Science.gov

Sample records for a13 control mouse

  1. Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: in vivo studies using a CYP2A13-humanized mouse model

    PubMed Central

    Ding, Xinxin

    2014-01-01

    The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which is abundant in tobacco smoke, is a potent lung procarcinogen. The present study was aimed to prove that transgenic expression of human cytochrome P450 2A13 (CYP2A13), known to be selectively expressed in the respiratory tract and be the most efficient enzyme for NNK bioactivation in vitro, will enhance NNK bioactivation and NNK-induced tumorigenesis in the mouse lung. Kinetic parameters of NNK bioactivation in vitro and incidence of NNK-induced lung tumors in vivo were determined for wild-type, Cyp2a5-null and CYP2A13-humanized (CYP2A13-transgenic/Cyp2a5-null) mice. As expected, in both liver and lung microsomes, the loss of CYP2A5 resulted in significant increases in Michaelis constant (K m) values for the formation of 4-oxo-4-(3-pyridyl)-butanal, representing the reactive intermediate that can lead to the formation of O6-methylguanine (O6-mG) DNA adducts; however, the gain of CYP2A13 at a fraction of the level of mouse lung CYP2A5 led to recovery of the activity in the lung, but not in the liver. The levels of O6-mG, the DNA adduct highly correlated with lung tumorigenesis, were significantly higher in the lungs of CYP2A13-humanized mice than in Cyp2a5-null mice. Moreover, incidences of lung tumorigenesis were significantly greater in CYP2A13-humanized mice than in Cyp2a5-null mice, and the magnitude of the differences in incidence was greater at low (30mg/kg) than at high (200mg/kg) NNK doses. These results indicate that CYP2A13 is a low K m enzyme in catalyzing NNK bioactivation in vivo and support the notion that genetic polymorphisms of CYP2A13 can influence the risks of tobacco-induced lung tumorigenesis in humans. PMID:23917075

  2. Role of CYP2A13 in the bioactivation and lung tumorigenicity of the tobacco-specific lung procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone: in vivo studies using a CYP2A13-humanized mouse model.

    PubMed

    Megaraj, Vandana; Zhou, Xin; Xie, Fang; Liu, Zhihua; Yang, Weizhu; Ding, Xinxin

    2014-01-01

    The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which is abundant in tobacco smoke, is a potent lung procarcinogen. The present study was aimed to prove that transgenic expression of human cytochrome P450 2A13 (CYP2A13), known to be selectively expressed in the respiratory tract and be the most efficient enzyme for NNK bioactivation in vitro, will enhance NNK bioactivation and NNK-induced tumorigenesis in the mouse lung. Kinetic parameters of NNK bioactivation in vitro and incidence of NNK-induced lung tumors in vivo were determined for wild-type, Cyp2a5-null and CYP2A13-humanized (CYP2A13-transgenic/Cyp2a5-null) mice. As expected, in both liver and lung microsomes, the loss of CYP2A5 resulted in significant increases in Michaelis constant (K m) values for the formation of 4-oxo-4-(3-pyridyl)-butanal, representing the reactive intermediate that can lead to the formation of O(6)-methylguanine (O(6)-mG) DNA adducts; however, the gain of CYP2A13 at a fraction of the level of mouse lung CYP2A5 led to recovery of the activity in the lung, but not in the liver. The levels of O(6)-mG, the DNA adduct highly correlated with lung tumorigenesis, were significantly higher in the lungs of CYP2A13-humanized mice than in Cyp2a5-null mice. Moreover, incidences of lung tumorigenesis were significantly greater in CYP2A13-humanized mice than in Cyp2a5-null mice, and the magnitude of the differences in incidence was greater at low (30mg/kg) than at high (200mg/kg) NNK doses. These results indicate that CYP2A13 is a low K m enzyme in catalyzing NNK bioactivation in vivo and support the notion that genetic polymorphisms of CYP2A13 can influence the risks of tobacco-induced lung tumorigenesis in humans.

  3. Noninvasive tongue-motion controlled computer mouse for the disabled.

    PubMed

    Chou, C-H; Hwang, Y-S; Chen, C-C; Chen, S-C; Chou, S-W; Chen, Y-L

    2016-05-18

    A patient whose spinal cord was damaged due to accident may result in Tetraplegia or lose the ability to control his/her daily living environment. Currently, patients must use an invasive tool tongue movement, to help the patient communicate with the external environment. This study designed a non-invasive tongue movement computer mouse system that allows the patient to use tongue movement to control a computer to communicate with the external environment. Via a pressure sensor and assistive holder designed in this study, the pressure sensor can be moved using the assistive holder close to the mylohyoid muscle of the patient's lower jaw. The changes in pressure from the mylohyoid muscle are converted into computer mouse control signals to control a computer to communicate with the external environment. This study is based on ISO9241-Part 9 to design four kinds of training modes with varying difficulties. The data were collected from five able persons participating in the test over 7 days. The data includes throughput, path efficiency, test completion time and reaction time. The data verifies that the proposed system is stable and practical for persons with disabilities. The non-invasive computer mouse system for sensing tongue movement can completely breakthrough the limitations of the invasive tongue movement sensing system. This study uses non-invasive, simple tongue movements that correspond to the stretching and shrinking of the lower jaw mylohyoid muscle to control the computer mouse.

  4. A head movement image (HMI)-controlled computer mouse for people with disabilities.

    PubMed

    Chen, Yu-Luen; Chen, Weoi-Luen; Kuo, Te-Son; Lai, Jin-Shin

    2003-02-04

    This study proposes image processing and microprocessor technology for use in developing a head movement image (HMI)-controlled computer mouse system for the spinal cord injured (SCI). The system controls the movement and direction of the mouse cursor by capturing head movement images using a marker installed on the user's headset. In the clinical trial, this new mouse system was compared with an infrared-controlled mouse system on various tasks with nine subjects with SCI. The results were favourable to the new mouse system. The differences between the new mouse system and the infrared-controlled mouse were reaching statistical significance in each of the test situations (p<0.05). The HMI-controlled computer mouse improves the input speed. People with disabilities need only wear the headset and move their heads to freely control the movement of the mouse cursor.

  5. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Control Environmental Stimulation through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan

    2009-01-01

    This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…

  6. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  7. Reversal of metabolic deficits by lipoic acid in a triple transgenic mouse model of Alzheimer's disease: a 13C NMR study

    PubMed Central

    Sancheti, Harsh; Kanamori, Keiko; Patil, Ishan; Díaz Brinton, Roberta; Ross, Brian D; Cadenas, Enrique

    2014-01-01

    Alzheimer's disease is an age-related neurodegenerative disease characterized by deterioration of cognition and loss of memory. Several clinical studies have shown Alzheimer's disease to be associated with disturbances in glucose metabolism and the subsequent tricarboxylic acid (TCA) cycle-related metabolites like glutamate (Glu), glutamine (Gln), and N-acetylaspartate (NAA). These metabolites have been viewed as biomarkers by (a) assisting early diagnosis of Alzheimer's disease and (b) evaluating the efficacy of a treatment regimen. In this study, 13-month-old triple transgenic mice (a mouse model of Alzheimer's disease (3xTg-AD)) were given intravenous infusion of [1-13C]glucose followed by an ex vivo 13C NMR to determine the concentrations of 13C-labeled isotopomers of Glu, Gln, aspartate (Asp), GABA, myo-inositol, and NAA. Total (12C+13C) Glu, Gln, and Asp were quantified by high-performance liquid chromatography to calculate enrichment. Furthermore, we examined the effects of lipoic acid in modulating these metabolites, based on its previously established insulin mimetic effects. Total 13C labeling and percent enrichment decreased by ∼50% in the 3xTg-AD mice. This hypometabolism was partially or completely restored by lipoic acid feeding. The ability of lipoic acid to restore glucose metabolism and subsequent TCA cycle-related metabolites further substantiates its role in overcoming the hypometabolic state inherent in early stages of Alzheimer's disease. PMID:24220168

  8. Hypermetabolic state in the 7-month-old triple transgenic mouse model of Alzheimer's disease and the effect of lipoic acid: a 13C-NMR study

    PubMed Central

    Sancheti, Harsh; Patil, Ishan; Kanamori, Keiko; Díaz Brinton, Roberta; Zhang, Wei; Lin, Ai-Ling; Cadenas, Enrique

    2014-01-01

    Alzheimer's disease (AD) is characterized by age-dependent biochemical, metabolic, and physiologic changes. These age-dependent changes ultimately converge to impair cognitive functions. This study was carried out to examine the metabolic changes by probing glucose and tricarboxylic acid cycle metabolism in a 7-month-old triple transgenic mouse model of AD (3xTg-AD). The effect of lipoic acid, an insulin-mimetic agent, was also investigated to examine its ability in modulating age-dependent metabolic changes. Seven-month-old 3xTg-AD mice were given intravenous infusion of [1-13C]glucose followed by an ex vivo 13C nuclear magnetic resonance to determine the concentrations of 13C-labeled isotopomers of glutamate, glutamine, aspartate, gamma aminobutyric acid, and N-acetylaspartate. An intravenous infusion of [1-13C]glucose+[1,2-13C]acetate was given for different periods of time to distinguish neuronal and astrocytic metabolism. Enrichments of glutamate, glutamine, and aspartate were calculated after quantifying the total (12C+13C) concentrations by high-performance liquid chromatography. A hypermetabolic state was clearly evident in 7-month-old 3xTg-AD mice in contrast to the hypometabolic state reported earlier in 13-month-old mice. Hypermetabolism was evidenced by prominent increase of 13C labeling and enrichment in the 3xTg-AD mice. Lipoic acid feeding to the hypermetabolic 3xTg-AD mice brought the metabolic parameters to the levels of nonTg mice. PMID:25099753

  9. A New Movement Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation with Hand Swing through a Commercial Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien

    2009-01-01

    This study assessed whether two persons with profound multiple disabilities would be able to control environmental stimulation using hand swing and a standard mouse with a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and turns a mouse into a precise two-dimensional motion detector). The study was performed…

  10. A randomized controlled study of early headgear treatment on occlusal stability--a 13 year follow-up.

    PubMed

    Krusinskiene, Viktorija; Kiuttu, Päivi; Julku, Johanna; Silvola, Anna-Sofia; Kantomaa, Tuomo; Pirttiniemi, Pertti

    2008-08-01

    The purpose of this investigation was to assess the long-term occlusal stability in a group treated early with headgear (HG) compared with a control group. The total study group comprised 68 children (40 males and 28 females) aged 7.6 years (standard deviation 0.3), randomly divided into two groups of equal size. In the first group, HG treatment was initiated immediately, while in the control group only minor interceptive procedures were performed during the follow-up period. Fixed appliance treatment, if needed, including extraction of permanent teeth due to crowding, was undertaken after the completion of early treatment. The records were available from the start of the early treatment and at follow-up after 2, 4, 8, and 13 years. The US-weighted Peer Assessment Rating (PAR) Index, graded according to the severity of malocclusion, was used to evaluate occlusal stability. Little's Irregularity Index (LII)and intercanine distance in the lower arch were measured at all time periods. The Aesthetic Component (AC) of the Index of Orthodontic Treatment Need (IOTN) scores was used for evaluation of dental aesthetics at the last follow-up. Parametric tests were applied for statistical analyses, except for the evaluation of aesthetics, where a non-parametric test was used. No significant differences were found when long-term stability between the HG and control groups was evaluated at the 13 year follow-up. Lower PAR scores were observed in patients treated without extraction of teeth. A greater irregularity in lower incisor alignment before treatment was found in subjects later treated with extractions. The findings of this study seem to suggest that treatment timing has only a minor influence on stability.

  11. Dnd1-mediated epigenetic control of teratoma formation in mouse

    PubMed Central

    Gu, Wei; Mochizuki, Kentaro; Otsuka, Kei; Hamada, Ryohei; Takehara, Asuka

    2018-01-01

    ABSTRACT Spontaneous testicular teratoma develops from primordial germ cells (PGCs) in embryos; however, the molecular mechanisms underlying teratoma formation are not fully understood. Mutation of the dead-end 1 (Dnd1) gene, which encodes an RNA-binding protein, drastically enhances teratoma formation in the 129/Sv mouse strain. To elucidate the mechanism of Dnd1 mutation-induced teratoma formation, we focused on histone H3 lysine 27 (H3K27) trimethylation (me3), and found that the levels of H3K27me3 and its responsible methyltransferase, enhancer of zeste homolog 2 (Ezh2), were decreased in the teratoma-forming cells of Dnd1 mutant embryos. We also showed that Dnd1 suppressed miR-26a-mediated inhibition of Ezh2 expression, and that Dnd1 deficiency resulted in decreased H3K27me3 of a cell-cycle regulator gene, Ccnd1. In addition, Ezh2 expression or Ccnd1 deficiency repressed the reprogramming of PGCs into pluripotent stem cells, which mimicked the conversion of embryonic germ cells into teratoma-forming cells. These results revealed an epigenetic molecular linkage between Dnd1 and the suppression of testicular teratoma formation. PMID:29378702

  12. Which Governmental Agencies are Involved in Rat and Mouse Control?

    EPA Pesticide Factsheets

    EPA works with the Centers for Disease Control and Prevention (CDC) and various other state and local agencies and institutions to provide to the public information and tools for controlling rodents and the risks they may pose.

  13. Biological control agents elevate hantavirus by subsidizing deer mouse populations

    Treesearch

    Dean E. Pearson; Ragan M. Callaway

    2006-01-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted...

  14. Carcinogenicity evaluation: comparison of tumor data from dual control groups in the CD-1 mouse.

    PubMed

    Baldrick, Paul; Reeve, Lesley

    2007-06-01

    Current regulatory thinking allows for the use of single control groups for rodent carcinogenicity testing although there has been a trend until recently to use dual control groups. To date, virtually nothing has been published on whether a shift from dual to single control groups will affect the identification of tumorigenic risk potential in these studies. A recent evaluation of dual control carcinogenicity data in the rat (Baldrick, Toxicol Pathol 2005, 33: 283-291) showed that although no major differences in tumor incidences between the control groups were found, some interstudy variation occurred and in cases were a notable difference was seen, the use of 2 control groups, as well as robust, contemporary background data, allowed an easier interpretation of findings in drug-treated groups. In this paper, the results of 10 mouse carcinogenicity studies, performed between 1991 and 2004, with 2 control groups, are presented. As in the rat, interstudy variation was seen and in some cases, the use of dual control groups assisted in the tumor risk assessment. Thus, the continued use of 2 control groups can have a vital role in mouse carcinogenicity studies. The paper also presents an update on survival, on the range and extent of background spontaneous neoplasms and comments on genetic drift in this commonly used mouse strain.

  15. Management strategies for controlling endemic and seasonal mouse parvovirus infection in a barrier facility.

    PubMed

    Reuter, Jon D; Livingston, Robert; Leblanc, Mathias

    2011-05-01

    Despite improved diagnostic and rederivation capabilities, research facilities still struggle to manage parvovirus infections (e.g., mouse parvovirus (MPV) and minute virus of mice) in mouse colonies. Multi-faceted approaches are needed to prevent adventitious organisms such as MPV from breaching a barrier facility. In this article, the authors document recent changes to the Salk Institute's animal care program that were intended to help manage mouse parvovirus in the barrier facility. Specifically, the Institute started to use a new disinfectant and to give mice irradiated feed. The authors found an association between these modifications and a reduction in MPV incidence and prevalence in endemically infected colonies. These data suggest that using irradiated feed and appropriate disinfectants with contemporary management practices can be an effective plan for eradicating or controlling MPV infection in a research facility. The authors recommend further study of the environmental risk factors for parvovirus infection and of potential biological interactions associated with the use of irradiated feed.

  16. Ecological basis for fertility control in the house mouse (Mus domesticus) using immunocontraceptive vaccines.

    PubMed

    Singleton, G R; Farroway, L N; Chambers, L K; Lawson, M A; Smith, A L; Hinds, L A

    2002-01-01

    Laboratory studies confirm the potential for fertility control in the house mouse Mus domesticus using mouse cytomegalovirus (MCMV) as a vector for an immunocontraceptive vaccine. This article presents an overview of key results from research in Australia on enclosed and field populations of mice and the associated epidemiology of MCMV. The virus is geographically widespread in Australia. It also persists in low population densities of mice, although if population densities are low for at least a year, transmission of the virus is sporadic until a population threshold of approximately 40 mice ha(-1) is reached. The serological prevalence of MCMV was high early in the breeding season of four field populations. Enclosure studies confirm that MCMV has minimal impact on the survival and breeding performance of mice and that it can be transmitted to most adults within 10-12 weeks. Other enclosure studies indicate that about two-thirds of females would need to be sterilized to provide effective control of the rate of growth of mouse populations. If this level is not maintained for 20-25 weeks after the commencement of breeding, the mouse population can compensate through increased recruitment per breeding female. The findings from this series of descriptive and manipulative population studies of mice support the contention that MCMV would be a good carrier for an immunocontraceptive vaccine required to sustain female sterility levels at or above 65%.

  17. Syndecan 4 controls lymphatic vasculature remodeling during mouse embryonic development

    PubMed Central

    Wang, Yingdi; Baeyens, Nicolas; Corti, Federico; Tanaka, Keiichiro; Fang, Jennifer S.; Zhang, Jiasheng; Jin, Yu; Coon, Brian; Hirschi, Karen K.; Schwartz, Martin A.

    2016-01-01

    The role of fluid shear stress in vasculature development and remodeling is well appreciated. However, the mechanisms regulating these effects remain elusive. We show that abnormal flow sensing in lymphatic endothelial cells (LECs) caused by Sdc4 or Pecam1 deletion in mice results in impaired lymphatic vessel remodeling, including abnormal valve morphogenesis. Ablation of either gene leads to the formation of irregular, enlarged and excessively branched lymphatic vessels. In both cases, lymphatic valve-forming endothelial cells are randomly oriented, resulting in the formation of abnormal valves. These abnormalities are much more pronounced in Sdc4−/−; Pecam1−/− double-knockout mice, which develop severe edema. In vitro, SDC4 knockdown human LECs fail to align under flow and exhibit high expression of the planar cell polarity protein VANGL2. Reducing VANGL2 levels in SDC4 knockdown LECs restores their alignment under flow, while VANGL2 overexpression in wild-type LECs mimics the flow alignment abnormalities seen in SDC4 knockdown LECs. SDC4 thus controls flow-induced LEC polarization via regulation of VANGL2 expression. PMID:27789626

  18. Pointright: a system to redirect mouse and keyboard control among multiple machines

    DOEpatents

    Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  19. Accelerated pathway evolution in mouse-like rodents involves cell cycle control.

    PubMed

    Vinogradov, Alexander E

    2015-12-01

    Rodents include both the cancer-susceptible short-lived mouse and the two unrelated cancer-resistant long-lived mole-rats. In this work, their genomes were analyzed with the goal to reveal pathways enriched in genes, which are more similar between the mole-rats than between the mouse and the naked mole-rat. The pathways related to cell cycle control were prominent. They include external signal transduction and all cell cycle stages. There are several stem cell pathways among them. The other enriched pathways involve ubiquitin-dependent protein degradation, immunity, mRNA splicing, and apoptosis. The ubiquitin-dependent protein degradation is a core of network of enriched pathways. However, this phenomenon is not specific for the mouse and the mole-rats. The other muroid species show features similar to the mouse, whereas the non-muroid rodents and the human show features similar to the mole-rats. The higher ratio of non-synonymous to synonymous nucleotide substitutions (dN/dS) indicates the accelerated evolution of revealed pathways in the muroid rodents (except the blind mole-rat). Paradoxically, the dN/dS averaged over the whole genome is lower in the muroids, i.e., the purifying selection is generally stronger in them. In practical sense, these data suggest caveat for using muroid rodents (mouse, rat, and hamsters) as biomedical models of human conditions involving cell cycle and show the network of pathways where muroid genes are most different (compared with non-muroid) from human genes. The guinea pig is emphasized as a more suitable rodent model for biomedical research involving cell cycle.

  20. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system

    PubMed Central

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-01-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. PMID:23834399

  1. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    PubMed

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  2. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF.

    PubMed

    Olleros, Maria L; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L; Vesin, Dominique; Kruglov, Andrey A; Drutskaya, Marina S; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V; Chouchkova, Miliana; Kozlov, Sergei V; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F J; Nedospasov, Sergei A; Garcia, Irene

    2015-09-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Control Board Digital Interface Input Devices – Touchscreen, Trackpad, or Mouse?

    SciTech Connect

    Thomas A. Ulrich; Ronald L. Boring; Roger Lew

    2015-08-01

    The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems’ responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in themore » study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.« less

  4. Hypothalamic control of certain aspects of natural immunity in the mouse.

    PubMed Central

    Belluardo, N; Mudó, G; Cella, S; Santoni, A; Forni, G; Bindoni, M

    1987-01-01

    Electrothermocoagulation (ETC) of the individual nuclei of the median region of the hypothalamus (MH) in the C57BL/6 mouse leads to a significant reduction in the cytotoxic activity of natural killer cells (NK) and the number of large granular lymphocytes (LGL) compared with intact or sham-operated controls. This effect, however, is less than that observed after simultaneous destruction of all MH nuclei. By contrast, no significant change in NK activity was noted after ETC of the anterior (AH) or posterior (PH) regions. Diminution of NK activity due to nuclear MH destruction is not an outcome of the change in adenohypophysis secretion provoked by hypothalamic lesion. Natural cytotoxic activity was markedly increased after ETG located either in AH, or MH, or PH. These results indicate that NK- and NC-mediated immunity is governed by a control mechanism situated in the hypothalamus. PMID:3679287

  5. Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus

    PubMed Central

    Wall, Emma H.; Hewitt, Sylvia C.; Liu, Liwen; del Rio, Roxana; Case, Laure K.; Lin, Chin-Yo; Korach, Kenneth S.; Teuscher, Cory

    2013-01-01

    The uterotropic response of the uterus to 17β-estradiol (E2) is genetically controlled, with marked variation observed depending on the mouse strain studied. Previous genetic studies from our laboratory using inbred mice that are high [C57BL/6J (B6)] or low [C3H/HeJ (C3H)] responders to E2 led to the identification of quantitative trait (QT) loci associated with phenotypic variation in uterine growth and leukocyte infiltration. The mechanisms underlying differential responsiveness to E2, and the genes involved, are unknown. Therefore, we used a microarray approach to show association of distinct E2-regulated transcriptional signatures with genetically controlled high and low responses to E2 and their segregation in (C57BL/6J×C3H/HeJ) F1 hybrids. Among the 6664 E2-regulated transcripts, analysis of cellular functions of those that were strain specific indicated C3H-selective enrichment of apoptosis, consistent with a 7-fold increase in the apoptosis indicator CASP3, and a 2.4-fold decrease in the apoptosis inhibitor Naip1 (Birc1a) in C3H vs. B6 following treatment with E2. In addition, several differentially expressed transcripts reside within our previously identified QT loci, including the ERα-tethering factor Runx1, demonstrated to enhance E2-mediated transcript regulation. The level of RUNX1 in uterine epithelial cells was shown to be 3.5-fold greater in B6 compared to C3H. Our novel insights into the mechanisms underlying the genetic control of tissue sensitivity to estrogen have great potential to advance understanding of individualized effects in physiological and disease states.—Wall, E. H., Hewitt, S. C., Liu, L., del Rio, R., Case, L. K., Lin, C.-Y., Korach, K. S., Teuscher, C. Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus. PMID:23371066

  6. Glycogen synthase kinase 3 controls migration of the neural crest lineage in mouse and Xenopus.

    PubMed

    Gonzalez Malagon, Sandra G; Lopez Muñoz, Anna M; Doro, Daniel; Bolger, Triòna G; Poon, Evon; Tucker, Elizabeth R; Adel Al-Lami, Hadeel; Krause, Matthias; Phiel, Christopher J; Chesler, Louis; Liu, Karen J

    2018-03-19

    Neural crest migration is critical to its physiological function. Mechanisms controlling mammalian neural crest migration are comparatively unknown, due to difficulties accessing this cell population in vivo. Here we report requirements of glycogen synthase kinase 3 (GSK3) in regulating the neural crest in Xenopus and mouse models. We demonstrate that GSK3 is tyrosine phosphorylated (pY) in mouse neural crest cells and that loss of GSK3 leads to increased pFAK and misregulation of Rac1 and lamellipodin, key regulators of cell migration. Genetic reduction of GSK3 results in failure of migration. We find that pY-GSK3 phosphorylation depends on anaplastic lymphoma kinase (ALK), a protein associated with neuroblastoma. Consistent with this, neuroblastoma cells with increased ALK activity express high levels of pY-GSK3, and blockade of GSK3 or ALK can affect migration of these cells. Altogether, this work identifies a role for GSK3 in cell migration during neural crest development and cancer.

  7. The mouse mammary gland as a sentinel organ: distinguishing 'control' populations with diverse environmental histories.

    PubMed

    Kolla, SriDurgaDevi; Pokharel, Aastha; Vandenberg, Laura N

    2017-03-09

    There are numerous examples of laboratory animals that were inadvertently exposed to endocrine disrupting chemicals (EDCs) during the process of conducting experiments. Controlling contaminations in the laboratory is challenging, especially when their source is unknown. Unfortunately, EDC contaminations can interfere with the interpretation of data during toxicological evaluations. We propose that the male CD-1 mouse mammary gland is a sensitive bioassay to evaluate the inadvertent contamination of animal colonies. We evaluated mammary glands collected from two CD-1 mouse populations with distinct environmental histories. Population 1 was born and raised in a commercial laboratory with unknown EDC exposures; Population 2 was the second generation raised in an animal facility with limited exposures to xenoestrogens from caging, feed, etc. Mammary glands were collected from all animals and evaluated using morphometric techniques to quantify morphological characteristics of the mammary gland. Population 1 (with suspected history of environmental chemical exposure) and Population 2 (with known limited history of xenoestrogen exposure) were morphologically distinguishable in adult males, prepubertal females, and pubertal females. Mammary glands from males raised in the commercial animal facility were significantly more developed, with larger ductal trees and more branching points. The appearance of these mammary glands was consistent with prior reports of male mice exposed to low doses of bisphenol A (BPA) during early development. In females, the two populations were morphologically distinct at both prepuberty and puberty, with the most striking differences observed in the number, size, and density of terminal end buds, e.g. highly proliferative structures found in the developing mammary gland. Collectively, these results suggest that the mouse mammary gland has the potential to be used as a sentinel organ to evaluate and distinguish animal colonies raised in different

  8. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina

    PubMed Central

    Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P

    2015-01-01

    Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single

  9. Chemical Control of Grafted Human PSC-Derived Neurons in a Mouse Model of Parkinson's Disease.

    PubMed

    Chen, Yuejun; Xiong, Man; Dong, Yi; Haberman, Alexander; Cao, Jingyuan; Liu, Huisheng; Zhou, Wenhao; Zhang, Su-Chun

    2016-06-02

    Transplantation of human pluripotent stem cell (hPSC)-derived neurons is a promising avenue for treating disorders including Parkinson's disease (PD). Precise control over engrafted cell activity is highly desired, as cells do not always integrate properly into host circuitry and can cause suboptimal graft function or undesired outcomes. Here, we show tunable rescue of motor function in a mouse model of PD, following transplantation of human midbrain dopaminergic (mDA) neurons differentiated from hPSCs engineered to express DREADDs (designer receptors exclusively activated by designer drug). Administering clozapine-N-oxide (CNO) enabled precise DREADD-dependent stimulation or inhibition of engrafted neurons, revealing D1 receptor-dependent regulation of host neuronal circuitry by engrafted cells. Transplanted cells rescued motor defects, which could be reversed or enhanced by CNO-based control of graft function, and activating engrafted cells drives behavioral changes in transplanted mice. These results highlight the ability to exogenously and noninvasively control and refine therapeutic outcomes following cell transplantation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Genetic control of estrogen-regulated transcriptional and cellular responses in mouse uterus.

    PubMed

    Wall, Emma H; Hewitt, Sylvia C; Liu, Liwen; del Rio, Roxana; Case, Laure K; Lin, Chin-Yo; Korach, Kenneth S; Teuscher, Cory

    2013-05-01

    The uterotropic response of the uterus to 17β-estradiol (E2) is genetically controlled, with marked variation observed depending on the mouse strain studied. Previous genetic studies from our laboratory using inbred mice that are high [C57BL/6J (B6)] or low [C3H/HeJ (C3H)] responders to E2 led to the identification of quantitative trait (QT) loci associated with phenotypic variation in uterine growth and leukocyte infiltration. The mechanisms underlying differential responsiveness to E2, and the genes involved, are unknown. Therefore, we used a microarray approach to show association of distinct E2-regulated transcriptional signatures with genetically controlled high and low responses to E2 and their segregation in (C57BL/6J×C3H/HeJ) F1 hybrids. Among the 6664 E2-regulated transcripts, analysis of cellular functions of those that were strain specific indicated C3H-selective enrichment of apoptosis, consistent with a 7-fold increase in the apoptosis indicator CASP3, and a 2.4-fold decrease in the apoptosis inhibitor Naip1 (Birc1a) in C3H vs. B6 following treatment with E2. In addition, several differentially expressed transcripts reside within our previously identified QT loci, including the ERα-tethering factor Runx1, demonstrated to enhance E2-mediated transcript regulation. The level of RUNX1 in uterine epithelial cells was shown to be 3.5-fold greater in B6 compared to C3H. Our novel insights into the mechanisms underlying the genetic control of tissue sensitivity to estrogen have great potential to advance understanding of individualized effects in physiological and disease states.

  11. Assisting People with Attention Deficit Hyperactivity Disorder by Actively Reducing Limb Hyperactive Behavior with a Gyration Air Mouse through a Controlled Environmental Stimulation

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2011-01-01

    The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing…

  12. A New Limb Movement Detector Enabling People with Multiple Disabilities to Control Environmental Stimulation through Limb Swing with a Gyration Air Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb swing with a gyration air mouse and a newly developed limb movement detection program (LMDP, i.e., a new software program that turns a gyration air mouse into a precise limb movement detector). The study was performed…

  13. Positive control study for the intact immature Swiss-Webster mouse uterotrophic assay

    NASA Astrophysics Data System (ADS)

    Alisjahbana, Arlisa; Yusuf, Ayda T.

    2014-03-01

    significantly from controls. Based on the results, the immature mouse uterotrophic assay can be used as a test for estrogenicity except for the cell number parameter.

  14. A 13-year follow-up of treatment and snail control in an area endemic for Schistosoma mansoni in Brazil: incidence of infection and reinfection.

    PubMed

    de Lima e Costa, M F; Rocha, R S; Coura Filho, P; Katz, N

    1993-01-01

    The incidences of Schistosoma mansoni infection and reinfection were investigated in an endemic area of Brazil (Peri-Peri, State of Minas Gerais) where chemotherapy and snail control had been used for 13 years (1974-87). Two cohorts were followed: the first consisted of 584 individuals with no evidence of infection at entry (infection cohort), and the second comprised 296 individuals who were treated and did not eliminate eggs 8-12 months afterwards (reinfection cohort). The incidence of infection (per 100 person-years) decreased from 7.5 in 1974-77 to 3.6 in 1986-87, and that of reinfection from 21.3 in 1974-77 to 3.7 in 1986-87. Calendar period, age at risk, and sex were independently associated with both infection and reinfection, while a heavy S. mansoni egg count prior to treatment (> or = 500 epg (eggs per gram of stools)) was independently associated with reinfection. The geometric mean number of eggs after treatment among those reinfected (47 epg) was approximately half that among those infected for the first time (81.5 epg). Age at risk had the greatest effect on both infection and reinfection. The rate ratios of infection and reinfection were 3 to 6 times higher among individuals younger than 20 years than among those aged > or = 25 years, even after adjusting for confounders. This suggests the existence of a strong protective effect with increased age (because of biological and/or environmental factors) for both infection and reinfection.

  15. A 13-year follow-up of treatment and snail control in an area endemic for Schistosoma mansoni in Brazil: incidence of infection and reinfection.

    PubMed Central

    de Lima e Costa, M. F.; Rocha, R. S.; Coura Filho, P.; Katz, N.

    1993-01-01

    The incidences of Schistosoma mansoni infection and reinfection were investigated in an endemic area of Brazil (Peri-Peri, State of Minas Gerais) where chemotherapy and snail control had been used for 13 years (1974-87). Two cohorts were followed: the first consisted of 584 individuals with no evidence of infection at entry (infection cohort), and the second comprised 296 individuals who were treated and did not eliminate eggs 8-12 months afterwards (reinfection cohort). The incidence of infection (per 100 person-years) decreased from 7.5 in 1974-77 to 3.6 in 1986-87, and that of reinfection from 21.3 in 1974-77 to 3.7 in 1986-87. Calendar period, age at risk, and sex were independently associated with both infection and reinfection, while a heavy S. mansoni egg count prior to treatment (> or = 500 epg (eggs per gram of stools)) was independently associated with reinfection. The geometric mean number of eggs after treatment among those reinfected (47 epg) was approximately half that among those infected for the first time (81.5 epg). Age at risk had the greatest effect on both infection and reinfection. The rate ratios of infection and reinfection were 3 to 6 times higher among individuals younger than 20 years than among those aged > or = 25 years, even after adjusting for confounders. This suggests the existence of a strong protective effect with increased age (because of biological and/or environmental factors) for both infection and reinfection. PMID:8490983

  16. A simple method for quantitative measurement and analysis of hyperpolarized (129)Xe uptake dynamics in mouse brain under controlled flow.

    PubMed

    Kimura, Atsuomi; Imai, Hirohiko; Wakayama, Tetsuya; Fujiwara, Hideaki

    2008-01-01

    We established a simple method for measuring and quantifying uptake dynamics of hyperpolarized (HP) (129)Xe in mouse brain, which includes application of a saturation recovery pulse sequence under controlled flow of HP (129)Xe. The technique allows pursuit of the time-dependent change in (129)Xe nuclear magnetic resonance signal in the uptake process without effect from radiofrequency destruction of the polarization and the dynamics in mouse lung. The uptake behavior is well described by a simple model that depends only on a decay rate constant comprising cerebral blood flow and the longitudinal relaxation rate of HP (129)Xe in the brain tissue. The improved analysis enabled precise determination of the decay rate constant as 0.107+/-0.013 s(-1) (+/-standard deviation, n=5), leading to estimation of longitudinal relaxation time, T(1i), as 15.3+/-3.5 s.

  17. Noradrenergic Control of Odor Recognition in a Nonassociative Olfactory Learning Task in the Mouse

    ERIC Educational Resources Information Center

    Veyrac, Alexandra; Nguyen, Veronique; Marien, Marc; Didier, Anne; Jourdan, Francois

    2007-01-01

    The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or…

  18. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  19. Human intronic enhancers control distinct sub-domains of Gli3 expression during mouse CNS and limb development.

    PubMed

    Abbasi, Amir A; Paparidis, Zissis; Malik, Sajid; Bangs, Fiona; Schmidt, Ansgar; Koch, Sabine; Lopez-Rios, Javier; Grzeschik, Karl-Heinz

    2010-04-28

    The zinc-finger transcription factor GLI3 is an important mediator of Sonic hedgehog signaling and crucial for patterning of many aspects of the vertebrate body plan. In vertebrates, the mechanism of SHH signal transduction and its action on target genes by means of activating or repressing forms of GLI3 have been studied most extensively during limb development and the specification of the central nervous system. From these studies it has emerged, that Gli3 expression must be subject to a tight spatiotemporal regulation. However, the genetic mechanisms and the cis-acting elements controlling the expression of Gli3 remained largely unknown. Here, we demonstrate in chicken and mouse transgenic embryos that human GLI3-intronic conserved non-coding sequence elements (CNEs) autonomously control individual aspects of Gli3 expression. Their combined action shows many aspects of a Gli3-specific pattern of transcriptional activity. In the mouse limb bud, different CNEs enhance Gli3-specific expression in evolutionary ancient stylopod and zeugopod versus modern skeletal structures of the autopod. Limb bud specificity is also found in chicken but had not been detected in zebrafish embryos. Three of these elements govern central nervous system specific gene expression during mouse embryogenesis, each targeting a subset of endogenous Gli3 transcription sites. Even though fish, birds, and mammals share an ancient repertoire of gene regulatory elements within Gli3, the functions of individual enhancers from this catalog have diverged significantly. During evolution, ancient broad-range regulatory elements within Gli3 attained higher specificity, critical for patterning of more specialized structures, by abolishing the potential for redundant expression control. These results not only demonstrate the high level of complexity in the genetic mechanisms controlling Gli3 expression, but also reveal the evolutionary significance of cis-acting regulatory networks of early developmental

  20. Control of Neurotransmission by NaV1.7 in Human, Guinea Pig, and Mouse Airway Parasympathetic Nerves.

    PubMed

    Kocmalova, Michaela; Kollarik, Marian; Canning, Brendan J; Ru, Fei; Adam Herbstsomer, R; Meeker, Sonya; Fonquerna, Silvia; Aparici, Monica; Miralpeix, Montserrat; Chi, Xian Xuan; Li, Baolin; Wilenkin, Ben; McDermott, Jeff; Nisenbaum, Eric; Krajewski, Jeffrey L; Undem, Bradley J

    2017-04-01

    Little is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the α subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle. As would be expected from previous studies, tetrodotoxin potently blocked the parasympathetic responses in the airways of each species. Gene expression analysis showed that that NaV 1.7 was virtually the only tetrodotoxin-sensitive NaV1 gene expressed in guinea pig and human airway parasympathetic ganglia, where mouse ganglia expressed NaV1.1, 1.3, and 1.7. Using selective pharmacological blockers supported the gene expression results, showing that blocking NaV1.7 alone can abolish the responses in guinea pig and human bronchi, but not in mouse airways. To block the responses in mouse airways requires that NaV1.7 along with NaV1.1 and/or NaV1.3 is blocked. These results may suggest novel indications for NaV1.7-blocking drugs, in which there is an overactive parasympathetic drive, such as in asthma. The data also raise the potential concern of antiparasympathetic side effects for systemic NaV1.7 blockers. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  1. F-actin mechanics control spindle centring in the mouse zygote.

    PubMed

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-04

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

  2. Creation of a Mouse with Stress-Induced Dystonia: Control of an ATPase Chaperone

    DTIC Science & Technology

    2013-04-01

    was successful, and a mouse with the desired dystonic symptoms was obtained. It has two mutations , one a dominantly inherited gene with 100...the hallmark of dystonia. 15. SUBJECT TERMS Dystonia, genetically modified mice, stress, gene mutations , animal model of disease. 16...there are a variety of hypotheses that should be testable if there were a realistic animal model. Mice with mutations in genes known to cause dystonia

  3. Healthy eating decisions require efficient dietary self-control in children: A mouse-tracking food decision study.

    PubMed

    Ha, Oh-Ryeong; Bruce, Amanda S; Pruitt, Stephen W; Cherry, J Bradley C; Smith, T Ryan; Burkart, Dominic; Bruce, Jared M; Lim, Seung-Lark

    2016-10-01

    Learning how to make healthy eating decisions, (i.e., resisting unhealthy foods and consuming healthy foods), enhances physical development and reduces health risks in children. Although healthy eating decisions are known to be challenging for children, the mechanisms of children's food choice processes are not fully understood. The present study recorded mouse movement trajectories while eighteen children aged 8-13 years were choosing between eating and rejecting foods. Children were inclined to choose to eat rather than to reject foods, and preferred unhealthy foods over healthy foods, implying that rejecting unhealthy foods could be a demanding choice. When children rejected unhealthy foods, mouse trajectories were characterized by large curvature toward an eating choice in the beginning, late decision shifting time toward a rejecting choice, and slowed response times. These results suggested that children exercised greater cognitive efforts with longer decision times to resist unhealthy foods, providing evidence that children require dietary self-control to make healthy eating-decisions by resisting the temptation of unhealthy foods. Developmentally, older children attempted to exercise greater cognitive efforts for consuming healthy foods than younger children, suggesting that development of dietary self-control contributes to healthy eating-decisions. The study also documents that healthy weight children with higher BMIs were more likely to choose to reject healthy foods. Overall, findings have important implications for how children make healthy eating choices and the role of dietary self-control in eating decisions. Published by Elsevier Ltd.

  4. A detailed analysis of the erythropoietic control system in the human, squirrel, monkey, rat and mouse

    NASA Technical Reports Server (NTRS)

    Nordheim, A. W.

    1985-01-01

    The erythropoiesis modeling performed in support of the Body Fluid and Blood Volume Regulation tasks is described. The mathematical formulation of the species independent model, the solutions to the steady state and dynamic versions of the model, and the individual species specific models for the human, squirrel monkey, rat and mouse are outlined. A detailed sensitivity analysis of the species independent model response to parameter changes and how those responses change from species to species is presented. The species to species response to a series of simulated stresses directly related to blood volume regulation during space flight is analyzed.

  5. Creation of a Mouse with Stress-Induced Dystonia: Control of an ATPase Chaperone

    DTIC Science & Technology

    2012-10-01

    Mice with mutations in genes known to cause dystonia in humans are so far virtually asymptomatic. Only mild motor deficiencies have been seen, such...identified the gene for one of the subunits of Na,K- ATPase, ATP1A3, as the site of mutations in RDP (de Carvalho Aguiar et al. 2004). Our prior work in...first paper, and to be able to give the mouse line an official name based on the mutated gene . Funding has been applied for from the following

  6. Expression and steroid hormonal control of Muc-1 in the mouse uterus.

    PubMed

    Surveyor, G A; Gendler, S J; Pemberton, L; Das, S K; Chakraborty, I; Julian, J; Pimental, R A; Wegner, C C; Dey, S K; Carson, D D

    1995-08-01

    Previous studies from our laboratory established that large M(r) mucin glycoproteins are major apically disposed components of mouse uterine epithelial cells in vitro. The present studies demonstrate that Muc-1 represents one of the apically disposed mucin glycoproteins of mouse uterine epithelia, and that Muc-1 protein and messenger RNA (mRNA) expression are regulated in the periimplantation mouse uterus by ovarian steroids. Muc-1 expression is exclusive to the epithelial cells of the uterus under all conditions examined. Muc-1 expression is high in the proestrous and estrous stages and decreases during diestrous. Both Muc-1 protein and mRNA decline to barely detectable levels by day 4 of pregnancy, i.e. before the time of blastocyst attachment. In contrast, Muc-1 expression in the cervix and vagina is maintained during this same period. Delayed implantation was established in pregnant mice by ovariectomy and maintained by the administration of exogenous progesterone (P). Initiation of implantation was triggered by coinjection of P-maintained mice with a nidatory dose of 17 beta-estradiol (E2). Muc-1 levels in the uterine epithelia of P-maintained mice declined to low levels similar to those observed on day 4 of normal pregnancy. Coinjection of E2 did not alter Muc-1 expression, suggesting that down-regulation of Muc-1 is a P-dominated event. This was confirmed in ovariectomized nonpregnant mice, which displayed stimulation of Muc-1 expression after 6 h of E2 injection. E2-Stimulated Muc-1 expression was inhibited by the pure antiestrogen, ICI 164,384. Although P alone had no effect on Muc-1 expression, it antagonized the action of E2. Injection of pregnant mice with the antiprogestin, RU486, a known implantation inhibitor, on day 3 of pregnancy restored high level expression of Muc-1 mRNA on day 4, indicating that down-regulation of Muc-1 is P receptor mediated. Collectively, these data indicate that Muc-1 expression in mouse uterine epithelium is strongly

  7. Improving mouse controlling and movement for people with Parkinson's disease and involuntary tremor using adaptive path smoothing technique via B-spline.

    PubMed

    Hashem, Seyed Yashar Bani; Zin, Nor Azan Mat; Yatim, Noor Faezah Mohd; Ibrahim, Norlinah Mohamed

    2014-01-01

    Many input devices are available for interacting with computers, but the computer mouse is still the most popular device for interaction. People who suffer from involuntary tremor have difficulty using the mouse in the normal way. The target participants of this research were individuals who suffer from Parkinson's disease. Tremor in limbs makes accurate mouse movements impossible or difficult without any assistive technologies to help. This study explores a new assistive technique-adaptive path smoothing via B-spline (APSS)-to enhance mouse controlling based on user's tremor level and type. APSS uses Mean filtering and B-spline to provide a smoothed mouse trajectory. Seven participants who have unwanted tremor evaluated APSS. Results show that APSS is very promising and greatly increases their control of the computer mouse. Result of user acceptance test also shows that user perceived APSS as easy to use. They also believe it to be a useful tool and intend to use it once it is available. Future studies could explore the possibility of integrating APSS with one assistive pointing technique, such as the Bubble cursor or the Sticky target technique, to provide an all in one solution for motor disabled users.

  8. Developmental control of the excitability of muscle: transplantation experiments on a myotonic mouse mutant.

    PubMed Central

    Füchtbauer, E M; Reininghaus, J; Jockusch, H

    1988-01-01

    Developmental aspects of an animal model of myotonia, the mouse mutant called "arrested development of righting response" (ADR phenotype), were studied. Adult ADR muscle is characterized by a low chloride conductance of the membrane, leading to hyperexcitability, and by a low parvalbumin content. The myotonic hyperexcitability (as measured by the extent of "aftercontractions") of ADR muscle increased steeply between postnatal days 9 and 18, by which time it had approached the adult level. To study the tissue autonomy of the myotonic phenotype, muscle grafts were performed in all four combinations between ADR and wildtype (WT phenotype) donors and hosts. In most experiments, the relative contributions of donor and host to the regenerated muscles were determined by an allelic marker (glucose phosphate isomerase). In WT and ADR hosts, ADR grafts showed myotonic responses that in WT nude mouse hosts were incomplete and similar to those of juvenile ADR muscle. In no case did grafts from WT donors show any myotonia. This shows that the myotonic ADR phenotype is based on an intrinsic muscle property most likely related to the plasma membrane. The parvalbumin contents of grafted muscles, when compared with those of untransplanted muscles, indicated graft-host interaction in the expression of this secondary phenotypic property. Images PMID:3375245

  9. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15.

    PubMed

    Zhou, Mei; Luo, Jian; Chen, Michael; Yang, Hong; Learned, R Marc; DePaoli, Alex M; Tian, Hui; Ling, Lei

    2017-06-01

    Bile acid nuclear receptor farnesoid X receptor (FXR) is a key molecular mediator of many metabolic processes, including the regulation of bile acid, lipid and glucose homeostasis. A significant component of FXR-mediated events essential to its biological activity is attributed to induction of the enteric endocrine hormone fibroblast growth factor (FGF)19 or its rodent ortholog, FGF15. In this report, we compared the properties of human FGF19 and murine FGF15 in the regulation of hepatocarcinogenesis and metabolism in various mouse models of disease. Tumorigenicity was assessed in three mouse models (db/db, diet-induced obese, and multi-drug resistance 2 [Mdr2]-deficient) following continuous exposure to FGF19 or FGF15 via adeno-associated viral-mediated gene delivery. Glucose, hemoglobin A1c and β-cell mass were characterized in db/db mice. Oxygen consumption, energy expenditure, and body composition were evaluated in diet-induced obese mice. Serum levels of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase were assessed in Mdr2-deficient mice. Expression profiles of genes encoding key proteins involved in bile acid synthesis and hepatocarcinogenesis were also determined. Both FGF15 and FGF19 hormones repressed bile acid synthesis (p<0.001 for both). However, murine FGF15 lacked the protective effects characteristic of human FGF19 in db/db mice with overt diabetes, such as weight-independent HbA1c-lowering and β-cell-protection. Unlike FGF19, FGF15 did not induce hepatocellular carcinomas (HCC) in three mouse models of metabolic diseases (db/db, diet-induced obese, and multi-drug resistance 2 [Mdr2]-deficient mice), even at supra-pharmacological exposure levels. Fundamental species-associated differences between FGF19 and FGF15 may restrict the relevance of mouse models for the study of the FXR/FGF19 pathway, and underscore the importance of clinical assessment of this pathway, with respect to both safety and efficacy in humans

  10. The Role of Controlled Surface Topography and Chemistry on Mouse Embryonic Stem Cell Attachment, Growth and Self-Renewal.

    PubMed

    Macgregor, Melanie; Williams, Rachel; Downes, Joni; Bachhuka, Akash; Vasilev, Krasimir

    2017-09-14

    The success of stem cell therapies relies heavily on our ability to control their fate in vitro during expansion to ensure an appropriate supply. The biophysical properties of the cell culture environment have been recognised as a potent stimuli influencing cellular behaviour. In this work we used advanced plasma-based techniques to generate model culture substrates with controlled nanotopographical features of 16 nm, 38 nm and 68 nm in magnitude, and three differently tailored surface chemical functionalities. The effect of these two surface properties on the adhesion, spreading, and self-renewal of mouse embryonic stem cells (mESCs) were assessed. The results demonstrated that physical and chemical cues influenced the behaviour of these stem cells in in vitro culture in different ways. The size of the nanotopographical features impacted on the cell adhesion, spreading and proliferation, while the chemistry influenced the cell self-renewal and differentiation.

  11. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    PubMed Central

    Holguín, Angela V.; Rangel, Guillermo; Clavijo, Viviana; Prada, Catalina; Mantilla, Marcela; Gomez, María Catalina; Kutter, Elizabeth; Taylor, Corinda; Fineran, Peter C.; Barrios, Andrés Fernando González; Vives, Martha J.

    2015-01-01

    Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%). However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization. PMID:26274971

  12. Deletion of neurturin impairs development of cholinergic nerves and heart rate control in postnatal mouse hearts.

    PubMed

    Downs, Anthony M; Jalloh, Hawa B; Prater, Kayla J; Fregoso, Santiago P; Bond, Cherie E; Hampton, Thomas G; Hoover, Donald B

    2016-05-01

    The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  13. SUV4-20 activity in the preimplantation mouse embryo controls timely replication

    PubMed Central

    Eid, André; Rodriguez-Terrones, Diego; Burton, Adam; Torres-Padilla, Maria-Elena

    2016-01-01

    Extensive chromatin remodeling after fertilization is thought to take place to allow a new developmental program to start. This includes dynamic changes in histone methylation and, in particular, the remodeling of constitutive heterochromatic marks such as histone H4 Lys20 trimethylation (H4K20me3). While the essential function of H4K20me1 in preimplantation mouse embryos is well established, the role of the additional H4K20 methylation states through the action of the SUV4-20 methyltransferases has not been addressed. Here we show that Suv4-20h1/h2 are mostly absent in mouse embryos before implantation, underscoring a rapid decrease of H4K20me3 from the two-cell stage onward. We addressed the functional significance of this remodeling by introducing Suv4-20h1 and Suv4-20h2 in early embryos. Ectopic expression of Suv4-20h2 leads to sustained levels of H4K20me3, developmental arrest, and defects in S-phase progression. The developmental phenotype can be partially overcome through inhibition of the ATR pathway, suggesting that the main function for the remodeling of H4K20me3 after fertilization is to allow the timely and coordinated progression of replication. This is in contrast to the replication program in somatic cells, where H4K20me3 has been shown to promote replication origin licensing, and anticipates a different regulation of replication during this early developmental time window. PMID:27920088

  14. Mouse to human comparative genetics reveals a novel immunoglobulin E-controlling locus on Hsa8q12.

    PubMed

    Gusareva, Elena S; Havelková, Helena; Blazková, Hana; Kosarová, Marcela; Kucera, Petr; Král, Vlastimil; Salyakina, Daria; Müller-Myhsok, Bertram; Lipoldová, Marie

    2009-01-01

    Atopy is a predisposition to hyperproduction of immunoglobulin E (IgE) against common environmental allergens. It is often associated with development of allergic diseases such as asthma, rhinitis, and dermatitis. Production of IgE is influenced by genetic and environmental factors. In spite of progress in the study of heredity of atopy, the genetic mechanisms of IgE regulation have not yet been completely elucidated. The analysis of complex traits can benefit considerably from integration of human and mouse genetics. Previously, we mapped a mouse IgE-controlling locus Lmr9 on chromosome 4 to a segment of <9 Mb. In this study, we tested levels of total IgE and 25 specific IgEs against inhalant and food allergens in 67 Czech atopic families. In the position homologous to Lmr9 on chromosome 8q12 marked by D8S285, we demonstrated a novel human IgE-controlling locus exhibiting suggestive linkage to composite inhalant allergic sensitization (limit of detection, LOD = 2.11, P = 0.0009) and to nine specific IgEs, with maximum LOD (LOD = 2.42, P = 0.0004) to plantain. We also tested 16 markers at previously reported chromosomal regions of atopy. Linkage to plant allergens exceeding the LOD > 2.0 was detected at 5q33 (D5S1507, LOD = 2.11, P = 0.0009) and 13q14 (D13S165, LOD = 2.74, P = 0.0002). The significant association with plant allergens (quantitative and discrete traits) was found at 7p14 (D7S2250, corrected P = 0.026) and 12q13 (D12S1298, corrected P = 0.043). Thus, the finding of linkage on chromosome 8q12 shows precision and predictive power of mouse models in the investigation of complex traits in humans. Our results also confirm the role of loci at 5q33, 7p14, 12q14, and 13q13 in control of IgE.

  15. Non-target effects of an introduced biological control agent on deer mouse ecology

    Treesearch

    Dean E. Pearson; Kevin S. McKelvey; Leonard F. Ruggiero

    2000-01-01

    Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-...

  16. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    PubMed

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  17. Age- and sex-dependent DNA hypomethylation controlled by growth hormone in mouse liver.

    PubMed

    Takasugi, Masaki; Hayakawa, Koji; Arai, Daisuke; Shiota, Kunio

    2013-01-01

    In mammals, differences in liver function and aging have been observed between sexes; however, the epigenetic mechanisms underlying such differences remain largely unexplored. In this study, we investigated sex- and age-dependent DNA methylation status in the mouse liver. We analyzed 90 known sex-differentially expressed genes, and identified sex-dependent methylation in Zfp809, Hsd3b5, Treh, Cxcl11, Cyp17a1, and Nnmt genes. After 4 weeks of age, we noted the gradual establishment of sex-dependent hypomethylation in each of these genes in either males or females. The exposure of male mice to female-like growth hormone (GH) profile repressed male-predominant hypomethylation and promoted female-predominant hypomethylation. The occurrence of age-dependent hypomethylation, including at loci for which we also observed sex-dependent changes in DNA methylation, was accompanied by the downregulation of DNMT3A/B. In addition, we found that age-dependent hypomethylation was promoted through liver regeneration induced by partial hepatectomy, suggesting that DNMT activities were not enough to retain methylation levels. In conclusion, our results demonstrate that sex-dependent GH profiles influence the age-progressive hypomethylation under decreased DNMT3A/B levels in certain regions of the genome. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. LSD1 Neurospecific Alternative Splicing Controls Neuronal Excitability in Mouse Models of Epilepsy.

    PubMed

    Rusconi, Francesco; Paganini, Leda; Braida, Daniela; Ponzoni, Luisa; Toffolo, Emanuela; Maroli, Annalisa; Landsberger, Nicoletta; Bedogni, Francesco; Turco, Emilia; Pattini, Linda; Altruda, Fiorella; De Biasi, Silvia; Sala, Mariaelvina; Battaglioli, Elena

    2015-09-01

    Alternative splicing in the brain is dynamic and instrumental to adaptive changes in response to stimuli. Lysine-specific demethylase 1 (LSD1/KDM1A) is a ubiquitously expressed histone H3Lys4 demethylase that acts as a transcriptional co-repressor in complex with its molecular partners CoREST and HDAC1/2. In mammalian brain, alternative splicing of LSD1 mini-exon E8a gives rise to neuroLSD1, a neurospecific isoform that, upon phosphorylation, acts as a dominant-negative causing disassembly of the co-repressor complex and de-repression of target genes. Here we show that the LSD1/neuroLSD1 ratio changes in response to neuronal activation and such effect is mediated by neurospecific splicing factors NOVA1 and nSR100/SRRM4 together with a novel cis-silencer. Indeed, we found that, in response to epileptogenic stimuli, downregulation of NOVA1 reduces exon E8a splicing and expression of neuroLSD1. Using behavioral and EEG analyses we observed that neuroLSD1-specific null mice are hypoexcitable and display decreased seizure susceptibility. Conversely, in a mouse model of Rett syndrome characterized by hyperexcitability, we measured higher levels of NOVA1 protein and upregulation of neuroLSD1. In conclusion, we propose that, in the brain, correct ratio between LSD1 and neuroLSD1 contributes to excitability and, when altered, could represent a pathogenic event associated with neurological disorders involving altered E/I. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Signaling by FGFR2b controls the regenerative capacity of adult mouse incisors

    PubMed Central

    Parsa, Sara; Kuremoto, Koh-ichi; Seidel, Kerstin; Tabatabai, Reza; MacKenzie, BreAnne; Yamaza, Takayoshi; Akiyama, Kentaro; Branch, Jonathan; Koh, Chester J.; Alam, Denise Al; Klein, Ophir D.; Bellusci, Saverio

    2010-01-01

    Rodent incisors regenerate throughout the lifetime of the animal owing to the presence of epithelial and mesenchymal stem cells in the proximal region of the tooth. Enamel, the hardest component of the tooth, is continuously deposited by stem cell-derived ameloblasts exclusively on the labial, or outer, surface of the tooth. The epithelial stem cells that are the ameloblast progenitors reside in structures called cervical loops at the base of the incisors. Previous studies have suggested that FGF10, acting mainly through fibroblast growth factor receptor 2b (FGFR2b), is crucial for development of the epithelial stem cell population in mouse incisors. To explore the role of FGFR2b signaling during development and adult life, we used an rtTA transactivator/tetracycline promoter approach that allows inducible and reversible attenuation of FGFR2b signaling. Downregulation of FGFR2b signaling during embryonic stages led to abnormal development of the labial cervical loop and of the inner enamel epithelial layer. In addition, postnatal attenuation of signaling resulted in impaired incisor growth, characterized by failure of enamel formation and degradation of the incisors. At a cellular level, these changes were accompanied by decreased proliferation of the transit-amplifying cells that are progenitors of the ameloblasts. Upon release of the signaling blockade, the incisors resumed growth and reformed an enamel layer, demonstrating that survival of the stem cells was not compromised by transient postnatal attenuation of FGFR2b signaling. Taken together, our results demonstrate that FGFR2b signaling regulates both the establishment of the incisor stem cell niches in the embryo and the regenerative capacity of incisors in the adult. PMID:20978072

  20. Characterization of the heterozygous glucokinase knockout mouse as a translational disease model for glucose control in type 2 diabetes.

    PubMed

    Baker, D J; Atkinson, A M; Wilkinson, G P; Coope, G J; Charles, A D; Leighton, B

    2014-04-01

    The global heterozygous glucokinase (GK) knockout (gk(wt/del)) male mouse, fed on a high-fat (60% by energy) diet, has provided a robust and reproducible model of hyperglycaemia. This model could be highly relevant to some facets of human type 2 diabetes (T2D). We aimed to investigate the ability of standard therapeutic agents to lower blood glucose at translational doses, and to explore the glucose-lowering potential of novel glucokinase activators (GKAs) in this model. We measured the ability of insulin, metformin, glipizide, exendin-4 and sitagliptin, after acute or repeat dose administration, to lower free-feeding glucose levels in gk(wt/del) mice. Further, we measured the ability of novel GKAs, GKA23, GKA71 and AZD6370 to control glucose either alone or in combination with some standard agents. A single dose of insulin (1 unit·kg(-1)), metformin (150, 300 mg·kg(-1)), glipizide (0.1, 0.3 mg·kg(-1)), exendin-4 (2, 20 μg·kg(-1)) and GKAs reduced free-feeding glucose levels. Sitagliptin (10 mg·kg(-1)), metformin (300 mg·kg(-1)) and AZD6370 (30, 400 mg·kg(-1)) reduced glucose excursions on repeat dosing. At a supra-therapeutic dose (400 mg·kg(-1)), AZD6370 also lowered basal levels of glucose without inducing hypoglycaemia. Standard glucose-lowering therapeutic agents demonstrated significant acute glucose lowering in male gk(wt/del) mice at doses corresponding to therapeutic free drug levels in man, suggesting the potential of these mice as a translatable model of human T2D. Novel GKAs also lowered glucose in this mouse model.

  1. Characterization of the heterozygous glucokinase knockout mouse as a translational disease model for glucose control in type 2 diabetes

    PubMed Central

    Baker, D J; Atkinson, A M; Wilkinson, G P; Coope, G J; Charles, A D; Leighton, B

    2014-01-01

    Background and Purpose The global heterozygous glucokinase (GK) knockout (gkwt/del) male mouse, fed on a high-fat (60% by energy) diet, has provided a robust and reproducible model of hyperglycaemia. This model could be highly relevant to some facets of human type 2 diabetes (T2D). We aimed to investigate the ability of standard therapeutic agents to lower blood glucose at translational doses, and to explore the glucose-lowering potential of novel glucokinase activators (GKAs) in this model. Experimental Approach We measured the ability of insulin, metformin, glipizide, exendin-4 and sitagliptin, after acute or repeat dose administration, to lower free-feeding glucose levels in gkwt/del mice. Further, we measured the ability of novel GKAs, GKA23, GKA71 and AZD6370 to control glucose either alone or in combination with some standard agents. Key Results A single dose of insulin (1 unit·kg−1), metformin (150, 300 mg·kg−1), glipizide (0.1, 0.3 mg·kg−1), exendin-4 (2, 20 μg·kg−1) and GKAs reduced free-feeding glucose levels. Sitagliptin (10 mg·kg−1), metformin (300 mg·kg−1) and AZD6370 (30, 400 mg·kg−1) reduced glucose excursions on repeat dosing. At a supra-therapeutic dose (400 mg·kg−1), AZD6370 also lowered basal levels of glucose without inducing hypoglycaemia. Conclusion and Implications Standard glucose-lowering therapeutic agents demonstrated significant acute glucose lowering in male gkwt/del mice at doses corresponding to therapeutic free drug levels in man, suggesting the potential of these mice as a translatable model of human T2D. Novel GKAs also lowered glucose in this mouse model. PMID:24772483

  2. PNSCROLL, a software package for graphical interactive analysis of single channel patch clamp currents and other binary file records: under mouse control.

    PubMed

    Barry, P H; Quartararo, N

    1990-01-01

    The PNSCROLL program has been specifically developed for interactively scrolling through binary data files under mouse control, in order to analyse single channel current records and printout, or plot, records and histograms of currents. PNSCROLL requires the use of a Microsoft Mouse and runs on an IBM or IBM-compatible microcomputer operating under MS DOS, ideally with 256K EGA or VGA graphics card and colour display. It will print on Epson dot matrix printers and plot records and histograms on HP plotters and LaserJet laser printers.

  3. 12 CFR 708a.13 - Voting guidelines.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Voting guidelines. 708a.13 Section 708a.13... CONVERSIONS AND MERGERS Conversion of Insured Credit Unions to Mutual Savings Banks § 708a.13 Voting... requirements that vary from federal law. For example, there may be different voting standards for approving a...

