Observation of B0 meson decay to a 1 +/(1260)pi /+.
Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Pappagallo, M; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Andreassen, R; Mancinelli, G; Meadows, B T; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Petzold, A; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Bard, D J; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Gaillard, J R; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Brown, C L; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Kelly, M P; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Willocq, S Y; Cowan, R; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Patel, P M; Potter, C T; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; Nardo, G De; del Re, D; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Galeazzi, F; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Behera, P K; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Pioppi, M; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Mayer, B; Vasseur, G; Yèche, Ch; Zito, M; Park, W; Purohit, M V; Weidemann, A W; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Boyarski, A M; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dong, D; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Libby, J; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Flood, K T; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mellado, B; Mihalyi, A; Mohapatra, A K; Pan, Y; Pierini, M; Prepost, R; Tan, P; Wu, S L; Yu, Z; Neal, H
2006-08-04
We present a measurement of the branching fraction of the decay B(0)-->a1 (+/)(1260)pi(/+) with a1 (+/)(1260)-->pi(/+)pi(+/)pi(+/). The data sample corresponds to 218 x 10(6) BB[over ] pairs produced in e+e- annihilation through the Upsilon(4S) resonance. We measure the branching fraction Beta(B(0)-->a1(+/)(1260)pi(/+))Beta(a1(+/)(1260)-->pi(/+)pi(+/)pi(+/)) = (16.6+/1.9+/1.5) x 10(-6), where the first error quoted is statistical and the second is systematic.
Measurement of the Branching Fraction of B0 Meson Decay to a_1^+(1260) pi-
Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /Bergen U. /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /INFN, Ferrara /Frascati /Genoa U. /INFN, Genoa /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /INFN, Perugia /Pisa U. /Pisa, Scuola Normale Superiore /INFN, Pisa /Prairie View A-M /Princeton U. /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /INFN, Trieste /Valencia U., IFIC /Vanderbilt U. /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.
2005-07-12
We present a preliminary measurement of the branching fraction of the B meson decay B{sup 0} {yields} a{sub 1}{sup +}(1260){pi}{sup -}with a{sub 1}{sup +}(1260) {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}. The data sample corresponds to 218 x 10{sup 6} B{bar B} pairs produced in e{sup +}e{sup -} annihilation through the {Upsilon}(4S) resonance. We find the branching fraction (40.2 {+-} 3.9 {+-} 3.9) x 10{sup -6}, where the first error quoted is statistical and the second is systematic. The fitted values of the a{sub 1}(1260) parameters are m{sub a{sub 1}} = 1.22 {+-} 0.02 GeV/c{sup 2} and {Lambda}{sub a{sub 1}} = 0.423 {+-} 0.050 GeV/c{sup 2}.
The Role of a 1 (1260) in π- p → a 1 -(1260)p and π- p → π-ρ0 p Reactions Near Threshold
NASA Astrophysics Data System (ADS)
Cheng, Chen; Xie, Ju-Jun; Cao, Xu
2016-12-01
We report on a theoretical study of the π- p → a1 -(1260)p and π-p → π- ρ0p reactions near threshold within an effective Lagrangian approach. The production process is described by t-channel ρ0 meson exchange. For the π-p → π-ρ0p reaction, the final π-p0 results from the decay of the a1(1260) resonance, which is assumed as a dynamically generated state from the K*K¯ and ρπ coupled channel interactions. We calculate the total cross section of the π-p → a1 -(1260)p reaction. It is shown that, with the coupling constant of the a1(1260) to ρπ channel obtained from the chiral unitary theory and a cut off parameter Λρ ˜ 1.5 GeV in the form factors, the experimental measurement can be reproduced. Furthermore, the total and differential cross sections of π-p → a1 -(1260)p → π-ρ0p reaction are evaluated, and it is expected that our model calculations can be tested by future experiments. These reactions are important for the study of the a1(1260) resonance and would provide further constraints on the properties of the a1(1260) state. Supported by the National Natural Science Foundation of China under Grant Nos. 11475227 and 11475015, and the Youth Innovation Promotion Association CAS under Grant No. 2016367
Observation of B+-->a1+(1260)K0 and B0-->a1-(1260)K+.
Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; Del Amo Sanchez, P; Hawkes, C M; Watson, A T; Koch, H; Schroeder, T; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Vitug, G M; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Bailey, D; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; Losecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Sekula, S J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; White, R M; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Ziegler, V; Burchat, P R; Edwards, A J; Majewski, S A; Miyashita, T S; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H
2008-02-08
We present branching fraction measurements of the decays B(+)-->a(1)(+)(1260)K(0) and B(0)-->a(1)(-)(1260)K(+) with a(1)(+/-)(1260)-->pi(-/+)pi(+/-)pi(+/-). The data sample corresponds to 383 x 10(6) BB pairs produced in e(+)e(-) annihilation through the Upsilon(4S) resonance. We measure the products of the branching fractions B(B(+)-->a(1)(+)(1260)K(0)B(a(1)(+)(1260)-->pi(-)pi(+)pi(+))=(17.4+/-2.5+/-2.2) x 10(-6) and B(B(0)-->a(1)(-)(1260)K(+)B(a(1)(-)(1260)-->pi(+)pi(-)pi(-)) = (8.2+/-1.5+/-1.2) x 10(-6). We also measure the charge asymmetries A(ch)(B(+)-->a(1)(+)(1260)K(0) = 0.12+/-0.11+/-0.02 and A(ch)(B(0)-->a(1)(-)(1260)K+) = -0.16+/-0.12+/-0.01. The first uncertainty quoted is statistical and the second is systematic.
a1(1420 ) peak as the π f0(980 ) decay mode of the a1(1260 )
NASA Astrophysics Data System (ADS)
Aceti, F.; Dai, L. R.; Oset, E.
2016-11-01
We study the decay mode of the a1(1260 ) into a π+ in p wave and the f0(980 ) that decays into π+π- in s wave. The mechanism proceeds via a triangular mechanism where the a1(1260 ) decays into K*K ¯, the K* decays to an external π+ and an internal K that fuses with the K ¯ producing the f0(980 ) resonance. The mechanism develops a singularity at a mass of the a1(1260 ) around 1420 MeV, producing a peak in the cross section of the π p reaction, used to generate the mesonic final state, which provides a natural explanation of all the features observed in the COMPASS experiment, where a peak observed at this energy is tentatively associated to a new resonance called a1(1420 ). On the other hand, the triangular singularity studied here gives rise to a remarkable feature, where a peak is seen for a certain decay channel of a resonance at an energy about 200 MeV higher than its nominal mass.
Observation of B0 Meson Decays to a1(1260)+- pi-+
Aubert, B.
2006-03-27
The authors present a measurement of the branching fraction of the decay B{sup 0} {yields} a{sub 1}{sup {+-}}(1260){pi}{sup {-+}} with a{sub 1}{sup {+-}}(1260) {yields} {pi}{sup {-+}}{pi}{sup {+-}}{pi}{sup {+-}}. The data sample corresponds to 218 x 10{sup 6} B{bar B} pairs produced in e{sup +}e{sup -} annihilation through the {Upsilon}(4S) resonance. The authors measure the branching fraction {Beta}(B{sup 0} {yields} a{sub 1}{sup {+-}}(1260){pi}{sup {-+}}){Beta}(a{sub 1}{sup {+-}}(1260){yields} {pi}{sup {-+}}{pi}{sup {+-}}{pi}{sup {+-}})=(16.6 {+-} 1.9 {+-} 1.5) x 10{sup -6}, where the first error quoted is statistical and the second is systematic.
Analysis of B→a1(1260)(b1(1235))K* decays in the perturbative QCD approach
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qing; Fu, Jian-Hua
2015-03-01
Within the framework of the perturbative quantum chromodynamics (PQCD) approach, we study the charmless two-body decays B→a1(1260)K*, b1(1235)K*. Using the decay constants and the light-cone distribution amplitudes for these mesons derived from the QCD sum rule method, we find the following results. (a) Our predictions for the branching ratios are consistent with the QCD factorization (QCDF) results within errors, but much larger than the naive factorization approach calculation values. (b) We predict that the anomalous polarizations occurring in the decays B→φK*, rHK* also happen in B→a1K* decays, while they do not happen in B→b1K* decays. Here the contributions from the annihilation diagrams play an important role in explaining the larger transverse polarizations in the B→a1K* decays, while they are not sensitive to the polarizations for the B→b1K* decays. (c) Our predictions for the direct CP-asymmetries agree well with the QCDF results within errors. The decays B¯0 → b+1K*-, B- → b01K*- have larger direct CP-asymmetries, which could be measured by the present LHCb experiment and the forthcoming Super-B experiment. Supported by National Natural Science Foundation of China (11147004, 11347030), Program of Youthful Key Teachers in University of Henan Province (001166), and by Foundation of Henan Educational Committee (14HASTIT037)
Axial resonances a$$_{1}$$(1260), b$$_{1}$$(1235) and their decays from the lattice
Lang, C. B.; Leskovec, Luka; Mohler, Daniel; ...
2014-04-28
The light axial-vector resonancesmore » $$a_1(1260)$$ and $$b_1(1235)$$ are explored in Nf=2 lattice QCD by simulating the corresponding scattering channels $$\\rho\\pi$$ and $$\\omega\\pi$$. Interpolating fields $$\\bar{q} q$$ and $$\\rho\\pi$$ or $$\\omega\\pi$$ are used to extract the s-wave phase shifts for the first time. The $$\\rho$$ and $$\\omega$$ are treated as stable and we argue that this is justified in the considered energy range and for our parameters $$m_\\pi\\simeq 266~$$MeV and $$L\\simeq 2~$$fm. We neglect other channels that would be open when using physical masses in continuum. Assuming a resonance interpretation a Breit-Wigner fit to the phase shift gives the $$a_1(1260)$$ resonance mass $$m_{a1}^{res}=1.435(53)(^{+0}_{-109})$$ GeV compared to $$m_{a1}^{exp}=1.230(40)$$ GeV. The $$a_1$$ width $$\\Gamma_{a1}(s)=g^2 p/s$$ is parametrized in terms of the coupling and we obtain $$g_{a_1\\rho\\pi}=1.71(39)$$ GeV compared to $$g_{a_1\\rho\\pi}^{exp}=1.35(30)$$ GeV derived from $$\\Gamma_{a1}^{exp}=425(175)$$ MeV. In the $$b_1$$ channel, we find energy levels related to $$\\pi(0)\\omega(0)$$ and $$b_1(1235)$$, and the lowest level is found at $$E_1 \\gtrsim m_\\omega+m_\\pi$$ but is within uncertainty also compatible with an attractive interaction. Lastly, assuming the coupling $$g_{b_1\\omega\\pi}$$ extracted from the experimental width we estimate $$m_{b_1}^{res}=1.414(36)(^{+0}_{-83})$$.« less
Axial resonances a$_{1}$(1260), b$_{1}$(1235) and their decays from the lattice
Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa
2014-04-28
The light axial-vector resonances $a_1(1260)$ and $b_1(1235)$ are explored in Nf=2 lattice QCD by simulating the corresponding scattering channels $\\rho\\pi$ and $\\omega\\pi$. Interpolating fields $\\bar{q} q$ and $\\rho\\pi$ or $\\omega\\pi$ are used to extract the s-wave phase shifts for the first time. The $\\rho$ and $\\omega$ are treated as stable and we argue that this is justified in the considered energy range and for our parameters $m_\\pi\\simeq 266~$MeV and $L\\simeq 2~$fm. We neglect other channels that would be open when using physical masses in continuum. Assuming a resonance interpretation a Breit-Wigner fit to the phase shift gives the $a_1(1260)$ resonance mass $m_{a1}^{res}=1.435(53)(^{+0}_{-109})$ GeV compared to $m_{a1}^{exp}=1.230(40)$ GeV. The $a_1$ width $\\Gamma_{a1}(s)=g^2 p/s$ is parametrized in terms of the coupling and we obtain $g_{a_1\\rho\\pi}=1.71(39)$ GeV compared to $g_{a_1\\rho\\pi}^{exp}=1.35(30)$ GeV derived from $\\Gamma_{a1}^{exp}=425(175)$ MeV. In the $b_1$ channel, we find energy levels related to $\\pi(0)\\omega(0)$ and $b_1(1235)$, and the lowest level is found at $E_1 \\gtrsim m_\\omega+m_\\pi$ but is within uncertainty also compatible with an attractive interaction. Lastly, assuming the coupling $g_{b_1\\omega\\pi}$ extracted from the experimental width we estimate $m_{b_1}^{res}=1.414(36)(^{+0}_{-83})$.
Production of a_1 in heavy meson decays
NASA Astrophysics Data System (ADS)
Wang, Wei; Zhao, Zhen-Xing
2016-02-01
In this work, we study various decays of heavy B / D mesons into the a_1(1260), based on the form factors derived in different nonperturbative or factorization approaches. These decay modes are helpful to explore the dynamics in the heavy to light transitions. Meanwhile they can also provide insights to a newly discovered state, the a_1(1420) with I^G(J^{PC})= 1^-(1^{++}) observed in the π ^+ f_0(980) final state in the π ^-p→ π ^+π ^-π ^- p process. Available theoretical explanations include tetraquark or rescattering effects due to a_1(1260) decays. If the a_1(1420) were induced by the rescattering, its production rates are completely determined by those of the a_1(1260). Our numerical results for decays into the a_1(1260) indicate that there is a promising prospect to study these decays on experiments including BES-III, LHCb, Babar, Belle, and CLEO-c, the forthcoming Super-KEKB factory and the under-design Circular Electron-Positron Collider.
Analysis of the decay τ - → π - π - π + v τ and determination of the a 1(1260) resonance parameters
NASA Astrophysics Data System (ADS)
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Appuhn, R. D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Walther, A.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reimer, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.
1993-03-01
Using the ARGUS detector at the DORIS II e +e- storage ring we have studied the three-pion hadronic final state in the decay τ- → π-π-π+ v τ. From about 7500 events we conclude that the three-pion system is dominated by the J P=1+ resonance a 1 (1260) decaying preferentially via ρ0π-. Our data restrict a possible ρπ contribution of three-pion states without intermediate resonances to less than 6% at 95% CL. Fitting a model by Isgur et al. to the data yieldsm_{a_1 } = (1.211 ± 0.007 ± _{0.0}^{0.050} ) GeV/c^2 andΓ _{a_1 } = (0.446 ± 0.0021 ± _{0.0}^{0.140} ) GeV/c^2 . The second errors reflect the model dependence of the result. This is the currently most significant determination of the a 1 resonance parameters. The ratio of S- and D-wave amplitudes for the ρ0π- intermediate state of the a {1/-} decay at the nominal a {1/-} mass was found to be D/S=-0.11±0.02. Using this D/S ratio we update our former measurement of the parity violating asymmetry parameterγ _{AV} = 2g_A g_V /(g_A^2 + g_V^2 ) to 1.25±0.23±{0.08/0.15}. The branching ratio of the decay τ- → π-π-π+ v τ is determined to be Br(τ- → π-π-π+ v τ)=(6.8±0.1±0.5)%.
NASA Astrophysics Data System (ADS)
Volkov, M. K.; Nurlan, K.
2017-09-01
Intrinsic widths of the decays τ → ντ( K*(892), K*(1410), K 1(1270), K 1(1650), a 1(1260), a 1(1640)) are calculated in the framework of the extended Nambu-Jona-Lasinio model. The predictions for the decays τ → ντ( K*(892), K*(1410), K 1(1270) are in satisfactory agreement with the existing experimental data. Unfortunately, reliable data on the other three decays are still lacking.
Observation and Polarization Measurement of B0 --> a1(1260) a1(1260)- Decay
Aubert, : B.
2009-08-03
The authors present measurements of the branching fraction {Beta} and longitudinal polarization fraction f{sub L} for B{sup 0} {yields} a{sub 1}(1260){sup +} a{sub 1}(1260){sup -} decays, with a{sub 1}(1260){sup {+-}} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup {+-}}. The data sample, collected with the BABAR detector at the SLAC National Accelerator Laboratory, represents 465 x 10{sup 6} produced B{bar B} pairs. They measure {Beta}(B{sup 0} {yields} a{sub 1}(1260){sup +} a{sub 1}(1260){sup -}) x [{Beta}(a{sub 1}(1260){sup +} {yields} {pi}{sup -}{pi}{sup +}{pi}{sup +})]{sup 2} = (11.8 {+-} 2.6 {+-} 1.6) x 10{sup -6} and f{sub L} = 0.31 {+-} 0.22 {+-} 0.10, where the first uncertainty is statistical and the second systematic. The decay mode is measured with a significance of 5.0 standard deviations including systematic uncertainties.
Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G. /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison
2009-10-30
We report measurements of the branching fractions of neutral and charged B meson decays to final states containing a K{sub 1}(1270) or K{sub 1}(1400) meson and a charged pion. The data, collected with the BABAR detector at the SLAC National Accelerator Laboratory, correspond to 454 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation. We measure the branching fractions {Beta}(B{sup 0} {yields} K{sub 1}(1270){sup +}{pi}{sup -} + K{sub 1}(1400){sup +}{pi}{sup -}) = 3.1{sub 0.7}{sup +0.8} x 10{sup -5} and {Beta}(B{sup +} {yields} K{sub 1}(1270){sup 0}{pi}{sup +} + K{sub 1}(1400){sup 0}{pi}{sup +}) = 2.9{sub -1.7}{sup +2.9} x 10{sup -5} (< 8.2 x 10{sup -5} at 90% confidence level), where the errors are statistical and systematic combined. The B{sup 0} decay mode is observed with a significance of 7.5{sigma}, while a significance of 3.2{sigma} is obtained for the B{sup +} decay mode. Based on these results, we estimate the weak phase {alpha} = (79 {+-} 7 {+-} 11){sup o} from the time dependent CP asymmetries in B{sup 0} {yields} a{sub 1}(1260){sup {+-}}{pi}{sup {-+}} decays.
NASA Astrophysics Data System (ADS)
Chen, Kan; Pang, Cheng-Qun; Liu, Xiang; Matsuki, Takayuki
2015-04-01
Inspired by the abundant experimental observation of axial-vector states, we study whether the observed axial-vector states can be categorized into the conventional axial-vector meson family. In this paper we carry out an analysis based on the mass spectra and two-body Okubo-Zweig-Iizuka-allowed decays. Besides testing the possible axial-vector meson assignments, we also predict abundant information for their decays and the properties of some missing axial-vector mesons, which are valuable for further experimental exploration of the observed and predicted axial-vector mesons.
Search for the photo-excitation of exotic mesons in the pi+pi+pi- system
Nozar, Mina; Salgado, Carlos; Weygand, Dennis; Guo, Lei
2009-01-01
A search for exotic mesons in the $\\pi^{+}\\pi^{+}\\pi^{-}$ system photoproduced by the charge exchange reaction $\\gamma p\\to \\pi^{+}\\pi^{+}\\pi^{-}(n)$ was carried out by the CLAS collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.4 GeV range, produced through bremsstrahlung from a 5.744 GeV electron beam, was incident on a liquid-hydrogen target. A Partial Wave Analysis (PWA) was performed on a sample of 83,000 events, the highest such statistics to date in this reaction at these energies. The main objective of this study was to look for the photoproduction of an exotic $J^{PC} = 1^{-+}$ resonant state in the 1 to 2 GeV mass range. Our PWA analysis, based on the isobar model, shows production of the $a_{2}(1320)$ and the $\\pi_{2}(1670)$ mesons, but no evidence for the $a_{1}(1260)$, nor the $\\pi_{1}(1600)$ exotic state at the expected levels. An upper limit of 13.5 nb is determined for the exotic $\\pi_1(1600)$ cross section, less than 2% of the $a_2(1320)
Search for the photoexcitation of exotic mesons in the pi+pi+pi- system.
Nozar, M; Salgado, C; Weygand, D P; Guo, L; Adams, G; Li, Ji; Eugenio, P; Amaryan, M J; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bonner, B E; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Casey, L; Cazes, A; Chen, S; Cheng, L; Cole, P L; Collins, P; Coltharp, P; Cords, D; Corvisiero, P; Crabb, D; Crannell, H; Crede, V; Cummings, J P; Dale, D; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dhuga, K S; Dickson, R; Djalali, C; Dodge, G E; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Fatemi, R; Fedotov, G; Feuerbach, R J; Forest, T A; Fradi, A; Funsten, H; Garçon, M; Gavalian, G; Gevorgyan, N; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gothe, R W; Griffioen, K A; Guidal, M; Guillo, M; Guler, N; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hanretty, C; Hardie, J; Hassall, N; Heddle, D; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Juengst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Kossov, M; Krahn, Z; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Livingston, K; Lu, H Y; Maccormick, M; Markov, N; Mattione, P; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Mirazita, M; Miskimen, R; Mokeev, V; Moreno, B; Moriya, K; Morrow, S A; Moteabbed, M; Mueller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Nasseripour, R; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; O'Rielly, G V; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Philips, S A; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Polli, E; Popa, I; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Qin, L M; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Rubin, P D; Sabatié, F; Salamanca, J; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Sharov, D; Shvedunov, N V; Skabelin, A V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Thoma, U; Tkabladze, A; Tkachenko, S; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Williams, M; Wolin, E; Wood, M H; Yegneswaran, A; Zana, L; Zhang, J; Zhao, B; Zhao, Z W
2009-03-13
A search for exotic mesons in the pi;{+}pi;{+}pi;{-} system photoproduced by the charge exchange reaction gammap-->pi;{+}pi;{+}pi;{-}(n) was carried out by the CLAS Collaboration at Jefferson Lab. A tagged-photon beam with energies in the 4.8 to 5.4 GeV range, produced through bremsstrahlung from a 5.744 GeV electron beam, was incident on a liquid-hydrogen target. A partial wave analysis was performed on a sample of 83 000 events, the highest such statistics to date in this reaction at these energies. The main objective of this study was to look for the photoproduction of an exotic J;{PC}=1;{-+} resonant state in the 1 to 2 GeV mass range. Our partial wave analysis shows production of the a_{2}(1320) and the pi_{2}(1670) mesons, but no evidence for the a_{1}(1260), nor the pi_{1}(1600) exotic state at the expected levels. An upper limit of 13.5 nb is determined for the exotic pi_{1}(1600) cross section, less than 2% of the a_{2}(1320) production.
Butler, J.N.; Shukla, S.
1995-05-01
The experimental status of excited charmed mesons is reviewed and is compared to theoretical expectations. Six states have been observed and their properties are consistent with those predicted for excited charmed states with orbital angular momentum equal to one.
Vector meson dominance and the {rho} meson
Benayoun, M.; OConnell, H.B.; Williams, A.G.
1999-04-01
We discuss the properties of vector mesons, in particular the {rho}{sup 0}, in the context of the hidden local symmetry (HLS) model. This provides a unified framework to study several aspects of the low energy QCD sector. First, we show that in the HLS model the physical photon is massless, without requiring off field diagonalization. We then demonstrate the equivalence of HLS and the two existing representations of vector meson dominance, VMD1 and VMD2, at both the tree level and one loop order. Finally the S matrix pole position is shown to provide a model and process independent means of specifying the {rho} mass and width, in contrast with the real axis prescription currently used in the Particle Data Group tables. {copyright} {ital 1999} {ital The American Physical Society}
Liu Yunhu; Shao Jianxin; Wang Xiaogang; Zhang Ziying; Li Demin
2008-02-01
Based on the main assumption that the D{sub sJ}(2860) belongs to the 2{sup 3}P{sub 0} qq multiplet, the masses of the scalar meson nonet are estimated in the framework of the relativistic independent quark model, Regge phenomenology, and meson-meson mixing. We suggest that the a{sub 0}(1005), K{sub 0}*(1062), f{sub 0}(1103), and f{sub 0}(564) constitute the ground scalar meson nonet; it is supposed that these states would likely correspond to the observed states a{sub 0}(980), {kappa}(900), f{sub 0}(980), and f{sub 0}(600)/{sigma}, respectively. Also a{sub 0}(1516), K{sub 0}*(1669), f{sub 0}(1788), and f{sub 0}(1284) constitute the first radial scalar meson nonet, it is supposed that these states would likely correspond to the observed states a{sub 0}(1450), K{sub 0}*(1430), f{sub 0}(1710), and f{sub 0}(1370), respectively. The scalar state f{sub 0}(1500) may be a good candidate for the ground scalar glueball. The agreement between the present findings and those given by other different approaches is satisfactory.
NASA Astrophysics Data System (ADS)
Eugenio, Paul
2016-03-01
tudies of meson spectra via strong decays provide insight regarding QCD at the confinement scale. These studies have led to phenomenological models for QCD such as the constituent quark model. However, QCD allows for a much richer spectrum of meson states which include extra states such as hybrids, exotics, multi-quarks, and glueballs. Within the past two decades a number of experiments have put forth tantalizing evidence for the existence of light quark exotic hybrid mesons in the mass range below 2 GeV . Recent Lattice QCD calculations of the light-quark meson spectrum indicate a constituent gluon-like excitation contributing an additional JPC =1+- and mass 1 - 1 . 5 GeV resulting in the lightest hybrid nonets with masses near 2 . 0 GeV . High statistical yields from recent experiments along with new advances in analysis techniques have shed a new light towards the understanding the latest experimental exotic candidates. Recent results from hadro-production and photo-production will be presented followed by an overview of ongoing and future efforts to search for light exotic mesons.
B Decays Involving Light Mesons
Eschrich, Ivo Gough; /UC, Irvine
2007-01-09
Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.
B meson decays into charmless pseudoscalar scalar mesons
Delepine, D.; Lucio M, J. L.; Ramirez, Carlos A.; Mendoza S, J. A.
2007-06-19
The nonleptonic weak decays of meson B into a scalar and pseudoscalar meson are studied. The scalar mesons under consideration are {sigma} (or f0(600)), f0(980), a0(980) and K{sub 0}{sup *}(1430). We calculate the Branching ratios in the Naive Factorization approximation. Scalars are assumed to be qq-bar bounded sates, but an estimation can be obtained in the case they are four bounded states.
Bianco, Stefano
2006-02-11
The scenario of heavy quark meson spectroscopy underwent recently a major revolution, after the observation of BABAR and CLEO, confirmed by BELLE, of DsJ L=1 excited states, and by further evidences by SELEX. These experimental results have cast doubts on the incarnations of the ideas of Heavy Quark Effective Theory in heavy quark spectroscopy. I shall review the status of experimental data, discuss implications and sketch an outlook.
NASA Astrophysics Data System (ADS)
Minkowski, Peter; Ochs, Wolfgang
2004-06-01
The existence of glueballs is predicted in QCD, the lightest one with quantum numbers JPC = 0++, but different calculations do not well agree on its mass in the range below 1800 MeV. Several theoretical schemes have been proposed to cope with the experimental data which often have considerable uncertainties. Further experimental studies of the scalar meson sector are therefore important and we discuss recent proposals to study leading clusters in gluon jets and charmless B-decays to serve this purpose.
NASA Astrophysics Data System (ADS)
Albrecht, H.; Binder, U.; Böckmann, P.; Gläser, R.; Harder, G.; Lembke-Koppitz, I.; Schmidt-Parzefall, W.; Schröder, H.; Schulz, H. D.; Wurth, R.; Yagil, A.; Donker, J. P.; Drescher, A.; Kamp, D.; Matthiesen, U.; Scheck, H.; Spaan, B.; Spengler, J.; Wegener, D.; Gabriel, J. C.; Schubert, K. R.; Stiewe, J.; Strahl, K.; Waldi, R.; Weseler, S.; Edwards, K. W.; Frisken, W. R.; Gilkinson, D. J.; Gingrich, D. M.; Kapitza, H.; Kim, P. C. H.; Kutschke, R.; Macfarlane, D. B.; McKenna, J. A.; McLean, K. W.; Nilsson, A. W.; Orr, R. S.; Padley, P.; Parsons, J. A.; Patel, P. M.; Prentice, J. D.; Seywerd, H. C. J.; Swain, J. D.; Tsipolitis, G.; Yoon, T.-S.; Yun, J. C.; Ammar, R.; Coppage, D.; Davis, R.; Kanekal, S.; Kwak, N.; Boštjančič, B.; Kernel, G.; Pleško, M.; Jönsson, L.; Babaev, A.; Danilov, M.; Golutvin, A.; Gorelov, I.; Lubimov, V.; Matveev, V.; Nagovitsin, V.; Ryltsov, V.; Semenov, A.; Shevchenko, V.; Soloshenko, V.; Tchistilin, V.; Tichomirov, I.; Zaitzev, Yu.; Childers, R.; Darden, C. W.; Oku, Y.; Gennow, H.; Argus Collaboration
1987-02-01
B mesons have been reconstructed in five decay channels of the type B→D ∗±nπ(n=1,2,3) using data accumulated by the ARGUS experiment at the e +e - storage ring DORIS II at DESY. In total, we find 40 neutral B mesons above a background of 15±6 events with a mass of (5278.2±1.0±3.0) MeV/ c2 and 32 charged B mesons above a background of 17±6 events with a mass of (5275.8±1.3±3.0) MeV/ c2. The decays overlineB0D∗+π -π 0, overlineB0D∗+π -π -π +, and B-→ D∗+π -π -π 0 have been observed for the first time. We find substantially smaller branching ratios for the decay modes overlineB0→ D∗+π - and B-→ D∗+π -π - than previously published by the CLEO collaboration.
Chiral dynamics of a1(1260) → 3π
NASA Astrophysics Data System (ADS)
Tegen, R.; Greiner, W.
2003-06-01
We calculate the sequential decays a1 rightarrow pisigma rightarrow 3pi and a1 rightarrow pirho rightarrow 3pi using chiral SU(2) otimes SU(2) current commutation relations. Proper vertices a1pisigma, sigmapipi, a1pirho, rhopipi are derived from Ward identities and yield energy-dependent decay widths Gammarhorightarrowpipi and Gammasigmarightarrowpipi necessary for the total Gammaa1rightarrow3pi decay width. Both sequential decays (via pisigma and pirho) are necessary to reproduce Gammatota1. We find evidence for a substantial quenching of the sigma rightarrow pipi decay width in a1 rightarrow pisigma rightarrow 3pi.
Rare B Meson Decays With Omega Mesons
Zhang, Lei; /Colorado U.
2006-04-24
Rare charmless hadronic B decays are particularly interesting because of their importance in understanding the CP violation, which is essential to explain the matter-antimatter asymmetry in our universe, and of their roles in testing the ''effective'' theory of B physics. The study has been done with the BABAR experiment, which is mainly designed for the study of CP violation in the decays of neutral B mesons, and secondarily for rare processes that become accessible with the high luminosity of the PEP-II B Factory. In a sample of 89 million produced B{bar B} pairs on the BABAR experiment, we observed the decays B{sup 0} {yields} {omega}K{sup 0} and B{sup +} {yields} {omega}{rho}{sup +} for the first time, made more precise measurements for B{sup +} {yields} {omega}h{sup +} and reported tighter upper limits for B {yields} {omega}K* and B{sup 0} {yields} {omega}{rho}{sup 0}.
The light meson spectroscopy program
Smith, Elton S.
2014-06-01
Recent discoveries of a number of unexpected new charmomium-like meson states at the BaBar and Belle B-factories have demonstrated how little is still known about meson spectroscopy. In this talk we will review recent highlights of the light quark spectroscopy from collider and fixed target experiments.
Meson Resonances from Lattice QCD
Edwards, Robert G.
2016-06-01
There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems.
Meson resonances on the lattice
Edwards, Robert G.
2016-06-01
There has been recent, significant, advances in the determination of the meson spectrum of QCD. Current efforts have focused on the development and application of finite-volume formalisms that allow for the determination of scattering amplitudes as well as resonance behavior in coupled channel systems. I will review some of these recent developments, and demonstrate the viability of the method in meson systems
Exotic meson spectroscopy with CLAS
Adams, G.; Napolitano, J.
1994-04-01
The identification and study of mesons with explicit gluonic degrees of freedom will provide major constraints on nonperturbative QCD and models thereof. CLAS will provide a unique opportunity for studying these resonances by measuring photoproduction of multi-meson final states.
Physics opportunities with meson beams
Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.
2015-10-20
Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.
Physics opportunities with meson beams
NASA Astrophysics Data System (ADS)
Briscoe, William J.; Döring, Michael; Haberzettl, Helmut; Manley, D. Mark; Naruki, Megumi; Strakovsky, Igor I.; Swanson, Eric S.
2015-10-01
Over the past two decades, meson photo- and electroproduction data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even non-existent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledge in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state-of-the-art meson-beam facility needs to be constructed. The present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.
NASA Astrophysics Data System (ADS)
Hosaka, A.; Toki, H.; Weise, W.
1990-01-01
We investigate nucleon structure in a (non-linear) chiral bag model with vector mesons. The model incorporates two different degrees of freedom: mesons outside the bag at long and intermediate ranges, and quarks inside the bag at short distances. The ρ, a 1 and ω mesons outside the bag are included in a chiral effective lagrangian based on the non-linear sigma model. The classical solution is obtained using the hedgehog ansatz, and the cranking method is applied to construct the physical nucleon states. Static properties of the nucleon such as its mass, axial vector coupling constant, magnetic moments and charge radii are studied in detail as functions of the bag radius. Quark and meson contributions to these quantities are calculated separately. In particular, we discuss the extent to which the vector-meson dominance picture holds in the chiral bag.
Crowe, K.M.
1992-12-01
The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p{bar p} annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.
Crowe, K.M.
1992-01-01
The activities of this group are primarily concerned with experiments using the Crystal Barrel Detector. This detector is installed and operating at the Low Energy Antiproton Ring (LEAR) at CERN. QCD, the modem theory of the strong interaction, is reasonably well understood at high energies, but unfortunately, low-energy QCD is still not well understood, and is far from being adequately tested. The Crystal Barrel experiments are designed to provide some of the tests. The basic line of research involves meson spectroscopy, analyses bearing on the quark and/or gluon content of nuclear states, and the exploration of mechanisms and rules which govern p[bar p] annihilation dynamics. The Crystal Barrel Detector detects and identifies charged and neutral particles with a geometric acceptance close to 100%. The principal component of the detector is an array of 1,380 CsI(TI) crystals. These crystals surround a Jet Drift Chamber (JDC), located in a 1.5 Tesla magnetic field, which measures the momentum and dE/dx of charged particles. One of the very interesting physics goals of the detector is a search for exotic mesonic states -- glueballs and hybrids. Annihilation at rest will be studied with both liquid and gaseous hydrogen targets. The gaseous target offers the possibility of triggering on atomic L-shell X rays so that specific initial angular momentum states can be studied.These topics as well as other related topics are discussed in this report.
NASA Astrophysics Data System (ADS)
Schmieden, Hartmut; Klein, Friedrich
2017-01-01
B.1 is one of the experimental projects within the CRC16. It aims at the systematic investigation of the photoproduction of mesons off nucleons in order to understand reaction mechanisms and the relevant degrees of freedom in resonance formation. Of particular interest is the photoproduction of mesons heavier than the pion and resonances involving hidden or open strangeness. Essential hardware contributions have been made to the experimental programme of the CRC16 through tagging systems, and photon-beam polarisation and polarimetry. A new experiment has been set up within the framework of the BGO-OD collaboration. This combines a forward magnetic spectrometer with a central BGO calorimeter with charged particle recognition and identification. The BGO-OD experiment enables reconstruction of complex final states composed of both charged and neutral particles, complementary to the existing CBELSA/TAPS calorimeter which is optimised for multi-photon final states. Selected results of the 12-year CRC period are presented from both experiments.
NASA Astrophysics Data System (ADS)
Grube, Boris
2016-11-01
The goal of the COMPASS experiment at CERN is to study the structure and dynamics of hadrons. The two-stage spectrometer used by the experiment has large acceptance and covers a wide kinematic range for charged as well as neutral particles and can therefore measure a wide range of reactions. The spectroscopy of light mesons is performed with negative (mostly π-) and positive (p, π+) hadron beams with a momentum of 190 GeV/c. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer t to the target between 0.1 and 1.0 (GeV=c)2. The flagship channel is the π-π-π+ final state, for which COMPASS has recorded the currently world's largest data sample. These data not only allow to measure the properties of known resonances with high precision, but also to observe new states. Among these is a new axial-vector signal, the a1(1420), with unusual properties. Novel analysis techniques have been developed to extract also the amplitude of the π-π+ subsystem as a function of 3π mass from the data. The findings are confirmed by the analysis of the π-π0π0 final state.
Gabareen Mokhtar, Arafat; Olsen, Stephen Lars; /Seoul Natl. U.
2011-08-12
A brief review of the experimental situation concerning the electrically charged charmoniumlike meson candidates, Z{sup -}, is presented. The Belle Collaboration reported peaks in the {psi}{prime}{pi}{sup -} and {chi}{sub c1}{pi}{sup -} invariant mass distributions in B {yields} {psi}{prime}{pi}{sup -}K and B {yields} {chi}{sub c1}{pi}{sup -}K, respectively. If these peaks are meson resonances, they would have a minimal quark substructure of c{bar c}d{bar u} and be unmistakeably exotic. However, even though the Belle signals have more than 5{sigma} statistical significance, the experimental situation remains uncertain in that none of these peaks have yet been confirmed by other experiments. An analysis by the BABAR Collaboration of B {yields} {psi}{prime}{pi}{sup -}K neither confirms nor contradicts the Belle claim for the Z(4430){sup -} {yields} {psi}{prime}{pi}{sup -}. In the BABAR analysis, B {yields} J/{psi}{pi}{sup -}K decays were also studied, and no evidence for Z(4430){sup -} {yields} J/{psi}{pi}{sup -} was found. In this paper, we review and compare Belle and BABAR results on searches for charged charmonium-like states.
Thermal D mesons from anisotropic lattice QCD
NASA Astrophysics Data System (ADS)
Kelly, Aoife; Skullerud, Jon-Ivar
2017-03-01
We present results for correlators and spectral functions of open charm mesons using 2+1 flavours of clover fermions on anisotropic lattices. The D mesons are found to dissociate close to the deconfinement crossover temperature Tc. Our preliminary results suggest a shift in the thermal D meson mass below Tc. Mesons containing strange quarks exhibit smaller thermal modifications than those containing light quarks.
PSEUDOVECTOR MESONS, HYBRIDS AND GLUEBALLS
L. BURAKOVSKY; P. PAGE
2000-06-01
The authors consider glueball-(hybrid) meson mixing for the low-lying four pseudovector states. The h{sub 1}{prime}(1380) decays dominantly to K*K with some presence in {rho}{pi} and {omega}{eta}. The newly observed h{sub 1}(1600) has a D- to S-wave width ratio to {omega}{eta} which makes its interpretation as a conventional meson unlikely. They predict the decay pattern of the isopartner conventional or hybrid meson b{sub 1}(1650). A notably narrow s{bar s} partner h{sub 1}{prime}(1810) is predicted.
Meson physics in asymmetric matter
NASA Astrophysics Data System (ADS)
Mammarella, Andrea; Mannarelli, Massimo
2017-06-01
This paper describes dynamic and thermodynamic (at T = 0) properties of mesons in asymmetric matter in the framework of Chiral Perturbation Theory. We consider the effect of nonzero isospin and strangeness chemical potentials on a mesonic system and report on the corresponding phase diagram. We also study meson masses and mixing in the resulting normal phase, pion condensation phase and kaon condensation phase. We find differences with previous papers regarding meson masses and mixing in the condensed phases; the results presented here are supported by theory group analysis and direct calculations. Pressure, density and equation of state of the system at T = 0 and nonzero μI are calculated, finding remarkable agreement with analogue studies performed by lattice calculations.
Quantum electrodynamics for vector mesons.
Djukanovic, Dalibor; Schindler, Matthias R; Gegelia, Jambul; Scherer, Stefan
2005-07-01
Quantum electrodynamics for rho mesons is considered. It is shown that, at the tree level, the value of the gyromagnetic ratio of the rho+ is fixed to 2 in a self-consistent effective quantum field theory. Further, the mixing parameter of the photon and the neutral vector meson is equal to the ratio of electromagnetic and strong couplings, leading to the mass difference M(rho0)-M(rho+/-) approximately 1 MeV at tree order.
Lepton decay constants of light mesons
Simonov, Yu. A.
2016-05-15
A theory of lepton decay constants based on the path-integral formalism is given for chiral and vector mesons. Decay constants of the pseudoscalar and vector mesons are calculated and compared to other existing results.
Physics opportunities with meson beams
Briscoe, William J.; Doring, Michael; Haberzettl, Helmut; ...
2015-10-20
Over the past two decades, meson photo- and electro-production data of unprecedented quality and quantity have been measured at electromagnetic facilities worldwide. By contrast, the meson-beam data for the same hadronic final states are mostly outdated and largely of poor quality, or even nonexistent, and thus provide inadequate input to help interpret, analyze, and exploit the full potential of the new electromagnetic data. To reap the full benefit of the high-precision electromagnetic data, new high-statistics data from measurements with meson beams, with good angle and energy coverage for a wide range of reactions, are critically needed to advance our knowledgemore » in baryon and meson spectroscopy and other related areas of hadron physics. To address this situation, a state of-the-art meson-beam facility needs to be constructed. Furthermore, the present paper summarizes unresolved issues in hadron physics and outlines the vast opportunities and advances that only become possible with such a facility.« less
Search for rare B meson decays into D {/s +} mesons
NASA Astrophysics Data System (ADS)
Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Appuhn, R. D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Walther, A.; Wegener, D.; Bittner, M.; Eckstein, P.; Paulini, M. G.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Schmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Chechelnitsky, S.; Danilov, M.; Droutskoy, A.; Gershtein, Yu.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.
1993-03-01
A search has been performed for rare B meson decays into D {/s -} mesons arising from b→ u transitions, W exchange modes, B + annihilation processes, and decays where the D {/s +} is not produced via a W→ c bar s quark pair coupling, using the ARGUS detector operating on the Ψ(4 S) resonance at the e + e - storage ring DORIS II. Upper limits for individual decay modes are obtained. In addition, from a study of D {/s +}ℓ- correlations an upper limit of BR ( B→ D {/s +}ℓ- X) (90% CL) is determined.
Heavy-light mesons and chiral symmetry
Bardeen, William A.; /Fermilab
2008-04-01
The chiral structure of heavy-light mesons is explored with a particular focus on the nature of the D{sub sJ} charmed mesons. Theoretical predictions for the hadronic and radiative decays of these mesons are compared to recent experimental data.
Medium Modification of Vector Mesons
Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour
2011-03-01
The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.
Spectral functions of scalar mesons
NASA Astrophysics Data System (ADS)
Giacosa, Francesco; Pagliara, Giuseppe
2007-12-01
In this work we study the spectral functions of scalar mesons in one- and two-channel cases by using nonlocal interaction Lagrangian(s). When the propagators satisfy the Källen-Lehman representation, a normalized spectral function is obtained, allowing one to take into account finite-width effects in the evaluation of decay rates. In the one-channel case, suitable to the light σ and k mesons, the spectral function can deviate consistently from a Breit-Wigner shape. In the two-channel case with one subthreshold channel, the evaluated spectral function is well approximated by a Flatté distribution; when applying the study to the a0(980) and f0(980) mesons, the tree-level forbidden KK decay is analyzed.
Meson spectroscopy with unitary coupled-channels model for heavy-meson decay into three mesons
Satoshi Nakamura
2012-04-01
We develop a model for describing excited mesons decay into three mesons. The properties of the excited mesons can be extracted with this model. The model maintains the three-body unitarity that has been missed in previous data analyses based on the conventional isobar models. We study an importance of the three-body unitarity in extracting hadron properties from data. For this purpose, we use the unitary and isobar models to analyze the same pseudo data of {gamma}p {yields} {pi}{sup +}{pi}{sup +}{pi}{sup -}n, and extract the properties of excited mesons. We find a significant difference between the unitary and isobar models in the extracted properties of excited mesons, such as the mass, width and coupling strength to decay channels. Hadron properties such as quantum numbers (spin, parity, etc.), mass and (partial) width have been long studied as a subject called hadron spectroscopy. The hadron properties provide important information for understanding internal structure of the hadron and dynamics which governs it. The dynamics here is of course QCD in its nonperturbative regime. The hadron properties can be extracted from data through a careful analysis, in many cases, partial wave analysis (PWA). Thus it is essential for hadron spectroscopy to have a reliable theoretical analysis tool.
Pentaquark implications for exotic mesons
T. Burns; F.E. Close; J.J. Dudek
2004-11-01
If the exotic baryon {Theta}{sup +}(1540) is a correlated udud{bar s} with J{sup P} = 1/2{sup +}, then there should exist an exotic meson, J{sup P} = 1{sup -} {var_theta}{sup +} (S = +2) {yields} K{sup +}K{sup 0} {approx} 1.6 GeV with width {Omicron}(10-100)MeV. The {pi}{sub 1} (1400;1600) may be broad members of 10 {+-} {ovr 10} in such a picture. Vector mesons in the 1.4 - 1.7 GeV mass range are also compared with this picture.
NASA Astrophysics Data System (ADS)
Godfrey, Stephen; Moats, Kenneth; Swanson, Eric S.
2016-09-01
Properties of bottom and bottom-strange mesons are computed in two relativized quark models. Model masses and wave functions are used to predict radiative transition rates, and the 3P0 quark pair creation model is used to compute strong decay widths. A comparison to recently observed bottom and bottom-strange states is made. We find that there are numerous excited B and Bs mesons that have relatively narrow widths and significant branching ratios to simple final states such as B π , B*π , B K , and B*K that could be observed in the near future.
NASA Astrophysics Data System (ADS)
Maiani, L.; Piccinini, F.; Polosa, A. D.; Riquer, V.
2004-11-01
Light scalar mesons are found to fit rather well a diquark-antidiquark description. The resulting nonet obeys mass formulas which respect, to a good extent, the Okubo-Zweig-Iizuka (OZI) rule. OZI allowed strong decays are reasonably reproduced by a single amplitude describing the switch of a qq¯ pair, which transforms the state into two colorless pseudoscalar mesons. Predicted heavy states with one or more quarks replaced by charm or beauty are briefly described; they should give rise to narrow states with exotic quantum numbers.
NASA Astrophysics Data System (ADS)
Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Frankl, C.; Reßing, D.; Schmidtler, M.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Belyaev, I.; Schechelnitsky, S.; Danilov, M.; Doutskoy, A.; Gershtein, Yu.; Golutvin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Lubimov, V.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.
1995-06-01
Using the ARGUS detector at the storage ring DORIS II we have measured τ decays into three charged mesons containing K * mesons. Exploiting the good particle identification capabilities of the detector we have determined the following branching ratios:Brleft( {tau ^ - to overline {K^{*0} } π ^ - v_tau } right) = left( {0.25 ± 0.10 ± 0.05} right)% , B r (τ-→ K *0 K - v τ)= (0.20±0.05±0.04)%, and B r (τ-→ K *- X 0 v τ) =(1.15±0.15-0.18 +0.13)%.
Maiani, L; Piccinini, F; Polosa, A D; Riquer, V
2004-11-19
Light scalar mesons are found to fit rather well a diquark-antidiquark description. The resulting nonet obeys mass formulas which respect, to a good extent, the Okubo-Zweig-Iizuka (OZI) rule. OZI allowed strong decays are reasonably reproduced by a single amplitude describing the switch of a qq pair, which transforms the state into two colorless pseudoscalar mesons. Predicted heavy states with one or more quarks replaced by charm or beauty are briefly described; they should give rise to narrow states with exotic quantum numbers.
Theoretical overview: The New mesons
Quigg, Chris; /Fermilab
2004-11-01
After commenting on the state of contemporary hadronic physics and spectroscopy, I highlight four areas where the action is: searching for the relevant degrees of freedom, mesons with beauty and charm, chiral symmetry and the D{sub sJ} levels, and X(3872) and the lost tribes of charmonium.
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.; Gelman, Boris A.; Nussinov, Shmuel
2004-01-01
We show that under a number of rather plausible assumptions QCD spectrum may contain a number of mesons which have not been predicted or observed. Such states will have the quantum numbers of two existing mesons and masses very close to the dissociation threshold into the two mesons. Moreover, at least one of the two mesonic constituents itself must be very close to its dissociation threshold. In particular, one might expect the existence of loosely bound systems of D and D∗sJ(2317); similarly, K and f0(980), K¯ and f0(980), K and a0(980) and K¯ and a0(980) can be bound. The mechanism for binding in these cases is the S-wave kaon exchange. The nearness of one of the constituents to its decay threshold into a kaon plus a remainder, implies that the range of the kaon exchange force becomes abnormally long—significantly longer than 1/mK which greatly aids the binding.
Exclusive meson production at HERMES
NASA Astrophysics Data System (ADS)
Vandenbroucke, A.
2005-10-01
Generalized Parton Distributions (GPDs) provide a new level of insight into the quark structure of the nucleon. Experimentally they can be probed by hard exclusive electroproduction of both scalar and vector mesons. Results for the cross section for the reaction ep → enπ+, and a first result for the asymmetry AUT for exclusive ρ0 production are presented.
Vector meson electroproduction in QCD
NASA Astrophysics Data System (ADS)
Lu, Juan; Cai, Xian-Hao; Zhou, Li-Juan
2012-08-01
Based on the generalized QCD vector meson dominance model, we study the electroproduction of a vector meson off a proton in the QCD inspired eikonalized model. Numerical calculations for the total cross section σtot and differential cross section dσ/dt are performed for ρ, ω and varphi meson electroproduction in this paper. Since gluons interact among themselves (self-interaction), two gluons can form a glueball with quantum numbers IG, JPC = 0+,2++, decay width Γt ≈ 100 MeV, and mass of mG = 2.23 GeV. The three gluons can form a three-gluon colorless bound state with charge conjugation quantum number C = -1, called the Odderon. The mediators of interactions between projectiles (the quark and antiquark pair fluctuated from the virtual photon) and the proton target (a three-quark system) are the tensor glueball and the Odderon. Our calculated results in the tensor glueball and Odderon exchange model fit to the existing data successfully, which evidently shows that our present QCD mechanism is a good description of meson electroproduction off a proton. It should be emphasized that our mechanism is different from the theoretical framework of Block et al. We also believe that the present study and its success are important for the investigation of other vector meson electro- and photoproduction at high energies, as well as for searching for new particles such as tensor glueballs and Odderons, which have been predicted by QCD and the color glass condensate model (CGC). Therefore, in return, it can test the validity of QCD and the CGC model.
Meson Photoproduction Experiments with CLAS
Eugene Pasyuk
2012-12-01
A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to light baryon spectroscopy. Meson photoprodcution experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams and frozen spin polarized targets provide unique conditions for this type of experiments. This combination of experimental tools gives a remarkable opportunity to measure double polarization observables for different pseudo-scalar meson photoproduction processes. For the first time, a complete or nearly complete measurement became possible and will facilitate model independent extraction of the reaction amplitude. An overview of the experimental program and its current status together with recent results on double polarization measurements in π{sup +} photoproduction are presented.
NASA Astrophysics Data System (ADS)
Cuautle, Eleazar; Ayala, Alejandro
2014-05-01
We present a model to compute baryon and meson transverse momentum distributions, and their ratios, in relativistic heavy-ion collisions. The model allows to compute the probability to form colorless bound states of either two or three quarks as functions of the evolving density during the collision. The qualitative differences of the baryon to meson ratio for different collision energies and for different particle species can be associated to the different density dependent probabilities and to the combinatorial factors which in turn depend on whether the quarks forming the bound states are heavy or light. We compare to experimental data and show that we obtain a good description up to intermediate values of pt.
NASA Astrophysics Data System (ADS)
Cobos-Martínez, J. J.; Tsushima, K.; Krein, G.; Thomas, A. W.
2017-09-01
ϕ -meson-nucleus bound state energies and absorption widths are calculated for seven selected nuclei by solving the Klein-Gordon equation with complex optical potentials. Essential input for the calculations, namely the medium-modified K and K ¯ meson masses, as well as the density distributions in nuclei, are obtained from the quark-meson coupling model. The attractive potential for the ϕ meson in the nuclear medium originates from the in-medium enhanced K K ¯ loop in the ϕ -meson self-energy. The results suggest that the ϕ meson should form bound states with all the nuclei considered. However, the identification of the signal for these predicted bound states will need careful investigation because of their sizable absorption widths.
Pentaquarks and strange tetraquark mesons
NASA Astrophysics Data System (ADS)
Anisovich, V. V.; Matveev, M. A.; Sarantsev, A. V.; Semenova, A. N.
2015-11-01
We consider the interplay of the pentaquark states and strange tetraquark states in the decay Λb0 → K-J/ψp. Possible existence of (csc¯ū)-states is taken up and their manifestation in the K-J/ψ-channel is discussed. It is emphasized that these exotic mesons can imitate broad bumps in the pJ/ψ-channel.
Theory of {tau} mesonic decays
Li, B.A.
1997-02-01
Studies of {tau} mesonic decays are presented. A mechanism for the axial-vector current at low energies is proposed. The VMD is used to treat the vector current. All the meson vertices of both normal parity and abnormal parity (Wess-Zumino-Witten anomaly) are obtained from an effective chiral theory of mesons. a{sub 1} dominance is found in the decay modes of the {tau} lepton: 3{pi}, f(1285){pi}. Both the {rho} and the a{sub 1} meson contribute to the decay {tau}{r_arrow}K{sup {asterisk}}K{nu}; it is found that the vector current is dominant. CVC is tested by studying e{sup +}e{sup {minus}}{r_arrow}{pi}{sup +}{pi}{sup {minus}}. The branching ratios of {tau}{r_arrow}{omega}{pi}{nu} and K{bar K}{nu} are calculated. In terms of a similar mechanism the {Delta}s=1 decay modes of the {tau} lepton are studied and K{sub a} dominance is found in {tau}{r_arrow}K{sup {asterisk}}{pi}{nu} and K{sup {asterisk}}{eta}{nu}. The suppression of {tau}{r_arrow}K{rho}{nu} is revealed. The branching ratio of {tau}{r_arrow}{eta}K{nu} is computed. As a test of this theory, the form factors of {pi}{r_arrow}e{gamma}{nu} and K{r_arrow}e{gamma}{nu} are determined. The theoretical results agree with data reasonably well. {copyright} {ital 1997} {ital The American Physical Society}
In-medium properties of mesons
NASA Astrophysics Data System (ADS)
Metag, Volker; Nanova, Mariana; Brinkmann, Kai-Thomas
2017-01-01
In the project B.4, the modification of meson properties (mass, width) in a nuclear medium has been studied in photoproduction of mesons off nuclear targets. This work has been motivated by theoretical expectations of in-medium modifications of hadrons based on the conjecture of a partial restoration of chiral symmetry in a strongly interacting medium. It has been shown that these in-medium changes can be discussed in a compact form in terms of an optical potential describing the meson-nucleus interaction. Experimental approaches to determine the real and imaginary part of the meson-nucleus potential have been developed. The experiments have been performed with the Crystal Barrel/TAPS detector at the electron accelerator ELSA (Bonn) and the Crystal Ball/TAPS detector at MAMI (Mainz). Measuring the excitation function and momentum distribution for photo production of ω and η' mesons, the real parts of the ω and η'-nucleus potential, given by the in-medium mass shift, have been determined. For the η' meson a lowering of the mass at normal nuclear matter density by -(39±7(stat)±15(syst)) MeV is observed, while for the ω meson a slightly smaller mass shift is found, however, with much larger uncertainties, not excluding a zero mass shift. The imaginary part of the potentials has been extracted from the measurement of the transparency ratio which compares the meson production cross section per nucleon within a nucleus to the production cross section off the free proton. For the η' meson the imaginary part of the potential is found to be smaller than the real part. In case of the ω meson the opposite is observed. This makes the η' meson a good candidate for the search for meson-nucleus bound states while no resolved ω mesic states can be expected. The results are compared with theoretical predictions. An outlook on future experiments is given.
Meson Spectroscopy at CLAS and CLAS12
Carlos Salgado
2011-10-01
We report on meson spectroscopy using the CLAS at Jefferson Lab. We study photo-production of exotic mesons and strangeonia on the largest data sample ever to be produced at photon energies of about 5 GeV. We also describe an experiment to continue meson spectroscopy at CLAS12 (CLAS energy upgrade) using electroproduction at very low Q2 ('quasireal photons') up to photon energies of 10 GeV.
Some recent results on meson spectroscopy
Chung, S.U.
1987-06-01
A comparative survey of established meson states with the predictions of a q anti q (quarkonium) model by Godfrey and Isgur shows that most meson states are well described, from pion to UPSILON(6S). However, a number of states in the light- quark isoscalar sector are not predicted at all in their model, pointing to a need for glueballs, hybrids and multi-quark states to fully account for recently reported meson states. 48 refs.
Confirmation of the sigma meson
Toernqvist, N.A.; Roos, M.
1996-03-01
A very general model and an analysis of data on the lightest 0{sup ++} meson nonet shows that the {ital f}{sub 0}(980) and {ital f}{sub 0}(1300) resonance poles are two manifestations of the same {bar {ital ss}} state. On the other hand, the {bar {ital uu}}+{bar {ital dd}} state, when unitarized and strongly distorted by hadronic mass shifts, becomes an extremely broad (880 MeV) and light (860 MeV) resonance, with its pole at {ital s}=0.158{minus}{ital i}0.235 GeV{sup 2}. This is the {sigma} meson required by models for spontaneous breaking of chiral symmetry. It has been named the Higgs meson of QCD, because it generates most of the light hadron masses. It dominates {pi}{pi} scattering below 900 MeV and it is also the resonance required by nuclear physics. {copyright} {ital 1996 The American Physical Society.}
Exotic mesons in quenched lattice QCD
Bernard, C.; Hetrick, J.E.; DeGrand, T.A.; Wingate, M.; DeTar, C.; McNeile, C. |; Gottlieb, S.; Heller, U.M.; Rummukainen, K.; Sugar, B.; Toussaint, D. |
1997-12-01
Since gluons in QCD are interacting fundamental constituents just as quarks are, we expect that in addition to mesons made from a quark and an antiquark, there should also be glueballs and hybrids (bound states of quarks, antiquarks, and gluons). In general, these states would mix strongly with the conventional {bar q}q mesons. However, they can also have exotic quantum numbers inaccessible to {bar q}q mesons. Confirmation of such states would give information on the role of {open_quotes}dynamical{close_quotes} color in low energy QCD. In the quenched approximation we present a lattice calculation of the masses of mesons with exotic quantum numbers. These hybrid mesons can mix with four quark ({bar q}{bar q}qq) states. The quenched approximation partially suppresses this mixing. Nonetheless, our hybrid interpolating fields also couple to four quark states. Using a four-quark source operator, we demonstrate this mixing for the 1{sup {minus}+} meson. Using the conventional Wilson quark action, we calculate both at reasonably light quark masses, intending to extrapolate to small quark mass, and near the charmed quark mass, where we calculate the masses of some {bar c}cg hybrid mesons. The hybrid meson masses are large {emdash} over 4 GeV for charmonium and more than twice the vector meson mass at our smallest quark mass, which is near the strange quark mass. {copyright} {ital 1997} {ital The American Physical Society}
Meson-photon transition form factors
Balakireva, Irina; Lucha, Wolfgang; Melikhov, Dmitri
2012-10-23
We present the results of our recent analysis of the meson-photon transition form factors F{sub P{gamma}}(Q{sup 2}) for the pseudoscalar mesons P {pi}{sup 0},{eta},{eta} Prime ,{eta}{sub c}, using the local-duality version of QCD sum rules.
NASA Astrophysics Data System (ADS)
Roe, Natalie A.
2001-04-01
Our world manifestly violates CP, the symmetry between matter and antimatter; there is no observational evidence for any significant amount of antimatter in the Universe. Andrei Sakharov was the first to point out that, in the context of Big Bang theory, a matter-dominated universe requires CP violation at the quantum level. Indeed, CP violation was subsequently observed as a tiny effect in K-meson decays, and it can be naturally accommodated in the Standard Model of fundamental particles with 3 generations of quarks. However, to produce the observed baryon asymmetry, baryogenesis calculations require more CP violation than the Standard Model affords. This is an intriguing puzzle whose solution will require input from both particle physics and cosmology, and it has inspired particle physicists to study CP violation with greater precision in a new generation of experiments. We are now entering this exciting new era in CP violation studies. Several new or upgraded experiments plan a program of detailed measurements of CP violating effects in B mesons. The predicted asymmetries are large, observable in a variety of decay channels, and the theoretical uncertainties are small for the best modes. Some interesting experimental results have recently been announced, and more precise measurements will soon follow. Future experiments are already planned to make even more definitive measurements. In this talk I will review the theoretical predictions and the connection to cosmology, survey the experimental scene, and describe how the study of CP violation in B mesons will allow us to make stringent tests of the Standard Model.
Status of chiral meson physics
Bijnens, Johan
2016-01-22
This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.
Meson Production and Space Radiation
NASA Astrophysics Data System (ADS)
Norbury, John; Blattnig, Steve; Norman, Ryan; Aghara, Sukesh
Protecting astronauts from the harmful effects of space radiation is an important priority for long duration space flight. The National Council on Radiation Protection (NCRP) has recently recommended that pion and other mesons should be included in space radiation transport codes, especially in connection with the Martian atmosphere. In an interesting accident of nature, the galactic cosmic ray spectrum has its peak intensity near the pion production threshold. The Boltzmann transport equation is structured in such a way that particle production cross sec-tions are multiplied by particle flux. Therefore, the peak of the incident flux of the galactic cosmic ray spectrum is more important than other regions of the spectrum and cross sections near the peak are enhanced. This happens with pion cross sections. The MCNPX Monte-Carlo transport code now has the capability of transporting heavy ions, and by using a galactic cosmic ray spectrum as input, recent work has shown that pions contribute about twenty percent of the dose from galactic cosmic rays behind a shield of 20 g/cm2 aluminum and 30 g/cm2 water. It is therefore important to include pion and other hadron production in transport codes designed for space radiation studies, such as HZETRN. The status of experimental hadron production data for energies relevant to space radiation will be reviewed, as well as the predictive capa-bilities of current theoretical hadron production cross section and space radiation transport models. Charged pions decay into muons and neutrinos, and neutral pions decay into photons. An electromagnetic cascade is produced as these particles build up in a material. The cascade and transport of pions, muons, electrons and photons will be discussed as they relate to space radiation. The importance of other hadrons, such as kaons, eta mesons and antiprotons will be considered as well. Efficient methods for calculating cross sections for meson production in nucleon-nucleon and nucleus
Vector meson condensation in a pion superfluid
NASA Astrophysics Data System (ADS)
Brauner, Tomáš; Huang, Xu-Guang
2016-11-01
We revisit the suggestion that charged ρ -mesons undergo Bose-Einstein condensation in isospin-rich nuclear matter. Using a simple version of the Nambu-Jona-Lasinio (NJL) model, we conclude that ρ -meson condensation is either avoided or postponed to isospin chemical potentials much higher than the ρ -meson mass as a consequence of the repulsive interaction with the preformed pion condensate. In order to support our numerical results, we work out a linear sigma model for pions and ρ -mesons, showing that the two models lead to similar patterns of medium dependence of meson masses. As a byproduct, we analyze in detail the mapping between the NJL model and the linear sigma model, focusing on conditions that must be satisfied for a quantitative agreement between the models.
