Farmer, Douglas G; Ke, Bibo; Shen, Xiu-Da; Kaldas, Fady M; Gao, Feng; Watson, Melissa J; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W
2011-04-15
Ischemia-reperfusion (I/R) injury is a major factor leading to intestinal dysfunction or graft loss after intestinal surgery or transplantation. This study investigated the cytoprotective effects and putative mechanisms of interleukin (IL)-13 after intestinal I/R injury in the mouse. Mouse warm intestinal I/R injury induced by clamping the superior mesenteric artery for 100 min with tissue analysis at 4 and 24 hr after reperfusion. Treated animals received intravenous recombinant murine IL-13 (rIL-13) and anti-IL-13 antibody, whereas controls received saline. rIL-13 administration markedly prolonged animal survival (100% vs. 50% in saline controls) and resulted in near normal histopathological architecture. rIL-13 treatment also significantly decreased myeloperoxidase activity. Mice conditioned with rIL-13 had a markedly depressed Toll-like receptor-4 expression and increased the expression of Stat6, antioxidant hemeoxygenase-1, and antiapoptotic A20, Bcl-2/Bcl-xl, compared with that of controls. Unlike in controls, the expression of mRNA coding for IL-2/interferon-γ, and interferon-γ-inducible protein (IP)-10/monocyte chemotactic protein-1 remained depressed, whereas that of IL-13/IL-4 reciprocally increased in the mice treated with rIL-13. Administration of anti-IL13 antibody alone or in combination with rIL-13 resulted in outcomes similar to that seen in controls. This study demonstrates for the first time that IL-13 plays a protective role in intestinal warm I/R injury and a critical role in the regulation of Stat6 and Toll-like receptor-4 signaling. The administration of IL-13 exerts cytoprotective effects in this model by regulating innate and adaptive immunity while the removal of IL-13 using antibody therapy abrogates this effect.
Jiang, Haihong; Xie, Yan; Abel, Peter W.; Toews, Myron L.; Townley, Robert G.; Casale, Thomas B.
2012-01-01
We recently reported that phosphoinositide 3-kinase γ (PI3Kγ) directly regulates airway smooth muscle (ASM) contraction by modulating Ca2+ oscillations. Because ASM contraction plays a critical role in airway hyperresponsiveness (AHR) of asthma, the aim of the present study was to determine whether targeting PI3Kγ in ASM cells could suppress AHR in vitro and in vivo. Intranasal administration into mice of interleukin-13 (IL-13; 10 μg per mouse), a key pathophysiologic cytokine in asthma, induced AHR after 48 h, as assessed by invasive tracheostomy. Intranasal administration of a broad-spectrum PI3K inhibitor or a PI3Kγ-specific inhibitor 1 h before AHR assessment attenuated IL-13 effects. Airway responsiveness to bronchoconstrictor agonists was also examined in precision-cut mouse lung slices pretreated without or with IL-13 for 24 h. Acetylcholine and serotonin dose-response curves indicated that IL-13-treated lung slices had a 40 to 50% larger maximal airway constriction compared with controls. Furthermore, acetylcholine induced a larger initial Ca2+ transient and increased Ca2+ oscillations in IL-13-treated primary mouse ASM cells compared with control cells, correlating with increased cell contraction. As expected, PI3Kγ inhibitor treatment attenuated IL-13-augmented airway contractility of lung slices and ASM cell contraction. In both control and IL-13-treated ASM cells, small interfering RNA-mediated knockdown of PI3Kγ by 70% only reduced the initial Ca2+ transient by 20 to 30% but markedly attenuated Ca2+ oscillations and contractility of ASM cells by 50 to 60%. This report is the first to demonstrate that PI3Kγ in ASM cells is important for IL-13-induced AHR and that acute treatment with a PI3Kγ inhibitor can ameliorate AHR in a murine model of asthma. PMID:22543031
Burgio, Gaétan; Baylac, Michel; Heyer, Evelyne; Montagutelli, Xavier
2012-01-01
Background Genetic determinism of cranial morphology in the mouse is still largely unknown, despite the localization of putative QTLs and the identification of genes associated with Mendelian skull malformations. To approach the dissection of this multigenic control, we have used a set of interspecific recombinant congenic strains (IRCS) produced between C57BL/6 and mice of the distant species Mus spretus (SEG/Pas). Each strain has inherited 1.3% of its genome from SEG/Pas under the form of few, small-sized, chromosomal segments. Results The shape of the nasal bone was studied using outline analysis combined with Fourier descriptors, and differential features were identified between IRCS BcG-66H and C57BL/6. An F2 cross between BcG-66H and C57BL/6 revealed that, out of the three SEG/Pas-derived chromosomal regions present in BcG-66H, two were involved. Segments on chromosomes 1 (∼32 Mb) and 18 (∼13 Mb) showed additive effect on nasal bone shape. The three chromosomal regions present in BcG-66H were isolated in congenic strains to study their individual effect. Epistatic interactions were assessed in bicongenic strains. Conclusions Our results show that, besides a strong individual effect, the QTL on chromosome 1 interacts with genes on chromosomes 13 and 18. This study demonstrates that nasal bone shape is under complex genetic control but can be efficiently dissected in the mouse using appropriate genetic tools and shape descriptors. PMID:22662199
Greig syndrome: Analysis of the GL13 gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grzeschik, K.H.; Gessler, M.; Heid, C.
1994-09-01
Disruption of the zinc finger gene GL13 by translocation events has been implicated as the cause for cephalopolysyndactyly syndrome (GCPS) in several patients. To characterize this genomic region on human chromosome 7p13, we have isolated a YAC contig of more than 1000 kb including the GL13 gene. About 550 kb from this area were subdivided into a cosmid contig with a two- to ten-fold clone coverage. In this region the cloned GL13 cDNA appears to correspond to at least 14 exons spread over a distance of 280 kb. A CpG island defined by two NotI sites and several BssHII andmore » KspI sites is located in a genomic fragment covering the most proximal exon of the cloned GL13 cDNA. Further upstream, five segments conserved between man and mouse were found. In the mouse this region has been characterized as the transgene integration site resulting in the add phenotype. Both the CpG islands and the conserved regions are likely candidates to search for GL13 promoter and control elements. Intron-exon boundaries and breakpoints of the translocation events within the gene region of patients were identified and characterized.« less
Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dietrich, W.F.; Damron, D.M.; Lander, E.S.
1995-04-10
The intracellular pathogen Legionella pneumophila is unable to replicate in macrophages derived from most inbred mouse strains. Here, we report the mapping of a gene, called Lgn1, that determines whether mouse macrophages are permissive for the intracellular replication of L. pneumophila. Although Lgn1 has been previously reported to map to mouse chromosome 15, we show here that it actually maps to chromosome 13, between D13Mit128 and D13Mit70. In the absence of any regional candidates for Lgn1, this map position will facilitate positional cloning attempts directed at this gene. 22 refs., 2 figs., 2 tabs.
Song, Xiu-Guang; Bian, Peng-Fei; Yu, Shu-Li; Zhao, Xiu-Hua; Xu, Wei; Bu, Xue-Hui; Li, Xia; Ma, Li-Xian
2013-01-01
AIM: To investigate the expression of the hepatitis B virus (HBV) 1.3-fold genome plasmid (pHBV1.3) in an immortalized mouse hepatic cell line induced by SV40 T-antigen (SV40T) expression. METHODS: Mouse hepatic cells were isolated from mouse liver tissue fragments from 3-5 d old Kunming mice by the direct collagenase digestion method and cultured in vitro. The pRSV-T plasmid was transfected into mouse hepatic cells to establish an SV40LT-immortalized mouse hepatic cell line. The SV40LT-immortalized mouse hepatic cells were identified and transfected with the pHBV1.3 plasmid. The levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) in the supernatant were determined by an electrochemiluminescence immunoassay at 24, 48, 72 and 96 h after transfection. The expressions of HBsAg and hepatitis B c antigen (HBcAg) in the cells were investigated by indirect immunofluorescence analysis. The presence of HBV DNA replication intermediates in the transfected cells and viral particles in the supernatant of the transfected cell cultures was monitored using the Southern hybridization assay and transmission electronic microscopy, respectively. RESULTS: The pRSV-T plasmid was used to immortalize mouse hepatocytes and an SV40LT-immortalized mouse hepatic cell line was successfully established. SV40LT-immortalized mouse hepatic cells have the same morphology and growth characteristics as primary mouse hepatic cells can be subcultured and produce albumin and cytokeratin-18 in vitro. Immortalized mouse hepatic cells did not show the characteristics of tumor cells, as alpha-fetoprotein levels were comparable (0.58 ± 0.37 vs 0.61 ± 0.31, P = 0.37). SV40LT-immortalized mouse hepatic cells were then transfected with the pHBV1.3 plasmid, and it was found that the HBV genome replicated in SV40LT-immortalized mouse hepatic cells. The levels of HBsAg and HBeAg continuously increased in the supernatant after the transfection of pHBV1.3, and began to decrease 72 h after transfection. The expressions of HBsAg and HBcAg were observed in the pHBV1.3-transfected cells. HBV DNA replication intermediates were also observed at 72 h after transfection, including relaxed circular DNA, double-stranded DNA and single-stranded DNA. Furthermore, a few 42 nm Dane particles, as well as many 22 nm subviral particles with a spherical or filamentous shape, were detected in the supernatant. CONCLUSION: SV40T expression can immortalize mouse hepatic cells, and the pHBV1.3-transfected SV40T-immortalized mouse hepatic cell line can be a new in vitro cell model. PMID:24307795
Song, Xiu-Guang; Bian, Peng-Fei; Yu, Shu-Li; Zhao, Xiu-Hua; Xu, Wei; Bu, Xue-Hui; Li, Xia; Ma, Li-Xian
2013-11-28
To investigate the expression of the hepatitis B virus (HBV) 1.3-fold genome plasmid (pHBV1.3) in an immortalized mouse hepatic cell line induced by SV40 T-antigen (SV40T) expression. Mouse hepatic cells were isolated from mouse liver tissue fragments from 3-5 d old Kunming mice by the direct collagenase digestion method and cultured in vitro. The pRSV-T plasmid was transfected into mouse hepatic cells to establish an SV40LT-immortalized mouse hepatic cell line. The SV40LT-immortalized mouse hepatic cells were identified and transfected with the pHBV1.3 plasmid. The levels of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg) in the supernatant were determined by an electrochemiluminescence immunoassay at 24, 48, 72 and 96 h after transfection. The expressions of HBsAg and hepatitis B c antigen (HBcAg) in the cells were investigated by indirect immunofluorescence analysis. The presence of HBV DNA replication intermediates in the transfected cells and viral particles in the supernatant of the transfected cell cultures was monitored using the Southern hybridization assay and transmission electronic microscopy, respectively. The pRSV-T plasmid was used to immortalize mouse hepatocytes and an SV40LT-immortalized mouse hepatic cell line was successfully established. SV40LT-immortalized mouse hepatic cells have the same morphology and growth characteristics as primary mouse hepatic cells can be subcultured and produce albumin and cytokeratin-18 in vitro. Immortalized mouse hepatic cells did not show the characteristics of tumor cells, as alpha-fetoprotein levels were comparable (0.58 ± 0.37 vs 0.61 ± 0.31, P = 0.37). SV40LT-immortalized mouse hepatic cells were then transfected with the pHBV1.3 plasmid, and it was found that the HBV genome replicated in SV40LT-immortalized mouse hepatic cells. The levels of HBsAg and HBeAg continuously increased in the supernatant after the transfection of pHBV1.3, and began to decrease 72 h after transfection. The expressions of HBsAg and HBcAg were observed in the pHBV1.3-transfected cells. HBV DNA replication intermediates were also observed at 72 h after transfection, including relaxed circular DNA, double-stranded DNA and single-stranded DNA. Furthermore, a few 42 nm Dane particles, as well as many 22 nm subviral particles with a spherical or filamentous shape, were detected in the supernatant. SV40T expression can immortalize mouse hepatic cells, and the pHBV1.3-transfected SV40T-immortalized mouse hepatic cell line can be a new in vitro cell model.
Sevoflurane-induced memory impairment in the postnatal developing mouse brain.
Lu, Zhijun; Sun, Jihui; Xin, Yichun; Chen, Ken; Ding, Wen; Wang, Yujia
2018-05-01
The aim of the present study was to confirm that sevoflurane induces memory impairment in the postnatal developing mouse brain and determine its mechanism of action. C57BL/6 mice 7 days old were randomly assigned into a 2.6% sevoflurane (n=68), a 1.3% sevoflurane (n=68) and a control (n=38) group. Blood gas analysis was performed to evaluate hypoxia and respiratory depression during anesthesia in 78 mice. Measurements for expression of caspase-3 by immunohistochemistry, cleavage of poly adenosine diphosphate-ribose polymerase (PARP) by western blotting, as well as levels of brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor type 2 (Ntrk2), pro-BDNF, p75 neurotrophin receptor (p75NTR) and protein kinase B (PKB/Akt) by enzyme-linked immunosorbent assay were performed in the hippocampus of 12 mice from each group. A total of 60 mice underwent the Morris water maze (MWM) test. Results from the MWM test indicated that the time spent in the northwest quadrant and platform site crossovers by mice in the 2.6 and 1.3% sevoflurane groups was significantly lower than that of the control group. Meanwhile, levels of caspase-3 and cleaved PARP in the 2.6 and 1.3% sevoflurane groups were significantly higher than that in the control group. Levels of pro-BDNF and p75NTR were significantly increased and the level of PKB/Akt was significantly decreased following exposure to 2.6% sevoflurane. Finally, the memory of postnatal mice was impaired by sevoflurane, this was determined using a MWM test. Therefore, the results of the current study suggest that caspase-3 induced cleavage of PARP, as well as pro-BDNF, p75NTR and PKB/Akt may be important in sevoflurane-induced memory impairment in the postnatal developing mouse brain.
Effect of Fetal Mouse Lung Tissue Co-Culture on In Vitro Maturation of Mouse Immature Oocytes.
Belbasi, Masomeh; Jorsaraei, Seyed Gholam Ali; Gholamitabar Tabari, Maryam; Khanbabaei, Ramzan
2017-10-01
The aim of this study was to evaluate the fetal mouse lung tissue co-culture on in vitro maturation (IVM) of mouse immature oocytes. In this experimental study, germinal vesicle (GV) oocytes from ovaries of a group of 25 female mice, 6-8 weeks of age, were dissected after being stimulated by 7.5 IU pregnant mare serum gonadotropin (PMSG) through an intraperitoneal (IP) injection. The fetal lung tissues were then prepared and cultured individually. A total number of 300 oocytes were cultured in the following three groups for 24 hours: control group (n=100) containing only base medium, group I (n=100) containing base medium co-cultured with 11.5- to 12.5-day old fetal mouse lung tissues, and group II (n=100) containing base medium co-cultured with 12.5- to 13.5-day old fetal mouse lung tissues. The proportion of GV and metaphase І (MI) oocytes matured into MІІ oocytes were compared among the three groups using analysis of variance (ANOVA). Correlation test were also used to evaluate the successful rate of IVM oocytes. The proportions of GV oocytes reaching MІІ stage were 46, 65, and 56%, in control, I and II groups, respectively (P<0.05). The percentage of the oocytes remaining at the GV stage were higher in control group as compared with two treatment groups (P<0.05). This study indicated that fetal mouse lung tissue co-culture method increased the percentage of GV oocytes reaching MII stage. Copyright© by Royan Institute. All rights reserved.
Marin-Valencia, Isaac; Good, Levi B.; Ma, Qian; Jeffrey, F. Mark; Malloy, Craig R.; Pascual, Juan M.
2011-01-01
Glucose readily supplies the brain with the majority of carbon needed to sustain neurotransmitter production and utilization., The rate of brain glucose metabolism can be computed using 13C nuclear magnetic resonance (NMR) spectroscopy by detecting changes in 13C contents of products generated by cerebral metabolism. As previously observed, scalar coupling between adjacent 13C carbons (multiplets) can provide additional information to 13C contents for the computation of metabolic rates. Most NMR studies have been conducted in large animals (often under anesthesia) because the mass of the target organ is a limiting factor for NMR. Yet, despite the challengingly small size of the mouse brain, NMR studies are highly desirable because the mouse constitutes a common animal model for human neurological disorders. We have developed a method for the ex vivo resolution of NMR multiplets arising from the brain of an awake mouse after the infusion of [1,6-13C2]glucose. NMR spectra obtained by this method display favorable signal-to-noise ratios. With this protocol, the 13C multiplets of glutamate, glutamine, GABA and aspartate achieved steady state after 150 min. The method enables the accurate resolution of multiplets over time in the awake mouse brain. We anticipate that this method can be broadly applicable to compute brain fluxes in normal and transgenic mouse models of neurological disorders. PMID:21946227
Liu, Ming; Zhao, Shuangyun; Lin, Qingjie; Wang, Xiu-Ping
2015-04-01
Yes-associated protein (YAP) is a Hippo signaling transcriptional coactivator that plays pivotal roles in stem cell proliferation, organ size control, and tumor development. The downstream targets of YAP have been shown to be highly context dependent. In this study, we used the embryonic mouse tooth germ as a tool to search for the downstream targets of YAP in ectoderm-derived tissues. Yap deficiency in the dental epithelium resulted in a small tooth germ with reduced epithelial cell proliferation. We compared the gene expression profiles of embryonic day 14.5 (E14.5) Yap conditional knockout and YAP transgenic mouse tooth germs using transcriptome sequencing (RNA-Seq) and further confirmed the differentially expressed genes using real-time PCR and in situ hybridization. We found that YAP regulates the expression of Hoxa1 and Hoxc13 in oral and dental epithelial tissues as well as in the epidermis of skin during embryonic and adult stages. Sphere formation assay suggested that Hoxa1 and Hoxc13 are functionally involved in YAP-regulated epithelial progenitor cell proliferation, and chromatin immunoprecipitation (ChIP) assay implies that YAP may regulate Hoxa1 and Hoxc13 expression through TEAD transcription factors. These results provide mechanistic insights into abnormal YAP activities in mice and humans. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Liang, Su; Bian, Xiaomei; Liang, Dong; Sivils, Jeffrey C; Neckers, Leonard M; Cox, Marc B; Xie, Huan
2016-01-01
MJC13, a novel FKBP52 targeting agent, has potential use for the treatment of castration-resistant prostate cancer. The purpose of this work was to develop a solution formulation of MJC13, and obtain its efficacy profile in a human prostate cancer xenograft mouse model. Preformulation studies were conducted to evaluate the physicochemical properties. Co-solvent systems were evaluated for aqueous solubility and tolerance. A human prostate cancer xenograft mouse model was established by growing 22Rv1 prostate cancer cells in C.B-17 SCID mice. The optimal formulation was used to study the efficacy of MJC13 in this preclinical model of castrate-resistant prostate cancer. We found that MJC13 was stable (at least for 1 month), highly lipophilic (logP = 6.49), poorly soluble in water (0.28 µg/mL), and highly plasma protein bound (>98%). The optimal formulation consisting of PEG 400 and Tween 80 (1:1, v/v) allowed us to achieve a MJC13 concentration of 7.5 mg/mL, and tolerated an aqueous environment. After twice weekly intratumoral injection with 10 mg/kg MJC13 in this formulation for four consecutive weeks, tumor volumes were significantly reduced compared to vehicle-treated controls.