  4. 12 CFR 708a.13 - Voting guidelines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 6 2010-01-01 2010-01-01 false Voting guidelines. 708a.13 Section 708a.13... INSURED CREDIT UNIONS TO MUTUAL SAVINGS BANKS § 708a.13 Voting guidelines. A converting credit union must... federal law. For example, there may be different voting standards for approving a vote. While the Federal...

  5. Proapoptotic effect of control-released basic fibroblast growth factor on skin wound healing in a diabetic mouse model.

    PubMed

    Huang, Chenyu; Orbay, Hakan; Tobita, Morikuni; Miyamoto, Masaaki; Tabata, Yasuhiko; Hyakusoku, Hiko; Mizuno, Hiroshi

    2016-01-01

    The ability of basic fibroblast growth factor (bFGF) to improve wound healing is attenuated by its short half-life in free form. This study aimed to enhance skin wound healing in a diabetes mouse model while concomitantly decreasing scar formation using control-released bFGF together with acidic gelatin hydrogel microspheres (AGHMs). Bilateral full-thickness wounds (10 mm in diameter) were made on the backs of db/db mice. Forty-five mice were divided into three groups, and the base of the wound under the panniculus carnosus and the wound periphery were injected with phosphate-buffered saline (300 μL) containing (1) control-released bFGF (50 μg), (2) control-released bFGF (20 μg), or (3) AGHMs alone. The size of the wound area was recorded on each postoperative day (POD). Mice were sacrificed on postoperative day 4, 7, 10, 14, and 28, and skin wound specimens were obtained to assess the endothelium/angiogenesis index via cluster of differentiation 31 immunohistochemistry, the proliferation index via Ki-67 immunohistochemistry, and the myofibroblast and fibroblast apoptosis indices by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and alpha-smooth muscle actin or vimentin staining, respectively. Epithelialization rates and indices of proliferation and myofibroblast/fibroblast apoptosis were higher in the bFGF groups than in the AGHM group, mainly within 2 weeks of injury. No dose-effect relationship was found for control-released bFGF, although the actions of 50 μg bFGF seemed to last longer than those of 20 μg bFGF. Therefore, control-released bFGF may accelerate diabetic skin wound healing and induce myofibroblast/fibroblast apoptosis, thereby reducing scar formation. © 2015 by the Wound Healing Society.

  6. A pilot randomised control trial of the effectiveness of a biofeedback mouse in reducing self-reported pain among office workers.

    PubMed

    King, Trevor K; Severin, Colette N; Van Eerd, Dwayne; Ibrahim, Selahadin; Cole, Donald; Amick, Ben; Steenstra, Ivan A

    2013-01-01

    A pilot study examined the effectiveness of a biofeedback mouse in reducing upper extremity pain and discomfort in office workers; in addition, relative mouse use (RMU), satisfaction and the feasibility of running a randomised controlled trial (RCT) in a workplace setting were evaluated. The mouse would gently vibrate if the hand was idle for more than 12 s. The feedback reminded users to rest the arm in neutral, supported postures. Analysis showed a statistically significant reduction in shoulder pain and discomfort for the intervention group at T2 (38.7% lower than controls). Statistically significant differences in RMU time between groups were seen post intervention (-7% at T1 and +15% at T2 for the intervention group). Fifty-five percent of the intervention group was willing to continue using the mouse. It appears feasible to perform an RCT for this type of intervention in a workplace setting. Further study including more participants is suggested. The study findings support the feasibility of conducting randomised control trials in office settings to evaluate ergonomics interventions. The intervention resulted in reduced pain and discomfort in the shoulder. The intervention could be a relevant tool in the reduction of upper extremity musculoskeletal disorder. Further research will better explain the study's preliminary findings.

  7. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    PubMed

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  8. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Treesearch

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  9. Yap controls stem/progenitor cell proliferation in the mouse postnatal epidermis.

    PubMed

    Beverdam, Annemiek; Claxton, Christina; Zhang, Xiaomeng; James, Gregory; Harvey, Kieran F; Key, Brian

    2013-06-01

    Tissue renewal is an ongoing process in the epithelium of the skin. We have begun to examine the genetic mechanisms that control stem/progenitor cell activation in the postnatal epidermis. The conserved Hippo pathway regulates stem cell turnover in arthropods through to vertebrates. Here we show that its downstream effector, yes-associated protein (YAP), is active in the stem/progenitor cells of the postnatal epidermis. Overexpression of a C-terminally truncated YAP mutant in the basal epidermis of transgenic mice caused marked expansion of epidermal stem/progenitor cell populations. Our data suggest that the C-terminus of YAP controls the balance between stem/progenitor cell proliferation and differentiation in the postnatal interfollicular epidermis. We conclude that YAP functions as a molecular switch of stem/progenitor cell activation in the epidermis. Moreover, our results highlight YAP as a possible therapeutic target for diseases such as skin cancer, psoriasis, and epidermolysis bullosa.

  10. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex

    PubMed Central

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-01-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking’ neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex. PMID:21224221

  11. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex.

    PubMed

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-03-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking' neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex.

  12. The immediate upstream sequence of the mouse Ret gene controls tissue-specific expression in transgenic mice.

    PubMed

    Zordan, Paola; Tavella, Sara; Brizzolara, Antonella; Biticchi, Roberta; Ceccherini, Isabella; Garofalo, Silvio; Ravazzolo, Roberto; Bocciardi, Renata

    2006-10-01

    The RET gene is tightly regulated at the transcriptional level during embryo development, however in vitro experiments in cultured cells have failed to clarify the molecular mechanism of cell-type specificity of RET promoter activity. Therefore, we have generated transgenic mice in which the LacZ reporter gene is controlled by murine Ret promoter sequences to clarify in an in vivo model how this transcriptional regulation is achieved. We describe here the results of reporter gene expression in mice in which the transgene contained 380- and 1962-bp sequence upstream of the ATG start codon, derived from the mouse Ret promoter region, fused to the beta-galactosidase coding sequence. Transgenic mice showed well-defined patterns of beta-galactosidase staining obtained with both transgenes, suggesting that they were able per se to direct the reporter gene expression in specific districts, such as cranial ganglia, dorsal root ganglia, the heart and the kidney, partially recapitulating the profile of the endogenous Ret gene. In particular, proper expression in the developing excretory system seemed quite significant when considering that the appropriate regulation was obtained with a very short, 380 bp, fragment of Ret 5' flanking sequence.

  13. Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model.

    PubMed

    Badar, Muhammad; Rahim, Muhammad Imran; Kieke, Marc; Ebel, Thomas; Rohde, Manfred; Hauser, Hansjörg; Behrens, Peter; Mueller, Peter P

    2015-06-01

    As an alternative to degradable organic coatings the possibility of using layered double hydroxides (LDHs) to generate implant coatings for controlled drug delivery was evaluated in vivo and in vitro. Coatings prepared from LDH suspensions dissolved slowly and appeared compatible with cultured cells. LDH coatings loaded with an antibiotic resulted in antibacterial effects in vitro. The LDH coating prolonged the drug release period and improved the proliferation of adherent cells in comparison to pure drug coatings. However, during incubation in physiological solutions the LDH coatings became brittle and pieces occasionally detached from the surface. For stress protection porous titanium implants were investigated as a substrate for the coatings. The pores prevented premature detachment of the coatings. To evaluate the coated porous implants in vivo a mouse model was established. To monitor bacterial infection of implants noninvasive in vivo imaging was used to monitor luminescently labeled Pseudomonas aeruginosa. In this model porous implants with antibiotic-loaded LDH coatings could antagonize bacterial infections for over 1 week. The findings provide evidence that delayed drug delivery from LDH coatings could be feasible in combination with structured implant surfaces. © 2014 Wiley Periodicals, Inc.

  14. Location of the genes controlling H-Y antigen expression and testis determination on the mouse Y chromosome.

    PubMed Central

    McLaren, A; Simpson, E; Epplen, J T; Studer, R; Koopman, P; Evans, E P; Burgoyne, P S

    1988-01-01

    Sex-reversed XX male mice that carry the variant form of the testis-determining Sxr region, Sxr', do not express male-specific H-Y antigen. In a stock of mice segregating for Sxr', we detected an exceptional XX male that proved positive for H-Y antigen. DNA fingerprinting revealed that the banding pattern characteristic of Sxr' had been replaced by the pattern associated with the native testis-determining region of the normal Y chromosome of that stock, presumably by pairing and crossing-over between the two testis-determining regions of the father's Y Sxr' chromosome. Pairing between the two ends of such a chromosome in a loop-like configuration has been observed by electron microscopy. However, an anomalous crossing-over event of this kind would only give rise to the observed result if the native homologue of the Sxr region were situated on the very minute short arm of the Y chromosome. We therefore conclude that the two linked genes Tdy and Hya, controlling testis determination and H-Y antigen expression, respectively, are located on the short arm of the mouse Y chromosome. Images PMID:3261868

  15. The Gdap1 knockout mouse mechanistically links redox control to Charcot–Marie–Tooth disease

    PubMed Central

    Huber, Nina; Wagner, Konstanze M.; Somandin, Christian; Horn, Michael; Lebrun-Julien, Frédéric; Pereira, Jorge A.; Halfter, Hartmut; Welzl, Hans; Feltri, M. Laura; Wrabetz, Lawrence; Young, Peter; Wessig, Carsten; Toyka, Klaus V.; Suter, Ueli

    2014-01-01

    The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot–Marie–Tooth disease. We found that Gdap1 knockout mice (Gdap1−/−), mimicking genetic alterations of patients suffering from severe forms of Charcot–Marie–Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1−/− mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1−/− mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1−/− mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1−/− mice compared with controls. Our findings demonstrate that Charcot–Marie–Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione. PMID:24480485

  16. The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease.

    PubMed

    Niemann, Axel; Huber, Nina; Wagner, Konstanze M; Somandin, Christian; Horn, Michael; Lebrun-Julien, Frédéric; Angst, Brigitte; Pereira, Jorge A; Halfter, Hartmut; Welzl, Hans; Feltri, M Laura; Wrabetz, Lawrence; Young, Peter; Wessig, Carsten; Toyka, Klaus V; Suter, Ueli

    2014-03-01

    The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1(-/-) mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1(-/-) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1(-/-) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1(-/-) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.

  17. Pou3f4-Mediated Regulation of Ephrin-B2 Controls Temporal Bone Development in the Mouse

    PubMed Central

    Raft, Steven; Coate, Thomas M.; Kelley, Matthew W.; Crenshaw, E. Bryan; Wu, Doris K.

    2014-01-01

    The temporal bone encases conductive and sensorineural elements of the ear. Mutations of POU3F4 are associated with unique temporal bone abnormalities and X-linked mixed deafness (DFNX2/DFN3). However, the target genes and developmental processes controlled by POU3F4 transcription factor activity have remained largely uncharacterized. Ephrin-B2 (Efnb2) is a signaling molecule with well-documented effects on cell adhesion, proliferation, and migration. Our analyses of targeted mouse mutants revealed that Efnb2 loss-of-function phenocopies temporal bone abnormalities of Pou3f4 hemizygous null neonates: qualitatively identical malformations of the stapes, styloid process, internal auditory canal, and cochlear capsule were present in both mutants. Using failed/insufficient separation of the stapes and styloid process as a quantitative trait, we found that single gene Efnb2 loss-of-function and compound Pou3f4/Efnb2 loss-of-function caused a more severe phenotype than single gene Pou3f4 loss-of-function. Pou3f4 and Efnb2 gene expression domains overlapped at the site of impending stapes-styloid process separation and at subcapsular mesenchyme surrounding the cochlea; at both these sites, Efnb2 expression was attenuated in Pou3f4 hemizygous null mutants relative to control. Results of immunoprecipitation experiments using chromatin isolated from nascent middle ear mesenchyme supported the hypothesis of a physical association between Pou3f4 and specific non-coding sequence of Efnb2. We propose that Efnb2 is a target of Pou3f4 transcription factor activity and an effector of mesenchymal patterning during temporal bone development. PMID:25299585

  18. Genetic Control of Ductal Morphology, Estrogen-Induced Ductal Growth, and Gene Expression in Female Mouse Mammary Gland

    PubMed Central

    Wall, Emma H.; Case, Laure K.; Hewitt, Sylvia C.; Nguyen-Vu, Trang; Candelaria, Nicholes R.

    2014-01-01

    The uterotropic response of the uterus to 17β-estradiol (E2) is genetically controlled, with marked variation observed depending on the mouse strain studied. Previous genetic studies from our laboratory using inbred mice that are high (C57BL6/J; B6) or low (C3H/HeJ; C3H) responders to E2 led to the identification of quantitative trait loci (QTL) associated with phenotypic variation in uterine growth and leukocyte infiltration. Like the uterus, phenotypic variation in the responsiveness of the mammary gland to E2 during both normal and pathologic conditions has been reported. In the current experiment, we utilized an E2-specific model of mammary ductal growth combined with a microarray approach to determine the degree to which genotype influences the responsiveness of the mammary gland to E2, including the associated transcriptional programs, in B6 and C3H mice. Our results reveal that E2-induced mammary ductal growth and ductal morphology are genetically controlled. In addition, we observed a paradoxical effect of mammary ductal growth in response to E2 compared with what has been reported for the uterus; B6 is a high responder for the uterus and was a low responder for mammary ductal growth, whereas the reverse was observed for C3H. In contrast, B6 was a high responder for mammary ductal side branching. The B6 phenotype was associated with increased mammary epithelial cell proliferation and apoptosis, and a distinct E2-induced transcriptional program. These findings lay the groundwork for future experiments designed to investigate the genes and mechanisms underlying phenotypic variation in tissue-specific sensitivity to systemic and environmental estrogens during various physiological and disease states. PMID:24708240

  19. Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance

    PubMed Central

    Buyse, Gunnar M.; Van der Mieren, Gerry; Erb, Michael; D'hooge, Jan; Herijgers, Paul; Verbeken, Erik; Jara, Alejandro; Van Den Bergh, An; Mertens, Luc; Courdier-Fruh, Isabelle; Barzaghi, Patrizia; Meier, Thomas

    2009-01-01

    Aims Duchenne muscular dystrophy (DMD) is a severe and still incurable disease, with heart failure as a leading cause of death. The identification of a disease-modifying therapy may require early-initiated and long-term administration, but such type of therapeutic trial is not evident in humans. We have performed such a trial of SNT-MC17/idebenone in the mdx mouse model of DMD, based on the drug’s potential to improve mitochondrial respiratory chain function and reduce oxidative stress. Methods and results In this study, 200 mg/kg bodyweight of either SNT-MC17/idebenone or placebo was given from age 4 weeks until 10 months in mdx and wild-type mice. All evaluators were blinded to mouse type and treatment groups. Idebenone treatment significantly corrected cardiac diastolic dysfunction and prevented mortality from cardiac pump failure induced by dobutamine stress testing in vivo, significantly reduced cardiac inflammation and fibrosis, and significantly improved voluntary running performance in mdx mice. Conclusion We have identified a novel potential therapeutic strategy for human DMD, as SNT-MC17/idebenone was cardioprotective and improved exercise performance in the dystrophin-deficient mdx mouse. Our data also illustrate that the mdx mouse provides unique opportunities for long-term controlled prehuman therapeutic studies. PMID:18784063

  20. Sexual Dimorphism in the Control of Amebic Liver Abscess in a Mouse Model of Disease

    PubMed Central

    Lotter, Hannelore; Jacobs, Thomas; Gaworski, Iris; Tannich, Egbert

    2006-01-01

    Amebic liver abscess (ALA) is the most common extraintestinal manifestation of human infection by the enteric protozoan parasite Entamoeba histolytica. In contrast to intestinal infection, ALA greatly predominates in males but is rare in females. Since humans are the only relevant host for E. histolytica, experimental studies concerning this sexual dimorphism have been hampered by the lack of a suitable animal model. By serial liver passage of cultured E. histolytica trophozoites in gerbils and mice, we generated amebae which reproducibly induce ALA in C57BL/6 mice. Interestingly, all animals developed ALA, but the time courses of abscess formation differed significantly between the genders. Female mice were able to clear the infection within 3 days, whereas in male mice the parasite could be recovered for at least 14 days. Accordingly, male mice showed a prolonged time of recovery from ALA. Immunohistology of abscesses revealed that polymorphonuclear leukocytes and macrophages were the dominant infiltrates, but in addition, γ,δ-T cells, NK cells, and natural killer T (NKT) cells were also present at early times during abscess development, whereas conventional α,β-T cells appeared later, when female mice had already cleared the parasite. Interestingly, male and female mice differed in early cytokine production in response to ameba infection. Enzyme-linked immunospot assays performed with spleen cells of infected animals revealed significantly higher numbers of interleukin-4-producing cells in male mice but significantly higher numbers of gamma interferon (IFN-γ)-producing cells in female mice. Early IFN-γ production and the presence of functional NKT cells were found to be important for the control of hepatic amebiasis as application of an IFN-γ-neutralizing monoclonal antibody or the use of NKT knockout mice (Vα14iNKT, Jα 18−/−) dramatically increased the size of ALA in female mice. In addition, E. histolytica trophozoites could be reisolated from

  1. Sexual dimorphism in the control of amebic liver abscess in a mouse model of disease.

    PubMed

    Lotter, Hannelore; Jacobs, Thomas; Gaworski, Iris; Tannich, Egbert

    2006-01-01

    Amebic liver abscess (ALA) is the most common extraintestinal manifestation of human infection by the enteric protozoan parasite Entamoeba histolytica. In contrast to intestinal infection, ALA greatly predominates in males but is rare in females. Since humans are the only relevant host for E. histolytica, experimental studies concerning this sexual dimorphism have been hampered by the lack of a suitable animal model. By serial liver passage of cultured E. histolytica trophozoites in gerbils and mice, we generated amebae which reproducibly induce ALA in C57BL/6 mice. Interestingly, all animals developed ALA, but the time courses of abscess formation differed significantly between the genders. Female mice were able to clear the infection within 3 days, whereas in male mice the parasite could be recovered for at least 14 days. Accordingly, male mice showed a prolonged time of recovery from ALA. Immunohistology of abscesses revealed that polymorphonuclear leukocytes and macrophages were the dominant infiltrates, but in addition, gamma,delta-T cells, NK cells, and natural killer T (NKT) cells were also present at early times during abscess development, whereas conventional alpha,beta-T cells appeared later, when female mice had already cleared the parasite. Interestingly, male and female mice differed in early cytokine production in response to ameba infection. Enzyme-linked immunospot assays performed with spleen cells of infected animals revealed significantly higher numbers of interleukin-4-producing cells in male mice but significantly higher numbers of gamma interferon (IFN-gamma)-producing cells in female mice. Early IFN-gamma production and the presence of functional NKT cells were found to be important for the control of hepatic amebiasis as application of an IFN-gamma-neutralizing monoclonal antibody or the use of NKT knockout mice (Valpha14iNKT, Jalpha 18(-/-)) dramatically increased the size of ALA in female mice. In addition, E. histolytica trophozoites

  2. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation

    PubMed Central

    Becker, Amy M.; Callahan, Derrick J.; Richner, Justin M.; Choi, Jaebok; DiPersio, John F.; Diamond, Michael S.; Bhattacharya, Deepta

    2015-01-01

    Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation. PMID:26197390

  3. The adenosine generating enzymes CD39/CD73 control microglial processes ramification in the mouse brain

    PubMed Central

    Matyash, Marina; Zabiegalov, Oleksandr; Wendt, Stefan; Matyash, Vitali

    2017-01-01

    Microglial cells invade the brain as amoeboid precursors and acquire a highly ramified morphology in the postnatal brain. Microglia express all essential purinergic elements such as receptors, nucleoside transporters and ecto-enzymes, including CD39 (NTPDase1) and CD73 (5'-nucleotidase), which sequentially degrade extracellular ATP to adenosine. Here, we show that constitutive deletion of CD39 and CD73 or both caused an inhibition of the microglia ramified phenotype in the brain with a reduction in the length of processes, branching frequency and number of intersections with Sholl spheres. In vitro, unlike wild-type microglia, cd39-/- and cd73-/- microglial cells were less complex and did not respond to ATP with the transformation into a more ramified phenotype. In acute brain slices, wild-type microglia retracted approximately 50% of their processes within 15 min after slicing of the brain, and this phenomenon was augmented in cd39-/- mice; moreover, the elongation of microglial processes towards the source of ATP or towards a laser lesion was observed only in wild-type but not in cd39-/- microglia. An elevation of extracellular adenosine 1) by the inhibition of adenosine transport with dipyridamole, 2) by application of exogenous adenosine or 3) by degradation of endogenous ATP/ADP with apyrase enhanced spontaneous and ATP-induced ramification of cd39-/- microglia in acute brain slices and facilitated the transformation of cd39-/- and cd73-/- microglia into a ramified process-bearing phenotype in vitro. These data indicate that under normal physiological conditions, CD39 and CD73 nucleotidases together with equilibrative nucleoside transporter 1 (ENT1) control the fate of extracellular adenosine and thereby the ramification of microglial processes. PMID:28376099

  4. Transcriptional factor snail controls tumor neovascularization, growth and metastasis in mouse model of human ovarian carcinoma.

    PubMed

    Abdulkhalek, Samar; Geen, Olivia D; Brodhagen, Lacey; Haxho, Fiona; Alghamdi, Farah; Allison, Stephanie; Simmons, Duncan J; O'Shea, Leah K; Neufeld, Ronald J; Szewczuk, Myron R

    2014-12-01

    + endothelial cells, while A2780 Snail KD tumors expressed E-cadherin and reduced host CD31+ cells. OP 50mg/kg cohort tumors had reduced numbers of host CD31+ cells compared to a higher expression levels of CD31+ cells in tumors from the untreated control and OP 30mg/kg cohorts. Snail transcriptional factor is an important intermediate player in human ovarian tumor neovascularization.

  5. Glucose principally regulates insulin secretion in mouse islets by controlling the numbers of granule fusion events per cell.

    PubMed

    Low, Jiun T; Mitchell, Justin M; Do, Oanh H; Bax, Jacinda; Rawlings, Alicia; Zavortink, Michael; Morgan, Garry; Parton, Robert G; Gaisano, Herbert Y; Thorn, Peter

    2013-12-01

    In dispersed single beta cells the response of each cell to glucose is heterogeneous. In contrast, within an islet, cell-to-cell communication leads to glucose inducing a more homogeneous response. For example, increases in NAD(P)H and calcium are relatively uniform across the cells of the islet. These data suggest that secretion of insulin from single beta cells within an islet should also be relatively homogeneous. The aim of this study was to test this hypothesis by determining the glucose dependence of single-cell insulin responses within an islet. Two-photon microscopy was used to detect the glucose-induced fusion of single insulin granules within beta cells in intact mouse islets. First, we validated our assay and showed that the measures of insulin secretion from whole islets could be explained by the time course and numbers of granule fusion events observed. Subsequent analysis of the patterns of granule fusion showed that cell recruitment is a significant factor, accounting for a fourfold increase from 3 to 20 mmol/l glucose. However, the major factor is the regulation of the numbers of granule fusion events within each cell, which increase ninefold over the range of 3 to 20 mmol/l glucose. Further analysis showed that two types of granule fusion event occur: 'full fusion' and 'kiss and run'. We show that the relative frequency of each type of fusion is independent of glucose concentration and is therefore not a factor in the control of insulin secretion. Within an islet, glucose exerts its main effect through increasing the numbers of insulin granule fusion events within a cell.

  6. Visualization of a neurotropic flavivirus infection in mouse reveals unique viscerotropism controlled by host type I interferon signaling

    PubMed Central

    Li, Xiao-Feng; Li, Xiao-Dan; Deng, Cheng-Lin; Dong, Hao-Long; Zhang, Qiu-Yan; Ye, Qing; Ye, Han-Qing; Huang, Xing-Yao; Deng, Yong-Qiang; Zhang, Bo; Qin, Cheng-Feng

    2017-01-01

    Flavivirus includes a large group of human pathogens with medical importance. Especially, neurotropic flaviviruses capable of invading central and peripheral nervous system, e.g. Japanese encephalitis virus (JEV) and Zika virus (ZIKV), are highly pathogenic to human and constitute major global health problems. However, the dynamic dissemination and pathogenesis of neurotropic flavivirus infections remain largely unknown. Here, using JEV as a model, we rationally designed and constructed a recombinant reporter virus that stably expressed Renilla luciferase (Rluc). The resulting JEV reporter virus (named Rluc-JEV) and parental JEV exhibited similar replication and infection characteristics, and the magnitude of Rluc activity correlated well with progeny viral production in vitro and in vivo. By using in vivo bioluminescence imaging (BLI) technology, we dissected the replication and dissemination dynamics of JEV infection in mice upon different inoculation routes. Interestingly, besides replicating in mouse brain, Rluc-JEV predominantly invaded the abdominal organs in mice with typical viscerotropism. Further tests in mice deficient in type I interferon (IFN) receptors demonstrated robust and prolonged viral replication in the intestine, spleen, liver, kidney and other abdominal organs. Combined with histopathological and immunohistochemical results, the host type I IFN signaling was evidenced as the major barrier to the viscerotropism and pathogenicity of this neurotropic flavivirus. Additionally, the Rluc-JEV platform was readily adapted for efficacy assay of known antiviral compounds and a live JE vaccine. Collectively, our study revealed abdominal organs as important targets of JEV infection in mice and profiled the unique viscerotropism trait controlled by the host type I IFN signaling. This in vivo visualization technology described here provides a powerful tool for testing antiviral agents and vaccine candidates for flaviviral infection. PMID:28382163

  7. Orexin/Hypocretin and Histamine: Distinct Roles in the Control of Wakefulness Demonstrated Using Knock-Out Mouse Models

    PubMed Central

    Anaclet, Christelle; Parmentier, Régis; Ouk, Koliane; Guidon, Gérard; Buda, Colette; Sastre, Jean-Pierre; Akaoka, Hidéo; Sergeeva, Olga A.; Yanagisawa, Masashi; Ohtsu, Hiroshi; Franco, Patricia; Haas, Helmut L.; Lin, Jian Sheng

    2009-01-01

    To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep-wake phenotypes of orexin(Ox) knockout(−/−) mice and compared them with those of histidine-decarboxylase(HDC, HA-synthesizing enzyme)−/−mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep(PS), they presented a number of marked differences: 1) The PS-increase in HDC−/−mice was seen during lightness, whereas that in Ox−/−mice occurred during darkness; 2) Contrary to HDC−/−, Ox−/−mice had no W deficiency around lights-off, nor an abnormal EEG and responded to a new environment with increased W; 3) Only Ox−/−, but not HDC−/−mice, displayed narcolepsy and deficient W when faced with motor challenge. Thus, when placed on a wheel, WT, but not littermate Ox−/−mice, voluntarily spent their time in turning it and as a result, remained highly awake; this was accompanied by dense c-fos expression in many areas of their brains, including Ox-neurons in the dorsolateral hypothalamus. The W and motor deficiency of Ox−/−mice was due to the absence of Ox because intraventricular dosing of Ox-A restored their W amount and motor performance whereas SB-334867 (Ox1-receptor antagonist, i.p.) impaired W and locomotion of WT mice during the test. These data indicate that Ox, but not HA, promotes W through enhanced locomotion and suggest that HA and Ox neurons exert a distinct, but complementary and synergistic control of W: the neuropeptide being more involved in its behavioral aspects, whereas the amine is mainly responsible for its qualitative cognitive aspects and cortical-EEG activation. PMID:19923277

  8. An inhibitory pathway controlling the gating mechanism of the mouse lateral amygdala revealed by voltage-sensitive dye imaging.

    PubMed

    Fujieda, Tomomi; Koganezawa, Noriko; Ide, Yoshinori; Shirao, Tomoaki; Sekino, Yuko

    2015-03-17

    The lateral amygdala nucleus (La) is known as a gateway for emotional learning that interfaces sensory inputs from the cortex and the thalamus. In the La, inhibitory GABAergic inputs control the strength of sensory inputs and interfere with the initial step of the acquisition of fear memory. In the present study, we investigated the spatial and temporal patterns of the inhibitory responses in mouse La using voltage-sensitive dye imaging. Stimulating the external capsule (EC) induced large and long-lasting hyperpolarizing signals in the La. We focused on these hyperpolarizing signals, revealing the origins of the inhibitory inputs by means of surgical cuts on the possible afferent pathways with four patterns. Isolating the medial branch of EC (ECmed), but not the lateral branch of EC (EClat), from the La strongly suppressed the induction of the hyperpolarization. Interestingly, isolating the ECmed from the caudate putamen did not suppress the hyperpolarization, while the surgical cut of the ECmed fiber tract moderately suppressed it. Glutamatergic antagonists completely suppressed the hyperpolarizing signals induced by the stimulation of EC. When directly stimulating the dorsal, middle or ventral part of the ECmed fiber tract in the presence of glutamatergic antagonists, only the stimulation in the middle part of the ECmed caused hyperpolarization. These data indicate that the GABAergic neurons in the medial intercalated cluster (m-ITC), which receive glutamatergic excitatory input from the ECmed fiber tract, send inhibitory afferents to the La. This pathway might have inhibitory effects on the acquisition of fear memory. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. Genomic characterization and regulation of CYP3a13: role of xenobiotics and nuclear receptors.

    PubMed

    Anakk, Sayeepriyadarshini; Kalsotra, Auinash; Shen, Qi; Vu, Mary T; Staudinger, Jeffrey L; Davies, Peter J A; Strobel, Henry W

    2003-09-01

    We report that CYP3a13 gene, located on mouse chromosome 5, spans 27.5 Kb and contains 13 exons. The transcription start site is 35 bp upstream of the coding region and results in a 109 bp 5' untranslated region. CYP3a13 promoter shows putative binding sites for retinoid X receptor, pregnane X receptor, and estrogen receptor. CYP3a13 shows a broad tissue distribution with predominant expression in liver. Although CYP3a13 shares 92% nucleotide identity with the female-specific rat CYP3A9, its expression does not exhibit sexual dimorphism. Ligand activation of peroxisomal proliferator-activated receptor-gamma and retinoid X receptor inhibit expression of CYP3a13 at the transcription level in a tissue-specific manner. Another novel finding is hepatic induction of CYP3a13 by dexamethasone occurring only in pregnane X receptor null mice. We also report that pregnane X receptor is essential to maintain robust in vivo basal levels of CYP3a13 in contrast to CYP3a11. CYP3a13 protein expressed in vitro can metabolize clinically active drugs ethylmorphine and erythromycin, as well as benzphetamine. We conclude that CYP3a13 is regulated differentially by various nuclear receptors. In humans this may lead to altered drug metabolism, as many of the newly synthesized ligands/drugs targeted toward these nuclear receptors could influence CYP3A gene expression.

  10. Transcriptional control of the heme oxygenase gene in mouse M1 cells during their TPA-induced differentiation into macrophages.

    PubMed

    Kurata, S; Matsumoto, M; Nakajima, H

    1996-09-01

    It has long been known that heme oxygenase (HO) is a key enzyme in heme catabolism and recently it was also found to acts as an oxidative stress protein to produce carbon monoxide (CO), which has similar actions to those of nitrogen monoxide (NO). Therefore, we examined transcriptional control of the HO gene in mouse M1 (myeloleukemia) cells during their differentiation into macrophages. Since the promoter region of this gene is known to have a TPA-responsive element (TRE), its expression might be regulated by a C-kinase signal transduction pathway. Then we investigated the activation of the HO gene after treatment of M1 cells with TPA and inhibitors of C-kinase. When M1 cells were treated with TPA, they differentiated into macrophage-like cells. Upon treatment with TPA, H2O2 was produced first, the nuclear proto-oncogenes fos and jun were activated, and then the HO gene was activated. The extent of transcriptional activation of the fos, jun, and HO genes in M1 cells treated with TPA was reduced by a specific inhibitor of C-kinase and a scavenger of oxygen radicals. When M1 cells were treated with H2O2, essentially the same level of transcription of the HO gene was observed, but the extent of transcriptional activation of the fos and jun genes was about half of the treatment with TPA. Super-shift assays using the TRE of the HO gene revealed that the Fos and Jun proteins from nuclei of M1 cells treated with TPA bound to the TRE, and same assays using DNA with the NF-kappa B motif also revealed that the active NF-kappa B protein from M1 cells treated with H2O2 or TPA also bound to the corresponding motif. These results strongly suggest that the HO gene in M1 cells is activated by TPA through a production of H2O2, an oxidative activation pathway of NF-kappa B, and a signal-transduction pathway that involves C-kinase during the differentiation of macrophages that occurs upon treatment with TPA.

  11. The risk of vector-borne infections in sled dogs associated with existing and new endemic areas in Poland. Part 2: Occurrence and control of babesiosis in a sled dog kennel during a 13-year-long period.

    PubMed

    Bajer, Anna; Mierzejewska, Ewa J; Rodo, Anna; Welc-Falęciak, Renata

    2014-05-28

    The achievements of sled dogs in competitions depend both on their training and on their health. Vector-borne infections may lead to anemia, affect joints or heart muscles or even cause death. Canine babesiosis is an emerging, quickly spreading tick-borne disease in Central Europe. Over a 13-year period (2000-2012) the occurrence of babesiosis cases was analyzed in one sled dog kennel situated in Kury, a village near Tłuszcz (N 52°24'56.78″, E 21°30'37.55″) in Central Poland. Twenty cases/episodes of babesiosis were noted among the 10-12 dogs living in the kennel. In 2000-2004, no cases of babesiosis were noted; the first two cases were noted in April 2005. Since that time, only one dog remained uninfected; 6 dogs were infected once, 3 dogs demonstrated symptoms of babesiosis twice, one dog was infected three times and one dog had it five times. Babesiosis appeared in Spring and Autumn, despite the application of anti-tick treatment. No fatal cases were recorded, but in one case a splenectomy was performed due to splenomegaly and spleen rupture. Additionally, the abundance of the main Babesia canis vector, the Dermacentor reticulatus tick, was estimated and monitored during a 4-year period (2008-2012) close to the dog kennel. The abundance of questing ticks was high in 2008 and 2009, but dropped by 10-fold between 2010 and 2012, when the abandoned meadow was cut and used as horse pasture by the local farmer. The regular occurrence, typical seasonal pattern and identification of B. canis DNA in questing tick from this locality confirmed the establishment of a new hyper enzootic region for canine babesiosis. The effectiveness and schedule of applied preventive measures were discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Non conservation of function for the evolutionarily conserved prdm1 protein in the control of the slow twitch myogenic program in the mouse embryo.

    PubMed

    Vincent, Stéphane D; Mayeuf, Alicia; Niro, Claire; Saitou, Mitinori; Buckingham, Margaret

    2012-10-01

    Muscles are composed of multinucleated muscle fibers with different contractile and physiological properties, which result from specific slow or fast gene expression programs in the differentiated muscle cells. In the zebra fish embryo, the slow program is under the control of Hedgehog signaling from the notochord and floor plate. This pathway activates the expression of the conserved transcriptional repressor, Prdm1 (Blimp1), which in turn represses the fast program and promotes the slow program in adaxial cells of the somite and their descendants. In the mouse embryo, myogenesis is also initiated in the myotomal compartment of the somite, but the slow muscle program is not confined to a specific subset of cells. We now show that Prdm1 is expressed in the first differentiated myocytes of the early myotome from embryonic day (E)9.5-E11.5. During this period, muscle formation depends on the myogenic regulatory factors, Myf5 and Mrf4. In their absence, Prdm1 is not activated, in apparent contrast to zebra fish where Prdm1 is expressed in the absence of Myf5 and MyoD that drive myogenesis in adaxial cells. However, as in zebra fish, Prdm1 expression in the mouse myotome does not occur in the absence of Hedgehog signaling. Analysis of the muscle phenotype of Prdm1 mutant embryos shows that myogenesis appears to proceed normally. Notably, there is no requirement for Prdm1 activation of the slow muscle program in the mouse myotome. Furthermore, the gene for the transcriptional repressor, Sox6, which is repressed by Prdm1 to permit slow muscle differentiation in zebra fish, is not expressed in the mouse myotome. We propose that the lack of functional conservation for mouse Prdm1, that can nevertheless partially rescue the adaxial cells of zebra fish Prdm1 mutants, reflects differences in the evolution of the role of key regulators such as Prdm1 or Sox6, in initiating the onset of the slow muscle program, between teleosts and mammals.

  13. A complex control region of the mouse rRNA gene directs accurate initiation by RNA polymerase I.

    PubMed Central

    Miller, K G; Tower, J; Sollner-Webb, B

    1985-01-01

    To determine the size and location of the mouse rDNA promoter, we constructed systematic series of deletion mutants approaching the initiation site from the 5' and 3' directions. These templates were transcribed in vitro under various conditions with S-100 and whole-cell extracts. Surprisingly, the size of the rDNA region that determines the level of transcription differed markedly, depending on the reaction conditions. In both kinds of cell extracts, the apparent 5' border of the promoter was at residue ca. -27 under optimal transcription conditions, but as reaction conditions became less favorable, the 5' border moved progressively out to residues -35, -39, and -45. The complete promoter, however, extends considerably further, for under other nonoptimal conditions, we observed major effects of promoter domains extending in the 5' direction to positions ca. -100 and -140. In contrast, the apparent 3' border of the mouse rDNA promoter was at residue ca. +9 under all conditions examined. We also show that the subcloned rDNA region from -39 to +9 contains sufficient information to initiate accurately and that the region between +2 and +9 can influence the specificity of initiation. These data indicate that, although the polymerase I transcription factors recognize and accurately initiate with only the sequences downstream of residue -40, sequences extending out to residue -140 greatly favor the initiation reaction; presumably, this entire region is involved in rRNA transcription in vivo. Images PMID:3990683

  14. Similarities and differences in the transcriptional control of expression of the mouse TSLP gene in skin epidermis and intestinal epithelium

    PubMed Central

    Ganti, Krishna Priya; Mukherji, Atish; Surjit, Milan; Li, Mei; Chambon, Pierre

    2017-01-01

    We previously reported that selective ablation of the nuclear receptors retinoid X receptor (RXR)-α and RXR-β in mouse epidermal keratinocytes (RXR-αβep−/−) or a topical application of active vitamin D3 (VD3) and/or all-trans retinoic acid (RA) on wild-type mouse skin induces a human atopic dermatitis-like phenotype that is triggered by an increased expression of the thymic stromal lymphopoietin (TSLP) proinflammatory cytokine. We demonstrate here that in epidermal keratinocytes, unliganded heterodimers of vitamin D receptor (VDR)/RXR-α and retinoic acid receptor-γ (RAR-γ)/RXR-β are bound as repressing complexes to their cognate DNA-binding sequence(s) (DBS) in the TSLP promoter regulatory region. Treatments with either an agonistic VD3 analog or RA dissociate the repressing complexes and recruit coactivator complexes and RNA polymerase II, thereby inducing transcription. Furthermore, we identified several functional NF-κB, activator protein 1 (AP1), STAT, and Smad DBS in the TSLP promoter region. Interestingly, many of these transcription factors and DBS present in the TSLP promoter region are differentially used in intestinal epithelial cell(s) (IEC). Collectively, our study reveals that, in vivo within their heterodimers, the RXR and RAR isotypes are not functionally redundant, and it also unveils the combinatorial mechanisms involved in the tissue-selective regulation of TSLP transcription in epidermal keratinocytes and IEC. PMID:28115699

  15. Alpha1A-adrenoceptors predominate in the control of blood pressure in mouse mesenteric vascular bed.

    PubMed

    Martínez-Salas, S G; Campos-Peralta, J M; Pares-Hipolito, J; Gallardo-Ortíz, I A; Ibarra, M; Villalobos-Molina, R

    2007-07-01

    1 The pressor action of the alpha1A-adrenoceptor agonist, A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulfonamide) or the alpha1-adrenoceptor agonist phenylephrine, and their blockade by selective alpha1-adrenoceptor antagonists in the mouse isolated mesenteric vascular bed were evaluated. 2 A61603 showed a approximately 235-fold higher potency in elevating perfusion pressure in mesenteric bed compared to phenylephrine. 3 The alpha1A-adrenoceptor selective antagonist RS 100329 (5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy) phenyl]-1-piperazinyl] propyl]-2,4-(1H)-pyrimidinedione), displaced with high affinity agonist concentration-response curves to the right in a concentration-dependent manner. 4 The alpha1D-adrenoceptor selective antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5] decane-7,9-dione), did not displace A61603 nor did it block the phenylephrine-induced pressor response. 5 The alpha1B/D-adrenoceptor alkylating antagonist chloroethylclonidine (CEC), caused a rightward shift of the phenylephrine concentration-response curve and reduced its maximum response; however, CEC only slightly modified A61603 evoked contraction. 6 The results indicate that the isolated mouse mesenteric vascular bed expresses alpha1A-adrenoceptors and suggest a very discrete role for 1B-adrenoceptors.

  16. Coordinate control of corticotropin, β-lipotropin, and β-endorphin release in mouse pituitary cell cultures

    PubMed Central

    Allen, Richard G.; Herbert, Edward; Hinman, Michael; Shibuya, Haruo; Pert, Candace B.

    1978-01-01

    Hypothalamic extract stimulates the release of corticotropin (ACTH) and endorphins 2.5- to 30-fold in mouse pituitary tumor cell cultures (AtT-20/D16v line) and primary cell cultures from mouse anterior pituitary. ACTH and endorphin activities were measured by radioimmunoassay and immunoprecipitation. Pretreatment of tumor cell cultures with 1 μM dexamethasone reduced the stimulatory effect of the extract on release of ACTH and endorphins. Pretreatment of primary cell cultures with 10-6 M dexamethasone reduced the stimulatory effect of both vasopressin and the extract on the release of ACTH and endorphins. Release of ACTH and endorphin was coupled in both kinds of cultures in the basal, stimulated, and inhibited states. The molecular weight forms of ACTH and endorphin in tumor cell culture medium were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Radioimmunoassay and immunoprecipitation show that the 13,000-dalton and 4500-dalton forms of ACTH were present in about equal amounts in medium from cultures incubated with or without hypothalamic extract for 15 min, 30 min, or 2 hr. Smaller amounts of the high molecular weight forms of ACTH (20,000- to 23,000-dalton and 31,000-dalton ACTH) were observed in the culture medium at these times. The predominant forms of endorphin released after 20 min or 3 hr of incubation had molecular weights of 31,000, 11,700 (β-lipotropic hormone-size material) and 3500 (β-endorphin-size material). No degradation of the forms of endorphin released into the culture medium was observed after incubating the culture medium for 1.5 hr in the absence of cells. The proportions of the different forms of endorphin and ACTH present in the culture medium resembles that seen in cell extracts. PMID:217008

  17. Reduced type II interleukin-4 receptor signalling drives initiation, but not progression, of colorectal carcinogenesis: evidence from transgenic mouse models and human case–control epidemiological observations

    PubMed Central

    Hull, Mark A.

    2013-01-01

    We investigated the role of interleukin (IL)-4 receptor (IL-4R) signalling during mouse carcinogen-induced colorectal carcinogenesis and in a case–control genetic epidemiological study of IL-4Rα single nucleotide polymorphisms (SNPs). Azoxymethane-induced aberrant crypt focus (ACF; 6 weeks) and tumours (32 weeks) were analysed in wild-type (WT) BALB/c mice, as well as in IL-4Rα − /−, IL-13 −/− and ‘double-knockout’ (DKO) animals. Colorectal cancer (CRC) cases (1502) and controls (584) were genotyped for six coding IL-4Rα SNPs. The association with CRC risk and CRC-specific mortality was analysed by logistic regression. Lack of IL-4Rα expression was associated with increased ACFs [median 8.5 ACFs per mouse (IL-4Rα −/−) versus 3 (WT); P = 0.007], but no difference in the number of colorectal tumours [mean 1.4 per mouse (IL-4Rα −/−) versus 2 (WT)], which were smaller and demonstrated reduced nuclear/cytoplasmic β-catenin translocation compared with WT tumours. Tumour-bearing IL-4Rα −/− mice had fewer CD11b+/Gr1+ myeloid-derived suppressor splenocytes than WT animals. IL-13 −/− mice developed a similar number of ACFs to IL-4Rα −/− and DKO mice. There was a significant increase in CRC risk associated with the functional SNP Q576R [odds ratio 1.54 (95% confidence interval 0.94–2.54), P trend 0.03 for the minor G allele]. There was no effect of IL-4Rα genotype on either CRC-specific or all-cause mortality. These combined pre-clinical and human data together demonstrate that reduced IL-4R signalling has stage-specific effects on colorectal carcinogenesis (increased CRC initiation and risk but reduced tumour progression and no effect on CRC mortality). These results should prompt evaluation of the effect of pharmacological manipulation of IL-4R signalling on future CRC risk and for CRC treatment. PMID:23784081

  18. Acorn selection by the wood mouse Apodemus sylvaticus: a semi-controlled experiment in a Mediterranean environment.

    PubMed

    Rosalino, Luís Miguel; Nóbrega, Filomena; Santos-Reis, Margarida; Teixeira, Generosa; Rebelo, Rui

    2013-09-01

    Fruits are highly important food resources for mammals in Mediterranean Europe, and due to the dominance of oaks (Quercus sp.), acorns are among those used by a vast array of species, including rodents. The metabolic yield of acorn intake may determine a selection pattern: preference for fat, carbohydrate, and consequently energy-rich fruits; or avoidance of fruits containing high concentrations of secondary chemical compounds (e.g., tannic acid). We studied the acorn feeding selection pattern of wood mice (Apodemus sylvaticus) inhabiting a mixed oak woodland, southwest Portugal, using an experiment conducted in an open-air enclosure. We tested which variables associated with the wood mouse (e.g., sex) and acorns (e.g., size and nutrient content) from three oak species (holm Q. rotundifolia, Portuguese Q. faginea and cork Q. suber oak) could be constraining acorn consumption. Our results indicate that wood mice are selecting acorns of the most common oak species (Q. suber), probably due to their previous familiarization with the fruit due to its dominance in the ecosystem but probably also because its chemical characteristics (sugar contents). Rodent gender and acorn morphology (width) are also influential, with females more prone to consume acorns with smaller width, probably due to handling limitation. This selective behaviour may have consequences for dispersion and natural regeneration of the different oak species.

  19. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    SciTech Connect

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash

    2014-10-15

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantlymore » only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development.« less

  20. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation.

    PubMed

    Tapia-Limonchi, Rafael; Cahuana, Gladys M; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Beltran-Povea, Amparo; Hitos, Ana B; Hmadcha, Abdelkrim; Martin, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R

    2016-09-01

    Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Altered expression of O-GlcNAc-modified proteins in a mouse model whose glycemic status is controlled by a low carbohydrate ketogenic diet.

    PubMed

    Okuda, Tetsuya; Fukui, Asami; Morita, Naoki

    2013-11-01

    Abnormal modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is known to be associated with the pathology induced by hyperglycemia. However, the dynamic mechanism of O-GlcNAc modification under hyperglycemic conditions in vivo has not been fully characterized. To understand the mechanism, we established an animal model in which the glycemic status is controlled by the diet. A mutant mouse (ob/ob) which exhibits diet-induced hyperglycemia when fed a regular chow (chow) was used to establish this model; the mice were fed a very low carbohydrate ketogenic diet (KD) to improve hyperglycemia. Using this model, we evaluated the levels of O-GlcNAc-modified proteins in tissues under a hyperglycemic or its improved condition. ELISA and Western blot analyses revealed that altered expression of certain proteins modified by O-GlcNAc were found in the mice tissues, although global O-GlcNAc levels in the tissues remained unaltered by improvement of hyperglycemia. We also found the Akt protein kinase was modified by O-GlcNAc in the liver of ob/ob mice, and the modification levels were decreased by improvement of hyperglycemia. Furthermore, aberrant phosphorylation of Akt was found in the liver of ob/ob mice under hyperglycemic condition. In conclusion, our established mouse model is useful for evaluating the dynamics of O-GlcNAc-modified proteins in tissues associated with glycemic status. This study revealed that the expression level of certain proteins modified by O-GlcNAc is altered when KD improves the hyperglycemia. These proteins could be prospective indexes for nutritional therapy for hyperglycemia-associated diseases, such as diabetes mellitus.

  2. Mouse Breathalyzer

    PubMed Central

    Ginsburg, Brett C.; Javors, Martin A.; Friesenhahn, Gregory; Frontz, Michael; Martinez, Gerardo; Hite, Tim; Lamb, Richard J.

    2008-01-01

    Background The development of a relatively simple, noninvasive method for estimating blood ethanol concentrations in mice will be useful in behavioral studies related to alcoholism. This study validated such a method. Methods The apparatus consists of a body chamber fitted with a head stock through which the mouse head protrudes. This was fitted against a water-jacketed head-space chamber surrounding the mouse’s head. Rebreathed air maintained at 37°C in the head-space chamber was removed using a peristaltic pump and loaded into a 1-ml injection loop. Ethanol in the sample was quantified using gas chromatography. To validate this method, ethanol levels in breath samples were compared against those in tail blood samples collected immediately after the breath samples. Breath samples were collected at 5, 10, 20, 40, 80, 120, and 160 minutes after ethanol (0.4, 0.8, 1.2, 1.6, 2.4, and 3.2 g/kg) was administered to male C57BL/6J mice. Results Breath and blood ethanol levels were well correlated (r2 = 0.96) across time points on the descending ethanol–time curve at doses below 2.4 g/kg. Correlation for these doses on the ascending portion of the curve had greater variance, but was still well correlated (r2 = 0.92). Conclusions The mouse breathalyzer is an accurate, convenient, noninvasive and well-tolerated method for estimating blood ethanol concentrations in mice across a range of behaviorally relevant concentrations below 2.4 g/kg, especially on the descending limb of the ethanol–time curve. Although this procedure requires a gas chromatograph in the animal facility, the ability to estimate ethanol concentrations quickly and easily will be especially useful in behavioral studies where repeated blood sampling is not feasible. PMID:18537938

  3. Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics

    PubMed Central

    Barbosa, Rui M; Silva, Amélia M; Tomé, Angelo R; Stamford, Jonathan A; Santos, Rosa M; Rosário, Luís M

    1998-01-01

    Glucose-induced insulin release from single islets of Langerhans is pulsatile. We have investigated the correlation between changes in cytosolic free calcium concentration ([Ca2+]i) and oscillatory insulin secretion from single mouse islets, in particular examining the basis for differences in secretory responses to intermediate and high glucose concentrations. Insulin release was monitored in real time through the amperometric detection of the surrogate insulin marker 5-hydroxytryptamine (5-HT) via carbon fibre microelectrodes. The [Ca2+]i was simultaneously recorded by whole-islet fura-2 microfluorometry. In 82 % of the experiments, exposure to 11 mM glucose evoked regular high-frequency (average, 3.4 min−1) synchronous oscillations in amperometric current and [Ca2+]i. In the remaining experiments (18 %), 11 mM glucose induced an oscillatory pattern consisting of high-frequency [Ca2+]i oscillations that were superimposed on low-frequency (average, 0.32 min−1) [Ca2+]i waves. Intermittent high-frequency [Ca2+]i oscillations gave rise to a similar pattern of pulsatile 5-HT release. Raising the glucose concentration from 11 to 20 mM increased the duration of the steady-state [Ca2+]i oscillations without increasing their amplitude. In contrast, both the duration and amplitude of the associated 5-HT transients were increased by glucose stimulation. The amount of 5-HT released per secretion cycle was linearly related to the duration of the underlying [Ca2+]i oscillations in both 11 and 20 mM glucose. The slopes of the straight lines were identical, indicating that there is no significant difference between the ability of calcium oscillations to elicit 5-HT/insulin release in 11 and 20 mM glucose. In situ 5-HT microamperometry has the potential to resolve the high-frequency oscillatory component of the second phase of glucose-induced insulin secretion. This component appears to reflect primarily the duration of the underlying [Ca2+]i oscillations, suggesting that

  4. Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium dynamics.

    PubMed

    Barbosa, R M; Silva, A M; Tomé, A R; Stamford, J A; Santos, R M; Rosário, L M

    1998-07-01

    1. Glucose-induced insulin release from single islets of Langerhans is pulsatile. We have investigated the correlation between changes in cytosolic free calcium concentration ([Ca2+]i) and oscillatory insulin secretion from single mouse islets, in particular examining the basis for differences in secretory responses to intermediate and high glucose concentrations. Insulin release was monitored in real time through the amperometric detection of the surrogate insulin marker 5-hydroxytryptamine (5-HT) via carbon fibre microelectrodes. The [Ca2+]i was simultaneously recorded by whole-islet fura-2 microfluorometry. 2. In 82 % of the experiments, exposure to 11 mM glucose evoked regular high-frequency (average, 3.4 min-1) synchronous oscillations in amperometric current and [Ca2+]i. In the remaining experiments (18 %), 11 mM glucose induced an oscillatory pattern consisting of high-frequency [Ca2+]i oscillations that were superimposed on low-frequency (average, 0.32 min-1) [Ca2+]i waves. Intermittent high-frequency [Ca2+]i oscillations gave rise to a similar pattern of pulsatile 5-HT release. 3. Raising the glucose concentration from 11 to 20 mM increased the duration of the steady-state [Ca2+]i oscillations without increasing their amplitude. In contrast, both the duration and amplitude of the associated 5-HT transients were increased by glucose stimulation. The amount of 5-HT released per secretion cycle was linearly related to the duration of the underlying [Ca2+]i oscillations in both 11 and 20 mM glucose. The slopes of the straight lines were identical, indicating that there is no significant difference between the ability of calcium oscillations to elicit 5-HT/insulin release in 11 and 20 mM glucose. 4. In situ 5-HT microamperometry has the potential to resolve the high-frequency oscillatory component of the second phase of glucose-induced insulin secretion. This component appears to reflect primarily the duration of the underlying [Ca2+]i oscillations, suggesting

  5. Design and use of mouse control DNA for DNA biomarker extraction and PCR detection from urine: Application for transrenal Mycobacterium tuberculosis DNA detection.

    PubMed

    Bordelon, Hali; Ricks, Keersten M; Pask, Megan E; Russ, Patricia K; Solinas, Francesca; Baglia, Mark L; Short, Philip A; Nel, Andrew; Blackburn, Jonathan; Dheda, Keertan; Zamudio, Carlos; Cáceres, Tatiana; Wright, David W; Haselton, Frederick R; Pettit, April C

    2017-05-01

    Urine samples are increasingly used for diagnosing infections including Escherichia coli, Ebola virus, and Zika virus. However, extraction and concentration of nucleic acid biomarkers from urine is necessary for many molecular detection strategies such as polymerase chain reaction (PCR). Since urine samples typically have large volumes with dilute biomarker concentrations making them prone to false negatives, another impediment for urine-based diagnostics is the establishment of appropriate controls particularly to rule out false negatives. In this study, a mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH) DNA target was added to retrospectively collected urine samples from tuberculosis (TB)-infected and TB-uninfected patients to indicate extraction of intact DNA and removal of PCR inhibitors from urine samples. We tested this design on surrogate urine samples, retrospective 1milliliter (mL) urine samples from patients in Lima, Peru and retrospective 5mL urine samples from patients in Cape Town, South Africa. Extraction/PCR control DNA was detectable in 97% of clinical samples with no statistically significant differences among groups. Despite the inclusion of this control, there was no difference in the amount of TB IS6110 Tr-DNA detected between TB-infected and TB-uninfected groups except for samples from known HIV-infected patients. We found an increase in TB IS6110 Tr-DNA between TB/HIV co-infected patients compared to TB-uninfected/HIV-infected patients (N=18, p=0.037). The inclusion of an extraction/PCR control DNA to indicate successful DNA extraction and removal of PCR inhibitors should be easily adaptable as a sample preparation control for other acellular sample types. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. IL-17 Contributes to Neutrophil Recruitment but Not to Control of Viral Replication During Acute Mouse Adenovirus Type 1 Respiratory Infection

    PubMed Central

    McCarthy, Mary K.; Zhu, Lingqiao; Procario, Megan C.; Weinberg, Jason B.

    2014-01-01

    IL-17-producing CD4+ helper T cells (Th17 cells) promote inflammatory responses to many pathogens. We used mouse adenovirus type 1 (MAV-1) to determine contributions of IL-17 to adenovirus pathogenesis. MAV-1 infection of C57BL/6 mice upregulated lung expression of IL-17 and the Th17-associated factors IL-23 and RORγt. Only CD4+ T cells were associated with virus-specific IL-17 production. Fewer neutrophils were recruited to airways of IL-17−/− mice following MAV-1 infection, but there were no other differences in pulmonary inflammation between IL-17+/+ and IL-17−/− mice. Mice depleted of neutrophils using anti-Gr-1 antibody had greater lung viral loads than controls. Despite impaired neutrophil recruitment, there were no differences between IL-17+/+ and IL-17−/− mice in peak lung viral loads, clearance of virus from the lungs, or establishment of protective immunity. We demonstrate robust Th17 responses during MAV-1 respiratory infection, but these responses are not essential for control of virus infection or for virus-induced pulmonary inflammation. PMID:24889245

  7. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH

    PubMed Central

    Gabbia, Daniela; Dall’Acqua, Stefano; Di Gangi, Iole Maria; Bogialli, Sara; Caputi, Valentina; Albertoni, Laura; Marsilio, Ilaria; Paccagnella, Nicola; Carrara, Maria; Giron, Maria Cecilia; De Martin, Sara

    2017-01-01

    Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM. PMID:28212301

  8. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH.

    PubMed

    Gabbia, Daniela; Dall'Acqua, Stefano; Di Gangi, Iole Maria; Bogialli, Sara; Caputi, Valentina; Albertoni, Laura; Marsilio, Ilaria; Paccagnella, Nicola; Carrara, Maria; Giron, Maria Cecilia; De Martin, Sara

    2017-02-15

    Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose ( p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM.

  9. Kinematics of Meniscal- and ACL-Transected Mouse Knees during Controlled Tibial Compressive Loading Captured using Roentgen Stereophotogrammetry

    PubMed Central

    Adebayo, Olufunmilayo O.; Ko, Frank C.; Goldring, Steven R.; Goldring, Mary B.; Wright, Timothy M.; van der Meulen, Marjolein C.H.

    2017-01-01

    Pre-clinical studies of post-traumatic OA have examined the pathways that lead to disease after injury by using surgical models such as the destabilization of the medial meniscus (DMM) and anterior cruciate ligament transection (ACLT). While the morphological, molecular and genetic pathways leading to OA have been examined extensively; the effects of these injuries on joint kinematics, and thus disease progression, have yet to be fully characterized. To this end, we sought to understand the kinematics in the DMM and ACLT joints compared to intact joints subjected to controlled tibial compressive loading. We hypothesized that the DMM and ACLT models would result in different patterns of joint instability compared to intact joints, thus explaining the different patterns of OA initiation and severity in these models. Cadaver adult C57BL/6 mice were subjected to either a DMM or ACLT in their right knee joints, while the left limbs remained as intact controls. All limbs were labeled with fiducial markers, and the rigid body kinematics of the tibia and femur were examined using roentgen stereophotogrammetry (RSA) with application of compressive loads from 0 to 9N. DMM and intact joints demonstrated similar kinematics under compressive loading, in contrast to ACLT joints, which dislocated even before load application. These results demonstrate the importance of rigorous kinematic analysis in defining the role of joint instability in animal models of OA and suggest significant differences in DMM and ACLT joint instabilities in the context of controlled mechanical loading. PMID:27153222

  10. Par-aPKC-dependent and -independent mechanisms cooperatively control cell polarity, Hippo signaling, and cell positioning in 16-cell stage mouse embryos.

    PubMed

    Hirate, Yoshikazu; Hirahara, Shino; Inoue, Ken-Ichi; Kiyonari, Hiroshi; Niwa, Hiroshi; Sasaki, Hiroshi

    2015-10-01

    In preimplantation mouse embryos, the Hippo signaling pathway plays a central role in regulating the fates of the trophectoderm (TE) and the inner cell mass (ICM). In early blastocysts with more than 32 cells, the Par-aPKC system controls polarization of the outer cells along the apicobasal axis, and cell polarity suppresses Hippo signaling. Inactivation of Hippo signaling promotes nuclear accumulation of a coactivator protein, Yap, leading to induction of TE-specific genes. However, whether similar mechanisms operate at earlier stages is not known. Here, we show that slightly different mechanisms operate in 16-cell stage embryos. Similar to 32-cell stage embryos, disruption of the Par-aPKC system activated Hippo signaling and suppressed nuclear Yap and Cdx2 expression in the outer cells. However, unlike 32-cell stage embryos, 16-cell stage embryos with a disrupted Par-aPKC system maintained apical localization of phosphorylated Ezrin/Radixin/Moesin (p-ERM), and the effects on Yap and Cdx2 were weak. Furthermore, normal 16-cell stage embryos often contained apolar cells in the outer position. In these cells, the Hippo pathway was strongly activated and Yap was excluded from the nuclei, thus resembling inner cells. Dissociated blastomeres of 8-cell stage embryos form polar-apolar couplets, which exhibit different levels of nuclear Yap, and the polar cell engulfed the apolar cell. These results suggest that cell polarization at the 16-cell stage is regulated by both Par-aPKC-dependent and -independent mechanisms. Asymmetric cell division is involved in cell polarity control, and cell polarity regulates cell positioning and most likely controls Hippo signaling. © The Authors Development, Growth & Differentiation published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Society of Developmental Biologists.

  11. Cell competition in mouse NIH3T3 embryonic fibroblasts is controlled by the activity of Tead family proteins and Myc.

    PubMed

    Mamada, Hiroshi; Sato, Takashi; Ota, Mitsunori; Sasaki, Hiroshi

    2015-02-15

    Cell competition is a short-range communication originally observed in Drosophila. Relatively little is known about cell competition in mammals or in non-epithelial cells. Hippo signaling and its downstream transcription factors of the Tead family, control cell proliferation and apoptosis. Here, we established an in vitro model system that shows cell competition in mouse NIH3T3 embryo fibroblast cells. Co-culture of Tead-activity-manipulated cells with normal (wild-type) cells caused cell competition. Cells with reduced Tead activity became losers, whereas cells with increased Tead activity became super-competitors. Tead directly regulated Myc RNA expression, and cells with increased Myc expression also became super-competitors. At low cell density, cell proliferation required both Tead activity and Myc. At high cell density, however, reduction of either Tead activity or Myc was compensated for by an increase in the other, and this increase was sufficient to confer 'winner' activity. Collectively, NIH3T3 cells have cell competition mechanisms similar to those regulated by Yki and Myc in Drosophila. Establishment of this in vitro model system should be useful for analyses of the mechanisms of cell competition in mammals and in fibroblasts. © 2015. Published by The Company of Biologists Ltd.