Light Vector Mesons in the Nuclear Medium
Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis; Djalali, Chaden; Tur, Clarisse; Mosel, Ulrich; Muehlich, Pascal; Adams, Gary; Amaryan, Moscov; Amaryan, Moskov; Ambrozewicz, Pawel; Anghinolfi, Marco; Asryan, Gegham; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Baillie, Nathan; Ball, James; Baltzell, Nathan; Barrow, Steve; Battaglieri, Marco; Bedlinskiy, Ivan; Bektasoglu, Mehmet; Bellis, Matthew; Benmouna, Nawal; Berman, Barry; Biselli, Angela; Blaszczyk, Lukasz; Bouchigny, Sylvain; Boyarinov, Sergey; Bradford, Robert; Branford, Derek; Briscoe, William; Brooks, William; Burkert, Volker; Butuceanu, Cornel; Calarco, John; Careccia, Sharon; Carman, Daniel; Carnahan, Bryan; Casey, Liam; Chen, Shifeng; Cheng, Lu; Cole, Philip; Collins, Patrick; Coltharp, Philip; Crabb, Donald; Crannell, Hall; Crede, Volker; Cummings, John; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Degtiarenko, Pavel; Denizli, Haluk; Dennis, Lawrence; Deur, Alexandre; Dharmawardane, Kahanawita; Dickson, Richard; Dodge, Gail; Doughty, David; Dugger, Michael; Dytman, Steven; Dzyubak, Oleksandr; Egiyan, Hovanes; Egiyan, Kim; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Feldman, Gerald; Feuerbach, Robert; Fradi, Ahmed; Funsten, Herbert; Garcon, Michel; Gavalian, Gagik; Gilfoyle, Gerard; Giovanetti, Kevin; Girod, Francois-Xavier; Goetz, John; Gordon, Christopher; Gothe, Ralf; Griffioen, Keith; Guidal, Michel; Guler, Nevzat; Guo, Lei; Gyurjyan, Vardan; Hadjidakis, Cynthia; Hafidi, Kawtar; Hakobyan, Hayk; Hakobyan, Rafael; Hanretty, Charles; Hardie, John; Hassall, Neil; Hersman, F.; Hicks, Kenneth; Hleiqawi, Ishaq; Holtrop, Maurik; Hyde, Charles; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Ito, Mark; Jenkins, David; Jo, Hyon-Suk; Johnstone, John; Joo, Kyungseon; Juengst, Henry; Kalantarians, Narbe; Kellie, James; Khandaker, Mahbubul; Khetarpal, Puneet; Kim, Wooyoung; Klein, Andreas; Klein, Franz; Klimenko, Alexei; Kossov, Mikhail; Krahn, Zebulun; Kramer, Laird; Kubarovsky, Valery; Kuhn, Joachim; Kuhn, Sebastian; Kuleshov, Sergey; Lachniet, Jeff; Laget, Jean; Langheinrich, Jorn; Lawrence, David; Li, Ji; Livingston, Kenneth; Lu, Haiyun; MacCormick, Marion; Markov, Nikolai; Mattione, Paul; McAleer, Simeon; McKinnon, Bryan; McNabb, John; Mecking, Bernhard; Mehrabyan, Surik; Melone, Joseph; Mestayer, Mac; Meyer, Curtis; Mibe, Tsutomu; Mikhaylov, Konstantin; Minehart, Ralph; Mirazita, Marco; Miskimen, Rory; Mokeev, Viktor; Moriya, Kei; Morrow, Steven; Moteabbed, Maryam; Mueller, James; Munevar Espitia, Edwin; Mutchler, Gordon; Nadel-Turonski, Pawel; Niccolai, Silvia; Niculescu, Gabriel; Niculescu, Maria-Ioana; Niczyporuk, Bogdan; Niroula, Megh; Niyazov, Rustam; Nozar, Mina; Osipenko, Mikhail; Ostrovidov, Alexander; Park, Kijun; Pasyuk, Evgueni; Paterson, Craig; Pereira, Sergio; Pierce, Joshua; Pivnyuk, Nikolay; Pocanic, Dinko; Pogorelko, Oleg; Pozdnyakov, Sergey; Preedom, Barry; Price, John; Prok, Yelena; Protopopescu, Dan; Raue, Brian; Riccardi, Gregory; Ricco, Giovanni; Ripani, Marco; Ritchie, Barry; Ronchetti, Federico; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Salamanca, Julian; Salgado, Carlos; Santoro, Joseph; Sapunenko, Vladimir; Schumacher, Reinhard; Serov, Vladimir; Sharabian, Youri; Sharov, Dmitri; Shvedunov, Nikolay; Smith, Elton; Smith, Lee; Sober, Daniel; Sokhan, Daria; Stavinsky, Aleksey; Stepanyan, Stepan; Stepanyan, Samuel; Stokes, Burnham; Stoler, Paul; Strakovski, Igor; Strauch, Steffen; Taiuti, Mauro; Tedeschi, David; Tkabladze, Avtandil; Tkachenko, Svyatoslav; Todor, Luminita; Ungaro, Maurizio; Vineyard, Michael; Vlassov, Alexander; Watts, Daniel; Weinstein, Lawrence; Williams, Michael; Wolin, Elliott; Yegneswaran, Amrit; Zana, Lorenzo; Zhang, Bin; Zhang, Jixie; Zhao, Bo; Zhao, Zhiwen
2008-07-01
The light vector mesons ($\\rho$, $\\omega$, and $\\phi$) were produced in deuterium, carbon, titanium, and iron targets in a search for possible in-medium modifications to the properties of the $\\rho$ meson at normal nuclear densities and zero temperature. The vector mesons were detected with the CEBAF Large Acceptance Spectrometer (CLAS) via their decays to $e^{+}e^{-}$. The rare leptonic decay was chosen to reduce final-state interactions. A combinatorial background was subtracted from the invariant mass spectra using a well-established event-mixing technique. The $\\rho$ meson mass spectrum was extracted after the $\\omega$ and $\\phi$ signals were removed in a nearly model-independent way. Comparisons were made between the $\\rho$ mass spectra from the heavy targets ($A > 2$) with the mass spectrum extracted from the deuterium target. With respect to the $\\rho$-meson mass, we obtain a small shift compatible with zero. Also, we measure widths consistent with standard nuclear many-body eff
The light scalar mesons as tetraquarks
NASA Astrophysics Data System (ADS)
Eichmann, Gernot; Fischer, Christian S.; Heupel, Walter
2016-02-01
We present a numerical solution of the four-quark Bethe-Salpeter equation for ground-state scalar tetraquarks with JPC =0++. We find that the four-body equation dynamically generates pseudoscalar-meson poles in the Bethe-Salpeter amplitude. The resulting tetraquarks are genuine four-quark states that are dominated by pseudoscalar meson-meson correlations. Diquark-antidiquark contributions are subleading because of their larger mass scale. In the light quark sector, the sensitivity of the tetraquark wave function to the pion poles leads to an isoscalar tetraquark mass Mσ ∼ 350 MeV which is comparable to that of the σ /f0 (500). The masses of its multiplet partners κ and a0 /f0 follow a similar pattern. This provides support for a tetraquark interpretation of the light scalar meson nonet in terms of 'meson molecules'.
Excited light meson spectroscopy from lattice QCD
Christopher Thomas, Hadron Spectrum Collaboration
2012-04-01
I report on recent progress in calculating excited meson spectra using lattice QCD, emphasizing results and phenomenology. With novel techniques we can now extract extensive spectra of excited mesons with high statistical precision, including spin-four states and those with exotic quantum numbers. As well as isovector meson spectra, I will present new calculations of the spectrum of excited light isoscalar mesons, something that has up to now been a challenge for lattice QCD. I show determinations of the flavor content of these mesons, including the eta-eta' mixing angle, providing a window on annihilation dynamics in QCD. I will also discuss recent work on using lattice QCD to map out the energy-dependent phase shift in pi-pi scattering and future applications of the methodology to the study of resonances and decays.
Strong Couplings of Three Mesons with Charm(ing) Involvement
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Melikhov, Dmitri; Sazdjian, Hagop; Simula, Silvano
2017-03-01
We determine the strong couplings of three mesons that involve, at least, one ηc or J/ψ meson, within the framework of a constituent-quark model by means of relativistic dispersion formulations. For strong couplings of J/ψ mesons to two charmed mesons, our approach leads to predictions roughly twice as large as those arising from QCD sum rules.
Photoproduction of the rho meson and its magnetic moments
Kaneko, Hiromi; Hosaka, Atsushi; Scholten, Olaf
2011-10-21
We study photoproduction of {rho} meson in a model of hidden local symmetry. We introduce the {rho} meson on a hidden gauge boson and phenomenological {rho} meson-nucleon Lagrangian is constructed respecting chiral symmetry. It turns out that the {sigma}-exchange interaction plays an important role in neutral {rho} meson photoproduction to reproduce the experimental cross sections. In charged {rho} meson photoproduction, the model takes into account the {rho} meson magnetic moments from the three-point vertex in the kinetic terms. We show that the magnetic moment of the charged {rho} meson has a significant effect on the total cross sections in proportion to the photon energies.
Bottom-strange mesons in hyperonic matter
NASA Astrophysics Data System (ADS)
Pathak, Divakar; Mishra, Amruta
2014-11-01
The in-medium behavior of bottom-strange pseudoscalar mesons in hot, isospin asymmetric and dense hadronic environment is studied using a chiral effective model. The same was recently generalized to the heavy quark sector and employed to study the behavior of open-charm and open-bottom mesons. The heavy quark (anti-quark) is treated as frozen and all medium modifications of these bottom-strange mesons are due to their strange anti-quark (quark) content. We observe a pronounced dependence of their medium mass on baryonic density and strangeness content of the medium. Certain aspects of these in-medium interactions are similar to those observed for the strange-charmed mesons in a preceding investigation, such as the lifting of mass-degeneracy of BS0 and {\\bar B}S0 mesons in hyperonic matter, while the same is respected in vacuum as well as in nuclear matter. In general, however, there is a remarkable distinction between the two species, even though the formalism predicts a completely analogous in-medium interaction Lagrangian density. We discuss in detail the reason for different in-medium behavior of these bottom-strange mesons as compared to charmed-strange mesons, despite the dynamics of the heavy quark being treated as frozen in both cases.
GlueX: Meson Spectroscopy in Photoproduction
Salgado, Carlos; Smith, Elton S.
2014-03-01
The goal of the GlueX experiment \\cite{gluex} is to provide crucial data to help understand the soft gluonic fields responsible for binding quarks in hadrons. Hybrid mesons, and in particular exotic hybrid mesons, provide the ideal laboratory for testing QCD in the confinement regime since these mesons explicitly manifest the gluonic degrees of freedom. Photoproduction is expected to be effective in producing exotic hybrids but there is little data on the photoproduction of light mesons. GlueX will use the new 12-GeV electron beam at Jefferson Lab to produce a 9-GeV beam of linearly polarized photons using the technique of coherent bremsstrahlung. A solenoid-based hermetic detector is under construction, which will be used to collect data on meson production and decays. These data will also be used to study the spectrum of conventional mesons, including the poorly understood excited vector mesons. This talk will give an update on the experiment as well as describe theoretical developments \\cite{Dudek:2011bn} to help understand how these data can provide insights into the fundamental theory of strong interactions.
Meson Form Factors and Deep Exclusive Meson Production Experiments
NASA Astrophysics Data System (ADS)
Horn, Tanja
2017-03-01
Pion and kaon electroproduction data play a unique role in Nature and our understanding of them is essential for explaining hadron structure. Precision longitudinaltransverse separated pion and kaon cross sections are of particular interest. They allow for the extraction of meson form factors and validation of understanding of hard exclusive and semi-inclusive reactions (π+, K+, π0, γ) towards 3D hadron imaging and potential future flavor decomposition. We review recent data and present prospects for deep exclusive pion and kaon electroproduction at the 12 GeV Jefferson Lab including the prospects to use projected charged- and neutral pion data to further determine the spin, charge-parity and flavor of GPDs, including the helicity-flip GPDs.
Photoproduction of ω mesons off nuclei and impact of polarization on the meson-nucleon interaction
Chudakov, Eugene A.; Gevorkyan, Sergey; Somov, Alexander
2016-01-25
We consider photoproduction of ω mesons off complex nuclei to study interactions of transversely and longitudinally polarized vector mesons with nucleons. Whereas the total cross section for interactions of the transversely polarized vector mesons with nucleons σT = σ(VTN) can be obtained from coherent photoproduction, measurements of vector meson photoproduction in the incoherent region provide a unique opportunity to extract the not-yet-measured total cross section for longitudinally polarized mesons σL = σ(VLN). The predictions for the latter strongly depend on the theoretical approaches. Furthermore, this work is stimulated by the construction of the new experiment GlueX at Jefferson Lab, designedmore » to study the photoproduction of mesons in a large beam energy range up to 12 GeV.« less
String splitting and strong coupling meson decay.
Cotrone, A L; Martucci, L; Troost, W
2006-04-14
We study the decay of high spin mesons using the gauge-string theory correspondence. The rate of the process is calculated by studying the splitting of a macroscopic string intersecting a D-brane. The result is applied to the decay of mesons in N=4 super Yang-Mills theory with a small number of flavors and in a gravity dual of large N QCD. In QCD the decay of high spin mesons is found to be heavily suppressed in the regime of validity of the supergravity description.
From the {psi} to charmed mesons
Goldhaber, G. |
1994-11-01
This talk deals with the author`s recollections about the discoveries of the J/{psi} the {psi}{prime} as well as psion spectroscopy and charmed mesons. He gives a chronology for the {psi} and {psi}{prime} discoveries. He also discusses the events which led to the charmed meson discovery as well as detailed discussions on the proof that the resonance observed in the K{sup {minus}} {pi}{sup +} system, at 1,865 MeV, was indeed the predicted charmed meson.
A mesonic analog of the deuteron
NASA Astrophysics Data System (ADS)
Silbar, Richard R.; Goldman, T.
2014-12-01
Using the LAMP model for nuclear quark structure, we calculate the binding energy and quark structure of a B meson merging with a D meson. Our variational calculation shows that a molecular, deuteron-like state structure changes rather abruptly, as the separation between the two mesons decreases, and at a separation of about 0.14 fm, the hadronic system transforms into a four-quark bound state, although one maintaining an internal structure rather than that of a four-quark "bag." Unlike the deuteron, pion exchange does not provide any contribution to the ≈ 150 MeV binding.
Hard Exclusive Vector Meson Leptoproduction At HERMES
Golembiovskaya, M.
2011-07-15
The HERMES experiment at DESY, Hamburg collected a set of data on hard exclusive vector meson ({rho}{sup 0}{phi},{omega}) leptoproduction using the 27.6 GeV longitudinally polarized lepton beam of HERA accelerator and longitudinally or transversely polarized or unpolarized gas targets. Measurements of exclusive vector meson production provide access to the structure of the nucleon since the process can be described in terms of Generalized Parton Distributions (GPDs). An overview of the HERMES results on exclusive vector mesons production is presented.
Quark diagram analysis of B-meson emitting vector ( V) and vector ( V) mesons
NASA Astrophysics Data System (ADS)
Kaur, Maninder
2017-07-01
This paper presents the two body weak nonleptonic decays of B-mesons emitting vector ( V) and vector ( V) mesons within the framework of the diagrammatic approaches at flavor SU(3) symmetry. We have investigated exclusive two body decays of B-meson using model independent quark diagram scheme. We have shown that the recent measurement of the two body exclusive decays of B-mesons can allow us to determine the magnitude and even sign of the QD amplitude for B → VV decays. Therefore, we become able to make few predictions for their branching fractions.
Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; ...
2016-03-15
In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixingmore » effects almost completely saturate the mass shifts obtained in our sum rule analysis.« less
Gubler, Philipp; Hattori, Koichi; Lee, Su Houng; Oka, Makoto; Ozaki, Sho; Suzuki, Kei
2016-03-15
In this paper, we investigate the mass spectra of open heavy flavor mesons in an external constant magnetic field within QCD sum rules. Spectral Ansatze on the phenomenological side are proposed in order to properly take into account mixing effects between the pseudoscalar and vector channels, and the Landau levels of charged mesons. The operator product expansion is implemented up to dimension-5 operators. As a result, we find for neutral D mesons a significant positive mass shift that goes beyond simple mixing effects. In contrast, charged D mesons are further subject to Landau level effects, which together with the mixing effects almost completely saturate the mass shifts obtained in our sum rule analysis.
Exclusive hadronic decays of B mesons
NASA Astrophysics Data System (ADS)
Hölscher, Andreas
1991-06-01
The recent experimental results on exclusive hadronic decays of B mesons obtained by the ARGUS collaboration are presented in the talk. The results include exclusive hadronic decays involving a b → c transition, namely B decays with a D, D ∗ plus several pions and B decays to J/ψ or ψ' mesons plus Kaons have been studied. The measurements of branching ratios for two-body B decays involving a J/ψ or ψ' meson are of wide interest in the light of proposals for the study of CP violation in future experiments. The branching ratios are compared with the predictions of the model of Bauer, Stech and Wirbel and with a model of A.V. Dobrovolskaya. Using the cleanest decay channels, the masses and mass difference of the charged and neutral B meson are obtained. This mass difference is then compared with the mass splitting in other isospinmultipletts and with theoretical models.
Recent progress on light scalar mesons
Peláez, J. R.
2014-07-23
This is a brief account of the recent developments on the determination of the mass and widths of the much debated scalar mesons, paying particular attention to the causes of major revision of the σ or f{sub 0}(500) meson in the last edition of the Review of Particle Physics, which has finally acknowledged that the situation concerning the mass and width of this controversial state has been settled, although this was already well-known to scalar meson practitioners for about a decade. I will briefly comment on the dispersive approach, followed by several groups, which seems to have been the most decisive in support of the existence and precise determinations of scalar meson properties.
Rare meson decays into very light neutralinos
O'Leary, Ben
2010-02-10
Results are presented for the two-body decays of mesons into light neutralinos and from the first complete calculation of the loop-induced decays of kaons to pions plus light neutralinos and of B mesons to kaons plus light neutralinos. The branching ratios are shown to be strongly suppressed within the MSSM with minimal flavor violation, and no bounds on the neutralino mass can be inferred from experimental data, i.e. a massless neutralino is allowed.
Meson and baryon spectroscopy on the lattice
David Richards
2010-12-01
Recent progress at understanding the excited state spectrum of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum, and the program of anisotropic clover lattice generation designed for hadron spectroscopy. I present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.
Vector Meson Property in Covariant Classification Scheme
NASA Astrophysics Data System (ADS)
Oda, Masuho
2004-08-01
Recently our collaboration group has proposed the covariant classification shceme of hadrons, leading to possible existence of two ground state vector mesons. One is corresponding to ordinary ρ nonet and the other is extra ρ nonet. We investigate the decay property of ω(1250) and ρ(1250) in the covariant classification scheme. And it is shown that ω(1250) is promising candidate of our extra ω meson.
Single Meson Photoproduction at JLab Energies
NASA Astrophysics Data System (ADS)
Mathieu, Vincent; Joint Physics Analysis Center Team
2016-09-01
In this talk, I present the results from the Joint Physics Analysis Center about the photoproduction of a single meson (pseudoscalar or vector meson). We have developed the theoretical formalism to analysis forthcoming data at the, recently upgraded, JLab facility. We also present prediction for observables in the energy range of Eg = 5-11 GeV. Material (codes, notes, sim- ulations, etc) can be found online at the JPAC interactive website: http://www.indiana.edu/ jpac/index.html
Study of Light Scalar Meson Structure in D1 Decay
NASA Astrophysics Data System (ADS)
Hoshino, H.; Harada, M.; Ma, Y. L.
2013-03-01
We study the quark structure of the sigma meson through the decay of D1(2430) meson by constructing an effective Lagrangian for charmed mesons interacting with light mesons based on the chiral symmetry and heavy quark symmetry. Within the linear realization of the chiral symmetry, we include the P-wave charmed mesons (D1(2430), D0(2400)) as the chiral partners of (D., D), and the light scalar mesons as the chiral partner of the pseudoscalar mesons. In the light meson sector, both the qbar {q} and qqbar {q}bar {q} states are incorporated respecting their different U(1)A transformation properties. We predict the D1 → Dππ decay width with two pions in the I = 0, l = 0 channel, which can be tested in the future experiment. We find that the width increases with the percentage of the qbar {q} content in the sigma meson.
Light mesons on the light front
Naito, K.; Maedan, S.; Itakura, K.
2004-11-01
We study the properties of light mesons in the scalar, pseudoscalar, and vector channels within the light-front quantization, by using the (one flavor) Nambu-Jona-Lasinio model with vector interaction. After taking into account the effects of chiral symmetry breaking, we derive the bound-state equation in each channel in the large N limit (N is the number of colors), which means that we consider the lowest qq Fock state with the constituent quark and antiquark. By solving the bound-state equation, we simultaneously obtain a mass and a light cone (LC) wave function of the meson. While we reproduce the previous results for the scalar and pseudoscalar mesons, we find that, for a vector meson, the bound-state equations for the transverse and longitudinal polarizations look different from each other. However, eventually after imposing a cutoff which is invariant under the parity and boost transformations, one finds these two are identical, giving the same mass and the same (spin-independent) LC wave function. When the vector interaction becomes larger than a critical value, the vector state forms a bound state, whose mass decreases as the interaction becomes stronger. While the LC wave function of the pseudoscalar meson is broadly distributed in longitudinal momentum (x) space, that of the vector meson is squeezed around x=1/2.
Exotic Meson Results from BNL E852
NASA Astrophysics Data System (ADS)
Manak, Joseph J.
1998-10-01
Results from BNL experiment 852 on exotic (non-q\\overlineq) meson production are presented. Production of final states with J^PC = 1^-+ is observed in π^-p interactions at 18 GeV/c in the ηπ^-, ρπ^- and η^'π^- channels. Since such states are manifestly exotic if they are resonant, we describe amplitude analyses which use the interference between these states and other well known states to measure the phase behavior of the J^PC = 1^-+ amplitudes. The analyses show that, in addition to the previously reported(D.R. Thompson et al.), Phys. Rev. Lett. 79, 1630 (1997) evidence for an exotic meson in the ηπ^- channel, there is strong evidence for a second exotic meson decaying to ρπ^- with a mass of M=1593 ±8^+29_-47 MeV/c^2 and a width of Γ=168 ±20^+150_-12 MeV/c^2. We also show that the η^'π^- system is dominated by J^PC = 1^-+ production and we use those data to determine decay branching ratios for the exotic mesons. Such measurements are expected to be crucial in determining the constituent nature of the exotic mesons - that is, whether they are consistent with being hybrid mesons or four-quark states.
Branching ratios of B{sub c} meson decays into tensor meson in the final state
Sharma, Neelesh
2010-01-01
Two-body hadronic weak decays of B{sub c} meson involving tensor meson in the final state are studied by using the Isgur-Scora-Grinstein-Wise II model. Decay amplitudes are obtained using the factorization scheme in the spectator quark model. Branching ratios for the charm changing and bottom changing decay modes are predicted.
σ and κ mesons as broad dynamical resonances in one-meson-exchange model
NASA Astrophysics Data System (ADS)
Hong Xiem, Ngo Thi; Shinmura, Shoji
2014-09-01
The existences of broad scalar σ (600) and κ (700) mesons have been discussed intensively in the experimental and theoretical studies on ππ and πK scatterings. By using chiral perturbation model, J. Oller, A. Gómez and J. R. Peláez confirmed the existence of these mesons as dynamical resonances. In meson-exchange models, their existence has not been established yet. In this talk, using the quasi-potential of meson-exchange model and Lippmann-Schwinger equation, we determine the T and S-matrices, from which we could find the positions of poles in physical amplitudes in the complex E-plane. With the full treatment of meson-meson interactions (ππ - πK - πη - ηη and πK - ηK) , for the first time, the existence of the scalar σ (600) and κ (700) mesons are confirmed in one-meson-exchange model. There are two kinds of form factors in our model: the monopole and the Gaussian. Our recent results show that the poles σ and κ appear at around 410 - i 540 MeV and 650 - i 20 MeV for monopole form factors, respectively. For Gaussian form factors, the poles σ and κ, respectively, are at 360 - i 510 MeV and 649 - i 190 MeV.
Photoproduction and Decay of Light Mesons in CLAS
Amaryan, Moskov Jamalovich
2013-08-01
We present preliminary experimental results on photoproduction and decay of light mesons measured with CLAS setup at JLAB . This include Dalitz decay of pseudoscalar and vector mesons, radiative decay of pseudoscalar mesons as well hadronic decays of pseudoscalar and vector mesons. The collected high statistics in some of decay channels exceeds the world data by an order of magnitude and some other decay modes are observed for the first time. It is shown how the CLAS data will improve the world data on transition form factors of light mesons, Dalitz plot analyses, branching ratios of rare decay modes and other fundamental properties potentially accessible through the light meson decays.
Review of meson spectroscopy: quark states and glueballs
Chanowitz, M.S.
1981-11-01
A group of three lectures on hadron spectroscopy are presented. Topics covered include: light L = 0 mesons, light L = 1 mesons, antiquark antiquark quark quark exotics, a catalogue of higher quark antiquark excitations, heavy quarkonium, and glueballs. (GHT)
Rare meson decays into very light neutralinos
Dreiner, H. K.; Grab, S.; Koschade, Daniel; Kraemer, M.; O'Leary, Ben; Langenfeld, Ulrich
2009-08-01
We investigate the bounds on the mass of the lightest neutralino from rare meson decays within the minimal supersymmetric standard model (MSSM) with and without minimal flavor violation. We present explicit formulas for the two-body decays of mesons into light neutralinos and perform the first complete calculation of the loop-induced decays of kaons to pions and light neutralinos and B mesons to kaons and light neutralinos. We find that the supersymmetric branching ratios are strongly suppressed within the MSSM with minimal flavor violation, and that no bounds on the neutralino mass can be inferred from experimental data, i.e., a massless neutralino is allowed. The branching ratios for kaon and B meson decays into light neutralinos may, however, be enhanced when one allows for nonminimal flavor violation. We find new constraints on the MSSM parameter space for such scenarios and discuss prospects for future kaon and B meson experiments. Finally, we comment on the search for light neutralinos in monojet signatures at the Tevatron and at the LHC.
Scalar meson spectroscopy with lattice staggered fermions
Bernard, Claude; DeTar, Carleton; Fu Ziwen; Prelovsek, Sasa
2007-11-01
With sufficiently light up and down quarks the isovector (a{sub 0}) and isosinglet (f{sub 0}) scalar meson propagators are dominated at large distance by two-meson states. In the staggered-fermion formulation of lattice quantum chromodynamics, taste-symmetry breaking causes a proliferation of two-meson states that further complicates the analysis of these channels. Many of them are unphysical artifacts of the lattice approximation. They are expected to disappear in the continuum limit. The staggered-fermion fourth-root procedure has its purported counterpart in rooted staggered chiral perturbation theory (rS{chi}PT). Fortunately, the rooted theory provides a strict framework that permits the analysis of scalar meson correlators in terms of only a small number of low-energy couplings. Thus the analysis of the point-to-point scalar meson correlators in this context gives a useful consistency check of the fourth-root procedure and its proposed chiral realization. Through numerical simulation we have measured correlators for both the a{sub 0} and f{sub 0} channels in the 'Asqtad' improved staggered-fermion formulation in a lattice ensemble with lattice spacing a=0.12 fm. We analyze those correlators in the context of rS{chi}PT and obtain values of the low-energy chiral couplings that are reasonably consistent with previous determinations.
Vector meson modification in nuclear matter at CLAS
Djalali, Chaden; Wood, Michael; Nasseripour, Rakhsha; Weygand, Dennis
2008-09-01
Photoproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The properties of the A vector mesons were investigated via their rare leptonic decay to e+e . After subtracting the combinatorial background, the A meson mass distributions were extracted for each of the targets. We observe no effects on the mass of the A meson, some widening in titanium and iron is observed consistent with the collisional broadening.
Unitary coupled-channels model for three-mesons decays of heavy mesons
Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung-Shung H.; Sato, Toru
2011-12-16
In this study, a unitary coupled-channels model is presented for investigating the decays of heavy mesons and excited meson states into three light pseudoscalar mesons. The model accounts for the three-mesons final state interactions in the decay processes, as required by both the three-body and two-body unitarity conditions. In the absence of the Z-diagram mechanisms that are necessary consequences of the three-body unitarity, our decay amplitudes are reduced to a form similar to those used in the so-called isobar-model analysis. We apply our coupled-channels model to the three-pions decays of α_{1}(1260), π_{2}(1670), π_{2}(2100), and D^{0} mesons, and show that the Z-diagram mechanisms can contribute to the calculated Dalitz plot distributions by as much as 30% in magnitudes in the regions where f_{0}(600), ρ(770), and f_{2}(1270) dominate the distributions. Also, by fitting to the same Dalitz plot distributions, we demonstrate that the decay amplitudes obtained with the unitary model and the isobar model can be rather different, particularly in the phase that plays a crucial role in extracting the CKM CP-violating phase from the data of B meson decays. Our results indicate that the commonly used isobar model analysis must be extended to account for the final state interactions required by the three-body unitarity to reanalyze the three-mesons decays of heavy mesons, thereby exploring hybrid or exotic mesons, and signatures of physics beyond the standard model.
Unitary coupled-channels model for three-mesons decays of heavy mesons
Hiroyuki Kamano; Nakamura, Satoshi X.; Lee, Tsung-Shung H.; ...
2011-12-16
In this study, a unitary coupled-channels model is presented for investigating the decays of heavy mesons and excited meson states into three light pseudoscalar mesons. The model accounts for the three-mesons final state interactions in the decay processes, as required by both the three-body and two-body unitarity conditions. In the absence of the Z-diagram mechanisms that are necessary consequences of the three-body unitarity, our decay amplitudes are reduced to a form similar to those used in the so-called isobar-model analysis. We apply our coupled-channels model to the three-pions decays of α1(1260), π2(1670), π2(2100), and D0 mesons, and show that themore » Z-diagram mechanisms can contribute to the calculated Dalitz plot distributions by as much as 30% in magnitudes in the regions where f0(600), ρ(770), and f2(1270) dominate the distributions. Also, by fitting to the same Dalitz plot distributions, we demonstrate that the decay amplitudes obtained with the unitary model and the isobar model can be rather different, particularly in the phase that plays a crucial role in extracting the CKM CP-violating phase from the data of B meson decays. Our results indicate that the commonly used isobar model analysis must be extended to account for the final state interactions required by the three-body unitarity to reanalyze the three-mesons decays of heavy mesons, thereby exploring hybrid or exotic mesons, and signatures of physics beyond the standard model.« less
Further evidence for magnetic charge from meson spectroscopy
Akers, D.
1987-12-01
Recently evidence was presented for the existence of magnetic charge from Zeeman splitting in meson states. The model by Akers predicted the existence of a new eta meson at 1814 MeV with I/sup G/ (J/sup PC/) = O/sup +/ (O/sup - +/). Experimental evidence for this new meson is cited and discussed.
Strange and heavy mesons in hadronic matter
NASA Astrophysics Data System (ADS)
Cabrera, Daniel; Abreu, Luciano M.; Bratkovskaya, Elena; Ilner, Andrej; Llanes-Estrada, Felipe J.; Ramos, Angels; Tolos, Laura; Torres-Rincon, Juan M.
2014-04-01
We present selected results on the properties of strange and heavy-flavoured mesons in a hot and dense nuclear medium, with emphasis in selfconsistent coupled-channel approaches based on the chiral Lagrangian. In the strangeness sector, we discuss how the enhanced reactivity of light strange vectors at FAIR conditions can be tied to in-medium effects on their predominant decay modes (e.g. bar K* → bar Kπ) and to the excitation of strange baryons in vector-meson nucleon interactions. In the heavy-flavour sector, we focus on recent determinations of the transport coefficients of charmed and bottomed mesons in a hadron gas at vanishing baryonic chemical potential. We comment on the role of microscopic transport simulations to establish a connection between theoretical models and experimental observables from heavy-ion collisions (HICs).
Semileptonic decays of the Bc meson
NASA Astrophysics Data System (ADS)
Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita
2009-10-01
We study the semileptonic transitions Bc→ηc,J/Ψ,D,D*,B,B*,Bs,Bs* in the leading order in the framework of a relativistic independent quark model based on a confining potential in the equally mixed scalar-vector harmonic form. We compute relevant weak form factors as overlap integrals of the meson-wave functions obtained in the relativistic independent quark model in the whole accessible kinematical range. We predict that the semileptonic transitions of the Bc meson are mostly dominated by two Cabibbo-Kobayashi-Maskawa (CKM)-favored modes, Bc→Bs(Bs⋆)eν, contributing about 77% of the total decay width, and its decays to vector meson final states take place in the predominantly transverse mode. Our predicted values for the total decay rates, branching ratios, polarization ratios, the forward-backward asymmetry factor, etc., are broadly in agreement with other model predictions.
Photoproduction of scalar mesons at medium energies
Da Silva, M. L.; Machado, M. V.
2013-03-25
In this work we will focus on photoproduction of mesons states a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710). The f{sub 0}(1500) and f{sub 0}(1710) mesons will be considered in distinct mixing possibilities and assuming that a{sub 0}(980) is member of the ground-state nonet. The theoretical formalism is the Regge approach with reggeized {rho} and {omega} exchange. The differential and integrated total cross section are computed for the cases of the mesons a{sub 0}(980), f{sub 0}(1500) and f{sub 0}(1710) focusing the GlueX energy regime with photon energy E = 9 GeV.
Scalar mesons in a linear sigma model with (axial-)vector mesons
Parganlija, D.; Kovacs, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.
2013-03-25
The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for qq states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar qq states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as qq states.
Scalar mesons in a linear sigma model with (axial-)vector mesons
NASA Astrophysics Data System (ADS)
Parganlija, D.; Kovács, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.
2013-03-01
The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for qq states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar qq states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as qq states.
Holographic decays of large-spin mesons
NASA Astrophysics Data System (ADS)
Peeters, Kasper; Sonnenschein, Jacob; Zamaklar, Marija
2006-02-01
We study the decay process of large-spin mesons in the context of the gauge/string duality, using generic properties of confining backgrounds and systems with flavour branes. In the string picture, meson decay corresponds to the quantum-mechanical process in which a string rotating on the IR ``wall'' fluctuates, touches a flavour brane and splits into two smaller strings. This process automatically encodes flavour conservation as well as the Zweig rule. We show that the decay width computed in the string picture is in remarkable agreement with the decay width obtained using the phenomenological Lund model.
and : candidates for charmed-strange mesons
NASA Astrophysics Data System (ADS)
Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki
2015-01-01
Newly observed two charmed-strange resonances, and , are investigated by calculating their Okubo-Zweig-Iizuka-allowed strong decays, which shows that they are suitable candidates for the and states in the charmed-strange meson family. Our study also predicts other main decay modes of and , which can be accessible at the future experiment. In addition, the decay behaviors of the spin partners of and , i.e., and , are predicted in this work, which are still missing at present. The experimental search for the missing and charmed-strange mesons is an intriguing and challenging task for further experiments.
Tensor mesons produced in tau lepton decays
Lopez Castro, G.; Munoz, J. H.
2011-05-01
Light tensor mesons (T=a{sub 2}, f{sub 2} and K{sub 2}*) can be produced in decays of {tau} leptons. In this paper we compute the branching ratios of {tau}{yields}T{pi}{nu} decays by assuming the dominance of intermediate virtual states to model the form factors involved in the relevant hadronic matrix elements. The exclusive f{sub 2}(1270){pi}{sup -} decay mode turns out to have the largest branching ratio, of O(10{sup -4}). Our results indicate that the contribution of tensor meson intermediate states to the three-pseudoscalar channels of {tau} decays are rather small.
Shape of mesons in holographic QCD
Torabian, Mahdi; Yee, Ho-Ung
2009-10-15
Based on the expectation that the constituent quark model may capture the right physics in the large N limit, we point out that the orbital angular momentum of the quark-antiquark pair inside light mesons of low spins in the constituent quark model may provide a clue for the holographic dual string model of large N QCD. Our discussion, relying on a few suggestive assumptions, leads to a necessity of world-sheet fermions in the bulk of dual strings that can incorporate intrinsic spins of fundamental QCD degrees of freedom. We also comment on the interesting issue of the size of mesons in holographic QCD.
Meson spectrum in strong magnetic fields
NASA Astrophysics Data System (ADS)
Andreichikov, M. A.; Kerbikov, B. O.; Orlovsky, V. D.; Simonov, Yu. A.
2013-05-01
We study the relativistic quark-antiquark system embedded in a magnetic field (MF). The Hamiltonian containing confinement, one gluon exchange, and spin-spin interaction is derived. We analytically follow the evolution of the lowest meson states as a function of MF strength. Calculating the one gluon exchange interaction energy ⟨VOGE⟩ and spin-spin contribution ⟨aSS⟩ we have observed that these corrections remain finite at large MF, preventing the vanishing of the total ρ meson mass at some Bcrit, as previously thought. We display the ρ masses as functions of the MF in comparison with recent lattice data.
Excited light isoscalar mesons from lattice QCD
Christopher Thomas
2011-07-01
I report a recent lattice QCD calculation of an excited spectrum of light isoscalar mesons, something that has up to now proved challenging for lattice QCD. With novel techniques we extract an extensive spectrum with high statistical precision, including spin-four states and, for the first time, light isoscalars with exotic quantum numbers. In addition, the hidden flavour content of these mesons is determined, providing a window on annihilation dynamics in QCD. I comment on future prospects including applications to the study of resonances.
Quasi-exotic open-flavor mesons
NASA Astrophysics Data System (ADS)
Hilger, T.; Krassnigg, A.
2017-06-01
Meson states with exotic quantum numbers arise naturally in a covariant bound-state framework in QCD. We investigate the consequences of shifting quark masses such that the states are no longer restricted to certain C-parities, but only by JP. Then, a priori, one can no longer distinguish exotic or conventional states. In order to identify signatures of the different states to look for experimentally, we provide the behavior of masses, leptonic decay constants, and orbital-angular-momentum decomposition of such mesons, as well as the constellations in which they could be found. Most prominently, we consider the case of charged quasi-exotic excitations of the pion.
Light O++ Mesons: Scalargators in Florida
NASA Astrophysics Data System (ADS)
Pennington, M. R.
2010-08-01
Light scalar mesons abound in hadron processes, like the alligators in the Florida Everglades. Moreover, scalars are intimately tied to the vacuum structure of QCD. They are the product of many decays. Consequently, a rich source of recent information about them has come from experiments producing heavy flavour mesons. Indeed, scalars will continue to dominate many of the processes to be studied at forthcoming facilities like BESIII in Beijing, FAIR at GSI Darmstadt and the GlueX experiment at JLab, making an understanding (or at least an excellent and theoretically consistent description) essential for the physics missions of these facilities.
Sharma, Neelesh; Verma, R. C.; Dhir, Rohit
2011-01-01
In this paper, we investigate phenomenologically two-body weak decays of the bottom mesons emitting pseudoscalar/vector meson and a tensor meson. Form factors are obtained using the improved Isgur-Scora-Grinstein-Wise II model. Consequently, branching ratios for the Cabibbo-Kobayashi-Maskawa-favored and Cabibbo-Kobayashi-Maskawa-suppressed decays are calculated.
AdS/QCD holographic wave function for the ρ meson and diffractive ρ meson electroproduction.
Forshaw, J R; Sandapen, R
2012-08-24
We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ-meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.
Issues in light meson spectroscopy: The case for meson spectroscopy at CEBAF
Godfrey, S.
1994-04-01
The author reviews some outstanding issues in meson spectroscopy. The most important qualitative issue is whether hadrons with explicit gluonic degrees of freedom exist. To answer this question requires a much better understanding of conventional q{bar q} mesons. The author therefore begins by examining the status of conventional meson spectroscopy and how the situation can be improved. The expected properties of gluonic excitations are discussed with particular emphasis on hybrids to give guidance to experimental searches. Multiquark systems are commented upon as they are likely to be important in the mass region under study and will have to be understood better. In the final section the author discusses the opportunities that CEBAF can offer for the study of meson spectroscopy.
Mass spectrum and decay properties of heavy-light mesons: D, Ds, B and Bs mesons
NASA Astrophysics Data System (ADS)
Yazarloo, B. H.; Mehraban, H.
2017-02-01
We present a study of mass spectrum and decay properties of heavy-light mesons in the non-relativistic potential model. We consider a new type of potential for the mesonic system, the combination of harmonic and Yukawa-type potentials. To obtain the wave function of the system, we use the perturbation method. We take the harmonic term as parent and the Yukawa term as perturbation for the generation of wave function for the meson. For calculating the parent wave function, the Nikiforov-Uvarov (NU) approach is used and thereby we obtained a series solution for the perturbative wave function and then reported the total wave function. With this wave function, we then study the mass spectrum, the decay constant, the leptonic and semileptonic decay widths of heavy-light mesons.
Quarkonium Contribution to Meson Molecules
NASA Astrophysics Data System (ADS)
Cincioglu, E.; Nieves, J.; Ozpineci, A.; Yilmazer, A. U.
2016-10-01
Starting from a molecular picture for the X(3872) resonance, this state and its J^{PC}=2^{++} heavy-quark spin symmetry partner [X_2(4012)] are analyzed within a model which incorporates possible mixings with 2 P charmonium (cbar{c}) states. Since it is reasonable to expect the bare χ _{c1}(2P) to be located above the Dbar{D}^* threshold, but relatively close to it, the presence of the charmonium state provides an effective attraction that will contribute to binding the X(3872), but it will not appear in the 2^{++} sector. Indeed in the latter sector, the χ _{c2}(2P) should provide an effective small repulsion, because it is placed well below the D^*bar{D}^* threshold. We show how the 1^{++} and 2^{++} bare charmonium poles are modified due to the D^{(*)}bar{D}^{(*)} loop effects, and the first one is moved to the complex plane. The meson loops produce, besides some shifts in the masses of the charmonia, a finite width for the 1^{++} dressed charmonium state. On the other hand, X(3872) and X_2(4012) start developing some charmonium content, which is estimated by means of the compositeness Weinberg sum rule. It turns out that in the heavy-quark limit, there is only one coupling between the 2 P charmonia and the D^{(*)}bar{D}^{(*)} pairs. We also show that, for reasonable values of this coupling, leading to X(3872) molecular probabilities of around 70-90 %, the X_2 resonance destabilizes and disappears from the spectrum, becoming either a virtual state or one being located deep into the complex plane, with decreasing influence in the D^{*}bar{D}^{*} scattering line. Moreover, we also discuss how around 10-30 % charmonium probability in the X(3872) might explain the ratio of radiative decays of this resonance into ψ (2S)γ and J/ψ γ . Finally, we qualitatively discuss within this scheme, the hidden bottom flavor sector, paying a special attention to the implications for the X_b and X_{b2} states, heavy-quark spin-flavor partners of the X(3872).
Meson Spectroscopy at JLab@12 GeV
Celentano, Andrea
2013-03-01
Meson, being the simplest hadronic bound system, is the ideal "laboratory" to study the interaction between quarks, to understand the role of the gluons inside hadrons and to investigate the origin of color confinement. To perform such studies it is important to measure the meson spectrum, with precise determination of resonance masses and properties, looking for rare qbar q states and for unconventional mesons with exotic quantum numbers (i.e. mesons with quantum numbers that are not compatible with a qbar q structure). With the imminent advent of the 12 GeV upgrade of Jefferson Lab a new generation of meson spectroscopy experiments will start: "Meson-Ex" in Hall B and "GLUEX" in Hall D. Both will use photo-production to explore the spectrum of mesons in the light-quark sector, in the energy range of few GeVs.
CPT violation and B-meson oscillations
Kostelecky, V. Alan; Van Kooten, Richard J.
2010-11-15
Recent evidence for anomalous CP violation in B-meson oscillations can be interpreted as resulting from CPT violation. This yields the first sensitivity to CPT violation in the B{sub s}{sup 0} system, with the relevant coefficient for CPT violation constrained at the level of parts in 10{sup 12}.
Extracting excited mesons from the finite volume
Doring, Michael
2014-12-01
As quark masses come closer to their physical values in lattice simulations, finite volume effects dominate the level spectrum. Methods to extract excited mesons from the finite volume are discussed, like moving frames in the presence of coupled channels. Effective field theory can be used to stabilize the determination of the resonance spectrum.
Beam Energy Calibration with Meson Production
NASA Astrophysics Data System (ADS)
Razen, B.; Betigeri, M. G.; Bojowald, J.; Budzanowski, A.; Chatterjee, A.; Drochner, M.; Ernst, J.; Foertsch, S.; Freindl, L.; Frekers, D.; Garske, W.; Grewer, K.; Hamacher, A.; Hawash, M.; Igel, S.; Ilieva, I.; Jahn, R.; Jarczyk, L.; Kemmerling, G.; Kilian, K.; Kliczewski, S.; Klimala, W.; Kolev, D.; Kutsarova, T.; Lieb, B. J.; Lippert, G.; Machner, H.; Magiera, A.; Maier, R.; Nann, H.; Plendl, H. S.; Protic, D.; Razen, B.; von Rossen, P.; Roy, B.; Siudak, R.; Smyrski, J.; Strzalkowski, A.; Tsenov, R.; Zolnierczuk, P. A.
1998-11-01
The magnetic spectrometer BIG KARL is used to get energy calibration fix-points for the external beam of COSY-Juelich. These fixpoints were obtained by measuring the meson-production reaction pp → dπ+ close to threshold and at the beam momentum, where the forward pions and the backward deuterons have the same momentum.
Charmonium meson and hybrid radiative transitions
Guo, Peng; Yépez-Martínez, Tochtli; Szczepaniak, Adam P.
2014-06-01
We consider the non-relativistic limit of the QCD Hamiltonian in the Coulomb gauge, to describe radiative transitions between conventional charmonium states and from the lowest multiplet of cc¯ hybrids to charmonium mesons. The results are compared to potential quark models and lattices calculations.
Vector mesons as a Higgs phenomenon
Hajuj, O. )
1990-07-01
We propose an approach to couple vector mesons to the Skyrme model. We show that classically the model exhibits stable hedgehog baryons. The classically stable solutions are quantized. The nucleon-{Delta} splitting is found to be in good agreement with experimental results.
Grab, C.
1987-07-01
The latest results from a number of experiments on searches for rare decays of the charmed D-mesons are summarized. This talk reports on upper limits on flavor changing weak neutral current reactions and on processes that do not conserve the lepton family number.
Khalfin's Theorem and Neutral Mesons Subsystem
NASA Astrophysics Data System (ADS)
Urbanowski, Krzysztof
2009-01-01
The consequences of Khalfin's Theorem are discussed. we find, eg., that diagonal matrix elements of the exact effective Hamiltonian for the neutral meson complex can not be equal if CPT symmetry holds and CP symmetry is violated. Within a given model we examine numerically the Khalfin's Theorem and show in a graphic form how the Khalfin's Theorem works.
Weak Decays of Charmed and B Mesons
NASA Astrophysics Data System (ADS)
Smith, Timothy Paul
We calculate the semileptonic decays of charmed and bottom mesons and the nonleptonic decays of charmed mesons in the standard model starting from the assumption that they are bound states of a quark and an antiquark. The quark or the antiquark is assumed to have a momentum distribution given by the momentum space wavefunction of the bound state. We consider two different examples of momentum space wavefunctions, one given by a relativistic-harmonic-oscillator eigenfunction, and the other derived by Isgur et al. for a coulomb-plus -linear potential. Our final results are practically the same in both cases. For semileptonic decays we have calculated the total decay-rates, the differential decay-rates with respect to the energy and angle of the emitted electron, and the form factors, for decays into pseudoscalar mesons, and into vector mesons with longitudinal or transverse polarizations. Our results are consistent with recent experimental data. In particular(UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign{Gamma(D&to rm K e nu) = 9.68 times 10^{10} sec^ {-1}crGamma(D&to rm K^* e nu) = 4.14 times 10^{10} sec^{-1} crGamma(B&to rm D e nu) = 2.17 times 10^{10 } sec^{-1}crGamma(B& to rm D^* e nu) = 2.50 times 10^{10} sec^ {-1}cr}(TABLE/EQUATION ENDS)For nonleptonic decays our calculations include contributions from four diagrams, the color-enhanced and color-suppressed spectator diagrams and the annihilation and exchange hadronization diagrams. We have calculated the total decay-rates for decays into two pseudoscalar mesons and into one pseudoscalar meson and one vector meson. Our results are consistent with recent experimental data. Of particular interest are the predictions for the following ratios of decay-rates:(UNFORMATTED TABLE OR EQUATION FOLLOWS)eqalign {{Gamma(D^ oto | K^ o pi^ o)overGamma(D ^ oto K^- pi^+)}&= 0.54crcr{Gamma(D^ oto | K^ o rho^ o)overGamma(D^ oto K^- pi^+)}&= 0.15cr}qquad eqalign{{Gamma(D^ o to | K^{* o} pi^ o)overGamma(D^ oto K^{*-} pi^+) }&= 0
Spin O decay angular distribution for interfering mesons in electroproduction
Funsten, H.; Gilfoyle, G.
1994-04-01
Self analyzing meson electroproduction experiments are currently being planned for the CEBAF CLAS detector. These experiments deduce the spin polarization of outgoing unstable spin s (?)0 mesons from their decay angular distribution, W({theta},{psi}). The large angular acceptance of the CLAS detector permits kinematic tracking of a sufficient number of these events to accurately determine electroproduction amplitudes from the deduced polarization. Maximum polarization information is obtained from W({theta},{psi}) for decay into spin 0 daughters. The helicity of the decaying meson is transferred to the daughter`s relative orbital angular momentum m-projection; none is {open_quotes}absorbed{close_quotes} into daughter helicities. The decaying meson`s helicity maximally appears in W({theta},{psi}). W({theta},{psi}) for spin 0 daughters has been derived for (1) vector meson electroproduction and (2) general interfering mesons produced by incident pions. This paper derives W({theta},{psi}) for electroproduction of two interfering mesons that decay into spin 0 daughters. An application is made to the case of interfering scalar and vector mesons. The derivation is an extension of work by Schil using the general decay formalism of Martin. The expressions can be easily extended to the case of N interfering mesons since interference occurs pairwise in the observable W ({theta},{psi}), a quadratic function of the meson amplitudes. The derivation uses the virtual photon density matrix of Schil which is transformed by a meson electroproduction transition operator, T. The resulting density matrix for the interfering mesons is then converted into a corresponding statistical tensor and contracted into the efficiency tensor for spin 0 daughters.
Photo-production of tensor mesons
NASA Astrophysics Data System (ADS)
Xie, Ju-Jun; Geng, Li-Sheng; Oset, Eulogio
2016-11-01
Assuming that the f2(1270), f'2(1525), a2(1320), and K*2(1430) resonances are dynamically generated states from the vector meson-vector meson interactions in L = 0 and spin 2, we study the γp → f2(1270)[f'2(1525)]p, γp → a02 (1320)p, and γp → K*2(1430)Λ(Σ) reactions. For the γp → f2(1270)p reaction, we find that the theoretical results for the differential cross sections are in good agreement with the experimental measurements and provide support for the molecular picture of the f2(1270) in the first baryonic reaction where it has been tested. Furthermore, we predict also the total and differential cross sections for other reactions. The results can be tested in future experiments and therefore offer new clues on the nature of these tensor states.
Heavy meson spectroscopy under strong magnetic field
NASA Astrophysics Data System (ADS)
Yoshida, Tetsuya; Suzuki, Kei
2016-10-01
Spectra of the neutral heavy mesons, ηc(1 S ,2 S ), J /ψ , ψ (2 S ), ηb(1 S ,2 S ,3 S ), ϒ (1 S ,2 S ,3 S ) , D , D*, B , B*, Bs and Bs*, in a homogeneous magnetic field are analyzed by using a potential model with constituent quarks. To obtain anisotropic wave functions and the corresponding eigenvalues, the cylindrical Gaussian expansion method is applied, where the wave functions for transverse and longitudinal directions in the cylindrical coordinate are expanded by the Gaussian bases separately. Energy level structures in the wide range of magnetic fields are obtained and the deformation of the wave functions is shown, which reflects effects of the spin mixing, the Zeeman splitting and quark Landau levels. The contribution from the magnetic catalysis in heavy-light mesons is discussed as a change of the light constituent quark mass.
Observation of Orbitally Excited Bs Mesons
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Abulencia, A.; Adelman, J.; Akimoto, T.; Albrow, M. G.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzi-Bacchetta, P.; Azzurri, P.; Bacchetta, N.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Baroiant, S.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Behari, S.; Bellettini, G.; Bellinger, J.; Belloni, A.; Benjamin, D.; Beretvas, A.; Beringer, J.; Berry, T.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bolshov, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cooper, B.; Copic, K.; Cordelli, M.; Cortiana, G.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lentdecker, G.; de Lorenzo, G.; Dell'Orso, M.; Demortier, L.; Deng, J.; Deninno, M.; de Pedis, D.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Forrester, S.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Gerberich, H.; Gerdes, D.; Giagu, S.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Hamilton, A.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; Iyutin, B.; James, E.; Jayatilaka, B.; Jeans, D.; Jeon, E. J.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Kerzel, U.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Klute, M.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kraus, J.; Kreps, M.; Kroll, J.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhlmann, S. E.; Kuhr, T.; Kulkarni, N. P.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lai, S.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, J.; Lee, J.; Lee, Y. J.; Lee, S. W.; Lefèvre, R.; Leonardo, N.; Leone, S.; Levy, S.; Lewis, J. D.; Lin, C.; Lin, C. S.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, M.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzemer, S.; Menzione, A.; Merkel, P.; Mesropian, C.; Messina, A.; Miao, T.; Miladinovic, N.; Miles, J.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Oldeman, R.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Piedra, J.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Portell, X.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Salamanna, G.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savard, P.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyrla, A.; Shalhout, S. Z.; Shapiro, M. D.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soderberg, M.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spinella, F.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Sun, H.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Tourneur, S.; Trischuk, W.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, J.; Wagner, W.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yamashita, T.; Yang, C.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.
2008-02-01
We report the observation of two narrow resonances consistent with states of orbitally excited (L=1) Bs mesons using 1fb-1 of pp¯ collisions at s=1.96TeV collected with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. We use two-body decays into K- and B+ mesons reconstructed as B+→J/ψK+, J/ψ→μ+μ- or B+→D¯0π+, D¯0→K+π-. We deduce the masses of the two states to be m(Bs1)=5829.4±0.7MeV/c2 and m(Bs2*)=5839.6±0.7MeV/c2.
The lightest hybrid meson supermultiplet in QCD
Dudek, Jozef J
2011-10-01
We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.
Meson exchange and neutral weak currents
Beck, D.H.
1994-04-01
Measurements of parity-violating electron scattering asymmetries to determine weak neutral currents in nuclei will be effected by the presence of meson exchange currents. Present low momentum transfer calculations, based on a flavor independent framework, show these effects to be small. In general, however, as the momentum transfer increases to values typical of deep-inelastic scattering, fragmentation functions show a clear flavor dependence. It is suggested that a good experimental starting point for understanding the flavor dependence of meson production and exchange currents is the Q{sup 2} dependence of parity-violating asymmetry in inclusive single pion electroproduction. A CEBAF facility with doubled energy is necessary to approach momentum transfers where this process begins to scale.
Selected ARGUS results on B meson decays
NASA Astrophysics Data System (ADS)
Zaitsev, Yuri
1992-02-01
Semileptonic B meson decays have been studied using the ARGUS detector at DORIS II. The branching ratio for the decay B¯0→D*+l-ν¯ has been measured. A significant rate for the decay B¯→D**l-ν¯ has been observed. From an angular analysis of the cascade B¯0→D*+(→D0π+)l+ν¯, the forward-backward asymmetry AFB and the D*+ polarization parameter α have been determined. The decay B¯0→D*+l-ν¯ have been also measured with partial reconstruction of the D*+ meson, and for the first time the inclusive primary electron spectrum in the whole momentum interval has been analyzed.
Scalar meson spectroscopy with a fine lattice
NASA Astrophysics Data System (ADS)
Fu, Zi-Wen; Carleton, DeTar
2011-10-01
With sufficiently light u and d quarks the isovector (a0) and isosinglet (f0) scalar meson propagators are dominated at large distances by two-meson states. In the staggered fermion formulation of lattice QCD, taste-symmetry breaking causes a proliferation of multihadron states that complicates the analysis of these channels. Of special interest is the bubble contribution, which makes a considerable contribution to these channels. Using numerical simulation we have measured the correlators for both a0 and f0 channels in the “Asqtad" improved staggered fermion formulation in a MILC fine (a = 0.09 fm) lattice ensemble. We analyze those correlators using rooted staggered chiral perturbation theory (rSχPT) and achieve chiral couplings that are well consistent with previous determinations.
Exploring X(5568) as a meson molecule
NASA Astrophysics Data System (ADS)
Agaev, S. S.; Azizi, K.; Sundu, H.
2016-10-01
The parameters, i.e. the mass and current coupling of the exotic X(5568) state observed by the D0 Collaboration as well as the decay width of the process X → B_s0π+, are explored using the Boverline{K} molecule assumption on its structure. Employed computational methods include QCD two-point and light-cone sum rules, the latter being considered in the soft-meson approximation. The obtained results are compared with the data of the D0 Collaboration as well as with the predictions of the diquark-antidiquark model. This comparison strengthens a diquark-antidiquark picture for the X(5568) state rather than a meson molecule structure.
Glueballs and vector mesons at NICA
NASA Astrophysics Data System (ADS)
Parganlija, Denis
2016-08-01
Two interconnected fields of interest are suggested for NICA. Firstly, existence of glueballs is predicted by the theory of strong interaction but --even after decades of research-- glueball identification in the physical spectrum is still unclear. NICA can help to ascertain experimental glueball candidates via J/Ψ decays whose yield is expected to be large. Importance of glueballs is not limited to vacuum: since they couple to other meson states, glueballs can also be expected to influence signatures of chiral-symmetry restoration in the high-energy phase of strong dynamics. Mass shifting or in-medium broadening of vector and axial-vector mesons may occur there but the extent of such phenomena is still uncertain. Additionally, glueball properties could also be modified in medium. Exploration of these issues is the second suggested field of interest that can be pursued at NICA.
Time reversal violation for entangled neutral mesons
NASA Astrophysics Data System (ADS)
Bernabéu, J.
2013-07-01
A direct evidence for Time Reversal Violation (TRV) means an experiment that, considered by itself, clearly shows TRV independent of, and unconnected to, the results for CP Violation. No existing result before the recent BABAR experiment with entangled neutral B mesons had demonstrated TRV in this sense. There is a unique opportunity for a search of TRV with unstable particles thanks to the Einstein-Podolsky-Rosen (EPR) Entanglement between the two neutral mesons in B, and PHI, Factories. The two quantum effects of the first decay as a filtering measurement and the transfer of information to the still living partner allow performing a genuine TRV asymmetry with the exchange of "in" and "out" states. With four independent TRV asymmetries, BABAR observes a large deviation of T-invariance with a statistical significance of 14 standard deviations, far more than needed to declare the result as a discovery. This is the first direct observation of TRV in the time evolution of any system.
Helicity operators for mesons in flight on the lattice
Christopher E. Thomas; Edwards, Robert G.; Dudek, Jozef J.
2012-01-20
Motivated by the desire to construct meson-meson operators of definite relative momentum in order to study resonances in lattice QCD, we present a set of single-meson interpolating fields at non-zero momentum that respect the reduced symmetry of a cubic lattice in a finite cubic volume. These operators follow from the subduction of operators of definite helicity into irreducible representations of the appropriate little groups. We show their effectiveness in explicit computations where we find that the spectrum of states interpolated by these operators is close to diagonal in helicity, admitting a description in terms of single-meson states of identified J^{PC}. Lastly, the variationally determined optimal superpositions of the operators for each state give rapid relaxation in Euclidean time to that state, ideal for the construction of meson-meson operators and for the evaluation of matrix elements at finite momentum.
Helicity operators for mesons in flight on the lattice
Christopher E. Thomas; Edwards, Robert G.; Dudek, Jozef J.
2012-01-20
Motivated by the desire to construct meson-meson operators of definite relative momentum in order to study resonances in lattice QCD, we present a set of single-meson interpolating fields at non-zero momentum that respect the reduced symmetry of a cubic lattice in a finite cubic volume. These operators follow from the subduction of operators of definite helicity into irreducible representations of the appropriate little groups. We show their effectiveness in explicit computations where we find that the spectrum of states interpolated by these operators is close to diagonal in helicity, admitting a description in terms of single-meson states of identified JPC.more » Lastly, the variationally determined optimal superpositions of the operators for each state give rapid relaxation in Euclidean time to that state, ideal for the construction of meson-meson operators and for the evaluation of matrix elements at finite momentum.« less
Radius of the ρ meson determined from its decay constant
NASA Astrophysics Data System (ADS)
Krutov, A. F.; Polezhaev, R. G.; Troitsky, V. E.
2016-02-01
We present a unified model describing electroweak properties of the π and ρ mesons. Using a general method of the relativistic parametrization of matrix elements of local operators, adjusted for the nondiagonal in the total angular momentum case, we calculate the ρ -meson lepton-decay constant fρ using the same parameters of free constituent quarks that have ensured exclusively good results for the π meson previously. The only free parameter, characterizing quark interactions, which include an additional spin-spin contribution and hence differ from the π -meson case, is fixed by matching the decay constant to its experimental value. The mean square charge radius is calculated, ⟨rρ2⟩=(0.56 ±0.04 ) fm2 . This result confirms, for the ρ -meson case, the conjecture of equality between electromagnetic and strong radii of hadrons. This conjecture was tested previously for proton, π and K mesons.
Holographic picture of heavy vector meson melting
NASA Astrophysics Data System (ADS)
Braga, Nelson R. F.; Martin Contreras, Miguel Angel; Diles, Saulo
2016-11-01
The fraction of heavy vector mesons produced in a heavy ion collision, as compared to a proton-proton collision, serves as an important indication of the formation of a thermal medium, the quark-gluon plasma. This sort of analysis strongly depends on understanding the thermal effects of a medium like the plasma on the states of heavy mesons. In particular, it is crucial to know the temperature ranges where they undergo a thermal dissociation, or melting. AdS/QCD models are know to provide an important tool for the calculation of hadronic masses, but in general are not consistent with the observation that decay constants of heavy vector mesons decrease with excitation level. It has recently been shown that this problem can be overcome using a soft wall background and introducing an extra energy parameter, through the calculation of correlation functions at a finite position of anti-de Sitter space. This approach leads to the evaluation of masses and decay constants of S wave quarkonium states with just one flavor dependent and one flavor independent parameter. Here we extend this more realistic model to finite temperatures and analyze the thermal behavior of the states 1 S, 2 S and 3 S of bottomonium and charmonium. The corresponding spectral function exhibits a consistent picture for the melting of the states where, for each flavor, the higher excitations melt at lower temperatures. We estimate for these six states the energy ranges in which the heavy vector mesons undergo a transition from a well-defined peak in the spectral function to complete melting in the thermal medium. A very clear distinction between the heavy flavors emerges, with the bottomonium state Υ (1S) surviving a deconfinement transition at temperatures much larger than the critical deconfinement temperature of the medium.
Pentaquarks and doubly heavy exotic mesons
NASA Astrophysics Data System (ADS)
Karliner, Marek
2016-11-01
I discuss the experimental evidence for and theoretical interpretation of the new mesons and baryons with two heavy quarks. These include doubly-heavy baryons, exotic hadronic quarkonia and most recently a manifestly exotic pentaquark-like doubly heavy baryon with a minimal quark content uudc¯ discovered by LHCb, whose mass, decay mode and width are in agreement with a prediction based on a physical picture of a deuteron-like Σc D¯* "hadronic molecule".
Non-conventional mesons at PANDA
NASA Astrophysics Data System (ADS)
Giacosa, Francesco
2015-04-01
Non-conventional mesons, such as glueballs and tetraquarks, will be in the focus of the PANDA experiment at the FAIR facility. In this lecture we recall the basic properties of QCD and describe some features of unconventional states. We focus on the search of the not-yet discovered glueballs and the use of the extended Linear Sigma Model for this purpose, and on the already discovered but not-yet understood X, Y, Z states.
Understanding the baryon and meson spectra
Pennington, Michael R.
2013-10-01
A brief overview is given of what we know of the baryon and meson spectra, with a focus on what are the key internal degrees of freedom and how these relate to strong coupling QCD. The challenges, experimental, theoretical and phenomenological, for the future are outlined, with particular reference to a program at Jefferson Lab to extract hadronic states in which glue unambiguously contributes to their quantum numbers.
Near-threshold production of [eta] mesons
Wilkin, C. )
1993-03-01
It is shown that the striking energy variation in the [ital pd][r arrow][sup 3]He [eta] cross section near threshold is probably due to a final state interaction associated with a large (complex) [eta][minus][sup 3]He scattering length. The consequences of this hypothesis are studied for the production of the meson in the [eta][minus][sup 4]He and [eta][minus][sup 7]Be channels.