Liang, Su; Bian, Xiaomei; Liang, Dong; Sivils, Jeffrey C.; Neckers, Leonard M.; Cox, Marc B.; Xie, Huan
2015-01-01
MJC13, a novel FKBP52 targeting agent, has potential use for the treatment of castrate-resistant prostate cancer. The purpose of this work was to develop a solution formulation of MJC13, and obtain its efficacy profile in a human prostate cancer xenograft mouse model. Preformulation studies were conducted to evaluate the physicochemical properties. Co-solvent systems were evaluated for aqueous solubility and tolerance. A human prostate cancer xenograft mouse model was established by growing 22Rv1 prostate cancer cells in C.B-17 SCID mice. The optimal formulation was used to study the efficacy of MJC13 in this preclinical model of castrate-resistant prostate cancer. We found that MJC13 was stable (at least for 1 month), very lipophilic (logP = 6.49), poorly soluble in water (0.28 μg/mL), and highly plasma protein bound (> 98%). The optimal formulation consisting of PEG 400 and Tween 80 (1:1, v/v) allowed us to achieve a MJC13 concentration of 7.5 mg/mL, and tolerated an aqueous environment. After twice weekly intratumoral injection with 10 mg/kg MJC13 in this formulation for 4 consecutive weeks, tumor volumes were significantly reduced compared to vehicle-treated controls. PMID:25380396
Peptide Transduction-Based Therapies for Prostate Cancer
2004-06-01
using an M13 peptide phage display library. Initial screening of the library for transduction of tumors in vivo has identified peptides able to...marker conjugates may have to be tested. (Months 6-12, Year 1) Progress: These experiments have been initiated. Task 4. An M13 peptide phage display ... phage 12 amino acid control peptide display library (New England Biolabs, Beverly, MA ) was used. Briefly, One nude mouse bearing a human tumor line
miRNA regulation of cytotoxic effects in mouse Sertoli cells exposed to nonylphenol
2011-01-01
Background It is known that some environmental chemicals affect the human endocrine system. The harmful effects of endocrine disrupting chemical (EDC) nonylphenol (NP) have been studied since the 1980s. It is known that NP adversely affects physiological functions by mimicking the natural hormone 17 beta-estradiol. In the present study, we analyzed the expression of miRNAs and their target genes in mouse Sertoli TM4 cells to better understand the regulatory roles of miRNAs on Sertoli cells after NP exposure. Methods Mouse TM4 Sertoli cells were treated with NP for 3 or 24 h, and global gene and miRNA expression were analyzed using Agilent mouse whole genome and mouse miRNA v13 arrays. Results We identified genes that were > 2-fold differentially expressed in NP-treated cells and control cells (P < 0.05) and analyzed their functions through Gene Ontology analysis. We also identified miRNAs that were differentially expressed in NP-treated and control cells. Of the 186 miRNAs the expression of which differed between NP-treated and control cells, 59 and 147 miRNAs exhibited 1.3-fold increased or decreased expression at 3 and 24 h, respectively. Network analysis of deregulated miRNAs suggested that Ppara may regulate the expression of certain miRNAs, including miR-378, miR-125a-3p miR-20a, miR-203, and miR-101a, after exposure to NP. Additionally, comprehensive analysis of predicted target genes for miRNAs showed that the expression of genes with roles in cell proliferation, the cell cycle, and cell death were regulated by miRNA in NP-treated TM4 cells. Levels of expression of the miRNAs miR-135a* and miR-199a-5p were validated by qRT-PCR. Finally, miR-135a* target gene analysis suggests that the generation of reactive oxygen species (ROS) following exposure to NP exposure may be mediated by miR-135a* through regulation of the Wnt/beta-catenin signaling pathway. Conclusions Collectively, these data help to determine NP's actions on mouse TM4 Sertoli cells and increase our understanding of the molecular mechanisms underlying the adverse effects of xenoestrogens on the reproductive system. PMID:21914226
Chang, Wen-Chang; Shen, Szu-Chuan
2013-02-01
This study investigated the glucose uptake activity of the water extracts from the leaves and fruit of edible Myrtaceae plants, including guava (Psidium guajava Linn.), wax apples [Syzygium samarangense (Blume) Merr. and L.M. Perry], Pu-Tau [Syzygium jambo (L.) Alston], and Kan-Shi Pu-Tau (Syzygium cumini Linn.) in FL83B mouse hepatocytes. The fluorescent dye 2-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose was used to estimate the uptake ability of the cells. Glucose uptake test showed that pink wax apple fruit extract (PWFE) exhibits the highest glucose uptake activity, at an increment of 21% in the insulin-resistant FL83B mouse hepatocytes as compared with the TNF-α-treated control group. Vescalagin was isolated using column chromatography of PWFE. This compound, at the concentration of 6.25 µg/mL, exhibits the same glucose uptake improvement in insulin-resistant cells as PWFE at a 100-µg/mL dose. We postulate that vescalagin is an active component in PWFE that may alleviate the insulin resistance in mouse hepatocytes. Copyright © 2012 John Wiley & Sons, Ltd.
1H, 15N and 13C NMR Assignments of Mouse Methionine Sulfoxide Reductase B2
Breivik, Åshild S.; Aachmann, Finn L.; Sal, Lena S.; Kim, Hwa-Young; Del Conte, Rebecca; Gladyshev, Vadim N.; Dikiy, Alexander
2011-01-01
A recombinant mouse methionine-r-sulfoxide reductase 2 (MsrB2ΔS) isotopically labeled with 15N and 15N/13C was generated. We report here the 1H, 15N and 13C NMR assignments of the reduced form of this protein. PMID:19636904
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yubin; Owen, Nellie K.; Fisher, Darrell R.
2005-01-01
The purpose of this study was to examine the therapeutic efficacy of {sup 188}Re-(Arg{sup 11})CCMSH in the B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. Method: (Arg11)CCMSH was synthesized and labeled with {sup 188}Re to form {sup 188}Re-(Agr{sup 11})CCMSH. B16/F1 melanoma tumor bearing mice were administrated with 200 Ci, 600 Ci and 2x400 Ci of {sup 188}Re-(Arg{sup 11})CCMSH via the tail vein, respectively. TXM13 melanoma tumor hearing mice were separately injected with 600 Ci, 2x400 Ci and 1000 Ci of 100Re-(Arg{sup 11})CCMSH through the tail vein. Two groups of 10 mice bearing either B16/F1 or TXM13 tumors weremore » injected with saline as untreated controls. Results: In contrast to the untreated control group, {sup 188}Re(Arg11)CCMSH yielded rapid and lasting therapeutic effects in the treatment groups with either B16/F1 or TXM13 tumors. The tumor growth rate was reduced and the survival rate was prolonged in the treatment groups. Treatment with 2x400 Ci of {sup 188}Re-Arg{sup 11}CCMSH significantly extended the mean life of B16/F1 tumor mice (p<0.05), while the mean life of TXm13 tumor mice was significantly prolonged after treatment with 600 Ci and 1000 Ci doses of {sup 188}Re-(Arg{sup 11})CCMSH (p<0.05 High-dose {sup 188}Re-(Arg{sup 11}))CCMSH produced no observed normal-tissue toxicity. Conclusions: The therapy study results revealed that {sup 188}Re-Arg11 CCMSH yielded significant therapeutic effects in both B16/F1 murine melanoma and TXM13 human melanoma bearing mouse models. {sup 188}Re-(Arg{sup 11})CCMSH appears to be a promising radiolabeled peptide for targeted radionuclide therapy of melanoma.« less
Acceleration of fusion in mouse palates by in vitro exposure to excess G
NASA Technical Reports Server (NTRS)
Duke, J.; Janer, L.; Campbell, M.
1984-01-01
Palatal shelves from 13- and 14-day mouse embryos were excised and cultured in contiguous pairs. Experimental cultures were exposed to 2.6 G in a culture centrifuge; controls were in the same incubator. After 24 hours, palates were prepared for light or electron microscopy. Scoring of paraffin sections according to the stage of fusion seen in the medial epithelial edges (MEE) showed that palates exposed to excess G were in more advanced stages of fusion than were controls. Ultrastructurally, control MEE had tightly apposed cell membranes and numerous desmosomes; in centrifuged MEE, desmosomes had been removed and there was much intercellular space. Nuclear membranes were intact in control MEE, but showed marked deterioration in MEE of centrifuged palates. Few lysosomes and no necrosis were seen in control MEE; centrifuged MEE had numerous lysosomes as well as necrotic cells. Basal lamina were intact in controls, but interrupted in centrifuged palates. The results confirm the hypothesis that gravitational increases speed up the differentiative process.
Yadav, A K; Chaudhari, H; Shah, P K; Madan, T
2016-02-01
Dysregulation of immune response at the feto-maternal interface during first trimester of pregnancy is one of the leading causes of spontaneous abortion. Previously, we reported differential expression of collectins, soluble pattern recognition molecules involved in immunoregulation, in placental and decidual tissues during spontaneous labor. In the present pilot study, the expression of collectins was analyzed in the inflamed human gestational tissues of spontaneous abortion ('SA') and in 13.5 dpc placental tissues from resorption survived embryos of murine model (CBA/J X DBA/2J). Transcripts of SP-A were significantly down-regulated and SP-D were significantly up-regulated in placental and decidual tissues of 'SA' group compared to that of 'normal' group. Immunostaining for SP-D and MBL proteins was positive in placental and decidual tissues. However, levels of SP-D and MBL proteins were not significantly altered in placental as well as in decidual tissues of 'SA' group in comparison to the 'normal' group. Placental tissues of viable embryos from the abortion prone mouse model showed significantly enhanced expression of mSP-A and mSP-D transcripts at 13.5 day post coitus (dpc) and 14.5 dpc compared to the control group (CBA/J X Balb/c). Mouse collectins were localized in placental tissues (13.5 dpc), with increased staining in murine model compared to control. Human and murine data together indicate that SP-A, SP-D and MBL are synthesised in early gestational tissues, and may contribute to regulation of immune response at the feto-maternal interface during pregnancy. Copyright © 2015 Elsevier GmbH. All rights reserved.
Puttagunta, Radhika; Gordon, Laurie A.; Meyer, Gary E.; Kapfhamer, David; Lamerdin, Jane E.; Kantheti, Prameela; Portman, Kathleen M.; Chung, Wendy K.; Jenne, Dieter E.; Olsen, Anne S.; Burmeister, Margit
2000-01-01
A cosmid/bacterial artificial chromosome (BAC) contiguous (contig) map of human chromosome (HSA) 19p13.3 has been constructed, and over 50 genes have been localized to the contig. Genes and anonymous ESTs from ≈4000 kb of human 19p13.3 were placed on the central mouse chromosome 10 map by genetic mapping and pulsed-field gel electrophoresis (PFGE) analysis. A region of ∼2500 kb of HSA 19p13.3 is collinear to mouse chromosome (MMU) 10. In contrast, the adjacent ≈1200 kb are inverted. Two genes are located in a 50-kb region after the inversion on MMU 10, followed by a region of homology to mouse chromosome 17. The synteny breakpoint and one of the inversion breakpoints has been localized to sequenced regions in human <5 kb in size. Both breakpoints are rich in simple tandem repeats, including (TCTG)n, (CT)n, and (GTCTCT)n, suggesting that simple repeat sequences may be involved in chromosome breaks during evolution. The overall size of the region in mouse is smaller, although no large regions are missing. Comparing the physical maps to the genetic maps showed that in contrast to the higher-than-average rate of genetic recombination in gene-rich telomeric region on HSA 19p13.3, the average rate of recombination is lower than expected in the homologous mouse region. This might indicate that a hot spot of recombination may have been lost in mouse or gained in human during evolution, or that the position of sequences along the chromosome (telomeric compared to the middle of a chromosome) is important for recombination rates. PMID:10984455
A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN
2014-09-01
AWARD NUMBER: W81XWH-13-1-0220 TITLE: A Genetically Engineered Mouse Model of Neuroblastoma ...CONTRACT NUMBER A Genetically Engineered Mouse Model of Neuroblastoma Driven by Mutated ALK and MYCN 5b. GRANT NUMBER W81XWH-13-1-0220 5c...common ALK mutations in neuroblastoma , F1174L and R1275Q. We have determined that in tumors cells expressing mutated ALK, different downstream
Chen, Song; Wang, Chenran; Yeo, Syn; Liang, Chun-Chi; Okamoto, Takako; Sun, Shaogang; Wen, Jian; Guan, Jun-Lin
2016-01-01
Autophagy is an evolutionarily conserved cellular process controlled through a set of essential autophagy genes (Atgs). However, there is increasing evidence that most, if not all, Atgs also possess functions independent of their requirement in canonical autophagy, making it difficult to distinguish the contributions of autophagy-dependent or -independent functions of a particular Atg to various biological processes. To distinguish these functions for FIP200 (FAK family-interacting protein of 200 kDa), an Atg in autophagy induction, we examined FIP200 interaction with its autophagy partner, Atg13. We found that residues 582–585 (LQFL) in FIP200 are required for interaction with Atg13, and mutation of these residues to AAAA (designated the FIP200-4A mutant) abolished its canonical autophagy function in vitro. Furthermore, we created a FIP200-4A mutant knock-in mouse model and found that specifically blocking FIP200 interaction with Atg13 abolishes autophagy in vivo, providing direct support for the essential role of the ULK1/Atg13/FIP200/Atg101 complex in the process beyond previous studies relying on the complete knockout of individual components. Analysis of the new mouse model showed that nonautophagic functions of FIP200 are sufficient to fully support embryogenesis by maintaining a protective role in TNFα-induced apoptosis. However, FIP200-mediated canonical autophagy is required to support neonatal survival and tumor cell growth. These studies provide the first genetic evidence linking an Atg's autophagy and nonautophagic functions to different biological processes in vivo. PMID:27013233
DDC and COBL, flanking the imprinted GRB10 gene on 7p12, are biallelically expressed.
Hitchins, Megan P; Bentley, Louise; Monk, David; Beechey, Colin; Peters, Jo; Kelsey, Gavin; Ishino, Fumitoshi; Preece, Michael A; Stanier, Philip; Moore, Gudrun E
2002-12-01
Maternal duplication of human 7p11.2-p13 has been associated with Silver-Russell syndrome (SRS) in two familial cases. GRB10 is the only imprinted gene identified within this region to date. GRB10 demonstrates an intricate tissue- and isoform-specific imprinting profile in humans, with paternal expression in fetal brain and maternal expression of one isoform in skeletal muscle. The mouse homolog is maternally transcribed. The GRB10 protein is a potent growth inhibitor and represents a candidate for SRS, which is characterized by pre- and postnatal growth retardation and a spectrum of additional dysmorphic features. Since imprinted genes tend to be grouped in clusters, we investigated the imprinting status of the dopa-decarboxylase gene (DDC) and the Cordon-bleu gene (COBL) which flank GRB10 within the 7p11.2-p13 SRS duplicated region. Although both genes were found to replicate asynchronously, suggestive of imprinting, SNP expression analyses showed that neither gene was imprinted in multiple human fetal tissues. The mouse homologues, Ddc and Cobl, which map to the homologous imprinted region on proximal Chr 11, were also biallelically expressed in mice with uniparental maternal or paternal inheritance of this region. With the intent of using mouse Grb10 as an imprinted control, biallelic expression was consistently observed in fetal, postnatal, and adult brain of these mice, in contrast to the maternal-specific transcription previously demonstrated in brain in inter-specific F1 progeny. This may be a further example of over-expression of maternally derived transcripts in inter-specific mouse crosses. GRB10 remains the only imprinted gene identified within 7p11.2-p13.
2014-10-01
AD_________________ Award Number: W81XWH-13-1-0325 TITLE: Developing Novel Therapeutic Approaches in Small Cell Lung Carcinoma Using ...Genetically Engineered Mouse Models and Human Circulating Tumor Cells PRINCIPAL INVESTIGATOR: Jeffrey Engelman MD PhD CONTRACTING ORGANIZATION ...Novel Therapeutic Approaches in Small Cell Lung 5a. CONTRACT NUMBER W81XWH-13-1-0325 Carcinoma Using Genetically Engineered Mouse Models and 5b
Tiwari, Vivek; Ambadipudi, Susmitha; Patel, Anant B
2013-10-01
The (13)C nuclear magnetic resonance (NMR) studies together with the infusion of (13)C-labeled substrates in rats and humans have provided important insight into brain energy metabolism. In the present study, we have extended a three-compartment metabolic model in mouse to investigate glutamatergic and GABAergic tricarboxylic acid (TCA) cycle and neurotransmitter cycle fluxes across different regions of the brain. The (13)C turnover of amino acids from [1,6-(13)C2]glucose was monitored ex vivo using (1)H-[(13)C]-NMR spectroscopy. The astroglial glutamate pool size, one of the important parameters of the model, was estimated by a short infusion of [2-(13)C]acetate. The ratio Vcyc/VTCA was calculated from the steady-state acetate experiment. The (13)C turnover curves of [4-(13)C]/[3-(13)C]glutamate, [4-(13)C]glutamine, [2-(13)C]/[3-(13)C]GABA, and [3-(13)C]aspartate from [1,6-(13)C2]glucose were analyzed using a three-compartment metabolic model to estimate the rates of the TCA cycle and neurotransmitter cycle associated with glutamatergic and GABAergic neurons. The glutamatergic TCA cycle rate was found to be highest in the cerebral cortex (0.91 ± 0.05 μmol/g per minute) and least in the hippocampal region (0.64 ± 0.07 μmol/g per minute) of the mouse brain. In contrast, the GABAergic TCA cycle flux was found to be highest in the thalamus-hypothalamus (0.28 ± 0.01 μmol/g per minute) and least in the cerebral cortex (0.24 ± 0.02 μmol/g per minute). These findings indicate that the energetics of excitatory and inhibitory function is distinct across the mouse brain.
A head movement image (HMI)-controlled computer mouse for people with disabilities.
Chen, Yu-Luen; Chen, Weoi-Luen; Kuo, Te-Son; Lai, Jin-Shin
2003-02-04
This study proposes image processing and microprocessor technology for use in developing a head movement image (HMI)-controlled computer mouse system for the spinal cord injured (SCI). The system controls the movement and direction of the mouse cursor by capturing head movement images using a marker installed on the user's headset. In the clinical trial, this new mouse system was compared with an infrared-controlled mouse system on various tasks with nine subjects with SCI. The results were favourable to the new mouse system. The differences between the new mouse system and the infrared-controlled mouse were reaching statistical significance in each of the test situations (p<0.05). The HMI-controlled computer mouse improves the input speed. People with disabilities need only wear the headset and move their heads to freely control the movement of the mouse cursor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Fugui; Li, Wen; Zhou, Hongbin
Highlights: • IL-13 specifically induced NFAT3 activation in mouse tracheal epithelial cells. • CsA and LY294002 significantly blocked IL-13-induced MUC5AC production. • The PI3K–NFAT3 pathway is positively involved in IL-13-induced MUC5AC production. - Abstract: Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylationmore » in air–liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K–NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion.« less
Bethell, D R; Pegg, A E
1979-01-01
1. The induction of ornithine decarboxylase activity in mouse 3T3 fibroblasts or an SV-40 transformed 3T3 cell line by serum was prevented by addition of the naturally occurring polyamines putrescine (butane-1,4-diamine) and spermidine. Much higher concentrations of these amines were required to fully suppress ornithine decarboxylase activity in the transformed SV-3T3 cells than in the 3T3 fibroblasts. 2. Synthetic alpha omega-diamines with 3--12 carbon atoms also prevented the increase in ornithine decarboxylase activity induced by serum in these cells. The longer chain diamines were somewhat more potent than propane-1,3-diamine in this effect, but the synthetic diamines were less active than putrescine in the 3T3 cells. There was little difference between the responses of 3T3 and SV-3T3 cells to the synthetic diamines propane-1,3-diamine and heptane-1,7-diamine. 3. These results are discussed in relation to the control of polyamine synthesis in mammalian cells. PMID:486108
Voltage-dependent ion channels in the mouse RPE: comparison with Norrie disease mice.
Wollmann, Guido; Lenzner, Steffen; Berger, Wolfgang; Rosenthal, Rita; Karl, Mike O; Strauss, Olaf
2006-03-01
We studied electrophysiological properties of cultured retinal pigment epithelial (RPE) cells from mouse and a mouse model for Norrie disease. Wild-type RPE cells revealed the expression of ion channels known from other species: delayed-rectifier K(+) channels composed of Kv1.3 subunits, inward rectifier K(+) channels, Ca(V)1.3 L-type Ca(2+) channels and outwardly rectifying Cl(-) channels. Expression pattern and the ion channel characteristics current density, blocker sensitivity, kinetics and voltage-dependence were compared in cells from wild-type and Norrie mice. Although no significant differences were observed, our study provides a base for future studies on ion channel function and dysfunction in transgenic mouse models.
EMMPRIN (basigin/CD147) is involved in the morphogenesis of tooth germ in mouse molars.
Xie, Ming; Jiao, Ting; Chen, Yuqin; Xu, Chun; Li, Jing; Jiang, Xinquan; Zhang, Fuqiang
2010-05-01
The pattern of gene expression for extracellular matrix metalloproteinase inducer (EMMPRIN) was revealed in the tooth germ of mouse mandibular molars using quantitative real-time PCR. In situ hybridization and immunohistochemical study demonstrated the characteristic distribution of EMMPRIN in the different stages of tooth germ development. To investigate the functional role played by EMMPRIN in tooth germ development, EMMPRIN siRNA interference approach was carried out in cultured mouse mandibles at embryonic day 11.0 (E11.0). The results showed that EMMPRIN siRNA-treated explants exhibited a marked growth inhibition of tooth germ compared to the control and scrambled siRNA-treated explants. Meanwhile, a significant increase in MT1-MMP mRNA expression and a reduction in MMP-2, MMP-3, MMP-9, MMP-13 and MT2-MMP mRNA expression were observed in the mouse mandibles following EMMPRIN abrogation. The current results indicate that EMMPRIN could thus be involved in the early stage of tooth germ development and morphogenesis, possibly by regulating the expression of MMP genes.
Hyperpolarized 13C pyruvate mouse brain metabolism with absorptive-mode EPSI at 1 T
NASA Astrophysics Data System (ADS)
Miloushev, Vesselin Z.; Di Gialleonardo, Valentina; Salamanca-Cardona, Lucia; Correa, Fabian; Granlund, Kristin L.; Keshari, Kayvan R.
2017-02-01
The expected signal in echo-planar spectroscopic imaging experiments was explicitly modeled jointly in spatial and spectral dimensions. Using this as a basis, absorptive-mode type detection can be achieved by appropriate choice of spectral delays and post-processing techniques. We discuss the effects of gradient imperfections and demonstrate the implementation of this sequence at low field (1.05 T), with application to hyperpolarized [1-13C] pyruvate imaging of the mouse brain. The sequence achieves sufficient signal-to-noise to monitor the conversion of hyperpolarized [1-13C] pyruvate to lactate in the mouse brain. Hyperpolarized pyruvate imaging of mouse brain metabolism using an absorptive-mode EPSI sequence can be applied to more sophisticated murine disease and treatment models. The simple modifications presented in this work, which permit absorptive-mode detection, are directly translatable to human clinical imaging and generate improved absorptive-mode spectra without the need for refocusing pulses.
Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons
Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C.; Striessnig, Joerg
2014-01-01
Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson’s disease. Their selective loss causes the major motor symptoms of Parkinson’s disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson’s disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca2+ channels both contribute to Parkinson’s disease pathology. L-type Ca2+ channel blockers protect SN DA neurons from degeneration in Parkinson’s disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson’s disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson’s disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson’s disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson’s disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic tools, we identified that the expression of this sensitized D2-autoreceptor phenotype required Cav1.3 L-type Ca2+ channel activity, internal Ca2+, and the interaction of the neuronal calcium sensor NCS-1 with D2-autoreceptors. Thus, we identified a first physiological function of Cav1.3 L-type Ca2+ channels in SN DA neurons for homeostatic modulation of their D2-autoreceptor responses. L-type Ca2+ channel activity however, was not important for pacemaker activity of mouse SN DA neurons. Furthermore, we detected elevated substantia nigra dopamine messenger RNA levels of NCS-1 (but not Cav1.2 or Cav1.3) after cocaine in mice, as well as in remaining human SN DA neurons in Parkinson’s disease. Thus, our findings provide a novel homeostatic functional link in SN DA neurons between Cav1.3- L-type-Ca2+ channels and D2-autoreceptor activity, controlled by NCS-1, and indicate that this adaptive signalling network (Cav1.3/NCS-1/D2/GIRK2) is also active in human SN DA neurons, and contributes to Parkinson’s disease pathology. As it is accessible to pharmacological modulation, it provides a novel promising target for tuning substantia nigra dopamine neuron activity, and their vulnerability to degeneration. PMID:24934288
Cav1.3 channels control D2-autoreceptor responses via NCS-1 in substantia nigra dopamine neurons.
Dragicevic, Elena; Poetschke, Christina; Duda, Johanna; Schlaudraff, Falk; Lammel, Stephan; Schiemann, Julia; Fauler, Michael; Hetzel, Andrea; Watanabe, Masahiko; Lujan, Rafael; Malenka, Robert C; Striessnig, Joerg; Liss, Birgit
2014-08-01
Dopamine midbrain neurons within the substantia nigra are particularly prone to degeneration in Parkinson's disease. Their selective loss causes the major motor symptoms of Parkinson's disease, but the causes for the high vulnerability of SN DA neurons, compared to neighbouring, more resistant ventral tegmental area dopamine neurons, are still unclear. Consequently, there is still no cure available for Parkinson's disease. Current therapies compensate the progressive loss of dopamine by administering its precursor l-DOPA and/or dopamine D2-receptor agonists. D2-autoreceptors and Cav1.3-containing L-type Ca(2+) channels both contribute to Parkinson's disease pathology. L-type Ca(2+) channel blockers protect SN DA neurons from degeneration in Parkinson's disease and its mouse models, and they are in clinical trials for neuroprotective Parkinson's disease therapy. However, their physiological functions in SN DA neurons remain unclear. D2-autoreceptors tune firing rates and dopamine release of SN DA neurons in a negative feedback loop through activation of G-protein coupled potassium channels (GIRK2, or KCNJ6). Mature SN DA neurons display prominent, non-desensitizing somatodendritic D2-autoreceptor responses that show pronounced desensitization in PARK-gene Parkinson's disease mouse models. We analysed surviving human SN DA neurons from patients with Parkinson's disease and from controls, and detected elevated messenger RNA levels of D2-autoreceptors and GIRK2 in Parkinson's disease. By electrophysiological analysis of postnatal juvenile and adult mouse SN DA neurons in in vitro brain-slices, we observed that D2-autoreceptor desensitization is reduced with postnatal maturation. Furthermore, a transient high-dopamine state in vivo, caused by one injection of either l-DOPA or cocaine, induced adult-like, non-desensitizing D2-autoreceptor responses, selectively in juvenile SN DA neurons, but not ventral tegmental area dopamine neurons. With pharmacological and genetic tools, we identified that the expression of this sensitized D2-autoreceptor phenotype required Cav1.3 L-type Ca(2+) channel activity, internal Ca(2+), and the interaction of the neuronal calcium sensor NCS-1 with D2-autoreceptors. Thus, we identified a first physiological function of Cav1.3 L-type Ca(2+) channels in SN DA neurons for homeostatic modulation of their D2-autoreceptor responses. L-type Ca(2+) channel activity however, was not important for pacemaker activity of mouse SN DA neurons. Furthermore, we detected elevated substantia nigra dopamine messenger RNA levels of NCS-1 (but not Cav1.2 or Cav1.3) after cocaine in mice, as well as in remaining human SN DA neurons in Parkinson's disease. Thus, our findings provide a novel homeostatic functional link in SN DA neurons between Cav1.3- L-type-Ca(2+) channels and D2-autoreceptor activity, controlled by NCS-1, and indicate that this adaptive signalling network (Cav1.3/NCS-1/D2/GIRK2) is also active in human SN DA neurons, and contributes to Parkinson's disease pathology. As it is accessible to pharmacological modulation, it provides a novel promising target for tuning substantia nigra dopamine neuron activity, and their vulnerability to degeneration. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
Lai, Marta; Lanz, Bernard; Poitry-Yamate, Carole; Romero, Jackeline F; Berset, Corina M; Cudalbu, Cristina; Gruetter, Rolf
2017-01-01
In vivo 13 C magnetic resonance spectroscopy (MRS) enables the investigation of cerebral metabolic compartmentation while, e.g. infusing 13 C-labeled glucose. Metabolic flux analysis of 13 C turnover previously yielded quantitative information of glutamate and glutamine metabolism in humans and rats, while the application to in vivo mouse brain remains exceedingly challenging. In the present study, 13 C direct detection at 14.1 T provided highly resolved in vivo spectra of the mouse brain while infusing [1,6- 13 C 2 ]glucose for up to 5 h. 13 C incorporation to glutamate and glutamine C4, C3, and C2 and aspartate C3 were detected dynamically and fitted to a two-compartment model: flux estimation of neuron-glial metabolism included tricarboxylic acid cycle (TCA) flux in astrocytes (V g = 0.16 ± 0.03 µmol/g/min) and neurons (V TCA n = 0.56 ± 0.03 µmol/g/min), pyruvate carboxylase activity (V PC = 0.041 ± 0.003 µmol/g/min) and neurotransmission rate (V NT = 0.084 ± 0.008 µmol/g/min), resulting in a cerebral metabolic rate of glucose (CMR glc ) of 0.38 ± 0.02 µmol/g/min, in excellent agreement with that determined with concomitant 18 F-fluorodeoxyglucose positron emission tomography ( 18 FDG PET).We conclude that modeling of neuron-glial metabolism in vivo is accessible in the mouse brain from 13 C direct detection with an unprecedented spatial resolution under [1,6- 13 C 2 ]glucose infusion.
Doyle, Sean P.; Nguyen, Kristine; Ribeiro, Carla M. P.; Vasquez, Paula A.; Forest, M. Gregory; Lethem, Michael I.; Dickey, Burton F.; Davis, C. William
2015-01-01
Airway mucin secretion studies have focused on goblet cell responses to exogenous agonists almost to the exclusion of baseline mucin secretion (BLMS). In human bronchial epithelial cell cultures (HBECCs), maximal agonist-stimulated secretion exceeds baseline by ~3-fold as measured over hour-long periods, but mucin stores are discharged completely and require 24 h for full restoration. Hence, over 24 h, total baseline exceeds agonist-induced secretion by several-fold. Studies with HBECCs and mouse tracheas showed that BLMS is highly sensitive to mechanical stresses. Harvesting three consecutive 1 h baseline luminal incubations with HBECCs yielded equal rates of BLMS; however, lengthening the middle period to 72 h decreased the respective rate significantly, suggesting a stimulation of BLMS by the gentle washes of HBECC luminal surfaces. BLMS declined exponentially after washing HBECCs (t1/2 = 2.75 h), to rates approaching zero. HBECCs exposed to low perfusion rates exhibited spike-like increases in BLMS when flow was jumped 5-fold: BLMS increased >4 fold, then decreased within 5 min to a stable plateau at 1.5–2-fold over control. Higher flow jumps induced proportionally higher BLMS increases. Inducing mucous hyperplasia in HBECCs increased mucin production, BLMS and agonist-induced secretion. Mouse tracheal BLMS was ~6-fold higher during perfusion, than when flow was stopped. Munc13-2 null mouse tracheas, with their defect of accumulated cellular mucins, exhibited similar BLMS as WT, contrary to predictions of lower values. Graded mucous metaplasia induced in WT and Munc13-2 null tracheas with IL-13, caused proportional increases in BLMS, suggesting that naïve Munc13-2 mouse BLMS is elevated by increased mucin stores. We conclude that BLMS is, [i] a major component of mucin secretion in the lung, [ii] sustained by the mechanical activity of a dynamic lung, [iii] proportional to levels of mucin stores, and [iv] regulated differentially from agonist-induced mucin secretion. PMID:26024524
Open-chest 31P magnetic resonance spectroscopy of mouse heart at 4.7 Tesla.
Lee, Joseph; Hu, Qingsong; Nakamura, Yasuhiro; Wang, Xiaohong; Zhang, Xiaoliang; Zhu, Xiaohong; Chen, Wei; Yang, Qinglin; Zhang, Jianyi
2006-12-01
To develop a rapid, robust, and accurate method for assessing myocardial energetics in mice and demonstrate its applicability to mouse models of acquired and genetic heart disease. We combined surface coil localization (10-mm diameter, tunable between (1)H and (31)P, using adiabatic half-passage radiofrequency pulses) and surgery (electrocautery removal of anterior chest wall) to create an open-chest method for acquiring in vivo (31)P nuclear magnetic resonance (NMR) cardiac spectra from mice at 4.7T within 12 minutes. Normal BALB/c mice, BALB/c with myocardial infarction (MI), cardiomyocyte-restricted peroxisome proliferator-activated receptor-delta knockout (KO) (CR-PPARd(-/-)) and control loxP-flanked Ppard (Ppard(flox/flox)) mice were examined. The mean phosphocreatine (PCr)/adenosine triphosphate (ATP) ratios in control BALB/c mice, BALB/c MI mice, Ppard(flox/flox) mice, and PPAR-delta KO mice were 2.13 +/- 0.09 (N = 11), 1.35 +/- 0.07 (N = 9, P < 0.001 vs. BALB/c control), 1.92 +/- 0.09 (N = 5), and 1.31 +/- 0.12 (N = 5, P < 0.005 vs. Ppard(flox/flox) control), respectively. The significant depression of myocardial PCr/ATP we observed in these genetic/acquired models of heart disease was in accord with previous data from analogous large animal models. No NMR signal contamination from chamber blood or adjacent skeletal muscle was identified. This new technique provides cardiac (31)P spectra suitable for accurate quantitative analysis in a relatively short acquisition time, is suitable for terminal studies of mouse myocardial energy metabolism, and could be installed in virtually any NMR laboratory to study myocardial energetics in numerous mouse models of human heart disease. (c) 2006 Wiley-Liss, Inc.
Cadieux, Brigitte; Blanchfield, Burke; Smith, James P; Austin, John W
2005-05-01
A simple, rapid, cost-effective in vitro slot blot immunoassay was developed for the detection and quantification of botulinum neurotoxin type E (BoNT/E) in cultures. Culture supernatants of 36 strains of clostridia, including 12 strains of Clostridium botulinum type E, 12 strains of other C. botulinum neurotoxin serotypes, and 12 strains of other clostridial species were tested. Samples containing BoNT/E were detected using affinity-purified polyclonal rabbit antisera prepared against BoNT/E with subsequent detection of secondary antibodies using chemiluminescence. All strains of C. botulinum type E tested positive, while all non C. botulinum type E strains tested negative. The sensitivity of the slot blot immunoassay for detection of BoNT/E was approximately four mouse lethal doses (MLD). The intensity of chemiluminescence was directly correlated with the concentration of BoNT/E up to 128 MLD, allowing quantification of BoNT/E between 4 and 128 MLD. The slot blot immunoassay was compared to the mouse bioassay for detection of BoNT/E using cultures derived from fish samples inoculated with C. botulinum type E, and cultures derived from naturally contaminated environmental samples. A total of 120 primary enrichment cultures derived from fish samples, of which 103 were inoculated with C. botulinum type E, and 17 were uninoculated controls, were assayed. Of the 103 primary enrichment cultures derived from inoculated fish samples, all were positive by mouse bioassay, while 94 were also positive by slot blot immunoassay, resulting in a 7.5% false-negative rate. All 17 primary enrichment cultures derived from the uninoculated fish samples were negative by both mouse bioassay and slot blot immunoassay. A total of twenty-six primary enrichment cultures derived from environmental samples were tested by mouse bioassay and slot blot immunoassay. Of 13 primary enrichment cultures positive by mouse bioassay, 12 were also positive by slot blot immunoassay, resulting in a 3.8% false-negative rate. All 13 primary enrichment cultures that tested negative by mouse bioassay also tested negative by slot blot immunoassay. The slot blot immunoassay could be used routinely as a positive screen for BoNT/E in primary enrichment cultures, and could be used as a replacement for the mouse bioassay for pure cultures.
Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H
2017-10-01
A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sato, Shinya; Miyazono, Sadaharu; Tachibanaki, Shuji; Kawamura, Satoru
2015-01-30
Cone photoreceptors require effective pigment regeneration mechanisms to maintain their sensitivity in the light. Our previous studies in carp cones suggested the presence of an unconventional and very effective mechanism to produce 11-cis retinal, the necessary component in pigment regeneration. In this reaction (aldehyde-alcohol redox coupling reaction, AL-OL coupling reaction), formation of 11-cis retinal, i.e. oxidation of 11-cis retinol is coupled to reduction of an aldehyde at a 1:1 molar ratio without exogenous NADP(H) which is usually required in this kind of reaction. Here, we identified carp retinol dehydrogenase 13-like (RDH13L) as an enzyme catalyzing the AL-OL coupling reaction. RDH13L was partially purified from purified carp cones, identified as a candidate protein, and its AL-OL coupling activity was confirmed using recombinant RDH13L. We further examined the substrate specificity, subcellular localization, and expression level of RDH13L. Based on these results, we concluded that RDH13L contributes to a significant part, but not all, of the AL-OL coupling activity in carp cones. RDH13L contained tightly bound NADP(+) which presumably functions as a cofactor in the reaction. Mouse RDH14, a mouse homolog of carp RDH13L, also showed the AL-OL coupling activity. Interestingly, although carp cone membranes, carp RDH13L and mouse RDH14 all showed the coupling activity at 15-37 °C, they also showed a conventional NADP(+)-dependent 11-cis retinol oxidation activity above 25 °C without addition of aldehydes. This dual mechanism of 11-cis retinal synthesis attained by carp RDH13L and mouse RDH14 probably contribute to effective pigment regeneration in cones that function in the light. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Hals, Ingrid; Ohki, Tsuyoshi; Singh, Rinku; Ma, Zuheng; Björklund, Anneli; Balasuriya, Chandima; Scholz, Hanne; Grill, Valdemar
2017-10-01
We previously showed that hyperoxia in vitro negatively affects beta cells of the rat. Here, we tested for possible clinical significance as well as mitochondrial interactions by hyperoxia, using human islets (function and viability), INS-1 832/13 cells (mitochondrial metabolism), and mouse neonates (effects in vivo). Lastly, we assessed relevant parameters in a cohort of individuals born preterm and then exposed to hyperoxia. Human islets and INS-1 832/13 cells were exposed to 24 h of hyperoxia (90-92% oxygen). Mouse neonates were subjected to 5 days of continuous hyperoxia. Individuals born preterm were evaluated in terms of glucose homeostasis and beta cell function by HbA1c and the HOMA2 formula. In human islets, hyperoxia significantly reduced glucose-stimulated insulin secretion by 42.2 ± 5.3% and viability assessed by MTT by 22.5 ± 5.4%. Hyperoxia down-regulated mitochondrial complex II by 21 ± 5% and upregulated complex III by 26 ± 10.1% and complex IV by 37 ± 10.6%. Partly similar effects on mitochondrial complexes were found in hyperoxia-exposed INS-1 832/13 cells. Exposure to hyperoxia swiftly reduced oxygen consumption in these cells and increased mitochondrial uncoupling. Hyperoxia transiently but significantly reduced insulin release in mouse neonates. Individuals born preterm displayed higher HbA1c versus controls, as well as insulin resistance. Thus, hyperoxia exerts negative effects in vitro on human beta cells and results indicate inhibitory effects on insulin secretion in vivo in mouse neonates. Negative effects may be lessened by the demonstrated swift and profound mitochondrial adaptability. Our findings open the possibility that hyperoxia could negatively affect beta cells of preterm human neonates. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
76 FR 51031 - Registration; Cancellation Order for Rodenticide Products That Have Expired
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
...--Registrations and Product Names EPA Registration No. Product name 47629-14 Difenacoum Rat and Mouse Pellets (consumer use only). 47629-16 Difenacoum Rat and Mouse Block (consumer use only). 47629-17 Difenacoum Rat and Mouse Place Packs (consumer use only). 47629-11 Bromethalin Rat & Mouse Block. 47629-13...
Osborne, M; Haltalli, M; Currie, R; Wright, J; Gooderham, N J
2016-07-01
Phenobarbital (PB) is known to produce species-specific effects in the rat and mouse, being carcinogenic in certain mouse strains, but only in rats if treated after a DNA damaging event. PB treatment in the rat and mouse also produces disparate effects on cell signalling and miRNA expression profiles. These responses are induced by short term and prolonged PB exposure, respectively, with the latter treatments being difficult to examine mechanistically in primary hepatocytes due to rapid loss of the original hepatic phenotype and limited sustainability in culture. Here we explore the rat hepatocyte-like B13/H cell line as a model for hepatic response to PB exposure in both short-term and longer duration treatments. We demonstrate that PB with Egf treatment in the B13/H cells resulted in a significant increase in Erk activation, as determined by the ratio of phospho-Erk to total Erk, compared to Egf alone. We also show that an extended treatment with PB in the B13/H cells produces a miRNA response similar to that seen in the rat in vivo, via the time-dependent induction of miR-182/96. Additionally, we confirm that B13/H cells respond to Car activators in a typical rat-specific manner. These data suggest that the B13/H cells produce temporal responses to PB that are comparable to those reported in short-term primary rat hepatocyte cultures and in the longer term are similar to those in the rat in vivo. Finally, we also show that Car-associated miR-122 expression is decreased by PB treatment in B13/H cells, a PB-induced response that is common to the rat, mouse and human. We conclude that the B13/H cell system produces a qualitative response comparable to the rat, which is different to the response in the mouse, and that this model could be a useful tool for exploring the functional consequences of PB-sensitive miRNA changes and resistance to PB-mediated tumours in the rat. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2011-01-01
Introduction In Sjögren's syndrome, keratoconjunctivitis sicca (dry eye) is associated with infiltration of lacrimal glands by leukocytes and consequent losses of tear-fluid production and the integrity of the ocular surface. We investigated the effect of blockade of the lymphotoxin-beta receptor (LTBR) pathway on lacrimal-gland pathology in the NOD mouse model of Sjögren's syndrome. Methods Male NOD mice were treated for up to ten weeks with an antagonist, LTBR-Ig, or control mouse antibody MOPC-21. Extra-orbital lacrimal glands were analyzed by immunohistochemistry for high endothelial venules (HEV), by Affymetrix gene-array analysis and real-time PCR for differential gene expression, and by ELISA for CXCL13 protein. Leukocytes from lacrimal glands were analyzed by flow-cytometry. Tear-fluid secretion-rates were measured and the integrity of the ocular surface was scored using slit-lamp microscopy and fluorescein isothiocyanate (FITC) staining. The chemokine CXCL13 was measured by ELISA in sera from Sjögren's syndrome patients (n = 27) and healthy controls (n = 30). Statistical analysis was by the two-tailed, unpaired T-test, or the Mann-Whitney-test for ocular integrity scores. Results LTBR blockade for eight weeks reduced B-cell accumulation (approximately 5-fold), eliminated HEV in lacrimal glands, and reduced the entry rate of lymphocytes into lacrimal glands. Affymetrix-chip analysis revealed numerous changes in mRNA expression due to LTBR blockade, including reduction of homeostatic chemokine expression. The reduction of CXCL13, CCL21, CCL19 mRNA and the HEV-associated gene GLYCAM-1 was confirmed by PCR analysis. CXCL13 protein increased with disease progression in lacrimal-gland homogenates, but after LTBR blockade for 8 weeks, CXCL13 was reduced approximately 6-fold to 8.4 pg/mg (+/- 2.7) from 51 pg/mg (+/-5.3) in lacrimal glands of 16 week old control mice. Mice given LTBR blockade exhibited an approximately two-fold greater tear-fluid secretion than control mice (P = 0.001), and had a significantly improved ocular surface integrity score (P = 0.005). The mean CXCL13 concentration in sera from Sjögren's patients (n = 27) was 170 pg/ml, compared to 92.0 pg/ml for sera from (n = 30) healthy controls (P = 0.01). Conclusions Blockade of LTBR pathways may have therapeutic potential for treatment of Sjögren's syndrome. PMID:22044682
Ha, Oh-Ryeong; Bruce, Amanda S; Pruitt, Stephen W; Cherry, J Bradley C; Smith, T Ryan; Burkart, Dominic; Bruce, Jared M; Lim, Seung-Lark
2016-10-01
Learning how to make healthy eating decisions, (i.e., resisting unhealthy foods and consuming healthy foods), enhances physical development and reduces health risks in children. Although healthy eating decisions are known to be challenging for children, the mechanisms of children's food choice processes are not fully understood. The present study recorded mouse movement trajectories while eighteen children aged 8-13 years were choosing between eating and rejecting foods. Children were inclined to choose to eat rather than to reject foods, and preferred unhealthy foods over healthy foods, implying that rejecting unhealthy foods could be a demanding choice. When children rejected unhealthy foods, mouse trajectories were characterized by large curvature toward an eating choice in the beginning, late decision shifting time toward a rejecting choice, and slowed response times. These results suggested that children exercised greater cognitive efforts with longer decision times to resist unhealthy foods, providing evidence that children require dietary self-control to make healthy eating-decisions by resisting the temptation of unhealthy foods. Developmentally, older children attempted to exercise greater cognitive efforts for consuming healthy foods than younger children, suggesting that development of dietary self-control contributes to healthy eating-decisions. The study also documents that healthy weight children with higher BMIs were more likely to choose to reject healthy foods. Overall, findings have important implications for how children make healthy eating choices and the role of dietary self-control in eating decisions. Published by Elsevier Ltd.