  12. Development and Evaluation of a Head-Controlled Human-Computer Interface with Mouse-Like Functions for Physically Disabled Users

    PubMed Central

    Pereira, César Augusto Martins; Neto, Raul Bolliger; Reynaldo, Ana Carolina; de Miranda Luzo, Maria Cândida; Oliveira, Reginaldo Perilo

    2009-01-01

    OBJECTIVES The objectives of this study were to develop a pointing device controlled by head movement that had the same functions as a conventional mouse and to evaluate the performance of the proposed device when operated by quadriplegic users. METHODS Ten individuals with cervical spinal cord injury participated in functional evaluations of the developed pointing device. The device consisted of a video camera, computer software, and a target attached to the front part of a cap, which was placed on the user’s head. The software captured images of the target coming from the video camera and processed them with the aim of determining the displacement from the center of the target and correlating this with the movement of the computer cursor. Evaluation of the interaction between each user and the proposed device was carried out using 24 multidirectional tests with two degrees of difficulty. RESULTS According to the parameters of mean throughput and movement time, no statistically significant differences were observed between the repetitions of the tests for either of the studied levels of difficulty. CONCLUSIONS The developed pointing device adequately emulates the movement functions of the computer cursor. It is easy to use and can be learned quickly when operated by quadriplegic individuals. PMID:19841704

  13. External cys/cySS redox state modification controls the intracellular redox state and neurodegeneration via Akt in aging and Alzheimer's disease mouse model neurons.

    PubMed

    Ghosh, Debolina; Brewer, Gregory J

    2014-01-01

    The extracellular redox environment of cells is mainly set by the redox couple cysteine/cystine (cys/cySS) while intracellular redox is buffered by reduced/oxidized glutathione (GSH/GSSG), but controlled by NAD(P)H/NAD(P). With aging, the extracellular redox environment shifts in the oxidized direction beyond middle-age. Since aging is the primary risk factor in Alzheimer's disease (AD), here our aim was to determine if a reduced extracellular cys/cySS redox potential of cultured primary mouse neurons changes the intracellular redox environment, affects pAkt levels, and protects against neuron loss. A reductive shift in cys/cySS in the extracellular medium of neuron cultures from young (4 month) and old (21 month) neurons from non-transgenic) and triple transgenic AD-like mice (3xTg-AD) caused an increase in intracellular NAD(P)H and GSH levels along with lower reactive oxygen species levels. Importantly, the imposed reductive shift decreased neuron death markedly in the 21 month neurons of both genotypes. Moreover, a reduced cys/cySS redox state increased the pAkt/Akt ratio in 21 month aging and AD-like neurons that positively correlated with a decreased neuron loss. Our findings demonstrate that manipulating the extracellular redox environment toward a more reduced redox potential is neuroprotective in both aging and AD-like neurons and may be a powerful and pragmatic therapeutic tool in aging and age-related diseases like AD.

  14. Implication of the miR-184 and miR-204 competitive RNA network in control of mouse secondary cataract.

    PubMed

    Hoffmann, Andrea; Huang, Yusen; Suetsugu-Maki, Rinako; Ringelberg, Carol S; Tomlinson, Craig R; Del Rio-Tsonis, Katia; Tsonis, Panagiotis A

    2012-05-09

    The high recurrence rate of secondary cataract (SC) is caused by the intrinsic differentiation activity of residual lens epithelial cells after extra-capsular lens removal. The objective of this study was to identify changes in the microRNA (miRNA) expression profile during mouse SC formation and to selectively manipulate miRNA expression for potential therapeutic intervention. To model SC, mouse cataract surgery was performed and temporal changes in the miRNA expression pattern were determined by microarray analysis. To study the potential SC counterregulative effect of miRNAs, a lens capsular bag in vitro model was used. Within the first 3 wks after cataract surgery, microarray analysis demonstrated SC-associated expression pattern changes of 55 miRNAs. Of the identified miRNAs, miR-184 and miR-204 were chosen for further investigations. Manipulation of miRNA expression by the miR-184 inhibitor (anti-miR-184) and the precursor miRNA for miR-204 (pre-miR-204) attenuated SC-associated expansion and migration of lens epithelial cells and signs of epithelial to mesenchymal transition such as α-smooth muscle actin expression. In addition, pre-miR-204 attenuated SC-associated expression of the transcription factor Meis homeobox 2 (MEIS2). Examination of miRNA target binding sites for miR-184 and miR-204 revealed an extensive range of predicted target mRNA sequences that were also a target to a complex network of other SC-associated miRNAs with possible opposing functions. The identification of the SC-specific miRNA expression pattern together with the observed in vitro attenuation of SC by anti-miR-184 and pre-miR-204 suggest that miR-184 and miR-204 play a significant role in the control of SC formation in mice that is most likely regulated by a complex competitive RNA network.

  15. Implication of the miR-184 and miR-204 Competitive RNA Network in Control of Mouse Secondary Cataract

    PubMed Central

    Hoffmann, Andrea; Huang, Yusen; Suetsugu-Maki, Rinako; Ringelberg, Carol S; Tomlinson, Craig R; Rio-Tsonis, Katia Del; Tsonis, Panagiotis A

    2012-01-01

    The high recurrence rate of secondary cataract (SC) is caused by the intrinsic differentiation activity of residual lens epithelial cells after extra-capsular lens removal. The objective of this study was to identify changes in the microRNA (miRNA) expression profile during mouse SC formation and to selectively manipulate miRNA expression for potential therapeutic intervention. To model SC, mouse cataract surgery was performed and temporal changes in the miRNA expression pattern were determined by microarray analysis. To study the potential SC counterregulative effect of miRNAs, a lens capsular bag in vitro model was used. Within the first 3 wks after cataract surgery, microarray analysis demonstrated SC-associated expression pattern changes of 55 miRNAs. Of the identified miRNAs, miR-184 and miR-204 were chosen for further investigations. Manipulation of miRNA expression by the miR-184 inhibitor (anti-miR-184) and the precursor miRNA for miR-204 (pre-miR-204) attenuated SC-associated expansion and migration of lens epithelial cells and signs of epithelial to mesenchymal transition such as α-smooth muscle actin expression. In addition, pre-miR-204 attenuated SC-associated expression of the transcription factor Meis homeobox 2 (MEIS2). Examination of miRNA target binding sites for miR-184 and miR-204 revealed an extensive range of predicted target mRNA sequences that were also a target to a complex network of other SC-associated miRNAs with possible opposing functions. The identification of the SC-specific miRNA expression pattern together with the observed in vitro attenuation of SC by anti-miR-184 and pre-miR-204 suggest that miR-184 and miR-204 play a significant role in the control of SC formation in mice that is most likely regulated by a complex competitive RNA network. PMID:22270329

  16. 29 CFR 1912a.13 - Subcommittees and subgroups.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Subcommittees and subgroups. 1912a.13 Section 1912a.13 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) NATIONAL ADVISORY COMMITTEE ON OCCUPATIONAL SAFETY AND HEALTH § 1912a.13...

  17. Mouse Resource Browser--a database of mouse databases.

    PubMed

    Zouberakis, Michael; Chandras, Christina; Swertz, Morris; Smedley, Damian; Gruenberger, Michael; Bard, Jonathan; Schughart, Klaus; Rosenthal, Nadia; Hancock, John M; Schofield, Paul N; Kollias, George; Aidinis, Vassilis

    2010-07-06

    The laboratory mouse has become the organism of choice for discovering gene function and unravelling pathogenetic mechanisms of human diseases through the application of various functional genomic approaches. The resulting deluge of data has led to the deployment of numerous online resources and the concomitant need for formalized experimental descriptions, data standardization, database interoperability and integration, a need that has yet to be met. We present here the Mouse Resource Browser (MRB), a database of mouse databases that indexes 217 publicly available mouse resources under 22 categories and uses a standardised database description framework (the CASIMIR DDF) to provide information on their controlled vocabularies (ontologies and minimum information standards), and technical information on programmatic access and data availability. Focusing on interoperability and integration, MRB offers automatic generation of downloadable and re-distributable SOAP application-programming interfaces for resources that provide direct database access. MRB aims to provide useful information to both bench scientists, who can easily navigate and find all mouse related resources in one place, and bioinformaticians, who will be provided with interoperable resources containing data which can be mined and integrated. Database URL: http://bioit.fleming.gr/mrb.

  18. Centralized Mouse Repositories

    PubMed Central

    Donahue, Leah Rae; de Angelis, Martin Hrabe; Hagn, Michael; Franklin, Craig; Lloyd, K. C. Kent; Magnuson, Terry; McKerlie, Colin; Nakagata, Naomi; Obata, Yuichi; Read, Stuart; Wurst, Wolfgang; Hörlein, Andreas; Davisson, Muriel T.

    2013-01-01

    Because the mouse is used so widely for biomedical research and the number of mouse models being generated is increasing rapidly, centralized repositories are essential if the valuable mouse strains and models that have been developed are to be securely preserved and fully exploited. Ensuring the ongoing availability of these mouse strains preserves the investment made in creating and characterizing them and creates a global resource of enormous value. The establishment of centralized mouse repositories around the world for distributing and archiving these resources has provided critical access to and preservation of these strains. This article describes the common and specialized activities provided by major mouse repositories around the world. PMID:22945696

  19. Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity

    PubMed Central

    Krajewska, Maryla; You, Zerong; Rong, Juan; Kress, Christina; Huang, Xianshu; Yang, Jinsheng; Kyoda, Tiffany; Leyva, Ricardo; Banares, Steven; Hu, Yue; Sze, Chia-Hung; Whalen, Michael J.; Salmena, Leonardo; Hakem, Razqallah; Head, Brian P.; Reed, John C.; Krajewski, Stan

    2011-01-01

    Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8 −/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8 −/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional

  20. Effects of human locus control region elements HS2 and HS3 on human beta-globin gene expression in transgenic mouse.

    PubMed

    Jia, Chun-Ping; Huang, Shu-Zhen; Yan, Jing-Bin; Xiao, Yan-Ping; Ren, Zhao-Rui; Zeng, Yi-Tao

    2003-01-01

    The locus control region (LCR) is the most important cis-element in the regulation of beta-globin gene expression. DNaseI-hypersensitive site (HS) 2 and HS3 are two significant components of beta-LCR. To examine the effect of HS2, HS3, and HS2-HS3 (combination of HS2 and HS3) on the spatial and temporal expression of the human beta-globin gene, we have produced transgenic mice with constructs, in which the gene encoding enhanced green fluorescent protein (EGFP) is driven by beta-globin promoter and under the control of HS2, HS3, and HS2-HS3, respectively. The results showed that HS2 and HS3 each had the same enhancement activity in regulation of beta-globin gene expression in transgenic mice. When HS2 and HS3 were in combination (HS2-HS3), the two cis-elements showed a marked synergy in regulating beta-globin gene spatial and temporal expression as well as its expression level in transgenic mice although the EGFP expression varied largely among different transgenic mouse litters. The results also showed that HS2 was able to confer beta-globin gene expression in embryonic yolk sac, fetal liver, and adult bone marrow, which was not developmentally stage-specific, while HS3 could confer the same beta-globin gene expression in the adult. Thus, HS3 was different from HS2, the former being more important for specific expression of beta-globin gene in the developmental stages and the switch of gamma-->beta-globin genes. Our results indicate that the mechanism of gamma-->beta switch could be best explained by the "divided model."

  1. FXR Controls the Tumor Suppressor NDRG2 and FXR Agonists Reduce Liver Tumor Growth and Metastasis in an Orthotopic Mouse Xenograft Model

    PubMed Central

    Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus

    2012-01-01

    The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR−/− mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies. We show reduced NDRG2 mRNA in livers of FXR−/− mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options. PMID:23056173

  2. Downregulation of BTLA on NKT Cells Promotes Tumor Immune Control in a Mouse Model of Mammary Carcinoma.

    PubMed

    Sekar, Divya; Govene, Luisa; Del Río, María-Luisa; Sirait-Fischer, Evelyn; Fink, Annika F; Brüne, Bernhard; Rodriguez-Barbosa, José I; Weigert, Andreas

    2018-03-07

    Natural Killer T cells (NKT cells) are emerging as critical regulators of pro- and anti-tumor immunity, both at baseline and in therapeutic settings. While type I NKT cells can promote anti-tumor immunity, their activity in the tumor microenvironment may be limited by negative regulators such as inhibitory immune checkpoints. We observed dominant expression of B- and T-lymphocyte attenuator (BTLA) on type I NKT cells in polyoma middle T oncogene-driven (PyMT) murine autochthonous mammary tumors. Other immune checkpoint receptors, such as programmed cell death 1 (PD-1) were equally distributed among T cell populations. Interference with BTLA using neutralizing antibodies limited tumor growth and pulmonary metastasis in the PyMT model in a therapeutic setting, correlating with an increase in type I NKT cells and expression of cytotoxic marker genes. While therapeutic application of an anti-PD-1 antibody increased the number of CD8+ cytotoxic T cells and elevated IL-12 expression, tumor control was not established. Expression of ZBTB16, the lineage-determining transcription factor of type I NKT cells, was correlated with a favorable patient prognosis in the METABRIC dataset, and BTLA levels were instrumental to further distinguish prognosis in patents with high ZBTB16 expression. Taken together, these data support a role of BTLA on type I NKT cells in limiting anti-tumor immunity.

  3. pRb-mediated control of epithelial cell proliferation and Indian Hedgehog expression in mouse intestinal development

    PubMed Central

    Yang, Hai-Su; Hinds, Philip W

    2007-01-01

    Background Self-renewal of the epithelium of the small intestine is a highly regulated process involving cell proliferation and differentiation of stem cells or progenitor cells located at the bottom of the crypt, ending ultimately with extrusion of the terminally differentiated cells at the tip of villus. Results Here, we utilized the Cre/loxP system to investigate the function of the retinoblastoma protein, pRb in intestinal epithelium. pRb null mice displayed a profoundly altered development of the intestine with increased proliferation and abnormal expression of differentiation markers. Loss of pRb induces cell hyperproliferation in the proliferative region (crypt) as well as in the differentiated zone (villi). The absence of pRb further results in an increase in the population of enterocytes, goblet, enteroendocrine and Paneth cells. In addition, differentiated enteroendocrine cells failed to exit the cell cycle in the absence of pRb. These proliferative changes were accompanied by increased expression of Indian hedgehog and activation of hedgehog signals, a known pathway for intestinal epithelial cell proliferation. Conclusion Our studies have revealed a unique function of pRb in intestine development which is critical for controlling not only the proliferation of a stem cell or progenitor cell population but that of terminally differentiated cells as well. PMID:17257418

  4. Changes in allele-specific association of histone modifications at the imprinting control regions during mouse preimplantation development.

    PubMed

    Kim, Jin-Moon; Ogura, Atsuo

    2009-09-01

    Allele-specific association of histone modification is observed at the regulatory region of imprinted genes and has been suggested to work as an epigenetic marker for monoallelic gene expression, along with the allelic CpG methylation of DNA. Although the parent-origin-specific epigenetic status in imprinted genes is thought to be established during preimplantation development, little is known about the allelic specificity of histone modifications during this period because of the limited volume of material available for analysis. In this study, we first revealed the allelic enrichment of histone modifications and variant histones at the imprinting control regions (ICRs) of four-cell to blastocyst stage preimplantation embryos by using carrier chromatin immunoprecipitation and sequence polymorphism analysis of immunoprecipitated DNA. We found relative enrichment of histone H3 lysine 9 dimethylation at the imprinted alleles of ICRs and obtained the results suggesting that histone modifications at ICRs are established during a late preimplantation stage. (c) 2009 Wiley-Liss, Inc.

  5. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model.

    PubMed

    Hashemi-Moghaddam, Hamid; Kazemi-Bagsangani, Saeed; Jamili, Mahdi; Zavareh, Saeed

    2016-01-30

    Nanoparticles (NPs) have been extensively investigated to improve delivery efficiency of therapeutic and diagnostic agents. In this study, magnetic molecularly imprinted polymer (MIP) was synthesized by using polydopamine. Synthesized MIP was used for controlled 5-fluorouracil (5-FU) delivery in a spontaneous model of breast adenocarcinoma in Balb/c mice in the presence of an external magnetic field. Antitumor effectiveness of 5-FU imprinted polymer (5-FU-IP) was evaluated in terms of tumor-growth delay, tumor-doubling time, inhibition ratio, and histopathology. Results showed higher efficacy of 5-FU-IP in the presence of magnetic field upon suppressing tumor growth than free 5-FU and 5-FU-IP without magnetic field. The 5-FU and Fe distribution among tissues were evaluated by high-performance liquid chromatography and flame atomic absorption spectrometry, respectively. The obtained results, showed significantly deposition of 5-FU in the 5-FU-IP treated group with magnetic field. Thus, magnetic 5-FU-IP is promising for breast cancer therapy with high efficacy. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Mouse Breeding and Colony Management.

    PubMed

    Ayadi, Abdelkader; Ferrand, Gisèle; Cruz, Isabelle Goncalves da; Warot, Xavier

    2011-03-01

    The possibility to genetically modify the mouse genome has enabled the creation of numerous lines of genetically engineered mouse models (GEMMs). As a result, the demand for housing space in research facilities is increasing. Knowledge of the basis of mouse reproduction and of the methods to handle colonies of GEMMs is therefore mandatory to efficiently populate facilities. The mouse has a short generation period, produces large progenies, and can breed all year round. However, environmental parameters (bedding, diet, cage type, temperature, hygrometry, light, noise, and sanitary status) strongly influence the breeding efficiency and experimental data, and must be tightly controlled. Efficient GEMM colony management requires adequate recording of breeding and proper identification and genotyping of animals. Various mating types and breeding schemes can be used, depending on the type of studies conducted. The recent development of assisted reproduction methods helps circumvent some of the issues faced with those lines especially difficult to breed. Curr. Protoc. Mouse Biol. 1:239-264. © 2011 by John Wiley & Sons, Inc. Copyright © 2011 John Wiley & Sons, Inc.

  7. Quantitatively Controlling Expression of miR-17∼92 Determines Colon Tumor Progression in a Mouse Tumor Model

    PubMed Central

    Jiang, Hong; Wang, Ping; Wang, Qilong; Wang, Baomei; Mu, Jingyao; Zhuang, Xiaoying; Zhang, Lifeng; Yan, Jun; Miller, Donald; Zhang, Huang-Ge

    2015-01-01

    The miRNA cluster miR-17∼92 targets mRNAs involved in distinct pathways that either promote or inhibit tumor progression. However, the cellular and molecular mechanisms underlying miR-17∼92 cluster-mediated protumorigenic or anti-tumorigenic effects have not been studied. Herein, we determined that inhibition of colon cancer progression is dictated by quantitatively controlling expression of the miR-17∼92 cluster. miR-19 in the context of the miR-17∼92 cluster at medium levels promoted tumor metastasis through induction of Wnt/β-catenin–mediated epithelial-mesenchymal transition by targeting to the tumor-suppressor gene, PTEN. However, higher levels of the miR-17∼92 cluster switched from PTEN to oncogenes, including Ctnnb1 (β-catenin) via miR-18a, which resulted in inhibition of tumor growth and metastasis. However, overexpression of Ctnnb1in tumor cells with high-level miR-17∼92 did not lead to an increase in the levels of β-catenin protein, suggesting that other factors regulated by higher levels of miR-17∼92 might also contribute to inhibition of tumor growth and metastasis. Those unidentified factors may negatively regulate the production of β-catenin protein. Collectively, the data presented in this study revealed that higher levels of miR-17∼92 were a critical negative regulator for activation of the Wnt/β-catenin pathway and could have a potential therapeutic application. PMID:24681249

  8. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model.

    PubMed

    Luo, Jing; Dong, Biying; Wang, Ke; Cai, Shuangqi; Liu, Tangjuan; Cheng, Xiaojing; Lei, Danqing; Chen, Yanling; Li, Yanan; Kong, Jinliang; Chen, Yiqiang

    2017-01-01

    The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the

  9. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model

    PubMed Central

    Wang, Ke; Cai, Shuangqi; Liu, Tangjuan; Cheng, Xiaojing; Lei, Danqing; Chen, Yanling; Li, Yanan; Kong, Jinliang; Chen, Yiqiang

    2017-01-01

    The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the

  10. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  11. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  12. Clinical Evaluation of a Royal Jelly Supplementation for the Restoration of Dry Eye: A Prospective Randomized Double Blind Placebo Controlled Study and an Experimental Mouse Model.

    PubMed

    Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo

    2017-01-01

    Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20-60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Our results suggest that RJ improves tear volume in patients with dry eye. Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446).

  13. Clinical Evaluation of a Royal Jelly Supplementation for the Restoration of Dry Eye: A Prospective Randomized Double Blind Placebo Controlled Study and an Experimental Mouse Model

    PubMed Central

    Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo

    2017-01-01

    Background Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. Methods and Findings We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20–60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Conclusion Our results suggest that RJ improves tear volume in patients with dry eye. Trial Registration Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446) PMID:28060936

  14. Long noncoding RNAs are dynamically regulated during β-cell mass expansion in mouse pregnancy and control β-cell proliferation in vitro.

    PubMed

    Sisino, Giorgia; Zhou, Alex-Xianghua; Dahr, Niklas; Sabirsh, Alan; Soundarapandian, Mangala M; Perera, Ranjan; Larsson-Lekholm, Erik; Magnone, Maria Chiara; Althage, Magnus; Tyrberg, Björn

    2017-01-01

    Pregnancy is associated with increased β-cell proliferation driven by prolactin. Long noncoding RNAs (lncRNA) are the most abundant RNA species in the mammalian genome, yet, their functional importance is mainly elusive. This study tests the hypothesis that lncRNAs regulate β-cell proliferation in response to prolactin in the context of β-cell mass compensation in pregnancy. The expression profile of lncRNAs in mouse islets at day 14.5 of pregnancy was explored by a bioinformatics approach, further confirmed by quantitative PCR at different days of pregnancy, and islet specificity was evaluated by comparing expression in islets versus other tissues. In order to establish the role of the candidate lncRNAs we studied cell proliferation in mouse islets and the MIN6 β-cell line by EdU incorporation and cell count. We found that a group of lncRNAs is differentially regulated in mouse islets at 14.5 days of pregnancy. At different stages of pregnancy, these lncRNAs are dynamically expressed, and expression is prolactin dependent in mouse islets and MIN6 cells. One of those lncRNAs, Gm16308 (Lnc03), is dynamically regulated during pregnancy, prolactin-dependent and islet-enriched. Silencing Lnc03 in primary β-cells and MIN6 cells inhibits, whereas over-expression stimulates, proliferation even in the absence of prolactin, demonstrating that Lnc03 regulates β-cell growth. During pregnancy mouse islet proliferation is correlated with dynamic changes of lncRNA expression. In particular, Lnc03 regulates mouse β-cell proliferation and may be a crucial component of β-cell proliferation in β-cell mass adaptation in both health and disease.

  15. Zinc stimulates glucose oxidation and glycemic control by modulating the insulin signaling pathway in human and mouse skeletal muscle cell lines.

    PubMed

    Norouzi, Shaghayegh; Adulcikas, John; Sohal, Sukhwinder Singh; Myers, Stephen

    2018-01-01

    Zinc is a metal ion that is an essential cell signaling molecule. Highlighting this, zinc is an insulin mimetic, activating cellular pathways that regulate cellular homeostasis and physiological responses. Previous studies have linked dysfunctional zinc signaling with several disease states including cancer, obesity, cardiovascular disease and type 2 diabetes. The present study evaluated the insulin-like effects of zinc on cell signaling molecules including tyrosine, PRSA40, Akt, ERK1/2, SHP-2, GSK-3β and p38, and glucose oxidation in human and mouse skeletal muscle cells. Insulin and zinc independently led to the phosphorylation of these proteins over a 60-minute time course in both mouse and human skeletal muscle cells. Similarly, utilizing a protein array we identified that zinc could active the phosphorylation of p38, ERK1/2 and GSK-3B in human and ERK1/2 and GSK-3B in mouse skeletal muscle cells. Glucose oxidation assays were performed on skeletal muscle cells treated with insulin, zinc, or a combination of both and resulted in a significant induction of glucose consumption in mouse (p<0.01) and human (p<0.05) skeletal muscle cells when treated with zinc alone. Insulin, as expected, increased glucose oxidation in mouse (p<0.001) and human (0.001) skeletal muscle cells, however the combination of zinc and insulin did not augment glucose consumption in these cells. Zinc acts as an insulin mimetic, activating key molecules implicated in cell signaling to maintain glucose homeostasis in mouse and human skeletal muscle cells. Zinc is an important metal ion implicated in several biological processes. The role of zinc as an insulin memetic in activating key signaling molecules involved in glucose homeostasis could provide opportunities to utilize this ion therapeutically in treating disorders associated with dysfunctional zinc signaling.

  16. Evaluation of a bioluminescent mouse model expressing aromatase PII-promoter-controlled luciferase as a tool for the study of endocrine disrupting chemicals

    SciTech Connect

    Rivest, Patricia, E-mail: patricia.rivest@iaf.inrs.ca; Devine, Patrick J., E-mail: patrick.devine@iaf.inrs.ca; Sanderson, J. Thomas, E-mail: thomas.sanderson@iaf.inrs.c

    2010-11-15

    Dysfunction of the enzyme aromatase (CYP19) is associated with endocrine pathologies such as osteoporosis, impaired fertility and development of hormone-dependent cancers. Certain endocrine disrupting chemicals affect aromatase expression and activity in vitro, but little is known about their ability to do so in vivo. We evaluated a bioluminescent mouse model (LPTA (registered)) CD-1-Tg(Cyp19-luc)-Xen) expressing luciferase under control of the gonadal aromatase pII promoter as an in vivo screening tool for chemicals that may affect aromatase expression. We studied the effects of forskolin, pregnant mare serum gonadotropin and atrazine in this model (atrazine was previously shown to induced pII-promoter-driven aromatase expressionmore » in H295R human adrenocortical carcinoma cells). About 2-4 out of every group of 10 male or female Cyp19-luc mice injected i.p. with 10 mg/kg forskolin had increased gonadal bioluminescence after 3-5 days compared to controls; the others appeared non-responsive. Similarly, about 4 per group of 9 individual females injected with pregnant mare serum gonadotropin had increased ovarian bioluminescence after 24 h. There was a statistically significant correlation between ovarian bioluminescence and plasma estradiol concentrations (n = 14; p = 0.022). Males exposed to a single dose of 100 mg/kg or males and females exposed to 5 daily injections of 30 mg/kg atrazine showed no change in gonadal bioluminescence over a 7 day period, but a significant interaction was found between atrazine (100 mg/kg) and time in female mice (p < 0.05; two-way ANOVA). Ex vivo luciferase activity in dissected organs was increased by forskolin in testis, epididymis and ovaries. Atrazine (30 mg/kg/day) increased (30%) luciferase activity significantly in epididymis only. In conclusion, certain individual Cyp19-luc mice are highly responsive to aromatase inducers, suggesting this model, with further optimization, may have potential as an in vivo screening tool

  17. Corticospinal-specific HCN expression in mouse motor cortex: Ih-dependent synaptic integration as a candidate microcircuit mechanism involved in motor control

    PubMed Central

    Suter, Benjamin A.; Kiritani, Taro; Chan, C. Savio; Surmeier, D. James; Shepherd, Gordon M. G.

    2011-01-01

    Motor cortex is a key brain center involved in motor control in rodents and other mammals, but specific intracortical mechanisms at the microcircuit level are largely unknown. Neuronal expression of hyperpolarization-activated current (Ih) is cell class specific throughout the nervous system, but in neocortex, where pyramidal neurons are classified in various ways, a systematic pattern of expression has not been identified. We tested whether Ih is differentially expressed among projection classes of pyramidal neurons in mouse motor cortex. Ih expression was high in corticospinal neurons and low in corticostriatal and corticocortical neurons, a pattern mirrored by mRNA levels for HCN1 and Trip8b subunits. Optical mapping experiments showed that Ih attenuated glutamatergic responses evoked across the apical and basal dendritic arbors of corticospinal but not corticostriatal neurons. Due to Ih, corticospinal neurons resonated, with a broad peak at ∼4 Hz, and were selectively modulated by α-adrenergic stimulation. Ih reduced the summation of short trains of artificial excitatory postsynaptic potentials (EPSPs) injected at the soma, and similar effects were observed for short trains of actual EPSPs evoked from layer 2/3 neurons. Ih narrowed the coincidence detection window for EPSPs arriving from separate layer 2/3 inputs, indicating that the dampening effect of Ih extended to spatially disperse inputs. To test the role of corticospinal Ih in transforming EPSPs into action potentials, we transfected layer 2/3 pyramidal neurons with channelrhodopsin-2 and used rapid photostimulation across multiple sites to synaptically drive spiking activity in postsynaptic neurons. Blocking Ih increased layer 2/3-driven spiking in corticospinal but not corticostriatal neurons. Our results imply that Ih-dependent synaptic integration in corticospinal neurons constitutes an intracortical control mechanism, regulating the efficacy with which local activity in motor cortex is

  18. 42 CFR 136a.13 - Authorization for contract health services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Authorization for contract health services. 136a.13 Section 136a.13 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH What Services Are Available and Who Is...

  19. Mouse tales from Kresge: the deafness mouse.

    PubMed

    Drury, Stacy S; Keats, Bronya J B

    2003-08-01

    Mouse models for human deafness have not only proven instrumental in the identification of genes for hereditary hearing loss, but are excellent model systems in which to examine gene function as well as the resulting pathophysiology. One mouse model for human nonsyndromic deafness is the deafness (dn) mouse, a spontaneous mutation in the curly-tail (ct) stock. The dn gene is on mouse Chromosome 19 and it was recently shown to be a novel gene called Tmc1. A mutation in Tmc1 is also found in Beethoven (Bth), which is another deaf mouse mutant. In humans, one autosomal dominant form of nonsyndromic hearing loss (DFNA36) and two autosomal recessive forms (DFNB7 and DFNB11) are associated with mutations in TMC1, the human homologue of Tmc1. The transmembrane protein encoded by this gene is required for normal cochlear hair cell function and the mouse models will facilitate the elucidation of the molecular pathway that is disrupted when mutations are present.

  20. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  1. Involvement of neuronal and glial activities in control of the extracellular d-serine concentrations by the AMPA glutamate receptor in the mouse medial prefrontal cortex.

    PubMed

    Ishiwata, Sayuri; Umino, Asami; Nishikawa, Toru

    2017-09-28

    It has been well accepted that d-serine may be an exclusive endogenous coagonist for the N-methyl-d-aspartate (NMDA)-type glutamate receptor in mammalian forebrain regions. We have recently found by using an in vivo dialysis method that an intra-medial prefrontal cortex infusion of S-α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (S-AMPA), a selective AMPA-type glutamate receptor agonist, causes a reduction in the extracellular levels of d-serine in a calcium-permeable AMPA receptor antagonist-sensitive manner. The inhibitory influence by the AMPA receptor on the extracellular d-serine, however, contradicts the data obtained from in vitro experiments that the AMPA receptor stimulation leads to facilitation of the d-serine liberation. This discrepancy appears to be due to the different cell setups between the in vivo and in vitro preparations. From the viewpoints of the previous reports indicating (1) the neuronal presence of d-serine synthesizing enzyme, serine racemase, and d-serine-like immunoreactivity and (2) the same high tissue concentrations of d-serine in the glia-enriched white matter and in the neuron-enriched gray matter of the mammalian neocortex, we have now investigated in the mouse medial prefrontal cortex, the effects of attenuation of neuronal and glial activities, by tetrodotoxin or fluorocitrate, respectively, on the S-AMPA-induced downregulation of the extracellular d-serine contents. In vivo dialysis studies revealed that a local infusion of tetrodotoxin or fluorocitrate eliminated the ability of S-AMPA given intra-cortically to cause a significant decrease in the dialysate concentrations of d-serine without affecting the elevating effects of S-AMPA on those of glycine, another intrinsic coagonist for the NMDA receptor. These findings suggest that the control by the AMPA receptor of the extracellular d-serine levels could be modulated by the neuronal and glial activities in the prefrontal cortex. It cannot be excluded that

  2. Mouse Models of Diabetic Neuropathy

    PubMed Central

    O'Brien, Phillipe D.; Sakowski, Stacey A.; Feldman, Eva L.

    2014-01-01

    Diabetic peripheral neuropathy (DPN) is the most common complication of diabetes and is associated with significant morbidity and mortality. DPN is characterized by progressive, distal-to-proximal degeneration of peripheral nerves that leads to pain, weakness, and eventual loss of sensation. The mechanisms underlying DPN pathogenesis are uncertain, and other than tight glycemic control in type 1 patients, there is no effective treatment. Mouse models of type 1 (T1DM) and type 2 diabetes (T2DM) are critical to improving our understanding of DPN pathophysiology and developing novel treatment strategies. In this review, we discuss the most widely used T1DM and T2DM mouse models for DPN research, with emphasis on the main neurologic phenotype of each model. We also discuss important considerations for selecting appropriate models for T1DM and T2DM DPN studies and describe the promise of novel emerging diabetic mouse models for DPN research. The development, characterization, and comprehensive neurologic phenotyping of clinically relevant mouse models for T1DM and T2DM will provide valuable resources for future studies examining DPN pathogenesis and novel therapeutic strategies. PMID:24615439

  3. The knockout mouse project.

    PubMed

    Austin, Christopher P; Battey, James F; Bradley, Allan; Bucan, Maja; Capecchi, Mario; Collins, Francis S; Dove, William F; Duyk, Geoffrey; Dymecki, Susan; Eppig, Janan T; Grieder, Franziska B; Heintz, Nathaniel; Hicks, Geoff; Insel, Thomas R; Joyner, Alexandra; Koller, Beverly H; Lloyd, K C Kent; Magnuson, Terry; Moore, Mark W; Nagy, Andras; Pollock, Jonathan D; Roses, Allen D; Sands, Arthur T; Seed, Brian; Skarnes, William C; Snoddy, Jay; Soriano, Philippe; Stewart, David J; Stewart, Francis; Stillman, Bruce; Varmus, Harold; Varticovski, Lyuba; Verma, Inder M; Vogt, Thomas F; von Melchner, Harald; Witkowski, Jan; Woychik, Richard P; Wurst, Wolfgang; Yancopoulos, George D; Young, Stephen G; Zambrowicz, Brian

    2004-09-01

    Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain.

  4. The Knockout Mouse Project

    PubMed Central

    Austin, Christopher P; Battey, James F; Bradley, Allan; Bucan, Maja; Capecchi, Mario; Collins, Francis S; Dove, William F; Duyk, Geoffrey; Dymecki, Susan; Eppig, Janan T; Grieder, Franziska B; Heintz, Nathaniel; Hicks, Geoff; Insel, Thomas R; Joyner, Alexandra; Koller, Beverly H; Lloyd, K C Kent; Magnuson, Terry; Moore, Mark W; Nagy, Andras; Pollock, Jonathan D; Roses, Allen D; Sands, Arthur T; Seed, Brian; Skarnes, William C; Snoddy, Jay; Soriano, Philippe; Stewart, David J; Stewart, Francis; Stillman, Bruce; Varmus, Harold; Varticovski, Lyuba; Verma, Inder M; Vogt, Thomas F; von Melchner, Harald; Witkowski, Jan; Woychik, Richard P; Wurst, Wolfgang; Yancopoulos, George D; Young, Stephen G; Zambrowicz, Brian

    2009-01-01

    Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain. PMID:15340423

  5. Evaluation of the Genetic and Nutritional Control of Obesity and Type 2 Diabetes in a Novel Mouse Model on Chromosome 7: An Insight into Insulin Signaling and Glucose Homeostasis

    SciTech Connect

    Nelson, S.; Dhar, M.

    2003-01-01

    Obesity is the main cause of type 2 diabetes, accounting for 90-95% of all diabetes cases in the US. Human obesity is a complex trait and can be studied using appropriate mouse models. A novel polygenic mouse model for studying the genetic and environmental contributions to and the physiological ramifications of obesity and related phenotypes is found in specific lines of mice bred and maintained at Oak Ridge National Laboratory. Heterozygous mice with a maternally inherited copy of two radiation-induced deletions in the p region of mouse chromosome 7, p23DFioD and p30PUb, have significantly greater body fat and show hyperinsulinemiamore » compared to the wild-type. A single gene, Atp10c, maps to this critical region and codes for a putative aminophospholipid translocase. Biochemical and molecular studies were initiated to gain insight into obesity and glucose homeostasis in these animals and to study the biological role of Atp10c in creating these phenotypes. Glucose and insulin tolerance tests were standardized for the heterozygous p23DFioD and control mice on a custom-made diet containing 20% protein, 70% carbohydrate, and 10% fat (kcal). Atp10c expression profiles were also generated using Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR). Heterozygous p23DFioD animals showed insulin resistance after receiving a dose of either 0.375 or 0.75 U/kg Illetin R insulin. RT-PCR data also shows differences in Atp10c expression in the mutants versus control mice. Using these standardized biochemical assays, future studies will further the understanding of genetic and nutritional controls of glucose homeostasis and obesity in animal models and subsequently in human populations.« less

  6. CHD7, Oct3/4, Sox2, and Nanog control FoxD3 expression during mouse neural crest-derived stem cell formation.

    PubMed

    Fujita, Kyohei; Ogawa, Ryuhei; Ito, Kazuo

    2016-10-01

    Neural crest-derived stem cells (NCSCs) are tissue-specific stem cells derived from multipotent neural crest cells. NCSCs are present in some adult tissues such as dorsal root ganglia, sciatic nerve, and bone marrow. However, little is known about the formation mechanisms of these cells. We have shown that BMP2/Wnt3a signaling and a chromatin remodeler, CHD7, in mice help to maintain the multipotency of neural crest cells and lead to the formation of NCSCs. In the present study, we analyzed a regulatory gene cascade in the formation of mouse NCSCs. The inhibition of FoxD3 expression significantly suppressed the expression of Sox10, which is an indispensable transcription factor for mouse NCSC formation, in the presence of BMP2/Wnt3a. CHD7, Oct3/4, Sox2, and Nanog occupied multiple conserved regions of mouse FoxD3, mE1, mE2, and mE3, in a BMP2/Wnt3a-dependent manner. Furthermore, siRNA of CHD7, Oct3/4, Sox2, and Nanog significantly suppressed FoxD3 expression. The inhibition of histone H3K4 mono- or trimethylation also repressed FoxD3 expression. The present data suggest that CHD7, Oct3/4, Sox2, and Nanog directly induce FoxD3 expression when stimulated by BMP2/Wnt3a signaling, that FoxD3 promotes Sox10 expression, and that histone H3K4 methylation plays important roles in this process of mouse NCSC formation. © 2016 Federation of European Biochemical Societies.

  7. NCI Mouse Repository | FNLCR Staging

    Cancer.gov

    The NCI Mouse Repository is an NCI-funded resource for mouse cancer models and associated strains. The repository makes strains available to all members of the scientific community (academic, non-profit, and commercial). NCI Mouse Repository strains

  8. Type I interferon signals in macrophages and dendritic cells control dengue virus infection: implications for a new mouse model to test dengue vaccines.

    PubMed

    Züst, Roland; Toh, Ying-Xiu; Valdés, Iris; Cerny, Daniela; Heinrich, Julia; Hermida, Lisset; Marcos, Ernesto; Guillén, Gerardo; Kalinke, Ulrich; Shi, Pei-Yong; Fink, Katja

    2014-07-01

    Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR(-/-) mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study. Here we used conditional deletion of the type I IFN receptor (IFNAR) on individual immune cell subtypes to generate a minimally manipulated mouse model that is susceptible to DENV while retaining global immune competence. Mice lacking IFNAR expression on CD11c(+) dendritic cells and LysM(+) macrophages succumbed completely to DENV infection, while mice deficient in the receptor on either CD11c(+) or LysM(+) cells were susceptible to infection but often resolved viremia and recovered fully from infection. Conditional IFNAR mice responded with a swift and strong CD8(+) T-cell response to viral infection, compared to a weak response in IFNAR(-/-) mice. Furthermore, mice lacking IFNAR on either CD11c(+) or LysM(+) cells were also sufficiently immunocompetent to raise a protective immune response to a candidate subunit vaccine against DENV-2. These data demonstrate that mice with conditional deficiencies in expression of the IFNAR represent improved models for the study of DENV immunology and screening of vaccine candidates. Dengue virus infects 400 million people every year worldwide, causing 100 million clinically apparent infections, which can be fatal if untreated. Despite many years of research, there are no effective vaccine and no antiviral treatment available for dengue. Development of vaccines has been hampered in particular by the lack of

  9. Type I Interferon Signals in Macrophages and Dendritic Cells Control Dengue Virus Infection: Implications for a New Mouse Model To Test Dengue Vaccines

    PubMed Central

    Toh, Ying-Xiu; Valdés, Iris; Cerny, Daniela; Heinrich, Julia; Hermida, Lisset; Marcos, Ernesto; Guillén, Gerardo; Kalinke, Ulrich; Shi, Pei-Yong; Fink, Katja

    2014-01-01

    ABSTRACT Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR−/− mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study. Here we used conditional deletion of the type I IFN receptor (IFNAR) on individual immune cell subtypes to generate a minimally manipulated mouse model that is susceptible to DENV while retaining global immune competence. Mice lacking IFNAR expression on CD11c+ dendritic cells and LysM+ macrophages succumbed completely to DENV infection, while mice deficient in the receptor on either CD11c+ or LysM+ cells were susceptible to infection but often resolved viremia and recovered fully from infection. Conditional IFNAR mice responded with a swift and strong CD8+ T-cell response to viral infection, compared to a weak response in IFNAR−/− mice. Furthermore, mice lacking IFNAR on either CD11c+ or LysM+ cells were also sufficiently immunocompetent to raise a protective immune response to a candidate subunit vaccine against DENV-2. These data demonstrate that mice with conditional deficiencies in expression of the IFNAR represent improved models for the study of DENV immunology and screening of vaccine candidates. IMPORTANCE Dengue virus infects 400 million people every year worldwide, causing 100 million clinically apparent infections, which can be fatal if untreated. Despite many years of research, there are no effective vaccine and no antiviral treatment available for dengue. Development of vaccines has been hampered in particular by

  10. Temporal and Tissue-Specific Control of Gene Expression in the Peri-Implantation Mouse Embryo Through Electroporation of dsRNA

    NASA Astrophysics Data System (ADS)

    Soares, Miguel L.; Torres-Padilla, Maria-Elena

    The delivery of nucleic acids into embryos — either DNA molecules for transient expression or double-stranded RNA for gene silencing by RNA interference (RNAi) — remains a challenging aspect of functional studies on live organisms. Electroporation has long been a standard method for the active transfer of the nega tively charged nucleic acids into mammalian cells (Andreason and Evans, 1988). This technique employs electric pulses to create transient pores in the cytoplasmic membrane through which the nucleic acids are actively delivered. It was not until the conditions for culture of whole embryos became consistent, however, that it has been applied successfully for transfection of mouse concepti.

  11. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  12. Gadd45γ and Map3k4 Interactions Regulate Mouse Testis Determination via p38 MAPK-Mediated Control of Sry Expression

    PubMed Central

    Warr, Nick; Carre, Gwenn-Aël; Siggers, Pam; Faleato, Jessica Vitos; Brixey, Rachel; Pope, Madeleine; Bogani, Debora; Childers, Melissa; Wells, Sara; Scudamore, Cheryl L.; Tedesco, Marianna; del Barco Barrantes, Ivan; Nebreda, Angel R.; Trainor, Paul A.; Greenfield, Andy

    2012-01-01

    Summary Loss of the kinase MAP3K4 causes mouse embryonic gonadal sex reversal due to reduced expression of the testis-determining gene, Sry. However, because of widespread expression of MAP3K4, the cellular basis of this misregulation was unclear. Here, we show that mice lacking Gadd45γ also exhibit XY gonadal sex reversal caused by disruption to Sry expression. Gadd45γ is expressed in a dynamic fashion in somatic cells of the developing gonads from 10.5 days postcoitum (dpc) to 12.5 dpc. Gadd45γ and Map3k4 genetically interact during sex determination, and transgenic overexpression of Map3k4 rescues gonadal defects in Gadd45γ-deficient embryos. Sex reversal in both mutants is associated with reduced phosphorylation of p38 MAPK and GATA4. In addition, embryos lacking both p38α and p38β also exhibit XY gonadal sex reversal. Taken together, our data suggest a requirement for GADD45γ in promoting MAP3K4-mediated activation of p38 MAPK signaling in embryonic gonadal somatic cells for testis determination in the mouse. PMID:23102580

  13. Traumatic brain injury using mouse models.

    PubMed

    Zhang, Yi Ping; Cai, Jun; Shields, Lisa B E; Liu, Naikui; Xu, Xiao-Ming; Shields, Christopher B

    2014-08-01

    The use of mouse models in traumatic brain injury (TBI) has several advantages compared to other animal models including low cost of breeding, easy maintenance, and innovative technology to create genetically modified strains. Studies using knockout and transgenic mice demonstrating functional gain or loss of molecules provide insight into basic mechanisms of TBI. Mouse models provide powerful tools to screen for putative therapeutic targets in TBI. This article reviews currently available mouse models that replicate several clinical features of TBI such as closed head injuries (CHI), penetrating head injuries, and a combination of both. CHI may be caused by direct trauma creating cerebral concussion or contusion. Sudden acceleration-deceleration injuries of the head without direct trauma may also cause intracranial injury by the transmission of shock waves to the brain. Recapitulation of temporary cavities that are induced by high-velocity penetrating objects in the mouse brain are difficult to produce, but slow brain penetration injuries in mice are reviewed. Synergistic damaging effects on the brain following systemic complications are also described. Advantages and disadvantages of CHI mouse models induced by weight drop, fluid percussion, and controlled cortical impact injuries are compared. Differences in the anatomy, biomechanics, and behavioral evaluations between mice and humans are discussed. Although the use of mouse models for TBI research is promising, further development of these techniques is warranted.

  14. A 13-Week Research-Based Biochemistry Laboratory Curriculum

    ERIC Educational Resources Information Center

    Lefurgy, Scott T.; Mundorff, Emily C.

    2017-01-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with…

  15. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  16. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  17. Coxsackievirus B4 infection of the mouse pancreas: the role of natural killer cells in the control of virus replication and resistance to infection.

    PubMed

    Vella, C; Festenstein, H

    1992-06-01

    The role of natural killer (NK) cells in the early immune response to a pancreatropic isolate of coxsackievirus B4 (CVB4) was investigated in a murine model of pancreatitis. Endogenous (background) NK cell activity in fresh spleen effector cells from eight mouse strains was compared with virus-augmented NK cell activity 4 days post-infection (p.i.). A significant virus-induced increase (P less than or equal to 0.003) in NK cell activity was seen in seven of eight infected mouse strains, when virus titres in the pancreas were beginning to fall. Lesions in the exocrine pancreas were least extensive in the three strains with the highest endogenous NK cell activity. In C3H/HeJ mice that had been depleted of NK cells prior to infection with a low virus concentration, resistance to infection of the pancreas was completely abolished; myocarditis was also observed in one of these animals. Thus, NK cells may limit virus replication in the pancreas and play a role in resistance in C3H/HeJ mice. Virus-specific neutralizing antibody was not detected in the serum until 5 to 6 days p.i. in most strains and did not appear to influence pancreatic virus titres. It may be significant that CVB4 infection did not induce the expression of major histocompatibility complex (MHC) class I molecules on target acinar cells. With certain tumour cells, an inverse relationship between MHC class I expression and susceptibility to NK cell-mediated lysis is well documented.

  18. Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down’s syndrome

    PubMed Central

    2013-01-01

    Background Down’s syndrome (DS) is caused by triplication of all or part of human chromosome 21 and is characterized by a decrease in the overall size of the brain. One of the brain regions most affected is the cerebellum, in which the number of granule cells (GCs) is markedly decreased. GCs process sensory information entering the cerebellum via mossy fibres and pass it on to Purkinje cells and inhibitory interneurons. How GCs transform incoming signals depends on their input–output relationship, which is adjusted by tonically active GABAA receptor channels. Results We report that in the Ts65Dn mouse model of DS, in which cerebellar volume and GC number are decreased as in DS, the tonic GABAA receptor current in GCs is smaller than in wild-type mice and is less effective in moderating input resistance and raising the minimum current required for action potential firing. We also find that tonically active GABAA receptors curb the height and broaden the width of action potentials in wild-type GCs but not in Ts65Dn GCs. Single-cell real-time quantitative PCR reveals that these electrical differences are accompanied by decreased expression of the gene encoding the GABAA receptor β3 subunit but not genes coding for some of the other GABAA receptor subunits expressed in GCs (α1, α6, β2 and δ). Conclusions Weaker moderation of excitability and action potential waveform in GCs of the Ts65Dn mouse by tonically active GABAA receptors is likely to contribute to atypical transfer of information through the cerebellum. Similar changes may occur in DS. PMID:23870245

  19. Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans.

    PubMed

    Codoni, Veronica; Blum, Yuna; Civelek, Mete; Proust, Carole; Franzén, Oscar; Björkegren, Johan L M; Le Goff, Wilfried; Cambien, Francois; Lusis, Aldons J; Trégouët, David-Alexandre

    2016-10-13

    Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between human and mouse to identify conserved networks across both species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of coexpressed genes (modules). Six modules were found preserved (P < 10 -4 ) in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly [false discovery rate (FDR) = 8.9 × 10 -11 ] enriched for genes belonging to the oxidative phosphorylation (OXPHOS) pathway. This pathway was also found significantly (FDR < 10 -4 ) enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans-acting variant influencing (minimal P-value = 4.3 × 10 -8 ) the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans. Copyright © 2016 Codoni et al.

  20. Independent genetic control of early and late stages of chemically induced skin tumors in a cross of a Japanese wild-derived inbred mouse strain, MSM/Ms.

    PubMed

    Okumura, Kazuhiro; Sato, Miho; Saito, Megumi; Miura, Ikuo; Wakana, Shigeharu; Mao, Jian-Hua; Miyasaka, Yuki; Kominami, Ryo; Wakabayashi, Yuichi

    2012-11-01

    MSM/Ms is an inbred mouse strain derived from a Japanese wild mouse, Mus musculus molossinus. In this study, we showed that MSM/Ms mice exhibit dominant resistance when crossed with susceptible FVB/N mice and subjected to the two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA)/ 12-O-tetradecanoylphorbol-13-acetate (TPA). A series of F1 backcross mice were generated by crossing p53(+/+) or p53(+/-) F1 (FVB/N × MSM/Ms) males with FVB/N female mice. These generated 228 backcross animals, approximately half of which were p53(+/-), enabling us to search for p53-dependent skin tumor modifier genes. Highly significant linkage for papilloma multiplicity was found on chromosomes 6 and 7 and suggestive linkage was found on chromosomes 3, 5 and 12. Furthermore, in order to identify stage-dependent linkage loci we classified tumors into three categories (<2mm, 2-6mm and >6mm), and did linkage analysis. The same locus on chromosome 7 showed strong linkage in groups with <2mm or 2-6mm papillomas. No linkage was detected on chromosome 7 to papillomas >6mm, but a different locus on chromosome 4 showed strong linkage both to papillomas >6mm and to carcinomas. This locus, which maps near the Cdkn2a/p19(Arf) gene, was entirely p53-dependent, and was not seen in p53 (+/-) backcross animals. Suggestive linkage conferring susceptibility to carcinoma was also found on chromosome 5. These results clearly suggest distinct loci regulate each stage of tumorigenesis, some of which are p53-dependent.

  1. Benzylmorpholine Analogs as Selective Inhibitors of Lung Cytochrome P450 2A13 for the Chemoprevention of Lung Cancer in Tobacco Users

    PubMed Central

    Blake, Linda C.; Roy, Anuradha; Neul, David; Schoenen, Frank J.; Aubé, Jeffrey; Scott, Emily E.

    2013-01-01

    Purpose 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Methods Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is the major challenge in compound design. Results A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Conclusions Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure. PMID:23756756

  2. Endometrial adenocarcinoma in a 13-year-old girl.

    PubMed

    Kim, Sung Mee; Shin, So Jin; Bae, Jin Gon; Kwon, Kun Young; Rhee, Jeong Ho

    2016-03-01

    Endometrial cancer is the third most common gynecologic cancer in the Korea and occurs mainly in menopausal women. Although it can develop in young premenopausal women cancer as well, an attack in the adolescent girl is very rare. A 13-year-old girl visited gynecology department with the complaint of abnormal uterine bleeding. An endometrial biopsy revealed FIGO (International Federation of Gynecology and Obstetrics) grade II endometrial adenocarcinoma. In the treatment of endometrial cancer, conservative management should be considered if the patient is nulliparous or wants the fertility preservation. Therefore, we decided to perform a hormonal therapy and a follow-up endometrial biopsy after progestin administration for eight months revealed no residual tumor. We report a case of endometrial cancer occurred in a 13-year-old girl with a brief review of the literature.

  3. Neuronostatin: peripheral site of action in mouse stomach.

    PubMed

    Amato, Antonella; Baldassano, Sara; Caldara, Gaetano; Mulè, Flavia

    2015-02-01

    Neuronostatin is a 13-amino acid peptide encoded by somatostatin gene. It is distributed in different organs including gastrointestinal tract and has been involved in the control of food intake and gastrointestinal motility, likely through an action in the brain. So far, there are no reports about the occurrence of peripheral action sites in the gut. Therefore, the purpose of the present study was to examine, in the mouse, the effects of peripheral administration of neuronostatin on food intake within 24h and on gastrointestinal motility and to analyse neuronostatin actions on the gastric and intestinal mechanical activity in isolated preparations in vitro. When compared with PBS-treated mice, intraperitoneal neuronostatin reduced food intake in doses ranging from 1 to 15ng/g b.w. only in the first hour postinjection with a maximum effect obtained at the dose of 15ng/g b.w. (-46.9%). The peptide (15ng/g b.w.) significantly reduced gastric emptying rate (-31.1%) and gastrointestinal intestinal transit. Non-amidated neuronostatin failed to affect food intake, gastric emptying and intestinal transit, suggesting the specificity of action. In vitro, neuronostatin induced concentration-dependent gastric relaxation, which was abolished by tetrodotoxin. Neuronostatin failed to affect the spontaneous mechanical activity or the evoked cholinergic contractions in duodenum. These results suggest that exogenous neuronostatin is able to reduce mouse gastric motility by acting peripherally in the stomach, through intramural nervous plexuses. This indirectly action could cause reduction of food intake in the short term. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The Zinc Transporter SLC39A13/ZIP13 Is Required for Connective Tissue Development; Its Involvement in BMP/TGF-β Signaling Pathways

    PubMed Central

    Shimoda, Shinji; Mishima, Kenji; Higashiyama, Hiroyuki; Idaira, Yayoi; Asada, Yoshinobu; Kitamura, Hiroshi; Yamasaki, Satoru; Hojyo, Shintaro; Nakayama, Manabu; Ohara, Osamu; Koseki, Haruhiko; dos Santos, Heloisa G.; Bonafe, Luisa; Ha-Vinh, Russia; Zankl, Andreas; Unger, Sheila; Kraenzlin, Marius E.; Beckmann, Jacques S.; Saito, Ichiro; Rivolta, Carlo; Ikegawa, Shiro; Superti-Furga, Andrea; Hirano, Toshio

    2008-01-01

    Background Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. Methodology/Principal Findings Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. Conclusions/Significance Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction. PMID:18985159

  5. C1q/TNF-related Protein-12 (CTRP12), a Novel Adipokine That Improves Insulin Sensitivity and Glycemic Control in Mouse Models of Obesity and Diabetes*

    PubMed Central

    Wei, Zhikui; Peterson, Jonathan M.; Lei, Xia; Cebotaru, Liudmila; Wolfgang, Michael J.; Baldeviano, G. Christian; Wong, G. William

    2012-01-01

    Despite the prevalence of insulin resistance and type 2 diabetes mellitus, their underlying mechanisms remain incompletely understood. Many secreted endocrine factors and the intertissue cross-talk they mediate are known to be dysregulated in type 2 diabetes mellitus. Here, we describe CTRP12, a novel adipokine with anti-diabetic actions. The mRNA and circulating levels of CTRP12 were decreased in a mouse model of obesity, but its expression in adipocytes was increased by the anti-diabetic drug rosiglitazone. A modest rise in circulating levels of CTRP12 by recombinant protein administration was sufficient to lower blood glucose in wild-type, leptin-deficient ob/ob, and diet-induced obese mice. A short term elevation of serum CTRP12 by adenovirus-mediated expression improved glucose tolerance and insulin sensitivity, normalized hyperglycemia and hyperinsulinemia, and lowered postprandial insulin resistance in obese and diabetic mice. CTRP12 improves insulin sensitivity in part by enhancing insulin signaling in the liver and adipose tissue. Further, CTRP12 also acts in an insulin-independent manner; in cultured hepatocytes and adipocytes, CTRP12 directly activated the PI3K-Akt signaling pathway to suppress gluconeogenesis and promote glucose uptake, respectively. Collectively, these data establish CTRP12 as a novel metabolic regulator linking adipose tissue to whole body glucose homeostasis through insulin-dependent and independent mechanisms. PMID:22275362

  6. C1q/TNF-related protein-12 (CTRP12), a novel adipokine that improves insulin sensitivity and glycemic control in mouse models of obesity and diabetes.

    PubMed

    Wei, Zhikui; Peterson, Jonathan M; Lei, Xia; Cebotaru, Liudmila; Wolfgang, Michael J; Baldeviano, G Christian; Wong, G William

    2012-03-23

    Despite the prevalence of insulin resistance and type 2 diabetes mellitus, their underlying mechanisms remain incompletely understood. Many secreted endocrine factors and the intertissue cross-talk they mediate are known to be dysregulated in type 2 diabetes mellitus. Here, we describe CTRP12, a novel adipokine with anti-diabetic actions. The mRNA and circulating levels of CTRP12 were decreased in a mouse model of obesity, but its expression in adipocytes was increased by the anti-diabetic drug rosiglitazone. A modest rise in circulating levels of CTRP12 by recombinant protein administration was sufficient to lower blood glucose in wild-type, leptin-deficient ob/ob, and diet-induced obese mice. A short term elevation of serum CTRP12 by adenovirus-mediated expression improved glucose tolerance and insulin sensitivity, normalized hyperglycemia and hyperinsulinemia, and lowered postprandial insulin resistance in obese and diabetic mice. CTRP12 improves insulin sensitivity in part by enhancing insulin signaling in the liver and adipose tissue. Further, CTRP12 also acts in an insulin-independent manner; in cultured hepatocytes and adipocytes, CTRP12 directly activated the PI3K-Akt signaling pathway to suppress gluconeogenesis and promote glucose uptake, respectively. Collectively, these data establish CTRP12 as a novel metabolic regulator linking adipose tissue to whole body glucose homeostasis through insulin-dependent and independent mechanisms.

  7. Differential hepatic protein tyrosine nitration of mouse due to aging - effect on mitochondrial energy metabolism, quality control machinery of the endoplasmic reticulum and metabolism of drugs.

    PubMed

    Marshall, Adrienne; Lutfeali, Reshma; Raval, Alpan; Chakravarti, Deb N; Chakravarti, Bulbul

    2013-01-04

    Aging is the inevitable fate of life which leads to the gradual loss of functions of different organs and organelles of all living organisms. The liver is no exception. Oxidative damage to proteins and other macromolecules is widely believed to be the primary cause of aging. One form of oxidative damage is tyrosine nitration of proteins, resulting in the potential loss of their functions. In this study, the effect of age on the nitration of tyrosine in mouse liver proteins was examined. Liver proteins from young (19-22 weeks) and old (24 months) C57/BL6 male mice were separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose membranes. Proteins undergoing tyrosine nitration were identified using anti-nitrotyrosine antibody. Three different protein bands were found to contain significantly increased levels of nitrotyrosine in old mice (Wilconxon rank-sum test, p<0.05). Electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) was used to identify the proteins in these bands, which included aldehyde dehydrogenase 2, Aldehyde dehydrogenase family 1, subfamily A1, ATP synthase, H(+) transporting, mitochondrial F1 complex, β subunit, selenium-binding protein 2, and protein disulfide-isomerase precursor. The possible impairment of their functions can lead to altered hepatic activity and have been discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation

    PubMed Central

    Miquelajauregui, Amaya; Van de Putte, Tom; Polyakov, Alexander; Nityanandam, Anjana; Boppana, Sridhar; Seuntjens, Eve; Karabinos, Anton; Higashi, Yujiro; Huylebroeck, Danny; Tarabykin, Victor

    2007-01-01

    Smad-interacting protein-1 (Sip1) [Zinc finger homeobox (Zfhx1b)] is a transcription factor implicated in the genesis of Mowat–Wilson syndrome in humans. Sip1 expression in the dorsal telencephalon of mouse embryos was documented from E12.5. We inactivated the gene specifically in cortical precursors. This resulted in the lack of the entire hippocampal formation. Sip1 mutant mice exhibited death of differentiating cells and decreased proliferation in the region of the prospective hippocampus and dentate gyrus. The expression of the Wnt antagonist Sfrp1 was ectopically activated, whereas the activity of the noncanonical Wnt effector, JNK, was down-regulated in the embryonic hippocampus of mutant mice. In cortical cells, Sip1 protein was detected on the promoter of Sfrp1 gene and both genes showed a mutually exclusive pattern of expression suggesting that Sfrp1 expression is negatively regulated by Sip1. Sip1 is therefore essential to the development of the hippocampus and dentate gyrus, and is able to modulate Wnt signaling in these regions. PMID:17644613

  9. Immunostimulatory mouse granuloma protein.

    PubMed

    Fontan, E; Fauve, R M; Hevin, B; Jusforgues, H

    1983-10-01

    Earlier studies have shown that from subcutaneous talc-induced granuloma in mice, a fraction could be extracted that fully protected mice against Listeria monocytogenes. Using standard biochemical procedures--i.e., ammonium sulfate fractionation, preparative electrophoresis, gel filtration chromatography, isoelectric focusing, and preparative polyacrylamide gel electrophoresis--we have now purified an active factor to homogeneity. A single band was obtained in NaDodSO4/polyacrylamide gel with an apparent Mr of 55,000. It migrated with alpha 1-globulins and the isoelectric point was 5 +/- 0.1. The biological activity was destroyed with Pronase but not with trypsin and a monospecific polyclonal rabbit antiserum was obtained. The intravenous injection of 5 micrograms of this "mouse granuloma protein" fully protects mice against a lethal inoculum of L. monocytogenes. Moreover, after their incubation with 10 nM mouse granuloma protein, mouse peritoneal cells became cytostatic against Lewis carcinoma cells.

