regulation, we determined the energetics of CaM domains binding to peptides representing pre-IQ sites A1588, and C1614 and the IQ motif studied as overlapping peptides IQ1644 and IQ′1650 as well as their effect on calcium binding. (Ca2+)4-CaM bound to all four peptides very favorably (Kd ≤ 2 nM). Linkage analysis showed that IQ1644–1670 bound with a Kd ~1 pM. In the pre-IQ region, (Ca2+)2-N-domain bound preferentially to A1588, while (Ca2+)2-C-domain preferred C1614. When bound to C1614, calcium binding in the N-domain affected the tertiary conformation of the C-domain. Based on the thermodynamics, we propose a structural mechanism for calcium-dependent conformational change in which the linker between CTT sites A and C buckles to form an A-C hairpin that is bridged by calcium-saturated CaM. PMID:21757287

  7. New Synthesis and Tritium Labeling of a Selective Ligand for Studying High-affinity γ-Hydroxybutyrate (GHB) Binding Sites

    PubMed Central

    Vogensen, Stine B.; Marek, Aleš; Bay, Tina; Wellendorph, Petrine; Kehler, Jan; Bundgaard, Christoffer; Frølund, Bente; Pedersen, Martin H.F.; Clausen, Rasmus P.

    2013-01-01

    3-Hydroxycyclopent-1-enecarboxylic acid (HOCPCA, 1) is a potent ligand for the high-affinity GHB binding sites in the CNS. An improved synthesis of 1 together with a very efficient synthesis of [3H]-1 is described. The radiosynthesis employs in situ generated lithium trimethoxyborotritide. Screening of 1 against different CNS targets establishes a high selectivity and we demonstrate in vivo brain penetration. In vitro characterization of [3H]-1 binding shows high specificity to the high-affinity GHB binding sites. PMID:24053696

  8. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    PubMed

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  9. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.

    PubMed

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J

    2011-04-27

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.

  10. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  11. sc-PDB: a 3D-database of ligandable binding sites--10 years on.

    PubMed

    Desaphy, Jérémy; Bret, Guillaume; Rognan, Didier; Kellenberger, Esther

    2015-01-01

    The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Binding-Site Assessment by Virtual Fragment Screening

    PubMed Central

    Huang, Niu; Jacobson, Matthew P.

    2010-01-01

    The accurate prediction of protein druggability (propensity to bind high-affinity drug-like small molecules) would greatly benefit the fields of chemical genomics and drug discovery. We have developed a novel approach to quantitatively assess protein druggability by computationally screening a fragment-like compound library. In analogy to NMR-based fragment screening, we dock ∼11000 fragments against a given binding site and compute a computational hit rate based on the fraction of molecules that exceed an empirically chosen score cutoff. We perform a large-scale evaluation of the approach on four datasets, totaling 152 binding sites. We demonstrate that computed hit rates correlate with hit rates measured experimentally in a previously published NMR-based screening method. Secondly, we show that the in silico fragment screening method can be used to distinguish known druggable and non-druggable targets, including both enzymes and protein-protein interaction sites. Finally, we explore the sensitivity of the results to different receptor conformations, including flexible protein-protein interaction sites. Besides its original aim to assess druggability of different protein targets, this method could be used to identifying druggable conformations of flexible binding site for lead discovery, and suggesting strategies for growing or joining initial fragment hits to obtain more potent inhibitors. PMID:20404926

  13. Identification of Small Molecules against Botulinum Neurotoxin B Binding to Neuronal Cells at Ganglioside GT1b Binding Site with Low to Moderate Affinity

    DTIC Science & Technology

    2014-10-01

    BoNT serotype B (BoNT/B) for the trisaccharide GT1b were identified from the x-ray crystal structure of the BoNT/B/trisaccharide (GT1b) complex ( PDB ...trisaccharide and all the water from the structure and identified four potential binding pockets (Pocket-1, Pocket-2, and Pocket-4) as shown in...four potential binding sites or pockets on BoNT serotype B (BoNT/B) for the trisaccharide GT1b were identified from the x-ray crystal structure of the

  14. Direct Binding of the Corrector VX-809 to Human CFTR NBD1: Evidence of an Allosteric Coupling between the Binding Site and the NBD1:CL4 Interface.

    PubMed

    Hudson, Rhea P; Dawson, Jennifer E; Chong, P Andrew; Yang, Zhengrong; Millen, Linda; Thomas, Philip J; Brouillette, Christie G; Forman-Kay, Julie D

    2017-08-01

    Understanding the mechanism of action of modulator compounds for the cystic fibrosis transmembrane conductance regulator (CFTR) is key for the optimization of therapeutics as well as obtaining insights into the molecular mechanisms of CFTR function. We demonstrate the direct binding of VX-809 to the first nucleotide-binding domain (NBD1) of human CFTR. Disruption of the interaction between C-terminal helices and the NBD1 core upon VX-809 binding is observed from chemical shift changes in the NMR spectra of residues in the helices and on the surface of β -strands S3, S9, and S10. Binding to VX-809 leads to a significant negative shift in NBD1 thermal melting temperature (T m ), pointing to direct VX-809 interaction shifting the NBD1 conformational equilibrium. An inter-residue correlation analysis of the chemical shift changes provides evidence of allosteric coupling between the direct binding site and the NBD1:CL4 interface, thus enabling effects on the interface in the absence of direct binding in that location. These NMR binding data and the negative T m shifts are very similar to those previously reported by us for binding of the dual corrector-potentiator CFFT-001 to NBD1 (Hudson et al., 2012), suggesting that the two compounds may share some aspects of their mechanisms of action. Although previous studies have shown an important role for VX-809 in modulating the conformation of the first membrane spanning domain (Aleksandrov et al., 2012; Ren et al., 2013), this additional mode of VX-809 binding provides insight into conformational dynamics and allostery within CFTR. Copyright © 2017 by The Author(s).

  15. Deleted in malignant brain tumors-1 protein (DMBT1): a pattern recognition receptor with multiple binding sites.

    PubMed

    Ligtenberg, Antoon J M; Karlsson, Niclas G; Veerman, Enno C I

    2010-01-01

    Deleted in Malignant Brain Tumors-1 protein (DMBT1), salivary agglutinin (DMBT1(SAG)), and lung glycoprotein-340 (DMBT1(GP340)) are three names for glycoproteins encoded by the same DMBT1 gene. All these proteins belong to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins: a superfamily of secreted or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. In addition to SRCR domains, all DMBT1s contain two CUB domains and one zona pellucida domain. The SRCR domains play a role in the function of DMBT1s, which is the binding of a broad range of pathogens including cariogenic streptococci, Helicobacter pylori and HIV. Mucosal defense proteins like IgA, surfactant proteins and lactoferrin also bind to DMBT1s through their SRCR domains. The binding motif on the SRCR domains comprises an 11-mer peptide in which a few amino acids are essential for binding (GRVEVLYRGSW). Adjacent to each individual SRCR domain are glycosylation domains, where the attached carbohydrate chains play a role in the binding of influenza A virus and Helicobacter pylori. The composition of the carbohydrate chains is not only donor specific, but also varies between different organs. These data demonstrate a role for DMBT1s as pattern recognition molecules containing various peptide and carbohydrate binding motifs.

  16. Discovering amino acid patterns on binding sites in protein complexes

    PubMed Central

    Kuo, Huang-Cheng; Ong, Ping-Lin; Lin, Jung-Chang; Huang, Jen-Peng

    2011-01-01

    Discovering amino acid (AA) patterns on protein binding sites has recently become popular. We propose a method to discover the association relationship among AAs on binding sites. Such knowledge of binding sites is very helpful in predicting protein-protein interactions. In this paper, we focus on protein complexes which have protein-protein recognition. The association rule mining technique is used to discover geographically adjacent amino acids on a binding site of a protein complex. When mining, instead of treating all AAs of binding sites as a transaction, we geographically partition AAs of binding sites in a protein complex. AAs in a partition are treated as a transaction. For the partition process, AAs on a binding site are projected from three-dimensional to two-dimensional. And then, assisted with a circular grid, AAs on the binding site are placed into grid cells. A circular grid has ten rings: a central ring, the second ring with 6 sectors, the third ring with 12 sectors, and later rings are added to four sectors in order. As for the radius of each ring, we examined the complexes and found that 10Å is a suitable range, which can be set by the user. After placing these recognition complexes on the circular grid, we obtain mining records (i.e. transactions) from each sector. A sector is regarded as a record. Finally, we use the association rule to mine these records for frequent AA patterns. If the support of an AA pattern is larger than the predetermined minimum support (i.e. threshold), it is called a frequent pattern. With these discovered patterns, we offer the biologists a novel point of view, which will improve the prediction accuracy of protein-protein recognition. In our experiments, we produced the AA patterns by data mining. As a result, we found that arginine (arg) most frequently appears on the binding sites of two proteins in the recognition protein complexes, while cysteine (cys) appears the fewest. In addition, if we discriminate the shape

  17. Functional analysis of the EspR binding sites upstream of espR in Mycobacterium tuberculosis.

    PubMed

    Cao, Guangxiang; Howard, Susan T; Zhang, Peipei; Hou, Guihua; Pang, Xiuhua

    2013-11-01

    The ESX-1 secretion system exports substrate proteins into host cells and is crucial for the pathogenesis of Mycobacterium tuberculosis. EspR is one of the characterized transcriptional regulators that modulates the ESX-1 system by binding the conserved EspR binding sites in the promoter of espA, the encoding gene of EspA, which is also a substrate protein of the ESX-1 system and is required for the ESX-1 activity. EspR is autoregulatory and conserved EspR binding sites are present upstream of espR. In this study, we showed that these EspR sites had varying affinities for EspR, with site B being the strongest one. Point mutations of the DNA sequence at site B abolished binding of EspR to oligonucleotides containing site B alone or with other sites, further suggesting that site B is a major binding site for EspR. Complementation studies showed that constructs containing espR, and the upstream intergenic region fully restored espR expression in a ΔespR mutant strain. Although recombinant strains with mutations at more than one EspR site showed minimal differences in espR expression, reduced expression of other EspR target genes was observed, suggesting that slight changes in EspR levels can have downstream regulatory effects. These findings contribute to our understanding of the regulation of the ESX-1 system.

  18. Hydrolysis at One of the Two Nucleotide-binding Sites Drives the Dissociation of ATP-binding Cassette Nucleotide-binding Domain Dimers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zoghbi, M. E.; Altenberg, G. A.

    The functional unit of ATP-binding cassette (ABC) transporters consists of two transmembrane domains and two nucleotide-binding domains (NBDs). ATP binding elicits association of the two NBDs, forming a dimer in a head-to-tail arrangement, with two nucleotides “sandwiched” at the dimer interface. Each of the two nucleotide-binding sites is formed by residues from the two NBDs. We recently found that the prototypical NBD MJ0796 from Methanocaldococcus jannaschii dimerizes in response to ATP binding and dissociates completely following ATP hydrolysis. However, it is still unknown whether dissociation of NBD dimers follows ATP hydrolysis at one or both nucleotide-binding sites. Here, we usedmore » luminescence resonance energy transfer to study heterodimers formed by one active (donor-labeled) and one catalytically defective (acceptor-labeled) NBD. Rapid mixing experiments in a stop-flow chamber showed that NBD heterodimers with one functional and one inactive site dissociated at a rate indistinguishable from that of dimers with two hydrolysis-competent sites. Comparison of the rates of NBD dimer dissociation and ATP hydrolysis indicated that dissociation followed hydrolysis of one ATP. We conclude that ATP hydrolysis at one nucleotide-binding site drives NBD dimer dissociation.« less

  19. SITEHOUND-web: a server for ligand binding site identification in protein structures.

    PubMed

    Hernandez, Marylens; Ghersi, Dario; Sanchez, Roberto

    2009-07-01

    SITEHOUND-web (http://sitehound.sanchezlab.org) is a binding-site identification server powered by the SITEHOUND program. Given a protein structure in PDB format SITEHOUND-web will identify regions of the protein characterized by favorable interactions with a probe molecule. These regions correspond to putative ligand binding sites. Depending on the probe used in the calculation, sites with preference for different ligands will be identified. Currently, a carbon probe for identification of binding sites for drug-like molecules, and a phosphate probe for phosphorylated ligands (ATP, phoshopeptides, etc.) have been implemented. SITEHOUND-web will display the results in HTML pages including an interactive 3D representation of the protein structure and the putative sites using the Jmol java applet. Various downloadable data files are also provided for offline data analysis.

  20. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    PubMed

    Horton, R W; Lowther, S; Chivers, J; Jenner, P; Marsden, C D; Testa, B

    1988-08-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites. 8. Clebopride and Delagrange 2674 are structurally dissimilar to other BDZ ligands and represent another chemical structure to probe brain BDZ binding sites.

  1. Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites

    PubMed Central

    Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J.

    2011-01-01

    The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear (31P and 1H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study. PMID:21516167

  2. Prediction of the binding sites of huperzine A in acetylcholinesterase by docking studies

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    We have performed docking studies with the SYSDOC program on acetylcholinesterase (AChE) to predict the binding sites in AChE of huperzine A (HA), which is a potent and selective, reversible inhibitor of AChE. The unique aspects of our docking studies include the following: (i) Molecular flexibility of the guest and the host is taken into account, which permits both to change their conformations upon binding. (ii) The binding energy is evaluated by a sum of energies of steric, electrostatic and hydrogen bonding interactions. In the energy calculation no grid approximation is used, and all hydrogen atoms of the system are treated explicitly. (iii) The energy of cation-π interactions between the guest and the host, which is important in the binding of AChE, is included in the calculated binding energy. (iv) Docking is performed in all regions of the host's binding cavity. Based on our docking studies and the pharmacological results reported for HA and its analogs, we predict that HA binds to the bottom of the binding cavity of AChE (the gorge) with its ammonium group interacting with Trp84, Phe330, Glu199 and Asp72 (catalytic site). At the the opening of the gorge with its ammonium group partially interacting with Trp279 (peripheral site). At the catalytic site, three partially overlapping subsites of HA were identified which might provide a dynamic view of binding of HA to the catalytic site.

  3. Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection.

    PubMed

    Mustafaoglu, Nur; Alves, Nathan J; Bilgicer, Basar

    2015-07-01

    The nucleotide binding site (NBS) is a highly conserved region between the variable light and heavy chains at the Fab domains of all antibodies, and a small molecule that we identified, indole-3-butyric acid (IBA), binds specifically to this site. Fab fragment, with its small size and simple production methods compared to intact antibody, is good candidate for use in miniaturized diagnostic devices and targeted therapeutic applications. However, commonly used modification techniques are not well suited for Fab fragments as they are often more delicate than intact antibodies. Fab fragments are of particular interest for sensor surface functionalization but immobilization results in damage to the antigen binding site and greatly reduced activity due to their truncated size that allows only a small area that can bind to surfaces without impeding antigen binding. In this study, we describe an NBS-UV photocrosslinking functionalization method (UV-NBS(Biotin) in which a Fab fragment is site-specifically biotinylated with an IBA-EG11-Biotin linker via UV energy exposure (1 J/cm(2)) without affecting its antigen binding activity. This study demonstrates successful immobilization of biotinylated Ebola detecting Fab fragment (KZ52 Fab fragment) via the UV-NBS(Biotin) method yielding 1031-fold and 2-fold better antigen detection sensitivity compared to commonly used immobilization methods: direct physical adsorption and NHS-Biotin functionalization, respectively. Utilization of the UV-NBS(Biotin) method for site-specific conjugation to Fab fragment represents a proof of concept use of Fab fragment for various diagnostic and therapeutic applications with numerous fluorescent probes, affinity molecules and peptides. © 2015 Wiley Periodicals, Inc.

  4. Structural Characterization of the E2 Domain of APL-1, a C. Elegans Homolog of Human Amyloid Precursor Protein, and its Heparin Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoopes, J.; Liu, X; Xu, X

    2010-01-01

    The amyloid {beta}-peptide deposit found in the brain tissue of patients with Alzheimer disease is derived from a large heparin-binding protein precursor APP. The biological function of APP and its homologs is not precisely known. Here we report the x-ray structure of the E2 domain of APL-1, an APP homolog in Caenorhabditis elegans, and compare it to the human APP structure. We also describe the structure of APL-1 E2 in complex with sucrose octasulfate, a highly negatively charged disaccharide, which reveals an unexpected binding pocket between the two halves of E2. Based on the crystal structure, we are able tomore » map, using site-directed mutagenesis, a surface groove on E2 to which heparin may bind. Our biochemical data also indicate that the affinity of E2 for heparin is influenced by pH: at pH 5, the binding appears to be much stronger than that at neutral pH. This property is likely caused by histidine residues in the vicinity of the mapped heparin binding site and could be important for the proposed adhesive function of APL-1.« less

  5. Allosteric binding sites in Rab11 for potential drug candidates

    PubMed Central

    2018-01-01

    Rab11 is an important protein subfamily in the RabGTPase family. These proteins physiologically function as key regulators of intracellular membrane trafficking processes. Pathologically, Rab11 proteins are implicated in many diseases including cancers, neurodegenerative diseases and type 2 diabetes. Although they are medically important, no previous study has found Rab11 allosteric binding sites where potential drug candidates can bind to. In this study, by employing multiple clustering approaches integrating principal component analysis, independent component analysis and locally linear embedding, we performed structural analyses of Rab11 and identified eight representative structures. Using these representatives to perform binding site mapping and virtual screening, we identified two novel binding sites in Rab11 and small molecules that can preferentially bind to different conformations of these sites with high affinities. After identifying the binding sites and the residue interaction networks in the representatives, we computationally showed that these binding sites may allosterically regulate Rab11, as these sites communicate with switch 2 region that binds to GTP/GDP. These two allosteric binding sites in Rab11 are also similar to two allosteric pockets in Ras that we discovered previously. PMID:29874286

  6. Specific phospholipid binding to Na,K-ATPase at two distinct sites.

    PubMed

    Habeck, Michael; Kapri-Pardes, Einat; Sharon, Michal; Karlish, Steven J D

    2017-03-14

    Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na,K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directed mutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na,K-ATPase (α 1 β 1 ). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic αL8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), αTM2 and αTM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between αTM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the α subunit (site A). PC/PE binds between αTM2, 4, 6, and 9 and accelerates the rate-limiting E 1 P-E 2 P conformational transition (site B). We discuss the potential physiological implications.

  7. RBind: computational network method to predict RNA binding sites.

    PubMed

    Wang, Kaili; Jian, Yiren; Wang, Huiwen; Zeng, Chen; Zhao, Yunjie

    2018-04-26

    Non-coding RNA molecules play essential roles by interacting with other molecules to perform various biological functions. However, it is difficult to determine RNA structures due to their flexibility. At present, the number of experimentally solved RNA-ligand and RNA-protein structures is still insufficient. Therefore, binding sites prediction of non-coding RNA is required to understand their functions. Current RNA binding site prediction algorithms produce many false positive nucleotides that are distance away from the binding sites. Here, we present a network approach, RBind, to predict the RNA binding sites. We benchmarked RBind in RNA-ligand and RNA-protein datasets. The average accuracy of 0.82 in RNA-ligand and 0.63 in RNA-protein testing showed that this network strategy has a reliable accuracy for binding sites prediction. The codes and datasets are available at https://zhaolab.com.cn/RBind. yjzhaowh@mail.ccnu.edu.cn. Supplementary data are available at Bioinformatics online.

  8. A Bioinformatics Approach to the Identification of Variants Associated with Type 1 and Type 2 Diabetes Mellitus that Reside in Functionally Validated miRNAs Binding Sites.

    PubMed

    Ghaedi, Hamid; Bastami, Milad; Jahani, Mohammad Mehdi; Alipoor, Behnam; Tabasinezhad, Maryam; Ghaderi, Omar; Nariman-Saleh-Fam, Ziba; Mirfakhraie, Reza; Movafagh, Abolfazl; Omrani, Mir Davood; Masotti, Andrea

    2016-06-01

    The present work is aimed at finding variants associated with Type 1 and Type 2 diabetes mellitus (DM) that reside in functionally validated miRNAs binding sites and that can have a functional role in determining diabetes and related pathologies. Using bioinformatics analyses we obtained a database of validated polymorphic miRNA binding sites which has been intersected with genes related to DM or to variants associated and/or in linkage disequilibrium (LD) with it and is reported in genome-wide association studies (GWAS). The workflow we followed allowed us to find variants associated with DM that also reside in functional miRNA binding sites. These data have been demonstrated to have a functional role by impairing the functions of genes implicated in biological processes linked to DM. In conclusion, our work emphasized the importance of SNPs located in miRNA binding sites. The results discussed in this work may constitute the basis of further works aimed at finding functional candidates and variants affecting protein structure and function, transcription factor binding sites, and non-coding epigenetic variants, contributing to widen the knowledge about the pathogenesis of this important disease.

  9. Muscarinic binding sites in cultured bovine pulmonary arterial endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aronstam, R.S.; Catravas, J.D.; Ryan, U.S.

    The authors have previously reported a) the presence of muscarinic binding sites on cultured bovine pulmonary arterial endothelial cells (BPAE; 2,000 sites/cell) and b) that acetylcholine inhibits the release of thromboxane B/sub 2/ fro BPAE. Since the authors findings could reflect muscarinic receptors (mAChR) on BPAE, they have further investigated the nature of BPAE muscarinic binding sites and contrast them to those of known functional mAChR. Muscarinic binding sites on BPAE resembled mAChR in that a) the binding of 3 nM /sup 3/H QNB was inhibited by muscarinic agonists and antagonists; b) /sup 3/H QNB binding was 30 times moremore » sensitive to R(-)- than to S(+)-QNB; c) carbamylcholine binding was resolved into high and low affinity components (IC50's = 0.04 and 2 ..mu..M; d) 5'-guanylylimidodiphosphate (100 ..mu..M) shifted agonist binding curves to the right by a factor of 3; 4) the atropine-sensitive binding of /sup 3/H oxotremorine-M (/sup 3/H-OXO-M) was depressed by the guanine nucleotide (IC50 + 60 ..mu..M). However, although gallamine allosterically regulates mAChR binding in other tissues, it did not affect the rates of dissociation of /sup 3/H QNB, /sup 3/H methylscopolamine or /sup 3/H OXO-M from BPAE binding sites. Thus, BPAE muscarinic binding sites posses many but not all of the properties associated with functional mAChR.« less

  10. Characterization and autoradiographic localization of neurotensin binding sites in human sigmoid colon.

    PubMed

    Azriel, Y; Burcher, E

    2001-06-01

    Radioiodinated neurotensin ((125)I-NT) was used to characterize and localize NT binding sites in normal human sigmoid colon. Specimens were obtained from patients (30-77 years old) undergoing resection for colon carcinoma. Specific binding of (125)I-NT to sigmoid circular muscle membranes was enhanced by o-phenanthroline (1 mM) but other peptidase inhibitors were ineffective. (125)I-NT bound to a high-affinity site of K(d) = 0.88 +/- 0.09 nM and B(max) = 4.03 +/- 0.66 fmol/mg of wet weight tissue (n = 14), although in the majority of patients another site, of low but variable affinity, could also be detected. Specific binding of 50 pM (125)I-NT was inhibited by NT(8-13) > NT > SR142948A > or = neuromedin N > or = SR48692, consistent with binding to the NT1 receptor. In autoradiographic studies, dense specific binding of (125)I-NT was seen over myenteric and submucosal ganglia, moderate binding over circular muscle, and sparse binding over longitudinal muscle and taenia coli. Levocabastine, which has affinity for the NT2 receptor, did not inhibit specific binding of (125)I-NT in membrane competition or autoradiographic studies. NT contracted sigmoid colon circular muscle strips with a pD(2) value of 6.8 +/- 0.2 nM (n = 25). The contractile responses to NT were significantly potentiated in the presence of tetrodotoxin (1 microM), indicating a neural component. Results from functional studies support actions for NT on both muscle and enteric neurons, consistent with the presence of NT receptors on circular muscle and ganglia of human sigmoid colon. The lack of inhibition by levocabastine suggests that the second binding site detected does not correspond to the NT2 receptor.

  11. Two classes of binding sites for [3H]substance P in rat cerebral cortex.

    PubMed

    Geraghty, D P; Burcher, E

    1993-01-22

    The binding characteristics of [3H]substance P ([3H]SP) were investigated in membranes prepared from rat cerebral cortex. Binding of [3H]SP reached equilibrium after 50 min at 25 degrees C and was saturable at 8 nM. Saturation data could be resolved into high affinity (equilibrium dissociation constant, Kd, 0.22 nM) and low affinity sites (Kd, 2.65 nM). The low affinity sites were more numerous than the high affinity sites, with a ratio of 4:1. The non-hydrolyzable GTP analogue GppNHp had no effect on binding, indicating that the high and low affinity sites are not guanine nucleotide-regulated states of the same (NK-1) receptor. The low affinity sites are unlikely to represent NK-3 receptors since coincubation with the selective NK-3 receptor agonist senktide did not alter the biphasic nature of [3H]SP binding. The rank order of potency for inhibition of [3H]SP (2 nM) binding was SP > or = [Sar9, Met(O2)11]-SP > or = physalaemin > SP(3-11) > NP gamma = [Ala3]-SP > or = SP(4-11) > or = NPK > or = SP(5-11) > or = NKB approximately NKA > SP(1-9), compatible with binding to an NK-1 site. N-terminal fragments and non-amidated analogues were ineffective competitors for [3H]SP binding. However, competition data for several peptides including substance P (SP) and the NK-1 selective agonist [Sar9, Met(O2)11]-SP could be resolved into two components.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Design and Synthesis of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile (Citalopram) Analogues as Novel Probes for the Serotonin Transporter S1 and S2 Binding Sites

    PubMed Central

    Banala, Ashwini K.; Zhang, Peng; Plenge, Per; Cyriac, George; Kopajtic, Theresa; Katz, Jonathan L.; Loland, Claus Juul; Newman, Amy Hauck

    2013-01-01

    The serotonin transporter (SERT) is the primary target for antidepressant drugs. The existence of a high affinity primary orthosteric binding site (S1) and a low affinity secondary site (S2) has been described and their relation to antidepressant pharmacology has been debated. Herein, structural modifications to the N-, 4, 5, and 4’-positions of (±)citalopram (1) are reported. All of the analogues were SERT-selective and demonstrated that steric bulk was tolerated at the SERT S1 site, including two dimeric ligands (15 and 51.) In addition, 8 analogues were identified with similar potencies to S-1 for decreasing the dissociation of [3H]S-1 from the S1 site, via allosteric modulation at S2. Both dimeric compounds had similar affinities for the SERT S1 site (Ki=19.7 and 30.2 nM, respectively), whereas only the N-substituted analogue, 51, was as effective as S-1 in allosterically modulating the binding of [3H]S-1 via S2. PMID:24237160

  13. Binding site size limit of the 2:1 pyrrole-imidazole polyamide-DNA motif.

    PubMed Central

    Kelly, J J; Baird, E E; Dervan, P B

    1996-01-01

    Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Six polyamides containing three to eight rings bind DNA sites 5-10 bp in length, respectively. Quantitative DNase I footprint titration experiments demonstrate that affinity maximizes and is similar at ring sizes of five, six, and seven. Sequence specificity decreases as the length of the polyamides increases beyond five rings. These results provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity. Images Fig. 4 PMID:8692930

  14. A web server for analysis, comparison and prediction of protein ligand binding sites.

    PubMed

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  15. The PP1 binding code: a molecular-lego strategy that governs specificity.

    PubMed

    Heroes, Ewald; Lesage, Bart; Görnemann, Janina; Beullens, Monique; Van Meervelt, Luc; Bollen, Mathieu

    2013-01-01

    Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo. © 2012 The Authors Journal compilation © 2012 FEBS.

  16. Computational design of trimeric influenza-neutralizing proteins targeting the hemagglutinin receptor binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauch, Eva-Maria; Bernard, Steffen M.; La, David

    Many viral surface glycoproteins and cell surface receptors are homo-oligomers1, 2, 3, 4, and thus can potentially be targeted by geometrically matched homo-oligomers that engage all subunits simultaneously to attain high avidity and/or lock subunits together. The adaptive immune system cannot generally employ this strategy since the individual antibody binding sites are not arranged with appropriate geometry to simultaneously engage multiple sites in a single target homo-oligomer. We describe a general strategy for the computational design of homo-oligomeric protein assemblies with binding functionality precisely matched to homo-oligomeric target sites5, 6, 7, 8. In the first step, a small protein ismore » designed that binds a single site on the target. In the second step, the designed protein is assembled into a homo-oligomer such that the designed binding sites are aligned with the target sites. We use this approach to design high-avidity trimeric proteins that bind influenza A hemagglutinin (HA) at its conserved receptor binding site. The designed trimers can both capture and detect HA in a paper-based diagnostic format, neutralizes influenza in cell culture, and completely protects mice when given as a single dose 24 h before or after challenge with influenza.« less

  17. Computational investigation of cholesterol binding sites on mitochondrial VDAC.

    PubMed

    Weiser, Brian P; Salari, Reza; Eckenhoff, Roderic G; Brannigan, Grace

    2014-08-21

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20-30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel.

  18. Analysis of LexA binding sites and transcriptomics in response to genotoxic stress in Leptospira interrogans.

    PubMed

    Schons-Fonseca, Luciane; da Silva, Josefa B; Milanez, Juliana S; Domingos, Renan H; Smith, Janet L; Nakaya, Helder I; Grossman, Alan D; Ho, Paulo L; da Costa, Renata M A

    2016-02-18

    We determined the effects of DNA damage caused by ultraviolet radiation on gene expression in Leptospira interrogans using DNA microarrays. These data were integrated with DNA binding in vivo of LexA1, a regulator of the DNA damage response, assessed by chromatin immunoprecipitation and massively parallel DNA sequencing (ChIP-seq). In response to DNA damage, Leptospira induced expression of genes involved in DNA metabolism, in mobile genetic elements and defective prophages. The DNA repair genes involved in removal of photo-damage (e.g. nucleotide excision repair uvrABC, recombinases recBCD and resolvases ruvABC) were not induced. Genes involved in various metabolic pathways were down regulated, including genes involved in cell growth, RNA metabolism and the tricarboxylic acid cycle. From ChIP-seq data, we observed 24 LexA1 binding sites located throughout chromosome 1 and one binding site in chromosome 2. Expression of many, but not all, genes near those sites was increased following DNA damage. Binding sites were found as far as 550 bp upstream from the start codon, or 1 kb into the coding sequence. Our findings indicate that there is a shift in gene expression following DNA damage that represses genes involved in cell growth and virulence, and induces genes involved in mutagenesis and recombination. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation

    PubMed Central

    Tillu, Vikas A.; Kovtun, Oleksiy; McMahon, Kerrie-Ann; Collins, Brett M.; Parton, Robert G.

    2015-01-01

    Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae. PMID:26269585

  20. Pyrene maleimide as a probe of microenvironmental and dynamics properties of protein binding sites

    NASA Astrophysics Data System (ADS)

    Benci, S.; Vaccari, S.; Schianchi, G.; Locatelli, Donata; Vaghi, P.; Bottiroli, Giovanni F.

    1995-01-01

    N-(1-Pyrene)maleimide is highly fluorescent upon covalent binding with sulfhydryl and amino groups of the proteins. Multiexponential fluorescence decays were observed for the dye bound to different proteins even when a single binding site is involved. The lack of information about the fluorescence decay of free dye does not allow to define the variations of fluorescence parameter following the conjugation and their correlation with the binding properties of the fluorophore. In this work, a study of the fluorescence of the probe, free in solution, bound to different antibodies and to the antigen-antibody complex both in solution and in cell, has been performed. The experimental results showed that chemico-physical properties of the medium influence the fluorescence decay of the probe in both the free and bound forms, although to a different extent. The variations of fluorescence decay and anisotropy of the bound probe are related to the electronic characteristics of microenvironment and show an increased stabilization of the probe binding site with the increasing complexity of the substrate. The sensitivity of the fluorescence properties of the probe to the binding site environment opens interesting perspectives concerning the application of Py- maleimide fluorochromization to assess the degree of specificity of immunocytochemical labelling.

  1. Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity.

    PubMed

    Nancolas, Bethany; Sessions, Richard B; Halestrap, Andrew P

    2015-02-15

    The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523-530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7-10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278.

  2. Evaluation of a novel virtual screening strategy using receptor decoy binding sites.

    PubMed

    Patel, Hershna; Kukol, Andreas

    2016-08-23

    Virtual screening is used in biomedical research to predict the binding affinity of a large set of small organic molecules to protein receptor targets. This report shows the development and evaluation of a novel yet straightforward attempt to improve this ranking in receptor-based molecular docking using a receptor-decoy strategy. This strategy includes defining a decoy binding site on the receptor and adjusting the ranking of the true binding-site virtual screen based on the decoy-site screen. The results show that by docking against a receptor-decoy site with Autodock Vina, improved Receiver Operator Characteristic Enrichment (ROCE) was achieved for 5 out of fifteen receptor targets investigated, when up to 15 % of a decoy site rank list was considered. No improved enrichment was seen for 7 targets, while for 3 targets the ROCE was reduced. The extent to which this strategy can effectively improve ligand prediction is dependent on the target receptor investigated.

  3. Disulfide bridge regulates ligand-binding site selectivity in liver bile acid-binding proteins.

    PubMed

    Cogliati, Clelia; Tomaselli, Simona; Assfalg, Michael; Pedò, Massimo; Ferranti, Pasquale; Zetta, Lucia; Molinari, Henriette; Ragona, Laura

    2009-10-01

    Bile acid-binding proteins (BABPs) are cytosolic lipid chaperones that play central roles in driving bile flow, as well as in the adaptation to various pathological conditions, contributing to the maintenance of bile acid homeostasis and functional distribution within the cell. Understanding the mode of binding of bile acids with their cytoplasmic transporters is a key issue in providing a model for the mechanism of their transfer from the cytoplasm to the nucleus, for delivery to nuclear receptors. A number of factors have been shown to modulate bile salt selectivity, stoichiometry, and affinity of binding to BABPs, e.g. chemistry of the ligand, protein plasticity and, possibly, the formation of disulfide bridges. Here, the effects of the presence of a naturally occurring disulfide bridge on liver BABP ligand-binding properties and backbone dynamics have been investigated by NMR. Interestingly, the disulfide bridge does not modify the protein-binding stoichiometry, but has a key role in modulating recognition at both sites, inducing site selectivity for glycocholic and glycochenodeoxycholic acid. Protein conformational changes following the introduction of a disulfide bridge are small and located around the inner binding site, whereas significant changes in backbone motions are observed for several residues distributed over the entire protein, both in the apo form and in the holo form. Site selectivity appears, therefore, to be dependent on protein mobility rather than being governed by steric factors. The detected properties further establish a parallelism with the behaviour of human ileal BABP, substantiating the proposal that BABPs have parallel functions in hepatocytes and enterocytes.

  4. Cation binding at the node of Ranvier: I. Localization of binding sites during development.

    PubMed

    Zagoren, J C; Raine, C S; Suzuki, K

    1982-06-17

    Cations are known to bind to the node of Ranvier and the paranodal regions of myelinated fibers. The integrity of these specialized structures is essential for normal conduction. Sites of cation binding can be microscopically identified by the electrondense histochemical reaction product formed by the precipitate of copper sulfate/potassium ferrocyanide. This technique was used to study the distribution of cation binding during normal development of myelinating fibers. Sciatic nerves of C57B1 mice, at 1, 3, 5, 6, 7, 8, 9, 13, 16, 18, 24 and 30 days of age, were prepared for electron microscopy following fixation in phosphate-buffered 2.5% glutaraldehyde and 1% osmic acid, microdissection and incubation in phosphate-buffered 0.1 M cupric sulfate followed by 0.1 M potassium ferrocyanide. Localization of reaction product was studied by light and electron microscopy. By light microscopy, no reaction product was observed prior to 9 days of age. At 13 days, a few nodes and paranodes exhibited reaction product. This increased in frequency and intensity up to 30 days when almost all nodes or paranodes exhibited reaction product. Ultrastructurally, diffuse reaction product was first observed at 3 days of age in the axoplasm of the node, in the paranodal extracellular space of the terminal loops, in the Schwann cell proper and in the terminal loops of Schwann cell cytoplasm. When myelinated axons fulfilled the criteria for mature nodes, reaction product was no longer observed in the Schwann cell cytoplasm, while the intensity of reaction product in the nodal axoplasm and paranodal extracellular space of the terminal loops increased. Reaction product in the latter site appeared to be interrupted by the transverse bands. These results suggest that cation binding accompanies nodal maturity and that the Schwann cell may play a role in production or storage of the cation binding substance during myelinogenesis and development.

  5. Identification of Candidate Transcription Factor Binding Sites in the Cattle Genome

    PubMed Central

    Bickhart, Derek M.; Liu, George E.

    2013-01-01

    A resource that provides candidate transcription factor binding sites (TFBSs) does not currently exist for cattle. Such data is necessary, as predicted sites may serve as excellent starting locations for future omics studies to develop transcriptional regulation hypotheses. In order to generate this resource, we employed a phylogenetic footprinting approach—using sequence conservation across cattle, human and dog—and position-specific scoring matrices to identify 379,333 putative TFBSs upstream of nearly 8000 Mammalian Gene Collection (MGC) annotated genes within the cattle genome. Comparisons of our predictions to known binding site loci within the PCK1, ACTA1 and G6PC promoter regions revealed 75% sensitivity for our method of discovery. Additionally, we intersected our predictions with known cattle SNP variants in dbSNP and on the Illumina BovineHD 770k and Bos 1 SNP chips, finding 7534, 444 and 346 overlaps, respectively. Due to our stringent filtering criteria, these results represent high quality predictions of putative TFBSs within the cattle genome. All binding site predictions are freely available at http://bfgl.anri.barc.usda.gov/BovineTFBS/ or http://199.133.54.77/BovineTFBS. PMID:23433959

  6. A novel site contributing to growth-arrest-specific gene 6 binding to its receptors as revealed by a human monoclonal antibody

    PubMed Central

    2004-01-01

    Gas6 (growth-arrest-specific gene 6) is a vitamin K-dependent protein known to activate the Axl family of receptor tyrosine kinases. It is an important regulator of thrombosis and many other biological functions. The C-terminus of Gas6 binds to receptors and consists of two laminin-like globular domains LG1 and LG2. It has been reported that a Ca2+-binding site at the junction of LG1 and LG2 domains and a hydrophobic patch at the LG2 domain are important for receptor binding [Sasaki, Knyazev, Cheburkin, Gohring, Tisi, Ullrich, Timpl and Hohenester (2002) J. Biol. Chem. 277, 44164–44170]. In the present study, we developed a neutralizing human monoclonal antibody, named CNTO300, for Gas6. The antibody was generated by immunization of human IgG-expressing transgenic mice with recombinant human Gas6 protein and the anti-Gas6 IgG sequences were rescued from an unstable hybridoma clone. Binding of Gas6 to its receptors was partially inhibited by the CNTO300 antibody in a dose-dependent manner. To characterize further the interaction between Gas6 and this antibody, the binding kinetics of CNTO300 for recombinant Gas6 were compared with independently expressed LG1 and LG2. The CNTO300 antibody showed comparable binding affinity, yet different dependence on Ca2+, to Gas6 and LG1. No binding to LG2 was detected. In the presence of EDTA, binding of the antibody to Gas6 was disrupted, but no significant effect of EDTA on LG1 binding was evident. Further epitope mapping identified a Gas6 peptide sequence recognized by the CNTO300 antibody. This peptide sequence was found to be located at the LG1 domain distant from the Ca2+-binding site and the hydrophobic patch. Co-interaction of Gas6 with its receptor and CNTO300 antibody was detected by BIAcore analysis, suggesting a second receptor-binding site on the LG1 domain. This hypothesis was further supported by direct binding of Gas6 receptors to an independently expressed LG1 domain. Our results revealed, for the first time, a

  7. SP transcription factor paralogs and DNA-binding sites coevolve and adaptively converge in mammals and birds.

    PubMed

    Yokoyama, Ken Daigoro; Pollock, David D

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins.

  8. SP Transcription Factor Paralogs and DNA-Binding Sites Coevolve and Adaptively Converge in Mammals and Birds

    PubMed Central

    Yokoyama, Ken Daigoro; Pollock, David D.

    2012-01-01

    Functional modification of regulatory proteins can affect hundreds of genes throughout the genome, and is therefore thought to be almost universally deleterious. This belief, however, has recently been challenged. A potential example comes from transcription factor SP1, for which statistical evidence indicates that motif preferences were altered in eutherian mammals. Here, we set out to discover possible structural and theoretical explanations, evaluate the role of selection in SP1 evolution, and discover effects on coregulatory proteins. We show that SP1 motif preferences were convergently altered in birds as well as mammals, inducing coevolutionary changes in over 800 regulatory regions. Structural and phylogenic evidence implicates a single causative amino acid replacement at the same SP1 position along both lineages. Furthermore, paralogs SP3 and SP4, which coregulate SP1 target genes through competitive binding to the same sites, have accumulated convergent replacements at the homologous position multiple times during eutherian and bird evolution, presumably to preserve competitive binding. To determine plausibility, we developed and implemented a simple model of transcription factor and binding site coevolution. This model predicts that, in contrast to prevailing beliefs, even small selective benefits per locus can drive concurrent fixation of transcription factor and binding site mutants under a broad range of conditions. Novel binding sites tend to arise de novo, rather than by mutation from ancestral sites, a prediction substantiated by SP1-binding site alignments. Thus, multiple lines of evidence indicate that selection has driven convergent evolution of transcription factors along with their binding sites and coregulatory proteins. PMID:23019068

  9. Cadmium is a potent inhibitor of PPM phosphatases and targets the M1 binding site

    PubMed Central

    Pan, Chang; Liu, Hong-Da; Gong, Zheng; Yu, Xiao; Hou, Xu-Ben; Xie, Di-Dong; Zhu, Xi-Bin; Li, Hao-Wen; Tang, Jun-Yi; Xu, Yun-Fei; Yu, Jia-Qi; Zhang, Lian-Ying; Fang, Hao; Xiao, Kun-Hong; Chen, Yu-Guo; Wang, Jiang-Yun; Pang, Qi; Chen, Wei; Sun, Jin-Peng

    2013-01-01

    The heavy metal cadmium is a non-degradable pollutant. By screening the effects of a panel of metal ions on the phosphatase activity, we unexpectedly identified cadmium as a potent inhibitor of PPM1A and PPM1G. In contrast, low micromolar concentrations of cadmium did not inhibit PP1 or tyrosine phosphatases. Kinetic studies revealed that cadmium inhibits PPM phosphatases through the M1 metal ion binding site. In particular, the negative charged D441 in PPM1G specific recognized cadmium. Our results suggest that cadmium is likely a potent inhibitor of most PPM family members except for PHLPPs. Furthermore, we demonstrated that cadmium inhibits PPM1A-regulated MAPK signaling and PPM1G-regulated AKT signaling potently in vivo. Cadmium reversed PPM1A-induced cell cycle arrest and cadmium insensitive PPM1A mutant rescued cadmium induced cell death. Taken together, these findings provide a better understanding of the effects of the toxicity of cadmium in the contexts of human physiology and pathology. PMID:23903585

  10. A Large-Scale Assessment of Nucleic Acids Binding Site Prediction Programs

    PubMed Central

    Miao, Zhichao; Westhof, Eric

    2015-01-01

    Computational prediction of nucleic acid binding sites in proteins are necessary to disentangle functional mechanisms in most biological processes and to explore the binding mechanisms. Several strategies have been proposed, but the state-of-the-art approaches display a great diversity in i) the definition of nucleic acid binding sites; ii) the training and test datasets; iii) the algorithmic methods for the prediction strategies; iv) the performance measures and v) the distribution and availability of the prediction programs. Here we report a large-scale assessment of 19 web servers and 3 stand-alone programs on 41 datasets including more than 5000 proteins derived from 3D structures of protein-nucleic acid complexes. Well-defined binary assessment criteria (specificity, sensitivity, precision, accuracy…) are applied. We found that i) the tools have been greatly improved over the years; ii) some of the approaches suffer from theoretical defects and there is still room for sorting out the essential mechanisms of binding; iii) RNA binding and DNA binding appear to follow similar driving forces and iv) dataset bias may exist in some methods. PMID:26681179

  11. The binding sites of inhibitory monoclonal antibodies on acetylcholinesterase. Identification of a novel regulatory site at the putative "back door".

    PubMed

    Simon, S; Le Goff, A; Frobert, Y; Grassi, J; Massoulié, J

    1999-09-24

    We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.

  12. Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner.

    PubMed

    Strotmeier, Jasmin; Lee, Kwangkook; Völker, Anne K; Mahrhold, Stefan; Zong, Yinong; Zeiser, Johannes; Zhou, Jie; Pich, Andreas; Bigalke, Hans; Binz, Thomas; Rummel, Andreas; Jin, Rongsheng

    2010-10-15

    The extraordinarily high toxicity of botulinum neurotoxins primarily results from their specific binding and uptake into neurons. At motor neurons, the seven BoNT (botulinum neurotoxin) serotypes A-G inhibit acetylcholine release leading to flaccid paralysis. Uptake of BoNT/A, B, E, F and G requires a dual interaction with gangliosides and the synaptic vesicle proteins synaptotagmin or SV2 (synaptic vesicle glycoprotein 2), whereas little is known about the cell entry mechanisms of the serotypes C and D, which display the lowest amino acid sequence identity compared with the other five serotypes. In the present study we demonstrate that the neurotoxicity of BoNT/D depends on the presence of gangliosides by employing phrenic nerve hemidiaphragm preparations derived from mice expressing the gangliosides GM3, GM2, GM1 and GD1a, or only GM3 [a description of our use of ganglioside nomenclature is given in Svennerholm (1994) Prog. Brain Res. 101, XI-XIV]. High-resolution crystal structures of the 50 kDa cell-binding domain of BoNT/D alone and in complex with sialic acid, as well as biological analyses of single-site BoNT/D mutants identified two carbohydrate-binding sites. One site is located at a position previously identified in BoNT/A, B, E, F and G, but is lacking the conserved SXWY motif. The other site, co-ordinating one molecule of sialic acid, resembles the second ganglioside-binding pocket (the sialic-acid-binding site) of TeNT (tetanus neurotoxin).

  13. DeepSite: protein-binding site predictor using 3D-convolutional neural networks.

    PubMed

    Jiménez, J; Doerr, S; Martínez-Rosell, G; Rose, A S; De Fabritiis, G

    2017-10-01

    An important step in structure-based drug design consists in the prediction of druggable binding sites. Several algorithms for detecting binding cavities, those likely to bind to a small drug compound, have been developed over the years by clever exploitation of geometric, chemical and evolutionary features of the protein. Here we present a novel knowledge-based approach that uses state-of-the-art convolutional neural networks, where the algorithm is learned by examples. In total, 7622 proteins from the scPDB database of binding sites have been evaluated using both a distance and a volumetric overlap approach. Our machine-learning based method demonstrates superior performance to two other competitive algorithmic strategies. DeepSite is freely available at www.playmolecule.org. Users can submit either a PDB ID or PDB file for pocket detection to our NVIDIA GPU-equipped servers through a WebGL graphical interface. gianni.defabritiis@upf.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  14. Drug Promiscuity in PDB: Protein Binding Site Similarity Is Key.

    PubMed

    Haupt, V Joachim; Daminelli, Simone; Schroeder, Michael

    2013-01-01

    Drug repositioning applies established drugs to new disease indications with increasing success. A pre-requisite for drug repurposing is drug promiscuity (polypharmacology) - a drug's ability to bind to several targets. There is a long standing debate on the reasons for drug promiscuity. Based on large compound screens, hydrophobicity and molecular weight have been suggested as key reasons. However, the results are sometimes contradictory and leave space for further analysis. Protein structures offer a structural dimension to explain promiscuity: Can a drug bind multiple targets because the drug is flexible or because the targets are structurally similar or even share similar binding sites? We present a systematic study of drug promiscuity based on structural data of PDB target proteins with a set of 164 promiscuous drugs. We show that there is no correlation between the degree of promiscuity and ligand properties such as hydrophobicity or molecular weight but a weak correlation to conformational flexibility. However, we do find a correlation between promiscuity and structural similarity as well as binding site similarity of protein targets. In particular, 71% of the drugs have at least two targets with similar binding sites. In order to overcome issues in detection of remotely similar binding sites, we employed a score for binding site similarity: LigandRMSD measures the similarity of the aligned ligands and uncovers remote local similarities in proteins. It can be applied to arbitrary structural binding site alignments. Three representative examples, namely the anti-cancer drug methotrexate, the natural product quercetin and the anti-diabetic drug acarbose are discussed in detail. Our findings suggest that global structural and binding site similarity play a more important role to explain the observed drug promiscuity in the PDB than physicochemical drug properties like hydrophobicity or molecular weight. Additionally, we find ligand flexibility to have a minor

  15. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    PubMed Central

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  16. A novel substance P binding site in rat brain regions modulates TRH receptor binding.