Schwarzer, Caroline; Esteves, Telma Cristina; Araúzo-Bravo, Marcos J; Le Gac, Séverine; Nordhoff, Verena; Schlatt, Stefan; Boiani, Michele
2012-09-01
Do different human ART culture protocols prepare embryos differently for post-implantation development? The type of ART culture protocol results in distinct cellular and molecular phenotypes in vitro at the blastocyst stage as well as subsequently during in vivo development. It has been reported that ART culture medium affects human development as measured by gestation rates and birthweights. However, due to individual variation across ART patients, it is not possible as yet to pinpoint a cause-effect relationship between choice of culture medium and developmental outcome. In a prospective study, 13 human ART culture protocols were compared two at a time against in vivo and in vitro controls. Superovulated mouse oocytes were fertilized in vivo using outbred and inbred mating schemes. Zygotes were cultured in medium or in the oviduct and scored for developmental parameters 96 h later. Blastocysts were either analyzed or transferred into fosters to measure implantation rates and fetal development. In total, 5735 fertilized mouse oocytes, 1732 blastocysts, 605 fetuses and 178 newborns were examined during the course of the study (December 2010-December 2011). Mice of the B6C3F1, C57Bl/6 and CD1 strains were used as oocyte donors, sperm donors and recipients for embryo transfer, respectively. In vivo fertilized B6C3F1 oocytes were allowed to cleave in 13 human ART culture protocols compared with mouse oviduct and optimized mouse medium (KSOM(aa)). Cell lineage composition of resultant blastocysts was analyzed by immunostaining and confocal microscopy (trophectoderm, Cdx2; primitive ectoderm, Nanog; primitive endoderm, Sox17), global gene expression by microarray analysis, and rates of development to midgestation and to term. Mouse zygotes show profound variation in blastocyst (49.9-91.9%) and fetal (15.7-62.0%) development rates across the 13 ART culture protocols tested (R(2)= 0.337). Two opposite protocols, human tubal fluid/multiblast (high fetal rate) and ISM1/ISM2 (low fetal rate), were analyzed in depth using outbred and inbred fertilization schemes. Resultant blastocysts show imbalances of cell lineage composition; culture medium-specific deviation of gene expression (38 genes, ≥ 4-fold) compared with the in vivo pattern; and produce different litter sizes (P ≤ 0.0076) after transfer into fosters. Confounding effects of subfertility, life style and genetic heterogeneity are reduced to a minimum in the mouse model compared with ART patients. This is an animal model study. Mouse embryo responses to human ART media are not transferable 1-to-1 to human development due to structural and physiologic differences between oocytes of the two species. Our data promote awareness that human ART culture media affect embryo development. Effects reported here in the mouse may apply also in human, because no ART medium presently available on the market has been optimized for human embryo development. The mouse embryo assay (MEA), which requires ART media to support at least 80% blastocyst formation, is in need of reform and should be extended to include post-implantation development.
Xie, L; Zhu, D; Gaisano, H Y
2012-10-01
We have previously reported that the haplodeficient Munc13-1(+/-) mouse exhibits impaired biphasic glucose-stimulated insulin secretion (GSIS), causing glucose intolerance mimicking type 2 diabetes. Glucagon-like peptide-1 (GLP-1) can bypass these insulin-secretory defects in type 2 diabetes, but the mechanism of exocytotic events mediated by GLP-1 in rescuing insulin secretion is unclear. The total internal reflection fluorescence microscopy (TIRFM) technique was used to examine single insulin granule fusion events in mouse islet beta cells. There was no difference in the density of docked granules in the resting state between Munc13-1(+/+) and Munc13-1(+/-) mouse islet beta cells. While exocytosis of previously docked granules in Munc13-1(+/-) beta cells is reduced during high-K(+) stimulation as expected, we now find a reduction in additional exocytosis events that account for the major portion of GSIS, namely two types of newcomer granules, one which has a short docking time (short-dock) and another undergoing no docking before exocytosis (no-dock). As mammalian homologue of Caenorhabditis elegans unc-13-1 (Munc13-1) is a phorbol ester substrate, phorbol ester could partially rescue biphasic GSIS in Munc13-1-deficient beta cells by enhancing recruitment of short-dock newcomer granules for exocytosis. The more effective rescue of biphasic GSIS by GLP-1 than by phorbol was due to increased recruitment of both short-dock and no-dock newcomer granules. Phorbol ester and GLP-1 potentiation of biphasic GSIS are brought about by recruitment of distinct populations of newcomer granules for exocytosis, which may be mediated by Munc13-1 interaction with syntaxin-SNARE complexes other than that formed by syntaxin-1A.
Modular control of glutamatergic neuronal identity in C.elegans by distinct homeodomain proteins
Serrano-Saiz, Esther; Poole, Richard J.; Felton, Terry; Zhang, Feifan; De La Cruz, Estanisla Daniel; Hobert, Oliver
2013-01-01
The choice of using one of many possible neurotransmitter systems is a critical step in defining the identity of an individual neuron type. We show here that the key defining feature of glutamatergic neurons, the vesicular glutamate transporter EAT-4/VGLUT is expressed in 38 of the 118 anatomically defined neuron classes of the C.elegans nervous system. We show that eat-4/VGLUT expression is controlled in a modular manner, with distinct cis-regulatory modules driving expression in distinct glutamatergic neuron classes. We identify 13 different transcription factors, 11 of them homeodomain proteins, that act in specific combinations in 25 different glutamatergic neuron classes to initiate and maintain eat-4/VGLUT expression. We show that the adoption of a glutamatergic phenotype is linked to the adoption of other terminal identity features of a neuron, including cotransmitter phenotypes. Examination of mouse orthologs of these homeodomain proteins resulted in the identification of mouse LHX1 as a regulator of glutamatergic neurons in the brainstem. PMID:24243022
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan
2009-01-01
This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…
Maciulaitiene, Ruta; Pakuliene, Giedre; Kaja, Simon; Pauza, Dainius Haroldas; Kalesnykas, Giedrius; Januleviciene, Ingrida
2017-03-07
BACKGROUND In glaucoma, non-intraocular pressure (IOP)-related risk factors can result in increased levels of extracellular glutamate, which triggers a cascade of neurodegeneration characterized by the excessive activation of N-methyl-D-aspartate (NMDA). The purpose of our study was to evaluate the glioprotective effects of memantine as a prototypic uncompetitive NMDA blocker on retinal astrocytes in the optic nerve crush (ONC) mouse model for glaucoma. MATERIAL AND METHODS Optic nerve crush was performed on all of the right eyes (n=8), whereas left eyes served as contralateral healthy controls (n=8) in Balb/c/Sca mice. Four randomly assigned mice received 2-µl intravitreal injections of memantine (1 mg/ml) after ONC in the experimental eye. One week after the experiment, optic nerves were dissec-ted and stained with methylene blue. Retinae were detached from the sclera. The tissue was immunostained. Whole-mount retinae were investigated by fluorescent microscopy. Astrocyte counts for each image were performed manually. RESULTS Histological sections of crushed optic nerves showed consistently moderate tissue damage in experimental groups. The mean number of astrocytes per image in the ONC group was significantly lower than in the healthy control group (7.13±1.5 and 10.47±1.9, respectively). Loss of astrocytes in the memantine-treated group was significantly lower (8.83±2.2) than in the ONC group. Assessment of inter-observer reliability showed excellent agreement among observations in control, ONC, and memantine groups. CONCLUSIONS The ONC is an effective method for investigation of astrocytic changes in mouse retina. Intravitreally administered memantine shows a promising glioprotective effect on mouse retinal astrocytes by preserving astrocyte count after ONC.
Mouse oocytes nucleoli rescue embryonic development of porcine enucleolated oocytes.
Morovic, Martin; Strejcek, Frantisek; Nakagawa, Shoma; Deshmukh, Rahul S; Murin, Matej; Benc, Michal; Fulka, Helena; Kyogoku, Hirohisa; Pendovski, Lazo; Fulka, Josef; Laurincik, Jozef
2017-12-01
It is well known that nucleoli of fully grown mammalian oocytes are indispensable for embryonic development. Therefore, the embryos originated from previously enucleolated (ENL) oocytes undergo only one or two cleavages and then their development ceases. In our study the interspecies (mouse/pig) nucleolus transferred embryos (NuTE) were produced and their embryonic development was analyzed by autoradiography, transmission electron microscopy (TEM) and immunofluorescence (C23 and upstream binding factor (UBF)). Our results show that the re-injection of isolated oocyte nucleoli, either from the pig (P + P) or mouse (P + M), into previously enucleolated and subsequently matured porcine oocytes rescues their development after parthenogenetic activation and some of these develop up to the blastocyst stage (P + P, 11.8%; P + M, 13.5%). In nucleolus re-injected 8-cell and blastocyst stage embryos the number of nucleoli labeled with C23 in P + P and P + M groups was lower than in control (non-manipulated) group. UBF was localized in small foci within the nucleoli of blastocysts in control and P + P embryos, however, in P + M embryos the labeling was evenly distributed in the nucleoplasm. The TEM and autoradiographic evaluations showed the formation of functional nucleoli and de novo rRNA synthesis at the 8-cell stage in both, control and P + P group. In the P + M group the formation of comparable nucleoli was delayed. In conclusion, our results indicate that the mouse nucleolus can rescue embryonic development of enucleolated porcine oocytes, but the localization of selected nucleolar proteins, the timing of transcription activation and the formation of the functional nucleoli in NuTE compared with control group show evident aberrations.
Deciphering the Mechanism of Alternative Cleavage and Polyadenylation in Mantle Cell Lymphoma (MCL)
2015-12-01
expression, increased cell proliferation and increased tumor growth in an in vivo mouse xenograft . [13]. However, Pcf11 did not have any effect on the...miRNA Regulation through Alternative Polyadenylation in Glioblastoma . (Selected for Plenary talk). Symposia on Cancer research, 2014. Illuminating...Albrecht T.R., Li W., Shyu A-B., and Wagner, E.J. CFlm25 Links Global change in APA to Cell Growth Control and Glioblastoma Survival. Abstract
Lin, Alexander J.; Ponticorvo, Adrien; Durkin, Anthony J.; Venugopalan, Vasan; Choi, Bernard; Tromberg, Bruce J.
2015-01-01
Abstract. Baseline optical properties are typically assumed in calculating the differential pathlength factor (DPF) of mouse brains, a value used in the modified Beer–Lambert law to characterize an evoked stimulus response. We used spatial frequency domain imaging to measure in vivo baseline optical properties in 20-month-old control (n=8) and triple transgenic APP/PS1/tau (3xTg-AD) (n=5) mouse brains. Average μa for control and 3xTg-AD mice was 0.82±0.05 and 0.65±0.05 mm−1, respectively, at 460 nm; and 0.71±0.04 and 0.55±0.04 mm−1, respectively, at 530 nm. Average μs′ for control and 3xTg-AD mice was 1.5±0.1 and 1.7±0.1 mm−1, respectively, at 460 nm; and 1.3±0.1 and 1.5±0.1 mm−1, respectively, at 530 nm. The calculated DPF for control and 3xTg-AD mice was 0.58±0.04 and 0.64±0.04 OD mm, respectively, at 460 nm; and 0.66±0.03 and 0.73±0.05 OD mm, respectively, at 530 nm. In hindpaw stimulation experiments, the hemodynamic increase in brain tissue concentration of oxyhemoglobin was threefold larger and two times longer in the control mice compared to 3xTg-AD mice. Furthermore, the washout of deoxyhemoglobin from increased brain perfusion was seven times larger in controls compared to 3xTg-AD mice (p<0.05). PMID:26835482
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Shih, Ching-Tien
2009-01-01
This study assessed whether two persons with profound multiple disabilities would be able to control environmental stimulation using hand swing and a standard mouse with a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and turns a mouse into a precise two-dimensional motion detector). The study was performed…
Aldana, Blanca I; Zhang, Yu; Lihme, Maria Fog; Bak, Lasse K; Nielsen, Jørgen E; Holst, Bjørn; Hyttel, Poul; Freude, Kristine K; Waagepetersen, Helle S
2017-06-01
Alterations in the cellular metabolic machinery of the brain are associated with neurodegenerative disorders such as Alzheimer's disease. Novel human cellular disease models are essential in order to study underlying disease mechanisms. In the present study, we characterized major metabolic pathways in neurons derived from human induced pluripotent stem cells (hiPSC). With this aim, cultures of hiPSC-derived neurons were incubated with [U- 13 C]glucose, [U- 13 C]glutamate or [U- 13 C]glutamine. Isotopic labeling in metabolites was determined using gas chromatography coupled to mass spectrometry, and cellular amino acid content was quantified by high-performance liquid chromatography. Additionally, we evaluated mitochondrial function using real-time assessment of oxygen consumption via the Seahorse XF e 96 Analyzer. Moreover, in order to validate the hiPSC-derived neurons as a model system, a metabolic profiling was performed in parallel in primary neuronal cultures of mouse cerebral cortex and cerebellum. These serve as well-established models of GABAergic and glutamatergic neurons, respectively. The hiPSC-derived neurons were previously characterized as being forebrain-specific cortical glutamatergic neurons. However, a comparable preparation of predominantly mouse cortical glutamatergic neurons is not available. We found a higher glycolytic capacity in hiPSC-derived neurons compared to mouse neurons and a substantial oxidative metabolism through the mitochondrial tricarboxylic acid (TCA) cycle. This finding is supported by the extracellular acidification and oxygen consumption rates measured in the cultured human neurons. [U- 13 C]Glutamate and [U- 13 C]glutamine were found to be efficient energy substrates for the neuronal cultures originating from both mice and humans. Interestingly, isotopic labeling in metabolites from [U- 13 C]glutamate was higher than that from [U- 13 C]glutamine. Although the metabolic profile of hiPSC-derived neurons in vitro was particularly similar to the profile of mouse cortical neurons, important differences between the metabolic profile of human and mouse neurons were observed. The results of the present investigation establish hallmarks of cellular metabolism in human neurons derived from iPSC. Copyright © 2017. Published by Elsevier Ltd.
Adams, David; Baldock, Richard; Bhattacharya, Shoumo; Copp, Andrew J; Dickinson, Mary; Greene, Nicholas D E; Henkelman, Mark; Justice, Monica; Mohun, Timothy; Murray, Stephen A; Pauws, Erwin; Raess, Michael; Rossant, Janet; Weaver, Tom; West, David
2013-05-01
Identifying genes that are important for embryo development is a crucial first step towards understanding their many functions in driving the ordered growth, differentiation and organogenesis of embryos. It can also shed light on the origins of developmental disease and congenital abnormalities. Current international efforts to examine gene function in the mouse provide a unique opportunity to pinpoint genes that are involved in embryogenesis, owing to the emergence of embryonic lethal knockout mutants. Through internationally coordinated efforts, the International Knockout Mouse Consortium (IKMC) has generated a public resource of mouse knockout strains and, in April 2012, the International Mouse Phenotyping Consortium (IMPC), supported by the EU InfraCoMP programme, convened a workshop to discuss developing a phenotyping pipeline for the investigation of embryonic lethal knockout lines. This workshop brought together over 100 scientists, from 13 countries, who are working in the academic and commercial research sectors, including experts and opinion leaders in the fields of embryology, animal imaging, data capture, quality control and annotation, high-throughput mouse production, phenotyping, and reporter gene analysis. This article summarises the outcome of the workshop, including (1) the vital scientific importance of phenotyping embryonic lethal mouse strains for basic and translational research; (2) a common framework to harmonise international efforts within this context; (3) the types of phenotyping that are likely to be most appropriate for systematic use, with a focus on 3D embryo imaging; (4) the importance of centralising data in a standardised form to facilitate data mining; and (5) the development of online tools to allow open access to and dissemination of the phenotyping data.
The PD-1/B7-H1 pathway modulates the natural killer cells versus mouse glioma stem cells.
Huang, Bo Yuan; Zhan, Yi Ping; Zong, Wen Jing; Yu, Chun Jiang; Li, Jun Fa; Qu, Yan Ming; Han, Song
2015-01-01
Glioblastoma multiforme (GBM) is the most malignant primary type of brain tumor in adults. There has been increased focus on the immunotherapies to treat GBM patients, the therapeutic value of natural killer (NK) cells is still unknown. Programmed death-1 (PD-1) is a major immunological checkpoint that can negatively regulate the T-cell-mediated immune response. We tested the combination of the inhibiting the PD-1/B7H1 pathway with a NK-cell mediated immune response in an orthotopic mouse model of GBM. Mouse glioma stem cells (GL261GSCs) and mouse NK cells were isolated and identified. A lactate dehydrogenase (LDH) assay was perfomed to detect the cytotoxicity of NK cells against GL261GSCs. GL261GSCs were intracranially implanted into mice, and the mice were stratified into 3 treatment groups: 1) control, 2) NK cells treatment, and 3) PD-1 inhibited NK cells treatment group. Overall survival was quantified, and animal magnetic resonance imaging (MRI) was performed to determine tumor growth. The brains were harvested after the mice were euthanized, and immunohistochemistry against CD45 and PCNA was performed. The mouse NK cells were identified as 90% CD3- NK1.1+CD335+ by flow cytometric analysis. In the LDH assay, the ratios of the damaged GL261GSCs, with the E:T ratios of 2.5:1, 5:1, and 10:1, were as follows: 1) non-inhibited group: 7.42%, 11.31%, and 15.1%, 2) B7H1 inhibited group: 14.75%, 18.25% and 29.1%, 3) PD-1 inhibited group: 15.53%, 19.21% and 29.93%, 4) double inhibited group: 33.24%, 42.86% and 54.91%. In the in vivo experiments, the mice in the PD-1 inhibited NK cells treatment group and IL-2-stimulated-NK cells treatment group displayed a slowest tumor growth (F = 308.5, P<0.01) and a slower tumor growth compared with control group (F = 118.9, P<0.01), respectively. The median survival of the mice in the three groups were as follows: 1) conrol group: 29 days, 2) NK cells treatment group: 35 days (P = 0.0012), 3) PD-1 inhibited NK cells treatment group: 44 days (P = 0.0024). Immunologic data of PCNA-positive cell ratios and CD45-positive cell ratios of the tumor specimens in the three groups were as follows: 1) control group: 65.72% (PCNA) and 0.92% (CD45), 2) NK treatment group: 27.66% (PCNA) and 13.46% (CD45), and 3) PD-1 inhibited NK cells treatment group: 13.66% (PCNA) and 23.66% (CD45) (P<0.001). The results demonstrated that blockade of PD-1/B7H1 pathway could promote mouse NK cells to kill the GL261GSCs, and the PD-1-inhibited NK cells could be a feasible immune therapeutic approach against GBM.