  10. Mouse models of cataract.

    PubMed

    Graw, Jochen

    2009-12-01

    Much of our knowledge about the function of genes in cataracts has been derived from the molecular analysis of spontaneous or induced mutations in the mouse. Mutations affecting the mouse lens can be identified easily by visual inspection, and a remarkable number of mutant lines have been characterized. In contrast to humans, most of the genetic mouse cataract models suffer from congenital cataracts, and only a few develop cataracts in old age. Therefore, the mouse cataract models contributed rather to the understanding of lens development than to the ageing process taking place in the lens. A prerequisite for molecular analysis is the chromosomal localization of the gene. In this review, several mouse models will be discussed with emphasis on the underlying genetic basis rather than the morphological features as exemplified by the following: (i) the most frequent mutations in congenital cataracts affect genes coding for gamma-crystallins (gene symbol: Cryg); (ii) some postnatal, progressive cataracts have been characterized by mutations in the beta-crystallin encoding genes (Cryb); (iii) mutations in genes coding for membrane proteins like MIP or connexins lead to congenital cataracts; (iv) mutations in genes coding for transcription factors such as FoxE3, Maf, Sox1, and Six5 cause cataracts; (v) mouse models suffering from hereditary age-related cataracts (e.g. Emory cataract) have not yet been characterized genetically. In conclusion, a broad variety of hereditary congenital cataracts are well understood at the molecular level. Further, expression patterns of the affected genes in several other tissues and organs outside the eye, is making it increasingly clear that isolated cataracts are the exception rather than the rule. By further understanding the pleiotropic effects of these genes, we might recognize cataracts as an easily visible biomarker for a number of systemic syndromes.

  11. Pyogenic Sacroiliitis in a 13-Month-Old Child

    PubMed Central

    Julien, Leroux; Isabelle, Bernardini; Lucie, Grynberg; Claire, Grandguillaume; Paul, Michelin; Mourad, Ould Slimane; Eric, Nectoux; François, Deroussen; Richard, Gouron; Audrey, Angelliaume; Brice, Ilharreborde; Mariette, Renaux-Petel

    2015-01-01

    Abstract Pyogenic sacroiliitis is exceptional in very young children. Diagnosis is difficult because clinical examination is misleading. FABER test is rarely helpful in very young children. Inflammatory syndrome is frequent. Bone scintigraphy and MRI are very sensitive for the diagnosis. Joint fluid aspiration and blood cultures are useful to identify the pathogen. Appropriate antibiotic therapy provides rapid regression of symptoms and healing. We report the case of pyogenic sacroiliitis in a 13-month-old child. Clinical, biological, and imaging data of this case were reviewed and reported retrospectively. A 13-month-old girl consulted for decreased weight bearing without fever or trauma. Clinical examination was not helpful. There was an inflammatory syndrome. Bone scintigraphy found a sacroiliitis, confirmed on MRI. Aspiration of the sacroiliac joint was performed. Empiric intravenous biantibiotic therapy was started. Patient rapidly recovered full weight bearing. On the 5th day, clinical examination and biological analysis returned to normal. Intravenous antibiotic therapy was switched for oral. One month later, clinical examination and biological analysis were normal and antibiotic therapy was stopped. Hematogenous osteoarticular infections are common in children but pyogenic sacroiliitis is rare and mainly affects older children. Diagnosis can be difficult because clinical examination is poor. Moreover, limping and decreased weight bearing are very common reasons for consultation. This may delay the diagnosis or refer misdiagnosis. Bone scintigraphy is useful to locate a bone or joint disease responsible for limping. In this observation, bone scintigraphy located the infection at the sacroiliac joint. Given the young age, MRI was performed to confirm the diagnosis. Despite the very young age of the patient, symptoms rapidly disappeared with appropriate antibiotic therapy. We report the case of pyogenic sacroiliitis in a 13-month-old child. It reminds the risk

  12. Tetracycline-controlled transgene activation using the ROSA26-iM2-GFP knock-in mouse strain permits GFP monitoring of DOX-regulated transgene-expression

    PubMed Central

    2010-01-01

    Background Conditional gene activation is an efficient strategy for studying gene function in genetically modified animals. Among the presently available gene switches, the tetracycline-regulated system has attracted considerable interest because of its unique potential for reversible and adjustable gene regulation. Results To investigate whether the ubiquitously expressed Gt(ROSA)26Sor locus enables uniform DOX-controlled gene expression, we inserted the improved tetracycline-regulated transcription activator iM2 together with an iM2 dependent GFP gene into the Gt(ROSA)26Sor locus, using gene targeting to generate ROSA26-iM2-GFP (R26t1Δ) mice. Despite the presence of ROSA26 promoter driven iM2, R26t1Δ mice showed very sparse DOX-activated expression of different iM2-responsive reporter genes in the brain, mosaic expression in peripheral tissues and more prominent expression in erythroid, myeloid and lymphoid lineages, in hematopoietic stem and progenitor cells and in olfactory neurons. Conclusions The finding that gene regulation by the DOX-activated transcriptional factor iM2 in the Gt(ROSA)26Sor locus has its limitations is of importance for future experimental strategies involving transgene activation from the endogenous ROSA26 promoter. Furthermore, our ROSA26-iM2 knock-in mouse model (R26t1Δ) represents a useful tool for implementing gene function in vivo especially under circumstances requiring the side-by-side comparison of gene manipulated and wild type cells. Since the ROSA26-iM2 mouse allows mosaic gene activation in peripheral tissues and haematopoietic cells, this model will be very useful for uncovering previously unknown or unsuspected phenotypes. PMID:20815887

  13. The Mouse SAGE Site: database of public mouse SAGE libraries.

    PubMed

    Divina, Petr; Forejt, Jirí

    2004-01-01

    The Mouse SAGE Site is a web-based database of all available public libraries generated by the Serial Analysis of Gene Expression (SAGE) from various mouse tissues and cell lines. The database contains mouse SAGE libraries organized in a uniform way and provides web-based tools for browsing, comparing and searching SAGE data with reliable tag-to-gene identification. A modified approach based on the SAGEmap database is used for reliable tag identification. The Mouse SAGE Site is maintained on an ongoing basis at the Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and is accessible at the internet address http://mouse.biomed.cas.cz/sage/.

  14. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study.

    PubMed

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-08-07

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.

  15. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study

    PubMed Central

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-01-01

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633

  16. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  17. A survey of internet resources for mouse development.

    PubMed

    Saunders, Thomas L

    2010-01-01

    The Internet contains many sources of information useful for mouse developmental biology research. These include anatomical atlases, gene expression atlases, and indexes to genetically engineered mouse strains and embryonic stem (ES) cells. Online atlases supersede earlier printed atlases in the quantity of available online images and the depth of specialized anatomical terminology and gene ontologies. Atlases annotated with gene expression data have increased value for comparisons with mouse models designed to study genetic perturbations of developmental processes. Gene expression libraries and microarray analyses of developmental stages are also available in Internet repositories. Bioinformatic interrogation of this data can identify regulatory gene networks and suggest putative transcriptional regulators that control cell fate. In silico formulated hypotheses about regulatory genes may be tested in vivo with mouse models obtained from the international Knockout Mouse Project (KOMP). Many of the genes targeted ES cells in KOMP are designed to mark cells with reporter molecules and produce conditional alleles. In combination with Cre recombinase mouse strains, genes can be inactivated at different developmental stages in specific cell types to study their function in embryogenesis. Atlases of mouse development, gene expression atlases, transcriptome databases, and repositories of genetically engineered mouse strains and ES cells are discussed. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  18. Co-operation between neural and myogenic mechanisms in the control of distension-induced peristalsis in the mouse small intestine

    PubMed Central

    Huizinga, Jan D; Ambrous, Krista; Der-Silaphet, Tara

    1998-01-01

    Myogenic and neural control of intestinal transit were investigated in a model of distension-induced peristalsis. A comparison was made between the electrical and mechanical activities and outflow of contents observed in control mice and in W/W v mice, which lack the interstitial cells of Cajal associated with Auerbach's plexus.Distension caused a periodic appearance of increased motor activity due to stimulation of enteric nerves in both control and W/W v mice. Excitation was primarily delivered by cholinergic nerves, whereas periodic inhibition was mediated by neuronal nitric oxide.In control mice, outflow was driven by propagating slow-wave activity and was only in the aboral direction. Outflow only occurred when slow waves carried sufficient action potentials to cause phasic intraluminal pressure increases of ≥ 1 cmH2O through direct stimulation of the musculature or by distension-induced neurally mediated activation.In W/W v mice, outflow was associated with propagating action potentials that occurred due to either neural stimulation or direct muscle stimulation. Action potential propagation and outflow occurred in both oral and aboral directions.In summary, in both control and W/W v mice, distension induced periodic motor activity through stimulation of the enteric nervous system. Intraluminal contents were not moved in front of such motor activity. Rather, within such periods of activity that occurred concurrently throughout an entire segment, pulsatile outflow was directed by individual propagating slow waves with superimposed action potentials in control tissue, and by propagating action potentials in W/W v mice, which lack interstitial cells of Cajal. PMID:9503342

  19. RYGB produces more sustained body weight loss and improvement of glycemic control compared with VSG in the diet-induced obese mouse model

    PubMed Central

    Hao, Zheng; Townsend, R. Leigh; Mumphrey, Michael B; Morrison, Christopher D; Münzberg, Heike; Berthoud, Hans-Rudolf

    2018-01-01

    Objective To compare the effects of murine models of vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) surgery on body weight, body composition, food intake, energy expenditure, and glycemic control. Background Weight regain and type-2 diabetes relapse has been reported in a significant proportion of VSG patients in some studies, but definitive conclusions regarding the long-term comparative effectiveness of VSG and RYGB are lacking both in humans and rodent models. Methods VSG, RYGB, and sham surgery was performed in high-fat diet-induced obese mice and the effects on body weight and glycemic control were observed for a period of 12 weeks. Results After the initial weight loss, VSG mice regained significant amounts of body weight and fat mass that were only marginally lower than in sham-operated mice. In contrast, RYGB produced sustained loss of body weight and fat mass up to 12 weeks, and drastically improved fasting insulin and HOMA-IR compared with sham-operated mice. Using weight-matched control groups we also found that the adaptive hypometabolic response to weight loss was blunted by both VSG and RYGB, and that despite large weight/fat regain, fasting insulin and HOMA-IR were markedly improved, but not reversed, in VSG mice. Conclusions VSG is less effective to lastingly suppress body weight and improve glycemic control compared with RYGB in mice. Given similar observations in many human studies, the run towards replacing RYGB with VSG is premature and should await carefully controlled randomized long term trials with VSG and RYGB. PMID:28386755

  20. RYGB Produces more Sustained Body Weight Loss and Improvement of Glycemic Control Compared with VSG in the Diet-Induced Obese Mouse Model.

    PubMed

    Hao, Zheng; Townsend, R Leigh; Mumphrey, Michael B; Morrison, Christopher D; Münzberg, Heike; Berthoud, Hans-Rudolf

    2017-09-01

    Weight regain and type-2 diabetes relapse has been reported in a significant proportion of vertical sleeve gastrectomy (VSG) patients in some studies, but definitive conclusions regarding the long-term comparative effectiveness of VSG and Roux-en-Y gastric bypass (RYGB) surgery are lacking both in humans and rodent models. This study's objective was to compare the effects of murine models of VSG and RYGB surgery on body weight, body composition, food intake, energy expenditure, and glycemic control. VSG, RYGB, and sham surgery was performed in high-fat diet-induced obese mice, and the effects on body weight and glycemic control were observed for a period of 12 weeks. After the initial weight loss, VSG mice regained significant amounts of body weight and fat mass that were only marginally lower than in sham-operated mice. In contrast, RYGB produced sustained loss of body weight and fat mass up to 12 weeks and drastically improved fasting insulin and HOMA-IR compared with sham-operated mice. Using weight-matched control groups, we also found that the adaptive hypometabolic response to weight loss was blunted by both VSG and RYGB, and that despite large weight/fat regain, fasting insulin and HOMA-IR were markedly improved, but not reversed, in VSG mice. VSG is less effective to lastingly suppress body weight and improve glycemic control compared with RYGB in mice. Given similar observations in many human studies, the run towards replacing RYGB with VSG is premature and should await carefully controlled randomized long-term trials with VSG and RYGB.

  1. The immunoglobulin heavy chain 3' regulatory region superenhancer controls mouse B1 B-cell fate and late VDJ repertoire diversity.

    PubMed

    Ghazzaui, Nour; Issaoui, Hussein; Saintamand, Alexis; Oblet, Christelle; Carrion, Claire; Denizot, Yves

    2018-02-13

    The immunoglobulin heavy chain (IgH) 3' regulatory region (3'RR) superenhancer controls B2 B-cell IgH transcription and cell fate at the mature stage but not early repertoire diversity. B1 B cells represent a small percentage of total B cells differing from B2 B cells by several points such as precursors, development, functions, and regulation. B1 B cells act at the steady state to maintain homeostasis in the organism and during the earliest phases of an immune response, setting them at the interface between innate and acquired immunity. We investigated the role of the 3'RR superenhancer on B1 B-cell fate. Similar to B2 B cells, the 3'RR controls μ transcription and cell fate in B1 B cells. In contrast to B2 B cells, 3'RR deletion affects B1 B-cell late repertoire diversity. Thus, differences exist for B1 and B2 B-cell 3'RR control during B-cell maturation. For the first time, these results highlight the contribution of the 3'RR superenhancer at this interface between innate and acquired immunity. © 2018 by The American Society of Hematology.

  2. The immunoglobulin heavy chain 3′ regulatory region superenhancer controls mouse B1 B-cell fate and late VDJ repertoire diversity

    PubMed Central

    Ghazzaui, Nour; Issaoui, Hussein; Saintamand, Alexis; Oblet, Christelle; Carrion, Claire

    2018-01-01

    The immunoglobulin heavy chain (IgH) 3′ regulatory region (3′RR) superenhancer controls B2 B-cell IgH transcription and cell fate at the mature stage but not early repertoire diversity. B1 B cells represent a small percentage of total B cells differing from B2 B cells by several points such as precursors, development, functions, and regulation. B1 B cells act at the steady state to maintain homeostasis in the organism and during the earliest phases of an immune response, setting them at the interface between innate and acquired immunity. We investigated the role of the 3′RR superenhancer on B1 B-cell fate. Similar to B2 B cells, the 3′RR controls μ transcription and cell fate in B1 B cells. In contrast to B2 B cells, 3′RR deletion affects B1 B-cell late repertoire diversity. Thus, differences exist for B1 and B2 B-cell 3′RR control during B-cell maturation. For the first time, these results highlight the contribution of the 3′RR superenhancer at this interface between innate and acquired immunity. PMID:29437640

  3. Prenatal diagnosis of Down syndrome: A 13-year retrospective study.

    PubMed

    Vičić, Ana; Hafner, Tomislav; Bekavac Vlatković, Ivanka; Korać, Petra; Habek, Dubravko; Stipoljev, Feodora

    2017-12-01

    The aim of this study is to summarize the experience on prenatal diagnosis of Down syndrome. The study includes a retrospective data analysis of 157 prenatally detected cases of Down syndrome, routinely diagnosed among 6448 prenatal investigations performed during a 13-year period (2002-2014) in a single tertiary center. The prevalence of diagnosed Down syndrome cases was 2.4%. Maternal age alone was indication for prenatal diagnosis in 47 cases (45.2%), increased first-/second-trimester biochemical screening test in 34 cases (21.7%), abnormal ultrasound examination in 69 cases (43.9%), positive familial history for chromosomal abnormalities in four cases, and high risk for trisomy 21 revealed by cell-free DNA testing in three cases. Ultrasound anomalies were present in total of 94 fetuses (59.8%). The most common abnormality was cystic hygroma found in 46 cases (29.3%). A regular form of Down syndrome (trisomy 21) was found in 147 cases (93.6%), Robertsonian translocation in six cases (3.8%), and mosaic form in four cases (2.6%). In prenatal diagnosis of Down syndrome noninvasive screening methods are important for estimation of individual risks, in both, young population of woman and older mothers, while conventional and molecular cytogenetic methods are essential for definite diagnosis and proper genetic counseling. Copyright © 2017. Published by Elsevier B.V.

  4. A 13-week research-based biochemistry laboratory curriculum.

    PubMed

    Lefurgy, Scott T; Mundorff, Emily C

    2017-09-01

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(5):437-448, 2017. © 2017 The International Union of Biochemistry and Molecular Biology.

  5. Genetically Engineered Mouse Models in Cancer Research

    PubMed Central

    Walrath, Jessica C.; Hawes, Jessica J.; Van Dyke, Terry; Reilly, Karlyne M.

    2012-01-01

    Mouse models of human cancer have played a vital role in understanding tumorigenesis and answering experimental questions that other systems cannot address. Advances continue to be made that allow better understanding of the mechanisms of tumor development, and therefore the identification of better therapeutic and diagnostic strategies. We review major advances that have been made in modeling cancer in the mouse and specific areas of research that have been explored with mouse models. For example, although there are differences between mice and humans, new models are able to more accurately model sporadic human cancers by specifically controlling timing and location of mutations, even within single cells. As hypotheses are developed in human and cell culture systems, engineered mice provide the most tractable and accurate test of their validity in vivo. For example, largely through the use of these models, the microenvironment has been established to play a critical role in tumorigenesis, since tumor development and the interaction with surrounding stroma can be studied as both evolve. These mouse models have specifically fueled our understanding of cancer initiation, immune system roles, tumor angiogenesis, invasion, and metastasis, and the relevance of molecular diversity observed among human cancers. Currently, these models are being designed to facilitate in vivo imaging to track both primary and metastatic tumor development from much earlier stages than previously possible. Finally, the approaches developed in this field to achieve basic understanding are emerging as effective tools to guide much needed development of treatment strategies, diagnostic strategies, and patient stratification strategies in clinical research. PMID:20399958

  6. Deletion of the core region of 5′ HS2 of the mouse β-globin locus control region reveals a distinct effect in comparison with human β-globin transgenes

    PubMed Central

    Hu, Xiao; Bulger, Michael; Bender, M. A.; Fields, Jennifer; Groudine, Mark; Fiering, Steven

    2006-01-01

    The β-globin locus control region (LCR) is a large DNA element that is required for high-level expression of β-like globin genes from the endogenous mouse locus or in transgenic mice carrying the human β-globin locus. The LCR encompasses 6 DNaseI hypersensitive sites (HSs) that bind transcription factors. These HSs each contain a core of a few hundred base pairs (bp) that has most of the functional activity and exhibits high interspecies sequence homology. Adjoining the cores are 500- to 1000-bp “flanks” with weaker functional activity and lower interspecies homology. Studies of human β-globin transgenes and of the endogenous murine locus show that deletion of an entire HS (core plus flanks) moderately suppresses expression. However, human transgenes in which only individual HS core regions were deleted showed drastic loss of expression accompanied by changes in chromatin structure. To address these disparate results, we have deleted the core region of 5′HS2 from the endogenous murine β-LCR. The phenotype was similar to that of the larger 5′HS2 deletion, with no apparent disruption of chromatin structure. These results demonstrate that the greater severity of HS core deletions in comparison to full HS deletions is not a general property of the β-LCR. (Blood. 2006;107:821-826) PMID:16189270

  7. Deletion of the core region of 5' HS2 of the mouse beta-globin locus control region reveals a distinct effect in comparison with human beta-globin transgenes.

    PubMed

    Hu, Xiao; Bulger, Michael; Bender, M A; Fields, Jennifer; Groudine, Mark; Fiering, Steven

    2006-01-15

    The beta-globin locus control region (LCR) is a large DNA element that is required for high-level expression of beta-like globin genes from the endogenous mouse locus or in transgenic mice carrying the human beta-globin locus. The LCR encompasses 6 DNaseI hypersensitive sites (HSs) that bind transcription factors. These HSs each contain a core of a few hundred base pairs (bp) that has most of the functional activity and exhibits high interspecies sequence homology. Adjoining the cores are 500- to 1000-bp "flanks" with weaker functional activity and lower interspecies homology. Studies of human beta-globin transgenes and of the endogenous murine locus show that deletion of an entire HS (core plus flanks) moderately suppresses expression. However, human transgenes in which only individual HS core regions were deleted showed drastic loss of expression accompanied by changes in chromatin structure. To address these disparate results, we have deleted the core region of 5'HS2 from the endogenous murine beta-LCR. The phenotype was similar to that of the larger 5'HS2 deletion, with no apparent disruption of chromatin structure. These results demonstrate that the greater severity of HS core deletions in comparison to full HS deletions is not a general property of the beta-LCR.

  8. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation

    PubMed Central

    Denzinger, Annette; Schnitzler, Hans-Ulrich

    2018-01-01

    Bats lower the emission SPL when approaching a target. The SPL reduction has been explained by intensity compensation which implies that bats adjust the emission SPL to perceive the retuning echoes at the same level. For a better understanding of this control mechanism we recorded the echolocation signals of four Myotis myotis with an onboard microphone when foraging in the passive mode for rustling mealworms offered in two feeding dishes with different target strength, and determined the reduction rate for the emission SPL and the increase rate for the SPL of the returning echoes. When approaching the dish with higher target strength bats started the reduction of the emission SPL at a larger reaction distance (1.05 ± 0.21 m) and approached it with a lower reduction rate of 7.2 dB/halving of distance (hd), thus producing a change of echo rate at the ears of + 4 dB/hd. At the weaker target reaction distance was shorter (0.71 ± 0.24 m) and the reduction rate (9.1 dB/hd) was higher, producing a change of echo rate of—1.2 dB/hd. Independent of dish type, bats lowered the emission SPL by about 26 dB on average. In one bat where the echo SPL from both targets could be measured, the reduction of emission SPL was triggered when the echo SPL surpassed a similar threshold value around 41–42 dB. Echo SPL was not adjusted at a constant value indicating that Myotis myotis and most likely all other bats do not use a closed loop system for intensity compensation when approaching a target of interest. We propose that bats lower the emission SPL to adjust the SPL of the perceived pulse-echo-pairs to the optimal auditory range for the processing of range information and hypothesize that bats use flow field information not only to control the reduction of the approach speed to the target but also to control the reduction of emission SPL. PMID:29543882

  9. Reduction of emission level in approach signals of greater mouse-eared bats (Myotis myotis): No evidence for a closed loop control system for intensity compensation.

    PubMed

    Budenz, Tobias; Denzinger, Annette; Schnitzler, Hans-Ulrich

    2018-01-01

    Bats lower the emission SPL when approaching a target. The SPL reduction has been explained by intensity compensation which implies that bats adjust the emission SPL to perceive the retuning echoes at the same level. For a better understanding of this control mechanism we recorded the echolocation signals of four Myotis myotis with an onboard microphone when foraging in the passive mode for rustling mealworms offered in two feeding dishes with different target strength, and determined the reduction rate for the emission SPL and the increase rate for the SPL of the returning echoes. When approaching the dish with higher target strength bats started the reduction of the emission SPL at a larger reaction distance (1.05 ± 0.21 m) and approached it with a lower reduction rate of 7.2 dB/halving of distance (hd), thus producing a change of echo rate at the ears of + 4 dB/hd. At the weaker target reaction distance was shorter (0.71 ± 0.24 m) and the reduction rate (9.1 dB/hd) was higher, producing a change of echo rate of-1.2 dB/hd. Independent of dish type, bats lowered the emission SPL by about 26 dB on average. In one bat where the echo SPL from both targets could be measured, the reduction of emission SPL was triggered when the echo SPL surpassed a similar threshold value around 41-42 dB. Echo SPL was not adjusted at a constant value indicating that Myotis myotis and most likely all other bats do not use a closed loop system for intensity compensation when approaching a target of interest. We propose that bats lower the emission SPL to adjust the SPL of the perceived pulse-echo-pairs to the optimal auditory range for the processing of range information and hypothesize that bats use flow field information not only to control the reduction of the approach speed to the target but also to control the reduction of emission SPL.

  10. Subtle alterations in breathing and heart rate control in the 5-HT1A receptor knockout mouse in early postnatal development.

    PubMed

    Barrett, Karlene T; Kinney, Hannah C; Li, Aihua; Daubenspeck, J Andrew; Leiter, James C; Nattie, Eugene E

    2012-11-01

    We hypothesized that absence of the 5-HT(1A) receptor would negatively affect the development of cardiorespiratory control. In conscious wild type (WT) and 5-HT(1A) receptor knockout (KO) mice, we measured resting ventilation (Ve), oxygen consumption (Vo(2)), heart rate (HR), breathing and HR variability, and the hypercapnic ventilatory response (HCVR) at postnatal day 5 (P5), day 15 (P15), and day 25 (P25). In KO mice compared with WT, we found a 17% decrease in body weight at only P5 (P < 0.01) and no effect on Vo(2). Ve was significantly (P < 0.001) lower at P5 and P25, but there was no effect on the HCVR. Breathing variability (interbreath interval), measured by standard deviation, the root mean square of the standard deviation (RMSSD), and the product of the major (L) and minor axes (T) of the Poincaré first return plot, was 57% to 187% higher only at P5 (P < 0.001). HR was 6-10% slower at P5 (P < 0.001) but 7-9% faster at P25 (P < 0.001). This correlated with changes in the spectral analysis of HR variability; the low frequency to high frequency ratio was 47% lower at P5 but 68% greater at P25. The RMSSD and (L × T) of HR variability were ~2-fold greater at P5 only (P < 0.001; P < 0.05). We conclude that 5-HT(1A) KO mice have a critical period of potential vulnerability at P5 when pups hypoventilate and have a slower respiratory frequency and HR with enhanced variability of both, suggesting abnormal maturation of cardiorespiratory control.

  11. The balance between cathepsin C and cystatin F controls remyelination in the brain of Plp1-overexpressing mouse, a chronic demyelinating disease model.

    PubMed

    Shimizu, Takahiro; Wisessmith, Wilaiwan; Li, Jiayi; Abe, Manabu; Sakimura, Kenji; Chetsawang, Banthit; Sahara, Yoshinori; Tohyama, Koujiro; Tanaka, Kenji F; Ikenaka, Kazuhiro

    2017-06-01

    In demyelinating diseases such as multiple sclerosis (MS), an imbalance between the demyelination and remyelination rates underlies the degenerative processes. Microglial activation is observed in demyelinating lesions; however, the molecular mechanism responsible for the homeostatic/environmental change remains elusive. We previously found that cystatin F (CysF), a cysteine protease inhibitor, is selectively expressed in microglia only in actively demyelinating/remyelinating lesions but ceases expression in chronic lesions, suggesting its role in remyelination. Here, we report the effects of manipulating the expression of CysF and cathepsin C (CatC), a key target of CysF, in a murine model of transgenic demyelinating disease, Plp 4e/- . During the active remyelinating phase, both CysF knockdown (CysFKD) and microglial-selective CatC overexpression (CatCOE) showed a worsening of the demyelination in Plp 4e/- transgenic mice. Conversely, during the chronic demyelinating phase, CatC knockdown (CatCKD) ameliorated the demyelination. Our results suggest that the balance between CatC and CysF expression controls the demyelination and remyelination process. © 2017 Wiley Periodicals, Inc.

  12. PFA-fixed Hsp60sp-loaded dendritic cells as a vaccine for the control of mouse experimental allergic encephalomyelitis

    PubMed Central

    Liu, Feng; Zheng, Hui; Qi, Yuanyuan; Wang, Xue; Yang, Jianjun; Han, Miaomiao; Zhang, Han; Jiang, Hong

    2014-01-01

    We have shown that Hsp60sp-loaded immature dendritic cells (DC/sp) can protect mice from the induction of experimental allergic encephalomyelitis (EAE) by inducing Qa-1-restricted CD8+ T regulatory (Treg) cells. The binding half-life between Qa-1 and Hsp60sp is particularly short and leads to an unstable Qa-1/peptide complex that significantly decreases the efficacy of this vaccination. To prevent Qa-1/Hsp60sp complex dissociation, we utilized paraformaldehyde (PFA) fixation to stabilize the formation of the Qa-1/Hsp60sp complex and maximize the function of DC/sp as a vaccine to control autoimmune diseases. Compared with the non-fixed DC/sp, the fixed DC/sp (FDC/sp) showed an enhanced ability to activate Qa-1-restricted Hsp60sp-specific CD8+T cells in vitro and prevented EAE in vivo. Importantly, the FDC/sp maintained immune activity following cryopreservation for 1 week or after storage for 72 h at 4 °C. These results indicate that PFA fixation can sustain or increase the efficacy of DC/sp by improving the stability of the Qa-1/Hsp60sp complex on the surface of the DC/sp. In addition, PFA fixation creates a time window for DC/sp storage, transport and application. Our data suggest a potential clinical use of FDC/sp as a vaccine for the prevention and treatment of autoimmune disease. PMID:24374852

  13. A site-specific genomic integration strategy for sustained expression of glucagon-like peptide-1 in mouse muscle for controlling energy homeostasis.

    PubMed

    Liu, Rui; Li, Yiming; Hu, Renmin; Jin, Tianru; Deng, Shanshan; Liang, Wang; Zhang, Nina; Chen, Jinzhong; Prud'homme, Gerald J; Jia, William W; Ma, Duan; Wang, Qinghua

    2010-12-10

    The incretin hormone glucagon-like peptide-1 (GLP-1) exerts important functions in controlling glucose and energy homeostasis. Endogenous GLP-1 has a very short half-life due to DPP-IV-mediated degradation and renal clearance, which limits the therapeutic use of native GLP-1. We have shown previously that immunoglobulin fragment-fused GLP-1 (GLP-1/Fc) is a structurally stable GLP-1 analog. Here, we report a non-viral GLP-1/Fc gene therapy strategy utilizing a REP78-in-trans and REB-in-cis element system to achieve a site-specific genomic integration. For this purpose, the GLP-1/Fc expression cassette, which is fused with the RBE element, was co-injected with the Rep78 plasmid into the muscles of transgenic mice carrying the AAVS1 locus of human chromosome 19. The Rep protein-mediated site-specific integration was demonstrated by nested PCR, dot-blot, and Southern blotting. We found that this approach reduced weight gain and improved lipid profiles in the AAVS1-mice on high-fat diet challenge. Our observations reveal a new GLP-1 therapeutic strategy with an apparent absence of side effects, which may find applications in diabetes treatment and obesity prevention. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. eae36, a locus on mouse chromosome 4, controls susceptibility to experimental allergic encephalomyelitis in older mice and mice immunized in the winter.

    PubMed

    Teuscher, Cory; Doerge, R W; Fillmore, Parley D; Blankenhorn, Elizabeth P

    2006-02-01

    Genetic factors are believed to contribute to multiple sclerosis (MS) susceptibility; however, strong evidence implicating intrinsic and environmental factors in the etiopathogenesis of MS also exists. Susceptibility to experimental allergic encephalomyelitis (EAE), the principal animal model of MS, is also influenced by nongenetic factors, including age and season at immunization. This suggests that age- and season-by-gene interactions exist and that different susceptibility loci may influence disease as a function of the two parameters. In this study, linkage analysis based on genome exclusion mapping was carried out using age and season at immunization restricted cohorts of (B10.S x SJL/J) F2 intercross mice in an effort to identify such linkages. Significant linkage of EAE to eae4 and eae5 was detected with 6- to 12-week-old and summer cohorts. In contrast, significant linkage of EAE to eae4 and eae5 was not detected with the >12-week-old and winter/spring populations. Rather, significant linkage to D4Mit203 at 128.50 Mb on chromosome 4 was detected with animals that were >12 weeks old at the time of immunization or were immunized in the winter. This previously unidentified locus has been designated eae36. These results support the existence of age- and season-by-gene-specific interactions in the genetic control of susceptibility to autoimmune inflammatory disease of the central nervous system and suggest that late-onset MS may be immunogenetically distinct.

  15. Estrogen-Induced Upregulation of Sftpb Requires Transcriptional Control of Neuregulin Receptor ErbB4 in Mouse Lung Type II Epithelial Cells

    PubMed Central

    Zscheppang, Katja; Konrad, Mirja; Zischka, Melanie; Huhn, Verena; Dammann, Christiane E.L.

    2011-01-01

    Estrogen is known for its positive stimulatory effects on surfactant proteins. ErbB4 receptor and its ligand neuregulin (NRG) positively stimulate lung development. ErbB receptors interact with nuclear receptors and ErbB4 co-regulates estrogen receptor (ER) α expression in breast cells. ERβ is highly expressed in pneumocytes and its deletion leads to fewer alveoli and reduced elastic recoil. A similar picture was seen in ErbB4-deleted lungs. We hypothesized that estrogen signals its effect on surfactant protein B (Sftpb) expression through interactions of ERβ and ErbB4. Estrogen and NRG treatment decreased cell numbers and stimulated Sftpb expression in type II cells. Estrogen and NRG both stimulated phosphorylation of ERβ and co-localization of both receptors. Overexpression of ERβ increased the cell number and Sftpb expression, which was further augmented by estrogen and NRG. Finally, estrogen and NRG stimulated ERβ and ErbB4 binding to the Sftpb promoter and the overexpression of these receptors stimulated Sftpb promoter activation, which was further enhanced by estrogen and NRG. The stimulatory effect of estrogen and NRG was abolished in ErbB4 deletion and reconstituted by re-expression of full-length ErbB4 in fetal ErbB4-deleted type II cells. Estrogen-induced nuclear translocation of ErbB4 required the cleavage site but not the nuclear localization signal of the ErbB4 receptor, suggesting that ERβ might function as a nuclear chaperone for ErbB4. These studies demonstrate that estrogen effects on Sftpb expression require an interaction of ERβ and ErbB4. We speculate that the stimulatory effects of estrogen on Sftpb are under transcriptional control of ErbB4. PMID:21777626

  16. Local tumor control following single dose irradiation of human melanoma xenografts: Relationship to cellular radiosensitivity and influence of an immune response by the athymic mouse

    SciTech Connect

    Rofstad, E.K.

    1989-06-15

    The potential usefulness of untreated congenitally athymic adult mice as hosts for human tumors in radiocurability studies was investigated using five human melanoma xenograft lines (E.E., E.F., G.E., M.F., V.N.). The tumor radiocurability was found to differ considerably among the lines; the radiation doses required to achieve local control of 50% of the tumors irradiated (TCD50 values) ranged from 29.6 +/- 2.1 (SE) to 67.9 +/- 3.5 Gy. Since the clinical relevance of experimentally determined TCD50 values depends on to what extent they are modified by a host immune response, a possible immune reactivity against the melanomas was investigated bymore » comparing the radiocurability data with cell survival data measured in vitro after irradiation in vivo and by performing quantitative tumor transplantability studies. The radiocurability and the cell survival data were found to agree well for the E.F., G.E., and M.F. melanomas. Moreover, the number of tumor cells required to achieve tumors in 50% of the inoculation sites (TD50 values) in untreated and in whole-body irradiated mice were similar, suggesting that the TCD50 values measured for these lines were not significantly influenced by a host immune response. On the other hand, the E.E. and V.N. melanomas showed significantly lower TCD50 values in vivo than predicted theoretically from the in vitro cell survival data and a significantly lower number of tumor cells required to achieve tumors in 50% of the inoculation sites in whole-body irradiated than in untreated mice, suggesting that the radiocurability of these two lines was enhanced due to an immune response by the host. Athymic mice may thus express a significant immune reactivity against some human tumor xenograft lines but not against others.« less

  17. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib.

    PubMed

    Fröhlich, Leopold F; Mrakovcic, Maria; Steinborn, Ralf; Chung, Ung-Il; Bastepe, Murat; Jüppner, Harald

    2010-05-18

    Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.

  18. Infection-enhancing and -neutralizing activities of mouse monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels.

    PubMed

    Yamanaka, Atsushi; Kosugi, Saori; Konishi, Eiji

    2008-01-01

    Dengue viruses are distributed widely in the tropical and subtropical areas of the world and cause dengue fever and its severer form, dengue hemorrhagic fever. While neutralizing antibodies are considered to play a major role in protection from these diseases, antibody-dependent enhancement (ADE) of infection is an important mechanism involved in disease severity, in addition to the involvement of T lymphocytes. Here, we analyzed relationships between neutralizing and enhancing activities at a clonal level using models of dengue type 2 virus (DENV2) and dengue type 4 virus (DENV4). Totals of 33 monoclonal antibodies (MAbs) against DENV2 and 43 against DENV4 were generated, all directed to the envelope protein. In these MAbs, enhancing activities were shown at subneutralizing doses under normal ADE assay conditions where test samples were heat inactivated. However, the inclusion of commercial rabbit complement or fresh sera from healthy humans in the ADE assay system abolished the enhancing activities of all these MAbs. The reductive effect of fresh sera on enhancing activities was significantly reduced by their heat inactivation or the use of C1q- or C3-depleted sera. In some fresh sera, enhancing activities were shown within a range of 20 to 80% of normal complement levels in a dose-dependent fashion. These results indicate that a single antibody species possesses two distinct activities (neutralizing/enhancing), which are controlled by the level of complement, suggesting the involvement of complement in dengue disease severity. Fresh human sera also tended to reduce enhancing activities more effectively in homologous than heterologous combinations of viruses (DENV2/DENV4) and MAbs (against DENV2/DENV4).

  19. Neural progenitor cell survival in mouse brain can be improved by co-transplantation of helper cells expressing bFGF under doxycycline control.

    PubMed

    Liang, Yajie; Ågren, Louise; Lyczek, Agatha; Walczak, Piotr; Bulte, Jeff W M

    2013-09-01

    Cell-based therapy of neurological disorders is hampered by poor survival of grafted neural progenitor cells (NPCs). We hypothesized that it is possible to enhance the survival of human NPCs (ReNcells) by co-transplantation of helper cells expressing basic fibroblast growth factor (bFGF) under control of doxycycline (Dox). 293 cells or C17.2 cells were transduced with a lentiviral vector encoding the fluorescent reporter mCherry and bFGF under tetracycline-regulated transgene expression (Tet-ON). The bFGF secretion level in the engineered helper cells was positively correlated with the dose of Dox (Pearson correlation test; r=0.95 and 0.99 for 293 and C17.2 cells, respectively). Using bioluminescence imaging (BLI) as readout for firefly luciferase-transduced NPC survival, the addition of both 293-bFGF and C17.2-bFGF helper cells was found to significantly improve cell survival up to 6-fold in vitro, while wild-type (WT, non-transduced) helper cells had no effect. Following co-transplantation of 293-bFGF or C17.2-bFGF cells in the striatum of Rag2(-/-) immunodeficient mice, in vivo human NPC survival could be significantly improved as compared to no helper cells or co-transplantation of WT cells for the first two days after co-transplantation. This enhancement of survival in C17.2-bFGF group was not achieved without Dox administration, indicating that the neuroprotective effect was specific for bFGF. The present results warrant further studies on the use of engineered helper cells, including those expressing other growth factors injected as mixed cell populations. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Modulation of anxiety behavior by intranasally administered vaccinia virus complement control protein and curcumin in a mouse model of Alzheimer's disease.

    PubMed

    Kulkarni, A P; Govender, D A; Kotwal, G J; Kellaway, L A

    2011-02-01

    Widespread neuroinflammation in the central nervous system (CNS) of Alzheimer's disease (AD) patients, involving pro-inflammatory mediators such as complement components, might be responsible for AD associated behavioral symptoms such as anxiety. Vaccinia virus complement control protein (VCP) and curcumin (Cur) are the bioactive compounds of natural origin shown to inhibit the in-vitro complement activation. In order to develop complement regulatory compounds which could be delivered to the CNS by a non-invasive route, VCP, its truncated version (tVCP), and Cur were administered to Wistar rats intranasally. The distribution of these compounds in cerebrospinal fluid (CSF) was studied using an enzyme linked immunosorbent assay (ELISA), using VCP and tVCP as antigens and a modified fluorimetric method (Cur). VCP and tVCP were also detected in the olfactory lobes of the rat brain using immunohistochemical analysis. These compounds were then compared for their ability to attenuate the anxiety levels in APPswePS1δE9 mice using an elevated plus maze (EPM) apparatus. VCP treatment significantly improved the exploratory behavior and reduced the anxiety behavior in APPswePS1δE9 mice. tVCP however showed an opposite effect to VCP, whereas Cur showed no effect on the anxiety behavior of these mice. When these mice were subsequently tested for their cognitive performance in the Morris water maze (MWM), they showed tendencies to collide with the periphery of the walls of MWM. This unusual activity was termed "kissperi" behavior. This newly defined index of anxiety was comparable to the anxiety profile of the VCP and tVCP treated groups on EPM. VCP can thus be delivered to the CNS effectively via intranasal route of administration to attenuate anxiety associated with AD.

  1. The Mouse SAGE Site: database of public mouse SAGE libraries

    PubMed Central

    Divina, Petr; Forejt, Jiří

    2004-01-01

    The Mouse SAGE Site is a web-based database of all available public libraries generated by the Serial Analysis of Gene Expression (SAGE) from various mouse tissues and cell lines. The database contains mouse SAGE libraries organized in a uniform way and provides web-based tools for browsing, comparing and searching SAGE data with reliable tag-to-gene identification. A modified approach based on the SAGEmap database is used for reliable tag identification. The Mouse SAGE Site is maintained on an ongoing basis at the Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and is accessible at the internet address http://mouse.biomed.cas.cz/sage/. PMID:14681462

  2. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  3. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2017-02-01

    Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.

  4. Localization and Regulation of Mouse Pantothenate Kinase 2

    PubMed Central

    Leonardi, Roberta; Zhang, Yong-Mei; Lykidis, Athanasios; Rock, Charles O.; Jackowski, Suzanne

    2007-01-01

    Coenzyme A (CoA) biosynthesis is initiated by pantothenate kinase (PanK) and CoA levels are controlled through differential expression and feedback regulation of PanK isoforms. PanK2 is a mitochondrial protein in humans, but comparative genomics revealed that acquisition of a mitochondrial targeting signal was limited to primates. Human and mouse PanK2 possessed similar biochemical properties, with inhibition by acetyl-CoA and activation by palmitoylcarnitine. Mouse PanK2 localized in the cytosol, and the expression of PanK2 was higher in human brain compared to mouse brain. Differences in expression and subcellular localization should be considered in developing a mouse model for human PanK2 deficiency. PMID:17825826

  5. A data-capture tool for mouse pathology phenotyping.

    PubMed

    Sundberg, B A; Schofield, P N; Gruenberger, M; Sundberg, J P

    2009-11-01

    The Mouse Disease Information System is a free Microsoft Access database (http://research.jax.org/faculty/sundberg/index.html) designed by veterinary pathologists to aid veterinary pathologists in data acquisition, analysis, and coordination of tissue-sample archives. Linking the system to the Mouse Anatomy and Mouse Pathology Ontologies provides controlled vocabulary (and spelling) for organ, tissue, and diagnosis. Severity scores provide a quantitative assessment of all lesions to enable quantitative trait locus analysis for large-scale studies. Individual diagnoses can be verified for their definition by online linkage to Pathbase.net. Histologic images can be accessed from Pathbase by using the Mouse Pathology Ontology directly for comparison with slides being viewed at the time of data entry and providing the user with a reference and a "virtual second opinion."

  6. Evaluating eyegaze targeting to improve mouse pointing for radiology tasks.

    PubMed

    Tan, Yan; Tien, Geoffrey; Kirkpatrick, Arthur E; Forster, Bruce B; Atkins, M Stella

    2011-02-01

    In current radiologists' workstations, a scroll mouse is typically used as the primary input device for navigating image slices and conducting operations on an image. Radiological analysis and diagnosis rely on careful observation and annotation of medical images. During analysis of 3D MRI and CT volumes, thousands of mouse clicks are performed everyday, which can cause wrist fatigue. This paper presents a dynamic control-to-display (C-D) gain mouse movement method, controlled by an eyegaze tracker as the target predictor. By adjusting the C-D gain according to the distance to the target, the mouse click targeting time is reduced. Our theoretical and experimental studies show that the mouse movement time to a known target can be reduced by up to 15%. We also present an experiment with 12 participants to evaluate the role of eyegaze targeting in the realistic situation of unknown target positions. These results indicate that using eyegaze to predict the target position, the dynamic C-D gain method can improve pointing performance by 8% and reduce the error rate over traditional mouse movement.

  7. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  8. Structural and lipid-binding characterization of human annexin A13a reveals strong differences with its long A13b isoform.

    PubMed

    Fernández-Lizarbe, Sara; Lecona, Emilio; Santiago-Gómez, Angélica; Olmo, Nieves; Lizarbe, María Antonia; Turnay, Javier

    2016-12-20

    Annexin A13 is the founder member of the vertebrate family of annexins, which are comprised of a tetrad of unique conserved domains responsible for calcium-dependent binding to membranes. Its expression is restricted to epithelial intestinal and kidney cells. Alternative splicing in the N-terminal region generates two isoforms, A13a and A13b, differing in a deletion of 41 residues in the former. We have confirmed the expression of both isoforms in human colon adenocarcinoma cells at the mRNA and protein levels. We have cloned, expressed, and purified human annexin A13a for the first time to analyze its structural characteristics. Its secondary structure and thermal stability differs greatly from the A13b isoform. The only tryptophan residue (Trp186) is buried in the protein core in the absence of calcium but is exposed to the solvent after calcium binding even though circular dichroism spectra are quite similar. Non-myristoylated annexin A13a binds in a calcium-dependent manner to acidic phospholipids but not to neutral or raft-like liposomes. Calcium requirements for binding to phosphatidylserine are around 6-fold lower than those required by the A13b isoform. This fact could account for the different subcellular localization of both annexins as binding to basolateral membranes seems to be calcium-dependent and myristoylation-independent.

  9. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    SciTech Connect

    Yang, Xuejiao; Jiaojiang District Center for Disease Control and Prevention, 518 Jingdong Rd., Taizhou 318000; Zhang, Zhan

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose-more » and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by

  10. Mouse adenovirus type 1 infection of macrophages.

    PubMed

    Ashley, Shanna L; Welton, Amanda R; Harwood, Kirsten M; Van Rooijen, Nico; Spindler, Katherine R

    2009-08-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus. Here we determined the extent and functional importance of macrophage infection by MAV-1. Bone marrow-derived macrophages expressed MAV-1 mRNAs and proteins upon ex vivo infection. Adherent peritoneal macrophages from infected mice expressed viral mRNAs and produced infectious virus. Infected chemokine (C-C motif) receptor 2 (CCR2) knockout mice, which are defective for macrophage recruitment, did not show differences in survival or MAV-1 load compared to controls. In contrast, macrophage depletion using clodronate-loaded liposomes resulted in increased virus replication in spleens of a MAV-1-resistant mouse strain, BALB/cJ. Thus macrophages serve both as targets of infection and as effectors of the host response.

  11. Refinements in the Cryopreservation of Mouse Ovaries

    PubMed Central

    Sztein, Jorge; Vasudevan, Kuzhalini; Raber, James

    2010-01-01

    Here we describe a new technique for cryopreserving mouse ovaries by using 0.5-mL straws. One advantage of this method is that it uses the same controlled-rate freezer and programming routinely used for the cryopreservation of mouse embryos. Using a 0.5-mL French straw loaded in the same way as for embryo freezing (for example, the one-step dilution method) with 1 M sucrose as an osmotic buffer and 2 M propylene glycol as the cryoprotectant containing the ovary sample, we further standardized the 2 methodologies. Applying this technique, 11 ovarian halves were cryopreserved in straws and stored under liquid nitrogen. Straws containing the frozen ovarian halves were thawed in a water bath at room temperature and the recovered ovaries orthotopically implanted into 11 recipient female mice; 8 of the 11 frozen ovarian halves resulted in functional ovaries. The 73% pregnancy rate resulted in a total of 53 pups born, of which 38 (72%) were generated from cryopreserved ovaries. Ovarian cryopreservation has been demonstrated to be a valid option for banking mouse genetic resources. Unlike frozen embryos, cryopreservation of ovarian tissue preserves haploid gametes. Despite this limitation, ovarian cryopreservation is the only technique that can be used to preserve oocytes from aged or problematic breeders. This advantage is especially important in situations where the only males available in the line are infertile, aged, or problematic breeders. PMID:20819386

  12. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis inmore » mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.« less

  13. Genetically engineered mouse models for studying inflammatory bowel disease.

    PubMed

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2016-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  14. Studying recombination in mouse oocytes.

    PubMed

    Sun, Xianfei; Cohen, Paula E

    2013-01-01

    Meiosis is the specialized cell division in sexually reproducing organisms in which haploid gametes are produced. Meiotic prophase I is the defining stage of meiosis, when pairing and synapsis occur between homologous chromosomes, concurrent with reciprocal recombination (or crossing over) events that arise between them. Any disruption of these events during prophase I can lead to improper segregation of homologous chromosomes which can cause severe birth defects in the resulting progeny, and this occurs with alarming frequency in human oocytes. Thus, while the pathways that regulate these events in prophase I are highly conserved in both males and females, the stringency with which these events are monitored and/or controlled appears to be dramatically lower in females. These observations underscore the need to examine and compare meiotic mechanisms across the sexes. However, the study of female meiosis is impeded by the early start of meiosis during fetal development and the very limited amount of ovarian tissue available for meiotic analyses. Here we describe three different techniques which are useful for meiotic prophase I analysis in mouse/human oocytes, ranging from early prophase I events through until the resolution of crossing over at the first and second meiotic divisions.

  15. The mouse aquaporin-1 gene

    SciTech Connect

    Moon, C.; Preston, G.M.; Agre, P.

    1995-11-20

    Members of the aquaporin family of molecular water transporters are expressed in diverse epithelia and in complex developmental patterns. Using a cDNA for mouse Aqp1, the structural gene was isolated and a restriction map was constructed. The 13-kb Aqp1 gene contains four exons with intronic boundaries corresponding to other known aquaporin genes. Transcription begins 67 bp 5{prime} to the translation initiation site and 20 bp 3{prime} from a TATAA consensus sequence. Aqp1 was localized by interspecific mouse backcross mapping to the central region of mouse chromosome 6 syntenic with human chromosome 7p14, where AQP1 had previously been localized. These studiesmore » have revealed marked structural similarities between the mouse Aqp1 and the human AQP1 genes, suggesting that further comparative studies may provide molecular insight into genetic regulatory features shared by both species. 21 refs., 3 figs.« less

  16. Zooming in on mouse vision.

    PubMed

    Sirotin, Yevgeniy B; Das, Aniruddha

    2010-09-01

    An examination of the micro-organization of visual cortex using two-photon calcium imaging provides a new level of insight into retinotopic maps, finding that retinotopy is scrambled on fine scales in mouse primary visual cortex.

  17. Reduced mouse allergen is associated with epigenetic changes in regulatory genes, but not mouse sensitization, in asthmatic children.

    PubMed

    Miller, Rachel L; Zhang, Hanjie; Jezioro, Jacqueline; De Planell Saguer, Mariangels; Lovinsky-Desir, Stephanie; Liu, Xinhua; Perzanowski, Matthew; Divjan, Adnan; Phipatanakul, Wanda; Matsui, Elizabeth C

    2017-07-01

    Chronic exposure to mouse allergen may contribute greatly to the inner-city asthma burden. We hypothesized that reducing mouse allergen exposure may modulate the immunopathology underlying symptomatic pediatric allergic asthma, and that this occurs through epigenetic regulation. To test this hypothesis, we studied a cohort of mouse sensitized, persistent asthmatic inner-city children undergoing mouse allergen-targeted integrated pest management (IPM) vs education in a randomized controlled intervention trial. We found that decreasing mouse allergen exposure, but not cockroach, was associated with reduced FOXP3 buccal DNA promoter methylation, but this was unrelated to mouse specific IgE production. This finding suggests that the environmental epigenetic regulation of an immunomodulatory gene may occur following changing allergen exposures in some highly exposed cohorts. Given the clinical and public health importance of inner-city pediatric asthma and the potential impact of environmental interventions, further studies will be needed to corroborate changes in epigenetic regulation following changing exposures over time, and determine their impact on asthma morbidity in susceptible children. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Screening of SLC25A13 mutation in the Thai population

    PubMed Central

    Wongkittichote, Parith; Sukasem, Chonlaphat; Kikuchi, Atsuo; Aekplakorn, Wichai; Jensen, Laran T; Kure, Shigeo; Wattanasirichaigoon, Duangrurdee

    2013-01-01

    AIM: To determine the prevalence of SLC25A13 mutations in the Thai population. METHODS: A total of 1537 subjects representing the Thai population were screened for a novel pathologic allele p.Met1? (c.2T > C) and six previously known common SLC25A13 mutations: [I] (c.851_854delGTAT), [II] (g.IVS11 + 1G > A), [III] (c.1638_1660dup), [IV] (p.S225X), [V] (IVS13 + 1G > A), and [XIX] (g.IVS16ins3kb) using a newly developed TaqMan and established HybProbe assay, respectively. Sanger sequencing was employed for specimens showing an aberrant peak to confirm the targeted mutation as well as the unknown aberrant peaks detected. Frequencies of the mutations identified were compared in each region. Carrier frequency and disease prevalence of citrin deficiency caused by SCL25A13 mutations were estimated. RESULTS: p.Met1? was identified in the heterozygous state in 85 individuals, giving a carrier frequency of 1/18, which suggests possible selective advantage of this variant. The question of p.Met1? homozygote lethality remains unanswered which may serve as an explanation as to why this homozygote has yet to be identified in patients/controls even with high allele frequency. The p.Met1? mutation has rarely been studied in populations other than Thai and Chinese; therefore, may have been overlooked. Development of the TaqMan assay in the present study would allow a simple, rapid, and cost-effective method for mass screening. Heterozygous mutations: [XIX] and [I] were identified in 17 individuals, giving a carrier rate of 1/90 and a calculated homozygote rate of 1/33000. Two novel variants, g.IVS11 + 17C > G and c.1311C > T, of unknown clinical significance were identified at low frequency. CONCLUSION: This study highlighted the current underestimation of citrin deficiency and suggests the possible selective advantage of the p.Met1? allele. PMID:24282362

  19. In Vivo Axial Loading of the Mouse Tibia

    PubMed Central

    Melville, Katherine M.; Robling, Alexander G.

    2015-01-01

    Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046

  20. Results of a 13 week safety assurance study with rats fed grain from glyphosate tolerant corn.

    PubMed

    Hammond, B; Dudek, R; Lemen, J; Nemeth, M

    2004-06-01

    The current study presents the results of a 13 week feeding study in rats with grain from Roundup Ready corn which is tolerant to the herbicide glyphosate. Herbicide tolerance was accomplished through the introduction of cp4 epsps coding sequences into the corn genome for in planta production of CP4 EPSPS enzymes. Unlike related corn EPSPS enzymes, CP4 EPSPS enzymes are not inhibited by the herbicide glyphosate. Purina TestDiets formulated Roundup Ready corn grain into rodent diets at levels of 11 and 33% (w/w). The responses of rats fed diets containing Roundup Ready corn grain were compared to that of rats fed diets containing non-transgenic grain (controls). All diets were nutritionally balanced and conformed to Purina Mills, Inc. specifications for Certified LabDiet 5002. There were 400 rats in the study divided into 10 groups of 20 rats/sex/group. Overall health, body weight, food consumption, clinical pathology parameters (hematology, blood chemistry, urinalysis), organ weights, gross and microscopic appearance of tissues were comparable between groups fed diets containing Roundup Ready and control corn grain. This study complements extensive agronomic, compositional and farm animal feeding studies with Roundup Ready corn grain, confirming it is as safe and nutritious as existing commercial corn hybrids.

  1. Association between tooth loss and cognitive decline: A 13-year longitudinal study of Chinese older adults.

    PubMed

    Li, Juan; Xu, Hanzhang; Pan, Wei; Wu, Bei

    2017-01-01

    To examine the association between the number of teeth remaining and cognitive decline among Chinese older adults over a 13-year period. A large national longitudinal survey of Chinese older adults. The Chinese Longitudinal Healthy Longevity Survey (CLHLS) (1998-2011). A total of 8,153 eligible participants aged 60+ interviewed in up to six waves. Cognitive function and teeth number were measured at each interview. Cognitive function was measured by the Mini-Mental Status Examination (MMSE). Number of natural teeth was self-reported. Individuals with severe cognitive impairment were excluded. Covariates included demographic characteristics, adult socioeconomic status characteristics, childhood socioeconomic status, health conditions, and health behaviors. Linear mixed models were applied in the analysis. The mean teeth number at baseline was 17.5(SD = 0.1), and the mean of baseline cognitive function was 27.3(SD = 0.0). Cognitive function declined over time (β = -0.19, P < .001) after controlling covariates. But, regardless of time, more teeth were associated with better cognitive function (β = 0.01, P < .001). The interaction of teeth number and time was significant (β = 0.01, P < .001), suggesting that the participants who had more teeth showed a slower pace of cognitive decline over time than those with fewer teeth after controlling for other covariates. This study showed that tooth loss was associated with cognitive decline among Chinese older adults. Further studies are needed to examine the linkages between cognitive decline and oral health status using clinical examination data.

  2. Slc25a13-Knockout Mice Harbor Metabolic Deficits but Fail To Display Hallmarks of Adult-Onset Type II Citrullinemia

    PubMed Central

    Sinasac, David S.; Moriyama, Mitsuaki; Jalil, M. Abdul; Begum, Laila; Li, Meng Xian; Iijima, Mikio; Horiuchi, Masahisa; Robinson, Brian H.; Kobayashi, Keiko; Saheki, Takeyori; Tsui, Lap-Chee

    2004-01-01

    Adult-onset type II citrullinemia (CTLN2) is an autosomal recessive disease caused by mutations in SLC25A13, the gene encoding the mitochondrial aspartate/glutamate carrier citrin. The absence of citrin leads to a liver-specific, quantitative decrease of argininosuccinate synthetase (ASS), causing hyperammonemia and citrullinemia. To investigate the physiological role of citrin and the development of CTLN2, an Slc25a13-knockout (also known as Ctrn-deficient) mouse model was created. The resulting Ctrn−/− mice were devoid of Slc25a13 mRNA and citrin protein. Liver mitochondrial assays revealed markedly decreased activities in aspartate transport and the malate-aspartate shuttle. Liver perfusion also demonstrated deficits in ureogenesis from ammonia, gluconeogenesis from lactate, and an increase in the lactate-to-pyruvate ratio within hepatocytes. Surprisingly, Ctrn−/− mice up to 1 year of age failed to show CTLN2-like symptoms due to normal hepatic ASS activity. Serological measures of glucose, amino acid, and ammonia metabolism also showed no significant alterations. Nitrogen-loading treatments produced only minor changes in the hepatic ammonia and amino acid levels. These results suggest that citrin deficiency alone may not be sufficient to produce a CTLN2-like phenotype in mice. These observations are compatible, however, with the variable age of onset, incomplete penetrance, and strong ethnic bias seen in CTLN2 where additional environmental and/or genetic triggers are now suspected. PMID:14701727

  3. Slc25a13-knockout mice harbor metabolic deficits but fail to display hallmarks of adult-onset type II citrullinemia.

    PubMed

    Sinasac, David S; Moriyama, Mitsuaki; Jalil, M Abdul; Begum, Laila; Li, Meng Xian; Iijima, Mikio; Horiuchi, Masahisa; Robinson, Brian H; Kobayashi, Keiko; Saheki, Takeyori; Tsui, Lap-Chee

    2004-01-01

    Adult-onset type II citrullinemia (CTLN2) is an autosomal recessive disease caused by mutations in SLC25A13, the gene encoding the mitochondrial aspartate/glutamate carrier citrin. The absence of citrin leads to a liver-specific, quantitative decrease of argininosuccinate synthetase (ASS), causing hyperammonemia and citrullinemia. To investigate the physiological role of citrin and the development of CTLN2, an Slc25a13-knockout (also known as Ctrn-deficient) mouse model was created. The resulting Ctrn-/- mice were devoid of Slc25a13 mRNA and citrin protein. Liver mitochondrial assays revealed markedly decreased activities in aspartate transport and the malate-aspartate shuttle. Liver perfusion also demonstrated deficits in ureogenesis from ammonia, gluconeogenesis from lactate, and an increase in the lactate-to-pyruvate ratio within hepatocytes. Surprisingly, Ctrn-/- mice up to 1 year of age failed to show CTLN2-like symptoms due to normal hepatic ASS activity. Serological measures of glucose, amino acid, and ammonia metabolism also showed no significant alterations. Nitrogen-loading treatments produced only minor changes in the hepatic ammonia and amino acid levels. These results suggest that citrin deficiency alone may not be sufficient to produce a CTLN2-like phenotype in mice. These observations are compatible, however, with the variable age of onset, incomplete penetrance, and strong ethnic bias seen in CTLN2 where additional environmental and/or genetic triggers are now suspected.

  4. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations ...

  5. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations ...

  6. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations ...

  7. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations ...

  8. 26 CFR 1.411(a)(13)-1 - Statutory hybrid plans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Statutory hybrid plans. 1.411(a)(13)-1 Section 1...)(13)-1 Statutory hybrid plans. (a) In general. This section sets forth certain rules that apply to statutory hybrid plans under section 411(a)(13). Paragraph (b) of this section describes special rules for...

  9. 26 CFR 1.411(a)(13)-1 - Statutory hybrid plans.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Statutory hybrid plans. 1.411(a)(13)-1 Section 1...)(13)-1 Statutory hybrid plans. (a) In general. This section sets forth certain rules that apply to statutory hybrid plans under section 411(a)(13). Paragraph (b) of this section describes special rules for...

  10. 26 CFR 1.411(a)(13)-1 - Statutory hybrid plans.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Statutory hybrid plans. 1.411(a)(13)-1 Section 1...)(13)-1 Statutory hybrid plans. (a) In general. This section sets forth certain rules that apply to statutory hybrid plans under section 411(a)(13). Paragraph (b) of this section describes special rules for...

  11. 26 CFR 1.411(a)(13)-1 - Statutory hybrid plans.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Statutory hybrid plans. 1.411(a)(13)-1 Section 1...)(13)-1 Statutory hybrid plans. (a) In general. This section sets forth certain rules that apply to statutory hybrid plans under section 411(a)(13). Paragraph (b) of this section describes special rules for...

  12. 42 CFR 54a.13 - Educational requirements for personnel in drug treatment programs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... against education and training provided to such personnel by a religious organization, so long as such education and training is comparable to that provided by nonreligious organizations, or is comparable to... treatment programs. 54a.13 Section 54a.13 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND...

  13. Teratogenicity of 3-hydroxynorvaline in chicken and mouse embryos.

    PubMed

    Louw, R; Potgieter, H C; Vorster, W

    2005-11-01

    3-Hydroxynorvaline (HNV; 2-amino-3-hydroxypentanoic acid), a microbial L-threonine analogue, is toxic to mammalian cells and displays antiviral properties. In view of this, we investigated the toxicity and/or potential teratogenicity of HNV in developing chicken and mouse embryos. HNV was administered to chicken embryos (in ovo; dose 75-300 mumole/egg; 48 h post-incubation) and pregnant Hanover NMRI mice (per os; total dose 900-1800 mg/kg body mass; gestation days 7-9). Control animals received sterile saline solutions. Harvested embryos (chicken embryos, 10 days post-incubation; mouse embryos; gestation day 18) were fixed in glutaraldehyde and stereomicroscopically inspected for signs of dysmorphogenesis. Body mass, body and toe length and mortality of chicken embryos, and the body mass and mortality of mouse embryos were recorded. HNV exposure significantly increased the incidence of embryotoxic (growth retardation, toxic mortality) and congenital defects in both chicken and mouse embryos. All the observed effects were dose-dependent. In conclusion, HNV is an embryotoxic and teratogenic compound, which caused significant developmental delay and congenital defects in developing chicken and mouse embryos.