    PubMed

    Sharif, N A

    1990-10-01

    Binding sites for thyrotropin-releasing hormone (TRH) were labelled with [3H](2-Me-His3)TRH ([3H]MeTRH) on membranes from rat brain regions at 0 degrees C for 5 h. Amygdaloid membranes bound [3H]MeTRH with high-affinity (Kd = 3.1 +/- 0.5 nM (n = 4)). Five TRH analogs competed for this binding with the same rank order and with affinities that matched the pharmacological specificity of pituitary TRH receptors. Substance P (SP) and its C-terminal fragments reduced amygdaloid TRH receptor binding in a concentration dependent manner (IC50 for SP = 65 microM). The rank order of potency of SP analogs at inhibiting TRH receptor binding was: SP greater than nonapeptide (3-11) greater than hexapeptide (6-11) greater than heptapeptide (5-11) greater than pentapeptide (7-11). However, other tachykinins were inactive in this system. SP was a potent inhibitor of [3H]MeTRH binding in hippocampus greater than spinal cord greater than retina greater than n. accumbens greater than hypothalamus greater than amygdaloid greater than olfactory bulb greater than or equal to pituitary greater than pons/medulla in parallel assays. In amygdaloid membranes SP (50 microM) reduced the apparent maximum receptor density by 39% (p less than 0.01) without altering the binding affinity, and 100 microM SP induced a biphasic dissociation of [3H]MeTRH with kinetics faster than those induced by both TRH (10 microM) and serotonin (100 microM). In contrast, other neuropeptides such as neurotensin, proctolin, angiotensin II, bombesin and luteinizing hormone releasing hormone did not significantly inhibit [3H]MeTRH binding to amygdaloid membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Tiron Inhibits UVB-Induced AP-1 Binding Sites Transcriptional Activation on MMP-1 and MMP-3 Promoters by MAPK Signaling Pathway in Human Dermal Fibroblasts

    PubMed Central

    Zhang, Chao; Zhao, Mei; Zhang, Quan-Wu; Gao, Feng-Hou

    2016-01-01

    Recent research found that Tiron was an effective antioxidant that could act as the intracellular reactive oxygen species (ROS) scavenger or alleviate the acute toxic metal overload in vivo. In this study, we investigated the inhibitory effect of Tiron on matrix metalloproteinase (MMP)-1 and MMP-3 expression in human dermal fibroblast cells. Western blot and ELISA analysis revealed that Tiron inhibited ultraviolet B (UVB)-induced protein expression of MMP-1 and MMP-3. Real-time quantitative PCR confirmed that Tiron could inhibit UVB-induced mRNA expression of MMP-1 and MMP-3. Furthermore, Tiron significantly blocked UVB-induced activation of the MAPK signaling pathway and activator protein (AP)-1 in the downstream of this transduction pathway in fibroblasts. Through the AP-1 binding site mutation, it was found that Tiron could inhibit AP-1-induced upregulation of MMP-1 and MMP-3 expression through blocking AP-1 binding to the AP-1 binding sites in the MMP-1 and MMP-3 promoter region. In conclusion, Tiron may be a novel antioxidant for preventing and treating skin photoaging UV-induced. PMID:27486852

  18. Characterizing multiple metal ion binding sites within a ribozyme by cadmium-induced EPR silencing

    PubMed Central

    Kisseleva, Natalia; Kraut, Stefanie; Jäschke, Andres; Schiemann, Olav

    2007-01-01

    In ribozyme catalysis, metal ions are generally known to make structural and∕or mechanistic contributions. The catalytic activity of a previously described Diels-Alderase ribozyme was found to depend on the concentration of divalent metal ions, and crystallographic data revealed multiple binding sites. Here, we elucidate the interactions of this ribozyme with divalent metal ions in solution using electron paramagnetic resonance (EPR) spectroscopy. Manganese ion titrations revealed five high-affinity Mn2+ binding sites with an upper Kd of 0.6±0.2 μM. In order to characterize each binding site individually, EPR-silent Cd2+ ions were used to saturate the other binding sites. This cadmium-induced EPR silencing showed that the Mn2+ binding sites possess different affinities. In addition, these binding sites could be assigned to three different types, including innersphere, outersphere, and a Mn2+ dimer. Based on simulations, the Mn2+-Mn2+ distance within the dimer was found to be ∼6 Å, which is in good agreement with crystallographic data. The EPR-spectroscopic characterization reveals no structural changes upon addition of a Diels-Alder product, supporting the concept of a preorganized catalytic pocket in the Diels-Alder ribozyme and the structural role of these ions. PMID:19404418

  19. A computational model of the nicotinic acetylcholine binding site

    NASA Astrophysics Data System (ADS)

    Gálvez-ruano, Enrique; Iriepa-Canalda, Isabel; Morreale, Antonio; Lipkowitz, Kenny B.

    1999-01-01

    We have derived a model of the nicotinic acetylcholine binding site. This was accomplished by using three known agonists (acetylcholine, nicotine and epibatidine) as templates around which polypeptide side chains, found to be part of the receptor cavity from published molecular biology studies, are allowed to flow freely in molecular dynamics simulations and mold themselves around these templates. The resulting supramolecular complex should thus be a complement, both in terms of steric effects as well as electronic effects, to the agonists and it should be a good estimation of the true receptor cavity structure. The shapes of those minireceptor cavities equilibrated rapidly on the simulation time scale and their structural congruence is very high, implying that a satisfactory model of the nicotinic acetylcholine binding site has been achieved. The computational methodology was internally tested against two rigid and specific antagonists (dihydro-β-erytroidine and erysoidine), that are expected to give rise to a somewhat differently shaped binding site compared to that derived from the agonists. Using these antagonists as templates there were structural reorganizations of the initial receptor cavities leading to distinctly different cavities compared to agonists. This indicates that adequate times and temperatures were used in our computational protocols to achieve equilibrium structures for the agonists. Overall, both minireceptor geometries for agonists and antagonists are similar with the exception of one amino acid (ARG209).

  20. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE PAGES

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun; ...

    2015-07-13

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  1. Vaccine-elicited antibody that neutralizes H5N1 influenza and variants binds the receptor site and polymorphic sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winarski, Katie L.; Thornburg, Natalie J.; Yu, Yingchun

    Antigenic drift of circulating seasonal influenza viruses necessitates an international vaccine effort to reduce the impact on human health. A critical feature of the seasonal vaccine is that it stimulates an already primed immune system to diversify memory B cells to recognize closely related, but antigenically distinct, influenza glycoproteins (hemagglutinins). Influenza pandemics arise when hemagglutinins to which no preexisting adaptive immunity exists acquire the capacity to infect humans. Hemagglutinin 5 is one subtype to which little preexisting immunity exists and is only a few acquired mutations away from the ability to transmit efficiently between ferrets, and possibly humans. In thismore » paper, we describe the structure and molecular mechanism of neutralization by H5.3, a vaccine-elicited antibody that neutralizes hemagglutinin 5 viruses and variants with expanded host range. H5.3 binds in the receptor-binding site, forming contacts that recapitulate many of the sialic acid interactions, as well as multiple peripheral interactions, yet is not sensitive to mutations that alter sialic acid binding. H5.3 is highly specific for a subset of H5 strains, and this specificity arises from interactions to the periphery of the receptor-binding site. Finally, H5.3 is also extremely potent, despite retaining germ line-like conformational flexibility.« less

  2. Rational design of a conformation-switchable Ca2+- and Tb3+-binding protein without the use of multiple coupled metal-binding sites.

    PubMed

    Li, Shunyi; Yang, Wei; Maniccia, Anna W; Barrow, Doyle; Tjong, Harianto; Zhou, Huan-Xiang; Yang, Jenny J

    2008-10-01

    Ca2+, as a messenger of signal transduction, regulates numerous target molecules via Ca2+-induced conformational changes. Investigation into the determinants for Ca2+-induced conformational change is often impeded by cooperativity between multiple metal-binding sites or protein oligomerization in naturally occurring proteins. To dissect the relative contributions of key determinants for Ca2+-dependent conformational changes, we report the design of a single-site Ca2+-binding protein (CD2.trigger) created by altering charged residues at an electrostatically sensitive location on the surface of the host protein rat Cluster of Differentiation 2 (CD2).CD2.trigger binds to Tb3+ and Ca2+ with dissociation constants of 0.3 +/- 0.1 and 90 +/- 25 microM, respectively. This protein is largely unfolded in the absence of metal ions at physiological pH, but Tb3+ or Ca2+ binding results in folding of the native-like conformation. Neutralization of the charged coordination residues, either by mutation or protonation, similarly induces folding of the protein. The control of a major conformational change by a single Ca2+ ion, achieved on a protein designed without reliance on sequence similarity to known Ca2+-dependent proteins and coupled metal-binding sites, represents an important step in the design of trigger proteins.

  3. Computational Investigation of Cholesterol Binding Sites on Mitochondrial VDAC

    PubMed Central

    2015-01-01

    The mitochondrial voltage-dependent anion channel (VDAC) allows passage of ions and metabolites across the mitochondrial outer membrane. Cholesterol binds mammalian VDAC, and we investigated the effects of binding to human VDAC1 with atomistic molecular dynamics simulations that totaled 1.4 μs. We docked cholesterol to specific sites on VDAC that were previously identified with NMR, and we tested the reliability of multiple docking results in each site with simulations. The most favorable binding modes were used to build a VDAC model with cholesterol occupying five unique sites, and during multiple 100 ns simulations, cholesterol stably and reproducibly remained bound to the protein. For comparison, VDAC was simulated in systems with identical components but with cholesterol initially unbound. The dynamics of loops that connect adjacent β-strands were most affected by bound cholesterol, with the averaged root-mean-square fluctuation (RMSF) of multiple residues altered by 20–30%. Cholesterol binding also stabilized charged residues inside the channel and localized the surrounding electrostatic potentials. Despite this, ion diffusion through the channel was not significantly affected by bound cholesterol, as evidenced by multi-ion potential of mean force measurements. Although we observed modest effects of cholesterol on the open channel, our model will be particularly useful in experiments that investigate how cholesterol affects VDAC function under applied electrochemical forces and also how other ligands and proteins interact with the channel. PMID:25080204

  4. Multiple sup 3 H-oxytocin binding sites in rat myometrial plasma membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crankshaw, D.; Gaspar, V.; Pliska, V.

    1990-01-01

    The affinity spectrum method has been used to analyse binding isotherms for {sup 3}H-oxytocin to rat myometrial plasma membranes. Three populations of binding sites with dissociation constants (Kd) of 0.6-1.5 x 10(-9), 0.4-1.0 x 10(-7) and 7 x 10(-6) mol/l were identified and their existence verified by cluster analysis based on similarities between Kd, binding capacity and Hill coefficient. When experimental values were compared to theoretical curves constructed using the estimated binding parameters, good fits were obtained. Binding parameters obtained by this method were not influenced by the presence of GTP gamma S (guanosine-5'-O-3-thiotriphosphate) in the incubation medium. The bindingmore » parameters agree reasonably well with those found in uterine cells, they support the existence of a medium affinity site and may allow for an explanation of some of the discrepancies between binding and response in this system.« less

  5. The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.

    PubMed Central

    Horton, R. W.; Lowther, S.; Chivers, J.; Jenner, P.; Marsden, C. D.; Testa, B.

    1988-01-01

    1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2850059

  6. Characterization of angiotensin-binding sites in the bovine adrenal and the rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogulja, I.

    1989-01-01

    The first study was designed to determine whether systemically administered MSG affects neurons in the CVOs that are potentially important in mediating angiotensin-dependent responses. Rats were pretreated with MSG and the receptors for angiotensin II were assayed by radioligand binding in brain homogenates from the septum anteroventral third ventricular region (AV3V) and the thalamus/hypothalamus region using {sup 125}I-angiotensin II as the radioligand. The results of this experiment indicate that systematically administered MSG in the rat significantly reduced the number (Bmax) of Ang II receptors in a tissue sample which contained both extra blood-brain barrier organs as well as tissue withinmore » the blood-brain barrier with no change in the affinity (Kd) of the binding sites. The second chapter reports the successful solubilization of bovine adrenal {sup 125}I Ang II and {sup 125}I Sar{sup 1},Ile{sup 8}-Ang II binding sites with the detergent CHAPS. The results of our studies indicate the presence of two angiotensin binding sites. The one site is specific for naturally occurring angiotensins as well as sarcosine-1 substituted angiotensin analogues. The other site which can be optimally stabilized be re-addition of 0.3% CHAPS into the incubation assay binds sarcosine-1 substituted angiotensins exclusively. Hydrophobic interaction chromatography experiments suggest that these sites, possibly, represent distinct proteins. The third chapter discusses the successful solubilization and partial characterization of the rat brain angiotensin receptor.« less

  7. Characterization of the binding of 8-anilinonaphthalene sulphonate to rat class Mu GST M1-1

    PubMed Central

    Kinsley, Nichole; Sayed, Yasien; Armstrong, Richard N.; Dirr, Heini W.

    2008-01-01

    Molecular docking and ANS-displacement experiments indicated that 8-anilinonaphthalene sulphonate (ANS) binds the hydrophobic site (H-site) in the active site of dimeric class Mu rGST M1-1. The naphthalene moiety provides most of the van der Waals contacts at the ANS-binding interface while the anilino group is able to sample different rotamers. The energetics of ANS binding were studied by isothermal titration calorimetry (ITC) over the temperature range of 5–30 °C. Binding is both enthalpically and entropically driven and displays a stoichiometry of one ANS molecule per subunit (or H-site). ANS binding is linked to the uptake of 0.5 protons at pH 6.5. Enthalpy of binding depends linearly upon temperature yielding a ΔCp of −80 ± 4 cal K−1 mol−1 indicating the burial of solvent-exposed nonpolar surface area upon ANS-protein complex formation. While ion-pair interactions between the sulfonate moiety of ANS and protein cationic groups may be significant for other ANS-binding proteins, the binding of ANS to rGST M1-1 is primarily hydrophobic in origin. The binding properties are compared with those of other GSTs and ANS-binding proteins. PMID:18703268

  8. A pseudoreceptor modelling study of the varicella-zoster virus and human thymidine kinase binding sites

    NASA Astrophysics Data System (ADS)

    Greenidge, Paulette A.; Merz, Alfred; Folkers, Gerd

    1995-12-01

    A representative range of pyrimidine nucleoside analogues that are known to inhibit herpes simplex virus (HSV) replication have been used to construct receptor binding site models for the varicella-zoster virus (VZV), thymidine kinase (TK) and human TK1. Given a set of interacting ligands, superimposed in such a manner as to define a pharmacophore, the pseudoreceptor modelling technique Yak provides a means of building binding site models of macromolecules for which no three-dimensional experimental structures are available. Once the models have been evaluated by their ability to reproduce experimental binding data [Vedani et al., J. Am. Chem. Soc., 117 (1995) 4987], they can be used for predictive purposes. Calculated and experimental values of relative binding affinity are compared. Our models suggest that the substitution of one residue may be sufficient to determine ligand subtype affinity.

  9. Binding sites of resveratrol, genistein, and curcumin with milk α- and β-caseins.

    PubMed

    Bourassa, P; Bariyanga, J; Tajmir-Riahi, H A

    2013-02-07

    The binding sites of antioxidant polyphenols resveratrol, genistein, and curcumin are located with milk α- and β-caseins in aqueous solution. FTIR, CD, and fluorescence spectroscopic methods and molecular modeling were used to analyze polyphenol binding sites, the binding constant, and the effects of complexation on casein stability and conformation. Structural analysis showed that polyphenols bind casein via hydrophilic and hydrophobic interactions with the number of bound polyphenol molecules (n) 1.20 for resveratrol, 1.42 for genistein, and 1.43 for curcumin with α-casein and 1.14 for resveratrol, 1.27 for genistein, and 1.27 for curcumin with β-casein. The overall binding constants of the complexes formed are K(res-α-casein) = 1.9 (±0.6) × 10(4) M(-1), K(gen-α-casein) = 1.8 (±0.4) × 10(4) M(-1), and K(cur-α-casein) = 2.8 (±0.8) × 10(4) M(-1) with α-casein and K(res-β-casein) = 2.3 (±0.3) × 10(4) M(-1), K(gen-β-casein) = 3.0 (±0.5) × 10(4) M(-1), and K(cur-β-casein) = 3.1 (±0.5) × 10(4) M(-1) for β-casein. Molecular modeling showed the participation of several amino acids in polyphenol-protein complexes, which were stabilized by the hydrogen bonding network with the free binding energy of -11.56 (resveratrol-α-casein), -12.35 (resveratrol-β-casein), -9.68 (genistein-α-casein), -9.97 (genistein-β-casein), -8.89 (curcumin-α-casein), and -10.70 kcal/mol (curcumin-β-casein). The binding sites of polyphenols are different with α- and β-caseins. Polyphenol binding altered casein conformation with reduction of α-helix, indicating a partial protein destabilization. Caseins might act as carriers to transport polyphenol in vitro.

  10. Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebersole, B.L.J.

    The localization of (/sup 3/H)-d-lysergic acid diethylamide ((/sup 3/H)LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with (/sup 3/H)LSD in vitro revealed substantial specific (/sup 3/H)LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received (/sup 3/H)LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies ofmore » brain areas from mice that received injections of (/sup 3/H)LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free (/sup 3/H)LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of (/sup 3/H)LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of (/sup 3/H)LSD binding in hippocampus was attributable to a lower density of sites labeled by (/sup 3/H)LSD. The pharmacological identify of (/sub 3/H)LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens.« less

  11. SP-A binding sites on bovine alveolar macrophages.

    PubMed

    Plaga, S; Plattner, H; Schlepper-Schaefer, J

    1998-11-25

    Surfactant protein A (SP-A) binding to bovine alveolar macrophages was examined in order to characterize SP-A binding proteins on the cell surface and to isolate putative receptors from these cells that could be obtained in large amounts. Human SP-A, unlabeled or labeled with gold particles, was bound to freshly isolated macrophages and analyzed with ELISA or the transmission electron microscope. Binding of SP-A was inhibited by Ca2+ chelation, by an excess of unlabeled SP-A, or by the presence of 20 mg/ml mannan. We conclude that bovine alveolar macrophages expose binding sites for SP-A that are specific and that depend on Ca2+ and on mannose residues. For isolation of SP-A receptors with homologous SP-A as ligand we isolated SP-A from bovine lung lavage. SDS-PAGE analysis of the purified SP-A showed a protein of 32-36 kDa. Functional integrity of the protein was demonstrated. Bovine SP-A bound to Dynabeads was used to isolate SP-A binding proteins. From the fractionated and blotted proteins of the receptor preparation two proteins bound SP-A in a Ca2+-dependent manner, a 40-kDa protein showing mannose dependency and a 210-kDa protein, showing no mannose sensitivity. Copyright 1998 Academic Press.

  12. Expression and GTP sensitivity of peptide histidine isoleucine high-affinity-binding sites in rat.

    PubMed

    Debaigt, Colin; Meunier, Annie-Claire; Goursaud, Stephanie; Montoni, Alicia; Pineau, Nicolas; Couvineau, Alain; Laburthe, Marc; Muller, Jean-Marc; Janet, Thierry

    2006-07-01

    High-affinity-binding sites for the vasoactive intestinal peptide (VIP) analogs peptide histidine/isoleucine-amide (PHI)/carboxyterminal methionine instead of isoleucine (PHM) are expressed in numerous tissues in the body but the nature of their receptors remains to be elucidated. The data presented indicate that PHI discriminated a high-affinity guanosine 5'-triphosphate (GTP)-insensitive-binding subtype that represented the totality of the PHI-binding sites in newborn rat tissues but was differentially expressed in adult animals. The GTP-insensitive PHI/PHM-binding sites were also observed in CHO cells over expressing the VPAC2 but not the VPAC1 VIP receptor.

  13. Common Anesthetic-binding Site for Inhibition of Pentameric Ligand-gated Ion Channels.

    PubMed

    Kinde, Monica N; Bu, Weiming; Chen, Qiang; Xu, Yan; Eckenhoff, Roderic G; Tang, Pei

    2016-03-01

    Identifying functionally relevant anesthetic-binding sites in pentameric ligand-gated ion channels (pLGICs) is an important step toward understanding the molecular mechanisms underlying anesthetic action. The anesthetic propofol is known to inhibit cation-conducting pLGICs, including a prokaryotic pLGIC from Erwinia chrysanthemi (ELIC), but the sites responsible for functional inhibition remain undetermined. We photolabeled ELIC with a light-activated derivative of propofol (AziPm) and performed fluorine-19 nuclear magnetic resonance experiments to support propofol binding to a transmembrane domain (TMD) intrasubunit pocket. To differentiate sites responsible for propofol inhibition from those that are functionally irrelevant, we made an ELIC-γ-aminobutyric acid receptor (GABAAR) chimera that replaced the ELIC-TMD with the α1β3GABAAR-TMD and compared functional responses of ELIC-GABAAR and ELIC with propofol modulations. Photolabeling showed multiple AziPm-binding sites in the extracellular domain (ECD) but only one site in the TMD with labeled residues M265 and F308 in the resting state of ELIC. Notably, this TMD site is an intrasubunit pocket that overlaps with binding sites for anesthetics, including propofol, found previously in other pLGICs. Fluorine-19 nuclear magnetic resonance experiments supported propofol binding to this TMD intrasubunit pocket only in the absence of agonist. Functional measurements of ELIC-GABAAR showed propofol potentiation of the agonist-elicited current instead of inhibition observed on ELIC. The distinctly different responses of ELIC and ELIC-GABAAR to propofol support the functional relevance of propofol binding to the TMD. Combining the newly identified TMD intrasubunit pocket in ELIC with equivalent TMD anesthetic sites found previously in other cationic pLGICs, we propose this TMD pocket as a common site for anesthetic inhibition of pLGICs.

  14. Conformational Sampling and Binding Site Assessment of Suppression of Tumorigenicity 2 Ectodomain

    PubMed Central

    Yang, Chao-Yie; Delproposto, James; Chinnaswamy, Krishnapriya; Brown, William Clay; Wang, Shuying; Stuckey, Jeanne A.; Wang, Xinquan

    2016-01-01

    Suppression of Tumorigenicity 2 (ST2), a member of the interleukin-1 receptor (IL-1R) family, activates type 2 immune responses to pathogens and tissue damage via binding to IL-33. Dysregulated responses contribute to asthma, graft-versus-host and autoinflammatory diseases and disorders. To study ST2 structure for inhibitor development, we performed the principal component (PC) analysis on the crystal structures of IL1-1R1, IL1-1R2, ST2 and the refined ST2 ectodomain (ST2ECD) models, constructed from previously reported small-angle X-ray scattering data. The analysis facilitates mapping of the ST2ECD conformations to PC subspace for characterizing structural changes. Extensive coverage of ST2ECD conformations was then obtained using the accelerated molecular dynamics simulations started with the IL-33 bound ST2ECD structure as instructed by their projected locations on the PC subspace. Cluster analysis of all conformations further determined representative conformations of ST2ECD ensemble in solution. Alignment of the representative conformations with the ST2/IL-33 structure showed that the D3 domain of ST2ECD (containing D1-D3 domains) in most conformations exhibits no clashes with IL-33 in the crystal structure. Our experimental binding data informed that the D1-D2 domain of ST2ECD contributes predominantly to the interaction between ST2ECD and IL-33 underscoring the importance of the D1-D2 domain in binding. Computational binding site assessment revealed one third of the total detected binding sites in the representative conformations may be suitable for binding to potent small molecules. Locations of these sites include the D1-D2 domain ST2ECD and modulation sites conformed to ST2ECD conformations. Our study provides structural models and analyses of ST2ECD that could be useful for inhibitor discovery. PMID:26735493

  15. Impact of germline and somatic missense variations on drug binding sites.

    PubMed

    Yan, C; Pattabiraman, N; Goecks, J; Lam, P; Nayak, A; Pan, Y; Torcivia-Rodriguez, J; Voskanian, A; Wan, Q; Mazumder, R

    2017-03-01

    Advancements in next-generation sequencing (NGS) technologies are generating a vast amount of data. This exacerbates the current challenge of translating NGS data into actionable clinical interpretations. We have comprehensively combined germline and somatic nonsynonymous single-nucleotide variations (nsSNVs) that affect drug binding sites in order to investigate their prevalence. The integrated data thus generated in conjunction with exome or whole-genome sequencing can be used to identify patients who may not respond to a specific drug because of alterations in drug binding efficacy due to nsSNVs in the target protein's gene. To identify the nsSNVs that may affect drug binding, protein-drug complex structures were retrieved from Protein Data Bank (PDB) followed by identification of amino acids in the protein-drug binding sites using an occluded surface method. Then, the germline and somatic mutations were mapped to these amino acids to identify which of these alter protein-drug binding sites. Using this method we identified 12 993 amino acid-drug binding sites across 253 unique proteins bound to 235 unique drugs. The integration of amino acid-drug binding sites data with both germline and somatic nsSNVs data sets revealed 3133 nsSNVs affecting amino acid-drug binding sites. In addition, a comprehensive drug target discovery was conducted based on protein structure similarity and conservation of amino acid-drug binding sites. Using this method, 81 paralogs were identified that could serve as alternative drug targets. In addition, non-human mammalian proteins bound to drugs were used to identify 142 homologs in humans that can potentially bind to drugs. In the current protein-drug pairs that contain somatic mutations within their binding site, we identified 85 proteins with significant differential gene expression changes associated with specific cancer types. Information on protein-drug binding predicted drug target proteins and prevalence of both somatic and

  16. Oxytocin binding sites in bovine mammary tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin.

    1989-01-01

    Oxytocin binding sites were identified and characterized in bovine mammary tissue. ({sup 3}H)-oxytocin binding reached equilibrium by 50 min at 20{degree}C and by 8 hr at 4{degree}C. The half-time of displacement at 20{degree}C was approximately 1 hr. Thyrotropin releasing hormone, adrenocorticotropin, angiotensin I, angiotensin II, pentagastrin, bradykinin, xenopsin and L-valyl-histidyl-L-leucyl-L-threonyl-L-prolyl-L-valyl-L-glutamyl-L-lysine were not competitive. In the presence of 10 nM LiCl, addition of oxytocin to dispersed bovine mammary cells, in which phosphatidylinositol was pre-labelled, caused a time and dose-dependent increase in radioactive inositiol monophosphate incorporation. The possibility that there are distinct vasopressin receptors in bovine mammary tissue was investigated. ({sup 3}H)-vasopressinmore » binding reached equilibrium by 40 min at 20{degree}. The half-time of displacement at 20{degree}C was approximately 1 hr. The ability of the peptides to inhibit ({sup 3}H)-vasopressin binding was: (Thr{sup 4},Gly{sup 7})-oxytocin > Arg{sup 8}-vasopressin > (lys{sup 8})-vasopressin > (Deamino{sup 1},D-arg{sup 8})-vasopressin > oxytocin > d (CH{sub 2}){sub 5}Tyr(Me)AVP.« less

  17. Locating the binding sites of folic acid with milk α- and β-caseins.

    PubMed

    Bourassa, P; Tajmir-Riahi, H A

    2012-01-12

    We located the binding sites of folic acid with milk α- and β-caseins at physiological conditions, using constant protein concentration and various folic acid contents. FTIR, UV-visible, and fluorescence spectroscopic methods as well as molecular modeling were used to analyze folic acid binding sites, the binding constant, and the effect of folic acid interaction on the stability and conformation of caseins. Structural analysis showed that folic acid binds caseins via both hydrophilic and hydrophobic contacts with overall binding constants of K(folic acid-α-caseins) = 4.8 (±0.6) × 10(4) M(-1) and K(folic acid-β-caseins) = 7.0 (±0.9) × 10(4) M(-1). The number of bound acid molecules per protein was 1.5 (±0.4) for α-casein and 1.4 (±0.3) for β-casein complexes. Molecular modeling showed different binding sites for folic acid on α- and β-caseins. The participation of several amino acids in folic acid-protein complexes was observed, which was stabilized by hydrogen bonding network and the free binding energy of -7.7 kcal/mol (acid-α-casein) and -8.1 kcal/mol (acid-β-casein). Folic acid complexation altered protein secondary structure by the reduction of α-helix from 35% (free α-casein) to 33% (acid-complex) and 32% (free β-casein) to 26% (acid-complex) indicating a partial protein destabilization. Caseins might act as carriers for transportation of folic acid to target molecules.

  18. sc-PDB: a database for identifying variations and multiplicity of 'druggable' binding sites in proteins.

    PubMed

    Meslamani, Jamel; Rognan, Didier; Kellenberger, Esther

    2011-05-01

    The sc-PDB database is an annotated archive of druggable binding sites extracted from the Protein Data Bank. It contains all-atoms coordinates for 8166 protein-ligand complexes, chosen for their geometrical and physico-chemical properties. The sc-PDB provides a functional annotation for proteins, a chemical description for ligands and the detailed intermolecular interactions for complexes. The sc-PDB now includes a hierarchical classification of all the binding sites within a functional class. The sc-PDB entries were first clustered according to the protein name indifferent of the species. For each cluster, we identified dissimilar sites (e.g. catalytic and allosteric sites of an enzyme). SCOPE AND APPLICATIONS: The classification of sc-PDB targets by binding site diversity was intended to facilitate chemogenomics approaches to drug design. In ligand-based approaches, it avoids comparing ligands that do not share the same binding site. In structure-based approaches, it permits to quantitatively evaluate the diversity of the binding site definition (variations in size, sequence and/or structure). The sc-PDB database is freely available at: http://bioinfo-pharma.u-strasbg.fr/scPDB.

  19. The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes.

    PubMed

    Atambayeva, Shara; Niyazova, Raigul; Ivashchenko, Anatoliy; Pyrkova, Anna; Pinsky, Ilya; Akimniyazova, Aigul; Labeit, Siegfried

    2017-06-01

    Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3'UTR (214 sites), CDS (3 sites), and 5'UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3'UTRs. The miR-619-5p binding site in the 5'UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins. Binding sites of miR-619-5p in the mRNAs of transcription factor genes ZNF429 and ZNF429 encode the AHACNP oligopeptide in another reading frame. Binding sites of miR-619-5p in the 3'UTRs of all human target genes are also present in the 3'UTRs of orthologous genes of mammals. The completely complementary binding sites for miR-619-5p are conservative in the orthologous mammalian genes. The majority of miR-619-5p binding sites are located in the 3'UTRs but some genes have miRNA binding sites in the 5'UTRs of mRNAs. Several genes have binding sites for miRNAs in the CDSs that are read in different open reading frames. Identical nucleotide sequences of binding sites encode different amino acids in different proteins. The binding sites of miR-619-5p

  20. Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Hamouda, Ayman K.; Wang, Ze-Jun; Stewart, Deirdre S.; Jain, Atul D.; Glennon, Richard A.

    2015-01-01

    Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nAChRs that, at concentrations >1 µM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβεδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ∼1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([3H]phencyclidine; IC50 = 4 μM) than in the resting state ([3H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([3H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [3H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [3H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the nonselective nAChR PAMs galantamine and physostigmine at the canonical α-γ interface containing the transmitter binding sites and at the noncanonical δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [3H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity. PMID:25870334

  1. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP

    PubMed Central

    Hafner, Markus; Landthaler, Markus; Burger, Lukas; Khorshid, Mohsen; Hausser, Jean; Berninger, Philipp; Rothballer, Andrea; Ascano, Manuel; Jungkamp, Anna-Carina; Munschauer, Mathias; Ulrich, Alexander; Wardle, Greg S.; Dewell, Scott; Zavolan, Mihaela; Tuschl, Thomas

    2010-01-01

    Summary RNA transcripts are subject to post-transcriptional gene regulation involving hundreds of RNA-binding proteins (RBPs) and microRNA-containing ribonucleoprotein complexes (miRNPs) expressed in a cell-type dependent fashion. We developed a cell-based crosslinking approach to determine at high resolution and transcriptome-wide the binding sites of cellular RBPs and miRNPs. The crosslinked sites are revealed by thymidine to cytidine transitions in the cDNAs prepared from immunopurified RNPs of 4-thiouridine-treated cells. We determined the binding sites and regulatory consequences for several intensely studied RBPs and miRNPs, including PUM2, QKI, IGF2BP1-3, AGO/EIF2C1-4 and TNRC6A-C. Our study revealed that these factors bind thousands of sites containing defined sequence motifs and have distinct preferences for exonic versus intronic or coding versus untranslated transcript regions. The precise mapping of binding sites across the transcriptome will be critical to the interpretation of the rapidly emerging data on genetic variation between individuals and how these variations contribute to complex genetic diseases. PMID:20371350

  2. Recognition of AT-Rich DNA Binding Sites by the MogR Repressor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Aimee; Higgins, Darren E.; Panne, Daniel

    2009-07-22

    The MogR transcriptional repressor of the intracellular pathogen Listeria monocytogenes recognizes AT-rich binding sites in promoters of flagellar genes to downregulate flagellar gene expression during infection. We describe here the 1.8 A resolution crystal structure of MogR bound to the recognition sequence 5' ATTTTTTAAAAAAAT 3' present within the flaA promoter region. Our structure shows that MogR binds as a dimer. Each half-site is recognized in the major groove by a helix-turn-helix motif and in the minor groove by a loop from the symmetry-related molecule, resulting in a 'crossover' binding mode. This oversampling through minor groove interactions is important for specificity.more » The MogR binding site has structural features of A-tract DNA and is bent by approximately 52 degrees away from the dimer. The structure explains how MogR achieves binding specificity in the AT-rich genome of L. monocytogenes and explains the evolutionary conservation of A-tract sequence elements within promoter regions of MogR-regulated flagellar genes.« less

  3. RNA-Binding Protein Dnd1 Promotes Breast Cancer Apoptosis by Stabilizing the Bim mRNA in a miR-221 Binding Site.

    PubMed

    Cheng, Feng; Pan, Ying; Lu, Yi-Min; Zhu, Lei; Chen, Shuzheng

    2017-01-01

    RNA-binding proteins (RBPs) and miRNAs are capable of controlling processes in normal development and cancer. Both of them could determine RNA transcripts fate from synthesis to decay. One such RBP, Dead end (Dnd1), is essential for regulating germ-cell viability and suppresses the germ-cell tumors development, yet how it exerts its functions in breast cancer has remained unresolved. The level of Dnd1 was detected in 21 cancerous tissues paired with neighboring normal tissues by qRT-PCR. We further annotated TCGA (The Cancer Genome Atlas) mRNA expression profiles and found that the expression of Dnd1 and Bim is positively correlated ( p = 0.04). Patients with higher Dnd1 expression level had longer overall survival ( p = 0.0014) by KM Plotter tool. Dnd1 knockdown in MCF-7 cells decreased Bim expression levels and inhibited apoptosis. While knockdown of Dnd1 promoted the decay of Bim mRNA 3'UTR, the stability of Bim-5'UTR was not affected. In addition, mutation of miR-221-binding site in Bim-3'UTR canceled the effect of Dnd1 on Bim mRNA. Knockdown of Dnd1 in MCF-7 cells confirmed that Dnd1 antagonized miR-221-inhibitory effects on Bim expression. Overall, our findings indicate that Dnd1 facilitates apoptosis by increasing the expression of Bim via its competitive combining with miR-221 in Bim-3'UTR. The new function of Dnd1 may contribute to a vital role in breast cancer development.

  4. Comparison of Saccharomyces cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site.

    PubMed

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R; Kenniston, Jon A; Mendrola, Jeannine M; Ferguson, Kathryn M; Lemmon, Mark A

    2015-02-03

    F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site

    DOE PAGES

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; ...

    2015-01-22

    F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here in this paper, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound tomore » an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. In conclusion, our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence.« less

  6. Identification of key binding site residues of MCT1 for AR-C155858 reveals the molecular basis of its isoform selectivity

    PubMed Central

    Nancolas, Bethany; Sessions, Richard B.; Halestrap, Andrew P.

    2014-01-01

    The proton-linked monocarboxylate transporters (MCTs) are required for lactic acid transport into and out of all mammalian cells. Thus, they play an essential role in tumour cells that are usually highly glycolytic and are promising targets for anti-cancer drugs. AR-C155858 is a potent MCT1 inhibitor (Ki ~2 nM) that also inhibits MCT2 when associated with basigin but not MCT4. Previous work [Ovens, M.J. et al. (2010) Biochem. J. 425, 523–530] revealed that AR-C155858 binding to MCT1 occurs from the intracellular side and involves transmembrane helices (TMs) 7–10. In the present paper, we generate a molecular model of MCT4 based on our previous models of MCT1 and identify residues in the intracellular substrate-binding cavity that differ significantly between MCT4 and MCT1/MCT2 and so might account for differences in inhibitor binding. We tested their involvement using site-directed mutagenesis (SDM) of MCT1 to change residues individually or in combination with their MCT4 equivalent and determined inhibitor sensitivity following expression in Xenopus oocytes. Phe360 and Ser364 were identified as important for AR-C155858 binding with the F360Y/S364G mutant exhibiting >100-fold reduction in inhibitor sensitivity. To refine the binding site further, we used molecular dynamics (MD) simulations and additional SDM. This approach implicated six more residues whose involvement was confirmed by both transport studies and [3H]-AR-C155858 binding to oocyte membranes. Taken together, our data imply that Asn147, Arg306 and Ser364 are important for directing AR-C155858 to its final binding site which involves interaction of the inhibitor with Lys38, Asp302 and Phe360 (residues that also play key roles in the translocation cycle) and also Leu274 and Ser278. PMID:25437897

  7. WRNIP1 accumulates at laser light irradiated sites rapidly via its ubiquitin-binding zinc finger domain and independently from its ATPase domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Hironoshin; Yoshimura, Akari, E-mail: akari_yo@musashino-u.ac.jp; Edo, Takato

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer WRNIP1 accumulates in laser light irradiated sites very rapidly via UBZ domain. Black-Right-Pointing-Pointer The ATPase domain of WRNIP1 is dispensable for its accumulation. Black-Right-Pointing-Pointer The accumulation of WRNIP1 seems not to be dependent on the interaction with WRN. -- Abstract: WRNIP1 (Werner helicase-interacting protein 1) was originally identified as a protein that interacts with the Werner syndrome responsible gene product. WRNIP1 contains a ubiquitin-binding zinc-finger (UBZ) domain in the N-terminal region and two leucine zipper motifs in the C-terminal region. In addition, it possesses an ATPase domain in the middle of the molecule and the lysine residues servingmore » as ubiquitin acceptors in the entire of the molecule. Here, we report that WRNIP1 accumulates in laser light irradiated sites very rapidly via its ubiquitin-binding zinc finger domain, which is known to bind polyubiquitin and to be involved in ubiquitination of WRNIP1 itself. The accumulation of WRNIP1 in laser light irradiated sites also required the C-terminal region containing two leucine zippers, which is reportedly involved in the oligomerization of WRNIP1. Mutated WRNIP1 with a deleted ATPase domain or with mutations in lysine residues, which serve as ubiquitin acceptors, accumulated in laser light irradiated sites, suggesting that the ATPase domain of WRNIP1 and ubiquitination of WRNIP1 are dispensable for the accumulation.« less

  8. Transcription Factor Information System (TFIS): A Tool for Detection of Transcription Factor Binding Sites.

    PubMed

    Narad, Priyanka; Kumar, Abhishek; Chakraborty, Amlan; Patni, Pranav; Sengupta, Abhishek; Wadhwa, Gulshan; Upadhyaya, K C

    2017-09-01

    Transcription factors are trans-acting proteins that interact with specific nucleotide sequences known as transcription factor binding site (TFBS), and these interactions are implicated in regulation of the gene expression. Regulation of transcriptional activation of a gene often involves multiple interactions of transcription factors with various sequence elements. Identification of these sequence elements is the first step in understanding the underlying molecular mechanism(s) that regulate the gene expression. For in silico identification of these sequence elements, we have developed an online computational tool named transcription factor information system (TFIS) for detecting TFBS for the first time using a collection of JAVA programs and is mainly based on TFBS detection using position weight matrix (PWM). The database used for obtaining position frequency matrices (PFM) is JASPAR and HOCOMOCO, which is an open-access database of transcription factor binding profiles. Pseudo-counts are used while converting PFM to PWM, and TFBS detection is carried out on the basis of percent score taken as threshold value. TFIS is equipped with advanced features such as direct sequence retrieving from NCBI database using gene identification number and accession number, detecting binding site for common TF in a batch of gene sequences, and TFBS detection after generating PWM from known raw binding sequences in addition to general detection methods. TFIS can detect the presence of potential TFBSs in both the directions at the same time. This feature increases its efficiency. And the results for this dual detection are presented in different colors specific to the orientation of the binding site. Results obtained by the TFIS are more detailed and specific to the detected TFs as integration of more informative links from various related web servers are added in the result pages like Gene Ontology, PAZAR database and Transcription Factor Encyclopedia in addition to NCBI and Uni

  9. Identification and characterization of the sodium-binding site of activated protein C.

    PubMed

    He, X; Rezaie, A R

    1999-02-19

    Activated protein C (APC) requires both Ca2+ and Na+ for its optimal catalytic function. In contrast to the Ca2+-binding sites, the Na+-binding site(s) of APC has not been identified. Based on a recent study with thrombin, the 221-225 loop is predicted to be a potential Na+-binding site in APC. The sequence of this loop is not conserved in trypsin. We engineered a Gla domainless form of protein C (GDPC) in which the 221-225 loop was replaced with the corresponding loop of trypsin. We found that activated GDPC (aGDPC) required Na+ (or other alkali cations) for its amidolytic activity with dissociation constant (Kd(app)) = 44.1 +/- 8.6 mM. In the presence of Ca2+, however, the requirement for Na+ by aGDPC was eliminated, and Na+ stimulated the cleavage rate 5-6-fold with Kd(app) = 2.3 +/- 0.3 mM. Both cations were required for efficient factor Va inactivation by aGDPC. In the presence of Ca2+, the catalytic function of the mutant was independent of Na+. Unlike aGDPC, the mutant did not discriminate among monovalent cations. We conclude that the 221-225 loop is a Na+-binding site in APC and that an allosteric link between the Na+ and Ca2+ binding loops modulates the structure and function of this anticoagulant enzyme.

  10. Discovery and information-theoretic characterization of transcription factor binding sites that act cooperatively.

    PubMed

    Clifford, Jacob; Adami, Christoph

    2015-09-02

    Transcription factor binding to the surface of DNA regulatory regions is one of the primary causes of regulating gene expression levels. A probabilistic approach to model protein-DNA interactions at the sequence level is through position weight matrices (PWMs) that estimate the joint probability of a DNA binding site sequence by assuming positional independence within the DNA sequence. Here we construct conditional PWMs that depend on the motif signatures in the flanking DNA sequence, by conditioning known binding site loci on the presence or absence of additional binding sites in the flanking sequence of each site's locus. Pooling known sites with similar flanking sequence patterns allows for the estimation of the conditional distribution function over the binding site sequences. We apply our model to the Dorsal transcription factor binding sites active in patterning the Dorsal-Ventral axis of Drosophila development. We find that those binding sites that cooperate with nearby Twist sites on average contain about 0.5 bits of information about the presence of Twist transcription factor binding sites in the flanking sequence. We also find that Dorsal binding site detectors conditioned on flanking sequence information make better predictions about what is a Dorsal site relative to background DNA than detection without information about flanking sequence features.

  11. Identification of Propofol Binding Sites in a Nicotinic Acetylcholine Receptor with a Photoreactive Propofol Analog*

    PubMed Central

    Jayakar, Selwyn S.; Dailey, William P.; Eckenhoff, Roderic G.; Cohen, Jonathan B.

    2013-01-01

    Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site. PMID:23300078

  12. Receptor-ligand binding sites and virtual screening.

    PubMed

    Hattotuwagama, Channa K; Davies, Matthew N; Flower, Darren R

    2006-01-01

    Within the pharmaceutical industry, the ultimate source of continuing profitability is the unremitting process of drug discovery. To be profitable, drugs must be marketable: legally novel, safe and relatively free of side effects, efficacious, and ideally inexpensive to produce. While drug discovery was once typified by a haphazard and empirical process, it is now increasingly driven by both knowledge of the receptor-mediated basis of disease and how drug molecules interact with receptors and the wider physiome. Medicinal chemistry postulates that to understand a congeneric ligand series, or set thereof, is to understand the nature and requirements of a ligand binding site. Likewise, structural molecular biology posits that to understand a binding site is to understand the nature of ligands bound therein. Reality sits somewhere between these extremes, yet subsumes them both. Complementary to rules of ligand design, arising through decades of medicinal chemistry, structural biology and computational chemistry are able to elucidate the nature of binding site-ligand interactions, facilitating, at both pragmatic and conceptual levels, the drug discovery process.

  13. Anatomy of an engineered NAD-binding site.

    PubMed Central

    Mittl, P. R.; Berry, A.; Scrutton, N. S.; Perham, R. N.; Schulz, G. E.

    1994-01-01

    The coenzyme specificity of Escherichia coli glutathione reductase was switched from NADP to NAD by modifying the environment of the 2'-phosphate binding site through a set of point mutations: A179G, A183G, V197E, R198M, K199F, H200D, and R204P (Scrutton NS, Berry A, Perham RN, 1990, Nature 343:38-43). In order to analyze the structural changes involved, we have determined 4 high-resolution crystal structures, i.e., the structures of the wild-type enzyme (1.86 A resolution, R-factor of 16.8%), of the wild-type enzyme ligated with NADP (2.0 A, 20.8%), of the NAD-dependent mutant (1.74 A, 16.8%), and of the NAD-dependent mutant ligated with NAD (2.2 A, 16.9%). A comparison of these structures reveals subtle differences that explain details of the specificity change. In particular, a peptide rotation occurs close to the adenosine ribose, with a concomitant change of the ribose pucker. The mutations cause a contraction of the local chain fold. Furthermore, the engineered NAD-binding site assumes a less rigid structure than the NADP site of the wild-type enzyme. A superposition of the ligated structures shows a displacement of NAD versus NADP such that the electron pathway from the nicotinamide ring to FAD is elongated, which may explain the lower catalytic efficiency of the mutant. Because the nicotinamide is as much as 15 A from the sites of the mutations, this observation reminds us that mutations may have important long-range consequences that are difficult to anticipate. PMID:7833810

  14. Activation of erythropoietin receptor in the absence of hormone by a peptide that binds to a domain different from the hormone binding site

    PubMed Central

    Naranda, Tatjana; Wong, Kenneth; Kaufman, R. Ilene; Goldstein, Avram; Olsson, Lennart

    1999-01-01

    Applying a homology search method previously described, we identified a sequence in the extracellular dimerization site of the erythropoietin receptor, distant from the hormone binding site. A peptide identical to that sequence was synthesized. Remarkably, it activated receptor signaling in the absence of erythropoietin. Neither the peptide nor the hormone altered the affinity of the other for the receptor; thus, the peptide does not bind to the hormone binding site. The combined activation of signal transduction by hormone and peptide was strongly synergistic. In mice, the peptide acted like the hormone, protecting against the decrease in hematocrit caused by carboplatin. PMID:10377456

  15. Calorimetric studies of the interactions of metalloenzyme active site mimetics with zinc-binding inhibitors.

    PubMed

    Robinson, Sophia G; Burns, Philip T; Miceli, Amanda M; Grice, Kyle A; Karver, Caitlin E; Jin, Lihua

    2016-07-19

    The binding of drugs to metalloenzymes is an intricate process that involves several interactions, including binding of the drug to the enzyme active site metal, as well as multiple interactions between the drug and the enzyme residues. In order to determine the free energy contribution of Zn(2+) binding by known metalloenzyme inhibitors without the other interactions, valid active site zinc structural mimetics must be formed and binding studies need to be performed in biologically relevant conditions. The potential of each of five ligands to form a structural mimetic with Zn(2+) was investigated in buffer using Isothermal Titration Calorimetry (ITC). All five ligands formed strong 1 : 1 (ligand : Zn(2+)) binary complexes. The complexes were used in further ITC experiments to study their interaction with 8-hydroxyquinoline (8-HQ) and/or acetohydroxamic acid (AHA), two bidentate anionic zinc-chelating enzyme inhibitors. It was found that tetradentate ligands were not suitable for creating zinc structural mimetics for inhibitor binding in solution due to insufficient coordination sites remaining on Zn(2+). A stable binary complex, [Zn(BPA)](2+), which was formed by a tridentate ligand, bis(2-pyridylmethyl)amine (BPA), was found to bind one AHA in buffer or a methanol : buffer mixture (60 : 40 by volume) at pH 7.25 or one 8-HQ in the methanol : buffer mixture at pH 6.80, making it an effective structural mimetic for the active site of zinc metalloenzymes. These results are consistent with the observation that metalloenzyme active site zinc ions have three residues coordinated to them, leaving one or two sites open for inhibitors to bind. Our findings indicate that Zn(BPA)X2 can be used as an active site structural mimetic for zinc metalloenzymes for estimating the free energy contribution of zinc binding to the overall inhibitor active site interactions. Such use will help aid in the rational design of inhibitors to a variety of zinc metalloenzymes.