2012-01-01
Background Kangaroos and wallabies have specialised limbs that allow for their hopping mode of locomotion. The hindlimbs differentiate much later in development but become much larger than the forelimbs. The hindlimb autopod has only four digits, the fourth of which is greatly elongated, while digits two and three are syndactylous. We investigated the expression of two genes, HOXA13 and HOXD13, that are crucial for digit patterning in mice during formation of the limbs of the tammar wallaby. Results We describe the development of the tammar limbs at key stages before birth. There was marked heterochrony and the hindlimb developed more slowly than the forelimb. Both tammar HOXA13 and HOXD13 have two exons as in humans, mice and chickens. HOXA13 had an early and distal mRNA distribution in the tammar limb bud as in the mouse, but forelimb expression preceded that in the hindlimb. HOXD13 mRNA was expressed earlier in the forelimb than the hindlimb and was predominantly detected in the interdigital tissues of the forelimb. In contrast, the hindlimb had a more restricted expression pattern that appeared to be expressed at discrete points at both posterior and anterior margins of the limb bud, and was unlike expression seen in the mouse and the chicken. Conclusions This is the first examination of HOXA and HOXD gene expression in a marsupial. The gene structure and predicted proteins were highly conserved with their eutherian orthologues. Interestingly, despite the morphological differences in hindlimb patterning, there were no modifications to the polyalanine tract of either HOXA13 or HOXD13 when compared to those of the mouse and bat but there was a marked difference between the tammar and the other mammals in the region of the first polyserine tract of HOXD13. There were also altered expression domains for both genes in the developing tammar limbs compared to the chicken and mouse. Together these findings suggest that the timing of HOX gene expression may contribute to the heterochrony of the forelimb and hindlimb and that alteration to HOX domains may influence phenotypic differences that lead to the development of marsupial syndactylous digits. PMID:22235805
Kudo, Takashi; Kaneko, Mika; Iwasaki, Hiroko; Togayachi, Akira; Nishihara, Shoko; Abe, Kuniya; Narimatsu, Hisashi
2004-05-01
Stage-specific embryonic antigen 1 (SSEA-1), an antigenic epitope defined as a Lewis x carbohydrate structure, is expressed during the 8-cell to blastocyst stages in mouse embryos and in primordial germ cells, undifferentiated embryonic stem cells, and embryonic carcinoma cells. For many years, SSEA-1 has been implicated in the development of mouse embryos as a functional carbohydrate epitope in cell-to-cell interaction during morula compaction. In a previous study, alpha 1,3-fucosyltransferase IX (Fut9) exhibited very strong activity for the synthesis of Lewis x compared to other alpha 1,3-fucosyltransferases in an in vitro substrate specificity assay. Fut4 and Fut9 transcripts were expressed in mouse embryos. The Fut9 transcript was detected in embryonic-day-13.5 gonads containing primordial germ cells, but the Fut4 transcript was not. In order to identify the role of SSEA-1 and determine the key enzyme for SSEA-1 synthesis in vivo, we have generated Fut9-deficient (Fut9(-/-)) mice. Fut9(-/-) mice develop normally, with no gross phenotypic abnormalities, and are fertile. Immunohistochemical analysis revealed an absence of SSEA-1 expression in early embryos and primordial germ cells of Fut9(-/-) mice. Therefore, we conclude that expression of the SSEA-1 epitope in the developing mouse embryo is not essential for embryogenesis in vivo.
Nicholls, R D; Gottlieb, W; Russell, L B; Davda, M; Horsthemke, B; Rinchik, E M
1993-01-01
Prader-Willi and Angelman syndromes are complex neurobehavioral contiguous gene syndromes whose expression depends on the unmasking of genomic imprinting for different genetic loci in human chromosome 15q11-q13. The homologous chromosomal region in the mouse genome has been fine-mapped by using interspecific (Mus spretus) crosses and overlapping, radiation-induced deletions to evaluate potential animal models for both imprinted and nonimprinted components of these syndromes. Four evolutionarily conserved sequences from human 15q11-q13, including two cDNAs from fetal brain (DN10, D15S12h; DN34, D15S9h-1), a microdissected clone (MN7; D15F37S1h) expressed in mouse brain, and the gene for the beta 3 subunit of the gamma-aminobutyric acid type A receptor (Gabrb3), were mapped in mouse chromosome 7 by analysis of deletions at the pink-eyed dilution (p) locus. Three of these loci are deleted in pre- and postnatally lethal p-locus mutations, which extend up to 5.5 +/- 1.7 centimorgans (cM) proximal to p; D15S9h-1, which maps 1.1 +/- 0.8 cM distal to p and is the mouse homolog of the human gene D15S9 (which shows a DNA methylation imprint), is not deleted in any of the p-locus deletion series. A transcript from the Gabrb3 gene, but not the transcript detected by MN7 at the D15F37S1h locus, is expressed in mice homozygous for the p6H deletion, which have an abnormal neurological phenotype. Furthermore, the Gabrb3 transcript is expressed equally well from the maternal or paternal chromosome 7 and, therefore, its expression is not imprinted in mouse brain. Deletions at the mouse p locus should serve as intermediate genetic reagents and models with which to analyze the genetics and etiology of individual components of human 15q11-q13 disorders. Images Fig. 1 Fig. 2 Fig. 4 Fig. 5 PMID:8095339
Nawar, Hesham F.; Berenson, Charles S.; Hajishengallis, George; Takematsu, Hiromu; Mandell, Lorrie; Clare, Ragina L.; Connell, Terry D.
2010-01-01
By use of a mouse mucosal immunization model, LT-IIb(T13I), a nontoxic mutant type II heat-labile enterotoxin, was shown to have potent mucosal and systemic adjuvant properties. In contrast to LT-IIb, which binds strongly to ganglioside receptors decorated with either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc), LT-IIb(T13I) binds NeuAc gangliosides much less well. Rather, LT-IIb(T13I) binds preferentially to NeuGc gangliosides. To determine if the adjuvant properties of LT-IIb(T13I) are altered in the absence of NeuGc ganglioside receptors, experiments were conducted using a Cmah-null mouse line which is deficient in the synthesis of NeuGc gangliosides. Several immunomodulatory properties of LT-IIb(T13I) were shown to be dependent on NeuGc gangliosides. LT-IIb(T13I) had reduced binding activity for NeuGc-deficient B cells and macrophages; binding to NeuGc-deficient T cells and dendritic cells (DC) was essentially undetectable. Treatment of Cmah-null macrophages with LT-IIb(T13I), however, upregulated the transcription of interleukin-4 (IL-4), IL-6, IL-17, and gamma interferon (IFN-γ), four cytokines important for promoting immune responses. The production of mucosal IgA and serum IgG against an immunizing antigen was augmented in NeuGc-deficient mice administered LT-IIb(T13I) as a mucosal adjuvant. Notably, NeuGc gangliosides are not expressed in humans. Still, treatment of human monocytes with LT-IIb(T13I) induced the secretion of IL-6, an inflammatory cytokine that mediates differential control of leukocyte activation. These results suggested that NeuAc gangliosides are sufficient to mediate the immunomodulatory properties of LT-IIb(T13I) in mice and in human cells. The nontoxic mutant enterotoxin LT-IIb(T13I), therefore, is potentially a new and safe human mucosal adjuvant. PMID:20392887
Johnstone, Karen A; DuBose, Amanda J; Futtner, Christopher R; Elmore, Michael D; Brannan, Camilynn I; Resnick, James L
2006-02-01
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are caused by the loss of imprinted gene expression from chromosome 15q11-q13. Imprinted gene expression in the region is regulated by a bipartite imprinting centre (IC), comprising the PWS-IC and the AS-IC. The PWS-IC is a positive regulatory element required for bidirectional activation of a number of paternally expressed genes. The function of the AS-IC appears to be to suppress PWS-IC function on the maternal chromosome through a methylation imprint acquired during female gametogenesis. Here we have placed the entire mouse locus under the control of a human PWS-IC by targeted replacement of the mouse PWS-IC with the equivalent human region. Paternal inheritance of the human PWS-IC demonstrates for the first time that a positive regulatory element in the PWS-IC has diverged. These mice show postnatal lethality and growth deficiency, phenotypes not previously attributed directly to the affected genes. Following maternal inheritance, the human PWS-IC is able to acquire a methylation imprint in mouse oocytes, suggesting that acquisition of the methylation imprint is conserved. However, the imprint is lost in somatic cells, showing that maintenance has diverged. This maternal imprinting defect results in expression of maternal Ube3a-as and repression of Ube3a in cis, providing evidence that Ube3a is regulated by its antisense and creating the first reported mouse model for AS imprinting defects.
Puthiyaveetil, Abdul Gafoor; Reilly, Christopher M; Pardee, Timothy S; Caudell, David L
2013-01-01
Chromosomal translocations typically impair cell differentiation and often require secondary mutations for malignant transformation. However, the role of a primary translocation in the development of collaborating mutations is debatable. To delineate the role of leukemic translocation NUP98-HOXD13 (NHD13) in secondary mutagenesis, DNA break and repair mechanisms in stimulated mouse B lymphocytes expressing NHD13 were analyzed. Our results showed significantly reduced expression of non-homologous end joining (NHEJ)-mediated DNA repair genes, DNA Pkcs, DNA ligase4, and Xrcc4 leading to cell cycle arrest at G2/M phase. Our results showed that expression of NHD13 fusion gene resulted in impaired NHEJ-mediated DNA break repair. Copyright © 2012 Elsevier Ltd. All rights reserved.
Lundberg, Kathleen C.; Fritz, Yi; Johnston, Andrew; Foster, Alexander M.; Baliwag, Jaymie; Gudjonsson, Johann E.; Schlatzer, Daniela; Gokulrangan, Giridharan; McCormick, Thomas S.; Chance, Mark R.; Ward, Nicole L.
2015-01-01
Herein, we demonstrate the efficacy of an unbiased proteomics screening approach for studying protein expression changes in the KC-Tie2 psoriasis mouse model, identifying multiple protein expression changes in the mouse and validating these changes in human psoriasis. KC-Tie2 mouse skin samples (n = 3) were compared with littermate controls (n = 3) using gel-based fractionation followed by label-free protein expression analysis. 5482 peptides mapping to 1281 proteins were identified and quantitated: 105 proteins exhibited fold-changes ≥2.0 including: stefin A1 (average fold change of 342.4 and an average p = 0.0082; cystatin A, human ortholog); slc25a5 (average fold change of 46.2 and an average p = 0.0318); serpinb3b (average fold change of 35.6 and an average p = 0.0345; serpinB1, human ortholog); and kallikrein related peptidase 6 (average fold change of 4.7 and an average p = 0.2474; KLK6). We independently confirmed mouse gene expression-based increases of selected genes including serpinb3b (17.4-fold, p < 0.0001), KLK6 (9-fold, p = 0.002), stefin A1 (7.3-fold; p < 0.001), and slc25A5 (1.5-fold; p = 0.05) using qRT-PCR on a second cohort of animals (n = 8). Parallel LC/MS/MS analyses on these same samples verified protein-level increases of 1.3-fold (slc25a5; p < 0.05), 29,000-fold (stefinA1; p < 0.01), 322-fold (KLK6; p < 0.0001) between KC-Tie2 and control mice. To underscore the utility and translatability of our combined approach, we analyzed gene and protein expression levels in psoriasis patient skin and primary keratinocytes versus healthy controls. Increases in gene expression for slc25a5 (1.8-fold), cystatin A (3-fold), KLK6 (5.8-fold), and serpinB1 (76-fold; all p < 0.05) were observed between healthy controls and involved lesional psoriasis skin and primary psoriasis keratinocytes. Moreover, slc25a5, cystatin A, KLK6, and serpinB1 protein were all increased in lesional psoriasis skin compared with normal skin. These results highlight the usefulness of preclinical disease models using readily-available mouse skin and demonstrate the utility of proteomic approaches for identifying novel peptides/proteins that are differentially regulated in psoriasis that could serve as sources of auto-antigens or provide novel therapeutic targets for the development of new anti-psoriatic treatments. PMID:25351201
Das, K. M.; Vecchi, M.; Novikoff, A.; Mazumdar, S.; Novikoff, P. M.
1990-01-01
Injections of Crohn's disease (CD) tissue filtrates produce lymphoma and hyperplastic lymph nodes from plasma cell hyperplasia (PCH) in athymic nude (nu/nu) mice; these lymphoid tissue contain an antigen(s) recognized by CD serum/gamma G immunoglobulin (IgG). To immortalize the "CD-reactive antigen(s)," the authors fused the lymphoid cells from a CD tissue filtrate primed nu/nu mouse with nonsecretory mouse myeloma cells. Hybrids were screened and selected based on their reactivity with CD serum IgG, but not with control serum IgG in an indirect immunofluorescence assay (IF). Two CD-positive hybridomas were examined by IF with sera from 47 CD, 38 ulcerative colitis (UC), 13 controls with other gastrointestinal diseases, 19 with autoimmune diseases, and 21 normal subjects. Sera from 16 CD patients (34%) reacted with the two hybridomas, but only one of 38 UC sera and none of the 53 other disease or normal control sera reacted. The immunoreactivity of CD sera was significantly higher than UC sera (P less than 0.01) and each of the other groups (P less than 0.007). Using immunoperoxidase techniques at light and electron microscopic levels, the authors localized CD-associated antigen(s) in the plasma membrane of the two hybridomas. Further characterization of these hybridomas and the immunoreactive protein(s) may provide an important probe(s) for the diagnosis and the understanding of the pathogenesis of CD. Images Figure 2 Figure 3 PMID:2192559
Protein Kinases in Mammary Gland Development and Carcinogenesis
1999-09-01
studies identical at the amino acid level to calcium/calmodulin-dependent may provide insight into mechanisms of growth control and DNA protein kinase I...human homologues of these kinases(19, 20 ). Amino acid conservation in the coding region between mouse and human Hunk is greater than 90% identical. While...genes (13, 14). Over the past 4 years , several of the mRNA and protein levels (39-46). These findings clearly dem- these breast cancer susceptibility
Simpson, Tyler; Gauthier, Michel; Prochazka, Arthur
2010-02-01
Computer access can play an important role in employment and leisure activities following spinal cord injury. The authors' prior work has shown that a tooth-click detecting device, when paired with an optical head mouse, may be used by people with tetraplegia for controlling cursor movement and mouse button clicks. To compare the efficacy of tooth clicks to speech recognition and that of an optical head mouse to a gyrometer head mouse for cursor and mouse button control of a computer. Six able-bodied and 3 tetraplegic subjects used the devices listed above to produce cursor movements and mouse clicks in response to a series of prompts displayed on a computer. The time taken to move to and click on each target was recorded. The use of tooth clicks in combination with either an optical head mouse or a gyrometer head mouse can provide hands-free cursor movement and mouse button control at a speed of up to 22% of that of a standard mouse. Tooth clicks were significantly faster at generating mouse button clicks than speech recognition when paired with either type of head mouse device. Tooth-click detection performed better than speech recognition when paired with both the optical head mouse and the gyrometer head mouse. Such a system may improve computer access for people with tetraplegia.
Scharf, Valery F; Farese, James P; Coomer, Alastair R; Milner, Rowan J; Taylor, David P; Salute, Marc E; Chang, Myron N; Neal, Dan; Siemann, Dietmar W
2013-05-01
Objective-To investigate the effects of bevacizumab, a human monoclonal antibody against vascular endothelial growth factor, on the angiogenesis and growth of canine osteosarcoma cells xenografted in mice. Animals-27 athymic nude mice. Procedures-To each mouse, highly metastasizing parent osteosarcoma cells of canine origin were injected into the left gastrocnemius muscle. Each mouse was then randomly allocated to 1 of 3 treatment groups: high-dose bevacizumab (4 mg/kg, IP), low-dose bevacizumab (2 mg/kg, IP), or control (no treatment). Tumor growth (the number of days required for the tumor to grow from 8 to 13 mm), vasculature, histomorphology, necrosis, and pulmonary metastasis were evaluated. Results-Mice in the high-dose bevacizumab group had significantly delayed tumor growth (mean ± SD, 13.4 ± 3.8 days; range, 9 to 21 days), compared with that for mice in the low-dose bevacizumab group (mean ± SD, 9.4 ± 1.5 days; range, 7 to 11 days) or control group (mean ± SD, 7. 2 ± 1.5 days; range, 4 to 9 days). Mice in the low-dose bevacizumab group also had significantly delayed tumor growth, compared with that for mice in the control group. Conclusions and Clinical Relevance-Results indicated that bevacizumab inhibited growth of canine osteosarcoma cells xenografted in mice, which suggested that vascular endothelial growth factor inhibitors may be clinically useful for the treatment of osteosarcoma in dogs. Impact for Human Medicine-Canine osteosarcoma is used as a research model for human osteosarcoma; therefore, bevacizumab may be clinically beneficial for the treatment of osteosarcoma in humans.
Synergistic Action of FOXP3 and TSC1 Pathways During Tumor Progression
2015-10-01
invasive carcinoma and, ultimately, metastatic disease [1-3]. Mouse models of PIN (mPIN) generated by a single- mutant gene in prostate do not progress...downstream target) is sufficient to significantly reduce the initiation of prostate cancer in the Pten conditional knockout mouse model [19-21...the possibility that these two genetic hits cooperate to promote tumor progression, and mouse models show that this cooperation accelerates
Li, Cheng-xue; Zhao, Xin; Qian, Jing; Yan, Jie
2012-07-01
To determine the distribution of integrins and calcium channels on major human and mouse host cells of Leptospira species. The expression of β1, β2 and β3 integrins was detected with immunofluorescence assay on the surface of human monocyte line THP-1, mouse mononuclear-macrophage-like cell line J774A.1, human vascular endothelial cell line HUVEC, mouse vascular endothelial cell EOMA, human hepatocyte line L-02, mouse hepatocyte line Hepa1-6, human renal tubular epithelial cell line HEK-293, mouse glomerular membrane epithelial cell line SV40-MES13, mouse collagen blast line NIH/3T3, human and mouse platelets. The distribution of voltage gate control calcium channels Cav3.1, Cav3.2, Cav3.3 and Cav2.3, and receptor gate calcium channels P(2)X(1), P(2)2X(2), P(2)X(3), P(2)X(4), P(2)X(5), P(2)X(6) and P(2)X(7) were determined with Western blot assay. β1 integrin proteins were positively expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, L-02, Hepa1-6 and HEK-239 cells as well as human and mouse platelets. β2 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, and NIH/3T3 cells. β3 integrin proteins were expressed on the membrane surface of J774A.1, THP-1, HUVEC, EOMA, Hepa1-6, HEK-239 and NIH/3T3 cells as well as human and mouse platelets. P(2)X(1) receptor gate calcium channel was expressed on the membrane surface of human and mouse platelets, while P(2)X(5) receptor gate calcium channel was expressed on the membrane surface of J774A.1, THP-1, L-02, Hepa1-6, HEK-239 and HUVEC cells. However, the other calcium channels were not detected on the tested cell lines or platelets. There is a large distribution diversity of integrins and calcium channel proteins on the major human and mouse host cells of Leptospira species, which may be associated with the differences of leptospira-induced injury in different host cells.
Bovine lactoferricin P13 triggers ROS-mediated caspase-dependent apoptosis in SMMC7721 cells.
Meng, Lixiang; Xu, Geliang; Li, Jiansheng; Liu, Wenbin; Jia, Weidong; Ma, Jinliang; Wei, Decheng
2017-01-01
Bovine lactoferricin P13 (LfcinB-P13) is a peptide derived from LfcinB. In the present study, the effect of LfcinB-P13 on the human liver cancer cell line SMMC7721 was investigated in vitro and in vivo . The results of the present study indicate that LfcinB-P13 significantly decreased SMMC7721 cell viability in vitro (P=0.032 vs. untreated cells), while exhibiting low cytotoxicity in the wild-type liver cell line L02. In addition, the rate of apoptosis in SMMC7721 cells was significantly increased following treatment with 40 and 60 µg/ml LfcinB-P13 (P=0.0053 vs. the control group), which was associated with an increase in the level of reactive oxygen species (ROS) and the activation of caspase-3 and -9. Furthermore, ROS chelation led to the suppression of LfcinB-P13-mediated caspase-3 and -9 activation in SMMC7721 cells. LfcinB-P13 was demonstrated to markedly inhibit tumor growth in an SMMC7721-xenograft nude mouse model. The results of the present study indicate that LfcinB-P13 is a novel candidate therapeutic agent for the treatment of liver cancer.
Using the Scroll Wheel on a Wireless Mouse as a Motion Sensor
NASA Astrophysics Data System (ADS)
Taylor, Richard S.; Wilson, William R.
2010-12-01
Since its inception in the mid-80s, the computer mouse has undergone several design changes. As the mouse has evolved, physicists have found new ways to utilize it as a motion sensor. For example, the rollers in a mechanical mouse have been used as pulleys to study the motion of a magnet moving through a copper tube as a quantitative demonstration of Lenz's law and to study mechanical oscillators (e.g., mass-spring system and compound pendulum).1-3 Additionally, the optical system in an optical mouse has been used to study a mechanical oscillator (e.g., mass-spring system).4 The argument for using a mouse as a motion sensor has been and continues to be availability and cost. This paper continues this tradition by detailing the use of the scroll wheel on a wireless mouse as a motion sensor.