Mesonic spectroscopy of minimal walking technicolor
Del Debbio, Luigi; Lucini, Biagio; Patella, Agostino; Pica, Claudio; Rago, Antonio
2010-07-01
We investigate the structure and the novel emerging features of the mesonic nonsinglet spectrum of the minimal walking technicolor theory. Precision measurements in the nonsinglet pseudoscalar and vector channels are compared to the expectations for an IR-conformal field theory and a QCD-like theory. Our results favor a scenario in which minimal walking technicolor is (almost) conformal in the infrared, while spontaneous chiral symmetry breaking seems less plausible.
Rare B Meson Decays at the Tevatron
Hopkins, Walter
2012-01-01
Rare B meson decays are an excellent probe for beyond the Standard Model physics. Two very sensitive processes are the b {yields} s{mu}{sup +}{mu}{sup -} and B{sub s,d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} decays. We report recent results at a center of mass energy of {radical}s = 1.96 TeV from CDF II using 7 fb{sup -1} at the Fermilab Tevatron Collider.
Photoproduction of η and η' mesons with EtaMAID
NASA Astrophysics Data System (ADS)
Tiator, Lothar; Kashevarov, Viktor; Ostrick, Michael
2016-11-01
The unitary isobar model EtaMAID has been updated with an extended list of nucleon resonances, fitted to recent and new data for differential cross sections and polarization observables. The nonresonant background is described by Regge trajectories of ω,ρ and a1, b1 mesons and in addition Regge cuts, where vector and axial vector mesons are exchanged together with Pomeron and f2 mesons.
Near-Threshold Meson Production in pp Collisions
NASA Astrophysics Data System (ADS)
Bedfer, Yann
1998-11-01
A program of near threshold investigations of meson production channels in vec p + p collisions has been carried out by the DISTO collaboration. Preliminary results are given. The ability of the experimental apparatus to eventually determine total and differential cross-sections is demonstrated. A number a spin observables will also be evaluated. The potentialities of these measurements for the understanding of two leading problems in meson physics: OZI rule violation in φ production and status of the η ' meson, are discussed.
Mass of nonrelativistic meson from leading twist distribution amplitudes
NASA Astrophysics Data System (ADS)
Braguta, V. V.
2011-01-01
In this paper distribution amplitudes of pseudoscalar and vector nonrelativistic mesons are considered. Using equations of motion for the distribution amplitudes, relations are derived which allow one to calculate the masses of nonrelativistic pseudoscalar and vector meson if the leading twist distribution amplitudes are known. These relations can be also rewritten as relations between the masses of nonrelativistic mesons and infinite series of QCD operators, what can be considered as an exact version of Gremm-Kapustin relation in NRQCD.
Vector Meson Form Factors and Wave Functions from Holographic QCD
Hovhannes Grigoryan; Anatoly Radyushkin
2007-10-10
Based on the holographic dual model of QCD, we study 2- and 3-point functions of vector currents and derive form factors as well as wave functions for the vector mesons. As a result, generalized vector-meson dominance representation for form factors is obtained with a very specific VMD pattern. The calculated electric radius of the rho-meson is shown to be in a good agreement with predictions from lattice QCD.
Baryon to meson transition distribution amplitudes and their spectral representation
Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.
2011-07-15
We consider the problem of construction of a spectral representation for nucleon to meson transition distribution amplitudes (TDAs), non-diagonal matrix elements of nonlocal three quark operators between a nucleon and a meson states. We introduce the notion of quadruple distributions and generalize Radyshkin's factorized Ansatz for this issue. Modelling of baryon to meson TDAs in the complete domain of their definition opens the way to quantitative estimates of cross-sections for various hard exclusive reactions.
Asymmetric vector mesons produced in nuclear collisions
NASA Astrophysics Data System (ADS)
Dremin, I. M.; Nechitailo, V. A.
2016-09-01
It is argued that the experimentally observed phenomenon of asymmetric shapes of vector mesons produced in nuclear media during high-energy nucleus-nucleus collisions can be explained as Fano-Feshbach resonances. It has been observed that the mass distributions of lepton pairs created at meson decays decline from the traditional Breit-Wigner shape with some excess in the low-mass wing of the resonance. It is clear that the whole phenomenon is related to some interaction with the nuclear medium. Moreover, it can be further described in quantum mechanics as the interference of direct and continuum states in the Fano-Feshbach effect. To reveal the nature of the interaction it is proposed to use a phenomenological model of the additional contribution due to Cherenkov gluons. They can be created because of the excess of the refractivity index over 1 just in the low-mass wing as required by the classical Cherenkov treatment. In quantum mechanics, this requirement is related to the positive real part of the interaction amplitude in this wing. The corresponding parameters are found from the comparison with ρ-meson data and admit reasonable explanation.
Rare and forbidden decays of D Mesons
David A. Sanders et al.
2001-05-23
The authors summarize the results of two recent searches for flavor-changing neutral current, lepton-flavor violating, and lepton-number violating decays of D{sup +}, D{sub s}{sup +}, and D{sup 0} mesons (and their antiparticles) into modes containing muons and electrons. using data from Fermilab charm hadroproduction experiment E791, they examined D{sup +} and D{sub s}{sup +} {pi}{ell}{ell} and {Kappa}{ell}{ell} decay modes and the D{sup 0} dilepton decay modes containing either {ell}{sup +}{ell}{sup {minus}}, a {rho}{sup 0}, {bar {Kappa}}*{sup 0}, or {phi} vector meson, or a non-resonant {pi}{pi}, {Kappa}{pi}, or {Kappa}{Kappa} pair of pseudoscalar mesons. No evidence for any of these decays was found. Therefore, the authors presented branching-fraction upper limits at 90% confidence level for the 51 decay modes examined. Twenty-six of these modes had no previously reported limits, and eighteen of the remainder were reported with significant improvements over previously published results.
Discovering walking technirho mesons at the LHC
NASA Astrophysics Data System (ADS)
Kurachi, Masafumi; Matsuzaki, Shinya; Yamawaki, Koichi
2014-09-01
We formulate a scale-invariant hidden local symmetry (HLS) as a low-energy effective theory of walking technicolor (WTC) which includes the technidilaton, technipions, and technirho mesons as the low-lying spectra. As a benchmark for LHC phenomenology, we in particular focus on the one-family model of WTC having eight technifermion flavors, which can be—at energy scales relevant to the reach of the LHC—described by the scale-invariant HLS based on the manifold [SU(8)L×SU(8)R]global×SU(8)local/SU(8)V, where SU(8)local is the HLS and the global SU(8)L×SU(8)R symmetry is partially gauged by the SU(3)×SU(2)L×U(1)Y of the standard model. Based on the scale-invariant HLS, we evaluate the coupling properties of the technirho mesons and place limits on the masses from the current LHC data. Then, implications for future LHC phenomenology are discussed by focusing on the technirho mesons produced through the Drell-Yan process. We find that the color-octet technirho decaying to the technidilaton along with the gluon is of interest as the discovery channel at the LHC, which would provide a characteristic signature to probe the one-family WTC.
Time reversal violation for entangled neutral mesons
NASA Astrophysics Data System (ADS)
Bernabeu, J.
2014-07-01
A direct evidence for Time Reversal Violation (TRV) means an experiment that, considered by itself, clearly shows TRV independent of, and unconnected to, the results for CP Violation. No existing result before the recent BABAR experiment with entangled neutral B mesons had demonstrated TRV in this sense. There is a unique solution for the test of TRV with unstable particles thanks to the Einstein-Podolsky-Rosen (EPR) Entanglement between the two neutral mesons in B, and φ, Factories. The two quantum effects of the decays as filtering measurements of the meson states and the transfer of information of the first decay to the still living partner allow performing a genuine TRV asymmetry with the exchange of "in" and "out" states. With four independent TRV asymmetries, BABAR observes a large deviation of T-invariance with a statistical significance of 14 standard deviations, far more than needed to declare the result as a discovery. This is the first direct observation of TRV in the time evolution of any system. The perspectives for future additional studies of TRV are discussed.
Hard Exclusive Meson Production at COMPASS
NASA Astrophysics Data System (ADS)
Ter Wolbeek, Johannes
2016-02-01
The concept of Generalized Parton Distributions (GPDs) combines two-dimensional spatial information given by form factors, with longitudinal momentum information from Parton Distribution Functions. GPDs provide comprehensive description of the nucleon structure involving a wealth of new information. For instance, according to Ji’s sum rule, the GPDs H and E enable access to the total angular momenta of quarks, antiquarks and gluons. While H can be approached using measurements of electroproduction cross sections, asymmetry measurements in hard exclusive meson production off transversely polarized targets can help to constrain the GPD E and chiral-odd GPDs. In 2007 and 2010 the COMPASS experiment at CERN collected data by scattering a 160GeV/c muon beam off a transversely polarized NH3 target. Exclusive vector-meson production μ + p → μ‧ + p + V with a ρ0 or ω meson in the final state is studied and five single-spin and three double-spin azimuthal asymmetries are measured.
Time reversal violation for entangled neutral mesons
Bernabeu, J.
2014-07-23
A direct evidence for Time Reversal Violation (TRV) means an experiment that, considered by itself, clearly shows TRV independent of, and unconnected to, the results for CP Violation. No existing result before the recent BABAR experiment with entangled neutral B mesons had demonstrated TRV in this sense. There is a unique solution for the test of TRV with unstable particles thanks to the Einstein-Podolsky-Rosen (EPR) Entanglement between the two neutral mesons in B, and φ, Factories. The two quantum effects of the decays as filtering measurements of the meson states and the transfer of information of the first decay to the still living partner allow performing a genuine TRV asymmetry with the exchange of “in” and “out” states. With four independent TRV asymmetries, BABAR observes a large deviation of T-invariance with a statistical significance of 14 standard deviations, far more than needed to declare the result as a discovery. This is the first direct observation of TRV in the time evolution of any system. The perspectives for future additional studies of TRV are discussed.
Antiproton-proton annihilation into light neutral meson pairs within an effective meson theory
NASA Astrophysics Data System (ADS)
Wang, Ying; Bystritskiy, Yury M.; Ahmadov, Azad I.; Tomasi-Gustafsson, Egle
2017-08-01
Antiproton-proton annihilation into light neutral mesons in the few GeV energy domain is investigated in view of a global description of the existing data and predictions for future work at the Antiproton Annihilation at Darmstadt (PANDA) experiment at the Facility for Antiproton and Ion Research (FAIR). An effective meson model earlier developed, with mesonic and baryonic degrees of freedom in s , t , and u channels, is applied here to π0π0 production. Form factors with logarithmic s and t (u ) dependencies are applied. A fair agreement with the existing angular distributions is obtained. Applying SU(3) symmetry, it is straightforward to recover the angular distributions for π0η and η η production in the same energy range. A good agreement is generally obtained with all existing data.
Production of the X( 3872) in B-meson decay by the coalescence of charm mesons.
Braaten, Eric; Kusunoki, Masaoki; Nussinov, Shmuel
2004-10-15
If the recently discovered charmonium state X( 3872) is a loosely bound S-wave molecule of the charm mesons D0 D(*0) or D(*0) D0, it can be produced in B-meson decay by the coalescence of charm mesons. If this coalescence mechanism dominates, the ratio of the differential rate for B+ -->D(0) D(* 0)K+ near the D0 D(*0) threshold and the rate for B+ -->XK+ is a function of the D0 D(*0) invariant mass and hadron masses only. The identification of the X( 3872) as a D0 D(*0)/D(*0)D0 molecule can be confirmed by observing an enhancement in the D0 D(*0) invariant mass distribution near the threshold. An estimate of the branching fraction for B+ -->XK+ is consistent with observations if X has quantum numbers J(PC)=1(++ ) and if J/psi pi(+) pi(-) is one of its major decay modes.
In-medium properties of light vector mesons
C. Djalali; R. Nasseripour; D. P. Weygand; M. H. Wood
2007-08-01
The photoproduction of vector mesons on various nuclei has been studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory. All three vector mesons ρ, ω and phi are observed via their decay to e+e-. The possible in-medium effects on the properties of the ρ meson are of particular interest. The ρ spectral function is extracted from the data on carbon, iron and titanium, and compared to the spectrum from liquid deuterium, which is relatively free of nuclear effects. We observe no effects on the mass of the ρ meson, some widening in titanium and iron is observed consistent with the collisional broadening.
Scattering amplitudes to all orders in meson exchange
Silbar, R.R.; Mattis, M.P.
1990-01-01
As the number of colors in QCD, N{sub C}, becomes large, it is possible to sum up all meson-exchange contributions, however arbitrarily complicated, to meson-baryon and baryon-baryon scattering. A semi-classical structure for the two-flavor theory emerges, in close correspondence to vector-meson-augmented Skyrme models. In this limit, baryons act as extended static sources for the classical meson fields. This leads to non-linear differential equations for the classical meson fields which can be solved numerically for static radial (hedgehog-like) solutions. The non-linear terms in the equations of motion for the quantized meson fields can then be simplified, to leading order in 1/N{sub C}, by replacing all factors of the meson field but one by the previously-found classical field. This results in linear, Schroedinger-like equations, which are easily solved. For the meson-baryon case the solution can be subsequently analyzed to obtain the phase shifts for the scattering and, from these, the baryon resonance spectrum of the model. As the warm-up, we have carried out this calculation for the simple case of {sigma} mesons only, finding sensible results. 8 refs., 3 figs.
The Meson Spectroscopy Program at the Jefferson Laboratory
Filippi, Alessandro
2015-06-01
The experimental techniques that will be applied by the next generation meson spectroscopy experiments at JLab are described. For the first time, these experiments will be able to exploit the features of a photon beam of unprecedented intensity and momentum resolution, that will allow to perform precision studies of meson states with masses below 3 GeV/c^{2}. Photon induced reactions will enhance the production of spin-1 mesons, that are of particular interest according to the most recent Lattice QCD calculations of the lightest exotic hybrid meson.
Search for medium modifications of the rho meson.
Nasseripour, R; Wood, M H; Djalali, C; Weygand, D P; Tur, C; Mosel, U; Muehlich, P; Adams, G; Amaryan, M J; Ambrozewicz, P; Anghinolfi, M; Asryan, G; Avakian, H; Bagdasaryan, H; Baillie, N; Ball, J P; Baltzell, N A; Barrow, S; Battaglieri, M; Bedlinskiy, I; Bektasoglu, M; Bellis, M; Benmouna, N; Berman, B L; Biselli, A S; Blaszczyk, L; Bouchigny, S; Boiarinov, S; Bradford, R; Branford, D; Briscoe, W J; Brooks, W K; Bültmann, S; Burkert, V D; Butuceanu, C; Calarco, J R; Careccia, S L; Carman, D S; Carnahan, B; Casey, L; Chen, S; Cole, P L; Collins, P; Coltharp, P; Crabb, D; Crannell, H; Crede, V; Cummings, J P; Dashyan, N; De Masi, R; De Vita, R; De Sanctis, E; Degtyarenko, P V; Denizli, H; Dennis, L; Deur, A; Dharmawardane, K V; Dickson, R; Dodge, G E; Doughty, D; Dugger, M; Dytman, S; Dzyubak, O P; Egiyan, H; Egiyan, K S; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Feldman, G; Feuerbach, R J; Funsten, H; Garçon, M; Gavalian, G; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gordon, C I O; Gothe, R W; Griffioen, K A; Guidal, M; Guler, N; Guo, L; Gyurjyan, V; Hadjidakis, C; Hafidi, K; Hakobyan, H; Hakobyan, R S; Hanretty, C; Hardie, J; Hersman, F W; Hicks, K; Hleiqawi, I; Holtrop, M; Hyde-Wright, C E; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Ito, M M; Jenkins, D; Jo, H S; Johnstone, J R; Joo, K; Juengst, H G; Kalantarians, N; Kellie, J D; Khandaker, M; Kim, W; Klein, A; Klein, F J; Klimenko, A V; Kossov, M; Krahn, Z; Kramer, L H; Kubarovsky, V; Kuhn, J; Kuhn, S E; Kuleshov, S V; Lachniet, J; Laget, J M; Langheinrich, J; Lawrence, D; Li, Ji; Livingston, K; Lu, H Y; Maccormick, M; Markov, N; Mattione, P; McAleer, S; McKinnon, B; McNabb, J W C; Mecking, B A; Mehrabyan, S; Melone, J J; Mestayer, M D; Meyer, C A; Mibe, T; Mikhailov, K; Minehart, R; Mirazita, M; Miskimen, R; Mokeev, V; Moriya, K; Morrow, S A; Moteabbed, M; Mueller, J; Munevar, E; Mutchler, G S; Nadel-Turonski, P; Niccolai, S; Niculescu, G; Niculescu, I; Niczyporuk, B B; Niroula, M R; Niyazov, R A; Nozar, M; Osipenko, M; Ostrovidov, A I; Park, K; Pasyuk, E; Paterson, C; Anefalos Pereira, S; Pierce, J; Pivnyuk, N; Pocanic, D; Pogorelko, O; Pozdniakov, S; Preedom, B M; Price, J W; Prok, Y; Protopopescu, D; Raue, B A; Riccardi, G; Ricco, G; Ripani, M; Ritchie, B G; Ronchetti, F; Rosner, G; Rossi, P; Sabatié, F; Salamanca, J; Salgado, C; Santoro, J P; Sapunenko, V; Schumacher, R A; Serov, V S; Sharabian, Y G; Sharov, D; Shvedunov, N V; Smith, E S; Smith, L C; Sober, D I; Sokhan, D; Stavinsky, A; Stepanyan, S S; Stepanyan, S; Stokes, B E; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tedeschi, D J; Tkabladze, A; Tkachenko, S; Todor, L; Ungaro, M; Vineyard, M F; Vlassov, A V; Watts, D P; Weinstein, L B; Williams, M; Wolin, E; Yegneswaran, A; Zana, L; Zhang, B; Zhang, J; Zhao, B; Zhao, Z W
2007-12-31
The photoproduction of vector mesons on various nuclei has been studied using the CLAS detector at Jefferson Laboratory. The vector mesons, rho, omega, and varphi, are observed via their decay to e;{+}e;{-}, in order to reduce the effects of final-state interactions in the nucleus. Of particular interest are possible in-medium effects on the properties of the rho meson. The rho mass spectrum is extracted from the data on various nuclei, 2H, C, Fe, and Ti. We observe no significant mass shift and some broadening consistent with expected collisional broadening for the rho meson.
Study of inclusive production of charmonium mesons in B decays
NASA Astrophysics Data System (ADS)
Aubert, B.; Boutigny, D.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Robbe, P.; Tisserand, V.; Zghiche, A.; Palano, A.; Pompili, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Gill, M. S.; Gritsan, A. V.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J.; Kerth, L. T.; Kolomensky, Yu. G.; Kral, J. F.; Leclerc, C.; Levi, M. E.; Lynch, G.; Mir, L. M.; Oddone, P. J.; Orimoto, T.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Telnov, A. V.; Wenzel, W. A.; Harrison, T. J.; Hawkes, C. M.; Knowles, D. J.; O'Neale, S. W.; Penny, R. C.; Watson, A. T.; Watson, N. K.; Deppermann, T.; Goetzen, K.; Koch, H.; Lewandowski, B.; Peters, K.; Schmuecker, H.; Steinke, M.; Barlow, N. R.; Bhimji, W.; Boyd, J. T.; Chevalier, N.; Clark, P. J.; Cottingham, W. N.; Mackay, C.; Wilson, F. F.; Abe, K.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Jolly, S.; McKemey, A. K.; Blinov, V. E.; Bukin, A. D.; Buzykaev, A. R.; Golubev, V. B.; Ivanchenko, V. N.; Korol, A. A.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Yushkov, A. N.; Best, D.; Chao, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; McMahon, S.; Stoker, D. P.; Arisaka, K.; Buchanan, C.; Chun, S.; Macfarlane, D. B.; Prell, S.; Rahatlou, Sh.; Raven, G.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Dahmes, B.; Hart, P. A.; Kuznetsova, N.; Levy, S. L.; Long, O.; Lu, A.; Mazur, M. A.; Richman, J. D.; Verkerke, W.; Beringer, J.; Eisner, A. M.; Grothe, M.; Heusch, C. A.; Lockman, W. S.; Pulliam, T.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Turri, M.; Walkowiak, W.; Williams, D. C.; Wilson, M. G.; Chen, E.; Dubois-Felsmann, G. P.; Dvoretskii, A.; Hitlin, D. G.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Barillari, T.; Bloom, P.; Ford, W. T.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Smith, J. G.; van Hoek, W. C.; Zhang, L.; Blouw, J.; Harton, J. L.; Krishnamurthy, M.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Zhang, J.; Altenburg, D.; Brandt, T.; Brose, J.; Colberg, T.; Dickopp, M.; Dubitzky, R. S.; Hauke, A.; Maly, E.; Müller-Pfefferkorn, R.; Otto, S.; Schubert, K. R.; Schwierz, R.; Spaan, B.; Wilden, L.; Bernard, D.; Bonneaud, G. R.; Brochard, F.; Cohen-Tanugi, J.; Ferrag, S.; T'jampens, S.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Anjomshoaa, A.; Bernet, R.; Khan, A.; Lavin, D.; Muheim, F.; Playfer, S.; Swain, J. E.; Tinslay, J.; Falbo, M.; Borean, C.; Bozzi, C.; Piemontese, L.; Sarti, A.; Treadwell, E.; Anulli, F.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Zallo, A.; Bagnasco, S.; Buzzo, A.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, M. R.; Passaggio, S.; Pastore, F. C.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Morii, M.; Bartoldus, R.; Grenier, G. J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Lamsa, J.; Meyer, W. T.; Rosenberg, E. I.; Yi, J.; Davier, M.; Höcker, A.; Lacker, H. M.; Laplace, S.; Le Diberder, F.; Grosdidier, G.; Lepeltier, V.; Lutz, A. M.; Petersen, T. C.; Plaszczynski, S.; Schune, M. H.; Tantot, L.; Trincaz-Duvoid, S.; Wormser, G.; Bionta, R. M.; Brigljević, V.; Lange, D. J.; Mugge, M.; van Bibber, K.; Wright, D. M.; Bevan, A. J.; Fry, J. R.; Gabathuler, E.; Gamet, R.; George, M.; Kay, M.; Payne, D. J.; Sloane, R. J.; Touramanis, C.; Aspinwall, M. L.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Eschrich, I.; Morton, G. W.; Nash, J. A.; Sanders, P.; Smith, D.; Taylor, G. P.; Back, J. J.; Bellodi, G.; Dixon, P.; Harrison, P. F.; Potter, R. J.; Shorthouse, H. W.; Strother, P.; Vidal, P. B.; Cowan, G.; Flaecher, H. U.; George, S.; Green, M. G.; Kurup, A.; Marker, C. E.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Brown, D.; Davis, C. L.; Allison, J.; Barlow, R. J.; Forti, A. C.; Jackson, F.; Lafferty, G. D.; Savvas, N.; Weatherall, J. H.; Williams, J. C.; Farbin, A.; Jawahery, A.; Lillard, V.; Roberts, D. A.; Schieck, J. R.; Blaylock, G.; Dallapiccola, C.; Flood, K. T.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Moore, T. B.; Staengle, H.; Willocq, S.; Brau, B.; Cowan, R.; Sciolla, G.; Taylor, F.; Yamamoto, R. K.; Milek, M.; Patel, P. M.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Hast, C.; Taras, P.; Nicholson, H.; Cartaro, C.; Cavallo, N.; de Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Losecco, J. M.; Alsmiller, J. R.; Gabriel, T. A.; Brau, J.; Frey, R.; Iwasaki, M.; Potter, C. T.; Sinev, N. B.; Strom, D.; Torrence, E.; Colecchia, F.; Dorigo, A.; Galeazzi, F.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; de La Vaissière, Ch.; del Buono, L.; Hamon, O.; Leruste, Ph.; Ocariz, J.; Pivk, M.; Roos, L.; Stark, J.; Manfredi, P. F.; Re, V.; Speziali, V.; Gladney, L.; Guo, Q. H.; Panetta, J.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bucci, F.; Calderini, G.; Campagna, E.; Carpinelli, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Martinez-Vidal, F.; Morganti, M.; Neri, N.; Paoloni, E.; Rama, M.; Rizzo, G.; Sandrelli, F.; Triggiani, G.; Walsh, J.; Haire, M.; Judd, D.; Paick, K.; Turnbull, L.; Wagoner, D. E.; Albert, J.; Elmer, P.; Lu, C.; Miftakov, V.; Olsen, J.; Schaffner, S. F.; Smith, A. J.; Tumanov, A.; Varnes, E. W.; Bellini, F.; Cavoto, G.; del Re, D.; Ferrarotto, F.; Ferroni, F.; Leonardi, E.; Mazzoni, M. A.; Morganti, S.; Piredda, G.; Safai Tehrani, F.; Serra, M.; Voena, C.; Faccini, R.; Christ, S.; Wagner, G.; Waldi, R.; Adye, T.; de Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Xella, S. M.; Aleksan, R.; Emery, S.; Gaidot, A.; Giraud, P.-F.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; London, G. W.; Mayer, B.; Schott, G.; Serfass, B.; Vasseur, G.; Yeche, Ch.; Zito, M.; Purohit, M. V.; Weidemann, A. W.; Yumiceva, F. X.; Adam, I.; Aston, D.; Berger, N.; Boyarski, A. M.; Convery, M. R.; Coupal, D. P.; Dong, D.; Dorfan, J.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Grauges, E.; Haas, T.; Hadig, T.; Halyo, V.; Himel, T.; Hryn'ova, T.; Huffer, M. E.; Innes, W. R.; Jessop, C. P.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Langenegger, U.; Leith, D. W.; Luitz, S.; Luth, V.; Lynch, H. L.; Marsiske, H.; Menke, S.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Quinn, H.; Ratcliff, B. N.; Robertson, S. H.; Roodman, A.; Salnikov, A. A.; Schietinger, T.; Schindler, R. H.; Schwiening, J.; Simi, G.; Snyder, A.; Soha, A.; Spanier, S. M.; Stelzer, J.; Su, D.; Sullivan, M. K.; Tanaka, H. A.; Va'Vra, J.; Wagner, S. R.; Weaver, M.; Weinstein, A. J.; Wisniewski, W. J.; Wright, D. H.; Young, C. C.; Burchat, P. R.; Cheng, C. H.; Meyer, T. I.; Roat, C.; Henderson, R.; Bugg, W.; Cohn, H.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Bianchi, F.; Bona, M.; Gamba, D.; Bosisio, L.; della Ricca, G.; Dittongo, S.; Lanceri, L.; Poropat, P.; Vitale, L.; Vuagnin, G.; Panvini, R. S.; Banerjee, S. W.; Brown, C. M.; Fortin, D.; Jackson, P. D.; Kowalewski, R.; Roney, J. M.; Band, H. R.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Hu, H.; Johnson, J. R.; Liu, R.; di Lodovico, F.; Pan, Y.; Prepost, R.; Scott, I. J.; Sekula, S. J.; von Wimmersperg-Toeller, J. H.; Wu, J.; Wu, S. L.; Yu, Z.; Neal, H.
2003-02-01
The inclusive production of charmonium mesons in B meson decay has been studied in a 20.3 fb-1 data set collected by the BABAR experiment operating at the Υ(4S) resonance. Branching fractions have been measured for the inclusive production of the charmonium mesons J/ψ, ψ(2S), χc1, and χc2. The branching fractions are also presented as a function of the center-of-mass momentum of the mesons and of the helicity of the J/ψ.
The hybrid mesons quest: the MesonEx experiment at Jefferson Laboratory
Rizzo, Alessandro
2016-03-01
The meson spectroscopy plays nowadays a central role in the investigation of hadron structure thanks to the possible existence of exotic hybrid mesons, quark-antiquark-gluon bound states. Their explicit gluonic degrees of freedom which should clearly emerge from a Partial Wave Analysis (PWA) of the corresponding Dalitz plot of the exotic particle decay, may result in final JPC configurations not allowed in the constituent quark model. Besides this clear signature, hybrid mesons are also expected to have a large particle multiplicity decays, requiring for their search an experimental apparatus with high performances in terms of rate capability, resolution and almost a full acceptance to apply PWA methods. New-generation experiments are planned at Thomas Jefferson National Laboratory (VA, USA) for which an unprecedented statistics of large multiplicity decay events with fully reconstructed kinematics will be available. In particular for the MesonEx (CLAS12) experiment in Hall B, a wide scientific program that will start in 2016 has been deployed to study the meson spectrum at energies up to 11 GeV. A key role in such program is played by the Forward Tagger apparatus of the experiment, which will allow to extend the study of meson electro-production to very low Q2 values, in a quasi-real photo production kinematical region, where the production of hybrid mesons is expected to be favorite. Currently a new analysis framework for the search of the hybrid mesons is being set up by the HASPECT network, an international structure which gather people involved into theoretical and experimental hadronic physics all over the world. The goals of the network is to develop new analysis models and statistical techniques to unfold the signal and background distributions in high-statistics datasets. In this work are briefly presented the first preliminary results from the application of a statistical technique, namely the sPlot, to the data already acquired by the CLAS experiment for
The hybrid mesons quest: the MesonEx experiment at Jefferson Laboratory
NASA Astrophysics Data System (ADS)
Rizzo, A.; CLAS Collaboration
2016-02-01
The meson spectroscopy plays nowadays a central role in the investigation of hadron structure thanks to the possible existence of exotic hybrid mesons, quark-antiquark-gluon bound states. Their explicit gluonic degrees of freedom which should clearly emerge from a Partial Wave Analysis (PWA) of the corresponding Dalitz plot of the exotic particle decay, may result in final JPC configurations not allowed in the constituent quark model. Besides this clear signature, hybrid mesons are also expected to have a large particle multiplicity decays, requiring for their search an experimental apparatus with high performances in terms of rate capability, resolution and almost a full acceptance to apply PWA methods. New-generation experiments are planned at Thomas Jefferson National Laboratory (VA, USA) for which an unprecedented statistics of large multiplicity decay events with fully reconstructed kinematics will be available. In particular for the MesonEx (CLAS12) experiment in Hall B, a wide scientific program that will start in 2016 has been deployed to study the meson spectrum at energies up to 11 GeV. A key role in such program is played by the Forward Tagger apparatus of the experiment, which will allow to extend the study of meson electro-production to very low Q2 values, in a quasi-real photo production kinematical region, where the production of hybrid mesons is expected to be favorite. Currently a new analysis framework for the search of the hybrid mesons is being set up by the HASPECT network, an international structure which gather people involved into theoretical and experimental hadronic physics all over the world. The goals of the network is to develop new analysis models and statistical techniques to unfold the signal and background distributions in high-statistics datasets. In this work are briefly presented the first preliminary results from the application of a statistical technique, namely the sPlot, to the data already acquired by the CLAS experiment for
Skyrmions with vector mesons in the hidden local symmetry approach
NASA Astrophysics Data System (ADS)
Ma, Yong-Liang; Yang, Ghil-Seok; Oh, Yongseok; Harada, Masayasu
2013-02-01
The roles of light ρ and ω vector mesons in the Skyrmion are investigated in a chiral Lagrangian derived from the hidden local symmetry (HLS) up to O(p4) including the homogeneous Wess-Zumino terms. We write a general “master formula” that allows us to determine the parameters of the HLS Lagrangian from a class of holographic QCD models valid at the large-Nc and -λ (’t Hooft constant) limit by integrating out the infinite towers of vector and axial-vector mesons other than the lowest ρ and ω mesons. Within this approach we find that the physical properties of the Skyrmion as the solitonic description of baryons are independent of the HLS parameter a. Therefore the only parameters of the model are the pion decay constant and the vector-meson mass. Once determined in the meson sector, we have a totally parameter-free theory that allows us to study unequivocally the role of light vector mesons in the Skyrmion structure. We find, as suggested by Sutcliffe, that the inclusion of the ρ meson reduces the soliton mass, which makes the Skyrmion come closer to the Bogomol’nyi-Prasad-Sommerfield soliton, but the role of the ω meson is found to increase the soliton mass. In stark contrast, the Δ-N mass difference, which is determined by the moment of inertia in the adiabatic collective quantization of the Skyrmion, is increased by the ρ vector meson, while it is reduced by the inclusion of the ω meson. All these observations show the importance of the ω meson in the properties of the nucleon and nuclear matter in the Skyrme model.
Scalar isovector resonance photoproduction through the final state meson-meson interactions
NASA Astrophysics Data System (ADS)
Bibrzycki, Łukasz; Kamiński, Robert
2016-08-01
We construct the amplitudes of πη photoproduction taking into account the effects of the πη-KK¯ interchannel coupling. The idea of our model is to describe the scalar isovectors as dynamically produced in the final state while the initial stage of the reaction being described in terms of meson exchanges. Meson loops which arise this way include not only pseudoscalars but also vector mesons. These amplitudes are used to calculate the S-wave cross-sections and mass distributions in the πη effective mass region corresponding to the scalar resonances a0(980) and a0(1450). The values we obtained for a0(980) are comparable with predictions of other models while the cross-section for a0(1450) is about an order of magnitude larger than prediction based on the quark model. We show that the amplitudes with loops containing vector mesons calculated in the on-shell approximation are not suppressed in contrast to amplitudes containing only pseudoscalar loops. We also estimate the cross-sections for the P- and D-waves in the πη channel.
Chiral Quark-Meson model of N and DELTA with vector mesons
Broniowski, W.; Banerjee, M.K.
1985-10-01
Vector mesons rho, A/sub 1/ and ..omega.. are introduced in the Chiral Quark-Meson Theory (CQMT) of N and ..delta... We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ..omega.. to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA).
Beauty vector meson decay constants from QCD sum rules
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2016-01-22
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.
Absorption of the omega and phi mesons in nuclei
Chaden Djalali, Michael H. Wood, Michael Paolone, Rakhsha Nasseripour, Dennis P. Weygand
2012-04-01
The properties of hadrons, such as their masses and widths, are predicted to be modified in dense and/or hot nuclear matter. Particular attention has been given to the modifications of vector-meson properties in ordinary nuclear matter where chiral symmetry is predicted to be partially restored due to a change in the quark condensate. Different models predict relatively large measurable changes in the mass and/or the width of these mesons. The e{sup +}e{sup -} decay channel of these mesons has negligible final-state interactions (FSI), providing an ideal tool to study their possible in-medium modifications Due to its short lifetime, the {rho} meson has a substantial probability of decaying in the nucleus and its study has been previously reported. Due to their long lifetimes, the {omega} and {phi} mesons are ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. These mesons have been photo-produced in several targets ranging from deuterium to lead. Nuclear transparencies ratios have been derived for different decay channels. These ratios indicate larger in-medium widths compared with what have been reported in other reaction channels. The absorption of the {omega} meson is stronger than that reported by the CBELSATAPS experiment. These results are compared to recent theoretical models.
Some implications of meson dominance in weak interactions
Lichard, P. ||
1997-05-01
The hypothesis is scrutinized that the weak interaction of hadronic systems at low energies is dominated by the coupling of the pseudoscalar, vector, and axial-vector mesons to the weak gauge bosons. The strength of the weak coupling of the {rho}(770) meson is uniquely determined by vector-meson dominance in electromagnetic interactions; flavor and chiral symmetry-breaking effects modify the coupling of other vector mesons and axial-vector mesons. Many decay rates are calculated and compared to experimental data and partly to predictions of other models. A parameter-free description of the decay K{sup +}{r_arrow}{pi}{sup +}scr(l){sup +}scr(l){sup {minus}} is obtained. Predictions for several not yet observed decay rates and reaction cross sections are presented. The relation between the conserved vector current hypothesis and meson dominance is clarified. Phenomenological success of the meson dominance suggests that in some calculations based on the standard model the weak quark-antiquark annihilation and creation diagrams may be more important than anticipated so far. The processes are identified where the meson dominance fails, implying that they are governed, on the quark level, by some other standard model diagrams. {copyright} {ital 1997} {ital The American Physical Society}
Meson-baryon effective chiral Lagrangians at order p4
NASA Astrophysics Data System (ADS)
Jiang, Shao-Zhou; Chen, Qing-Sen; Liu, Yan-Rui
2017-01-01
We construct the three-flavor Lorentz-invariant meson-baryon chiral Lagrangians at the order p4, with which a full one-loop investigation may be performed. One obtains 540 independent terms. The processes with the minimal number of mesons and photons to which this order of Lagrangians may contribute are also presented.
Is the spectrum of highly excited mesons purely coulombian?
Mezoir, El Houssine; González, P
2008-12-05
We show that a static central potential may provide a precise description of highly excited light unflavored mesons. Because of string breaking, this potential becomes of chromoelectric type at sufficiently large quark-antiquark distances giving rise to a Coulombian spectrum. The same conclusion can be inferred for any other meson sector through a straightforward extension of our analysis.
Properties of flavour-singlet pseudoscalar mesons from lattice QCD
NASA Astrophysics Data System (ADS)
Urbach, Carsten
2017-01-01
We report on the status of the determination of properties of flavour-singlet pseudoscalar mesons using Wilson twisted mass lattice QCD at maximal twist. As part of project C7, a large number of phenomenologically relevant quantities could be extracted from first principle, from η and η' masses to decay widths of pseudoscalar mesons to two photons.
Beauty vector meson decay constants from QCD sum rules
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2016-01-01
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.
New-particle spectroscopy, quarkonium and gluonic mesons
Bloom, E.D.
1982-10-01
Recent experimental results on quarkonium and gluonic mesons are presented and discussed. Comparisons with theory are made. Quarkonium predictions seem to agree well with experiment. The question of the experimental verification of gluonic mesons is clouded by the difficulty of the theoretical interpretation.
QCD tests of the puzzling scalar mesons
NASA Astrophysics Data System (ADS)
Narison, Stephan
2006-06-01
Motivated by several recent data, we test the QCD spectral sum rules (QSSR) predictions based on different proposals (q¯q, q¯q¯qq, and gluonium) for the nature of scalar mesons. In the I=1 and 1/2 channels, the unusual wrong splitting between the a0(980) and κ(900) and the a0(980) width can be understood from QSSR within a q¯q assignment. However, none of the q¯q and q¯q¯qq results can explain the large κ width, which may suggest that it can result from a strong interference with nonresonant backgrounds. In the I=0 channel, QSSR and some low-energy theorems (LET) require the existence of a low mass gluonium σB(1GeV) coupled strongly to Goldstone boson pairs which plays in the U(1)V channel, a similar role as the η' for the value of the U(1)A topological charge. The observed σ(600) and f0(980) mesons result from a maximal mixing between the gluonium σB and q¯q (1 GeV) mesons, a mixing scheme which passes several experimental tests. Okubo-Zweig-Izuki (OZI) violating J/ψ→ϕπ+π-, Ds→3π decays, and J/ψ→γS glueball filter processes may indicate that the f0(1500), f0(1710), and f0(1790) have significant gluonium components in their wave functions, while the f0(1370) is mostly q¯q. Tests of these results can be provided by the measurements of the pure gluonium η'η and 4π specific U(1)A decay channels.
Leptonic Decays of Charged Pseudoscalar Mesons - 2015
Rosner, Jonathan L.; Stone, Sheldon; Van de Water, Ruth S.
2015-09-07
We review the physics of purely leptonic decays of $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ pseudoscalar mesons. The measured decay rates are related to the product of the relevant weak-interaction-based CKM matrix element of the constituent quarks and a strong interaction parameter related to the overlap of the quark and antiquark wave-functions in the meson, called the decay constant $f_P$. The leptonic decay constants for $\\pi^\\pm$, $K^\\pm$, $D^{\\pm}$, $D_s^\\pm$, and $B^\\pm$ mesons can be obtained with controlled theoretical uncertainties and high precision from {\\it ab initio} lattice-QCD simulations. The combination of experimental leptonic decay-rate measurements and theoretical decay-constant calculations enables the determination of several elements of the CKM matrix within the standard model. These determinations are competitive with those obtained from semileptonic decays, and also complementary because they are sensitive to different quark flavor-changing currents. They can also be used to test the unitarity of the first and second rows of the CKM matrix. Conversely, taking the CKM elements predicted by unitarity, one can infer "experimental" values for $f_P$ that can be compared with theory. These provide tests of lattice-QCD methods, provided new-physics contributions to leptonic decays are negligible at the current level of precision. This review is the basis of the article in the Particle Data Group's 2016 edition, updating the versions in Refs. [1-3].
MESON CORRELATION FUNCTIONS AT HIGH TEMPERATURES.
WISSEL, S.; DATTA, S.; KARSCH, F.; LAERMANN, E.; SHCHEREDIN, S.
2005-07-25
We present preliminary results for the correlation- and spectral functions of different meson channels on the lattice. The main focus lies on gaining control over cut-off as well as on the finite-volume effects. Extrapolations of screening masses above the deconfining temperature are guided by the result of the free (T = {infinity}) case on the lattice and in the continuum. We study the quenched non-perturbatively improved Wilson-clover fermion as well as the hypercube fermion action which might show less cut-off effects.
The glueball among the light scalar mesons
NASA Astrophysics Data System (ADS)
Minkowski, Peter; Ochs, Wolfgang
2003-06-01
In our phenomenological analysis of the spectroscopy of light scalar mesons we do not find compelling evidence for the existence of the low mass κ(900) or σ(600) states nor for ƒ 0(1370) as single resonance. If the ƒ 0(980) and and ƒ 0(1500) are taken as members of the q overlineq nonet there remains a broad object formed by ƒ 0(400 - 1200) and ƒ 0(1370) which is a glueball candidate gb(1000).
Isoscalar meson spectroscopy from lattice QCD
Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas, Balint Joo, Michael Peardon
2011-06-01
We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.
Rare B meson decays at the Tevatron
Hopkins, Walter; /Cornell U., Phys. Dept.
2011-08-01
Rare B meson decays are an excellent probe for beyond the Standard Model physics. Two very sensitive processes are the B{sub s,d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} and b {yields} s{mu}{sup +}{mu}{sup -} decays. We report recent results at a center of mass energy of {radical}s = 1.96 TeV from the CDF II and D0 collaborations using between 3.7 fb{sup -1} and 6.9 fb{sup -1} taken during Run II of the Fermilab Tevatron Collider.
Deeply Virtual Pseudoscalar Meson Production with CLAS
Valery Kubarovsky, Paul Stoler, Ivan Bedlinsky
2011-05-01
One of the primary goals of the CLAS12 program is to double the Q^{2} range of the available data into a region where approached with lower twist corrections become more reliable. Since the extraction of GPDs from electroproduction data can be difficult, a detailed understanding of the reaction mechanism is essential before one can compare with theoretical calculations. It is not yet clear at what values of Q^{2} the application of GPDs to meson electroproduction becomes valid.1–5 However, detailed measurements of observables may test model-independent features of the reaction mechanism.
Status of Meson Photoproduction Experiments with CLAS
Pasyuk, Eugene A.
2014-01-01
A large part of the experimental program in Hall B of the Jefferson Lab is dedicated to baryon spectroscopy. Meson photoproduction experiments are essential part of this program. CEBAF Large Acceptance Spectrometer (CLAS) and availability of circularly and linearly polarized tagged photon beams in combination with longitudinally and transversely polarized frozen spin targets provide unique conditions for this type of experiments. For the first time, a complete or nearly complete measurement became possible and will allow model independent extraction of the reaction amplitude. The measurements were complete with both proton and deuteron targets. An overview of the collected experimental data will be presented.
Observation of in-medium modifications of the omega meson.
Trnka, D; Anton, G; Bacelar, J C S; Bartholomy, O; Bayadilov, D; Beloglazov, Y A; Bogendörfer, R; Castelijns, R; Crede, V; Dutz, H; Ehmanns, A; Elsner, D; Ewald, R; Fabry, I; Fuchs, M; Essig, K; Funke, Ch; Gothe, R; Gregor, R; Gridnev, A B; Gutz, E; Höffgen, S; Hoffmeister, P; Horn, I; Hössl, J; Jaegle, I; Junkersfeld, J; Kalinowsky, H; Klein, Frank; Klein, Fritz; Klempt, E; Konrad, M; Kopf, B; Kotulla, M; Krusche, B; Langheinrich, J; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Messchendorp, J G; Mertens, T; Metag, V; Morales, C; Nanova, M; Novotny, R; Ostrick, M; Pant, L M; van Pee, H; Pfeiffer, M; Roy, A; Radkov, A; Schadmand, S; Schmidt, Ch; Schmieden, H; Schoch, B; Shende, S; Suft, G; Sumachev, V V; Szczepanek, T; Süle, A; Thoma, U; Varma, R; Walther, D; Weinheimer, Ch; Wendel, Ch
2005-05-20
The photoproduction of omega mesons on nuclei has been investigated using the Crystal Barrel/TAPS experiment at the ELSA tagged photon facility in Bonn. The aim is to study possible in-medium modifications of the omega meson via the reaction gamma + A --> omega + X --> pi(0)gamma + X('). Results obtained for Nb are compared to a reference measurement on a LH2 target. While for recoiling, long-lived mesons (pi(0), eta, and eta;(')), which decay outside of the nucleus, a difference in the line shape for the two data samples is not observed, we find a significant enhancement towards lower masses for omega mesons produced on the Nb target. For momenta less than 500 MeV/c an in-medium omega meson mass of M(medium) = [722(+4)(-4)(stat)+35-5(syst)] MeV/c(2) has been deduced at an estimated average nuclear density of 0.6rho(0).
Couplings between the ρ and D and D* mesons
NASA Astrophysics Data System (ADS)
El-Bennich, Bruno; Paracha, M. Ali; Roberts, Craig D.; Rojas, Eduardo
2017-02-01
We compute couplings between the ρ -meson and D and D* mesons—D(*)ρ D(*)—that are relevant to phenomenological meson-exchange models used to analyze nucleon-D -meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a simultaneous description of light- and heavy-quarks and the states they constitute. We find that all interactions, including the three independent D*ρ D* couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with ρ -meson virtuality. As a consequence, it appears that one should be cautious in using a single coupling strength or parametrization for the study of interactions between D(*) mesons and matter.
Hadronic three-body decays of B mesons
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang
2016-04-01
Hadronic three-body decays of B mesons receive both resonant and nonresonant contributions. Dominant nonresonant contributions to tree-dominated three-body decays arise from the b → u tree transition which can be evaluated using heavy meson chiral perturbation theory valid in the soft meson limit. For penguin-dominated decays, nonresonant signals come mainly from the penguin amplitude governed by the matrix elements of scalar densities
Charmed-strange mesons revisited: Mass spectra and strong decays
NASA Astrophysics Data System (ADS)
Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki
2015-03-01
Inspired by the present experimental status of charmed-strange mesons, we perform a systematic study of the charmed-strange meson family in which we calculate the mass spectra of the charmed-strange meson family by taking a screening effect into account in the Godfrey-Isgur model and investigate the corresponding strong decays via the quark pair creation model. These phenomenological analyses of charmed-strange mesons not only shed light on the features of the observed charmed-strange states, but also provide important information on future experimental search for the missing higher radial and orbital excitations in the charmed-strange meson family, which will be a valuable task in LHCb, the forthcoming Belle II, and PANDA.
Meson Spectroscopy in Coherent Production off 4 He with CLAS
NASA Astrophysics Data System (ADS)
Torayev, Bayram; CLAS Collaboration
2015-04-01
Meson spectroscopy requires disentanglement of states with different quantum numbers that decay to the same final states, as well as separation of meson-bayron and purely mesonic states. Coherent scattering off 4 He uniquely aids both by providing a spin and iso-spin zero target, simplifying partial wave analysis, and an unmodified recoil nucleus, eliminating background from bayron resonances . At Jefferson Lab, we conducted the first experiment for meson spectroscopy using coherent quasi-real photo-production on 4 He. This took place in Hall-B in 2009, using a 6 GeV electron beam and the CLAS detector. A new radial time projection chamber with high pressure gaseous target detects low-energy recoil 4 He nuclei. In this talk, status of the analysis and the first look on coherently produced mesonic final states will be presented.
Observation of In-Medium Modifications of the ω Meson
NASA Astrophysics Data System (ADS)
Trnka, D.; Anton, G.; Bacelar, J. C.; Bartholomy, O.; Bayadilov, D.; Beloglazov, Y. A.; Bogendörfer, R.; Castelijns, R.; Crede, V.; Dutz, H.; Ehmanns, A.; Elsner, D.; Ewald, R.; Fabry, I.; Fuchs, M.; Essig, K.; Funke, Ch.; Gothe, R.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Höffgen, S.; Hoffmeister, P.; Horn, I.; Hössl, J.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Klein, Frank; Klein, Fritz; Klempt, E.; Konrad, M.; Kopf, B.; Kotulla, M.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Messchendorp, J. G.; Mertens, T.; Metag, V.; Morales, C.; Nanova, M.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Radkov, A.; Schadmand, S.; Schmidt, Ch.; Schmieden, H.; Schoch, B.; Shende, S.; Suft, G.; Sumachev, V. V.; Szczepanek, T.; Süle, A.; Thoma, U.; Varma, R.; Walther, D.; Weinheimer, Ch.; Wendel, Ch.
2005-05-01
The photoproduction of ω mesons on nuclei has been investigated using the Crystal Barrel/TAPS experiment at the ELSA tagged photon facility in Bonn. The aim is to study possible in-medium modifications of the ω meson via the reaction γ+A→ω+X→π0γ+X'. Results obtained for Nb are compared to a reference measurement on a LH2 target. While for recoiling, long-lived mesons (π0, η, and η'), which decay outside of the nucleus, a difference in the line shape for the two data samples is not observed, we find a significant enhancement towards lower masses for ω mesons produced on the Nb target. For momenta less than 500 MeV/c an in-medium ω meson mass of Mmedium=[722+4-4(stat)+35-5(syst)] MeV/c2 has been deduced at an estimated average nuclear density of 0.6ρ0.
Couplings between the ρ and D and D* mesons
El-Bennich, Bruno; Paracha, M. Ali; Roberts, Craig D.; ...
2017-02-27
In this paper, we compute couplings between the ρ-meson and D and D* mesons—D(*)ρD(*)—that are relevant to phenomenological meson-exchange models used to analyze nucleon–D-meson scattering and explore the possibility of exotic charmed nuclei. Our framework is built from elements constrained by Dyson-Schwinger equation studies in QCD, and therefore expresses a simultaneous description of light- and heavy-quarks and the states they constitute. We find that all interactions, including the three independent D*ρD* couplings, differ markedly amongst themselves in strength and also in range, as measured by their evolution with ρ-meson virtuality. As a consequence, it appears that one should be cautiousmore » in using a single coupling strength or parametrization for the study of interactions between D(*) mesons and matter.« less
Sharma, Neelesh; Verma, R. C.
2010-11-01
Two-body hadronic weak decays of B{sub c} meson emitting pseudoscalar and heavy scalar mesons are investigated using the Spectator Quark Model. Decay amplitudes are obtained using the factorization scheme; consequently, branching ratios are predicted in the Isgur-Scora-Grinstein-Wise (ISGW II) model.
NASA Astrophysics Data System (ADS)
Ishii, Masahiro; Kouno, Hiroaki; Yahiro, Masanobu
2017-06-01
We propose a practical effective model by introducing temperature (T ) dependence to the coupling strengths of four-quark and six-quark Kobayashi-Maskawa-'t Hooft interactions in the 2 +1 flavor Polyakov-loop extended Nambu-Jona-Lasinio model. The T dependence is determined from lattice QCD (LQCD) data on the renormalized chiral condensate around the pseudocritical temperature Tcχ of chiral crossover and the screening-mass difference between π and a0 mesons in T >1.1 Tcχ where only the U (1 )A-symmetry breaking survives. The model well reproduces LQCD data on screening masses Mξscr(T ) for both pseudoscalar mesons (ξ =π ,K ,η ,η' ) and scalar ones (ξ =a0,κ ,σ ,f0 ), particularly in T ≳Tcχ . Using this effective model, we predict meson pole masses Mξpole(T ) for scalar and pseudoscalar mesons. For η' meson, the prediction is consistent with the experimental value at finite T measured in heavy-ion collisions. We point out that the relation Mξscr(T )-Mξpole(T )≈Mξ' scr(T )-Mξ' pole(T ) is pretty good when ξ and ξ' are the scalar mesons, and show that the relation Mξscr(T )/Mξ' scr(T )≈Mξpole(T )/Mξ' pole(T ) is well satisfied within 20% error when ξ and ξ' are the pseudoscalar mesons and also when ξ and ξ' are the scalar mesons.
Sigma meson in vacuum and nuclear matter
NASA Astrophysics Data System (ADS)
Menchaca-Maciel, M. C.; Morones-Ibarra, J. R.
2013-04-01
We have obtained the value of the interaction constant g σππ that adjusts the values obtained in the E791 Collaboration at Fermilab and BES Collaboration at the Beijing Electron Positron Collider experiments. To get this we have used the concept of critical width to make compatible the parameters obtained from the Breit-Wigner formula and those obtained from the density function. Also, the total width and effective mass modification of the sigma meson in nuclear matter has been studied in the Walecka model, assuming that the sigma couples to a pair of nucleon-antinucleon states and to particle-hole states, including the in-medium effect of sigma-omega mixing. We have considered, for completeness, the coupling of sigma to two virtual pions. We have found that the sigma meson mass decreases with respect to its value in vacuum and that the contribution of the sigma-omega mixing effect on the mass shift is relevant.
Light-Meson Spectroscopy at Compass
NASA Astrophysics Data System (ADS)
Krinner, Fabian
2017-03-01
The goal of the Compass experiment at CERN is to study the structure and spectroscopy of hadrons. The two-stage spectrometer has large acceptance and covers a wide kinematic range for charged as well as neutral particles allowing to access a wide range of reactions. Light mesons are studied with negative (mostly π-) and positive (p, π+) hadron beams with a momentum of 190 GeV/c. The light-meson spectrum is measured in different final states produced in diffractive dissociation reactions with squared four-momentum transfer t to the target between 0.1 and 1.0 (GeV/c)2. The flagship channel is the π-π+π- final state, for which Compass has recorded the currently world's largest data sample. These data not only allow us to measure the properties of known resonances with high precision, but also to search for new states. Among these is a new axial-vector signal, the a1(1420), with unusual properties. The findings are confirmed by the analysis of the π-π0π0 final state.
Weak Decays of Excited B Mesons.
Grinstein, B; Martin Camalich, J
2016-04-08
We investigate the decays of the excited (bq[over ¯]) mesons as probes of the short-distance structure of the weak ΔB=1 transitions. These states are unstable under the electromagnetic or strong interactions, although their widths are typically suppressed by phase space. Compared to the pseudoscalar B meson, the purely leptonic decays of the vector B^{*} are not chirally suppressed and are sensitive to different combinations of the underlying weak effective operators. An interesting example is B_{s}^{*}→ℓ^{+}ℓ^{-}, which has a rate that can be accurately predicted in the standard model. The branching fraction is B∼10^{-11}, irrespective of the lepton flavor and where the main uncertainty stems from the unmeasured and theoretically not well known B_{s}^{*} width. We discuss the prospects for producing this decay mode at the LHC and explore the possibility of measuring the B_{s}^{*}→ℓℓ amplitude, instead, through scattering experiments at the B_{s}^{*} resonance peak.
Photoproduction of η{^' -mesons off the deuteron
NASA Astrophysics Data System (ADS)
Jaegle, I.; Mertens, T.; Fix, A.; Huang, F.; Nakayama, K.; Tiator, L.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, B.; Bartholomy, O.; Bayadilov, D. E.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Crede, V.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Funke, C.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Hillert, W.; Höffgen, S.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Kleber, V.; Klein, Frank; Klein, Friedrich; Klempt, E.; Kotulla, M.; Krusche, B.; Lang, M.; Löhner, H.; Lopatin, I. V.; Lugert, S.; Menze, D.; Messchendorp, J. G.; Metag, V.; Nikonov, V. A.; Nanova, M.; Novinski, D. V.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Sarantsev, A. V.; Schadmand, S.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S. V.; Sokhoyan, V.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Wendel, C.
2011-01-01
Quasi-free photoproduction of η{^' -mesons off nucleons bound in the deuteron has been measured with the combined Crystal Barrel - TAPS detector. The experiment was done at a tagged photon beam of the ELSA electron accelerator in Bonn for incident photon energies from the production threshold up to 2.5GeV. The η{^' -mesons have been detected in coincidence with recoil protons and recoil neutrons. The quasi-free proton data are in good agreement with the results for free protons, indicating that nuclear effects have no significant impact. The coincidence with recoil neutrons provides the first data for the γ n rightarrow n η{^' reaction. In addition, also first estimates for coherent η{^' -production off the deuteron have been obtained. In agreement with model predictions, the total cross-section for this channel is found to be very small, at most at the level of a few nb. The data are compared to model calculations taking into account contributions from nucleon resonances and t -channel exchanges.
Flavor symmetry breaking and meson masses.
Bhagwat, M. S.; Chang, L.; Liu, Y.-X.; Roberts, C. D.; Tandy, P. C.; Physics; Peking Univ.; National Lab. of Heavy Ion Accelerator; The Key Lab. of Heavy Ion Physics; Kent State Univ.
2007-10-01
The axial-vector Ward-Takahashi identity is used to derive mass formulas for neutral pseudoscalar mesons. Flavor symmetry breaking entails nonideal flavor content for these states. Adding that the {eta} is not a Goldstone mode, exact chiral-limit relations are developed from the identity. They connect the dressed-quark propagator to the topological susceptibility. It is confirmed that in the chiral limit the {eta} mass is proportional to the matrix element which connects this state to the vacuum via the topological susceptibility. The implications of the mass formulas are illustrated using an elementary dynamical model, which includes an Ansatz for that part of the Bethe-Salpeter kernel related to the non-Abelian anomaly. In addition to the current-quark masses, the model involves two parameters, one of which is a mass-scale. It is employed in an analysis of pseudoscalar- and vector-meson bound-states. While the effects of SU(N{sub f}=2) and SU(N{sub f}=3) flavor symmetry breaking are emphasized, the five-flavor spectra are described. Despite its simplicity, the model is elucidative and phenomenologically efficacious; e.g., it predicts {eta}-{eta} mixing angles of {approx} -15{sup o} and {pi}{sup 0}-{eta} angles of {approx}1{sup o}.
Meson properties in a nonlocal SU(3) chiral quark model at finite temperature
Contrera, G. A.; Gomez Dumm, D.; Scoccola, N. N.
2010-11-12
Finite temperature meson properties are studied in the context of a nonlocal SU(3) quark model which includes flavor mixing and the coupling of quarks to the Polyakov loop (PL). We analyze the behavior of scalar and pseudoscalar meson masses and mixing angles, as well as quark-meson couplings and pseudoscalar meson decay constants.
NASA Technical Reports Server (NTRS)
Takahashi, Y.; Eby, P. B.
1985-01-01
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.
NASA Astrophysics Data System (ADS)
Cheng, Hai-Yang; Chua, Chun-Khiang; Yang, Kwei-Chou
2006-01-01
The hadronic charmless B decays into a scalar meson and a pseudoscalar meson are studied within the framework of QCD factorization. Based on the QCD sum rule method, we have derived the leading-twist light-cone distribution amplitudes of scalar mesons and their decay constants. Although the light scalar mesons f0(980) and a0(980) are widely perceived as primarily the four-quark bound states, in practice it is difficult to make quantitative predictions based on the four-quark picture for light scalars. Hence, predictions are made in the 2-quark model for the scalar mesons. The short-distance approach suffices to explain the observed large rates of f0(980)K- and f0(980) Kmacr 0 that receive major penguin contributions from the b→ss smacr process. When f0(980) is assigned as a four-quark bound state, there exist extra diagrams contributing to B→f0(980)K. Therefore, a priori the f0(980)K rate is not necessarily suppressed for a four-quark state f0(980). The predicted Bmacr 0→a0±(980)π∓ and a0+(980)K- rates exceed the current experimental limits, favoring a four-quark nature for a0(980). The penguin-dominated modes a0(980)K and a0(1450)K receive predominant weak annihilation contributions. There exists a twofold experimental ambiguity in extracting the branching ratio of B-→ Kmacr 0*0(1430)π-, which can be resolved by measuring other K0*(1430)π modes in conjunction with the isospin symmetry consideration. Large weak annihilation contributions are needed to explain the K0*(1430)π data. The decay Bmacr 0→κ+K- provides a nice ground for testing the 4-quark and 2-quark nature of the κ meson. It can proceed through W-exchange and hence is quite suppressed if κ is made of two quarks, while it receives a tree contribution if κ is predominately a four-quark state. Hence, an observation of this channel at the level of ≳10-7 may imply a four-quark assignment for the κ. Mixing-induced CP asymmetries in penguin-dominated modes are studied and their
D*(s0)(2317) meson and D-meson-kaon scattering from lattice QCD.
Mohler, Daniel; Lang, C B; Leskovec, Luka; Prelovsek, Sasa; Woloshyn, R M
2013-11-27
The scalar meson D*(s0)(2317) is found 37(17) MeV below the DK threshold in a lattice simulation of the J(P)=0(+) channel using, for the first time, both DK as well as s¯c interpolating fields. The simulation is done on N(f)=2+1 gauge configurations with m(π) is approximately equal to 156 MeV, and the resulting M(D*(s0))-1/4(M(D(s))+3M(D*(s)))=266(16) MeV is close to the experimental value 241.5(0.8) MeV. The energy level related to the scalar meson is accompanied by additional discrete levels due to DK scattering states. The levels near threshold lead to the negative DK scattering length a(0)=-1.33(20) fm that indicates the presence of a state below threshold.
Meson vacuum phenomenology in a three-flavor linear sigma model with (axial-)vector mesons
NASA Astrophysics Data System (ADS)
Parganlija, D.; Kovács, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.
2013-01-01
We study scalar, pseudoscalar, vector, and axial-vector mesons with nonstrange and strange quantum numbers in the framework of a linear sigma model with global chiral U(Nf)L×U(Nf)R symmetry. We perform a global fit of meson masses, decay widths, as well as decay amplitudes. The quality of the fit is, for a hadronic model that does not consider isospin-breaking effects, surprisingly good. We also investigate the question whether the scalar q¯q states lie below or above 1 GeV and find the scalar states above 1 GeV to be preferred as q¯q states. Additionally, we also describe the axial-vector resonances as q¯q states.
String point of view for heavy-light mesons
NASA Astrophysics Data System (ADS)
Dong, Yubing; Lü, Qi-Fang; Matsuki, Takayuki
2017-03-01
An approximate rotational symmetry of a heavy-light meson is viewed from a string picture. Using a simple string configuration, we derive a formula, (M-mc)2 = πσL, whose coeffcient of the r.h.s. is just 1/2 of that of a light meson with two light quarks. A numerical plot is obtained for D mesons of experimental data as well as several theoretical models, which shows good agreement with this formula. A talk given by T. Matsuki at XII Quark Confinement and the Hadron Spectrum.
Baryon-to-Meson Transition Distribution Amplitudes: Formalism and Models
NASA Astrophysics Data System (ADS)
Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.
2017-03-01
In specific kinematics, hard exclusive amplitudes may be factorized into a short distance dominated part computable in a perturbative way on the one hand, and universal, confinement related hadronic matrix elements on the other hand. The extension of this description to processes such as backward meson electroproduction and forward meson production in antiproton-nucleon scattering leads to define new hadronic matrix elements of three quark operators on the light cone, the nucleon-to-meson transition distribution amplitudes, which shed a new light on the nucleon structure.
Higher radial and orbital excitations in the charmed meson family
NASA Astrophysics Data System (ADS)
Song, Qin-Tao; Chen, Dian-Yong; Liu, Xiang; Matsuki, Takayuki
2015-10-01
Using abundant experimental information about charmed mesons together with recent research, we systematically study higher radial and orbital excitations in the charmed meson family by analyzing the mass spectrum and by calculating their Okubo-Zweig-Iizuka-allowed two-body decay behaviors. This phenomenological analysis reveals underlying properties of the newly observed charmed states D (2550 ), D*(2600 ) , D*(2760 ) , D (2750 ), DJ(2580 ), DJ*(2650 ), DJ*(2760 ), DJ(2740 ), DJ(3000 ), and DJ*(3000 ) to provide valuable information about the charmed mesons still missing in experiments.