  16. A sarcoidosis clinician's perspective of MHC functional elements outside the antigen binding site.

    PubMed

    Judson, Marc A

    2018-05-30

    Sarcoidosis is a multisystem granulomatous disease of unknown cause. Evidence supports an integral role for interactions at the MHC binding site in the development of sarcoidosis. However, despite this evidence, there are clinical data that suggest that additional mechanisms are involved in the immunopathogenesis of this disease. This manuscript provides a brief clinical description of sarcoidosis, and a clinician's perspective of the immunopathogenesis of sarcoidosis in terms of the MHC binding site, MHC functional elements beyond the binding site, and other possible alternative mechanisms. Input from clinicians will be essential in establishing the immunologic cause of sarcoidosis as a detailed phenotypic characterization of disease will be required. Copyright © 2018. Published by Elsevier Inc.

  17. Probing binding hot spots at protein-RNA recognition sites.

    PubMed

    Barik, Amita; Nithin, Chandran; Karampudi, Naga Bhushana Rao; Mukherjee, Sunandan; Bahadur, Ranjit Prasad

    2016-01-29

    We use evolutionary conservation derived from structure alignment of polypeptide sequences along with structural and physicochemical attributes of protein-RNA interfaces to probe the binding hot spots at protein-RNA recognition sites. We find that the degree of conservation varies across the RNA binding proteins; some evolve rapidly compared to others. Additionally, irrespective of the structural class of the complexes, residues at the RNA binding sites are evolutionary better conserved than those at the solvent exposed surfaces. For recognitions involving duplex RNA, residues interacting with the major groove are better conserved than those interacting with the minor groove. We identify multi-interface residues participating simultaneously in protein-protein and protein-RNA interfaces in complexes where more than one polypeptide is involved in RNA recognition, and show that they are better conserved compared to any other RNA binding residues. We find that the residues at water preservation site are better conserved than those at hydrated or at dehydrated sites. Finally, we develop a Random Forests model using structural and physicochemical attributes for predicting binding hot spots. The model accurately predicts 80% of the instances of experimental ΔΔG values in a particular class, and provides a stepping-stone towards the engineering of protein-RNA recognition sites with desired affinity. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Searching for transcription factor binding sites in vector spaces

    PubMed Central

    2012-01-01

    Background Computational approaches to transcription factor binding site identification have been actively researched in the past decade. Learning from known binding sites, new binding sites of a transcription factor in unannotated sequences can be identified. A number of search methods have been introduced over the years. However, one can rarely find one single method that performs the best on all the transcription factors. Instead, to identify the best method for a particular transcription factor, one usually has to compare a handful of methods. Hence, it is highly desirable for a method to perform automatic optimization for individual transcription factors. Results We proposed to search for transcription factor binding sites in vector spaces. This framework allows us to identify the best method for each individual transcription factor. We further introduced two novel methods, the negative-to-positive vector (NPV) and optimal discriminating vector (ODV) methods, to construct query vectors to search for binding sites in vector spaces. Extensive cross-validation experiments showed that the proposed methods significantly outperformed the ungapped likelihood under positional background method, a state-of-the-art method, and the widely-used position-specific scoring matrix method. We further demonstrated that motif subtypes of a TF can be readily identified in this framework and two variants called the k NPV and k ODV methods benefited significantly from motif subtype identification. Finally, independent validation on ChIP-seq data showed that the ODV and NPV methods significantly outperformed the other compared methods. Conclusions We conclude that the proposed framework is highly flexible. It enables the two novel methods to automatically identify a TF-specific subspace to search for binding sites. Implementations are available as source code at: http://biogrid.engr.uconn.edu/tfbs_search/. PMID:23244338

  19. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome.

    PubMed

    Dresch, Jacqueline M; Zellers, Rowan G; Bork, Daniel K; Drewell, Robert A

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development.

  20. Nucleotide Interdependency in Transcription Factor Binding Sites in the Drosophila Genome

    PubMed Central

    Dresch, Jacqueline M.; Zellers, Rowan G.; Bork, Daniel K.; Drewell, Robert A.

    2016-01-01

    A long-standing objective in modern biology is to characterize the molecular components that drive the development of an organism. At the heart of eukaryotic development lies gene regulation. On the molecular level, much of the research in this field has focused on the binding of transcription factors (TFs) to regulatory regions in the genome known as cis-regulatory modules (CRMs). However, relatively little is known about the sequence-specific binding preferences of many TFs, especially with respect to the possible interdependencies between the nucleotides that make up binding sites. A particular limitation of many existing algorithms that aim to predict binding site sequences is that they do not allow for dependencies between nonadjacent nucleotides. In this study, we use a recently developed computational algorithm, MARZ, to compare binding site sequences using 32 distinct models in a systematic and unbiased approach to explore nucleotide dependencies within binding sites for 15 distinct TFs known to be critical to Drosophila development. Our results indicate that many of these proteins have varying levels of nucleotide interdependencies within their DNA recognition sequences, and that, in some cases, models that account for these dependencies greatly outperform traditional models that are used to predict binding sites. We also directly compare the ability of different models to identify the known KRUPPEL TF binding sites in CRMs and demonstrate that a more complex model that accounts for nucleotide interdependencies performs better when compared with simple models. This ability to identify TFs with critical nucleotide interdependencies in their binding sites will lead to a deeper understanding of how these molecular characteristics contribute to the architecture of CRMs and the precise regulation of transcription during organismal development. PMID:27330274

  1. The chromodomain of Tf1 integrase promotes binding to cDNA and mediates target site selection.

    PubMed

    Chatterjee, Atreyi Ghatak; Leem, Young Eun; Kelly, Felice D; Levin, Henry L

    2009-03-01

    The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDDelta, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDDelta caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting.

  2. The influence of repressor DNA binding site architecture on transcriptional control.

    PubMed

    Park, Dan M; Kiley, Patricia J

    2014-08-26

    How the architecture of DNA binding sites dictates the extent of repression of promoters is not well understood. Here, we addressed the importance of the number and information content of the three direct repeats (DRs) in the binding and repression of the icdA promoter by the phosphorylated form of the global Escherichia coli repressor ArcA (ArcA-P). We show that decreasing the information content of the two sites with the highest information (DR1 and DR2) eliminated ArcA binding to all three DRs and ArcA repression of icdA. Unexpectedly, we also found that DR3 occupancy functions principally in repression, since mutation of this low-information-content site both eliminated DNA binding to DR3 and significantly weakened icdA repression, despite the fact that binding to DR1 and DR2 was intact. In addition, increasing the information content of any one of the three DRs or addition of a fourth DR increased ArcA-dependent repression but perturbed signal-dependent regulation of repression. Thus, our data show that the information content and number of DR elements are critical architectural features for maintaining a balance between high-affinity binding and signal-dependent regulation of icdA promoter function in response to changes in ArcA-P levels. Optimization of such architectural features may be a common strategy to either dampen or enhance the sensitivity of DNA binding among the members of the large OmpR/PhoB family of regulators as well as other transcription factors. In Escherichia coli, the response regulator ArcA maintains homeostasis of redox carriers under O2-limiting conditions through a comprehensive repression of carbon oxidation pathways that require aerobic respiration to recycle redox carriers. Although a binding site architecture comprised of a variable number of sequence recognition elements has been identified within the promoter regions of ArcA-repressed operons, it is unclear how this variable architecture dictates transcriptional regulation. By

  3. Mapping the binding site of snurportin 1 on native U1 snRNP by cross-linking and mass spectrometry

    PubMed Central

    Kühn-Hölsken, Eva; Lenz, Christof; Dickmanns, Achim; Hsiao, He-Hsuan; Richter, Florian M.; Kastner, Berthold; Ficner, Ralf; Urlaub, Henning

    2010-01-01

    Mass spectrometry allows the elucidation of molecular details of the interaction domains of the individual components in macromolecular complexes subsequent to cross-linking of the individual components. Here, we applied chemical and UV cross-linking combined with tandem mass-spectrometric analysis to identify contact sites of the nuclear import adaptor snurportin 1 to the small ribonucleoprotein particle U1 snRNP in addition to the known interaction of m3G cap and snurportin 1. We were able to define previously unknown sites of protein–protein and protein–RNA interactions on the molecular level within U1 snRNP. We show that snurportin 1 interacts with its central m3G-cap-binding domain with Sm proteins and with its extreme C-terminus with stem-loop III of U1 snRNA. The crosslinking data support the idea of a larger interaction area between snurportin 1 and U snRNPs and the contact sites identified prove useful for modeling the spatial arrangement of snurportin 1 domains when bound to U1 snRNP. Moreover, this suggests a functional nuclear import complex that assembles around the m3G cap and the Sm proteins only when the Sm proteins are bound and arranged in the proper orientation to the cognate Sm site in U snRNA. PMID:20421206

  4. A genetic variant of miR-148a binding site in the SCRN1 3'-UTR is associated with susceptibility and prognosis of gastric cancer.

    PubMed

    Song, Peng; Zhu, Haixia; Zhang, Dong; Chu, Haiyan; Wu, Dongmei; Kang, Meiyun; Wang, Meilin; Gong, Weida; Zhou, Jianwei; Zhang, Zhengdong; Zhao, Qinghong

    2014-11-17

    Single nucleotide polymorphisms (SNPs) in the 3'-untranslated regions targeted by putative mircoRNA can change its binding strength, affecting the susceptibility and prognosis of cancer. We aimed to investigate the associations between SNPs within miR-148a binding sites and gastric cancer (GC) risk and prognosis. Using bioinformatics tools, we selected two SNPs (SCRN1 rs6976789 and PDYN rs2235749) located in miR-148a target sites. We genotyped the two SNPs in a case-control study comprising 753 GC patients and 949 cancer-free subjects. We found a significantly increased risk of GC associated with the SCRN1 rs6976789 C>T polymorphism [adjusted OR = 1.25, 95% confidence interval (CI) = 1.02-1.53; CT/TT vs. CC]. However, no significant association was found between the PDYN rs2235749 and GC risk in all genetic models. Furthermore, we evaluated whether SCRN1 rs6976789 affected the survival of GC patients. Results showed that individuals with SCRN1 rs6976789 TT genotype had poorer overall survival compared with those carried CC/CT genotypes in intestinal-type GC (adjusted HR = 2.47, 95% CI = 1.21-5.05). Luciferase report assay showed that the rs6976789 variant T allele influenced the binding ability of miR-148a. Our results suggested that the SCRN1 rs6976789 polymorphism may play an important role in the GC development and progression.

  5. Neural precursor cell-expressed developmentally down-regulated protein 4-2 (Nedd4-2) regulation by 14-3-3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites.

    PubMed

    Chandran, Sindhu; Li, Hui; Dong, Wuxing; Krasinska, Karolina; Adams, Chris; Alexandrova, Ludmila; Chien, Allis; Hallows, Kenneth R; Bhalla, Vivek

    2011-10-28

    Regulation of epithelial Na(+) channel (ENaC)-mediated transport in the distal nephron is a critical determinant of blood pressure in humans. Aldosterone via serum and glucocorticoid kinase 1 (SGK1) stimulates ENaC by phosphorylation of the E3 ubiquitin ligase Nedd4-2, which induces interaction with 14-3-3 proteins. However, the mechanisms of SGK1- and 14-3-3-mediated regulation of Nedd4-2 are unclear. There are three canonical SGK1 target sites on Nedd4-2 that overlap phosphorylation-dependent 14-3-3 interaction motifs. Two of these are termed "minor," and one is termed "major," based on weak or strong binding to 14-3-3 proteins, respectively. By mass spectrometry, we found that aldosterone significantly stimulates phosphorylation of a minor, relative to the major, 14-3-3 binding site on Nedd4-2. Phosphorylation-deficient minor site Nedd4-2 mutants bound less 14-3-3 than did wild-type (WT) Nedd4-2, and minor site Nedd4-2 mutations were sufficient to inhibit SGK1 stimulation of ENaC cell surface expression. As measured by pulse-chase and cycloheximide chase assays, a major binding site Nedd4-2 mutant had a shorter cellular half-life than WT Nedd4-2, but this property was not dependent on binding to 14-3-3. Additionally, a dimerization-deficient 14-3-3ε mutant failed to bind Nedd4-2. We conclude that whereas phosphorylation at the Nedd4-2 major site is important for interaction with 14-3-3 dimers, minor site phosphorylation by SGK1 may be the relevant molecular switch that stabilizes Nedd4-2 interaction with 14-3-3 and thus promotes ENaC cell surface expression. We also propose that major site phosphorylation promotes cellular Nedd4-2 protein stability, which potentially represents a novel form of regulation for turnover of E3 ubiquitin ligases.

  6. Point mutations abolishing the mannose-binding capability of boar spermadhesin AQN-1.

    PubMed

    Ekhlasi-Hundrieser, Mahnaz; Calvete, Juan J; Von Rad, Bettina; Hettel, Christiane; Nimtz, Manfred; Töpfer-Petersen, Edda

    2008-05-01

    The mannose-binding capability of recombinant wild-type boar spermadhesin AQN-1 and of its site-directed mutants in the highly-conserved region around of the single glycosylation site (asparagine 50) of some spermadhesins, where the carbohydrate binding site has been proposed to be located, was checked using a solid-phase assay and a biotinylated mannose ligand. Substitution of glycine 54 by amino acids bearing an unipolar side chain did not cause significant decrease in the mannose-binding activity. However, amino acids with uncharged polar side chains or having a charged polar side chain abolished the binding of biotinylated mannose to the corresponding AQN-1 mutants. The results suggest that the higher surface accessibility of amino acids possessing polar side chains compared to those bearing nonpolar groups may sterically interfere with monosaccharide binding. The location of the mannose-binding site in AQN-1 appears to be topologically conserved in other heparin-binding boar spermadhesins, i.e., AQN-3 and AWN, but departs from the location of the mannose-6-phosphate-recognition site of PSP-II. This indicates that different spermadhesin molecules have evolved non-equivalent carbohydrate-binding capabilities, which may underlie their distinct patterns of biological activities.

  7. Autoradiographic demonstration of oxytocin-binding sites in the macula densa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckel, M.E.; Freund-Mercier, M.J.

    1989-08-01

    Specific oxytocin (OT)-binding sites were localized in the rat kidney with use of a selective {sup 125}I-labeled OT antagonist ({sup 125}I-OTA). High concentrations of OT binding sites were detected on the juxtaglomerular apparatus with use of the conventional film autoradiographic technique. No labeling occurred on other renal structures. The cellular localization of the OT binding sites within the juxtaglomerular apparatus was studied in light microscope autoradiography, on semithin sections from paraformaldehyde-fixed kidney slices incubated in the presence of {sup 125}I-OTA. These preparations revealed selective labeling of the macula densa, mainly concentrated at the basal pole of the cells. Control experimentsmore » showed first that {sup 125}I-OTA binding characteristics were not noticeably altered by prior paraformaldehyde fixation of the kidneys and second that autoradiographic detection of the binding sites was not impaired by histological treatments following binding procedures. In view of the role of the macula densa in the tubuloglomerular feedback, the putative OT receptors of this structure might mediate the stimulatory effect of OT on glomerular filtration.« less

  8. Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of Ascaris reveals a novel fold and two discrete lipid-binding sites.

    PubMed

    Meenan, Nicola A G; Ball, Graeme; Bromek, Krystyna; Uhrín, Dušan; Cooper, Alan; Kennedy, Malcolm W; Smith, Brian O

    2011-04-19

    Nematode polyprotein allergens (NPAs) are an unusual class of lipid-binding proteins found only in nematodes. They are synthesized as large, tandemly repetitive polyproteins that are post-translationally cleaved into multiple copies of small lipid binding proteins with virtually identical fatty acid and retinol (Vitamin A)-binding characteristics. They are probably central to transport and distribution of small hydrophobic compounds between the tissues of nematodes, and may play key roles in nutrient scavenging, immunomodulation, and IgE antibody-based responses in infection. In some species the repeating units are diverse in amino acid sequence, but, in ascarid and filarial nematodes, many of the units are identical or near-identical. ABA-1A is the most common repeating unit of the NPA of Ascaris suum, and is closely similar to that of Ascaris lumbricoides, the large intestinal roundworm of humans. Immune responses to NPAs have been associated with naturally-acquired resistance to infection in humans, and the immune repertoire to them is under strict genetic control. The solution structure of ABA-1A was determined by protein nuclear magnetic resonance spectroscopy. The protein adopts a novel seven-helical fold comprising a long central helix that participates in two hollow four-helical bundles on either side. Discrete hydrophobic ligand-binding pockets are found in the N-terminal and C-terminal bundles, and the amino acid sidechains affected by ligand (fatty acid) binding were identified. Recombinant ABA-1A contains tightly-bound ligand(s) of bacterial culture origin in one of its binding sites. This is the first mature, post-translationally processed, unit of a naturally-occurring tandemly-repetitive polyprotein to be structurally characterized from any source, and it belongs to a new structural class. NPAs have no counterparts in vertebrates, so represent potential targets for drug or immunological intervention. The nature of the (as yet) unidentified bacterial

  9. Pub1p C-Terminal RRM Domain Interacts with Tif4631p through a Conserved Region Neighbouring the Pab1p Binding Site

    PubMed Central

    Rico-Lastres, Palma; Pérez-Cañadillas, José Manuel

    2011-01-01

    Pub1p, a highly abundant poly(A)+ mRNA binding protein in Saccharomyces cerevisiae, influences the stability and translational control of many cellular transcripts, particularly under some types of environmental stresses. We have studied the structure, RNA and protein recognition modes of different Pub1p constructs by NMR spectroscopy. The structure of the C-terminal RRM domain (RRM3) shows a non-canonical N-terminal helix that packs against the canonical RRM fold in an original fashion. This structural trait is conserved in Pub1p metazoan homologues, the TIA-1 family, defining a new class of RRM-type domains that we propose to name TRRM (TIA-1 C-terminal domain-like RRM). Pub1p TRRM and the N-terminal RRM1-RRM2 tandem bind RNA with high selectivity for U-rich sequences, with TRRM showing additional preference for UA-rich ones. RNA-mediated chemical shift changes map to β-sheet and protein loops in the three RRMs. Additionally, NMR titration and biochemical in vitro cross-linking experiments determined that Pub1p TRRM interacts specifically with the N-terminal region (1–402) of yeast eIF4G1 (Tif4631p), very likely through the conserved Box1, a short sequence motif neighbouring the Pab1p binding site in Tif4631p. The interaction involves conserved residues of Pub1p TRRM, which define a protein interface that mirrors the Pab1p-Tif4631p binding mode. Neither protein nor RNA recognition involves the novel N-terminal helix, whose functional role remains unclear. By integrating these new results with the current knowledge about Pub1p, we proposed different mechanisms of Pub1p recruitment to the mRNPs and Pub1p-mediated mRNA stabilization in which the Pub1p/Tif4631p interaction would play an important role. PMID:21931728

  10. Nicotinic Cholinergic Receptor Binding Sites in the Brain: Regulation in vivo

    NASA Astrophysics Data System (ADS)

    Schwartz, Rochelle D.; Kellar, Kenneth J.

    1983-04-01

    Tritiated acetylcholine was used to measure binding sites with characteristics of nicotinic cholinergic receptors in rat brain. Regulation of the binding sites in vivo was examined by administering two drugs that stimulate nicotinic receptors directly or indirectly. After 10 days of exposure to the cholinesterase inhibitor diisopropyl fluorophosphate, binding of tritiated acetylcholine in the cerebral cortex was decreased. However, after repeated administration of nicotine for 10 days, binding of tritiated acetylcholine in the cortex was increased. Saturation analysis of tritiated acetylcholine binding in the cortices of rats treated with diisopropyl fluorophosphate or nicotine indicated that the number of binding sites decreased and increased, respectively, while the affinity of the sites was unaltered.

  11. An anti-hapten camelid antibody reveals a cryptic binding site with significant energetic contributions from a nonhypervariable loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanning, Sean W.; Horn, James R.

    2014-03-05

    Conventional anti-hapten antibodies typically bind low-molecular weight compounds (haptens) in the crevice between the variable heavy and light chains. Conversely, heavy chain-only camelid antibodies, which lack a light chain, must rely entirely on a single variable domain to recognize haptens. While several anti-hapten VHHs have been generated, little is known regarding the underlying structural and thermodynamic basis for hapten recognition. Here, an anti-methotrexate VHH (anti-MTX VHH) was generated using grafting methods whereby the three complementarity determining regions (CDRs) were inserted onto an existing VHH framework. Thermodynamic analysis of the anti-MTX VHH CDR1-3 Graft revealed a micromolar binding affinity, while themore » crystal structure of the complex revealed a somewhat surprising noncanonical binding site which involved MTX tunneling under the CDR1 loop. Due to the close proximity of MTX to CDR4, a nonhypervariable loop, the CDR4 loop sequence was subsequently introduced into the CDR1-3 graft, which resulted in a dramatic 1000-fold increase in the binding affinity. Crystal structure analysis of both the free and complex anti-MTX CDR1-4 graft revealed CDR4 plays a significant role in both intermolecular contacts and binding site conformation that appear to contribute toward high affinity binding. Additionally, the anti-MTX VHH possessed relatively high specificity for MTX over closely related compounds aminopterin and folate, demonstrating that VHH domains are capable of binding low-molecular weight ligands with high affinity and specificity, despite their reduced interface.« less

  12. Sugar-binding sites on the surface of the carbohydrate-binding module of CBH I from Trichoderma reesei.

    PubMed

    Tavagnacco, Letizia; Mason, Philip E; Schnupf, Udo; Pitici, Felicia; Zhong, Linghao; Himmel, Michael E; Crowley, Michael; Cesàro, Attilio; Brady, John W

    2011-05-01

    Molecular dynamics simulations were carried out for a system consisting of the carbohydrate-binding module (CBM) of the cellulase CBH I from Trichoderma reesei (Hypocrea jecorina) in a concentrated solution of β-D-glucopyranose, to determine whether there is any tendency for the sugar molecules to bind to the CBM. In spite of the general tendency of glucose to behave as an osmolyte, a marked tendency for the sugar molecules to bind to the protein was observed. However, the glucose molecules tended to bind only to specific sites on the protein. As expected, the hydrophobic face of the sugar molecules, comprising the axial H1, H3, and H5 aliphatic protons, tended to adhere to the flat faces of the three tyrosine side chains on the planar binding surface of the CBM. However, a significant tendency to bind to a groove-like feature on the upper surface of the CBM was also observed. These results would not be inconsistent with a model of the mechanism for this globular domain in which the cellodextrin chain being removed from the surface of crystalline cellulose passes over the upper surface of the CBM, presumably then available for hydrolysis in the active site tunnel of this processive cellulase. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Platelet binding sites for factor VIII in relation to fibrin and phosphatidylserine

    PubMed Central

    Novakovic, Valerie A.; Shi, Jialan; Rasmussen, Jan; Pipe, Steven W.

    2015-01-01

    Thrombin-stimulated platelets expose very little phosphatidylserine (PS) but express binding sites for factor VIII (fVIII), casting doubt on the role of exposed PS as the determinant of binding sites. We previously reported that fVIII binding sites are increased three- to sixfold when soluble fibrin (SF) binds the αIIbβ3 integrin. This study focuses on the hypothesis that platelet-bound SF is the major source of fVIII binding sites. Less than 10% of fVIII was displaced from thrombin-stimulated platelets by lactadherin, a PS-binding protein, and an fVIII mutant defective in PS-dependent binding retained platelet affinity. Therefore, PS is not the determinant of most binding sites. FVIII bound immobilized SF and paralleled platelet binding in affinity, dependence on separation from von Willebrand factor, and mediation by the C2 domain. SF also enhanced activity of fVIII in the factor Xase complex by two- to fourfold. Monoclonal antibody (mAb) ESH8, against the fVIII C2 domain, inhibited binding of fVIII to SF and platelets but not to PS-containing vesicles. Similarly, mAb ESH4 against the C2 domain, inhibited >90% of platelet-dependent fVIII activity vs 35% of vesicle-supported activity. These results imply that platelet-bound SF is a component of functional fVIII binding sites. PMID:26162408

  14. Cryptic binding sites on proteins: definition, detection, and druggability.

    PubMed

    Vajda, Sandor; Beglov, Dmitri; Wakefield, Amanda E; Egbert, Megan; Whitty, Adrian

    2018-05-22

    Many proteins in their unbound structures lack surface pockets appropriately sized for drug binding. Hence, a variety of experimental and computational tools have been developed for the identification of cryptic sites that are not evident in the unbound protein but form upon ligand binding, and can provide tractable drug target sites. The goal of this review is to discuss the definition, detection, and druggability of such sites, and their potential value for drug discovery. Novel methods based on molecular dynamics simulations are particularly promising and yield a large number of transient pockets, but it has been shown that only a minority of such sites are generally capable of binding ligands with substantial affinity. Based on recent studies, current methodology can be improved by combining molecular dynamics with fragment docking and machine learning approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Multiple binding sites for transcriptional repressors can produce regular bursting and enhance noise suppression

    NASA Astrophysics Data System (ADS)

    Lengyel, Iván M.; Morelli, Luis G.

    2017-04-01

    Cells may control fluctuations in protein levels by means of negative autoregulation, where transcription factors bind DNA sites to repress their own production. Theoretical studies have assumed a single binding site for the repressor, while in most species it is found that multiple binding sites are arranged in clusters. We study a stochastic description of negative autoregulation with multiple binding sites for the repressor. We find that increasing the number of binding sites induces regular bursting of gene products. By tuning the threshold for repression, we show that multiple binding sites can also suppress fluctuations. Our results highlight possible roles for the presence of multiple binding sites of negative autoregulators.

  16. Direct inhibition of the DNA-binding activity of POU transcription factors Pit-1 and Brn-3 by selective binding of a phenyl-furan-benzimidazole dication.

    PubMed

    Peixoto, Paul; Liu, Yang; Depauw, Sabine; Hildebrand, Marie-Paule; Boykin, David W; Bailly, Christian; Wilson, W David; David-Cordonnier, Marie-Hélène

    2008-06-01

    The development of small molecules to control gene expression could be the spearhead of future-targeted therapeutic approaches in multiple pathologies. Among heterocyclic dications developed with this aim, a phenyl-furan-benzimidazole dication DB293 binds AT-rich sites as a monomer and 5'-ATGA sequence as a stacked dimer, both in the minor groove. Here, we used a protein/DNA array approach to evaluate the ability of DB293 to specifically inhibit transcription factors DNA-binding in a single-step, competitive mode. DB293 inhibits two POU-domain transcription factors Pit-1 and Brn-3 but not IRF-1, despite the presence of an ATGA and AT-rich sites within all three consensus sequences. EMSA, DNase I footprinting and surface-plasmon-resonance experiments determined the precise binding site, affinity and stoichiometry of DB293 interaction to the consensus targets. Binding of DB293 occurred as a cooperative dimer on the ATGA part of Brn-3 site but as two monomers on AT-rich sites of IRF-1 sequence. For Pit-1 site, ATGA or AT-rich mutated sequences identified the contribution of both sites for DB293 recognition. In conclusion, DB293 is a strong inhibitor of two POU-domain transcription factors through a cooperative binding to ATGA. These findings are the first to show that heterocyclic dications can inhibit major groove transcription factors and they open the door to the control of transcription factors activity by those compounds.

  17. Equivalence of two approaches for modeling ion permeation through a transmembrane channel with an internal binding site

    NASA Astrophysics Data System (ADS)

    Zhou, Huan-Xiang

    2011-04-01

    Ion permeation through transmembrane channels has traditionally been modeled using two different approaches. In one approach, the translocation of the permeant ion through the channel pore is modeled as continuous diffusion and the rate of ion transport is obtained from solving the steady-state diffusion equation. In the other approach, the translocation of the permeant ion through the pore is modeled as hopping along a discrete set of internal binding sites and the rate of ion transport is obtained from solving a set of steady-state rate equations. In a recent work [Zhou, J. Phys. Chem. Lett. 1, 1973 (2010)], the rate constants for binding to an internal site were further calculated by modeling binding as diffusion-influenced reactions. That work provided the foundation for bridging the two approaches. Here we show that, by representing a binding site as an energy well, the two approaches indeed give the same result for the rate of ion transport.

  18. Flavonol Activation Defines an Unanticipated Ligand-Binding Site in the Kinase-RNase Domain of IRE1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiseman, R. Luke; Zhang, Yuhong; Lee, Kenneth P.K.

    2010-08-18

    Signaling in the most conserved branch of the endoplasmic reticulum (ER) unfolded protein response (UPR) is initiated by sequence-specific cleavage of the HAC1/XBP1 mRNA by the ER stress-induced kinase-endonuclease IRE1. We have discovered that the flavonol quercetin activates yeast IRE1's RNase and potentiates activation by ADP, a natural activating ligand that engages the IRE1 nucleotide-binding cleft. Enzyme kinetics and the structure of a cocrystal of IRE1 complexed with ADP and quercetin reveal engagement by quercetin of an unanticipated ligand-binding pocket at the dimer interface of IRE1's kinase extension nuclease (KEN) domain. Analytical ultracentrifugation and crosslinking studies support the preeminence ofmore » enhanced dimer formation in quercetin's mechanism of action. These findings hint at the existence of endogenous cytoplasmic ligands that may function alongside stress signals from the ER lumen to modulate IRE1 activity and at the potential for the development of drugs that modify UPR signaling from this unanticipated site.« less

  19. Cloud computing for protein-ligand binding site comparison.

    PubMed

    Hung, Che-Lun; Hua, Guan-Jie

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery.

  20. Substance P binding sites in the nucleus tractus solitarius of the cat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maley, B.E.; Sasek, C.A.; Seybold, V.S.

    1988-11-01

    Substance P binding sites in the nucleus tractus solitarius were visualized with receptor autoradiography using Bolton-Hunter (/sup 125/I)substance P. Substance P binding sites were found to have distinct patterns within the cat nucleus tractus solitarius. The majority of substance P binding sites were present in the medial, intermediate and the peripheral rim of the parvocellular subdivisions. Lower amounts of substance P binding sites were present in the commissural, ventrolateral, interstitial and dorsolateral subdivisions. No substance P binding sites were present in the central region of the parvocellular subdivision or the solitary tract. The localization of substance P binding sites inmore » the nucleus tractus solitarius is very similar to the patterns of substance P immunoreactive fibers previously described for this region. Results of this study add further support for a functional role of substance P in synaptic circuits of the nucleus tractus solitarius.« less

  1. Silencing of Agamma-globin gene expression during adult definitive erythropoiesis mediated by GATA-1-FOG-1-Mi2 complex binding at the -566 GATA site.

    PubMed

    Harju-Baker, Susanna; Costa, Flávia C; Fedosyuk, Halyna; Neades, Renee; Peterson, Kenneth R

    2008-05-01

    Autonomous silencing of gamma-globin transcription is an important developmental regulatory mechanism controlling globin gene switching. An adult stage-specific silencer of the (A)gamma-globin gene was identified between -730 and -378 relative to the mRNA start site. A marked copy of the (A)gamma-globin gene inserted between locus control region 5' DNase I-hypersensitive site 1 and the epsilon-globin gene was transcriptionally silenced in adult beta-globin locus yeast artificial chromosome (beta-YAC) transgenic mice, but deletion of the 352-bp region restored expression. This fragment reduced reporter gene expression in K562 cells, and GATA-1 was shown to bind within this sequence at the -566 GATA site. Further, the Mi2 protein, a component of the NuRD complex, was observed in erythroid cells with low gamma-globin levels, whereas only a weak signal was detected when gamma-globin was expressed. Chromatin immunoprecipitation of fetal liver tissue from beta-YAC transgenic mice demonstrated that GATA-1, FOG-1, and Mi2 were recruited to the (A)gamma-globin -566 or (G)gamma-globin -567 GATA site when gamma-globin expression was low (day 18) but not when gamma-globin was expressed (day 12). These data suggest that during definitive erythropoiesis, gamma-globin gene expression is silenced, in part, by binding a protein complex containing GATA-1, FOG-1, and Mi2 at the -566/-567 GATA sites of the proximal gamma-globin promoters.

  2. Structural analysis of a class III preQ 1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics

    DOE PAGES

    Liberman, Joseph A.; Suddala, Krishna C.; Aytenfisu, Asaminew; ...

    2015-06-23

    PreQ 1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ 1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HL out-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ 1-III riboswitch aptamer forms a HL out-type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, in this paper we determined the crystal structure of the class III preQ 1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ 1more » binds tightly (K D,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3' RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ 1 enhances P4 reorientation toward P1–P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (k dock ~0.6 s -1) and undocking (k undock ~1.1 s -1). Finally, discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs.« less

  3. Structural analysis of a class III preQ1 riboswitch reveals an aptamer distant from a ribosome-binding site regulated by fast dynamics

    PubMed Central

    Liberman, Joseph A.; Suddala, Krishna C.; Aytenfisu, Asaminew; Chan, Dalen; Belashov, Ivan A.; Salim, Mohammad; Mathews, David H.; Spitale, Robert C.; Walter, Nils G.; Wedekind, Joseph E.

    2015-01-01

    PreQ1-III riboswitches are newly identified RNA elements that control bacterial genes in response to preQ1 (7-aminomethyl-7-deazaguanine), a precursor to the essential hypermodified tRNA base queuosine. Although numerous riboswitches fold as H-type or HLout-type pseudoknots that integrate ligand-binding and regulatory sequences within a single folded domain, the preQ1-III riboswitch aptamer forms a HLout-type pseudoknot that does not appear to incorporate its ribosome-binding site (RBS). To understand how this unusual organization confers function, we determined the crystal structure of the class III preQ1 riboswitch from Faecalibacterium prausnitzii at 2.75 Å resolution. PreQ1 binds tightly (KD,app 6.5 ± 0.5 nM) between helices P1 and P2 of a three-way helical junction wherein the third helix, P4, projects orthogonally from the ligand-binding pocket, exposing its stem-loop to base pair with the 3′ RBS. Biochemical analysis, computational modeling, and single-molecule FRET imaging demonstrated that preQ1 enhances P4 reorientation toward P1–P2, promoting a partially nested, H-type pseudoknot in which the RBS undergoes rapid docking (kdock ∼0.6 s−1) and undocking (kundock ∼1.1 s−1). Discovery of such dynamic conformational switching provides insight into how a riboswitch with bipartite architecture uses dynamics to modulate expression platform accessibility, thus expanding the known repertoire of gene control strategies used by regulatory RNAs. PMID:26106162

  4. Autoradiographic localization of sigma receptor binding sites in guinea pig and rat central nervous system with (+)3H-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gundlach, A.L.; Largent, B.L.; Snyder, S.H.

    1986-06-01

    (+)3H-3-PPP ((+)3H-3-(3-Hydroxyphenyl)-N-(1-propyl)-piperidine) binds with high affinity to brain membranes with a pharmacological profile consistent with that of sigma receptors. The distribution of (+)3H-3-PPP binding sites in brain and spinal cord of both guinea pig and rat has been determined by in vitro autoradiography with binding densities quantitated by computer-assisted densitometry. (+)3H-3-PPP binding to slide-mounted brain sections is saturable and displays high affinity and a pharmacological specificity very similar to sites labeled in homogenates. (+)3H-3-PPP binding sites are heterogeneously distributed. Highest concentrations of binding sites occur in spinal cord, particularly the ventral horn and dorsal root ganglia; the pons-medulla, associated withmore » the cranial nerve and pontine nuclei and throughout the brain stem reticular formation; the cerebellum, over the Purkinje cell layer; the midbrain, particularly the central gray and red nucleus; and hippocampus, over the pyramidal cell layer. Lowest levels are seen in the basal ganglia and parts of the thalamus, while all other areas, including hypothalamus and cerebral cortex, exhibit moderate grain densities. Quinolinic acid-induced lesions of the hippocampus indicate that (+)3H-3-PPP labels hippocampal pyramidal cells and granule cells in the dentate gyrus. Intrastriatal injection of ibotenic acid dramatically reduces (+)3H-3-PPP binding in this area, while injection of 6-hydroxydopamine produces a relatively slight decrease. The distribution of (+)3H-3-PPP binding sites does not correlate with the receptor distribution of any recognized neurotransmitter or neuropeptide, including dopamine. However, there is a notable similarity between the distribution of (+)3H-3-PPP sites and high-affinity binding sites for psychotomimetic opioids, such as the benzomorphan (+)SKF 10,047.« less

  5. The involvement of coordinative interactions in the binding of dihydrolipoamide dehydrogenase to titanium dioxide-Localization of a putative binding site.

    PubMed

    Dayan, Avraham; Babin, Gilad; Ganoth, Assaf; Kayouf, Nivin Samir; Nitoker Eliaz, Neta; Mukkala, Srijana; Tsfadia, Yossi; Fleminger, Gideon

    2017-08-01

    Titanium (Ti) and its alloys are widely used in orthodontic and orthopedic implants by virtue to their high biocompatibility, mechanical strength, and high resistance to corrosion. Biointegration of the implants with the tissue requires strong interactions, which involve biological molecules, proteins in particular, with metal oxide surfaces. An exocellular high-affinity titanium dioxide (TiO 2 )-binding protein (TiBP), purified from Rhodococcus ruber, has been previously studied in our lab. This protein was shown to be homologous with the orthologous cytoplasmic rhodococcal dihydrolipoamide dehydrogenase (rhDLDH). We have found that rhDLDH and its human homolog (hDLDH) share the TiO 2 -binding capabilities with TiBP. Intrigued by the unique TiO 2 -binding properties of hDLDH, we anticipated that it may serve as a molecular bridge between Ti-based medical structures and human tissues. The objective of the current study was to locate the region and the amino acids of the protein that mediate the protein-TiO 2 surface interaction. We demonstrated the role of acidic amino acids in the nonelectrostatic enzyme/dioxide interactions at neutral pH. The observation that the interaction of DLDH with various metal oxides is independent of their isoelectric values strengthens this notion. DLDH does not lose its enzymatic activity upon binding to TiO 2 , indicating that neither the enzyme undergoes major conformational changes nor the TiO 2 binding site is blocked. Docking predictions suggest that both rhDLDH and hDLDH bind TiO 2 through similar regions located far from the active site and the dimerization sites. The putative TiO 2 -binding regions of both the bacterial and human enzymes were found to contain a CHED (Cys, His, Glu, Asp) motif, which has been shown to participate in metal-binding sites in proteins. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Fusicoccin-Binding Proteins in Arabidopsis thaliana (L.) Heynh. 1

    PubMed Central

    Meyer, Christiane; Feyerabend, Martin; Weiler, Elmar W.

    1989-01-01

    Using the novel radioligand, [3H]-9′-nor-fusicoccin-8′-alcohol, high affinity binding sites for fusicoccin were characterized in preparations from leaves of Arabidopsis thaliana (L.) Heynh. The binding site copartitioned with the plasmalemma marker, vanadate-sensitive K+, Mg2+-ATPase, when microsomal fractions were further purified by aqueous two-phase partitioning in polyethylene glycol-dextran phase systems and sedimented at an equilibrium density of 1.17 grams per cubic centimeter in continuous sucrose density gradients, as did the ATPase marker. The binding of [3H]-9′-nor-fusicoccin-8′-alcohol was saturable and Scatchard analysis revealed a biphasic plot with two apparent dissociation constants (KD), KD1 = 1.5 nanomolar and KD2 = 42 nanomolar, for the radioligand. Binding was optimal at pH 6, thermolabile, and was reduced by 70% when the membrane vesicles were pretreated with trypsin. The data are consistent with the presence of one or several binding proteins for fusicoccin at the plasma membrane of A. thaliana. Binding of the radioligand was unaffected by pretreatment of the sites with various alkylating and reducing agents, but was reduced by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, diethylpyrocarbonate, chloramine T, and periodate. A number of detergents were tested to find optimum conditions for solubilization. Nonanoyl-N-methylglucamide (50 millimolar) solubilized 70% of the radioligand-binding protein complex in undissociated form. Photoaffinity labeling of membrane preparations with a tritiated azido analog of fusicoccin resulted in the labeling of a 34 ± 1 kilodalton polypeptide. Labeling of this polypeptide, presumably the fusicoccin-binding protein, was severely reduced in the presence of unlabeled fusicoccin. PMID:16666603

  7. Apigenin shows synergistic anticancer activity with curcumin by binding at different sites of tubulin.

    PubMed

    Choudhury, Diptiman; Ganguli, Arnab; Dastidar, Debabrata Ghosh; Acharya, Bipul R; Das, Amlan; Chakrabarti, Gopal

    2013-06-01

    Apigenin, a natural flavone, present in many plants sources, induced apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 μM for 48 h treatment. Target identification investigations using A549 cells and also in cell-free system demonstrated that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 μM. It bounds to tubulin in cell-free system and quenched the intrinsic fluorescence of tubulin in a concentration- and time-dependent manner. The interaction was temperature-dependent and kinetics of binding was biphasic in nature with binding rate constants of 11.5 × 10(-7) M(-1) s(-1) and 4.0 × 10(-9) M(-1) s(-1) for fast and slow phases at 37 °C, respectively. The stoichiometry of tubulin-apigenin binding was 1:1 and binding the binding constant (Kd) was 6.08 ± 0.096 μM. Interestingly, apigenin showed synergistic anti-cancer effect with another natural anti-tubulin agent curcumin. Apigenin and curcumin synergistically induced cell death and apoptosis and also blocked cell cycle progression at G2/M phase of A549 cells. The synergistic activity of apigenin and curcumin was also apparent from their strong depolymerizing effects on interphase microtubules and inhibitory effect of reassembly of cold depolymerized microtubules when used in combinations, indicating that these ligands bind to tubulin at different sites. In silico modeling suggested apigenin bounds at the interphase of α-β-subunit of tubulin. The binding site is 19 Å in distance from the previously predicted curcumin binding site. Binding studies with purified protein also showed both apigenin and curcumin can simultaneously bind to purified tubulin. Understanding the mechanism of synergistic effect of apigenin and curcumin could be helped to develop anti-cancer combination drugs from cheap and readily

  8. Influence of quasi-specific sites on kinetics of target DNA search by a sequence-specific DNA-binding protein.

    PubMed

    Kemme, Catherine A; Esadze, Alexandre; Iwahara, Junji

    2015-11-10

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such "quasi-specific" sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1's association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins.

  9. Influence of Quasi-Specific Sites on Kinetics of Target DNA Search by a Sequence-Specific DNA-Binding Protein

    PubMed Central

    2015-01-01

    Functions of transcription factors require formation of specific complexes at particular sites in cis-regulatory elements of genes. However, chromosomal DNA contains numerous sites that are similar to the target sequences recognized by transcription factors. The influence of such “quasi-specific” sites on functions of the transcription factors is not well understood at present by experimental means. In this work, using fluorescence methods, we have investigated the influence of quasi-specific DNA sites on the efficiency of target location by the zinc finger DNA-binding domain of the inducible transcription factor Egr-1, which recognizes a 9 bp sequence. By stopped-flow assays, we measured the kinetics of Egr-1’s association with a target site on 143 bp DNA in the presence of various competitor DNAs, including nonspecific and quasi-specific sites. The presence of quasi-specific sites on competitor DNA significantly decelerated the target association by the Egr-1 protein. The impact of the quasi-specific sites depended strongly on their affinity, their concentration, and the degree of their binding to the protein. To quantitatively describe the kinetic impact of the quasi-specific sites, we derived an analytical form of the apparent kinetic rate constant for the target association and used it for fitting to the experimental data. Our kinetic data with calf thymus DNA as a competitor suggested that there are millions of high-affinity quasi-specific sites for Egr-1 among the 3 billion bp of genomic DNA. This study quantitatively demonstrates that naturally abundant quasi-specific sites on DNA can considerably impede the target search processes of sequence-specific DNA-binding proteins. PMID:26502071

  10. Prediction of the binding site of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine in acetylcholinesterase by docking studies with the SYSDOC program

    NASA Astrophysics Data System (ADS)

    Pang, Yuan-Ping; Kozikowski, Alan P.

    1994-12-01

    In the preceding paper we reported on a docking study with the SYSDOC program for predicting the binding sites of huperzine A in acetylcholinesterase (AChE) [Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669]. Here we present a prediction of the binding sites of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine (E2020) in AChE by the same method. E2020 is one of the most potent and selective reversible inhibitors of AChE, and this molecule has puzzled researchers, partly due to its flexible structure, in understanding how it binds to AChE. Based on the results of docking 1320 different conformers of E2020 into 69 different conformers of AChE and on the pharmacological data reported for E2020 and its analogs, we predict that both the R- and the S-isomer of E2020 span the whole binding cavity of AChE, with the ammonium group interacting mainly with Trp84, Phe330 and Asp72, the phenyl group interacting mainly with Trp84 and Phe330, and the indanone moiety interacting mainly with Tyr70 and Trp279. The topography of the calculated E2020 binding sites provides insights into understanding the high potency of E2020 in the inhibition of AChE and provides hints as to possible structural modifications for identifying improved AChE inhibitors as potential therapeutics for the palliative treatment of Alzheimer's disease.

  11. Rapid comparison of protein binding site surfaces with Property Encoded Shape Distributions (PESD)

    PubMed Central

    Das, Sourav; Kokardekar, Arshad

    2009-01-01

    Patterns in shape and property distributions on the surface of binding sites are often conserved across functional proteins without significant conservation of the underlying amino-acid residues. To explore similarities of these sites from the viewpoint of a ligand, a sequence and fold-independent method was created to rapidly and accurately compare binding sites of proteins represented by property-mapped triangulated Gauss-Connolly surfaces. Within this paradigm, signatures for each binding site surface are produced by calculating their property-encoded shape distributions (PESD), a measure of the probability that a particular property will be at a specific distance to another on the molecular surface. Similarity between the signatures can then be treated as a measure of similarity between binding sites. As postulated, the PESD method rapidly detected high levels of similarity in binding site surface characteristics even in cases where there was very low similarity at the sequence level. In a screening experiment involving each member of the PDBBind 2005 dataset as a query against the rest of the set, PESD was able to retrieve a binding site with identical E.C. (Enzyme Commission) numbers as the top match in 79.5% of cases. The ability of the method in detecting similarity in binding sites with low sequence conservations were compared with state-of-the-art binding site comparison methods. PMID:19919089

  12. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov; Feng, Yang; Wang, Yanping

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibitmore » decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.« less

  13. ATP and AMP Mutually Influence Their Interaction with the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) at Separate Binding Sites*

    PubMed Central

    Randak, Christoph O.; Dong, Qian; Ver Heul, Amanda R.; Elcock, Adrian H.; Welsh, Michael J.

    2013-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP-binding cassette (ABC) transporter protein family. In the presence of ATP and physiologically relevant concentrations of AMP, CFTR exhibits adenylate kinase activity (ATP + AMP ⇆ 2 ADP). Previous studies suggested that the interaction of nucleotide triphosphate with CFTR at ATP-binding site 2 is required for this activity. Two other ABC proteins, Rad50 and a structural maintenance of chromosome protein, also have adenylate kinase activity. All three ABC adenylate kinases bind and hydrolyze ATP in the absence of other nucleotides. However, little is known about how an ABC adenylate kinase interacts with ATP and AMP when both are present. Based on data from non-ABC adenylate kinases, we hypothesized that ATP and AMP mutually influence their interaction with CFTR at separate binding sites. We further hypothesized that only one of the two CFTR ATP-binding sites is involved in the adenylate kinase reaction. We found that 8-azidoadenosine 5′-triphosphate (8-N3-ATP) and 8-azidoadenosine 5′-monophosphate (8-N3-AMP) photolabeled separate sites in CFTR. Labeling of the AMP-binding site with 8-N3-AMP required the presence of ATP. Conversely, AMP enhanced photolabeling with 8-N3-ATP at ATP-binding site 2. The adenylate kinase active center probe P1,P5-di(adenosine-5′) pentaphosphate interacted simultaneously with an AMP-binding site and ATP-binding site 2. These results show that ATP and AMP interact with separate binding sites but mutually influence their interaction with the ABC adenylate kinase CFTR. They further indicate that the active center of the adenylate kinase comprises ATP-binding site 2. PMID:23921386

  14. Penicillin-binding site on the Escherichia coli cell envelope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaral, L.; Lee, Y.; Schwarz, U.

    The binding of /sup 35/S-labeled penicillin to distinct penicillin-binding proteins (PBPs) of the cell envelope obtained from the sonication of Escherichia coli was studied at different pHs ranging from 4 to 11. Experiments distinguishing the effect of pH on penicillin binding by PBP 5/6 from its effect on beta-lactamase activity indicated that although substantial binding occurred at the lowest pH, the amount of binding increased with pH, reaching a maximum at pH 10. Based on earlier studies, it is proposed that the binding at high pH involves the formation of a covalent bond between the C-7 of penicillin and freemore » epsilon amino groups of the PBPs. At pHs ranging from 4 to 8, position 1 of penicillin, occupied by sulfur, is considered to be the site that establishes a covalent bond with the sulfhydryl groups of PBP 5. The use of specific blockers of free epsilon amino groups or sulfhydryl groups indicated that wherever the presence of each had little or no effect on the binding of penicillin by PBP 5, the presence of both completely prevented binding. The specific blocker of the hydroxyl group of serine did not affect the binding of penicillin.« less

  15. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-03-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.