Cornejo, Isabel; Villanueva, Sandra; Burgos, Johanna; López-Cayuqueo, Karen I; Chambrey, Régine; Julio-Kalajzić, Francisca; Buelvas, Neudo; Niemeyer, María I; Figueiras-Fierro, Dulce; Brown, Peter D; Sepúlveda, Francisco V; Cid, L P
2018-01-01
Kir7.1 encoded by the Kcnj13 gene in the mouse is an inwardly rectifying K + channel present in epithelia where it shares membrane localization with the Na + /K + -pump. Further investigations of the localisation and function of Kir7.1 would benefit from the availability of a knockout mouse, but perinatal mortality attributed to cleft palate in the neonate has thwarted this research. To facilitate localisation studies we now use CRISPR/Cas9 technology to generate a knock-in mouse, the Kir7.1-HA that expresses the channel tagged with a haemagglutinin (HA) epitope. The availability of antibodies for the HA epitope allows for application of western blot and immunolocalisation methods using widely available anti-HA antibodies with WT tissues providing unambiguous negative control. We demonstrate that Kir7.1-HA cloned from the choroid plexus of the knock-in mouse has the electrophysiological properties of the native channel, including characteristically large Rb + currents. These large Kir7.1-mediated currents are accompanied by abundant apical membrane Kir7.1-HA immunoreactivity. WT-controlled western blots demonstrate the presence of Kir7.1-HA in the eye and the choroid plexus, trachea and lung, and intestinal epithelium but exclusively in the ileum. In the kidney, and at variance with previous reports in the rat and guinea-pig, Kir7.1-HA is expressed in the inner medulla but not in the cortex or outer medulla. In isolated tubules immunoreactivity was associated with inner medulla collecting ducts but not thin limbs of the loop of Henle. Kir7.1-HA shows basolateral expression in the respiratory tract epithelium from trachea to bronchioli. The channel also appears basolateral in the epithelium of the nasal cavity and nasopharynx in newborn animals. We show that HA-tagged Kir7.1 channel introduced in the mouse by a knock-in procedure has functional properties similar to the native protein and the animal thus generated has clear advantages in localisation studies. It might therefore become a useful tool to unravel Kir7.1 function in the different organs where it is expressed.
Cryo-imaging in a toxicological study on mouse fetuses
NASA Astrophysics Data System (ADS)
Roy, Debashish; Gargesha, Madhusudhana; Sloter, Eddie; Watanabe, Michiko; Wilson, David
2010-03-01
We applied the Case cryo-imaging system to detect signals of developmental toxicity in transgenic mouse fetuses resulting from maternal exposure to a developmental environmental toxicant (2,3,7,8-tetrachlorodibenzo-p-dioxin, TCDD). We utilized a fluorescent transgenic mouse model that expresses Green Fluorescent Protein (GFP) exclusively in smooth muscles under the control of the smooth muscle gamma actin (SMGA) promoter (SMGA/EGFP mice kindly provided by J. Lessard, U. Cincinnati). Analysis of cryo-image data volumes, comprising of very high-resolution anatomical brightfield and molecular fluorescence block face images, revealed qualitative and quantitative morphological differences in control versus exposed fetuses. Fetuses randomly chosen from pregnant females euthanized on gestation day (GD) 18 were either manually examined or cryo-imaged. For cryo-imaging, fetuses were embedded, frozen and cryo-sectioned at 20 μm thickness and brightfield color and fluorescent block-face images were acquired with an in-plane resolution of ~15 μm. Automated 3D volume visualization schemes segmented out the black embedding medium and blended fluorescence and brightfield data to produce 3D reconstructions of all fetuses. Comparison of Treatment groups TCDD GD13, TCDD GD14 and control through automated analysis tools highlighted differences not observable by prosectors performing traditional fresh dissection. For example, severe hydronephrosis, suggestive of irreversible kidney damage, was detected by cryoimaging in fetuses exposed to TCDD. Automated quantification of total fluorescence in smooth muscles revealed suppressed fluorescence in TCDD-exposed fetuses. This application demonstrated that cryo-imaging can be utilized as a routine high-throughput screening tool to assess the effects of potential toxins on the developmental biology of small animals.
Andres-Mach, Marta; Haratym-Maj, Agnieszka; Zagaja, Mirosław; Luszczki, Jarogniew J
2014-01-01
The aim of this study was to characterize the anticonvulsant effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline (1-MeTHIQ) in combination with clobazam (CLB) in the mouse maximal electroshock-induced seizure (MES) model. The anticonvulsant interaction profile between 1-MeTHIQ and CLB in the mouse MES model was determined using an isobolographic analysis for parallel dose-response relationship curves. Electroconvulsions were produced in albino Swiss mice by a current (sine wave, 25 mA, 500 V, 50 Hz, 0.2-second stimulus duration) delivered via auricular electrodes by a Hugo Sachs generator. There was an additive effect of the combination of 1-MeTHIQ with CLB (at the fixed ratios of 1:3, 1:1 and 3:1) in the mouse MES-induced tonic seizure model. The additive interaction of the combination of 1-MeTHIQ with CLB (at fixed-ratios of 1:3, 1:1 and 3:1) in the mouse MES model seems to be pharmacodynamic in nature and worth of considering in further clinical practice. © 2014 S. Karger AG, Basel.
The control and importance of hyaluronan synthase expression in palatogenesis
Galloway, Jennifer L.; Jones, Sarah J.; Mossey, Peter A.; Ellis, Ian R.
2013-01-01
Development of the lip and palate involves a complex series of events that requires the close co-ordination of cell migration, growth, differentiation, and apoptosis. Palatal shelf elevation is considered to be driven by regional accumulation and hydration of glycosoaminoglycans, principally hyaluronan (HA), which provides an intrinsic shelf force, directed by components of the extracellular matrix (ECM). During embryogenesis, the extracellular and pericellular matrix surrounding migrating and proliferating cells is rich in HA. This would suggest that HA may be important in both shelf growth and fusion. TGFβ3 plays an important role in palatogenesis and the corresponding homozygous null (TGFβ3−/−) mouse, exhibits a defect in the fusion of the palatal shelves resulting in clefting of the secondary palate. TGFβ3 is expressed at the future medial edge epithelium (MEE) and at the actual edge epithelium during E14.5, suggesting a role for TGFβ3 in fusion. This is substantiated by experiments showing that addition of exogenous TGFβ3 can “rescue” the cleft palate phenotype in the null mouse. In addition, TGFβ1 and TGFβ2 can rescue the null mouse palate (in vitro) to near normal fusion. In vivo a TGFβ1 knock-in mouse, where the coding region of the TGFβ3 gene was replaced with the full-length TGFβ1 cDNA, displayed complete fusion at the mid portion of the secondary palate, whereas the anterior and posterior regions failed to fuse appropriately. We present experimental data indicating that the three HA synthase (Has) enzymes are differentially expressed during palatogenesis. Using immunohistochemistry (IHC) and embryo sections from the TGFβ3 null mouse at days E13.5 and E14.5, it was established that there was a decrease in expression of Has2 in the mesenchyme and an increase in expression of Has3 in comparison to the wild-type mouse. In vitro data indicate that HA synthesis is affected by addition of exogenous TGFβ3. Preliminary data suggests that this increase in HA synthesis, in response to TGFβ3, is under the control of the PI3kinase/Akt pathway. PMID:23382716
Pal, Sukumar; Tifrea, Delia F; Zhong, Guangming; de la Maza, Luis M
2018-01-01
Chlamydia trachomatis is the leading cause of infection-induced infertility in women. Attempts to control this epidemic with screening programs and antibiotic therapy have failed. Currently, a vaccine to prevent C. trachomatis infections is not available. In order to develop an animal model for evaluating vaccine antigens that can be applied to humans, we used C. trachomatis serovar D (strain UW-3/Cx) to induce infertility in mice whose major histocompatibility complex class II antigen was replaced with the human leukocyte antigen DR4 (HLA-DR4). Transcervical inoculation of medroxyprogesterone-treated HLA-DR4 transgenic mice with 5 × 10 5 C. trachomatis D inclusion forming units (IFU) induced a significant reduction in fertility, with a mean number of embryos/mouse of 4.4 ± 1.3 compared to 7.8 ± 0.5 for the uninfected control mice ( P < 0.05). A similar fertility reduction was elicited in the wild-type (WT) C57BL/6 mice (4.3 ± 1.4 embryos/mouse) compared to the levels of the WT controls (9.1 ± 0.4 embryos/mouse) ( P < 0.05). Following infection, WT mice mounted more robust humoral and cellular immune responses than HLA-DR4 mice. As determined by vaginal shedding, HLA-DR4 mice were more susceptible to a transcervical C. trachomatis D infection than WT mice. To assess if HLA-DR4 transgenic and WT mice could be protected by vaccination, 10 4 IFU of C. trachomatis D was delivered intranasally, and mice were challenged transcervically 6 weeks later with 5 × 10 5 IFU of C. trachomatis D. As determined by severity and length of vaginal shedding, WT C57BL/6 and HLA-DR4 mice were significantly protected by vaccination. The advantages and limitations of the HLA-DR4 transgenic mouse model for evaluating human C. trachomatis vaccine antigens are discussed. Copyright © 2017 American Society for Microbiology.
The haloacetic acids (HAA) are a family of chemicals that are drinking water disinfection byproducts. We previously reported that bromo- and chloro-acetic acids alter embryonic development when mouse conceptuses are directly exposed to these xenobiotics in whole embryo culture. C...
IL-13 is a central mediator of chemical-induced airway hyperreactivity in mice
Devos, Fien C.; Pollaris, Lore; Cremer, Jonathan; Seys, Sven; Hoshino, Tomoaki; Ceuppens, Jan; Talavera, Karel; Nemery, Benoit; Hoet, Peter H. M.
2017-01-01
Background While the importance of the Th2 cytokine IL-13 as a central mediator of airway hyperreactivity (AHR) has been described in allergic protein-induced asthma, this has never been investigated in chemical-induced asthma. Objective We examined the importance of IL-13 in a mouse model of chemical-induced AHR, using toluene-2,4-diisocyanate (TDI). Methods In a first set-up, wild type (WT) and IL-13 knockout (KO) C57Bl/6 mice were dermally treated on days 1 and 8 with 1% TDI or vehicle (acetone/olive oil) on both ears. On day 15, mice received an intranasal instillation with 0.1% TDI or vehicle. In a second set-up, WT mice sensitized with 1% TDI or vehicle, received i.v. either anti-IL-13 or control antibody prior to the intranasal challenge. Results TDI-sensitized and TDI-challenged WT mice showed AHR to methacholine, in contrast to TDI-sensitized and TDI-challenged IL-13 KO mice, which also showed lower levels of total serum IgE. TDI-sensitized and TDI-challenged IL-13 KO mice had lower numbers of T-cells in the auricular lymph nodes. TDI-treated WT mice, receiving anti-IL-13, showed no AHR, in contrast to those receiving control antibody, despite increased levels of IgE. Anti-IL-13 treatment in TDI-treated WT mice resulted in lower levels of serum IL-13, but did not induce changes in T- and B-cell numbers, and in the cytokine production profile. Conclusion and clinical relevance We conclude that IL-13 plays a critical role in the effector phase of chemical-induced, immune-mediated AHR. This implicates that anti-IL-13 treatment could have a beneficial effect in patients with this asthma phenotype. PMID:28704401
Chen, Yan; Guo, Wenjie; Li, Wenjuan; Cheng, Meng; Hu, Ying; Xu, Wenming
2016-01-01
Estrogen induces oligodendrocyte remyelination in response to demyelination in the central nervous system. Our objective was to determine the effects of 17β-estradiol (E2) on Schwann cell function and peripheral nerve remyelination after injury. Adult male C57BL/6J mice were used to prepare the sciatic nerve transection injury model and were randomly categorized into control and E2 groups. To study myelination in vitro, dorsal root ganglion (DRG) explant culture was prepared using 13.5-day-old mouse embryos. Primary Schwann cells were isolated from the sciatic nerves of 1- to 3-day-old Sprague–Dawley rats. Immunostaining for myelin basic protein (MBP) expression and toluidine blue staining for myelin sheaths demonstrated that E2 treatment accelerates early remyelination in the “nerve bridge” region between the proximal and distal stumps of the transection injury site in the mouse sciatic nerve. The 5-bromo-2′-deoxyuridine incorporation assay revealed that E2 promotes Schwann cell proliferation in the bridge region and in the primary culture, which is blocked using AKT inhibitor MK2206. The in vitro myelination in the DRG explant culture determined showed that the MBP expression in the E2-treated group is higher than that in the control group. These results show that E2 promotes Schwann cell proliferation and myelination depending on AKT activation. PMID:27872858
Sharma, Rajni; Di Dalmazi, Giulia; Caturegli, Patrizio
2016-08-01
Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2(h4) mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. NOD-H2(h4) mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2(h4) mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade.
Li, Ying; Wang, Jiaxing; Allingham, R. Rand; Hauser, Michael A.; Wiggs, Janey L.; Geisert, Eldon E.
2018-01-01
Central corneal thickness (CCT) is one of the most heritable ocular traits and it is also a phenotypic risk factor for primary open angle glaucoma (POAG). The present study uses the BXD Recombinant Inbred (RI) strains to identify novel quantitative trait loci (QTLs) modulating CCT in the mouse with the potential of identifying a molecular link between CCT and risk of developing POAG. The BXD RI strain set was used to define mammalian genomic loci modulating CCT, with a total of 818 corneas measured from 61 BXD RI strains (between 60–100 days of age). The mice were anesthetized and the eyes were positioned in front of the lens of the Phoenix Micron IV Image-Guided OCT system or the Bioptigen OCT system. CCT data for each strain was averaged and used to QTLs modulating this phenotype using the bioinformatics tools on GeneNetwork (www.genenetwork.org). The candidate genes and genomic loci identified in the mouse were then directly compared with the summary data from a human POAG genome wide association study (NEIGHBORHOOD) to determine if any genomic elements modulating mouse CCT are also risk factors for POAG.This analysis revealed one significant QTL on Chr 13 and a suggestive QTL on Chr 7. The significant locus on Chr 13 (13 to 19 Mb) was examined further to define candidate genes modulating this eye phenotype. For the Chr 13 QTL in the mouse, only one gene in the region (Pou6f2) contained nonsynonymous SNPs. Of these five nonsynonymous SNPs in Pou6f2, two resulted in changes in the amino acid proline which could result in altered secondary structure affecting protein function. The 7 Mb region under the mouse Chr 13 peak distributes over 2 chromosomes in the human: Chr 1 and Chr 7. These genomic loci were examined in the NEIGHBORHOOD database to determine if they are potential risk factors for human glaucoma identified using meta-data from human GWAS. The top 50 hits all resided within one gene (POU6F2), with the highest significance level of p = 10−6 for SNP rs76319873. POU6F2 is found in retinal ganglion cells and in corneal limbal stem cells. To test the effect of POU6F2 on CCT we examined the corneas of a Pou6f2-null mice and the corneas were thinner than those of wild-type littermates. In addition, these POU6F2 RGCs die early in the DBA/2J model of glaucoma than most RGCs. Using a mouse genetic reference panel, we identified a transcription factor, Pou6f2, that modulates CCT in the mouse. POU6F2 is also found in a subset of retinal ganglion cells and these RGCs are sensitive to injury. PMID:29370175
Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells.
Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy
2010-10-01
The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30-35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect.
Morrison, Brad E.; Marcondes, Maria Cecilia Garibaldi; Nomura, Daniel K.; Sanchez-Alavez, Manuel; Sanchez-Gonzalez, Alejandro; Saar, Indrek; Kim, Kwang-Soo; Bartfai, Tamas; Maher, Pamela; Sugama, Shuei; Conti, Bruno
2012-01-01
Inflammation and its mediators, including cytokines and reactive oxigen species, are believed to contribute to neurodegeneration. In the mouse brain, we found that the interleukin 13 receptor alpha 1 chain (IL-13Rα1) was expressed in the dopaminergic (DA) neurons of the substantia nigra pars compacta which are preferentially lost in human Parkinson’s disease (PD). Mice deficient for Il13ra1 exhibited resistance to loss of DA neurons in a model of chronic peripheral inflammation using bacterial lipopolysaccharide. Interleukin-13, as well as interleukin-4, potentiated the cytotoxic effects of t-butyl hydroperoxide and hydrogen peroxide on mouse dopaminergic MN9D cells. Collectively, our data indicate that expression of IL-13Rα1 on DA neurons can increase their susceptibility to oxidative stress-mediated damage thereby contributing to their preferential loss. In humans, Il13ra1 lies on the X chromosome within the PARK12 locus of susceptibility to PD suggesting that IL-13Rα1 may have a role in the pathogenesis of this neurodegenerative disease. PMID:23169588
Torihashi, Shigeko; Hattori, Takako; Hasegawa, Hirotaka; Kurahashi, Masaaki; Ogaeri, Takunori; Fujimoto, Toyoshi
2009-03-01
Bone morphogenetic protein (BMP) signaling is essential for normal development of the gastrointestinal (GI) tract. BMPs also play multiple roles in vascular smooth muscle cells; however, the BMP signaling in the development of the GI musculature remains to be clarified. We investigated the expression of BMPs and their receptors in mouse embryonic GI tracts by immunohistochemistry and in situ hybridization. We demonstrated that BMP2, BMP receptor Ib and BMP receptor II were expressed in the smooth muscle progenitors from E12 to E13 for the first time. BMP signaling on smooth muscle differentiation was examined by implantation of agarose beads soaked with BMPs in the in vitro developmental model that is gut-like structures from mouse embryonic stem (ES) cells. BMP2 rather than BMP4 beads enhanced smooth muscle differentiation, and increased gut-like structures showing spontaneous contractions and expressing intensive alpha-smooth muscle actin immunoreactivity. This increase was confirmed by up-regulation of SM22 mRNA shown by real-time PCR. By addition of noggin beads or noggin to the medium at BMP2 bead implantation, the ratio of contractive gut-like structures decreased. Implantation of BMP2 beads at EB7 (EB--embryoid bodies) (corresponding to E12 or E13 of mouse embryo) showed the highest effects and up-regulation of transcription factors msx-1 after 24h. This increase was blocked by noggin, and msx-1 decreased to almost the control level after 60 h. BMP2 beads at EB7 increased platelet-derived growth factor-A (PDGF-A) in the differentiating smooth muscle cells. We have recently reported that PDGF-A is expressed in the developing inner circular smooth muscle and is crucial for the longitudinal smooth muscle differentiation. Taken together, BMP signaling was expressed for a short window in the smooth muscle progenitors and the signal, especially BMP2, plays an essential role in smooth muscle differentiation in cooperation with PDGF signaling.
Han, Yiwei; Yang, Zi; Ding, Xiaoyan; Yu, Huan; Yi, Yanhong
2015-10-01
By detecting the variation of long-chain 3-hydroxyacyl-CoA dehydrogenase (LCHAD) DNA methylation in preeclampsia-like mouse models generated by different ways, to explore the roles of multifactor and multiple pathways in preeclampsia pathogenesis on molecular basis. Established preeclampsia-like mouse models in different ways and divided into groups as follows: (1) Nw-nitro-L-arginine-methyl ester (L-NAME) group: wild-type pregnant mouse received subcutaneous injection of L-NAME; (2) lipopolysaccharide (LPS) group: wild-type pregnant mouse received intraperitoneal injection of LPS; (3) apolipoprotein C-III (ApoC3) group: ApoC3 transgenic pregnant mouse with dysregulated lipid metabolism received subcutaneous injection of L-NAME; (4) β2 glycoprotein I (β-2GPI) group: wild-type pregnant mouse received subcutaneous injection of β-2GPI. According to the first injection time (on day 3, 11, 16 respectively), the L-NAME, LPS and ApoC3 groups were further subdivided into: pre-implantation (PI) experimental stage, early gestation (EG) experimental stage, and late gestation (LG) experimental stage. β-2GPI group was only injected before implantation. LCHAD gene methylation levels in placental were detected in different experimental stage. Normal saline control groups were set within wild-type and ApoC3 transgenic pregnant mice simultaneously. (1) CG sites in LCHAD DNA: 45 CG sites were detected in the range of 728 bp before LCHAD gene transcription start site, the 5, 12, 13, 14, 15, 16, 19, 24, 25, 27, 28, 29, 30, 31, 32, 34, 35, 43 CG sites were complex sites which contained two or more CG sequences, others were single site which contained one CG sequence. The 3, 5, 6, 11, 13, 14, 18, 28 sites in L-NAME, LPS, ApoC3 and β-2GPI groups showed different high levels of methylation; the 16, 25, 31, 42, 44 sites showed different low levels of methylation; other 32 sites were unmethylated. (2) Comparison of LCHAD gene methylation between different groups: the methylation levels of LCAHD gene at 3, 11, 13, 14, 18 sites in L-NAME, LPS, ApoC3 and β-2GPI groups were significantly higher than those in the normal saline control group (P < 0.05); and the methylation levels of 42, 44 sites in these groups were significantly lower than those in the normal saline control group (P < 0.05). (3) Methylation of LCHAD gene at the same site between different experimental stages: ① The 3, 11, 18 sites of EG experimental stage was significantly lower than PI and LG experimental stage in L-NAME group (P < 0.05); the 3, 11, 18 sites of PI experimental stage was significantly lower than EG and LG experimental stage in LPS group (P < 0.05); these sites of PI experimental stage was significantly higher than EG and LG experimental stages in ApoC3 group (P < 0.05). ② The methylation of site 5 in L-NAME and LPS groups were significantly higher than that of the normal saline control group (P < 0.05), and the LG experimental stages were significantly higher than other stages, but in ApoC3 group, only PI and EG stages were significantly higher than the normal saline control group (P < 0.05). ③ At site 6 in L-NAME group which showed high methylation level was significantly higher than the same site in other groups which showed low methylation level (P < 0.05). ④ At 13, 14 sites, earlier preeclampsia onset caused a lower methylation level in L-NAME group, but PI experimental stage was significantly higher than EG and LG experimental stages in LPS group (P < 0.05), EG experimental stage was significantly higher than PI and LG experimental stages in ApoC3 group (P < 0.05). ⑤ At site 28, earlier preeclampsia onset caused a higher methylation level in L-NAME group, but PI experimental stage was significantly lower than EG and LG experimental stages in LPS group (P < 0.05), EG experimental stage was significantly higher than PI and LG experimental stages in ApoC3 group (P < 0.05). ⑥ The 16, 25, 31 sites in ApoC3 group were significantly higher than other groups (P < 0.05). ⑦ At site 42 in β-2GPI group was unmethylated, but it in other groups showed low methylation level, the methylation level of site 42 in β-2GPI group was significantly lower than that in other groups (P < 0.05). The methylation of 6 and 42 CG sites may be related to LCHAD gene expression in placenta of L-NAME and β-2GPI induced preeclampsia-like models respectively; LCHAD gene expression and DNA methylation may not have obvious correlation in LPS and ApoC3 induced preeclampsia-like models. Differences exist in LCHAD DNA methylation in preeclampsia-like models generated by different ways, revealed a molecular basis to expand our understanding of the multi-factorial pathogenesis of preeclampsia.