  14. Testing of gastric contents for peanut proteins in a 13-year old anaphylaxis victim.

    PubMed

    Beavers, Charles; Stauble, M Elaine; Jortani, Saeed A

    2014-02-15

    We report the case of a 13-y female who went into anaphylactic shock following the ingestion of a meal suspected to be contaminated by peanuts. The teenager had a known sensitivity to peanuts, however, the restaurant claimed that no peanut products were used in the preparation of her meal. The gastric contents of the decedent were retained and tested for peanut proteins due to the possible legal liability of the proprietor. Using antibodies against peanut proteins (roasted and unroasted), we optimized a method to detect total soluble peanut proteins by Western-blot analysis in gastric contents. In addition, we validated two commercially available tests which were originally intended for detection of peanut proteins in food matrices to examine the same gastric sample. One was an enzyme-linked immunosorbent assay (ELISA) that utilized polyclonal antibodies against Ara h 1 (Tepnel Life Sciences). The other was a laminar-flow assay directed against Ara h 1, Ara h 2 and Ara h 3 (R-Biopharm). A positive food-based control was created by reducing bread and peanuts (1:1, w/w) with water (1:1, w/v) using a mortar and pestle. A food-based negative food control was created similar to the positive control, except the peanuts were omitted and the amount of bread was doubled. The Western-blot assay was sensitive down to 2.5ng/ml of total peanut protein. The laminar flow was the most rapid and least complex. The ELISA was the most analytically sensitive with a cut-off of 1ng/ml of Ara h 1 protein compared to the laminar flow which had a cut-off of 4ng/ml Ara h 1 equivalent. Both ELISA and laminar flow assays were able to detect peanut proteins in the food matrices and positive controls, and not in negative controls. No peanut related proteins were detected in the decedent's gastric sample. The gastric sample spiked with peanuts was reliably detectable. The anaphylaxis patient had no peanut allergens detected in her gastric contents by any of the three methods employed. Both

  15. [The human-mouse chimera nude mouse model set up from umbilical cord blood transplantation].

    PubMed

    Huang, Tao; Li, Bo; Lin, Hao-ming; Qin, Yang

    2008-01-01

    This study was to establish BALB/c murine model featured with the human-mouse chimeras from umbilical cord blood transplantation. Thirty BALB/c nude mice were exposed to 350 cGy radiation under the sublethal condition. The nuclear cells from fresh umbilical cord blood were injected into the mice of experimental group via tail vein, in which the mice were further allocated to A, B and C sub-group with given 1.0 x 10(7), 2.0 x 10(7) and 3.0 x 10(7) nuclear cells per mouse respectively, and simultaneously the equal volume normal sodium (NS) was injected into the mice of control group. White blood cells from peripheral blood in experimental group and the control group were detected at week 1, 2, 3, 4 and 8 after transplantation. Human CD34+ and CD45+ from peripheral blood in experimental group were detected by using flow cytometry analysis on week 4, 6 and 8 after transplantation in order to be the human-mouse chimeras known. No difference in the number of white blood cells showed between experimental groups and control group before blood cell transplantation and after transplantation conducted on for 8 weeks (P > 0.05), but the number of white blood cells from experimental groups and control group wasn't totally same on week 1, 2, 3 and 4 after cell transplantation conducted (P < 0.05). As compared with pre-transplantation, the number of white blood cells for post-transplantation at different time in experimental groups and control group was decreasing, and the lowest on 1 week, then going up and to the level of pre-transplantation on 4 week in experimental groups and on 8 week in control group. CD34+ and CD45+ cells in peripheral blood for nude mice appeared on 4 week, but the total number was little. The number of CD34+, CD45+ cells in experimental group A was less than those in experimental group B and C at all the stage (P < 0.05), but there was no difference between experimental group B and C(P > 0.05). There was obvious correlation between CD34+ and CD45+ on 4

  16. Growth and production kinetics of human x mouse and mouse hybridoma cells at reduced temperature and serum content.

    PubMed

    Borth, N; Heider, R; Assadian, A; Katinger, H

    1992-09-01

    The growth and production kinetics of a mouse hybridoma cell line and a human-mouse heterohybridoma were analyzed under conditions of reduced temperature and serum content. The mouse hybridoma P24 had a constant cell specific production rate and RNA content, while the heterohybridoma 3D6-LC4 showed growth associated production kinetics and an increased RNA content at higher growth rates. This behaviour of 3D6-LC4 cells can be explained by the unusual cell cycle kinetics of this line, which can be arrested in any phase under growth limiting conditions, so that a low growth rate does not result in a greater portion of high producing G1-phase cells. Substrate limitation changes the cell cycle distribution of this cell line to a greater extent than low temperature or serum content, which indicates that this stress factor exerts a greater physiological control than assumed.

  17. [A 13-week toxicity study of simultaneous administration of cochineal and aluminum potassium sulfate in rats].

    PubMed

    Kawasaki, Y; Umemura, T; Sai, K; Hasegawa, R; Momma, J; Saitoh, M; Matsushima, Y; Nakaji, Y; Tsuda, M; Kurokawa, Y

    1994-01-01

    Cochineal (C), a scarlet material extracted from the powdered pregnant insect, Dactylopius Coceus Costa, is used as a color food additive in the form of aluminum lakes. A 13 week subchronic toxicity study was conducted to investigate the effects of simultaneous administration of C and aluminum potassium sulfate (A). Male and female Wistar rats (5-weeks-old, 15 rats/group) were given diets containing 0.75%A and 0.75%C (1.5%AC), 1.5%A and 1.5%C (3%AC), 3%C alone or 3%A alone. The following results were obtained. 1) No toxic symptoms or death occurred in any treated group. Body weight gain in male rats of the 3%A group decreased significantly. 2) Serum levels of phospholipids, triglycerides (TG) and total cholesterol in male rats and TG in female rats fed 3%C, 3%A or 3%AC were significantly decreased at the 13th week. The serum level of glutamate dehydrogenase (GIDH) in male rats treated with 1.5% or 3%AC was increased at the 4th week but no difference from control was observed at the 13th week. 3) No histopathological changes attributable to A and/or C administration were observed. In this 13-week oral toxicity study, no dose-dependent synergistic effects of simultaneous administration of C and A were found except for an increase in serum GIDH.

  18. Case report of an epidural cervical Onchocerca lupi infection in a 13-year-old boy.

    PubMed

    Chen, Tsinsue; Moon, Karam; deMello, Daphne E; Feiz-Erfan, Iman; Theodore, Nicholas; Bhardwaj, Ratan D

    2015-08-01

    A 13-year-old boy presented with fever and neck pain and stiffness, which was initially misdiagnosed as culture-negative meningitis. Magnetic resonance images of the brain and cervical spine demonstrated what appeared to be an intradural extramedullary mass at the C1-3 level, resulting in moderate cord compression, and a Chiari Type I malformation. The patient underwent a suboccipital craniectomy and a C1-3 laminectomy with intradural exploration for excisional biopsy and resection. The lesion containing the parasite was extradural, extending laterally through the C2-3 foramina. Inflammatory tissue secondary to Onchocerca lupi infection was identified, and treatment with steroids and doxycycline was initiated. At the 6-month follow-up, the patient remained asymptomatic, with MR images demonstrating a significant reduction in lesional size. However, 10 weeks postoperatively, the infection recurred, necessitating a second operation. The patient was treated with an additional course of doxycycline and is currently maintained on ivermectin therapy. This is the second reported case of cervical O. lupi infection in a human. In the authors' experience, oral doxycycline alone was insufficient in controlling the disease, and the addition of ivermectin therapy was necessary.

  19. Oncolysis of malignant human melanoma tumors by Coxsackieviruses A13, A15 and A18.

    PubMed

    Au, Gough G; Beagley, Leone G; Haley, Erin S; Barry, Richard D; Shafren, Darren R

    2011-01-18

    Many RNA viruses are displaying great promise in the field of oncolytic virotherapy. Previously, we reported that the picornavirus Coxsackievirus A21 (CVA21) possessed potent oncolytic activity against cultured malignant melanoma cells and melanoma xenografts in mice. In the present study, we demonstrate that three additional Group A Coxsackieviruses; Coxsackievirus A13 (CVA13), Coxsackievirus A15 (CVA15) and Coxsackievirus A18 (CVA18), also have similar oncolytic activity against malignant melanoma. Each of the viruses grew quickly to high titers in cancer cells expressing ICAM-1 and intratumoral injection of preformed subcutaneous SK-Mel-28 xenografts in mice with CVA13, CVA15 and CVA18 resulted in significant tumor volume reduction.As preexisting immunity could potentially hinder oncolytic virotherapy, sera from stage IV melanoma patients and normal controls were tested for levels of protective antibody against the panel of oncolytic Coxsackieviruses. Serum neutralization assays revealed that 3 of 21 subjects possessed low levels of anti-CVA21 antibodies, while protective antibodies for CVA13, CVA15 and CVA18 were not detected in any sample. Serum from individuals who were seropositive for CVA21 failed to exhibit cross-neutralization of CVA13, CVA15 and CVA18. From these studies it can be concluded that the administration of CVA13, CVA15 or CVA18 could be employed as a potential multivalent oncolytic therapy against malignant melanoma.

  20. Evaluation of the mode of action of mouse lung tumors induced by 4-methylimidazole.

    PubMed

    Cruzan, George; Harkema, Jack R; Hosako, Hiromi; Wasil, Jennifer M; Murray, F Jay

    2015-11-01

    4-Methylimidazole (4-MEI) occurs in certain foods and beverages as a product of browning reactions. An increased incidence of lung tumors was reported in mice, but not rats, exposed to levels of 4-MEI in their diet that far exceed human dietary intake. This investigation evaluated the hypothesis that 4-MEI induces mouse lung tumors by the same mode of action (MOA) as styrene: CYP2F2 metabolic activation and increased BrdU labeling. Using styrene (200 mg/kg/day by gavage) as a positive control, histopathology and DNA synthesis (measured by BrdU incorporation) in the bronchiolar region were evaluated in: (1) a 5-day comparative toxicity study in C57BL/6 "wild type" and CYP2F2 "knock out" (KO) mice given 4-MEI at the same dietary concentrations used in the NTP cancer bioassay, and (2) a 13-week comparative toxicity study of C57BL/6 and B6C3F1 mice receiving 0, 1250 or 2500 ppm of 4-MEI in the diet for 6, 15, 34 and 91 days. In contrast to styrene, 4-MEI had no consistent effect on BrdU labeling or histopathology in the lungs of mice in the dose range that had been shown to produce lung tumors in another study. The results of these studies do not support the hypothesis that 4-MEI and styrene induce lung tumors by the same MOA. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients. © The Author(s) 2015.

  2. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  3. Use of Fluoroscopy to Study In Vivo Motility in Mouse Pups

    PubMed Central

    Williams, Kent; Koyama, Tatsuki; Schulz, Darryl; Kaluza, Grzegorz L; Pautler, Robia G.; Weisbrodt, Norman; Conner, Margaret E.

    2011-01-01

    Few methods exist to non-invasively study in vivo gastrointestinal motility in animal models of enteric infections. None have been used on mouse pups who often display more severe symptoms during enteric infections than adult mice. This study sought to determine if digital fluoroscopy could be used to evaluate gastrointestinal motility in mouse pups as well as adult mice. Fluoroscopic imaging studies were performed on normal 6-8 week old adult mice and 12 day old pups to develop protocols for evaluating gastric and intestinal wall movements and changes in stomach sizes. These protocols were then applied to evaluate motility in an established rotavirus mouse model. Imaging studies were performed on adult mice at 0, 2, and 4 days post infection and on 12 day old pups at 2 days post infection. Fluoroscopic studies revealed postnatal differences of gastric peristalsis and rates of intestinal contractions between normal mouse pups and adult mice. Studies of the rotavirus mouse model revealed that differences in gastric function occur between rotavirus infected and control mouse pups but no discernible difference occurs between infected and control adult mice. In contrast, there were no detectable differences in rates of intestinal wall movements between control pups with normal stools and infected pups with loose stools. These results demonstrate that fluoroscopy can evaluate in vivo motility in mouse pups and by doing so provide findings that are clinically relevant to the study of enteric infections in young. PMID:21593642

  4. Use of fluoroscopy to study in vivo motility in mouse pups.

    PubMed

    Williams, Kent; Koyama, Tatsuki; Schulz, Daryl; Kaluza, Grzegorz L; Pautler, Robia G; Weisbrodt, Norman; Conner, Margaret E

    2011-06-01

    Few methods exist to noninvasively study in vivo gastrointestinal motility in animal models of enteric infections. None have been used on mouse pups, which often display more severe symptoms during enteric infections than adult mice. This study sought to determine whether digital fluoroscopy could be used to evaluate gastrointestinal motility in mouse pups as well as adult mice. Fluoroscopic imaging studies were performed on normal 6- to 8-week-old adult mice and 12-day-old pups to develop protocols for evaluating gastric and intestinal wall movements and changes in stomach sizes. These protocols were then applied to evaluate motility in an established rotavirus mouse model. Imaging studies were performed on adult mice at 0, 2, and 4 days postinfection and on 12-day-old pups at 2 days postinfection. Fluoroscopic studies revealed postnatal differences of gastric peristalsis and rates of intestinal contractions between normal mouse pups and adult mice. Studies of the rotavirus mouse model revealed that differences in gastric function occur between rotavirus-infected and control mouse pups, but no discernible difference occurs between infected and control adult mice. In contrast, there were no detectable differences in rates of intestinal wall movements between control pups with normal stools and infected pups with loose stools. These results demonstrate that fluoroscopy can evaluate in vivo motility in mouse pups and by doing so provide findings that are clinically relevant to the study of enteric infections in young.

  5. SLC25A13 gene mutations in Taiwanese patients with non-viral hepatocellular carcinoma.

    PubMed

    Chang, Kuei-Wen; Chen, Huey-Ling; Chien, Yin-Hsiu; Chen, Tse-Ching; Yeh, Chau-Ting

    2011-07-01

    Mutations of the SLC25A13 gene, which encodes citrin, result in adult-onset type II citrullinemia (CTLN2). Because CTLN2 has been associated with hepatocellular carcinoma (HCC) and may be involved in hepatocarcinogenesis, the objective of this study was to assess the frequency of SLC25A13 mutations in patients with non-viral HCC. A retrospective review of 154 patients with HCC, who underwent total tumor resection from July 1998 to August 2005, was conducted. After exclusion of 137 patients infected with hepatitis B and/or C viruses, 17 patients were analyzed. Genomic DNA from stored tumor and normal hepatic samples was analyzed for the SLC25A13 gene mutation. In addition, the clinicopathological and histopathological features of patients with and without the SLC25A13 gene mutation were compared. The SLC25A13 mutation was observed in two patients (12%), and the carrier rate was approximately 1 in 8 patients. The IVS6+5G>A mutation was heterozygous in both normal hepatic and tumor tissues for case 1. On the other hand, the c.851del4 mutation was heterozygous in normal tissue but homozygous in tumor tissue for case 2. No significant differences in patient characteristics were observed. Further analyses of patients with SLC25A13 gene mutations may elucidate the relationship between the citrin gene and susceptibility of HCC. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Effect of Fetal Mouse Lung Tissue Co-Culture on In Vitro Maturation of Mouse Immature Oocytes.

    PubMed

    Belbasi, Masomeh; Jorsaraei, Seyed Gholam Ali; Gholamitabar Tabari, Maryam; Khanbabaei, Ramzan

    2017-10-01

    The aim of this study was to evaluate the fetal mouse lung tissue co-culture on in vitro maturation (IVM) of mouse immature oocytes. In this experimental study, germinal vesicle (GV) oocytes from ovaries of a group of 25 female mice, 6-8 weeks of age, were dissected after being stimulated by 7.5 IU pregnant mare serum gonadotropin (PMSG) through an intraperitoneal (IP) injection. The fetal lung tissues were then prepared and cultured individually. A total number of 300 oocytes were cultured in the following three groups for 24 hours: control group (n=100) containing only base medium, group I (n=100) containing base medium co-cultured with 11.5- to 12.5-day old fetal mouse lung tissues, and group II (n=100) containing base medium co-cultured with 12.5- to 13.5-day old fetal mouse lung tissues. The proportion of GV and metaphase І (MI) oocytes matured into MІІ oocytes were compared among the three groups using analysis of variance (ANOVA). Correlation test were also used to evaluate the successful rate of IVM oocytes. The proportions of GV oocytes reaching MІІ stage were 46, 65, and 56%, in control, I and II groups, respectively (P<0.05). The percentage of the oocytes remaining at the GV stage were higher in control group as compared with two treatment groups (P<0.05). This study indicated that fetal mouse lung tissue co-culture method increased the percentage of GV oocytes reaching MII stage. Copyright© by Royan Institute. All rights reserved.

  7. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  8. Mouse Models of Human Phenylketonuria

    PubMed Central

    Shedlovsky, A.; McDonald, J. D.; Symula, D.; Dove, W. F.

    1993-01-01

    Phenylketonuria (PKU) results from a deficiency in phenylalanine hydroxylase, the enzyme catalyzing the conversion of phenylalanine (PHE) to tyrosine. Although this inborn error of metabolism was among the first in humans to be understood biochemically and genetically, little is known of the mechanism(s) involved in the pathology of PKU. We have combined mouse germline mutagenesis with screens for hyperphenylalaninemia to isolate three mutants deficient in phenylalanine hydroxylase (PAH) activity and cross-reactive protein. Two of these have reduced PAH mRNA and display characteristics of untreated human PKU patients. A low PHE diet partially reverses these abnormalities. Our success in using high frequency random germline point mutagenesis to obtain appropriate disease models illustrates how such mutagenesis can complement the emergent power of targeted mutagenesis in the mouse. The mutants now can be used as models in studying both maternal PKU and somatic gene therapy. PMID:8375656

  9. Mouse Models of Bariatric Surgery

    PubMed Central

    Yin, Deng Ping; Boyd, Kelli L.; Williams, Phillip E.; Abumrad, Naji N.; Wasserman, David H.

    2013-01-01

    Morbid obesity is linked to increased incidences of glucose intolerance, Type 2 diabetes mellitus, cardiovascular diseases, various forms of liver disease, and specific forms of cancer. Treatment of obesity by lifestyle modifications (i.e. changes in diet and exercise) and drug therapy is generally ineffective. Bariatric surgery is currently the most effective means of treating obesity and related disorders. We as well as others have developed surgical procedures for application to genetic mouse models that mimic an array of human bariatric surgical procedures used in the treatment of obesity. The application of bariatric surgery to genetic mouse models will broaden our understanding of the role of the gut in metabolic disease. Models that have been developed include gastric banding, sleeve gastrectomy (SG), Roux-en-Y gastric bypass (RYGB) with a complete exclusion of the stomach, duodenal-jejunal bypass (DJB) and biliopancreatic diversion (BPD). The detailed methods of these procedures are provided. PMID:25364628

  10. Genealogies of mouse inbred strains.

    PubMed

    Beck, J A; Lloyd, S; Hafezparast, M; Lennon-Pierce, M; Eppig, J T; Festing, M F; Fisher, E M

    2000-01-01

    The mouse is a prime organism of choice for modelling human disease. Over 450 inbred strains of mice have been described, providing a wealth of different genotypes and phenotypes for genetic and other studies. As new strains are generated and others become extinct, it is useful to review periodically what strains are available and how they are related to each other, particularly in the light of available DNA polymorphism data from microsatellite and other markers. We describe the origins and relationships of inbred mouse strains, 90 years after the generation of the first inbred strain. Given the large collection of inbred strains available, and that published information on these strains is incomplete, we propose that all genealogical and genetic data on inbred strains be submitted to a common electronic database to ensure this valuable information resource is preserved and used efficiently.

  11. Electrohydrodynamic jetting of mouse neuronal cells

    PubMed Central

    Eagles, Peter A. M.; Qureshi, Amer N.; Jayasinghe, Suwan N.

    2006-01-01

    CAD (Cath.a-differentiated) cells, a mouse neuronal cell line, were subjected to electrohydrodynamic jetting at a field strength of 0.47–0.67 kV/mm, corresponding to an applied voltage of 7–10 kV. After jetting, the cells appeared normal and continued to divide at rates similar to those shown by control samples. Jetted cells, when placed in serum-free medium, underwent differentiation that was sustained for at least 1 month. Some of the droplets produced by jetting contained only a few cells. These results indicate that the process of jetting does not significantly perturb neuronal cells and that this novel approach might in the future be a useful way to deposit small numbers of living nerve cells on to surfaces. PMID:16393140

  12. A Transgenic Mouse Model of Poliomyelitis.

    PubMed

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  13. Preclinical Mouse Models of Neurofibromatosis

    DTIC Science & Technology

    2006-10-01

    shared expertise and reagents extensively. This NF Consortium is a member of the Mouse Models of Human Cancer Consortium of the National Cancer Institute...major cause of morbidity and mortality in individuals afflicted with NF1 and NF2. The NF1 and NF2 genes function as tumor suppressors in humans and...number of the complications seen in human NF1 and NF2 patients. Since the inception of this consortium effort in 2000, we have made substantial

  14. A Disk Origin for the Monoceros Ring and A13 Stellar Overdensities

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson A.; Price-Whelan, Adrian M.; Tzanidakis, Anastasios; Johnston, Kathryn V.; Laporte, Chervin F. P.; Sesar, Branimir

    2018-02-01

    The Monoceros Ring (also known as the Galactic Anticenter Stellar Structure) and A13 are stellar overdensities at estimated heliocentric distances of d ∼ 11 kpc and 15 kpc observed at low Galactic latitudes toward the anticenter of our Galaxy. While these overdensities were initially thought to be remnants of a tidally disrupted satellite galaxy, an alternate scenario is that they are composed of stars from the Milky Way (MW) disk kicked out to their current location due to interactions between a satellite galaxy and the disk. To test this scenario, we study the stellar populations of the Monoceros Ring and A13 by measuring the number of RR Lyrae and M giant stars associated with these overdensities. We obtain low-resolution spectroscopy for RR Lyrae stars in the two structures and measure radial velocities to compare with previously measured velocities for M giant stars in the regions of the Monoceros Ring and A13, to assess the fraction of RR Lyrae to M giant stars (f RR:MG) in A13 and Mon/GASS. We perform velocity modeling on 153 RR Lyrae stars (116 in the Monoceros Ring and 37 in A13) and find that both structures have very low f RR:MG. The results support a scenario in which stars in A13 and Mon/GASS formed in the MW disk. We discuss a possible association between Mon/GASS, A13, and the Triangulum-Andromeda overdensity based on their similar velocity distributions and f RR:MG.

  15. Mouse Models of Gastric Cancer

    PubMed Central

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  16. Imaging mouse embryonic cardiovascular development.

    PubMed

    Larina, Irina V; Garcia, Monica D; Vadakkan, Tegy J; Larin, Kirill V; Dickinson, Mary E

    2012-10-01

    Early development of the mammalian cardiovascular system is a highly dynamic process. Live imaging is an essential tool for analyzing normal and abnormal cardiovascular development and dynamics. This article describes two optical approaches for live dynamic imaging of mouse embryonic cardiovascular development: confocal microscopy and optical coherence tomography (OCT). Confocal microscopy, used in combination with fluorescent protein reporter lines, enables visualization of the developing and remodeling cardiovascular system with submicron resolution and even allows visualization of subcellular details of labeled structures. We describe mouse transgenic lines that can be used to image the developing vasculature and characterize hemodynamics by tracking individual blood cells. Confocal microscopy of vital fluorescent markers reveals unique details about cell morphogenesis and movement; however, the imaging depth of this method is limited to ∼200 µm. This limitation can be addressed by using OCT, which allows three-dimensional (3D) imaging millimeters into tissue, although this is achieved at the expense of lower spatial resolution (2-10 µm). We describe here how OCT can be applied to the structural analysis of developing mouse embryos and hemodynamic analysis in deep embryonic vessels. These complementary approaches can be used to analyze cardiovascular defects in mutant animals to understand genetic signaling pathways regulating human development.

  17. Translational neuroscience of schizophrenia: seeking a meeting of minds between mouse and man.

    PubMed

    Kas, Martien J; Kahn, René S; Collier, David A; Waddington, John L; Ekelund, Jesper; Porteous, David J; Schughart, Klaus; Hovatta, Iiris

    2011-09-28

    Understanding the etiology of developmental brain disorders such as schizophrenia is critical for achieving advances in treatment and requires new research strategies that control for individual variation in genetic background, environmental challenges, and expression of phenotype. SYSGENET, a European systems genetics network for the study of complex genetic human diseases with mouse genetic reference populations, brought together in Helsinki a cross-disciplinary group of clinical and basic scientists and mouse geneticists to debate, formulate, and prioritize a strategy for future research based on mouse models. The main conclusions of this meeting are summarized here.

  18. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop.

    PubMed

    Németh, Balázs Csaba; Wartmann, Thomas; Halangk, Walter; Sahin-Tóth, Miklós

    2013-08-16

    Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.

  19. Effect of Mesenchymal Stem Cells and Mouse Embryonic Fibroblasts on the Development of Preimplantation Mouse Embryos

    PubMed Central

    Jasmin; Peters, Vera Maria; Spray, David C; Mendez-Otero, Rosalia

    2016-01-01

    Summary Despite advances in assisted reproduction techniques, the poor quality and failures in embryo in vitro development remain as drawbacks resulting in low pregnancy rate. Mouse embryonic fibroblasts (MEFs) have been widely used to support embryonic stem cells. Mesenchymal cells (MSCs) have also been shown to release bioactive factors. In the present study we have evaluated the ability of MSCs and MEFs to support early development of mouse embryos. The embryos were cultivated alone or in coculture with inactivated MSC or MEF for 4 days. After 4 days in culture the percentage of blastocyst formation in coculture with MSC (91.7±4.3%) or MEF (95.1±3.3%) was higher than in the control group (72.2±9.0%). We did not observe any difference in proliferation or apoptosis. However, the blastocysts cocultured with MSC or MEF presented a significantly higher number of cells within the inner cell mass per embryo when compared to controls. The MSC and MEF groups presented also a higher cell number and diameter when compared to the CTRL. In summary, our data indicate that coculture with MSC or MEF improve early embryonic development and quality in vitro. PMID:26744031

  20. Contrast imaging in mouse embryos using high-frequency ultrasound.

    PubMed

    Denbeigh, Janet M; Nixon, Brian A; Puri, Mira C; Foster, F Stuart

    2015-03-04

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

  1. A Mouse Geneticist’s Practical Guide to CRISPR Applications

    PubMed Central

    Singh, Priti; Schimenti, John C.; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  2. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria

    PubMed Central

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-01-01

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals. PMID:26416548

  3. Experimental Metastasis and CTL Adoptive Transfer Immunotherapy Mouse Model

    PubMed Central

    Liu, Kebin

    2010-01-01

    Experimental metastasis mouse model is a simple and yet physiologically relevant metastasis model. The tumor cells are injected intravenously (i.v) into mouse tail veins and colonize in the lungs, thereby, resembling the last steps of tumor cell spontaneous metastasis: survival in the circulation, extravasation and colonization in the distal organs. From a therapeutic point of view, the experimental metastasis model is the simplest and ideal model since the target of therapies is often the end point of metastasis: established metastatic tumor in the distal organ. In this model, tumor cells are injected i.v into mouse tail veins and allowed to colonize and grow in the lungs. Tumor-specific CTLs are then injected i.v into the metastases-bearing mouse. The number and size of the lung metastases can be controlled by the number of tumor cells to be injected and the time of tumor growth. Therefore, various stages of metastasis, from minimal metastasis to extensive metastasis, can be modeled. Lung metastases are analyzed by inflation with ink, thus allowing easier visual observation and quantification. PMID:21178954

  4. Mouse embryonic stem cells with a multi-integrase mouse artificial chromosome for transchromosomic mouse generation.

    PubMed

    Yoshimura, Yuki; Nakamura, Kazuomi; Endo, Takeshi; Kajitani, Naoyo; Kazuki, Kanako; Kazuki, Yasuhiro; Kugoh, Hiroyuki; Oshimura, Mitsuo; Ohbayashi, Tetsuya

    2015-08-01

    The mouse artificial chromosome (MAC) has several advantages as a gene delivery vector, including stable episomal maintenance of the exogenous genetic material and the ability to carry large and/or multiple gene inserts including their regulatory elements. Previously, a MAC containing multi-integration site (MI-MAC) was generated to facilitate transfer of multiple genes into desired cells. To generate transchromosomic (Tc) mice containing a MI-MAC with genes of interest, the desired genes were inserted into MI-MAC in CHO cells, and then the MI-MAC was transferred to mouse embryonic stem (mES) cells via microcell-mediated chromosome transfer (MMCT). However, the efficiency of MMCT from CHO to mES cells is very low (<10(-6)). In this study, we constructed mES cell lines containing a MI-MAC vector to directly insert a gene of interest into the MI-MAC in mES cells via a simple transfection method for Tc mouse generation. The recombination rate of the GFP gene at each attachment site (FRT, PhiC31attP, R4attP, TP901-1attP and Bxb1attP) on MI-MAC was greater than 50% in MI-MAC mES cells. Chimeric mice with high coat colour chimerism were generated from the MI-MAC mES cell lines and germline transmission from the chimera was observed. As an example for the generation of Tc mice with a desired gene by the MI-MAC mES approach, a Tc mouse strain ubiquitously expressing Emerald luciferase was efficiently established. Thus, the findings suggest that this new Tc strategy employing mES cells and a MI-MAC vector is efficient and useful for animal transgenesis.

  5. High resolution melting analysis for the detection of SLC25A13 gene mutations in Taiwan.

    PubMed

    Lin, Jing-Ting; Hsiao, Kwang-Jen; Chen, Chiung-Yu; Wu, Cheng-Chung; Lin, Shio-Jean; Chou, Yen-Yin; Shiesh, Shu-Chu

    2011-02-20

    Citrin, encoded by SLC25A13 gene, is a mitochondrial solute transporter with a crucial role in urea, nucleotide and protein synthesis. SLC25A13 mutations cause two phenotypes, adult-onset type II citrullinemia and neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). This study aimed to develop a high resolution melting (HRM) analysis for SLC25A13 mutation scanning and determine the carrier rate in Taiwan. DNAs from healthy subjects (n=479), and patients with hepatocellular carcinoma (HCC, n=100) and NICCD (n=5) were scanned in exons 6, 9, 11, 16, and 17 and parts of introns of SLC25A13 using HRM analysis. All mutations detected by HRM analysis were further confirmed by TaqMan method and/or direct sequencing. In healthy subjects, seventeen carriers with mutants c.851_854del (n=10), c.1638_1660dup, c.615+5G>A (n=4), and two novel mutants, c.475C>T and c.1658G>A, were detected. The frequency of carriers was about 1/28. In patients with HCC, there were only 2 carriers with c.851_854del mutant. Patients with NICCD (n=5) diagnosed during 2007 and 2008, harbored compound heterozygous mutations c.851_854del/c.1177+1G>A, c.851_854del/c.1638_1660dup (n=2), c.851_854del/c.615+5G>A, and c.1638_1660dup/c.615+5G>A. HRM analysis is a simple, rapid and robust method for detecting SLC25A13 mutations in clinical laboratories. SLC25A13 mutations may not be a major contributor to the pathogenesis of HCC in Taiwan. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Effect of human alpha 2HS glycoprotein on mouse macrophage function.

    PubMed Central

    Lewis, J G; André, C M

    1980-01-01

    alpha 2HS glycoprotein was isolated from normal adult serum. The ability of alpha 2HS glycoprotein to promote the endocytosis of radiolabelled DNA and radiolabelled latex particles by mouse macrophages was investigated. The results using both radiolabelled latex particles and radiolabelled DNA show that alpha 2HS glycoprotein enhances the ability of mouse macrophages to take up these radiolabelled substrates as compared to control cells. Images Figure 1 Figure 2 PMID:7439929

  7. Mouse Model of Human Hereditary Pancreatitis

    DTIC Science & Technology

    2016-09-01

    AWARD NUMBER: W81XWH-14-1-0331 TITLE: Mouse Model of Human Hereditary Pancreatitis PRINCIPAL INVESTIGATOR: Miklos Sahin-Toth, M.D., Ph.D...CONTRACT NUMBER Mouse Model of Human Hereditary Pancreatitis 5b. GRANT NUMBER W81XWH-14-1-0331 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT...The aim of our research is to generate and characterize mouse models of human hereditary pancreatitis that develop pancreatitis spontaneously or

  8. Analysis of global gene expression following mouse blastocyst cryopreservation.

    PubMed

    Larman, M G; Katz-Jaffe, M G; McCallie, B; Filipovits, J A; Gardner, D K

    2011-10-01

    The aim of this study was to examine the effect of the cryopreservation procedure (slow freezing or vitrification) and cryoprotectants (1,2-propanediol or dimethylsulphoxide) on mouse blastocyst gene expression. Cultured mouse blastocysts were cryopreserved with different protocols. Following thawing/warming, total RNA from re-expanded blastocysts was isolated, amplified and then analyzed using mouse whole-genome microarrays. Compared with non-cryopresevered control blastocysts, gene expression was only significantly altered by slow freezing. Slow freezing affected the expression of 115 genes (P < 0.05). Of these, 100 genes exhibited down-regulation and 15 genes were up-regulated. Gene ontology revealed that the majority of these genes are involved in protein metabolism, transcription, cell organization, signal transduction, intracellular transport, macromolecule biosynthesis and development. Neither of the vitrification treatment groups showed statistically different gene expression from the non-cryopreserved control embryos. Hierarchical cluster analysis, did however, reveal that vitrification using 1,2-propanediol could result in a gene expression profile closest to that of non-cryopreserved blastocysts. Investigating the effects of cryopreservation on cellular biology, such as gene expression, is fundamental to improving techniques and protocols. This study demonstrates that of the cryopreservation regimens employed, slow freezing induced the most changes in gene expression compared with controls.

  9. Live imaging of mouse secondary palate fusion

    PubMed Central

    Kim, Seungil; Prochazka, Jan; Bush, Jeffrey O.

    2017-01-01

    LONG ABSTRACT The fusion of the secondary palatal shelves to form the intact secondary palate is a key process in mammalian development and its disruption can lead to cleft secondary palate, a common congenital anomaly in humans. Secondary palate fusion has been extensively studied leading to several proposed cellular mechanisms that may mediate this process. However, these studies have been mostly performed on fixed embryonic tissues at progressive timepoints during development or in fixed explant cultures analyzed at static timepoints. Static analysis is limited for the analysis of dynamic morphogenetic processes such a palate fusion and what types of dynamic cellular behaviors mediate palatal fusion is incompletely understood. Here we describe a protocol for live imaging of ex vivo secondary palate fusion in mouse embryos. To examine cellular behaviors of palate fusion, epithelial-specific Keratin14-cre was used to label palate epithelial cells in ROSA26-mTmGflox reporter embryos. To visualize filamentous actin, Lifeact-mRFPruby reporter mice were used. Live imaging of secondary palate fusion was performed by dissecting recently-adhered secondary palatal shelves of embryonic day (E) 14.5 stage embryos and culturing in agarose-containing media on a glass bottom dish to enable imaging with an inverted confocal microscope. Using this method, we have detected a variety of novel cellular behaviors during secondary palate fusion. An appreciation of how distinct cell behaviors are coordinated in space and time greatly contributes to our understanding of this dynamic morphogenetic process. This protocol can be applied to mutant mouse lines, or cultures treated with pharmacological inhibitors to further advance understanding of how secondary palate fusion is controlled. PMID:28784960

  10. Leptin Targets in the Mouse Brain

    PubMed Central

    Scott, Michael M.; Lachey, Jennifer L.; Sternson, Scott M.; Lee, Charlotte E.; Elias, Carol F.; Friedman, Jeffrey M.; Elmquist, Joel K.

    2009-01-01

    The central actions of leptin are essential for homeostatic control of adipose tissue mass, glucose metabolism, and many autonomic and neuroendocrine systems. In the brain, leptin acts on numerous different cell types via the long-form leptin receptor (LepRb) to elicit its effects. The precise identification of leptin’s cellular targets is fundamental to understanding the mechanism of its pleiotropic central actions. We have systematically characterized LepRb distribution in the mouse brain using in situ hybridization in wildtype mice as well as by EYFP immunoreactivity in a novel LepRb-IRES-Cre EYFP reporter mouse line showing high levels of LepRb mRNA/EYFP coexpression. We found substantial LepRb mRNA and EYFP expression in hypothalamic and extrahypothalamic sites described before, including the dorsomedial nucleus of the hypothalamus, ventral premammillary nucleus, ventral tegmental area, parabrachial nucleus, and the dorsal vagal complex. Expression in insular cortex, lateral septal nucleus, medial preoptic area, rostral linear nucleus, and in the Edinger-Westphal nucleus was also observed and had been previously unreported. The LepRb-IRES-Cre reporter line was used to chemically characterize a population of leptin receptor-expressing neurons in the midbrain. Tyrosine hydroxylase and Cre reporter were found to be coexpressed in the ventral tegmental area and in other midbrain dopaminergic neurons. Lastly, the LepRb-IRES-Cre reporter line was used to map the extent of peripheral leptin sensing by central nervous system (CNS) LepRb neurons. Thus, we provide data supporting the use of the LepRb-IRES-Cre line for the assessment of the anatomic and functional characteristics of neurons expressing leptin receptor. J. Comp. Neurol. 514:518–532, 2009. PMID:19350671

  11. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  12. Identification of suitable reference genes in the mouse placenta.

    PubMed

    Solano, María Emilia; Thiele, Kristin; Kowal, Mirka Katharina; Arck, Petra Clara

    2016-03-01

    Quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a reliable tool to analyse gene expression profiles. The expression of housekeeping genes generally serves as a reference for mRNA amount, assuming that it remains stable under pathophysiological and experimental conditions. To date, an empirical validation of reference genes suitable for RT-qPCR-based studies in the mouse placenta is missing. We used NormFinder and BestKeeper statistical software to analyse the expression stability of candidate housekeeping genes quantified by RT-qPCR in mouse placentas. Fifteen of 32 potential candidate housekeeping genes analysed on gestation day (gd) 16.5 in mouse placentas exhibited an optimal cycle threshold (Ct). Among them B2m, Polr2a, Ubc, and Ywhaz genes showed the highest expression stability in placentas from control, but also experimentally-challenged mice. These genes as well as the currently widely used housekeeping genes Hprt1, Actb, and Gapdh were selected for further quality assessments. We quantified the Ct values of these selected genes in placental samples obtained from wild-type or genetically engineered dams at different gds, or upon selected experimental interventions known to affect placental phenotype. Among all housekeeping genes analysed, Polr2a was the most stably expressed and its expression stability excelled in combination with Ubc. Polr2a, especially in combination with Ubc, can be proposed as highly suitable endogenous reference for gene expression analysis in mouse-derived placental tissue. Moreover, the validation of both genes as a stable reference gene in human placenta-derived tissue strengthens the translational relevance of RT-qPCR findings using mouse placenta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Curcumin shows excellent therapeutic effect on psoriasis in mouse model.

    PubMed

    Kang, Di; Li, Bowen; Luo, Lei; Jiang, Wenbing; Lu, Qiumin; Rong, Mingqing; Lai, Ren

    2016-04-01

    Curcumin is an active herbal ingredient possessing surprisingly wide range of beneficial properties, including anti-inflammatory, antioxidant, chemopreventive and chemotherapeutic activity. Recently, it has been reported to exhibit inhibitory activity on potassium channel subtype Kv1.3. As Kv1.3 channels are mainly expressed in T cells and play a key role in psoriasis, the effects of curcumin were investigated on inflammatory factors secretion in T cells and psoriasis developed in keratin (K) 14-vascular endothelial growth factor (VEGF) transgenic mouse model. Results showed that, 10 μM of curcumin significantly inhibited secretion of inflammatory factors including interleukin (IL)-17,IL-22, IFN-γ, IL-2, IL-8 and TNF-α in T cells by 30-60% in vitro. Notably, more than 50% of T cells proliferation was inhibited by application of 100 μM curcumin. Compared with severe psoriatic symptoms observed in the negative control mice, all psoriasis indexes including ear redness, weight, thickness and lymph node weight were significantly improved by oral application of curcumin in treatment mouse group. Histological examination indicated that curcumin had anti-inflammatory function in the experimental animals. More than 50% level of inflammatory factors including TNF-α, IFN-γ, IL-2, IL-12, IL-22 and IL-23 in mouse serum was decreased by curcumin treatment as well as cyclosporine. Compared with renal fibrosis observed in the mouse group treated by cyclosporine, no obvious side effect in mouse kidney was found after treated by curcumin. Taken together, curcumin, with high efficacy and safety, has a great potential to treat psoriasis. Copyright © 2016. Published by Elsevier B.V.

  14. Therapeutic cloning in the mouse

    PubMed Central

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice. PMID:12949262

  15. Mouse models of human thalassemia

    SciTech Connect

    Anderson, W.F.; Martinell, J.; Whitney, J.B. III

    1981-01-01

    The group of diseases called the thalassemias is the largest single-gene health problem in the world according the World Health Organization. The thalassemias are lethal hereditary anemias in which the infants cannot make their own blood. Three mouse mutants are shown to be models of the human disease ..cap alpha..-thalassemia. However, since an additional gene is affected, these mutants represent a particularly severe condition in which death occurs in the homozygous embryo even before globin genes are activated. Phenotypic and genotypic characteristics are described. (ACR)

  16. Therapeutic cloning in the mouse.

    PubMed

    Mombaerts, Peter

    2003-09-30

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of derivation of embryonic stem cell lines via nuclear transfer is remarkably consistent among these reports. However, the efficiency is so low that, in its present form, the concept is unlikely to become widespread in clinical practice.

  17. Introduction of the human pro. cap alpha. 1(I) collagen gene into pro. cap alpha. 1(I)-deficient Mov-13 mouse cells leads to formation of functional mouse-human hybrid type I collagen

    SciTech Connect

    Schnieke, A.; Dziadek, M.; Bateman, J.

    1987-02-01

    The Mov-13 mouse strain carries a retroviral insertion in the pro..cap alpha..1(I) collagen gene that prevents transcription of the gene. Cell lines derived from homozygous embryos do not express type I collagen although normal amounts of pro..cap alpha..2 mRNA are synthesized. The authors have introduced genomic clones of either the human or mouse pro..cap alpha..1(I) collagen gene into homozygous cell lines to assess whether the human or mouse pro..cap alpha..1(I) chains can associate with the endogenous mouse pro..cap alpha..2(I) chain to form stable type I collagen. The human gene under control of the simian virus 40 promoter was efficiently transcribedmore » in the transfected cells. Protein analyses revealed that stable heterotrimers consisting of two human ..cap alpha..1 chains and one mouse ..cap alpha..2 chain were formed and that type I collagen was secreted by the transfected cells at normal rates. However, the electrophoretic migration of both ..cap alpha..1(I) and ..cap alpha..2(I) chains in the human-mouse hybrid molecules were retarded, compared to the ..cap alpha..(I) chains in control mouse cells. Inhibition of the posttranslational hydroxylation of lysine and proline resulted in comigration of human and mouse ..cap alpha..1 and ..cap alpha..2 chains, suggesting that increased posttranslational modification caused the altered electrophoretic migration in the human-mouse hybrid molecules. Amino acid sequence differences between the mouse and human ..cap alpha.. chains may interfere with the normal rate of helix formation and increase the degree of posttranslational modifications similar to those observed in patients with lethal perinatal osteogenesis imperfecta. The Mov-13 mouse system should allow the authors to study the effect specific mutations introduced in transfected pro..cap alpha..1(I) genes have on the synthesis, assembly, and function of collagen I.« less

  18. Eating Order: A 13-Week Trust Model Class for Dieting Casualties

    ERIC Educational Resources Information Center

    Jackson, Elizabeth G.

    2008-01-01

    Chronic dieting distorts eating behaviors and causes weight escalation. Desperation about losing weight results in pursuit of extreme weight loss measures. Instead of offering yet another diet, nutrition educators can teach chronic dieters (dieting casualties) to develop eating competence. Eating Order, a 13-week class for chronic dieters based on…

  19. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart. ...

  20. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart. ...

  1. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart. ...

  2. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart. ...

  3. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart. ...

  4. Proteomics analysis of melanoma metastases: association between S100A13 expression and chemotherapy resistance

    PubMed Central

    Azimi, A; Pernemalm, M; Frostvik Stolt, M; Hansson, J; Lehtiö, J; Egyházi Brage, S; Hertzman Johansson, C

    2014-01-01

    Background: Disseminated cutaneous malignant melanoma (CMM) is commonly unresponsive to standard chemotherapies, and there are as yet no predictive markers of therapy response. Methods: In the present study we collected fresh-frozen pretreatment lymph-node metastasis samples (n=14) from melanoma patients with differential response to dacarbazine (DTIC) or temozolomide (TMZ) chemotherapy, to identify proteins with an impact on treatment response. We performed quantitative protein profiling using tandem mass spectrometry and compared the proteome differences between responders (R) and non-responders (NR), matched for age, gender and histopathological type of CMM. Results: Biological pathway analyses showed several signalling pathways differing between R vs NR, including Rho signalling. Gene expression profiling data was available for a subset of the samples, and the results were compared with the proteomics data. Four proteins with differential expression between R and NR were selected for technical validation by immunoblotting (ISYNA1, F13A1, CSTB and S100A13), and CSTB and S100A13 were further validated on a larger sample set by immunohistochemistry (n=48). The calcium binding protein S100A13 was found to be significantly overexpressed in NR compared with R in all analyses performed. Conclusions: Our results suggest that S100A13 is involved in CMM resistance to DTIC/TMZ. PMID:24722184

  5. 29 CFR 788.6 - Scope of the section 13(a)(13) exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Scope of the section 13(a)(13) exemption. 788.6 Section 788.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING...

  6. 29 CFR 788.6 - Scope of the section 13(a)(13) exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Scope of the section 13(a)(13) exemption. 788.6 Section 788.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING...

  7. 29 CFR 788.6 - Scope of the section 13(a)(13) exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Scope of the section 13(a)(13) exemption. 788.6 Section 788.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING...

  8. Differentiations of transplanted mouse spermatogonial stem cells in the adult mouse renal parenchyma in vivo.

    PubMed

    Wu, Da-peng; He, Da-lin; Li, Xiang; Liu, Zhao-hui

    2008-09-01

    Spermatogonial stem cells can initiate the process of cellular differentiation to generate mature spermatozoa, but whether it possess the characteristic of pluripotency and plasticity, similar to embryonic stem cells, has not been elucidated. This study was designed to evaluate the differentiation potential of spermatogonial stem cells into renal cells in vivo. Neonatal mouse spermatogonial stem cells were transplanted into mature male mice lacking endogenous spermatogenesis. The restoration of fertility in recipient males was observed. Spermatogonial stem cells were then injected into renal parenchyma of mature female mice to make a new extracellular environment for differentiation. Fluorescence in situ hybridization technology (FISH) was used to detect the expression of chromosome Y in recipient renal tissues. To determine the type of cells differentiated from spermatogonial stem cells, the expression of ricinus communis agglutinin, vimentin, CD45, and F(4/80) proteins were examined in the renal tissues by immunohistochemistry. The proliferation of seminiferous epithelial cells was distinctly observed in seminiferous tubules of transplanted testes, whereas no regeneration of spermatogenesis was observed in non-transplanted control testes. In transplanted female renal tissues, FISH showed a much stronger immuno-fluorescence signal of chromosome Y in the nucleolus of epithelial cells of the renal tubule and podocytes of the glomerulus. The spermatogonial stem cells were successfully purified from mouse testicles. This finding demonstrated that spermatogonial stem cells could not only restore damaged spermatogenesis, but were also capable of differentiating into mature renal parenchyma cells in vivo.

  9. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mousemore » in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.« less

  10. Mouse models for cone degeneration.

    PubMed

    Samardzija, Marijana; Grimm, Christian

    2014-01-01

    Loss of cone vision has devastating effects on everyday life. Even though much effort has been made to understand cone physiology and pathophysiology, no successful therapies are available for patients suffering from cone disorders. As complex retinal interactions cannot be studied in vitro, utilization of different animal models is inevitable. Due to recent advances in transgenesis, mice became the most popular animal model to study human diseases, also in ophthalmology. While there are similarities in retinal anatomy and pathophysiology between mice and humans, there are also differences, most importantly the lack of a cone-rich macula in mice. Instead, cones in mice are rare and distributed over the whole retina, which makes the analysis of cone pathophysiology very difficult in these animals. This hindrance is one of the reasons why our understanding of rod pathophysiological processes is much more advanced. Recently, however, the sparseness of cones was overcome by the generation of the Nrl (- / -) mouse that expresses only cone photoreceptors in the retina. This paper will give a brief overview of some of the known mouse models to study cone degeneration and discuss the current knowledge gained from the analysis of these models.

  11. Head Transplantation in Mouse Model.

    PubMed

    Ren, Xiao-Ping; Ye, Yi-Jie; Li, Peng-Wei; Shen, Zi-Long; Han, Ke-Cheng; Song, Yang

    2015-08-01

    The mouse model of allo-head and body reconstruction (AHBR) has recently been established to further the clinical development of this strategy for patients who are suffering from mortal bodily trauma or disease, yet whose mind remains healthy. Animal model studies are indispensable for developing such novel surgical practices. The goal of this work was to establish head transplant mouse model, then the next step through the feasible biological model to investigate immune rejection and brain function in next step, thereby promoting the goal of translation of AHBR to the clinic in the future. Our approach involves retaining adequate blood perfusion in the transplanted head throughout the surgical procedure by establishing donor-to-recipient cross-circulation by cannulating and anastomosing the carotid artery on one side of the body and the jugular vein on the other side. Neurological function was preserved by this strategy as indicated by electroencephalogram and intact cranial nerve reflexes. The results of this study support the feasibility of this method for avoiding brain ischemia during transplantation, thereby allowing for the possibility of long-term studies of head transplantation. © 2015 John Wiley & Sons Ltd.

  12. Light and the laboratory mouse.

    PubMed

    Peirson, Stuart N; Brown, Laurence A; Pothecary, Carina A; Benson, Lindsay A; Fisk, Angus S

    2018-04-15

    Light exerts widespread effects on physiology and behaviour. As well as the widely-appreciated role of light in vision, light also plays a critical role in many non-visual responses, including regulating circadian rhythms, sleep, pupil constriction, heart rate, hormone release and learning and memory. In mammals, responses to light are all mediated via retinal photoreceptors, including the classical rods and cones involved in vision as well as the recently identified melanopsin-expressing photoreceptive retinal ganglion cells (pRGCs). Understanding the effects of light on the laboratory mouse therefore depends upon an appreciation of the physiology of these retinal photoreceptors, including their differing sens itivities to absolute light levels and wavelengths. The signals from these photoreceptors are often integrated, with different responses involving distinct retinal projections, making generalisations challenging. Furthermore, many commonly used laboratory mouse strains carry mutations that affect visual or non-visual physiology, ranging from inherited retinal degeneration to genetic differences in sleep and circadian rhythms. Here we provide an overview of the visual and non-visual systems before discussing practical considerations for the use of light for researchers and animal facility staff working with laboratory mice. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  13. Mouse models of the laminopathies

    SciTech Connect

    Stewart, Colin L.; Kozlov, Serguei; Fong, Loren G.

    2007-06-10

    The A and B type lamins are nuclear intermediate filament proteins that comprise the bulk of the nuclear lamina, a thin proteinaceous structure underlying the inner nuclear membrane. The A type lamins are encoded by the lamin A gene (LMNA). Mutations in this gene have been linked to at least nine diseases, including the progeroid diseases Hutchinson-Gilford progeria and atypical Werner's syndromes, striated muscle diseases including muscular dystrophies and dilated cardiomyopathies, lipodystrophies affecting adipose tissue deposition, diseases affecting skeletal development, and a peripheral neuropathy. To understand how different diseases arise from different mutations in the same gene, mouse lines carryingmore » some of the same mutations found in the human diseases have been established. We, and others have generated mice with different mutations that result in progeria, muscular dystrophy, and dilated cardiomyopathy. To further our understanding of the functions of the lamins, we also created mice lacking lamin B1, as well as mice expressing only one of the A type lamins. These mouse lines are providing insights into the functions of the lamina and how changes to the lamina affect the mechanical integrity of the nucleus as well as signaling pathways that, when disrupted, may contribute to the disease.« less

  14. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer.

    PubMed

    Xiang, Chan; Wang, Jiucun; Kou, Xiaochen; Chen, Xiabin; Qin, Zhaoyu; Jiang, Yan; Sun, Chang; Xu, Jibin; Tan, Wen; Jin, Li; Lin, Dongxin; He, Fuchu; Wang, Haijian

    2015-05-01

    Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system. © FASEB.

  15. Measuring Viscoelastic Deformation with an Optical Mouse

    ERIC Educational Resources Information Center

    Ng, T. W.

    2004-01-01

    The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.

  16. Pericentromeric duplications in the laboratory mouse.

    PubMed

    Thomas, James W; Schueler, Mary G; Summers, Tyrone J; Blakesley, Robert W; McDowell, Jennifer C; Thomas, Pamela J; Idol, Jacquelyn R; Maduro, Valerie V B; Lee-Lin, Shih-Queen; Touchman, Jeffrey W; Bouffard, Gerard G; Beckstrom-Sternberg, Stephen M; Green, Eric D

    2003-01-01

    Duplications have long been postulated to be an important mechanism by which genomes evolve. Interspecies genomic comparisons are one method by which the origin and molecular mechanism of duplications can be inferred. By comparative mapping in human, mouse, and rat, we previously found evidence for a recent chromosome-fission event that occurred in the mouse lineage. Cytogenetic mapping revealed that the genomic segments flanking the fission site appeared to be duplicated, with copies residing near the centromere of multiple mouse chromosomes. Here we report the mapping and sequencing of the regions of mouse chromosomes 5 and 6 involved in this chromosome-fission event as well as the results of comparative sequence analysis with the orthologous human and rat genomic regions. Our data indicate that the duplications associated with mouse chromosomes 5 and 6 are recent and that the resulting duplicated segments share significant sequence similarity with a series of regions near the centromeres of the mouse chromosomes previously identified by cytogenetic mapping. We also identified pericentromeric duplicated segments shared between mouse chromosomes 5 and 1. Finally, novel mouse satellite sequences as well as putative chimeric transcripts were found to be associated with the duplicated segments. Together, these findings demonstrate that pericentromeric duplications are not restricted to primates and may be a common mechanism for genome evolution in mammals.

  17. The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology.

    PubMed

    Eppig, Janan T; Bult, Carol J; Kadin, James A; Richardson, Joel E; Blake, Judith A; Anagnostopoulos, A; Baldarelli, R M; Baya, M; Beal, J S; Bello, S M; Boddy, W J; Bradt, D W; Burkart, D L; Butler, N E; Campbell, J; Cassell, M A; Corbani, L E; Cousins, S L; Dahmen, D J; Dene, H; Diehl, A D; Drabkin, H J; Frazer, K S; Frost, P; Glass, L H; Goldsmith, C W; Grant, P L; Lennon-Pierce, M; Lewis, J; Lu, I; Maltais, L J; McAndrews-Hill, M; McClellan, L; Miers, D B; Miller, L A; Ni, L; Ormsby, J E; Qi, D; Reddy, T B K; Reed, D J; Richards-Smith, B; Shaw, D R; Sinclair, R; Smith, C L; Szauter, P; Walker, M B; Walton, D O; Washburn, L L; Witham, I T; Zhu, Y

    2005-01-01

    The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics.

  18. The Mouse Genome Database (MGD): from genes to mice—a community resource for mouse biology

    PubMed Central

    Eppig, Janan T.; Bult, Carol J.; Kadin, James A.; Richardson, Joel E.; Blake, Judith A.

    2005-01-01

    The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics. PMID:15608240

  19. Optimizing mouse models for precision cancer prevention

    PubMed Central

    Le Magnen, Clémentine; Dutta, Aditya; Abate-Shen, Cory

    2017-01-01

    As cancer has become increasingly more prevalent in our society, cancer prevention research has evolved toward placing a greater emphasis on reducing cancer deaths and minimizing the adverse consequences of having cancer. “Precision cancer prevention” takes into account the collaboration of intrinsic and extrinsic factors for influencing cancer incidence and aggressiveness in the context of the individual, as well as the recognition that such knowledge can improve early detection and more accurate discrimination of cancerous lesions. The premise of this review is that analyses of mouse models can greatly augment precision cancer prevention. However, as of now, mouse models, and particularly genetically-engineered mouse (GEM) models, have yet to be fully integrated into prevention research. Herein we discuss opportunities and challenges for “precision mouse modeling”, including their essential criteria of mouse models for prevention research, representative success stories, and opportunities for the more refined analyses in future studies. PMID:26893066

  20. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, G.

    1985-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occur during space flight, and the carrying out of immunological flight experiments on animals was discussed. The mouse model is an antiorthostatic, hypokinetic, hypodynamic suspension model similar to the one used with rats. It is shown that this murine model yield similar results to the rat model of antiorthostatic suspension for simulating some aspects of weightlessness. It is also shown that mice suspended in this model have decreased interferon-alpha/beta production as compared to control, nonsuspended mice or to orthostatically suspended mice. It is suggested that the conditions occuring during space flight could possibly affect interferon production. The regulatory role of interferon in nonviral diseases is demonstrated including several bacterial and protozoan infections indicating the great significance of interferon in resistance to many types of infectious diseases.

  1. Cytochrome P450 2A13 mediates the neoplastic transformation of human bronchial epithelial cells at a low concentration of aflatoxin B1.

    PubMed

    Zhang, Zhan; Lu, Huiyuan; Huan, Fei; Meghan, Cromie; Yang, Xuejiao; Wang, Yun; Wang, Xichen; Wang, Xinru; Wang, Shou-Lin

    2014-04-01

    Cytochrome P450 2A13 (CYP2A13), mainly expressed in human respiratory tract, is highly efficient in the metabolic activation of aflatoxin (AF) B1 (AFB1) and is assumed to play a role in human lung tumorigenesis in airborne AFB1 exposure. To validate the assumption, we exposed human bronchial epithelial (BEAS-2B) cells stably expressing CYP2A13 (B-2A13), CYP1A2 (B-1A2) and CYP2A6 (B-2A6) to 0.1-10 nM AFB1 for 30-50 passages. B-2A13 cells showed increased sensitivity to 0.1 nM AFB1-induced neoplastic transformation and the formation of tumors in nude mice were observed at passage 30 (P30) while it occurred at P50 B-1A2 cells. B-2A6, similar to vector control, showed no neoplastic transformation in this condition. Additionally, AFB1-DNA adducts and 8-OHdG significantly increased in transformed P40 B-2A13, in parallel with the upregulation of p-ATR, p-BRCA1, Mre11, Rad50 and Rad51. However, the apoptosis of P40 cells was near normal, while the expression of Bax, C-Caspase 3 and C-PARP increased passage-dependently. Inhibition of ATR (ATR siRNA or NU6027) reversely increased the apoptosis of P40 B-2A13 cells in parallel with the upregulation of Bax, C-Caspase 3 and C-PARP, suggesting that ATR plays an important role in maintaining cell survival via antiapoptosis. Additionally, activation of ATR was necessary to neoplastic transformation since blockage of ATR in P40 cells inhibited DNA damage repair response and anchorage-independent growth. Our data demonstrated that CYP2A13 played a critical role in AFB1-induced neoplastic transformation. ATR-mediated the dysfunction of apoptosis and DNA damage repair might be involved. These results help establish a linkage between airborne AFB1 and human respiratory carcinoma. © 2013 UICC.

  2. Chromosome anomalies in mouse oocytes after irradiation.

    PubMed

    Reichert, W; Hansmann, I; Röhrborn, G

    1975-05-26

    We investigated the cytogenetic effects of X-rays on unfertilized mouse oocytes. NMRI females received an irradiation with 0,22.2,66.6,200, and 600 R during the preovulatory phase 3 hrs after HCG (human chorionic gonadotrophin). This is a stage during oogenesis in which the oocytes pass from late dictyotene to diakinesis. Chromosome analysis was performed after ovulation at metaphase II. From these experiments we can draw the following conclusions: 1) X-rays induced during the preovulatory phase a high number of chromosome anomalies. Among these, structural anomalies prevail. 7 out of 144 ovulated oocytes in matched controls carried such an abnormality, whereas after irradiation we observed with 22.2, 66.6, 200, and 600 R, 11 out of 72, 34 out of 108, 89 out of 102, and 122 out of 124, respectively. 2) Irradiation seems also to affect the chromosome segregation during the 1. meiotic division, as we observed after 22.2, 66.6, and 200 R a total of 6 oocytes out of 204 with a supernummary chromosome. In controls, however, no hyperploidy was found in 143 ova. This increase, however, was not significant. 3) Chromosome anomalies, e.g. breaks and deletions that go back to a one-break event increased linearly with increasing dose. Exchanges, however, going back to two-break events fittest best to the linear-quadratic dose-response model. 4) The dose of 600 R seems to represents a kind of borderline in this experiment, because nearly all (122 out 124) carried at least one structural chromosome anomaly. It is also this dose after which the highest frequency of reciprocal translocations was observed in a hump-shaped slope in spermatocytes after irradiation of spermatogonia (Preston and Brewen, 1973). With an increasing dosage up to 1200 R the frequency of translocations decrease again. The elimination of cells, crossing this borderline, might be due to genetic or non-genetic effects. 5) The frequency of radiation-induced translocations per oocyte agrees with the frequency of

  3. A 13-year-old girl with a cystic cerebellar lesion: consider the hydatid cyst.

    PubMed

    Is, Merih; Gezen, Ferruh; Akyuz, Fevzullah; Aytekin, Hikmet; Dosoglu, Murat

    2009-05-01

    We report a 13-year-old girl with a hydatid cyst located in the posterior fossa. The pre-operative diagnosis was a cerebellar tumour; the cyst was operated on using puncture, aspiration, irrigation and resection. Sixteen months post-operatively, the patient is in a good health. A hydatid cyst must always be considered in the differential diagnosis of cystic lesions of the cranium, especially for those children living in rural areas.