  16. Selective Inhibition of the Human tie-1 Promoter with Triplex-Forming Oligonucleotides Targeted to Ets Binding Sites

    PubMed Central

    Hewett, Peter W; Daft, Emma L; Laughton, Charles A; Ahmad, Shakil; Ahmed, Asif; Murray, J Clifford

    2006-01-01

    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21–22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (Kd ~10−7 M) at 37 °C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction. PMID:16838069

  17. Selective inhibition of the human tie-1 promoter with triplex-forming oligonucleotides targeted to Ets binding sites.

    PubMed

    Hewett, Peter W; Daft, Emma L; Laughton, Charles A; Ahmad, Shakil; Ahmed, Asif; Murray, J Clifford

    2006-01-01

    The Tie receptors (Tie-1 and Tie-2/Tek) are essential for angiogenesis and vascular remodeling/integrity. Tie receptors are up-regulated in tumor-associated endothelium, and their inhibition disrupts angiogenesis and can prevent tumor growth as a consequence. To investigate the potential of anti-gene approaches to inhibit tie gene expression for anti-angiogenic therapy, we have examined triple-helical (triplex) DNA formation at 2 tandem Ets transcription factor binding motifs (designated E-1 and E-2) in the human tie-1 promoter. Various tie-1 promoter deletion/mutation luciferase reporter constructs were generated and transfected into endothelial cells to examine the relative activities of E-1 and E-2. The binding of antiparallel and parallel (control) purine motif oligonucleotides (21-22 bp) targeted to E-1 and E-2 was assessed by plasmid DNA fragment binding and electrophoretic mobility shift assays. Triplex-forming oligonucleotides were incubated with tie-1 reporter constructs and transfected into endothelial cells to determine their activity. The Ets binding motifs in the E-1 sequence were essential for human tie-1 promoter activity in endothelial cells, whereas the deletion of E-2 had no effect. Antiparallel purine motif oligonucleotides targeted at E-1 or E-2 selectively formed strong triplex DNA (K(d) approximately 10(-7) M) at 37 degrees C. Transfection of tie-1 reporter constructs with triplex DNA at E-1, but not E-2, specifically inhibited tie-1 promoter activity by up to 75% compared with control oligonucleotides in endothelial cells. As similar multiple Ets binding sites are important for the regulation of several endothelial-restricted genes, this approach may have broad therapeutic potential for cancer and other pathologies involving endothelial proliferation/dysfunction.

  18. Binding modes of dihydroquinoxalinones in a homology model of bradykinin receptor 1.

    PubMed

    Ha, Sookhee N; Hey, Pat J; Ransom, Rick W; Harrell, C Meacham; Murphy, Kathryn L; Chang, Ray; Chen, Tsing-Bau; Su, Dai-Shi; Markowitz, M Kristine; Bock, Mark G; Freidinger, Roger M; Hess, Fred J

    2005-05-27

    We report the first homology model of human bradykinin receptor B1 generated from the crystal structure of bovine rhodopsin as a template. Using an automated docking procedure, two B1 receptor antagonists of the dihydroquinoxalinone structural class were docked into the receptor model. Site-directed mutagenesis data of the amino acid residues in TM1, TM3, TM6, and TM7 were incorporated to place the compounds in the binding site of the homology model of the human B1 bradykinin receptor. The best pose in agreement with the mutation data was selected for detailed study of the receptor-antagonist interaction. To test the model, the calculated antagonist-receptor binding energy was correlated with the experimentally measured binding affinity (K(i)) for nine dihydroquinoxalinone analogs. The model was used to gain insight into the molecular mechanism for receptor function and to optimize the dihydroquinoxalinone analogs.

  19. Crystal structure of CotA laccase complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) at a novel binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhongchuan; Xie, Tian; Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu 610041, People’s Republic of

    2016-03-24

    The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) in a hole motif has been solved; this novel binding site could be a potential structure-based target for protein engineering of CotA laccase. The CotA laccase from Bacillus subtilis is an abundant component of the spore outer coat and has been characterized as a typical laccase. The crystal structure of CotA complexed with 2,2-azinobis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS) in a hole motif has been solved. The novel binding site was about 26 Å away from the T1 binding pocket. Comparison with known structures of other laccases revealed that the hole is a specific feature ofmore » CotA. The key residues Arg476 and Ser360 were directly bound to ABTS. Site-directed mutagenesis studies revealed that the residues Arg146, Arg429 and Arg476, which are located at the bottom of the novel binding site, are essential for the oxidation of ABTS and syringaldazine. Specially, a Thr480Phe variant was identified to be almost 3.5 times more specific for ABTS than for syringaldazine compared with the wild type. These results suggest this novel binding site for ABTS could be a potential target for protein engineering of CotA laccases.« less

  20. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terawaki, Shin-ichi, E-mail: terawaki@gunma-u.ac.jp; SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148; Yoshikane, Asuka

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicDmore » CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site.« less

  1. Site-directed mutagenesis of the regulatory light-chain Ca2+/Mg2+ binding site and its role in hybrid myosins

    NASA Astrophysics Data System (ADS)

    Reinach, Fernando C.; Nagai, Kiyoshi; Kendrick-Jones, John

    1986-07-01

    The regulatory light chains, small polypeptides located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation. The demonstration that the regulatory light chains on scallop myosin can be replaced by light chains from other myosins has allowed us to compare the functional capabilities of different light chains1, but has not enabled us to probe the role of features, such as the Ca2+/Mg2+ binding site, that are common to all of them. Here, we describe the use of site-directed mutagenesis to study the function of that site. We synthesized the chicken skeletal myosin light chain in Escherichia coli and constructed mutants with substitutions within the Ca2+/Mg2+ binding site. When the aspartate residues at the first and sixth Ca2+ coordination positions are replaced by uncharged alanines, the light chains have a reduced Ca2+ binding capacity but still bind to scallop myosin with high affinity. Unlike the wild-type skeletal light chain which inhibits myosin interaction with actin, the mutants activate it. Thus, an intact Ca2+/Mg2+ binding site in the N-terminal region of the light chain is essential for regulating the interaction of myosin with actin.

  2. Analysis of the Binding Sites of Porcine Sialoadhesin Receptor with PRRSV

    PubMed Central

    Jiang, Yibo; Khan, Faheem Ahmed; Pandupuspitasari, Nuruliarizki Shinta; Kadariya, Ishwari; Cheng, Zhangrui; Ren, Yuwei; Chen, Xing; Zhou, Ao; Yang, Liguo; Kong, Dexin; Zhang, Shujun

    2013-01-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) can infect pigs and cause enormous economic losses to the pig industry worldwide. Porcine sialoadhesin (pSN) and CD163 have been identified as key viral receptors on porcine alveolar macrophages (PAM), a main target cell infected by PRRSV. In this study, the protein structures of amino acids 1–119 from the pSN and cSN (cattle sialoadhesin) N-termini (excluding the 19-amino acid signal peptide) were modeled via homology modeling based on mSN (mouse sialoadhesin) template structures using bioinformatics tools. Subsequently, pSN and cSN homology structures were superposed onto the mSN protein structure to predict the binding sites of pSN. As a validation experiment, the SN N-terminus (including the wild-type and site-directed-mutant-types of pSN and cSN) was cloned and expressed as a SN-GFP chimera protein. The binding activity between SN and PRRSV was confirmed by WB (Western blotting), FAR-WB (far Western blotting), ELISA (enzyme-linked immunosorbent assay) and immunofluorescence assay. We found that the S107 amino acid residue in the pSN N-terminal played a crucial role in forming a special cavity, as well as a hydrogen bond for enhancing PRRSV binding during PRRSV infection. S107 may be glycosylated during PRRSV infection and may also be involved in forming the cavity for binding PRRSV along with other sites, including W2, Y44, S45, R97, R105, W106 and V109. Additionally, S107 might also be important for pSN binding with PRRSV. However, the function of these binding sites must be confirmed by further studies. PMID:24351868

  3. Mapping of the Lassa virus LAMP1 binding site reveals unique determinants not shared by other old world arenaviruses.

    PubMed

    Israeli, Hadar; Cohen-Dvashi, Hadas; Shulman, Anastasiya; Shimon, Amir; Diskin, Ron

    2017-04-01

    Cell entry of many enveloped viruses occurs by engagement with cellular receptors, followed by internalization into endocytic compartments and pH-induced membrane fusion. A previously unnoticed step of receptor switching was found to be critical during cell entry of two devastating human pathogens: Ebola and Lassa viruses. Our recent studies revealed the functional role of receptor switching to LAMP1 for triggering membrane fusion by Lassa virus and showed the involvement of conserved histidines in this switching, suggesting that other viruses from this family may also switch to LAMP1. However, when we investigated viruses that are genetically close to Lassa virus, we discovered that they cannot bind LAMP1. A crystal structure of the receptor-binding module from Morogoro virus revealed structural differences that allowed mapping of the LAMP1 binding site to a unique set of Lassa residues not shared by other viruses in its family, illustrating a key difference in the cell-entry mechanism of Lassa virus that may contribute to its pathogenicity.

  4. Phosphorylation of poly(rC) binding protein 1 (PCBP1) contributes to stabilization of mu opioid receptor (MOR) mRNA via interaction with AU-rich element RNA-binding protein 1 (AUF1) and poly A binding protein (PABP)

    PubMed Central

    Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee; Wei, Li-Na; Loh, Horace H.

    2016-01-01

    Gene regulation at the post-transcriptional level is frequently based on cis- and trans-acting factors on target mRNAs. We found a C-rich element (CRE) in mu-opioid receptor (MOR) 3′-untranslated region (UTR) to which poly (rC) binding protein 1 (PCBP1) binds, resulting in MOR mRNA stabilization. RNA immunoprecipitation and RNA EMSA revealed the formation of PCBP1-RNA complexes at the element. Knockdown of PCBP1 decreased MOR mRNA half-life and protein expression. Stimulation by forskolin increased cytoplasmic localization of PCBP1 and PCBP1/MOR 3′-UTR interactions via increased serine phosphorylation that was blocked by protein kinase A (PKA) or (phosphatidyl inositol-3) PI3-kinase inhibitors. The forskolin treatment also enhanced serine- and tyrosine-phosphorylation of AU-rich element binding protein (AUF1), concurrent with its increased binding to the CRE, and led to an increased interaction of poly A binding protein (PABP) with the CRE and poly(A) sites. AUF1 phosphorylation also led to an increased interaction with PCBP1. These findings suggest that a single co-regulator, PCBP1, plays a crucial role in stabilizing MOR mRNA, and is induced by PKA signaling by conforming to AUF1 and PABP. PMID:27836661

  5. The pathogen-related yeast protein Pry1, a member of the CAP protein superfamily, is a fatty acid-binding protein

    PubMed Central

    Darwiche, Rabih; Mène-Saffrané, Laurent; Gfeller, David; Asojo, Oluwatoyin A.; Schneiter, Roger

    2017-01-01

    Members of the CAP superfamily (cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins), also known as SCP superfamily (sperm-coating proteins), have been implicated in many physiological processes, including immune defenses, venom toxicity, and sperm maturation. Their mode of action, however, remains poorly understood. Three proteins of the CAP superfamily, Pry1, -2, and -3 (pathogen related in yeast), are encoded in the Saccharomyces cerevisiae genome. We have shown previously that Pry1 binds cholesterol in vitro and that Pry function is required for sterol secretion in yeast cells, indicating that members of this superfamily may generally bind sterols or related small hydrophobic compounds. On the other hand, tablysin-15, a CAP protein from the horsefly Tabanus yao, has been shown to bind leukotrienes and free fatty acids in vitro. Therefore, here we assessed whether the yeast Pry1 protein binds fatty acids. Computational modeling and site-directed mutagenesis indicated that the mode of fatty acid binding is conserved between tablysin-15 and Pry1. Pry1 bound fatty acids with micromolar affinity in vitro, and its function was essential for fatty acid export in cells lacking the acyl-CoA synthetases Faa1 and Faa4. Fatty acid binding of Pry1 is independent of its capacity to bind sterols, and the two sterol- and fatty acid-binding sites are nonoverlapping. These results indicate that some CAP family members, such as Pry1, can bind different lipids, particularly sterols and fatty acids, at distinct binding sites, suggesting that the CAP domain may serve as a stable, secreted protein domain that can accommodate multiple ligand-binding sites. PMID:28365570

  6. Histological distribution of FR-1, a cyclic RGDS-peptide, binding sites during early embryogenesis, and isolation and initial characterization of FR-1 receptor in the sand dollar embryo.

    PubMed

    Katow, H; Yamamoto, Y; Sofuku, S

    1997-04-01

    A fibronectin-related synthetic cyclic H-Cys-Arg-Gly-Asp-Ser-Pro-Ala-Ser-Ser-Cys-OH (RGDSPASS) peptide (FR-1) binding site in the embryo of the sand dollar Clypeaster japonicus was specified using dansyl-labeled FR-1 (Dns-FR-1) and horseradish peroxidase-labeled FR-1, and an FR-1 receptor was isolated using FR-1-affinity column chromatography. The FR-1 introduced to the blastocoel of blastulae inhibited primary mesenchyme cell (PMC) migration in mesenchyme blastulae, and complete gastrulation and spicule differentiation in gastrulae. The Dns-FR-1 bound to the entire basal side of the ectoderm in mesenchyme blastulae, and then restricted to the basal side of the ectoderm at the apical tuft region and the vegetal hemisphere in early gastrulae. The cytoplasm of the archenteron also bound to Dns-FR-1. In PMC, Dns-FR-1 bound to the nucleus and cytoplasmic reticular features. In unfertilized eggs, Dns-FR-1 bound to the entire cytoplasm, particularly to the oval-shaped granules and the nuclear envelope, but only to the cytoplasm after fertilization. Relative molecular mass (Mr) of the FR-1-binding protein was 240 kDa under non-reducing conditions and 57 kDa under reducing conditions. The FR-1 receptor protein bound anti-sea urchin integrin (Spl) betaL subunit antibodies raised against the embryos of Strongylocentrotus purpuratus. Immunohistochemistry showed that the antibody binding site was similar to the histochemical distribution of Dns-FR-1. However, Mr of the FR-1 receptor is distinctively larger than that of the Spl betaL subunit.

  7. Hb taradale [beta82(EF6)Lys-->Arg]: a novel mutation at a 2,3-diphosphoglycerate binding site.

    PubMed

    Brennan, Stephen O; Sheen, Campbell; Chan, Tim; George, Peter M

    2005-01-01

    Hb Taradale [beta82(EF6)Lys-->Arg] was initially detected as a split Hb A0 peak on Hb A1c, monitoring. Red cell parameters, hemoglobin (Hb) electrophoresis and stability tests were normal. Mass spectrometry (ms) clearly identified a variant beta chain with a mass increase of 28 Da and peptide mapping located the mutation site to peptide betaT-9. DNA sequencing confirmed the presence of a novel beta82(EF6)Lys-->Arg mutation. This conservative substitution at a 2,3-diphosphoglycerate (2,3-DPG) binding site did not, however, appear to affect the P50 for oxygen binding.

  8. Locating the Binding Sites of Pb(II) Ion with Human and Bovine Serum Albumins

    PubMed Central

    Belatik, Ahmed; Hotchandani, Surat; Carpentier, Robert; Tajmir-Riahi, Heidar-Ali

    2012-01-01

    Lead is a potent environmental toxin that has accumulated above its natural level as a result of human activity. Pb cation shows major affinity towards protein complexation and it has been used as modulator of protein-membrane interactions. We located the binding sites of Pb(II) with human serum (HSA) and bovine serum albumins (BSA) at physiological conditions, using constant protein concentration and various Pb contents. FTIR, UV-visible, CD, fluorescence and X-ray photoelectron spectroscopic (XPS) methods were used to analyse Pb binding sites, the binding constant and the effect of metal ion complexation on HSA and BSA stability and conformations. Structural analysis showed that Pb binds strongly to HSA and BSA via hydrophilic contacts with overall binding constants of KPb-HSA = 8.2 (±0.8)×104 M−1 and KPb-BSA = 7.5 (±0.7)×104 M−1. The number of bound Pb cation per protein is 0.7 per HSA and BSA complexes. XPS located the binding sites of Pb cation with protein N and O atoms. Pb complexation alters protein conformation by a major reduction of α-helix from 57% (free HSA) to 48% (metal-complex) and 63% (free BSA) to 52% (metal-complex) inducing a partial protein destabilization. PMID:22574219

  9. The Chromodomain of Tf1 Integrase Promotes Binding to cDNA and Mediates Target Site Selection▿ †

    PubMed Central

    Chatterjee, Atreyi Ghatak; Leem, Young Eun; Kelly, Felice D.; Levin, Henry L.

    2009-01-01

    The long terminal repeat (LTR) retrotransposon Tf1 of Schizosaccharomyces pombe integrates specifically into the promoters of pol II-transcribed genes. Its integrase (IN) contains a C-terminal chromodomain related to the chromodomains that bind to the N-terminal tail of histone H3. Although we have been unable to detect an interaction between histone tails and the chromodomain of Tf1 IN, it is possible that the chromodomain plays a role in directing IN to its target sites. To test this idea, we generated transposons with single amino acid substitutions in highly conserved residues of the chromodomain and created a chromodomain-deleted mutant. The mutations, V1290A, Y1292A, W1305A, and CHDΔ, substantially reduced transposition activity in vivo. Blotting assays showed that there was little or no reduction in the levels of IN or cDNA. By measuring the homologous recombination between cDNA and the plasmid copy of Tf1, we found that two of the mutations did not reduce the import of cDNA into the nucleus, while another caused a 33% reduction. Chromatin immunoprecipitation assays revealed that CHDΔ caused an approximately threefold reduction in the binding of IN to the downstream LTR of the cDNA. These data indicate that the chromodomain contributed directly to integration. We therefore tested whether the chromodomain contributed to selecting insertion sites. Results of a target plasmid assay showed that the deletion of the chromodomain resulted in a drastic reduction in the preference for pol II promoters. Collectively, these data indicate that the chromodomain promotes binding of cDNA and plays a key role in efficient targeting. PMID:19109383

  10. External location of sites on pig erythrocyte membranes that bind nitrobenzylthioinosine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agbanyo, F.R.; Cass, C.E.; Paterson, A.R.

    1988-03-01

    Nucleoside transport in erythrocytes of various species is inhibited by the binding of nitrobenzylthioinosine (NBMPR) to high affinity sites associated with nucleoside transport elements of the plasma membrane. The present study examined binding of (/sup 3/H)NBMPR to unsealed ghosts and to sealed right-side-out vesicles (ROVs) and inside-out vesicles (IOVs) prepared from pig erythrocytes. Kd values for NBMPR dissociation from the ligand-site complex in unsealed ghosts, ROVs and IOVs were similar (1.6-2.4 nM), and Bmax values (mean +/- SD) were, respectively, 22.2 +/- 5.5, 25.8 +/- 6.4, and 37.3 +/- 4.0 molecules/fg of protein, reflecting differences in the protein content ofmore » the membrane preparations. When temperatures were decreased from 22 degrees to 4 degrees, NBMPR binding to erythrocyte membrane preparations was reduced in IOVs relative to that in unsealed ghosts and ROVs. At 22 degrees, the association of NBMPR molecules with IOVs was slower than with ROVs and unsealed ghosts, differences that were virtually eliminated by permeabilization of the membrane preparations with saponin. Thus, the binding sites were more accessible to external NBMPR in sealed ROVs and unsealed ghosts than in sealed IOVs, indicating that the NBMPR sites are located on the extracellular aspect of the membrane.« less

  11. Determinants of affinity and mode of DNA binding at the carboxy terminus of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1.

    PubMed

    Andera, L; Geiduschek, E P

    1994-03-01

    The role of the carboxy-terminal amino acids of the bacteriophage SPO1-encoded type II DNA-binding protein, TF1, in DNA binding was analyzed. Chain-terminating mutations truncating the normally 99-amino-acid TF1 at amino acids 96, 97, and 98 were constructed, as were missense mutations substituting cysteine, arginine, and serine for phenylalanine at amino acid 97 and tryptophan for lysine at amino acid 99. The binding of the resulting proteins to a synthetic 44-bp binding site in 5-(hydroxymethyl)uracil DNA, to binding sites in larger SPO1 [5-(hydroxymethyl)uracil-containing] DNA fragments, and to thymine-containing homologous DNA was analyzed by gel retardation and also by DNase I and hydroxy radical footprinting. We conclude that the C tail up to and including phenylalanine at amino acid 97 is essential for DNA binding and that the two C-terminal amino acids, 98 and 99, are involved in protein-protein interactions between TF1 dimers bound to DNA.

  12. Interrelations of secondary structure stability and DNA-binding affinity in the bacteriophage SPO1-encoded type II DNA-binding protein TF1.

    PubMed

    Andera, L; Spangler, C J; Galeone, A; Mayol, L; Geiduschek, E P

    1994-02-11

    TF1, a homodimeric DNA-binding and -bending protein with a preference for hydroxymethyluracil-containing DNA is the Bacillus subtilis-encoded homolog of the bacterial HU proteins and of the E. coli integration host factor. A temperature-sensitive mutation at amino acid 25 of TF1 (L25-->A) and two intragenic second site revertants at amino acids 15 (E15-->G) and 32 (L32-->I) were previously identified and their effects on virus development were examined. The DNA-binding properties of these proteins and the thermal stability of their secondary structures have now been analyzed. Amino acids 15 and 32 are far removed from the putative DNA-binding domains of TF1 but changes there exert striking effects on DNA affinity that correlate with effects on structure. The double mutant protein TF1-G15I32 binds to a preferred site in hydroxymethyluracil-containing DNA 40 times more tightly, denatures at higher temperature (delta tm = 21 degrees C), and also exchanges subunits much more slowly than does the wild-type protein. The L25-->A mutation makes TF1 secondary structure and DNA-binding highly salt concentration-dependent. The E15-->G mutation partly suppresses this effect: secondary structure of TF1-A25G15 is restored at 21 degrees C by 1 M NaCl or, at low NaCl concentration, by binding to DNA.

  13. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations.

    PubMed

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  14. Identification of the quinolinedione inhibitor binding site in Cdc25 phosphatase B through docking and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ge, Yushu; van der Kamp, Marc; Malaisree, Maturos; Liu, Dan; Liu, Yi; Mulholland, Adrian J.

    2017-11-01

    Cdc25 phosphatase B, a potential target for cancer therapy, is inhibited by a series of quinones. The binding site and mode of quinone inhibitors to Cdc25B remains unclear, whereas this information is important for structure-based drug design. We investigated the potential binding site of NSC663284 [DA3003-1 or 6-chloro-7-(2-morpholin-4-yl-ethylamino)-quinoline-5, 8-dione] through docking and molecular dynamics simulations. Of the two main binding sites suggested by docking, the molecular dynamics simulations only support one site for stable binding of the inhibitor. Binding sites in and near the Cdc25B catalytic site that have been suggested previously do not lead to stable binding in 50 ns molecular dynamics (MD) simulations. In contrast, a shallow pocket between the C-terminal helix and the catalytic site provides a favourable binding site that shows high stability. Two similar binding modes featuring protein-inhibitor interactions involving Tyr428, Arg482, Thr547 and Ser549 are identified by clustering analysis of all stable MD trajectories. The relatively flexible C-terminal region of Cdc25B contributes to inhibitor binding. The binding mode of NSC663284, identified through MD simulation, likely prevents the binding of protein substrates to Cdc25B. The present results provide useful information for the design of quinone inhibitors and their mechanism of inhibition.

  15. In vivo binding of PRDM9 reveals interactions with noncanonical genomic sites

    PubMed Central

    Grey, Corinne; Clément, Julie A.J.; Buard, Jérôme; Leblanc, Benjamin; Gut, Ivo; Gut, Marta; Duret, Laurent

    2017-01-01

    In mouse and human meiosis, DNA double-strand breaks (DSBs) initiate homologous recombination and occur at specific sites called hotspots. The localization of these sites is determined by the sequence-specific DNA binding domain of the PRDM9 histone methyl transferase. Here, we performed an extensive analysis of PRDM9 binding in mouse spermatocytes. Unexpectedly, we identified a noncanonical recruitment of PRDM9 to sites that lack recombination activity and the PRDM9 binding consensus motif. These sites include gene promoters, where PRDM9 is recruited in a DSB-dependent manner. Another subset reveals DSB-independent interactions between PRDM9 and genomic sites, such as the binding sites for the insulator protein CTCF. We propose that these DSB-independent sites result from interactions between hotspot-bound PRDM9 and genomic sequences located on the chromosome axis. PMID:28336543

  16. Cloud Computing for Protein-Ligand Binding Site Comparison

    PubMed Central

    2013-01-01

    The proteome-wide analysis of protein-ligand binding sites and their interactions with ligands is important in structure-based drug design and in understanding ligand cross reactivity and toxicity. The well-known and commonly used software, SMAP, has been designed for 3D ligand binding site comparison and similarity searching of a structural proteome. SMAP can also predict drug side effects and reassign existing drugs to new indications. However, the computing scale of SMAP is limited. We have developed a high availability, high performance system that expands the comparison scale of SMAP. This cloud computing service, called Cloud-PLBS, combines the SMAP and Hadoop frameworks and is deployed on a virtual cloud computing platform. To handle the vast amount of experimental data on protein-ligand binding site pairs, Cloud-PLBS exploits the MapReduce paradigm as a management and parallelizing tool. Cloud-PLBS provides a web portal and scalability through which biologists can address a wide range of computer-intensive questions in biology and drug discovery. PMID:23762824

  17. Small constrained SP1-7 analogs bind to a unique site and promote anti-allodynic effects following systemic injection in mice.

    PubMed

    Jonsson, A; Fransson, R; Haramaki, Y; Skogh, A; Brolin, E; Watanabe, H; Nordvall, G; Hallberg, M; Sandström, A; Nyberg, F

    2015-07-09

    Previous results have shown that the substance P (SP) N-terminal fragment SP1-7 may attenuate hyperalgesia and produce anti-allodynia in animals using various experimental models for neuropathic pain. The heptapeptide was found to induce its effects through binding to and activating specific sites apart from any known neurokinin or opioid receptor. Furthermore, we have applied a medicinal chemistry program to develop lead compounds mimicking the effect of SP1-7. The present study was designed to evaluate the pharmacological effect of these compounds using the mouse spared nerve injury (SNI) model of chronic neuropathic pain. Also, as no comprehensive screen with the aim to identify the SP1-7 target has yet been performed we screened our lead compound H-Phe-Phe-NH2 toward a panel of drug targets. The extensive target screen, including 111 targets, did not reveal any hit for the binding site among a number of known receptors or enzymes involved in pain modulation. Our animal studies confirmed that SP1-7, but also synthetic analogs thereof, possesses anti-allodynic effects in the mouse SNI model of neuropathic pain. One of the lead compounds, a constrained H-Phe-Phe-NH2 analog, was shown to exhibit a significant anti-allodynic effect. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. High-Affinity Quasi-Specific Sites in the Genome: How the DNA-Binding Proteins Cope with Them

    PubMed Central

    Chakrabarti, J.; Chandra, Navin; Raha, Paromita; Roy, Siddhartha

    2011-01-01

    Many prokaryotic transcription factors home in on one or a few target sites in the presence of a huge number of nonspecific sites. Our analysis of λ-repressor in the Escherichia coli genome based on single basepair substitution experiments shows the presence of hundreds of sites having binding energy within 3 Kcal/mole of the OR1 binding energy, and thousands of sites with binding energy above the nonspecific binding energy. The effect of such sites on DNA-based processes has not been fully explored. The presence of such sites dramatically lowers the occupation probability of the specific site far more than if the genome were composed of nonspecific sites only. Our Brownian dynamics studies show that the presence of quasi-specific sites results in very significant kinetic effects as well. In contrast to λ-repressor, the E. coli genome has orders of magnitude lower quasi-specific sites for GalR, an integral transcription factor, thus causing little competition for the specific site. We propose that GalR and perhaps repressors of the same family have evolved binding modes that lead to much smaller numbers of quasi-specific sites to remove the untoward effects of genomic DNA. PMID:21889449

  19. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation.

    PubMed

    Tillu, Vikas A; Kovtun, Oleksiy; McMahon, Kerrie-Ann; Collins, Brett M; Parton, Robert G

    2015-10-15

    Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae. © 2015 Tillu et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  20. The selectivity of receptor tyrosine kinase signaling is controlled by a secondary SH2 domain binding site.

    PubMed

    Bae, Jae Hyun; Lew, Erin Denise; Yuzawa, Satoru; Tomé, Francisco; Lax, Irit; Schlessinger, Joseph

    2009-08-07

    SH2 domain-mediated interactions represent a crucial step in transmembrane signaling by receptor tyrosine kinases. SH2 domains recognize phosphotyrosine (pY) in the context of particular sequence motifs in receptor phosphorylation sites. However, the modest binding affinity of SH2 domains to pY containing peptides may not account for and likely represents an oversimplified mechanism for regulation of selectivity of signaling pathways in living cells. Here we describe the crystal structure of the activated tyrosine kinase domain of FGFR1 in complex with a phospholipase Cgamma fragment. The structural and biochemical data and experiments with cultured cells show that the selectivity of phospholipase Cgamma binding and signaling via activated FGFR1 are determined by interactions between a secondary binding site on an SH2 domain and a region in FGFR1 kinase domain in a phosphorylation independent manner. These experiments reveal a mechanism for how SH2 domain selectivity is regulated in vivo to mediate a specific cellular process.

  1. Positive and Negative Allosteric Modulation of an α1β3γ2 γ-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the γ+-β− Interface*

    PubMed Central

    Jayakar, Selwyn S.; Zhou, Xiaojuan; Savechenkov, Pavel Y.; Chiara, David C.; Desai, Rooma; Bruzik, Karol S.; Miller, Keith W.; Cohen, Jonathan B.

    2015-01-01

    In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343–19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ+-β− subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β+-α− subunit interfaces. GABA inhibits S-[3H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2–15′) in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[3H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ+-β− site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators. PMID:26229099

  2. Identification and partial characterization of a low affinity metal-binding site in the light chain of tetanus toxin.

    PubMed

    Wright, J F; Pernollet, M; Reboul, A; Aude, C; Colomb, M G

    1992-05-05

    Tetanus toxin was shown to contain a metal-binding site for zinc and copper. Equilibrium dialysis binding experiments using 65Zn indicated an association constant of 9-15 microM, with one zinc-binding site/toxin molecule. The zinc-binding site was localized to the toxin light chain as determined by binding of 65Zn to the light chain but not to the heavy chain after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transfer to Immobilon membranes. Copper was an efficient inhibitor of 65Zn binding to tetanus toxin and caused two peptide bond cleavages in the toxin light chain in the presence of ascorbate. These metal-catalyzed oxidative cleavages were inhibited by the presence of zinc. Partial characterization of metal-catalyzed oxidative modifications of a peptide based on a putative metal-binding site (HELIH) in the toxin light chain was used to map the metal-binding site in the protein.

  3. Identification and Characterization of a Secondary Sodium-Binding Site and the Main Selectivity Determinants in the Human Concentrative Nucleoside Transporter 3.

    PubMed

    Arimany-Nardi, C; Claudio-Montero, A; Viel-Oliva, A; Schmidtke, P; Estarellas, C; Barril, X; Bidon-Chanal, A; Pastor-Anglada, M

    2017-06-05

    The family of concentrative Na + /nucleoside cotransporters in humans is constituted by three subtypes, namely, hCNT1, hCNT2, and hCNT3. Besides their different nucleoside selectivity, hCNT1 and hCNT2 have a Na + /nucleoside stoichiometry of 1:1, while for hCNT3 it is 2:1. This distinct stoichiometry of subtype 3 might hint the existence of a secondary sodium-binding site that is not present in the other two subtypes, but to date their three-dimensional structures remain unknown and the residues implicated in Na + binding are unclear. In this work, we have identified and characterized the Na + binding sites of hCNT3 by combining molecular modeling and mutagenesis studies. A model of the transporter was obtained by homology modeling, and key residues of two sodium-binding sites were identified and verified with a mutagenesis strategy. The structural model explains the altered sodium-binding properties of the hCNT3C602R polymorphic variant and supports previously generated data identifying the determinant residues of nucleoside selectivity, paving the way to understand how drugs can target this plasma membrane transporter.

  4. Analysis of the binding sites of vitamin D 1α-hydroxylase (CYP27B1) and vitamin D 24-hydroxylase (CYP24A1) for the design of selective CYP24A1 inhibitors: Homology modelling, molecular dynamics simulations and identification of key binding requirements.

    PubMed

    Taban, Ismail M; Zhu, Jinge; DeLuca, Hector F; Simons, Claire

    2017-10-15

    A homology model of human CYP27B1 was built using MOE and was further optimised by molecular dynamics simulations of the hCYP27B1 homology model and a hCYP27B1-SDZ-88357 complex. Docking results from the hCYP27B1-SDZ-88357 complex showed amino acids Arg107, Asn387 and Asp320 have an important role in binding interaction, with Asp320 part of the important acid-alcohol pair situated in the I-helix with the conserved sequence (A/G) GX (E/D) (T/S), which assumes an essential role in the binding of an oxygen molecule for catalysis. Additional docking experiments with selective hCYP27B1 or hCYP24A1 inhibitors using both the hCYP27B1 model and a triple mutant hCYP24A1 model provided further support for the importance of H-bonding interactions with the three identified active site amino acids. To confirm the role of Arg107, Asn387 and Asp320 in the active site of hCYP27B1 compounds were designed that would form H-bonding interactions, as determined from docking experiments with the hCYP27B1 model. Subsequent synthesis and CYP24A1 and CYP27B1 enzyme assays of the designed compounds 1a and 1b showed a∼5-fold selectivity for CYP27B1 confirming the importance of Asp320 in particular and also Asn387 and Arg107 as important amino acids for CYP27B1 inhibitory activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. On the connection between inherent DNA flexure and preferred binding of hydroxymethyluracil-containing DNA by the type II DNA-binding protein TF1.

    PubMed

    Grove, A; Galeone, A; Mayol, L; Geiduschek, E P

    1996-07-12

    TF1 is a member of the family of type II DNA-binding proteins, which also includes the bacterial HU proteins and the Escherichia coli integration host factor (IHF). Distinctive to TF1, which is encoded by the Bacillus subtilis bacteriophage SPO1, is its preferential binding to DNA in which thymine is replaced by 5-hydroxymethyluracil (hmU), as it is in the phage genome. TF1 binds to preferred sites within the phage genome and generates pronounced DNA bending. The extent to which DNA flexibility contributes to the sequence-specific binding of TF1, and the connection between hmU preference and DNA flexibility has been examined. Model flexible sites, consisting of consecutive mismatches, increase the affinity of thymine-containing DNA for TF1. In particular, tandem mismatches separated by nine base-pairs generate an increase, by orders of magnitude, in the affinity of TF1 for T-containing DNA with the sequence of a preferred TF1 binding site, and fully match the affinity of TF1 for this cognate site in hmU-containing DNA (Kd approximately 3 nM). Other placements of loops generate suboptimal binding. This is consistent with a significant contribution of site-specific DNA flexibility to complex formation. Analysis of complexes with hmU-DNA of decreasing length shows that a major part of the binding affinity is generated within a central 19 bp segment (delta G0 = 41.7 kJ mol-1) with more-distal DNA contributing modestly to the affinity (delta delta G = -0.42 kJ mol-1 bp-1 on increasing duplex length to 37 bp). However, a previously characterised thermostable and more tightly binding mutant TF1, TF1(E15G/T32I), derives most of its extra affinity from interaction with flanking DNA. We propose that inherent but sequence-dependent deformability of hmU-containing DNA underlies the preferential binding of TF1 and that TF1-induced DNA bendings is a result of distortions at two distinct sites separated by 9 bp of duplex DNA.

  6. AR-C155858 is a potent inhibitor of monocarboxylate transporters MCT1 and MCT2 that binds to an intracellular site involving transmembrane helices 7-10.

    PubMed

    Ovens, Matthew J; Davies, Andrew J; Wilson, Marieangela C; Murray, Clare M; Halestrap, Andrew P

    2010-01-15

    In the present study we characterize the properties of the potent MCT1 (monocarboxylate transporter 1) inhibitor AR-C155858. Inhibitor titrations of L-lactate transport by MCT1 in rat erythrocytes were used to determine the Ki value and number of AR-C155858-binding sites (Et) on MCT1 and the turnover number of the transporter (kcat). Derived values were 2.3+/-1.4 nM, 1.29+/-0.09 nmol per ml of packed cells and 12.2+/-1.1 s-1 respectively. When expressed in Xenopus laevis oocytes, MCT1 and MCT2 were potently inhibited by AR-C155858, whereas MCT4 was not. Inhibition of MCT1 was shown to be time-dependent, and the compound was also active when microinjected, suggesting that AR-C155858 probably enters the cell before binding to an intracellular site on MCT1. Measurement of the inhibitor sensitivity of several chimaeric transporters combining different domains of MCT1 and MCT4 revealed that the binding site for AR-C155858 is contained within the C-terminal half of MCT1, and involves TM (transmembrane) domains 7-10. This is consistent with previous data identifying Phe360 (in TM10) and Asp302 plus Arg306 (TM8) as key residues in substrate binding and translocation by MCT1. Measurement of the Km values of the chimaeras for L-lactate and pyruvate demonstrate that both the C- and N-terminal halves of the molecule influence transport kinetics consistent with our proposed molecular model of MCT1 and its translocation mechanism that requires Lys38 in TM1 in addition to Asp302 and Arg306 in TM8 [Wilson, Meredith, Bunnun, Sessions and Halestrap (2009) J. Biol. Chem. 284, 20011-20021].

  7. CREB, NF-Y and MEIS1 conserved binding sites are essential to balance Myostatin promoter/enhancer activity during early myogenesis.

    PubMed

    Grade, Carla Vermeulen Carvalho; Mantovani, Carolina Stefano; Fontoura, Marina Alves; Yusuf, Faisal; Brand-Saberi, Beate; Alvares, Lúcia Elvira

    2017-10-01

    Myostatin (MSTN) is a strong inhibitor of skeletal muscle growth in human and other vertebrates. Its transcription is controlled by a proximal promoter/enhancer (Mstn P/E) containing a TATA box besides CREB, NF-Y, MEIS1 and FXR transcription factor binding sites (TFBSs), which are conserved throughout evolution. The aim of this work was to investigate the role of these TFBSs on Mstn P/E activity and evaluate the potential of their putative ligands as Mstn trans regulators. Mstn P/E mutant constructs were used to establish the role of conserved TFBSs using dual-luciferase assays. Expression analyses were performed by RT-PCR and in situ hybridization in C2C12 myoblasts and E10.5 mouse embryos, respectively. Our results revealed that CREB, NF-Y and MEIS1 sites are required to balance Mstn P/E activity, keeping Mstn transcription within basal levels during myoblast proliferation. Furthermore, our data showed that NF-Y site is essential, although not sufficient, to mediate Mstn P/E transcriptional activity. In turn, CREB and MEIS1 binding sites seem to depend on the presence of NF-Y site to induce Mstn P/E. FXR appears not to confer any effect on Mstn P/E activity, except in the absence of all other conserved TFBS. Accordingly, expression studies pointed to CREB, NF-Y and MEIS1 but not to FXR factors as possible regulators of Mstn transcription in the myogenic context. Altogether, our findings indicated that CREB, NF-Y and MEIS1 conserved sites are essential to control basal Mstn transcription during early myogenesis, possibly by interacting with these or other related factors.

  8. Control of Ion Selectivity in LeuT: Two Na+ Binding Sites with two different mechanisms

    PubMed Central

    Noskov, Sergei Y.; Roux, Benoît

    2016-01-01

    The x-ray structure of LeuT, a bacterial homologue of Na+/Cl−-dependent neurotransmitter transporter, provides a great opportunity to better understand the molecular basis of monovalent cation selectivity in ion-coupled transporters. LeuT possesses two ion-binding sites, NA1 and NA2, which are highly selective for Na+. Extensive all-atom free energy molecular dynamics simulations of LeuT embedded in an explicit membrane are performed at different temperatures and various occupancy states of the binding sites to dissect the molecular mechanism of ion selectivity. The results show that the two binding sites display robust selectivity for Na+ over K+ or Li+, the competing ions of most similar radii. Of particular interest, the mechanism primarily responsible for selectivity for each of the two binding sites appears to be different. In site NA1, selectivity for Na+ over K+ arises predominantly from the strong electrostatic field arising from the negatively charged carboxylate group of the leucine substrate coordinating the ion directly. In site NA2, which comprises only neutral ligands, selectivity for Na+ is enforced by the local structural restraints arising from the hydrogen-bonding network and the covalent connectivity of the poly-peptide chain surrounding the ion according to a snug-fit mechanism. PMID:18280500

  9. Electromobility Shift Assay Reveals Evidence in Favor of Allele-Specific Binding of RUNX1 to the 5' Hypersensitive Site 4-Locus Control Region.

    PubMed

    Dehghani, Hossein; Ghobakhloo, Sepideh; Neishabury, Maryam

    2016-08-01

    In our previous studies on the Iranian β-thalassemia (β-thal) patients, we identified an association between the severity of the β-thal phenotype and the polymorphic palindromic site at the 5' hypersensitive site 4-locus control region (5'HS4-LCR) of the β-globin gene cluster. Furthermore, a linkage disequilibrium was observed between this region and XmnI-HBG2 in the patient population. Based on this data, it was suggested that the well-recognized phenotype-ameliorating role assigned to positive XmnI could be associated with its linked elements in the LCR. To investigate the functional significance of polymorphisms at the 5'HS4-LCR, we studied its influence on binding of transcription factors. Web-based predictions of transcription factor binding revealed a binding site for runt-related transcription factor 1 (RUNX1), when the allele at the center of the palindrome (TGGGG(A/G)CCCCA) was A but not when it was G. Furthermore, electromobility shift assay (EMSA) presented evidence in support of allele-specific binding of RUNX1 to 5'HS4. Considering that RUNX1 is a well-known regulator of hematopoiesis, these preliminary data suggest the importance of further studies to confirm this interaction and consequently investigate its functional and phenotypical relevance. These studies could help us to understand the molecular mechanism behind the phenotype modifying role of the 5'HS4-LCR polymorphic palindromic region (rs16912979), which has been observed in previous studies.

  10. Incorporating evolution of transcription factor binding sites into annotated alignments.

    PubMed

    Bais, Abha S; Grossmann, Stefen; Vingron, Martin

    2007-08-01

    Identifying transcription factor binding sites (TFBSs) is essential to elucidate putative regulatory mechanisms. A common strategy is to combine cross-species conservation with single sequence TFBS annotation to yield "conserved TFBSs". Most current methods in this field adopt a multi-step approach that segregates the two aspects. Again, it is widely accepted that the evolutionary dynamics of binding sites differ from those of the surrounding sequence. Hence, it is desirable to have an approach that explicitly takes this factor into account. Although a plethora of approaches have been proposed for the prediction of conserved TFBSs, very few explicitly model TFBS evolutionary properties, while additionally being multi-step. Recently, we introduced a novel approach to simultaneously align and annotate conserved TFBSs in a pair of sequences. Building upon the standard Smith-Waterman algorithm for local alignments, SimAnn introduces additional states for profiles to output extended alignments or annotated alignments. That is, alignments with parts annotated as gaplessly aligned TFBSs (pair-profile hits)are generated. Moreover,the pair- profile related parameters are derived in a sound statistical framework. In this article, we extend this approach to explicitly incorporate evolution of binding sites in the SimAnn framework. We demonstrate the extension in the theoretical derivations through two position-specific evolutionary models, previously used for modelling TFBS evolution. In a simulated setting, we provide a proof of concept that the approach works given the underlying assumptions,as compared to the original work. Finally, using a real dataset of experimentally verified binding sites in human-mouse sequence pairs,we compare the new approach (eSimAnn) to an existing multi-step tool that also considers TFBS evolution. Although it is widely accepted that binding sites evolve differently from the surrounding sequences, most comparative TFBS identification methods do

  11. Ropizine concurrently enhances and inhibits ( sup 3 H) dextromethorpan binding to different structures of the guinea pig brain: Autoradiographic evidence for multiple binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canoll, P.D.; Smith, P.R.; and Musacchio, J.M.

    1990-01-01

    Ropizine produces a simultaneous enhancement and inhibition of ({sup 3}H) dextromethorphan (DM) high-affinity binding to different areas of the guinea pig brain. These results imply that there are two distinct types of high-affinity ({sup 3}H)DM binding sites, which are present in variable proportions in different brain structures. The ropizine-enhances ({sup 3}H)DM binding type was preferentially inhibited by (+)-pentazocine. This is consistent with the presumption that the (+)-pentazocine-sensitive site is identical with the common site for DM and 3-(-3-Hydroxphenyl)-N-(1-propyl)piperidine ((+)-3-PPP). The second binding type, which is inhibited by ropizine and is not so sensitive to (+){minus} pentazocine, has not been fullymore » characterized. This study demonstrates that the biphasic effects to ropizine are due, at least in part, to the effects of ropizine on two different types of ({sup 3}H)DM binding sites. However, this study does not rule out that the common DM/(+)-3-PPP site also might be inhibited by higher concentrations of ropizine.« less

  12. The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles.

    PubMed

    Nguyen, Albert T; Feasley, Christa L; Jackson, Ken W; Nitz, Theodore J; Salzwedel, Karl; Air, Gillian M; Sakalian, Michael

    2011-12-07

    Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1) maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1) is cleaved to p24 (CA) and SP1. In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR). Extensive prior genetic evidence suggests that the MHR is critical for virus assembly. This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.

  13. Elucidation of the Human Serum Albumin (HSA) Binding Site for the Cu-PTSM and Cu-ATSM Radiopharmaceuticals

    PubMed Central

    Basken, Nathan E.; Mathias, Carla J.; Green, Mark A.

    2008-01-01

    The Cu-PTSM (pyruvaldehyde bis(N4-methylthiosemicarbazonato)copper(II)) and Cu-ATSM (diacetyl bis(N4-methylthiosemicarbazonato)copper(II)) radiopharmaceuticals exhibit strong, species-dependent binding to human serum albumin (HSA), while Cu-ETS (ethylglyoxal bis(thiosemicarbazonato)copper(II)) appears to only exhibit non-specific binding to human and animal serum albumins. This study examines the structural basis for HSA binding of Cu-PTSM and Cu-ATSM via competition with drugs having known albumin binding sites. Warfarin, furosemide, ibuprofen, phenylbutazone, benzylpenicillin, and cephmandole were added to HSA solutions at drug:HSA mole ratios from 0 to 8:1, followed by quantification of radiopharmaceutical binding to HSA by ultrafiltration. Warfarin, a site IIA drug, progressively displaced both [64Cu]Cu-PTSM and [64Cu]Cu-ATSM from HSA. At 8:1 warfarin:HSA mole ratios, free [64Cu]Cu-PTSM and [64Cu]Cu-ATSM levels increased 300–500%. This was in contrast to solutions containing ibuprofen, a site IIIA drug; no increase in free [64Cu]Cu-PTSM or [64Cu]Cu-ATSM was observed except at high ibuprofen:HSA ratios, where secondary ibuprofen binding to the IIA site may cause modest radiopharmaceutical displacement. By contrast, and consistent with earlier findings suggesting Cu-ETS exhibits only non-specific associations, [64Cu]Cu-ETS binding to HSA was unaffected by the addition of drugs that bind in either site. We conclude that the species-dependence of Cu-PTSM and Cu-ATSM albumin binding arises from interaction(s) with the IIA site of HSA. PMID:18937368

  14. Polar bear hemoglobin and human Hb A0: same 2,3-diphosphoglycerate binding site but asymmetry of the binding?

    PubMed

    Pomponi, Massimo; Bertonati, Claudia; Patamia, Maria; Marta, Maurizio; Derocher, Andrew E; Lydersen, Christian; Kovacs, Kit M; Wiig, Oystein; Bårdgard, Astrid J

    2002-11-01

    Polar bear (Ursus maritimus) hemoglobin (Hb) shows a low response to 2,3-diphosphoglycerate (2,3-DPG), compared to human Hb A0, even though these proteins have the same 2,3-DPG-binding site. In addition, polar bear Hb shows a high response to chloride and an alkaline Bohr effect (deltalog P50/deltapH) that is significantly greater than that of human Hb A0. The difference in sequence Pro (Hb A0)-->Gly (polar bear Hb) at position A2 in the A helix seems to be critical for reduced binding of 2,3-DPG. Our results also show that the A2 position may influence not only the flexibility of the A helix, but that differences in flexibility of the first turn of the A helix may affect the unloading of oxygen for the intrinsic ligand affinities of the alpha and beta chains. However, preferential binding to either chain can only take place if there is appreciable asymmetric binding of the phosphoric effector. Regarding this point, 31P NMR data suggest a loss of symmetry of the 2,3-DPG-binding site in the deoxyHb-2,3-DPG complex.