Cheng, Yulong; Su, Yutong; Shan, Aijing; Jiang, Xiuli; Ma, Qinyun; Wang, Weiqing; Ning, Guang; Cao, Yanan
2015-07-01
The technologies for pancreatic β-cell-specific gene overexpression or knockout are fundamental for investigations of functional genes in vivo. Here we generated the Ins1-Cre-Dsred and Ins1-rtTA mouse models, which expressed the Cre recombinase or reverse tetracycline regulatable transactivator (rtTA) without hGH minigene under the control of mouse Ins1 promoter. Our data showed that the Cre-mediated recombination and rtTA-mediated activation could be efficiently detected at embryonic day 13.5 when these models were crossed with the reporter mice (ROSA(mT/mG) or tetO-HIST1H2BJ/GFP). The Cre and rtTA expression was restricted to β-cells without leakage in the brain and other tissues. Moreover, both the transgenic lines showed normal glucose tolerance and insulin secretion. These results suggested that the Ins1-Cre-Dsred and Ins1-rtTA mice could be used to knock out or overexpress target genes in embryos and adults to facilitate β-cell researches.
Tubert, Cecilia; Taravini, Irene R E; Flores-Barrera, Eden; Sánchez, Gonzalo M; Prost, María Alejandra; Avale, María Elena; Tseng, Kuei Y; Rela, Lorena; Murer, Mario Gustavo
2016-09-06
The mechanism underlying a hypercholinergic state in Parkinson's disease (PD) remains uncertain. Here, we show that disruption of the Kv1 channel-mediated function causes hyperexcitability of striatal cholinergic interneurons in a mouse model of PD. Specifically, our data reveal that Kv1 channels containing Kv1.3 subunits contribute significantly to the orphan potassium current known as IsAHP in striatal cholinergic interneurons. Typically, this Kv1 current provides negative feedback to depolarization that limits burst firing and slows the tonic activity of cholinergic interneurons. However, such inhibitory control of cholinergic interneuron excitability by Kv1.3-mediated current is markedly diminished in the parkinsonian striatum, suggesting that targeting Kv1.3 subunits and their regulatory pathways may have therapeutic potential in PD therapy. These studies reveal unexpected roles of Kv1.3 subunit-containing channels in the regulation of firing patterns of striatal cholinergic interneurons, which were thought to be largely dependent on KCa channels. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kapanadze, B; Makeeva, N; Corcoran, M; Jareborg, N; Hammarsund, M; Baranova, A; Zabarovsky, E; Vorontsova, O; Merup, M; Gahrton, G; Jansson, M; Yankovsky, N; Einhorn, S; Oscier, D; Grandér, D; Sangfelt, O
2000-12-15
Previous studies have indicated the presence of a putative tumor suppressor gene on human chromosome 13q14, commonly deleted in patients with B-cell chronic lymphocytic leukemia (B-CLL). We have recently identified a minimally deleted region encompassing parts of two adjacent genes, termed LEU1 and LEU2 (leukemia-associated genes 1 and 2), and several additional transcripts. In addition, 50 kb centromeric to this region we have identified another gene, LEU5/RFP2. To elucidate further the complex genomic organization of this region, we have identified, mapped, and sequenced the homologous region in the mouse. Fluorescence in situ hybridization analysis demonstrated that the region maps to mouse chromosome 14. The overall organization and gene order in this region were found to be highly conserved in the mouse. Sequence comparison between the human deletion hotspot region and its homologous mouse region revealed a high degree of sequence conservation with an overall score of 74%. However, our data also show that in terms of transcribed sequences, only two of those, human LEU2 and LEU5/RFP2, are clearly conserved, strengthening the case for these genes as putative candidate B-CLL tumor suppressor genes.
Murgas, Paola; Bustamante, Nicolás; Araya, Nicole; Cruz-Gómez, Sebastián; Durán, Eduardo; Gaete, Diana; Oyarce, César; López, Ernesto; Herrada, Andrés Alonso; Ferreira, Nicolás; Pieringer, Hans; Lladser, Alvaro
2018-02-01
Colorectal cancer is a deadly disease, which is frequently diagnosed at advanced stages, where conventional treatments are no longer effective. Cancer immunotherapy has emerged as a new form to treat different malignancies by turning-on the immune system against tumors. However, tumors are able to evade antitumor immune responses by promoting an immunosuppressive microenvironment. Single-stranded DNA containing M13 bacteriophages are highly immunogenic and can be specifically targeted to the surface of tumor cells to trigger inflammation and infiltration of activated innate immune cells, overcoming tumor-associated immunosuppression and promoting antitumor immunity. Carcinoembryonic antigen (CEA) is highly expressed in colorectal cancers and has been shown to promote several malignant features of colorectal cancer cells. In this work, we targeted M13 bacteriophage to CEA, a tumor-associated antigen over-expressed in a high proportion of colorectal cancers but largely absent in normal cells. The CEA-targeted M13 bacteriophage was shown to specifically bind to purified CEA and CEA-expressing tumor cells in vitro. Both intratumoral and systemic administration of CEA-specific bacteriophages significantly reduced tumor growth of mouse models of colorectal cancer, as compared to PBS and control bacteriophage administration. CEA-specific bacteriophages promoted tumor infiltration of neutrophils and macrophages, as well as maturation dendritic cells in tumor-draining lymph nodes, suggesting that antitumor T-cell responses were elicited. Finally, we demonstrated that tumor protection provided by CEA-specific bacteriophage particles is mediated by CD8 + T cells, as depletion of circulating CD8 + T cells completely abrogated antitumor protection. In summary, we demonstrated that CEA-specific M13 bacteriophages represent a potential immunotherapy against colorectal cancer.
A Mouse to Human Search for Plasma Proteome Changes Associated with Pancreatic Tumor Development
Faca, Vitor M; Song, Kenneth S; Wang, Hong; Zhang, Qing; Krasnoselsky, Alexei L; Newcomb, Lisa F; Plentz, Ruben R; Gurumurthy, Sushma; Redston, Mark S; Pitteri, Sharon J; Pereira-Faca, Sandra R; Ireton, Renee C; Katayama, Hiroyuki; Glukhova, Veronika; Phanstiel, Douglas; Brenner, Dean E; Anderson, Michelle A; Misek, David; Scholler, Nathalie; Urban, Nicole D; Barnett, Matt J; Edelstein, Cim; Goodman, Gary E; Thornquist, Mark D; McIntosh, Martin W; DePinho, Ronald A; Bardeesy, Nabeel; Hanash, Samir M
2008-01-01
Background The complexity and heterogeneity of the human plasma proteome have presented significant challenges in the identification of protein changes associated with tumor development. Refined genetically engineered mouse (GEM) models of human cancer have been shown to faithfully recapitulate the molecular, biological, and clinical features of human disease. Here, we sought to exploit the merits of a well-characterized GEM model of pancreatic cancer to determine whether proteomics technologies allow identification of protein changes associated with tumor development and whether such changes are relevant to human pancreatic cancer. Methods and Findings Plasma was sampled from mice at early and advanced stages of tumor development and from matched controls. Using a proteomic approach based on extensive protein fractionation, we confidently identified 1,442 proteins that were distributed across seven orders of magnitude of abundance in plasma. Analysis of proteins chosen on the basis of increased levels in plasma from tumor-bearing mice and corroborating protein or RNA expression in tissue documented concordance in the blood from 30 newly diagnosed patients with pancreatic cancer relative to 30 control specimens. A panel of five proteins selected on the basis of their increased level at an early stage of tumor development in the mouse was tested in a blinded study in 26 humans from the CARET (Carotene and Retinol Efficacy Trial) cohort. The panel discriminated pancreatic cancer cases from matched controls in blood specimens obtained between 7 and 13 mo prior to the development of symptoms and clinical diagnosis of pancreatic cancer. Conclusions Our findings indicate that GEM models of cancer, in combination with in-depth proteomic analysis, provide a useful strategy to identify candidate markers applicable to human cancer with potential utility for early detection. PMID:18547137
CARCINOGENIC EVALUATION OF 2,3-DIMETHYL-2,3-DINITROBUTANE VIA THE MOUSE SKIN BIOASSAY
Female SENCAR mice initiated with 2,3-dimethyl-2,3dimethyl-2,3-dinitrobutane (DMDNB) and promoted with 12-0-tetradecanoylphorol-13-acetate (TPA) via the SENCAR mouse skin bioassy did not exhibit a significant increase in skin tumors. The mice received 20 mg kg-1 DMDNE divided int...
In Vivo Imaging of Branched Chain Amino Acid Metabolism in Prostate Cancer
2012-08-01
system with heart rate and O2 saturation recorded using a pulse oximeter . Within a given scanning session, each mouse received one bolus injection... oxygen (~1.5 l/min), a tail vein catheter was inserted into each mouse, and the animal placed in a custom-build dual-tuned 13C/1H quadrature
Bradley, Alys; Mukaratirwa, Sydney; Petersen-Jones, Morven
2012-01-01
The authors performed a retrospective study to determine the incidences and range of spontaneous pathology findings in the lymphoid and haemopoietic systems of control Charles River CD-1 mice (Crl: CD-1(ICR) BR). Data was collected from 2,560 mice from control dose groups (104-week and 80-week carcinogenicity studies; 13-week studies), from regulatory studies evaluated at the authors' laboratory between 2005 and 2010. Lesions of the lymphoid and hematopoietic systems were uncommon in 13-week studies but were of high incidence in the carcinogenicity studies (80- or 104-week duration). The most common finding overall was lymphoid hyperplasia within the spleen, thymus, and lymph nodes. The finding of benign lymphoid hyperplasia of the thymus is unusual in other mouse strains. The most common cause of death in the carcinogenicity studies was lymphoma. It is hoped that the results presented here will provide a useful database of incidental pathology findings in CD-1 mice on carcinogenicity studies.
Dietary self-control is related to the speed with which health and taste attributes are processed
Sullivan, Nicolette; Hutcherson, Cendri; Harris, Alison; Rangel, Antonio
2015-01-01
We propose that self-control failures, and variation across individuals in self-control abilities, are partly due to differences in the speed with which the decision-making circuitry processes basic attributes like taste, versus more abstract attributes such as health. We test these hypotheses by combining a dietary choice task with a novel form of mouse tracking that allows us to pinpoint when different attributes are being integrated into the choice process with millisecond temporal resolution. We find that, on average, taste attributes are processed about 195 ms earlier than health attributes during the choice process. We also find that 13 - 39% of observed individual differences in self-control ability can be explained by differences in the relative speed with which taste and health attributes are processed. PMID:25515527
Sullivan, Nicolette; Hutcherson, Cendri; Harris, Alison; Rangel, Antonio
2015-02-01
We propose that self-control failures, and variation across individuals in self-control abilities, are partly due to differences in the speed with which the decision-making circuitry processes basic attributes, such as tastiness, versus more abstract attributes, such as healthfulness. We tested these hypotheses by combining a dietary-choice task with a novel form of mouse tracking that allowed us to pinpoint when different attributes were being integrated into the choice process with temporal resolution at the millisecond level. We found that, on average, tastiness was processed about 195 ms earlier than healthfulness during the choice process. We also found that 13% to 39% of observed individual differences in self-control ability could be explained by differences in the relative speed with which tastiness and healthfulness were processed. © The Author(s) 2014.
Zhang, Zhuo; Leong, Daniel J; Xu, Lin; He, Zhiyong; Wang, Angela; Navati, Mahantesh; Kim, Sun J; Hirsh, David M; Hardin, John A; Cobelli, Neil J; Friedman, Joel M; Sun, Hui B
2016-06-03
Curcumin has been shown to have chondroprotective potential in vitro. However, its effect on disease and symptom modification in osteoarthritis (OA) is largely unknown. This study aimed to determine whether curcumin could slow progression of OA and relieve OA-related pain in a mouse model of destabilization of the medial meniscus (DMM). Expression of selected cartilage degradative-associated genes was evaluated in human primary chondrocytes treated with curcumin and curcumin nanoparticles and assayed by real-time PCR. The mice subjected to DMM surgery were orally administered curcumin or topically administered curcumin nanoparticles for 8 weeks. Cartilage integrity was evaluated by Safranin O staining and Osteoarthritis Research Society International (OARSI) score, and by immunohistochemical staining of cleaved aggrecan and type II collagen, and levels of matrix metalloproteinase (MMP)-13 and ADAMTS5. Synovitis and subchondral bone thickness were scored based on histologic images. OA-associated pain and symptoms were evaluated by von Frey assay, and locomotor behavior including distance traveled and rearing. Both curcumin and nanoparticles encapsulating curcumin suppressed mRNA expression of pro-inflammatory mediators IL-1β and TNF-α, MMPs 1, 3, and 13, and aggrecanase ADAMTS5, and upregulated the chondroprotective transcriptional regulator CITED2, in primary cultured chondrocytes in the absence or presence of IL-1β. Oral administration of curcumin significantly reduced OA disease progression, but showed no significant effect on OA pain relief. Curcumin was detected in the infrapatellar fat pad (IPFP) following topical administration of curcumin nanoparticles on the skin of the injured mouse knee. Compared to vehicle-treated controls, topical treatment led to: (1) reduced proteoglycan loss and cartilage erosion and lower OARSI scores, (2) reduced synovitis and subchondral plate thickness, (3) reduced immunochemical staining of type II collagen and aggrecan cleavage epitopes and numbers of chondrocytes positive for MMP-13 and ADAMTS5 in the articular cartilage, and (4) reduced expression of adipokines and pro-inflammatory mediators in the IPFP. In contrast to oral curcumin, topical application of curcumin nanoparticles relieved OA-related pain as indicated by reduced tactile hypersensitivity and improved locomotor behavior. This study provides the first evidence that curcumin significantly slows OA disease progression and exerts a palliative effect in an OA mouse model.
Breitschwerdt, E B; Geoly, F J; Meuten, D J; Levine, J F; Howard, P; Hegarty, B C; Stafford, L C
1996-04-01
To characterize the pathogenic potential of a unique Borrelia isolate obtained from a dog from Florida (FCB isolate). Prospective experimental infection. 32 preweanling Swiss Webster mice and 12 adult male Hartley guinea pigs were injected intraperitoneally with 10(5) spirochetes. Mice were used as controls and blood recipients, and at 3- to 4-day intervals, 1 control mouse and 2 infected mice were necropsied, tissues were cultured, and a recipient mouse was inoculated with blood. Guinea pigs were randomized to 4 groups and inoculated intradermally with 10(0), 10(2), 10(3), or 10(4) spirochetes. For 48 days, clinical, hematologic, serologic, and microbiologic tests were performed on them, after which they were necropsied. In mice, spirochetemia was detectable between postinoculation days (PID) 3 and 13, and seroreactivity to homologous antigen was detectable during PID 10 through 31. Compared with control mice, infected mouse spleens were 2 to 3 times larger. Histologic lesions included lymphoid hyperplasia, neutrophilic panniculitis, epicarditis, and myocarditis, with intralesional spirochetes detected from PID 3 through 6. During PID 10 through 31, nonsuppurative epicarditis developed. Signs of illness and hematologic abnormalities were not observed in guinea pigs, despite isolating spirochetes from blood during PID 7 to 27. When necropsied on PID 48, histologic lesions included lymphoid hyperplasia and lymphocytic plasmacytic epicarditis. The FCB isolate causes spirochetemia, lymphoid hyperplasia, dermatitis, and myocardial injury in Swiss Webster mice and can be transmitted by blood inoculation. In Hartley guinea pigs, the isolate causes spirochetemia, lymphoid hyperplasia, and epicarditis. Documentation of disease in mice, guinea pigs, and, presumably, dogs raises the level of concern that the FCB isolate might be pathogenic for man and other animal species.
NASA Technical Reports Server (NTRS)
1979-01-01
The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.
Effect of oral tolerance in a mouse model of allergic rhinitis.
Shin, Ji-Hyeon; Kang, Jun Myung; Kim, Sung Won; Cho, Jin-Hee; Park, Yong Jin; Kim, Soo Whan
2010-03-01
Induction of oral tolerance (OT) is known to prevent allergic inflammation in models of asthma. This study investigated the preventive effect of OT and airway remodeling in a mouse model of allergic rhinitis (AR). An in vivo study using an animal model. Catholic Research Institutes of Medical Science. Forty six-week-old, female BALB/c mice were divided into four groups: control, AR, low-dose OT, and high-dose OT. To induce OT, mice were fed ovalbumin (OVA) before sensitization with OVA/aluminum hydroxide, 1 mg for six days in the low-dose OT group and a 25 mg single dose in the high-dose OT group. Mice in the AR group were fed phosphate-buffered saline. After sensitization followed by challenges with OVA during six weeks, nasal behaviors, interleukin (IL)-13 and interferon gamma (IFN-gamma) levels in nasal lavage (NAL) fluids, as well as OVA-specific IgE levels in serum, were measured. The degree of goblet cell hyperplasia and thickness of lamina propria were observed in nasal tissues by periodic acid-Schiff and Masson's trichrome stain. A P value < 0.05 was accepted as statistically significant. Both OT groups showed a significant decrease in inflammatory cells, IL-13 and IFN-gamma in NAL fluids, as well as OVA-specific IgE levels in serum compared with the AR group. In addition, the degree of goblet cell hyperplasia and thickness of lamina propria were attenuated in both OT groups compared with the AR group. Further, these alterations did not differ significantly between the two OT groups. These results suggest that OT may effectively reduce allergic inflammation as well as airway remodeling in a mouse model of AR. Copyright 2010 American Academy of Otolaryngology-Head and Neck Surgery Foundation. Published by Mosby, Inc. All rights reserved.
In utero mouse embryonic imaging with OCT for ophthalmologic research
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Larina, Irina V.; Dickinson, Mary E.; Larin, Kirill V.
2011-03-01
Live imaging of an eye during embryonic development in mammalian model is important for understanding dynamic aspects of normal and abnormal eye morphogenesis. In this study, we used Swept Source Optical Coherence Tomography (SS-OCT) for live structural imaging of mouse embryonic eye through the uterine wall. The eye structure was reconstructed in mouse embryos at 13.5 to 17.5 days post coitus (dpc). Despite the limited imaging depth of OCT in turbid tissues, we were able to visualize the whole eye globe at these stages. These results suggest that live in utero OCT imaging is a useful tool to study embryonic eye development in the mouse model.
2017-12-01
AWARD NUMBER: W81XWH-13-1-0162 TITLE: Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic Pathway in Castration Resistance and...DATES COVERED 15Sept2013 - 14Sept2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Using a Novel Transgenic Mouse Model to Study c-Myc Oncogenic...for concisely studying castration response and CRPC. However, most mice never developed significant tumors. Here, we showed that ablation of p53 in this
Overexpression of the Hspa13 (Stch) gene reduces prion disease incubation time in mice.
Grizenkova, Julia; Akhtar, Shaheen; Hummerich, Holger; Tomlinson, Andrew; Asante, Emmanuel A; Wenborn, Adam; Fizet, Jérémie; Poulter, Mark; Wiseman, Frances K; Fisher, Elizabeth M C; Tybulewicz, Victor L J; Brandner, Sebastian; Collinge, John; Lloyd, Sarah E
2012-08-21
Prion diseases are fatal neurodegenerative disorders that include bovine spongiform encephalopathy (BSE) and scrapie in animals and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by long incubation periods, variation in which is determined by many factors including genetic background. In some cases it is possible that incubation time may be directly correlated to the level of gene expression. To test this hypothesis, we combined incubation time data from five different inbred lines of mice with quantitative gene expression profiling in normal brains and identified five genes with expression levels that correlate with incubation time. One of these genes, Hspa13 (Stch), is a member of the Hsp70 family of ATPase heat shock proteins, which have been previously implicated in prion propagation. To test whether Hspa13 plays a causal role in determining the incubation period, we tested two overexpressing mouse models. The Tc1 human chromosome 21 (Hsa21) transchromosomic mouse model of Down syndrome is trisomic for many Hsa21 genes including Hspa13 and following Chandler/Rocky Mountain Laboratory (RML) prion inoculation, shows a 4% reduction in incubation time. Furthermore, a transgenic model with eightfold overexpression of mouse Hspa13 exhibited highly significant reductions in incubation time of 16, 15, and 7% following infection with Chandler/RML, ME7, and MRC2 prion strains, respectively. These data further implicate Hsp70-like molecular chaperones in protein misfolding disorders such as prion disease.