Measurement of the average φ multiplicity in B meson decay
NASA Astrophysics Data System (ADS)
Aubert, B.; Barate, R.; Boutigny, D.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J. P.; Robbe, P.; Tisserand, V.; Zghiche, A.; Palano, A.; Pompili, A.; Chen, J. C.; Qi, N. D.; Rong, G.; Wang, P.; Zhu, Y. S.; Eigen, G.; Ofte, I.; Stugu, B.; Abrams, G. S.; Borgland, A. W.; Breon, A. B.; Brown, D. N.; Button-Shafer, J.; Cahn, R. N.; Charles, E.; Day, C. T.; Gill, M. S.; Gritsan, A. V.; Groysman, Y.; Jacobsen, R. G.; Kadel, R. W.; Kadyk, J.; Kerth, L. T.; Kolomensky, Yu. G.; Kukartsev, G.; Leclerc, C.; Levi, M. E.; Lynch, G.; Mir, L. M.; Oddone, P. J.; Orimoto, T. J.; Pripstein, M.; Roe, N. A.; Romosan, A.; Ronan, M. T.; Shelkov, V. G.; Telnov, A. V.; Wenzel, W. A.; Ford, K.; Harrison, T. J.; Hawkes, C. M.; Knowles, D. J.; Morgan, S. E.; Penny, R. C.; Watson, A. T.; Watson, N. K.; Goetzen, K.; Held, T.; Koch, H.; Lewandowski, B.; Pelizaeus, M.; Peters, K.; Schmuecker, H.; Steinke, M.; Boyd, J. T.; Chevalier, N.; Cottingham, W. N.; Kelly, M. P.; Latham, T. E.; Mackay, C.; Wilson, F. F.; Abe, K.; Cuhadar-Donszelmann, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; Thiessen, D.; Kyberd, P.; McKemey, A. K.; Teodorescu, L.; Blinov, V. E.; Bukin, A. D.; Golubev, V. B.; Ivanchenko, V. N.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Yushkov, A. N.; Best, D.; Bruinsma, M.; Chao, M.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Mommsen, R. K.; Roethel, W.; Stoker, D. P.; Buchanan, C.; Hartfiel, B. L.; Gary, J. W.; Layter, J.; Shen, B. C.; Wang, K.; del Re, D.; Hadavand, H. K.; Hill, E. J.; Macfarlane, D. B.; Paar, H. P.; Rahatlou, Sh.; Sharma, V.; Berryhill, J. W.; Campagnari, C.; Dahmes, B.; Kuznetsova, N.; Levy, S. L.; Long, O.; Lu, A.; Mazur, M. A.; Richman, J. D.; Rozen, Y.; Verkerke, W.; Beck, T. W.; Beringer, J.; Eisner, A. M.; Heusch, C. A.; Lockman, W. S.; Schalk, T.; Schmitz, R. E.; Schumm, B. A.; Seiden, A.; Turri, M.; Walkowiak, W.; Williams, D. C.; Wilson, M. G.; Albert, J.; Chen, E.; Dubois-Felsmann, G. P.; Dvoretskii, A.; Erwin, R. J.; Hitlin, D. G.; Narsky, I.; Piatenko, T.; Porter, F. C.; Ryd, A.; Samuel, A.; Yang, S.; Jayatilleke, S.; Mancinelli, G.; Meadows, B. T.; Sokoloff, M. D.; Abe, T.; Blanc, F.; Bloom, P.; Chen, S.; Clark, P. J.; Ford, W. T.; Nauenberg, U.; Olivas, A.; Rankin, P.; Roy, J.; Smith, J. G.; van Hoek, W. C.; Zhang, L.; Harton, J. L.; Hu, T.; Soffer, A.; Toki, W. H.; Wilson, R. J.; Zhang, J.; Altenburg, D.; Brandt, T.; Brose, J.; Colberg, T.; Dickopp, M.; Dubitzky, R. S.; Hauke, A.; Lacker, H. M.; Maly, E.; Müller-Pfefferkorn, R.; Nogowski, R.; Otto, S.; Schubert, J.; Schubert, K. R.; Schwierz, R.; Spaan, B.; Wilden, L.; Bernard, D.; Bonneaud, G. R.; Brochard, F.; Cohen-Tanugi, J.; Grenier, P.; Thiebaux, Ch.; Vasileiadis, G.; Verderi, M.; Khan, A.; Lavin, D.; Muheim, F.; Playfer, S.; Swain, J. E.; Andreotti, M.; Azzolini, V.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Piemontese, L.; Sarti, A.; Treadwell, E.; Anulli, F.; Baldini-Ferroli, R.; Biasini, M.; Calcaterra, A.; de Sangro, R.; Falciai, D.; Finocchiaro, G.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Pioppi, M.; Zallo, A.; Buzzo, A.; Capra, R.; Contri, R.; Crosetti, G.; Lo Vetere, M.; Macri, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Santroni, A.; Tosi, S.; Bailey, S.; Morii, M.; Won, E.; Bhimji, W.; Bowerman, D. A.; Dauncey, P. D.; Egede, U.; Eschrich, I.; Gaillard, J. R.; Morton, G. W.; Nash, J. A.; Sanders, P.; Taylor, G. P.; Grenier, G. J.; Lee, S.-J.; Mallik, U.; Cochran, J.; Crawley, H. B.; Lamsa, J.; Meyer, W. T.; Prell, S.; Rosenberg, E. I.; Yi, J.; Davier, M.; Grosdidier, G.; Höcker, A.; Laplace, S.; Le Diberder, F.; Lepeltier, V.; Lutz, A. M.; Petersen, T. C.; Plaszczynski, S.; Schune, M. H.; Tantot, L.; Wormser, G.; Brigljević, V.; Cheng, C. H.; Lange, D. J.; Simani, M. C.; Wright, D. M.; Bevan, A. J.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Gamet, R.; Kay, M.; Parry, R. J.; Payne, D. J.; Sloane, R. J.; Touramanis, C.; Back, J. J.; Cormack, C. M.; Harrison, P. F.; Shorthouse, H. W.; Vidal, P. B.; Brown, C. L.; Cowan, G.; Flack, R. L.; Flaecher, H. U.; George, S.; Green, M. G.; Kurup, A.; Marker, C. E.; McMahon, T. R.; Ricciardi, S.; Salvatore, F.; Vaitsas, G.; Winter, M. A.; Brown, D.; Davis, C. L.; Allison, J.; Barlow, N. R.; Barlow, R. J.; Hart, P. A.; Hodgkinson, M. C.; Jackson, F.; Lafferty, G. D.; Lyon, A. J.; Weatherall, J. H.; Williams, J. C.; Farbin, A.; Jawahery, A.; Kovalskyi, D.; Lae, C. K.; Lillard, V.; Roberts, D. A.; Blaylock, G.; Dallapiccola, C.; Flood, K. T.; Hertzbach, S. S.; Kofler, R.; Koptchev, V. B.; Moore, T. B.; Saremi, S.; Staengle, H.; Willocq, S.; Cowan, R.; Sciolla, G.; Taylor, F.; Yamamoto, R. K.; Mangeol, D. J.; Patel, P. M.; Robertson, S. H.; Lazzaro, A.; Palombo, F.; Bauer, J. M.; Cremaldi, L.; Eschenburg, V.; Godang, R.; Kroeger, R.; Reidy, J.; Sanders, D. A.; Summers, D. J.; Zhao, H. W.; Brunet, S.; Cote-Ahern, D.; Taras, P.; Nicholson, H.; Cartaro, C.; Cavallo, N.; de Nardo, G.; Fabozzi, F.; Gatto, C.; Lista, L.; Paolucci, P.; Piccolo, D.; Sciacca, C.; Baak, M. A.; Raven, G.; Losecco, J. M.; Gabriel, T. A.; Brau, B.; Gan, K. K.; Honscheid, K.; Hufnagel, D.; Kagan, H.; Kass, R.; Pulliam, T.; Wong, Q. K.; Brau, J.; Frey, R.; Potter, C. T.; Sinev, N. B.; Strom, D.; Torrence, E.; Colecchia, F.; Dorigo, A.; Galeazzi, F.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Tiozzo, G.; Voci, C.; Benayoun, M.; Briand, H.; Chauveau, J.; David, P.; de La Vaissière, Ch.; del Buono, L.; Hamon, O.; John, M. J.; Leruste, Ph.; Ocariz, J.; Pivk, M.; Roos, L.; Stark, J.; T'jampens, S.; Therin, G.; Manfredi, P. F.; Re, V.; Behera, P. K.; Gladney, L.; Guo, Q. H.; Panetta, J.; Angelini, C.; Batignani, G.; Bettarini, S.; Bondioli, M.; Bucci, F.; Calderini, G.; Carpinelli, M.; del Gamba, V.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Marchiori, G.; Martinez-Vidal, F.; Morganti, M.; Neri, N.; Paoloni, E.; Rama, M.; Rizzo, G.; Sandrelli, F.; Walsh, J.; Haire, M.; Judd, D.; Paick, K.; Wagoner, D. E.; Danielson, N.; Elmer, P.; Lu, C.; Miftakov, V.; Olsen, J.; Smith, A. J.; Tanaka, H. A.; Varnes, E. W.; Bellini, F.; Cavoto, G.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Mazzoni, M. A.; Morganti, S.; Pierini, M.; Piredda, G.; Safai Tehrani, F.; Voena, C.; Christ, S.; Wagner, G.; Waldi, R.; Adye, T.; de Groot, N.; Franek, B.; Geddes, N. I.; Gopal, G. P.; Olaiya, E. O.; Xella, S. M.; Aleksan, R.; Emery, S.; Gaidot, A.; Ganzhur, S. F.; Giraud, P.-F.; Hamel de Monchenault, G.; Kozanecki, W.; Langer, M.; Legendre, M.; London, G. W.; Mayer, B.; Schott, G.; Vasseur, G.; Yeche, Ch.; Zito, M.; Purohit, M. V.; Weidemann, A. W.; Yumiceva, F. X.; Aston, D.; Bartoldus, R.; Berger, N.; Boyarski, A. M.; Buchmueller, O. L.; Convery, M. R.; Coupal, D. P.; Dong, D.; Dorfan, J.; Dujmic, D.; Dunwoodie, W.; Field, R. C.; Glanzman, T.; Gowdy, S. J.; Grauges-Pous, E.; Hadig, T.; Halyo, V.; Hryn'ova, T.; Innes, W. R.; Jessop, C. P.; Kelsey, M. H.; Kim, P.; Kocian, M. L.; Langenegger, U.; Leith, D. W.; Libby, J.; Luitz, S.; Luth, V.; Lynch, H. L.; Marsiske, H.; Messner, R.; Muller, D. R.; O'Grady, C. P.; Ozcan, V. E.; Perazzo, A.; Perl, M.; Petrak, S.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Schwiening, J.; Simi, G.; Snyder, A.; Soha, A.; Stelzer, J.; Su, D.; Sullivan, M. K.; Va'Vra, J.; Wagner, S. R.; Weaver, M.; Weinstein, A. J.; Wisniewski, W. J.; Wright, D. H.; Young, C. C.; Burchat, P. R.; Edwards, A. J.; Meyer, T. I.; Petersen, B. A.; Roat, C.; Ahmed, M.; Ahmed, S.; Alam, M. S.; Ernst, J. A.; Saeed, M. A.; Saleem, M.; Wappler, F. R.; Bugg, W.; Krishnamurthy, M.; Spanier, S. M.; Eckmann, R.; Kim, H.; Ritchie, J. L.; Schwitters, R. F.; Izen, J. M.; Kitayama, I.; Lou, X. C.; Ye, S.; Bianchi, F.; Bona, M.; Gallo, F.; Gamba, D.; Borean, C.; Bosisio, L.; della Ricca, G.; Dittongo, S.; Grancagnolo, S.; Lanceri, L.; Poropat, P.; Vitale, L.; Vuagnin, G.; Panvini, R. S.; Banerjee, Sw.; Brown, C. M.; Fortin, D.; Jackson, P. D.; Kowalewski, R.; Roney, J. M.; Band, H. R.; Dasu, S.; Datta, M.; Eichenbaum, A. M.; Johnson, J. R.; Kutter, P. E.; Li, H.; Liu, R.; di Lodovico, F.; Mihalyi, A.; Mohapatra, A. K.; Pan, Y.; Prepost, R.; Sekula, S. J.; von Wimmersperg-Toeller, J. H.; Wu, J.; Wu, S. L.; Yu, Z.; Neal, H.
2004-03-01
We present a measurement of the average multiplicity of φ mesons in B0, B0, and B± meson decays. Using 17.6 fb-1 of data taken at the Υ(4S) resonance by the BABAR detector at the PEP-II e+e- storage ring at the Stanford Linear Accelerator Center, we reconstruct φ mesons in the K+K- decay mode and measure B(B→φX)=(3.41±0.06±0.12)%. This is significantly more precise than any previous measurement.
Light meson decays from photon-induced reactions with CLAS
NASA Astrophysics Data System (ADS)
Kunkel, Michael C.
2016-05-01
Photo-production experiments with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Laboratory produce data sets with unprecedented statistics for light mesons. With these data sets, measurements of transition form factors for η, ω, and η' mesons via conversion decays can be performed using the invariant mass distribution of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. An overview of the first results, from existing CLAS data, and future prospects within the newly upgraded CLAS12 apparatus are given.
Light meson decays from photon-induced reactions with CLAS
NASA Astrophysics Data System (ADS)
Kunkel, Michael C.
2016-11-01
Photoproduction experiments with the CEBAF Large Acceptance Spectrometer CLAS at the Thomas Jefferson National Facility produce data sets with competitive statistics of light mesons. With these data sets, measurements of transition form factors for η, ω, and η' mesons via conversion decays can be performed using the invariant mass distribution of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. An overview of preliminary results, from existing CLAS data, and future prospects within the newly upgraded CLAS12 apparatus are given.
Meson-induced correlations of nucleons in nuclear Compton scattering
Huett, M.; Milstein, A.I.
1998-01-01
The nonresonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is discussed. We found that different form factors appear for the static part (proportional to the enhancement constant {kappa}) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities. {copyright} {ital 1998} {ital The American Physical Society}
Meson-induced correlations of nucleons in nuclear Compton scattering
NASA Astrophysics Data System (ADS)
Hütt, M.-Th.; Milstein, A. I.
1998-01-01
The nonresonant (seagull) contribution to the nuclear Compton amplitude at low energies is strongly influenced by nucleon correlations arising from meson exchange. We study this problem in a modified Fermi gas model, where nuclear correlation functions are obtained with the help of perturbation theory. The dependence of the mesonic seagull amplitude on the nuclear radius is investigated and the influence of a realistic nuclear density on this amplitude is discussed. We found that different form factors appear for the static part (proportional to the enhancement constant κ) of the mesonic seagull amplitude and for the parts, which contain the contribution from electromagnetic polarizabilities.
Interaction of eta mesons with nuclei
NASA Astrophysics Data System (ADS)
Kelkar, N. G.; Khemchandani, K. P.; Upadhyay, N. J.; Jain, B. K.
2013-06-01
Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π+n → ηp, pd → 3Heη, p 6Li → 7Be η and γ 3He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations. The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ⩽ ℜe aηN ⩽ 1.03 fm and 0.16 ⩽ ℑm aηN ⩽ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as ^3_{\\eta} He and ^{25}_{\\eta} Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall
Interaction of eta mesons with nuclei.
Kelkar, N G; Khemchandani, K P; Upadhyay, N J; Jain, B K
2013-06-01
Back in the mid-1980s, a new branch of investigation related to the interaction of eta mesons with nuclei came into existence. It started with the theoretical prediction of possible exotic states of eta mesons and nuclei bound by the strong interaction and later developed into an extensive experimental program to search for such unstable states as well as understand the underlying interaction via eta-meson producing reactions. The vast literature of experimental as well as theoretical works that studied various aspects of eta-producing reactions such as the π(+)n → ηp, pd → (3)Heη, p (6)Li → (7)Be η and γ (3)He → η X, to name a few, had but one objective in mind: to understand the eta-nucleon (ηN) and hence the η-nucleus interaction which could explain the production data and confirm the existence of some η-mesic nuclei. In spite of these efforts, there remain uncertainties in the knowledge of the ηN and hence the η-nucleus interaction. Therefore, this review is an attempt to bind together the findings in these works and draw some global and specific conclusions which can be useful for future explorations.The ηN scattering length (which represents the strength of the η-nucleon interaction) using different theoretical models and analyzing the data on η production in pion, photon and proton induced reactions was found to be spread out in a wide range, namely, 0.18 ≤ Re aηN ≤ 1.03 fm and 0.16 ≤ Rm aηN ≤ 0.49 fm. Theoretical searches of heavy η-mesic nuclei based on η-nucleus optical potentials and lighter ones based on Faddeev type few-body approaches predict the existence of several quasibound and resonant states. Although some hints of η-mesic states such as (3)(η)He and (25)(η)Mg do exist from previous experiments, the promise of clearer signals for the existence of η-mesic nuclei lies in the experiments to be performed at the J-PARC, MAMI and COSY facilities in the near future. This review is aimed at giving an overall status
Antiproton-proton annihilation into charged light meson pairs within effective meson theory
NASA Astrophysics Data System (ADS)
Wang, Ying; Bystritskiy, Yury M.; Tomasi-Gustafsson, Egle
2017-04-01
We revisit antiproton-proton annihilation into light mesons in the energy domain relevant to the antiproton annihilation at Darmstadt (PANDA) experiment at the GSI Facility for Antiproton and Ion Research (FAIR) [2.25 (1.5 ) ≤√{s }(pL) ≤5.47 (15 ) GeV (GeV /c ) where √{s }(pL) is the total energy (the beam momentum in the laboratory frame)]. An effective meson model is developed, with mesonic and baryonic degrees of freedom. Form factors are added to take into account the composite nature of the interacting hadrons. A comparison is made with the existing data for charged pion pair production and predictions for angular distributions and energy dependence in the range 3.362 (5 ) ≤√{s }(pL) ≤4.559 (10.1 ) GeV (GeV /c ). The model is applied to π±p elastic scattering, using crossing symmetry, and to charged kaon pair production, on the basis of SU(3) symmetry. In all cases the results illustrate a nice agreement with the data.
Meson-meson bound state in a 2+1 lattice QCD model with two flavors and strong coupling
Faria da Veiga, Paulo A.; O'Carroll, Michael; Neto, Antonio Francisco
2005-08-01
We consider the existence of bound states of two mesons in an imaginary-time formulation of lattice QCD. We analyze an SU(3) theory with two flavors in 2+1 dimensions and two-dimensional spin matrices. For a small hopping parameter and a sufficiently large glueball mass, as a preliminary, we show the existence of isoscalar and isovector mesonlike particles that have isolated dispersion curves (upper gap up to near the two-particle threshold {approx}-4ln{kappa}). The corresponding meson masses are equal up to and including O({kappa}{sup 3}) and are asymptotically of order -2ln{kappa}-{kappa}{sup 2}. Considering the zero total isospin sector, we show that there is a meson-meson bound state solution to the Bethe-Salpeter equation in a ladder approximation, below the two-meson threshold, and with binding energy of order b{kappa}{sup 2}{approx_equal}0.02359{kappa}{sup 2}. In the context of the strong coupling expansion in {kappa}, we show that there are two sources of meson-meson attraction. One comes from a quark-antiquark exchange. This is not a meson exchange, as the spin indices are not those of the meson particle, and we refer to this as a quasimeson exchange. The other arises from gauge field correlations of four overlapping bonds, two positively oriented and two of opposite orientation. Although the exchange part gives rise to a space range-one attractive potential, the main mechanism for the formation of the bound state comes from the gauge contribution. In our lattice Bethe-Salpeter equation approach, this mechanism is manifested by an attractive distance-zero energy-dependent potential. We recall that no bound state appeared in the one-flavor case, where the repulsive effect of Pauli exclusion is stronger.
A New Ingredient for Simulating B Mesons
NASA Astrophysics Data System (ADS)
Wingate, Matthew; Shigemitsu, Junko; Lepage, Peter; Davies, Christine
2002-08-01
The fundamental states of QCD, quarks and gluons, are experimentally inaccessible due to confinement. Furthermore, the properties of bound states (e.g. hadrons) cannot be computed perturbatively due to the strength of the color force, so instead we employ Monte Carlo simulation of QCD on a spacetime lattice. Some quantities of particular interest to particle physicists are those necessary to connect flavor-changing decays of hadrons created in experiments to the flavor-changing interactions of the Standard Model quarks. Recently we have been investigating a new technique for simulating heavy-light bound states which should both decrease the computational burden and increase the numerical accuracy compared to present calculations. The new ingredient is the use of so-called staggered fermions as the light quark. Details and results for B meson energies and decay constants will be shown.
eta and eta' Mesons from Lattice QCD
Christ, N.H.; Izubuchi, T.; Dawson, C.; Jung, C.; Liu, Q.; Mawhinney, R.D.; Sachrajda, C.T.; Soni, A.; Zhou, R.
2010-12-08
The large mass of the ninth pseudoscalar meson, the {eta}{prime}, is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the {eta} and {eta}{prime} masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of {theta} = -14.1(2.8){sup o}. Extrapolation to the physical light quark mass gives, with statistical errors only, m{sub {eta}} = 573(6) MeV and m{sub {eta}} = 947(142) MeV, consistent with the experimental values of 548 and 958 MeV.
Photoproduction of scalar mesons at CLAS
NASA Astrophysics Data System (ADS)
Chandavar, Shloka; Hicks, Kenneth; Weygand, Dennis; CLAS Collaboration
2013-10-01
A single gluon, which carries color charge, cannot exist independently outside a hadron. Lattice QCD calculations in pure SU(3), however, predict the existence of glueballs which are bound states of two or more gluons. In the real world, the challenge to identify glueballs experimentally is the fact they mix with meson states. The f0 (1500) is one of several candidates for the lightest glueball, with JPC =0++ . We investigate the presence of this particle in photoproduction by analyzing the reaction γp -->fJ p -->KS0KS0 p --> 2 (π+π-) p . This reaction was studied using data from the g12 experiment performed using the CLAS detector at Jefferson Lab. A preliminary partial wave analysis, performed on the KS0KS0 invariant mass spectrum, will be presented. These results update those presented for this reaction channel at previous conferences. This work is supported by grant from NSF.
Model discrimination in pseudoscalar-meson photoproduction
NASA Astrophysics Data System (ADS)
Nys, J.; Ryckebusch, J.; Ireland, D. G.; Glazier, D. I.
2016-08-01
To learn about a physical system of interest, experimental results must be able to discriminate among models. We introduce a geometrical measure to quantify the distance between models for pseudoscalar-meson photoproduction in amplitude space. Experimental observables, with finite precision, map to probability distributions in amplitude space, and the characteristic width scale of such distributions needs to be smaller than the distance between models if the observable data are going to be useful. We therefore also introduce a method for evaluating probability distributions in amplitude space that arise as a result of one or more measurements, and show how one can use this to determine what further measurements are going to be necessary to be able to discriminate among models.
Meson Spectroscopy At Jlab At 12 Gev
Fegan, Stuart
2014-12-01
The 12 GeV upgrade to the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab will enable a new generation of experiments in hadronic nuclear physics, seeking to address fundamental questions in our understanding of QCD. The existence of exotic states, suggested by both quark models and lattice calculations, would allow gluonic degrees of freedom to be explored, and may help explain the role played by gluons in the QCD interaction. This article will review the meson spectroscopy program being planned at the lab following the 12 GeV upgrade, utilising real and quasi-real photon beams in two of the lab's four experimental halls, whose distinct capabilities will enable an extensive set of spectroscopy experiments to be performed at the same facility.
η and η' mesons from lattice QCD.
Christ, N H; Dawson, C; Izubuchi, T; Jung, C; Liu, Q; Mawhinney, R D; Sachrajda, C T; Soni, A; Zhou, R
2010-12-10
The large mass of the ninth pseudoscalar meson, the η', is believed to arise from the combined effects of the axial anomaly and the gauge field topology present in QCD. We report a realistic, 2+1-flavor, lattice QCD calculation of the η and η' masses and mixing which confirms this picture. The physical eigenstates show small octet-singlet mixing with a mixing angle of θ=-14.1(2.8)°. Extrapolation to the physical light quark mass gives, with statistical errors only, mη=573(6) MeV and mη'=947(142) MeV, consistent with the experimental values of 548 and 958 MeV.
Delta, iota and other meson spectroscopies
Lipkin, H.J.
1986-05-01
This talk is given from the point of view of an experimentalist. Meson spectroscopy in the 1 to 3 GeV region is interesting because experiments exploring this region, in particular radiative psi decay, have found a rich structure of resonances too complicated to unravel with any one experiment, and not easily interpreted with any one theoretical model. None of the theoretical calculations predicting all kinds of interesting and exotic objects in this region is very convincing or reliable. Additional input from anti pp annihilation can be very useful in helping to find the answers to the following open questions: what exactly is this spectrum, what are the masses and quantum numbers of the resonances, as determined from analysis of data without theoretical prejudices; how is this spectrum described by QCD, is there evidence for new kinds of states like glue-balls, hybrids, axions, Higgses or multiquark exotics, and is there any evidence for new physics beyond QCD. 20 refs.
Meson photoproduction from the nucleon at CLAS
Daniel P. Watts
2012-01-01
The excitation spectrum of the nucleon provides a stringent constraint on the dynamics and interactions of its internal constituents and therefore probes the mechanism of confinement in the light quark sector. Our detailed knowlege of this excitation spectrum is poor, with many predicted states not yet observed in experiment and many 'established' states having poorly known properties. To address these shortcomings a worldwide effort is currently underway exploiting the latest generation of electron and photon beams in detailed studies of meson photoproduction from nucleon targets. A major contribution to this effort will come from the experimental programme at Jefferson Lab exploiting the frozen spin target (FROST) with the CLAS spectrometer. The status of this project will be presented along with preliminary results and analyses.
Leptonic and semileptonic decays of B mesons
NASA Astrophysics Data System (ADS)
Dingfelder, Jochen; Mannel, Thomas
2016-07-01
Semileptonic decays are ideally suited to study the weak interaction as well as strong interaction effects in B -meson decays. In the last decade, precision studies of semileptonic B decays have been made possible by the large samples of B mesons collected at the B factories KEKB in Japan and PEP-II in the USA. Measurements of the charged-current semileptonic transitions b →q ℓν (q =u , c ) allow for a determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix elements Vc b and Vu b and the masses of the b and c quarks, which are fundamental parameters of the standard model of particle physics. The values of |Vc b| and |Vu b| are determined from measurements of inclusive B decays in combination with calculations of partial decay rates or from exclusive decays combined with theoretical predictions of hadronic form factors. Purely leptonic B decays B →ℓν (ℓ=e , μ , τ ) also provide access to |Vu b|. They are theoretically simpler, but the available signal samples are still small. Decays involving a τ lepton, B →τ ν and B →D(*)τ ν , are sensitive to new physics, in particular, to charged Higgs bosons in models with an extended Higgs sector, and provide a window to the physics of the third generation. In this article, the measurements and theoretical descriptions of charged-current leptonic and semileptonic B decays and the status of |Vc b| and |Vu b| determinations are reviewed. An overview of the theoretical approaches and the experimental techniques used in the study of these decays is also provided.
An effective theory of baryons and mesons
NASA Astrophysics Data System (ADS)
Jaczko, Gregory Bela
I develop an effective theory to describe the low energy behavior of baryons. The theory is motivated by several issues facing nonperturbative quantum chromodynamic (QCD) calculations: the use of the quenched approximation for exact QCD calculations, the apparent success of nonrelativistic quark flavor models and the difficulties of standard, chiral perturbation theories. These problems are addressed by considering the baryon as a composite object, preserving the spin and flavor identity of the constituent quarks. This approach differs from standard chiral perturbation theory techniques that treat baryons as elementary particles. The method also allows us to construct effective quark-meson interactions that approximate the loop effects omitted in exact QCD calculations using the quenched approximation. These quark-meson interactions enable reparametrizations of the tree level interactions for many of the calculated loop results, reducing the size and improving the convergence of the loop diagrams. Furthermore, we relate tree-level couplings in the effective theory to equivalent matrix elements of nonrelativistic and semirelativistic quark models. This effective theory introduces several new elements. We construct a new octet baryon operator and octet baryon propagator. We also develop new effective mass and magnetic moment couplings that significantly reduce the number of free parameters in the theory, providing physical interpretation for the parameters appearing in standard chiral perturbation theory and improving its predictability. The theory is successfully used to determine baryon masses and magnetic moments using a small number of free parameters. We duplicate previous numerical results from chiral perturbation theory and provide improved results in many cases. In all cases, we determine excellent fits to the masses and moments using a small number of free parameters.
Santos, Alexandre M.; Providencia, Constanca; Panda, Prafulla K.
2009-04-15
In the present work we include the isovector-scalar {delta} meson in the quark-meson coupling (QMC) model and study the properties of asymmetric nuclear within QMC without and with the {delta} meson. Recent constraints set by isospin diffusion on the slope parameter of the nuclear symmetry energy at saturation density are used to adjust the model parameters. The thermodynamical spinodal surfaces are obtained and the instability region at subsaturation densities within QMC and QMC{delta} models are compared with mean-field relativistic models. The distillation effect in the QMC model is discussed.
Absorption of the ω and ϕ mesons in nuclei.
Wood, M H; Nasseripour, R; Paolone, M; Djalali, C; Weygand, D P; Adhikari, K P; Anghinolfi, M; Ball, J; Battaglieri, M; Batourine, V; Bedlinskiy, I; Bellis, M; Berman, B L; Biselli, A S; Branford, D; Briscoe, W J; Brooks, W K; Burkert, V D; Careccia, S L; Carman, D S; Cole, P L; Collins, P; Crede, V; D'Angelo, A; Daniel, A; De Vita, R; De Sanctis, E; Deur, A; Dey, B; Dhamija, S; Dickson, R; Doughty, D; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Eugenio, P; Fegan, S; Gabrielyan, M Y; Garçon, M; Gilfoyle, G P; Giovanetti, K L; Girod, F X; Goetz, J T; Gohn, W; Gothe, R W; Graham, L; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Hassall, N; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Jawalkar, S S; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kubarovsky, V; Kuleshov, S V; Kuznetsov, V; Livingston, K; Martinez, D; Mayer, M; McAndrew, J; McCracken, M E; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moreno, B; Moriya, K; Morrison, B; Munevar, E; Nadel-Turonski, P; Ni, A; Niccolai, S; Niculescu, G; Niculescu, I; Niroula, M R; Osipenko, M; Ostrovidov, A I; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Raue, B A; Ricco, G; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salamanca, J; Salgado, C; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S; Stepanyan, S S; Stoler, P; Strakovsky, I I; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tedeschi, D J; Tkachenko, S; Ungaro, M; Vernarsky, B; Vineyard, M F; Voutier, E; Watts, D P; Weinstein, L B; Zhang, J; Zhao, B; Zhao, Z W
2010-09-10
Because of their long lifetimes, the ω and ϕ mesons are the ideal candidates for the study of possible modifications of the in-medium meson-nucleon interaction through their absorption inside the nucleus. During the E01-112 experiment at the Thomas Jefferson National Accelerator Facility, the mesons were photoproduced from 2H, C, Ti, Fe, and Pb targets. This Letter reports the first measurement of the ratio of nuclear transparencies for the e+e- channel. The ratios indicate larger in-medium widths compared with what have been reported in other reaction channels. The absorption of the ω meson is stronger than that reported by the CBELSA-TAPS experiment and cannot be explained by recent theoretical models.
Angular momentum content of the rho meson in lattice QCD.
Glozman, Leonid Ya; Lang, C B; Limmer, Markus
2009-09-18
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the ;{2S+1}L_{J} basis one may extract a partial wave content of a meson. We present results for the ground state of the rho meson using quenched simulations as well as simulations with n_{f} = 2 dynamical quarks, all for lattice spacings close to 0.15 fm. We point out that these results indicate a simple ;{3}S_{1}-wave composition of the rho meson in the infrared, like in the SU(6) flavor-spin quark model.
Selection rules for hadronic transitions of XYZ mesons.
Braaten, Eric; Langmack, Christian; Smith, D Hudson
2014-06-06
Many of the XYZ mesons discovered in the last decade can be identified as bound states of a heavy quark and antiquark in Born-Oppenheimer (BO) potentials defined by the energy of gluon and light-quark fields in the presence of static color sources. The mesons include quarkonium hybrids, which are bound states in excited flavor-singlet BO potentials, and quarkonium tetraquarks, which are bound states in BO potentials with light-quark+antiquark flavor. The deepest hybrid potentials are known from lattice QCD calculations. The deepest tetraquark potentials can be inferred from lattice QCD calculations of static adjoint mesons. Selection rules for hadronic transitions are derived and used to identify XYZ mesons that are candidates for ground-state energy levels in the BO potentials for charmonium hybrids and tetraquarks.
Toward the excited isoscalar meson spectrum from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.
2013-11-18
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most J^{PC} channels; one notable exception is the pseudoscalar sector where the approximate SU(3)_{F} octet, singlet structure of the η, η' is reproduced. We extract exotic J^{PC} states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.
Toward the excited isoscalar meson spectrum from lattice QCD
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; ...
2013-11-18
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to about ~400 MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between light and strange in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identifiedmore » as hybrid mesons in which an excited gluonic field is coupled to a color-octet qqbar pair, along with non-exotic hybrid mesons embedded in a qq¯-like spectrum.« less
Search for medium modification of the $\\rho$ meson
R. Nasseripour; M. H. Wood; C. Djalali; D. P. Weygand; C. Tur; U. Mosel; P. Muehlich; CLAS Collaboration
2007-08-01
The photoproduction of vector mesons on various nuclei has been studied using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Laboratory. The vector mesons, $\\rho$, $\\omega$, and $\\phi$, are observed via their decay to $e^+e^-$, in order to reduce the effects of final state interactions in the nucleus. Of particular interest are possible in-medium effects on the properties of the $\\rho$ meson. The $\\rho$ spectral function is extracted from the data on various nuclei, carbon, iron, and titanium, and compared to the spectrum from liquid deuterium, which is relatively free of nuclear effects. We observe no significant mass shift for the $\\rho$ meson; however, there is some widening of the resonance in titanium and iron, which is consistent with expected collisional broadening.
φ-meson production in proton-proton collisions
NASA Astrophysics Data System (ADS)
Nakayama, K.; Durso, J. W.; Haidenbauer, J.; Hanhart, C.; Speth, J.
1999-11-01
The production of φ mesons in proton-proton collisions is investigated within a relativistic meson-exchange model of hadronic interactions. The experimental prerequisites for extracting the NNφ coupling strength from this reaction are discussed. In the absence of a sufficient set of data, which would enable an accurate determination of the NNφ coupling strength, we perform a combined analysis, based on some reasonable assumptions, of the existing data for both ω- and φ-meson production. We find that the recent data from the DISTO Collaboration on the angular distribution of the φ meson indicate that the NNφ coupling constant is small. The analysis yields values for gNNφ that are compatible with the Okubo-Zweig-Iizuka rule.
Light Meson Decays from Photon-Induced Reactions with CLAS
NASA Astrophysics Data System (ADS)
Kunkel, Michael; CLAS Collaboration; Light Meson Decay (LMD) Team
2015-04-01
Photo-production experiments with the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Laboratory produce data sets with unprecedented statistics of light mesons. With these data sets, measurements of transition form factors for η, ω, and η ' via conversion decays can be performed using a line shape analysis on the invariant mass of the final state dileptons. Tests of fundamental symmetries and information on the light quark mass difference can be performed using a Dalitz plot analysis of the meson decay. In addition, the data allows for a search for dark matter, such as the heavy photon via conversion decays of light mesons and physics beyond the Standard Model can be searched for via invisible decays of η mesons. An overview of the first results and future prospects will be given.
Analysis tools for MesonEx at CLAS12
NASA Astrophysics Data System (ADS)
Glazier, D. I.
2016-05-01
The JLAB upgrade will soon be completed and the new CLAS12 detector system will collect large volumes of data allowing detailed investigations of many aspects of hadron physics. The focus of the MesonEx experiment is on the production of mesonic states by low Q2 virtual photons, or quasi-real photons. Studying such mesonic states is a particularly challenging data analysis problem, requiring well understood detector systems, clean signal and background separation, handling of large volumes of data and crucially a close collaboration between experimentalists and theorists to ensure the most sophisticated theoretical methods are used to interrogate the data. Here we briefly outline some of the analysis and methods that are being used to prepare for the MesonEx experiment.
Measurement of the B0 and B- meson lifetimes
NASA Astrophysics Data System (ADS)
Barate, R.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Graugés, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L. M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Boix, G.; Buchmüller, O.; Cattaneo, M.; Cerutti, F.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Greening, T. C.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Wright, A. E.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Rougé, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Halley, A. W.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A. S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Marinelli, N.; Sedgbeer, J. K.; Thompson, J. C.; Thomson, E.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bowdery, C. K.; Buck, P. G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Giehl, I.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; Wachsmuth, H.; Zeitnitz, C.; Bonissent, A.; Carr, J.; Coyle, P.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Aleppo, M.; Ragusa, F.; Dietl, H.; Ganis, G.; Heister, A.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Yuan, C.; Zerwas, D.; Bagliesi, G.; Boccali, T.; Calderini, G.; Ciulli, V.; Foà, L.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Cowan, G.; Green, M. G.; Medcalf, T.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Misiejuk, A.; Prange, G.; Sieler, U.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Cranmer, K.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A., III; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, S.; Wu, X.; Zobernig, G.
2000-01-01
The lifetimes of the B0 and B- mesons are measured using a sample of about four million hadronic /Z decays collected from 1991 to 1995 with the Aleph detector at LEP. The data sample has been recently reprocessed, achieving a substantial improvement in the tracking performance. Semileptonic decays of B0 and B- mesons are partially reconstructed by identifying events containing a lepton with an associated D*+ or D0 meson. The proper time of the /B meson is estimated from the measured decay length and the momentum of the /D-lepton system. A fit to the proper time of 1880 D*+l- and 2856 D0l- candidates yields the following results: τB^0=1.518+/-0.053+/-0.034 ps, τB^-=1.648+/-0.049+/-0.035 ps, τB^-/τB^0=1.085+/- 0.059+/-0.018.
In-medium Properties of B and D Mesons
NASA Astrophysics Data System (ADS)
Sundu, H.; Azizi, K.; Er, N.
2014-11-01
The shifts in the masses and decay constants of B and D mesons in nuclear medium are calculated in the frame work of QCD sum rules. The results obtained are compared with the existing theoretical predictions.
Semileptonic B and Bs decays into orbitally excited charmed mesons
NASA Astrophysics Data System (ADS)
Segovia, J.; Albertus, C.; Entem, D. R.; Fernández, F.; Hernández, E.; Pérez-García, M. A.
2011-11-01
The BABAR Collaboration has recently reported products of branching fractions that include B meson semileptonic decays into final states with charged and neutral D1(2420) and D2*(2460), two narrow orbitally excited charmed mesons. We evaluate these branching fractions, together with those concerning D0*(2400) and D1'(2430) mesons, within the framework of a constituent quark model. The calculation is performed in two steps, one of which involves a semileptonic decay and the other is mediated by a strong process. Our results are in agreement with the experimental data. We also extend the study to semileptonic decays of Bs into orbitally excited charmed-strange mesons, providing predictions to the possible measurements to be carried out at LHC.
Toward the excited isoscalar meson spectrum from lattice QCD
NASA Astrophysics Data System (ADS)
Dudek, Jozef J.; Edwards, Robert G.; Guo, Peng; Thomas, Christopher E.
2013-11-01
We report on the extraction of an excited spectrum of isoscalar mesons using lattice QCD. Calculations on several lattice volumes are performed with a range of light quark masses corresponding to pion masses down to ˜400MeV. The distillation method enables us to evaluate the required disconnected contributions with high statistical precision for a large number of meson interpolating fields. We find relatively little mixing between (1)/(2)(uu¯+dd¯) and ss¯ in most JPC channels; one notable exception is the pseudoscalar sector where the approximate SU(3)F octet, singlet structure of the η, η' is reproduced. We extract exotic JPC states, identified as hybrid mesons in which an excited gluonic field is coupled to a color-octet qq¯ pair, along with nonexotic hybrid mesons embedded in a qq¯-like spectrum.
A meson cloud model of strangeness asymmetry in the proton
NASA Astrophysics Data System (ADS)
Netzel, Greg; Raschko, David; Hansen, Chase
2013-10-01
We use a meson cloud model to describe strangeness in the proton. In this model the proton can fluctuate into meson-baryon pairs, as allowed by the Heisenberg uncertainty principle. The leading contributions to strangeness are from the meson-baryon pairs K Λ or K Σ. In this model, the probability of finding strange quark pairs depends on both the splitting functions, which represent the probability of splitting into a given meson-baryon state, and the phenomenological vertex form factors. Because the s and {s} quarks reside in different hadrons, their momentum distributions will differ, as suggested by the NuTeV anomaly and recent global parton distribution fits. We compare our results to other theoretical calculations and to experimental data from HERMES and ATLAS, and to global parton distribution fits. Supported in part by NSF Grants No. 0855656 and 1205686.
Eta Meson Production in Proton-Proton and Nuclear Collisions
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank
2008-01-01
Total cross sections for eta meson production in proton - proton collisions are calculated. The eta meson is mainly produced via decay of the excited nucleon resonance at 1535 MeV. A scalar quantum field theory is used to calculate cross sections, which also include resonance decay. Comparison between theory and experiment is problematic near threshold when resonance decay is not included. When the decay is included, the comparison between theory and experiment is much better.
Mesons in ultra-intense magnetic field: an evaded collapse
NASA Astrophysics Data System (ADS)
Kerbikov, B. O.; Andreichikov, M. A.; Simonov, Yu. A.
2017-03-01
Spectra of qq¯ mesons are investigated in the framework of the Hamiltonian obtained from the relativistic path integral in external homogeneous magnetic field. The spectra of all 12 spin-isospin s-wave states generated by π- and ρ-mesons with different spin projections, are studied analytically as functions of the field strength. Three types of behavior with characteristic splittings are found. The results are in agreement with recent lattice calculations.
Charmed mesons at finite temperature and chemical potential
NASA Astrophysics Data System (ADS)
Serna, Fernando E.; Krein, Gastão
2017-03-01
We compute the masses of the pseudoscalar mesons π+, K0 and D+ at finite temperature and baryon chemical potential. The computations are based on a symmetry-preserving Dyson-Schwinger equation treatment of a vector-vector four quark contact interaction. The results found for the temperature dependence of the meson masses are in qualitative agreement with lattice QCD data and QCD sum rules calculations. The chemical potential dependence of the masses provide a novel prediction of the present computation.
Highly excited and exotic meson spectroscopy from lattice QCD
Christopher Thomas
2011-05-01
I will discuss recent progress in extracting highly excited and exotic meson spectra using lattice QCD. New results in the light meson sector will be presented, where a combination of techniques have enabled us to confidently identify the spin of extracted states. Highlights include many states with exotic quantum numbers and, for the first time in a lattice QCD calculation, spin-four states. I will conclude with comments on future prospects.
Molecular components in P -wave charmed-strange mesons
NASA Astrophysics Data System (ADS)
Ortega, Pablo G.; Segovia, Jorge; Entem, David R.; Fernández, Francisco
2016-10-01
Results obtained by various experiments show that the Ds0 *(2317 ) and Ds 1(2460 ) mesons are very narrow states located below the D K and D*K thresholds, respectively. This is markedly in contrast with the expectations of naive quark models and heavy quark symmetry. Motivated by a recent lattice study which addresses the mass shifts of the c s ¯ ground states with quantum numbers JP=0+ [Ds0 *(2317 )] and JP=1+ [Ds 1(2460 )] due to their coupling with S -wave D(*)K thresholds, we perform a similar analysis within a nonrelativistic constituent quark model in which quark-antiquark and meson-meson degrees of freedom are incorporated. The quark model has been applied to a wide range of hadronic observables, and thus the model parameters are completely constrained. The coupling between quark-antiquark and meson-meson Fock components is done using a 3P0 model in which its only free parameter γ has been elucidated, performing a global fit to the decay widths of mesons that belong to different quark sectors, from light to heavy. We observe that the coupling of the 0+ (1+) meson sector to the D K (D*K ) threshold is the key feature to simultaneously lower the masses of the corresponding Ds0 *(2317 ) and Ds 1(2460 ) states predicted by the naive quark model and describe the Ds 1(2536 ) meson as the 1+ state of the jqP=3 /2+ doublet predicted by heavy quark symmetry, reproducing its strong decay properties. Our calculation allows us to introduce the coupling with the D -wave D*K channel and the computation of the probabilities associated with the different Fock components of the physical state.
Light scalar mesons in the improved ladder QCD
Umekawa, Toru; Naito, Kenichi; Oka, Makoto; Takizawa, Makoto
2004-11-01
The light scalar meson spectrum is studied using the improved ladder QCD with the U{sub A}(1) breaking Kobayashi-Maskawa-'t Hooft interaction by solving the Schwinger-Dyson and Bethe-Salpeter equations. The dynamically generated momentum-dependent quark mass is large enough in the low momentum region to give rise to the spontaneous breaking of chiral symmetry. Due to the large dynamical quark mass, the scalar mesons become the qq bound states. Since the parameters have been all fixed to reproduce the light pseudoscalar meson masses and the decay constant, there is no free parameter in the calculation of the scalar mesons. We obtain M{sub {sigma}}=667 MeV, M{sub a{sub 0}}=942 MeV, and M{sub f{sub 0}}=1336 MeV. They are in good agreement with the observed masses of {sigma}(600), a{sub 0}(980), and f{sub 0}(1370), respectively. We therefore conclude that these states are the members of the light scalar meson nonet. The mass of K{sub 0}{sup *} is obtained between that of a{sub 0} and f{sub 0} and the corresponding state is not observed experimentally. We also find that the strangeness content in the {sigma} meson is about 5%.
Mesons in strong magnetic fields: (I) General analyses
Hattori, Koichi; Kojo, Toru; Su, Nan
2016-03-21
Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ2QCD with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number ofmore » meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.« less
Medium Modification of the Light Vector Mesons in Nuclei
Nasseripour, R.; Djalali, C.; Wood, M.; Weygand, D.
2008-10-13
Theoretical calculations predict the modification of properties of vector mesons, such as a shift in their masses and/or broadening of their widths in dense nuclear matter. These effects can be related to partial restoration of chiral symmetry at high density or temperature. Photoproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The data were taken with a beam of tagged photons with energies up to 4 GeV on various nuclear targets. The properties of the {rho} vector mesons were investigated via their rare leptonic decay to e+e{sup -}. This decay channel is preferred over hadronic modes in order to eliminate final state interactions in the nuclear matter. The combinatorial background in the mass spectrum was removed by a self-normalizing mixed-event technique. The {rho} meson mass distributions were extracted for each of the targets. Statistically significant results regarding medium modification of the rho meson in the nuclear medium rule out large medium effects. Transparency studies of the {omega} and {phi} vector mesons allows a determination of their widths in the medium.
Mesons in strong magnetic fields: (I) General analyses
NASA Astrophysics Data System (ADS)
Hattori, Koichi; Kojo, Toru; Su, Nan
2016-07-01
We study properties of neutral and charged mesons in strong magnetic fields | eB | ≫ΛQCD2 with ΛQCD being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger-Dyson and Bethe-Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B2. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.
Mesons in strong magnetic fields: (I) General analyses
Hattori, Koichi; Kojo, Toru; Su, Nan
2016-03-21
Here, we study properties of neutral and charged mesons in strong magnetic fields |eB| >> Λ^{2}_{QCD} with Λ_{QCD} being the QCD renormalization scale. Assuming long-range interactions, we examine magnetic-field dependences of various quantities such as the constituent quark mass, chiral condensate, meson spectra, and meson wavefunctions by analyzing the Schwinger–Dyson and Bethe–Salpeter equations. Based on the density of states obtained from these analyses, we extend the hadron resonance gas (HRG) model to investigate thermodynamics at large B. As B increases the meson energy behaves as a slowly growing function of the meson's transverse momenta, and thus a large number of meson states is accommodated in the low energy domain; the density of states at low temperature is proportional to B^{2}. This extended transverse phase space in the infrared regime significantly enhances the HRG pressure at finite temperature, so that the system reaches the percolation or chiral restoration regime at lower temperature compared to the case without a magnetic field; this simple picture would offer a gauge invariant and intuitive explanation of the inverse magnetic catalysis.
Λ and Σ resonances coupled to vector and pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Khemchandani, K. P.; Martínez Torres, A.; Nagahiro, H.; Hosaka, A.
2013-09-01
The vector and pseudoscalar meson-baryon systems have been studied in a coupled channel formalism recently, which has lead to findings of some important results. The formalism consists of obtaining a detailed vector meson-baryon interaction originating from the s-, t-, u-channel diagrams and a contact interaction, all derived from the Lagrangian invariant under the gauge of the hidden local symmetry (HLS). We find the contributions from all the diagrams (except s-channel) to be important, contrary to the systems involving light Goldstone bosons where Weinberg-Tomozawa interaction gives the dominant contribution. Further, the transitions between the pseudoscalar meson-baryon (PB) and vector meson-baryon (VB) channels is obtained consistently by extending the Kroll-Ruderman theorem by replacing the photon by a vector meson, assuming the vector meson dominance. We find that the low-lying resonances couple strongly to VB channels. This information can be very useful in studying processes like photoproduction of low-lying resonances. Further, we find dynamical generation of new states in PB-VB coupled systems which can be related to the known resonances: Λ(2000), Σ(1750), Σ(1940) and Σ(2000).
Monte Carlo Glauber wounded nucleon model with meson cloud
NASA Astrophysics Data System (ADS)
Zakharov, B. G.
2017-06-01
We study the effect of the nucleon meson cloud on predictions of the Monte Carlo Glauber wounded nucleon model for AA, pA, and pp collisions. From the analysis of the data on the charged multiplicity density in AA collisions we find that the meson-baryon Fock component reduces the required fraction of binary collisions by a factor of 2 for Au + Au collisions at √ s = 0.2 TeV and 1.5 for Pb + Pb collisions at √ s = 2.76 TeV. For central AA collisions, the meson cloud can increase the multiplicity density by 16-18%. We give predictions for the midrapidity charged multiplicity density in Pb + Pb collisions at √ s = 5.02 TeV for the future LHC run 2. We find that the meson cloud has a weak effect on the centrality dependence of the ellipticity ɛ2 in AA collisions. For collisions of the deformed uranium nuclei at √ s = 0.2 TeV, we find that the meson cloud may improve somewhat agreement with the data on the dependence of the elliptic flow on the charged multiplicity for very small centralities defined via the ZDCs signals. We find that the meson cloud may lead to a noticeable reduction of ɛ2 and the size of the fireball in pA and pp collisions.
Residual meson-meson interaction from lattice gauge simulation in a simple QED{sub 2+1} model
J. Canosa; H. Fiebig
1995-08-01
The residual interaction for a meson-meson system is computed utilizing the cumulant, or cluster, expansion of the momentum-space time correlation matrix. The cumulant expansion serves to define asymptotic, or free, meson-meson operators. The definition of an effective interaction is then based on a comparison of the full (interacting) and the free (noninteracting) time correlation matrices. The proposed method, which may straight forwardly be transcribed to other hadron-hadron systems, here is applied to a simple 2+1 dimensional U(1) lattice gauge model tuned such that it is confining. Fermions are treated in the staggered scheme. The effective interaction exhibits a repulsive core and attraction at intermediate relative distances. These findings are consistent with an earlier study of the same model utilizing L{umlt u}scher's method where scattering phase shifts are obtained directly.
Cheng Haiyang; Chua Chunkhiang; Yang Kweichou
2006-01-01
The hadronic charmless B decays into a scalar meson and a pseudoscalar meson are studied within the framework of QCD factorization. Based on the QCD sum rule method, we have derived the leading-twist light-cone distribution amplitudes of scalar mesons and their decay constants. Although the light scalar mesons f{sub 0}(980) and a{sub 0}(980) are widely perceived as primarily the four-quark bound states, in practice it is difficult to make quantitative predictions based on the four-quark picture for light scalars. Hence, predictions are made in the 2-quark model for the scalar mesons. The short-distance approach suffices to explain the observed large rates of f{sub 0}(980)K{sup -} and f{sub 0}(980)K{sup 0} that receive major penguin contributions from the b{yields}sss process. When f{sub 0}(980) is assigned as a four-quark bound state, there exist extra diagrams contributing to B{yields}f{sub 0}(980)K. Therefore, a priori the f{sub 0}(980)K rate is not necessarily suppressed for a four-quark state f{sub 0}(980). The predicted B{sup 0}{yields}a{sub 0}{sup {+-}}(980){pi}{sup {+-}} and a{sub 0}{sup +}(980)K{sup -} rates exceed the current experimental limits, favoring a four-quark nature for a{sub 0}(980). The penguin-dominated modes a{sub 0}(980)K and a{sub 0}(1450)K receive predominant weak annihilation contributions. There exists a twofold experimental ambiguity in extracting the branching ratio of B{sup -}{yields}K{sub 0}*{sup 0}(1430){pi}{sup -}, which can be resolved by measuring other K{sub 0}*(1430){pi} modes in conjunction with the isospin symmetry consideration. Large weak annihilation contributions are needed to explain the K{sub 0}*(1430){pi} data. The decay B{sup 0}{yields}{kappa}{sup +}K{sup -} provides a nice ground for testing the 4-quark and 2-quark nature of the {kappa} meson. It can proceed through W-exchange and hence is quite suppressed if {kappa} is made of two quarks, while it receives a tree contribution if {kappa} is predominately a four
On Decays of B Mesons to a Strange Meson and an Eta or Eta' Meson at Babar
Hirschauer, James Francis
2009-01-01
We describe studies of the decays of B mesons to final states ηK*(892), ηK*_{0}(S-wave), ηK*_{2}(1430), and η'K based on data collected with the BABAR detector at the PEP-II asymmetric-energy e^{+}e^{-} collier at the Stanford Linear Accelerator Center. We measure branching fractions and charge asymmetries for the decays B → ηK*, where K* indicates a spin 0, 1, or 2 Kπ system, making first observations of decays to final states ηK^{0*}_{0}(S-wave), ηK^{+*}_{0} (S-wave), and ηK^{0*}_{2}(1430). We measure the time-dependent CP-violation parameters S and C for the decays B^{0} → η'K^{0}, observing CP violation in a charmless B decay with 5σ significance considering both statistical and systematic uncertainties.
Vector-meson-dominance model for radiative decays involving light scalar mesons.
Black, Deirdre; Harada, Masayasu; Schechter, Joseph
2002-05-06
We study a vector-dominance model which predicts quite a large number of currently interesting decay amplitudes of the types S-->gammagamma, V-->Sgamma, and S-->Vgamma, where S and V denote scalar and vector mesons, in terms of three parameters. As an application, the model makes it easy to study in detail a recent proposal to boost the ratio Gamma(phi-->f(0)gamma)/Gamma(phi-->a(0)(0)gamma) by including the isospin violating a(0)(0)-f(0) mixing. However, we find that this effect is actually small in our model.
Yukawa Meson, Sakata Model and Baryon-Lepton Symmetry Revisited
NASA Astrophysics Data System (ADS)
Marshak, R. E.
It is difficult for me to grasp that this symposium is celebrating the jubilee of meson theory since I was a junior at Columbia College in 1935. I recall hearing a colloquium by Paul Dirac that year telling an enraptured audience about the infinite sea of negative energy states but I do not recall any special note being taken of the birth of an equally revolutionary concept, the Yukawa meson. Perhaps the reason was the publication of Hideki Yukawa's paper in an inaccessible Japanese journal, perhaps Dirac's electron theory was dealing with the well-known electromagnetic force whereas Yukawa' meson theory was put forth to understand the nature of two new forces - the nuclear and the weak. Whatever the reason, the situation changed drastically when I migrated to Cornell (to do my thesis under Hans Bethe during the years 1937sim39) and found a deep interest in meson theory. Thus, my own scientific career has almost spanned the period since the birth of meson theory but, what is more to the point, it has been strongly influenced by the work of Yukawa and his collaborators. It therefore gives me great pleasure to be able to talk at this MESON 50 symposium. As one of the oldest speakers, I shall respond in a loose way to Professor Maki's invitation to cover ``topics concerning the historical developments of hadron physics''. I shall select several major themes from the Japanese work that have had special interest for me. My remarks will fall under the four headings: (A) Yukawa Meson; (B) Sakata Model; (C) Baryon-Lepton Symmetry; and (D) Extensions of Baryon-Lepton Symmetry.
Open bottom mesons in a hot asymmetric hadronic medium
NASA Astrophysics Data System (ADS)
Pathak, Divakar; Mishra, Amruta
2015-04-01
The in-medium masses and optical potentials of B and B ¯ mesons are studied in an isospin asymmetric, strange, hot, and dense hadronic environment using a chiral effective model. The chiral SU(3 ) model originally designed for the light-quark sector, is generalized to include the heavy-quark sector (c and b ) to derive the interactions of the B and B ¯ mesons with the light hadrons. Owing to the large mass of bottom quark, we use only the empirical form of these interactions for the desired purpose, while treating the bottom degrees of freedom to be frozen in the medium. Hence, all medium effects are attributable to the in-medium interaction of the light-quark content of these open bottom mesons. Both B and B ¯ mesons are found to experience net attractive interactions in the medium, leading to lowering of their masses in the medium. The mass degeneracy of particles and antiparticles, (B+, B-) as well as (B0, B¯ 0), is observed to be broken in the medium, owing to equal and opposite contributions from a vectorial Weinberg-Tomozawa interaction term. Addition of hyperons to the medium lowers further the in-medium mass for each of these four mesons, while a nonzero isospin asymmetry is observed to break the approximate mass degeneracy of each pair of isospin doublets. These medium effects are found to be strongly density dependent and bear a considerably weaker temperature dependence. The results obtained in the present investigation are compared to predictions from the quark-meson coupling model, heavy meson effective theory, and the QCD sum rule approach.
Near-threshold J/ ψ-meson photoproduction on nuclei
NASA Astrophysics Data System (ADS)
Paryev, E. Ya.; Kiselev, Yu. T.
2017-01-01
On the basis of the first-collision model that relies on the nuclear spectral function and which includes incoherent processes involving charmonium production in proton-nucleon collisions, the photoproduction of J/ ψ mesons on nuclei is considered at energies close to the threshold for their production on a nucleon. The absorption of final J/ ψ mesons, their formation length, and the binding and Fermi motion of target nucleons are taken into account in this model along with the effect of the nuclear potential on these processes. The A dependences of the absolute and relative charmonium yields are calculated together with absolute and relative excitation functions under various assumptions on the magnitude of the cross section for J/ ψN absorption, the J/ ψ-meson formation length, and their inmedium modification. It is shown that, at energies above the threshold, these features are virtually independent of the formation length and the change in the J/ ψ-meson mass in nuclear matter but are rather highly sensitive to the cross section for J/ ψN interaction. The calculations performed in the present study can be used to determine the unknown cross section for J/ ψ-meson absorption in nuclei from a comparison of their results with data expected from experiments in the Hall C of the CEBAF (USA) facility upgraded to the energy of 12 GeV. It is also shown that the absolute and relative excitation functions for J/ ψ mesons in photon-nucleus reactions at subthreshold energies are sensitive to the change in the meson mass and, hence, carry information about the properties of charmonium in nuclear matter.
Meson Effect in the Proto Neutron Star PSR J0348+0432
NASA Astrophysics Data System (ADS)
Zhao, Xian-Feng
2017-10-01
The effect of mesons f 0(975) (named as f), ϕ(1020) (named as ϕ) and δ on the moment of inertia of the PNS PSR J0348+0432 is examined in the framework of the relativistic mean field theory considering the baryon octet. It is found that the energy density ɛ and pressure p will increase considering the mesons δ whereas will decrease as the mesons f and ϕ being considered. When the mesons f, ϕ and δ are considered, the energy density and pressure will all decrease. It is also found that the contribution of mesons f, ϕ and δ to the central energy density is only the central energy density's 0.06 ˜0.6% whereas the contribution of mesons f, ϕ and δ to the central pressure is the central pressure's 4 ˜7%. For the radius, it will decrease when the contributions of mesons f, ϕ and δ are considered. The moment of inertia I will increase considering the mesons δ whereas will decrease as the mesons f and ϕ being considered. When the mesons f, ϕ and δ are all considered, the moment of inertia will decrease. It is found that the contribution of mesons f and ϕ to moment of inertia is 4 ˜9 times larger than that of mesons δ. Our results show that the mesons f, ϕ and δ contribute to the moment of inertia's 2 ˜5%.
Studying meson baryon systems with strangeness +1
NASA Astrophysics Data System (ADS)
Khemchandani, K. P.; Martinez Torres, A.; Navarra, F. S.; Nielsen, M.; Tolos, L.
2015-07-01
We discuss the results of our recent study of the s-wave KN-K*N coupled interaction. The K*N amplitude is obtained by calculating t- and u- channel diagrams and a contact interaction. For the KN amplitude we calculate the Weinberg-Tomozawa term obtained from the lowest order chiral Lagrangian. The KN ↔ K*N amplitudes are calculated by replacing the photon by a vector meson in the standard Kroll-Ruderman term. The subtraction constants required to calculate the loops are fixed by demanding the KN amplitudes to fit the data available on the isospin 0 and 1 s-wave phase shifts. We find that the coupling between the two channels plays an important in the isospin 0 configuration. We obtain updated amplitudes and cross sections for the KN and K*N systems, which can be used to understand some recent findings of K, K* production in p-p and p-A collisions studied by the Hades collaboration. We also look for resonances in these systems but find none.
Leskovec, Luka; Lang, C. B.; Mohler, Daniel; Prelovsek, Sasa; Woloshyn, R. M.
2015-11-12
We study the positive parity charmed strange mesons using lattice QCD, the only reliable ab initio method to study QCD at low energies. Especially the experimentally observed $D_{s0}^*(2317)$ and $D_{s1}(2460)$ have challenged theory for quite some time. The dynamical lattice QCD simulations are performed at two distinct pion masses, $m_{\\pi}$ = 266 MeV and 156 MeV, using both $\\bar{c}s$ as well as $DK$ and $D^*K$ scattering operators in the construction of the correlation matrix in order to take into the account threshold effects. While the $J^P = 0^+$ channel benefited most from the inclusion of scattering operators, it was also crucial for the case of the $D_{s1}(2460)$. Using the L\\"uscher method, which relates the finite volume spectrum to the infinite volume scattering matrix, we were able to determine the near threshold behavior of the scattering amplitude. From it we extracted the binding momenta and the masses of the below-threshold bound states $D_{s0}^*(2317)$ and $D_{s1}(2460)$ by determining the pole positions of the scattering amplitudes. Our results compare well with experiment, resolving a long standing discrepancy between theory and experiment.
Electromagnetic Studies of Mesons, Nucleons, and Nuclei
Baker, Oliver K.
2013-08-20
Professor Baker was a faculty member at Hampton University in Hampton, Virginia, and, jointly, a Staff Physicist at Jefferson Lab in nearby Newport News from September 1989 to July 2006. The Department of Energy (DOE) funded the grant DE-FG02-97ER41035 Electromagnetic Studies of Mesons, Nucleons, and Nuclei, while Baker was in this joint appointment. Baker sent a closeout report on these activities to Hampton University’s Sponsored Research Office some years ago, shortly after joining Yale University in 2006. In the period around 2001, the research grant with Baker as the Principal Investigator (PI) was put under the supervision of Professor Liguang Tang at Hampton University. Baker continued to pursue the research while in this join appointment, however the administrative responsibilities with the DOE and with Hampton University rested with Professor Tang after 2001, to my recollection. What is written in this document is from Baker’s memory of the research activities, which he has not pursued since joining the Yale University faculty.
Dark photons from charm mesons at LHCb
NASA Astrophysics Data System (ADS)
Ilten, Philip; Thaler, Jesse; Williams, Mike; Xue, Wei
2015-12-01
We propose a search for dark photons A' at the LHCb experiment using the charm meson decay D*(2007 )0→D0A'. At nominal luminosity, D*0→D0γ decays will be produced at about 700 kHz within the LHCb acceptance, yielding over 5 trillion such decays during Run 3 of the LHC. Replacing the photon with a kinetically mixed dark photon, LHCb is then sensitive to dark photons that decay as A'→e+e-. We pursue two search strategies in this paper. The displaced strategy takes advantage of the large Lorentz boost of the dark photon and the excellent vertex resolution of LHCb, yielding a nearly background-free search when the A' decay vertex is significantly displaced from the proton-proton primary vertex. The resonant strategy takes advantage of the large event rate for D*0→D0A' and the excellent invariant-mass resolution of LHCb, yielding a background-limited search that nevertheless covers a significant portion of the A' parameter space. Both search strategies rely on the planned upgrade to a triggerless-readout system at LHCb in Run 3, which will permit the identification of low-momentum electron-positron pairs online during data taking. For dark photon masses below about 100 MeV, LHCb can explore nearly all of the dark photon parameter space between existing prompt-A' and beam-dump limits.