  15. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

    PubMed

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Amaro, Itzel; Ortíz, Ernesto; Becerril, Baltazar; Ibarra, Jorge E; Bravo, Alejandra; Soberón, Mario

    2015-04-01

    Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. A Conserved Steroid Binding Site in Cytochrome c Oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Ling; Mills, Denise A.; Buhrow, Leann

    2010-09-02

    Micromolar concentrations of the bile salt deoxycholate are shown to rescue the activity of an inactive mutant, E101A, in the K proton pathway of Rhodobacter sphaeroides cytochrome c oxidase. A crystal structure of the wild-type enzyme reveals, as predicted, deoxycholate bound with its carboxyl group at the entrance of the K path. Since cholate is a known potent inhibitor of bovine oxidase and is seen in a similar position in the bovine structure, the crystallographically defined, conserved steroid binding site could reveal a regulatory site for steroids or structurally related molecules that act on the essential K proton path.

  17. Efficient transcription of the glycolytic gene ADH1 and three translational component genes requires the GCR1 product, which can act through TUF/GRF/RAP binding sites.

    PubMed Central

    Santangelo, G M; Tornow, J

    1990-01-01

    Glycolytic gene expression in Saccharomyces cerevisiae is thought to be activated by the GCR and TUF proteins. We tested the hypothesis that GCR function is mediated by TUF/GRF/RAP binding sites (UASRPG elements). We found that UASRPG-dependent activation of a heterologous gene and transcription of ADH1, TEF1, TEF2, and RP59 were sensitive to GCR1 disruption. GCR is not required for TUF/GRF/RAP expression or in vitro DNA-binding activity. Images PMID:2405258

  18. DNA Double-Strand Breaks Coupled with PARP1 and HNRNPA2B1 Binding Sites Flank Coordinately Expressed Domains in Human Chromosomes

    PubMed Central

    Fedoseeva, Daria M.; Sosin, Dmitri V.; Grachev, Sergei A.; Serebraykova, Marina V.; Romanenko, Svetlana A.; Vorobieva, Nadezhda V.; Kravatsky, Yuri V.

    2013-01-01

    Genome instability plays a key role in multiple biological processes and diseases, including cancer. Genome-wide mapping of DNA double-strand breaks (DSBs) is important for understanding both chromosomal architecture and specific chromosomal regions at DSBs. We developed a method for precise genome-wide mapping of blunt-ended DSBs in human chromosomes, and observed non-random fragmentation and DSB hot spots. These hot spots are scattered along chromosomes and delimit protected 50–250 kb DNA domains. We found that about 30% of the domains (denoted forum domains) possess coordinately expressed genes and that PARP1 and HNRNPA2B1 specifically bind DNA sequences at the forum domain termini. Thus, our data suggest a novel type of gene regulation: a coordinated transcription or silencing of gene clusters delimited by DSB hot spots as well as PARP1 and HNRNPa2B1 binding sites. PMID:23593027

  19. Elucidation of the Hsp90 C-terminal Inhibitor Binding Site

    PubMed Central

    Matts, Robert L.; Dixit, Anshuman; Peterson, Laura B.; Sun, Liang; Voruganti, Sudhakar; Kalyanaraman, Palgunan; Hartson, Steve D.; Verkhivker, Gennady M.; Blagg, Brian S. J.

    2011-01-01

    The Hsp90 chaperone machine is required for the folding, activation and/or stabilization of more than 50 proteins directly related to malignant progression. Hsp90 contains small molecule binding sites at both its N- and C-terminal domains, however, limited structural and biochemical data regarding the C-terminal binding site is available. In this report, the small molecule binding site in the Hsp90 C-terminal domain was revealed by protease fingerprinting and photoaffinity labeling utilizing LC-MS/MS. The identified site was characterized by generation of a homology model for hHsp90α using the SAXS open structure of HtpG and docking the bioactive conformation of NB into the generated model. The resulting model for the bioactive conformation of NB bound to Hsp90α is presented herein. PMID:21548602

  20. Photoactivable antibody binding protein: site-selective and covalent coupling of antibody.

    PubMed

    Jung, Yongwon; Lee, Jeong Min; Kim, Jung-won; Yoon, Jeongwon; Cho, Hyunmin; Chung, Bong Hyun

    2009-02-01

    Here we report new photoactivable antibody binding proteins, which site-selectively capture antibodies and form covalent conjugates with captured antibodies upon irradiation. The proteins allow the site-selective tagging and/or immobilization of antibodies with a highly preferred orientation and omit the need for prior antibody modifications. The minimal Fc-binding domain of protein G, a widely used antibody binding protein, was genetically and chemically engineered to contain a site-specific photo cross-linker, benzophenone. In addition, the domain was further mutated to have an enhanced Fc-targeting ability. This small engineered protein was successfully cross-linked only to the Fc region of the antibody without any nonspecific reactivity. SPR analysis indicated that antibodies can be site-selectively biotinylated through the present photoactivable protein. Furthermore, the system enabled light-induced covalent immobilization of antibodies directly on various solid surfaces, such as those of glass slides, gold chips, and small particles. Antibody coupling via photoactivable antibody binding proteins overcomes several limitations of conventional approaches, such as random chemical reactions or reversible protein binding, and offers a versatile tool for the field of immunosensors.

  1. Structural analysis of substrate recognition by glucose isomerase in Mn2+ binding mode at M2 site in S. rubiginosus.

    PubMed

    Bae, Ji-Eun; Hwang, Kwang Yeon; Nam, Ki Hyun

    2018-06-16

    Glucose isomerase (GI) catalyzes the reversible enzymatic isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This is one of the most important enzymes in the production of high-fructose corn syrup (HFCS) and biofuel. We recently determined the crystal structure of GI from S. rubiginosus (SruGI) complexed with a xylitol inhibitor in one metal binding mode. Although we assessed inhibitor binding at the M1 site, the metal binding at the M2 site and the substrate recognition mechanism for SruGI remains the unclear. Here, we report the crystal structure of the two metal binding modes of SruGI and its complex with glucose. This study provides a snapshot of metal binding at the SruGI M2 site in the presence of Mn 2+ , but not in the presence of Mg 2+ . Metal binding at the M2 site elicits a configuration change at the M1 site. Glucose molecule can only bind to the M1 site in presence of Mn 2+ at the M2 site. Glucose and Mn 2+ at the M2 site were bridged by water molecules using a hydrogen bonding network. The metal binding geometry of the M2 site indicates a distorted octahedral coordination with an angle of 55-110°, whereas the M1 site has a relatively stable octahedral coordination with an angle of 85-95°. We suggest a two-step sequential process for SruGI substrate recognition, in Mn 2+ binding mode, at the M2 site. Our results provide a better understanding of the molecular role of the M2 site in GI substrate recognition. Copyright © 2018. Published by Elsevier Inc.

  2. Chromatin-Specific Regulation of Mammalian rDNA Transcription by Clustered TTF-I Binding Sites

    PubMed Central

    Diermeier, Sarah D.; Németh, Attila; Rehli, Michael; Grummt, Ingrid; Längst, Gernot

    2013-01-01

    Enhancers and promoters often contain multiple binding sites for the same transcription factor, suggesting that homotypic clustering of binding sites may serve a role in transcription regulation. Here we show that clustering of binding sites for the transcription termination factor TTF-I downstream of the pre-rRNA coding region specifies transcription termination, increases the efficiency of transcription initiation and affects the three-dimensional structure of rRNA genes. On chromatin templates, but not on free rDNA, clustered binding sites promote cooperative binding of TTF-I, loading TTF-I to the downstream terminators before it binds to the rDNA promoter. Interaction of TTF-I with target sites upstream and downstream of the rDNA transcription unit connects these distal DNA elements by forming a chromatin loop between the rDNA promoter and the terminators. The results imply that clustered binding sites increase the binding affinity of transcription factors in chromatin, thus influencing the timing and strength of DNA-dependent processes. PMID:24068958

  3. Benzodiazepines: rat pinealocyte binding sites and augmentation of norepinephrine-stimulated N-acetyltransferase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthew, E.; Parfitt, A.G.; Sugden, D.

    1984-02-01

    Studies of (/sup 3/H)diazepam binding to intact rat pineal cells were carried out in tissue culture preparations. The binding was saturable, reversible and proportional to the number of cells used. Scatchard analysis resulted in a linear plot (Kd . 23 nM, maximum binding sites (Bmax) . 1.56 pmol/mg of protein for cells in monolayer culture; Kd . 7 nM, Bmax . 1.3 pmol/mg of protein for cells in suspension culture). Inhibition constants (Ki) for clonazepam (500 nM), flunitrazepam (38 nM) and Ro-5-4864 (5 nM) indicated that the binding sites were probably of the ''peripheral'' type. In addition, the effects ofmore » diazepam on norepinephrine-stimulated N-acetyltransferase (NAT) activity were studied in organ culture and dissociated cell culture. Diazepam (10-50 microM) both prolonged and increased the magnitude of the norepinephrine-induced increase in NAT activity but did not affect the initial rate of rise of enzyme activity. The effect was dose-dependent and was also seen with clonazepam, flunitrazepam and Ro-5-4864, but not with Ro-15-1788. Diazepam, by itself, at these concentrations, had no effect on NAT, but enzyme activity was increased by higher concentrations (0.1-1 mM). Although a relationship between the (/sup 3/H)diazepam binding sites described here and the effect of benzodiazepines on NAT cannot be established from these studies, the data suggest that the benzodiazepines may alter melatonin levels through their action on NAT.« less

  4. Binding of the respiratory chain inhibitor ametoctradin to the mitochondrial bc1 complex.

    PubMed

    Fehr, Marcus; Wolf, Antje; Stammler, Gerd

    2016-03-01

    Ametoctradin is an agricultural fungicide that inhibits the mitochondrial bc1 complex of oomycetes. The bc1 complex has two quinone binding sites that can be addressed by inhibitors. Depending on their binding sites and binding modes, the inhibitors show different degrees of cross-resistance that need to be considered when designing spray programmes for agricultural fungicides. The binding site of ametoctradin was unknown. Cross-resistance analyses, the reduction of isolated Pythium sp. bc1 complex in the presence of different inhibitors and molecular modelling studies were used to analyse the binding site and binding mode of ametoctradin. All three approaches provide data supporting the argument that ametoctradin binds to the Pythium bc1 complex similarly to stigmatellin. The binding mode of ametoctradin differs from other agricultural fungicides such as cyazofamid and the strobilurins. This explains the lack of cross-resistance with strobilurins and related inhibitors, where resistance is mainly caused by G143A amino acid exchange. Accordingly, mixtures or alternating applications of these fungicides and ametoctradin can help to minimise the risk of the emergence of new resistant isolates. © 2015 Society of Chemical Industry.

  5. ADP binding to TF1 and its subunits induces ultraviolet spectral changes.

    PubMed

    Hisabori, T; Yoshida, M; Sakurai, H

    1986-09-01

    Adenine nucleotide binding sites on the coupling factor ATPase of thermophilic bacterium PS3 (TF1) were investigated by UV spectroscopy and by equilibrium dialysis. When ADP was mixed with TF1 in the presence and in the absence of Mg2+, an UV absorbance change was induced (t1/2 approximately 1 min) with a peak at about 278 nm and a trough at about 250 nm. Similar spectral changes were induced by ADP with the isolated beta subunits in the presence and in the absence of Mg2+, and with the isolated alpha subunits in the presence of Mg2+ although the magnitudes of the changes were different. From equilibrium dialysis measurement we identified two classes of nucleotide binding sites in TF1 in the presence of Mg2+, three high-affinity sites (Kd = 61 nM) and three low-affinity sites (Kd = 87 microM). In the absence of Mg2+, TF1 has one high-affinity site (Kd less than 10 nM) and five low-affinity sites (Kd = 100 microM). Moreover, we found a single Mg2+-dependent ADP binding site on the isolated alpha subunit and a single Mg2+-independent ADP binding site on the isolated beta subunit. From the above observations, we concluded that the three Mg2+-dependent high-affinity sites for ADP are located on the alpha subunit in TF1 and that the single high-affinity site is located on one of the beta subunits in TF1 in the absence of Mg2+.

  6. A Flexible Binding Site Architecture Provides New Insights into CcpA Global Regulation in Gram-Positive Bacteria.

    PubMed

    Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong

    2017-01-24

    Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains

  7. The D-galactose specific lectin of field bean (Dolichos lablab) seed binds sugars with extreme negative cooperativity and half-of-the-sites binding.

    PubMed

    Rao, Devavratha H; Gowda, Lalitha R

    2012-08-15

    The field bean (Dolichos lablab) lectin designated as PPO-haemagglutinin (DLL-II) is bifunctional, exhibiting both polyphenol oxidase and haemagglutinating activity. The lectin is unusual in that it binds galactose (Gal), lactose (Lac) and N-acetylgalactosamine (GalNAc) only in the presence of (NH₄)₂SO₄ and exhibits negative cooperativity and half-of-the-sites binding. Circular dichroism, isothermal titration calorimetry and fluorescence quenching were used to assess the sugar binding in the presence of (NH₄)₂O₄. Comparison of the near-UV CD spectra with and without bound sugar revealed ligand induced conformational changes. The intrinsic fluorescence quenching data indicate that DLL-II exhibits weak binding to Gal in the presence of (NH₄)₂SO₄ with a stoichiometry of one bound ligand per dimer. ITC data fitted using a two sets of sites binding model presented a similar picture. The K(a)'s for Gal, Lac and GalNAc in the presence of (NH₄)₂SO₄ were 0.16±0.002, 0.21±0.004 and 8.45±0.78 (×10⁻³) M⁻¹ respectively. The Hill plot for the binding of these sugars to DLL-II was curvilinear with a tangent slope <1.0 indicating negative cooperativity. DLL-II thus exhibits half-of-the-site binding, an extreme form of negative cooperativity in which the second ligand does not bind at all. This is the first report of a legume lectin, exhibiting half-of-the-sites binding. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Two nucleotide binding sites modulate ( sup 3 H) glyburide binding to rat cortex membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, D.E.; Gopalakrishnan, M.; Triggle, D.J.

    1991-03-11

    The effects of nucleotides on the binding of the ATP-dependent K{sup +}-channel antagonist ({sup 3}H)glyburide (GLB) to rat cortex membranes were examined. Nucleotide triphosphates (NTPs) and nucleotide diphosphate (NDPs) inhibited the binding of GLB. This effect was dependent on the presence of dithiothreitol (DTT). Inhibition of binding by NTPs, with the exception of ATP{gamma}S, was dependent on the presence of Mg{sup 2+}. GLB binding showed a biphasic response to ADP: up to 3 mM, ADP inhibited binding, and above this concentration GLB binding increased rapidly, and was restored to normal levels by 10 mM ADP. In the presence of Mg{supmore » 2+}, ADP did not stimulate binding. Saturation analysis in the presence of Mg{sup 2+} and increasing concentrations of ADP showed that ADP results primarily in a change of the B{sub max} for GLB binding. The differential effects of NTPS and NDPs indicate that two nucleotide binding sites regulate GLB binding.« less

  9. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  10. Small Molecule Interactome Mapping by Photoaffinity Labeling Reveals Binding Site Hotspots for the NSAIDs.

    PubMed

    Gao, Jinxu; Mfuh, Adelphe; Amako, Yuka; Woo, Christina M

    2018-03-28

    Many therapeutics elicit cell-type specific polypharmacology that is executed by a network of molecular recognition events between a small molecule and the whole proteome. However, measurement of the structures that underpin the molecular associations between the proteome and even common therapeutics, such as the nonsteroidal anti-inflammatory drugs (NSAIDs), is limited by the inability to map the small molecule interactome. To address this gap, we developed a platform termed small molecule interactome mapping by photoaffinity labeling (SIM-PAL) and applied it to the in cellulo direct characterization of specific NSAID binding sites. SIM-PAL uses (1) photochemical conjugation of NSAID derivatives in the whole proteome and (2) enrichment and isotope-recoding of the conjugated peptides for (3) targeted mass spectrometry-based assignment. Using SIM-PAL, we identified the NSAID interactome consisting of over 1000 significantly enriched proteins and directly characterized nearly 200 conjugated peptides representing direct binding sites of the photo-NSAIDs with proteins from Jurkat and K562 cells. The enriched proteins were often identified as parts of complexes, including known targets of NSAID activity (e.g., NF-κB) and novel interactions (e.g., AP-2, proteasome). The conjugated peptides revealed direct NSAID binding sites from the cell surface to the nucleus and a specific binding site hotspot for the three photo-NSAIDs on histones H2A and H2B. NSAID binding stabilized COX-2 and histone H2A by cellular thermal shift assay. Since small molecule stabilization of protein complexes is a gain of function regulatory mechanism, it is conceivable that NSAIDs affect biological processes through these broader proteomic interactions. SIM-PAL enabled characterization of NSAID binding site hotspots and is amenable to map global binding sites for virtually any molecule of interest.

  11. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes.

    PubMed

    Cockburn, Darrell; Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.

  12. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes

    PubMed Central

    Wilkens, Casper; Dilokpimol, Adiphol; Nakai, Hiroyuki; Lewińska, Anna; Abou Hachem, Maher; Svensson, Birte

    2016-01-01

    Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data. PMID:27504624

  13. A membrane-embedded pathway delivers general anesthetics to two interacting binding sites in the Gloeobacter violaceus ion channel.

    PubMed

    Arcario, Mark J; Mayne, Christopher G; Tajkhorshid, Emad

    2017-06-09

    General anesthetics exert their effects on the central nervous system by acting on ion channels, most notably pentameric ligand-gated ion channels. Although numerous studies have focused on pentameric ligand-gated ion channels, the details of anesthetic binding and channel modulation are still debated. A better understanding of the anesthetic mechanism of action is necessary for the development of safer and more efficacious drugs. Herein, we present a computational study identifying two anesthetic binding sites in the transmembrane domain of the Gloeobacter violaceus ligand-gated ion channel (GLIC) channel, characterize the putative binding pathway, and observe structural changes associated with channel function. Molecular simulations of desflurane reveal a binding pathway to GLIC via a membrane-embedded tunnel using an intrasubunit protein lumen as the conduit, an observation that explains the Meyer-Overton hypothesis, or why the lipophilicity of an anesthetic and its potency are generally proportional. Moreover, employing high concentrations of ligand led to the identification of a second transmembrane site (TM2) that inhibits dissociation of anesthetic from the TM1 site and is consistent with the high concentrations of anesthetics required to achieve clinical effects. Finally, asymmetric binding patterns of anesthetic to the channel were found to promote an iris-like conformational change that constricts and dehydrates the ion pore, creating a 13.5 kcal/mol barrier to ion translocation. Together with previous studies, the simulations presented herein demonstrate a novel anesthetic binding site in GLIC that is accessed through a membrane-embedded tunnel and interacts with a previously known site, resulting in conformational changes that produce a non-conductive state of the channel. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Makyio, Hisayoshi; Shimabukuro, Junpei; Suzuki, Tatsuya

    The crystal structure of AOL (a fucose-specific lectin of Aspergillus oryzae) has been solved by SAD (single-wavelength anomalous diffraction) and MAD (multi-wavelength anomalous diffraction) phasing of seleno-fucosides. The overall structure is a six-bladed β-propeller similar to that of other fucose-specific lectins. The fucose moieties of the seleno-fucosides are located in six fucose-binding sites. Although the Arg and Glu/Gln residues bound to the fucose moiety are common to all fucose-binding sites, the amino-acid residues involved in fucose binding at each site are not identical. The varying peak heights of the seleniums in the electron density map suggest that each fucose-binding sitemore » has a different carbohydrate binding affinity. - Highlights: • The six-bladed β-propeller structure of AOL was solved by seleno-sugar phasing. • The mode of fucose binding is essentially conserved at all six binding sites. • The seleno-fucosides exhibit slightly different interactions and electron densities. • These findings suggest that the affinity for fucose is not identical at each site.« less

  15. Using 15N-Ammonium to Characterise and Map Potassium Binding Sites in Proteins by NMR Spectroscopy

    PubMed Central

    Werbeck, Nicolas D; Kirkpatrick, John; Reinstein, Jochen; Hansen, D Flemming

    2014-01-01

    A variety of enzymes are activated by the binding of potassium ions. The potassium binding sites of these enzymes are very specific, but ammonium ions can often replace potassium ions in vitro because of their similar ionic radii. In these cases, ammonium can be used as a proxy for potassium to characterise potassium binding sites in enzymes: the 1H,15N spin-pair of enzyme-bound 15NH4+ can be probed by 15N-edited heteronuclear NMR experiments. Here, we demonstrate the use of NMR spectroscopy to characterise binding of ammonium ions to two different enzymes: human histone deacetylase 8 (HDAC8), which is activated allosterically by potassium, and the bacterial Hsp70 homologue DnaK, for which potassium is an integral part of the active site. Ammonium activates both enzymes in a similar way to potassium, thus supporting this non-invasive approach. Furthermore, we present an approach to map the observed binding site onto the structure of HDAC8. Our method for mapping the binding site is general and does not require chemical shift assignment of the enzyme resonances. PMID:24520048

  16. A Unitary Anesthetic Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedula, L. Sangeetha; Brannigan, Grace; Economou, Nicoleta J.

    2009-10-21

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  17. A Unitary Anesthetic Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L Vedula; G Brannigan; N Economou

    2011-12-31

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABA{sub A} receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show thatmore » apoferritin also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  18. Concentration-Dependent Multiple Binding Sites on Saliva-Treated Hydroxyapatite for Streptococcus sanguis

    PubMed Central

    Gibbons, R. J.; Moreno, E. C.; Etherden, I.

    1983-01-01

    The influence of bacterial cell concentration on estimates of the number of binding sites and the affinity for the adsorption of a strain of Streptococcus sanguis to saliva-treated hydroxyapatite was determined, and the possible presence of multiple binding sites for this organism was tested. The range of concentrations of available bacteria varied from 4.7 × 106 to 5,960 × 106 cells per ml. The numbers of adsorbed bacteria increased over the entire range tested, but a suggestion of a break in an otherwise smooth adsorption isotherm was evident. Values for the number of binding sites and the affinity varied considerably depending upon the range of available bacterial concentrations used to estimate them; high correlation coefficients were obtained in all cases. The use of low bacterial cell concentrations yielded lower values for the number of sites and much higher values for the affinity constant than did the use of high bacterial cell concentrations. When data covering the entire range of bacterial concentrations were employed, values for the number of sites and the affinity were similar to those obtained by using only high bacterial cell concentrations. The simplest explanation for these results is that there are multiple binding sites for S. sanguis on saliva-treated hydroxyapatite surfaces. When present in low concentration, the streptococci evidently attach to more specific high-affinity sites which become saturated when higher bacterial concentrations are employed. The possibility of multiple binding sites was substantiated by comparing estimates of the adsorption parameters from a computer-simulated isotherm with those derived from the experimentally generated isotherm. A mathematical model describing bacterial adsorption to binary binding sites was further evidence for the existence of at least two classes of binding sites for S. sanguis. Far fewer streptococci adsorbed to experimental pellicles prepared from saliva depleted of bacterial aggregating

  19. A Unitary Anesthetic-Binding Site at High Resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vedula, L.; Brannigan, G; Economou, N

    2009-01-01

    Propofol is the most widely used injectable general anesthetic. Its targets include ligand-gated ion channels such as the GABAA receptor, but such receptor-channel complexes remain challenging to study at atomic resolution. Until structural biology methods advance to the point of being able to deal with systems such as the GABA{sub A} receptor, it will be necessary to use more tractable surrogates to probe the molecular details of anesthetic recognition. We have previously shown that recognition of inhalational general anesthetics by the model protein apoferritin closely mirrors recognition by more complex and clinically relevant protein targets; here we show that apoferritinmore » also binds propofol and related GABAergic anesthetics, and that the same binding site mediates recognition of both inhalational and injectable anesthetics. Apoferritin binding affinities for a series of propofol analogs were found to be strongly correlated with the ability to potentiate GABA responses at GABA{sub A} receptors, validating this model system for injectable anesthetics. High resolution x-ray crystal structures reveal that, despite the presence of hydrogen bond donors and acceptors, anesthetic recognition is mediated largely by van der Waals forces and the hydrophobic effect. Molecular dynamics simulations indicate that the ligands undergo considerable fluctuations about their equilibrium positions. Finally, apoferritin displays both structural and dynamic responses to anesthetic binding, which may mimic changes elicited by anesthetics in physiologic targets like ion channels.« less

  20. Endogenously Generated Plasmin at the Vascular Wall Injury Site Amplifies Lysine Binding Site-Dependent Plasminogen Accumulation in Microthrombi

    PubMed Central

    Brzoska, Tomasz; Tanaka-Murakami, Aki; Suzuki, Yuko; Sano, Hideto; Kanayama, Naohiro; Urano, Tetsumei

    2015-01-01

    The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP). The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg) on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation. PMID:25806939

  1. Specific DNA binding of the two chicken Deformed family homeodomain proteins, Chox-1.4 and Chox-a.

    PubMed Central

    Sasaki, H; Yokoyama, E; Kuroiwa, A

    1990-01-01

    The cDNA clones encoding two chicken Deformed (Dfd) family homeobox containing genes Chox-1.4 and Chox-a were isolated. Comparison of their amino acid sequences with another chicken Dfd family homeodomain protein and with those of mouse homologues revealed that strong homologies are located in the amino terminal regions and around the homeodomains. Although homologies in other regions were relatively low, some short conserved sequences were also identified. E. coli-made full length proteins were purified and used for the production of specific antibodies and for DNA binding studies. The binding profiles of these proteins to the 5'-leader and 5'-upstream sequences of Chox-1.4 and Chox-a coding regions were analyzed by immunoprecipitation and DNase I footprint assays. These two Chox proteins bound to the same sites in the 5'-flanking sequences of their coding regions with various affinities and their binding affinities to each site were nearly the same. The consensus sequences of the high and low affinity binding sites were TAATGA(C/G) and CTAATTTT, respectively. A clustered binding site was identified in the 5'-upstream of the Chox-a gene, suggesting that this clustered binding site works as a cis-regulatory element for auto- and/or cross-regulation of Chox-a gene expression. Images PMID:1970866

  2. Identification of C1q as a Binding Protein for Advanced Glycation End Products.

    PubMed

    Chikazawa, Miho; Shibata, Takahiro; Hatasa, Yukinori; Hirose, Sayumi; Otaki, Natsuki; Nakashima, Fumie; Ito, Mika; Machida, Sachiko; Maruyama, Shoichi; Uchida, Koji

    2016-01-26

    Advanced glycation end products (AGEs) make up a heterogeneous group of molecules formed from the nonenzymatic reaction of reducing sugars with the free amino groups of proteins. The abundance of AGEs in a variety of age-related diseases, including diabetic complications and atherosclerosis, and their pathophysiological effects suggest the existence of innate defense mechanisms. Here we examined the presence of serum proteins that are capable of binding glycated bovine serum albumin (AGEs-BSA), prepared upon incubation of BSA with dehydroascorbate, and identified complement component C1q subcomponent subunit A as a novel AGE-binding protein in human serum. A molecular interaction analysis showed the specific binding of C1q to the AGEs-BSA. In addition, we identified DNA-binding regions of C1q, including a collagen-like domain, as the AGE-binding site and established that the amount of positive charge on the binding site was the determining factor. C1q indeed recognized several other modified proteins, including acylated proteins, suggesting that the binding specificity of C1q might be ascribed, at least in part, to the electronegative potential of the ligand proteins. We also observed that C1q was involved in the AGEs-BSA-activated deposition of complement proteins, C3b and C4b. In addition, the AGEs-BSA mediated the proteolytic cleavage of complement protein 5 to release C5a. These findings provide the first evidence of AGEs as a new ligand recognized by C1q, stimulating the C1q-dependent classical complement pathway.

  3. Stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1.

    PubMed

    Schneider, G J; Geiduschek, E P

    1990-06-25

    The stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1 has been determined. 3H-Labeled TF1 was allowed to bind to a 32P-labeled DNA fragment containing a TF1 binding site. Multiple TF1-DNA complexes were resolved from each other and from unbound DNA by native gel electrophoresis. DNA-protein complexes were cut from polyacrylamide gels, and the amounts of 3H and 32P contained in each slice were measured. A ratio of 1.12 +/- 0.06 TF1 dimer/DNA molecule was calculated for the fastest-migrating TF1-DNA complex. We conclude that TF1 has a DNA-binding unit of one dimer. More slowly migrating complexes are apparently formed by serial addition of single TF1 dimers.

  4. Gamma reactivation using the spongy effect of KLF1-binding site sequence: an approach in gene therapy for beta-thalassemia

    PubMed Central

    Heydari, Nasrin; Shariati, Laleh; Khanahmad, Hossein; Hejazi, Zahra; Shahbazi, Mansoureh; Salehi, Mansoor

    2016-01-01

    Objective(s): β-thalassemia is one of the most common genetic disorders in the world. As one of the promising treatment strategies, fetal hemoglobin (Hb F) can be induced. The present study was an attempt to reactivate the γ-globin gene by introducing a gene construct containing KLF1 binding sites to the K562 cell line. Materials and Methods: A plasmid containing a 192 bp sequence with two repeats of KLF1 binding sites on β-globin and BCL11A promoters was constructed and used to transfect the K562 cell line. Positive selection was performed under treatment with 150 μg/ml hygromycin B. The remaining cells were expanded and harvested on day 28, and genomic DNA was extracted. The PCR was carried out to verify insertion of DNA fragment to the genome of K562 cells. The cells were differentiated with 15 μg/ml cisplatin. Flowcytometry was performed to identify erythroid differentiation by detection of CD235a+ cells. Real-time RT-PCR was performed to evaluate γ-globin expression in the transfected cells. Results: A 1700 bp fragment was observed on agarose gel as expected and insertion of DNA fragment to the genome of K562 cells was verified. Totally, 84% of cells were differentiated. The transfected cells significantly increased γ-globin expression after differentiation compared to untransfected ones. Conclusion: The findings demonstrate that the spongy effect of KLF1-binding site on BCL11A and β-globin promoters can induce γ-globin expression in K562 cells. This novel strategy can be promising for the treatment of β-thalassemia and sickle cell disease. PMID:27872702

  5. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.

    PubMed

    Pérot, Stéphanie; Sperandio, Olivier; Miteva, Maria A; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-08-01

    Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.

  6. A new design for a green calcium indicator with a smaller size and a reduced number of calcium-binding sites

    PubMed Central

    Barykina, Natalia V.; Subach, Oksana M.; Doronin, Danila A.; Sotskov, Vladimir P.; Roshchina, Marina A.; Kunitsyna, Tatiana A.; Malyshev, Aleksey Y.; Smirnov, Ivan V.; Azieva, Asya M.; Sokolov, Ilya S.; Piatkevich, Kiryl D.; Burtsev, Mikhail S.; Varizhuk, Anna M.; Pozmogova, Galina E.; Anokhin, Konstantin V.; Subach, Fedor V.; Enikolopov, Grigori N.

    2016-01-01

    Genetically encoded calcium indicators (GECIs) are mainly represented by two- or one-fluorophore-based sensors. One type of two-fluorophore-based sensor, carrying Opsanus troponin C (TnC) as the Ca2+-binding moiety, has two binding sites for calcium ions, providing a linear response to calcium ions. One-fluorophore-based sensors have four Ca2+-binding sites but are better suited for in vivo experiments. Herein, we describe a novel design for a one-fluorophore-based GECI with two Ca2+-binding sites. The engineered sensor, called NTnC, uses TnC as the Ca2+-binding moiety, inserted in the mNeonGreen fluorescent protein. Monomeric NTnC has higher brightness and pH-stability in vitro compared with the standard GECI GCaMP6s. In addition, NTnC shows an inverted fluorescence response to Ca2+. Using NTnC, we have visualized Ca2+ dynamics during spontaneous activity of neuronal cultures as confirmed by control NTnC and its mutant, in which the affinity to Ca2+ is eliminated. Using whole-cell patch clamp, we have demonstrated that NTnC dynamics in neurons are similar to those of GCaMP6s and allow robust detection of single action potentials. Finally, we have used NTnC to visualize Ca2+ neuronal activity in vivo in the V1 cortical area in awake and freely moving mice using two-photon microscopy or an nVista miniaturized microscope. PMID:27677952

  7. Water channel in the binding site of a high affinity anti-methotrexate antibody.

    PubMed

    Gayda, Susan; Longenecker, Kenton L; Manoj, Sharmila; Judge, Russell A; Saldana, Sylvia C; Ruan, Qiaoqiao; Swift, Kerry M; Tetin, Sergey Y

    2014-06-17

    In the present study, we report the structure of the free and drug-bound Fab fragment of a high affinity anti-methotrexate antibody and perform a thermodynamic analysis of the binding process. The anti-methotrexate Fab fragment features a remarkably rigid tunnel-like binding site that extends into a water channel serving as a specialized route to move solvent out and into the site upon ligand binding and dissociation. This new finding in antibody structure-function relationships directly relates to the fast association (1 × 10⁷ M⁻¹ s⁻¹) and slow dissociation (4 × 10⁻⁵ s⁻¹) rates determined for mAb ADD056, resulting in a very strong binding with a K(D) ~ 3.6 pM at 20 °C. As follows from the X-ray data analysis, the methotrexate-antibody complex is stabilized by an extended network of hydrogen bonds and stacking interactions. The analysis also shows structural involvement of the CDR H3 in formation of the water channel revealing another important role of this hypervariable region. This suggests a new direction in natural affinity maturation and opens a new possibility in antibody engineering. Methotrexate is a widely used therapeutic agent for many malignant diseases and inflammatory disorders. Unfortunately, it may also interfere with central aspects of metabolism and thereby cause inevitable side effects. Therefore, methotrexate therapy requires careful monitoring of drug blood levels, which is traditionally done by immunoassays. An understanding of the structure-function properties of antibodies selected for drug monitoring substantiates the performance and robustness of such tests.

  8. Crystallographic characterization of the ribosomal binding site and molecular mechanism of action of Hygromycin A

    PubMed Central

    Kaminishi, Tatsuya; Schedlbauer, Andreas; Fabbretti, Attilio; Brandi, Letizia; Ochoa-Lizarralde, Borja; He, Cheng-Guang; Milón, Pohl; Connell, Sean R.; Gualerzi, Claudio O.; Fucini, Paola

    2015-01-01

    Hygromycin A (HygA) binds to the large ribosomal subunit and inhibits its peptidyl transferase (PT) activity. The presented structural and biochemical data indicate that HygA does not interfere with the initial binding of aminoacyl-tRNA to the A site, but prevents its subsequent adjustment such that it fails to act as a substrate in the PT reaction. Structurally we demonstrate that HygA binds within the peptidyl transferase center (PTC) and induces a unique conformation. Specifically in its ribosomal binding site HygA would overlap and clash with aminoacyl-A76 ribose moiety and, therefore, its primary mode of action involves sterically restricting access of the incoming aminoacyl-tRNA to the PTC. PMID:26464437

  9. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization.

    PubMed

    Herrero, María Belén; Mandal, Arabinda; Digilio, Laura C; Coonrod, Scott A; Maier, Bernhard; Herr, John C

    2005-08-01

    This study demonstrates the retention of mouse sperm lysozyme-like protein (mSLLP1) in the equatorial segment of spermatozoa following the acrosome reaction and a role for mSLLP1 in sperm-egg binding and fertilization. Treatment of cumulus intact oocytes with either recmSLLP1 or its antiserum resulted in a significant (P < or = 0.05) inhibition of fertilization. Co-incubation of zona-free mouse oocytes with capacitated mouse spermatozoa in the presence of varying concentrations of anti-recmSLLP1 serum or recmSLLP1 also inhibited sperm-oolemma binding. A complete inhibition of binding and fusion of spermatozoa to the oocyte occurred at 12.5 muM concentration of recmSLLP1, while conventional chicken and human lysozymes did not block sperm-egg binding. mSLLP1 showed receptor sites in the perivitelline space as well as on the microvillar region of the egg plasma membrane. The retention of mSLLP1 in the equatorial segment of acrosome-reacted sperm, the inhibitory effects of both recmSLLP1 and antibodies to SLLP1 on in vitro fertilization with both cumulus intact and zona-free eggs, and the definition of complementary SLLP1-binding sites on the egg plasma membrane together support the hypothesis that a c lysozyme-like protein is involved in the binding of spermatozoa to the egg plasma membrane during fertilization.

  10. Structural and functional dissection reveals distinct roles of Ca2+-binding sites in the giant adhesin SiiE of Salmonella enterica

    PubMed Central

    Klingl, Stefan; Sandmann, Achim; Taccardi, Nicola; Sticht, Heinrich; Muller, Yves A.; Hensel, Michael

    2017-01-01

    The giant non-fimbrial adhesin SiiE of Salmonella enterica mediates the first contact to the apical site of epithelial cells and enables subsequent invasion. SiiE is a 595 kDa protein composed of 53 repetitive bacterial immunoglobulin (BIg) domains and the only known substrate of the SPI4-encoded type 1 secretion system (T1SS). The crystal structure of BIg50-52 of SiiE revealed two distinct Ca2+-binding sites per BIg domain formed by conserved aspartate or glutamate residues. In a mutational analysis Ca2+-binding sites were disrupted by aspartate to serine exchange at various positions in the BIg domains of SiiE. Amounts of secreted SiiE diminish with a decreasing number of intact Ca2+-binding sites. BIg domains of SiiE contain distinct Ca2+-binding sites, with type I sites being similar to other T1SS-secreted proteins and type II sites newly identified in SiiE. We functionally and structurally dissected the roles of type I and type II Ca2+-binding sites in SiiE, as well as the importance of Ca2+-binding sites in various positions of SiiE. Type I Ca2+-binding sites were critical for efficient secretion of SiiE and a decreasing number of type I sites correlated with reduced secretion. Type II sites were less important for secretion, stability and surface expression of SiiE, however integrity of type II sites in the C-terminal portion was required for the function of SiiE in mediating adhesion and invasion. PMID:28558023

  11. Identification of a novel cell binding site of periostin involved in tumour growth.

    PubMed

    Orecchia, Paola; Conte, Romana; Balza, Enrica; Castellani, Patrizia; Borsi, Laura; Zardi, Luciano; Mingari, Maria Cristina; Carnemolla, Barbara

    2011-09-01

    Periostin (PN), a member of the fasciclin family of proteins, is a TGF-β-induced extracellular matrix protein involved in cell survival, angiogenesis, invasion and metastasis. It is considered a potent angiogenic factor and a marker of tumour progression in many types of human cancer. Many different kinds of cells bind to PN by means of the integrins αvβ3 and αvβ5, but the periostin epitope recognised by these integrins is not formally demonstrated. The aim of our study was to identify which domain of PN could be involved in cell adhesion and its potential role in tumour growth. We generated the monoclonal antibody OC-20 (mAb OC-20) by hybridoma technology. Different PN recombinant fragments were used to characterise the periostin epitope recognised by the mAb OC-20 and to localise a new cell binding site of the protein. A murine model of human melanoma was used in the preclinical in vivo experiments. We formally demonstrate that the periostin epitope recognised by OC-20 is a new binding site for the integrins αvβ3 and αvβ5, localised in the second FAS1 domain (FAS1-2) of the protein. Moreover the in vivo use of this antibody significantly inhibits tumour growth and angiogenesis. Our results show that the FAS1-2 domain of PN plays a role in tumour progression. Moreover this novel antibody may likewise prove to be very useful in clarifying the role of PN in angiogenesis and may contribute to the design of novel anti-angiogenesis drugs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    PubMed

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor.

    PubMed

    Nishimura, R; Li, W; Kashishian, A; Mondino, A; Zhou, M; Cooper, J; Schlessinger, J

    1993-11-01

    Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.

  14. ( sup 3 H)opipramol labels a novel binding site and sigma receptors in rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferris, C.D.; Hirsch, D.J.; Brooks, B.P.

    1991-02-01

    Opipramol (OP), a clinically effective antidepressant with a tricyclic structure, is inactive as an inhibitor of biogenic amine uptake. ({sup 3}H)Opipramol binds saturably to rat brain membranes (apparent KD = 4 nM, Bmax = 3 pmol/mg of protein). ({sup 3}H)Opipramol binding can be differentiated into haloperidol-sensitive and -resistant components, with Ki values for haloperidol of 1 nM (Bmax = 1 pmol/mg of protein) and 350 nM (Bmax = 1.9 pmol/mg of protein), respectively. The drug specificity of the haloperidol-sensitive component is the same as that of sigma receptors labeled with (+)-({sup 3}H)3-(3-hydroxyphenyl)-N-(1-propyl)piperdine. The haloperidol-resistant component does not correspond to anymore » known neurotransmitter receptor or uptake recognition site. It displays high affinity for phenothiazines and related structures such as perphenazine, clopenthixol, and flupenthixol, whose potencies are comparable to that of opipramol. Because certain of these drugs are more potent at the haloperidol-resistant opipramol site than in exerting any other action, it is possible that this opipramol-selective site may mediate their therapeutic effects.« less

  15. Validation of binding of SE-75 labeled sucralfate to sites of gastrointestinal ulceration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurer, A.H.; Knight, L.C.; Kollman, M.

    1985-05-01

    This study was performed to determine if and for how long sucralfate (SU) binds selectively to sites of gastro-intestinal (GI) ulceration. Se-Su was prepared by sulfating sucrose with tracer Se-75 and precipitating it as the basic Al salt. All patients (pts) had endoscopy to confirm the presence of either: esophagitis (n=5), gastritis (GA) (n=5), gastric ulcers (GU) (n=5), duodenal ulcers (DU) (n=5), or no ulceration (NU) (n=5). Following an overnight fast the pts swallowed 1 gm with 100 ..mu..Ci of Se-SU and were imaged continuously over 24 hours or until no activity remained in the upper GI tract. Pts withmore » GU visually demonstrated focal SU binding at the ulcers for an average of 3.9 +- 1.1 hrs. with a mean GET of 68 +- 25 min. Mean GET for pts with DU was prolonged, 171 +- 63 min, however focal binding at duodenal ulcers was not seen. All pts with GA had diffuse retention of SU in the stomach with a mean GET of 118 +- 34 min. Focal binding of SU at all sites of esophagitis was seen with a T-1/2 of 65 +- 32 min at the ulcerations. In conclusion these data support the theory that the mechanism of ulcer healing with SU is related to its ability to adhere to the ulcer site forming a protective barrier. In addition Se-SU is a potential ulcer imaging agent which can be used to noninvasively assess healing.« less

  16. Statistical Profiling of One Promiscuous Protein Binding Site: Illustrated by Urokinase Catalytic Domain.

    PubMed

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Petitjean, Michel; Flatters, Delphine; Camproux, Anne-Claude

    2017-10-01

    While recent literature focuses on drug promiscuity, the characterization of promiscuous binding sites (ability to bind several ligands) remains to be explored. Here, we present a proteochemometric modeling approach to analyze diverse ligands and corresponding multiple binding sub-pockets associated with one promiscuous binding site to characterize protein-ligand recognition. We analyze both geometrical and physicochemical profile correspondences. This approach was applied to examine the well-studied druggable urokinase catalytic domain inhibitor binding site, which results in a large number of complex structures bound to various ligands. This approach emphasizes the importance of jointly characterizing pocket and ligand spaces to explore the impact of ligand diversity on sub-pocket properties and to establish their main profile correspondences. This work supports an interest in mining available 3D holo structures associated with a promiscuous binding site to explore its main protein-ligand recognition tendency. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Toxic shock syndrome toxin 1 binds to major histocompatibility complex class II molecules.

    PubMed Central

    Scholl, P; Diez, A; Mourad, W; Parsonnet, J; Geha, R S; Chatila, T

    1989-01-01

    Toxic shock syndrome toxin 1 (TSST-1) is a 22-kDa exotoxin produced by strains of Staphylococcus aureus and implicated in the pathogenesis of toxic shock syndrome. In common with other staphylococcal exotoxins, TSST-1 has diverse immunological effects. These include the induction of interleukin 2 receptor expression, interleukin 2 synthesis, proliferation of human T lymphocytes, and stimulation of interleukin 1 synthesis by human monocytes. In the present study, we demonstrate that TSST-1 binds with saturation kinetics and with a dissociation constant of 17-43 nM to a single class of binding sites on human mononuclear cells. There was a strong correlation between the number of TSST-1 binding sites and the expression of major histocompatibility complex class II molecules, and interferon-gamma induced the expression of class II molecules as well as TSST-1 binding sites on human skin-derived fibroblasts. Monoclonal antibodies to HLA-DR, but not to HLA-DP or HLA-DQ, strongly inhibited TSST-1 binding. Affinity chromatography of 125I-labeled cell membranes over TSST-1-agarose resulted in the recovery of two bands of 35 kDa and 31 kDa that comigrated, respectively, with the alpha and beta chains of HLA-DR and that could be immunoprecipitated with anti-HLA-DR monoclonal antibodies. Binding of TSST-1 was demonstrated to HLA-DR and HLA-DQ L-cell transfectants. These results indicate that major histocompatibility complex class II molecules represent the major binding site for TSST-1 on human cells. Images PMID:2542966

  18. [Adenylate cyclase from rabbit heart: substrate binding site].

    PubMed

    Perfil'eva, E A; Khropov, Iu V; Khachatrian, L; Bulargina, T V; Baranova, L A

    1981-08-01

    The effects of 17 ATP analogs on the solubilized rabbit heart adenylate cyclase were studied. The triphosphate chain, position 8 of the adenine base and the ribose residue of the ATP molecule were modified. Despite the presence of the alkylating groups in two former types of the analogs tested, no covalent blocking of the active site of the enzyme was observed. Most of the compounds appeared to be competitive reversible inhibitors. The kinetic data confirmed the importance of the triphosphate chain for substrate binding in the active site of adenylate cyclase. (Formula: See Text) The inhibitors with different substituents in position 8 of the adenine base had a low affinity for the enzyme. The possible orientation of the triphosphate chain and the advantages of anti-conformation of the ATP molecule for their binding in the active site of adenylate cyclase are discussed.

  19. Identification of an allosteric binding site for RORγt inhibition

    PubMed Central

    Scheepstra, Marcel; Leysen, Seppe; van Almen, Geert C.; Miller, J. Richard; Piesvaux, Jennifer; Kutilek, Victoria; van Eenennaam, Hans; Zhang, Hongjun; Barr, Kenneth; Nagpal, Sunil; Soisson, Stephen M.; Kornienko, Maria; Wiley, Kristen; Elsen, Nathaniel; Sharma, Sujata; Correll, Craig C.; Trotter, B. Wesley; van der Stelt, Mario; Oubrie, Arthur; Ottmann, Christian; Parthasarathy, Gopal; Brunsveld, Luc

    2015-01-01

    RORγt is critical for the differentiation and proliferation of Th17 cells associated with several chronic autoimmune diseases. We report the discovery of a novel allosteric binding site on the nuclear receptor RORγt. Co-crystallization of the ligand binding domain (LBD) of RORγt with a series of small-molecule antagonists demonstrates occupancy of a previously unreported allosteric binding pocket. Binding at this non-canonical site induces an unprecedented conformational reorientation of helix 12 in the RORγt LBD, which blocks cofactor binding. The functional consequence of this allosteric ligand-mediated conformation is inhibition of function as evidenced by both biochemical and cellular studies. RORγt function is thus antagonized in a manner molecularly distinct from that of previously described orthosteric RORγt ligands. This brings forward an approach to target RORγt for the treatment of Th17-mediated autoimmune diseases. The elucidation of an unprecedented modality of pharmacological antagonism establishes a mechanism for modulation of nuclear receptors. PMID:26640126

  20. The Interface between Catalytic and Hemopexin Domains in Matrix Metalloproteinase-1 Conceals a Collagen Binding Exosite*

    PubMed Central

    Arnold, Laurence H.; Butt, Louise E.; Prior, Stephen H.; Read, Christopher M.; Fields, Gregg B.; Pickford, Andrew R.

    2011-01-01

    Matrix metalloproteinase-1 (MMP-1) is an instigator of collagenolysis, the catabolism of triple helical collagen. Previous studies have implicated its hemopexin (HPX) domain in binding and possibly destabilizing the collagen substrate in preparation for hydrolysis of the polypeptide backbone by the catalytic (CAT) domain. Here, we use biophysical methods to study the complex formed between the MMP-1 HPX domain and a synthetic triple helical peptide (THP) that encompasses the MMP-1 cleavage site of the collagen α1(I) chain. The two components interact with 1:1 stoichiometry and micromolar affinity via a binding site within blades 1 and 2 of the four-bladed HPX domain propeller. Subsequent site-directed mutagenesis and assay implicates blade 1 residues Phe301, Val319, and Asp338 in collagen binding. Intriguingly, Phe301 is partially masked by the CAT domain in the crystal structure of full-length MMP-1 implying that transient separation of the domains is important in collagen recognition. However, mutation of this residue in the intact enzyme disrupts the CAT-HPX interface resulting in a drastic decrease in binding activity. Thus, a balanced equilibrium between these compact and dislocated states may be an essential feature of MMP-1 collagenase activity. PMID:22030392

  1. COUP-TF (chicken ovalbumin upstream promoter transcription factor)-interacting protein 1 (CTIP1) is a sequence-specific DNA binding protein.