  4. Chemical Shift Assignments of Mouse HOXD13 DNA Binding Domain Bound to Duplex DNA

    PubMed Central

    Turner, Matthew; Zhang, Yonghong; Carlson, Hanqian L.; Stadler, H. Scott; Ames, James B.

    2014-01-01

    The homeobox gene (Hoxd13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of proteins that control embryonic morphogenesis. We report NMR chemical shift assignments of mouse Hoxd13 DNA binding domain bound to an 11-residue DNA duplex (BMRB no. 25133). PMID:25491407

  5. Mouse models of inherited lipodystrophy.

    PubMed

    Savage, David B

    2009-01-01

    Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and underpins the strong association between obesity and diabetes. Paradoxically, the metabolic consequences of having 'too much' fat (obesity) are remarkably similar to those of having 'too little' fat (lipodystrophy): a finding that has generated considerable interest in a rare disease. In both cases, excess energy accumulates as lipid in ectopic sites such as the liver (fatty liver) and skeletal muscle, where it plays a central role in the pathogenesis of insulin resistance, dyslipidemia and type 2 diabetes. Human lipodystrophies are characterised by a total or partial deficiency of body fat, and may be inherited or acquired in origin. Genetically engineered mice with generalised lipodystrophy manifest many of the features of the human disorder, including hyperphagia, fatty liver, hypertriglyceridaemia, insulin resistance and type 2 diabetes, providing a useful tractable model of the human disorder. Partial lipodystrophy, which causes similar, albeit milder, metabolic problems in humans has been more difficult to mimic in the mouse. This review discusses key translational studies in mice with generalised lipodystrophy, including fat transplantation and the use of recombinant leptin replacement therapy. These studies have been instrumental in advancing our understanding of the underlying molecular pathogenesis of ectopic lipid accumulation and insulin resistance, and have prompted the initiation and subsequent adoption of leptin replacement therapy in human lipodystrophies. This review also considers the possible reasons for the apparent difficulties in generating mouse models of partial lipodystrophy, such as interspecies differences in the distribution of fat depots and the apparent lack of sexual dimorphism in fat mass and distribution in mice compared with the dramatic differences present in adult humans.

  6. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data.

    PubMed

    Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A; Kurbatova, Natalja; Mason, Jeremy C; Matthews, Peter; Oakley, Darren J; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A; Sneddon, Duncan J; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J; Melvin, David G; Smedley, Damian; Brown, Steve D M; Flicek, Paul; Skarnes, William C; Mallon, Ann-Marie; Parkinson, Helen

    2014-01-01

    The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated 'data wranglers' work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases.

  7. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes.

    PubMed

    Takeda, Kazuhisa; Hozumi, Hiroki; Ohba, Koji; Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided

  8. Regional Fluctuation in the Functional Consequence of LINE-1 Insertion in the Mitf Gene: The Black Spotting Phenotype Arisen from the Mitfmi-bw Mouse Lacking Melanocytes

    PubMed Central

    Yamamoto, Hiroaki; Shibahara, Shigeki

    2016-01-01

    Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided

  9. Different regional distribution of SLC25A13 mutations in Chinese patients with neonatal intrahepatic cholestasis

    PubMed Central

    Chen, Rui; Wang, Xiao-Hong; Fu, Hai-Yan; Zhang, Shao-Ren; Abudouxikuer, Kuerbanjiang; Saheki, Takeyori; Wang, Jian-She

    2013-01-01

    AIM: To investigate the differences in the mutation spectra of the SLC25A13 gene mutations from specific regions of China. METHODS: Genetic analyses of SLC25A13 mutations were performed in 535 patients with neonatal intrahepatic cholestasis from our center over eight years. Unrelated infants with at least one mutant allele were enrolled to calculate the proportion of SLC25A13 mutations in different regions of China. The boundary between northern and southern China was drawn at the historical border of the Yangtze River. RESULTS: A total of 63 unrelated patients (about 11% of cases with intrahepatic cholestasis) from 16 provinces or municipalities in China had mutations in the SLC25A13 gene, of these 16 (25%) were homozygotes, 28 (44%) were compound heterozygotes and 19 (30%) were heterozygotes. In addition to four well described common mutations (c.851_854del, c.1638_1660dup23, c.615+5G>A and c.1750+72_1751-4dup17insNM_138459.3:2667 also known as IVS16ins3kb), 13 other mutation types were identified, including three novel mutations: c.985_986insT, c.287T>C and c.1349A>G. According to the geographical division criteria, 60 mutant alleles were identified in patients from the southern areas of China, 43 alleles were identified in patients from the border, and 4 alleles were identified in patients from the northern areas of China. The proportion of four common mutations was higher in south region (56/60, 93%) than that in the border region (34/43, 79%, χ2 = 4.621, P = 0.032) and the northern region (2/4, 50%, χ2 = 8.288, P = 0.041). CONCLUSION: The SLC25A13 mutation spectra among the three regions of China were different, providing a basis for the improvement of diagnostic strategies and interpretation of genetic diagnosis. PMID:23901231

  10. Partial structure of the mouse glucokinase gene

    SciTech Connect

    Ishimura-Oka, Kazumi; Chu, Mei-Jin; Sullivan, M.

    1995-10-10

    A complementary DNA for glucokinase (GK) was cloned from mouse liver total RNA by a combination of the polymerase chain reaction (PCR) and mouse liver cDNA library screening. Liver- and {beta}-cell-specific exons 1 were isolated by PCR using mouse and rat genomic DNAs. These clones were then used to screen a mouse genomic library; three genomic clones were isolated and characterized. The mouse GK gene spans over 20 kb, containing 11 exons including a liver- or {beta}-cell-specific exon 1, which encodes a tissue-specific 15-aa peptide at the N-terminus of the protein. Both types of GK contain 465 amino acid residues.more » The predicted amino acid sequence of mouse {beta}-cell-specific GK showed 98 and 96% identity to the rat and human enzymes, respectively; the corresponding values are 98 and 95% respectively, for the liver-specific GK. Several transcription factor-binding consensus sequences are identified in the 5{prime} flanking region of the mouse GK gene. 21 refs., 1 fig.« less

  11. Ultrasound biomicroscopy in mouse cardiovascular development

    NASA Astrophysics Data System (ADS)

    Turnbull, Daniel H.

    2004-05-01

    The mouse is the preferred animal model for studying mammalian cardiovascular development and many human congenital heart diseases. Ultrasound biomicroscopy (UBM), utilizing high-frequency (40-50-MHz) ultrasound, is uniquely capable of providing in vivo, real-time microimaging and Doppler blood velocity measurements in mouse embryos and neonates. UBM analyses of normal and abnormal mouse cardiovascular function will be described to illustrate the power of this microimaging approach. In particular, real-time UBM images have been used to analyze dimensional changes in the mouse heart from embryonic to neonatal stages. UBM-Doppler has been used recently to examine the precise timing of onset of a functional circulation in early-stage mouse embryos, from the first detectable cardiac contractions. In other experiments, blood velocity waveforms have been analyzed to characterize the functional phenotype of mutant mouse embryos having defects in cardiac valve formation. Finally, UBM has been developed for real-time, in utero image-guided injection of mouse embryos, enabling cell transplantation and genetic gain-of-function experiments with transfected cells and retroviruses. In summary, UBM provides a unique and powerful approach for in vivo analysis and image-guided manipulation in normal and genetically engineered mice, over a wide range of embryonic to neonatal developmental stages.

  12. Development of a novel mouse constipation model.

    PubMed

    Liang, Chao; Wang, Kai-Yue; Yu, Zhi; Xu, Bin

    2016-03-07

    To establish a novel mouse constipation model. Animals were randomly divided into three groups, and intragastrically administered 0-4 °C saline (ice-cold group) or 15-20 °C saline (saline control group) daily for 14 d, or were left untreated (blank control group). Stools were collected 3-24 h after treatment to record the wet and dry weights and the stool form. Intestinal propulsion experiments were carried out and defecation time was measured for six days continuously after suspending treatments. The expressions of PGP9.5 were detected by immunohistochemistry. Based on the percentage of stool weight changes compared with baseline (before irritation) in 9-14 d, stool weight changes were classified into three levels. Each level shows a different body state, which is state I (no change: plus or minus 5%), state II (slightly decreased: 5%-15%) and state III (decreased: 15%-25%). In state III, between day 9-14, the stool weights decreased by 15%-25% compared with the baseline, and changed at a rate > 10% compared with blank control values, and the stools became small and dry. Additionally, intestinal functions degenerated in these animals, and PGP9.5-positive expression markedly decreased in jejunum, ileum and proximal colon myenteric plexus. Irritation with ice-cold saline is a stable, repeatable method in building constipation model in mice for exploring the pathogenesis and treatment options of constipation, and the change of stool weight and size may serve as a useful tool to judge a constipation model success or not.

  13. Neonatal intrahepatic cholestasis caused by citrin deficiency: prevalence and SLC25A13 mutations among thai infants

    PubMed Central

    2012-01-01

    Background The most common causes of cholestatic jaundice are biliary atresia and idiopathic neonatal hepatitis (INH). Specific disorders underlying INH, such as various infectious and metabolic causes, including neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) especially, in East Asian populations are increasingly being identified. Since most NICCD infants recovered from liver disease by 1 year of age, they often are misdiagnosed with INH, leading to difficulty in determining the true prevalence of NICCD. Mutation(s) of human SLC25A13 gene encoding a mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), can lead to AGC2 deficiency, resulting in NICCD and an adult-onset fatal disease namely citrullinemia type II (CTLN2). To study the prevalence of NICCD and SLC25A13 mutations in Thai infants, and to compare manifestations of NICCD and non-NICCD, infants with idiopathic cholestatic jaundice or INH were enrolled. Clinical and biochemical data were reviewed. Urine organic acid and plasma amino acids profiles were analyzed. PCR-sequencing of all 18 exons of SLC25A13 and gap PCR for the mutations IVS16ins3kb and Ex16+74_IVS17-32del516 were performed. mRNA were analyzed in selected cases with possible splicing error. Results Five out of 39 (12.8%) unrelated infants enrolled in the study were found to have NICCD, of which three had homozygous 851del4 (GTATdel) and two compound heterozygous 851del4/IVS16ins3kb and 851del4/1638ins23, respectively. Two missense mutations (p.M1? and p.R605Q) of unknown functional significance were identified. At the initial presentation, NICCD patients had higher levels of alkaline phosphatase (ALP) and alpha-fetoprotein (AFP) and lower level of alanine aminotransferase (ALT) than those in non-NICCD patients (p< 0.05). NICCD patients showed higher citrulline level and threonine/serine ratio than non-NICCD infants (p< 0.05). Fatty liver was found in 2 NICCD patients. Jaundice resolved in all NICCD and in 87.5% of non

  14. Mouse Model of Human Hereditary Pancreatitis

    DTIC Science & Technology

    2015-09-01

    1 AWARD NUMBER: W81XWH-14-1-0331 TITLE: Mouse Model of Human Hereditary Pancreatitis PRINCIPAL INVESTIGATOR: Miklos Sahin-Toth, M.D., Ph.D...SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0331 Mouse Model of Human Hereditary Pancreatitis 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...ABSTRACT The aim of our research is to generate and characterize mouse models of human hereditary pancreatitis that develop pancreatitis spontaneously

  15. Nonspecific airway reactivity in a mouse model of asthma

    SciTech Connect

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratorymore » diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.« less

  16. Phototransduction Influences Metabolic Flux and Nucleotide Metabolism in Mouse Retina.

    PubMed

    Du, Jianhai; Rountree, Austin; Cleghorn, Whitney M; Contreras, Laura; Lindsay, Ken J; Sadilek, Martin; Gu, Haiwei; Djukovic, Danijel; Raftery, Dan; Satrústegui, Jorgina; Kanow, Mark; Chan, Lawrence; Tsang, Stephen H; Sweet, Ian R; Hurley, James B

    2016-02-26

    Production of energy in a cell must keep pace with demand. Photoreceptors use ATP to maintain ion gradients in darkness, whereas in light they use it to support phototransduction. Matching production with consumption can be accomplished by coupling production directly to consumption. Alternatively, production can be set by a signal that anticipates demand. In this report we investigate the hypothesis that signaling through phototransduction controls production of energy in mouse retinas. We found that respiration in mouse retinas is not coupled tightly to ATP consumption. By analyzing metabolic flux in mouse retinas, we also found that phototransduction slows metabolic flux through glycolysis and through intermediates of the citric acid cycle. We also evaluated the relative contributions of regulation of the activities of α-ketoglutarate dehydrogenase and the aspartate-glutamate carrier 1. In addition, a comprehensive analysis of the retinal metabolome showed that phototransduction also influences steady-state concentrations of 5'-GMP, ribose-5-phosphate, ketone bodies, and purines. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Lysosomal Acid Phosphatase Deficiency: Liver Specific Variant in the Mouse

    PubMed Central

    Lalley, Peter A.; Shows, Thomas B.

    1977-01-01

    The number and classes of genes responsible for the final expression of lysosomal acid phosphatase were investigated in the mouse (Mus musculus ). In mouse tissues, lysosomal acid phosphatase activity was separated by gel electrophoresis into two major zones of activity. The cathodal zone of activity in liver of the SM/J inbred strain was almost completely absent, while the anodal zone was increased in activity. Other tissues from SM/J were not affected, nor were livers and other tissues in 27 inbred mouse strains. Genetic studies indicated that this deficiency variant segregated as an autosomal codominant gene which has been designated Apl to symbolize the acid phosphatase liver phenotype. The Apl gene was not linked to markers on chromosomes 1, 2, 4, 5, 7, 8, or X. Electrophoretic, heat denaturation, neuraminidase treatment, tartrate inhibition studies and tissue mixing experiments suggested that the Apl gene was not a structural gene for acid phosphatase, but a separate gene that functions in liver and is responsible for controlling or modifying an acid phosphatase structural gene product. PMID:17248764

  18. Construction of orthotopic xenograft mouse models for human pancreatic cancer.

    PubMed

    Dai, Lei; Lu, Caide; Yu, X I; Dai, Long-Jun; Zhou, Jeff X

    2015-09-01

    Animal models are indispensable for the study of tumorigenesis and the development of anti-cancer drugs for human pancreatic cancer. In the present study, two orthotopic xenograft mouse models were developed. AsPC-1 human pancreatic cancer cells were stably labeled with red fluorescent protein (RFP) and injected subcutaneously into nude mice. For the orthotopic tumor mass model, the formed subcutaneous tumors were cut into blocks and implanted into the pancreas of nude mice via laparotomy. For the Matrigel™ tumor block model, solidified Matrigel containing RFP-labeled AsPC-1 cells was cut into blocks and implanted into the pancreas of nude mice. A subcutaneous tumor xenograft model was used as a control. Tumor growth and metastasis were assessed using an in vivo fluorescence imaging system. Thirty-six days after implantation, all mice from the two orthotopic xenograft models (n=20 per group) and 55% of the subcutaneous xenograft mice (n=20) developed tumors. The tumor growth rate was significantly higher in the orthotopic models than that in the subcutaneous model (P<0.01). Metastasis to organs such as the liver was observed in the orthotopic tumor models. Histological examination showed that the tumors were poorly differentiated adenocarcinomas. In conclusion, two orthotopic xenograft mouse models of human pancreatic cancer were established; these exhibited greater tumor growth and metastasis than the subcutaneous xenograft mouse model.

  19. How informative is the mouse for human gut microbiota research?

    PubMed Central

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. PMID:25561744

  20. A Mouse Model of Hepatocellular Carcinoma

    PubMed Central

    Nicholes, Katrina; Guillet, Susan; Tomlinson, Elizabeth; Hillan, Kenneth; Wright, Barbara; Frantz, Gretchen D.; Pham, Thinh A.; Dillard-Telm, Lisa; Tsai, Siao Ping; Stephan, Jean-Philippe; Stinson, Jeremy; Stewart, Timothy; French, Dorothy M.

    2002-01-01

    Most mouse models of hepatocellular carcinoma have expressed growth factors and oncogenes under the control of a liver-specific promoter. In contrast, we describe here the formation of liver tumors in transgenic mice overexpressing human fibroblast growth factor 19 (FGF19) in skeletal muscle. FGF19 transgenic mice had elevated hepatic α-fetoprotein mRNA as early as 2 months of age, and hepatocellular carcinomas were evident by 10 months of age. Increased proliferation of pericentral hepatocytes was demonstrated by 5-bromo-2′-deoxyuridine incorporation in the FGF19 transgenic mice before tumor formation and in nontransgenic mice injected with recombinant FGF19 protein. Areas of small cell dysplasia were initially evident pericentrally, and dysplastic/neoplastic foci throughout the hepatic lobule were glutamine synthetase-positive, suggestive of a pericentral origin. Consistent with chronic activation of the Wingless/Wnt pathway, 44% of the hepatocellular tumors from FGF19 transgenic mice had nuclear staining for β-catenin. Sequencing of the tumor DNA encoding β-catenin revealed point mutations that resulted in amino acid substitutions. These findings suggest a previously unknown role for FGF19 in hepatocellular carcinomas. PMID:12057932

  1. Mouse Model of Halogenated Platinum Salt Hypersensitivity ...

    EPA Pesticide Factsheets

    Occupational exposure to halogenated platinum salts can trigger the development of asthma. Concern for increased asthma risk exists for the general population due to the use of platinum (Pt) in catalytic converters and its emerging use as a diesel fuel additive. To investigate airway responses to Pt, we developed a mouse model of Pt hypersensitivity. Previously, we confirmed the dermal sensitizing potency of ammonium hexachloroplatinate (AHCP) using an ex vivo [3H]methyl thymidine labeling version of the local lymph node assay in BALB/c mice. Here, we investigated the ability of AHCP to induce airway responses in mice sensitized by the dermal route. Mice were sensitized through application of 100 µL 1% AHCP in DMSO to the shaved back on days 0, 5 and 19, and 25 µl to each ear on days 10, 11 and 12. Unsensitized mice received vehicle. On day 24, mice were challenged by oropharyngeal aspiration (OPA) with 0 or 100 µg AHCP in saline. Before and immediately after challenge, airway responses were assessed using whole body plethysmography (WBP). On day 26, changes in ventilatory responses to methacholine (Mch) aerosol were assessed by WBP; dose-dependent increases in Mch responsiveness occurred in sensitized mice. Bronchoalveolar lavage fluid harvested from sensitized mice contained an average of 7.5% eosinophils compared to less than 0.5% in control mice (p < 0.05). This model will be useful for assessing both relative sensitizing potency and cross-reacti

  2. Anticonvulsant profile of a balanced ketogenic diet in acute mouse seizure models.

    PubMed

    Samala, Ramakrishna; Willis, Sarah; Borges, Karin

    2008-10-01

    Anticonvulsant effects of the ketogenic diet (KD) have been reported in the mouse, although previous studies did not control for intake of vitamins, minerals and antioxidants. The aim of this study was to examine the effects of balanced ketogenic and control diets in acute mouse seizure models. The behavior in four mouse seizure models, plasma d-beta-hydroxybutyrate (d-BHB) and glucose levels were determined after feeding control diet, 4:1 and 6:1 KDs with matched vitamins, minerals and antioxidants. Feeding 4:1 and 6:1 KDs ad lib to 3-week-old (adolescent) mice resulted in 1.2-2.2mM d-BHB in plasma, but did not consistently change glucose levels. The 6:1 KD reproducibly elevated the CC50 (current that initiates seizures in 50% mice tested) in the 6-Hz model after 14 days of feeding to adolescent CD1 mice. Higher plasma d-BHB levels correlated with anticonvulsant effects. Despite ketosis, no consistent anticonvulsant effects of KDs were found in the fluorothyl or pentylenetetrazole CD1 mouse models. The 4:1 KD was neither anticonvulsant nor neuroprotective in hippocampus in the C3H mouse kainate model. Taken together, the KD's anticonvulsant effect was limited to the 6-Hz model, required chronic feeding with 6:1 fat content, and was independent from lowering plasma glucose.

  3. A mouse geneticist's practical guide to CRISPR applications.

    PubMed

    Singh, Priti; Schimenti, John C; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. Copyright © 2015 by the Genetics Society of America.

  4. Functional analysis of limb transcriptional enhancers in the mouse

    PubMed Central

    Nolte, Mark J.; Wang, Ying; Deng, Jian Min; Swinton, Paul G.; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J.; Behringer, Richard R.

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M280 and M1442, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M280 and M1442 no gross limb malformations during embryonic development were observed, demonstrating that M280 and M1442 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an “ultraconserved” sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. PMID:24920384

  5. Functional analysis of limb transcriptional enhancers in the mouse.

    PubMed

    Nolte, Mark J; Wang, Ying; Deng, Jian Min; Swinton, Paul G; Wei, Caimiao; Guindani, Michele; Schwartz, Robert J; Behringer, Richard R

    2014-01-01

    Transcriptional enhancers are genomic sequences bound by transcription factors that act together with basal transcriptional machinery to regulate gene transcription. Several high-throughput methods have generated large datasets of tissue-specific enhancer sequences with putative roles in developmental processes. However, few enhancers have been deleted from the genome to determine their roles in development. To understand the roles of two enhancers active in the mouse embryonic limb bud we deleted them from the genome. Although the genes regulated by these enhancers are unknown, they were selected because they were identified in a screen for putative limb bud-specific enhancers associated with p300, an acetyltransferase that participates in protein complexes that promote active transcription, and because the orthologous human enhancers (H1442 and H280) drive distinct lacZ expression patterns in limb buds of embryonic day (E) 11.5 transgenic mice. We show that the orthologous mouse sequences, M1442 and M280, regulate dynamic expression in the developing limb. Although significant transcriptional differences in enhancer-proximal genes in embryonic limb buds accompany the deletion of M1442 and M280 no gross limb malformations during embryonic development were observed, demonstrating that M1442 and M280 are not required for mouse limb development. However, M280 is required for the development and/or maintenance of body size; M280 mice are significantly smaller than controls. M280 also harbors an "ultraconserved" sequence that is identical between human, rat, and mouse. This is the first report of a phenotype resulting from the deletion of an ultraconserved element. These studies highlight the importance of determining enhancer regulatory function by experiments that manipulate them in situ and suggest that some of an enhancer's regulatory capacities may be developmentally tolerated rather than developmentally required. © 2014 Wiley Periodicals, Inc.

  6. Pyogenic Sacroiliitis in a 13-Month-Old Child: A Case Report and Literature Review.

    PubMed

    Leroux, Julien; Julien, Leroux; Bernardini, Isabelle; Isabelle, Bernardini; Grynberg, Lucie; Lucie, Grynberg; Grandguillaume, Claire; Claire, Grandguillaume; Michelin, Paul; Paul, Michelin; Ould Slimane, Mourad; Slimane, Ould Slimane; Nectoux, Eric; Eric, Nectoux; Deroussen, François; François, Deroussen; Gouron, Richard; Richard, Gouron; Angelliaume, Audrey; Audrey, Angelliaume; Ilharreborde, Brice; Brice, Ilharreborde; Renaux-Petel, Mariette; Mariette, Renaux-Petel

    2015-10-01

    Pyogenic sacroiliitis is exceptional in very young children. Diagnosis is difficult because clinical examination is misleading. FABER test is rarely helpful in very young children. Inflammatory syndrome is frequent. Bone scintigraphy and MRI are very sensitive for the diagnosis. Joint fluid aspiration and blood cultures are useful to identify the pathogen. Appropriate antibiotic therapy provides rapid regression of symptoms and healing. We report the case of pyogenic sacroiliitis in a 13-month-old child.Clinical, biological, and imaging data of this case were reviewed and reported retrospectively.A 13-month-old girl consulted for decreased weight bearing without fever or trauma. Clinical examination was not helpful. There was an inflammatory syndrome. Bone scintigraphy found a sacroiliitis, confirmed on MRI. Aspiration of the sacroiliac joint was performed. Empiric intravenous biantibiotic therapy was started. Patient rapidly recovered full weight bearing. On the 5th day, clinical examination and biological analysis returned to normal. Intravenous antibiotic therapy was switched for oral. One month later, clinical examination and biological analysis were normal and antibiotic therapy was stopped.Hematogenous osteoarticular infections are common in children but pyogenic sacroiliitis is rare and mainly affects older children. Diagnosis can be difficult because clinical examination is poor. Moreover, limping and decreased weight bearing are very common reasons for consultation. This may delay the diagnosis or refer misdiagnosis. Bone scintigraphy is useful to locate a bone or joint disease responsible for limping. In this observation, bone scintigraphy located the infection at the sacroiliac joint. Given the young age, MRI was performed to confirm the diagnosis. Despite the very young age of the patient, symptoms rapidly disappeared with appropriate antibiotic therapy.We report the case of pyogenic sacroiliitis in a 13-month-old child. It reminds the risk of

  7. Congenital agenesis of the superficial posterior compartment calf muscles in a 13-month-old infant.

    PubMed

    Kang, Jin Young; Jang, Dae-Hyun

    2014-11-01

    Muscle agenesis may induce cosmetic and functional deficits, particularly if the muscle is an axial limb or a large muscle. Limb muscle agenesis is a rare condition. Here, the authors report the case of a 13-mo-old girl with unilateral atrophic calf and gait abnormality. Magnetic resonance imaging confirmed agenesis of the posterior superficial compartment of the calf. The patient showed an out-toeing calcaneal gait and fibular length discrepancy secondarily during growth. Normal embryology and the differential diagnostic point of foot deformity as well as the clinical implications of calf agenesis are described.

  8. The Mouse Genome Database (MGD): facilitating mouse as a model for human biology and disease.

    PubMed

    Eppig, Janan T; Blake, Judith A; Bult, Carol J; Kadin, James A; Richardson, Joel E

    2015-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org) serves the international biomedical research community as the central resource for integrated genomic, genetic and biological data on the laboratory mouse. To facilitate use of mouse as a model in translational studies, MGD maintains a core of high-quality curated data and integrates experimentally and computationally generated data sets. MGD maintains a unified catalog of genes and genome features, including functional RNAs, QTL and phenotypic loci. MGD curates and provides functional and phenotype annotations for mouse genes using the Gene Ontology and Mammalian Phenotype Ontology. MGD integrates phenotype data and associates mouse genotypes to human diseases, providing critical mouse-human relationships and access to repositories holding mouse models. MGD is the authoritative source of nomenclature for genes, genome features, alleles and strains following guidelines of the International Committee on Standardized Genetic Nomenclature for Mice. A new addition to MGD, the Human-Mouse: Disease Connection, allows users to explore gene-phenotype-disease relationships between human and mouse. MGD has also updated search paradigms for phenotypic allele attributes, incorporated incidental mutation data, added a module for display and exploration of genes and microRNA interactions and adopted the JBrowse genome browser. MGD resources are freely available to the scientific community. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Melatonin receptors: latest insights from mouse models

    PubMed Central

    Tosini, Gianluca; Owino, Sharon; Guillame, Jean-Luc; Jockers, Ralf

    2014-01-01

    Summary Melatonin, the neuro-hormone synthesized during the night, has recently seen an unexpected extension of its functional implications towards type 2 diabetes development, visual functions, sleep disturbances and depression. Transgenic mouse models were instrumental for the establishment of the link between melatonin and these major human diseases. Most of the actions of melatonin are mediated by two types of G protein-coupled receptors, named MT1 and MT2, which are expressed in many different organs and tissues. Understanding the pharmacology and function of mouse MT1 and MT2 receptors, including MT1/MT2 heteromers, will be of crucial importance to evaluate the relevance of these mouse models for future therapeutic developments. This review will critically discuss these aspects, and give some perspectives including the generation of new mouse models. PMID:24903552

  10. Mouse homologues of human hereditary disease.

    PubMed Central

    Searle, A G; Edwards, J H; Hall, J G

    1994-01-01

    Details are given of 214 loci known to be associated with human hereditary disease, which have been mapped on both human and mouse chromosomes. Forty two of these have pathological variants in both species; in general the mouse variants are similar in their effects to the corresponding human ones, but exceptions include the Dmd/DMD and Hprt/HPRT mutations which cause little, if any, harm in mice. Possible reasons for phenotypic differences are discussed. In most pathological variants the gene product seems to be absent or greatly reduced in both species. The extensive data on conserved segments between human and mouse chromosomes are used to predict locations in the mouse of over 50 loci of medical interest which are mapped so far only on human chromosomes. In about 80% of these a fairly confident prediction can be made. Some likely homologies between mapped mouse loci and unmapped human ones are also given. Sixty six human and mouse proto-oncogene and growth factor gene homologies are also listed; those of confirmed location are all in known conserved segments. A survey of 18 mapped human disease loci and chromosome regions in which the manifestation or severity of pathological effects is thought to be the result of genomic imprinting shows that most of the homologous regions in the mouse are also associated with imprinting, especially those with homologues on human chromosomes 11p and 15q. Useful methods of accelerating the production of mouse models of human hereditary disease include (1) use of a supermutagen, such as ethylnitrosourea (ENU), (2) targeted mutagenesis involving ES cells, and (3) use of gene transfer techniques, with production of 'knockout mutations'. PMID:8151633

  11. Mouse models of Wolf-Hirschhorn syndrome.

    PubMed

    Simon, Ruth; Bergemann, Andrew D

    2008-11-15

    Subtelomeric deletion syndromes represent a significant cause of mental retardation and craniofacial disease. However, for most of these syndromes the pathogenic genes have yet to be identified. Currently there is every indication that identification of these genes will be a slow process if we continue to rely strictly upon clinical data. An alternative approach is the use of mouse models to complement the patient studies. Wolf-Hirschhorn syndrome (WHS), caused by deletions in 4p16.3, is the first recognized subtelomeric deletion syndrome. As with other syndromes of this class, WHS has not yet been subjected to an intensive, systematic analysis using mouse models. Nonetheless, a significant number of targeted mutations have been introduced into mouse genomic region, 5B1, which is orthologous to 4p16.3. Included among these mutations are a series of deletions approximating the deletions in some patients. The mouse lines carrying these deletions display a remarkable concordance of phenotypes with the human patient's characteristics, strongly indicating that the mouse models can be used to phenocopy WHS. In this review, we will catalog the currently existing targeted mutations in mice in the regions orthologous to the WHS critical regions. For each mutation we will discuss the resulting phenotype and its potential relevance to the pathogenesis of the syndrome. Further, we will describe how the phenotypes of some of the mutations suggest new directions for the clinical studies. Finally we will outline approaches for the efficient creation of new mouse models of WHS going forward.

  12. The Mouse Genome Database genotypes::phenotypes

    PubMed Central

    Blake, Judith A.; Bult, Carol J.; Eppig, Janan T.; Kadin, James A.; Richardson, Joel E.

    2009-01-01

    The Mouse Genome Database (MGD, http://www.informatics.jax.org/), integrates genetic, genomic and phenotypic information about the laboratory mouse, a primary animal model for studying human biology and disease. Information in MGD is obtained from diverse sources, including the scientific literature and external databases, such as EntrezGene, UniProt and GenBank. In addition to its extensive collection of phenotypic allele information for mouse genes that is curated from the published biomedical literature and researcher submission, MGI includes a comprehensive representation of mouse genes including sequence, functional (GO) and comparative information. MGD provides a data mining platform that enables the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. MGI can be accessed by a variety of methods including web-based search forms, a genome sequence browser and downloadable database reports. Programmatic access is available using web services. Recent improvements in MGD described here include the unified mouse gene catalog for NCBI Build 37 of the reference genome assembly, and improved representation of mouse mutants and phenotypes. PMID:18981050

  13. Incremental lines in mouse molar enamel.

    PubMed

    Sehic, Amer; Nirvani, Minou; Risnes, Steinar

    2013-10-01

    The purpose of the present study was to investigate the occurrence and periodicity of enamel incremental lines in mouse molars in an attempt to draw attention to some key questions about the rhythm in the activity of the secreting ameloblasts during formation of mouse molar enamel. The mouse molars were ground, etched, and studied using scanning electron microscopy. Lines interpreted as incremental lines generally appeared as grooves of variable distinctness, and were only observed cervically, in the region about 50-250μm from the enamel-cementum junction. The lines were most readily observable in the outer enamel and in the superficial prism-free layer, and were difficult to identify in the deeper parts of enamel, i.e. in the inner enamel with prism decussation. However, in areas where the enamel tended to be hypomineralized the incremental lines were observed as clearly continuous from outer into inner enamel. The incremental lines in mouse molar enamel exhibited an average periodicity of about 4μm, and the distance between the lines decreased towards the enamel surface. We conclude that incremental lines are to some extent visible in mouse molar enamel. Together with data from the literature and theoretical considerations, we suggest that they probably represent a daily rhythm in enamel formation. This study witnesses the layered apposition of mouse molar enamel and supports the theory that circadian clock probably regulates enamel development. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Cat fertilization by mouse sperm injection.

    PubMed

    Jin, Yong-Xun; Cui, Xiang-Shun; Yu, Xian-Feng; Lee, Sung-Hyun; Wang, Qing-Ling; Gao, Wei-Wei; Xu, Yong-Nan; Sun, Shao-Chen; Kong, Il-Keun; Kim, Nam-Hyung

    2012-11-01

    Interspecies intracytoplasmic sperm injection has been carried out to understand species-specific differences in oocyte environments and sperm components during fertilization. While sperm aster organization during cat fertilization requires a paternally derived centriole, mouse and hamster fertilization occur within the maternal centrosomal components. To address the questions of where sperm aster assembly occurs and whether complete fertilization is achieved in cat oocytes by interspecies sperm, we studied the fertilization processes of cat oocytes following the injection of cat, mouse, or hamster sperm. Male and female pronuclear formations were not different in the cat oocytes at 6 h following cat, mouse or hamster sperm injection. Microtubule asters were seen in all oocytes following intracytoplasmic injection of cat, mouse or hamster sperm. Immunocytochemical staining with a histone H3-m2K9 antibody revealed that mouse sperm chromatin is incorporated normally with cat egg chromatin, and that the cat eggs fertilized with mouse sperm enter metaphase and become normal 2-cell stage embryos. These results suggest that sperm aster formation is maternally dependent, and that fertilization processes and cleavage occur in a non-species specific manner in cat oocytes.

  15. Practical use of advanced mouse models for lung cancer.

    PubMed

    Safari, Roghaiyeh; Meuwissen, Ralph

    2015-01-01

    To date a variety of non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) mouse models have been developed that mimic human lung cancer. Chemically induced or spontaneous lung cancer in susceptible inbred strains has been widely used, but the more recent genetically engineered somatic mouse models recapitulate much better the genotype-phenotype correlations found in human lung cancer. Additionally, improved orthotopic transplantation of primary human cancer tissue fragments or cells into lungs of immune-compromised mice can be valuable tools for preclinical research such as antitumor drug tests. Here we give a short overview of most somatic mouse models for lung cancer that are currently in use. We accompany each different model with a description of its practical use and application for all major lung tumor types, as well as the intratracheal injection or direct injection of fresh or freeze-thawed tumor cells or tumor cell lines into lung parenchyma of recipient mice. All here presented somatic mouse models are based on the ability to (in) activate specific alleles at a time, and in a tissue-specific cell type, of choice. This spatial-temporal controlled induction of genetic lesions allows the selective introduction of main genetic lesions in an adult mouse lung as found in human lung cancer. The resulting conditional somatic mouse models can be used as versatile powerful tools in basic lung cancer research and preclinical translational studies alike. These distinctively advanced lung cancer models permit us to investigate initiation (cell of origin) and progression of lung cancer, along with response and resistance to drug therapy. Cre/lox or FLP/frt recombinase-mediated methods are now well-used techniques to develop tissue-restricted lung cancer in mice with tumor-suppressor gene and/or oncogene (in)activation. Intranasal or intratracheal administration of engineered adenovirus-Cre or lentivirus-Cre has been optimized for introducing Cre

  16. [Genetic analysis of ASS1, ASL and SLC25A13 in citrullinemia patients].

    PubMed

    Wen, Pengqiang; Chen, Zhanling; Wang, Guobing; Liu, Xiaohong; Chen, Li; Chen, Shuli; Wan, Lisheng; Cui, Dong; Shang, Yue; Li, Chengrong

    2014-06-01

    To detect potential mutations of Y9ASS1, ASL and SLC25A13 genes in four patients manifesting citrullinemia. Genomic DNA was extracted from peripheral blood leukocytes. Exons and their flanking sequences of the three genes were amplified with polymerase chain reaction and subjected to direct DNA sequencing. Based on DNA sequence analysis, one case was diagnosed with argininosuccinate synthetase deficiency, and the mutation type (ASS1 gene) was c.236C>T (p.S79F) + c.431C>G (p.P144R). Two cases were diagnosed with argininosuccinic aciduria (ASL gene), and their gene mutations were c.434A>G (p.D145G) + c.1366C>T (p.R456W) and c.331C>T (p.R111W) + IVS8+2insT, respectively. A thirteen months boy who carried a heterozygous 851del4 mutation (SLC25A13 gene) was diagnosed with citrullinemia adult-onset type II. Through analysis of relevant pathogenic genes, four patients have been diagnosed.

  17. Physical restraint deaths in a 13-year national cohort of nursing home residents.

    PubMed

    Bellenger, Emma; Ibrahim, Joseph Elias; Bugeja, Lyndal; Kennedy, Briohny

    2017-07-01

    this paper aims to investigate the nature and extent of physical restraint deaths reported to Coroners in Australia over a 13-year period. the study comprised a retrospective cohort study of residents dwelling in accredited nursing homes in Australia whose deaths were reported to the Coroners between 1 July 2000 and 30 June 2013 and was attributed to physical restraint. five deaths in nursing home residents due to physical restraint were reported in Australia over a 13-year period. The median age of residents was 83 years; all residents had impaired mobility and had restraints applied for falls prevention. Neck compression and entrapment by the restraints was the mechanism of harm in all cases, resulting in restraint asphyxia and mechanical asphyxia, respectively. this national study confirms that the use of physical restraint does cause fatalities, although rare. Further research is still needed to identify which alternatives strategies to restraint are most effective, and to examine the reporting system for physical restraint-related deaths. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com

  18. Disseminated Histoplasmosis in a 13-year-old girl: a case report.

    PubMed

    Ubesie, A C; Okafo, O C; Ibeziako, N S; Onukwuli, V O; Mbanefo, N R; Uzoigwe, J C; Bede, C; Ibe, B C

    2013-06-01

    Disseminated histoplasmosis is a rare fungal infection and most documented cases are in immune-compromised individuals such as those with acquired immuno-deficiency syndrome. To describe a case of disseminated histoplasmosis in an adolescent girl. We report a case of disseminated histoplasmosis in a 13-year-old adolescent girl. She was admitted for 16 days because of neck masses of 3 years duration, generalized body swelling of 3 months and reduction in urinary output of 2 months. She tested negative for human immunodeficiency virus antibodies. An autopsy was performed because a definitive diagnosis could not be made while the patient was still alive. The autopsy revealed central caseating areas in the lymph nodes and membranoproliferative glomerulonephritis. The periodic acid-Schiff staining technique for tissues showed viable yeast cells suggestive of histoplasmosis. Zeihl-Neelsen's staining for mycobacteria tuberculosis was negative. Undiagnosed case of disseminated histoplasmosis while the patient was alive is being reported in a 13-year-old girl. Disseminated histoplasmosis should be considered as a differential diagnosis of childhood chronic infections and malignancies as in Nigeria.

  19. Intravital multiphoton imaging of mouse tibialis anterior muscle

    PubMed Central

    Lau, Jasmine; Goh, Chi Ching; Devi, Sapna; Keeble, Jo; See, Peter; Ginhoux, Florent; Ng, Lai Guan

    2016-01-01

    ABSTRACT Intravital imaging by multiphoton microscopy is a powerful tool to gain invaluable insight into tissue biology and function. Here, we provide a step-by-step tissue preparation protocol for imaging the mouse tibialis anterior skeletal muscle. Additionally, we include steps for jugular vein catheterization that allow for well-controlled intravenous reagent delivery. Preparation of the tibialis anterior muscle is minimally invasive, reducing the chances of inducing damage and inflammation prior to imaging. The tibialis anterior muscle is useful for imaging leukocyte interaction with vascular endothelium, and to understand muscle contraction biology. Importantly, this model can be easily adapted to study neuromuscular diseases and myopathies. PMID:28243520

  20. Epistasis among adaptive mutations in deer mouse hemoglobin.

    PubMed

    Natarajan, Chandrasekhar; Inoguchi, Noriko; Weber, Roy E; Fago, Angela; Moriyama, Hideaki; Storz, Jay F

    2013-06-14

    Epistatic interactions between mutant sites in the same protein can exert a strong influence on pathways of molecular evolution. We performed protein engineering experiments that revealed pervasive epistasis among segregating amino acid variants that contribute to adaptive functional variation in deer mouse hemoglobin (Hb). Amino acid mutations increased or decreased Hb-O2 affinity depending on the allelic state of other sites. Structural analysis revealed that epistasis for Hb-O2 affinity and allosteric regulatory control is attributable to indirect interactions between structurally remote sites. The prevalence of sign epistasis for fitness-related biochemical phenotypes has important implications for the evolutionary dynamics of protein polymorphism in natural populations.

  1. 42 CFR 68a.13 - Under what circumstances can the service or payment obligation be canceled, waived, or suspended?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... problems of a personal nature, such as a physical or mental disability or terminal illness in the immediate... 42 Public Health 1 2012-10-01 2012-10-01 false Under what circumstances can the service or payment obligation be canceled, waived, or suspended? 68a.13 Section 68a.13 Public Health PUBLIC HEALTH SERVICE...

  2. 42 CFR 68a.13 - Under what circumstances can the service or payment obligation be canceled, waived, or suspended?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... problems of a personal nature, such as a physical or mental disability or terminal illness in the immediate... 42 Public Health 1 2011-10-01 2011-10-01 false Under what circumstances can the service or payment obligation be canceled, waived, or suspended? 68a.13 Section 68a.13 Public Health PUBLIC HEALTH SERVICE...

  3. 26 CFR 31.3121(a)(13)-1 - Payments under certain employers' plans after retirement, disability, or death.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Payments under certain employers' plans after retirement, disability, or death. 31.3121(a)(13)-1 Section 31.3121(a)(13)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND COLLECTION OF INCOME TAX AT SOURCE EMPLOYMENT TAXES AND COLLECTION OF...

  4. 26 CFR 31.3401(a)(13)-1 - Remuneration for services performed by Peace Corps volunteers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Corps volunteers. 31.3401(a)(13)-1 Section 31.3401(a)(13)-1 Internal Revenue INTERNAL REVENUE SERVICE... Remuneration for services performed by Peace Corps volunteers. (a) Remuneration paid after September 22, 1961, for services performed as a volunteer or volunteer leader within the meaning of the Peace Corps Act...

  5. 26 CFR 31.3401(a)(13)-1 - Remuneration for services performed by Peace Corps volunteers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Corps volunteers. 31.3401(a)(13)-1 Section 31.3401(a)(13)-1 Internal Revenue INTERNAL REVENUE SERVICE... Remuneration for services performed by Peace Corps volunteers. (a) Remuneration paid after September 22, 1961, for services performed as a volunteer or volunteer leader within the meaning of the Peace Corps Act...

  6. 26 CFR 31.3401(a)(13)-1 - Remuneration for services performed by Peace Corps volunteers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Corps volunteers. 31.3401(a)(13)-1 Section 31.3401(a)(13)-1 Internal Revenue INTERNAL REVENUE SERVICE... Remuneration for services performed by Peace Corps volunteers. (a) Remuneration paid after September 22, 1961, for services performed as a volunteer or volunteer leader within the meaning of the Peace Corps Act...

  7. 42 CFR 68a.13 - Under what circumstances can the service or payment obligation be canceled, waived, or suspended?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... problems of a personal nature, such as a physical or mental disability or terminal illness in the immediate... 42 Public Health 1 2010-10-01 2010-10-01 false Under what circumstances can the service or payment obligation be canceled, waived, or suspended? 68a.13 Section 68a.13 Public Health PUBLIC HEALTH SERVICE...

  8. Deficiency of merosin in dystrophic dy mouse homologue of congenital muscular dystrophy

    SciTech Connect

    Sunada, Y.; Campbell, K.P.; Bernier, S.M.

    1994-09-01

    Merosin (laminin M chain) is the predominant laminin isoform in the basal lamina of striated muscle and peripheral nerve and is a native ligand for {alpha}-dystroglycan, a novel laminin receptor. Merosin is linked to the subsarcolemmal actin cytoskeleton via the dystrophin-glycoprotein complex (DGC), which plays an important role for maintenance of normal muscle function. We have mapped the mouse merosin gene, Lamm, to the region containing the dystrophia muscularis (dy) locus on chromosome 10. This suggested the possibility that a mutation in the merosin gene could be responsible for the dy mouse, an animal model for autosomal recessive muscular dystrophy,more » and prompted us to test this hypothesis. We analyzed the status of merosin expression in dy mouse by immunofluorescence and immunoblotting. In dy mouse skeletal and cardiac muscle and peripheral nerve, merosin was reduced greater than 90% as compared to control mice. However, the expression of laminin B1/B2 chains and collagen type IV was smaller to that in control mice. These findings strongly suggest that merosin deficiency may be the primary defect in the dy mouse. Furthermore, we have identified two patients afflicted with congenital muscular dystrophy with merosin deficiency, providing the basis for future studies of molecular pathogenesis and gene therapy.« less

  9. Omalizumab therapy in a 13-year-old boy with severe persistent asthma and concomitant eosinophilic esophagitis.

    PubMed

    Arasi, Stefania; Costa, Stefano; Magazzù, Giuseppe; Ieni, Antonio; Crisafulli, Giuseppe; Caminiti, Lucia; Chiera, Fernanda; Vaccaro, Mario; Del Giudice, Michele Miraglia; Pajno, Giovanni Battista

    2016-03-22

    Eosinophilic esophagitis (EoE) has been defined as "asthma of the esophagus" for the large number of similarities between the two diseases. Omalizumab is an anti-Immunoglobulin E (IgE) antibody currently approved only in allergic IgE-mediated severe persistent uncontrolled asthma and in chronic spontaneous urticaria unresponsive to antihistamines, but it has been tried in other diseases, too. We present herein the case of a 13-year-old boy, affected from preschool age by severe chronic allergic asthma poorly controlled despite a generous long-term therapy, and, since he was 8 years old, by eosinophilic esophagitis, responsive to courses of strict elimination diet and semi-elemental diet, even if very burdensome for his quality of life. At the age of 11.5 years, for inadequate asthma control, he started to receive therapy with omalizumab. After the first month and for the entire duration (18 months) of omalizumab treatment, asthma was well controlled, long-term conventional therapy was gradually withdrawn and lung- function improved. Concerning EoE, after an initial clinical but not histological remission during the first few months of treatment with omalizumab, the patient experienced an exacerbation of gastrointestinal symptoms. Therefore, he started treatment with topical steroids which was effective to improve gastrointestinal symptoms. However, EoE is still steroid-dependent. Currently, he continues both treatments: omalizumab for asthma and topical steroid for EoE. This case report confirms that omalizumab is an effective treatment in patients with severe persistent, uncontrolled asthma. On the other hand, in our patient it did not produce persistent improvement neither on symptoms nor on biopsy findings of EoE. The outcome of this case might indicate different pathogenic mechanism(s) of the two diseases.

  10. Mickey Mouse Spotted on Mercury!

    NASA Image and Video Library

    2012-06-15

    NASA image acquired: June 03, 2012 This scene is to the northwest of the recently named crater Magritte, in Mercury's south. The image is not map projected; the larger crater actually sits to the north of the two smaller ones. The shadowing helps define the striking "Mickey Mouse" resemblance, created by the accumulation of craters over Mercury's long geologic history. This image was acquired as part of MDIS's high-incidence-angle base map. The high-incidence-angle base map is a major mapping activity in MESSENGER's extended mission and complements the surface morphology base map of MESSENGER's primary mission that was acquired under generally more moderate incidence angles. High incidence angles, achieved when the Sun is near the horizon, result in long shadows that accentuate the small-scale topography of geologic features. The high-incidence-angle base map is being acquired with an average resolution of 200 meters/pixel. The MESSENGER spacecraft is the first ever to orbit the planet Mercury, and the spacecraft's seven scientific instruments and radio science investigation are unraveling the history and evolution of the Solar System's innermost planet. Visit the Why Mercury? section of this website to learn more about the key science questions that the MESSENGER mission is addressing. During the one-year primary mission, MESSENGER acquired 88,746 images and extensive other data sets. MESSENGER is now in a yearlong extended mission, during which plans call for the acquisition of more than 80,000 additional images to support MESSENGER's science goals. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency

  11. Avoiding Mouse Traps in Schizophrenia Genetics: Lessons and Promises from Current and Emerging Mouse Models

    PubMed Central

    Kvajo, Mirna; McKellar, Heather; Gogos, Joseph A.

    2011-01-01

    Schizophrenia is one of the most common psychiatric disorders, but despite progress in identifying the genetic factors implicated in its development, the mechanisms underlying its etiology and pathogenesis remain poorly understood. Development of mouse models is critical for expanding our understanding of the causes of schizophrenia. However, translation of disease pathology into mouse models has proven to be challenging, primarily due to the complex genetic architecture of schizophrenia and the difficulties in the recreation of susceptibility alleles in the mouse genome. In this review we highlight current research on models of major susceptibility loci and the information accrued from their analysis. We describe and compare the different approaches that are necessitated by diverse susceptibility alleles, and discuss their advantage and drawbacks. Finally, we discuss emerging mouse models, such as second-generation pathophysiology models based on innovative approaches that are facilitated by the information gathered from the current genetic mouse models. PMID:21821099

  12. Connecting Stellar Substructures to the Oscillating Disk: Monoceros and A13

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson; Tzanidakis, Anastasios; Johnston, Kathryn; Price-Whelan, Adrian

    2018-01-01

    Recent observations of stellar substructures in the Milky Way have challenged our view of where the traditional disk ends. By assessing the stellar populations in a stellar feature, particularly the fraction of RR Lyrae to M giant stars, an accretion scenario can be ruled out in favor of a kicked-out disk origin. A more definitive distinction can be made with the inclusion of high-resolution abundances. I will present evidence that two low latitude stellar substructures, the Monoceros Ring and A13, originated in the Galactic disk and were kicked out to their current location, in the outer regions of the stellar disk, due to a dynamic perturbation to the disk.

  13. Recidivism among child sexual abusers: initial results of a 13-year longitudinal random sample.

    PubMed

    Patrick, Steven; Marsh, Robert

    2009-01-01

    In the initial analysis of data from a random sample of all those charged with child sexual abuse in Idaho over a 13-year period, only one predictive variable was found that related to recidivism of those convicted. Variables such as ethnicity, relationship, gender, and age differences did not show a significant or even large association with recidivism. The only variable that seemed to show both a significant and almost moderate association to recidivism was the Risk Assessment in the Sex Offender Evaluation reoffense. Comparisons were made to prior research as well as a discussion of implications of the sex offender evaluation for the legal process. Finally, a call for the continued need for further research is discussed.

  14. Genotoxicity of 3-nitrobenzanthrone and 3-aminobenzanthrone in MutaMouse and lung epithelial cells derived from MutaMouse.

    PubMed

    Arlt, Volker M; Gingerich, John; Schmeiser, Heinz H; Phillips, David H; Douglas, George R; White, Paul A

    2008-11-01

    FE1 lung epithelial cells derived from MutaMouse are a new model system to provide in vitro mutagenicity data with the potential to predict the outcome of an in vivo MutaMouse test. 3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen identified in diesel exhaust and urban air pollution. We investigated the mutagenicity and DNA binding of 3-NBA and its main metabolite 3-aminobenzanthrone (3-ABA) in vitro and in vivo in the MutaMouse assay. Mice were treated with 3-NBA or 3-ABA (0, 2 or 5 mg/kg body weight/day) by gavage for 28 days and 28 days later lacZ mutant frequency (MF) was determined in liver, lung and bone marrow. For both compounds, dose-related increases in MF were seen in liver and bone marrow, but not in lung; mutagenic activity was approximately 2-fold lower for 3-ABA than for 3-NBA. With 3-NBA, highest DNA adduct levels (measured by (32)P-post-labelling) were found in liver (approximately 230 adducts per 10(8) nucleotides) with levels 20- to 40-fold lower in bone marrow and lung. With 3-ABA, DNA adduct levels were again highest in the liver, but approximately 4-fold lower than for 3-NBA. FE1 cells were exposed to up to 10 microg/ml 3-NBA or 3-ABA for 6 h with or without exogenous activation (S9) and harvested after 3 days. For 3-NBA, there was a dose-related increase in MF both with and without S9 mix, which was >10 times higher than observed in vivo. At the highest concentration of 3-ABA (10 microg/ml), we found only around a 2-fold increase in MF relative to controls. DNA adduct formation in FE1 cells was dose-dependent for both compounds, but 10- to 20-fold higher for 3-NBA compared to 3-ABA. Collectively, our data indicate that MutaMouse FE1 cells are well suited for cost-effective testing of suspected mutagens with different metabolic activation pathways as a guide for subsequent in vivo MutaMouse testing.

  15. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    NASA Technical Reports Server (NTRS)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  16. Pathology of Mouse Models of Accelerated Aging.

    PubMed

    Harkema, L; Youssef, S A; de Bruin, A

    2016-03-01

    Progeroid mouse models display phenotypes in multiple organ systems that suggest premature aging and resemble features of natural aging of both mice and humans. The prospect of a significant increase in the global elderly population within the next decades has led to the emergence of "geroscience," which aims at elucidating the molecular mechanisms involved in aging. Progeroid mouse models are frequently used in geroscience as they provide insight into the molecular mechanisms that are involved in the highly complex process of natural aging. This review provides an overview of the most commonly reported nonneoplastic macroscopic and microscopic pathologic findings in progeroid mouse models (eg, osteoporosis, osteoarthritis, degenerative joint disease, intervertebral disc degeneration, kyphosis, sarcopenia, cutaneous atrophy, wound healing, hair loss, alopecia, lymphoid atrophy, cataract, corneal endothelial dystrophy, retinal degenerative diseases, and vascular remodeling). Furthermore, several shortcomings in pathologic analysis and descriptions of these models are discussed. Progeroid mouse models are valuable models for aging, but thorough knowledge of both the mouse strain background and the progeria-related phenotype is required to guide interpretation and translation of the pathology data. © The Author(s) 2016.

  17. A Deformable Atlas of the Laboratory Mouse

    PubMed Central

    Wang, Hongkai; Stout, David B.; Chatziioannou, Arion F.

    2015-01-01

    Purpose This paper presents a deformable mouse atlas of the laboratory mouse anatomy. This atlas is fully articulated and can be positioned into arbitrary body poses. The atlas can also adapt body weight by changing body length and fat amount. Procedures A training set of 103 micro-CT images was used to construct the atlas. A cage-based deformation method was applied to realize the articulated pose change. The weight-related body deformation was learned from the training set using a linear regression method. A conditional Gaussian model and thin-plate spline mapping were used to deform the internal organs following the changes of pose and weight. Results The atlas was deformed into different body poses and weights, and the deformation results were more realistic compared to the results achieved with other mouse atlases. The organ weights of this atlas matched well with the measurements of real mouse organ weights. This atlas can also be converted into voxelized images with labeled organs, pseudo CT images and tetrahedral mesh for phantom studies. Conclusions With the unique ability of articulated pose and weight changes, the deformable laboratory mouse atlas can become a valuable tool for preclinical image analysis. PMID:25049072

  18. A novel transgenic mouse model carrying human Tribbles related protein 3 (TRB3) gene and its site specific phenotype.

    PubMed

    Sakai, Yuto; Fukamachi, Katsumi; Futakuchi, Mitsuru; Miyoshi, Ichiro; Tsuda, Hiroyuki; Suzui, Masumi; Hayashi, Hidetoshi

    2014-01-01

    Tribbles related protein 3 (TRB3) pseudokinase plays a crucial role in cell proliferation, migration and morphogenesis during development. In our recent study, an introduction of human TRB3 gene into mouse mammary tumor cells caused an increase of proliferation of tumor cells and their nuclear size. In the current study, to examine whether this gene causes de novo morphological changes in a specific organ site we have developed a novel variation of the transgenic mouse model that conditionally expresses human TRB3 (hTRB3) gene using Cre-recombinase (Cre)/loxP recombination system. By injecting hTRB3 transgene construct into pronuclei of mouse embryo, we eventually obtained four hTRB3 mice. The gene expression was controlled by infection of adenovirus-expressing Cre via the tail vein of hTRB3 mouse. In Cre-mediated hTRB3 mouse, expression of the hTRB3 protein was detected in the cytoplasm of hepatocytes in the liver. Expression of this protein was also seen in lymphocytes in the spleen, glomerular endothelial cells, and epithelial cells of collecting duct of the kidney. In hepatocytes of the hTRB3 mouse, nuclear size was significantly greater than that of the wild type mouse, indicating that hTRB3 can play a role at least in part in hepatic morphogenesis. The present animal model may provide a system for evaluation of de novo morphological changes induced by a specific transgene in a specific organ site.

  19. Backbone chemical shift assignments of mouse HOXA13 DNA binding domain bound to duplex DNA

    PubMed Central

    Zhang, Yonghong; Thornburg, Chelsea K.; Stadler, H. Scott

    2010-01-01

    The homeobox gene (Hoxa13) codes for a transcription factor protein that binds to AT-rich DNA sequences and controls expression of many important proteins during embryonic morphogenesis. We report complete backbone NMR chemical shift assignments of mouse Hoxa13 DNA binding domain bound to an 11-residue DNA duplex (BMRB no. 16577). PMID:20232265

  20. Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis.

    PubMed

    Nafisi, Majse; Goregaoker, Sameer; Botanga, Christopher J; Glawischnig, Erich; Olsen, Carl E; Halkier, Barbara A; Glazebrook, Jane

    2007-06-01

    Camalexin (3-thiazol-2-yl-indole) is an indole alkaloid phytoalexin produced by Arabidopsis thaliana that is thought to be important for resistance to necrotrophic fungal pathogens, such as Alternaria brassicicola and Botrytis cinerea. It is produced from Trp, which is converted to indole acetaldoxime (IAOx) by the action of cytochrome P450 monooxygenases CYP79B2 and CYP79B3. The remaining biosynthetic steps are unknown except for the last step, which is conversion of dihydrocamalexic acid to camalexin by CYP71B15 (PAD3). This article reports characterization of CYP71A13. Plants carrying cyp71A13 mutations produce greatly reduced amounts of camalexin after infection by Pseudomonas syringae or A. brassicicola and are susceptible to A. brassicicola, as are pad3 and cyp79B2 cyp79B3 mutants. Expression levels of CYP71A13 and PAD3 are coregulated. CYP71A13 expressed in Escherichia coli converted IAOx to indole-3-acetonitrile (IAN). Expression of CYP79B2 and CYP71A13 in Nicotiana benthamiana resulted in conversion of Trp to IAN. Exogenously supplied IAN restored camalexin production in cyp71A13 mutant plants. Together, these results lead to the conclusion that CYP71A13 catalyzes the conversion of IAOx to IAN in camalexin synthesis and provide further support for the role of camalexin in resistance to A. brassicicola.

  1. Arabidopsis Cytochrome P450 Monooxygenase 71A13 Catalyzes the Conversion of Indole-3-Acetaldoxime in Camalexin Synthesis[W

    PubMed Central

    Nafisi, Majse; Goregaoker, Sameer; Botanga, Christopher J.; Glawischnig, Erich; Olsen, Carl E.; Halkier, Barbara A.; Glazebrook, Jane

    2007-01-01

    Camalexin (3-thiazol-2-yl-indole) is an indole alkaloid phytoalexin produced by Arabidopsis thaliana that is thought to be important for resistance to necrotrophic fungal pathogens, such as Alternaria brassicicola and Botrytis cinerea. It is produced from Trp, which is converted to indole acetaldoxime (IAOx) by the action of cytochrome P450 monooxygenases CYP79B2 and CYP79B3. The remaining biosynthetic steps are unknown except for the last step, which is conversion of dihydrocamalexic acid to camalexin by CYP71B15 (PAD3). This article reports characterization of CYP71A13. Plants carrying cyp71A13 mutations produce greatly reduced amounts of camalexin after infection by Pseudomonas syringae or A. brassicicola and are susceptible to A. brassicicola, as are pad3 and cyp79B2 cyp79B3 mutants. Expression levels of CYP71A13 and PAD3 are coregulated. CYP71A13 expressed in Escherichia coli converted IAOx to indole-3-acetonitrile (IAN). Expression of CYP79B2 and CYP71A13 in Nicotiana benthamiana resulted in conversion of Trp to IAN. Exogenously supplied IAN restored camalexin production in cyp71A13 mutant plants. Together, these results lead to the conclusion that CYP71A13 catalyzes the conversion of IAOx to IAN in camalexin synthesis and provide further support for the role of camalexin in resistance to A. brassicicola. PMID:17573535

  2. Development of the mouse vestibular system in the absence of gravity perception

    NASA Technical Reports Server (NTRS)

    Smith, Michael; Yuan Wang, Xiang; Wolgemuth, Debra J.; Murashov, Alexander K.

    2003-01-01

    The tilted mutant mouse, which lacks otoconia in the inner ear, was used to study development of the mouse vestibular system in the absence of gravity perception. Otoconia are dense particles composed of proteins and calcium carbonate crystals suspended in the gelatinous macular membrane. They enhance, and are largely responsible for, sensitivity to gravity. Morphometric analysis of the vestibular ganglion showed that the mutant developed more slowly than the normal controls, both in rate of development and cell number, particularly during the first week of post-natal development. The mutant ganglia also exhibited a reduction of cells during the first 6 days of post-natal development.

  3. Gene editing in mouse zygotes using the CRISPR/Cas9 system.

    PubMed

    Wefers, Benedikt; Bashir, Sanum; Rossius, Jana; Wurst, Wolfgang; Kühn, Ralf

    2017-05-15

    The generation of targeted mouse mutants is a key technology for biomedical research. Using the CRISPR/Cas9 system for induction of targeted double-strand breaks, gene editing can be performed in a single step directly in mouse zygotes. This article covers the design of knockout and knockin alleles, preparation of reagents, microinjection or electroporation of zygotes and the genotyping of pups derived from gene editing projects. In addition we include a section for the control of experimental settings by targeting the Rosa26 locus and PCR based genotyping of blastocysts. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of Proparacaine in a Mouse Model of Allergic Rhinitis.