Katz, Emanuel; Lewandowski, Adam; Schwartz, Matthew D.
2006-10-15
We explore tensor mesons in AdS/QCD focusing on f{sub 2}(1270), the lightest spin-2 resonance in QCD. We find that the f{sub 2} mass and the partial width {gamma}(f{sub 2}{yields}{gamma}{gamma}) are in very good agreement with data. In fact, the dimensionless ratio of these two quantities comes out to be within the current experimental bound. The result for this ratio depends only on N{sub c} and N{sub f}, and the quark and glueball content of the operator responsible for the f{sub 2}; more importantly, it does not depend on chiral symmetry breaking and so it is both independent of much of the arbitrariness of AdS/QCD and completely out of reach of chiral perturbation theory. For comparison, we also explore f{sub 2}{yields}{pi}{pi}, which, because of its sensitivity to the UV corrections, has much more uncertainty. We also calculate the masses of the higher spin resonances on the Regge trajectory of the f{sub 2}, and find they compare favorably with experiment.
Photoproduction of ω mesons off the proton
NASA Astrophysics Data System (ADS)
Wilson, A.; Crede, V.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, B.; Bartholomy, O.; Bayadilov, D.; Beck, R.; Beloglazov, Y. A.; Brinkmann, K. T.; Castelijns, R.; Dutz, H.; Elsner, D.; Ewald, R.; Frommberger, F.; Fuchs, M.; Funke, Chr.; Gregor, R.; Gridnev, A.; Gutz, E.; Hannappel, J.; Hillert, W.; Hoffmeister, P.; Horn, I.; Jaegle, I.; Jude, T.; Junkersfeld, J.; Kalinowsky, H.; Kleber, V.; Klein, Frank; Klein, Friedrich; Klempt, E.; Kotulla, M.; Krusche, B.; Lang, M.; Löhner, H.; Lopatin, I. V.; Lugert, S.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Nanova, M.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Sarantsev, A. V.; Schmidt, C.; Schmieden, H.; Shende, S.; Sokhoyan, V.; Sparks, N.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Wendel, Ch.; Wiedner, U.
2015-10-01
The differential cross sections and unpolarized spin-density matrix elements for the reaction γp → pω were measured using the CBELSA/TAPS experiment for initial photon energies ranging from the reaction threshold to 2.5 GeV. These observables were measured from the radiative decay of the ω meson, ω →π0 γ. The cross sections cover the full angular range and show the full extent of the t-channel forward rise. The overall shape of the angular distributions in the differential cross sections and unpolarized spin-density matrix elements are in fair agreement with previous data. In addition, for the first time, a beam of linearly-polarized tagged photons in the energy range from 1150 MeV to 1650 MeV was used to extract polarized spin-density matrix elements. These data were included in the Bonn-Gatchina partial wave analysis (PWA). The dominant contribution to ω photoproduction near threshold was found to be the 3 /2+ partial wave, which is primarily due to the sub-threshold N (1720) 3 /2+ resonance. At higher energies, pomeron-exchange was found to dominate whereas π-exchange remained small. These t-channel contributions as well as further contributions from nucleon resonances were necessary to describe the entire dataset: the 1 /2-, 3 /2-, and 5 /2+ partial waves were also found to contribute significantly.
New results on mesons containing strange quarks
Aston, D.; Awaji, N.; Bienz, T.; Bird, F.; D'Amore, J.; Dunwoodie, W.; Endorf, R.; Fujii, K.; Hayashii, H.; Iwata, S.
1987-01-01
Recent results of strange and strangeonium mesons are presented. The data come from a high sensitivity study (4.1 ev/nb) of K/sup -/p interactions at 11 GeV/c using the LASS spectrometer at SLAC. The complete leading orbitally-excited K* series up through J/sup P/ = 5/sup -/ and a substantial number of the expected underlying states are observed decaying into K/sup -/..pi../sup +/, anti K/sub 3//sup 0/..pi../sup +/..pi../sup -/, and K eta final states, and new measurements are made of their masses, widths, and branching ratios. Production of strangeonium states via hypercharge exchange is observed into K/sub 3//sup 0/K/sub 3//sup 0/, K/sup -/K/sup +/, and K/sub 3//sup 0/K/sup + -/..pi../sup - +/ final states. The leading orbitally-excited phi series through J/sup P/ = 3/sup -/ is clearly seen and evidence is presented for additional high spin structure in the 2.2 GeV/c/sup 2/ region. No f/sub 2/(1720) is observed. The K/sub 3//sup 0/K/sup + -/..pi../sup - +/ spectrum is dominated by 1/sup +/(K* anti K + anti K* K) production in the region below 1.6 GeV/c/sup 2/. These results are compared with data on the same systems produced by different production mechanisms. 12 refs., 28 figs.
Chang, Qin; Brodsky, Stanley J.; Li, Xin-Qiang
2017-05-30
In this article the dynamical spin effects of the light-front holographic wave functions for light pseudoscalar mesons are studied. These improved wave functions are then confronted with a number of hadronic observables: the decay constants of π and K mesons, their ξ -moments, the pion-to-photon transition form factor, and the pure annihilationmore » $$\\bar{B}_s$$ → π+ π- and $$\\bar{B}_d$$ → K+ K- decays. Taking fπ , fK , and their ratio fK / fπ as constraints, we perform a χ2 analysis for the holographic parameters, including the mass scale parameter $$\\sqrtλ$$ and the effective quark masses, and find that the fitted results are quite consistent with the ones obtained from the light-quark hadronic Regge trajectories. In addition, we also show that the end point divergence appearing in the pure annihilation $$\\bar{B}_s$$ → π+ π- and $$\\bar{B}_d$$ → K+ K- decays can be controlled well by using these improved light-front holographic distribution amplitudes.« less
Suppressed decays of D(s)(+) mesons to two pseudoscalar mesons.
Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Menaa, N; Mountain, R; Nisar, S; Randrianarivony, K; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Ernst, J; Ecklund, K M; Severini, H; Love, W; Savinov, V; Lopez, A; Mehrabyan, S; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B
2007-11-09
Using data collected near the D{s}{*+}D{s}{-} peak production energy E_{cm}=4170 MeV by the CLEO-c detector, we study the decays of D{s}{+} mesons to two pseudoscalar mesons. We report on searches for the singly Cabibbo-suppressed D{s}{+} decay modes K{+}eta, K{+}eta', pi{+}K{S}{0}, K{+}pi{0}, and the isospin-forbidden decay mode D{s}{+}-->pi{+}pi{0}. We normalize with respect to the Cabibbo-favored D{s}{+} modes pi{+}eta, pi{+}eta', and K{+}K{S}{0}, and obtain ratios of branching fractions: B(D{s}{+}-->K{+}eta)/B(D{s}{+}-->pi{+}eta)=(8.9+/-1.5+/-0.4)%, B(D{s}{+}-->K{+}eta')/B(D{s}{+}-->pi{+}eta')=(4.2+/-1.3+/-0.3)%, B(D{s}{+}-->pi{+}K{S}{0})/B(D{s}{+}-->K{+}K{S}{0})=(8.2+/-0.9+/-0.2)%, B(D{s}{+}-->K{+}pi{0})/B(D{s}{+}-->K{+}K{S}{0})=(5.5+/-1.3+/-0.7)%, and B(D{s}{+}-->pi{+}pi{0})/B(D{s}{+}-->K{+}K{S}{0})<4.1% at 90% C.L., where the uncertainties are statistical and systematic, respectively.
Scalar meson f0(980) in heavy-meson decays
NASA Astrophysics Data System (ADS)
El-Bennich, B.; Leitner, O.; Dedonder, J.-P.; Loiseau, B.
2009-04-01
A phenomenological analysis of the scalar meson f0(980) is performed that relies on the quasi-two-body decays D and Ds→f0(980)P, with P=π, K. The two-body branching ratios are deduced from experimental data on D or Ds→πππ, Kmacr Kπ and from the f0(980)→π+π- and f0(980)→K+K- branching fractions. Within a covariant quark model, the scalar form factors for the transitions D and Ds→f0(980) are computed. The weak D decay amplitudes, in which these form factors enter, are obtained in the naive factorization approach assuming a q qmacr state for the scalar and pseudoscalar mesons. They allow to extract information on the f0(980) wave function in terms of u umacr , d dmacr , and s smacr pairs as well as on the mixing angle between the strange and nonstrange components. The weak transition form factors are modeled by the one-loop triangular diagram using two different relativistic approaches: covariant light-front dynamics and dispersion relations. We use the information found on the f0(980) structure to evaluate the scalar and vector form factors in the transitions D and Ds→f0(980), as well as to make predictions for B and Bs→f0(980), for the entire kinematically allowed momentum range of q2.
Width of the {phi} meson in nuclear matter
Polyanskiy, A. Yu.; Hartmann, M.; Kiselev, Yu. T.; Paryev, E. Ya.; Buescher, M.; Chiladze, D.; Dymov, S. N.; Dzyuba, A. A.; Gebel, R.; Hejny, V.; Kaempfer, B.; Keshelashvili, I.; Koptev, V. P.; Lorentz, B.; Maeda, Y.; Merzliakov, S. I.; and others
2012-01-15
The ratios of the cross sections for {phi}-meson production induced by 2.83-GeV protons on Cu, Ag, and Au nuclei to the respective cross section for C nuclei were measured at the ANKE-COSY facility in the momentum range of 0.6-1.6 GeV/c and the angular range of 0 Degree-Sign -8 Degree-Sign . The product {phi} mesons were identified by their decay {phi} {yields} K{sup +}K{sup -}. The procedure used to separate kaon pairs was described in detail, and all sources of the background and their contribution to the resulting error in the values found for the above cross-section ratios were analyzed. The A dependence of the cross section for {phi}-meson production was shown to obey the A{sup 0.56{+-}0.03} law. The total width of the {phi} meson at a normal nuclear density was extracted from a comparison of the measured cross-section ratios with the results of calculations based on two theoretical models. The resulting width value exceeds substantially both the vacuum width and the width expected in the absence of the nuclear-matter effect on the properties of the {phi} meson.
Method to study complex systems of mesons in lattice QCD
Detmold, William; Savage, Martin J.
2010-07-30
Correlation functions involving many hadrons allow finite density systems to be explored with Lattice QCD. Recently, systems with up to 12 $\\pi^+$'s or $K^+$'s have been studied to determine the the $3$-$\\pi^+$ and $3$-$K^+$ interactions and the corresponding chemical potential has been determined as a function of density in each case. We derive recursion relations between correlation functions that allow us to extend this work to systems of arbitrary numbers of mesons and to systems containing arbitrary different types of mesons such as $\\pi^+$'s, $K^+$'s, $D^0$'s and $B^+$'s. These relations allow for the study of finite-density systems in arbitrary volumes, and the study of high-density systems. Systems comprised of up to N=12 m mesons can be explored with Lattice QCD calculations utilizing $m$ different sources for the quark propagators. As the recursion relations require only a small, N-independent, number of operations to derive the N+1 meson contractions from the N meson contractions, they are compuationally feasible.
Method to study complex systems of mesons in lattice QCD
Detmold, William; Savage, Martin J.
2010-07-30
Correlation functions involving many hadrons allow finite density systems to be explored with Lattice QCD. Recently, systems with up to 12more » $$\\pi^+$$'s or $K^+$'s have been studied to determine the the $3$-$$\\pi^+$$ and $3$-$K^+$ interactions and the corresponding chemical potential has been determined as a function of density in each case. We derive recursion relations between correlation functions that allow us to extend this work to systems of arbitrary numbers of mesons and to systems containing arbitrary different types of mesons such as $$\\pi^+$$'s, $K^+$'s, $D^0$'s and $B^+$'s. These relations allow for the study of finite-density systems in arbitrary volumes, and the study of high-density systems. Systems comprised of up to N=12 m mesons can be explored with Lattice QCD calculations utilizing $m$ different sources for the quark propagators. As the recursion relations require only a small, N-independent, number of operations to derive the N+1 meson contractions from the N meson contractions, they are compuationally feasible.« less
Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange
Felipe J. Llanes-Estrada; Stephen R. Cotanch; Adam P. Szczepaniak; Eric S. Swanson
2004-02-01
Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both S and D waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the /pi-/rho mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the /pi mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The /eta{sub b} mass is predicted to be around 9400 MeV consistent with other theoretical expectations and above the unconfirmed 9300 MeV candidate. Finally, for comparison with lattice results, the J reliability parameter is also evaluated.
Main Injector beam to the new muon and meson areas
T. Kobilarcik
2000-04-18
Measured beam parameters from the Main Injector are used to calculate the beam envelope from MI extraction to the Meson area. The primary beam is then transported to a straw-man experiment in the MP beamline. Secondary yields are also calculated for the MTest test beam. For this study, it was assumed that the A0 region was modified as per Switchyard in the Main Injector Era Technical Design Report, and that the cryogenic magnets in Switchyard had EPB type gaps. Under these assumptions, it is possible to transport 120 GeV/c protons from the Main Injector to the Meson and New Muon areas with minimal (on the order of 1%) scraping. Regarding the Meson area, this scraping occurs at the FSeps (which produce the three-way split to Meson). Regarding the New Muon area, the scraping occurs at the MuSeps, MuLams (both of which establish the Neutrino/Muon split), and the final focusing quadrupoles. Thus, multi-beam, high-intensity running to the Meson area is precluded, as is high intensity running to the New Muon area.
Magnetic monopole interactions: shell structure of meson and baryon states
Akers, D.
1986-12-01
It is suggested that a low-mass magnetic monopole of Dirac charge g = (137/2)e may be interacting with a c-quark's magnetic dipole moment to produce Zeeman splitting of meson states. The mass M/sub 0/ = 2397 MeV of the monopole is in contrast to the 10/sup 16/-GeV monopoles of grand unification theories (GUT). It is shown that shell structure of energy E/sub n/ = M/sub 0/ + 1/4nM/sub 0/... exists for meson states. The presence of symmetric meson states leads to the identification of the shell structure. The possible existence of the 2397-MeV magnetic monopole is shown to quantize quark masses in agreement with calculations of quantum chromodynamics (QCD). From the shell structure of meson states, the existence of two new mesons is predicted: eta(1814 +/- 50 MeV) with I/sup G/(J/sup PC/) = 0/sup +/(0/sup - +/) and eta/sub c/ (3907 +/- 100 MeV) with J/sup PC/ = 0/sup - +/. The presence of shell structure for baryon states is shown.
Radiative decays of heavy and light mesons in a quark triangle approach
NASA Astrophysics Data System (ADS)
Jones, N. R.; Liu, Dongsheng
1996-06-01
The radiative meson decays V-->Pγ and P-->γγ are analyzed using the quark triangle diagram. Experimental data yield well determined estimates of the universal quark-antiquark-meson couplings g'Vqq¯ and g'Pqq¯ for the light meson sector. Also predictions for the ratios of neutral to charged heavy meson decay coupling constants are given and await experimental confirmation.
Mass spectra of meson molecular states for heavy and light sectors
NASA Astrophysics Data System (ADS)
Rahmani, S.; Hassanabadi, H.
2017-09-01
We obtain mass spectra of the light and heavy meson-antimeson (molecular states) sectors by using a nonrelativistic potential model with Coulomb and one pion exchange potential terms for meson-meson interaction. The digamma decay widths are also obtained for the light sector. We compare our results with available experimental and theoretical data.
D meson-nucleon hadron and nuclear systems
Yasui, Shigehiro; Sudoh, Kazutaka
2010-12-28
We discuss the new exotic nuclei which contains charm and bottom flavors. We consider the possibility of exotic nuclei with D-bar and B mesons. As simplest systems, we consider the systems of D-bar and B bound with one nucleon and two nucleons. As an interaction between D-bar(B) meson and nucleon, we regard the heavy quark symmetry as important. The potential between D-bar(B) meson is supplied by one pion exchange potential as long range force based on heavy quark symmetry. We investigate possible D-barN(BN) bound state with several quantum numbers. We further discuss the possibility of the existence of D-barNN(BNN) as systems with baryon number two.
Reaction e+e-→D¯D and ψ' mesons
NASA Astrophysics Data System (ADS)
Limphirat, A.; Sreethawong, W.; Khosonthongkee, K.; Yan, Y.
2014-03-01
We study the reaction e+e-→D¯D near threshold in the P30 nonrelativistic quark model, including as intermediate states the J /ψ, ψ(2S), ψ(3770), and ψ(4040) mesons. The work reveals that experimental data strongly favor one of the two ψ(2S)-ψ(3770) mixing angles derived by fitting to the e-e+ partial decay widths of the ψ(2S) and ψ(3770) mesons. The meson X(3940) as well as the resonance around 3.9 GeV observed by the Belle and BABAR Collaborations in the reaction e+e-→D¯D is unlikely to be a cc¯ IG(JPC)=0-(1--) state.
Probing the Gluon Self-Interaction in Light Mesons
Fischer, Christian S.; Williams, Richard
2009-09-18
We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.
Mass spectrum and decay constants of radially excited vector mesons
NASA Astrophysics Data System (ADS)
Mojica, Fredy F.; Vera, Carlos E.; Rojas, Eduardo; El-Bennich, Bruno
2017-07-01
We calculate the masses and weak decay constants of flavorless and flavored ground and radially excited JP=1- mesons within a Poincaré covariant continuum framework based on the Bethe-Salpeter equation. We use in both the quark's gap equation and the meson bound-state equation an infrared massive and finite interaction in the leading symmetry-preserving truncation. While our numerical results are in rather good agreement with experimental values where they are available, no single parametrization of the QCD inspired interaction reproduces simultaneously the ground and excited mass spectrum, which confirms earlier work on pseudoscalar mesons. This feature being a consequence of the lowest truncation, we pin down the range and strength of the interaction in both cases to identify common qualitative features that may help to tune future interaction models beyond the rainbow-ladder approximation.
Photoproduction of η' mesons with the GlueX experiment
NASA Astrophysics Data System (ADS)
Kamel, Mahmoud; GlueX Collaboration Collaboration
2017-01-01
The GlueX experiment at Jefferson Lab studies the light meson spectrum and searches for hybrid and exotic mesons. In this experiment, a 9 GeV tagged, linearly polarized photon beam interacts with a liquid hydrogen target at the center of the GlueX detector. First results of the photo-production of η' mesons at beam energies ranging from 3.5 to 11 GeV will be presented. The η' have been identified through the decay channel η' ->π+π- γ , which has a large branching ratio of 29%. No data exist for beam energies above 6 GeV for this reaction. Supported by Jefferson Science Associates , LLC under U.S. DOE Contract NO. DE-AC05-06OR23177 and DESC0013620.
Impact of scalar mesons on the rare B-decays
NASA Astrophysics Data System (ADS)
Issadykov, Aidos; Ivanov, Mikhail A.; Sakhiyev, Sayabek K.
2015-11-01
In the wake of exploring uncertainty in the full angular distribution of the B → Kπ + μ+μ- caused by the presence of the intermediate scalar K0∗ meson, we perform the straightforward calculation of the B(Bs) → S (S is a scalar meson) transition form factors in the full kinematical region within the covariant quark model. We restrict ourselves by the scalar mesons below 1 GeV: a0(980),f0(500),f0(980),K0∗(800). As an application of the obtained results we calculate the widths of the semileptonic and rare decays B(Bs) → Sℓν¯, B(Bs) → Sℓℓ¯ and B(Bs) → Sνν¯. We compare our results with those obtained in other approaches.
Properties of L=1 B(1) and B(2)* mesons.
Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clément, C; Clément, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, G; De, K; de Jong, S J; de Jong, P; De La Cruz-Burelo, E; Martins, C De Oliveira; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutierrez, P; Gutierrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kothari, B; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Y Garzón, G J Otero; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Perea, P M; Peters, K; Peters, Y; Pétroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M-A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M-E; Polozov, P; Pompos, A; Pope, B G; Popov, A V; Potter, C; da Silva, W L Prado; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sengupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simak, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; van den Berg, P J; van Eijk, B; Van Kooten, R; van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Seguier, F; Vint, P; Vokac, P; Von Toerne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; Wang, M H L S; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Williams, M R J; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Yu, C; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G
2007-10-26
This Letter presents the first strong evidence for the resolution of the excited B mesons B(1) and B(2)* as two separate states in fully reconstructed decays to B(+)(*)pi(-). The mass of B(1) is measured to be 5720.6+/-2.4+/-1.4 MeV/c(2) and the mass difference DeltaM between B(2)* and B(1) is 26.2+/-3.1+/-0.9 MeV/c;{2}, giving the mass of the B(2)* as 5746.8+/-2.4+/-1.7 MeV/c(2). The production rate for B(1) and B(2)* mesons is determined to be a fraction (13.9+/-1.9+/-3.2)% of the production rate of the B+ meson.
Probing the gluon self-interaction in light mesons.
Fischer, Christian S; Williams, Richard
2009-09-18
We investigate masses and decay constants of light mesons from a coupled system of Dyson-Schwinger and Bethe-Salpeter equations. We explicitly take into account dominant non-Abelian contributions to the dressed quark-gluon vertex stemming from the gluon self-interaction. We construct the corresponding Bethe-Salpeter kernel that satisfies the axial-vector Ward-Takahashi identity. Our numerical treatment fully includes all momentum dependencies with all equations solved completely in the complex plane. This approach goes well beyond the rainbow-ladder approximation and permits us to investigate the influence of the gluon self-interaction on the properties of mesons. As a first result we find indications of a nonperturbative cancellation of the gluon self-interaction contributions and pion cloud effects in the mass of the rho meson.
Improved measurements of the B0 and B+ meson lifetimes
NASA Astrophysics Data System (ADS)
Akers, R.; Alexander, G.; Allison, J.; Ametewee, K.; Anderson, K. J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Beaudoin, G.; Beck, A.; Beck, G. A.; Beeston, C.; Behnke, T.; Bell, K. W.; Bella, G.; Bentvelsen, S.; Berlich, P.; Bethke, S.; Biebel, O.; Bloodworth, I. J.; Bock, P.; Bosch, H. M.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brown, R. M.; Buijs, A.; Burckhart, H. J.; Bürgin, R.; Burgard, C.; Capdevielle, N.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlesworth, C.; Charlton, D. G.; Chu, S. L.; Clarke, P. E. L.; Clayton, J. C.; Clowes, S. G.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G. M.; Darling, C.; de Jong, S.; Del Pozo, L. A.; Deng, H.; Dittmar, M.; Dixit, M. S.; Do Couto E Silva, E.; Duboscq, J. E.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Dunwoody, U. C.; Edwards, J. E. G.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Fabbri, F.; Fabbro, B.; Fanti, M.; Fath, P.; Fierro, M.; Fincke-Keeler, M.; Fischer, H. M.; Fischer, P.; Folman, R.; Fong, D. G.; Foucher, M.; Fukui, H.; Fürtjes, A.; Gagnon, P.; Gaidot, A.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Gingrich, D. M.; Goodrick, M. J.; Gorn, W.; Grandi, C.; Gross, E.; Hagemann, J.; Hanson, G. G.; Hansroul, M.; Hargrove, C. K.; Hart, P. A.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Herten, G.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hilse, T.; Hobson, P. R.; Hochman, D.; Homer, R. J.; Honma, A. K.; Howard, R.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jones, M.; Jones, R. W. L.; Jovanovic, P.; Jui, C.; Karlen, D.; Kanzaki, J.; Kawagoe, K.; Kawamoto, T.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; King, B.; King, J.; Kirk, J.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Komamiya, S.; Kowalewski, R.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G. D.; Lafoux, H.; Lahmann, R.; Lai, W. P.; Lauber, J.; Layter, J. G.; Leblanc, P.; Lee, A. M.; Lefebvre, E.; Lellouch, D.; Leroy, C.; Letts, J.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Lorazo, B.; Losty, M. J.; Lou, X. C.; Ludwig, J.; Luig, A.; Mannelli, M.; Marcellini, S.; Markus, C.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Matthews, W.; Mättig, P.; Maur, U.; McKenna, J.; McMahon, T. J.; McNab, A. I.; Meijers, F.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Müller, U.; Nellen, B.; Nijjhar, B.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oldershaw, N. J.; Oram, C. J.; Oreglia, M. J.; Orito, S.; Palmonari, F.; Pansart, J. P.; Patrick, G. N.; Pearce, M. J.; Phillips, P. D.; Pilcher, J. E.; Pinfold, J.; Plane, D. E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Pritchard, T. W.; Przysiezniak, H.; Redmond, M. W.; Rees, D. L.; Rigby, D.; Rison, M. G.; Robins, S. A.; Robinson, D.; Rodning, N.; Roney, J. M.; Ros, E.; Rossi, A. M.; Rosvick, M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D. R.; Sasaki, M.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schenk, P.; Schmitt, B.; Schröder, M.; Schultz-Coulon, H. C.; Schütz, P.; Schulz, M.; Schwick, C.; Schwiening, J.; Scott, W. G.; Settles, M.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Skillman, A.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Springer, R. W.; Sproston, M.; Stahl, A.; Starks, M.; Stegmann, C.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Strom, D.; Szymanski, P.; Tafirout, R.; Takeda, H.; Takeshita, T.; Taras, P.; Tarem, S.; Tecchio, M.; Teixeira-Dias, P.; Tesch, N.; Thomson, M. A.; Tousignant, O.; Towers, S.; Tscheulin, M.; Tsukamoto, T.; Turcot, A. S.; Turner-Watson, M. F.; Utzat, P.; van Kooten, R.; Vasseur, G.; Vikas, P.; Vincter, M.; Wagner, A.; Wagner, D. L.; Ward, C. P.; Ward, D. R.; Ward, J. J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, P.; Wells, P. S.; Wermes, N.; Wilkens, B.; Wilson, G. W.; Wilson, J. A.; Winterer, V.-H.; Wlodek, T.; Wolf, G.; Wotton, S.; Wyatt, T. R.; Yeaman, A.; Yekutieli, G.; Yurko, M.; Zacek, V.; Zeuner, W.; Zorn, G. T.
1995-09-01
Updated measurements of the B0 and B+ meson lifetimes are presented. From a data sample of 1.72 million hadronic Z0 decays recorded during the period 1991 to 1993, a sample of approximately 1000 semileptonic B meson decays containing a D0, D+ or D*+ has been isolated. From the distribution of decay times in the different samples the lifetimes of the B0 and B+ mesons are determined to be 1.53±0.12±0.08 ps and 1.52±0.14±0.09 ps, respectively, where the first error is statistical and the second systematic. The ratio of the B+ to B0 lifetimes is measured to be 0.99±0.14{-0.04/+0.05}, confirming expectations that the lifetimes are similar.
Photoproduction of η and η' mesons off protons
NASA Astrophysics Data System (ADS)
Crede, V.; McVeigh, A.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, R.; Bartholomy, O.; Bayadilov, D.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Ehmanns, A.; Elsner, D.; Essig, K.; Ewald, R.; Fabry, I.; Fuchs, M.; Funke, Chr.; Gothe, R.; Gregor, R.; Gridnev, A.; Gutz, E.; Höffgen, St.; Hoffmeister, P.; Horn, I.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Klein, Frank; Klein, Friedrich; Klempt, E.; Konrad, M.; Kotulla, M.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Mertens, T.; Messchendorp, J. G.; Metag, V.; Nanova, M.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Sarantsev, A. V.; Schadmand, S.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S.; Sokhoyan, V.; Sparks, N.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Weinheimer, Ch.; Wendel, Ch.; Wilson, A.
2009-11-01
Total and differential cross sections for η and η'photoproduction off the proton have been determined with the CBELSA/TAPS detector for photon energies between 0.85 and 2.55 GeV. The η mesons are detected in their two neutral decay modes, η→γγ and η→3π0→6γ, and for the first time, cover the full angular range in cosθc.m. of the η meson. These new η photoproduction data are consistent with the earlier CB-ELSA results. The η' mesons are observed in their neutral decay to π0π0η→6γ and also extend the coverage in angular range.
B meson physics with polarized electron beams at the SLC
Atwood, W.B.
1988-09-01
The expected large cross-section for e/sup +/e/sup -/ ..-->.. Z/sup 0/ and subsequent decay to b/bar b/ quarks makes the Z/sup 0/ an attractive place to pursue B meson physics. In addition, the big Electroweak asymmetries, thought to exist in Z/sup 0/ decays to b/bar b/ quarks with polarized electron beams, provide an outstanding handle for observation of such effects as B/sup 0/-/bar B//sup 0/ mixing. In this paper, the feasibility of such measurements is investigated and, with relatively small samples of Z/sup 0/'s (a few hundred thousand), both B/sub d/ and B/sub s/ meson mixing are shown to be measurable. The subject of CP violation in neutral B mesons is discussed last, but presently such measurements seem to be out of reach. 7 refs., 6 figs., 3 tabs.
Mesonic and nucleon fluctuation effects at finite baryon density
NASA Astrophysics Data System (ADS)
Fejős, G.; Hosaka, A.
2017-06-01
Mesonic and nucleon fluctuation effects are investigated in medium. We couple the nucleon field to the 2 +1 flavor meson model and investigate the finite temperature and density behavior of the system, in particular, the axial anomaly function. Somewhat contrary to earlier expectations, we find that it tends to strengthen at finite density. At lower temperatures, nucleon density fluctuations can cause a relative difference in the UA(1 ) axial anomaly of about 20%. This has important consequences on the mesonic spectra, especially on the η -η' system, as we observe no drop in the η' mass as a function of the baryochemical potential, irrespective of the temperature. Based on the details of chiral symmetry restoration, it is argued that there has to be a competition between underlying QCD effects of the anomaly and fluctuations of the low energy hadronic degrees of freedom, and the fate of the UA(1 ) coefficient should be decided by taking into account both effects simultaneously.
Properties of mesons in a strong magnetic field.
Zhang, Rui; Fu, Wei-Jie; Liu, Yu-Xin
By extending the [Formula: see text]-derivable approach in the Nambu-Jona-Lasinio model to a finite magnetic field we calculate the properties of pion, [Formula: see text], and [Formula: see text] mesons in a magnetic field at finite temperature not only in the quark-antiquark bound state scheme but also in the pion-pion scattering resonant state scenario. Our calculation as a result makes manifest that the masses of [Formula: see text] and [Formula: see text] meson can be nearly degenerate at the pseudo-critical temperature which increases with increasing magnetic field strength, and the [Formula: see text] mass ascends suddenly at almost the same critical temperature. Meanwhile the [Formula: see text] mesons' masses decrease with the temperature but increase with the magnetic field strength. We also check the Gell-Mann-Oakes-Renner relation and find that the relation can be violated clearly with increasing temperature, and the effect of the magnetic field becomes pronounced around the critical temperature. With different criteria, we analyze the effect of the magnetic field on the chiral phase transition and find that the pseudo-critical temperature of the chiral phase cross, [Formula: see text], is always enhanced by the magnetic field. Moreover, our calculations indicate that the [Formula: see text] mesons will get melted as the chiral symmetry has not yet been restored, but the [Formula: see text] meson does not disassociate even at very high temperature. Particularly, it is the first to show that there does not exist a vector meson condensate in the QCD vacuum in the pion-pion scattering scheme.
Probing new CP violating observables in D meson decays
NASA Astrophysics Data System (ADS)
Liu, Yong-Feng; Kang, Xian-Wei
2016-08-01
CP violation in the charm quark sector has not been examined very well as the case for strange and beauty ones. Some novel insights into the issue on the CP violation in D meson decay are discussed. Specifically, i) the T-violating observables in D → VV decays are constructed. Assuming CPT invariance T violation implies CP violation. This is a new idea and an alternative way for probing CP violation in D decays; ii) the decay of quantum correlated DD̅ pair to vector mesons (denoted by V) is explored, which offers the new CP violating observables that have not been noticed before;
Quasifree photoproduction of eta mesons off the neutron.
Jaegle, I; Mertens, T; Anisovich, A V; Bacelar, J C S; Bantes, B; Bartholomy, O; Bayadilov, D; Beck, R; Beloglazov, Y A; Castelijns, R; Crede, V; Dutz, H; Ehmanns, A; Elsner, D; Essig, K; Ewald, R; Fabry, I; Fuchs, M; Funke, Ch; Gothe, R; Gregor, R; Gridnev, A B; Gutz, E; Höffgen, S; Hoffmeister, P; Horn, I; Junkersfeld, J; Kalinowsky, H; Kammer, S; Kleber, V; Klein, Frank; Klein, Friedrich; Klempt, E; Konrad, M; Kotulla, M; Krusche, B; Lang, M; Langheinrich, J; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Messchendorp, J G; Metag, V; Morales, C; Nanova, M; Nikonov, V A; Novinski, D; Novotny, R; Ostrick, M; Pant, L M; van Pee, H; Pfeiffer, M; Radkov, A; Roy, A; Sarantsev, A V; Schadmand, S; Schmidt, C; Schmieden, H; Schoch, B; Shende, S V; Sokhoyan, V; Süle, A; Sumachev, V V; Szczepanek, T; Thoma, U; Trnka, D; Varma, R; Walther, D; Weinheimer, Ch; Wendel, Ch
2008-06-27
Quasifree photoproduction of eta mesons off nucleons bound in the deuteron has been measured with the CBELSA/TAPS detector for incident photon energies up to 2.5 GeV at the Bonn ELSA accelerator. The eta mesons have been detected in coincidence with recoil protons and recoil neutrons, which allows a detailed comparison of the quasifree n(gamma,eta)n and p(gamma,eta)p reactions. The excitation function for eta production off the neutron shows a pronounced bumplike structure at W=1.68 GeV (E{gamma} approximately 1 GeV), which is absent for the proton.
The meson spectroscopy program with CLAS12 at Jefferson Laboratory
Rizzo, Alessandro
2016-06-01
The study of the hadronic spectrum is one of the most powerful tools to investigate the mechanism at the basis of quark confinement within hadrons. A precise determination of the spectrum allows not only to assess the properties of the hadrons in their fundamental and excited states, but also to investigate the existence of states resulting from alternative configurations of quarks and gluons, such as the glue-balls, hybrid hadrons and many-quarks configurations. The study of the mesonic part of the spectrum can play a central role in this investigation thanks to the strong signature that the hybrid mesons are expected to have: the presence of explicit gluonic degrees of freedom in such states may result in JPC configurations not allowed for the standard q ¯ q states. From the experimental side the expected high-multiplicity decays of the hybrid mesons require an apparatus with high performances in terms of rate-capability, resolution and acceptance. The CLAS12 experiment (formally MesonEx) is one of new-generation experiments at Thomas Jefferson National Laboratory (JLAB) for which an unprecedented statistics of events, with fully reconstructed kinematics for large particle multiplicity decays, will be available. A wide scientific program that will start in 2016 has been deployed for meson spectrum investigation with the CLAS12 apparatus in Hall B at energies up to 11 GeV. One of the main parts of the program is based on the use of the Forward Tagger apparatus, which will allow CLAS12 experiment to extend the study of meson electro-production to the quasi-real photo-production kinematical region (very low Q2), where the production of hybrid mesons is expected to be favoured. The data analysis which is required to extract the signal from hybrid states should go beyond the standard partial wave analysis techniques and a new analysis framework is being set up through the international network Haspect. The Haspect Network gathers people involved into theoretical and
Charmed meson decay constants in three-flavor lattice QCD
Aubin, C.; Bernard, C.; DeTar, C.; Di Pierro, M.; Freeland, Elizabeth D.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Kronfeld, Andreas S.; Levkova, L.; Mackenzie, P.B.; Menscher, D.; Maresca, F.; Nobes, M.; Okamoto, M.; Renner, D.B.; Simone, J.; Sugar, R.; Toussaint, D.; Trottier, H.D.; /Art Inst. of Chicago /Columbia U. /Washington U., St. Louis /Utah U. /DePaul U. /Indiana U. /APS, New York /U. Pacific, Stockton /Illinois U., Urbana /Fermilab /Cornell U., LEPP /Arizona U. /UC, Santa Barbara /Simon Fraser U.
2005-06-01
The authors present the first lattice QCD calculation with realistic sea quark content of the D{sup +}-meson decay constant f{sub D+}. They use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). They obtain f{sub D+} = 201 {+-} 3 {+-} 17 MeV, where the errors are statistical and a combination of systematic errors. They also obtain f{sub D{sub s}} = 249 {+-} 3 {+-} 16 MeV for the D{sub s} meson.
Heavy-light mesons in chiral AdS/QCD
NASA Astrophysics Data System (ADS)
Liu, Yizhuang; Zahed, Ismail
2017-06-01
We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.
Heavy-light mesons in a relativistic model
NASA Astrophysics Data System (ADS)
Liu, Jing-Bin; Yang, Mao-Zhi
2016-07-01
We study the heavy-light mesons in a relativistic model, which is derived from the Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation to the heavy quark. The kernel we choose is based on scalar confinement and vector Coulomb potentials. The transverse interaction of the gluon exchange is also taken into account in this model. The spectra and wave functions of D, Ds, B, Bs meson states are obtained. The spectra are calculated up to the order of 1/m Q, and wave functions are treated to leading order. Supported by National Natural Science Foundation of China (11375088, 10975077, 10735080, 11125525)
Phenomenological study of the isovector tensor meson family
NASA Astrophysics Data System (ADS)
Pang, Cheng-Qun; He, Li-Ping; Liu, Xiang; Matsuki, Takayuki
2014-07-01
In this work, we study all the observed a2 states and group them into the a2 meson family, where their total and two-body Okubo-Zweig-Iizuka allowed strong decay partial widths are calculated via the quark pair creation model. Taking into account the present experimental data, we further give the corresponding phenomenological analysis, which is valuable to test whether each a2 state can be assigned into the a2 meson family. What is more important is that the prediction of their decay behaviors will be helpful for future experimental study of the a2 states.
Mesons Glueballs and Composite Bosons of Weak Interaction.
NASA Astrophysics Data System (ADS)
Sinha, Rahul
The thesis has two parts. In Part I, we study isoscalar meson mixing and glueballs. We examine the qq annihilation for meson mixing with a view to understand, why Q.C.D. gives a positive gluon annihilation amplitude, contrary to positronium which has a negative amplitude due to two photon annihilation. It turns out that this peculiar feature can be explained as a consequence of the confining nature of Q.C.D. We show that this is a very general property of Q.C.D., being independent of the mass or J('PC) of the qq. We find, that the mass of the isoscalar meson being lighter than the mass of the isovector necessitates the existence of a glueball. In particular for the 2('++) nonet the mass reversal m(f) < m(A(,2)), requires the tensor glueball mass to be greater than 1.885GeV. We construct a non orthogonal meson mixing model, where the decay rates of the mesons agree with experiments even without considering glueballs. We therefore conclude that the glueballs do not mix much with mesons. The meson masses however, depend very sensitively on the presence of nearby glueballs. We argue, that it is incorrect to expect (GAMMA)((PSI) (--->) glueball + (gamma)) to be the dominant radiative decay. Finally we look at some of the glueball candidates and conclude from the coupling of g(,T)'s to two gluons, that they are indeed glueballs. We are however unable to accommodate the (iota) as a glueball. In Part II, we examine the possibility of existence of composite bosons of weak interaction. Constraints from the anomalous magnetic moment of the electron are used to determine upper limits on the couplings of the bosons, an entire spectrum of which, may exist, in the composite model. It is found that the coupling of singlet or triplet pseudoscalar to leptons is very small. This explains the V, A nature of weak interactions. It is assumed that composite bosons have a structure similar to mesons where the constituents are preons instead of quarks. The present experimental status
Electroweak meson production reaction in the nucleon resonance region
Sato, Toru
2015-10-15
We report on our recent study of the the neutrino-nucleon reaction in the nucleon resonance region. The dynamical reaction model of meson production reaction on the nucleon for the pion and photon induced reaction has been developed in order to investigate the spectrum of nucleon excited state. We have extended this model in order to describe the weak meson production reactions with the πN, ηN, KΛ, KΣ and ππN final states. We also studied the role of the final state interaction in the photon and the neutrino induced pion production reaction on the deuteron around the Δ(1232) resonance region.
Study of Chiral Confining Model with Vector Mesons
NASA Astrophysics Data System (ADS)
Ren, Ching-Yun
1991-02-01
This dissertation consists of two parts, the study of the chiral confining model and the investigation of vacuum instability. In the first part we present a chiral confining model in which a bag is formed dynamically. The major topics addressed are: construction of the model, mean-field solution, anomalously large rho nucleon tensor coupling, and a projection method including the quantum effects of mesons. Two features of QCD, namely, chiral invariance and vacuum condensates, are crucial ingredients of our chiral confining model. The interaction of the valence quarks with the quark condensate is described via the sigma field. It generates the quark dynamical mass. The interaction of the quarks with the gluon condensate is described in our model through the color dielectric function, epsilon. This interaction generates the bag within which quarks are absolutely confined. The introduction of the color dielectric function epsilon modifies the quark-meson interaction by multiplying a factor epsilon ^{-1/2}. Thus the quark part of the rho meson source current is structurally different from the isovector part of the electromagnetic current. Thus the chiral confining model provides a natural explanation why the tensor coupling of the rho meson, kappa_rho, is larger than the isovector part of the anomalous magnetic moment of the nucleon, kappa_upsilon . We have improved a simple method of calculating expectation values of operators in states of good angular momentum projected from a hedgehog baryon state. We have included the contributions of quantum mesons. The symmetry of the hedgehog state under grand-reversal introduces remarkable simplification in the calculation of matrix elements of operators which do not contain time derivatives of meson fields. The quantum meson contributions turn out to be (3/2)/< B|{bf J }^2| B> times the classical meson fields contributions, with | B> being the hedgehog state. In the second part we show that the perturbative vacuum of model
D meson hadronic decays at CLEO-c
Yang, Fan; /Fermilab
2011-01-01
The recent CLEO-c results on hadronic decays of D and D{sub s} mesons are presented. First the absolute branching fractions for D and D{sub s} mesons using a double tag technique are discussed, then are the Cabibbo suppressed decays and doubly Cabibbo suppressed decays. Finally, I present the inclusive and rare decay modes and other measurements from CLEO-c. These decays illuminate a wide range of physics. A brief theoretical introduction is given before the corresponding discussion on measurement.
ρ0 Meson Production in the pp Reactions with Disto
NASA Astrophysics Data System (ADS)
Salabura, P.; Balestra, F.; Bedfer, Y.; Bertini, R.; Bland, L. C.; Brenschede, A.; Brochard, F.; Bussa, M. P.; Choi, Seonho; Colantoni, M. L.; Dressler, R.; Dzemidzic, M.; Faivre, J.-Cl.; Ferrero, A.; Ferrero, L.; Foryciarz, J.; Fröhlich, I.; Frolov, V.; Garfagnini, R.; Grasso, A.; Heinz, S.; Jacobs, W. W.; Kühn, W.; Maggiora, A.; Maggiora, M.; Manara, A.; Panzieri, D.; Pfaff, H.-W.; Piragino, G.; Popov, A.; Ritman, J.; Tchalyshev, V.; Tosello, F.; Vigdor, S. E.; Zosi, G.
2003-01-01
Total and differential cross sections for the exclusive reaction pp → ppρ0 observed via the π+π- decay channel have been measured at pbeam= 3.67 GeV/c. The observed total meson production cross section is determined to be (23.4 ± 0.8 ± 8)μb and is significantly lower than typical cross sections used in model calculations for heavy ion collisions. The differential cross sections measured indicate a strong anisotropy ( ˜ \\cos2 θ ρ0^ CM) in the ρ0 meson production.
Meson Structure in a Relativistic Many-Body Approach
Llanes-Estrada, Felipe J.; Cotanch, Stephen R.
2000-02-07
Results from an extensive relativistic many-body analysis utilizing a realistic effective QCD Hamiltonian are presented for the meson spectrum. A comparative numerical study of the BCS, Tamm-Dancoff (TDA), and RPA treatments provides new, significant insight into the condensate structure of the vacuum, the chiral symmetry governance of the pion, and the meson spin, orbital, and flavor mass splitting contributions. In contrast to a previous glueball application, substantial quantitative differences are computed between TDA and RPA for the light quark sector with the pion emerging as a Goldstone boson only in the RPA. (c) 2000 The American Physical Society.
D Meson Properties in Nuclear Medium from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Suzuki, Kei; Gubler, Philipp; Oka, Makoto
Properties of the pseudoscalar D meson in the nuclear medium are discussed from the point of view of QCD sum rules. QCD sum rules can relate condensates in the QCD vacuum to the properties of hadrons, so that in-medium modifications of hadron spectra naively correspond to condensate modifications through nuclear matter effects. We found that the reduction of the chiral-symmetry-breaking condensates including < \\bar{q}q> leads to increasing masses of both D+ and D- mesons at finite density. Furthermore, charge-symmetry-breaking condensates cause D+-D- (particle and anti-particle) mass splitting in the nuclear medium.
Compton scattering by mesons in nuclei: Experiment on 208Pb
NASA Astrophysics Data System (ADS)
Fuhrberg, K.; Martin, G.; Häger, D.; Ludwig, M.; Schumacher, M.; Andersson, B.-E.; Blomqvist, K. I.; Ruijter, H.; Sandell, A.; Schröder, B.; Hayward, E.; Nilsson, L.; Zorro, R.
1992-10-01
Using 58 and 73 MeV tagged photons and scattering angles from 60° to 150°, it is shown that it is possible to observe Compton scattering by "mesons in nuclei" through an incomplete cancellation of the mesonic (exchange-current) seagull amplitude by parts of the nuclear resonance amplitude related to the giant-dipole resonance of 208Pb. This phenomenon is a property of an extended nucleus and, therefore, cannot be studied on the deuteron. Predictions of the exchange from factor which determines the angular distribution of the exchange seagull amplitude are compared with experimental data.
Compton scattering, meson exchange, and the polarizabilities of bound nucleons
Feldman, G.; Mellendorf, K.E.; Eisenstein, R.A.; Federspiel, F.J.; Garino, G.; Igarashi, R.; Kolb, N.R.; Lucas, M.A.; MacGibbon, B.E.; Mize, W.K.; Nathan, A.M.; Pywell, R.E.; Wells, D.P. |
1996-11-01
Elastic photon scattering cross sections on {sup 16}O have been measured in the energy range 27{endash}108 MeV. These data are inconsistent with a conventional interpretation in which the electric and magnetic polarizabilities of the bound nucleon are unchanged from the free values and the meson-exchange seagull amplitude is taken in the zero-energy limit. Agreement with the data can be achieved by invoking either strongly modified polarizabilities or a substantial energy dependence to the meson-exchange seagull amplitude. It is argued that these seemingly different explanations are experimentally indistinguishable and probably physically equivalent. {copyright} {ital 1996 The American Physical Society.}
Compton scattering, meson exchange, and the polarizabilities of bound nucleons
NASA Astrophysics Data System (ADS)
Feldman, G.; Mellendorf, K. E.; Eisenstein, R. A.; Federspiel, F. J.; Garino, G.; Igarashi, R.; Kolb, N. R.; Lucas, M. A.; MacGibbon, B. E.; Mize, W. K.; Nathan, A. M.; Pywell, R. E.; Wells, D. P.
1996-11-01
Elastic photon scattering cross sections on 16O have been measured in the energy range 27-108 MeV. These data are inconsistent with a conventional interpretation in which the electric and magnetic polarizabilities of the bound nucleon are unchanged from the free values and the meson-exchange seagull amplitude is taken in the zero-energy limit. Agreement with the data can be achieved by invoking either strongly modified polarizabilities or a substantial energy dependence to the meson-exchange seagull amplitude. It is argued that these seemingly different explanations are experimentally indistinguishable and probably physically equivalent.
Rare Electroweak Decays of K and B Mesons
Swee-Ping, Chia
2009-07-07
A phenomenological model is employed to treat the rare decays of mesons with neutrino-antineutrino pair production or charged lepton-antilepton production. The model takes advantage of the fact that inside the hadrons, quarks and antiquarks are tightly bound, and they behave like free particles. As such, the rare decay process can be described in terms of the corresponding quark-level decay process, but with the quarks developing 'dressed' masses because of QCD effects. The 'dressed' quark masses are estimated from the weak decays of the hadrons. With this set of 'dressed' quark masses, a reasonable description of the rare decays of the K and B mesons is obtained.
Quasifree Photoproduction of η Mesons off the Neutron
NASA Astrophysics Data System (ADS)
Jaegle, I.; Mertens, T.; Anisovich, A. V.; Bacelar, J. C. S.; Bantes, B.; Bartholomy, O.; Bayadilov, D.; Beck, R.; Beloglazov, Y. A.; Castelijns, R.; Crede, V.; Dutz, H.; Ehmanns, A.; Elsner, D.; Essig, K.; Ewald, R.; Fabry, I.; Fuchs, M.; Funke, Ch.; Gothe, R.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Höffgen, S.; Hoffmeister, P.; Horn, I.; Junkersfeld, J.; Kalinowsky, H.; Kammer, S.; Kleber, V.; Klein, Frank; Klein, Friedrich; Klempt, E.; Konrad, M.; Kotulla, M.; Krusche, B.; Lang, M.; Langheinrich, J.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Messchendorp, J. G.; Metag, V.; Morales, C.; Nanova, M.; Nikonov, V. A.; Novinski, D.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Radkov, A.; Roy, A.; Sarantsev, A. V.; Schadmand, S.; Schmidt, C.; Schmieden, H.; Schoch, B.; Shende, S. V.; Sokhoyan, V.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Weinheimer, Ch.; Wendel, Ch.
2008-06-01
Quasifree photoproduction of η mesons off nucleons bound in the deuteron has been measured with the CBELSA/TAPS detector for incident photon energies up to 2.5 GeV at the Bonn ELSA accelerator. The η mesons have been detected in coincidence with recoil protons and recoil neutrons, which allows a detailed comparison of the quasifree n(γ,η)n and p(γ,η)p reactions. The excitation function for η production off the neutron shows a pronounced bumplike structure at W=1.68GeV (Eγ≈1GeV), which is absent for the proton.
Full lattice QCD study of the κ scalar meson
NASA Astrophysics Data System (ADS)
Fu, Zi-Wen; Carleton, DeTar
2011-12-01
We studied the κ light scalar meson in 2+1 flavor full QCD with sufficiently light u and d quarks. Via lattice simulation we measured the correlators for the κ channel in the “Asqtad" improved staggered fermion formulation. After chiral extrapolation we obtained the mass of the κ meson with 826 ± 119 MeV, which is within recent experimental values of 800-900 MeV. The simulations were carried out with the MILC 2+1 flavor gauge configurations at lattice spacing a≈0.15 fm.
Dimesonic states in the heavy-light meson sector
Rathaud, D. P. Rai, Ajay Kumar
2016-05-06
We have calculated the mass spectra and digamma decay width of the dimesonic (meson-antimeson molecule) states in the heavy-light meson sector in the potential model framework. The interaction potential of the systems are assumed to be the Yukawa-like potential with the one pion exchange and sigma exchange potential. The calculated masss spectra of dimesonic states are in good agreement with compared states like D{sub s1}(2536), D{sub sJ}* (2860) and D{sub sJ}(3040).
Charged-particle multiplicities in B-meson decay
Alam, M.S.; Csorna, S.E.; Fridman, A.; Hicks, R.G.; Panvini, R.S.; Andrews, D.; Avery, P.; Berkelman, K.; Cabenda, R.; Cassel, D.G.; DeWire, J.W.; Ehrlich, R.; Ferguson, T.; Gilchriese, M.G.D.; Gittelman, B.; Hartill, D.L.; Herrup, D.; Herzlinger, M.; Holzner, S.; Kandaswamy, J.; Kreinick, D.L.; Mistry, N.B.; Morrow, F.; Nordberg, E.; Perchonok, R.; Plunkett, R.; Silverman, A.; Stein, P.C.; Stone, S.; Weber, D.; Wilcke, R.; Sadoff, A.J.; Bebek, C.; Haggerty, J.; Hempstead, M.; Izen, J.M.; Loomis, W.A.; MacKay, W.W.; Pipkin, F.M.; Rohlf, J.; Tanenbaum, W.; Wilson, R.; Chadwick, K.; Chauveau, J.; Ganci, P.; Gentile, T.; Kagan, H.; Kass, R.; Melissinos, A.C.; Olsen, S.L.; Poling, R.; Rosenfeld, C.; Rucinski, G.; Thorndike, E.H.; Green, J.; Sannes, F.; Skubic, P.; Snyder, A.; Stone, R.; Brody, A.; Chen, A.; Goldberg, M.; Horwitz, N.; Lipari, P.; Kooy, H.; Moneti, G.C.; Pistilli, P.
1982-08-09
The charged multiplicity has been measured at the UPSILON(4S) and a value of 5.75 +- 0.1 +- 0.2 has been obtained for the mean charged multiplicity in B-meson decay. Combining this result with the measurement of prompt letpons from B decay, the values 4.1 +- 0.35 +- 0.2 and 6.3 +- 0.2 +- 0.2 are found for the semileptonic and nonleptonic charged multiplicities, respectively. If b..-->..c dominance is assumed for the weak decay of the B meson, then the semileptonic multiplicity is consistent with the recoil mass determined from the lepton momentum spectrum.
Light O{sup ++} Mesons: Scalargators in Florida
Pennington, M. R.
2010-08-05
Light scalar mesons abound in hadron processes, like the alligators in the Florida Everglades. Moreover, scalars are intimately tied to the vacuum structure of QCD. They are the product of many decays. Consequently, a rich source of recent information about them has come from experiments producing heavy flavour mesons. Indeed, scalars will continue to dominate many of the processes to be studied at forthcoming facilities like BESIII in Beijing, FAIR at GSI Darmstadt and the GlueX experiment at JLab, making an understanding (or at least an excellent and theoretically consistent description) essential for the physics missions of these facilities.
Mesons from (non) Abelian T-dual backgrounds
NASA Astrophysics Data System (ADS)
Itsios, Georgios; Núñez, Carlos; Zoakos, Dimitrios
2017-01-01
In this work we study mesonic excitations in a Quantum Field Theory dual to the non Abelian T-dual of AdS 5 × S 5, using a D6 brane probe on the Sfetsos-Thompson background. Before and after the duality, we observe interesting differences between the spectra and interpret them. The spectrum of masses and the interactions between mesonic excitations teach valuable lessons about the character of non-Abelian T-duality and its implications for Holography. The case of Abelian T-duality is also studied.
Radial and orbital excitations of static-light mesons
Foley, Justin; O Cais, Alan; Peardon, Mike; Ryan, Sinead M.
2007-05-01
We present results for the spectrum of static-light mesons from N{sub f}=2 lattice QCD. These results were obtained using all-to-all light-quark propagators on an anisotropic lattice, yielding an improved signal resolution when compared to more conventional lattice techniques. With a light-quark mass close to the strange quark, we have measured the splittings between the ground-state S-wave static-light meson and higher excitations. We attempt to identify the quantum numbers of the excited states in the context of the reduced spatial symmetries of the lattice.
The chiral transitions in heavy-light mesons
NASA Astrophysics Data System (ADS)
Trusov, M.
The mass shifts of the P-wave Ds and Bs mesons are calculated in the coupling channel model using the effective chiral Lagrangian, which is deduced from QCD and does not contain fitting parameters. The strong mass shifts down due to coupling to DK and BK channels for 0+ and 1+ states have been obtained, while 1+ and 2+ states remain almost at rest. The experimental limit on the width Γ(Ds1 (2536)) < 2.3 MeV puts strong restrictions on the admissible mixing angle between the 1+ and 1+ states. The masses of 0+ and 1+ states of Bs mesons have been predicted.
Search for the rare decay of a B meson to a K meson and two neutrinos
NASA Astrophysics Data System (ADS)
Thayer, John Gregg
We search for the exclusive decays B → ( K+, KS, K*+, K*0) nn¯ in a sample of 9.7 million charged and neutral B meson decays recorded by the CLEO detector at the Upsilon(4S) resonance. The technique was one of full event reconstruction where after selecting a signal B candidate the remainder of the event is required to be consistent with a hadronic B → D(*)(npi) decay. No signals were observed so 90% confidence level upper limits were set at: B (B+ → K + nn¯ ) < 6.1 x 10-4, B (B0 → KS nn¯ ) < 2.3 x 10-3, B (B+ → K *+ nn¯ ) < 2.0 x 10-3, and B (B0 → K *0 nn¯ ) < 2.6 x 10-3.
Study of B meson decays with excited eta and eta' mesons.
Aubert, B; Bona, M; Boutigny, D; Karyotakis, Y; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Tico, J Garra; Grauges, E; Lopez, L; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Osipenkov, I L; Ronan, M T; Tackmann, K; Tanabe, T; Wenzel, W A; del Amo Sanchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Pelizaeus, M; Schroeder, T; Steinke, M; Walker, D; Asgeirsson, D J; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Mattison, T S; McKenna, J A; Barrett, M; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Andreassen, R; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Klose, V; Kobel, M J; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Watson, J E; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Panduro Vazquez, W; Tibbetts, M; Behera, P K; Chai, X; Charles, M J; Mallik, U; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gao, Y Y; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Béquilleux, J; D'Orazio, A; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Burke, J P; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Paramesvaran, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Dujmic, D; Fisher, P H; Koeneke, K; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Zhao, M; Zheng, Y; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, G; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; Knoepfel, K J; LoSecco, J M; Benelli, G; Corwin, L A; Honscheid, K; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Calderini, G; Chauveau, J; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Leruste, Ph; Malclès, J; Ocariz, J; Perez, A; Prendki, J; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Hartmann, T; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Roethel, W; Wilson, F F; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hryn'ova, T; Innes, W R; Kaminski, J; Kelsey, M H; Kim, H; Kim, P; Kocian, M L; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ofte, I; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martinez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Harrison, P F; Ilic, J; Latham, T E; Mohanty, G B; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Neal, H
2008-08-29
Using 383 x 10(6) BBover pairs from the BABAR data sample, we report results for branching fractions of six charged B-meson decay modes, where a charged kaon recoils against a charmless resonance decaying to KKover* or etapipi final states with mass in the range (1.2-1.8) GeV/c2. We observe a significant enhancement at the low KKover* invariant mass which is interpreted as B+-->eta(1475)K+, find evidence for the decay B+-->eta(1295)K+, and place upper limits on the decays B+-->eta(1405)K+, B+-->f1(1285)K+, B+-->f1(1420)K+, and B+-->phi(1680)K+.
Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Hall, T L; Johnson, D R; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; LePeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; De la Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yeche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Doser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Huffner, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocain, M L; Langenegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Serbo, V V; Snyder, A; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Weidemann, A W; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; Di Girolamo, B; Gamba, D; Smol, A; Zanin, D; Lanceri, L; Pompili, A; Vaugnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Yu, Z; Zobernig, H; Kordich, T M; Neal, H
2001-11-26
We present the results of searches for B decays to charmless two-body final states containing eta(') or omega mesons, based on 20.7 fb(-1) of data collected with the BABAR detector. We find the branching fractions Beta(B(+)-->eta(')K(+)) = (70+/-8+/-5) x 10(-6), Beta(B(0)-->eta(')K(0)) = (42(+13)(-11) +/- 4) x 10(-6), and Beta(B(+)-->omega pi(+)) = (6.6(+2.1)(-1.8) +/- 0.7) x 10(-6), where the first error quoted is statistical and the second is systematic. We give measurements of four additional modes for which the 90% confidence level upper limits are Beta(B(+)-->eta(')pi(+)) < 12 x 10(-6), Beta(B(+)-->omega K(+)) < 4 x 10(-6), Beta(B(0)-->omega K(0)) < 13 x 10(-6), and Beta(B(0)-->omega pi(0)) < 3 x 10(-6).
Study of B Meson Decays with Excited eta and eta-prime Mesons
Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; Grauges, E.; Lopez, L.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Abrams, G.S.; Battaglia, M.; Brown, D.N.; Button-Shafer, J.; /Energy Sci. Network /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /Ferrara U. /Frascati /Genoa U. /Harvard U. /Heidelberg U. /Imperial Coll., London /Iowa U. /Iowa State U. /Johns Hopkins U. /Karlsruhe U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT, LNS /McGill U. /Milan U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /Padua U. /Paris U., VI-VII /Pennsylvania U. /Perugia U. /Pisa U. /Prairie View A-M /Princeton U. /INFN, Rome /Rostock U. /Rutherford /DSM, DAPNIA, Saclay /South Carolina U. /SLAC /Stanford U., Phys. Dept. /SUNY, Albany /Tennessee U. /Texas U. /Texas U., Dallas /Turin U. /INFN, Turin /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison /Yale U.
2008-04-18
Using 383 million B{bar B} pairs from the BABAR data sample, they report results for branching fractions of six charged B-meson decay modes, where a charged kaon recoils against a charmless resonance decaying to K{bar K}* or {eta}{pi}{pi} final states with mass in the range (1.2-1.8) GeV/c{sup 2}. They observe a significant enhancement at the low K{bar K}* invariant mass which is interpreted as B{sup +} {yields} {eta}(1475)K{sup +}, find evidence for the decay B{sup +} {yields} {eta}(1295)K{sup +}, and place upper limits on the decays B{sup +} {yields} {eta}(1405)K{sup +}, B{sup +} {yields} f{sub 1}(1285)K{sup +}, B{sup +} {yields} f{sub 1}(1420)K{sup +}, and B{sup +} {yields} {phi}(1680)K{sup +}.
Observation and study of bottom-meson decays to a charm meson, a proton-antiproton pair, and pions
Hong, Tae Min
2010-04-27
Bottom-meson decays with baryons show two unusual features—the branching fractions are enhanced for multibody decays and the baryon-antibaryon subsystem recoils against the other decay products—and their reasons are not yet well understood. Moreover, measurements using explicit reconstruction techniques constitute only about 1% out of about 8% of such decays. This Dissertation reports the study of ten bottom-meson decays (labeled 0– 9) to a proton-antiproton pair, a charm meson, and a system of up to two pions, using the BABAR Experiment’s 455×10^{6} BB pairs produced with the PEP-II asymmetric-energy e^{+}e^{- }collider at the Stanford Linear Accelerator Center.
Scalar meson f{sub 0}(980) in heavy-meson decays.
El-Bennich, B.; Leitner, O.; Dedonder, J.-P.; Loiseau, B.; Physics; Lab. de Physique Nucleaire et de Hautes Energies; Lab. Nazionali di Frascati
2009-04-01
A phenomenological analysis of the scalar meson f{sub 0}(980) is performed that relies on the quasi-two-body decays D and D{sub s} {yields} f{sub 0}(980)P, with P = {pi}, K. The two-body branching ratios are deduced from experimental data on D or D{sub s} {yields} {pi}{pi}{pi}, K{sup -} K{pi} and from the f{sub 0}(980) {yields} {pi}{sup +}{pi}{sup -} and f{sub 0}(980) {yields} K{sup +}K{sup -} branching fractions. Within a covariant quark model, the scalar form factors for the transitions D and D{sub s} {yields} f{sub 0}(980) are computed. The weak D decay amplitudes, in which these form factors enter, are obtained in the naive factorization approach assuming a q{bar q} state for the scalar and pseudoscalar mesons. They allow to extract information on the f{sub 0}(980) wave function in terms of u{bar u}, d{bar d}, and s{bar s} pairs as well as on the mixing angle between the strange and nonstrange components. The weak transition form factors are modeled by the one-loop triangular diagram using two different relativistic approaches: covariant light-front dynamics and dispersion relations. We use the information found on the f{sub 0}(980) structure to evaluate the scalar and vector form factors in the transitions D and D{sub s} {yields} f{sub 0}(980), as well as to make predictions for B and B{sub s} {yields} f{sub 0}(980), for the entire kinematically allowed momentum range of q{sup 2}.
a Study of Neutral B Meson - Neutral Anti-B Meson Mixing Using the ARGUS Detector.