    PubMed Central

    Avram, Dorina; Fields, Andrew; Senawong, Thanaset; Topark-Ngarm, Acharawan; Leid, Mark

    2002-01-01

    Chicken ovalbumin upstream promoter transcription factor (COUP-TF)-interacting proteins 1 and 2 [CTIP1/Evi9/B cell leukaemia (Bcl) l1a and CTIP2/Bcl11b respectively] are highly related C(2)H(2) zinc finger proteins that are abundantly expressed in brain and the immune system, and are associated with immune system malignancies. A selection procedure was employed to isolate high-affinity DNA binding sites for CTIP1. The core binding site on DNA identified in these studies, 5'-GGCCGG-3' (upper strand), is highly related to the canonical GC box and was bound by a CTIP1 oligomeric complex(es) in vitro. Furthermore, both CTIP1 and CTIP2 repressed transcription of a reporter gene harbouring a multimerized CTIP binding site, and this repression was neither reversed by trichostatin A (an inhibitor of known class I and II histone deacetylases) nor stimulated by co-transfection of a COUP-TF family member. These results demonstrate that CTIP1 is a sequence-specific DNA binding protein and a bona fide transcriptional repressor that is capable of functioning independently of COUP-TF family members. These findings may be relevant to the physiological and/or pathological action(s) of CTIPs in cells that do not express COUP-TF family members, such as cells of the haematopoietic and immune systems. PMID:12196208

  2. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    PubMed Central

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  3. Involvement of two classes of binding sites in the interactions of cyclophilin B with peripheral blood T-lymphocytes.

    PubMed

    Denys, A; Allain, F; Carpentier, M; Spik, G

    1998-12-15

    Cyclophilin B (CyPB) is a cyclosporin A (CsA)-binding protein, mainly associated with the secretory pathway, and is released in biological fluids. We recently reported that CyPB specifically binds to T-lymphocytes and promotes enhanced incorporation of CsA. The interactions with cellular binding sites involved, at least in part, the specific N-terminal extension of the protein. In this study, we intended to specify further the nature of the CyPB-binding sites on peripheral blood T-lymphocytes. We first provide evidence that the CyPB binding to heparin-Sepharose is prevented by soluble sulphated glycosaminoglycans (GAG), raising the interesting possibility that such interactions may occur on the T-cell surface. We then characterized CyPB binding to T-cell surface GAG and found that these interactions involved the N-terminal extension of CyPB, but not its conserved CsA-binding domain. In addition, we determined the presence of a second CyPB binding site, which we termed a type I site, in contrast with type II for GAG interactions. The two binding sites exhibit a similar affinity but the expression of the type I site was 3-fold lower. The conclusion that CyPB binding to the type I site is distinct from the interactions with GAG was based on the findings that it was (1) resistant to NaCl wash and GAG-degrading enzyme treatments, (2) reduced in the presence of CsA or cyclophilin C, and (3) unmodified in the presence of either the N-terminal peptide of CyPB or protamine. Finally, we showed that the type I binding sites were involved in an endocytosis process, supporting the hypothesis that they may correspond to a functional receptor for CyPB.

  4. Crystallographic Analysis Reveals a Novel Second Binding Site for Trimethoprim in Active Site Double Mutants of Human Dihydrofolate Reductase†,‡

    PubMed Central

    Cody, Vivian; Pace, Jim; Piraino, Jennifer; Queener, Sherry F.

    2011-01-01

    In order to produce a more potent replacement for trimethoprim (TMP) used as a therapy for Pneumocystis pneumonia and targets dihydrofolate reductase from Pneumocystis jirovecii (pjDHFR), it is necessary to understand the determinants of potency and selectivity against DHFR from the mammalian host and fungal pathogen cells. To this end, active site residues in human (h)DHFR were replaced with those from pjDHFR. Structural data are reported for two complexes of TMP with the double mutants Gln35Ser/Asn64Phe (Q35S/N64F) and Gln35Lys/Asn64Phe (Q35K/N64F) of hDHFR that unexpectedly show evidence for the binding of two molecules of TMP: one molecule that binds in the normal folate binding site and the second molecule that binds in a novel subpocket site such that the mutated residue Phe64 is involved in van der Waals contacts to the trimethoxyphenyl ring of the second TMP molecule. Kinetic data for the binding of TMP to hDHFR and pjDHFR reveal an 84-fold selectivity of TMP against pjDHFR (Ki 49 nM) compared to hDHFR (Ki 4093 nM). Two mutants that contain one substitution from pj- and one from the closely related Pneumocystis carinii DHFR (pcDHFR) (Q35K/N64F and Q35S/N64F) show Ki values of 593 and 617 nM, respectively; these Ki values are well above both the Ki for pjDHFR and are similar to pcDHFR (Q35K/N64F) and Q35S/N64F) (305 nM). These results suggest that active site residues 35 and 64 play key roles in determining selectivity for pneumocystis DHFR, but that other residues contribute to the unique binding of inhibitors to these enzymes. PMID:21684339

  5. Position specific variation in the rate of evolution in transcription factor binding sites

    PubMed Central

    Moses, Alan M; Chiang, Derek Y; Kellis, Manolis; Lander, Eric S; Eisen, Michael B

    2003-01-01

    Background The binding sites of sequence specific transcription factors are an important and relatively well-understood class of functional non-coding DNAs. Although a wide variety of experimental and computational methods have been developed to characterize transcription factor binding sites, they remain difficult to identify. Comparison of non-coding DNA from related species has shown considerable promise in identifying these functional non-coding sequences, even though relatively little is known about their evolution. Results Here we analyse the genome sequences of the budding yeasts Saccharomyces cerevisiae, S. bayanus, S. paradoxus and S. mikatae to study the evolution of transcription factor binding sites. As expected, we find that both experimentally characterized and computationally predicted binding sites evolve slower than surrounding sequence, consistent with the hypothesis that they are under purifying selection. We also observe position-specific variation in the rate of evolution within binding sites. We find that the position-specific rate of evolution is positively correlated with degeneracy among binding sites within S. cerevisiae. We test theoretical predictions for the rate of evolution at positions where the base frequencies deviate from background due to purifying selection and find reasonable agreement with the observed rates of evolution. Finally, we show how the evolutionary characteristics of real binding motifs can be used to distinguish them from artefacts of computational motif finding algorithms. Conclusion As has been observed for protein sequences, the rate of evolution in transcription factor binding sites varies with position, suggesting that some regions are under stronger functional constraint than others. This variation likely reflects the varying importance of different positions in the formation of the protein-DNA complex. The characterization of the pattern of evolution in known binding sites will likely contribute to the

  6. Probing the acidic residue within the integrin binding site of laminin-511 that interacts with the metal ion-dependent adhesion site of α6β1 integrin.

    PubMed

    Taniguchi, Yukimasa; Li, Shaoliang; Takizawa, Mamoru; Oonishi, Eriko; Toga, Junko; Yagi, Emiko; Sekiguchi, Kiyotoshi

    2017-06-03

    Laminins are major cell-adhesive proteins of basement membranes that interact with integrins in a divalent cation-dependent manner. Laminin-511 consists of α5, β1, and γ1 chains, of which three laminin globular domains of the α5 chain (α5/LG1-3) and a Glu residue in the C-terminal tail of chain γ11-Glu1607) are required for binding to integrins. However, it remains unsettled whether the Glu residue in the γ1 tail is involved in integrin binding by coordinating the metal ion in the metal ion-dependent adhesion site of β1 integrin (β1-MIDAS), or by stabilizing the conformation of α5/LG1-3. To address this issue, we examined whether α5/LG1-3 contain an acidic residue required for integrin binding that is as critical as the Glu residue in the γ1 tail; to achieve this, we undertook exhaustive alanine substitutions of the 54 acidic residues present in α5/LG1-3 of the E8 fragment of laminin-511 (LM511E8). Most of the alanine mutants possessed α6β1 integrin binding activities comparable with wild-type LM511E8. Alanine substitution for α5-Asp3198 and Asp3219 caused mild reduction in integrin binding activity, and that for α5-Asp3218 caused severe reduction, possibly resulting from conformational perturbation of α5/LG1-3. When α5-Asp3218 was substituted with asparagine, the resulting mutant possessed significant binding activity to α6β1 integrin, indicating that α5-Asp3218 is not directly involved in integrin binding through coordination with the metal ion in β1-MIDAS. Given that substitution of γ1-Glu1607 with glutamine nullified the binding activity to α6β1 integrin, these results, taken together, support the possibility that the critical acidic residue coordinating the metal ion in β1-MIDAS is Glu1607 in the γ1 tail, but no such residue is present in α5/LG1-3. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. CORE_TF: a user-friendly interface to identify evolutionary conserved transcription factor binding sites in sets of co-regulated genes

    PubMed Central

    Hestand, Matthew S; van Galen, Michiel; Villerius, Michel P; van Ommen, Gert-Jan B; den Dunnen, Johan T; 't Hoen, Peter AC

    2008-01-01

    Background The identification of transcription factor binding sites is difficult since they are only a small number of nucleotides in size, resulting in large numbers of false positives and false negatives in current approaches. Computational methods to reduce false positives are to look for over-representation of transcription factor binding sites in a set of similarly regulated promoters or to look for conservation in orthologous promoter alignments. Results We have developed a novel tool, "CORE_TF" (Conserved and Over-REpresented Transcription Factor binding sites) that identifies common transcription factor binding sites in promoters of co-regulated genes. To improve upon existing binding site predictions, the tool searches for position weight matrices from the TRANSFACR database that are over-represented in an experimental set compared to a random set of promoters and identifies cross-species conservation of the predicted transcription factor binding sites. The algorithm has been evaluated with expression and chromatin-immunoprecipitation on microarray data. We also implement and demonstrate the importance of matching the random set of promoters to the experimental promoters by GC content, which is a unique feature of our tool. Conclusion The program CORE_TF is accessible in a user friendly web interface at . It provides a table of over-represented transcription factor binding sites in the users input genes' promoters and a graphical view of evolutionary conserved transcription factor binding sites. In our test data sets it successfully predicts target transcription factors and their binding sites. PMID:19036135

  8. Symmetry of Fv architecture is conducive to grafting a second antibody binding site in the Fv region.

    PubMed Central

    Keck, P C; Huston, J S

    1996-01-01

    Molecular modeling studies on antibody Fv regions have been pursued to design a second antigen-binding site (chi-site) in a chimeric single-chain Fv (chi sFv) species of about 30 kDa. This analysis has uncovered an architectural basis common to many Fv regions that permits grafting a chi-site onto the Fv surface that diametrically opposes the normal combining site. By using molecular graphics analysis, chimeric complementarity-determining regions (chi CDRs) were defined that comprised most of the CDRs from an antibody binding site of interest. The chain directionality of chi CDRs was consistent with that of specific bottom loops of the sFv, which allowed for grafting of chi CDRs with an overall geometry approximating CDRs in the parent combining site. Analysis of 10 different Fv crystal structures indicates that the positions for inserting chi CDRs are very highly conserved, as are the corresponding chi CDR boundaries in the parent binding site. The results of this investigation suggest that it should be possible to generally apply this approach to the development of chimeric bispecific antibody binding site (chi BABS) proteins. Images FIGURE 2 FIGURE 3 PMID:8889174

  9. Site-directed antibody immobilization using a protein A-gold binding domain fusion protein for enhanced SPR immunosensing.

    PubMed

    de Juan-Franco, Elena; Caruz, Antonio; Pedrajas, J R; Lechuga, Laura M

    2013-04-07

    We have implemented a novel strategy for the oriented immobilization of antibodies onto a gold surface based on the use of a fusion protein, the protein A-gold binding domain (PAG). PAG consists of a gold binding peptide (GBP) coupled to the immunoglobulin-binding domains of staphylococcal protein A. This fusion protein provides an easy and fast oriented immobilization of antibodies preserving its native structure, while leaving the antigen binding sites (Fab) freely exposed. Using this immobilization strategy, we have demonstrated the performance of the immunosensing of the human Growth Hormone by SPR. A limit of detection of 90 ng mL(-1) was obtained with an inter-chip variability lower than 7%. The comparison of this method with other strategies for the direct immobilization of antibodies over gold surfaces has showed the enhanced sensitivity provided by the PAG approach.

  10. Fold independent structural comparisons of protein-ligand binding sites for exploring functional relationships.

    PubMed

    Gold, Nicola D; Jackson, Richard M

    2006-02-03

    The rapid growth in protein structural data and the emergence of structural genomics projects have increased the need for automatic structure analysis and tools for function prediction. Small molecule recognition is critical to the function of many proteins; therefore, determination of ligand binding site similarity is important for understanding ligand interactions and may allow their functional classification. Here, we present a binding sites database (SitesBase) that given a known protein-ligand binding site allows rapid retrieval of other binding sites with similar structure independent of overall sequence or fold similarity. However, each match is also annotated with sequence similarity and fold information to aid interpretation of structure and functional similarity. Similarity in ligand binding sites can indicate common binding modes and recognition of similar molecules, allowing potential inference of function for an uncharacterised protein or providing additional evidence of common function where sequence or fold similarity is already known. Alternatively, the resource can provide valuable information for detailed studies of molecular recognition including structure-based ligand design and in understanding ligand cross-reactivity. Here, we show examples of atomic similarity between superfamily or more distant fold relatives as well as between seemingly unrelated proteins. Assignment of unclassified proteins to structural superfamiles is also undertaken and in most cases substantiates assignments made using sequence similarity. Correct assignment is also possible where sequence similarity fails to find significant matches, illustrating the potential use of binding site comparisons for newly determined proteins.

  11. 2-(/sup 125/I)iodomelatonin binding sites in hamster brain membranes: pharmacological characteristics and regional distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, M.J.; Takahashi, J.S.; Dubocovich, M.L.

    1988-05-01

    Studies in a variety of seasonally breeding mammals have shown that melatonin mediates photoperiodic effects on reproduction. Relatively little is known, however, about the site(s) or mechanisms of action of this hormone for inducing reproductive effects. Although binding sites for (3H)melatonin have been reported previously in bovine, rat, and hamster brain, the pharmacological selectivity of these sites was never demonstrated. In the present study, we have characterized binding sites for a new radioligand, 2-(125I)iodomelatonin, in brains from a photoperiodic species, the Syrian hamster. 2-(125I)Iodomelatonin labels a high affinity binding site in hamster brain membranes. Specific binding of 2-(125I)iodomelatonin is rapid,more » stable, saturable, and reversible. Saturation studies demonstrated that 2-(125I)iodomelatonin binds to a single class of sites with an affinity constant (Kd) of 3.3 +/- 0.5 nM and a total binding capacity (Bmax) of 110.2 +/- 13.4 fmol/mg protein (n = 4). The Kd value determined from kinetic analysis (3.1 +/- 0.9 nM; n = 5) was very similar to that obtained from saturation experiments. Competition experiments showed that the relative order of potency of a variety of indoles for inhibition of 2-(125I)iodomelatonin binding site to hamster brain membranes was as follows: 6-chloromelatonin greater than or equal to 2-iodomelatonin greater than N-acetylserotonin greater than or equal to 6-methoxymelatonin greater than or equal to melatonin greater than 6-hydroxymelatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 5-methoxytryptophol greater than 5-methoxytryptamine greater than or equal to 5-methoxy-N,N-dimethyltryptamine greater than N-acetyltryptamine greater than serotonin greater than 5-methoxyindole (inactive).« less

  12. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  13. Evaluation of the Significance of Starch Surface Binding Sites on Human Pancreatic α-Amylase.

    PubMed

    Zhang, Xiaohua; Caner, Sami; Kwan, Emily; Li, Chunmin; Brayer, Gary D; Withers, Stephen G

    2016-11-01

    Starch provides the major source of caloric intake in many diets. Cleavage of starch into malto-oligosaccharides in the gut is catalyzed by pancreatic α-amylase. These oligosaccharides are then further cleaved by gut wall α-glucosidases to release glucose, which is absorbed into the bloodstream. Potential surface binding sites for starch on the pancreatic amylase, distinct from the active site of the amylase, have been identified through X-ray crystallographic analyses. The role of these sites in the degradation of both starch granules and soluble starch was probed by the generation of a series of surface variants modified at each site to disrupt binding. Kinetic analysis of the binding and/or cleavage of substrates ranging from simple maltotriosides to soluble starch and insoluble starch granules has allowed evaluation of the potential role of each such surface site. In this way, two key surface binding sites, on the same face as the active site, are identified. One site, containing a pair of aromatic residues, is responsible for attachment to starch granules, while a second site featuring a tryptophan residue around which a malto-oligosaccharide wraps is shown to heavily influence soluble starch binding and hydrolysis. These studies provide insights into the mechanisms by which enzymes tackle the degradation of largely insoluble polymers and also present some new approaches to the interrogation of the binding sites involved.

  14. Molecular simulations of multimodal ligand-protein binding: elucidation of binding sites and correlation with experiments.

    PubMed

    Freed, Alexander S; Garde, Shekhar; Cramer, Steven M

    2011-11-17

    Multimodal chromatography, which employs more than one mode of interaction between ligands and proteins, has been shown to have unique selectivity and high efficacy for protein purification. To test the ability of free solution molecular dynamics (MD) simulations in explicit water to identify binding regions on the protein surface and to shed light on the "pseudo affinity" nature of multimodal interactions, we performed MD simulations of a model protein ubiquitin in aqueous solution of free ligands. Comparisons of MD with NMR spectroscopy of ubiquitin mutants in solutions of free ligands show a good agreement between the two with regard to the preferred binding region on the surface of the protein and several binding sites. MD simulations also identify additional binding sites that were not observed in the NMR experiments. "Bound" ligands were found to be sufficiently flexible and to access a number of favorable conformations, suggesting only a moderate loss of ligand entropy in the "pseudo affinity" binding of these multimodal ligands. Analysis of locations of chemical subunits of the ligand on the protein surface indicated that electrostatic interaction units were located on the periphery of the preferred binding region on the protein. The analysis of the electrostatic potential, the hydrophobicity maps, and the binding of both acetate and benzene probes were used to further study the localization of individual ligand moieties. These results suggest that water-mediated electrostatic interactions help the localization and orientation of the MM ligand to the binding region with additional stability provided by nonspecific hydrophobic interactions.

  15. Allosteric Coupling of CARMIL and V-1 Binding to Capping Protein Revealed by Hydrogen-Deuterium Exchange.

    PubMed

    Johnson, Britney; McConnell, Patrick; Kozlov, Alex G; Mekel, Marlene; Lohman, Timothy M; Gross, Michael L; Amarasinghe, Gaya K; Cooper, John A

    2018-05-29

    Actin assembly is important for cell motility. The ability of actin subunits to join or leave filaments via the barbed end is critical to actin dynamics. Capping protein (CP) binds to barbed ends to prevent subunit gain and loss and is regulated by proteins that include V-1 and CARMIL. V-1 inhibits CP by sterically blocking one binding site for actin. CARMILs bind at a distal site and decrease the affinity of CP for actin, suggested to be caused by conformational changes. We used hydrogen-deuterium exchange with mass spectrometry (HDX-MS) to probe changes in structural dynamics induced by V-1 and CARMIL binding to CP. V-1 and CARMIL induce changes in both proteins' binding sites on the surface of CP, along with a set of internal residues. Both also affect the conformation of CP's ββ subunit "tentacle," a second distal actin-binding site. Concerted regulation of actin assembly by CP occurs through allosteric couplings between CP modulator and actin binding sites. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  17. The Carboxy-Terminal Domain of Hsc70 Provides Binding Sites for a Distinct Set of Chaperone Cofactors

    PubMed Central

    Demand, Jens; Lüders, Jens; Höhfeld, Jörg

    1998-01-01

    The modulation of the chaperone activity of the heat shock cognate Hsc70 protein in mammalian cells involves cooperation with chaperone cofactors, such as Hsp40; BAG-1; the Hsc70-interacting protein, Hip; and the Hsc70-Hsp90-organizing protein, Hop. By employing the yeast two-hybrid system and in vitro interaction assays, we have provided insight into the structural basis that underlies Hsc70’s cooperation with different cofactors. The carboxy-terminal domain of Hsc70, previously shown to form a lid over the peptide binding pocket of the chaperone protein, mediates the interaction of Hsc70 with Hsp40 and Hop. Remarkably, the two cofactors bind to the carboxy terminus of Hsc70 in a noncompetitive manner, revealing the existence of distinct binding sites for Hsp40 and Hop within this domain. In contrast, Hip interacts exclusively with the amino-terminal ATPase domain of Hsc70. Hence, Hsc70 possesses separate nonoverlapping binding sites for Hsp40, Hip, and Hop. This appears to enable the chaperone protein to cooperate simultaneously with multiple cofactors. On the other hand, BAG-1 and Hip have recently been shown to compete in binding to the ATPase domain. Our data thus establish the existence of a network of cooperating and competing cofactors regulating the chaperone activity of Hsc70 in the mammalian cell. PMID:9528774

  18. n-Dodecyl β-D-maltoside specifically competes with general anesthetics for anesthetic binding sites.

    PubMed

    Xu, Longhe; Matsunaga, Felipe; Xi, Jin; Li, Min; Ma, Jingyuan; Liu, Renyu

    2014-01-01

    We recently demonstrated that the anionic detergent sodium dodecyl sulfate (SDS) specifically interacts with the anesthetic binding site in horse spleen apoferritin, a soluble protein which models anesthetic binding sites in receptors. This raises the possibility of other detergents similarly interacting with and occluding such sites from anesthetics, thereby preventing the proper identification of novel anesthetic binding sites. n-Dodecyl β-D-maltoside (DDM) is a non-ionic detergent commonly used during protein-anesthetic studies because of its mild and non-denaturing properties. In this study, we demonstrate that SDS and DDM occupy anesthetic binding sites in the model proteins human serum albumin (HSA) and horse spleen apoferritin and thereby inhibit the binding of the general anesthetics propofol and isoflurane. DDM specifically interacts with HSA (Kd = 40 μM) with a lower affinity than SDS (Kd = 2 μM). DDM exerts all these effects while not perturbing the native structures of either model protein. Computational calculations corroborated the experimental results by demonstrating that the binding sites for DDM and both anesthetics on the model proteins overlapped. Collectively, our results indicate that DDM and SDS specifically interact with anesthetic binding sites and may thus prevent the identification of novel anesthetic sites. Special precaution should be taken when undertaking and interpreting results from protein-anesthetic investigations utilizing detergents like SDS and DDM.

  19. Host-Primed Ebola Virus GP Exposes a Hydrophobic NPC1 Receptor-Binding Pocket, Revealing a Target for Broadly Neutralizing Antibodies.

    PubMed

    Bornholdt, Zachary A; Ndungo, Esther; Fusco, Marnie L; Bale, Shridhar; Flyak, Andrew I; Crowe, James E; Chandran, Kartik; Saphire, Erica Ollmann

    2016-02-23

    The filovirus surface glycoprotein (GP) mediates viral entry into host cells. Following viral internalization into endosomes, GP is cleaved by host cysteine proteases to expose a receptor-binding site (RBS) that is otherwise hidden from immune surveillance. Here, we present the crystal structure of proteolytically cleaved Ebola virus GP to a resolution of 3.3 Å. We use this structure in conjunction with functional analysis of a large panel of pseudotyped viruses bearing mutant GP proteins to map the Ebola virus GP endosomal RBS at molecular resolution. Our studies indicate that binding of GP to its endosomal receptor Niemann-Pick C1 occurs in two distinct stages: the initial electrostatic interactions are followed by specific interactions with a hydrophobic trough that is exposed on the endosomally cleaved GP1 subunit. Finally, we demonstrate that monoclonal antibodies targeting the filovirus RBS neutralize all known filovirus GPs, making this conserved pocket a promising target for the development of panfilovirus therapeutics. Ebola virus uses its glycoprotein (GP) to enter new host cells. During entry, GP must be cleaved by human enzymes in order for receptor binding to occur. Here, we provide the crystal structure of the cleaved form of Ebola virus GP. We demonstrate that cleavage exposes a site at the top of GP and that this site binds the critical domain C of the receptor, termed Niemann-Pick C1 (NPC1). We perform mutagenesis to find parts of the site essential for binding NPC1 and map distinct roles for an upper, charged crest and lower, hydrophobic trough in cleaved GP. We find that this 3-dimensional site is conserved across the filovirus family and that antibody directed against this site is able to bind cleaved GP from every filovirus tested and neutralize viruses bearing those GPs. Copyright © 2016 Bornholdt et al.

  20. Structure of a highly acidic β-lactamase from the moderate halophile Chromohalobacter sp. 560 and the discovery of a Cs{sup +}-selective binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arai, Shigeki; Yonezawa, Yasushi; Okazaki, Nobuo

    2015-03-01

    The tertiary structure of a β-lactamase derived from the halobacterium Chromohalobacter sp. 560 (HaBLA) was determined by X-ray crystallography. Three unique Sr{sup 2+}-binding sites and one Cs{sup +}-binding site were discovered in the HaBLA molecule. Environmentally friendly absorbents are needed for Sr{sup 2+} and Cs{sup +}, as the removal of the radioactive Sr{sup 2+} and Cs{sup +} that has leaked from the Fukushima Nuclear Power Plant is one of the most important problems in Japan. Halophilic proteins are known to have many acidic residues on their surface that can provide specific binding sites for metal ions such as Cs{sup +}more » or Sr{sup 2+}. The crystal structure of a halophilic β-lactamase from Chromohalobacter sp. 560 (HaBLA) was determined to resolutions of between 1.8 and 2.9 Å in space group P3{sub 1} using X-ray crystallography. Moreover, the locations of bound Sr{sup 2+} and Cs{sup +} ions were identified by anomalous X-ray diffraction. The location of one Cs{sup +}-specific binding site was identified in HaBLA even in the presence of a ninefold molar excess of Na{sup +} (90 mM Na{sup +}/10 mM Cs{sup +}). From an activity assay using isothermal titration calorimetry, the bound Sr{sup 2+} and Cs{sup +} ions do not significantly affect the enzymatic function of HaBLA. The observation of a selective and high-affinity Cs{sup +}-binding site provides important information that is useful for the design of artificial Cs{sup +}-binding sites that may be useful in the bioremediation of radioactive isotopes.« less

  1. Study of DNA binding sites using the Rényi parametric entropy measure.

    PubMed

    Krishnamachari, A; moy Mandal, Vijnan; Karmeshu

    2004-04-07

    Shannon's definition of uncertainty or surprisal has been applied extensively to measure the information content of aligned DNA sequences and characterizing DNA binding sites. In contrast to Shannon's uncertainty, this study investigates the applicability and suitability of a parametric uncertainty measure due to Rényi. It is observed that this measure also provides results in agreement with Shannon's measure, pointing to its utility in analysing DNA binding site region. For facilitating the comparison between these uncertainty measures, a dimensionless quantity called "redundancy" has been employed. It is found that Rényi's measure at low parameter values possess a better delineating feature of binding sites (of binding regions) than Shannon's measure. The critical value of the parameter is chosen with an outlier criterion.

  2. Co-receptor Binding Site Antibodies Enable CD4-Mimetics to Expose Conserved Anti-cluster A ADCC Epitopes on HIV-1 Envelope Glycoproteins.

    PubMed

    Richard, Jonathan; Pacheco, Beatriz; Gohain, Neelakshi; Veillette, Maxime; Ding, Shilei; Alsahafi, Nirmin; Tolbert, William D; Prévost, Jérémie; Chapleau, Jean-Philippe; Coutu, Mathieu; Jia, Manxue; Brassard, Nathalie; Park, Jongwoo; Courter, Joel R; Melillo, Bruno; Martin, Loïc; Tremblay, Cécile; Hahn, Beatrice H; Kaufmann, Daniel E; Wu, Xueling; Smith, Amos B; Sodroski, Joseph; Pazgier, Marzena; Finzi, Andrés

    2016-10-01

    Human immunodeficiency virus type 1 (HIV-1) has evolved a sophisticated strategy to conceal conserved epitopes of its envelope glycoproteins (Env) recognized by antibody-dependent cellular cytotoxicity (ADCC)-mediating antibodies. These antibodies, which are present in the sera of most HIV-1-infected individuals, preferentially recognize Env in its CD4-bound conformation. Accordingly, recent studies showed that small CD4-mimetics (CD4mc) able to "push" Env into this conformation sensitize HIV-1-infected cells to ADCC mediated by HIV+ sera. Here we test whether CD4mc also expose epitopes recognized by anti-cluster A monoclonal antibodies such as A32, thought to be responsible for the majority of ADCC activity present in HIV+ sera and linked to decreased HIV-1 transmission in the RV144 trial. We made the surprising observation that CD4mc are unable to enhance recognition of HIV-1-infected cells by this family of antibodies in the absence of antibodies such as 17b, which binds a highly conserved CD4-induced epitope overlapping the co-receptor binding site (CoRBS). Our results indicate that CD4mc initially open the trimeric Env enough to allow the binding of CoRBS antibodies but not anti-cluster A antibodies. CoRBS antibody binding further opens the trimeric Env, allowing anti-cluster A antibody interaction and sensitization of infected cells to ADCC. Therefore, ADCC responses mediated by cluster A antibodies in HIV-positive sera involve a sequential opening of the Env trimer on the surface of HIV-1-infected cells. The understanding of the conformational changes required to expose these vulnerable Env epitopes might be important in the design of new strategies aimed at fighting HIV-1. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Characterization of local polarity and hydrophobic binding sites of beta-lactoglobulin by using N-terminal specific fluorescence labeling.

    PubMed

    Dong, Su-Ying; Zhao, Zhen-Wen; Ma, Hui-Min

    2006-01-01

    Because of wide ligand-binding ability and significant industrial interest of beta-lactoglobulin (beta-LG), its binding properties have been extensively studied. However, there still exists a controversy as to where a ligand binds, since at least two potential hydrophobic binding sites in beta-LG have been postulated for ligand binding: an internal one (calyx) and an external one (near the N-terminus). In this work, the local polarity and hydrophobic binding sites of beta-LG have been characterized by using N-terminal specific fluorescence labeling combined with a polarity-sensitive fluorescent probe 3-(4-chloro-6-hydrazino- 1,3,5-triazinylamino)-7-(dimethylamino)-2-methylphenazine (CHTDP). The polarity within the calyx is found to be extremely low, which is explained in terms of superhydrophobicity possibly resulting from its nanostructure, and the polarity is increased with the destruction of the calyx by heat treatment. However, the polarity of the N-terminal domain in native beta-LG is decreased after thermal denaturation. This polarity trend toward decreasing instead of increasing shows that beta-LG may have no definite external hydrophobic binding site. The hydrophobic binding of a ligand such as CHTDP at the surface of the protein is probably achieved via appropriate assembling of corresponding hydrophobic residues rather than via a fixed external hydrophobic binding site. Also, the ligand-binding location in beta-LG is found to be relevant to not only experimental conditions (pH < or = 6.2 or pH > 7.1) but also binding mechanisms (hydrophobic affinity or electrostatic interaction).

  4. Screening Mixtures of Small Molecules for Binding to Multiple Sites on the Surface Tetanus Toxin C Fragment by Bioaffinity NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosman, M; Zeller, L; Lightstone, F C

    2002-01-01

    The clostridial neurotoxins include the closely related tetanus (TeNT) and botulinum (BoNT) toxins. Botulinum toxin is used to treat severe muscle disorders and as a cosmetic wrinkle reducer. Large quantities of botulinum toxin have also been produced by terrorists for use as a biological weapon. Because there are no known antidotes for these toxins, they thus pose a potential threat to human health whether by an accidental overdose or by a hostile deployment. Thus, the discovery of high specificity and affinity compounds that can inhibit their binding to neural cells can be used as antidotes or in the design ofmore » chemical detectors. Using the crystal structure of the C fragment of the tetanus toxin (TetC), which is the cell recognition and cell surface binding domain, and the computational program DOCK, sets of small molecules have been predicted to bind to two different sites located on the surface of this protein. While Site-1 is common to the TeNT and BoNTs, Site-2 is unique to TeNT. Pairs of these molecules from each site can then be linked together synthetically to thereby increase the specificity and affinity for this toxin. Electrospray ionization mass spectroscopy was used to experimentally screen each compound for binding. Mixtures containing binders were further screened for activity under biologically relevant conditions using nuclear magnetic resonance (NMR) methods. The screening of mixtures of compounds offers increased efficiency and throughput as compared to testing single compounds and can also evaluate how possible structural changes induced by the binding of one ligand can influence the binding of the second ligand. In addition, competitive binding experiments with mixtures containing ligands predicted to bind the same site could identify the best binder for that site. NMR transfer nuclear Overhauser effect (trNOE) confirm that TetC binds doxorubicin but that this molecule is displaced by N-acetylneuraminic acid (sialic acid) in a mixture

  5. Phyloscan: locating transcription-regulating binding sites in mixed aligned and unaligned sequence data.

    PubMed

    Palumbo, Michael J; Newberg, Lee A

    2010-07-01

    The transcription of a gene from its DNA template into an mRNA molecule is the first, and most heavily regulated, step in gene expression. Especially in bacteria, regulation is typically achieved via the binding of a transcription factor (protein) or small RNA molecule to the chromosomal region upstream of a regulated gene. The protein or RNA molecule recognizes a short, approximately conserved sequence within a gene's promoter region and, by binding to it, either enhances or represses expression of the nearby gene. Since the sought-for motif (pattern) is short and accommodating to variation, computational approaches that scan for binding sites have trouble distinguishing functional sites from look-alikes. Many computational approaches are unable to find the majority of experimentally verified binding sites without also finding many false positives. Phyloscan overcomes this difficulty by exploiting two key features of functional binding sites: (i) these sites are typically more conserved evolutionarily than are non-functional DNA sequences; and (ii) these sites often occur two or more times in the promoter region of a regulated gene. The website is free and open to all users, and there is no login requirement. Address: (http://bayesweb.wadsworth.org/phyloscan/).

  6. Two distinctive β subunits are separately involved in two binding sites of imidacloprid with different affinities in Locusta migratoria manilensis.

    PubMed

    Bao, Haibo; Liu, Yang; Zhang, Yixi; Liu, Zewen

    2017-08-01

    Due to great diversity of nicotinic acetylcholine receptor (nAChR) subtypes in insects, one β subunit may be contained in numerous nAChR subtypes. In the locust Locusta migratoria, a model insect species with agricultural importance, the third β subunits (Locβ3) was identified in this study, which reveals at least three β subunits in this insect species. Imidacloprid was found to bind nAChRs in L. migratoria central nervous system at two sites with different affinities, with K d values of 0.16 and 10.31nM. The specific antisera (L1-1, L2-1 and L3-1) were raised against fusion proteins at the large cytoplasmic loop of Locβ1, Locβ2 and Locβ3 respectively. Specific immunodepletion of Locβ1 with antiserum L1-1 resulted in the selective loss of the low affinity binding site for imidacloprid, whereas the immunodepletion of Locβ3 with L3-1 caused the selective loss of the high affinity site. Dual immunodepletion with L1-1 and L3-1 could completely abolish imidacloprid binding. In contrast, the immunodepletion of Locβ2 had no significant effect on the specific [ 3 H]imidacloprid binding. Taken together, these data indicated that Locβ1 and Locβ3 were respectively contained in the low- and high-affinity binding sites for imidacloprid in L. migratoria, which is different to the previous finding in Nilaparvata lugens that Nlβ1 was in two binding sites for imidacloprid. The involvement of two β subunits separately in two binding sites may decrease the risk of imidacloprid resistance due to putative point mutations in β subunits in L. migratoria. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Follicle-stimulating hormone (FSH) unmasks specific high affinity FSH-binding sites in cell-free membrane preparations of porcine granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, K.A.; LaBarbera, A.R.

    1988-11-01

    The purpose of these studies was to determine whether changes in FSH receptors correlated with FSH-induced attenuation of FSH-responsive adenylyl cyclase in immature porcine granulosa cells. Cells were incubated with FSH (1-1000 ng/ml) for up to 24 h, treated with acidified medium (pH 3.5) to remove FSH bound to cells, and incubated with (125I)iodo-porcine FSH to quantify FSH-binding sites. FSH increased binding of FSH in a time-, temperature-, and FSH concentration-dependent manner. FSH (200 ng/ml) increased binding approximately 4-fold within 16 h. Analysis of equilibrium saturation binding data indicated that the increase in binding sites reflected a 2.3-fold increase inmore » receptor number and a 5.4-fold increase in apparent affinity. The increase in binding did not appear to be due to 1) a decrease in receptor turnover, since the basal rate of turnover appeared to be very slow; 2) an increase in receptor synthesis, since agents that inhibit protein synthesis and glycosylation did not block the increase in binding; or 3) an increase in intracellular receptors, since agents that inhibit cytoskeletal components had no effect. Agents that increase intracellular cAMP did not affect FSH binding. The increase in binding appeared to result from unmasking of cryptic FSH-binding sites, since FSH increased binding in cell-free membrane preparations to the same extent as in cells. Unmasking of cryptic sites was hormone specific, and the sites bound FSH specifically. Unmasking of sites was reversible in a time- and temperature-dependent manner after removal of bound FSH. The similarity between the FSH dose-response relationships for unmasking of FSH-binding sites and attenuation of FSH-responsive cAMP production suggests that the two processes are functionally linked.« less

  8. Fine epitope signature of antibody neutralization breadth at the HIV-1 envelope CD4-binding site.

    PubMed

    Cheng, Hao D; Grimm, Sebastian K; Gilman, Morgan Sa; Gwom, Luc Christian; Sok, Devin; Sundling, Christopher; Donofrio, Gina; Hedestam, Gunilla B Karlsson; Bonsignori, Mattia; Haynes, Barton F; Lahey, Timothy P; Maro, Isaac; von Reyn, C Fordham; Gorny, Miroslaw K; Zolla-Pazner, Susan; Walker, Bruce D; Alter, Galit; Burton, Dennis R; Robb, Merlin L; Krebs, Shelly J; Seaman, Michael S; Bailey-Kellogg, Chris; Ackerman, Margaret E

    2018-03-08

    Major advances in donor identification, antigen probe design, and experimental methods to clone pathogen-specific antibodies have led to an exponential growth in the number of newly characterized broadly neutralizing antibodies (bnAbs) that recognize the HIV-1 envelope glycoprotein. Characterization of these bnAbs has defined new epitopes and novel modes of recognition that can result in potent neutralization of HIV-1. However, the translation of envelope recognition profiles in biophysical assays into an understanding of in vivo activity has lagged behind, and identification of subjects and mAbs with potent antiviral activity has remained reliant on empirical evaluation of neutralization potency and breadth. To begin to address this discrepancy between recombinant protein recognition and virus neutralization, we studied the fine epitope specificity of a panel of CD4-binding site (CD4bs) antibodies to define the molecular recognition features of functionally potent humoral responses targeting the HIV-1 envelope site bound by CD4. Whereas previous studies have used neutralization data and machine-learning methods to provide epitope maps, here, this approach was reversed, demonstrating that simple binding assays of fine epitope specificity can prospectively identify broadly neutralizing CD4bs-specific mAbs. Building on this result, we show that epitope mapping and prediction of neutralization breadth can also be accomplished in the assessment of polyclonal serum responses. Thus, this study identifies a set of CD4bs bnAb signature amino acid residues and demonstrates that sensitivity to mutations at signature positions is sufficient to predict neutralization breadth of polyclonal sera with a high degree of accuracy across cohorts and across clades.

  9. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase

    NASA Astrophysics Data System (ADS)

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-01

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2‧,3‧-O-(2,4,6-trinitrophenyl)adenosine 5‧-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase.

  10. New insight into the binding modes of TNP-AMP to human liver fructose-1,6-bisphosphatase.

    PubMed

    Han, Xinya; Huang, Yunyuan; Zhang, Rui; Xiao, San; Zhu, Shuaihuan; Qin, Nian; Hong, Zongqin; Wei, Lin; Feng, Jiangtao; Ren, Yanliang; Feng, Lingling; Wan, Jian

    2016-08-05

    Human liver fructose-1,6-bisphosphatase (FBPase) contains two binding sites, a substrate fructose-1,6-bisphosphate (FBP) active site and an adenosine monophosphate (AMP) allosteric site. The FBP active site works by stabilizing the FBPase, and the allosteric site impairs the activity of FBPase through its binding of a nonsubstrate molecule. The fluorescent AMP analogue, 2',3'-O-(2,4,6-trinitrophenyl)adenosine 5'-monophosphate (TNP-AMP) has been used as a fluorescent probe as it is able to competitively inhibit AMP binding to the AMP allosteric site and, therefore, could be used for exploring the binding modes of inhibitors targeted on the allosteric site. In this study, we have re-examined the binding modes of TNP-AMP to FBPase. However, our present enzyme kinetic assays show that AMP and FBP both can reduce the fluorescence from the bound TNP-AMP through competition for FBPase, suggesting that TNP-AMP binds not only to the AMP allosteric site but also to the FBP active site. Mutagenesis assays of K274L (located in the FBP active site) show that the residue K274 is very important for TNP-AMP to bind to the active site of FBPase. The results further prove that TNP-AMP is able to bind individually to the both sites. Our present study provides a new insight into the binding mechanism of TNP-AMP to the FBPase. The TNP-AMP fluorescent probe can be used to exam the binding site of an inhibitor (the active site or the allosteric site) using FBPase saturated by AMP and FBP, respectively, or the K247L mutant FBPase. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. High Structural Resolution Hydroxyl Radical Protein Footprinting Reveals an Extended Robo1-Heparin Binding Interface*

    PubMed Central

    Li, Zixuan; Moniz, Heather; Wang, Shuo; Ramiah, Annapoorani; Zhang, Fuming; Moremen, Kelley W.; Linhardt, Robert J.; Sharp, Joshua S.

    2015-01-01

    Interaction of transmembrane receptors of the Robo family and the secreted protein Slit provides important signals in the development of the central nervous system and regulation of axonal midline crossing. Heparan sulfate, a sulfated linear polysaccharide modified in a complex variety of ways, serves as an essential co-receptor in Slit-Robo signaling. Previous studies have shown that closely related heparin octasaccharides bind to Drosophila Robo directly, and surface plasmon resonance analysis revealed that Robo1 binds more tightly to full-length unfractionated heparin. For the first time, we utilized electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting to identify two separate binding sites for heparin interaction with Robo1: one binding site at the previously identified site for heparin dp8 and a second binding site at the N terminus of Robo1 that is disordered in the x-ray crystal structure. Mutagenesis of the identified N-terminal binding site exhibited a decrease in binding affinity as measured by surface plasmon resonance and heparin affinity chromatography. Footprinting also indicated that heparin binding induces a minor change in the conformation and/or dynamics of the Ig2 domain, but no major conformational changes were detected. These results indicate a second low affinity binding site in the Robo-Slit complex as well as suggesting the role of the Ig2 domain of Robo1 in heparin-mediated signal transduction. This study also marks the first use of electron transfer dissociation-based high spatial resolution hydroxyl radical protein footprinting, which shows great utility for the characterization of protein-carbohydrate complexes. PMID:25752613

  12. Pathogenesis of Shigella diarrhea: rabbit intestinal cell microvillus membrane binding site for Shigella toxin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, G.; Mobassaleh, M.; Donohue-Rolfe, A.

    This study examined the binding of purified /sup 125/I-labeled shigella toxin to rabbit jejunal microvillus membranes (MVMs). Toxin binding was concentration dependent, saturable, reversible, and specifically inhibited by unlabeled toxin. The calculated number of toxin molecules bound at 4/sup 0/C was 7.9 X 10(10) (3 X 10(10) to 2 X 10(11))/micrograms of MVM protein or 1.2 X 10(6) per enterocyte. Scatchard analysis showed the binding site to be of a single class with an equilibrium association constant, K, of 4.7 X 10(9) M-1 at 4/sup 0/C. Binding was inversely related to the temperature of incubation. A total of 80% ofmore » the labeled toxin binding at 4/sup 0/C dissociated from MVM when the temperature was raised to 37/sup 0/C, but reassociated when the temperature was again brought to 4/sup 0/C. There was no structural or functional change of MVM due to toxin as monitored by electron microscopy or assay of MVM sucrase activity. These studies demonstrate a specific binding site for shigella toxin on rabbit MVMs. The physiological relevance of this receptor remains to be determined.« less

  13. A combination of 19F NMR and surface plasmon resonance for site-specific hit selection and validation of fragment molecules that bind to the ATP-binding site of a kinase.

    PubMed

    Nagatoishi, Satoru; Yamaguchi, Sou; Katoh, Etsuko; Kajita, Keita; Yokotagawa, Takane; Kanai, Satoru; Furuya, Toshio; Tsumoto, Kouhei

    2018-05-01

    19 F NMR has recently emerged as an efficient, sensitive tool for analyzing protein binding to small molecules, and surface plasmon resonance (SPR) is also a popular tool for this purpose. Herein a combination of 19 F NMR and SPR was used to find novel binders to the ATP-binding pocket of MAP kinase extracellular regulated kinase 2 (ERK2) by fragment screening with an original fluorinated-fragment library. The 19 F NMR screening yielded a high primary hit rate of binders to the ERK2 ATP-binding pocket compared with the rate for the SPR screening. Hit compounds were evaluated and categorized according to their ability to bind to different binding sites in the ATP-binding pocket. The binding manner was characterized by using isothermal titration calorimetry and docking simulation. Combining 19 F NMR with other biophysical methods allows the identification of multiple types of hit compounds, thereby increasing opportunities for drug design using preferred fragments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Activation of the Early B-Cell-Specific mb-1 (Ig-α) Gene by Pax-5 Is Dependent on an Unmethylated Ets Binding Site

    PubMed Central

    Maier, Holly; Colbert, Jeff; Fitzsimmons, Daniel; Clark, Dawn R.; Hagman, James

    2003-01-01

    Methylation of cytosine in CpG dinucleotides promotes transcriptional repression in mammals by blocking transcription factor binding and recruiting methyl-binding proteins that initiate chromatin remodeling. Here, we use a novel cell-based system to show that retrovirally expressed Pax-5 protein activates endogenous early B-cell-specific mb-1 genes in plasmacytoma cells, but only when the promoter is hypomethylated. CpG methylation does not directly affect binding of the promoter by Pax-5. Instead, methylation of an adjacent CpG interferes with assembly of ternary complexes comprising Pax-5 and Ets proteins. In electrophoretic mobility shift assays, recruitment of Ets-1 is blocked by methylation of the Ets site (5′CCGGAG) on the antisense strand. In transfection assays, selective methylation of a single CpG within the Pax-5-dependent Ets site greatly reduces mb-1 promoter activity. Prior demethylation of the endogenous mb-1 promoter is required for its activation by Pax-5 in transduced cells. Although B-lineage cells have only unmethylated mb-1 genes and do not modulate methylation of the mb-1 promoter during development, other tissues feature high percentages of methylated alleles. Together, these studies demonstrate a novel DNA methylation-dependent mechanism for regulating transcriptional activity through the inhibition of DNA-dependent protein-protein interactions. PMID:12612069

  15. Characterization of dFOXO binding sites upstream of the Insulin Receptor P2 promoter across the Drosophila phylogeny

    PubMed Central

    Orengo, Dorcas J.; Aguadé, Montserrat

    2017-01-01

    The insulin/TOR signal transduction pathway plays a critical role in determining such important traits as body and organ size, metabolic homeostasis and life span. Although this pathway is highly conserved across the animal kingdom, the affected traits can exhibit important differences even between closely related species. Evolutionary studies of regulatory regions require the reliable identification of transcription factor binding sites. Here we have focused on the Insulin Receptor (InR) expression from its P2 promoter in the Drosophila genus, which in D. melanogaster is up-regulated by hypophosphorylated Drosophila FOXO (dFOXO). We have finely characterized this transcription factor binding sites in vitro along the 1.3 kb region upstream of the InR P2 promoter in five Drosophila species. Moreover, we have tested the effect of mutations in the characterized dFOXO sites of D. melanogaster in transgenic flies. The number of experimentally established binding sites varies across the 1.3 kb region of any particular species, and their distribution also differs among species. In D. melanogaster, InR expression from P2 is differentially affected by dFOXO binding sites at the proximal and distal halves of the species 1.3 kb fragment. The observed uneven distribution of binding sites across this fragment might underlie their differential contribution to regulate InR transcription. PMID:29200426

  16. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.

    PubMed

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun

    2015-07-24

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions*

    PubMed Central

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P.; Burgoyne, Robert D.; Mayans, Olga; Derrick, Jeremy P.; Lian, Lu-Yun

    2015-01-01

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. PMID:25979333

  18. Lactose-containing starburst dendrimers: influence of dendrimer generation and binding-site orientation of receptors (plant/animal lectins and immunoglobulins) on binding properties.