    PubMed

    Kim, Hwan Soo; Won, Sulmui; Lee, Eu Kyoung; Chun, Yoon Hong; Yoon, Jong-Seo; Kim, Jin Tack; Kim, Hyun Hee

    2017-12-01

    Lidocaine, a local anaesthetic is a treatment option in uncontrolled asthma due to its immunomodulatory effects. In the present study, proparacaine (PPC), a derivative of lidocaine was examined for its therapeutic application in a mouse model of allergic rhinitis. The mice were grouped into 4 groups: control group, allergic rhinitis (AR) group, ciclesonide (CIC) group, and PPC group. Nasal symptom scores, eosinophil counts, goblet cell counts, and mast cells counts in the nasal mucosa were measured. Serum ovalbumin (OVA)-specific immunoglobulin (Ig) E, OVA-specific IgG1, OVA-specific IgG2a, interleukin (IL)-4, IL-5, and cortisol levels were measured. Intranasal administration of PPC significantly decreased nasal symptoms, number of eosinophils, goblet cells, and mast cells in the lamina propria of the nasal mucosa. Serum OVA-specific IgE, OVA-specific IgG1, OVA-specific IgG2a was significantly higher in the AR compared with the control group. Serum level of IL-4 was significantly lower in the CIC group and PPC group in comparison with AR group. Serum IL-5 showed no significant difference among all groups. No significant difference in serum cortisol levels was observed among the 4 groups. PPC appears to have a therapeutic potential in treatment of allergic rhinitis in a mouse model by reducing eosinophil, goblet cell, and mast cell infiltration in the nasal mucosa.

  5. Manganese Accumulation in the Mouse Ear Following Systemic Exposure

    PubMed Central

    Ma, Ci; Schneider, Scott N.; Miller, Marian; Nebert, Daniel W.; Lind, Caroline; Roda, Sandy M.; Afton, Scott E.; Caruso, Joseph A.; Genter, Mary Beth

    2009-01-01

    There is evidence in human populations that exposure to manganese (Mn), or Mn in combination with excessive noise exposure, results in hearing loss. Quantitative reverse-transcriptase polymerase chain reaction revealed expression of the metal transporters DMT1, ZIP8, and ZIP14 in control mouse ears. ZIP8 is known to have a high affinity (Km = 2.2 μM) for Mn transport, and ZIP8 protein was localized to the blood vessels of the ear by immunohistochemistry. We treated mice (strains C57BL/6J and DBA/2J) with Mn (100 mg/kg MnCl2, by subcutaneous injection, on three alternating days), and Mn was significantly elevated in the ears of the treated mice. Mn concentrations remained elevated over controls for at least 2 weeks after treatment. These studies demonstrate that metal transporters are present in the mouse ear and that Mn can accumulate in the ear following systemic exposure. Future studies should focus on whether Mn exposure is associated with hearing deficits. PMID:18972394

  6. Mouse embryo attachment to substratum and interaction of trophoblast with cultured cells

    SciTech Connect

    Glass, R.H.; Spindle, A.I.; Pedersen, R.A.

    1979-06-01

    Hatching, attachment, and trophoblast outgrowth of mouse embryos in vitro were examined as a model for implantation. Mouse embryos attached and grew out on glass cover slips that were partially covered with cultured mouse cells (L cells, liver cells, transformed JLS-V11 cells, and teratocarcinoma cells). Scanning electron microscopy showed that processes of these cells made contact with trophoblast, but there was no evidence of cell lysis or of phagocytosis of the cells by trophoblast. Time-lapse cinematography showed that after contact the cultured mouse cells retracted from the trophoblast, which then spread into the areas vacated by those cells. This suggestsmore » a means by which the trophoblast gains entry into the endometrium without destruction of maternal cells. Neuraminidase (100 or 250 units/ml) had no effect on attachment of mouse embryos to glass. However, attachment was inhibited by trypsin at concentrations of 0.25%, 0.025%, and 0.0025%. Treatment of early blastocysts with diazooxo-norleucine, an inhibitor of glycoprotein synthesis, decreased the number of embryos hatching from the zona pellucida; treatment at the late blastocyst stage decreased hatching to a lesser extent. Among the late blastocysts that did hatch, the number forming trophoblast outgrowths was lower than in controls. These results suggest that glycoproteins may be of importance for embryo hatching, attachment, and outgrowth.« less

  7. Cerebellar deficient folia (cdf): a new mutation on mouse chromosome 6.

    PubMed

    Cook, S A; Bronson, R T; Donahue, L R; Ben-Arie, N; Davisson, M T

    1997-02-01

    Cerebellar deficient folia, cdf, is a spontaneous autosomal recessive mutation in the mouse with unique pathology; the cerebellar cortex of the cdf/cdf mouse has only 7 folia instead of 10, which is the normal count for the C3H/HeJ strain in which this mutation arose. The cerebellum of the cdf/cdf mouse is hypoplastic and contains mineral deposits in the ventral vermis that are not present in controls. We used an intersubspecific intercross between C3H/HeSnJ-cdf/+ and Mus musculus castaneus (CAST/Ei) to map the cdf mutation to Chromosome (Chr) 6. The most likely gene order is D6Mit16-(cdf, D6Mit3)-D6Mit70-D6Mit29-D6Mit32, which positions cdf distal to lurcher (Lc) and proximal to motor neuron degeneration 2 (mnd2). The definitive visible phenotypes and histopathologies of cdf, Lc, and mnd2 support our mapping evidence that cdf is a distinct gene. The novel pathology of cdf should help elucidate the complicated process of cerebellar folia patterning and development. cdf recombined with mouse atonal homolog 1, Math1, the mouse homolog of the Drosophila atonal gene.

  8. Comprehensive transcriptome analysis of mouse embryonic stem cell adipogenesis unravels new processes of adipocyte development

    PubMed Central

    2010-01-01

    Background The current epidemic of obesity has caused a surge of interest in the study of adipose tissue formation. While major progress has been made in defining the molecular networks that control adipocyte terminal differentiation, the early steps of adipocyte development and the embryonic origin of this lineage remain largely unknown. Results Here we performed genome-wide analysis of gene expression during adipogenesis of mouse embryonic stem cells (ESCs). We then pursued comprehensive bioinformatic analyses, including de novo functional annotation and curation of the generated data within the context of biological pathways, to uncover novel biological functions associated with the early steps of adipocyte development. By combining in-depth gene regulation studies and in silico analysis of transcription factor binding site enrichment, we also provide insights into the transcriptional networks that might govern these early steps. Conclusions This study supports several biological findings: firstly, adipocyte development in mouse ESCs is coupled to blood vessel morphogenesis and neural development, just as it is during mouse development. Secondly, the early steps of adipocyte formation involve major changes in signaling and transcriptional networks. A large proportion of the transcription factors that we uncovered in mouse ESCs are also expressed in the mouse embryonic mesenchyme and in adipose tissues, demonstrating the power of our approach to probe for genes associated with early developmental processes on a genome-wide scale. Finally, we reveal a plethora of novel candidate genes for adipocyte development and present a unique resource that can be further explored in functional assays. PMID:20678241

  9. Carbonic anhydrases and their functional differences in human and mouse sperm physiology.

    PubMed

    José, O; Torres-Rodríguez, P; Forero-Quintero, L S; Chávez, J C; De la Vega-Beltrán, J L; Carta, F; Supuran, C T; Deitmer, J W; Treviño, C L

    2015-12-25

    Fertilization is a key reproductive event in which sperm and egg fuse to generate a new individual. Proper regulation of certain parameters (such as intracellular pH) is crucial for this process. Carbonic anhydrases (CAs) are among the molecular entities that control intracellular pH dynamics in most cells. Unfortunately, little is known about the function of CAs in mammalian sperm physiology. For this reason, we re-explored the expression of CAI, II, IV and XIII in human and mouse sperm. We also measured the level of CA activity, determined by mass spectrometry, and found that it is similar in non-capacitated and capacitated mouse sperm. Importantly, we found that CAII activity accounts for half of the total CA activity in capacitated mouse sperm. Using the general CA inhibitor ethoxyzolamide, we studied how CAs participate in fundamental sperm physiological processes such as motility and acrosome reaction in both species. We found that capacitated human sperm depend strongly on CA activity to support normal motility, while capacitated mouse sperm do not. Finally, we found that CA inhibition increases the acrosome reaction in capacitated human sperm, but not in capacitated mouse sperm. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Using Genetic Mouse Models to Gain Insight into Glaucoma: Past Results and Future Possibilities

    PubMed Central

    Fernandes, Kimberly A.; Harder, Jeffrey M.; Williams, Pete A.; Rausch, Rebecca L.; Kiernan, Amy E.; Nair, K. Saidas; Anderson, Michael G.; John, Simon W.; Howell, Gareth R.; Libby, Richard T.

    2015-01-01

    While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed. PMID:26116903

  11. CARDIOVASCULAR RESPONSES TO ELECTRICAL STIMULATION OF SYMPATHETIC NERVES IN THE PITHED MOUSE

    PubMed Central

    Elayan, Hamzeh H.; Sun, Ping; Milic, Milos; Liu, Fujun; Bao, Xuping; Ziegler., Michael G.

    2008-01-01

    The pithed rat model has been used extensively to study peripheral cardiovascular responses to electrical stimulation of the sympathetic nervous system, as pithing eliminates central and reflex effects. However, since the transgenic mouse has become a standard and economical model organism, an electrically stimulated pithed mouse would facilitate a variety of studies. We have developed surgical techniques, drug doses and stimulation parameters for an electrically stimulated pithed mouse to study peripheral sympathetic nerve effects on blood pressure. Similar to the pithed rat, the pithed mouse showed voltage and frequency-dependent blood pressure responses to a pulsed train of electrical stimuli. In addition, α-adrenergic stimulation with phenylephrine gave a marked systolic pressor response, while the β2 agonist salbutamol lowered diastolic blood pressure. Furthermore, pithed transgenic mice unable to synthesize catecholamines in adrenergic cells displayed smaller pressor responses than pithed control mice. In summary, the electrically stimulated pithed mouse can be used to study peripheral effects of the sympathetic system on cardiovascular dynamics unencumbered by central responses. PMID:18407806

  12. Mouse Sperm Cryopreservation and Recovery using the I·Cryo Kit

    PubMed Central

    Liu, Ling; Sansing, Steven R.; Morse, Iva S.; Pritchett-Corning, Kathleen R.

    2011-01-01

    Thousands of new genetically modified (GM) strains of mice have been created since the advent of transgenesis and knockout technologies. Many of these valuable animals exist only as live animals, with no backup plan in case of emergency. Cryopreservation of embryos can provide this backup, but is costly, can be a lengthy procedure, and generally requires a large number of animals for success. Since the discovery that mouse sperm can be successfully cryopreserved with a basic cryoprotective agent (CPA) consisting of 18% raffinose and 3% skim milk, sperm cryopreservation has become an acceptable and cost-effective procedure for archiving, distributing and recovery of these valuable strains. Here we demonstrate a newly developed I•Cryo kit for mouse sperm cryopreservation. Sperm from five commonly-used strains of inbred mice were frozen using this kit and then recovered. Higher protection ratios of sperm motility (> 60%) and rapid progressive motility (> 45%) compared to the control (basic CPA) were seen for sperm frozen with this kit in 5 inbred mouse strains. Two cell stage embryo development after IVF with the recovered sperm was improved consistently in all 5 mouse strains examined. Over a 1.5 year period, 49 GM mouse lines were archived by sperm cryopreservation with the I•Cryo kit and later recovered by IVF. PMID:22214993

  13. A Versatile Protocol for Studying Calvarial Bone Defect Healing in a Mouse Model.

    PubMed

    Samsonraj, Rebekah M; Dudakovic, Amel; Zan, Pengfei; Pichurin, Oksana; Cool, Simon M; van Wijnen, Andre J

    2017-11-01

    Animal models are vital tools for the preclinical development and testing of therapies aimed at providing solutions for several musculoskeletal disorders. For bone tissue engineering strategies addressing nonunion conditions, rodent models are particularly useful for studying bone healing in a controlled environment. The mouse calvarial defect model permits evaluation of drug, growth factor, or cell transplantation efficacy, together with offering the benefit of utilizing genetic models to study intramembranous bone formation within defect sites. In this study, we describe a detailed methodology for creating calvarial defects in mouse and present our results on bone morphogenetic protein-2-loaded fibrin scaffolds, thus advocating the utility of this functional orthotopic mouse model for the evaluation of therapeutic interventions (such as growth factors or cells) intended for successful bone regeneration therapies.

  14. [Effect of Tribulus terrestris extract on melanocyte-stimulating hormone expression in mouse hair follicles].

    PubMed

    Yang, Liu; Lu, Jian-wei; An, Jing; Jiang, Xuan

    2006-12-01

    To observe the effect of Tribulus terrestris extract on melanocyte stimulating hormone (MSH) expression in C57BL/6J mouse hair follicles, and investigate the role of Tribulus terrestris extract in activation, proliferation, epidermal migration of dormant hair follicle melanocytes. The aqueous extract of Tribulus terrestris was administered orally in specific pathogen-free C57BL/6J mouse at the daily dose equivalent to 1 g/1 kg in adult human, and the expression and distribution of MSH in the mouse hair follicles was observed with immunohistochemistry. The positivity rate of MSH expression in the hair follicle melanocytes was 75% in mice treated with the extract, significantly higher than the rate of only 18.75% in the control group (P<0.01). The aqueous extract of Tribulus terrestris can significantly increase MSH expression in the hair follicle melanocytes by activating tyrosinase activity and promoting melanocyte proliferation, melanine synthesis, and epidermal migration of dormant melanocytes.

  15. Fluorescent labeling of both GABAergic and glycinergic neurons in vesicular GABA transporter (VGAT)-venus transgenic mouse.

    PubMed

    Wang, Y; Kakizaki, T; Sakagami, H; Saito, K; Ebihara, S; Kato, M; Hirabayashi, M; Saito, Y; Furuya, N; Yanagawa, Y

    2009-12-15

    Inhibitory neurons play important roles in a number of brain functions. They are composed of GABAergic neurons and glycinergic neurons, and vesicular GABA transporter (VGAT) is specifically expressed in these neurons. Since the inhibitory neurons are scattered around in the CNS, it is difficult to identify these cells in living brain preparations. The glutamate decarboxylase (GAD) 67-GFP knock-in mouse has been widely used for the identification of GABAergic neurons, but their GAD67 expression was decreased compared to the wild-type mice. To overcome such a problem and to highlight the function and morphology of inhibitory neurons, we generated four lines of VGAT-Venus transgenic mice (lines #04, #29, #39 and #49) expressing Venus fluorescent protein under the control of mouse VGAT promoter. We found higher expression level of Venus transcripts and proteins as well as brighter fluorescent signal in line #39 mouse brains, compared to brains of other lines examined. By Western blots and spectrofluorometric measurements of forebrain, the line #39 mouse showed stronger GFP immunoreactivity and brighter fluorescent intensity than the GAD67-GFP knock-in mouse. In addition, Venus was present not only in somata, but also in neurites in the line #39 mouse by histological studies. In situ hybridization analysis showed that the expression pattern of Venus in the line #39 mouse was similar to that of endogenous VGAT. Double immunostaining analysis in line #39 mouse showed that Venus-expressing cells are primarily immunoreactive for GABA in cerebral cortex, hippocampus and cerebellar cortex and for GABA or glycine in dorsal cochlear nucleus. These results demonstrate that the VGAT-Venus line #39 mouse should be useful for studies on function and morphology of inhibitory neurons in the CNS.

  16. Gyroscope-Driven Mouse Pointer with an EMOTIV® EEG Headset and Data Analysis Based on Empirical Mode Decomposition

    PubMed Central

    Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos

    2013-01-01

    This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented. PMID:23948873

  17. Gyroscope-driven mouse pointer with an EMOTIV® EEG headset and data analysis based on Empirical Mode Decomposition.

    PubMed

    Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos

    2013-08-14

    This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented.

  18. Triterpene glycosides from the sea cucumber Eupentacta fraudatrix. Structure and cytotoxic action of cucumariosides A2, A7, A9, A10, an, A13 and A14, seven new minor non-sulfated tetraosides and an aglycone with an uncommon 18-hydroxy group.

    PubMed

    Silchenko, Alexandra S; Kalinovsky, Anatoly I; Avilov, Sergey A; Andryjaschenko, Pelageya V; Dmitrenok, Pavel S; Martyyas, Ekaterina A; Kalinin, Vladimir I

    2012-07-01

    Seven new minor triterpene glycosides, cucumariosides A2 (1), A7 (2), A9 (3), A10 (4), A11 (5), A13 (6) and A14 (7) have been isolated from the Far Eastern sea cucumber Eupentacta fraudatrix. Structures of the glycosides were elucidated by 2D NMR spectroscopy and MS. Glycosides 1-7 belong to the group of cucumariosides A, having linear tetrasaccharide carbohydrate moieties without any sulfate group and possessing 3-O-methyl-D-xylose as a terminal monosaccharide unit. Glycosides 1, 2, 5-7 differ from each other in side chain structures in aglycone moieties, while cucumarioside A10 (4) has a 23,24,25,26,27-pentanorlanostane aglycone with 18(16)-lactone. Cucumarioside A9 (3), having an uncommon 18-hydroxy group, is the second representative of the unique metabolically active glycosides that are regarded as intermediates of glycoside biosynthesis in sea cucumbers. Cytotoxic activities of glycosides 1-7 and cucumarioside A8 (8) against mouse spleen lymphocytes and the cells of the ascite form of mouse Ehrlich carcinoma, along with hemolytic activity against mouse erythrocytes and antifungal activity were studied. Cucumariosides A2 (1), A8 (8) and A13 (6) demonstrated high hemolytic activities. Glycosides 1, 4 and 6 showed moderate cytotoxic activity. Only cucumarioside A8 (8), having an 18-oxymethylene group and a 24(25)-double bond, was very active in all the tests.

  19. Successful endovascular treatment of a 13-month-old child with gastrointestinal bleeding due to Dieulafoy syndrome of duodenum.

    PubMed

    Komissarov, Igor Alexeevich; Borisova, Natalia Alexandrovna; Komissarov, Michail Igorevich; Aleshin, Ivan Jurievich

    2018-06-01

    Dieulafoy disease can manifest itself with spontaneous massive recurrent gastrointestinal bleeding in children. We report a case of successful management of a 13-month-old child with Dieulafoy disease of duodenum when traditional methods of examination and treatment failed.

  20. Orthostatic intolerance during a 13-day bed rest does not result from increased leg compliance

    NASA Technical Reports Server (NTRS)

    Melchior, Francois M.; Fortney, Suzanne M.

    1993-01-01

    Increased leg compliance (LC) has been proposed as a mechanism for orthostatic intolerance after spaceflight or bed rest. Using venous occlusion plethysmography with mercury-in-Silastic strain gauge, we evaluated LC before, during, and after a 13-day head-down bed rest in 10 men. LC was measured by the relationship between the increased calf areas at thigh cuff occlusions of 20, 30, 50, 70, and 80 mmHg. Orthostatic tolerance was evaluated by a presyncopal-limited lower body negative pressure test before and after bed rest. The 10 subjects were divided into TOL (n= 5) and INT (n=5) groups for which the orthostatic tolerance was similar and lower after bed rest, respectively. For TOL (INT) before bed rest, calf area increases were 2.2 +/- 0.5 (SE) (1.3 +/- 0.4), 3.5 +/- 0.7 (2.3 +/- 0.5), 5.0 +/- 0.9 (3.5 +/- 0.6), 5.6 +/- 0.9 (4.4 +/- 0.6), and 6.4 +/- 1.1 (4.7 +/- 0.6) sq cm for thigh occlusion pressures of 20, 30, 50, 70, and 80 mmHg, respectively. Neither for INT nor for TOL were these results significantly changed by bed rest. These results suggest that other mechanisms than increased LC have to be taken into account to explain the decreased orthostatic tolerance induced by this 13-day bed rest.

  1. Austenite Formation from Martensite in a 13Cr6Ni2Mo Supermartensitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Bojack, A.; Zhao, L.; Morris, P. F.; Sietsma, J.

    2016-05-01

    The influence of austenitization treatment of a 13Cr6Ni2Mo supermartensitic stainless steel (X2CrNiMoV13-5-2) on austenite formation during reheating and on the fraction of austenite retained after tempering treatment is measured and analyzed. The results show the formation of austenite in two stages. This is probably due to inhomogeneous distribution of the austenite-stabilizing elements Ni and Mn, resulting from their slow diffusion from martensite into austenite and carbide and nitride dissolution during the second, higher temperature, stage. A better homogenization of the material causes an increase in the transformation temperatures for the martensite-to-austenite transformation and a lower retained austenite fraction with less variability after tempering. Furthermore, the martensite-to-austenite transformation was found to be incomplete at the target temperature of 1223 K (950 °C), which is influenced by the previous austenitization treatment and the heating rate. The activation energy for martensite-to-austenite transformation was determined by a modified Kissinger equation to be approximately 400 and 500 kJ/mol for the first and the second stages of transformation, respectively. Both values are much higher than the activation energy found during isothermal treatment in a previous study and are believed to be effective activation energies comprising the activation energies of both mechanisms involved, i.e., nucleation and growth.

  2. Trends of Bacterial Keratitis Culture Isolates in Jerusalem; a 13- Years Analysis

    PubMed Central

    Politis, Michael; Wajnsztajn, Denise; Rosin, Boris; Block, Colin; Solomon, Abraham

    2016-01-01

    Purpose To describe the trends in pathogens and antibacterial resistance of corneal culture isolates in infectious keratitis during a period of 13 years at Hadassah-Hebrew University Medical Center. Methods A Retrospective analysis of bacterial corneal isolates was performed during the months of January 2002 to December 2014 at Hadassah Hebrew University Medical Center. Demographics, microbiological data and antibiotic resistance and sensitivity were collected. Results A total of 943 corneal isolates were analyzed during a 13 year period. A total of 415 positive bacterial cultures and 37 positive fungal cultures were recovered, representing 48% of the total cultures. The Annual incidence was 34.78 ± 6.54 cases. The most common isolate was coagulase-negative staphylococcus (32%), which had a significant decrease in trend throughout the study period (APC = -8.1, p = 0.002). Methicillin-resistant Staphylococcus aureus (MRSA) appears to have a decrease trend (APC = -31.2, P = 0.5). There was an increase in the resistance trend of coagulase-negative staphylococci to penicillin (APC = 5.0, P = <0.001). None of the pathogens had developed any resistance to Vancomycin. (P = 0.88). Conclusions Coagulase negative staphylococci were the predominant bacteria isolated from patients with keratitis. There was no significant change in the annual incidence of cases of bacterial keratitis seen over the past 13 years. Keratitis caused by MRSA appeared to decrease in contrast to the reported literature. PMID:27893743

  3. The adverse consequences of pyoderma gangrenosum in a 13 year old child

    PubMed Central

    Lambropoulos, Vassilis; Patsatsi, Aikaterini; Tsona, Afroditi; Papakonstantinou, Antonios; Filippopoulos, Antonios; Sotiriadis, Dimitrios

    2011-01-01

    Introduction Pyoderma gangrenosum (PG) is an uncommon, but serious, non infectious, neutrophilic dermatosis that causes cutaneous necrosis with a characteristically rapid evolution. Presentation of case A 13 year-old girl was admitted with a postoperative infected wound, which was surgically debrided. A new more aggressive lesion on the left upper extremity led the patient to the intensive care unit. Clinical diagnosis of pyoderma gangrenosum was introduced with a crucial delay. An immediate clinical improvement after immunosuppressive therapy with systemic corticosteroids and cyclosporine was observed. The extensive cutaneous deficits were covered with keratinocyte cultured cells with an aesthetically good outcome. Discussion Diagnosis of PG in young children is very difficult, especially without dermatological evaluation. This deforming ulcerative skin disease is probably a result of altered immunologic reactivity. Its early recognition may prevent unnecessary surgical treatment which leads to dangerous complications. Conclusion To our knowledge this is the first case of PG with such a widespread distribution reported in a child, as a consequence of iatrogenic pathergy. PMID:22096733

  4. Evaluation of a [13C]-Dextromethorphan Breath Test to Assess CYP2D6 Phenotype

    PubMed Central

    Leeder, J. Steven; Pearce, Robin E.; Gaedigk, Andrea; Modak, Anil; Rosen, David I.

    2016-01-01

    A [13C]-dextromethorphan ([13C]-DM) breath test was evaluated to assess its feasibility as a rapid, phenotyping assay for CYP2D6 activity. [13C]-DM (0.5 mg/kg) was administered orally with water or potassium bicarbonate-sodium bicarbonate to 30 adult Caucasian volunteers (n = 1 each): CYP2D6 poor metabolizers (2 null alleles; PM-0) and extensive metabolizers with 1 (EM-1) or 2 functional alleles (EM-2). CYP2D6 phenotype was determined by 13CO2 enrichment measured by infrared spectrometry (delta-over-baseline [DOB] value) in expired breath samples collected before and up to 240 minutes after [13C]-DM ingestion and by 4-hour urinary metabolite ratio. The PM-0 group was readily distinguishable from either EM group by both the breath test and urinary metabolite ratio. Using a single point determination of phenotype at 40 minutes and defining PMs as subjects with a DOB ≤ 0.5, the sensitivity of the method was 100%; specificity was 95% with 95% accuracy and resulted in the misclassification of 1 EM-1 individual as a PM. Modification of the initial protocol (timing of potassium bicarbonate-sodium bicarbonate administration relative to dose) yielded comparable results, but there was a tendency toward increased DOB values. Although further development is required, these studies suggest that the [13C]-DM breath test offers promise as a rapid, minimally invasive phenotyping assay for CYP2D6 activity. PMID:18728242

  5. Dengue epidemiological trend in Oman: a 13-year national surveillance and strategic proposition of imported cases.

    PubMed

    Al Awaidy, Salah Thabit; Al Obeidani, Idris; Bawikar, Shyam; Al Mahrouqi, Salim; Al Busaidy, Suleiman Salim; Al Baqlani, Said; Patel, Prakash K

    2014-10-01

    Dengue fever has emerged as a major public health problem globally in the past three decades. A 13-year national surveillance data analysis was done to describe the epidemiology and its trend of dengue disease in Oman reported between 2001 and 2013. Laboratory-confirmed dengue virus infections reported were studied retrospectively during the study period. A total of 64 laboratory confirmed cases were reported. All the patients contracted the disease during their visit to South-East Asian countries, hence classified as imported cases. The majority of the cases were reported in the year 2012 (23.4%). The most important clinical characteristics were fever (90.6%), myalgia (35.9%) and rash/petechial rash (20.3%). Thrombocytopenia was seen in 31.2% of the study subjects. The mortality was nearly 4.6% and all other patients made a full recovery. The most effective measure for travellers is taking precautions to avoid mosquito bites. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. Childhood autism in a 13 year old boy with oculocutaneous albinism: a case report

    PubMed Central

    Bakare, Muideen O; Ikegwuonu, Nkeiruka N

    2008-01-01

    Introduction Hypomelanotic skin disorders like tuberous sclerosis and hypomelanosis of Ito that present with multiple systemic manifestations have been reported in association with childhood autism. Oculocutaneous albinism is another hypomelanotic skin disorder that rarely presents with multiple systemic manifestations. It is infrequently reported in association with childhood autism when compared to tuberous sclerosis and hypomelanosis of Ito. Case presentation This article reports a case of co-morbid childhood autism and oculocutaneous albinism in a 13-year old boy from Nigeria in Sub-Saharan Africa. Conclusion The observation in this case report and in two previous reports which documented association between oculocutaneous albinism and childhood autism both in the affected individuals and families of individuals with childhood autism, raises the question of a possible genetic and clinical association between oculocutaneous albinism and childhood autism. More family and genetic studies into the relationship between oculocutaneous albinism and childhood autism is desirable. This may provide useful clues into the etiology, prevention and management of childhood autism as well as oculocutaneous albinism. PMID:18294379

  7. Metabolic effects of a 13-weeks lifestyle intervention in older adults: The Growing Old Together Study.

    PubMed

    van de Rest, Ondine; Schutte, Bianca A M; Deelen, Joris; Stassen, Stephanie A M; van den Akker, Erik B; van Heemst, Diana; Dibbets-Schneider, Petra; van Dipten-van der Veen, Regina A; Kelderman, Milou; Hankemeier, Thomas; Mooijaart, Simon P; van der Grond, Jeroen; Houwing-Duistermaat, Jeanine J; Beekman, Marian; Feskens, Edith J M; Slagboom, P Eline

    2016-01-01

    For people in their 40s and 50s, lifestyle programs have been shown to improve metabolic health. For older adults, however, it is not clear whether these programs are equally healthy. In the Growing Old Together study, we applied a 13-weeks lifestyle program, with a target of 12.5% caloric restriction and 12.5% increase in energy expenditure through an increase in physical activity, in 164 older adults (mean age=63.2 years; BMI=23-35 kg/m2). Mean weight loss was 4.2% (SE=2.8%) of baseline weight, which is comparable to a previous study in younger adults. Fasting insulin levels, however, showed a much smaller decrease (0.30 mU/L (SE=3.21)) and a more heterogeneous response (range=2.0-29.6 mU/L). Many other parameters of metabolic health, such as blood pressure, and thyroid, glucose and lipid metabolism improved significantly. Many 1H-NMR metabolites changed in a direction previously associated with a low risk of type 2 diabetes and cardiovascular disease and partially independently of weight loss. In conclusion, 25% reduction in energy balance for 13 weeks induced a metabolic health benefit in older adults, monitored by traditional and novel metabolic markers.

  8. Antigens of the surface of mouse ascites tumour cells

    PubMed Central

    Boyle, W.; Davies, D. A. L.

    1966-01-01

    Studies with rabbit antisera have revealed the presence of three distinct agglutinogens on the surface of mouse ascites tumour cells and `L' cells. The T-antigen is the dominant agglutinogen on the mouse nucleated cells and is absent from mouse and sheep erythrocytes; the F-antigen is common to the mouse nucleated cells and sheep erythrocytes but absent from mouse erythrocytes; the C-antigen is common to the surface of mouse nucleated cells and erythrocytes but absent from sheep erythrocytes. The C-antigen is not the major agglutinogen of the mouse erythrocyte. Methods are described for the independent assay of the T, C and F antigens and their occurrence on a number of mouse tumour cells described. PMID:5924620

  9. Experimental Mouse Model of Lumbar Ligamentum Flavum Hypertrophy.

    PubMed

    Saito, Takeyuki; Yokota, Kazuya; Kobayakawa, Kazu; Hara, Masamitsu; Kubota, Kensuke; Harimaya, Katsumi; Kawaguchi, Kenichi; Hayashida, Mitsumasa; Matsumoto, Yoshihiro; Doi, Toshio; Shiba, Keiichiro; Nakashima, Yasuharu; Okada, Seiji

    2017-01-01

    Lumbar spinal canal stenosis (LSCS) is one of the most common spinal disorders in elderly people, with the number of LSCS patients increasing due to the aging of the population. The ligamentum flavum (LF) is a spinal ligament located in the interior of the vertebral canal, and hypertrophy of the LF, which causes the direct compression of the nerve roots and/or cauda equine, is a major cause of LSCS. Although there have been previous studies on LF hypertrophy, its pathomechanism remains unclear. The purpose of this study is to establish a relevant mouse model of LF hypertrophy and to examine disease-related factors. First, we focused on mechanical stress and developed a loading device for applying consecutive mechanical flexion-extension stress to the mouse LF. After 12 weeks of mechanical stress loading, we found that the LF thickness in the stress group was significantly increased in comparison to the control group. In addition, there were significant increases in the area of collagen fibers, the number of LF cells, and the gene expression of several fibrosis-related factors. However, in this mecnanical stress model, there was no macrophage infiltration, angiogenesis, or increase in the expression of transforming growth factor-β1 (TGF-β1), which are characteristic features of LF hypertrophy in LSCS patients. We therefore examined the influence of infiltrating macrophages on LF hypertrophy. After inducing macrophage infiltration by micro-injury to the mouse LF, we found excessive collagen synthesis in the injured site with the increased TGF-β1 expression at 2 weeks after injury, and further confirmed LF hypertrophy at 6 weeks after injury. Our findings demonstrate that mechanical stress is a causative factor for LF hypertrophy and strongly suggest the importance of macrophage infiltration in the progression of LF hypertrophy via the stimulation of collagen production.

  10. Gene expression of Hsp70, Hsp90 and Hsp110 families in normal palate and cleft palate during mouse embryogenesis.

    PubMed

    Zhu, Yongfei; Ren, Chuanlu; Wan, Xuying; Zhu, Yuping; Zhu, Jiangbo; Zhou, Hongyuan; Zhang, Tianbao

    2013-11-01

    Most previous studies focused on a small number of heat shock proteins (Hsps) and their relationships with embryogenesis, and the actual roles of these Hsps in normal and abnormal embryonic development remain unclear. It was found in the present systemic study that except for Grp170, whose expression was not detectable at GD18, all 19 Hsps of Hsp70, Hsp90 and Hsp110 families were expressed in the normal development of embryonic palate tissue in mice, but their expression patterns varied with different Hsps, presenting as a correlation with the developmental phases. In the treatment group by all-trans retinoic acid (atRA), the messenger RNA (mRNA) abundance of HspA1A, HspA1L, HspA8, HspA9, HspA12A, HspA12B, HspA13, HspA14, Hsp90AA1, Hsp90AB1, Grp94, Trap1, Hsp105, Hsp110 and Grp170 was higher in the palates at GD11 (the beginning of palate development), the mRNA abundance of HspA1A, HspA12A and HspA12B was higher at GD18 (before birth) and an mRNA expression peak of HspA1L, HspA8, HspA9, Hsp90AA1, Grp94, Hsp110 and Grp170 was observed at GD17. The mRNA abundance of most genes in atRA-induced cleft palates of the treatment group was different from that of the control group. Grp78, HspA14 and Hsp105 were closely associated with the normal palate development and cleft palate in mouse embryo, possibly as palate development-related genes. Except Grp170, the other genes may be closely associated with the development of mouse palates through participating in the stress response process and/or the antiapoptosis process.

  11. Antioxidants improve mouse preimplantation embryo development and viability.

    PubMed

    Truong, Thi T; Soh, Yu May; Gardner, David K

    2016-07-01

    What is the effect of three antioxidants (acetyl-L-carnitine, N-acetyl-L-cysteine and α-lipoic acid), when used individually and in combination, on mouse embryo development in culture, and subsequent fetal development post-transfer? A combination of antioxidants resulted in significant increases in blastocyst cell number, maintained intracellular glutathione (GSH) levels, supported earlier cleavage times from 5-cell stage to expanded blastocyst, and improved fetal developmental irrespective of incubator oxygen concentration. Acetyl-L-carnitine, N-acetyl-L-cysteine and α-lipoic acid have been shown to have beneficial effects individually in several tissues, and most recently on developing embryos, in the presence of oxidative stress. Morphokinetics of mouse embryos were quantitated using time-lapse imaging. GSH levels in pronucleate oocytes were measured. Blastocysts underwent differential nuclear staining for inner cell mass and trophectoderm cells or were transferred to recipient females to assess implantation and fetal development. Pronucleate oocytes from F1 mice were cultured in 5 or 20% oxygen either individually or in groups of 10, in media G1/G2, in the presence or absence of 10 µM acetyl-L-carnitine /10 µM N-acetyl-L-cysteine /5 µM α-lipoic acid, either individually or in combination. Controls were embryos cultured without antioxidants. Intracellular levels of reduced glutathione were quantitated in pronucleate oocytes. Embryo development and viability were analysed through time-lapse microscopy and embryo transfers. Antioxidants significantly increased mouse blastocyst cell numbers compared with control when used individually (P< 0.05) and to a greater effect when all three were used in combination (P< 0.01) in 20% oxygen. The combination of antioxidants resulted in faster development rates to 5-cell cleavage stage, which continued until the expanded blastocyst stage when cultured in 20% oxygen. The beneficial effects of combining the antioxidants

  12. Inference of Transcriptional Network for Pluripotency in Mouse Embryonic Stem Cells

    NASA Astrophysics Data System (ADS)

    Aburatani, S.

    2015-01-01

    In embryonic stem cells, various transcription factors (TFs) maintain pluripotency. To gain insights into the regulatory system controlling pluripotency, I inferred the regulatory relationships between the TFs expressed in ES cells. In this study, I applied a method based on structural equation modeling (SEM), combined with factor analysis, to 649 expression profiles of 19 TF genes measured in mouse Embryonic Stem Cells (ESCs). The factor analysis identified 19 TF genes that were regulated by several unmeasured factors. Since the known cell reprogramming TF genes (Pou5f1, Sox2 and Nanog) are regulated by different factors, each estimated factor is considered to be an input for signal transduction to control pluripotency in mouse ESCs. In the inferred network model, TF proteins were also arranged as unmeasured factors that control other TFs. The interpretation of the inferred network model revealed the regulatory mechanism for controlling pluripotency in ES cells.

  13. Generation of a Transgenic Mouse Model of Middle East Respiratory Syndrome Coronavirus Infection and Disease

    PubMed Central

    Agrawal, Anurodh Shankar; Garron, Tania; Tao, Xinrong; Peng, Bi-Hung; Wakamiya, Maki; Chan, Teh-Sheng; Couch, Robert B.

    2015-01-01

    ABSTRACT The emergence of Middle East respiratory syndrome-coronavirus (MERS-CoV) in the Middle East since 2012 has caused more than 900 human infections with ∼40% mortality to date. Animal models are needed for studying pathogenesis and for development of preventive and therapeutic agents against MERS-CoV infection. Nonhuman primates (rhesus macaques and marmosets) are expensive models of limited availability. Although a mouse lung infection model has been described using adenovirus vectors expressing human CD26/dipeptidyl peptidase 4 (DPP4), it is believed that a transgenic mouse model is needed for MERS-CoV research. We have developed this transgenic mouse model as indicated in this study. We show that transgenic mice globally expressing hCD26/DPP4 were fully permissive to MERS-CoV infection, resulting in relentless weight loss and death within days postinfection. High infectious virus titers were recovered primarily from the lungs and brains of mice at 2 and 4 days postinfection, respectively, whereas viral RNAs were also detected in the heart, spleen, and intestine, indicating a disseminating viral infection. Infected Tg+ mice developed a progressive pneumonia, characterized by extensive inflammatory infiltration. In contrast, an inconsistent mild perivascular cuffing was the only pathological change associated with the infected brains. Moreover, infected Tg+ mice were able to activate genes encoding for many antiviral and inflammatory mediators within the lungs and brains, coinciding with the high levels of viral replication. This new and unique transgenic mouse model will be useful for furthering knowledge of MERS pathogenesis and for the development of vaccine and treatments against MERS-CoV infection. IMPORTANCE Small and economical animal models are required for the controlled and extensive studies needed for elucidating pathogenesis and development of vaccines and antivirals against MERS. Mice are the most desirable small-animal species for this

  14. The terminator mouse: salvation for primary cell culture.

    PubMed

    Kabgani, Nazanin; Moeller, Marcus J

    2013-11-01

    The Terminator had to come back from the future already several times in an effort to bring salvation to mankind. In the present issue of Kidney International, Guo et al. brought us a novel transgenic mouse model: the terminator mouse. This highly elegant mouse may facilitate significantly the derivation of primary cultures of a specific cell type from a tissue containing multiple cell populations.

  15. Relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin levels in mouse serum.

    PubMed

    Lukacova, Slavka; Khalil, Azza A; Overgaard, Jens; Alsner, Jan; Horsman, Michael R

    2005-12-01

    To investigate the possible relationship between radiobiological hypoxia in a C3H mouse mammary carcinoma and osteopontin (OPN) levels measured in mouse serum. Experiments were performed in CDF1 mice that were either non-tumour bearing or with different sized tumours implanted in the right rear foot. Osteopontin levels in extracted mouse blood serum and tissue from the transplanted tumours were measured using an ELISA assay. The tumour oxygenation status was estimated using the Eppendorf Histograph and the fraction of oxygen partial pressure (pO2) values =5 mm Hg (HF5) was calculated. Necrosis was measured in haematoxylin and eosin-stained sections. Tumour hypoxia was increased by placing animals in a low-oxygen (10%) environment. Single radiation doses (240 kV x-rays) were given locally to tumours under ambient or clamped conditions and response assessed using a tumour control assay. Serum OPN levels increased linearly with increasing tumour volume and this increase correlated with tumour OPN. HF5 and necrosis also increased with increasing tumour volume, but this increase was non-linear. Converting the HF5 results into equivalent tumour volume gave results that were directly correlated to OPN serum levels. Placing mice in a 10% oxygen environment for 12 hours significantly increased HF5. However, serum OPN only increased if reoxygenation occurred before measurement. Radiobiological hypoxic fraction in this tumour model did not change with increasing tumour size, but the total number of hypoxic cells did increase. These findings suggest that serum OPN measurement may predict the proportion of hypoxic cells in this tumour model, although increased serum OPN levels simply resulting from an increased tumour burden can not be ruled out.

  16. Somatic cell nuclear transfer in the mouse.

    PubMed

    Kishigami, Satoshi; Wakayama, Teruhiko

    2009-01-01

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since "Dolly," the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  17. Mouse Driven Window Graphics for Network Teaching.

    ERIC Educational Resources Information Center

    Makinson, G. J.; And Others

    Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…

  18. Transgenic mouse models and prion strains.

    PubMed

    Telling, Glenn C

    2011-01-01

    Here we review the known strain profiles of various prion diseases of animals and humans, and how transgenic mouse models are being used to elucidate basic molecular mechanisms of prion propagation and strain variation and for assessing the zoonotic potential of various animal prion strains.

  19. Agglutination of Mouse Erythrocytes by Eperythrozoon coccoides

    PubMed Central

    Iralu, Vichazelhu; Ganong, Kevin D.

    1983-01-01

    Erythrocytes from blood of mice infected with Eperythrozoon coccoides for 3 or 4 days agglutinated spontaneously. Washed E. coccoides particles agglutinated washed erythrocytes of uninfected mice. E. coccoides-mediated agglutination of normal mouse erythrocytes would be an excellent system for studies of bacterial adhesion. Images PMID:6832825

  20. Translating Mouse Vocalizations: Prosody and Frequency Modulation

    PubMed Central

    Lahvis, Garet P.; Alleva, Enrico; Scattoni, Maria Luisa

    2010-01-01

    Mental illness can include impaired abilities to express emotions or respond to the emotions of others. Speech provides a mechanism for expressing emotions, by both what words are spoken and by the melody or intonation of speech (prosody). Through the perception of variations in prosody, an individual can detect changes in another's emotional state. Prosodic features of mouse ultrasonic vocalizations (USVs), indicated by changes in frequency and amplitude, also convey information. Dams retrieve pups that emit separation calls, females approach males emitting solicitous calls, and mice can become fearful of a cue associated with the vocalizations of a distressed conspecific. Since acoustic features of mouse USVs respond to drugs and genetic manipulations that influence reward circuits, USV analysis can be employed to examine how genes influence social motivation, affect regulation, and communication. The purpose of this review is to discuss how genetic and developmental factors influence aspects of the mouse vocal repertoire and how mice respond to the vocalizations of their conspecifics. To generate falsifiable hypotheses about the emotional content of particular calls, this review addresses USV analysis within the framework of affective neuroscience (e.g. measures of motivated behavior such as conditioned place preference tests, brain activity, and systemic physiology). Suggested future studies include employment of an expanded array of physiological and statistical approaches to identify the salient acoustic features of mouse vocalizations. We are particularly interested in rearing environments that incorporate sufficient spatial and temporal complexity to familiarize developing mice with a broader array of affective states. PMID:20497235

  1. Optical properties of the mouse eye

    PubMed Central

    Geng, Ying; Schery, Lee Anne; Sharma, Robin; Dubra, Alfredo; Ahmad, Kamran; Libby, Richard T.; Williams, David R.

    2011-01-01

    The Shack-Hartmann wavefront sensor (SHWS) spots upon which ocular aberration measurements depend have poor quality in mice due to light reflected from multiple retinal layers. We have designed and implemented a SHWS that can favor light from a specific retinal layer and measured monochromatic aberrations in 20 eyes from 10 anesthetized C57BL/6J mice. Using this instrument, we show that mice are myopic, not hyperopic as is frequently reported. We have also measured longitudinal chromatic aberration (LCA) of the mouse eye and found that it follows predictions of the water-filled schematic mouse eye. Results indicate that the optical quality of the mouse eye assessed by measurement of its aberrations is remarkably good, better for retinal imaging than the human eye. The dilated mouse eye has a much larger numerical aperture (NA) than that of the dilated human eye (0.5 NA vs. 0.2 NA), but it has a similar amount of root mean square (RMS) higher order aberrations compared to the dilated human eye. These measurements predict that adaptive optics based on this method of wavefront sensing will provide improvements in retinal image quality and potentially two times higher lateral resolution than that in the human eye. PMID:21483598

  2. Having Fun with a Cordless Mouse

    ERIC Educational Resources Information Center

    Nunn, John

    2016-01-01

    A cordless mouse with an added reed switch is used as a wireless data logger to record every time the wheel of a trolley completes a revolution. The limitations of the system in terms of maximum clicking rate and spatial resolution are considered and data obtained from the descent of a trolley down a ramp at various different angles is analysed in…

  3. Hemoglobin ontogeny during normal mouse fetal development.

    PubMed Central

    Brotherton, T W; Chui, D H; Gauldie, J; Patterson, M

    1979-01-01

    Pure populations of large, nucleated erythrocytes derived from yolk sac blood islands were obtained during normal fetal mouse development. Embryonic hemoglobins were present in these cells early in gestation. Later in gestation, an increasing amount of adults hemoglobin was also synthesized and accumulated in this population of primitive nucleated erythrocytes, as demonstrated by both biochemical and immunocytochemical techniques. Images PMID:111244

  4. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  5. Derivation of mouse embryonic stem cell lines from tyrosine hydroxylase reporter mice crossed with a human SNCA transgenic mouse model of Parkinson's disease.

    PubMed

    Chumarina, Margarita; Azevedo, Carla; Bigarreau, Julie; Vignon, Clémentine; Kim, Kwang-Soo; Li, Jia-Yi; Roybon, Laurent

    2017-03-01

    Mouse embryonic stem cell (mESC) lines were derived by crossing heterozygous transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase (TH) promoter, with homozygous alpha-synuclein (aSYN) mice expressing human mutant SNCA A53T under the control of the mouse Prion promoter (MoPrP), or wildtype (WT) mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. The changing epidemiology of spinal trauma: a 13-year review from a Level I trauma centre.

    PubMed

    Oliver, M; Inaba, K; Tang, A; Branco, B C; Barmparas, G; Schnüriger, B; Lustenberger, T; Demetriades, D

    2012-08-01

    Spinal injuries secondary to trauma are a major cause of patient morbidity and a source of significant health care expenditure. Increases in traffic safety standards and improved health care resources may have changed the characteristics and incidence of spinal injury. The purpose of this study was to review a single metropolitan Level I trauma centre's experience to assess the changing characteristics and incidence of traumatic spinal injuries and spinal cord injuries (SCI) over a 13-year period. A retrospective review of patients admitted to a Level I trauma centre between 1996 and 2008 was performed. Patients with spinal fractures and SCI were identified. Demographics, mechanism of injury, level of spinal injury and Injury Severity Score (ISS) were extracted. The outcomes assessed were the incidence rate of SCI and in-hospital mortality. Over the 13-year period, 5.8% of all trauma patients suffered spinal fractures, with 21.7% of patients with spinal injuries having SCI. Motor vehicle accidents (MVAs) were responsible for the majority of spinal injuries (32.6%). The mortality rate due to spinal injury decreased significantly over the study period despite a constant mean ISS. The incidence rate of SCI also decreased over the years, which was paralleled by a significant reduction in MVA associated SCI (from 23.5% in 1996 to 14.3% in 2001 to 6.7% in 2008). With increasing age there was an increase in spinal injuries; frequency of blunt SCI; and injuries at multiple spinal levels. This study demonstrated a reduction in mortality attributable to spinal injury. There has been a marked reduction in SCI due to MVAs, which may be related to improvements in motor vehicle safety and traffic regulations. The elderly population was more likely to suffer SCI, especially by blunt injury, and at multiple levels. Underlying reasons may be anatomical, physiological or mechanism related. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. An acellular biologic scaffold treatment for volumetric muscle loss: results of a 13-patient cohort study

    PubMed Central

    Dziki, Jenna; Badylak, Stephen; Yabroudi, Mohammad; Sicari, Brian; Ambrosio, Fabrisia; Stearns, Kristen; Turner, Neill; Wyse, Aaron; Boninger, Michael L; Brown, Elke H P; Rubin, J Peter

    2016-01-01

    Volumetric muscle loss (VML) is a severe and debilitating clinical problem. Current standard of care includes physical therapy or orthotics, which do not correct underlying strength deficits, and surgical tendon transfers or muscle transfers, which involve donor site morbidity and fall short of restoring function. The results of a 13-patient cohort study are described herein and involve a regenerative medicine approach for VML treatment. Acellular bioscaffolds composed of mammalian extracellular matrix (ECM) were implanted and combined with aggressive and early physical therapy following treatment. Immunolabeling of ultrasound-guided biopsies, and magnetic resonance imaging and computed tomography imaging were performed to analyse the presence of stem/progenitor cells and formation of new skeletal muscle. Force production, range-of-motion and functional task performance were analysed by physical therapists. Electrodiagnostic evaluation was used to analyse presence of innervated skeletal muscle. This study is registered with ClinicalTrials.gov, numbers NCT01292876. In vivo remodelling of ECM bioscaffolds was associated with mobilisation of perivascular stem cells; formation of new, vascularised, innervated islands of skeletal muscle within the implantation site; increased force production; and improved functional task performance when compared with pre-operative performance. Compared with pre-operative performance, by 6 months after ECM implantation, patients showed an average improvement of 37.3% (P<0.05) in strength and 27.1% improvement in range-of-motion tasks (P<0.05). Implantation of acellular bioscaffolds derived from ECM can improve strength and function, and promotes site-appropriate remodelling of VML defects. These findings provide early evidence of bioscaffolding as a viable treatment of VML. PMID:29302336

  8. Duplex sonography for detection of deep vein thrombosis of upper extremities: a 13-year experience.

    PubMed

    Chung, Amy S Y; Luk, W H; Lo, Adrian X N; Lo, C F

    2015-04-01

    To determine the prevalence and characteristics of sonographically evident upper-extremity deep vein thrombosis in symptomatic Chinese patients and identify its associated risk factors. Regional hospital, Hong Kong. Data on patients undergoing upper-extremity venous sonography examinations during a 13-year period from November 1999 to October 2012 were retrieved. Variables including age, sex, history of smoking, history of lower-extremity deep vein thrombosis, major surgery within 30 days, immobilisation within 30 days, cancer (history of malignancy), associated central venous or indwelling catheter, hypertension, diabetes mellitus, sepsis within 30 days, and stroke within 30 days were tested using binary logistic regression to understand the risk factors for upper-extremity deep vein thrombosis. The presence of upper-extremity deep vein thrombosis identified. Overall, 213 patients with upper-extremity sonography were identified. Of these patients, 29 (13.6%) had upper-extremity deep vein thrombosis. The proportion of upper-extremity deep vein thrombosis using initial ultrasound was 0.26% of all deep vein thrombosis ultrasound requests. Upper limb swelling was the most common presentation seen in a total of 206 (96.7%) patients. Smoking (37.9%), history of cancer (65.5%), and hypertension (27.6%) were the more prevalent conditions among patients in the upper-extremity deep vein thrombosis-positive group. No statistically significant predictor of upper-extremity deep vein thrombosis was noted if all variables were included. After backward stepwise logistic regression, the final model was left with only age (P=0.119), female gender (P=0.114), and history of malignancy (P=0.024) as independent variables. History of malignancy remained predictive of upper-extremity deep vein thrombosis. Upper-extremity deep vein thrombosis is uncommon among symptomatic Chinese population. The most common sign is swelling and the major risk factor for upper-extremity deep vein

  9. Canceling Some d-CON Mouse and Rat Control Products

    EPA Pesticide Factsheets

    EPA has reached agreement with the manufacturer, to cancel 12 d-CON products that do not meet our testing protocols that better protect children, pets and non-target wildlife from accidental exposure to the pesticide. These products will be phased out.

  10. New routes for transgenesis of the mouse.

    PubMed

    Belizário, José E; Akamini, Priscilla; Wolf, Philip; Strauss, Bryan; Xavier-Neto, José

    2012-08-01

    Transgenesis refers to the molecular genetic techniques for directing specific insertions, deletions and point mutations in the genome of germ cells in order to create genetically modified organisms (GMO). Genetic modification is becoming more practicable, efficient and predictable with the development and use of a variety of cell and molecular biology tools and DNA sequencing technologies. A collection of plasmidial and viral vectors, cell-type specific promoters, positive and negative selectable markers, reporter genes, drug-inducible Cre-loxP and Flp/FRT recombinase systems are available which ensure efficient transgenesis in the mouse. The technologies for the insertion and removal of genes by homologous-directed recombination in embryonic stem cells (ES) and generation of targeted gain- and loss-of function alleles have allowed the creation of thousands of mouse models of a variety of diseases. The engineered zinc finger nucleases (ZFNs) and small hairpin RNA-expressing constructs are novel tools with useful properties for gene knockout free of ES manipulation. In this review we briefly outline the different approaches and technologies for transgenesis as well as their advantages and disadvantages. We also present an overview on how the novel integrative mouse and human genomic databases and bioinformatics approaches have been used to understand genotype-phenotype relationships of hundreds of mutated and candidate disease genes in mouse models. The updating and continued improvements of the genomic technologies will eventually help us to unraveling the biological and pathological processes in such a way that they can be translated more efficiently from mouse to human and vise-versa.

  11. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  12. Comparative analysis of microRNA expression in mouse and human brown adipose tissue.

    PubMed

    Güller, Isabelle; McNaughton, Sarah; Crowley, Tamsyn; Gilsanz, Vicente; Kajimura, Shingo; Watt, Matthew; Russell, Aaron P

    2015-10-19

    In small mammals brown adipose tissue (BAT) plays a predominant role in regulating energy expenditure (EE) via adaptive thermogenesis. New-born babies require BAT to control their body temperature, however its relevance in adults has been questioned. Active BAT has recently been observed in adult humans, albeit in much lower relative quantities than small mammals. Comparing and contrasting the molecular mechanisms controlling BAT growth and development in mice and humans will increase our understanding or how human BAT is developed and may identify potential therapeutic targets to increase EE. MicroRNAs are molecular mechanisms involved in mouse BAT development however, little is known about the miRNA profile in human BAT. The aims of this study were to establish a mouse BAT-enriched miRNA profile and compare this with miRNAs measured in human BAT. To achieve this we firstly established a mouse BAT enriched-miRNA profile by comparing miRNAs expressed in mouse BAT, white adipose tissue and skeletal muscle. Following this the BAT-enriched miRNAs predicted to target genes potentially involved in growth and development were identified. MiRNA levels were measured using PCR-based miRNA arrays. Results were analysed using ExpressionSuite software with the global mean expression value of all expressed miRNAs in a givensample used as the normalisation factor. Bio-informatic analyses was used to predict gene targets followed by Ingenuity Pathway Analysis. We identified 35 mouse BAT-enriched miRNAs that were predicted to target genes potentially involved in growth and development. We also identified 145 miRNAs expressed in both mouse and human BAT, of which 25 were enriched in mouse BAT. Of these 25 miRNAs, miR-20a was predicted to target MYF5 and PPARγ, two important genes involved in brown adipogenesis, as well as BMP2 and BMPR2, genes involved in white adipogenesis. For the first time, 69 miRNAs were identified in human BAT but absent in mouse BAT, and 181 miRNAs were

  13. Connective Tissue Growth Factor Transgenic Mouse Develops Cardiac Hypertrophy, Lean Body Mass and Alopecia.

    PubMed

    Nuglozeh, Edem

    2017-07-01

    Connective Tissue Growth Factor (CTGF/CCN2) is one of the six members of cysteine-rich, heparin-binding proteins, secreted as modular protein and recognised to play a major function in cell processes such as adhesion, migration, proliferation and differentiation as well as chondrogenesis, skeletogenesis, angiogenesis and wound healing. The capacity of CTGF to interact with different growth factors lends an important role during early and late development, especially in the anterior region of the embryo. CTGF Knockout (KO) mice have several craniofacial defects and bone miss shaped due to an impairment of the vascular system development during chondrogenesis. The aim of the study was to establish an association between multiple modular functions of CTGF and the phenotype and cardiovascular functions in transgenic mouse. Bicistronic cassette was constructed using pIRES expressing vector (Clontech, Palo Alto, CA). The construct harbours mouse cDNA in tandem with LacZ cDNA as a reporter gene under the control of Cytomegalovirus (CMV) promoter. The plasmid was linearised with NotI restriction enzyme, and 50 ng of linearised plasmid was injected into mouse pronucleus for the chimaera production. Immunohistochemical methods were used to assess the colocalisation renin and CTGF as well as morphology and rheology of the cardiovascular system. The chimeric mice were backcrossed against the wild-type C57BL/6 to generate hemizygous (F1) mouse. Most of the offsprings died as a result of respiratory distress and those that survived have low CTGF gene copy number, approximately 40 molecules per mouse genome. The copy number assessment on the dead pups showed 5×10 3 molecules per mouse genome explaining the threshold of the gene in terms of toxicity. Interestingly, the result of this cross showed 85% of the progenies to be positive deviating from Mendelian first law. All F2 progenies died excluding the possibility of establishing the CTGF transgenic mouse line, situation that

  14. Resveratrol Inhibited Hydroquinone-Induced Cytotoxicity in Mouse Primary Hepatocytes

    PubMed Central

    Wang, Da-Hong; Ootsuki, Yoshie; Fujita, Hirofumi; Miyazaki, Masahiro; Yie, Qinxia; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Ogino, Keiki

    2012-01-01

    Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%–5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 µM hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (≥1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 µM, 100 µM), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1. PMID:23202692

  15. Resveratrol inhibited hydroquinone-induced cytotoxicity in mouse primary hepatocytes.

    PubMed

    Wang, Da-Hong; Ootsuki, Yoshie; Fujita, Hirofumi; Miyazaki, Masahiro; Yie, Qinxia; Tsutsui, Ken; Sano, Kuniaki; Masuoka, Noriyoshi; Ogino, Keiki

    2012-09-19

    Hydroquinone (1,4-benzenediol) has been widely used in clinical situations and the cosmetic industry because of its depigmenting effects. Most skin-lightening hydroquinone creams contain 4%-5% hydroquinone. We have investigated the role of resveratrol in prevention of hydroquinone induced cytotoxicity in mouse primary hepatocytes. We found that 400 µM hydroquinone exposure alone induced apoptosis of the cells and also resulted in a significant drop of cell viability compared with the control, and pretreatment of resveratrol to a final concentration of 0.5 mM 1 h before hydroquinone exposure did not show a significant improvement in the survival rate of the hepatocytes, however, relatively higher concentrations of resveratrol (≥1 mM) inhibited apoptosis of the mouse primary hepatocytes and increased cell viability in a dose-dependent manner, and in particular the survival rate of the hepatocytes was recovered from 28% to near 100% by 5 mM resveratrol. Interestingly, pretreatment with resveratrol for longer time (24 h), even in very low concentrations (50 µM, 100 µM), blocked the damage of hydroquinone to the cells. We also observed that resveratrol pretreatment suppressed hydroquinone-induced expression of cytochrome P450 2E1 mRNA dose-dependently. The present study suggests that resveratrol protected the cells against hydroquinone-induced toxicity through its antioxidant function and possibly suppressive effect on the expression of cytochrome P450 2E1.

  16. A mouse model for Chlamydia suis genital infection.

    PubMed

    Donati, Manuela; Di Paolo, Maria; Favaroni, Alison; Aldini, Rita; Di Francesco, Antonietta; Ostanello, Fabio; Biondi, Roberta; Cremonini, Eleonora; Ginocchietti, Laura; Cevenini, Roberto

    2015-02-01

    A mouse model for Chlamydia suis genital infection was developed. Ninety-nine mice were randomly divided into three groups and intravaginally inoculated with chlamydia: 45 mice (group 1) received C. suis purified elementary bodies (EBs), 27 (group 2) were inoculated with C. trachomatis genotype E EBs and 27 mice (group 3) with C. trachomatis genotype F EBs. Additionally, 10 mice were used as a negative control. At seven days post-infection (dpi) secretory anti-C. suis IgA were recovered from vaginal swabs of all C. suis inoculated mice. Chlamydia suis was isolated from 93, 84, 71 and 33% vaginal swabs at 3, 5, 7 and 12 dpi. Chlamydia trachomatis genotype E and F were isolated from 100% vaginal swabs up to 7 dpi and from 61 and 72%, respectively, at 12 dpi. Viable C. suis and C. trachomatis organisms were isolated from uterus and tubes up to 16 and 28 dpi, respectively. The results of the present study show the susceptibility of mice to intravaginal inoculation with C. suis. A more rapid course and resolution of C. suis infection, in comparison to C. trachomatis, was highlighted. The mouse model could be useful for comparative investigations involving C. suis and C. trachomatis species. © FEMS 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Plasma biomarkers in a mouse model of preterm labor.

    PubMed

    Yang, Qing; Whitin, John C; Ling, Xuefeng Bruce; Nayak, Nihar R; Cohen, Harvey J; Jin, Joseph; Schilling, James; Yu, Tom To-Sang; Madan, Ashima

    2009-07-01

    Preterm labor (PTL) is frequently associated with inflammation. We hypothesized that biomarkers during pregnancy can identify pregnancies most at risk for development of PTL. An inflammation-induced mouse model of PTL was used. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry was used to analyze and compare the plasma protein (PP) profile between CD-1 mice injected intrauterine with either lipopolysaccharide (LPS) or PBS on d 14.5 of gestation. The median differences of normalized PP peaks between the two groups were determined using the Mann-Whitney U test and the false discovery rate. In a second series of experiments, both groups of mice were injected with a lower dose of LPS. A total of 1665 peaks were detected. Thirty peaks were highly differentially expressed (p < 0.0001) between the groups. Two 11 kDa protein peaks were identified by MALDI-TOF/TOF-MS and confirmed to be mouse serum amyloid A (SAA) 1 and 2. Plasma SAA2 levels were increased in LPS-treated animals compared with controls and in LPS-treated animals that delivered preterm vs. those that delivered at term. SAA2 has the potential to be a plasma biomarker that can identify pregnancies at risk for development of PTL.

  18. EGFR-specific nanoprobe biodistribution in mouse models

    NASA Astrophysics Data System (ADS)

    Fashir, Samia A.; Castilho, Maiara L.; Hupman, Michael A.; Lee, Christopher L. D.; Raniero, Leandro J.; Alwayn, Ian; Hewitt, Kevin C.