NASA Astrophysics Data System (ADS)
Tzamariudaki, Ekaterini
1995-01-01
Using the ARGUS detector at the e^+e ^- storage ring DORIS II at DESY, a study of the decay |{B}^0--> D^{*+}l^-|{v } has been performed by exploiting a partial D^{*+} reconstruction technique. The branching ratio was determined to be (4.4 +/- 0.3 +/- 0.3)% for this mode, and for the higher excited D_sp {(J)}{*} states Br( |{B}^0--> D_sp {(J)}{*}^+ l^ -|{v})=(2.5+/- 0.6+/-0.5)%. Furthermore, the inclusive D^{*+} branching ratio in B decays was measured by fully reconstructing D^{*+} candidates. Using a tagged subset of this sample of B ^0 meson decays in the mode =B ^0--> D^{*+}l ^-=v, B_sp{d}{0 }longleftrightarrow=B_sp{d }{0} oscillations have been studied. For this purpose two tagging techniques have been applied: the standard method of using fast leptons, and a new technique which makes use of kaons to tag the b flavour content. Combining the values obtained by these two methods, the B ^0=B^0 mixing parameter chi_{d}, used to denote the strength of the oscillations, was determined to be chi_{d} = 0.165+/-0.057. In addition, using fully reconstructed D ^{*+} candidates, a third study of the B^0=B^0 mixing parameter was carried out by investigating D^ {*+}K^{+/-} correlations. The mixing measurements obtained using kaons to tag the B meson flavour employ this technique for the first time. Future CP violation measurements at B Factories will place critical reliance on this method. Finally, using the extracted value for the mixing parameter chi_{d}, the CKM matrix element V_{td} was determined and the B_sp{s }{0}=B_sp{s}{0 } mixing parameter chi_ {s} was obtained.
Scalar meson f{sub 0}(980) in heavy-meson decays
El-Bennich, B.; Leitner, O.; Dedonder, J.-P.; Loiseau, B.
2009-04-01
A phenomenological analysis of the scalar meson f{sub 0}(980) is performed that relies on the quasi-two-body decays D and D{sub s}{yields}f{sub 0}(980)P, with P={pi}, K. The two-body branching ratios are deduced from experimental data on D or D{sub s}{yields}{pi}{pi}{pi}, KK{pi} and from the f{sub 0}(980){yields}{pi}{sup +}{pi}{sup -} and f{sub 0}(980){yields}K{sup +}K{sup -} branching fractions. Within a covariant quark model, the scalar form factors for the transitions D and D{sub s}{yields}f{sub 0}(980) are computed. The weak D decay amplitudes, in which these form factors enter, are obtained in the naive factorization approach assuming a qq state for the scalar and pseudoscalar mesons. They allow to extract information on the f{sub 0}(980) wave function in terms of uu, dd, and ss pairs as well as on the mixing angle between the strange and nonstrange components. The weak transition form factors are modeled by the one-loop triangular diagram using two different relativistic approaches: covariant light-front dynamics and dispersion relations. We use the information found on the f{sub 0}(980) structure to evaluate the scalar and vector form factors in the transitions D and D{sub s}{yields}f{sub 0}(980), as well as to make predictions for B and B{sub s}{yields}f{sub 0}(980), for the entire kinematically allowed momentum range of q{sup 2}.
Chudakov, Eugene A.; Gevorkyan, Sergey; Somov, Alexander
2016-01-25
We consider photoproduction of ω mesons off complex nuclei to study interactions of transversely and longitudinally polarized vector mesons with nucleons. Whereas the total cross section for interactions of the transversely polarized vector mesons with nucleons σ_{T} = σ(V_{T}N) can be obtained from coherent photoproduction, measurements of vector meson photoproduction in the incoherent region provide a unique opportunity to extract the not-yet-measured total cross section for longitudinally polarized mesons σ_{L} = σ(V_{L}N). The predictions for the latter strongly depend on the theoretical approaches. Furthermore, this work is stimulated by the construction of the new experiment GlueX at Jefferson Lab, designed to study the photoproduction of mesons in a large beam energy range up to 12 GeV.
Chiral bag plus skyrmion hybrid model with vector mesons for nucleon
NASA Astrophysics Data System (ADS)
Takashita, H.; Yoro, S.; Toki, H.
1988-08-01
The chiral bag plus skyrmion hybrid model (CSH) is extended to include the vector mesons (ω and ϱ mesons) following the hidden local symmetry prescription for nucleon. The hedgehog ansatz is taken for π, ω and ϱ meson fields and the coupled differential equations for quarks and mesons are solved numerically. It is found that the magnitude of the rho-meson field drops suddenly at R ≈ 0.2 fm as the bag radius increases. The hedgehog masses and the axial coupling gA are calculated as a function of the bag radius. It is found that gA behaves non-monotonically with the bag radius.
Strong decays of hybrid mesons from the heavy quark expansion of QCD
Page, Philip R.
1998-05-29
We calculate the strong decays of hybrid mesons to conventional mesons for all the lowest lying J{sup PC} hybrids of flavour uu-bar, dd-bar, ss-bar, cc-bar and bb-bar. A decay operator developed from the heavy quark expansion of quantum chromodynamics is employed. We show that the selection rule that hybrid mesons do not decay to identical S-wave mesons, found in other models, is preserved. We predict decays of charmonium hybrids, discuss decays of J{sup PC}=1{sup -+} exotic isovector hybrids of various masses, and interpret the {pi}(1800) as a hybrid meson.
Bottom quark mass from {Upsilon} mesons
Hoang, A.H.
1999-01-01
The bottom quark pole mass M{sub b} is determined using a sum rule which relates the masses and the electronic decay widths of the {Upsilon} mesons to large {ital n} moments of the vacuum polarization function calculated from nonrelativistic quantum chromodynamics. The complete set of next-to-next-to-leading order [i.e., O({alpha}{sub s}{sup 2},{alpha}{sub s}v,v{sup 2}) where v is the bottom quark c.m. velocity] corrections is calculated and leads to a considerable reduction of theoretical uncertainties compared to a pure next-to-leading order analysis. However, the theoretical uncertainties remain much larger than the experimental ones. For a two parameter fit for M{sub b}, and the strong
Radially excited axial mesons and the enigmatic Zc and Zb in a coupled-channel model
NASA Astrophysics Data System (ADS)
Coito, Susana
2016-07-01
The enigmatic charged states Zc(3900 ), Zc(4020 ), Zc(4050 ), Zb(10610 ), and Zb(10650 ) are studied within a coupled-channel Schrödinger model, where radially excited quark-antiquark pairs, with the same angular momenta and isospin as the a1(1260 ) and b1(1235 ), are strongly coupled to their Okubo-Zweig-Iizuka-allowed decay channels D D¯*+D ¯D* and D*D¯*, or B B¯*+B ¯B* and B*B¯*, in S and D waves. Poles, matching the experimental mass and width of the above states, are found by varying only two free parameters. From the wave-function analysis of each resonance, the probability of each of the components contributing to the coupled system is estimated, and predictions can be made for the relative decay fractions among the coupled open-charm or open-bottom decay channels.
NASA Astrophysics Data System (ADS)
Lansberg, J. P.; Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.
2012-12-01
Nucleon-antinucleon annihilation into a near backward- (or forward-) produced meson and a high invariant mass lepton pair admits a factorized description in terms of antinucleon (or nucleon) distribution amplitudes and nucleon-to-meson (or antinucleon-to-meson) transition distribution amplitudes. We estimate the cross section of backward (and forward) pion and η-meson production in association with a high invariant mass lepton pair for the kinematical conditions of GSI-FAIR. The cross sections are found to be large enough to be measured with the P¯ANDA detector. Interesting phenomenological applications of the approach are thus expected.
Inclusive /b decays to wrong sign charmed mesons
NASA Astrophysics Data System (ADS)
DELPHI Collaboration; Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Schwanda, C.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zupan, M.
2003-05-01
The production of wrong sign charmed mesons b-->D(s)X, D(s)=(D0,D+,Ds), is studied using the data collected by the DELPHI experiment in the years 1994 and 1995. Charmed mesons in /Z-->bb¯ events are exclusively reconstructed by searching for the decays D0-->K-π+, D+-->K-π+π+ and Ds+-->φπ+-->K+K-π+. The wrong sign contribution is extracted by using two discriminant variables: the charge of the /b-quark at decay time, estimated from the charges of identified particles, and the momentum of the charmed meson in the rest frame of the /b-hadron. The inclusive branching fractions of /b-hadrons into wrong sign charm mesons are measured to be: B(b-->D0X)+B(b-->D-X)=(9.3+/-1.7(stat)+/-1.3(syst)+/-0.4(B))%, B(b-->Ds-X)=(10.1+/-1.0(stat)+/-0.6(syst)+/-2.8(B))% where the first error is statistical, the second and third errors are systematic.
Inclusive b decays to wrong sign charmed mesons
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Hultqvist, K.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Johansson, P. D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kiiskinen, A.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Meyer, W. T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, A.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Schwanda, C.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A. C.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Lysebetten, A.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration
2003-05-01
The production of wrong sign charmed mesons b→overlineD(s)X, D(s)=(D0,D+,Ds), is studied using the data collected by the DELPHI experiment in the years 1994 and 1995. Charmed mesons in Z→bb¯ events are exclusively reconstructed by searching for the decays D0→K-π+, D+→K-π+π+ and Ds+→φπ+→K+K-π+. The wrong sign contribution is extracted by using two discriminant variables: the charge of the b-quark at decay time, estimated from the charges of identified particles, and the momentum of the charmed meson in the rest frame of the b-hadron. The inclusive branching fractions of b-hadrons into wrong sign charm mesons are measured to be: B(b→overlineD0X)+B(b→D-X)=(9.3±1.7(stat)±1.3(syst)±0.4(B))%, B(b→Ds-X)=(10.1±1.0(stat)±0.6(syst)±2.8(B))% where the first error is statistical, the second and third errors are systematic.
Mesonic states in the generalised Nambu-Jona-Lasinio theories
NASA Astrophysics Data System (ADS)
Nefediev, A. V.; Ribeiro, J. E. F. T.
2005-04-01
For any Nambu-Jona-Lasinio model of QCD with arbitrary nonlocal, instantaneous, quark current-current confining kernels, we use a generalised Bogoliubov technique to go beyond BCS level (in the large-NC limit) so as to explicitly build quark-antiquark compound operators for creating/annihilating mesons. In the Hamiltonian approach, the mesonic bound-state equations appear (from the generalised Bogoliubov transformation) as mass-gap-like equations which, in turn, ensure the absence, in the Hamiltonian, of mesonic Bogoliubov anomalous terms. We go further to demonstrate the one-to-one correspondence between Hamiltonian and Bethe-Salpeter approaches to non-local NJL-type models for QCD and give the corresponding "dictionary" necessary to "translate" the amplitudes built using the graphical Feynman rules to the terms of the Hamiltonian, and vice versa. We comment on the problem of multiple vacua existence in such type of models and argue that mesonic states in the theory should be prescribed to have an extra index — the index of the replica in which they are created. Then the completely diagonalised Hamiltonian should contain a sum over this new index. The method is proved to be general and valid for any instantaneous quark kernel.
Exotic few-body systems with a heavy meson
NASA Astrophysics Data System (ADS)
Yamaguchi, Yasuhiro
2014-09-01
Hadron as an impurity bound in nuclei causes interesting phenomena which do not emerge in normal nuclei. These effects would give us the information not only on the internal structure of the nuclei, but also on the changing properties of the impurity in the nuclear medium. The hadron-nucleus systems have been studied in the light flavor sector, especially. However, a strong attraction between a heavy meson (Dbar and B) and a nucleon, provided by the one pion exchange potential (OPEP), was suggested recently. The OPEP is enhanced by the heavy quark spin symmetry which induces the mass degeneracy between the heavy pseudoscalar and vector mesons. The attraction motivates us to investigate the Dbar (B) nuclei having the exotic flavor structure. Hence, these bound states are stable against the strong decay. We discuss the possible existence of exotic few-body states realized as DbarNN and BNN. The OPEP between the Dbar (B) meson and the nucleon N is considered. By solving coupled channel equations for PNN and P* NN channels (P (P*) is the heavy pseudoscalar (vector) meson), we obtain new three-body bound states and resonances. In these states, the tensor force of the OPEP plays an important role to yield the attraction.
[eta][prime] meson mass in lattice QCD
Kuramashi, Y.; Fukugita, M.; Mino, H.; Okawa, M.; Ukawa, A. , Tsukuba, Ibaraki 305 Yukawa Institute, Kyoto University, Kyoto 606 Faculty of Engineering, Yamanashi University, Kofu 404 Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305 )
1994-05-30
It is shown that the mass difference between [eta][prime] and pseudoscalar octet mesons can be calculated in quenched lattice QCD with the aid of a variant wall source technique. The estimated mass difference increases as the quark mass decreases, and its value extrapolated to the zero-quark-mass limit, [ital m][sub [eta][prime
Evidence for the Production of Neutral Mesons by Photons
DOE R&D Accomplishments Database
Steinberger, J.; Panofsky, W. K. H.; Steller, J.
1950-04-01
Evidence in favor of the existence of a gamma unstable neutral meson; report on the detection of the coincidences between the two gamma rays produced by the bombardment of various nuclei in the x-ray beam of the Berkeley synchrotron.
Meson-production experiments at COSY-Jülich
NASA Astrophysics Data System (ADS)
Büscher, M.
2010-09-01
Selected results from experiments at COSY-Jülich are presented: an attempt to measure the mass of the η meson with high precision (ANKE facility), first steps towards the detection of rare η decays (WASA), and several measurements of Kbar K-pair production (ANKE, COSY-11, MOMO).
Neutral pion and eta meson measurements with the ALICE detector
NASA Astrophysics Data System (ADS)
Matyja, Adam;
2017-04-01
The ALICE experiment at the LHC is optimized to study the quark-gluon plasma (QGP), created in heavy-ion collisions. The medium-induced energy loss of particles can be investigated via the measurement of neutral meson spectra in heavy-ion collisions as well as via neutral meson-hadron correlations. Neutral mesons are identified from decay photon pairs via the invariant mass technique. Photons are measured in ALICE directly in the two electromagnetic calorimeters (PHOS and EMCal), as well as via the method of photon conversion (PCM) into electron-positon pairs, where the latter are measured in the inner tracking system (ITS) and the time projection chamber (TPC). Results obtained from EMCal, PHOS and PCM are consistent and allow measurements of spectra with high precision over a wide kinematical range. Suppression of the high-pT meson production is observed through the mesasurement of nuclear modification factor (RAA), which decreases with increasing the centrality of the collision. The suppression of the per-trigger yield on the away side in high-pT π0 hadron correlations as measured by the modification factor (IAA) also shows evidence for parton energy loss in the medium.
Recent developments in chiral unitary theory of mesons and baryons
Oset, E.; Gamermann, D.; Khemchandani, K.; Martinez, A.; Geng, L. S.; Napsuciale, M.
2009-04-20
In this talk I summarize recent findings around the description of axial vector mesons as dynamically generated states from the interaction of pseudoscalar mesons and vector mesons, dedicating some attention to the two K{sub 1}(1270) states. Then I review the generation of open and hidden charm scalar and axial states, and how some recent experiment supports the existence of the new hidden charm scalar state predicted. I present recent results showing that the low lying 1/2{sup +} baryon resonances for S = -1 can be obtained as bound states or resonances of two mesons and one baryon in coupled channels. Then show the differences with the S = 0 case, where the N*(1710) appears also dynamically generated from the two pion one nucleon system, but the N*(1440) does not appear, indicating a more complex structure of the Roper resonance. Finally I shall show how the state X(2175), recently discovered at BABAR and BES, appears naturally as a resonance of the {phi}KK-bar system.
Coulomb gauge approach for charmonium meson and hybrid radiative transitions
Gou, Peng; Yepez-Martínez, Tochtli; Szczepaniak, Adam P.
2015-01-22
We consider the lowest order interaction of the Foldy-Wouthuysen QED and QCD Hamiltonian in the Coulomb gauge approach, to describe radiative transitions between conventional and hybrids charmonium mesons. The results are compared to potential quark models and lattices calculations.
Charming quasi-exotic open-flavor mesons
NASA Astrophysics Data System (ADS)
Hilger, Thomas; Krassnigg, Andreas
2017-03-01
We discuss charmed mesons in the covariant Dyson-Schwinger-Bethe-Salpeter-equation approach. In particular we computed masses, leptonic decay constants, and an orbital-angular-momentum decomposition for a basic set of states. We also report an efficient way to treat the two coupled quark propagator dressing functions via a single function.
Meson multiplicity versus energy in relativistic nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Atwater, T. W.; Freier, P. S.
1986-01-01
A systematic study of meson multiplicity as a function of energy at energies up to 100 GeV/u in nucleus-nucleus collisions has been made, using cosmic-ray data in nuclear emulsion. The data are consistent with simple nucleon-nucleon superposition models. Multiplicity per interacting nucleon in AA collisions does not appear to differ significantly from pp collisions.
Tetraquark mesons in large-N quantum chromodynamics.
Weinberg, Steven
2013-06-28
It is argued that exotic mesons consisting of two quarks and two antiquarks are not ruled out in quantum chromodynamics with a large number N of colors, as generally thought. Tetraquarks of one class are typically long-lived, with decay rates proportional to 1/N.
37 Years with the light scalar mesons. The learned lessons
NASA Astrophysics Data System (ADS)
Achasov, N. N.
2017-09-01
Attention is paid to the production mechanisms of light scalars that reveal their nature. We reveal the chiral shielding of the σ(600) meson. We show that the kaon loop mechanism of the ϕ radiative decays, ratified by experiment, is four-quark transition and points to the four-quark nature of light scalars. We show also that the light scalars are produced in the two photon collisions via four-quark transitions in contrast to the classic P wave tensor qq̅ mesons that are produced via two-quark transitions γγ → qq̅. We study the mechanism of production of the light scalar mesons in the D s + → π+π- e +ν decays: D s + → ss̅e +ν → [σ(600) + f 0(980)] e +ν → π+π- e +ν, and compare it with the mechanism of production of the light pseudoscalar mesons in the D s + → (η/η') e +ν decays: D s + → ss̅e +ν → (η/η') e +ν. As a result we find support to four-quark nature of light scalars. In the end, we outline the future research program.
Staggered chiral perturbation theory for heavy-light mesons
Aubin, C.; Bernard, C.
2006-01-01
We incorporate heavy-light mesons into staggered chiral perturbation theory (S{chi}PT), working to leading order in 1/m{sub Q}, where m{sub Q} is the heavy-quark mass. At first nontrivial order in the chiral expansion, staggered taste violations affect the chiral logarithms for heavy-light quantities only through the light-meson propagators in loops. There are also new analytic contributions coming from additional terms in the Lagrangian involving heavy-light and light mesons. Using this heavy-light S{chi}PT, we perform the one-loop calculation of the B (or D) meson leptonic decay constant in the partially quenched and full QCD cases. In our treatment, we assume the validity both of the 'fourth root trick' to reduce four staggered tastes to one, and of the S{chi}PT prescription to represent this trick by insertions of factors of 1/4 for each sea-quark loop.
Exotic meson production in BNL experiment E852
NASA Astrophysics Data System (ADS)
Adams, G. S.; Adams, T.; Bar-Yam, Z.; Bishop, J. M.; Bodyagin, V. A.; Brown, D. S.; Cason, N. M.; Chasse, M.; Chung, S. U.; Cummings, J. P.; Danyo, K.; Demianov, A. I.; Denisov, S. P.; Dorofeev, V.; Dowd, J. P.; Eugenio, P.; Fan, X. L.; Gribushin, A. M.; Hackenburg, R. W.; Hayek, M.; Hu, J.; Ivanov, E. I.; Joffe, D.; Kachaev, I.; Kern, W.; King, E.; Kodolova, O. L.; Korotkikh, V. L.; Kostin, M. A.; Krenkel, J.; Kuhn, J.; Lipaev, V. V.; Lo Secco, J. M.; Lu, M.; Manak, J. J.; Nozar, M.; Olchanski, C.; Ostrovidov, A. I.; Pedlar, T. K.; Popov, A. V.; Ryabchikov, D. I.; Sarycheva, L. I.; Seth, K. K.; Shenhav, N.; Shen, X.; Shephard, W. D.; Sinev, N. B.; Stienike, D. L.; Suh, J. S.; Taegar, S. A.; Tomaradze, A.; Vardanyan, I. N.; Weygand, D. P.; White, D. B.; Willutzki, H. J.; Witkowski, M.; Yershov, A. A.
2005-01-01
The status of spin-exotic mesons is reviewed. There is now compelling evidence for at least three π1 states between one and two GeV. Preliminary results from the reaction π-p → π+π+π-π-π0p show structure in the exotic waves corresponding to IGJPC = 0-2+-.
Structure of Vector Mesons in Holographic Model with Linear Confinement
Anatoly Radyushkin; Hovhannes Grigoryan
2007-11-01
We investigate wave functions and form factors of vector mesons in the holographic dual model of QCD with oscillator-like infrared cutoff. We introduce wave functions conjugate to solutions of the 5D equation of motion and develop a formalism based on these wave functions, which are very similar to those of a quantum-mechanical oscillator. For the lowest bound state (rho-meson), we show that all its elastic form factors can be built from the basic form factor which, in this model, exhibits a perfect vector meson dominance, i.e., is given by the rho-pole contribution alone. We calculate the electric radius of the rho-meson and find the value _C = 0.655 fm, which is larger than in the case of the hard-wall cutoff. We calculate the coupling constant f_rho and find that the experimental value is in the middle between the values given by the oscillator and hard-wall models.
Internal meson dominance for pp-bar annihilation
Brix, G.; Genz, H.; Tatur, S.
1989-04-01
The previously considered /sup 3/S/sub 1/ internal fusion model of pp-bar..-->..YY-bar, YY-bar /sup */, and Y/sup */Y-bar/sup */ (Y denotes hyperon) at low energies is modified and thereby extended to also include pp-bar..-->..nn-bar and ..delta../sup ++/Delta-bar/sup - -/. It is assumed that the same nonperturbative mechanism that mixes the different qq-bar pairs within the neutral, nonstrange mesons is also responsible for the scattering, annihilation, and creation of qq-bar pairs within the baryon-antibaryon system. More specifically, we assume that processes qq-bar..-->..QQ-bar within the baryon-antibaryon system with q = d or u and Q = d, u, or s quarks is mediated by fusion of the qq-bar to a pseudoscalar or vector meson that also within the system decays into QQ-bar. The /sup 1/S/sub 0/ pseudoscalar-meson model disagrees with experiment whereas the /sup 3/S/sub 1/ vector-meson fusion model is in reasonable agreement with it. As compared to the previously considered /sup 3/S/sub 1/ internal fusion model the main change is an extension of the approximate agreement to the nonstrange final-state baryons. This is achieved since strange baryons in the model are only produced via the small ..omega..-phi mixing.
Threshold effects in P -wave bottom-strange mesons
NASA Astrophysics Data System (ADS)
Ortega, Pablo G.; Segovia, Jorge; Entem, David R.; Fernández, Francisco
2017-02-01
Using a nonrelativistic constituent quark model in which the degrees of freedom are quark-antiquark and meson-meson components, we have recently shown that the D(*)K thresholds play an important role in lowering the mass of the c s ¯ states associated with the physical Ds0 *(2317 ) and Ds 1(2460 ) mesons. This observation is also supported by other theoretical approaches such as lattice-regularized QCD or chiral unitary theory in coupled channels. Herein, we extend our computation to the lowest P -wave Bs mesons, taking into account the corresponding JP=0+, 1+ and 2+ bottom-strange states predicted by the naive quark model and the B K and B*K thresholds. We assume that mixing with Bs(*)η and isospin-violating decays to Bs(*)π are negligible. This computation is important because there is no experimental data in the b s ¯ sector for the equivalent jqP=1 /2+ (Ds0 *(2317 ), Ds 1(2460 )) heavy-quark multiplet and, as it has been seen in the c s ¯ sector, the naive theoretical result can be wrong by more than 100 MeV. Our calculation allows us to introduce the coupling with the D -wave B*K channel and to compute the probabilities associated with the different Fock components of the physical state.
Search for b-->s.gluon in B meson decays
NASA Astrophysics Data System (ADS)
Albrecht, H.; Gläser, R.; Harder, G.; Krüger, A.; Nippe, A.; Oest, T.; Reidenbach, M.; Schäfer, M.; Schmidt-Parzefall, W.; Schröder, H.; Schulz, H. D.; Sefkow, F.; Wurth, R.; Appuhn, R. D.; Drescher, A.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Scheck, H.; Schweda, G.; Spaan, B.; Walther, A.; Wegener, D.; Paulini, M.; Reim, K.; Volland, U.; Wegener, H.; Funk, W.; Stiewe, J.; Werner, S.; Ball, S.; Gabriel, J. C.; Geyer, C.; Hölscher, A.; Hofmann, W.; Holzer, B.; Khan, S.; Spengler, J.; Charlesworth, C. E. K.; Edwards, K. W.; Frisken, W. R.; Kapitza, H.; Krieger, P.; Kutschke, R.; Macfarlane, D. B.; McLean, K. W.; Orr, R. S.; Parsons, J. A.; Patel, P. M.; Prentice, J. D.; Seidel, S. C.; Swain, J. D.; Tsipolitis, G.; Yoon, T.-S.; Davis, R.; Ruf, T.; Schael, S.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Boštjančič, B.; Kernel, G.; Križan, P.; Križnič, E.; Pleško, M.; Cronström, H. I.; Jönsson, L.; Nilsson, A. W.; Babaev, A.; Danilov, M.; Fominykh, B.; Golutvin, A.; Gorelov, I.; Lubimov, V.; Rostovtsev, A.; Semenov, A.; Semenov, S.; Shevchenko, V.; Soloshenko, V.; Tchistilin, V.; Tichomirov, I.; Zaitsev, Yu.; Childers, R.; Darden, C. W.; Argus Collaboration
1991-01-01
Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, a search for penguin decays of B mesons involving b→s gluon has been performed. No evidence for the penguin mechanism was found and a number of upper limits are quoted.
Chiral Lagrangian parameters for scalar and pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Bardeen, W.; Eichten, E.; Thacker, H.
2004-03-01
The results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched lattice QCD are presented. For two values of lattice spacing, β=5.7 (a≈.18 fm) and 5.9 (a≈.12 fm), we probe the light quark mass region using clover improved Wilson fermions with the modified quenched approximation pole-shifting ansatz to treat the exceptional configuration problem. The quenched chiral loop parameters m0 and αΦ are determined from a study of the pseudoscalar hairpin correlator. From a global fit to the meson correlators, estimates are obtained for the relevant chiral Lagrangian parameters, including the Leutwyler parameters L5 and L8. Using the parameters obtained from the singlet and nonsinglet pseudoscalar correlators, the quenched chiral loop (QCL) effect in the nonsinglet scalar meson correlator is studied. By removing this QCL effect from the lattice correlator, we obtain the mass and decay constant of the ground state scalar, isovector meson a0.
D¯ D meson pair production in antiproton-nucleus collisions
NASA Astrophysics Data System (ADS)
Shyam, R.; Tsushima, K.
2016-10-01
We study the D ¯D (D¯0D0 and D-D+) charm meson pair production in antiproton (p ¯) induced reactions on nuclei at beam energies ranging from threshold to several GeV. Our model is based on an effective Lagrangian approach that has only the baryon-meson degrees of freedom and involves the physical hadron masses. The reaction proceeds via the t -channel exchanges of Λc+, Σc+, and Σc++ baryons in the initial collision of the antiproton with one of the protons of the target nucleus. The medium effects on the exchanged baryons are included by incorporating in the corresponding propagators, the effective charm baryon masses calculated within a quark-meson coupling (QMC) model. The wave functions of the bound proton have been determined within the QMC model as well as in a phenomenological model where they are obtained by solving the Dirac equation with appropriate scalar and vector potentials. The initial- and final-state distortion effects have been approximated by using an eikonal approximation-based procedure. Detailed numerical results are presented for total and double differential cross sections for the D¯0D0 and D-D+ production reactions on 16O and 90Zr targets. It is noted that at p ¯ beam momenta of interest to the P ¯ ANDA experiment, medium effects lead to noticeable enhancements in the charm meson production cross sections.
New Heavy-Light Mesons Q bar{q}
NASA Astrophysics Data System (ADS)
Matsuki, T.; Morii, T.; Sudoh, K.
2007-06-01
We succeed in reproducing the ℓ = 1 B mesons B1(5720), B2*(5745), and Bs2*(5839) that were recently reported by D0 and CDF, using our semi-relativistic quark potential model, which also succeeds in predicting the mass spectra of the narrow DsJ, as well as broad D0*(0+) and D1'(1+) particles observed a couple of years ago. par The mass of higher excited states (ell = 1, 2) of B and Bs mesons, which have not yet been observed, is also predicted to first order in p/mb with the internal quark momentum p and the b quark mass mb. We find that the corresponding BsJ are below the BK/B*K threshold and should have narrow decay widths, contrary to most other predictions. Also, already established states (ℓ = 0 and ell = 1) of D, Ds, B, and Bs heavy mesons are simultaneously reproduced in good agreement with experimental data, within one percent accuracy. To calculate these D/Ds and B/Bs heavy mesons, we use different values of the strong coupling, αsc and αsc, respectively.
Strong decays of 2+ charm and charm-strange mesons
NASA Astrophysics Data System (ADS)
Zhang, Si-Cheng; Wang, Tianhong; Jiang, Yue; Li, Qiang; Wang, Guo-Li
2017-02-01
In this paper, we calculate the strong decays of 2+ heavy-light states, namely, the charmed D2∗(2460)0 meson and the charm-strange Ds2∗(2573)+ meson. The method we adopt is the reduction formula, PCAC relation and low energy theorem, following which, the transition amplitudes are calculated. The wave functions of the heavy mesons involved are achieved by solving the instantaneous Bethe-Salpeter equation. As the OZI-allowed two-body strong decays give the dominant contribution, they can be used to estimate the total widths of mesons. Our results are: Γ[D2∗(2460)0] = 51.3MeV and Γ[Ds2∗(2573)+] = 19.6MeV. The ratios of branching ratios of two main channels are Br[D2∗(2460)0 → D+π‑]/Br[D 2∗(2460)0 → D∗+π‑] = 2.13 and Br[Ds2∗(2573)+ → D∗0K+]/Br[D s2∗(2573)+ → D0K+] = 0.08, respectively.
Studies of the B(c) meson at CDF
Spezziga, Mario; /Texas Tech.
2005-11-01
The authors present the latest measurements of the B{sub c} meson properties using 360 pb{sup -1} of data collected by the CDF detector. The results include the B{sub c} mass and the ratio of branching fraction B{sub c} {yields} J/{psi} l with respect to B {yields} J/{psi}K.
Search for Popcorn Mesons in Events with Two Charmed Baryons
Hartfiel, Brandon; /SLAC
2006-07-07
The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
Search for popcorn mesons in events with two charmed baryons
NASA Astrophysics Data System (ADS)
Hartfiel, Brandon
The physics of this dissertation is divided into two parts. The first part measures the Λc → pi kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c, which is just below the Υ(4s) resonance. The data sample consists of 15,400 Λc baryons from 9.46 fb-1 of integrated luminosity collected with the BaBar detector at the PEP-II asymmetric B factory at the Stanford Linear Accelerator Center. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the Λc → K0p mode, and look for events with a Λc+ and a Λ c- in order to look for "popcorn" mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb-1. We find 619 events after background subtraction. After a subtraction of 1.06+/-.09 charged pions coming from decays of known resonances to Λc + npi, we are left with 2.63+/-.21 additional charged pious in each of these events. This is significantly higher than the .5 popcorn mesons per bayon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.
Diffractive vector meson photoproduction from dual string theory
Freund, Peter G. O.; Nastase, Horatiu
2009-04-15
We study diffractive vector-meson photoproduction using string theory via AdS/CFT. The large s behavior of the cross sections for the scattering of the vector meson V on a proton is dominated by the soft Pomeron, {sigma}{sub V}{approx}s{sup 2{epsilon}}{sup -2{alpha}{sub P}{sup '}}{sup /B}, where from the string theory model of [arXiv:hep-th/0501039], {epsilon} is approximately 1/7 below 10 GeV, and 1/11 for higher, but still sub-Froissart, energies. This is due to the production of black holes in the dual gravity. In {phi} photoproduction the mesonic Regge poles do not contribute, so that we deal with a pure Pomeron contribution. This allows for an experimental test. At the gauge theory 'Planck scale' of about 1-2 GeV, the ratios of the soft Pomeron contributions to the photoproduction cross sections of different vector mesons involve not only the obvious quark model factors, but also the Boltzmann factors e{sup -4M{}sub V}{sup /T{}sub 0}, with T{sub 0} the temperature of the dual black hole. The presence of these factors is confirmed in the experimental data for {rho}, {omega}, {phi}, J/{psi}, and {psi}(2S) photoproduction and is compatible with the meager {upsilon} photoproduction data. Throughout, we use vector-meson dominance, and from the data we obtain T{sub 0} of about 1.3 GeV, i.e. the gauge theory ''Planck scale,'' as expected. The ratio of the experimental soft Pomeron onset scale E-circumflex{sub R}{approx}9 GeV and of the gauge theory Planck scale, T{sub 0}{approx}1.3 GeV, conforms to the theoretical prediction of N{sub c}{sup 2}/N{sub c}{sup 1/4}.
NASA Astrophysics Data System (ADS)
Guo, Zhi-Hui; Oller, J. A.; de Elvira, J. Ruiz
2012-09-01
In this work, we perform the one-loop calculation of the scalar and pseudoscalar form factors in the framework of U(3) chiral perturbation theory with explicit tree level exchanges of resonances. The meson-meson scattering calculation from Guo and Oller [Phys. Rev. DPRVDAQ1550-7998 84, 034005 (2011)10.1103/PhysRevD.84.034005] is extended as well. The spectral functions of the nonet scalar-scalar (SS) and pseudoscalar-pseudoscalar (PP) correlators are constructed by using the corresponding form factors. After fitting the unknown parameters to the scattering data, we discuss the resonance content of the resulting scattering amplitudes. We also study spectral-function sum rules in the SS-SS, PP-PP, and SS-PP sectors as well as semilocal duality from scattering. The former relate the scalar and pseudoscalar spectra between themselves while the latter mainly connects the scalar spectrum with the vector one. Finally we investigate these items as a function of NC for NC>3. All these results pose strong constraints on the scalar dynamics and spectroscopy that are discussed. They are successfully fulfilled by our meson-meson scattering amplitudes and spectral functions.
Radiative Decays of the B Meson
Tanaka, Hirohisa A
2003-09-23
The radiative decays of the B meson to the final states K *(892){gamma} and {rho}(770){gamma} proceed through virtual effective flavor-changing neutral current processes which are sensitive to contributions from high mass scales from within the Standard Model of particle interactions and from possible new physics. In the context of the Standard Model, these transitions are of interest in probing the weak interaction behavior of the top quark. In particular, the ratio of branching fractions for the two processes can be used to extract the ratio of Cabibbo-Kobayashi-Maskawa matrix elements |V{sub td}/V{sub ts}|. Potential new physics contributions in these virtual transitions may induce new sources of direct CP violation and enhancement or suppression of the rate of these processes. The B {yields} K*{gamma} is a manifestation of the b {yields} s{gamma} radiative transition. This process has been previously observed by the CLEO collaboration and its branching fraction measured. While the theoretical prediction for the inclusive rate of b {yields} s{gamma} transitions is more robust than that of the exclusive B {yields} K*{gamma}, the prospects for precise measurements of {Beta}[B {yields} K*{gamma}] and direct CP violation in this channel has attracted considerable attention. The analysis described here represents an improved measurement of the B {yields} K*{gamma} branching factions and a more sensitive search for direct CP violation. In 22.7 x 10{sup 6} B{bar B} events collected by the BABAR detector in 1999-2000, we measure: {Beta}[B{sup 0} {yields} K*{sup 0}{gamma}] = 4.23 {+-} 0.40(stat.) {+-} 0.22(syst.) x 10{sup -5} and {Beta}[B{sup +} {yields} K*{sup +}{gamma}] = 3.83 {+-} 0.62(stat.) {+-} 0.22(syst.) x 10{sup -5}. We find no evidence for direct CP violation in the decays and constrain -0.170 < A{sub CP} < 0.082 at 90% Confidence Level. The B {yields} {rho}{gamma} proceeds through the analogous b {yields} d{gamma} radiative transition. As such, its rate is
Low-energy {omega} ({yields}{pi}{sup 0}{gamma}) meson photoproduction in the nucleus
Das, Swapan
2011-06-15
The {pi}{sup 0{gamma}} invariant mass distribution spectra in the ({gamma},{pi}{sup 0{gamma}}) reaction were measured by the TAPS/ELSA Collaboration to look for the hadron parameters of the {omega} meson in the Nb nucleus. We study the mechanism for this reaction, where we consider that the elementary reaction in the Nb nucleus proceeds as {gamma}N{yields}{omega}N;{omega}{yields}{pi}{sup 0}{gamma}. The {omega}-meson photoproduction amplitude for this reaction is extracted from the measured four-momentum transfer distribution in the {gamma}p{yields}{omega}p reaction. The propagation of the {omega} meson and the distorted wave function for the {pi}{sup 0} meson in the final state are described by the eikonal form. The {omega} and {pi}{sup 0} mesons' nucleus optical potentials, appearing in the {omega} meson propagator and {pi}{sup 0} meson distorted wave function respectively, are estimated using the t{rho} approximation. The effects of pair correlation and color transparency are also studied. The calculated results do not show medium modification for the {omega} meson produced in the nucleus for momentum greater than 200 MeV. It occurs because the {omega} meson predominantly decays outside the nucleus. The dependence of the cross section on the final-state interaction is also investigated. The broadening of the {omega}-meson mass distribution spectra is shown to occur due to the large resolution width associated with the detector used in the experiment.
Elliptic flow of ϕ mesons at intermediate pT: Influence of mass versus quark number
NASA Astrophysics Data System (ADS)
Choudhury, Subikash; Sarkar, Debojit; Chattopadhyay, Subhasis
2017-02-01
We have studied elliptic flow (v2) of ϕ mesons in the framework of a multiphase transport (AMPT) model at CERN Large Hadron Collider (LHC) energy. In the realms of AMPT model we observe that ϕ mesons at intermediate transverse momentum (pT) deviate from the previously observed [at the BNL Relativistic Heavy Ion Collider (RHIC)] particle type grouping of v2 according to the number of quark content, i.e, baryons and mesons. Recent results from the ALICE Collaboration have shown that ϕ meson and proton v2 has a similar trend, possibly indicating that particle type grouping might be due to the mass of the particles and not the quark content. A stronger radial boost at LHC compared to RHIC seems to offer a consistent explanation to such observation. However, recalling that ϕ mesons decouple from the hadronic medium before additional radial flow is built up in the hadronic phase, a similar pattern in ϕ meson and proton v2 may not be due to radial flow alone. Our study reveals that models incorporating ϕ -meson production from K K ¯ fusion in the hadronic rescattering phase also predict a comparable magnitude of ϕ meson and proton v2 particularly in the intermediate region of pT. Whereas, v2 of ϕ mesons created in the partonic phase is in agreement with quark-coalescence motivated baryon-meson grouping of hadron v2. This observation seems to provide a plausible alternative interpretation for the apparent mass-like behavior of ϕ -meson v2. We have also observed a violation of hydrodynamical mass ordering between proton and ϕ meson v2 further supporting that ϕ mesons are negligibly affected by the collective radial flow in the hadronic phase due to the small in-medium hadronic interaction cross sections.
Lattice QCD calculation of the {rho} meson decay width
Aoki, S.; Fukugita, M.; Ishikawa, K-I.; Okawa, M.; Ishizuka, N.; Kuramashi, Y.; Ukawa, A.; Yoshie, T.; Kanaya, K.; Namekawa, Y.; Sasaki, K.
2007-11-01
We present a lattice QCD calculation of the {rho} meson decay width via the P-wave scattering phase shift for the I=1 two-pion system. Our calculation uses full QCD gauge configurations for N{sub f}=2 flavors generated using a renormalization group improved gauge action and an improved Wilson fermion action on a 12{sup 3}x24 lattice at m{sub {pi}}/m{sub {rho}}=0.41 and the lattice spacing 1/a=0.92 GeV. The phase shift calculated with the use of the finite size formula for the two-pion system in the moving frame shows a behavior consistent with the existence of a resonance at a mass close to the vector meson mass obtained in spectroscopy. The decay width estimated from the phase shift is consistent with the experiment, when the quark mass is scaled to the realistic value.
Further Results on the Production of Neutral Mesons by Photons
DOE R&D Accomplishments Database
Panofsky, W. K. H.; Steinberger, J.; Steller, J.
1951-10-01
Further measurements have been made on the photoproduction of neutral mesons using the gamma-gamma coincidence technique. New data have been obtained on the gamma-gamma correlation curves in beryllium. The angular distribution of the photo mesons in Be has been determined and found to be strongly peaked forward. The dependence on the atomic number A of production has been found to obey an A{sup 2/3} law. Some data obtained for production in hydrogen show that the pi-zero and pi-plus production cross sections are comparable and that the pi-zero excitation curve starts more slowly from threshold than does the pi-plus photo excitation curve.
Evidence for new nucleon resonances from electromagnetic meson production
Volker Burkert
2012-12-01
The study of nucleon resonances in electromagnetic meson production with the CLAS detector is discussed. The electromagnetic interaction is complementary to pion scattering in the exploration of the nucleon excitation spectrum. Higher mass states often decouple from the N{pi} channel and are not seen in {pi} N --> {pi} N. Photoproduction of mesons, such as K {Lambda}, {omega} p and {eta}' p may be more sensitive to many of these states. The CLAS detector, combined with the use of energy-tagged polarized photons and polarized electrons, as well as po- larized targets and the measurement of recoil polarization, are the tools needed for a comprehensive nucleon resonance program. Some of the recently published high statistics data sets had significant impact on further clarifying the nucleon excitation spectrum.
Linear radial Regge trajectories for mesons with any quark flavor
NASA Astrophysics Data System (ADS)
Afonin, Sergey; Pusenkov, Ilya
2016-10-01
In the Regge phenomenology, the radial spectrum of light mesons is given by a linear relation M2n = a(n + b), where a is a universal slope, the dimensionless intercept b depends on quantum numbers, and n enumerates the excited states in radial recurrences. The usual extensions of this relation to heavy quarkonia in the framework of hadron string models typically lead to strong nonlinearities which seem to be at variance with the available experimental data. Introducing a radially static string picture of mesons, we put forward a linear generalization (Mn - m1 - m2)2 = a(n + b), where m1,2 are quark masses. The vector channel contains enough experimental states to check this new relation and a good agreement is observed. It is shown that this generalization leads to a simple estimate of current quark masses from the radial spectra.
Meson-exchange currents including energy transfer effects
Hwang, W.P.; Walker, G.E.
1985-01-01
The standard formalism of meson-exchange currents is extended to incorporate energy transfer effects. It is possible to make such an extension, in a chirally invariant way, for several exchange currents including those involving an intermediate isobar. It is found that the ''extended'' currents still satisfy conservation of the polar vector current (CVC) and partial conservation of the axial vector current (PCAC) where appropriate. The hypothesis of axial locality is found to be valid for the currents considered. Deuteron photodisintegration at intermediate energies is then used to illustrate the numerical importance of the energy transfer effects. A brief survey is carried out for other reactions where the inclusion of energy transfer effects in the evaluation of selected meson-exchange currents is believed important.
Toward the excited meson spectrum of dynamical QCD
Dudek, Jozef J.; Edwards, Robert G.; Peardon, Michael J.; Richards, David G.; Thomas, Christopher E.
2010-08-01
We present a detailed description of the extraction of the highly excited isovector meson spectrum on dynamical anisotropic lattices using a new quark-field construction algorithm and a large variational basis of operators. With careful operator construction, the combination of these techniques is used to identify the continuum spin of extracted states reliably, overcoming the reduced rotational symmetry of the cubic lattice. Excited states, states with exotic quantum numbers (0+-, 1-+ and 2+-) and states of high spin are resolved, including, for the first time in a lattice QCD calculation, spin-four states. The determinations of the spectrum of isovector mesons and kaons are performed on dynamical lattices with two volumes and with pion masses down to ~ 400 MeV, with statistical precision typically at or below 1% even for highly excited states.
Introduction to heavy meson decays and CP asymmetries
Ligeti, Zoltan
2003-02-05
These lectures are intended to provide an introduction to heavy meson decays and CP violation. The first lecture contains a brief review of the standard model and how the CKM matrix and CP violation arise, mixing and CP violation in neutral meson systems, and explanation of the cleanliness of the sin 2{beta} measurement. The second lecture deals with the heavy quark limit, some applications of heavy quark symmetry and the operator product expansion for exclusive and inclusive semileptonic B decays. The third lecture concerns with theoretically clean CP violation measurements that may become possible in the future, and some developments toward a better understanding of nonleptonic B decays. The conclusions include a subjective best buy list for the near future.
Near-threshold photoproduction of Φ mesons from deuterium
Qian, X.; Chen, W.; Gao, H.; ...
2011-01-05
In this report, we measure the differential cross section onmore » $$\\phi$$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. Moreover, the extracted differential cross sections $$\\frac{d\\sigma}{dt}$$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. Ultimately, this experiment establishes a baseline for a future experimental search for an exotic $$\\phi$$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $$\\phi$$ mesons.« less
meson production in Au+Au collisions at in STAR
NASA Astrophysics Data System (ADS)
Zhou, Long;
2017-01-01
In this article, we report the measurements of the nuclear modification factor (R AA) and elliptic flow (v 2) for in Au+Au collisions at from the STAR experiment. These results are compared with the results of other open charm mesons to study the hadronization mechanism of the charm quarks and disentangle the transport properties of quark-gluon plasma and hadronic phase [1]. We found that the nuclear modification factor for D s are systematically higher than unity and D 0 R AA. The ratio of D s /D 0 for 10-40% central Au+Au collisions is also higher than that in p+p collisions as predicted by PYTHIA. The D s /D 0 ratio is also compared to that in Pb+Pb collisions at measured by the ALICE experiment. Our results indicate an enhancement of D s meson production in Au+Au collisions.
Determination of the total width of the η' meson.
Czerwiński, E; Moskal, P; Grzonka, D; Czyzykiewicz, R; Gil, D; Kamys, B; Khoukaz, A; Klaja, J; Klaja, P; Krzemień, W; Oelert, W; Ritman, J; Sefzick, T; Siemaszko, M; Silarski, M; Smyrski, J; Täschner, A; Wolke, M; Wüstner, P; Zdebik, J; Zieliński, M; Zipper, W
2010-09-17
Taking advantage of both the low-emittance proton beam of the cooler synchrotron COSY and the high momentum precision of the COSY-11 detector system, the mass distribution of the η' meson was measured with a resolution of 0.33 MeV/c2 (FWHM), improving the experimental mass resolution by almost an order of magnitude with respect to previous results. Based on the sample of more than 2300 reconstructed pp → ppη' events, the total width of the η' meson was determined to be Γ(η') = 0.226 ± 0.017(stat) ± 0.014(syst) MeV/c2.
Total cross sections of beauty and charmed mesons on protons
Fridman, A.; Meshkov, S.
1991-06-01
Using a simple scaling law we predict the values of the total cross sections {sigma}(B{plus_minus}p), {sigma}B{sub d,s}{sup 0}, {sigma}({bar B}{sub d,s}{sup 0}P), {sigma}(D{sub d,s}{sup {plus_minus}}P), {sigma}(D{sup 0}p), {sigma}({bar D}{sup 0}p) from known total K{sub p} cross sections. We assume that mesons with the same light valence quark, q, and differing only by their heavy valence quark content, Q, have total cross sections on protons which scale as the inverse of the nth power of the reduced mass of the meson. We predict that {sigma}(Q{bar q})p > {sigma}({bar Q}q)p.
Charmed mesons with a symmetry-preserving contact interaction
NASA Astrophysics Data System (ADS)
Serna, Fernando E.; El-Bennich, Bruno; Krein, Gastão
2017-07-01
A symmetry-preserving treatment of a vector-vector contact interaction is used to study charmed heavy-light mesons. The contact interaction is a representation of nonperturbative kernels used in Dyson-Schwinger and Bethe-Salpeter equations of QCD. The Dyson-Schwinger equation is solved for the u , d , s and c quark propagators and the bound-state Bethe-Salpeter amplitudes respecting spacetime-translation invariance and the Ward-Green-Takahashi identities associated with global symmetries of QCD are obtained to calculate masses and electroweak decay constants of the pseudoscalar π , K , D and Ds and vector ρ , K*, D*, and Ds* mesons. The predictions of the model are in good agreement with available experimental and lattice QCD data.
Observation of orbitally excited B(s) mesons.
Aaltonen, T; Abulencia, A; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S
2008-02-29
We report the observation of two narrow resonances consistent with states of orbitally excited (L=1) B_(s) mesons using 1 fb;(-1) of pp[over ] collisions at sqrt[s]=1.96 TeV collected with the Collider Detector at Fermilab II detector at the Fermilab Tevatron. We use two-body decays into K- and B+ mesons reconstructed as B(+)-->J/psiK(+), J/psi-->mu(+)mu(-) or B(+)-->D[over ](0)pi(+), D[over ](0)-->K(+)pi(-). We deduce the masses of the two states to be m(B_(s1))=5829.4+/-0.7 MeV/c(2) and m(B_(s2);(*))=5839.6+/-0.7 MeV/c;(2).
A study of B meson oscillations using dilepton events
NASA Astrophysics Data System (ADS)
Akers, R.; Alexander, G.; Allison, J.; Ametewee, K.; Anderson, K. J.; Arcelli, S.; Asai, S.; Axen, D.; Azuelos, G.; Ball, A. H.; Barberio, E.; Barlow, R. J.; Bartoldus, R.; Batley, J. R.; Beaudoin, G.; Beck, A.; Beck, G. A.; Beeston, C.; Behnke, T.; Bell, K. W.; Bella, G.; Bentvelsen, S.; Berlich, P.; Bethke, S.; Biebel, O.; Bloodworth, I. J.; Bock, P.; Bosch, H. M.; Boutemeur, M.; Braibant, S.; Bright-Thomas, P.; Brown, R. M.; Buijs, A.; Burckhart, H. J.; Bürgin, R.; Burgard, C.; Capdevielle, N.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlesworth, C.; Charlton, D. G.; Chu, S. L.; Clarke, P. E. L.; Clayton, J. C.; Clowes, S. G.; Cohen, I.; Conboy, J. E.; Cooke, O. C.; Cuffiani, M.; Dado, S.; Dallapiccola, C.; Dallavalle, G. M.; Darling, C.; de Jong, S.; Del Pozo, L. A.; Deng, H.; Dittmar, M.; Dixit, M. S.; Do Couto E Silva, E.; Duboscq, J. E.; Duchovni, E.; Duckeck, G.; Duerdoth, I. P.; Dunwoody, U. C.; Edwards, J. E. G.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Evans, H. G.; Fabbri, F.; Fabbro, B.; Fanti, M.; Fath, P.; Fierro, M.; Fincke-Keeler, M.; Fischer, H. M.; Fischer, P.; Folman, R.; Fong, D. G.; Foucher, M.; Fukui, H.; Fürtjes, A.; Gagnon, P.; Gaidot, A.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Geralis, T.; Giacomelli, G.; Giacomelli, P.; Giacomelli, R.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Gingrich, D. M.; Goodrick, M. J.; Gorn, W.; Grandi, C.; Gross, E.; Hagemann, J.; Hanson, G. G.; Hansroul, M.; Hargrove, C. K.; Hart, P. A.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Herten, G.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Hilse, T.; Hobson, P. R.; Hochman, D.; Homer, R. J.; Honma, A. K.; Howard, R.; Hughes-Jones, R. E.; Igo-Kemenes, P.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jones, M.; Jones, R. W. L.; Jovanovic, P.; Jui, C.; Karlen, D.; Kanzaki, J.; Kawagoe, K.; Kawamoto, T.; Keeler, R. K.; Kellogg, R. G.; Kennedy, B. W.; King, B.; King, J.; Kirk, J.; Kluth, S.; Kobayashi, T.; Kobel, M.; Koetke, D. S.; Kokott, T. P.; Komamiya, S.; Kowalewski, R.; Kress, T.; Krieger, P.; von Krogh, J.; Kyberd, P.; Lafferty, G. D.; Lafoux, H.; Lahmann, R.; Lai, W. P.; Lauber, J.; Layter, J. G.; Leblanc, P.; Lee, A. M.; Lefebvre, E.; Lellouch, D.; Leroy, C.; Letts, J.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Long, G. D.; Lorazo, B.; Losty, M. J.; Lou, X. C.; Ludwig, J.; Luig, A.; Mannelli, M.; Marcellini, S.; Markus, C.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Matthews, W.; Mättig, P.; Maur, U.; McKenna, J.; McMahon, T. J.; McNab, A. I.; Meijers, F.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Mir, R.; Mohr, W.; Montanari, A.; Mori, T.; Morii, M.; Müller, U.; Nellen, B.; Nijjhar, B.; O'Neale, S. W.; Oakham, F. G.; Odorici, F.; Ogren, H. O.; Oldershaw, N. J.; Oram, C. J.; Oreglia, M. J.; Orito, S.; Palmonari, F.; Pansart, J. P.; Patrick, G. N.; Pearce, M. J.; Phillips, P. D.; Pilcher, J. E.; Pinfold, J.; Planc, D. E.; Poffenberger, P.; Poli, B.; Posthaus, A.; Pritchard, T. W.; Przysiezniak, H.; Redmond, M. W.; Rees, D. L.; Rigby, D.; Rison, M. G.; Robins, S. A.; Robinson, D.; Rodning, N.; Roney, J. M.; Ros, E.; Rossi, A. M.; Rosvick, M.; Routenburg, P.; Rozen, Y.; Runge, K.; Runolfsson, O.; Rust, D. R.; Sasaki, M.; Sbarra, C.; Schaile, A. D.; Schaile, O.; Scharf, F.; Scharff-Hansen, P.; Schenk, P.; Schmitt, B.; Schröder, M.; Schultz-Coulon, H. C.; Schütz, P.; Schulz, M.; Schwick, C.; Schwiening, J.; Scott, W. G.; Settles, M.; Shears, T. G.; Shen, B. C.; Shepherd-Themistocleous, C. H.; Sherwood, P.; Siroli, G. P.; Skillman, A.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Sobie, R.; Söldner-Rembold, S.; Springer, R. W.; Sproston, M.; Stahl, A.; Starks, M.; Stegmann, C.; Stephens, K.; Steuerer, J.; Stockhausen, B.; Strom, D.; Szymanski, P.; Tafirout, R.; Takeda, H.; Takeshita, T.; Taras, P.; Tarem, S.; Tecchio, M.; Teixeira-Dias, P.; Tesch, N.; Thomson, M. A.; Tousignant, O.; Towers, S.; Tscheulin, M.; Tsukamoto, T.; Turcot, A. S.; Turner-Watson, M. F.; Utzat, P.; van Kooten, R.; Vasseur, G.; Vikas, P.; Vincter, M.; Wagner, A.; Wagner, D. L.; Ward, C. P.; Ward, D. R.; Ward, J. J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, P.; Wells, P. S.; Wermes, N.; Wilkens, B.; Wilson, G. W.; Wilson, J. A.; Winterer, V.-H.; Wlodek, T.; Wolf, G.; Wotton, S.; Wyatt, T. R.; Yeaman, A.; Yekutieli, G.; Yurko, M.; Zacek, V.; Zeuner, W.; Zorn, G. T.
1995-12-01
The time dependence of B meson oscillations is studied using hadronic Z0 decays with identified leptons in both thrust hemispheres. Decay times are reconstructed for each of the semileptonic B decays by forming vertices which include the lepton and by estimating the B meson momentum. The mass difference of the two mass eigenstates in the B{d/0} system, Δ m d, is measured to be0.462_{ - 0.053 - 0.035}^{ + 0.040 + 0.052} ps^{ - 1}, where the first error is statistical and the second systematic. For the B{s/0} system, a lower limit of Δ m s >2.2 ps-1 at 95% C.L. is derived.
Dynamical instabilities of warm npe matter: {delta} meson effects
Pais, Helena; Santos, Alexandre; Providencia, Constanca
2009-10-15
The effects of {delta} mesons on the dynamical instabilities of cold and warm nuclear and stellar matter at subsaturation densities are studied in the framework of relativistic mean-field hadron models (NL3, NL{rho}, and NL{rho}{delta}) with the inclusion of the electromagnetic field. The distillation effect and the spinodals for all the models considered are discussed. The crust-core transition density and pressure are obtained as a function of temperature for {beta}-equilibrium matter with and without neutrino trapping. An estimation of the size of the clusters formed in the nonhomogeneous phase and the corresponding growth rates are made. It is shown that cluster sizes increase with temperature. The effects of the {delta} meson on the instability region are larger for low temperatures, very asymmetric matter, and densities close to the spinodal surface. It increases the distillation effect above {approx}0.4{rho}{sub 0} and has the opposite effect below that density.
Scalar mesons in three-flavor linear sigma models
Deirdre Black; Amir H. Fariborz; Sherif Moussa; Salah Nasri; Joseph Schrechter
2001-09-01
The three flavor linear sigma model is studied in order to understand the role of possible light scalar mesons in the pi-pi, pi-K and pi-eta elastic scattering channels. The K-matrix prescription is used to unitarize tree-level amplitudes and, with a sufficiently general model, we obtain reasonable ts to the experimental data. The effect of unitarization is very important and leads to the emergence of a nonet of light scalars, with masses below 1 GeV. We compare with a scattering treatment using a more general non-linear sigma model approach and also comment upon how our results t in with the scalar meson puzzle. The latter involves a preliminary investigation of possible mixing between scalar nonets.
A precise measurement of the B^0 meson oscillation frequency
NASA Astrophysics Data System (ADS)
Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Bellee, V.; Belloli, N.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Billoir, P.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Buchanan, E.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dall'Occo, E.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Aguiar Francisco, O.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Demmer, M.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fohl, K.; Fol, P.; Fontana, M.; Fontanelli, F.; C. Forshaw, D.; Forty, R.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kecke, M.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Kozeiha, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; K. Kuonen, A.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Liu, X.; Loh, D.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusardi, N.; Lusiani, A.; Machefert, F.; Maciuc, F.; Maev, O.; Maguire, K.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Melnychuk, D.; Merk, M.; Michielin, E.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Pappenheimer, C.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Piucci, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; W. Ronayne, J.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefkova, S.; Steinkamp, O.; Stenyakin, O.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yu, J.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zhukov, V.; Zucchelli, S.
2016-07-01
The oscillation frequency, Δ m_d, of B^0 mesons is measured using semileptonic decays with a D^- or D^{*-} meson in the final state. The data sample corresponds to 3.0fb^{-1} of pp collisions, collected by the LHCb experiment at centre-of-mass energies √{s} = 7 and 8 TeV. A combination of the two decay modes gives Δ m_d = (505.0 ± 2.1 ± 1.0) ns^{-1}, where the first uncertainty is statistical and the second is systematic. This is the most precise single measurement of this parameter. It is consistent with the current world average and has similar precision.
Resonance Parameters of the Rho-Meson from Lattice QCD
Xu Feng, Karl Jansen, Dru Renner
2011-05-01
We perform a non-perturbative lattice calculation of the P-wave pion-pion scattering phase in the rho-meson decay channel using two flavors of maximally twisted mass fermions at pion masses ranging from 480 MeV to 290 MeV. Making use of finite-size methods, we evaluate the pion-pion scattering phase in the center-of-mass frame and two moving frames. Applying an effective range formula, we find a good description of our results for the scattering phase as a function of the energy covering the resonance region. This allows us to extract the rho-meson mass and decay width and to study their quark mass dependence.
Neutral meson production measurements with the ALICE at the LHC
NASA Astrophysics Data System (ADS)
Ganoti, Paraskevi
2017-03-01
Identified hadron spectra are considered to be sensitive to the transport properties of strongly interacting matter produced in high-energy nucleus-nucleus collisions. π0 and η mesons in ALICE are identified via their two-photon decays by using calorimeters and the central tracking system. In the latter, photons are measured via their conversion to electron-positron pairs in the material of the inner ALICE barrel tracking detectors. The measured production spectra in pp, p-Pb and Pb-Pb collisions at mid-rapidity and over a wide pT range will be presented in the available Large Hadron Collider (LHC) energies of Run I. The resulting nuclear modification factor RAA at different centrality classes shows a clear pattern of strong suppression in the hot QCD medium with respect to pp collisions. Comparison of the ALICE results on neutral mesons with lower-energy experiments is also discussed.
Production of Ds** mesons in hadronic Z decays
NASA Astrophysics Data System (ADS)
ALEPH Collaboration; Heister, A.; Schael, S.; Barate, R.; De Bonis, I.; Decamp, D.; Goy, C.; Lees, J.-P.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Boix, G.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugés, E.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Buchmüller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Greening, T. C.; Hansen, J. B.; Harvey, J.; Hutchcroft, D. E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Schneider, O.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.; Badaud, F.; Falvard, A.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Rougé, A.; Rumpf, M.; Swynghedauw, M.; Verderi, M.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Spagnolo, P.; Halley, A.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Thompson, A. S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Marinelli, N.; Sedgbeer, J. K.; Thompson, J. C.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C. K.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Pearson, M. R.; Robertson, N. A.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Sander, H.-G.; Wachsmuth, H.; Zeitnitz, C.; Bonissent, A.; Carr, J.; Coyle, P.; Leroy, O.; Payre, P.; Rousseau, D.; Talby, M.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Lefrançois, J.; Veillet, J.-J.; Yuan, C.; Bagliesi, G.; Boccali, T.; Foà, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Cowan, G.; Green, M. G.; Medcalf, T.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.; von Wimmersperg-Toeller, J. H.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Konstantinidis, N.; Litke, A. M.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Ngac, A.; Prange, G.; Sieler, U.; Giannini, G.; Rothberg, J.; Armstrong, S. R.; Berkelman, K.; Cranmer, K.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A.; Nielsen, J.; Pan, Y. B.; von Wimmersperg-Toeller, J. H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.
2002-01-01
The production rates of the orbitally excited Ds** mesons, Ds1+/- and Ds2*+/-, are measured with the 4.1 million hadronic Z decays recorded by the ALEPH detector during 1991-1995. The Ds** mesons are reconstructed in the decay modes Ds1+-->D*+K0, Ds1+-->D*0K+ and Ds2*+-->D0K+. The production rate of the Ds1+/- is measured to be f(Z-->Ds1+/-)=(0.52+/-0.09+/-0.06)%, under the assumption that the two considered decay modes of the Ds1+/- saturate the branching ratio. The production rate of the Ds2*+/- is determined to be /f=%, assuming that the branching fraction of the decay Ds2*+-->D0K+ is 45%. The production rates in /Z-->cc¯ and /Z-->bb¯ decays are measured separately.
Exclusive ω meson muoproduction on transversely polarised protons
NASA Astrophysics Data System (ADS)
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2017-02-01
Exclusive production of ω mesons was studied at the COMPASS experiment by scattering 160 GeV / c muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality 1 (GeV / c) 2
Near-threshold photoproduction of Φ mesons from deuterium
Qian, X.; Chen, W.; Gao, H.; Hicks, K.; Kramer, K.; Laget, J. M.; Mibe, T.; Qiang, Y.; Stepanyan, S.; Tedeschi, D. J.; Xu, W.; Adhikari, K. P.; Amaryan, M.; Anghinolfi, M.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bellis, M.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Cole, P. L.; Collins, P.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Dey, B.; Dhamija, S.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; Eugenio, P.; Fegan, S.; Gabrielyan, M. Y.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Jawalkar, S. S.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, A.; Klein, F. J.; Konczykowski, P.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Livingston, K.; Martinez, D.; Mayer, M.; McAndrew, J.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mikhailov, K.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moreno, B.; Moriya, K.; Morrison, B.; Moutarde, H.; Munevar, E.; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, I.; Niroula, M. R.; Osipenko, M.; Ostrovidov, A. I.; Paremuzyan, R.; Park, K.; Park, S.; Pereira, S. Anefalos; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Taylor, C. E.; Tkachenko, S.; Ungaro, M.; Vernarsky, B.; Vineyard, M. F.; Voutier, E.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.