    PubMed

    André, S; Ortega, P J; Perez, M A; Roy, R; Gabius, H J

    1999-11-01

    Starburst glycodendrimers offer the potential to serve as high-affinity ligands for clinically relevant sugar receptors. In order to define areas of application, their binding behavior towards sugar receptors with differential binding-site orientation but identical monosaccharide specificity must be evaluated. Using poly(amidoamine) starburst dendrimers of five generations, which contain the p-isothiocyanato derivative of p-aminophenyl-beta-D-lactoside as ligand group, four different types of galactoside-binding proteins were chosen for this purpose, i.e., the (AB)(2)-toxic agglutinin from mistletoe, a human immunoglobulin G fraction, the homodimeric galectin-1 with its two binding sites at opposite ends of the jelly-roll-motif-harboring protein and monomeric galectin-3. Direct solid-phase assays with surface-immobilized glycodendrimers resulted in obvious affinity enhancements by progressive core branching for the plant agglutinin and less pronounced for the antibody and galectin-1. High density of binding of galectin-3 with modest affinity increases only from the level of the 32-mer onwards points to favorable protein-protein interactions of the monomeric lectin and a spherical display of the end groups without a major share of backfolding. When the inhibitory potency of these probes was evaluated as competitor of receptor binding to an immobilized neoglycoprotein or to asialofetuin, a marked selectivity was detected. The 32- and 64-mers were second to none as inhibitors for the plant agglutinin against both ligand-exposing matrices and for galectin-1 on the matrix with a heterogeneous array of interglycoside distances even on the per-sugar basis. In contrast, a neoglycoprotein with the same end group was superior in the case of the antibody and, less pronounced, monomeric galectin-3. Intimate details of topological binding-site presentation and the ligand display on different generations of core assembly are major operative factors which determine the potential

  19. Labeling by ( sup 3 H)1,3-di(2-tolyl)guanidine of two high affinity binding sites in guinea pig brain: Evidence for allosteric regulation by calcium channel antagonists and pseudoallosteric modulation by sigma ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.B.; Reid, A.; Mahboubi, A.

    1991-02-01

    Equilibrium binding studies with the sigma receptor ligand ({sup 3}H)1,3-di(2-tolyl)guanidine (({sup 3}H)DTG) demonstrated two high affinity binding sites in membranes prepared from guinea pig brain. The apparent Kd values of DTG for sites 1 and 2 were 11.9 and 37.6 nM, respectively. The corresponding Bmax values were 1045 and 1423 fmol/mg of protein. Site 1 had high affinity for (+)-pentazocine, haloperidol, (R)-(+)-PPP, carbepentane, and other sigma ligands, suggesting a similarity with the dextromethorphan/sigma 1 binding site described by Musacchio et al. (Life Sci. 45:1721-1732 (1989)). Site 2 had high affinity for DTG and haloperidol (Ki = 36.1 nM) and lowmore » affinity for most other sigma ligands. Kinetic experiments demonstrated that ({sup 3}H)DTG dissociated in a biphasic manner from both site 1 and site 2. DTG and haloperidol increased the dissociation rate of ({sup 3}H)DTG from site 1 and site 2, demonstrating the presence of pseudoallosteric interactions. Inorganic calcium channel blockers such as Cd2+ selectively increased the dissociation rate of ({sup 3}H)DTG from site 2, suggesting an association of this binding site with calcium channels.« less

  20. Association between genetic variation within vitamin D receptor-DNA binding sites and risk of basal cell carcinoma.

    PubMed

    Lin, Yuan; Chahal, Harvind S; Wu, Wenting; Cho, Hyunje G; Ransohoff, Katherine J; Dai, Hongji; Tang, Jean Y; Sarin, Kavita Y; Han, Jiali

    2017-05-01

    An increasing number of studies have reported a protective association between vitamin D and cancer risk. The vitamin D endocrine system regulates transcriptional programs involved in inflammation, cell growth and differentiation through the binding of vitamin D receptor (VDR) to specific VDR elements. However, limited attention has been given to the role of variation within VDR binding sites in the development of basal cell carcinoma (BCC). Across 2,776 previously identified VDR binding sites, we identified 2,540 independent single-nucleotide polymorphisms (SNPs) and examined their associations with BCC risk in a genome-wide association meta-analysis totaling 17,187 BCC cases and 287,054 controls from two data sets. After multiple testing corrections, we identified two SNPs at new loci (rs16917546 at 10q21.1: odds ratio (OR) = 1.06, p = 3.16 × 10 -7 and rs79824801 at 12q13.3: OR = 1.10, p = 1.88 × 10 -5 ) for the first time as independently related to BCC risk in meta-analysis; and both SNPs were nominally significant in two data sets. In addition, the SNP rs3769823 within VDR binding site at a previously reported BCC susceptibility locus (2q33.1, rs13014235) also exhibited a significant association (OR = 1.12, p = 3.99 × 10 -18 ). A mutually adjusted model suggested that rs3769823 explained the signal in this region. Our findings support the hypothesis that inherited common variation in VDR binding sites affects the development of BCC. © 2017 UICC.

  1. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1.

    PubMed

    Hamilton, Kathryn E; Rekman, Janelle F; Gunnink, Leesha K; Busscher, Brianna M; Scott, Jordan L; Tidball, Andrew M; Stehouwer, Nathan R; Johnecheck, Grace N; Looyenga, Brendan D; Louters, Larry L

    2018-05-29

    Quercetin, a common dietary flavone, is a competitive inhibitor of glucose uptake and is also thought to be transported into cells by GLUT1. In this study, we confirm that quercetin is a competitive inhibitor of GLUT1 and also demonstrate that newly synthesized compounds, WZB-117 and BAY-876 are robust inhibitors of GLUT1 in L929 cells. To measure quercetin interaction with L929 cells, we develop a new fluorescent assay using flow cytometry. The binding of quercetin and its inhibitory effects on 2-deoxyglucose (2DG) uptake showed nearly identical dose dependent effects, with both having maximum effects between 50 and 100 μM and similar half maximum effects at 8.9 and 8.5 μM respectively. The interaction of quercetin was rapid with t 1/2 of 54 s and the onset and loss of its inhibitory effects on 2DG uptake were equally fast. This suggests that either quercetin is simply binding to surface GLUT1 or its transport in and out of the cell reaches equilibrium very quickly. If quercetin is transported, the co-incubation of quercetin with other glucose inhibitors should block quercetin uptake. However, we observed that WZB-117, an exofacial binding inhibitor of GLUT1 reduced quercetin interaction, while cytochalasin B, an endofacial binding inhibitor, enhanced quercetin interaction, and BAY-876 had no effect on quercetin interaction. Taken together, these data are more consistent with quercetin simply binding to GLUT1, but not actually being transported into L929 cells via the glucose channel in GLUT1. Copyright © 2018. Published by Elsevier B.V.

  2. Binding site and affinity prediction of general anesthetics to protein targets using docking.

    PubMed

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G

    2012-05-01

    The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explored whether a computational method, AutoDock, could serve as such a tool. High-resolution crystal data of water-soluble proteins (cytochrome C, apoferritin, and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus [GLIC]) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (http://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants were compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent cocrystallization data. Docking calculations for 6 general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known 50% effective concentration (EC(50)) values were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC(50) values and octanol/water partition coefficients for the 6 general anesthetics. All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (P = 0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site

  3. Binding Site and Affinity Prediction of General Anesthetics to Protein Targets Using Docking

    PubMed Central

    Liu, Renyu; Perez-Aguilar, Jose Manuel; Liang, David; Saven, Jeffery G.

    2012-01-01

    Background The protein targets for general anesthetics remain unclear. A tool to predict anesthetic binding for potential binding targets is needed. In this study, we explore whether a computational method, AutoDock, could serve as such a tool. Methods High-resolution crystal data of water soluble proteins (cytochrome C, apoferritin and human serum albumin), and a membrane protein (a pentameric ligand-gated ion channel from Gloeobacter violaceus, GLIC) were used. Isothermal titration calorimetry (ITC) experiments were performed to determine anesthetic affinity in solution conditions for apoferritin. Docking calculations were performed using DockingServer with the Lamarckian genetic algorithm and the Solis and Wets local search method (https://www.dockingserver.com/web). Twenty general anesthetics were docked into apoferritin. The predicted binding constants are compared with those obtained from ITC experiments for potential correlations. In the case of apoferritin, details of the binding site and their interactions were compared with recent co-crystallization data. Docking calculations for six general anesthetics currently used in clinical settings (isoflurane, sevoflurane, desflurane, halothane, propofol, and etomidate) with known EC50 were also performed in all tested proteins. The binding constants derived from docking experiments were compared with known EC50s and octanol/water partition coefficients for the six general anesthetics. Results All 20 general anesthetics docked unambiguously into the anesthetic binding site identified in the crystal structure of apoferritin. The binding constants for 20 anesthetics obtained from the docking calculations correlate significantly with those obtained from ITC experiments (p=0.04). In the case of GLIC, the identified anesthetic binding sites in the crystal structure are among the docking predicted binding sites, but not the top ranked site. Docking calculations suggest a most probable binding site located in the

  4. Arabidopsis Polycomb Repressive Complex 2 binding sites contain putative GAGA factor binding motifs within coding regions of genes

    PubMed Central

    2013-01-01

    Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316

  5. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A.

    PubMed

    Maurer, Manuela; de Beer, Stephanie B A; Oostenbrink, Chris

    2016-04-15

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data.

  6. The adenovirus oncoprotein E1a stimulates binding of transcription factor ETF to transcriptionally activate the p53 gene.

    PubMed

    Hale, T K; Braithwaite, A W

    1999-08-20

    Expression of the tumor suppressor protein p53 plays an important role in regulating the cellular response to DNA damage. During adenovirus infection, levels of p53 protein also increase. It has been shown that this increase is due not only to increased stability of the p53 protein but to the transcriptional activation of the p53 gene during infection. We demonstrate here that the E1a proteins of adenovirus are responsible for activating the mouse p53 gene and that both major E1a proteins, 243R and 289R, are required for complete activation. E1a brings about the binding of two cellular transcription factors to the mouse p53 promoter. One of these, ETF, binds to three upstream sites in the p53 promoter and one downstream site, whereas E2F binds to one upstream site in the presence of E1a. Our studies indicate that E2F binding is not essential for activation of the p53 promoter but that ETF is. Our data indicate the ETF site located downstream of the start site of transcription is the key site in conferring E1a responsiveness on the p53 promoter.

  7. Footprinting reveals that nogalamycin and actinomycin shuffle between DNA binding sites.

    PubMed Central

    Fox, K R; Waring, M J

    1986-01-01

    The hypothesis that sequence-selective DNA-binding antibiotics locate their preferred binding sites by a process involving migration from nonspecific sites has been tested by footprinting with DNAase I. Footprinting patterns on the tyrT DNA fragment produced by nogalamycin and actinomycin change with time after mixing the antibiotic with the DNA. Sites of protection as well as enhanced cleavage are seen to develop in a fashion which is both temperature and concentration-dependent. At certain sites cutting is transiently enhanced, then blocked. Limited evidence for slow reaction with echinomycin and mithramycin is presented, but the kinetics of footprinting with daunomycin and distamycin appear instantaneous. The feasibility of adducing direct evidence for shuffling by footprinting seems to be governed by slow dissociation of the antibiotic-DNA complex. It may also be dependent upon the mode of binding, be it intercalative or non-intercalative in character. Images PMID:2421246

  8. Discovery and Optimization of Novel 5-Indolyl-7-arylimidazo[1,2-a]pyridine-8-carbonitrile Derivatives as Potent Antitubulin Agents Targeting Colchicine-binding Site

    NASA Astrophysics Data System (ADS)

    Zhai, Xin; Wang, Xiaoqiang; Wang, Jiao; Liu, Jin; Zuo, Daiying; Jiang, Nan; Zeng, Tianfang; Yang, Xiuxiu; Jing, Tongfei; Gong, Ping

    2017-02-01

    Aiming at development of potent antitubulin agents targeting colchicine-binding site, a series of novel 5-indolyl-7-arylimidazo[1,2-a]pyridine-8-carbonitrilederivatives (5a-5v and 7a-7h) were designed based on bioisosterism and hybridization strategies. All these compounds were concisely synthesized via a three-step process and examined against five human cancer cell lines (HT-29, A549, MKN-45, MDA-MB-231 and SMMC-7721) along with a normal human cell (L02) in vitro. A structure-activity relationships (SARs) study was carried out and optimization towards this series of compounds in cellular assay resulted in the discovery of 5k, which displayed similar or better antitumor potency against the tested cancer cells with IC50 value ranging from 0.02 to 1.22 μM superior to CA-4 and Crolibulin. Significantly, a cell cycle study disclosed the ability of 5k to arrest cell cycle at the G2/M phase, and immunofluorescence assay as well as a colchicine competition assay revealed that tubulin polymerization was disturbed by 5k by binding to the colchicine site. Moreover, the molecular modeling mode showed the posture of 5k and Crolibulin was similar in the colchcine-binding pocket of tubulin as identified with the SARs and pharmacological results. Together, all these results rationalized 5k might serve as a promising lead for a novel class of antitubulin agents for cancer treatments.

  9. Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1.

    PubMed

    Ababou, Abdessamad; Rostkova, Elena; Mistry, Shreena; Le Masurier, Clare; Gautel, Mathias; Pfuhl, Mark

    2008-12-19

    Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1-S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (K(d) of approximately 10-20 microM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1-S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while phosphorylation

  10. Myosin Binding Protein C Positioned to Play a Key Role in Regulation of Muscle Contraction: Structure and Interactions of Domain C1

    PubMed Central

    Ababou, Abdessamad; Rostkova, Elena; Mistry, Shreena; Masurier, Clare Le; Gautel, Mathias; Pfuhl, Mark

    2008-01-01

    Myosin binding protein C (MyBP-C) is a thick filament protein involved in the regulation of muscle contraction. Mutations in the gene for MyBP-C are the second most frequent cause of hypertrophic cardiomyopathy. MyBP-C binds to myosin with two binding sites, one at its C-terminus and another at its N-terminus. The N-terminal binding site, consisting of immunoglobulin domains C1 and C2 connected by a flexible linker, interacts with the S2 segment of myosin in a phosphorylation-regulated manner. It is assumed that the function of MyBP-C is to act as a tether that fixes the S1 heads in a resting position and that phosphorylation releases the S1 heads into an active state. Here, we report the structure and binding properties of domain C1. Using a combination of site-directed mutagenesis and NMR interaction experiments, we identified the binding site of domain C1 in the immediate vicinity of the S1–S2 hinge, very close to the light chains. In addition, we identified a zinc binding site on domain C1 in close proximity to the S2 binding site. Its zinc binding affinity (Kd of approximately 10–20 μM) might not be sufficient for a physiological effect. However, the familial hypertrophic cardiomyopathy-related mutation of one of the zinc ligands, glutamine 210 to histidine, will significantly increase the binding affinity, suggesting that this mutation may affect S2 binding. The close proximity of the C1 binding site to the hinge, the light chains and the S1 heads also provides an explanation for recent observations that (a) shorter fragments of MyBP-C unable to act as a tether still have an effect on the actomyosin ATPase and (b) as to why the myosin head positions in phosphorylated wild-type mice and MyBP-C knockout mice are so different: Domain C1 bound to the S1–S2 hinge is able to manipulate S1 head positions, thus influencing force generation without tether. The potentially extensive extra interactions of C1 are expected to keep it in place, while

  11. Binding of dinitrogen to an iron-sulfur-carbon site

    NASA Astrophysics Data System (ADS)

    Čorić, Ilija; Mercado, Brandon Q.; Bill, Eckhard; Vinyard, David J.; Holland, Patrick L.

    2015-10-01

    Nitrogenases are the enzymes by which certain microorganisms convert atmospheric dinitrogen (N2) to ammonia, thereby providing essential nitrogen atoms for higher organisms. The most common nitrogenases reduce atmospheric N2 at the FeMo cofactor, a sulfur-rich iron-molybdenum cluster (FeMoco). The central iron sites that are coordinated to sulfur and carbon atoms in FeMoco have been proposed to be the substrate binding sites, on the basis of kinetic and spectroscopic studies. In the resting state, the central iron sites each have bonds to three sulfur atoms and one carbon atom. Addition of electrons to the resting state causes the FeMoco to react with N2, but the geometry and bonding environment of N2-bound species remain unknown. Here we describe a synthetic complex with a sulfur-rich coordination sphere that, upon reduction, breaks an Fe-S bond and binds N2. The product is the first synthetic Fe-N2 complex in which iron has bonds to sulfur and carbon atoms, providing a model for N2 coordination in the FeMoco. Our results demonstrate that breaking an Fe-S bond is a chemically reasonable route to N2 binding in the FeMoco, and show structural and spectroscopic details for weakened N2 on a sulfur-rich iron site.

  12. Identification of protein-ligand binding sites by the level-set variational implicit-solvent approach.

    PubMed

    Guo, Zuojun; Li, Bo; Cheng, Li-Tien; Zhou, Shenggao; McCammon, J Andrew; Che, Jianwei

    2015-02-10

    Protein–ligand binding is a key biological process at the molecular level. The identification and characterization of small-molecule binding sites on therapeutically relevant proteins have tremendous implications for target evaluation and rational drug design. In this work, we used the recently developed level-set variational implicit-solvent model (VISM) with the Coulomb field approximation (CFA) to locate and characterize potential protein–small-molecule binding sites. We applied our method to a data set of 515 protein–ligand complexes and found that 96.9% of the cocrystallized ligands bind to the VISM-CFA-identified pockets and that 71.8% of the identified pockets are occupied by cocrystallized ligands. For 228 tight-binding protein–ligand complexes (i.e, complexes with experimental pKd values larger than 6), 99.1% of the cocrystallized ligands are in the VISM-CFA-identified pockets. In addition, it was found that the ligand binding orientations are consistent with the hydrophilic and hydrophobic descriptions provided by VISM. Quantitative characterization of binding pockets with topological and physicochemical parameters was used to assess the “ligandability” of the pockets. The results illustrate the key interactions between ligands and receptors and can be very informative for rational drug design.

  13. [3H]aniracetam binds to specific recognition sites in brain membranes.

    PubMed

    Fallarino, F; Genazzani, A A; Silla, S; L'Episcopo, M R; Camici, O; Corazzi, L; Nicoletti, F; Fioretti, M C

    1995-08-01

    [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4 degrees C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of approximately 70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37 degrees C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module

    PubMed Central

    Hernandez-Gomez, Mercedes C.; Rydahl, Maja G.; Rogowski, Artur; Morland, Carl; Cartmell, Alan; Crouch, Lucy; Labourel, Aurore; Fontes, Carlos M. G. A.; Willats, William G. T.; Gilbert, Harry J; Knox, J. Paul

    2018-01-01

    Type A non-catalytic carbohydrate-binding modules (CBMs), exemplified by CtCBM3acipA, are widely believed to specifically target crystalline cellulose through entropic forces. Here we have tested the hypothesis that type A CBMs can also bind to xyloglucan, a soluble β-1,4-glucan containing α-1,6-xylose side chains. CtCBM3acipA bound to xyloglucan in cell walls and arrayed on solid surfaces. Xyloglucan and cellulose were shown to bind to the same planar surface on CBM3acipA. A range of type A CBMs from different families were shown to bind to xyloglucan in solution with ligand binding driven by enthalpic changes. The nature of CBM-polysaccharide interactions is discussed. PMID:26193423

  15. Analysis of functional importance of binding sites in the Drosophila gap gene network model.

    PubMed

    Kozlov, Konstantin; Gursky, Vitaly V; Kulakovskiy, Ivan V; Dymova, Arina; Samsonova, Maria

    2015-01-01

    The statistical thermodynamics based approach provides a promising framework for construction of the genotype-phenotype map in many biological systems. Among important aspects of a good model connecting the DNA sequence information with that of a molecular phenotype (gene expression) is the selection of regulatory interactions and relevant transcription factor bindings sites. As the model may predict different levels of the functional importance of specific binding sites in different genomic and regulatory contexts, it is essential to formulate and study such models under different modeling assumptions. We elaborate a two-layer model for the Drosophila gap gene network and include in the model a combined set of transcription factor binding sites and concentration dependent regulatory interaction between gap genes hunchback and Kruppel. We show that the new variants of the model are more consistent in terms of gene expression predictions for various genetic constructs in comparison to previous work. We quantify the functional importance of binding sites by calculating their impact on gene expression in the model and calculate how these impacts correlate across all sites under different modeling assumptions. The assumption about the dual interaction between hb and Kr leads to the most consistent modeling results, but, on the other hand, may obscure existence of indirect interactions between binding sites in regulatory regions of distinct genes. The analysis confirms the previously formulated regulation concept of many weak binding sites working in concert. The model predicts a more or less uniform distribution of functionally important binding sites over the sets of experimentally characterized regulatory modules and other open chromatin domains.

  16. Specific labeling of the thyroxine binding site in thyroxine-binding globulin: determination of the amino acid composition of a labeled peptide fragment isolated from a proteolytic digest of the derivatized protein.

    PubMed

    Tabachnick, M; Perret, V

    1987-08-01

    [125I] Thyroxine has been covalently bound to the thyroxine binding site in thyroxine-binding globulin by reaction with the bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. An average of 0.47 mol of [125I] thyroxine was incorporated per mol protein; nonspecific binding amounted to 8%. A labeled peptide fragment was isolated from a proteolytic digest of the derivatized protein by HPLC and its amino acid composition was determined. Comparison with the amino acid sequence of thyroxine-binding globulin indicated partial correspondence of the labeled peptide with two possible regions in the protein. These regions also coincide with part of the barrel structure present in the closely homologous protein, alpha 1-antitrypsin.

  17. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: possible allosteric regulation and a conserved structural motif for the chloride-binding site.

    PubMed

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-03-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.

  18. Reversibly bound chloride in the atrial natriuretic peptide receptor hormone-binding domain: Possible allosteric regulation and a conserved structural motif for the chloride-binding site

    PubMed Central

    Ogawa, Haruo; Qiu, Yue; Philo, John S; Arakawa, Tsutomu; Ogata, Craig M; Misono, Kunio S

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(−)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. A new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(−) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(−) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis. PMID:20066666

  19. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R.

    PubMed

    Shields, R L; Namenuk, A K; Hong, K; Meng, Y G; Rae, J; Briggs, J; Xie, D; Lai, J; Stadlen, A; Li, B; Fox, J A; Presta, L G

    2001-03-02

    Immunoglobulin G (IgG) Fc receptors play a critical role in linking IgG antibody-mediated immune responses with cellular effector functions. A high resolution map of the binding site on human IgG1 for human Fc gamma RI, Fc gamma RIIA, Fc gamma RIIB, Fc gamma RIIIA, and FcRn receptors has been determined. A common set of IgG1 residues is involved in binding to all Fc gamma R; Fc gamma RII and Fc gamma RIII also utilize residues outside this common set. In addition to residues which, when altered, abrogated binding to one or more of the receptors, several residues were found that improved binding only to specific receptors or simultaneously improved binding to one type of receptor and reduced binding to another type. Select IgG1 variants with improved binding to Fc gamma RIIIA exhibited up to 100% enhancement in antibody-dependent cell cytotoxicity using human effector cells; these variants included changes at residues not found at the binding interface in the IgG/Fc gamma RIIIA co-crystal structure (Sondermann, P., Huber, R., Oosthuizen, V., and Jacob, U. (2000) Nature 406, 267-273). These engineered antibodies may have important implications for improving antibody therapeutic efficacy.

  20. The High-Affinity Binding Site for Tricyclic Antidepressants Resides in the Outer Vestibule of the Serotonin TransporterⓈ

    PubMed Central

    Sarker, Subhodeep; Weissensteiner, René; Steiner, Ilka; Sitte, Harald H.; Ecker, Gerhard F.; Freissmuth, Michael; Sucic, Sonja

    2015-01-01

    The structure of the bacterial leucine transporter from Aquifex aeolicus (LeuTAa) has been used as a model for mammalian Na+/Cl−-dependent transporters, in particular the serotonin transporter (SERT). The crystal structure of LeuTAa liganded to tricyclic antidepressants predicts simultaneous binding of inhibitor and substrate. This is incompatible with the mutually competitive inhibition of substrates and inhibitors of SERT. We explored the binding modes of tricyclic antidepressants by homology modeling and docking studies. Two approaches were used subsequently to differentiate between three clusters of potential docking poses: 1) a diagnostic SERTY95F mutation, which greatly reduced the affinity for [3H]imipramine but did not affect substrate binding; 2) competition binding experiments in the presence and absence of carbamazepine (i.e., a tricyclic imipramine analog with a short side chain that competes with [3H]imipramine binding to SERT). Binding of releasers (para-chloroamphetamine, methylene-dioxy-methamphetamine/ecstasy) and of carbamazepine were mutually exclusive, but Dixon plots generated in the presence of carbamazepine yielded intersecting lines for serotonin, MPP+, paroxetine, and ibogaine. These observations are consistent with a model, in which 1) the tricyclic ring is docked into the outer vestibule and the dimethyl-aminopropyl side chain points to the substrate binding site; 2) binding of amphetamines creates a structural change in the inner and outer vestibule that precludes docking of the tricyclic ring; 3) simultaneous binding of ibogaine (which binds to the inward-facing conformation) and of carbamazepine is indicative of a second binding site in the inner vestibule, consistent with the pseudosymmetric fold of monoamine transporters. This may be the second low-affinity binding site for antidepressants. PMID:20829432

  1. Evaluation of simultaneous binding of Chromomycin A3 to the multiple sites of DNA by the new restriction enzyme assay.

    PubMed

    Murase, Hirotaka; Noguchi, Tomoharu; Sasaki, Shigeki

    2018-06-01

    Chromomycin A3 (CMA3) is an aureolic acid-type antitumor antibiotic. CMA3 forms dimeric complexes with divalent cations, such as Mg 2+ , which strongly binds to the GC rich sequence of DNA to inhibit DNA replication and transcription. In this study, the binding property of CMA3 to the DNA sequence containing multiple GC-rich binding sites was investigated by measuring the protection from hydrolysis by the restriction enzymes, AccII and Fnu4HI, for the center of the CGCG site and the 5'-GC↓GGC site, respectively. In contrast to the standard DNase I footprinting method, the DNA substrates are fully hydrolyzed by the restriction enzymes, therefore, the full protection of DNA at all the cleavable sites indicates that CMA3 simultaneously binds to all the binding sites. The restriction enzyme assay has suggested that CMA3 has a high tendency to bind the successive CGCG sites and the CGG repeat. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Reversibly Bound Chloride in the Atrial Natriuretic Peptide Receptor Hormone Binding Domain: Possible Allosteric Regulation and a Conserved Structural Motif for the Chloride-binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, H.; Qiu, Y; Philo, J

    2010-01-01

    The binding of atrial natriuretic peptide (ANP) to its receptor requires chloride, and it is chloride concentration dependent. The extracellular domain (ECD) of the ANP receptor (ANPR) contains a chloride near the ANP-binding site, suggesting a possible regulatory role. The bound chloride, however, is completely buried in the polypeptide fold, and its functional role has remained unclear. Here, we have confirmed that chloride is necessary for ANP binding to the recombinant ECD or the full-length ANPR expressed in CHO cells. ECD without chloride (ECD(-)) did not bind ANP. Its binding activity was fully restored by bromide or chloride addition. Amore » new X-ray structure of the bromide-bound ECD is essentially identical to that of the chloride-bound ECD. Furthermore, bromide atoms are localized at the same positions as chloride atoms both in the apo and in the ANP-bound structures, indicating exchangeable and reversible halide binding. Far-UV CD and thermal unfolding data show that ECD(-) largely retains the native structure. Sedimentation equilibrium in the absence of chloride shows that ECD(-) forms a strongly associated dimer, possibly preventing the structural rearrangement of the two monomers that is necessary for ANP binding. The primary and tertiary structures of the chloride-binding site in ANPR are highly conserved among receptor-guanylate cyclases and metabotropic glutamate receptors. The chloride-dependent ANP binding, reversible chloride binding, and the highly conserved chloride-binding site motif suggest a regulatory role for the receptor bound chloride. Chloride-dependent regulation of ANPR may operate in the kidney, modulating ANP-induced natriuresis.« less

  3. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    PubMed

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  4. Analysis of NFU-1 metallocofactor binding-site substitutions-impacts on iron-sulfur cluster coordination and protein structure and function.

    PubMed

    Wesley, Nathaniel A; Wachnowsky, Christine; Fidai, Insiya; Cowan, J A

    2017-11-01

    Iron-sulfur (Fe/S) clusters are ancient prosthetic groups found in numerous metalloproteins and are conserved across all kingdoms of life due to their diverse, yet essential functional roles. Genetic mutations to a specific subset of mitochondrial Fe/S cluster delivery proteins are broadly categorized as disease-related under multiple mitochondrial dysfunction syndrome (MMDS), with symptoms indicative of a general failure of the metabolic system. Multiple mitochondrial dysfunction syndrome 1 (MMDS1) arises as a result of the missense mutation in NFU1, an Fe/S cluster scaffold protein, which substitutes a glycine near the Fe/S cluster-binding pocket to a cysteine (p.Gly208Cys). This substitution has been shown to promote protein dimerization such that cluster delivery to NFU1 is blocked, preventing downstream cluster trafficking. However, the possibility of this additional cysteine, located adjacent to the cluster-binding site, serving as an Fe/S cluster ligand has not yet been explored. To fully understand the consequences of this Gly208Cys replacement, complementary substitutions at the Fe/S cluster-binding pocket for native and Gly208Cys NFU1 were made, along with six other variants. Herein, we report the results of an investigation on the effect of these substitutions on both cluster coordination and NFU1 structure and function. The data suggest that the G208C substitution does not contribute to cluster binding. Rather, replacement of the glycine at position 208 changes the oligomerization state as a result of global structural alterations that result in the downstream effects manifest as MMDS1, but does not perturb the coordination chemistry of the Fe-S cluster. © 2017 Federation of European Biochemical Societies.

  5. Evidence that Ribulose 1,5-Bisphosphate (RuBP) Binds to Inactive Sites of RuBP Carboxylase in Vivo and an Estimate of the Rate Constant for Dissociation 1

    PubMed Central

    Cardon, Zoe G.; Mott, Keith A.

    1989-01-01

    The binding of ribulose 1,5-bisphosphate (RuBP) to inactive (noncarbamylated) sites of the enzyme RuBP carboxylase in vivo was investigated in Spinacia oleracea and Helianthus annuus. The concentrations of RuBP and inactive sites were determined in leaf tissue as a function of time after a change to darkness. RuBP concentrations fell rapidly after the change to darkness and were approximately equal to the concentration of inactive sites after 60 s. Variations in the concentration of inactive sites, which were induced by differences in the light intensity before the light-dark transition, correlated with the concentration of RuBP between 60 and 120 s after the change to darkness. These data are discussed as evidence that RuBP binds to inactive sites of RuBP carboxylase in vivo. After the concentration of RuBP fell below that of inactive sites (at times longer than 60 s of darkness), the decline in RuBP was logarithmic with time. This would be expected if the dissociation of RuBP from inactive sites controlled the decline in RuBP concentration. These data were used to estimate the rate constant for dissociation of RuBP from inactive sites in vivo. PMID:16666692

  6. Tes, a specific Mena interacting partner, breaks the rules for EVH1 binding.

    PubMed

    Boëda, Batiste; Briggs, David C; Higgins, Theresa; Garvalov, Boyan K; Fadden, Andrew J; McDonald, Neil Q; Way, Michael

    2007-12-28

    The intracellular targeting of Ena/VASP family members is achieved via the interaction of their EVH1 domain with FPPPP sequence motifs found in a variety of cytoskeletal proteins, including lamellipodin, vinculin, and zyxin. Here we show that the LIM3 domain of Tes, which lacks the FPPPP motif, binds to the EVH1 domain of Mena, but not to those of VASP or Evl. The structure of the LIM3:EVH1 complex reveals that Tes occludes the FPPPP-binding site and competes with FPPPP-containing proteins for EVH1 binding. Structure-based gain-of-function experiments define the molecular basis for the specificity of the Tes-Mena interaction. Consistent with in vitro observations, the LIM3 domain displaces Mena, but not VASP, from the leading edge and focal adhesions. It also regulates cell migration through a Mena-dependent mechanism. Our observations identify Tes as an atypical EVH1 binding partner and a regulator specific to a single Ena/VASP family member.

  7. Substrate binding interferes with active site conformational dynamics in endoglucanase Cel5A from Thermobifida fusca.

    PubMed

    Jiang, Xukai; Wang, Yuying; Xu, Limei; Chen, Guanjun; Wang, Lushan

    2017-09-09

    The role of protein dynamics in enzyme catalysis is one of the most active areas in current enzymological research. Here, using endoglucanase Cel5A from Thermobifida fusca (TfCel5A) as a model, we applied molecular dynamics simulations to explore the dynamic behavior of the enzyme upon substrate binding. The collective motions of the active site revealed that the mechanism of TfCel5A substrate binding can likely be described by the conformational-selection model; however, we observed that the conformations of active site residues changed differently along with substrate binding. Although most active site residues retained their native conformational ensemble, some (Tyr163 and Glu355) generated newly induced conformations, whereas others (Phe162 and Tyr189) exhibited shifts in the equilibration of their conformational distributions. These results showed that TfCel5A substrate binding relied on a hybrid mechanism involving induced fit and conformational selection. Interestingly, we found that TfCel5A active site could only partly rebalance its conformational dynamics upon substrate dissociation within the same simulation time, which implies that the conformational rebalance upon substrate dissociation is likely more difficult than the conformational selection upon substrate binding at least in the view of the time required. Our findings offer new insight into enzyme catalysis and potential applications for future protein engineering. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A rigorous multiple independent binding site model for determining cell-based equilibrium dissociation constants.

    PubMed

    Drake, Andrew W; Klakamp, Scott L

    2007-01-10

    A new 4-parameter nonlinear equation based on the standard multiple independent binding site model (MIBS) is presented for fitting cell-based ligand titration data in order to calculate the ligand/cell receptor equilibrium dissociation constant and the number of receptors/cell. The most commonly used linear (Scatchard Plot) or nonlinear 2-parameter model (a single binding site model found in commercial programs like Prism(R)) used for analysis of ligand/receptor binding data assumes only the K(D) influences the shape of the titration curve. We demonstrate using simulated data sets that, depending upon the cell surface receptor expression level, the number of cells titrated, and the magnitude of the K(D) being measured, this assumption of always being under K(D)-controlled conditions can be erroneous and can lead to unreliable estimates for the binding parameters. We also compare and contrast the fitting of simulated data sets to the commonly used cell-based binding equation versus our more rigorous 4-parameter nonlinear MIBS model. It is shown through these simulations that the new 4-parameter MIBS model, when used for cell-based titrations under optimal conditions, yields highly accurate estimates of all binding parameters and hence should be the preferred model to fit cell-based experimental nonlinear titration data.

  9. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site*

    PubMed Central

    Kadamur, Ganesh

    2016-01-01

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. PMID:27002154

  10. Characterization of [3H] oxymorphone binding sites in mouse brain: Quantitative autoradiography in opioid receptor knockout mice.

    PubMed

    Yoo, Ji Hoon; Borsodi, Anna; Tóth, Géza; Benyhe, Sándor; Gaspar, Robert; Matifas, Audrey; Kieffer, Brigitte L; Metaxas, Athanasios; Kitchen, Ian; Bailey, Alexis

    2017-03-16

    Oxymorphone, one of oxycodone's metabolic products, is a potent opioid receptor agonist which is thought to contribute to the analgesic effect of its parent compound and may have high potential abuse liability. Nonetheless, the in vivo pharmacological binding profile of this drug is still unclear. This study uses mice lacking mu (MOP), kappa (KOP) or delta (DOP) opioid receptors as well as mice lacking all three opioid receptors to provide full characterisation of oxymorphone binding sites in the brain. Saturation binding studies using [ 3 H]oxymorphone revealed high affinity binding sites in mouse brain displaying Kd of 1.7nM and Bmax of 147fmol/mg. Furthermore, we performed quantitative autoradiography binding studies using [ 3 H]oxymorphone in mouse brain. The distribution of [ 3 H]oxymorphone binding sites was found to be similar to the selective MOP agonist [ 3 H]DAMGO in the mouse brain. [ 3 H]Oxymorphone binding was completely abolished across the majority of the brain regions in mice lacking MOP as well as in mice lacking all three opioid receptors. DOP and KOP knockout mice retained [ 3 H]oxymorphone binding sites suggesting oxymorphone may not target DOP or KOP. These results confirm that the MOP, and not the DOP or the KOP is the main high affinity binding target for oxymorphone. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Receptor binding sites for atrial natriuretic factor are expressed by brown adipose tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacay, A.C.; Mantyh, C.R.; Vigna, S.R.

    1988-09-01

    To explore the possibility that atrial natriuretic factor (ANF) is involved in thermoregulation we used quantitative receptor autoradiography and homogenate receptor binding assays to identify ANF bindings sites in neonatal rat and sheep brown adipose tissue, respectively. Using quantitative receptor autoradiography were were able to localize high levels of specific binding sites for {sup 125}I-rat ANF in neonatal rat brown adipose tissue. Homogenate binding assays on sheep brown fat demonstrated that the radioligand was binding to the membrane fraction and that the specific binding was not due to a lipophilic interaction between {sup 125}I-rat ANF and brown fat. Specific bindingmore » of {sup 125}I-rat ANF to the membranes of brown fat cells was inhibited by unlabeled rat ANF with a Ki of 8.0 x 10(-9) M, but not by unrelated peptides. These studies demonstrate that brown fat cells express high levels of ANF receptor binding sites in neonatal rat and sheep and suggest that ANF may play a role in thermoregulation.« less

  12. Analysis of zinc binding sites in protein crystal structures.

    PubMed

    Alberts, I L; Nadassy, K; Wodak, S J

    1998-08-01

    The geometrical properties of zinc binding sites in a dataset of high quality protein crystal structures deposited in the Protein Data Bank have been examined to identify important differences between zinc sites that are directly involved in catalysis and those that play a structural role. Coordination angles in the zinc primary coordination sphere are compared with ideal values for each coordination geometry, and zinc coordination distances are compared with those in small zinc complexes from the Cambridge Structural Database as a guide of expected trends. We find that distances and angles in the primary coordination sphere are in general close to the expected (or ideal) values. Deviations occur primarily for oxygen coordinating atoms and are found to be mainly due to H-bonding of the oxygen coordinating ligand to protein residues, bidentate binding arrangements, and multi-zinc sites. We find that H-bonding of oxygen containing residues (or water) to zinc bound histidines is almost universal in our dataset and defines the elec-His-Zn motif. Analysis of the stereochemistry shows that carboxyl elec-His-Zn motifs are geometrically rigid, while water elec-His-Zn motifs show the most geometrical variation. As catalytic motifs have a higher proportion of carboxyl elec atoms than structural motifs, they provide a more rigid framework for zinc binding. This is understood biologically, as a small distortion in the zinc position in an enzyme can have serious consequences on the enzymatic reaction. We also analyze the sequence pattern of the zinc ligands and residues that provide elecs, and identify conserved hydrophobic residues in the endopeptidases that also appear to contribute to stabilizing the catalytic zinc site. A zinc binding template in protein crystal structures is derived from these observations.

  13. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moravcevic, Katarina; Mendrola, Jeannine M.; Schmitz, Karl R.

    Phospholipid-binding modules such as PH, C1, and C2 domains play crucial roles in location-dependent regulation of many protein kinases. Here, we identify the KA1 domain (kinase associated-1 domain), found at the C terminus of yeast septin-associated kinases (Kcc4p, Gin4p, and Hsl1p) and human MARK/PAR1 kinases, as a membrane association domain that binds acidic phospholipids. Membrane localization of isolated KA1 domains depends on phosphatidylserine. Using X-ray crystallography, we identified a structurally conserved binding site for anionic phospholipids in KA1 domains from Kcc4p and MARK1. Mutating this site impairs membrane association of both KA1 domains and intact proteins and reveals the importancemore » of phosphatidylserine for bud neck localization of yeast Kcc4p. Our data suggest that KA1 domains contribute to coincidence detection, allowing kinases to bind other regulators (such as septins) only at the membrane surface. These findings have important implications for understanding MARK/PAR1 kinases, which are implicated in Alzheimer's disease, cancer, and autism.« less

  14. Molecular investigation of active binding site of isoniazid (INH) and insight into resistance mechanism of S315T-MtKatG in Mycobacterium tuberculosis.

    PubMed

    Srivastava, Gaurava; Tripathi, Shubhandra; Kumar, Akhil; Sharma, Ashok

    2017-07-01

    Multi drug resistant tuberculosis is a major threat for mankind. Resistance against Isoniazid (INH), targeting MtKatG protein, is one of the most commonly occurring resistances in MDR TB strains. S315T-MtKatG mutation is widely reported for INH resistance. Despite having knowledge about the mechanism of INH, exact binding site of INH to MtKatG is still uncertain and proposed to have three presumable binding sites (site-1, site-2, and site-3). In the current study docking, molecular dynamics simulation, binding free energy estimation, principal component analysis and free energy landscape analysis were performed to get molecular level details of INH binding site on MtKatG, and to probe the effect of S315T mutation on INH binding. Molecular docking and MD analysis suggested site-1 as active binding site of INH, where the effects of S315T mutation were observed on both access tunnel as well as molecular interaction between INH and its neighboring residues. MMPBSA also supported site-1 as potential binding site with lowest binding energy of -44.201 kJ/mol. Moreover, PCA and FEL revealed that S315T mutation not only reduces the dimension of heme access tunnel but also showed that extra methyl group at 315 position altered heme cavity, enforcing heme group distantly from INH, and thus preventing INH activation. The present study not only investigated the active binding site of INH but also provides a new insight about the conformational changes in the binding site of S315T-MtKatG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Specific binding of nicergoline on an alpha1-like adrenoreceptor in the rat retina.

    PubMed

    Lograno, M D; Tricarico, D; Masciopinto, V; Scuderl, A C

    2000-02-01

    Systemic treatment with nicergoline, an ergoline derivative showing alpha1-antagonist properties, causes vasodilatation in the eye without apparent untoward cardiovascular effects. In the present work we investigated the ability of nicergoline to inhibit the binding of radiolabelled prazosin in the rat retina and cortex. We found that nicergoline inhibited [3H]prazosin binding in both tissues, being more potent than unlabelled prazosin in the retinal tissue. The competition curves of the ergoline derivative were well fitted by a one-site model in the cortical tissue, with an IC50 (concentration of the drugs needed to inhibit the binding of labelled prazosin by 50%) of 2.54 x 10(-8) M, and by a two-site model in the retinal tissue, with IC50 values of 7.08 x 10(-12) M and 1.82 x 10(-5) M. 2-(2,6 dimetoxyphenoxyethyl) aminomethyl-1,4-benzodioxane hydrochloride (WB4101) and phentolamine, selective ligands for the high-affinity binding site for prazosin, in particular the alpha1A-site, fully inhibited prazosin binding in the cortex but only partially inhibited prazosin binding in the retina, being less potent in this tissue than either nicergoline or prazosin. Our results suggest that a binding component of alpha1-adrenoreceptors is expressed to a lesser extent in the retina than the cortex, leading to a reduced response of the retinal tissue to prazosin, and more particularly to WB4101 and phentolamine. The selective binding of the nicergoline on this retinal adrenoreceptor may explain the peculiar efficacy of the drug in ocular pathophysiology.

  16. Structural basis for allosteric cross-talk between the asymmetric nucleotide binding sites of a heterodimeric ABC exporter.

    PubMed

    Hohl, Michael; Hürlimann, Lea M; Böhm, Simon; Schöppe, Jendrik; Grütter, Markus G; Bordignon, Enrica; Seeger, Markus A

    2014-07-29

    ATP binding cassette (ABC) transporters mediate vital transport processes in every living cell. ATP hydrolysis, which fuels transport, displays positive cooperativity in numerous ABC transporters. In particular, heterodimeric ABC exporters exhibit pronounced allosteric coupling between a catalytically impaired degenerate site, where nucleotides bind tightly, and a consensus site, at which ATP is hydrolyzed in every transport cycle. Whereas the functional phenomenon of cooperativity is well described, its structural basis remains poorly understood. Here, we present the apo structure of the heterodimeric ABC exporter TM287/288 and compare it to the previously solved structure with adenosine 5'-(β,γ-imido)triphosphate (AMP-PNP) bound at the degenerate site. In contrast to other ABC exporter structures, the nucleotide binding domains (NBDs) of TM287/288 remain in molecular contact even in the absence of nucleotides, and the arrangement of the transmembrane domains (TMDs) is not influenced by AMP-PNP binding, a notion confirmed by double electron-electron resonance (DEER) measurements. Nucleotide binding at the degenerate site results in structural rearrangements, which are transmitted to the consensus site via two D-loops located at the NBD interface. These loops owe their name from a highly conserved aspartate and are directly connected to the catalytically important Walker B motif. The D-loop at the degenerate site ties the NBDs together even in the absence of nucleotides and substitution of its aspartate by alanine is well-tolerated. By contrast, the D-loop of the consensus site is flexible and the aspartate to alanine mutation and conformational restriction by cross-linking strongly reduces ATP hydrolysis and substrate transport.

  17. Discovery of HDAC Inhibitors That Lack an Active Site Zn(2+)-Binding Functional Group.

    PubMed

    Vickers, Chris J; Olsen, Christian A; Leman, Luke J; Ghadiri, M Reza

    2012-06-14

    Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn(2+) ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure-activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn(2+)-binding group. The lead compounds (e.g., 15 and 26) display good potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/off competitive inhibitor of HDACs 1-3 with K i values of 49, 33, and 37 nM, respectively. Our proof of principle study supports the idea that novel classes of HDAC inhibitors, which interact at the active-site opening, but not with the active site Zn(2+), can have potential in drug design.

  18. Cooperativity in Monomeric Enzymes with Single Ligand-Binding Sites

    PubMed Central

    Porter, Carol M.

    2011-01-01

    Cooperativity is widespread in biology. It empowers a variety of regulatory mechanisms and impacts both the kinetic and thermodynamic properties of macromolecular systems. Traditionally, cooperativity is viewed as requiring the participation of multiple, spatially distinct binding sites that communicate via ligand-induced structural rearrangements; however, cooperativity requires neither multiple ligand binding events nor multimeric assemblies. An underappreciated manifestation of cooperativity has been observed in the non-Michaelis-Menten kinetic response of certain monomeric enzymes that possess only a single ligand-binding site. In this review, we present an overview of kinetic cooperativity in monomeric enzymes. We discuss the primary mechanisms postulated to give rise to monomeric cooperativity and highlight modern experimental methods that could offer new insights into the nature of this phenomenon. We conclude with an updated list of single subunit enzymes that are suspected of displaying cooperativity, and a discussion of the biological significance of this unique kinetic response. PMID:22137502

  19. An N-terminal fragment of substance P, substance P(1-7), down-regulates neurokinin-1 binding in the mouse spinal cord.

    PubMed

    Yukhananov RYu; Larson, A A

    1994-08-29

    Injected intrathecally, substance P (SP) down-regulates neurokinin-1 (NK-1) binding in the spinal cord and desensitizes rats to the behavioral effect of SP. N-terminal fragments of SP, such as SP(1-7), induce antinociception and play a role in desensitization to SP in mice. The goal of this study was to assess the abilities of N- and C-terminal fragments of SP to down-regulate NK-1 binding. Binding of [3H]SP to mouse spinal cord membranes was inhibited by SP, CP-96,345, and to a lesser extent by SP(5-11), but not SP(1-7), consistent with these binding sites being NK-1 receptors. Injection of SP(5-11) intrathecally did not affect the affinity (Kd) or concentration (Bmax) of [3H]SP binding. However, injection of 1 nmol of SP(1-7) decreased the Bmax of [3H]SP binding in the spinal cord at 6 h after its injection just as this dose of SP decreased the Bmax at 24 h. These data suggest that the N-terminus of SP is responsible for down-regulation of NK-1 binding. As SP(5-11) did not down-regulate NK-1 binding, activation of NK-1 sites does not appear necessary or sufficient for down-regulation of SP binding. In contrast, SP(1-7), in spite of its inability to interact with NK-1 sites, did down-regulate SP binding, suggesting an indirect mechanism dissociated from NK-1 receptors.

  20. Multivalent DNA-binding properties of the HMG-1 proteins.

    PubMed Central

    Maher, J F; Nathans, D

    1996-01-01

    HMG-I proteins are DNA-binding proteins thought to affect the formation and function of transcription complexes. Each protein contains three DNA-binding motifs, known as AT-hooks, that bind in the minor groove of AT tracts in DNA. Multiple AT-hooks within a polypeptide chain should contact multiple AT tracts, but the rules governing these interactions have not been defined. In this study, we demonstrate that high-affinity binding uses two or three appropriately spaced AT tracts as a single multivalent binding site. These principles have implications for binding to regulatory elements such as the interferon beta enhancer, TATA boxes, and serum response elements. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8692884

  1. Core Binding Site of a Thioflavin-T-Derived Imaging Probe on Amyloid β Fibrils Predicted by Computational Methods.

    PubMed

    Kawai, Ryoko; Araki, Mitsugu; Yoshimura, Masashi; Kamiya, Narutoshi; Ono, Masahiro; Saji, Hideo; Okuno, Yasushi

    2018-05-16

    Development of new diagnostic imaging probes for Alzheimer's disease, such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) probes, has been strongly desired. In this study, we investigated the most accessible amyloid β (Aβ) binding site of [ 123 I]IMPY, a Thioflavin-T-derived SPECT probe, using experimental and computational methods. First, we performed a competitive inhibition assay with Orange-G, which recognizes the KLVFFA region in Aβ fibrils, suggesting that IMPY and Orange-G bind to different sites in Aβ fibrils. Next, we precisely predicted the IMPY binding site on a multiple-protofilament Aβ fibril model using computational approaches, consisting of molecular dynamics and docking simulations. We generated possible IMPY-binding structures using docking simulations to identify candidates for probe-binding sites. The binding free energy of IMPY with the Aβ fibril was calculated by a free energy simulation method, MP-CAFEE. These computational results suggest that IMPY preferentially binds to an interfacial pocket located between two protofilaments and is stabilized mainly through hydrophobic interactions. Finally, our computational approach was validated by comparing it with the experimental results. The present study demonstrates the possibility of computational approaches to screen new PET/SPECT probes for Aβ imaging.