    2015-06-01

    Nanotechnology offers a targeted approach to both imaging and treatment of cancer, the leading cause of death worldwide. Previous studies have found nanoparticles with a wide variety of coatings initiate an immune response leading to sequestration in the liver and spleen. In an effort to find a nanoparticle platform which does not elicit an immune response we created 43/44 nm gold or silver nanoparticles coated with biomolecules normally produced by the body, α-lipoic acid and the Epidermal Growth Factor (EGF), and have used mass spectroscopy to determine their biodistribution in mouse models, 24 hours following tail vein injection. Relative to controls, mouse EGF (mEGF) coated silver and gold nanoprobes are found at reduced levels in the liver and spleen. mEGF coated gold nanoprobes on the other hand do not appear to elicit any immune response, as they are found at background levels in these organs. As a result they should remain in circulation for longer and accumulate at high levels in tumors by the enhanced permeability retention (EPR) effect.

  19. Genes Critical for Developing Periodontitis: Lessons from Mouse Models

    PubMed Central

    de Vries, Teun J.; Andreotta, Stefano; Loos, Bruno G.; Nicu, Elena A.

    2017-01-01

    Since the etiology of periodontitis in humans is not fully understood, genetic mouse models may pinpoint indispensable genes for optimal immunological protection of the periodontium against tissue destruction. This review describes the current knowledge of genes that are involved for a proper maintenance of a healthy periodontium in mice. Null mutations of genes required for leukocyte cell–cell recognition and extravasation (e.g., Icam-1, P-selectin, Beta2-integrin/Cd18), for pathogen recognition and killing (e.g., Tlr2, Tlr4, Lamp-2), immune modulatory molecules (e.g., Cxcr2, Ccr4, IL-10, Opg, IL1RA, Tnf-α receptor, IL-17 receptor, Socs3, Foxo1), and proteolytic enzymes (e.g., Mmp8, Plasmin) cause periodontitis, most likely due to an inefficient clearance of bacteria and bacterial products. Several mechanisms resulting in periodontitis can be recognized: (1) inefficient bacterial control by the polymorphonuclear neutrophils (defective migration, killing), (2) inadequate antigen presentation by dendritic cells, or (3) exaggerated production of pro-inflammatory cytokines. In all these cases, the local immune reaction is skewed toward a Th1/Th17 (and insufficient activation of the Th2/Treg) with subsequent osteoclast activation. Finally, genotypes are described that protect the mice from periodontitis: the SCID mouse, and mice lacking Tlr2/Tlr4, the Ccr1/Ccr5, the Tnf-α receptor p55, and Cathepsin K by attenuating the inflammatory reaction and the osteoclastogenic response. PMID:29163477

  20. Toxicity of amorphous silica nanoparticles in mouse keratinocytes

    NASA Astrophysics Data System (ADS)

    Yu, Kyung O.; Grabinski, Christin M.; Schrand, Amanda M.; Murdock, Richard C.; Wang, Wei; Gu, Baohua; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    The present study was designed to examine the uptake, localization, and the cytotoxic effects of well-dispersed amorphous silica nanoparticles in mouse keratinocytes (HEL-30). Mouse keratinocytes were exposed for 24 h to various concentrations of amorphous silica nanoparticles in homogeneous suspensions of average size distribution (30, 48, 118, and 535 nm SiO2) and then assessed for uptake and biochemical changes. Results of transmission electron microscopy revealed all sizes of silica were taken up into the cells and localized into the cytoplasm. The lactate dehydrogenase (LDH) assay shows LDH leakage was dose- and size-dependent with exposure to 30 and 48 nm nanoparticles. However, no LDH leakage was observed for either 118 or 535 nm nanoparticles. The mitochondrial viability assay (MTT) showed significant toxicity for 30 and 48 nm at high concentrations (100 μg/mL) compared to the 118 and 535 nm particles. Further studies were carried out to investigate if cellular reduced GSH and mitochondria membrane potential are involved in the mechanism of SiO2 toxicity. The redox potential of cells (GSH) was reduced significantly at concentrations of 50, 100, and 200 μg/mL at 30 nm nanoparticle exposures. However, silica nanoparticles larger than 30 nm showed no changes in GSH levels. Reactive oxygen species (ROS) formation did not show any significant change between controls and the exposed cells. In summary, amorphous silica nanoparticles below 100 nm induced cytotoxicity suggest size of the particles is critical to produce biological effects.

  1. Allicin inhibits transient outward potassium currents in mouse ventricular myocytes.

    PubMed

    Cao, Hong; Huang, Congxin; Wang, Xin

    2016-05-01

    Allicin is the active constituent of garlic, a widely used spice and food. The remedial properties of garlic have also been extensively researched and it has been demonstrated that allicin is able to inhibit the transient outward potassium current (I to ) in atrial myocytes. However, the direct effect of allicin on I to in ventricular myocytes has yet to be elucidated. In the present study, the effects of allicin on I to in ventricular myocytes isolated from mice were investigated, using the whole-cell patch recording technique. The results revealed that I to current was not significantly suppressed by allicin in the low-dose group (10 µmol/l; P>0.05). However, I to was significantly inhibited by higher doses of allicin (30, 100 and 300 µmol/l; P<0.05 vs. control; n=6) in a concentration-dependent manner (IC 50 =41.6 µmol/l). In addition, a high concentration of allicin (≥100 µmol/l) was able to accelerate the voltage-dependent inactivation of I to in mouse ventricular myocytes. In conclusion, the present study revealed that allicin inhibited the I to in mouse ventricular myocytes, which may be the mechanism through which allicin exerts its antiarrhythmic effect.

  2. Preclinical Mouse Models of Neurofibromatosis

    DTIC Science & Technology

    2004-10-01

    have inserted a modified Cre, CreERT2 (Cre fused to an altered human estrogen receptor that is activated by the drug tamoxifen), downstream of the...lab has shown that NJ2/ mice die in early embryogenesis secondary to defects in the extraembryonic tissues, and that NJ2+1 mice develop malignant...is defective in several types of confluent NJ2’ cells; their data indicate that merlin controls EGFR internalizing specifically in contacting cells

  3. Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus

    PubMed Central

    Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting

    2017-01-01

    Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391

  4. Bloomsbury report on mouse embryo phenotyping: recommendations from the IMPC workshop on embryonic lethal screening.

    PubMed

    Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David

    2013-05-01

    Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.

  5. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    SciTech Connect

    Dever, Joseph T.; Elfarra, Adnan A.

    2009-05-01

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 {sup o}C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increasesmore » in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.« less

  6. Increased levels of inosine in a mouse model of inflammation.

    PubMed

    Prestwich, Erin G; Mangerich, Aswin; Pang, Bo; McFaline, Jose L; Lonkar, Pallavi; Sullivan, Matthew R; Trudel, Laura J; Taghizedeh, Koli; Dedon, Peter C

    2013-04-15

    One possible mechanism linking inflammation with cancer involves the generation of reactive oxygen, nitrogen, and halogen species by activated macrophages and neutrophils infiltrating sites of infection or tissue damage, with these chemical mediators causing damage that ultimately leads to cell death and mutation. To determine the most biologically deleterious chemistries of inflammation, we previously assessed products across the spectrum of DNA damage arising in inflamed tissues in the SJL mouse model nitric oxide overproduction ( Pang et al. ( 2007 ) Carcinogenesis 28 , 1807 - 1813 ). Among the anticipated DNA damage chemistries, we observed significant changes only in lipid peroxidation-derived etheno adducts. We have now developed an isotope-dilution, liquid chromatography-coupled, tandem quadrupole mass spectrometric method to quantify representative species across the spectrum of RNA damage products predicted to arise at sites of inflammation, including nucleobase deamination (xanthosine and inosine), oxidation (8-oxoguanosine), and alkylation (1,N(6)-ethenoadenosine). Application of the method to the liver, spleen, and kidney from the SJL mouse model revealed generally higher levels of oxidative background RNA damage than was observed in DNA in control mice. However, compared to control mice, RcsX treatment to induce nitric oxide overproduction resulted in significant increases only in inosine and only in the spleen. Further, the nitric oxide synthase inhibitor, N-methylarginine, did not significantly affect the levels of inosine in control and RcsX-treated mice. The differences between DNA and RNA damage in the same animal model of inflammation point to possible influences from DNA repair, RcsX-induced alterations in adenosine deaminase activity, and differential accessibility of DNA and RNA to reactive oxygen and nitrogen species as determinants of nucleic acid damage during inflammation.

  7. Identification of smokers susceptible to development of chronic airflow limitation: a 13-year follow-up.

    PubMed

    Stănescu, D; Sanna, A; Veriter, C; Robert, A

    1998-08-01

    Cigarette smoking is the cardinal cause of COPD, but only a relatively small percentage of smokers have development of clinically overt disease. To identify high-risk subjects and to assess the prognostic significance of "small airways" tests. University teaching hospital. Fifty-six smokers and ex-smokers of mean age 62.5 years (SD, 2.7) with a smoking history of 40.6 (18.9) pack-years were studied at the end of a 13-year follow-up period. Questionnaire and lung function tests, including static and dynamic lung volumes, airway resistance, maximal expiratory flow rates, and small airways tests, such as nitrogen slope of the alveolar plateau (N2 slope) and closing volume. Eighty-two percent of subjects with a normal FEV1/vital capacity (VC) ratio at the start of the study (half of them with abnormal results of small airways tests) still had a normal FEV1/VC ratio 13 years later. In the remainder, all but one had final FEV1/VC values >60%. About 80% of subjects with a decreased FEV1/VC at the start (subjects with airflow obstruction) reached at the end of study lower than predicted FEV1/VC values. Only about 10% of these subjects showed an accelerated loss of FEV1, reaching end FEV1/VC values of <45%. Initial N2 slope predicted about 80% of end FEV1 values. Middle-aged smokers are at no evident risk of functional deterioration if their FEV1/VC ratio is normal. This is so even if results of small airways tests are abnormal. A decreased FEV1/VC ratio has no serious implications in itself. Only an associated high N2 slope adds the necessary information to predict a low FEV1. Present data suggest that a subgroup of smokers in their 50s, characterized by a low FEV1/VC ratio and a high N2 slope, are probably the susceptible smokers at high risk for development of COPD.

  8. Ethanol-induced hyperactivity is associated with hypodopaminergia in the 22-TNJ ENU-mutated mouse

    PubMed Central

    Mathews, Tiffany A.; Brookshire, Bethany R.; Budygin, Evgeny A.; Hamre, Kristen; Goldowitz, Daniel; Jones, Sara R.

    2009-01-01

    Characterization of neurochemical and behavioral responses to ethanol in phenotypically distinct mouse strains can provide insight into the mechanisms of ethanol stimulant actions. Increases in striatal dopamine (DA) levels have often been linked to ethanol-induced hyperactivity. We examined the functional status of the DA system and behavioral responsiveness to ethanol, cocaine and a DA receptor agonist in an N-ethyl-N-nitrosourea (ENU)-mutagenized mouse strain, 22-TNJ, generated by the Integrative Neuroscience Initiative on Alcoholism Consortium. The 22-TNJ mouse strain exhibited greater locomotor responses to 2.25 g/kg ethanol and 10 mg/kg cocaine, compared to control mice. In vivo microdialysis showed low baseline DA levels and a larger DA increase with both 2.25 g/kg ethanol and 10 mg/kg cocaine. In in vitro voltammetry studies, the 22-TNJ mice displayed increased Vmax rates for DA uptake, possibly contributing to the low baseline DA levels found with microdialysis. Finally, 22-TNJ mice showed enhanced in vitro autoreceptor sensitivity to the D2/D3 agonist, quinpirole, and greater locomotor responses to both autoreceptor-selective and postsynaptic receptor-selective doses of apomorphine, compared to controls. Taken together, these results indicate that the dopaminergic system of the 22-TNJ mouse is low-functioning compared to control, with consequent receptor supersensitivity, such that mutant animals exhibit enhanced behavioral responses to DA-activating drugs such as ethanol. Thus, the 22-TNJ mouse represents a model for a relatively hypodopaminergic system, and could provide important insights into the mechanisms of hyperresponsiveness to ethanol’s stimulant actions. PMID:19801272

  9. Binge consumption of ethanol during pregnancy leads to significant developmental delay of mouse embryonic brain

    NASA Astrophysics Data System (ADS)

    Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.

    2014-03-01

    Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.

  10. MouseMine: a new data warehouse for MGI.

    PubMed

    Motenko, H; Neuhauser, S B; O'Keefe, M; Richardson, J E

    2015-08-01

    MouseMine (www.mousemine.org) is a new data warehouse for accessing mouse data from Mouse Genome Informatics (MGI). Based on the InterMine software framework, MouseMine supports powerful query, reporting, and analysis capabilities, the ability to save and combine results from different queries, easy integration into larger workflows, and a comprehensive Web Services layer. Through MouseMine, users can access a significant portion of MGI data in new and useful ways. Importantly, MouseMine is also a member of a growing community of online data resources based on InterMine, including those established by other model organism databases. Adopting common interfaces and collaborating on data representation standards are critical to fostering cross-species data analysis. This paper presents a general introduction to MouseMine, presents examples of its use, and discusses the potential for further integration into the MGI interface.

  11. Mouse models of otitis media: strengths and limitations.

    PubMed

    Bhutta, Mahmood Fazal

    2012-10-01

    There has been a rapid rise in the use of the mouse to investigate pathobiology of otitis media. This is for good reason, including easy husbandry, but also capacity for genetic manipulation of the mouse. Insights into human disease have been gleaned from mouse models, but there are limitations of the mouse-to-man approach. First, important differences exist between mouse and man, particularly in immune function. Second, functional equivalence of genes in the 2 species is not ensured. Third, laboratory mice of a uniform genetic background and environment are an inadequate model of the plethora of factors affecting complex disease in humans. Finally, gene function in mouse models is often obliterated using gene knockout technology, but this is a poor mimic of normal gene variation in man. These drawbacks of the mouse may in the future limit its usefulness in otitis media research.

  12. Response, use and habituation to a mouse house in C57BL/6J and BALB/c mice.

    PubMed

    Wirz, Annarita; Mandillo, Silvia; D'Amato, Francesca R; Giuliani, Alessandro; Riviello, M Cristina

    2015-01-01

    Animal welfare depends on the possibility to express species-specific behaviours and can be strongly compromised in socially and environmentally deprived conditions. Nesting materials and refuges are very important resources to express these behaviours and should be considered as housing supplementation items. We evaluated the effects of one item of housing supplementation in standard settings in laboratory mice. C57BL/6JOlaHsd (B6) and BALB/cOlaHsd (BALB) young male and female mice, upon arrival, were housed in groups of four in standard laboratory cages and after 10 days of acclimatization, a red transparent plastic triangular-shaped Mouse House™ was introduced into half of the home cages. Animals with or without a mouse house were observed in various contexts for more than one month. Body weight gain and food intake, home cage behaviours, emotionality and response to standard cage changing procedures were evaluated. The presence of a mouse house in the home cage did not interfere with main developmental and behavioural parameters or emotionality of BALB and B6 male and female mice compared with controls. Both strains habituated to the mouse house in about a week, but made use of it differently, with BALB mice using the house more than the B6 strain. Our results suggest that mice habituated to the mouse house rather quickly without disrupting their home cage activities. Scientists can thus be encouraged to use mouse houses, also in view of the implementation of the EU Directive (2010/63/EU).

  13. Influence of time pressure and verbal provocation on physiological and psychological reactions during work with a computer mouse.

    PubMed

    Wahlström, J; Hagberg, M; Johnson, P W; Svensson, J; Rempel, D

    2002-07-01

    The overall aim of this study was to investigate whether time pressure and verbal provocation has any effect on physiological and psychological reactions during work with a computer mouse. It was hypothesised that physiological reactions other than muscle activity (i.e. wrist movements, forces applied to the computer mouse) would not be affected when working under stressful conditions. Fifteen subjects (8 men and 7 women) participated, performing a standardised text-editing task under stress and control conditions. Blood pressure, heart rate, heart rate variability, electromyography, a force-sensing computer mouse and electrogoniometry were used to assess the physiological reactions of the subjects. Mood ratings and ratings of perceived exertion were used to assess their psychological reactions. The time pressure and verbal provocation (stress situation) resulted in increased physiological and psychological reactions compared with the two control situations. Heart rate, blood pressure and muscle activity in the first dorsal interosseus, right extensor digitorum and right trapezius muscles were greater in the stress situation. The peak forces applied to the button of the computer mouse and wrist movements were also affected by condition. Whether the increases in the physiological reactions were due to stress or increased speed/productivity during the stress situation is discussed. In conclusion, work with a computer mouse under time pressure and verbal provocation (stress conditions) led to increased physiological and psychological reactions compared to control conditions.

  14. Vegfr3-CreER (T2) mouse, a new genetic tool for targeting the lymphatic system.

    PubMed

    Martinez-Corral, Ines; Stanczuk, Lukas; Frye, Maike; Ulvmar, Maria Helena; Diéguez-Hurtado, Rodrigo; Olmeda, David; Makinen, Taija; Ortega, Sagrario

    2016-07-01

    The lymphatic system is essential in many physiological and pathological processes. Still, much remains to be known about the molecular mechanisms that control its development and function and how to modulate them therapeutically. The study of these mechanisms will benefit from better controlled genetic mouse models targeting specifically lymphatic endothelial cells. Among the genes expressed predominantly in lymphatic endothelium, Vegfr3 was the first one identified and is still considered to be one of the best lymphatic markers and a key regulator of the lymphatic system. Here, we report the generation of a Vegfr3-CreER (T2) knockin mouse by gene targeting in embryonic stem cells. This mouse expresses the tamoxifen-inducible CreER(T2) recombinase under the endogenous transcriptional control of the Vegfr3 gene without altering its physiological expression or regulation. The Vegfr3-CreER (T2) allele drives efficient recombination of floxed sequences upon tamoxifen administration specifically in Vegfr3-expressing cells, both in vitro, in primary lymphatic endothelial cells, and in vivo, at different stages of mouse embryonic development and postnatal life. Thus, our Vegfr3-CreER (T2) mouse constitutes a new powerful genetic tool for lineage tracing analysis and for conditional gene manipulation in the lymphatic endothelium that will contribute to improve our current understanding of this system.

  15. The Press and Government Restriction: A 13-Year Update of a Cross-National Study.

    ERIC Educational Resources Information Center

    Weaver, David H.; Buddenbaum, Judith M.

    In 1974, David H. Weaver used path analysis with data from 137 countries during four periods between 1950 and 1966 to test relationships between government control of the press and six other societal characteristics. The present study, which extended the time period of the original analysis by adding recently available data from 1979, constructed…

  16. Protein transfection of mouse lung.

    PubMed

    Geraghty, Patrick; Foronjy, Robert

    2013-05-15

    Increasing protein expression enables researchers to better understand the functional role of that protein in regulating key biological processes(1). In the lung, this has been achieved typically through genetic approaches that utilize transgenic mice(2,3) or viral or non-viral vectors that elevate protein levels via increased gene expression(4). Transgenic mice are costly and time-consuming to generate and the random insertion of a transgene or chronic gene expression can alter normal lung development and thus limit the utility of the model(5). While conditional transgenics avert problems associated with chronic gene expression(6), the reverse tetracycline-controlled transactivator (rtTA) mice, which are used to generate conditional expression, develop spontaneous air space enlargement(7). As with transgenics, the use of viral and non-viral vectors is expensive(8) and can provoke dose-dependent inflammatory responses that confound results(9) and hinder expression(10). Moreover, the efficacy of repeated doses are limited by enhanced immune responses to the vector(11,12). Researchers are developing adeno-associated viral (AAV) vectors that provoke less inflammation and have longer expression within the lung(13). Using β-galactosidase, we present a method for rapidly and effectively increasing protein expression within the lung using a direct protein transfection technique. This protocol mixes a fixed amount of purified protein with 20 μl of a lipid-based transfection reagent (Pro-Ject, Pierce Bio) to allow penetration into the lung tissue itself. The liposomal protein mixture is then injected into the lungs of the mice via the trachea using a microsprayer (Penn Century, Philadelphia, PA). The microsprayer generates a fine plume of liquid aerosol throughout the lungs. Using the technique we have demonstrated uniform deposition of the injected protein throughout the airways and the alveoli of mice(14). The lipid transfection technique allows the use of a small

  17. Contribution of a single host genetic locus to mouse adenovirus type 1 infection and encephalitis.

    PubMed

    Hsu, Tien-Huei; Althaus, Irene W; Foreman, Oded; Spindler, Katherine R

    2012-01-01

    Susceptibility to mouse adenovirus type 1 (MAV-1) is mouse strain dependent; susceptible mice die from hemorrhagic encephalomyelitis. The MAV-1 susceptibility quantitative trait locus Msq1 accounts for ~40% of the phenotypic (brain viral load) variance that occurs between resistant BALB/c and susceptible SJL mice after MAV-1 infection. Using an interval-specific congenic mouse strain (C.SJL-Msq1(SJL)), in which the SJL-derived allele Msq1(SJL) is present in a BALB/c background, we demonstrate that Msq1(SJL) controls the development of high brain viral titers in response to MAV-1 infection, yet does not account for the total extent of brain pathology or mortality in SJL mice. C.SJL-Msq1(SJL) mice had disruption of the blood-brain barrier and increased brain water content after MAV-1 infection, but these effects occurred later and were not as severe, respectively, as those noted in infected SJL mice. As expected, BALB/c mice showed minimal pathology in these assays. Infection of SJL- and C.SJL-Msq1(SJL)-derived primary mouse brain endothelial cells resulted in loss of barrier properties, whereas BALB/c-derived cells retained their barrier properties despite being equally capable of supporting MAV-1 infection. Finally, we provide evidence that organ pathology and inflammatory cell recruitment to the brain following MAV-1 infection were both influenced by Msq1. These results validate Msq1 as an important host factor in MAV-1 infection and refine the major role of the locus in development of MAV-1 encephalitis. They further suggest that additional host factors or gene interactions are involved in the mechanism of pathogenesis in MAV-1-infected SJL mice. A successful viral infection requires both host and viral factors; identification of host components involved in viral replication and pathogenesis is important for development of therapeutic interventions. A genetic locus (Msq1) controlling mouse adenovirus type 1 (MAV-1) brain infection was previously identified. Genes

  18. A novel mutation of the SLC25A13 gene in a Chinese patient with citrin deficiency detected by target next-generation sequencing.

    PubMed

    Liu, Gang; Wei, Xiaoming; Chen, Rui; Zhou, Hanlin; Li, Xiaoyan; Sun, Yan; Xie, Shuqi; Zhu, Qian; Qu, Ning; Yang, Guanghui; Chu, Yuxing; Wu, Haitao; Lan, Zhangzhang; Wang, Jinming; Yang, Yi; Yi, Xin

    2014-01-10

    Type II citrullinaemia, also known as citrin deficiency, is an autosomal recessive metabolic disorder, which is caused by pathogenic mutations in the SLC25A13 gene on chromosome 7q21.3. One of the clinical manifestations of type II citrullinaemia is neonatal intrahepatic cholestatic hepatitis caused by citrin deficiency (NICCD, OMIM# 605814). In this study, a 5-month-old female Chinese neonate diagnosed with type II citrullinaemia was examined. The diagnosis was based on biochemical and clinical findings, including organic acid profiling using a gas chromatography mass spectrometry (GC/MS), and the patient's parents were unaffected. Approximately 14 kb of the exon sequences of the SLC25A13 and two relative genes (ASS1 and FAH) from the proband and 100 case-unrelated controls were captured by array-based capture method followed by high-throughput next-generation sequencing. Two single-nucleotide mutations were detected in the proband, including the previous reported c.1177+1G>A mutation and a novel c.754 G>A mutation in the SLC25A13 gene. Sanger sequence results showed that the patient was a compound heterozygote for the two mutations. The novel mutation (c.754 G>A), which is predicted to affect the normal structure and function of citrin, is a candidate pathogenic mutation. Target sequence capture combined with high-throughput next-generation sequencing technologies is proven to be an effective method for molecular genetic testing of type II citrullinaemia. Crown Copyright © 2013. All rights reserved.

  19. Ulcus vulvae acutum in a 13-year-old girl after influenza A infection.

    PubMed

    Wetter, David A; Bruce, Alison J; MacLaughlin, Kathy L; Rogers, Roy S

    2008-01-01

    A 13-year-old otherwise healthy premenarchal girl presented with acute onset of painful vulvar ulcerations. One day before developing vulvar ulcerations, she experienced flu-like symptoms, including a low-grade fever, cough, sore throat, and myalgia. Results of a throat swab were positive for influenza A infection (polymerase chain reaction [PCR] assay), and the patient was treated with oseltamivir. The patient's constitutional symptoms improved slightly, but within 2 days after her initial presentation, she returned to her primary care provider and described 24 hours of dysuria and vulvar swelling. She had a history of herpes labialis (cold sores) and rare episodes of minor oral aphthae (canker sores) that occurred less than twice a year. The patient denied a history of sexual activity, sexual abuse, or physical trauma. Physical examination showed ulceration and swelling of the labia minora, and the patient received an empiric dose of acyclovir (200 mg 4 times daily) for presumed autoinoculated herpes simplex virus (HSV) infection. An ulcer swab was performed, and urinalysis revealed no evidence of infection. Two days later, the patient presented to the emergency department with increasing vulvar pain and vaginal discharge. The previous ulcer swab findings were negative for HSV (PCR assay), and consequently, acyclovir was discontinued after 1 day of therapy. She received topical viscous lidocaine and an empiric dose of oral fluconazole. The lidocaine provided temporary symptomatic relief. Results of DNA amplification studies were negative for Chlamydia trachomatis and Neisseria gonorrhoeae. A potassium hydroxide preparation was negative for fungi, and an ulcer swab for bacterial culture revealed usual flora. Of note, the PCR assay for Epstein-Barr virus was not performed on ulcer cells. The patient was referred to the department of dermatology, and results of a physical examination showed copious white mucoid discharge and a 2-cm ulceration of the left labia

  20. THE INTESTINAL FLORA IN MOUSE TYPHOID INFECTION

    PubMed Central

    Webster, Leslie T.

    1923-01-01

    The normal flora of laboratory mice at The Rockefeller Institute, fed on a bread and milk diet, was determined. Bacillus acidophilus and Bacillus bifidus outnumber the Bacillus coli, Bacillus acidi lactici, and Bacillus coli communior group about twenty-five to one. White and yellow cocci which may or may not liquefy gelatin are occasionally noted; spirochetal and vibrio forms and yeasts are usually seen in stained preparations. This flora does not change when mice are artificially infected per os with a strain of mouse typhoid bacilli (Bacillus pestis cavice) and is the same in the animals which resist the infection as in those which succumb. Mice fed on a meat diet and showing a colon, Bacillus diffluens, and Bacillus welchii flora do not differ in susceptibility to mouse typhoid from the normal mice fed on bread and milk and showing the above acidophilus flora. PMID:19868710

  1. THE INTESTINAL FLORA IN MOUSE TYPHOID INFECTION.

    PubMed

    Webster, L T

    1923-01-01

    The normal flora of laboratory mice at The Rockefeller Institute, fed on a bread and milk diet, was determined. Bacillus acidophilus and Bacillus bifidus outnumber the Bacillus coli, Bacillus acidi lactici, and Bacillus coli communior group about twenty-five to one. White and yellow cocci which may or may not liquefy gelatin are occasionally noted; spirochetal and vibrio forms and yeasts are usually seen in stained preparations. This flora does not change when mice are artificially infected per os with a strain of mouse typhoid bacilli (Bacillus pestis cavice) and is the same in the animals which resist the infection as in those which succumb. Mice fed on a meat diet and showing a colon, Bacillus diffluens, and Bacillus welchii flora do not differ in susceptibility to mouse typhoid from the normal mice fed on bread and milk and showing the above acidophilus flora.

  2. Analysis of Mouse Growth Plate Development

    PubMed Central

    Mangiavini, Laura; Merceron, Christophe; Schipani, Ernestina

    2016-01-01

    To investigate skeletal development, pathophysiological mechanisms of cartilage and bone disease, and eventually assess innovative treatments, the mouse is a very important resource. During embryonic development, mesenchymal condensations are formed, and cells within these mesenchymal condensations either directly differentiate into osteoblasts and give origin to intramembranous bone, or differentiate into chondrocytes and form a cartilaginous anlage. The cartilaginous anlage or fetal growth plate is then replaced with bone. This process is also called endochondral bone development, and it is responsible for the generation of most of our skeleton. In this Review, we will discuss in detail the most common in vivo and in vitro techniques our laboratory is currently using for the analysis of the mouse fetal growth plate during development. PMID:26928664

  3. Learning to segment mouse embryo cells

    NASA Astrophysics Data System (ADS)

    León, Juan; Pardo, Alejandro; Arbeláez, Pablo

    2017-11-01

    Recent advances in microscopy enable the capture of temporal sequences during cell development stages. However, the study of such sequences is a complex task and time consuming task. In this paper we propose an automatic strategy to adders the problem of semantic and instance segmentation of mouse embryos using NYU's Mouse Embryo Tracking Database. We obtain our instance proposals as refined predictions from the generalized hough transform, using prior knowledge of the embryo's locations and their current cell stage. We use two main approaches to learn the priors: Hand crafted features and automatic learned features. Our strategy increases the baseline jaccard index from 0.12 up to 0.24 using hand crafted features and 0.28 by using automatic learned ones.

  4. The laboratory mouse and wild immunology.

    PubMed

    Viney, M; Lazarou, L; Abolins, S

    2015-05-01

    The laboratory mouse, Mus musculus domesticus, has been the workhorse of the very successful laboratory study of mammalian immunology. These studies--discovering how the mammalian immune system can work--have allowed the development of the field of wild immunology that is seeking to understand how the immune responses of wild animals contributes to animals' fitness. Remarkably, there have hardly been any studies of the immunology of wild M. musculus domesticus (or of rats, another common laboratory model), but the general finding is that these wild animals are more immunologically responsive, compared with their laboratory domesticated comparators. This difference probably reflects the comparatively greater previous exposure to antigens of these wild-caught animals. There are now excellent prospects for laboratory mouse immunology to make major advances in the field of wild immunology. © 2014 The Authors. Parasite Immunology published by John Wiley & Sons Ltd.

  5. A lapachol derivative active against mouse lymphocytic leukemia P-388.

    PubMed

    da Consolação, M; Linardi, F; de Oliveira, M M; Sampaio, M R

    1975-11-01

    Lapachol [2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone] and its analogs [2-(3,7-dimethyl-2,6-octadienyl)-3-hydroxy-1,4-naphthoquinone and 2-(3,3-dibromo-2-propenyl)-3-hydroxy-1,4-naphthoquinone] have been described, among almost a hundred synthesized analogs, as active against rat tumor Walker 256 carcinosarcoma. The acetylglucosylation of lapachol results in a compound which extends lapachol activity becoming effective against mouse lymphocytic leukemia P-388. When mice inoculated with 10(6) leukemic cells were treated with the drug during 9 days, their life span increased 80% over the control animals. Identification spectral data (uv, ir, 1H NMR, and MS) of the compound obtained by synthesis are given.

  6. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging

    PubMed Central

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-01-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation. PMID:26974211

  7. Selection of antioxidants against ovarian oxidative stress in mouse model.

    PubMed

    Li, Bojiang; Weng, Qiannan; Liu, Zequn; Shen, Ming; Zhang, Jiaqing; Wu, Wangjun; Liu, Honglin

    2017-12-01

    Oxidative stress (OS) plays an important role in the process of ovarian granulosa cell apoptosis and follicular atresia. The aim of this study was to select antioxidant against OS in ovary tissue. Firstly, we chose the six antioxidants and analyzed the reactive oxygen species (ROS) level in the ovary tissue. The results showed that proanthocyanidins, gallic acid, curcumin, and carotene decrease the ROS level compared with control group. We further demonstrated that both proanthocyanidins and gallic acid increase the antioxidant enzymes activity. Moreover, change in the ROS level was not observed in proanthocyanidins and gallic acid group of brain, liver, spleen, and kidney tissues. Finally, we found that proanthocyanidins and gallic acid inhibit pro-apoptotic genes expression in granulosa cells. Taken together, proanthocyanidins and gallic acid may be the most acceptable and optimal antioxidants specifically against ovarian OS and also may be involved in the inhibition of granulosa cells apoptosis in mouse ovary. © 2017 Wiley Periodicals, Inc.

  8. Gene therapy in mouse models of huntington disease.

    PubMed

    Southwell, Amber L; Patterson, Paul H

    2011-04-01

    Huntingtin, the protein that when mutated causes Huntington disease (HD), has many known interactors and participates in diverse cellular functions. Mutant Htt (mHtt) engages in a variety of aberrant interactions that lead to pathological gain of toxic functions as well as loss of normal functions. The broad symptomatology of HD, including diminished voluntary motor control, cognitive decline, and psychiatric disturbances, reflects the multifaceted neuropathology. Although currently available therapies for HD focus on symptom management, the autosomal dominant cause and the adult onset make this disease an ideal candidate for genetic intervention. A variety of gene therapy approaches have been tested in mouse models of HD, ranging from those aimed at ameliorating downstream pathology or replacing lost neuronal populations to more upstream strategies to reduce mHtt levels. Here the authors review the results of these preclinical trials.

  9. Gene Therapy in Mouse Models of Huntington Disease

    PubMed Central

    Southwell, Amber L.; Patterson, Paul H.

    2011-01-01

    Huntingtin, the protein that when mutated causes Huntington disease (HD), has many known interactors and participates in diverse cellular functions. Mutant Htt (mHtt) engages in a variety of aberrant interactions that lead to pathological gain of toxic functions as well as loss of normal functions. The broad symptomatology of HD, including diminished voluntary motor control, cognitive decline, and psychiatric disturbances, reflects the multifaceted neuropathology. Although currently available therapies for HD focus on symptom management, the autosomal dominant cause and the adult onset make this disease an ideal candidate for genetic intervention. A variety of gene therapy approaches have been tested in mouse models of HD, ranging from those aimed at ameliorating downstream pathology or replacing lost neuronal populations to more upstream strategies to reduce mHtt levels. Here the authors review the results of these preclinical trials. PMID:21489966

  10. Effects of curcumin on methyl methanesulfonate damage to mouse kidney.

    PubMed

    Cuce, G; Cetinkaya, S; Isitez, N; Kuccukturk, S; Sozen, M E; Kalkan, S; Cigerci, I H; Demirel, H H

    2016-01-01

    Methylmethane sulfonate (MMS) is an alkylating agent that may react with DNA and damage it. We investigated histological changes and apoptosis caused by MMS and the effects of curcumin on MMS treated mouse kidneys. Twenty-four mice were divided into four equal groups: controls injected with saline, a group injected with 40 mg/kg MMS, a group injected with 40 mg/kg MMS and given 100 mg/kg curcumin by gavage, and a group given 100 mg/kg curcumin by gavage. MMS caused congestion and vacuole formation, and elevated the apoptotic index significantly, but had no other effect on kidney tissue. Curcumin improved the congestion and vacuole formation caused by MMS and decreased the apoptotic index. Curcumin administered with MMS appears to decrease the deleterious effects of MMS on the kidney.

  11. SIRT1, 2, 3 protect mouse oocytes from postovulatory aging.

    PubMed

    Zhang, Teng; Zhou, Yang; Li, Li; Wang, Hong-Hui; Ma, Xue-Shan; Qian, Wei-Ping; Shen, Wei; Schatten, Heide; Sun, Qing-Yuan

    2016-04-01

    The quality of metaphase II oocytes will undergo a time-dependent deterioration following ovulation as the result of the oocyte aging process. In this study, we determined that the expression of sirtuin family members (SIRT1, 2, 3) was dramatically reduced in mouse oocytes aged in vivo or in vitro. Increased intracellular ROS was observed when SIRT1, 2, 3 activity was inhibited. Increased frequency of spindle defects and disturbed distribution of mitochondria were also observed in MII oocytes aged in vitro after treatment with Nicotinamide (NAM), indicating that inhibition of SIRT1, 2, 3 may accelerate postovulatory oocyte aging. Interestingly, when MII oocytes were exposed to caffeine, the decline of SIRT1, 2, 3 mRNA levels was delayed and the aging-associated defective phenotypes could be improved. The results suggest that the SIRT1, 2, 3 pathway may play a potential protective role against postovulatory oocyte aging by controlling ROS generation.

  12. Effects of clinostat rotation on mouse meiotic maturation in vitro

    NASA Technical Reports Server (NTRS)

    Wolgemuth, D. J.; Grills, G. S.

    1984-01-01

    The effects of microgravity on meiosis, fertilization, and early embryonic development in mammals are being examined by using a clinostat to reorient the cells with respect to the gravity vector. A clinostat capable of supporting mammalian cells in tissue culture has been developed. Initial studies have focused on examining the effects of clinostat rotation on meiotic maturation in mouse oocytes. Oocytes recovered from ovarian follicles were subjected to clinostat rotation on a horizontal or vertical axis or to static conditions for a 16 hr period. No gross morphological changes and no effects on germinal vesicle breakdown were observed under any rotation conditions (1/4, 1, 10, 30, 100 RPM). Success of meiotic progression to Metaphase II was comparable among experimental and control groups except at 100 RPM, where a slight inhibition was observed.

  13. Using ontologies to describe mouse phenotypes

    PubMed Central

    Gkoutos, Georgios V; Green, Eain CJ; Mallon, Ann-Marie; Hancock, John M; Davidson, Duncan

    2005-01-01

    The mouse is an important model of human genetic disease. Describing phenotypes of mutant mice in a standard, structured manner that will facilitate data mining is a major challenge for bioinformatics. Here we describe a novel, compositional approach to this problem which combines core ontologies from a variety of sources. This produces a framework with greater flexibility, power and economy than previous approaches. We discuss some of the issues this approach raises. PMID:15642100

  14. Cell Lineage Analysis of Mouse Prostate Carcinogenesis

    DTIC Science & Technology

    2014-07-01

    Defining the origin of prostate cancer cells is fundamentally important and will guide future research to focus on cells from which prostate cancer ...loss of basal epithelial cells and prostate cancer cells exhibit a luminal epithelial cell phenotype including the expression of AR and PSA. However... cells are derived from luminal or basal epithelial cells in an EAF2-/-; PTEN+/- mouse model, and determine whether luminal-derived prostate cancer cells behave

  15. Engineering a new mouse model for vitiligo.

    PubMed

    Manga, Prashiela; Orlow, Seth J

    2012-07-01

    Although the precise mechanisms that trigger vitiligo remain elusive, autoimmune responses mediate its progression. The development of therapies has been impeded by a paucity of animal models, since mice lack interfollicular melanocytes, the primary targets in vitiligo. In this issue, Harris et al. describe a mouse model in which interfollicular melanocytes are retained by Kit ligand overexpression and an immune response is initiated by transplanting melanocyte-targeting CD8+ T cells.

  16. Cranial bone morphometric study among mouse strains

    PubMed Central

    2008-01-01

    Background Little is known about the molecular mechanism which regulates how the whole cranium is shaped. Mouse models currently available for genetic research include several hundreds of unique inbred strains and genetically engineered mutants. By cross comparing their genomic structures, we can elucidate the cause of any differences in the phenotype between two strains. The craniometry of subspecies, or closely related species, of mice provide a good systemic model to study the relationship between genetic variance and cranial shape evolution. The lack of a quantified framework for comparing and analyzing mouse cranial shape has been a problem. For this reason, we performed quantitative analysis of cranial shape morphology between several mouse strains. Results This article reports on a craniometric assay of seven mouse strains: four inbred strains (C57BL/6J, BALB/cA, C3H/HeJ, and CBA/JNCr) from Mus musculus domesticus (M. m. domesticus); one closed colony strain (ICR) from M. m. domesticus; one inbred strain (MSM/Ms) from Mus musculus molossinus; and, Mus spretus as a strain from a species other than M. m. domesticus. We performed linear measurements and geometric morphometrics. Geometric morphometrics revealed that the cranial characteristics of each strains were clearly distinguishable. We obtained mean scores for each species using the tpsRelw Program and plotted them. Conclusion Geometric morphometrics proved to be useful for identifying and classifying variations in form, and it revealed that M. spretus has a slender cranium when compared with our other strains. The mean cranial shape of C3H or CBA was more similar to MSM/Ms, which is derived from M. m. molossinus, than to either C57BL/6J, BALB, or ICR which are derived from M. m. domesticus. Future work in this field will aid in elucidating the mechanism of whole cranial shape regulation. PMID:18307817

  17. Spatial integration in mouse primary visual cortex.

    PubMed

    Vaiceliunaite, Agne; Erisken, Sinem; Franzen, Florian; Katzner, Steffen; Busse, Laura

    2013-08-01

    Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in mouse V1 are similar to those of higher-order mammals and investigated the role of parvalbumin-expressing (PV+) inhibitory interneurons. Analogous to what is known from primates and carnivores, we demonstrate that, in awake mice, surround suppression is present in the majority of V1 neurons and is strongest in superficial cortical layers. Anesthesia with isoflurane-urethane, however, profoundly affects spatial integration: it reduces the laminar dependency, decreases overall suppression strength, and alters the temporal dynamics of responses. We show that these effects of brain state can be parsimoniously explained by assuming that anesthesia affects contrast normalization. Hence, the full impact of suppressive influences in mouse V1 cannot be studied under anesthesia with isoflurane-urethane. To assess the neural circuits of spatial integration, we targeted PV+ interneurons using optogenetics. Optogenetic depolarization of PV+ interneurons was associated with increased RF size and decreased suppression in the recorded population, similar to effects of lowering stimulus contrast, suggesting that PV+ interneurons contribute to spatial integration by affecting overall stimulus drive. We conclude that the mouse is a promising model for circuit-level mechanisms of spatial integration, which relies on the combined activity of different types of inhibitory interneurons.

  18. The Mouse Tumor Biology Database: A Comprehensive Resource for Mouse Models of Human Cancer.

    PubMed

    Krupke, Debra M; Begley, Dale A; Sundberg, John P; Richardson, Joel E; Neuhauser, Steven B; Bult, Carol J

    2017-11-01

    Research using laboratory mice has led to fundamental insights into the molecular genetic processes that govern cancer initiation, progression, and treatment response. Although thousands of scientific articles have been published about mouse models of human cancer, collating information and data for a specific model is hampered by the fact that many authors do not adhere to existing annotation standards when describing models. The interpretation of experimental results in mouse models can also be confounded when researchers do not factor in the effect of genetic background on tumor biology. The Mouse Tumor Biology (MTB) database is an expertly curated, comprehensive compendium of mouse models of human cancer. Through the enforcement of nomenclature and related annotation standards, MTB supports aggregation of data about a cancer model from diverse sources and assessment of how genetic background of a mouse strain influences the biological properties of a specific tumor type and model utility. Cancer Res; 77(21); e67-70. ©2017 AACR . ©2017 American Association for Cancer Research.

  19. Isolation of the mouse homologue of BRCA1 and genetic mapping to mouse chromosome 11

    SciTech Connect

    Bennett, L.M.; Haugen-Strano, A.; Cochran, C.

    1995-10-10

    The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murine Brca1 homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouse Brca1 locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in the Brcal locus was identified and used to map this gene on a (Mus m. musculus Czech II x C57BL/KsJ)F1 x C57BL/KsJ intersubspecificmore » backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murine Brcal homologue rather than a related RING finger gene. The isolation of the mouse Brca1 homologue will facilitate the creation of mouse models for germline BRCA1 defects. 12 refs., 3 figs.« less

  20. Development of mPMab-1, a Mouse-Rat Chimeric Antibody Against Mouse Podoplanin.

    PubMed

    Yamada, Shinji; Kaneko, Mika K; Nakamura, Takuro; Ichii, Osamu; Konnai, Satoru; Kato, Yukinari

    2017-04-01

    Podoplanin (PDPN), the ligand of C-type lectin-like receptor-2, is used as a lymphatic endothelial marker. We previously established clone PMab-1 of rat IgG 2a as a specific monoclonal antibody (mAb) against mouse PDPN. PMab-1 is also very sensitive in immunohistochemical analysis; however, rat mAbs seem to be unfavorable for pathologists because anti-mouse IgG and anti-rabbit IgG are usually used as secondary antibodies in commercially available kits for immunohistochemical analysis. In this study, we develop a mouse-rat chimeric antibody, mPMab-1 of mouse IgG 2a , which was derived from rat PMab-1 mAb. Immunohistochemical analysis shows that mPMab-1 detects podocytes of the kidney, lymphatic endothelial cells of the colon, and type I alveolar cells of the lung. Importantly, mPMab-1 is more sensitive than PMab-1. This conversion strategy from rat mAb to mouse mAb could be applicable to other mAbs.

  1. Mouse models for core binding factor leukemia.

    PubMed

    Chin, D W L; Watanabe-Okochi, N; Wang, C Q; Tergaonkar, V; Osato, M

    2015-10-01

    RUNX1 and CBFB are among the most frequently mutated genes in human leukemias. Genetic alterations such as chromosomal translocations, copy number variations and point mutations have been widely reported to result in the malfunction of RUNX transcription factors. Leukemias arising from such alterations in RUNX family genes are collectively termed core binding factor (CBF) leukemias. Although adult CBF leukemias generally are considered a favorable risk group as compared with other forms of acute myeloid leukemia, the 5-year survival rate remains low. An improved understanding of the molecular mechanism for CBF leukemia is imperative to uncover novel treatment options. Over the years, retroviral transduction-transplantation assays and transgenic, knockin and knockout mouse models alone or in combination with mutagenesis have been used to study the roles of RUNX alterations in leukemogenesis. Although successful in inducing leukemia, the existing assays and models possess many inherent limitations. A CBF leukemia model which induces leukemia with complete penetrance and short latency would be ideal as a platform for drug discovery. Here, we summarize the currently available mouse models which have been utilized to study CBF leukemias, discuss the advantages and limitations of individual experimental systems, and propose suggestions for improvements of mouse models.

  2. Utrophin Compensates dystrophin Loss during Mouse Spermatogenesis.

    PubMed

    Chen, Hung-Chih; Chin, Yu-Feng; Lundy, David J; Liang, Chung-Tiang; Chi, Ya-Hui; Kuo, Paolin; Hsieh, Patrick C H

    2017-08-07

    Duchenne muscular dystrophy (DMD) is an X-linked genetic disorder resulting from mutations in the dystrophin gene. The mdx/utrn -/- mouse, lacking in both dystrophin and its autosomal homologue utrophin, is commonly used to model the clinical symptoms of DMD. Interestingly, these mice are infertile but the mechanisms underlying this phenomenon remain unclear. Using dystrophin deficient mdx mouse and utrophin haplodeficient mdx/utrn +/- mouse models, we demonstrate the contribution of Dp427 (full-length dystrophin) and utrophin to testis and epididymis development, as well as spermatogenesis. We show that Dp427 deficiency disturbed the balance between proliferation and apoptosis of germ cells during spermatogenesis, which was further disrupted with utrophin haplodeficiency, deciphering a compensatory role of utrophin for dystrophin in the male reproductive system. In the spermatozoa, we have found a compensatory response of utrophin to dystrophin deficiency - namely the upregulation and relocation of utrophin to the flagellar midpiece. This study demonstrates the contribution of Dp427 and utrophin in male fertility, suggesting a potential pathology in DMD patients.

  3. Digenic Inheritance in Cystinuria Mouse Model

    PubMed Central

    Espino, Meritxell; Font-Llitjós, Mariona; Vilches, Clara; Salido, Eduardo; Prat, Esther; López de Heredia, Miguel; Palacín, Manuel; Nunes, Virginia

    2015-01-01

    Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients. PMID:26359869

  4. Chromatin Immunoprecipitation in Early Mouse Embryos.

    PubMed

    García-González, Estela G; Roque-Ramirez, Bladimir; Palma-Flores, Carlos; Hernández-Hernández, J Manuel

    2018-01-01

    Epigenetic regulation is achieved at many levels by different factors such as tissue-specific transcription factors, members of the basal transcriptional apparatus, chromatin-binding proteins, and noncoding RNAs. Importantly, chromatin structure dictates the availability of a specific genomic locus for transcriptional activation as well as the efficiency with which transcription can occur. Chromatin immunoprecipitation (ChIP) is a method that allows elucidating gene regulation at the molecular level by assessing if chromatin modifications or proteins are present at a specific locus. Initially, the majority of ChIP experiments were performed on cultured cell lines and more recently this technique has been adapted to a variety of tissues in different model organisms. Using ChIP on mouse embryos, it is possible to document the presence or absence of specific proteins and chromatin modifications at genomic loci in vivo during mammalian development and to get biological meaning from observations made on tissue culture analyses. We describe here a ChIP protocol on freshly isolated mouse embryonic somites for in vivo analysis of muscle specific transcription factor binding on chromatin. This protocol has been easily adapted to other mouse embryonic tissues and has also been successfully scaled up to perform ChIP-Seq.

  5. Implementation of the mouse frailty index.

    PubMed

    Kane, Alice E; Ayaz, Omar; Ghimire, Anjali; Feridooni, Hirad A; Howlett, Susan E

    2017-10-01

    Frailty is considered a state of high vulnerability for adverse health outcomes for people of the same age. Those who are frail have higher mortality, worse health outcomes, and use more health care services than those who are not frail. Despite this, little is known about the biology of frailty, the effect of frailty on pharmacological or surgical outcomes, and potential interventions to attenuate frailty. In humans, frailty can be quantified using a frailty index (FI) based on the principle of deficit accumulation. The recent development of an FI in naturally ageing mice provides an opportunity to conduct frailty research in a validated preclinical model. The mouse FI has been successfully used across a wide range of applications; however, there are some factors that should be considered in implementing this tool. This review summarises the current literature, presents some original data, and suggests areas for future research on the current applications of the mouse FI, inter-rater reliability of the FI, the effect of observer characteristics and environmental factors on mouse FI scores, and the individual items that make up the FI assessment. The implementation of this tool into preclinical frailty research should greatly accelerate translational research in this important field.

  6. Establishment of mouse expanded potential stem cells

    PubMed Central

    Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao

    2018-01-01

    Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987

  7. A mesoscale connectome of the mouse brain

    PubMed Central

    Oh, Seung Wook; Harris, Julie A.; Ng, Lydia; Winslow, Brent; Cain, Nicholas; Mihalas, Stefan; Wang, Quanxin; Lau, Chris; Kuan, Leonard; Henry, Alex M.; Mortrud, Marty T.; Ouellette, Benjamin; Nguyen, Thuc Nghi; Sorensen, Staci A.; Slaughterbeck, Clifford R.; Wakeman, Wayne; Li, Yang; Feng, David; Ho, Anh; Nicholas, Eric; Hirokawa, Karla E.; Bohn, Phillip; Joines, Kevin M.; Peng, Hanchuan; Hawrylycz, Michael J.; Phillips, John W.; Hohmann, John G.; Wohnoutka, Paul; Gerfen, Charles R.; Koch, Christof; Bernard, Amy; Dang, Chinh; Jones, Allan R.; Zeng, Hongkui

    2016-01-01

    Comprehensive knowledge of the brain’s wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease. PMID:24695228

  8. Expression of GATA-3 During Lymphocyte Differentiation and Mouse Embryogenesis

    PubMed Central

    Oosterwegel, Mariëtte; Timmerman, Janneke; Leiden, Jeffrey

    1992-01-01

    The GATA family of C4 zinc-finger transcription factors has been implicated in tissuespecific gene regulation in birds and mammals. One of the members of this family, GATA-3, is reportedly expressed specifically in the T-cell lineage, where it interacts with GATA motifs in the TCR-αα, TCR-β/, and TCR-δ enhancers, thereby controlling the T-cell phenotype. To evaluate the differentiation control properties of GATA-3, we have now documented its expression pattern during lymphoid differentiation and murine embryogenesis. The onset of GATA-3 expression in the lymphoid lineage was studied in a panel of lymphoid (precursor) cell lines by Northern blot analysis. GATA-3 was uniquely expressed in T-lineage lymphocytes expressing TCR and CD3 genes; it was absent from TCR/CD3 mRNA-negative prothymocytes and from all B-lineage cells. In order to obtain information on the expression of GATA-3 outside the immune system, in situ hybridization was performed on mouse embryos on day 11.5-14.5 of gestation. GATA-3 mRNA was detected in fetal thymus and in erythroid cells. Outside the haemopoietic system, we detected GATA-3 mRNA throughout the central nervous system, in kidney, in the epidermis, lens fibers, the inner ear, whisker follicles, and in the primary palate. These data provide new clues about the potential role of GATA-3 during mouse development, and will aid the interpretation of currently ongoing gene knockout experiments. PMID:1343100

  9. In vivo photothermal optical coherence tomography in the mouse eye (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lapierre-Landry, Maryse; Gordon, Andrew Y.; Craft, Jason R.; Skala, Melissa C.

    2016-03-01

    OCT has become a standard in retina imaging at the pre-clinical and clinical level by allowing non-invasive, three-dimensional imaging of the tissue structure. However, OCT lacks specificity to contrast agents that could be used for in vivo molecular imaging. We have performed in vivo photothermal optical coherence tomography (PTOCT) of gold nanorods in the mouse retina after the mice were injected intravenously with the contrast agent. To our knowledge, we are the first team to perform PTOCT in the eye. Four lesions were induced by laser photocoagulation in each mouse retina (n=6 mice) and gold nanorods (untargeted and targeted with anti-mouse CD102 antibody, which labels neovasculature, peak absorption λ=750nm) were injected intravenously by tail-vein injection five days later in four mice (two mice are controls). The mice were imaged with PTOCT the same day. Our instrument is a spectral domain OCT system (λ=860nm) with a Titanium:Sapphire laser (λ=750nm) added to the beam path using a 50:50 splitter to target the gold nanorods. We acquired PTOCT B-scans over one lesion per mouse eye. There was a significant increase in photothermal intensity at the center of the lesion in the gold nanorod group versus the control group. This experiment demonstrates the feasibility of PTOCT to image the distribution of contrast agents in the mouse retina. In the future we will use this method to optimize drug delivery to the retina in pre-clinical models.

  10. Cyclic loading increases friction and changes cartilage surface integrity in lubricin-mutant mouse knees

    PubMed Central

    Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J

    2012-01-01

    Objective To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Methods Joints from mice with 2 (Prg4+/+), 1 (Prg4+/−), or no (Prg4−/−) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. Results At baseline, the coefficient of friction values in Prg4−/− mice were significantly higher than those in Prg4+/+ and Prg4+/− mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4−/− mouse joints. In contrast, Prg4+/− and Prg4+/+ mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4−/− and Prg4+/− mouse joints compared to Prg4+/+ mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Conclusion Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4+/− mice are indistinguishable from Prg4+/+ mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. PMID:21905020

  11. Quantifying gaze and mouse interactions on spatial visual interfaces with a new movement analytics methodology

    PubMed Central

    2017-01-01

    Eye movements provide insights into what people pay attention to, and therefore are commonly included in a variety of human-computer interaction studies. Eye movement recording devices (eye trackers) produce gaze trajectories, that is, sequences of gaze location on the screen. Despite recent technological developments that enabled more affordable hardware, gaze data are still costly and time consuming to collect, therefore some propose using mouse movements instead. These are easy to collect automatically and on a large scale. If and how these two movement types are linked, however, is less clear and highly debated. We address this problem in two ways. First, we introduce a new movement analytics methodology to quantify the level of dynamic interaction between the gaze and the mouse pointer on the screen. Our method uses volumetric representation of movement, the space-time densities, which allows us to calculate interaction levels between two physically different types of movement. We describe the method and compare the results with existing dynamic interaction methods from movement ecology. The sensitivity to method parameters is evaluated on simulated trajectories where we can control interaction levels. Second, we perform an experiment with eye and mouse tracking to generate real data with real levels of interaction, to apply and test our new methodology on a real case. Further, as our experiment tasks mimics route-tracing when using a map, it is more than a data collection exercise and it simultaneously allows us to investigate the actual connection between the eye and the mouse. We find that there seem to be natural coupling when eyes are not under conscious control, but that this coupling breaks down when instructed to move them intentionally. Based on these observations, we tentatively suggest that for natural tracing tasks, mouse tracking could potentially provide similar information as eye-tracking and therefore be used as a proxy for attention. However

  12. Cyclic loading increases friction and changes cartilage surface integrity in lubricin-mutant mouse knees.

    PubMed

    Drewniak, Elizabeth I; Jay, Gregory D; Fleming, Braden C; Zhang, Ling; Warman, Matthew L; Crisco, Joseph J

    2012-02-01

    To investigate the effects of lubricin gene dosage and cyclic loading on whole joint coefficient of friction and articular cartilage surface integrity in mouse knee joints. Joints from mice with 2 (Prg4(+/+)), 1 (Prg4(+/-)), or no (Prg4(-/-)) functioning lubricin alleles were subjected to 26 hours of cyclic loading using a custom-built pendulum. Coefficient of friction values were measured at multiple time points. Contralateral control joints were left unloaded. Following testing, joints were examined for histologic evidence of damage and cell viability. At baseline, the coefficient of friction values in Prg4(-/-) mice were significantly higher than those in Prg4(+/+) and Prg4(+/-) mice (P < 0.001). Cyclic loading continuously increased the coefficient of friction in Prg4(-/-) mouse joints. In contrast, Prg4(+/-) and Prg4(+/+) mouse joints had no coefficient of friction increases during the first 4 hours of loading. After 26 hours of loading, joints from all genotypes had increased coefficient of friction values compared to baseline and unloaded controls. Significantly greater increases occurred in Prg4(-/-) and Prg4(+/-) mouse joints compared to Prg4(+/+) mouse joints. The coefficient of friction values were not significantly associated with histologic evidence of damage or loss of cell viability. Our findings indicate that mice lacking lubricin have increased baseline coefficient of friction values and are not protected against further increases caused by loading. Prg4(+/-) mice are indistinguishable from Prg4(+/+) mice at baseline, but have significantly greater coefficient of friction values following 26 hours of loading. Lubricin dosage affects joint properties during loading, and may have clinical implications in patients for whom injury or illness alters lubricin abundance. Copyright © 2012 by the American College of Rheumatology.

  13. Otitis media impacts hundreds of mouse middle and inner ear genes.

    PubMed

    MacArthur, Carol J; Hausman, Fran; Kempton, J Beth; Choi, Dongseok; Trune, Dennis R

    2013-01-01

    Otitis media is known to alter expression of cytokine and other genes in the mouse middle ear and inner ear. However, whole mouse genome studies of gene expression in otitis media have not previously been undertaken. Ninety-nine percent of mouse genes are shared in the human, so these studies are relevant to the human condition. To assess inflammation-driven processes in the mouse ear, gene chip analyses were conducted on mice treated with trans-tympanic heat-killed Hemophilus influenza using untreated mice as controls. Middle and inner ear tissues were separately harvested at 6 hours, RNA extracted, and samples for each treatment processed on the Affymetrix 430 2.0 Gene Chip for expression of its 34,000 genes. Statistical analysis of gene expression compared to control mice showed significant alteration of gene expression in 2,355 genes, 11% of the genes tested and 8% of the mouse genome. Significant middle and inner ear upregulation (fold change >1.5, p<0.05) was seen in 1,081 and 599 genes respectively. Significant middle and inner ear downregulation (fold change <0.67, p<0.05) was seen in 978 and 287 genes respectively. While otitis media is widely believed to be an exclusively middle ear process with little impact on the inner ear, the inner ear changes noted in this study were numerous and discrete from the middle ear responses. This suggests that the inner ear does indeed respond to otitis media and that its response is a distinctive process. Numerous new genes, previously not studied, are found to be affected by inflammation in the ear. Whole genome analysis via gene chip allows simultaneous examination of expression of hundreds of gene families influenced by inflammation in the middle ear. Discovery of new gene families affected by inflammation may lead to new approaches to the study and treatment of otitis media.

  14. Inner ear proteomics of mouse models for deafness, a discovery strategy☆

    PubMed Central

    Zheng, Qing Yin; Rozanas, Christine R.; Thalmann, Isolde; Chance, Mark R.; Alagramam, Kumar N.

    2010-01-01

    Inner ear dysfunction is often associated with defective hair cells. Therefore, hair cells are the focus of study in many of the mouse mutants showing auditory and vestibular deficits. However, harvesting sufficient numbers of hair cells from the tiny bony mouse inner ear for proteomic analysis is challenging. New approaches that would take advantage of mouse mutants and avoid processing steps, such as decalcification or microdissetion, would be more suitable for proteomic analysis. Here, we propose a novel approach called SSUMM—Subtractive Strategy Using Mouse Mutants. SSUMM takes advantage of the differences between control and affected or mutant samples. We predict that SSUMM would be a useful method in proteomics, especially in those cases in which the investigator must work with small numbers of diverse cell types from a tiny organ. Here, we discuss the potential utility of SSUMM to unravel the protein expression profiles of hair cells using the Pou4f3 mouse mutant as an example. Pou4f3 mutant mice exhibit a total loss of inner and outer hair cells, but supporting cells remain relatively intact in the cochlea, thus providing an excellent model for identifying proteins and transcripts that are specific to the hair cell at all life stages. SSUMM would maximize the sensitivity of the analyses while obviating the need for tedious sessions of microdissection and collection of hair cells. By comparing the mutant to control ears at specific time points, it is possible to identify direct targets of a gene product of interest. Further, SSUMM could be used to identify and analyze inner ear development markers and other known genes/proteins that are coexpressed in the ear. In this short technical report, we also discuss protein-profiling approaches suitable for SSUMM and briefly discuss other approaches used in the field of proteomics. PMID:16600193

  15. Impairment of the nitric oxide/cyclic GMP pathway in cerebellar slices prepared from the hph-1 mouse.

    PubMed

    Brand, M P; Briddon, A; Land, J M; Clark, J B; Heales, S J

    1996-09-30

    In this study, the effect of tetrahydrobiopterin deficiency on the nitric oxide/cGMP pathway has been investigated in cerebellar slices derived from the hph-1 mouse. This animal displays a partial deficiency of tetrahydrobiopterin. Basal levels of cGMP were significantly reduced (-29.5%) in the hph-1 mouse cerebellum compared to controls. Following kainate stimulation (500 microM) cGMP levels increased in both control and hph-1 preparations but were again significantly lower (-29.1%) in the hph-1 mouse. Exposure of slices to the nitric oxide donors, S-nitroso-N-acetylpenicillamine and S-nitroso-glutathione, revealed no difference in cGMP accumulation between the two groups. These findings suggest that the cerebellar nitric oxide/cGMP pathway may be impaired in partial tetrahydrobiopterin deficiency states due to diminished nitric oxide formation.

  16. Variability of the IS revealed ionization enhancement by bile acid in mouse plasma.

    PubMed

    Olsson, Anders O; Jelvestam, Maria; Ahnoff, Martin

    2013-10-01

    Elevated IS response was observed in 22 out of 157 mouse plasma samples in a 3-month toxicity study. This initiated a root cause investigation. Mass spectra revealed that taurocholic acid (TCA) was present in the samples, partially eluted overlapping the analyte peak. An enhanced IS response (> twofold) was reproduced by injecting TCA together with the IS. Tests with five other drug compounds showed compound dependent matrix effects on ESI; enhancement as well as suppression. The matrix effects did not affect the integrity of study results, most likely due to the use of a 13C-labeled IS. The variability of