2011-01-05
In this report, we measure the differential cross section on $\\phi$-meson photoproduction from deuterium near the production threshold for a proton using the CLAS detector and a tagged-photon beam in Hall B at Jefferson Lab. The measurement was carried out by a triple coincidence detection of a proton, $K^+$ and $K^-$ near the theoretical production threshold of 1.57 GeV. Moreover, the extracted differential cross sections $\\frac{d\\sigma}{dt}$ for the initial photon energy from 1.65-1.75 GeV are consistent with predictions based on a quasifree mechanism. Ultimately, this experiment establishes a baseline for a future experimental search for an exotic $\\phi$-N bound state from heavier nuclear targets utilizing subthreshold/near-threshold production of $\\phi$ mesons.
Electromagnetic Meson Production in the Nucleon Resonance Region
Volker Burkert; T.-S. H. Lee
2004-10-01
Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed. The article gives a description of current experimental facilities with electron and photon beams and presents a unified derivation of most of the phenomenological approaches being used to extract the resonance parameters from the data. The analyses of {pi} and {eta} production data and the resulting transition form factors for the {Delta}(1232)P{sub 33}, N(1535)S{sub 11}, N(1440)P{sub 11}, and N(1520)D{sub 13} resonances are discussed in detail. The status of our understanding of the reactions with production of two pions, kaons, and vector mesons is also reviewed.
Low energy chiral lagrangian parameters for scalar and pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Bardeen, W.; Eichten, E.; Thacker, H.
2003-05-01
We present results of a high-statistics study of scalar and pseudoscalar meson propagators in quenched QCD at two values of lattice spacing,β = 5.7 and 5.9, with clover-improved Wilson fermions. The study of the chiral limit is facilitated by the pole-shifting ansatz of the modified quenched approximation. Pseudoscalar masses and decay constants are determined as a function of quark mass and quenched chiral log effects are estimated. A study of the flavor singlet ν' hairpin diagram yields a precise determination of the ν' mass insertion. The corresponding value of the quenched chiral log parameter b is compared with the observed QCL effects. Removal of QCL effects from the scalar propagator allows a determination of the mass of the lowest lying isovector scalar qq meson.
Rescattering in meson photoproduction from few body systems
J-M. Laget
2006-04-01
Exclusive reactions induced at high momentum transfer in few body systems provide us with an original way to study the production and propagation of hadrons in cold nuclear matter. In very well-defined parts of the phase space, the reaction amplitude develops a logarithmic singularity. It is on solid ground since it depends on only on-shell elementary amplitudes and on low momentum components of the nuclear wave function. This is the best window for studying the propagation of exotic configurations of hadrons such as the onset of color transparency. It may appear earlier in meson-photoproduction reactions, more particularly in the strange sector, than in the more classical quasi-elastic scattering of electrons. More generally, those reactions provide us with the best tool to determine the cross section of the scattering of various hadrons (strange particles, vector mesons) from the nucleon and to obtain the production of possible exotic states.
Tensor polarization of the ϕ meson photoproduced at high t
NASA Astrophysics Data System (ADS)
McCormick, K.; Audit, G.; Laget, J. M.; Adams, G.; Ambrozewicz, P.; Anciant, E.; Anghinolfi, M.; Asavapibhop, B.; Auger, T.; Avakian, H.; Bagdasaryan, H.; Ball, J. P.; Barrow, S.; Battaglieri, M.; Beard, K.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Berman, B. L.; Bianchi, N.; Biselli, A. S.; Boiarinov, S.; Bonner, B. E.; Bouchigny, S.; Bradford, R.; Brooks, W. K.; Burkert, V. D.; Butuceanu, C.; Calarco, J. R.; Carman, D. S.; Carnahan, B.; Cetina, C.; Chen, S.; Cole, P. L.; Coleman, A.; Connelly, J.; Cords, D.; Corvisiero, P.; Crabb, D.; Crannell, H.; Cummings, J. P.; de Sanctis, E.; Devita, R.; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dragovitsch, P.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Eckhause, M.; Egiyan, H.; Egiyan, K. S.; Elouadrhiri, L.; Eugenio, P.; Farhi, L.; Feuerbach, R. J.; Ficenec, J.; Forest, T. A.; Frolov, V.; Funsten, H.; Gaff, S. J.; Gai, M.; Garçon, M.; Gavalian, G.; Gilad, S.; Gilfoyle, G. P.; Giovanetti, K. L.; Girard, P.; Gordon, C. I.; Griffioen, K.; Guidal, M.; Guillo, M.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hancock, D.; Hardie, J.; Heddle, D.; Hersman, F. W.; Hicks, K.; Hicks, R. S.; Holtrop, M.; Hyde-Wright, C. E.; Ito, M. M.; Jenkins, D.; Joo, K.; Juengst, H. G.; Kelley, J. H.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Klimenko, A.; Klusman, M.; Kossov, M.; Kramer, L. H.; Kuang, Y.; Kuhn, S. E.; Kuhn, J.; Lachniet, J.; Langheinrich, J.; Lawrence, D.; Li, Ji; Lukashin, K.; Major, W.; Manak, J. J.; Marchand, C.; McAleer, S.; McNabb, J. W.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Minehart, R.; Mirazita, M.; Miskimen, R.; Morand, L.; Morrow, S. A.; Muccifora, V.; Mueller, J.; Mutchler, G. S.; Napolitano, J.; Nasseripour, R.; Nelson, S. O.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; Osipenko, M.; Park, K.; Pasyuk, E.; Peterson, G.; Philips, S. A.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Polli, E.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Qin, L. M.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rossi, P.; Rowntree, D.; Rubin, P. D.; Sabatié, F.; Sabourov, K.; Salgado, C.; Santoro, J. P.; Sanzone-Arenhovel, M.; Sapunenko, V.; Sargsyan, M.; Schumacher, R. A.; Serov, V. S.; Shafi, A.; Sharabian, Y. G.; Shaw, J.; Skabelin, A. V.; Smith, E. S.; Smith, T.; Smith, L. C.; Sober, D. I.; Spraker, M.; Stepanyan, S.; Stoler, P.; Strauch, S.; Taiuti, M.; Taylor, S.; Tedeschi, D. J.; Thoma, U.; Thompson, R.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Wang, K.; Weinstein, L. B.; Weller, H.; Weygand, D. P.; Whisnant, C. S.; Witkowski, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Yun, J.; Zhao, J.; Zhou, Z.
2004-03-01
As part of a measurement [
Chiral Extrapolation of Lattice Data for Heavy Meson Hyperfine Splittings
X.-H. Guo; P.C. Tandy; A.W. Thomas
2006-03-01
We investigate the chiral extrapolation of the lattice data for the light-heavy meson hyperfine splittings D*-D and B*-B to the physical region for the light quark mass. The chiral loop corrections providing non-analytic behavior in m{sub {pi}} are consistent with chiral perturbation theory for heavy mesons. Since chiral loop corrections tend to decrease the already too low splittings obtained from linear extrapolation, we investigate two models to guide the form of the analytic background behavior: the constituent quark potential model, and the covariant model of QCD based on the ladder-rainbow truncation of the Dyson-Schwinger equations. The extrapolated hyperfine splittings remain clearly below the experimental values even allowing for the model dependence in the description of the analytic background.
Light quark meson spectroscopy: First results from GlueX
NASA Astrophysics Data System (ADS)
Stevens, Justin
2017-01-01
The GlueX experiment is located in the recently constructed experimental Hall D at Jefferson Lab (JLab), and provides a unique capability to search for hybrid mesons in high-energy photoproduction, utilizing a 9 GeV linearly polarized photon beam. Commissioning of the Hall D beamline and GlueX detector began in 2014 and was recently completed in the spring of 2016 with the collection of the first dataset utilizing 12 GeV electrons from the upgraded CEBAF at JLab. The statistical precision of this dataset surpasses the previous world data on polarized photoproduction in this energy domain by orders of magnitude. First results from this dataset will be presented along with the plan for acquiring higher statistics datasets to begin the search for hybrid mesons at GlueX.
Scaling of the P30 strength in heavy meson strong decays
NASA Astrophysics Data System (ADS)
Segovia, J.; Entem, D. R.; Fernández, F.
2012-09-01
The phenomenological P30 decay model has been extensively applied to calculate meson strong decays. The strength γ of the decay interaction is regarded as a free flavor independent constant and is fitted to the data. We calculate through the P30 model the total strong decay widths of the mesons which belong to charmed, charmed-strange, hidden charm and hidden bottom sectors. The wave function of the mesons involved in the strong decays are given by a constituent quark model that describes well the meson phenomenology from the light to the heavy quark sector. A global fit of the experimental data shows that, contrarily to the usual wisdom, the γ depends on the reduced mass of the quark-antiquark pair in the decaying meson. With this scale-dependent strength γ, we are able to predict the decay width of orbitally excited B mesons not included in the fit.
Search for the decay of a charged B meson to a charged rho meson and a f0(980) meson
NASA Astrophysics Data System (ADS)
Yasin, Zafar
A search for the decay of B+ meson to rho +f0(980) is presented, using a sample of approximately 465 +/- 5 million BB¯ events (423.5 fb-1 of data) collected with the BABAR detector at the PEP-II asymmetric e+ e- collider at SLAC National Accelerator Laboratory. The following upper limit for the branching fraction at 90% confidence level is obtained: B (B+ → rho+ f0) x B (f0 → pipi) < 1.2 x 10 -6, representing an improvement compared to the previous result.
Heavy-meson decay constants from QCD sum rules
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2010-12-22
We sketch a recent sum-rule extraction of the decay constants of the heavy pseudoscalar mesons D, D{sub s}, B, and B{sub s} from the two-point correlator of heavy-light pseudoscalar currents. Our main emphasis lies on the control over all the uncertainties in the decay constants, related both to the input QCD parameters and to the limited accuracy of the method of sum rules. Gaining this control has become possible by application of our new procedure of extracting hadron observables based on a dual threshold depending on the Borel parameter. For the charmed-meson decay constants, we find fD = (206.2{+-}7.3{sub (OPE)}{+-}5.1{sub (syst)}) MeV, fD{sub s} = (245.3{+-}15.7{sub (OPE)}{+-}4.5{sub (syst)}) MeV. For the beauty mesons, the decay constants turn out to be extremely sensitive to the precise value of the {ovr MS} mass of the b-quark, {bar m}{sub b}({bar m}{sub b}). By requiring our sum-rule estimate to match the average of the lattice determinations of f{sub B}, we extract the rather accurate value {bar m}{sub b}({bar m}{sub b}) = (4.245{+-}0.025) GeV. Feeding this parameter value into our sum-rule formalism leads to the beauty-meson decay constants fB = (193.4{+-}12.3{sub (OPE)}{+-}4.3{sub (syst)}) MeV, fB{sub s} = (232.5{+-}18.6{sub (OPE)}{+-}2.4{sub (syst)}) MeV.
Heavy Meson Production at a Low-Energy Photon Collider
Asztalos, S
2004-04-15
A low-energy {gamma}{gamma} collider has been discussed in the context of a testbed for a {gamma}{gamma} interaction region at the Next Linear Collider(NLC). We consider the production of heavy mesons at such a testbed using Compton-backscattered photons and demonstrate that their production rivals or exceeds those by BELLE, BABAR or LEP where they are produced indirectly via virtual {gamma}{gamma} luminosities.
B meson decays in leptons: powerful probes of new physics
NASA Astrophysics Data System (ADS)
Rotondo, Marcello
2014-11-01
We review some recent measurements of B meson decays that involve leptons in the final states and that are sensitive to physics beyond the Standard Model, such as the electroweak penguin decays B → Xsℓ+ℓ-, the Lepton Number Violating process B → Xℓ±ℓ'± and the tree-level dominated decay with τ leptons: B → τντ and B → D(∗)τντ.
CP Violation in B Meson Decays: Experimental Results
Lanceri, Livio; /Trieste U. /INFN, Trieste
2005-08-30
CP violation is intimately connected with the puzzle of matter-antimatter asymmetry and baryogenesis. In the Standard Model of particle physics, the observed CP violation phenomena are accounted for by the Cabibbo-Kobayashi-Maskawa mechanism involving a phase in the quark mixing matrix. This paper is devoted to a review of the experimental status of CP violation in the decays of B mesons.
Meson spectroscopy, resonances and scattering on the lattice
NASA Astrophysics Data System (ADS)
Thomas, Christopher E.
2017-03-01
I discuss some recent progress in studying the spectra of mesons using first-principles lattice QCD calculations. In particular, I highlight some new results on resonances, near-threshold states and related scattering phenomena - this is an area which is very interesting experimentally and theoretically and where we have made significant advances in the last few years. I conclude with an outlook on future prospects.
Manifestation of intermediate meson loop effects in charmonium decays
NASA Astrophysics Data System (ADS)
Zhang, Yuan-Jiang; Li, Gang; Zhao, Qiang
2010-09-01
We report the progress on understanding some of those existing puzzles in charmonium decays. We show that the intermediate meson loops (IML) as a long-distance transition mechanism will provide novel insights into these issues. In particular, we show that the IML mechanism would be essentially important for understanding the Ψ(3770) non-Dbar D decays. We also comment that such a mechanism is correlated with the Okubo-Zweig-Iizuka (OZI) rule evasions in charmonium hadronic decays.
A fresh look at exclusive electroproduction of light vector mesons
NASA Astrophysics Data System (ADS)
Meškauskas, M.; Müller, D.
2014-02-01
Relying on the collinear factorization approach, we demonstrate that H1 and ZEUS measurements of exclusive light vector meson and photon electroproduction cross sections can be simultaneously described for photon virtualities of . Our findings reveal that quark exchanges are important in this small region and that in leading order approximation the gluonic component is suppressed, e.g., the skewness ratio can be much smaller than one.
Dynamical coupled channel approach to omega meson production
Mark Paris
2007-09-10
The dynamical coupled channel approach of Matsuyama, Sato, and Lee is used to study the $\\omega$--meson production induced by pions and photons scattering from the proton. The parameters of the model are fixed in a two-channel (\\omega N,\\pi N) calculation for the non-resonant and resonant contributions to the $T$ matrix by fitting the available unpolarized differential cross section data. The polarized photon beam asymmetry is predicted and compared to existing data.
Semileptonic decays of D mesons in unquenched lattice QCD
Masataka Okamoto et al.
2004-03-17
We present our preliminary results for semileptonic form factors of D mesons in unquenched lattice QCD. Simulations are carried out with n{sub f} = 2 + 1 dynamical quarks using gauge configurations generated by the MILC collaboration. For the valence quarks, we adopt an improved staggered light quark action and the clover heavy quark action. Our results for D {yields} K and D {yields} {pi} form factors at q{sup 2} = 0 are in agreement with the experimental values.
The DISTO program on meson and hyperon production
NASA Astrophysics Data System (ADS)
Bertini, R.
2001-01-01
A summary of the present status of the analysis of the DISTO data on pseudoscalar and vector meson production at 3.67 GeV/ c is presented. The new data on spin observales for the exclusive reaction ěc pp to pK^ + ěc Λ at the three beam momenta: 3.67, 3.31 and 2.94 GeV/ c are also discussed.
Neutral meson and direct photon analysis with ALICE
NASA Astrophysics Data System (ADS)
Whitehead, A. M.;
2017-01-01
The measurement of neutral mesons, particularly π0, s and η’s, plays an important role in the study of the Quark-Gluon Plasma (QGP), the hot and dense medium created in high-energy heavy-ion collisions. Parton energy loss in the QGP, often called jet quenching, can be assessed via measuring the suppression of high-pT π0, s in heavy-ion collisions, when compared to pp collisions using the nuclear modification factor (Raa). Furthermore, neutral mesons are the dominant source of photons in pp and Pb-Pb collisions, and their precise measurement is required to measure direct photons that are produced thermally within the QGP or in hard initial scatterings in the earliest phases of the collision. In both cases, high- quality measurements in pp collisions are required as a reference for Pb-Pb collisions. ALICE measurements of neutral meson spectra cover a large p T range, with the Photon Conversion Method - which requires measurements from the ITS and TPC - covering low to intermediate p T and the PHOS and EMCal electromagnetic calorimeters covering an intermediate to high p T range. In this presentation, measurements of π0, s and η’s obtained from the ALICE experiment, for pp collisions at several collisional center of mass energies ≤ft(\\sqrt{{s}NN}\\right), from 0.9 TeV to 8 TeV and in Pb-Pb collisions at \\sqrt{{s}NN}=2.76 {{TeV}}, will be presented. The reconstruction of neutral mesons using the Photon Conversion Method (PCM) will also be discussed.
Meson transition form factors in light-front holographic QCD
NASA Astrophysics Data System (ADS)
Brodsky, Stanley J.; Cao, Fu-Guang; de Téramond, Guy F.
2011-10-01
We study the photon-to-meson transition form factors (TFFs) FMγ(Q2) for γγ*→M using light-front holographic methods. The Chern-Simons action, which is a natural form in five-dimensional anti-de Sitter (AdS) space, is required to describe the anomalous coupling of mesons to photons using holographic methods and leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the qq¯ component of the pion wave function, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process π0→γγ and the pion TFF at the asymptotic limit, a probability for the qq¯ component of the pion wave function Pqq¯=0.5 is required, thus giving indication that the contributions from higher Fock states in the pion light-front wave function need to be included in the analysis. The probability for the Fock state containing four quarks Pqq¯qq¯˜10%, which follows from analyzing the hadron matrix elements for a dressed current model, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wave function. The results for the TFFs for the η and η' mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q2 is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the η and η' TFFs.
Quark-meson coupling model with the cloudy bag
Nagai, S.; Miyatsu, T.; Saito, Kenji; Tsushima, Kazuo
2008-07-01
Using the volume coupling version of the cloudy bag model, the quark-meson coupling model is extended to study the role of pion field and the properties of nuclear matter. The extended model includes the effect of gluon exchange as well as the pion-cloud effect, and provides a good description of the nuclear matter properties. The relationship between the extended model and the EFT approach to nuclear matter is also discussed.
Chiral-scale effective theory including a dilatonic meson
NASA Astrophysics Data System (ADS)
Li, Yan-Ling; Ma, Yong-Liang; Rho, Mannque
2017-06-01
A scale-invariant chiral effective Lagrangian is constructed for octet pions and a dilaton figuring, as Nambu-Goldstone bosons, with vector mesons incorporated as hidden gauge fields. The Lagrangian is built to the next-to-leading order in chiral-scale counting without baryon fields and then to leading order including baryons. The resulting theory is hidden scale symmetric and local symmetric. We also discuss some possible applications of the present Lagrangian.
Measurement of inclusive baryon production in B meson decays
NASA Astrophysics Data System (ADS)
Albrecht, H.; Cronström, H. I.; Ehrlichmann, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Nau, A.; Nowak, S.; Reidenbach, M.; Reiner, R.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Appuhn, R. D.; Hast, C.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Walther, A.; Wegener, D.; Paulini, M.; Reim, K.; Wegener, H.; Mundt, R.; Oest, T.; Schmidt-Parzefall, W.; Funk, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hölscher, A.; Hofmann, W.; Hüpper, A.; Khan, S.; Knöpfle, K. T.; Spengler, J.; Britton, D. I.; Charlesworth, C. E. K.; Edwards, K. W.; Hyatt, E. R. F.; Kapitza, H.; Krieger, P.; Macfarlane, D. B.; Patel, P. M.; Prentice, J. D.; Saull, P. R. B.; Seidel, S. C.; Tsamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Reßing, D.; Śchmidtler, M.; Schneider, M.; Schubert, K. R.; Strahl, K.; Waldi, R.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Zivko, T.; Jönsson, L.; Balagura, V.; Belyaev, I.; Danilov, M.; Droutskoy, A.; Golutvin, A.; Gorelov, I.; Kostina, G.; Lubimov, V.; Murat, P.; Pakhlov, P.; Ratnikov, F.; Semenov, S.; Shibaev, V.; Soloshenko, V.; Tichomirov, I.; Zaitsev, Yu.
1992-03-01
Using the ARGUS detector at the e + e - storage ring DORIS II at DESY, we have studied B meson decays into baryons p and Λ. From the simultaneous analysis of p and Λ yields, p bar p and Λbar p correlations, and various lepton-baryon and lepton-baryon-antibaryon correlations the inclusive branching ratio is found to be BR ( B→baryons)=(6.8±0.5±0.3)%.
Kaluza-Klein mesons in universal extra dimensions
De Pree, Erin; Sher, Marc
2005-11-01
In models with universal extra dimensions, the isosinglet Kaluza-Klein (KK) quarks (q{sup 1}) have very narrow widths, of O(5-10) MeV, and will thus hadronize. Studies of KK quarkonia (q{sup 1}q{sup 1}) show very sharp resonances and dramatic signatures at the linear collider. In this Brief Report, we consider the possibility of detecting KK mesons (q{sup 1}q), and show that detection at a linear collider is unlikely.
Observation of CP Violation in the Neutral B Meson System
Levy, S
2004-06-16
This dissertation presents a measurement of time-dependent CP-violating asymmetries in neutral B meson decays collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data sample consists of about 88 million {Upsilon}(4S) {yields} B{bar B} decays collected between 1999 and 2002. We study events in which one neutral B meson decay to the CP-eigenstates J/{psi} K{sub S}{sup 0}, {psi}(2S)K{sub S}{sup 0}, {chi}{sub c1}K{sub S}{sup 0}, and {eta}{sub c}K{sub S}{sup 0}, or to flavor-eigenstates involving D{sup (*)}{pi}/{rho}/a{sub 1} and J/{psi}K*{sup 0}(K*{sup 0} {yields} K{sup +} {pi}{sup -}), is fully reconstructed. The flavor of the other neutral B meson is tagged at the time of its decay, mainly using the charge of identified leptons and kaons. The proper time elapsed between the meson decays is determined by measuring the distance between the decay vertices. The amplitude of the CP-violating asymmetry, which in the Standard Model is proportional to sin2{beta}, is determined from a simultaneous maximum-likelihood fit to the time-difference distribution of the flavor- and CP-eigenstate samples. We measure sin2{beta} = 0.755 {+-} 0.074 (stat) {+-} 0.030 (syst).
Next-to-leading order corrections to deeply virtual production of pseudoscalar mesons
NASA Astrophysics Data System (ADS)
Duplančić, G.; Müller, D.; Passek-Kumerički, K.
2017-08-01
We complete the perturbative next-to-leading order corrections to the hard scattering amplitudes of deeply virtual meson leptoproduction processes at leading twist-two level by presenting the results for the production of flavor singlet pseudoscalar mesons. The new results are given in the common momentum fraction representation and in terms of conformal moments. We also comment on the flavor singlet results for deeply virtual vector meson production.
Modification of the omega-meson lifetime in nuclear matter.
Kotulla, M; Trnka, D; Mühlich, P; Anton, G; Bacelar, J C S; Bartholomy, O; Bayadilov, D; Beloglazov, Y A; Bogendörfer, R; Castelijns, R; Crede, V; Dutz, H; Ehmanns, A; Elsner, D; Ewald, R; Fabry, I; Fuchs, M; Essig, K; Funke, Ch; Gothe, R; Gregor, R; Gridnev, A B; Gutz, E; Höffgen, S; Hoffmeister, P; Horn, I; Hössl, J; Jaegle, I; Junkersfeld, J; Kalinowsky, H; Klein, Frank; Klein, Fritz; Klempt, E; Konrad, M; Kopf, B; Krusche, B; Langheinrich, J; Löhner, H; Lopatin, I V; Lotz, J; Lugert, S; Menze, D; Messchendorp, J G; Mertens, T; Metag, V; Mosel, U; Nanova, M; Novotny, R; Ostrick, M; Pant, L M; van Pee, H; Pfeiffer, M; Roy, A; Radkov, A; Schadmand, S; Schmidt, Ch; Schmieden, H; Schoch, B; Shende, S; Suft, G; Sumachev, V V; Szczepanek, T; Süle, A; Thoma, U; Varma, R; Walther, D; Weinheimer, Ch; Wendel, Ch
2008-05-16
Information on hadron properties in the nuclear medium has been derived from the photoproduction of omega mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the omega-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic omega width is found to be 130-150 MeV/c(2) at normal nuclear matter density for an average 3-momentum of 1.1 GeV/c. In the rest frame of the omega meson, this inelastic omega width corresponds to a reduction of the omega lifetime by a factor approximately 30. For the first time, the momentum dependent omegaN cross section has been extracted from the experiment and is in the range of 70 mb.
Eta(547) and eta(958) meson photoproduction on the proton
NASA Astrophysics Data System (ADS)
Dugger, Michael Robert
Photoproduction of η and η' mesons has been studied at the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) using a tagged photon beam incident on a hydrogen target with photon energies from the respective production thresholds up to 2.4 GeV. The photoproduced mesons were identified via missing mass reconstruction using recoil proton momentum and time of flight information. Data were obtained in a range of
Photoproduction of $\\pi^+ \\pi^-$ meson pairs on the proton
Marco A. Battaglieri; DeVita, Raffaella; Szczepaniak, Adam P.
2009-10-01
The exclusive reaction $\\gamma p \\to p \\pi^+ \\pi^-$ was studied in the photon energy range 3.0 - 3.8 GeV and momentum transfer range $0.4<-t<1.0$ GeV$^2$. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range the integrated luminosity was about 20 pb$^{-1}$. The reaction was isolated by detecting the $\\pi^+$ and proton in CLAS, and reconstructing the $\\pi^-$ via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the $S$, $P$, and $D$-waves in the $M_{\\pi^+\\pi^-}$ mass range $0.4-1.4$ GeV were derived performing a partial wave expansion of the extracted moments. Besides the dominant contribution of the $\\rho(770)$ meson in the $P$-wave, evidence for the $f_0(980)$ and the $f_2(1270)$ mesons was found in the $S$ and $D$-waves, respectively. The differential production cross sections $d\\sigma/dt$ for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the $f_0(980)$ has been measured in a photoproduction experiment.
Near threshold two meson production in hardonic fusion reactions
NASA Astrophysics Data System (ADS)
Jahn, Rainer
1991-04-01
An approved and funded exclusive COSY experiment is presented, which focuses on near threshold two meson production via the reactions p+d→3 He+π+π- and p+d→3 He+K+K-. It takes advantage of the high quality of the cooled external COSY beam and the existing spectrometer BIG KARL. The setup consists of a vertex wall and a scintillator cylinder and endcap covering a 4π solid angle. The large efficiency and high resolution of this detection method will yield precision data on the low energy (T<50 MeV) meson-meson interaction and probe into questions like the ABC-effect and KḲ molecule. The detector further allows a measurement of possible radiative φ (1020) decay, which will directly probe the strange quark content of the f0(975). Existing inclusive data as well as first results of a very recent `semi-exclusive' experiment performed at SATURNE will be also be presented.
Catalytic phi meson production in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Kolomeitsev, E. E.; Tomášik, B.
2009-09-01
The phi meson production on hyperons πY → phiY and anti-kaons \\bar{K}N\\to \\phi Y is argued to be a new efficient source of phi mesons in a nucleus-nucleus collision. These reactions are not suppressed according to the Okubo-Zweig-Izuka rule in contrast to the processes with non-strange particles in the entrance channels, πB and BB with B = N, Δ. A rough estimate of the cross sections within a simple hadronic model shows that the cross sections of πY → phiY and \\bar{K}N\\to \\phi Y reactions can exceed that of the πN → phiN reaction by factors 50 and 60, respectively. In the hadrochemical model for nucleus-nucleus collisions at SIS and lower AGS energies, we calculate the evolution of strange particle populations and the phi meson production rate due to the new processes. It is found that the catalytic reactions can be operative if the maximal temperature in nucleus-nucleus collisions is larger than 130 MeV and the collision time is larger than 10 fm. A possible influence of the catalytic reactions on the centrality dependence of the phi yield at AGS energies and the phi rapidity distributions at SPS energies is discussed.
Observation of CP violation in the B(0) meson system.
Aubert, B; Boutigny, D; Gaillard, J M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Palano, A; Chen, G P; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Reinertsen, P L; Stugu, B; Abbott, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Clark, A R; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kluth, S; Kolomensky, Y G; Kral, J F; LeClerc, C; Levi, M E; Liu, T; Lynch, G; Meyer, A B; Momayezi, M; Oddone, P J; Perazzo, A; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Zisman, M S; Bright-Thomas, P G; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Krug, J; Kunze, M; Lewandowski, B; Peters, K; Schmuecker, H; Steinke, M; Andress, J C; Barlow, N R; Bhimji, W; Chevalier, N; Clark, P J; Cottingham, W N; De Groot, N; Dyce, N; Foster, B; McFall, J D; Wallom, D; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Tinslay, J; Blinov, V E; Bukin, A D; Bukin, D A; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Salnikov, A A; Serednyakov, S I; Skovpen, Y I; Telnov, V I; Yushkov, A N; Best, D; Lankford, A J; Mandelkern, M; McMahon, S; Stoker, D P; Ahsan, A; Arisaka, K; Buchanan, C; Chun, S; Branson, J G; MacFarlane, D B; Prell, S; Rahatlou, S; Raven, G; Sharma, V; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N; Levy, S L; Long, O; Lu, A; Richman, J D; Verkerke, W; Witherell, M; Yellin, S; Beringer, J; Dorfan, D E; Eisner, A M; Frey, A; Grillo, A A; Grothe, M; Heusch, C A; Johnson, R P; Kroeger, W; Lockman, W S; Pulliam, T; Sadrozinski, H; Schalk, T; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Metzler, S; Oyang, J; Porter, F C; Ryd, A; Samuel, A; Weaver, M; Yang, S; Zhu, R Y; Devmal, S; Geld, T L; Jayatilleke, S; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Dima, M O; Fahey, S; Ford, W T; Johnson, D R; Nauenberg, U; Olivas, A; Park, H; Rankin, P; Roy, J; Sen, S; Smith, J G; van Hoek, W C; Wagner, D L; Blouw, J; Harton, J L; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Brandt, T; Brose, J; Colberg, T; Dahlinger, G; Dickopp, M; Dubitzky, R S; Hauke, A; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, K R; Schwierz, R; Spaan, B; Wilden, L; Behr, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; Roussot, E; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Falbo, M; Borean, C; Bozzi, C; Dittongo, S; Folegani, M; Piemontese, L; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Xie, Y; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Fabbricatore, P; Farinon, S; Lo Vetere, M; Macri, M; Monge, M R; Musenich, R; Pallavicini, M; Parodi, R; Passaggio, S; Pastore, F C; Patrignani, C; Pia, M G; Priano, C; Robutti, E; Santroni, A; Morii, M; Bartoldus, R; Dignan, T; Hamilton, R; Mallik, U; Cochran, J; Crawley, H B; Fischer, P A; Lamsa, J; Meyer, W T; Rosenberg, E I; Benkebil, M; Grosdidier, G; Hast, C; Höcker, A; Lacker, H M; Laplace, S; Lepeltier, V; Lutz, A M; Plaszczynski, S; Schune, M H; Trincaz-Duvoid, S; Valassi, A; Wormser, G; Bionta, R M; Brigljević, V; Lange, D J; Mugge, M; Shi, X; van Bibber, K; Wenaus, T J; Wright, D M; Wuest, C R; Carroll, M; Fry, J R; Gabathuler, E; Gamet, R; George, M; Kay, M; Payne, D J; Sloane, R J; Touramanis, C; Aspinwall, M L; Bowerman, D A; Dauncey, P D; Egede, U; Eschrich, I; Gunawardane, N J; Nash, J A; Sanders, P; Smith, D; Azzopardi, D E; Back, J J; Dixon, P; Harrison, P F; Potter, R J; Shorthouse, H W; Strother, P; Vidal, P B; Williams, M I; Cowan, G; George, S; Green, M G; Kurup, A; Marker, C E; McGrath, P; McMahon, T R; Ricciardi, S; Salvatore, F; Scott, I; Vaitsas, G; Brown, D; Davis, C L; Allison, J; Barlow, R J; Boyd, J T; Forti, A C; Fullwood, J; Jackson, F; Lafferty, G D; Savvas, N; Simopoulos, E T; Weatherall, J H; Farbin, A; Jawahery, A; Lillard, V; Olsen, J; Roberts, D A; Schieck, J R; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Moore, T B; Staengle, H; Willocq, S; Brau, B; Cowan, R; Sciolla, G; Taylor, F; Yamamoto, R K; Milek, M; Patel, P M; Trischuk, J; Lanni, F; Palombo, F; Bauer, J M; Booke, M; Cremaldi, L; Eschenburg, V; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Martin, J P; Nief, J Y; Seitz, R; Taras, P; Zacek, V; Nicholson, H; Sutton, C S; Cartaro, C; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Paolucci, P; Piccolo, D; Sciacca, C; LoSecco, J M; Alsmiller, J R; Gabriel, T A; Handler, T; Brau, J; Frey, R; Iwasaki, M; Sinev, N B; Strom, D; Colecchia, F; Dal Corso, F; Dorigo, A; Galeazzi, F; Margoni, M; Michelon, G; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Torassa, E; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; de La Vaissière, C; Del Buono, L; Hamon, O; Le Diberder, F; Leruste, P; Lory, J; Roos, L; Stark, J; Versillé, S; Manfredi, P F; Re, V; Speziali, V; Frank, E D; Gladney, L; Guo, Q H; Panetta, J H; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Martinez-Vidal, F; Morganti, M; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Simi, G; Triggiani, G; Walsh, J; Haire, M; Judd, D; Paick, K; Turnbull, L; Wagoner, D E; Albert, J; Bula, C; Elmer, P; Lu, C; McDonald, K T; Miftakov, V; Schaffner, S F; Smith, A J; Tumanov, A; Varnes, E W; Cavoto, G; del Re, D; Faccini, R; Ferrarotto, F; Ferroni, F; Fratini, K; Lamanna, E; Leonardi, E; Mazzoni, M A; Morganti, S; Piredda, G; Safai Tehrani, F; Serra, M; Voena, C; Christ, S; Waldi, R; Adye, T; Franek, B; Geddes, N I; Gopal, G P; Xella, S M; Aleksan, R; De Domenico, G; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel De Monchenault, G; Kozanecki, W; Langer, M; London, G W; Mayer, B; Serfass, B; Vasseur, G; Yèche, C; Zito, M; Copty, N; Purohit, M V; Singh, H; Yumiceva, F X; Adam, I; Anthony, P L; Aston, D; Baird, K; Berger, J P; Bloom, E; Boyarski, A M; Bulos, F; Calderini, G; Claus, R; Convery, M R; Coupal, D P; Coward, D H; Dorfan, J; Dorser, M; Dunwoodie, W; Field, R C; Glanzman, T; Godfrey, G L; Gowdy, S J; Grosso, P; Himel, T; Hryn'ova, T; Huffer, M E; Innes, W R; Jessop, C P; Kelsey, M H; Kim, P; Kocian, M L; Langennegger, U; Leith, D W; Luitz, S; Luth, V; Lynch, H L; Marsiske, H; Menke, S; Messner, R; Moffeit, K C; Mount, R; Muller, D R; O'Grady, C P; Perl, M; Petrak, S; Quinn, H; Ratcliff, B N; Robertson, S H; Rochester, L S; Roodman, A; Schietinger, T; Schindler, R H; Schwiening, J; Seeman, J T; Serbo, V V; Snyder, S R; Soha, A; Spanier, S M; Stelzer, J; Su, D; Sullivan, M K; Tanaka, H A; Va'vra, J; Wagner, S R; Weinstein, A J; Wienands, U; Wisniewski, W J; Wright, D H; Young, C C; Burchat, P R; Cheng, C H; Kirkby, D; Meyer, T I; Roat, C; Henderson, R; Bugg, W; Cohn, H; Weidemann, A W; Izen, J M; Kitayama, I; Lou, X C; Turcotte, M; Bianchi, F; Bona, M; DiGirolamo, B; Gamba, D; Smol, A; Zanin, D; Bosisio, L; Della Ricci, G; Lanceri, L; Pompili, A; Poropat, P; Vuagnin, G; Panvini, R S; Brown, C M; De Silva, A; Kowalewski, R; Roney, J M; Band, H R; Charles, E; Dasu, S; Di Lodovico, F; Eichenbaum, A M; Hu, H; Johnson, J R; Liu, R; Nielsen, J; Pan, Y; Prepost, R; Scott, I J; Sekula, S J; von Wimmersperg-Toeller, J H; Wu, S L; Zobernig, H; Kordich, T M; Neal, H
2001-08-27
We present an updated measurement of time-dependent CP-violating asymmetries in neutral B decays with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. This result uses an additional sample of Upsilon(4S) decays collected in 2001, bringing the data available to 32 x 10(6) BB macro pairs. We select events in which one neutral B meson is fully reconstructed in a final state containing charmonium and the flavor of the other neutral B meson is determined from its decay products. The amplitude of the CP-violating asymmetry, which in the standard model is proportional to sin2 beta, is derived from the decay time distributions in such events. The result sin2 beta = 0.59+/-0.14(stat)+/-0.05(syst) establishes CP violation in the B(0) meson system. We also determine absolute value of lambda = 0.93+/-0.09(stat)+/-0.03(syst), consistent with no direct CP violation.
Exclusive central diffractive production of scalar, pseudoscalar and vector mesons
NASA Astrophysics Data System (ADS)
Lebiedowicz, P.; Nachtmann, O.; Szczurek, A.
2014-11-01
We discuss exclusive central diffractive production of scalar (ƒ0(980), ƒ0(1370), ƒ0(1500)), pseudoscalar (η, η'(958)), and vector (ρ0) mesons in proton-proton collisions. The amplitudes are formulated in terms of effective vertices required to respect standard rules of Quantum Field Theory and propagators for the exchanged pomeron and reggeons. Different pomeron-pomeron-meson tensorial (vectorial) coupling structures are possible in general. In most cases two lowest orbital angular momentum - spin couplings are necessary to describe experimental differential distributions. For the ƒ0(980) and η production the reggeon-pomeron, pomeron-reggeon, and reggeon-reggeon exchanges are included in addition, which seems to be necessary at relatively low energies. The theoretical results are compared with the WA102 experimental data, in order to determine the model parameters. For the ρ0 production the photon-pomeron and pomeron-photon exchanges are considered. The coupling parameters of tensor pomeron and/or reggeon are fixed from the H1 and ZEUS experimental data of the γp → ρ0 p reaction. We present first predictions of this mechanism for pp → ppπ+π- reaction being studied at COMPASS, RHIC, Tevatron, and LHC. Correlation in azimuthal angle between outgoing protons and distribution in pion rapidities at √s = 7 TeV are presented. We show that high-energy central production of mesons could provide crucial information on the spin structure of the soft pomeron.
Decay Constants of Beauty Mesons from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2014-11-01
Our recently completed analysis of the decay constants of both pseudoscalar and vector beauty mesons reveals that in the bottom-quark sector two specific features of the sum-rule predictions show up: (i) For the input value of the bottom-quark mass in the M̅S̅ scheme m̅b(m̅b) ≈ 4:18 GeV; the sum-rule result fB ≈ 210-220 MeV for the B meson decay constant is substantially larger than the recent lattice-QCD finding fB ≈ 190 MeV: Requiring QCD sum rules to reproduce the lattice-QCD value of fB yields a significantly larger b-quark mass: m̅b(m̅b) = 4:247 GeV: (ii) Whereas QCD sum-rule predictions for the charmed-meson decay constants fD; fDs, fD* and fDs* are practically independent of the choice of renormalization scale, in the beauty sector the results for the decay constants—and especially for the ratio fB* / fB—prove to be very sensitive to the specific scale setting.
NASA Astrophysics Data System (ADS)
McAllister, Liam; McGuirk, Paul; Stout, John
2014-02-01
We analyze the spectra of non-chiral and chiral bifundamental mesons arising on intersecting D7-branes in AdS 5 × S 5. In the absence of magnetic flux on the curve of intersection, the spectrum is non-chiral, and the dual gauge theory is conformal in the quenched/probe approximation. For this case we calculate the dimensions of the bifundamental mesonic operators. We then consider magnetization of the D7-branes, which deforms the dual theory by an irrelevant operator and renders the mesons chiral. The magnetic flux spoils the conformality of the dual theory, and induces a D3-brane charge that becomes large in the ultraviolet, where the non-normalizable bifundamental modes are rapidly divergent. An ultraviolet completion is therefore necessary to calculate the correlation functions in the chiral case. On the other hand, the normalizable modes are very well localized in the infrared, leading to new possibilities for local model-building on intersecting D7-branes in warped geometries.
Modification of the ω-Meson Lifetime in Nuclear Matter
NASA Astrophysics Data System (ADS)
Kotulla, M.; Trnka, D.; Mühlich, P.; Anton, G.; Bacelar, J. C. S.; Bartholomy, O.; Bayadilov, D.; Beloglazov, Y. A.; Bogendörfer, R.; Castelijns, R.; Crede, V.; Dutz, H.; Ehmanns, A.; Elsner, D.; Ewald, R.; Fabry, I.; Fuchs, M.; Essig, K.; Funke, Ch.; Gothe, R.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Höffgen, S.; Hoffmeister, P.; Horn, I.; Hössl, J.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Klein, Frank; Klein, Fritz; Klempt, E.; Konrad, M.; Kopf, B.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Messchendorp, J. G.; Mertens, T.; Metag, V.; Mosel, U.; Nanova, M.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Radkov, A.; Schadmand, S.; Schmidt, Ch.; Schmieden, H.; Schoch, B.; Shende, S.; Suft, G.; Sumachev, V. V.; Szczepanek, T.; Süle, A.; Thoma, U.; Varma, R.; Walther, D.; Weinheimer, Ch.; Wendel, Ch.
2008-05-01
Information on hadron properties in the nuclear medium has been derived from the photoproduction of ω mesons on the nuclei C, Ca, Nb, and Pb using the Crystal Barrel/TAPS detector at the ELSA tagged photon facility in Bonn. The dependence of the ω-meson cross section on the nuclear mass number has been compared with three different types of models: a Glauber analysis, a Boltzmann-Uehling-Uhlenbeck analysis of the Giessen theory group, and a calculation by the Valencia theory group. In all three cases, the inelastic ω width is found to be 130 150MeV/c2 at normal nuclear matter density for an average 3-momentum of 1.1GeV/c. In the rest frame of the ω meson, this inelastic ω width corresponds to a reduction of the ω lifetime by a factor ≈30. For the first time, the momentum dependent ωN cross section has been extracted from the experiment and is in the range of 70 mb.
Eta(547) and Eta(958) Meson Photoproduction on the Proton
Dugger, Michael
2001-12-01
Photoproduction of η and η' mesons has been studied at the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) using a tagged photon beam incident on a hydrogen target with photon energies from the respective production thresholds up to 2.4 GeV. The photoproduced mesons were identified via missing mass reconstruction using recoil proton momentum and time of flight information. Data were obtained in a range of √s from threshold to 2.2 GeV for each meson. In this study, differential cross-section measurements for the γp →pη and γp → pη' reactions are presented, and the results compared to recent data. An isobar analysis of the differential cross-sections is performed. The predicted differential cross-sections from the isobar analysis are used to predict behavior in unmeasured regions of phase space, and to infer total cross sections. For the γp → pη reaction, a value of the S_{11}(1535) proton helicity amplitude also was extracted and compared to recent analyses. The data presented greatly extends the energy and angle coverage for differential cross-sections of η photoproduction, and significantly improves the accuracy with which η' cross sections are known.
Photoproduction of π+π- meson pairs on the proton
NASA Astrophysics Data System (ADS)
Battaglieri, M.; de Vita, R.; Szczepaniak, A. P.; Adhikari, K. P.; Amaryan, M. J.; Anghinolfi, M.; Baghdasaryan, H.; Bedlinskiy, I.; Bellis, M.; Bibrzycki, L.; Biselli, A. S.; Bookwalter, C.; Branford, D.; Briscoe, W. J.; Burkert, V. D.; Careccia, S. L.; Carman, D. S.; Clinton, E.; Cole, P. L.; Collins, P.; Crede, V.; Dale, D.; D'Angelo, A.; Daniel, A.; Dashyan, N.; de Sanctis, E.; Deur, A.; Dhamija, S.; Djalali, C.; Dodge, G. E.; Doughty, D.; Drozdov, V.; Egiyan, H.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fradi, A.; Gabrielyan, M. Y.; Gan, L.; Garçon, M.; Gasparian, A.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glamazdin, O.; Goett, J.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Hassall, N.; Hicks, K.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Johnstone, J. R.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, W.; Klein, A.; Klein, F. J.; Kossov, M.; Kubarovsky, A.; Kubarovsky, V.; Kuleshov, S. V.; Kuznetsov, V.; Laget, J. M.; Lesniak, L.; Livingston, K.; Lu, H. Y.; Mayer, M.; McCracken, M. E.; McKinnon, B.; Meyer, C. A.; Mikhailov, K.; Mineeva, T.; Mirazita, M.; Mochalov, V.; Mokeev, V.; Moriya, K.; Munevar, E.; Nadel-Turonski, P.; Nakagawa, I.; Nepali, C. S.; Niccolai, S.; Niculescu, I.; Niroula, M. R.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Park, S.; Paris, M.; Pasyuk, E.; Anefalos Pereira, S.; Pisano, S.; Pivnyuk, N.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seraydaryan, H.; Sharabian, Y. G.; Sober, D. I.; Sokhan, D.; Stavinsky, A.; Stepanyan, S.; Stepanyan, S. S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Teymurazyan, A.; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, B.; Zhao, Z. W.
2009-10-01
The exclusive reaction γp→pπ+π- was studied in the photon energy range 3.0-3.8 GeV and the momentum transfer range 0.4<-t<1.0GeV2. Data were collected with the CLAS detector at the Thomas Jefferson National Accelerator Facility. In this kinematic range, the integrated luminosity was about 20pb-1. The reaction was isolated by detecting the π+ and proton in CLAS, and reconstructing the π- via the missing-mass technique. Moments of the di-pion decay angular distributions were derived from the experimental data. Differential cross sections for the S, P, and D-waves, in the Mπ+π- mass range 0.4-1.4 GeV, were derived performing a partial wave expansion of the extracted moments. Beside the dominant contribution of the ρ(770) meson in the P-wave, evidence for the f0(980) and the f2(1270) mesons was found in the S and D-waves, respectively. The differential production cross sections dσ/dt for individual waves in the mass range of the above-mentioned mesons were extracted. This is the first time the f0(980) has been measured in a photoproduction experiment.
First measurement of coherent φ-meson photoproduction on deuteron
NASA Astrophysics Data System (ADS)
Mibe, Tsutomu; Gao, Haiyan; Hicks, Ken; Kramer, Kevin; Stepanyan, Stepan; Tedeschi, David
2007-04-01
σφN GeV^2/c^2 Coherent φ-meson photoproduction on deuteron is studied in a high-statistics photo-deuteron experiment at CLAS with a tagged photon beam (Eγ= 0.8 -- 3.6 GeV). The cross section and decay angular distributions have been measured for the first time up to a squared four-momentum transfer t = (pγ-pφ)^2 =-2. The cross sections are compared with predictions from a re-scattering model. In the framework of vector meson dominance (VMD), the data are consistent with the total φ-N cross section at about 10 mb. If vector meson dominance is violated, a larger from the A-dependence experiment [1] is possible by introducing a larger t-slope for the φN->φN process than that for the γN->φN process. The decay angular distributions follow the prediction from helicity conservation. This measurement demonstrates a new approach to the study of the φ-N interaction in the energy region where VMD may not be a good approximation. [1] T. Ishikawa, et al. Phys. Lett. B608, 215 (2005).
Effect of in-medium parameters of ρ meson in its photoproduction reactions on nuclei
Das, Swapan
2015-03-15
There exist model calculations showing the modification of the hadronic parameters of ρ meson in the nuclear environment. From these parameters, we extract the ρ-meson-nucleus optical potential and show the medium effect due to this potential on the ρ-meson mass distribution spectra in the photonuclear reactions. The calculated results reproduced reasonably the measured e{sup +}e{sup −} invariant mass, i.e., ρ-meson mass, distribution spectra in γ, ρ{sup 0} → e{sup +}e{sup −} reactions on nuclei.
In-Medium \\varvec{ρ }-Meson Properties in a Light-Front Approach
NASA Astrophysics Data System (ADS)
de Melo, J. P. B. C.; Tsushima, K.
2017-03-01
Properties of ρ -meson in symmetric nuclear matter are investigated within a light-front constituent quark model (LFCQM), using the in-medium input calculated by the quark-meson coupling (QMC) model. The LFCQM used here was previously applied in vacuum to calculate the ρ -meson electromagnetic properties, namely, charge G0, magnetic G1, and quadrupole G2 form factors, as well as the electromagnetic radius and decay constant. We predict the in-medium modifications of the ρ -meson electromagnetic form factors in symmetric nuclear matter.
Electroweak production of hybrid mesons in a flux-tube simulation of lattice QCD.
Close, F E; Dudek, J J
2003-10-03
We make the first calculation of the electroweak couplings of hybrid mesons to conventional mesons appropriate to photoproduction and to the decays of B or D mesons. E1 amplitudes are found to be large and may contribute in charge exchange gammap-->nH(+) allowing production of (among others) the charged 1(-+) exotic hybrid off a(2) exchange. Axial hybrid meson photoproduction is predicted to be large courtesy of pi exchange, and its strange hybrid counterpart is predicted in B-->psiK(H)(1(+)) with branching ratio B approximately 10(-4). Higher multipoles and some implications for hybrid charmonium are briefly discussed.
Vector meson masses from a hidden local symmetry in a constant magnetic field
NASA Astrophysics Data System (ADS)
Kawaguchi, Mamiya; Matsuzaki, Shinya
2016-06-01
We discuss the magnetic responses of vector meson masses based on the hidden local symmetry (HLS) model in a constant magnetic field, described by the lightest two-flavor system including the pion, rho and omega mesons in the spectrum. The effective masses influenced under the magnetic field are evaluated according to the derivative or chiral expansion established in the HLS model. At the leading order O (p2), the g factor of the charged rho meson is fixed to be 2, implying that the rho meson at this order is treated just like a pointlike spin-1 particle. Beyond the leading order, one finds anomalous magnetic interactions of the charged rho meson, involving the anomalous magnetic moment, which give corrections to the effective mass. It is then suggested that up to O (p4) the charged rho meson tends to become massless. Of interest is that nontrivial magnetic dependence of neutral mesons emerges to give rise to the significant mixing among neutral mesons. Consequently, it leads to the dramatic enhancement of the omega meson mass, which is testable in future lattice simulations. Corrections from terms beyond O (p4) are also addressed.
Effect of the extra dimensions on the meson spectra in the perturbed background
NASA Astrophysics Data System (ADS)
Naji, J.; Heshmatian, S.
2017-05-01
A class of the d-dimensional black holes space-time with the perturbed geometric function and dilaton field is considered to study meson spectroscopy. Holographic description of the black holes are used to investigate the meson spectra and the effective potential of mesons which described by a massless scalar field in the d-dimensional black holes with a dilaton background. The effects of perturbations and extra dimensions on the meson spectra and effective potential are investigated by using some experimental data and simulation of spectra ratios.
Mass of heavy-light mesons in a constituent quark picture with partially restored chiral symmetry
NASA Astrophysics Data System (ADS)
Park, Aaron; Gubler, Philipp; Harada, Masayasu; Lee, Su Houng; Nonaka, Chiho; Park, Woosung
2016-03-01
We probe effects of the partial chiral symmetry restoration to the mass of heavy-light mesons in a constituent quark model by changing the constituent quark mass of the light quark. Due to the competing effect between the quark mass and the linearly rising potential, whose contribution to the energy increases as the quark mass decreases, the heavy-light meson mass has a minimum value near the constituent quark mass typically used in the vacuum. Hence, the meson mass increases as one decreases the constituent quark mass consistent with recent QCD sum rule analyses, which show an increasing D meson mass as the chiral order parameter decreases.
In Medium Properties of Charmed Strange Mesons in Dense Hadron ic Matter
NASA Astrophysics Data System (ADS)
Kumar, Sushil
2015-05-01
The medium modifications of the charmed strange mesons in the dense hadronic matter are investigated within chiral S U(4) model. The charmed strange meson properties modifies due to their interactions with the nucleons, hyperons and the scalar mesons (scalar-isoscalar mesons ( σ, ζ), scalar isovector meson ( δ)) in the dense hadronic medium. The various parameters used in the chiral model are obtained by fitting the vacuum baryon masses and saturation properties of nuclear matter. The non-linear coupled equations of the scalar fields are solved to obtain their baryon density, isospin and strangeness dependent values. Furthermore, the dispersion relations are derived for charmed strange mesons. Effects of isospin asymmetry and strangeness on the energies of charmed strange mesons are investigated. The in medium properties of charmed strange mesons can be particularly relevant to the experiments with neutron rich beams at the Facility for Antiproton and Ion Research (FAIR) at GSI, Germany, as well as to experiments at the Rare Isotope Accelerator (RIA) laboratory, USA. The present study of the in medium properties of charmed strange mesons will be of direct relevance for the observables from the compressed baryonic matter, resulting from the heavy ion collision experiments.
SUITABILITY OF A NEW CALORIMETER FOR EXOTIC MESON SEARCHES
Bookwalter, C.; Ostrovidov, A.; Eugenio, P.
2007-01-01
Exotic mesons, particles that have quantum numbers that are inaccessible to conventional quark-model mesons, are predicted by quantum chromodynamics (QCD), but past experiments seeking to identify exotic candidates have produced controversial results. The HyCLAS experiment (E04005) at Thomas Jefferson National Accelerator Facility (TJNAF) proposes the use of the Continuous Electron Beam Accelerator Facility (CEBAF) Large Acceptance Spectrometer (CLAS) in Hall B to study the photoproduction of exotic mesons. However, the base detector package at CLAS is not ideal for observing and measuring neutral particles, particularly at forward angles. The Deeply Virtual Compton Scattering (DVCS) experiment at TJNAF has commissioned a new calorimeter for detecting small-angle photons, but studies must be performed to determine its suitability for a meson spectroscopy experiment. The ηπ system has been under especial scrutiny in the community as a source for potential exotics, so the new calorimeter’s ability at reconstructing these resonances must be evaluated. To achieve this, the invariant mass of showers in the calorimeter are reconstructed. Also, two electroproduction reaction channels analogous to photoproduction channels of interest to HyCLAS are examined in DVCS data. It is found that, while not ideal, the new calorimeter will allow access to additional reaction channels, and its inclusion in HyCLAS is warranted. Results in basic shower reconstruction show that the calorimeter has good effi ciency in resolving π° decays, but its η reconstruction is not as strong. When examining ep → epπ°η, preliminary reconstruction of the ηπ° system shows faint signals in the a0(980) region. In the ep → e n π+ η channel, preliminary reconstruction of the ηπ+ system gave good signals in the a0(980) and a2(1320) regions, but statistics were poor. While more analyses are necessary to improve statistics and remove background, these preliminary results support the claim
Vector meson production in ultra-peripheral collisions
NASA Astrophysics Data System (ADS)
Thomas, James O.
Charged ions moving at relativistic speeds generate strong electromagnetic fields (E/M) that, at regions outside the source (important when the E/M sources are nuclei), behave like the fields from a beam of real photons. These equivalent, or virtual photons, can induce an excitation in another nucleus as the source flies by. Existing theories attempt to explain such processes and predict their outcome. One way to study such Ultra-Peripheral Collisions (UPCs) is to simulate them using a Monte-Carlo Multi-Collisional (MCMC) model based on nucleon degrees of freedom. The CRISP (acronym for Collaboration Rio-Illheus-Sao Paulo) model is one such theory. It is basically at the stage of a well-documented software package that implements the MCMC. This model has successfully predicted observables, such as neutron multiplicity, from central collisions and also in UPCs with relativistic heavy ions. However, the photoproduction of vector mesons has only recently been added to the CRISP model. A completely different approach to study UPCs focuses on the role of Parton Distribution Functions (PDFs) in the excitation process. Here, instead of nucleons, the degrees of freedom are quarks and gluons (generically known as partons). Several distinct PDFs exist in the literature and are continually being updated. This work used experimental results released from the ALICE collaboration at the Large Hadron Collider (LHC) facility located at the international particle physics laboratory CERN in Switzerland. Our outputs from the CRISP model, and from the sub-nucleon degrees of freedom model, were photonuclear cross sections for vector meson production. A comparison of our results with the experimental data allowed us to constrain different PDFs, as well as the effect of multiple collisions on the production of mesons with nucleons in the final channel. Upon completion of the calculations, it was seen that the hadronic models could accurately predict the production of the J/psi meson, but
Suppression and Two-Particle Correlations of Heavy Mesons in Heavy-Ion Collisions
NASA Astrophysics Data System (ADS)
Cao, Shanshan; Qin, Guang-You; Bass, Steffen A.
2016-12-01
We study the medium modification of heavy quarks produced in heavy-ion collisions. The evolution of heavy quarks inside the QGP is described using a modified Langevin framework that simultaneously incorporates their collisional and radiative energy loss. Within this framework, we provide good descriptions of the heavy meson suppression and predictions for the two-particle correlation functions of heavy meson pairs.
Bounds on R-parity violating supersymmetric couplings from leptonic and semileptonic meson decays
Dreiner, H. K.; Kraemer, M.; O'Leary, Ben
2007-06-01
We present a comprehensive update of the bounds on R-parity violating supersymmetric couplings from lepton-flavor- and lepton-number-violating decay processes. We consider {tau} and {mu} decays as well as leptonic and semileptonic decays of mesons. We present several new bounds resulting from {tau}, {eta}, and kaon decays and correct some results in the literature concerning B meson decays.
Nucleon resonances in exclusive reactions of photo- and electroproduction of mesons
Skorodumina, Iu. A.; Burkert, V. D.; Golovach, E. N.; Gothe, R. W.; Isupov, E. L.; Ishkhanov, B. S.; Mokeev, V. I.; Fedotov, G. V.
2015-11-01
Methods for extracting nucleon resonance parameters from experimental data are reviewed. The formalism for the description of exclusive reactions of meson photo- and electroproduction off nucleons is discussed. Recent experimental data on exclusive meson production in the scattering of electrons and photons off protons are analyzed.
Yukawa and the Birth of Meson Theory: Fiftieth Anniversary for Nuclear Forces.
ERIC Educational Resources Information Center
Spradley, Joseph L.
1985-01-01
In 1935 physicist Hideki Yukawa proposed the meson theory of nuclear forces. Background, influences, and chronology of Yukawa's work are presented and discussed. Yukawa was supported in his meson idea by Japan's strong emphasis on intuitive and creative approaches which are also evident in subsequent developments in that country. (DH)
The charge form factor of pseudoscalar mesons in a relativistic constituent quark model
Cardarelli, F.; Pace, E.; Grach, I.L.
1994-04-01
The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.
Yukawa and the Birth of Meson Theory: Fiftieth Anniversary for Nuclear Forces.
ERIC Educational Resources Information Center
Spradley, Joseph L.
1985-01-01
In 1935 physicist Hideki Yukawa proposed the meson theory of nuclear forces. Background, influences, and chronology of Yukawa's work are presented and discussed. Yukawa was supported in his meson idea by Japan's strong emphasis on intuitive and creative approaches which are also evident in subsequent developments in that country. (DH)
Flavour and spin of the proton and the meson cloud
NASA Astrophysics Data System (ADS)
Holtmann, H.; Szczurek, A.; Speth, J.
1996-02-01
We present a complete set of formulas for longitudinal momentum distribution functions (splitting functions) of mesons in the nucleon. It can be applied in the framework of the convolution formalism to the deep-inelastic structure functions (quark distributions) of the nucleon viewed as a system composed of virtual "mesons" and "baryons". Pseudoscalar and vector mesons as well as octet and decuplet baryons are included. In contrast to many approaches in the literature the present approach ensures charge and momentum conservation by the construction. We present not only spin averaged splitting functions but also helicity-dependent ones, which can be used to study the spin content of the nucleon. The cut-off parameters of the underlying form factors for different vertices are determined from high-energy particle production data. We find a universal cut-off parameter for processes involving octet baryons. This information allows one to calculate the flavour and spin content of the nucleon. The value of the Gottfried Sum Rule obtained from our model ( SG = 0.224) nicely agrees with that obtained by the NMC. In addition, we calculate the x-dependence of the overlined - overlineu asymmetry and get an impressive agreement with a recent fit of Martin-Stirling-Roberts. The calculated axial coupling constants for semileptonic decays of the octet baryons agree with the experimental data already with the SU(6) wave function for the bare nucleon. As a consequence the Bjorken Sum Rule is nicely reproduced. Although we get improvements for the Ellis-Jaffe Sum Rules for the proton and neutron in comparison to the naive quark model, the MCM is not sufficient to reproduce the experimental data.
Vector meson production and nuclear effects in FNAL E866
Leitch, M.J.; Brooks, M.L.; Awes, T.C.
1999-02-01
Fermilab E866/NUSEA is a fixed-target experiment which has made a number of measurements of the production of vector mesons by 800 GeV protons. These include the nuclear dependence of J/{psi}, {psi}{prime} and {phi} over very broad ranges in x{sub F} and p{sub T}, and the J/{psi} decay angular distribution at very large x{sub F}. Preliminary results from measurements on Be, Fe and W targets are presented and discussed in the context of nuclear effects such as energy loss and multiple scattering of the partons, absorption of the produced c{anti c} pairs, and shadowing. Production mechanisms involving color-singlet or color-octet states for the c{anti c} pair which eventually forms a J{psi} or {psi}{prime} have implications on the strength of absorption in the nucleus and on the angular distribution of the decay muons. Preliminary results on the angular distributions versus x{sub F} and p{sub T} indicate some transverse polarization of the J/{psi} as predicted by models of production through the color octet state. Measurements of dimuons in the 1 to 3 GeV region explore the nuclear dependence of the {phi} meson and also the composition of the continuum between the {phi} and the J/{psi}. These studies of vector meson production and its nuclear dependence are critical in furthering their understanding of these processes towards future measurements at RHIC and new results from NA50 at CERN, where J/{psi} suppression is predicted to be an important signature of the creation of quark-gluon plasma in heavy-ion collisions.
Meson Transition Form Factors in Light-Front Holographic QCD
Brodsky, Stanley J.; Cao, Fu-Guang; de Teramond, Guy F.; /Costa Rica U.
2011-06-22
We study the photon-to-meson transition form factors (TFFs) F{sub M{gamma}}(Q{sup 2}) for {gamma}{gamma}* {yields} M using light-front holographic methods. The Chern-Simons action, which is a natural form in 5-dimensional anti-de Sitter (AdS) space, leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the q{bar q} component of the pion wavefunction, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0} {yields} {gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the q{bar q} component of the pion wavefunction P{sub q{bar q}} = 0.5 is required; thus giving indication that the contributions from higher Fock states in the pion light-front wavefunction need to be included in the analysis. The probability for the Fock state containing four quarks (anti-quarks) which follows from analyzing the hadron matrix elements, P{sub q{bar q}q{bar q}} {approx} 10%, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wavefunction. The results for the TFFs for the {eta} and {eta}{prime} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{prime} TFFs.
An Enquiry Concerning Charmless Semileptonic Decays of Bottom Mesons
Chaisanguanthum, Kris Somboon
2008-05-01
The branching fractions for the decays B → Pℓv_{ℓ}, where P are the pseudoscalar charmless mesons π^{±}, π^{0}, η and η' and ℓ is an electron or muon, are measured with B^{0} and B^{±} mesons found in the recoil of a second B meson decaying as B → Dℓv_{ℓ} or B → D*ℓv_{ℓ}. The measurements are based on a data set of 348 fb^{-1} of e^{+}e^{-} collisions at √s = 10.58 GeV recorded with the BABAR detector. Assuming isospin symmetry, measured pionic branching fractions are combined into β(B^{0} → π^{-}ℓ^{+}v_{ℓ}) = (1.54 ± 0.17_{(stat)} ± 0.09_{(syst)}) x 10^{-4}. First evidence of the B^{+} → ηℓ^{+}v_{ℓ} decay is seen; its branching fraction is measured to be β(B^{+} →ηℓ^{+}v_{ℓ}) = (0.64 ± 0.20_{(stat)} ± 0.03_{(syst)}) x 10^{-4}. It is determined that β(B^{+} → η'ℓ^{+}v_{ℓ}) < 0.47 x 10^{-4} to 90% confidence. Partial branching fractions for the pionic decays in ranges of the momentum transfer and various published calculations of the B → π hadronic form factor are used to obtain values of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V_{ub} between 3.61 and 4.07 x 10^{-3}.