  2. The allosteric citalopram binding site differentially interferes with neuronal firing rate and SERT trafficking in serotonergic neurons.

    PubMed

    Matthäus, Friederike; Haddjeri, Nasser; Sánchez, Connie; Martí, Yasmina; Bahri, Senda; Rovera, Renaud; Schloss, Patrick; Lau, Thorsten

    2016-11-01

    Citalopram is a clinically applied selective serotonin re-uptake inhibitor for antidepressant pharmacotherapy. It consists of two enantiomers, S-citalopram (escitalopram) and R-citalopram, of which escitalopram exerts the antidepressant therapeutic effect and has been shown to be one of the most efficient antidepressants, while R-citalopram antagonizes escitalopram via an unknown molecular mechanism that may depend on binding to a low-affinity allosteric binding site of the serotonin transporter. However, the precise mechanism of antidepressant regulation of the serotonin transporter by citalopram enantiomers still remains elusive. Here we investigate escitalopram׳s acute effect on (1) serotonergic neuronal firing in transgenic mice that express the human serotonin transporter without and with a mutation that disables the allosteric binding site, and (2) regulation of the serotonin transporter׳s cell surface localization in stem cell-derived serotonergic neurons. Our results demonstrate that escitalopram inhibited neuronal firing less potently in the mouse line featuring a mutation that abolishes the function of the allosteric binding site and induced serotonin transporter internalization independently of the allosteric binding site mechanism. Furthermore, citalopram enantiomers dose-dependently induced serotonin transporter internalization. In conclusion, this study provides new insight into antidepressant effects exerted by citalopram enantiomers in presence and absence of a functional allosteric binding site. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  3. Vital Roles of the Second DNA-binding Site of Rad52 Protein in Yeast Homologous Recombination*

    PubMed Central

    Arai, Naoto; Kagawa, Wataru; Saito, Kengo; Shingu, Yoshinori; Mikawa, Tsutomu; Kurumizaka, Hitoshi; Shibata, Takehiko

    2011-01-01

    RecA/Rad51 proteins are essential in homologous DNA recombination and catalyze the ATP-dependent formation of D-loops from a single-stranded DNA and an internal homologous sequence in a double-stranded DNA. RecA and Rad51 require a “recombination mediator” to overcome the interference imposed by the prior binding of single-stranded binding protein/replication protein A to the single-stranded DNA. Rad52 is the prototype of recombination mediators, and the human Rad52 protein has two distinct DNA-binding sites: the first site binds to single-stranded DNA, and the second site binds to either double- or single-stranded DNA. We previously showed that yeast Rad52 extensively stimulates Rad51-catalyzed D-loop formation even in the absence of replication protein A, by forming a 2:1 stoichiometric complex with Rad51. However, the precise roles of Rad52 and Rad51 within the complex are unknown. In the present study, we constructed yeast Rad52 mutants in which the amino acid residues corresponding to the second DNA-binding site of the human Rad52 protein were replaced with either alanine or aspartic acid. We found that the second DNA-binding site is important for the yeast Rad52 function in vivo. Rad51-Rad52 complexes consisting of these Rad52 mutants were defective in promoting the formation of D-loops, and the ability of the complex to associate with double-stranded DNA was specifically impaired. Our studies suggest that Rad52 within the complex associates with double-stranded DNA to assist Rad51-mediated homologous pairing. PMID:21454474

  4. Calculation of Relative Binding Free Energy in the Water-Filled Active Site of Oligopeptide-Binding Protein A

    PubMed Central

    Maurer, Manuela; de Beer, Stephanie B. A.; Oostenbrink, Chris

    2018-01-01

    The periplasmic oligopeptide binding protein A (OppA) represents a well-known example of water-mediated protein-ligand interactions. Here, we perform free-energy calculations for three different ligands binding to OppA, using a thermodynamic integration approach. The tripeptide ligands share a high structural similarity (all have the sequence KXK), but their experimentally-determined binding free energies differ remarkably. Thermodynamic cycles were constructed for the ligands, and simulations conducted in the bound and (freely solvated) unbound states. In the unbound state, it was observed that the difference in conformational freedom between alanine and glycine leads to a surprisingly slow convergence, despite their chemical similarity. This could be overcome by increasing the softness parameter during alchemical transformations. Discrepancies remained in the bound state however, when comparing independent simulations of the three ligands. These difficulties could be traced to a slow relaxation of the water network within the active site. Fluctuations in the number of water molecules residing in the binding cavity occur mostly on a timescale larger than the simulation time along the alchemical path. After extensive simulations, relative binding free energies that were converged to within thermal noise could be obtained, which agree well with available experimental data. PMID:27092480

  5. Denervation does not alter the number of neuronal bungarotoxin binding sites on autonomic neurons in the frog cardiac ganglion.

    PubMed

    Sargent, P B; Bryan, G K; Streichert, L C; Garrett, E N

    1991-11-01

    The binding of neuronal bungarotoxin (n-BuTX; also known as bungarotoxin 3.1, kappa-bungarotoxin, and toxin F) was analyzed in normal and denervated parasympathetic cardiac ganglia of the frog Rana pipiens, n-BuTX blocks both EPSPs and ACh potentials at 5-20 nM, as determined by intracellular recording techniques. Scatchard analysis on homogenates indicates that cardiac ganglia have two classes of binding sites for 125I-n-BuTX: a high-affinity site with an apparent dissociation constant (Kd,app) of 1.7 nM and a Bmax (number of binding sites) of 3.8 fmol/ganglion and a low-affinity site with a Kd,app of 12 microM and a Bmax of 14 pmol/ganglion. alpha-Bungarotoxin does not appear to interfere with the binding of 125I-n-BuTX to either site. The high-affinity binding site is likely to be the functional nicotinic ACh receptor (AChR), given the similarity between its affinity for 125I-n-BuTX and the concentration of n-BuTX required to block AChR function. Light microscopic autoradiographic analysis of 125I-n-BuTX binding to the ganglion cell surface reveals that toxin binding is concentrated at synaptic sites, which were identified using a synaptic vesicle-specific antibody. Scatchard analysis of autoradiographic data reveals that 125I-n-BuTX binding to the neuronal surface is saturable and has a Kd,app similar to that of the high-affinity binding site characterized in homogenates. Surface binding of 125I-n-BuTX is blocked by nicotine, carbachol, and d-tubocurarine (IC50 less than 20 microM), but not by atropine (IC50 greater than 10 mM). Denervation of the heart increases the ACh sensitivity of cardiac ganglion cells but has no effect upon the number of high-affinity binding sites for 125I-n-BuTX in tissue homogenates. Moreover, autoradiographic analysis indicates that denervation does not alter the number of 125I-n-BuTX binding sites on the ganglion cell surface. n-BuTX is as effective in reducing ganglion cell responses to ACh in denervated ganglia as it is in

  6. Super-high-affinity binding site for [3H]diazepam in the presence of Co2+, Ni2+, Cu2+, or Zn2+.

    PubMed

    Mizuno, S; Ogawa, N; Mori, A

    1982-12-01

    Chloride salts of Li+, Na+, K+, Mg2+, Ca2+, Cr3+, Mn2+, Fe2+, and Fe3+ had no effect on [3H]diazepam binding. Chloride salts of Co2+, Ni2+, Cu2+, and Zn2+ increased [3H]diazepam binding by 34 to 68% in a concentration-dependent fashion. Since these divalent cations potentiated the GABA-enhanced [3H]diazepam binding and the effect of each divalent cation was nearly additive with GABA, these cations probably act at a site different from the GABA recognition site in the benzodiazepine-receptor complex. Scatchard plots of [3H]diazepam binding without an effective divalent cation showed a single class of binding, with a Kd value of 5.3 nM. In the presence of 1 mM Co2+, Ni2+, Cu2+, or Zn2+, two distinct binding sites were evident with apparent Kd values of 1.0 nM and 5.7 nM. The higher-affinity binding was not detected in the absence of an effective divalent cation and is probably a novel, super-high-affinity binding site.

  7. Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.

    PubMed

    Gibiansky, Leonid; Gibiansky, Ekaterina

    2018-02-01

    The emerging discipline of mathematical pharmacology occupies the space between advanced pharmacometrics and systems biology. A characteristic feature of the approach is application of advance mathematical methods to study the behavior of biological systems as described by mathematical (most often differential) equations. One of the early application of mathematical pharmacology (that was not called this name at the time) was formulation and investigation of the target-mediated drug disposition (TMDD) model and its approximations. The model was shown to be remarkably successful, not only in describing the observed data for drug-target interactions, but also in advancing the qualitative and quantitative understanding of those interactions and their role in pharmacokinetic and pharmacodynamic properties of biologics. The TMDD model in its original formulation describes the interaction of the drug that has one binding site with the target that also has only one binding site. Following the framework developed earlier for drugs with one-to-one binding, this work aims to describe a rigorous approach for working with similar systems and to apply it to drugs that bind to targets with two binding sites. The quasi-steady-state, quasi-equilibrium, irreversible binding, and Michaelis-Menten approximations of the model are also derived. These equations can be used, in particular, to predict concentrations of the partially bound target (RC). This could be clinically important if RC remains active and has slow internalization rate. In this case, introduction of the drug aimed to suppress target activity may lead to the opposite effect due to RC accumulation.

  8. Comprehensive human transcription factor binding site map for combinatory binding motifs discovery.

    PubMed

    Müller-Molina, Arnoldo J; Schöler, Hans R; Araúzo-Bravo, Marcos J

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%-20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory "DNA words." From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%-far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of "DNA words," newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters.

  9. Comprehensive Human Transcription Factor Binding Site Map for Combinatory Binding Motifs Discovery

    PubMed Central

    Müller-Molina, Arnoldo J.; Schöler, Hans R.; Araúzo-Bravo, Marcos J.

    2012-01-01

    To know the map between transcription factors (TFs) and their binding sites is essential to reverse engineer the regulation process. Only about 10%–20% of the transcription factor binding motifs (TFBMs) have been reported. This lack of data hinders understanding gene regulation. To address this drawback, we propose a computational method that exploits never used TF properties to discover the missing TFBMs and their sites in all human gene promoters. The method starts by predicting a dictionary of regulatory “DNA words.” From this dictionary, it distills 4098 novel predictions. To disclose the crosstalk between motifs, an additional algorithm extracts TF combinatorial binding patterns creating a collection of TF regulatory syntactic rules. Using these rules, we narrowed down a list of 504 novel motifs that appear frequently in syntax patterns. We tested the predictions against 509 known motifs confirming that our system can reliably predict ab initio motifs with an accuracy of 81%—far higher than previous approaches. We found that on average, 90% of the discovered combinatorial binding patterns target at least 10 genes, suggesting that to control in an independent manner smaller gene sets, supplementary regulatory mechanisms are required. Additionally, we discovered that the new TFBMs and their combinatorial patterns convey biological meaning, targeting TFs and genes related to developmental functions. Thus, among all the possible available targets in the genome, the TFs tend to regulate other TFs and genes involved in developmental functions. We provide a comprehensive resource for regulation analysis that includes a dictionary of “DNA words,” newly predicted motifs and their corresponding combinatorial patterns. Combinatorial patterns are a useful filter to discover TFBMs that play a major role in orchestrating other factors and thus, are likely to lock/unlock cellular functional clusters. PMID:23209563

  10. Differences between high-affinity forskolin binding sites in dopamine-riche and other regions of rat brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poat, J.A.; Cripps, H.E.; Iversen, L.L.

    1988-05-01

    Forskolin labelled with (/sup 3/H) bound to high- and low-affinity sites in the rat brain. The high-affinity site was discretely located, with highest densities in the striatum, nucleus accumbens, olfactory tubercule, substantia nigra, hippocampus, and the molecular layers of the cerebellum. This site did not correlate well with the distribution of adenylate cyclase. The high-affinity striatal binding site may be associated with a stimulatory guanine nucleotide-binding protein. Thus, the number of sites was increased by the addition of Mg/sup 2 +/ and guanylyl imidodiphosphate. Cholera toxin stereotaxically injected into rat striatum increased the number of binding sites, and no furthermore » increase was noted following the subsequent addition of guanyl nucleotide. High-affinity forskolin binding sites in non-dopamine-rich brain areas (hippocampus and cerebullum) were modulated in a qualitatively different manner by guanyl nucleotides. In these areas the number of binding sites was significantly reduced by the addition of guanyl nucleotide. These results suggest that forskolin may have a potential role in identifying different functional/structural guanine nucleotide-binding proteins.« less

  11. A polymorphism in the promoter region of PD-L1 serves as a binding-site for SP1 and is associated with PD-L1 overexpression and increased occurrence of gastric cancer.

    PubMed

    Tao, Li-Hua; Zhou, Xin-Ru; Li, Fu-Chao; Chen, Qi; Meng, Fan-Yi; Mao, Yong; Li, Rui; Hua, Dong; Zhang, Hong-Jian; Wang, Wei-Peng; Chen, Wei-Chang

    2017-03-01

    PD-L1 is a member of the B7 family co-inhibitory molecules and plays a critical role in tumor immune escape. In this study, we found a polymorphism rs10815225 in the PD-L1 promoter region was significantly associated with the occurrence of gastric cancer. The GG homozygous frequency was higher in the cancer patients than that in the precancerous lesions, which was higher than that in the health controls. This polymorphism locates in the binding-site of Sp1 transcription factor (SP1). The expression level of PD-L1 mRNA in the GG homozygous cancer patients was apparently higher than that in the GC heterozygotes. Luciferase reporter results showed that SP1 bonded to rs10815225 G-allelic PD-L1 promoter instead of C-allelic. Upregulation and knockdown of SP1 resulted in elevation and attenuation of PD-L1 in SGC-7901 cells, respectively. The chromatin immunoprecipitation results further confirmed the binding of SP1 to the promoter of PD-L1. Additionally, rs10815225 was found to be in disequilibrium with a functional polymorphism rs4143815 in the PD-L1 3'-UTR, and the haplotypes of these two polymorphisms were also markedly related to gastric cancer risk. These results revealed a novel mechanism underlying genetic polymorphisms influencing PD-L1 expression modify gastric cancer susceptibility.

  12. Characterization of metal binding sites onto biochar using rare earth elements as a fingerprint.

    PubMed

    Pourret, Olivier; Houben, David

    2018-02-01

    The ability of biochar to immobilize metals relies on the amount of functional groups at its surface but the contribution of each functional groups (e.g. carboxylic, phenolic) to metal bonding is poorly known. Using a new approach based on previous works on rare earth element (REE) interactions with humic substances, we aim at elucidating the relative contribution of these binding sites to metal sorption under various conditions (i.e. pH and ionic strengths, IS). Using batch experiments, REE sorption onto biochar was analyzed from pH 3 to 9 and IS 10 -1 mol/L to 10 -3 mol/L. Rare earth element patterns show a Middle REE (MREE) downward concavity at acidic pH and low ionic strength. These patterns are in good agreement with existing datasets quantifying REE binding with humic substances. Indeed, the MREE downward concavity displayed by REE-biochar complexation pattern compares well with REE patterns with various organic compounds. This similarity in the REE complexation pattern shapes suggests that carboxylic groups are the main binding sites of REE in biochar. Overall, our results indicate that the strength of the metal bonding with biochar increases when pH and IS increase, suggesting that biochar is more efficient for long-term metal immobilization at near neutral pH and high ionic strength.

  13. A covalent G-site inhibitor for glutathione S-transferase Pi (GSTP1-1).

    PubMed

    Shishido, Yuko; Tomoike, Fumiaki; Kimura, Yasuaki; Kuwata, Keiko; Yano, Takato; Fukui, Kenji; Fujikawa, Haruka; Sekido, Yoshitaka; Murakami-Tonami, Yuko; Kameda, Tomoshi; Shuto, Satoshi; Abe, Hiroshi

    2017-10-10

    We herein report the first covalent G-site-binding inhibitor for GST, GS-ESF (1), which irreversibly inhibited the GSTP 1-1 function. LC-MS/MS and X-ray structure analyses of the covalently linked GST-inhibitor complex suggested that 1 reacted with Tyr108 of GSTP 1-1 . The mechanism of covalent bond formation was discussed based on MD simulation results.

  14. Multiple Glycogen-binding Sites in Eukaryotic Glycogen Synthase Are Required for High Catalytic Efficiency toward Glycogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskaran, Sulochanadevi; Chikwana, Vimbai M.; Contreras, Christopher J.

    2012-12-10

    Glycogen synthase is a rate-limiting enzyme in the biosynthesis of glycogen and has an essential role in glucose homeostasis. The three-dimensional structures of yeast glycogen synthase (Gsy2p) complexed with maltooctaose identified four conserved maltodextrin-binding sites distributed across the surface of the enzyme. Site-1 is positioned on the N-terminal domain, site-2 and site-3 are present on the C-terminal domain, and site-4 is located in an interdomain cleft adjacent to the active site. Mutation of these surface sites decreased glycogen binding and catalytic efficiency toward glycogen. Mutations within site-1 and site-2 reduced the V{sub max}/S{sub 0.5} for glycogen by 40- and 70-fold,more » respectively. Combined mutation of site-1 and site-2 decreased the V{sub max}/S{sub 0.5} for glycogen by >3000-fold. Consistent with the in vitro data, glycogen accumulation in glycogen synthase-deficient yeast cells ({Delta}gsy1-gsy2) transformed with the site-1, site-2, combined site-1/site-2, or site-4 mutant form of Gsy2p was decreased by up to 40-fold. In contrast to the glycogen results, the ability to utilize maltooctaose as an in vitro substrate was unaffected in the site-2 mutant, moderately affected in the site-1 mutant, and almost completely abolished in the site-4 mutant. These data show that the ability to utilize maltooctaose as a substrate can be independent of the ability to utilize glycogen. Our data support the hypothesis that site-1 and site-2 provide a 'toehold mechanism,' keeping glycogen synthase tightly associated with the glycogen particle, whereas site-4 is more closely associated with positioning of the nonreducing end during catalysis.« less

  15. Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors.

    PubMed

    Martínez-Pinilla, Eva; Varani, Katia; Reyes-Resina, Irene; Angelats, Edgar; Vincenzi, Fabrizio; Ferreiro-Vera, Carlos; Oyarzabal, Julen; Canela, Enric I; Lanciego, José L; Nadal, Xavier; Navarro, Gemma; Borea, Pier Andrea; Franco, Rafael

    2017-01-01

    The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB 2 receptors (CB 2 Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB 2 R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB 2 R. Using membrane preparations from CB 2 R-expressing HEK-293T (human embryonic kidney 293T) cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB 2 R where the synthetic cannabinoid, [ 3 H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB 2 R-selective compound, CM-157. The effect on binding to CB 2 R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the K D . CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB 2 R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities.

  16. Binding and Signaling Studies Disclose a Potential Allosteric Site for Cannabidiol in Cannabinoid CB2 Receptors

    PubMed Central

    Martínez-Pinilla, Eva; Varani, Katia; Reyes-Resina, Irene; Angelats, Edgar; Vincenzi, Fabrizio; Ferreiro-Vera, Carlos; Oyarzabal, Julen; Canela, Enric I.; Lanciego, José L.; Nadal, Xavier; Navarro, Gemma; Borea, Pier Andrea; Franco, Rafael

    2017-01-01

    The mechanism of action of cannabidiol (CBD), the main non-psychotropic component of Cannabis sativa L., is not completely understood. First assumed that the compound was acting via cannabinoid CB2 receptors (CB2Rs) it is now suggested that it interacts with non-cannabinoid G-protein-coupled receptors (GPCRs); however, CBD does not bind with high affinity to the orthosteric site of any GPCR. To search for alternative explanations, we tested CBD as a potential allosteric ligand of CB2R. Radioligand and non-radioactive homogeneous binding, intracellular cAMP determination and ERK1/2 phosphorylation assays were undertaken in heterologous systems expressing the human version of CB2R. Using membrane preparations from CB2R-expressing HEK-293T (human embryonic kidney 293T) cells, we confirmed that CBD does not bind with high affinity to the orthosteric site of the human CB2R where the synthetic cannabinoid, [3H]-WIN 55,212-2, binds. CBD was, however, able to produce minor but consistent reduction in the homogeneous binding assays in living cells using the fluorophore-conjugated CB2R-selective compound, CM-157. The effect on binding to CB2R-expressing living cells was different to that exerted by the orthosteric antagonist, SR144528, which decreased the maximum binding without changing the KD. CBD at nanomolar concentrations was also able to significantly reduce the effect of the selective CB2R agonist, JWH133, on forskolin-induced intracellular cAMP levels and on activation of the MAP kinase pathway. These results may help to understand CBD mode of action and may serve to revisit its therapeutic possibilities. PMID:29109685

  17. Cholesterol-Binding Sites in GIRK Channels: The Devil is in the Details.

    PubMed

    Rosenhouse-Dantsker, Avia

    2018-01-01

    In recent years, it has become evident that cholesterol plays a direct role in the modulation of a variety of ion channels. In most cases, cholesterol downregulates channel activity. In contrast, our earlier studies have demonstrated that atrial G protein inwardly rectifying potassium (GIRK) channels are upregulated by cholesterol. Recently, we have shown that hippocampal GIRK currents are also upregulated by cholesterol. A combined computational-experimental approach pointed to putative cholesterol-binding sites in the transmembrane domain of the GIRK2 channel, the primary subunit in hippocampal GIRK channels. In particular, the principal cholesterol-binding site was located in the center of the transmembrane domain in between the inner and outer α-helices of 2 adjacent subunits. Further studies pointed to a similar cholesterol-binding site in GIRK4, a major subunit in atrial GIRK channels. However, a close look at a sequence alignment of the transmembrane helices of the 2 channels reveals surprising differences among the residues that interact with the cholesterol molecule in these 2 channels. Here, we compare the residues that form putative cholesterol-binding sites in GIRK2 and GIRK4 and discuss the similarities and differences among them.

  18. Comparison of cannabinoid binding sites in guinea-pig forebrain and small intestine

    PubMed Central

    Ross, Ruth A; Brockie, Heather C; Fernando, Susanthi R; Saha, Bijali; Razdan, Raj K; Pertwee, Roger G

    1998-01-01

    We have investigated the nature of cannabinoid receptors in guinea-pig small intestine by establishing whether this tissue contains cannabinoid receptors with similar binding properties to those of brain CB1 receptors. The cannabinoids used were the CB1-selective antagonist SR141716A, the CB2-selective antagonist SR144528, the novel cannabinoid receptor ligand, 6′-azidohex-2′-yne-Δ8-tetrahydrocannabinol (O-1184), and the agonists CP55940, which binds equally well to CB1 and CB2 receptors, and WIN55212-2, which shows marginal CB2 selectivity.[3H]-CP55940 (1 nM) underwent extensive specific binding both to forebrain membranes (76.3%) and to membranes obtained by sucrose density gradient fractionation of homogenates of myenteric plexus-longitudinal muscle of guinea-pig small intestine (65.2%).Its binding capacity (Bmax) was higher in forebrain (4281 fmol mg−1) than in intestinal membranes (2092 fmol mg−1). However, the corresponding KD values were not significantly different from each other (2.29 and 1.75 nM respectively). Nor did the Ki values for its displacement by CP55940, WIN55212-2, O-1184, SR141716A and SR144528 from forebrain membranes (0.87, 4.15, 2.85, 5.32 and 371.9 respectively) differ significantly from the corresponding Ki values determined in experiments with intestinal membranes (0.99, 5.03, 3.16, 4.95 and 361.5 nM respectively).The Bmax values of [3H]-CP55940 and [3H]-SR141716A in forebrain membranes did not differ significantly from each other (4281 and 5658 fmol mg−1) but were both greater than the Bmax of [3H]-WIN55212-2 (2032 fmol mg−1).O-1184 (10 or 100 nM) produced parallel dextral shifts in the log concentration-response curves of WIN55212-2 and CP55940 for inhibition of electrically-evoked contractions of the myenteric plexus-longitudinal muscle preparation, its KD values being 0.20 nM (against WIN55212-2) and 0.89 nM (against CP55940).We conclude that cannabinoid binding sites in guinea-pig small

  19. A cation-pi interaction in the binding site of the glycine receptor is mediated by a phenylalanine residue.

    PubMed

    Pless, Stephan A; Millen, Kat S; Hanek, Ariele P; Lynch, Joseph W; Lester, Henry A; Lummis, Sarah C R; Dougherty, Dennis A

    2008-10-22

    Cys-loop receptor binding sites characteristically contain many aromatic amino acids. In nicotinic ACh and 5-HT3 receptors, a Trp residue forms a cation-pi interaction with the agonist, whereas in GABA(A) receptors, a Tyr performs this role. The glycine receptor binding site, however, contains predominantly Phe residues. Homology models suggest that two of these Phe side chains, Phe159 and Phe207, and possibly a third, Phe63, are positioned such that they could contribute to a cation-pi interaction with the primary amine of glycine. Here, we test this hypothesis by incorporation of a series of fluorinated Phe derivatives using unnatural amino acid mutagenesis. The data reveal a clear correlation between the glycine EC(50) value and the cation-pi binding ability of the fluorinated Phe derivatives at position 159, but not at positions 207 or 63, indicating a single cation-pi interaction between glycine and Phe159. The data thus provide an anchor point for locating glycine in its binding site, and demonstrate for the first time a cation-pi interaction between Phe and a neurotransmitter.

  20. Fighting obesity with a sugar-based library: discovery of novel MCH-1R antagonists by a new computational-VAST approach for exploration of GPCR binding sites.

    PubMed

    Heifetz, Alexander; Barker, Oliver; Verquin, Geraldine; Wimmer, Norbert; Meutermans, Wim; Pal, Sandeep; Law, Richard J; Whittaker, Mark

    2013-05-24

    Obesity is an increasingly common disease. While antagonism of the melanin-concentrating hormone-1 receptor (MCH-1R) has been widely reported as a promising therapeutic avenue for obesity treatment, no MCH-1R antagonists have reached the market. Discovery and optimization of new chemical matter targeting MCH-1R is hindered by reduced HTS success rates and a lack of structural information about the MCH-1R binding site. X-ray crystallography and NMR, the major experimental sources of structural information, are very slow processes for membrane proteins and are not currently feasible for every GPCR or GPCR-ligand complex. This situation significantly limits the ability of these methods to impact the drug discovery process for GPCR targets in "real-time", and hence, there is an urgent need for other practical and cost-efficient alternatives. We present here a conceptually pioneering approach that integrates GPCR modeling with design, synthesis, and screening of a diverse library of sugar-based compounds from the VAST technology (versatile assembly on stable templates) to provide structural insights on the MCH-1R binding site. This approach creates a cost-efficient new avenue for structure-based drug discovery (SBDD) against GPCR targets. In our work, a primary VAST hit was used to construct a high-quality MCH-1R model. Following model validation, a structure-based virtual screen yielded a 14% hit rate and 10 novel chemotypes of potent MCH-1R antagonists, including EOAI3367472 (IC50 = 131 nM) and EOAI3367474 (IC50 = 213 nM).

  1. Intrinsic Pleckstrin Homology (PH) Domain Motion in Phospholipase C-β Exposes a Gβγ Protein Binding Site.

    PubMed

    Kadamur, Ganesh; Ross, Elliott M

    2016-05-20

    Mammalian phospholipase C-β (PLC-β) isoforms are stimulated by heterotrimeric G protein subunits and members of the Rho GTPase family of small G proteins. Although recent structural studies showed how Gαq and Rac1 bind PLC-β, there is a lack of consensus regarding the Gβγ binding site in PLC-β. Using FRET between cerulean fluorescent protein-labeled Gβγ and the Alexa Fluor 594-labeled PLC-β pleckstrin homology (PH) domain, we demonstrate that the PH domain is the minimal Gβγ binding region in PLC-β3. We show that the isolated PH domain can compete with full-length PLC-β3 for binding Gβγ but not Gαq, Using sequence conservation, structural analyses, and mutagenesis, we identify a hydrophobic face of the PLC-β PH domain as the Gβγ binding interface. This PH domain surface is not solvent-exposed in crystal structures of PLC-β, necessitating conformational rearrangement to allow Gβγ binding. Blocking PH domain motion in PLC-β by cross-linking it to the EF hand domain inhibits stimulation by Gβγ without altering basal activity or Gαq response. The fraction of PLC-β cross-linked is proportional to the fractional loss of Gβγ response. Cross-linked PLC-β does not bind Gβγ in a FRET-based Gβγ-PLC-β binding assay. We propose that unliganded PLC-β exists in equilibrium between a closed conformation observed in crystal structures and an open conformation where the PH domain moves away from the EF hands. Therefore, intrinsic movement of the PH domain in PLC-β modulates Gβγ access to its binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. ProMateus—an open research approach to protein-binding sites analysis

    PubMed Central

    Neuvirth, Hani; Heinemann, Uri; Birnbaum, David; Tishby, Naftali; Schreiber, Gideon

    2007-01-01

    The development of bioinformatic tools by individual labs results in the abundance of parallel programs for the same task. For example, identification of binding site regions between interacting proteins is done using: ProMate, WHISCY, PPI-Pred, PINUP and others. All servers first identify unique properties of binding sites and then incorporate them into a predictor. Obviously, the resulting prediction would improve if the most suitable parameters from each of those predictors would be incorporated into one server. However, because of the variation in methods and databases, this is currently not feasible. Here, the protein-binding site prediction server is extended into a general protein-binding sites research tool, ProMateus. This web tool, based on ProMate's infrastructure enables the easy exploration and incorporation of new features and databases by the user, providing an evaluation of the benefit of individual features and their combination within a set framework. This transforms the individual research into a community exercise, bringing out the best from all users for optimized predictions. The analysis is demonstrated on a database of protein protein and protein-DNA interactions. This approach is basically different from that used in generating meta-servers. The implications of the open-research approach are discussed. ProMateus is available at http://bip.weizmann.ac.il/promate. PMID:17488838

  3. Regulation of CYBB Gene Expression in Human Phagocytes by a Distant Upstream NF-κB Binding Site.

    PubMed

    Frazão, Josias B; Thain, Alison; Zhu, Zhiqing; Luengo, Marcos; Condino-Neto, Antonio; Newburger, Peter E

    2015-09-01

    The human CYBB gene encodes the gp91-phox component of the phagocyte oxidase enzyme complex, which is responsible for generating superoxide and other downstream reactive oxygen species essential to microbial killing. In the present study, we have identified by sequence analysis a putative NF-κB binding site in a DNase I hypersensitive site, termed HS-II, located in the distant 5' flanking region of the CYBB gene. Electrophoretic mobility assays showed binding of the sequence element by recombinant NF-κB protein p50 and by proteins in nuclear extract from the HL-60 myeloid leukemia cell line corresponding to p50 and to p50/p65 heterodimers. Chromatin immunoprecipitation demonstrated NF-κB binding to the site in intact HL-60 cells. Chromosome conformation capture (3C) assays demonstrated physical interaction between the NF-κB binding site and the CYBB promoter region. Inhibition of NF-κB activity by salicylate reduced CYBB expression in peripheral blood neutrophils and differentiated U937 monocytic leukemia cells. U937 cells transfected with a mutant inhibitor of κB "super-repressor" showed markedly diminished CYBB expression. Luciferase reporter analysis of the NF-κB site linked to the CYBB 5' flanking promoter region revealed enhanced expression, augmented by treatment with interferon-γ. These studies indicate a role for this distant, 15 kb upstream, binding site in NF-κB regulation of the CYBB gene, an essential component of phagocyte-mediated host defense. © 2015 Wiley Periodicals, Inc.

  4. Electrostatic Interactions Mediate Binding of Obscurin to Small Ankyrin 1: Biochemical and Molecular Modeling Studies

    PubMed Central

    Busby, Ben; Oashi, Taiji; Willis, Chris D.; Ackermann, Maegen A.; Kontrogianni-Konstantopoulos, Aikaterini; MacKerell, Alexander D.; Bloch, Robert J.

    2012-01-01

    Small ankyrin 1 (sAnk1; also Ank1.5) is an integral protein of the sarcoplasmic reticulum in skeletal and cardiac muscle cells, where it is thought to bind to the C-terminal region of obscurin, a large modular protein that surrounds the contractile apparatus. Using fusion proteins in vitro, in combination with site directed mutagenesis and surface plasmon resonance measurements, we previously showed that the binding site on sAnk1 for obscurin consists in part of six lysine and arginine residues. Here we show that four charged residues in the high affinity binding site on obscurin for sAnk1, between residues 6316-6345, consisting of three glutamates and a lysine, are necessary, but not sufficient, for this site on obscurin to bind with high affinity to sAnk1. We also identify specific complementary mutations in sAnk1 that can partially or completely compensate for the changes in binding caused by charge-switching mutations in obscurin. We used molecular modeling to develop structural models of residues 6322-6339 of obscurin bound to sAnk1. The models, based on a combination of Brownian and molecular dynamics simulations, predict that the binding site on sAnk1 for obscurin is organized as two ankyrin-like repeats, with the last α-helical segment oriented at an angle to the nearby helices, allowing lysine-6338 of obscurin to form an ionic interaction with aspartate-111 of sAnk1. This prediction was validated by double mutant cycle experiments. Our results are consistent with a model in which electrostatic interactions between specific pairs of side chains on obscurin and sAnk1 promote binding and complex formation. PMID:21333652

  5. Specificity of O-glycosylation in enhancing the stability and cellulose binding affinity of Family 1 carbohydrate-binding modules

    PubMed Central

    Chen, Liqun; Drake, Matthew R.; Resch, Michael G.; Greene, Eric R.; Himmel, Michael E.; Chaffey, Patrick K.; Beckham, Gregg T.; Tan, Zhongping

    2014-01-01

    The majority of biological turnover of lignocellulosic biomass in nature is conducted by fungi, which commonly use Family 1 carbohydrate-binding modules (CBMs) for targeting enzymes to cellulose. Family 1 CBMs are glycosylated, but the effects of glycosylation on CBM function remain unknown. Here, the effects of O-mannosylation are examined on the Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase at three glycosylation sites. To enable this work, a procedure to synthesize glycosylated Family 1 CBMs was developed. Subsequently, a library of 20 CBMs was synthesized with mono-, di-, or trisaccharides at each site for comparison of binding affinity, proteolytic stability, and thermostability. The results show that, although CBM mannosylation does not induce major conformational changes, it can increase the thermolysin cleavage resistance up to 50-fold depending on the number of mannose units on the CBM and the attachment site. O-Mannosylation also increases the thermostability of CBM glycoforms up to 16 °C, and a mannose disaccharide at Ser3 seems to have the largest themostabilizing effect. Interestingly, the glycoforms with small glycans at each site displayed higher binding affinities for crystalline cellulose, and the glycoform with a single mannose at each of three positions conferred the highest affinity enhancement of 7.4-fold. Overall, by combining chemical glycoprotein synthesis and functional studies, we show that specific glycosylation events confer multiple beneficial properties on Family 1 CBMs. PMID:24821760

  6. Ligand Binding Induces Conformational Changes in Human Cellular Retinol-binding Protein 1 (CRBP1) Revealed by Atomic Resolution Crystal Structures.

    PubMed

    Silvaroli, Josie A; Arne, Jason M; Chelstowska, Sylwia; Kiser, Philip D; Banerjee, Surajit; Golczak, Marcin

    2016-04-15

    Important in regulating the uptake, storage, and metabolism of retinoids, cellular retinol-binding protein 1 (CRBP1) is essential for trafficking vitamin A through the cytoplasm. However, the molecular details of ligand uptake and targeted release by CRBP1 remain unclear. Here we report the first structure of CRBP1 in a ligand-free form as well as ultra-high resolution structures of this protein bound to either all-trans-retinol or retinylamine, the latter a therapeutic retinoid that prevents light-induced retinal degeneration. Superpositioning of human apo- and holo-CRBP1 revealed major differences within segments surrounding the entrance to the retinoid-binding site. These included α-helix II and hairpin turns between β-strands βC-βD and βE-βF as well as several side chains, such as Phe-57, Tyr-60, and Ile-77, that change their orientations to accommodate the ligand. Additionally, we mapped hydrogen bond networks inside the retinoid-binding cavity and demonstrated their significance for the ligand affinity. Analyses of the crystallographic B-factors indicated several regions with higher backbone mobility in the apoprotein that became more rigid upon retinoid binding. This conformational flexibility of human apo-CRBP1 facilitates interaction with the ligands, whereas the more rigid holoprotein structure protects the labile retinoid moiety during vitamin A transport. These findings suggest a mechanism of induced fit upon ligand binding by mammalian cellular retinol-binding proteins. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Na[superscript +] binding to meizothrombin desF1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papaconstantinou, M.E.; Gandhi, P.S.; Chen, Z.

    2009-06-10

    Meizothrombin is the physiologically active intermediate generated by a single cleavage of prothrombin at R320 to separate the A and B chains. Recent evidence has suggested that meizothrombin, like thrombin, is a Na{sup +}-activated enzyme. In this study we present the first X-ray crystal structure of human meizothrombin desF1 solved in the presence of the active site inhibitor PPACK at 2.1 {angstrom} resolution. The structure reveals a Na{sup +} binding site whose architecture is practically identical to that of human thrombin. Stopped-flow measurements of Na{sup +} binding to meizothrombin desF1 document a slow phase of fluorescence change with a kmore » obs decreasing hyperbolically with increasing [Na{sup +}], consistent with the existence of three conformations in equilibrium, E*, E and E:Na{sup +}, as for human thrombin. Evidence that meizothrombin exists in multiple conformations provides valuable new information for studies of the mechanism of prothrombin activation.« less

  8. Metal Ion Binding at the Catalytic Site Induces Widely Distributed Changes in a Sequence Specific Protein–DNA Complex

    PubMed Central

    2016-01-01

    Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446

  9. Principal component analysis of chemical shift perturbation data of a multiple-ligand-binding system for elucidation of respective binding mechanism.

    PubMed

    Konuma, Tsuyoshi; Lee, Young-Ho; Goto, Yuji; Sakurai, Kazumasa

    2013-01-01

    Chemical shift perturbations (CSPs) in NMR spectra provide useful information about the interaction of a protein with its ligands. However, in a multiple-ligand-binding system, determining quantitative parameters such as a dissociation constant (K(d) ) is difficult. Here, we used a method we named CS-PCA, a principal component analysis (PCA) of chemical shift (CS) data, to analyze the interaction between bovine β-lactoglobulin (βLG) and 1-anilinonaphthalene-8-sulfonate (ANS), which is a multiple-ligand-binding system. The CSP on the binding of ANS involved contributions from two distinct binding sites. PCA of the titration data successfully separated the CSP pattern into contributions from each site. Docking simulations based on the separated CSP patterns provided the structures of βLG-ANS complexes for each binding site. In addition, we determined the K(d) values as 3.42 × 10⁻⁴ M² and 2.51 × 10⁻³ M for Sites 1 and 2, respectively. In contrast, it was difficult to obtain reliable K(d) values for respective sites from the isothermal titration calorimetry experiments. Two ANS molecules were found to bind at Site 1 simultaneously, suggesting that the binding occurs cooperatively with a partial unfolding of the βLG structure. On the other hand, the binding of ANS to Site 2 was a simple attachment without a significant conformational change. From the present results, CS-PCA was confirmed to provide not only the positions and the K(d) values of binding sites but also information about the binding mechanism. Thus, it is anticipated to be a general method to investigate protein-ligand interactions. Copyright © 2012 Wiley Periodicals, Inc.

  10. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.

    PubMed

    Rudling, Axel; Orro, Adolfo; Carlsson, Jens

    2018-02-26

    Water plays a major role in ligand binding and is attracting increasing attention in structure-based drug design. Water molecules can make large contributions to binding affinity by bridging protein-ligand interactions or by being displaced upon complex formation, but these phenomena are challenging to model at the molecular level. Herein, networks of ordered water molecules in protein binding sites were analyzed by clustering of molecular dynamics (MD) simulation trajectories. Locations of ordered waters (hydration sites) were first identified from simulations of high resolution crystal structures of 13 protein-ligand complexes. The MD-derived hydration sites reproduced 73% of the binding site water molecules observed in the crystal structures. If the simulations were repeated without the cocrystallized ligands, a majority (58%) of the crystal waters in the binding sites were still predicted. In addition, comparison of the hydration sites obtained from simulations carried out in the absence of ligands to those identified for the complexes revealed that the networks of ordered water molecules were preserved to a large extent, suggesting that the locations of waters in a protein-ligand interface are mainly dictated by the protein. Analysis of >1000 crystal structures showed that hydration sites bridged protein-ligand interactions in complexes with different ligands, and those with high MD-derived occupancies were more likely to correspond to experimentally observed ordered water molecules. The results demonstrate that ordered water molecules relevant for modeling of protein-ligand complexes can be identified from MD simulations. Our findings could contribute to development of improved methods for structure-based virtual screening and lead optimization.

  11. Specificity of the weak binding between the phage SPO1 transcription-inhibitory protein, TF1, and SPO1 DNA.

    PubMed

    Johnson, G G; Geiduschek, E P

    1977-04-05

    The interaction of the phage SPO1 protein transcription factor 1 (TF1), with DNA has been analyzed by membrane filter binding and by sedimentation methods. Substantially specific binding of TF1 to helical SPO1 DNA can be demonstrated by nitrocellulose filter-binding assays at relatively low ionic strength (0.08). However, TF1-DNA complexes dissociate and reequilibrate relatively rapidly and this makes filter-binding assays unsuitable for quantitative measurements of binding equilibra. Accordingly, the sedimentation properties of TF1-DNA complexes have been explored and a short-column centrifugation assay has been elaborated for quantitative measurements. Preferential binding of TF1 to the hydroxymethyluracil-containing SPO1 DNA has also been demonstrated by short-column centrifugation. TF1 binds relatively weakly and somewhat cooperatively to SPO1 DNA at many sites; TF1-DNA complexes dissociate and reequilibrate rapidly. At 20 degrees C in 0.01 M phosphate, pH 7.5, 0.15 KC1, one molecule of TF1 can bind to approximately every 60 nucleotide pairs of SPO1 DNA.

  12. Discovery and validation of information theory-based transcription factor and cofactor binding site motifs.

    PubMed

    Lu, Ruipeng; Mucaki, Eliseos J; Rogan, Peter K

    2017-03-17

    Data from ChIP-seq experiments can derive the genome-wide binding specificities of transcription factors (TFs) and other regulatory proteins. We analyzed 765 ENCODE ChIP-seq peak datasets of 207 human TFs with a novel motif discovery pipeline based on recursive, thresholded entropy minimization. This approach, while obviating the need to compensate for skewed nucleotide composition, distinguishes true binding motifs from noise, quantifies the strengths of individual binding sites based on computed affinity and detects adjacent cofactor binding sites that coordinate with the targets of primary, immunoprecipitated TFs. We obtained contiguous and bipartite information theory-based position weight matrices (iPWMs) for 93 sequence-specific TFs, discovered 23 cofactor motifs for 127 TFs and revealed six high-confidence novel motifs. The reliability and accuracy of these iPWMs were determined via four independent validation methods, including the detection of experimentally proven binding sites, explanation of effects of characterized SNPs, comparison with previously published motifs and statistical analyses. We also predict previously unreported TF coregulatory interactions (e.g. TF complexes). These iPWMs constitute a powerful tool for predicting the effects of sequence variants in known binding sites, performing mutation analysis on regulatory SNPs and predicting previously unrecognized binding sites and target genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.

    2013-11-20

    Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less

  14. The heterodimeric sweet taste receptor has multiple potential ligand binding sites.

    PubMed

    Cui, Meng; Jiang, Peihua; Maillet, Emeline; Max, Marianna; Margolskee, Robert F; Osman, Roman

    2006-01-01

    The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.

  15. The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally

    PubMed Central

    Park, Dan M.; Akhtar, Md. Sohail; Ansari, Aseem Z.; Landick, Robert; Kiley, Patricia J.

    2013-01-01

    Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis. PMID:24146625

  16. Pyrrole-Based Antitubulin Agents: Two Distinct Binding Modalities are Predicted for C-2 Analogs in the Colchicine Site.

    PubMed

    Da, Chenxiao; Telang, Nakul; Barelli, Peter; Jia, Xin; Gupton, John T; Mooberry, Susan L; Kellogg, Glen E

    2012-01-12

    3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogs were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structural-activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design.

  17. TF1, the bacteriophage SPO1-encoded type II DNA-binding protein, is essential for viral multiplication.

    PubMed

    Sayre, M H; Geiduschek, E P

    1988-09-01

    The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.

  18. Interactions of divalent cations with calcium binding sites of BK channels reveal independent motions within the gating ring.

    PubMed

    Miranda, Pablo; Giraldez, Teresa; Holmgren, Miguel

    2016-12-06

    Large-conductance voltage- and calcium-activated K + (BK) channels are key physiological players in muscle, nerve, and endocrine function by integrating intracellular Ca 2+ and membrane voltage signals. The open probability of BK channels is regulated by the intracellular concentration of divalent cations sensed by a large structure in the BK channel called the "gating ring," which is formed by four tandems of regulator of conductance for K + (RCK1 and RCK2) domains. In contrast to Ca 2+ that binds to both RCK domains, Mg 2+ , Cd 2+ , or Ba 2+ interact preferentially with either one or the other. Interaction of cations with their binding sites causes molecular rearrangements of the gating ring, but how these motions occur remains elusive. We have assessed the separate contributions of each RCK domain to the cation-induced gating-ring structural rearrangements, using patch-clamp fluorometry. Here we show that Mg 2+ and Ba 2+ selectively induce structural movement of the RCK2 domain, whereas Cd 2+ causes motions of RCK1, in all cases substantially smaller than those elicited by Ca 2+ By combining divalent species interacting with unique sites, we demonstrate that RCK1 and RCK2 domains move independently when their specific binding sites are occupied. Moreover, binding of chemically distinct cations to both RCK domains is additive, emulating the effect of fully occupied Ca 2+ binding sites.

  19. The binding sites for benztropines and dopamine in the dopamine transporter overlap

    PubMed Central

    Bisgaard, Heidi; Larsen, M. Andreas B.; Mazier, Sonia; Beuming, Thijs; Newman, Amy Hauck; Weinstein, Harel; Shi, Lei; Loland, Claus J.; Gether, Ulrik

    2013-01-01

    Analogues of benztropines (BZTs) are potent inhibitors of the dopamine transporter (DAT) but are less effective than cocaine as behavioral stimulants. As a result, there have been efforts to evaluate these compounds as leads for potential medication for cocaine addiction. Here we use computational modeling together with site-directed mutagenesis to characterize the binding site for BZTs in DAT. Docking into molecular models based on the structure of the bacterial homologue LeuT supported a BZT binding site that overlaps with the substrate binding pocket. In agreement, mutations of residues within the pocket, including Val1523.46* to Ala or Ile, Ser4228.60 to Ala and Asn1573.51 to Cys or Ala, resulted in decreased affinity for BZT and the analog JHW007, as assessed in [3H]dopamine uptake inhibition assays and/or [3H]CFT competition binding assay. A putative polar interaction of one of the phenyl ring fluorine substituents in JHW007 with Asn1573.51 was used as a criterion for determining likely binding poses and establish a structural context for the mutagenesis findings. The analysis positioned the other fluorine substituted phenyl ring of JHW007 in close proximity to Ala47910.51/Ala48010.52 in transmembrane segment (TM) 10. The lack of such an interaction for BZT led to a more tilted orientation, as compared to JHW007, bringing one of the phenyl rings even closer to Ala47910.51/Ala48010.52. Mutation of Ala47910.51 and Ala48010.52 to valines supported these predictions with a larger decrease in the affinity for BZT than for JHW007. Summarized, our data suggest that BZTs display a classical competitive binding mode with binding sites overlapping those of cocaine and dopamine. PMID:20816875

  20. Sequences Flanking the Gephyrin-Binding Site of GlyRβ Tune Receptor Stabilization at Synapses

    PubMed Central

    Grünewald, Nora; Salvatico, Charlotte; Kress, Vanessa

    2018-01-01

    Abstract The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the β-subunit (β-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 310-helix C-terminal to the β-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR β-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells. PMID:29464196