PREFACE: International Workshop: Meson Production at Intermediate and High Energies
NASA Astrophysics Data System (ADS)
Giardina, Giorgio; Bossi, Fabio; Levi Sandri, Paolo; Pedroni, Paolo; Schmieden, Hartmut
2012-03-01
The International Workshop 'Meson Production at Intermediate and High Energies' was held in the 'Capo Peloro Resort' Hotel in Messina, Italy on November 10-11, 2011. The workshop was organized by the University of Messina and 'Fondazione Bonino-Pulejo', in the wonderful setting of the confluence between the Ionian and Tyrrhenian seas, the center of the ancient historical and mythological civilizations of the Mediterranean countries. The main purpose of this workshop was to deal with aspects of electromagnetic and strong forces by meson photoproduction and the electron-positron collider, and to search for dark energy. The subjects covered at the workshop in Messina involved the main activities of the laboratories of Europe and countries overseas. The topics included: Baryon spectroscopy and 'missing resonances' Polarization observables Pseudoscalar and vector meson production through e.m. and hadronic reactions Hadron cross section measurements Measurements with polarized target and/or beam Editors: Giorgio GiardinaUniversity of Messina Fabio BossiINFN - Laboratori Nazionali di Frascati Paolo Levi SandriINFN - Laboratori Nazionali di Frascati Paolo PedroniINFN - Sezione di Pavia Hartmut SchmiedenUniversity of Bonn Organizing Committee: Chairman:G GiardinaMessina, Italy Co-Chairman:F BossiFrascati, Italy Co-Chairman:P Levi SandriFrascati, Italy Co-Chairman:P PedroniPavia, Italy Co-Chairman:H SchmiedenBonn, Germany Scientific Secretary:G MandaglioUniversity of Messina, Italy Local Organizing Committee: F Curciarello, V De Leo, G Fazio, G Giardina, G Mandaglio and M Romaniuk Organizing Institutions: Messina logoFBP logo University of MessinaFondazione Bonino-Pulejo (Messina) Sponsored by: University of Messina, Fondazione Bonino-Pulejo (Messina) and INFN Sezione di Catania http://newcleo.unime.it/workshop2011/ Group Photo 1 Group Photo 2
K* vector meson resonance dynamics in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Ilner, Andrej; Cabrera, Daniel; Markert, Christina; Bratkovskaya, Elena
2017-01-01
We study the strange vector meson (K*,K¯* ) dynamics in relativistic heavy-ion collisions based on the microscopic parton-hadron-string dynamics (PHSD) transport approach which incorporates partonic and hadronic degrees of freedom, a phase transition from hadronic to partonic matter—quark-gluon-plasma (QGP)—and a dynamical hadronization of quarks and antiquarks as well as final hadronic interactions. We investigate the role of in-medium effects on the K*,K¯* meson dynamics by employing Breit-Wigner spectral functions for the K* with self-energies obtained from a self-consistent coupled-channel G -matrix approach. Furthermore, we confront the PHSD calculations with experimental data for p +p , Cu+Cu , and Au+Au collisions at energies up to √{sN N}=200 GeV. Our analysis shows that, at relativistic energies, most of the final K* (observed experimentally) are produced during the late hadronic phase, dominantly by the K +π →K* channel, such that the fraction of the K* from the QGP is small and can hardly be reconstructed from the final observables. The influence of the in-medium effects on the K* dynamics at energies typical of the BNL Relativistic Heavy Ion Collider is rather modest due to their dominant production at low baryon densities (but high meson densities); however, it increases with decreasing beam energy. Moreover, we find that the additional cut on the invariant-mass region of the K* further influences the shape and the height of the final spectra. This imposes severe constraints on the interpretation of the experimental results.
Warm stellar matter within the quark-meson-coupling model
NASA Astrophysics Data System (ADS)
Panda, P. K.; Providência, C.; Menezes, D. P.
2010-10-01
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
Studies of N* Structure from the CLAS Meson Electroproduction Data
Mokeev, Viktor I.; Aznauryan, Inna G.
2014-01-01
The transition {gamma}{sub v}pN amplitudes (electrocouplings) for prominent excited nucleon states obtained in a wide area of photon virtualities offer valuable information for the exploration of the N structure at different distances and allow us to access the complex dynamics of non-perturbative strong interaction. The current status in the studies of {gamma}{sub v}pN electrocouplings from the data on exclusive meson electroproduction off protons measured with the CLAS detector at Jefferson Lab is presented. The impact of these results on exploration of the N structure is discussed.
Measurement of orbitally excited D-mesons at CDF II
Gorelov, Igor V.; /New Mexico U.
2004-12-01
Results of the first measurement of {sup 3}P orbitally excited neutral D-meson states, D*{sub 2}{sup 0} and D{sub 1}{sup 0}, produced in hadron collisions at the Tevatron are presented. Using data from the displaced track trigger, CDF II collects a large sample of these states in decay modes D*{sup +} {pi}{sup -}, D{sup +} {pi}{sup -}. Masses and widths of both states have been measured with precision better than or comparable to that of the world average.
Determination of the X(3872) Meson Quantum Numbers
NASA Astrophysics Data System (ADS)
Aaij, R.; Abellan Beteta, C.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A., Jr.; Amato, S.; Amerio, S.; Amhis, Y.; Anderlini, L.; Anderson, J.; Andreassen, R.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Baesso, C.; Balagura, V.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Bauer, Th.; Bay, A.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Benayoun, M.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Bizzeti, A.; Bjørnstad, P. M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borgia, A.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Brambach, T.; van den Brand, J.; Bressieux, J.; Brett, D.; Britsch, M.; Britton, T.; Brook, N. H.; Brown, H.; Burducea, I.; Bursche, A.; Busetto, G.; Buytaert, J.; Cadeddu, S.; Callot, O.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carranza-Mejia, H.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cattaneo, M.; Cauet, Ch.; Charles, M.; Charpentier, Ph.; Chen, P.; Chiapolini, N.; Chrzaszcz, M.; Ciba, K.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coca, C.; Coco, V.; Cogan, J.; Cogneras, E.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Couturier, B.; Cowan, G. A.; Craik, D.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; David, P.; David, P. N. Y.; De Bonis, I.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Oyanguren Campos, M.; De Paula, L.; De Silva, W.; De Simone, P.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Derkach, D.; Deschamps, O.; Dettori, F.; Di Canto, A.; Dijkstra, H.; Dogaru, M.; Donleavy, S.; Dordei, F.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dupertuis, F.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; van Eijk, D.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Elsby, D.; Falabella, A.; Färber, C.; Fardell, G.; Farinelli, C.; Farry, S.; Fave, V.; Ferguson, D.; Fernandez Albor, V.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fitzpatrick, C.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Furcas, S.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gandelman, M.; Gandini, P.; Gao, Y.; Garofoli, J.; Garosi, P.; Garra Tico, J.; Garrido, L.; Gaspar, C.; Gauld, R.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gibson, V.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gordon, H.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hampson, T.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hartmann, T.; He, J.; Heijne, V.; Hennessy, K.; Henrard, P.; Hernando Morata, J. A.; van Herwijnen, E.; Hicks, E.; Hill, D.; Hoballah, M.; Hombach, C.; Hopchev, P.; Hulsbergen, W.; Hunt, P.; Huse, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Iakovenko, V.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jans, E.; Jaton, P.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Jost, B.; Kaballo, M.; Kandybei, S.; Karacson, M.; Karbach, T. M.; Kenyon, I. R.; Kerzel, U.; Ketel, T.; Keune, A.; Khanji, B.; Kochebina, O.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kozlinskiy, A.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucharczyk, M.; Kudryavtsev, V.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanciotti, E.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leo, S.; Leroy, O.; Leverington, B.; Li, Y.; Li Gioi, L.; Liles, M.; Lindner, R.; Linn, C.; Liu, B.; Liu, G.; von Loeben, J.; Lohn, S.; Lopes, J. H.; Lopez Asamar, E.; Lopez-March, N.; Lu, H.; Lucchesi, D.; Luisier, J.; Luo, H.; Machefert, F.; Machikhiliyan, I. V.; Maciuc, F.; Maev, O.; Malde, S.; Manca, G.; Mancinelli, G.; Marconi, U.; Märki, R.; Marks, J.; Martellotti, G.; Martens, A.; Martin, L.; Martín Sánchez, A.; Martinelli, M.; Martinez Santos, D.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathe, Z.; Matteuzzi, C.; Maurice, E.; Mazurov, A.; McCarthy, J.; McNulty, R.; Mcnab, A.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Molina Rodriguez, J.; Monteil, S.; Moran, D.; Morawski, P.; Morello, M. J.; Mountain, R.; Mous, I.; Muheim, F.; Müller, K.; Muresan, R.; Muryn, B.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neufeld, N.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Nicol, M.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Nomerotski, A.; Novoselov, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Oggero, S.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Orlandea, M.; Otalora Goicochea, J. M.; Owen, P.; Pal, B. K.; Palano, A.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Parkes, C.; Parkinson, C. J.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrick, G. N.; Patrignani, C.; Pavel-Nicorescu, C.; Pazos Alvarez, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perego, D. L.; Perez Trigo, E.; Pérez-Calero Yzquierdo, A.; Perret, P.; Perrin-Terrin, M.; Pessina, G.; Petridis, K.; Petrolini, A.; Phan, A.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Playfer, S.; Plo Casasus, M.; Polci, F.; Polok, G.; Poluektov, A.; Polycarpo, E.; Popov, D.; Popovici, B.; Potterat, C.; Powell, A.; Prisciandaro, J.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Rademacker, J. H.; Rakotomiaramanana, B.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redford, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, A.; Rinnert, K.; Rives Molina, V.; Roa Romero, D. A.; Robbe, P.; Rodrigues, E.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rouvinet, J.; Ruf, T.; Ruffini, F.; Ruiz, H.; Ruiz Valls, P.; Sabatino, G.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salzmann, C.; Sanmartin Sedes, B.; Sannino, M.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sapunov, M.; Sarti, A.; Satriano, C.; Satta, A.; Savrie, M.; Savrina, D.; Schaack, P.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Seco, M.; Semennikov, A.; Senderowska, K.; Sepp, I.; Serra, N.; Serrano, J.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shatalov, P.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, O.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Skwarnicki, T.; Smith, N. A.; Smith, E.; Smith, M.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Sparkes, A.; Spradlin, P.; Stagni, F.; Stahl, S.; Steinkamp, O.; Stoica, S.; Stone, S.; Storaci, B.; Straticiuc, M.; Straumann, U.; Subbiah, V. K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Teklishyn, M.; Teodorescu, E.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Tran, M. T.; Tresch, M.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ubeda Garcia, M.; Ukleja, A.; Urner, D.; Uwer, U.; Vagnoni, V.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; Voss, H.; Waldi, R.; Wallace, R.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Webber, A. D.; Websdale, D.; Whitehead, M.; Wicht, J.; Wiechczynski, J.; Wiedner, D.; Wiggers, L.; Wilkinson, G.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wishahi, J.; Witek, M.; Wotton, S. A.; Wright, S.; Wu, S.; Wyllie, K.; Xie, Y.; Xing, F.; Xing, Z.; Yang, Z.; Young, R.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, F.; Zhang, L.; Zhang, W. C.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.; Zvyagin, A.
2013-05-01
The quantum numbers of the X(3872) meson are determined to be JPC=1++ based on angular correlations in B+→X(3872)K+ decays, where X(3872)→π+π-J/ψ and J/ψ→μ+μ-. The data correspond to 1.0fb-1 of pp collisions collected by the LHCb detector. The only alternative assignment allowed by previous measurements JPC=2-+ is rejected with a confidence level equivalent to more than 8 Gaussian standard deviations using a likelihood-ratio test in the full angular phase space. This result favors exotic explanations of the X(3872) state.
Non-perturbative QCD Modeling and Meson Physics
Nguyen, T.; Souchlas, N. A.; Tandy, P. C.
2009-04-20
Using a ladder-rainbow kernel previously established for light quark hadron physics, we explore the extension to masses and electroweak decay constants of ground state pseudoscalar and vector quarkonia and heavy-light mesons in the c- and b-quark regions. We make a systematic study of the effectiveness of a constituent mass concept as a replacement for a heavy quark dressed propagator for such states. The difference between vector and axial vector current correlators is explored within the same model to provide an estimate of the four quark chiral condensate and the leading distance scale for the onset of non-perturbative phenomena in QCD.
Polarization Observables in the Photoproduction of Two Pseudoscalar Mesons
Winston Roberts
2005-10-12
The many polarization observables that can be measured in process like {gamma}N {yields} M{sub 1}M{sub 2}B, where M{sub 1} and M{sub 2} are pseudoscalar mesons and B is a spin-1/2 baryon, are discussed. The relationships among these observables, their symmetries, as well as inequalities that they satisfy are briefly discussed. Within the context of a particular model for {gamma}N {yields} NKK, some of the observables are calculated, and their sensitivity to the ingredients of the model, and hence to the underlying dynamics of the process, are discussed.
Hypernuclei in the quark-meson coupling model
K. Tsushima, P. A. M. Guichon
2010-07-01
We present results of hypernuclei calculated in the latest quark-meson coupling (QMC) model, where the effect of the mean scalar field in-medium on the one-gluon exchange hyperfine interaction, is also included self-consistently. The extra repulsion associated with this increased hyperfine interaction in-medium completely changes the predictions for {\\Sigma} hypernuclei. Whereas in the earlier version of QMC they were bound by an amount similar to {\\Lambda} hypernuclei, they are unbound in the latest version of QMC, in qualitative agreement with the experimental absence of such states.
Exclusive vector meson production at HERA from QCD with saturation
Marquet, C.; Peschanski, R.; Soyez, G.
2007-08-01
Following recent predictions that the geometric scaling properties of deep inelastic scattering data in inclusive {gamma}*p collisions are expected also in exclusive diffractive processes, we investigate the diffractive production of vector mesons. Using analytic results in the framework of the Balitsky-Kovchegov (BK) equation at nonzero momentum transfer, we extend to the nonforward amplitude a QCD-inspired forward saturation model including charm, following the theoretical predictions for the momentum transfer dependence of the saturation scale. We obtain a good fit to the available HERA data and make predictions for deeply virtual Compton scattering measurements.
Warm stellar matter within the quark-meson-coupling model
Panda, P. K.; Providencia, C.; Menezes, D. P.
2010-10-15
In the present article, we investigate stellar matter obtained within the quark-meson-coupling (QMC) model for fixed temperature and with the entropy of the order of 1 or 2 Boltzmann units per baryon for neutrino-free matter and matter with trapped neutrinos. A new prescription for the calculation of the baryon effective masses in terms of the free energy is used. Comparing the results of the present work with those obtained from the nonlinear Walecka model, smaller strangeness and neutrino fractions are predicted within QMC. As a consequence, QMC has a smaller window of metastability for conversion into a low-mass blackhole during cooling.
Meson properties from mesic atoms and mesic nuclei
NASA Astrophysics Data System (ADS)
Hirenzaki, Satoru; Ikeno, Natsumi; Nagahiro, Hideko; Higashi, Yuko
2014-11-01
Meson properties are believed to have close connection to the fundamental theory, QCD, and have been studied for a long time both theoretically and experimentally. In this report, we study the recent activities in this field and consider the η(958) mesic nuclei and the deeply bound pionic atoms. We summarize the possible formation of the η(958) mesic nuclei by the (p, d) reactions and report the new possibilities of the spectroscopic study of the pionic atoms using the (d,3He) reactions.
Determination of the X(3872) meson quantum numbers.
Aaij, R; Abellan Beteta, C; Adeva, B; Adinolfi, M; Adrover, C; Affolder, A; Ajaltouni, Z; Albrecht, J; Alessio, F; Alexander, M; Ali, S; Alkhazov, G; Alvarez Cartelle, P; Alves, A A; Amato, S; Amerio, S; Amhis, Y; Anderlini, L; Anderson, J; Andreassen, R; Appleby, R B; Aquines Gutierrez, O; Archilli, F; Artamonov, A; Artuso, M; Aslanides, E; Auriemma, G; Bachmann, S; Back, J J; Baesso, C; Balagura, V; Baldini, W; Barlow, R J; Barschel, C; Barsuk, S; Barter, W; Bauer, Th; Bay, A; Beddow, J; Bedeschi, F; Bediaga, I; Belogurov, S; Belous, K; Belyaev, I; Ben-Haim, E; Benayoun, M; Bencivenni, G; Benson, S; Benton, J; Berezhnoy, A; Bernet, R; Bettler, M -O; van Beuzekom, M; Bien, A; Bifani, S; Bird, T; Bizzeti, A; Bjørnstad, P M; Blake, T; Blanc, F; Blouw, J; Blusk, S; Bocci, V; Bondar, A; Bondar, N; Bonivento, W; Borghi, S; Borgia, A; Bowcock, T J V; Bowen, E; Bozzi, C; Brambach, T; van den Brand, J; Bressieux, J; Brett, D; Britsch, M; Britton, T; Brook, N H; Brown, H; Burducea, I; Bursche, A; Busetto, G; Buytaert, J; Cadeddu, S; Callot, O; Calvi, M; Calvo Gomez, M; Camboni, A; Campana, P; Carbone, A; Carboni, G; Cardinale, R; Cardini, A; Carranza-Mejia, H; Carson, L; Carvalho Akiba, K; Casse, G; Cattaneo, M; Cauet, Ch; Charles, M; Charpentier, Ph; Chen, P; Chiapolini, N; Chrzaszcz, M; Ciba, K; Cid Vidal, X; Ciezarek, G; Clarke, P E L; Clemencic, M; Cliff, H V; Closier, J; Coca, C; Coco, V; Cogan, J; Cogneras, E; Collins, P; Comerma-Montells, A; Contu, A; Cook, A; Coombes, M; Coquereau, S; Corti, G; Couturier, B; Cowan, G A; Craik, D; Cunliffe, S; Currie, R; D'Ambrosio, C; David, P; David, P N Y; De Bonis, I; De Bruyn, K; De Capua, S; De Cian, M; De Miranda, J M; De Oyanguren Campos, M; De Paula, L; De Silva, W; De Simone, P; Decamp, D; Deckenhoff, M; Del Buono, L; Derkach, D; Deschamps, O; Dettori, F; Di Canto, A; Dijkstra, H; Dogaru, M; Donleavy, S; Dordei, F; Dosil Suárez, A; Dossett, D; Dovbnya, A; Dupertuis, F; Dzhelyadin, R; Dziurda, A; Dzyuba, A; Easo, S; Egede, U; Egorychev, V; Eidelman, S; van Eijk, D; Eisenhardt, S; Eitschberger, U; Ekelhof, R; Eklund, L; El Rifai, I; Elsasser, Ch; Elsby, D; Falabella, A; Färber, C; Fardell, G; Farinelli, C; Farry, S; Fave, V; Ferguson, D; Fernandez Albor, V; Ferreira Rodrigues, F; Ferro-Luzzi, M; Filippov, S; Fitzpatrick, C; Fontana, M; Fontanelli, F; Forty, R; Francisco, O; Frank, M; Frei, C; Frosini, M; Furcas, S; Furfaro, E; Gallas Torreira, A; Galli, D; Gandelman, M; Gandini, P; Gao, Y; Garofoli, J; Garosi, P; Garra Tico, J; Garrido, L; Gaspar, C; Gauld, R; Gersabeck, E; Gersabeck, M; Gershon, T; Ghez, Ph; Gibson, V; Gligorov, V V; Göbel, C; Golubkov, D; Golutvin, A; Gomes, A; Gordon, H; Grabalosa Gándara, M; Graciani Diaz, R; Granado Cardoso, L A; Graugés, E; Graziani, G; Grecu, A; Greening, E; Gregson, S; Grünberg, O; Gui, B; Gushchin, E; Guz, Yu; Gys, T; Hadjivasiliou, C; Haefeli, G; Haen, C; Haines, S C; Hall, S; Hampson, T; Hansmann-Menzemer, S; Harnew, N; Harnew, S T; Harrison, J; Hartmann, T; He, J; Heijne, V; Hennessy, K; Henrard, P; Hernando Morata, J A; van Herwijnen, E; Hicks, E; Hill, D; Hoballah, M; Hombach, C; Hopchev, P; Hulsbergen, W; Hunt, P; Huse, T; Hussain, N; Hutchcroft, D; Hynds, D; Iakovenko, V; Idzik, M; Ilten, P; Jacobsson, R; Jaeger, A; Jans, E; Jaton, P; Jing, F; John, M; Johnson, D; Jones, C R; Jost, B; Kaballo, M; Kandybei, S; Karacson, M; Karbach, T M; Kenyon, I R; Kerzel, U; Ketel, T; Keune, A; Khanji, B; Kochebina, O; Komarov, I; Koopman, R F; Koppenburg, P; Korolev, M; Kozlinskiy, A; Kravchuk, L; Kreplin, K; Kreps, M; Krocker, G; Krokovny, P; Kruse, F; Kucharczyk, M; Kudryavtsev, V; Kvaratskheliya, T; La Thi, V N; Lacarrere, D; Lafferty, G; Lai, A; Lambert, D; Lambert, R W; Lanciotti, E; Lanfranchi, G; Langenbruch, C; Latham, T; Lazzeroni, C; Le Gac, R; van Leerdam, J; Lees, J -P; Lefèvre, R; Leflat, A; Lefrançois, J; Leo, S; Leroy, O; Leverington, B; Li, Y; Li Gioi, L; Liles, M; Lindner, R; Linn, C; Liu, B; Liu, G; von Loeben, J; Lohn, S; Lopes, J H; Lopez Asamar, E; Lopez-March, N; Lu, H; Lucchesi, D; Luisier, J; Luo, H; Machefert, F; Machikhiliyan, I V; Maciuc, F; Maev, O; Malde, S; Manca, G; Mancinelli, G; Marconi, U; Märki, R; Marks, J; Martellotti, G; Martens, A; Martin, L; Martín Sánchez, A; Martinelli, M; Martinez Santos, D; Martins Tostes, D; Massafferri, A; Matev, R; Mathe, Z; Matteuzzi, C; Maurice, E; Mazurov, A; McCarthy, J; McNulty, R; Mcnab, A; Meadows, B; Meier, F; Meissner, M; Merk, M; Milanes, D A; Minard, M -N; Molina Rodriguez, J; Monteil, S; Moran, D; Morawski, P; Morello, M J; Mountain, R; Mous, I; Muheim, F; Müller, K; Muresan, R; Muryn, B; Muster, B; Naik, P; Nakada, T; Nandakumar, R; Nasteva, I; Needham, M; Neufeld, N; Nguyen, A D; Nguyen, T D; Nguyen-Mau, C; Nicol, M; Niess, V; Niet, R; Nikitin, N; Nikodem, T; Nomerotski, A; Novoselov, A; Oblakowska-Mucha, A; Obraztsov, V; Oggero, S; Ogilvy, S; Okhrimenko, O; Oldeman, R; Orlandea, M; Otalora Goicochea, J M; Owen, P; Pal, B K; Palano, A; Palutan, M; Panman, J; Papanestis, A; Pappagallo, M; Parkes, C; Parkinson, C J; Passaleva, G; Patel, G D; Patel, M; Patrick, G N; Patrignani, C; Pavel-Nicorescu, C; Pazos Alvarez, A; Pellegrino, A; Penso, G; Pepe Altarelli, M; Perazzini, S; Perego, D L; Perez Trigo, E; Pérez-Calero Yzquierdo, A; Perret, P; Perrin-Terrin, M; Pessina, G; Petridis, K; Petrolini, A; Phan, A; Picatoste Olloqui, E; Pietrzyk, B; Pilař, T; Pinci, D; Playfer, S; Plo Casasus, M; Polci, F; Polok, G; Poluektov, A; Polycarpo, E; Popov, D; Popovici, B; Potterat, C; Powell, A; Prisciandaro, J; Pugatch, V; Puig Navarro, A; Punzi, G; Qian, W; Rademacker, J H; Rakotomiaramanana, B; Rangel, M S; Raniuk, I; Rauschmayr, N; Raven, G; Redford, S; Reid, M M; dos Reis, A C; Ricciardi, S; Richards, A; Rinnert, K; Rives Molina, V; Roa Romero, D A; Robbe, P; Rodrigues, E; Rodriguez Perez, P; Roiser, S; Romanovsky, V; Romero Vidal, A; Rouvinet, J; Ruf, T; Ruffini, F; Ruiz, H; Ruiz Valls, P; Sabatino, G; Saborido Silva, J J; Sagidova, N; Sail, P; Saitta, B; Salzmann, C; Sanmartin Sedes, B; Sannino, M; Santacesaria, R; Santamarina Rios, C; Santovetti, E; Sapunov, M; Sarti, A; Satriano, C; Satta, A; Savrie, M; Savrina, D; Schaack, P; Schiller, M; Schindler, H; Schlupp, M; Schmelling, M; Schmidt, B; Schneider, O; Schopper, A; Schune, M -H; Schwemmer, R; Sciascia, B; Sciubba, A; Seco, M; Semennikov, A; Senderowska, K; Sepp, I; Serra, N; Serrano, J; Seyfert, P; Shapkin, M; Shapoval, I; Shatalov, P; Shcheglov, Y; Shears, T; Shekhtman, L; Shevchenko, O; Shevchenko, V; Shires, A; Silva Coutinho, R; Skwarnicki, T; Smith, N A; Smith, E; Smith, M; Sokoloff, M D; Soler, F J P; Soomro, F; Souza, D; Souza De Paula, B; Spaan, B; Sparkes, A; Spradlin, P; Stagni, F; Stahl, S; Steinkamp, O; Stoica, S; Stone, S; Storaci, B; Straticiuc, M; Straumann, U; Subbiah, V K; Swientek, S; Syropoulos, V; Szczekowski, M; Szczypka, P; Szumlak, T; T'Jampens, S; Teklishyn, M; Teodorescu, E; Teubert, F; Thomas, C; Thomas, E; van Tilburg, J; Tisserand, V; Tobin, M; Tolk, S; Tonelli, D; Topp-Joergensen, S; Torr, N; Tournefier, E; Tourneur, S; Tran, M T; Tresch, M; Tsaregorodtsev, A; Tsopelas, P; Tuning, N; Ubeda Garcia, M; Ukleja, A; Urner, D; Uwer, U; Vagnoni, V; Valenti, G; Vazquez Gomez, R; Vazquez Regueiro, P; Vecchi, S; Velthuis, J J; Veltri, M; Veneziano, G; Vesterinen, M; Viaud, B; Vieira, D; Vilasis-Cardona, X; Vollhardt, A; Volyanskyy, D; Voong, D; Vorobyev, A; Vorobyev, V; Voß, C; Voss, H; Waldi, R; Wallace, R; Wandernoth, S; Wang, J; Ward, D R; Watson, N K; Webber, A D; Websdale, D; Whitehead, M; Wicht, J; Wiechczynski, J; Wiedner, D; Wiggers, L; Wilkinson, G; Williams, M P; Williams, M; Wilson, F F; Wishahi, J; Witek, M; Wotton, S A; Wright, S; Wu, S; Wyllie, K; Xie, Y; Xing, F; Xing, Z; Yang, Z; Young, R; Yuan, X; Yushchenko, O; Zangoli, M; Zavertyaev, M; Zhang, F; Zhang, L; Zhang, W C; Zhang, Y; Zhelezov, A; Zhokhov, A; Zhong, L; Zvyagin, A
2013-05-31
The quantum numbers of the X(3872) meson are determined to be J(PC)=1(++) based on angular correlations in B(+)→X(3872)K(+) decays, where X(3872)→π(+)π(-)J/ψ and J/ψ→μ(+)μ(-). The data correspond to 1.0 fb(-1) of pp collisions collected by the LHCb detector. The only alternative assignment allowed by previous measurements J(PC)=2(-+) is rejected with a confidence level equivalent to more than 8 Gaussian standard deviations using a likelihood-ratio test in the full angular phase space. This result favors exotic explanations of the X(3872) state.
The Scalar Meson Sector and the σ, κ Problem
NASA Astrophysics Data System (ADS)
Ochs, Wolfgang
2004-08-01
In the light scalar meson sector (M ≲ 1.8 GeV) one expects at least one qq¯ nonet and a glueball, possibly also multi-quark states. We discuss the present phenomenological evidence for σ and κ particles; if real, they could be members of the lightest (quark or multi-quark) nonet together possibly with a0(980) and f0(980). Alternatively, the lightest nonet could include f0(980) but not σ and κ. Future decisive experimental studies, concerning tests of symmetry relations, especially in B-decays, are outlined.
Absolute measurement of hadronic branching fractions of the Ds+ meson.
Alexander, J P; Berkelman, K; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Lopez, A; Mendez, H; Ramirez, J; Ge, J Y; Miller, D H; Sanghi, B; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Rademacker, J; Asner, D M; Edwards, K W; Naik, P; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L
2008-04-25
The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.
B meson decays and Kobayashi-Maskawa matrix
NASA Astrophysics Data System (ADS)
Colangelo, P.; Nardulli, G.
1989-03-01
We compute Γ(B+-->ppπ+) and Γ(B0-->ppπ+π-) by a dynamical model where one of the final pions are produced by Δ resonance decay. We also analyze the end-point behaviour of the electron spectrum in the decay-->evX, by a calculated B meson wave function and partonic widths as given by QCD. By using recent data from the ARGUS Collaboration we obtain Vbc=(4.8+/-0.4)×10-2 and Vbu/Vbc=0.10+/-0.02.
NASA Astrophysics Data System (ADS)
Lu, M.; Adams, G. S.; Adams, T.; Bar-Yam, Z.; Bishop, J. M.; Bodyagin, V. A.; Brown, D. S.; Cason, N. M.; Chung, S. U.; Cummings, J. P.; Danyo, K.; Demianov, A. I.; Denisov, S. P.; Dorofeev, V.; Dowd, J. P.; Eugenio, P.; Fan, X. L.; Gribushin, A. M.; Hackenburg, R. W.; Hayek, M.; Hu, J.; Ivanov, E. I.; Joffe, D.; Kachaev, I.; Kern, W.; King, E.; Kodolova, O. L.; Korotkikh, V. L.; Kostin, M. A.; Kuhn, J.; Lipaev, V. V.; Losecco, J. M.; Manak, J. J.; Nozar, M.; Olchanski, C.; Ostrovidov, A. I.; Pedlar, T. K.; Popov, A. V.; Ryabchikov, D. I.; Sarycheva, L. I.; Seth, K. K.; Shenhav, N.; Shen, X.; Shephard, W. D.; Sinev, N. B.; Stienike, D. L.; Suh, J. S.; Taegar, S. A.; Tomaradze, A.; Vardanyan, I. N.; Weygand, D. P.; White, D. B.; Willutzki, H. J.; Witkowski, M.; Yershov, A. A.
2005-01-01
A partial-wave analysis of the mesons from the reaction π-p→π+π-π-π0π0p has been performed. The data show b1π decay of the spin-exotic states π1(1600) and π1(2000). Three isovector 2-+ states were seen in the ωρ- decay channel. In addition to the well known π2(1670), signals were also observed for π2(1880) and π2(1970).
ϕ meson transparency in nuclei from ϕ N resonant interactions
NASA Astrophysics Data System (ADS)
Cabrera, D.; Hiller Blin, A. N.; Vicente Vacas, M. J.; Fernández de Córdoba, P.
2017-09-01
We investigate the ϕ meson nuclear transparency using some recent theoretical developments on the ϕ in medium self-energy. The inclusion of direct resonant ϕ N scattering and the kaon decay mechanisms leads to a ϕ width much larger than in most previous theoretical approaches. The model has been confronted with photoproduction data from CLAS and LEPS and the recent proton induced ϕ production from COSY finding an overall good agreement. The results support the need of a quite large direct ϕ N -scattering contribution to the self-energy.
A challenge to lepton universality in B-meson decays
Ciezarek, Gregory; Franco Sevilla, Manuel; Hamilton, Brian; ...
2017-06-07
One of the key assumptions of the standard model of particle physics is that the interactions of the charged leptons, namely electrons, muons and taus, differ only because of their different masses. Whereas precision tests comparing processes involving electrons and muons have not revealed any definite violation of this assumption, recent studies of B-meson decays involving the higher-mass tau lepton have resulted in observations that challenge lepton universality at the level of four standard deviations. Here, a confirmation of these results would point to new particles or interactions, and could have profound implications for our understanding of particle physics.
Evidence for Simultaneous Production of J /ψ and ϒ Mesons
NASA Astrophysics Data System (ADS)
Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Aushev, V.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Cuth, J.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Franc, J.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M.-A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schott, M.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.; D0 Collaboration
2016-02-01
We report evidence for the simultaneous production of J /ψ and ϒ mesons in 8.1 fb-1 of data collected at √{s }=1.96 TeV by the D0 experiment at the Fermilab p p ¯ Tevatron Collider. Events with these characteristics are expected to be produced predominantly by gluon-gluon interactions. In this analysis, we extract the effective cross section characterizing the initial parton spatial distribution, σeff=2.2 ±0.7 (stat ) ±0.9 (syst ) mb .
Properties of excited charm and charm-strange mesons
NASA Astrophysics Data System (ADS)
Godfrey, Stephen; Moats, Kenneth
2016-02-01
We calculate the properties of excited charm and charm-strange mesons. We use the relativized quark model to calculate their masses and wave functions that are used to calculate radiative transition partial widths and the 3P0 quark-pair-creation model to calculate their strong decay widths. We use these results to make quark model spectroscopic assignments for recently observed charm and charm-strange mesons. In particular, we find that the properties of the DJ(2550 )0 and DJ*(2600 )0 are consistent with those of the 2 1S0 (c u ¯) and the 2 3S1 (c u ¯) states respectively, and the D1*(2760 )0, D3*(2760 )-,and DJ(2750 )0with those of the 1 3D1 (c u ¯), 1 3D3 (d c ¯), and 1 D2(c u ¯) states respectively. We tentatively identify the DJ*(3000 )0 as the 1 3F4 (c u ¯ ) and favor the DJ(3000 )0 to be the 3 1S0 (c u ¯ ) although we do not rule out the 1 F3 and 1 F3' assignment. For the recently observed charm-strange mesons we identify the Ds1 *(2709 )±,Ds1 *(2860 )-,andDs3 *(2860 )-as the 2 3S1 (c s ¯), 1 3D1 (s c ¯), and 1 3D3 (s c ¯) states respectively and suggest that the Ds J(3044 )± is most likely the Ds 1(2 P1' ) or Ds 1(2 P1) state although it might be the Ds2 *(2 3P2 ) with the D K final state too small to be observed with current statistics. Based on the predicted properties of excited states, that they do not have too large a total width and that they have a reasonable branching ratio to simple final states, we suggest states that should be able to be found in the near future. We expect that the tables of properties summarizing our results will be useful for interpreting future observations of charm and charm-strange mesons.
Search for B Meson Decays to eta' eta' K
Aubert, B.
2006-05-05
The authors describe searches for decays of B mesons to the charmless final states {eta}'{eta}'K. The data consist of 228 million B{bar B} pairs produced in e{sup +}e{sup -} annihilation, collected with the BABAR detector at the Stanford Linear Accelerator Center. The 90% confidence level upper limits for the branching fractions are {Beta}(B{sup 0} {yields} {eta}'{eta}'K{sup 0}) < 31 x 10{sup -6} and {Beta}(B{sup +} {yields} {eta}'{eta}'K{sup +}) < 25 x 10{sup -6}.
Meson transition form factors in light-front holographic QCD
Brodsky, Stanley J.; Cao Fuguang; de Teramond, Guy F.
2011-10-01
We study the photon-to-meson transition form factors (TFFs) F{sub M}{gamma}(Q{sup 2}) for {gamma}{gamma}{sup *}{yields}M using light-front holographic methods. The Chern-Simons action, which is a natural form in five-dimensional anti-de Sitter (AdS) space, is required to describe the anomalous coupling of mesons to photons using holographic methods and leads directly to an expression for the photon-to-pion TFF for a class of confining models. Remarkably, the predicted pion TFF is identical to the leading order QCD result where the distribution amplitude has asymptotic form. The Chern-Simons form is local in AdS space and is thus somewhat limited in its predictability. It only retains the qq component of the pion wave function, and further, it projects out only the asymptotic form of the meson distribution amplitude. It is found that in order to describe simultaneously the decay process {pi}{sup 0}{yields}{gamma}{gamma} and the pion TFF at the asymptotic limit, a probability for the qq component of the pion wave function P{sub qq}=0.5 is required, thus giving indication that the contributions from higher Fock states in the pion light-front wave function need to be included in the analysis. The probability for the Fock state containing four quarks P{sub qqqq}{approx}10%, which follows from analyzing the hadron matrix elements for a dressed current model, agrees with the analysis of the pion elastic form factor using light-front holography including higher Fock components in the pion wave function. The results for the TFFs for the {eta} and {eta}{sup '} mesons are also presented. The rapid growth of the pion TFF exhibited by the BABAR data at high Q{sup 2} is not compatible with the models discussed in this article, whereas the theoretical calculations are in agreement with the experimental data for the {eta} and {eta}{sup '} TFFs.
Meson-exchange current effects in nucleon photoemission
NASA Astrophysics Data System (ADS)
Benenti, G.; Giusti, C.; Pacati, F. D.
1994-07-01
The role of meson-exchange currents in (γ, p) and (γ, n) reactions at intermediate energies is investigated in the frame of a direct knockout model where the photon interacts with a pair of correlated nucleons. Realistic short-range correlations and final-state interactions are included in the calculations. Direct and exchange terms are considered. The results for 16O(γ, p) and 16O(γ, n) indicate that the two-body seagull current significantly affects the cross sections. In both cases the size and the shape of the experimental angular distributions are fairly well reproduced.
Born amplitudes and seagull term in meson-soliton scattering
NASA Astrophysics Data System (ADS)
Liang, Y. G.; Li, B. A.; Liu, K. F.; Su, R. K.
1990-06-01
The meson-soliton scattering for the ⊘ 4 theory in 1 + 1 dimensions is calculated. We show that when the seagull term from the equal time commutator is included in addition to the Born amplitudes, the t-matrix from the reduction formula approach is identical to that of the potential scattering with small quantum fluctuations to leading order in weak coupling. The seagull term is equal to the Born term in the potential scattering. This confirms the speculation that the leading order Yukawa coupling is derivable from the classical soliton.
Flavour breaking effects in the pseudoscalar meson decay constants
NASA Astrophysics Data System (ADS)
Bornyakov, V. G.; Horsley, R.; Nakamura, Y.; Perlt, H.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Stüben, H.; Zanotti, J. M.
2017-04-01
The SU(3) flavour symmetry breaking expansion in up, down and strange quark masses is extended from hadron masses to meson decay constants. This allows a determination of the ratio of kaon to pion decay constants in QCD. Furthermore when using partially quenched valence quarks the expansion is such that SU(2) isospin breaking effects can also be determined. It is found that the lowest order SU(3) flavour symmetry breaking expansion (or Gell-Mann-Okubo expansion) works very well. Simulations are performed for 2 + 1 flavours of clover fermions at four lattice spacings.
Photoproduction of ω mesons on nuclei near the production threshold
NASA Astrophysics Data System (ADS)
Nanova, M.; Weil, J.; Friedrich, S.; Metag, V.; Mosel, U.; Thiel, M.; Anton, G.; Bacelar, J. C. S.; Bartholomy, O.; Bayadilov, D.; Beloglazov, Y. A.; Bogendörfer, R.; Castelijns, R.; Crede, V.; Dutz, H.; Ehmanns, A.; Elsner, D.; Essig, K.; Ewald, R.; Fabry, I.; Fuchs, M.; Funke, Ch.; Gothe, R.; Gregor, R.; Gridnev, A. B.; Gutz, E.; Höffgen, S.; Hoffmeister, P.; Horn, I.; Hössl, J.; Jaegle, I.; Junkersfeld, J.; Kalinowsky, H.; Klein, Frank; Klein, Friedrich; Klempt, E.; Konrad, M.; Kopf, B.; Kotulla, M.; Krusche, B.; Langheinrich, J.; Löhner, H.; Lopatin, I. V.; Lotz, J.; Lugert, S.; Menze, D.; Mertens, T.; Messchendorp, J. G.; Morales, C.; Novotny, R.; Ostrick, M.; Pant, L. M.; van Pee, H.; Pfeiffer, M.; Roy, A.; Radkov, A.; Schadmand, S.; Schmidt, Ch.; Schmieden, H.; Schoch, B.; Shende, S.; Suft, G.; Süle, A.; Sumachev, V. V.; Szczepanek, T.; Thoma, U.; Trnka, D.; Varma, R.; Walther, D.; Weinheimer, Ch.; Wendel, Ch.
2011-02-01
The photoproduction of ω mesons on LH2 , C and Nb has been measured for incident photon energies from 900 to 1300MeV using the CB/TAPS detector at ELSA. The ω lineshape does not show any significant difference between the LH2 and the Nb targets. The experiment was motivated by transport calculations that predicted a sensitivity of the ω lineshape to in-medium modifications near the production threshold on a free nucleon of E_{γ^{lab}=1109} MeV. A comparison with recent calculations is given.
1988 CELLO, JADE, and PLUTO contributions to ''exotic'' meson spectroscopy
Feindt, M.
1989-04-25
This article reviews selected recent results on resonance formation in ..gamma gamma.. reactions obtained with the CELLO, JADE, and PLUTO spectrometers at the /ital e//sup +//ital e/minus// storage ring PETRA. New stringent limits on the ..gamma gamma.. coupling of glueball candidates as well as new results on tensor and scalar mesons are presented. The recent observation of ..pi../sub 2/(1680) formation is confirmed by the CELLO group. Finally the two spin 1 states observed in ..gamma gamma../sup */ interactions, in particular the parity of the /ital X//sub 1/(1420) and the model dependence of present analyses are discussed.
Measurement of the mass of the D0 meson
NASA Astrophysics Data System (ADS)
Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Kerth, L. T.; Kolomensky, Yu. G.; Lee, M. J.; Lynch, G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Yu. I.; Solodov, E. P.; Todyshev, K. Yu.; Yushkov, A. N.; Kirkby, D.; Lankford, A. J.; Mandelkern, M.; Dey, B.; Gary, J. W.; Long, O.; Vitug, G. M.; Campagnari, C.; Franco Sevilla, M.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Lockman, W. S.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Ongmongkolkul, P.; Porter, F. C.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Pappenheimer, C.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Nauenberg, U.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Schwierz, R.; Bernard, D.; Verderi, M.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Baldini-Ferroli, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Guido, E.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Morii, M.; Adametz, A.; Uwer, U.; Lacker, H. M.; Dauncey, P. D.; Mallik, U.; Chen, C.; Cochran, J.; Meyer, W. T.; Prell, S.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Bougher, J.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Prencipe, E.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Behn, E.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Dujmic, D.; Sciolla, G.; Cheaib, R.; Patel, P. M.; Robertson, S. H.; Biassoni, P.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.; Simard, M.; Taras, P.; De Nardo, G.; Monorchio, D.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Brau, J.; Frey, R.; Sinev, N. B.; Strom, D.; Torrence, E.; Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, Ph.; Marchiori, G.; Ocariz, J.; Sitt, S.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Olsen, J.; Smith, A. J. S.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Piredda, G.; Bünger, C.; Grünberg, O.; Hartmann, T.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Hamel de Monchenault, G.; Vasseur, G.; Yèche, Ch.; Anulli, F.; Aston, D.; Bard, D. J.; Benitez, J. F.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Gabareen, A. M.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Kocian, M. L.; Leith, D. W. G. S.; Lewis, P.; Lindemann, D.; Lindquist, B.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Nelson, S.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va'vra, J.; Wagner, A. P.; Wang, W. F.; Wisniewski, W. J.; Wittgen, M.; Wright, D. H.; Wulsin, H. W.; Ziegler, V.; Park, W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Miyashita, T. S.; Puccio, E. M. T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Zambito, S.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.; Ahmed, H.; Albert, J.; Banerjee, Sw.; Bernlochner, F. U.; Choi, H. H. F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L.
2013-10-01
We report a measurement of the D0 meson mass using the decay chain D*(2010)+→D0π+ with D0→K-K-K+π+. The data were recorded with the BABAR detector at center-of-mass energies at and near the Υ(4S) resonance, and correspond to an integrated luminosity of approximately 477fb-1. We obtain m(D0)=(1864.841±0.048±0.063)MeV, where the quoted errors are statistical and systematic, respectively. The uncertainty of this measurement is half that of the best previous measurement.
Search for narrow resonances lighter than ϒ mesons
NASA Astrophysics Data System (ADS)
Aaltonen, T.; Adelman, J.; Akimoto, T.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burke, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Chwalek, T.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Cordelli, M.; Cortiana, G.; Cox, C. A.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Canto, A.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M. J.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Garosi, P.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hays, C.; Heck, M.; Heijboer, A.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, H. W.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, H. S.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C.-S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lucchesi, D.; Luci, C.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mathis, M.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlock, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Nett, J.; Neu, C.; Neubauer, M. S.; Neubauer, S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Pagan Griso, S.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Peiffer, T.; Pellett, D. E.; Penzo, T. A.; Phillips, J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Renz, M.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Rutherford, B.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sforza, F.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; St. Denis, R.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G. L.; Suh, J. S.; Sukhanov, A.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Ttito-Guzmán, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Trovato, M.; Tsai, S.-Y.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner, W.; Wagner-Kuhr, J.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Weinelt, J.; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Wilbur, S.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Würthwein, F.; Xie, S.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zhang, X.; Zheng, Y.; Zucchelli, S.
2009-07-01
We report a search for narrow resonances, produced in pbar{p} collisions at sqrt{s}=1.96 TeV, that decay into muon pairs with invariant mass between 6.3 and 9.0 GeV/ c 2. The data, collected with the CDF II detector at the Fermilab Tevatron collider, correspond to an integrated luminosity of 630 pb-1. We use the dimuon invariant mass distribution to set 90% upper credible limits of about 1% to the ratio of the production cross section times muonic branching fraction of possible narrow resonances to that of the ϒ(1S) meson.
High temperature meson propagators with domain-wall quarks.
Lagae, J.-F.; Sinclair, D. K.
1999-09-23
We study the chiral properties of domain-wall quarks at high temperatures on an ensemble of quenched configurations. Low lying eigenmodes of the Dirac operator are calculated and used to check the extent to which the Atiyah-Singer index theorem is obeyed on lattices with finite N{sub 5}. We calculate the connected and disconnected screening propagators for the lowest mass scalar and pseudoscalar mesons in the sectors of different topological charge and note that they behave as expected. Separating out the would-be zero eigenmodes enables us to accurately estimate the disconnected propagators with far less effort than would be needed otherwise.
Inverse meson mass ordering in the color-flavor-locking phase of high-density QCD
Son, D. T.; Stephanov, M. A. [Department of Physics, University of Illinois, Chicago, Illinois 60607-7059
2000-04-01
We derive the effective Lagrangian for the low-energy massive meson excitations of the color-flavor-locking (CFL) phase of QCD with three flavors of light quarks. We compute the decay constants, the maximum velocities, and the masses of the mesons at large baryon chemical potential {mu}. The decay constants are linear in {mu}. The meson maximum velocities are close to that of sound. The meson masses in the CFL phase are significantly smaller than in the normal QCD vacuum and depend only on bare quark masses. The order of the meson masses is, to some extent, reversed compared to that in the QCD vacuum. In particular, the lightest particle is {eta}'. (c) 2000 The American Physical Society.
Evidence for in-medium modification of the phi meson at normal nuclear density.
Muto, R; Chiba, J; En'yo, H; Fukao, Y; Funahashi, H; Hamagaki, H; Ieiri, M; Ishino, M; Kanda, H; Kitaguchi, M; Mihara, S; Miwa, K; Miyashita, T; Murakami, T; Nakura, T; Naruki, M; Ozawa, K; Sakuma, F; Sasaki, O; Sekimoto, M; Tabaru, T; Tanaka, K H; Togawa, M; Yamada, S; Yokkaichi, S; Yoshimura, Y
2007-01-26
Invariant mass spectra of e(+) e(-) pairs have been measured in 12 GeV p + A reactions to detect possible in-medium modification of vector mesons. Copper and carbon targets are used to study the nuclear-size dependence of e(+) e(-) invariant mass distributions. A significant excess on the low-mass side of the phi meson peak is observed in the low betagamma(= beta/square root(1-beta(2))) region of phi mesons (betagamma < 1.25) with copper targets. However, in the high betagamma region (betagamma > 1.25), spectral shapes of phi mesons are well described by the Breit-Wigner shape when experimental effects are considered. Thus, in addition to our earlier publications on rho/omega modification, this study has experimentally verified vector meson mass modification at normal nuclear density.
A Measurement of the Semileptonic Branching Fraction of the B_s Meson
Lees, J.P.; Poireau, V.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Milanes, D.A.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Koch, H.; Schroeder, T.; Asgeirsson, D.J.; Hearty, C.; Mattison, T.S.; McKenna, J.A.; /more authors..
2012-06-12
We report a measurement of the inclusive semileptonic branching fraction of the B{sub s} meson using data collected with the BABAR detector in the center-of-mass energy region above the {gamma}(4S) resonance. We use the inclusive yield of {phi} mesons and the {phi} yield in association with a high-momentum lepton to perform a simultaneous measurement of the semileptonic branching fraction and the production rate of B{sub s} mesons relative to all B mesons as a function of center-of-mass energy. The inclusive semileptonic branching fraction of the B{sub s} meson is determined to be {Beta}(B{sub s} {yields} {ell}{nu}X) = 9.5{sub -2.0}{sup +2.5}(stat){sub -1.9}{sup +1.1}(syst)%, where {ell} indicates the average of e and {mu}.
Strong couplings and form factors of charmed mesons in holographic QCD
NASA Astrophysics Data System (ADS)
Ballon-Bayona, Alfonso; Krein, Gastão; Miller, Carlisson
2017-07-01
We extend the two-flavor hard-wall holographic model of Erlich, Katz, Son, and Stephanov [Phys. Rev. Lett. 95, 261602 (2005), 10.1103/PhysRevLett.95.261602] to four flavors to incorporate strange and charm quarks. The model incorporates chiral and flavor symmetry breaking and provides a reasonable description of masses and weak decay constants of a variety of scalar, pseudoscalar, vector, and axial-vector strange and charmed mesons. In particular, we examine flavor symmetry breaking in the strong couplings of the ρ meson to the charmed D and D* mesons. We also compute electromagnetic form factors of the π , ρ , K , K*, D and D* mesons. We compare our results for the D and D* mesons with lattice QCD data and other nonperturbative approaches.
π and ρ mesons, and their diquark partners, from a contact interaction
NASA Astrophysics Data System (ADS)
Roberts, H. L. L.; Bashir, A.; Gutiérrez-Guerrero, L. X.; Roberts, C. D.; Wilson, D. J.
2011-06-01
We present a unified Dyson-Schwinger equation treatment of static and electromagnetic properties of pseudoscalar and vector mesons, and scalar and axial-vector diquark correlations, based upon a vector-vector contact interaction. A basic motivation for this paper is the need to document a comparison between the electromagnetic form factors of mesons and those diquarks that play a material role in nucleon structure. A notable result, therefore, is the large degree of similarity between related meson and diquark form factors. The simplicity of the interaction enables computation of the form factors at arbitrarily large spacelike Q2, which enables us to expose a zero in the ρ-meson electric form factor at zQρ≈√6mρ. Notably, rρzQρ≈rDzQD, where rρ and rD are, respectively, the electric radii of the ρ-meson and deuteron.
The In-medium Mass and Widths of Light Vector Mesons
C. Djalali, M. Paolone, D. Weygand, M. H. Wood, R. Nasseripour
2011-05-01
Partial restoration of chiral symmetry in ordinary nuclear matter suggests the modification of properties of vector mesons, such as a shift in mass and/or a change of width. Photoproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The properties of the rho, omega and [cursive phi] mesons were investigated via their rare leptonic decay to e+e-. This decay channel has an advantage over hadronic modes as it eliminates final state interactions in the nuclear matter. After subtracting the combinatorial background, the meson mass distributions were extracted for each of the nuclear targets. No significant mass shift is observed, however substantial increase in the widths of the mesons is reported.
Polyakov-loop suppression of colored states in a quark-meson-diquark plasma
NASA Astrophysics Data System (ADS)
Blaschke, D.; Dubinin, A.; Buballa, M.
2015-06-01
A quark-meson-diquark plasma is considered within the Polyakov-loop extended Nambu-Jona-Lasinio model for dynamical chiral symmetry breaking and restoration in quark matter. Based on a generalized Beth-Uhlenbeck approach to mesons and diquarks we present the thermodynamics of this system including the Mott dissociation of mesons and diquarks at finite temperature. A striking result is the suppression of the diquark abundance below the chiral restoration temperature by the coupling to the Polyakov loop, because of their color degree of freedom. This is understood in close analogy to the suppression of quark distributions by the same mechanism. Mesons as color singlets are unaffected by the Polyakov-loop suppression. At temperatures above the chiral restoration mesons and diquarks are both suppressed due to the Mott effect, whereby the positive resonance contribution to the pressure is largely compensated by the negative scattering contribution in accordance with the Levinson theorem.
X (3872) production from reactions involving D and D* mesons
NASA Astrophysics Data System (ADS)
Martínez Torres, A.; Khemchandani, K. P.; Navarra, F. S.; Nielsen, M.; Abreu, Luciano M.
2015-07-01
In this proceeding we show the results found for the cross sections of the processes D → πX(3872), *D → πX(3872) and *D* → πX(3872), information needed for calculations of the X (3872) abundance in heavy ion collisions. Our formalism is based on the generation of X(3872) from the interaction of the hadrons 0D*0 — c.c, D-D*+ — c.c and D-sD*+s — c.c. The evaluation of the cross section associated with processes having D* meson(s) involves an anomalous vertex, X*D*, which we have determined by considering triangular loops motivated by the molecular nature of X (3872). We find that the contribution of this vertex is important. Encouraged by this finding we estimate the X*D* coupling, which turns out to be 1.95 ± 0.22. We then use it to obtain the cross section for the reaction *D* → πX and find that the X*D* vertex is also relevant in this case. We also discuss the role of the charged components of X in the determination of the production cross sections.
Light Meson Spectroscopy: First Results from GlueX
NASA Astrophysics Data System (ADS)
Shepherd, Matthew
2016-09-01
The GlueX experiment is optimized to search for and study light hybrid mesons utilizing a 9 GeV linearly polarized photon beam that is derived from the 12 GeV electron beam of the recently upgraded CEBAF at Jefferson Lab. Construction of the GlueX detector was completed in winter 2015, and it was commissioned and calibrated using data collected in 2015 and 2016. During the spring of 2016 the first substantial data acquisition period was conducted with the detector and beamline in its design configuration. The data from this pilot physics run exceed the statistical capability of existing polarized photoproduction data sets in this energy regime by orders of magnitude. In this talk the broad objectives of the GlueX physics program will be reviewed along with the status and performance of the detector. Ongoing data analysis activities will be summarized, and the plan for both additional data acquisition and analysis to pursue the goal of searching for hybrid mesons will be outlined. Dept. of Energy, Office of Nuclear Physics.
Spectra of heavy-light mesons in a relativistic model
NASA Astrophysics Data System (ADS)
Liu, Jing-Bin; Lü, Cai-Dian
2017-05-01
The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m_Q^2. Our results are in good agreement with available experimental data except for the anomalous D_{s0}^*(2317) and D_{s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D_{sJ}^*(2860) can be interpreted as the |1^{3/2}D_1\\rangle and |1^{5/2}D_3\\rangle states being members of the 1D family with J^P=1^- and 3^-.
Constraining secret gauge interactions of neutrinos by meson decays
NASA Astrophysics Data System (ADS)
Bakhti, P.; Farzan, Y.
2017-05-01
Secret coupling of neutrinos to a new light vector boson, Z', with a mass smaller than 100 MeV is motivated within a myriad of scenarios which are designed to explain various anomalies in particle physics and cosmology. Due to the longitudinal component of the massive vector boson, the rates of three-body decay of charged mesons (M ) such as the pion and the kaon to the light lepton plus neutrino and Z' (M →l ν Z') are enhanced by a factor of (mM/mZ')2. On the other hand, the standard two body decay M →l ν is suppressed by a factor of (ml/mM)2 due to chirality. We show that in the case of (M →e ν Z'), the enhancement of mM4/me2mZ'2˜1 0 8-1 010 relative to two-body decay (M →e ν ) enables us to probe very small values of gauge coupling for νe. The strongest bound comes from the RK≡Br (K →e +ν )/Br (K →μ +ν ) measurement in the NA62 experiment. The bound can be significantly improved by customized searches for signals of three-body charged meson decay into the positron plus missing energy in the NA62 and/or PIENU data.
Predicting positive parity B$$_s$$ mesons from lattice QCD
Lang, C. B.; Mohler, Daniel; Prelovsek, Sasa; ...
2015-08-18
We determine the spectrum of Bs 1P states using lattice QCD. For the Bs1(5830) and Bs2*(5840) mesons, the results are in good agreement with the experimental values. Two further mesons are expected in the quantum channels JP = 0+ and 1+ near the BK and B*K thresholds. A combination of quark–antiquark and B(*) meson–Kaon interpolating fields are used to determine the mass of two QCD bound states below the B(*)K threshold, with the assumption that mixing with Bs(*)η and isospin-violating decays to Bs(*)π are negligible. We predict a JP = 0+ bound state Bs0 with mass mBs0 = 5.711(13)(19) GeV.more » In addition, with further assumptions motivated theoretically by the heavy quark limit, a bound state with mBs1=5.750(17)(19) GeV is predicted in the JP = 1+ channel. The results from our first principles calculation are compared to previous model-based estimates.« less
Photoproduction of {J}/{ψ} mesons at HERA
NASA Astrophysics Data System (ADS)
Ahmed, T.; Aid, S.; Andreev, V.; Andrieu, B.; Appuhn, R.-D.; Arpagaus, M.; Babaev, A.; Baehr, J.; Bán, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Barth, M.; Bassler, U.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bergstein, H.; Bernardi, G.; Bernet, R.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bizot, J. C.; Blodel, V.; Borras, K.; Botterweck, F.; Borrdry, V.; Braemer, A.; Brasse, F.; Braunschweig, W.; Brisson, V.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Buschhorn, G.; Campbell, A. J.; Carli, T.; Charles, F.; Clarke, D.; Clegg, A. B.; Colombo, M.; Contreras, J. G.; Coughlan, J. A.; Courau, A.; Coutures, Ch.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Danilov, M.; Dau, W. D.; Daum, K.; David, M.; Deffur, E.; Delcourt, B.; Del Buono, L.; De Roeck, A.; De Wolf, E. A.; Di Nezza, P.; Dollfus, C.; Dowell, J. D.; Dreis, H. B.; Duboc, J.; Düllmann, D.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Ehrlichmann, H.; Eichenberger, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellison, R. J.; Elsen, E.; Erdmann, M.; Erdmann, W.; Evrard, E.; Favart, L.; Fedotov, A.; Feeken, D.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Fominykh, B.; Forbush, M.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gamerdinger, K.; Garvey, J.; Gayler, J.; Gebauer, M.; Gellrich, A.; Genzel, H.; Gerhards, R.; Goerlach, U.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Gonzalez-Pineiro, B.; Goodall, A. M.; Gorelov, I.; Goritchev, P.; Grab, C.; Grässler, H.; Grässler, R.; Greenshaw, T.; Grindhammer, G.; Gruber, A.; Grubber, C.; Haack, J.; Haidt, D.; Hajduk, L.; Hamon, O.; Hampel, M.; Hanlon, E. M.; Hapke, M.; Haynes, W. J.; Heatherington, J.; Hedberg, V.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herma, R.; Herynek, I.; Hess, M. F.; Hildesheim, W.; Hill, P.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Hoeger, K. C.; Höppner, M.; Horisberger, R.; Huet, Ph.; Hufnagel, H.; Ibbotson, M.; Itterbeck, H.; Jabiol, M.-A.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, T.; Jönsson, L.; Johannsen, K.; Johnson, D. P.; Johnson, L.; Jung, H.; Kalmus, P. I. P.; Kant, D.; Kaschowitz, R.; Kasselmann, P.; Kathage, U.; Kaufmann, H. H.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Ko, W.; Köhler, T.; Kolanoski, H.; Kole, F.; Kolya, S. D.; Korbel, V.; Korn, M.; Kostka, P.; Kotelnikov, S. K.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Krüger, U.; Krüner-Marquis, U.; Kubenka, J. P.; Küster, H.; Kurlen, T.; Kurča, T.; Kurzhöfer, J.; Kuznik, B.; Lacour, D.; Lamarche, F.; Lander, R.; Landon, M. P. J.; Lange, W.; Lanius, P.; Laporte, J.-F.; Lebedev, A.; Leverenz, C.; Levonian, S.; Ley, Ch.; Lindner, A.; Lindström, G.; Linsel, F.; Lipinski, J.; List, B.; Loch, P.; Lohmander, H.; Lopez, G. C.; Lüke, D.; Magnussen, N.; Malinovski, E.; Mani, S.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Masson, S.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Mercer, D.; Merz, T.; Meyer, C. A.; Meyer, H.; Meyer, J.; Mikocki, S.; Milstead, D.; Moreau, F.; Morris, J. V.; Müller, G.; Müller, K.; Murín, P.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Newman, P. R.; Newton, D.; Neyret, D.; Nguyen, H. K.; Niebergall, F.; Niebuhr, C.; Nisius, R.; Nowak, G.; Noyes, G. W.; Nyberg-Werther, M.; Oberlack, H.; Obrock, U.; Olsson, J. E.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Peppel, E.; Perez, E.; Phillips, J. P.; Pichler, Ch.; Pitzl, D.; Pope, G.; Prell, S.; Prosi, R.; Rädel, G.; Raupach, F.; Reimer, P.; Reinshagen, S.; Ribarics, P.; Riech, V.; Riedlberger, J.; Riess, S.; Rietz, M.; Robertson, S. M.; Robmann, R.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Rylko, R.; Sahlmann, N.; Sanchez, E.; Sankey, D. P. C.; Savitsky, M.; Schacht, P.; Schiek, S.; Schleper, P.; von Schlippe, W.; Schmidt, C.; Schmidt, D.; Schmidt, G.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Schwind, A.; Seehausen, U.; Sefkow, F.; Seidel, M.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shooshtari, H.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Smith, J. R.; Soloviev, Y.; Spitzer, H.; Starosta, R.; Steenbock, M.; Steffen, P.; Steinberg, R.; Stella, B.; Stephens, K.; Stier, J.; Stiewe, J.; Stösslein, U.; Strachota, J.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taylor, R. E.; Tchernyshov, V.; Thiebaux, C.; Thompson, G.; Tichomirov, I.; Truöl, P.; Turnau, J.; Tutas, J.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Van Esch, P.; Van Mechelen, P.; Vartapetian, A.; Vazdik, Y.; Vecko, M.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Walker, I. W.; Walther, A.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wellisch, H. P.; West, L. R.; Willard, S.; Winde, M.; Winter, G.-G.; Wright, A. E.; Wünsch, E.; Wulff, N.; Yiou, T. P.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zimmer, M.; Zimmermann, W.; Zomer, F.; Zuber, K.; H1 Collaboration
1994-11-01
We present a study of {J}/{ψ} meson production in collisions of 26.7 GeV electrons with 820 GeV protons, performed with the H1-detector at the HERA collider at DESY. The {J}/{ψ} mesons are detected via their leptonic decays both to electrons and muons. Requiring exactly two particles in the detector, a cross section of σ(ep → {J}/{ψ}X) = (8.8±2.0±2.2) nb is determined for 30 GeV ≤ Wγp ≤ 180 GeV and Q2 ≲ 4 GeV 2. Using the flux of quasi-real photons with Q2 ≲ 4 GeV 2, a total production cross section of σ( γp → J/ ψX) = (56±13±14) nb is derived at an average Wγp=90 GeV. The distribution of the squared momentum transfer t from the proton to the {J}/{ψ} can be fitted using an exponential exp(- b∥ t∥) below a ∥ t∥ of 0.75 GeV 2 yielding a slope parameter of b = (4.7±1.9) GeV -2.