Organizational effects of the antiandrogen, Vinclozolin, on penis development in the mouse.
Amato, Ciro M; Boyd, Morgan; Yang, Joshua; McCoy, Krista A
2018-04-14
Endocrine disrupting chemicals (EDCs) are pollutants found throughout the environment that disrupt normal endocrine processes. In mice, penis development is thought to be most susceptible to EDCs during a critical developmental window occurring on embryonic days (E) 15.5-17.5. However, androgen signaling begins on E13.5 when Androgen Receptor (AR) protein is found in the genitalia and testosterone is circulating. We hypothesize that disrupting androgen signaling prior to the established critical window sensitizes the penis to future androgen disruption. To test this hypothesis, CD1 dams were exposed to Vinclozolin or a corn oil solvent control on E13.5 and E14.5 and AR levels were measured with immunohistochemistry on E14.5. Early antiandrogen exposure reduced AR within nuclei and decreased intensity of AR expression within E14.5 genitalia. To evaluate the influence of antiandrogen exposure before the known critical window of penis development, two groups of pregnant dams (n = 3) were exposed to Vinclozolin starting at either E13.5 or E14.5 and continued exposure through E16.5. Histology and M.O.U.S.E. scoring were used to quantify penis abnormalities. To account for differences in total doses mice experienced due to differences in length of dosing time, we compared animals that received the same total doses. Exposure to antiandrogens on E13.5 exacerbated malformations when exposure was continued through sexually dimorphic development. Both exposure time and Vinclozolin dose are important for severity of Vinclozolin-induced penis abnormalities in mice. This work shows, antiandrogen exposure prior to sensitive periods can exacerbate the effects of later antiandrogen exposure on reproductive development.
Cytogenetic effects of sildenafil citrate (Viagra) on SWR/J mouse bone marrow cells
Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy
2010-01-01
The present study was conducted to investigate the cytogenetic effects of sildenafil citrate in SWR/J mouse bone marrow cells. Thirty-six males and 36 females were used and divided into four groups. Each group contained 18 animals (9 males and 9 females), weighing 30–35 g. These animals were orally administered with a single dose of 13, 26 or 40 mg/kg sildenafil citrate solution. A control group received normal saline in an identical condition. The animals were sacrificed at 12, 24 or 48 h, after the treatment. Chromosome aberrations were investigated in 50 metaphases per animal. No significant differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between treated male and female mice at any doses or at any time intervals used, therefore, data from the two sexes were pooled when analyzed statistically. No significant (p < 0.05) differences in the percentages of mitotic indices or in the frequencies of chromosome aberrations were observed between sildenafil citrate-treated groups and the control group at any doses or at any time intervals used. However, the percentages of centromeric adhesions increased significantly (p < 0.01) in treated groups as compared with the control group at all doses and at all time intervals used. In conclusion, the results of the present study suggest that sildenafil citrate does not have cytogenetic effects on mouse bone marrow cells, but the centromeric adhesions induced by this drug need further studies to confirm them and to investigate the possible mechanism(s) responsible for such effect. PMID:23961094
Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism
Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian
2014-01-01
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414
13C Mrs Studies of the Control of Hepatic Glycogen Metabolism at High Magnetic Fields
NASA Astrophysics Data System (ADS)
Miller, Corin O.; Cao, Jin; Zhu, He; Chen, Li M.; Wilson, George; Kennan, Richard; Gore, John C.
2017-06-01
Introduction: Glycogen is the primary intracellular storage form of carbohydrates. In contrast to most tissues where stored glycogen can only supply the local tissue with energy, hepatic glycogen is mobilized and released into the blood to maintain appropriate circulating glucose levels, and is delivered to other tissues as glucose in response to energetic demands. Insulin and glucagon, two current targets of high interest in the pharmaceutical industry, are well known glucose-regulating hormones whose primary effect in liver is to modulate glycogen synthesis and breakdown. The purpose of these studies was to develop methods to measure glycogen metabolism in real time non-invasively both in isolated mouse livers, and in non-human primates (NHPs) using 13C MRS. Methods: Livers were harvested from C57/Bl6 mice and perfused with [1-13C] Glucose. To demonstrate the ability to measure acute changes in glycogen metabolism ex-vivo, fructose, glucagon, and insulin were administered to the liver ex-vivo. The C1 resonance of glycogen was measured in real time with 13C MRS using an 11.7T (500 MHz) NMR spectrometer. To demonstrate the translatability of this approach, NHPs (male rhesus monkeys) were studied in a 7 T Philips MRI using a partial volume 1H/13C imaging coil. NPHs were subjected to a variable IV infusion of [1-13C] glucose (to maintain blood glucose at 3-4x basal), along with a constant 1 mg/kg/min infusion of fructose. The C1 resonance of glycogen was again measured in real time with 13C MRS. To demonstrate the ability to measure changes in glycogen metabolism in vivo, animals received a glucagon infusion (1 μg/kg bolus followed by 40 ng/kg/min constant infusion) half way through the study on the second study session. Results: In both perfused mouse livers and in NHPs, hepatic 13C-glycogen synthesis (i.e. monotonic increases in the 13C-glycogen NMR signal) was readily detected. In both paradigms, addition of glucagon resulted in cessation of glycogen synthesis and induction of glycogen breakdown. In the perfused liver, inclusion of insulin was able to dose-dependently block the effect of glucagon. Conclusion: Hepatic glycogen synthesis, as well as acute hormonally-induced changes thereof, can be measured using 13C MRS at high magnetic fields both ex-vivo
Ogneva, I V; Maximova, M V; Larina, I M
2014-01-01
The aim of this study was to determine the transversal stiffness of the cortical cytoskeleton and the cytoskeletal protein desmin content in the left ventricle cardiomyocytes, fibers of the mouse soleus and tibialis anterior muscle after a 30-day space flight on board the "BION-M1" biosatellite (Russia, 2013). The dissection was made after 13-16.5 h after landing. The transversal stiffness was measured in relaxed and calcium activated state by, atomic force microscopy. The desmin content was estimated by western blotting, and the expression level of desmin-coding gene was detected using real-time PCR. The results indicate that, the transversal stiffness of the left ventricle cardiomyocytes and fibers of the soleus muscle in relaxed and activated states did not differ from the control. The transversal stiffness of the tibialis muscle fibers in relaxed and activated state was increased in the mice group after space flight. At the same time, in all types of studied tissues the desmin content and the expression level of desmin-coding gene did not differ from the control level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Michihiro C.; Wada, Makio; Satoh, Hitoshi
1988-07-01
The human HST1 gene, previously designated the hst gene, and now assigned the name HSTF1 for heparin-binding secretory transforming factor in human gene nomenclature, was originally identified as a transforming gene in DNAs from human stomach cancers by transfection assay with mouse NIH 3T3 cells. The amino acid sequence of the product deduced from DNA sequences of the HST1 cDNA and genomic clones had approximately 40% homology to human basic and acidic fibroblast growth factors and mouse Int-2-encoded protein. The authors have mapped the human HST1 gene to chromosome 11 at band q13.3 by Southern blot hybridization analysis of amore » panel of human and mouse somatic cell hybrids and in situ hybridization with an HST1 cDNA probe. The HST1 gene was found to be amplified in DNAs obtained from a stomach cancer and a vulvar carcinoma cell line, A431. In all of these samples of DNA, the INT2 gene, previously mapped to human chromosome 11q13, was also amplified to the same degree as the HST1 gene.« less
¹H MRS characterization of neurochemical profiles in orthotopic mouse models of human brain tumors.
Hulsey, Keith M; Mashimo, Tomoyuki; Banerjee, Abhishek; Soesbe, Todd C; Spence, Jeffrey S; Vemireddy, Vamsidhara; Maher, Elizabeth A; Bachoo, Robert M; Choi, Changho
2015-01-01
Glioblastoma (GBM), the most common primary brain tumor, is resistant to currently available treatments. The development of mouse models of human GBM has provided a tool for studying mechanisms involved in tumor initiation and growth as well as a platform for preclinical investigation of new drugs. In this study we used (1) H MR spectroscopy to study the neurochemical profile of a human orthotopic tumor (HOT) mouse model of human GBM. The goal of this study was to evaluate differences in metabolite concentrations in the GBM HOT mice when compared with normal mouse brain in order to determine if MRS could reliably differentiate tumor from normal brain. A TE =19 ms PRESS sequence at 9.4 T was used for measuring metabolite levels in 12 GBM mice and 8 healthy mice. Levels for 12 metabolites and for lipids/macromolecules at 0.9 ppm and at 1.3 ppm were reliably detected in all mouse spectra. The tumors had significantly lower concentrations of total creatine, GABA, glutamate, total N-acetylaspartate, aspartate, lipids/macromolecules at 0.9 ppm, and lipids/macromolecules at 1.3 ppm than did the brains of normal mice. The concentrations of glycine and lactate, however, were significantly higher in tumors than in normal brain. Copyright © 2014 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapfhamer, D.; Sufalko, D.; Warren, S.
1996-08-01
Jittery (ji) is a recessive mouse mutation on Chromosome 10 characterized by progressive ataxic gait, dystonic movements, spontaneus seizures, and death by dehydration/starvation before fertility. Recently, a viable neurological recessive mutation, hesitant, was discovered. It is characterized by hesitant, uncoordinated movements, exaggerated stepping of the hind limbs, and reduced fertility in males. In a complementation test and by genetic mapping we have shown here that hesitant and jittery are allelic. Using several large intersubspecific backcrosses and intercrosses we have genetically mapped ji near the marker Amh and microsatellite markers D10Mit7, D10Mit21, and D10Mit23. The linked region of mouse Chromosome 10more » is homologous to human 19p13.3, to which several human ataxia loci have recently been mapped. By excluding genes that map to human 21q22.3 (Pfkl) and 12q23 (Nfyb), we conclude that jittery is not likely to be a genetic mouse model for human Unverricht-Lundborg progressive myoclonus epilepsy (EPM1) on 21q22.3 nor for spinocerebellar ataxia II (SCA2) on 12q22-q24. The closely linked markers presented here will facilitate positional cloning of the ji gene. 31 refs., 2 figs.« less
[Effects of simulated hypoxia on dielectric properties of mouse erythrocytes].
Ma, Qing; Tang, Zhi-Yuan; Wang, Qin-Wen; Zhao, Xin
2008-02-01
To explore the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes. Experimental animals were divided into the plain control group(control) and simulated altitude hypoxia group (altitude). The AC impedance of mouse erythrocytes was measured with the Agilent 4294A impedance analyzer, the influence of simulated altitude hypoxia on dielectric properties of mouse erythrocytes was observed by cell dielectric spectroscopy, Cole-Cole plots, loss factor spectrum, loss tangent spectrum, and curve fitting analysis of Cole-Cole equation. After mice were exposed to hypoxia at simulated 5000 m altitude for 4 weeks, permittivity at low frequency (epsilonl) and dielectric increment (deltaepsilon) increased 57% and 59% than that of control group respectively, conductivity at low frequency (kappal) and conductivity at high frequency (kappah) reduced 49% and 11% than that of control group respectively. The simulated altitude hypoxia could arise to increase dielectric capability and depress conductive performance on mouse erythrocytes.
Carre, Aurore; Rachdi, Latif; Tron, Elodie; Richard, Bénédicte; Castanet, Mireille; Schlumberger, Martin; Bidart, Jean-Michel
2011-01-01
Notch signalling plays an important role in endocrine development, through its target gene Hes1. Hes1, a bHLH transcriptional repressor, influences progenitor cell proliferation and differentiation. Recently, Hes1 was shown to be expressed in the thyroid and regulate expression of the sodium iodide symporter (Nis). To investigate the role of Hes1 for thyroid development, we studied thyroid morphology and function in mice lacking Hes1. During normal mouse thyroid development, Hes1 was detected from E9.5 onwards in the median anlage, and at E11.5 in the ultimobranchial bodies. Hes1 −/− mouse embryos had a significantly lower number of Nkx2-1-positive progenitor cells (p<0.05) at E9.5 and at E11.5. Moreover, Hes1 −/− mouse embryos showed a significantly smaller total thyroid surface area (−40 to −60%) compared to wild type mice at all study time points (E9.5−E16.5). In both Hes1 −/− and wild type mouse embryos, most Nkx2-1-positive thyroid cells expressed the cell cycle inhibitor p57 at E9.5 in correlation with low proliferation index. In Hes1 −/− mouse embryos, fusion of the median anlage with the ultimobranchial bodies was delayed by 3 days (E16.5 vs. E13.5 in wild type mice). After fusion of thyroid anlages, hypoplastic Hes1 −/− thyroids revealed a significantly decreased labelling area for T4 (−78%) and calcitonin (−65%) normalized to Nkx2-1 positive cells. Decreased T4-synthesis might be due to reduced Nis labelling area (−69%). These findings suggest a dual role of Hes1 during thyroid development: first, control of the number of both thyrocyte and C-cell progenitors, via a p57-independent mechanism; second, adequate differentiation and endocrine function of thyrocytes and C-cells. PMID:21364918
Ehrmann, Ingrid; Dalgliesh, Caroline; Liu, Yilei; Danilenko, Marina; Crosier, Moira; Overman, Lynn; Arthur, Helen M.; Lindsay, Susan; Clowry, Gavin J.; Venables, Julian P.; Fort, Philippe; Elliott, David J.
2013-01-01
The RNA binding protein T-STAR was created following a gene triplication 520–610 million years ago, which also produced its two parologs Sam68 and SLM-1. Here we have created a T-STAR null mouse to identify the endogenous functions of this RNA binding protein. Mice null for T-STAR developed normally and were fertile, surprisingly, given the high expression of T-STAR in the testis and the brain, and the known infertility and pleiotropic defects of Sam68 null mice. Using a transcriptome-wide search for splicing targets in the adult brain, we identified T-STAR protein as a potent splicing repressor of the alternatively spliced segment 4 (AS4) exons from each of the Neurexin1-3 genes, and exon 23 of the Stxbp5l gene. T-STAR protein was most highly concentrated in forebrain-derived structures like the hippocampus, which also showed maximal Neurexin1-3 AS4 splicing repression. In the absence of endogenous T-STAR protein, Nrxn1-3 AS4 splicing repression dramatically decreased, despite physiological co-expression of Sam68. In transfected cells Neurexin3 AS4 alternative splicing was regulated by either T-STAR or Sam68 proteins. In contrast, Neurexin2 AS4 splicing was only regulated by T-STAR, through a UWAA-rich response element immediately downstream of the regulated exon conserved since the radiation of bony vertebrates. The AS4 exons in the Nrxn1 and Nrxn3 genes were also associated with distinct patterns of conserved UWAA repeats. Consistent with an ancient mechanism of splicing control, human T-STAR protein was able to repress splicing inclusion of the zebrafish Nrxn3 AS4 exon. Although Neurexin1-3 and Stxbp5l encode critical synaptic proteins, T-STAR null mice had no detectable spatial memory deficits, despite an almost complete absence of AS4 splicing repression in the hippocampus. Our work identifies T-STAR as an ancient and potent tissue-specific splicing regulator that uses a concentration-dependent mechanism to co-ordinately regulate regional splicing patterns of the Neurexin1-3 AS4 exons in the mouse brain. PMID:23637638
2013-01-01
Background Efficacy of withaferin A (WA), an Ayurvedic medicine constituent, for prevention of mammary cancer and its associated mechanisms were investigated using mouse mammary tumor virus–neu (MMTV-neu) transgenic model. Methods Incidence and burden of mammary cancer and pulmonary metastasis were scored in female MMTV-neu mice after 28 weeks of intraperitoneal administration with 100 µg WA (three times/week) (n = 32) or vehicle (n = 29). Mechanisms underlying mammary cancer prevention by WA were investigated by determination of tumor cell proliferation, apoptosis, metabolomics, and proteomics using plasma and/or tumor tissues. Spectrophotometric assays were performed to determine activities of complex III and complex IV. All statistical tests were two-sided. Results WA administration resulted in a statistically significant decrease in macroscopic mammary tumor size, microscopic mammary tumor area, and the incidence of pulmonary metastasis. For example, the mean area of invasive cancer was lower by 95.14% in the WA treatment group compared with the control group (mean = 3.10 vs 63.77mm2, respectively; difference = –60.67mm2; 95% confidence interval = –122.50 to 1.13mm2; P = .0536). Mammary cancer prevention by WA treatment was associated with increased apoptosis, inhibition of complex III activity, and reduced levels of glycolysis intermediates. Proteomics confirmed downregulation of many glycolysis-related proteins in the tumor of WA-treated mice compared with control, including M2-type pyruvate kinase, phospho glycerate kinase, and fructose-bisphosphate aldolase A isoform 2. Conclusions This study reveals suppression of glycolysis in WA-mediated mammary cancer prevention in a clinically relevant mouse model. PMID:23821767
Hypothermia postpones DNA damage repair in irradiated cells and protects against cell killing.
Baird, Brandon J; Dickey, Jennifer S; Nakamura, Asako J; Redon, Christophe E; Parekh, Palak; Griko, Yuri V; Aziz, Khaled; Georgakilas, Alexandros G; Bonner, William M; Martin, Olga A
2011-06-03
Hibernation is an established strategy used by some homeothermic organisms to survive cold environments. In true hibernation, the core body temperature of an animal may drop to below 0°C and metabolic activity almost cease. The phenomenon of hibernation in humans is receiving renewed interest since several cases of victims exhibiting core body temperatures as low as 13.7°C have been revived with minimal lasting deficits. In addition, local cooling during radiotherapy has resulted in normal tissue protection. The experiments described in this paper were prompted by the results of a very limited pilot study, which showed a suppressed DNA repair response of mouse lymphocytes collected from animals subjected to 7-Gy total body irradiation under hypothermic (13°C) conditions, compared to normothermic controls. Here we report that human BJ-hTERT cells exhibited a pronounced radioprotective effect on clonogenic survival when cooled to 13°C during and 12h after irradiation. Mild hypothermia at 20 and 30°C also resulted in some radioprotection. The neutral comet assay revealed an apparent lack on double strand break (DSB) rejoining at 13°C. Extension of the mouse lymphocyte study to ex vivo-irradiated human lymphocytes confirmed lower levels of induced phosphorylated H2AX (γ-H2AX) and persistence of the lesions at hypothermia compared to the normal temperature. Parallel studies of radiation-induced oxidatively clustered DNA lesions (OCDLs) revealed partial repair at 13°C compared to the rapid repair at 37°C. For both γ-H2AX foci and OCDLs, the return of lymphocytes to 37°C resulted in the resumption of normal repair kinetics. These results, as well as observations made by others and reviewed in this study, have implications for understanding the radiobiology and protective mechanisms underlying hypothermia and potential opportunities for exploitation in terms of protecting normal tissues against radiation. 2011. Published by Elsevier B.V.
E1a is an exogenous in vivo tumour suppressor.
Cimas, Francisco J; Callejas-Valera, Juan L; García-Olmo, Dolores C; Hernández-Losa, Javier; Melgar-Rojas, Pedro; Ruiz-Hidalgo, María J; Pascual-Serra, Raquel; Ortega-Muelas, Marta; Roche, Olga; Marcos, Pilar; Garcia-Gil, Elena; Fernandez-Aroca, Diego M; Ramón Y Cajal, Santiago; Gutkind, J Silvio; Sanchez-Prieto, Ricardo
2017-07-28
The E1a gene from adenovirus has become a major tool in cancer research. Since the discovery of E1a, it has been proposed to be an oncogene, becoming a key element in the model of cooperation between oncogenes. However, E1a's in vivo behaviour is consistent with a tumour suppressor gene, due to the block/delay observed in different xenograft models. To clarify this interesting controversy, we have evaluated the effect of the E1a 13s isoform from adenovirus 5 in vivo. Initially, a conventional xenograft approach was performed using previously unreported HCT116 and B16-F10 cells, showing a clear anti-tumour effect regardless of the mouse's immunological background (immunosuppressed/immunocompetent). Next, we engineered a transgenic mouse model in which inducible E1a 13s expression was under the control of cytokeratin 5 to avoid side effects during embryonic development. Our results show that E1a is able to block chemical skin carcinogenesis, showing an anti-tumour effect. The present report demonstrates the in vivo anti-tumour effect of E1a, showing that the in vitro oncogenic role of E1a cannot be extrapolated in vivo, supporting its future use in gene therapy approaches. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jeyasingh, Ebenezar; Singaravelu, Ganesan; Prakasarao, Aruna
2018-02-01
In this study, we aim to characterize the tissue transformation in dimethylbenz(a)anthracene (DMBA) treated mouse skin tumor model using stokes shift spectroscopy (SSS) technique for early detection of the neoplastic changes. Stokes shift (SS) spectra measured by scanning both excitation and emission wavelength simultaneously with a fixed wavelength of interval (Δλ=20 nm) in vivo from 33 DMBA treated animals and 6 control animals. The SS spectra of normal (n=6), hyperplasia (n=10), dysplasia (n=10), and WDSCC (n=13) of mice skin shows the distinct peaks around 300, 350, and 386 nm may be attributed to tryptophan, collagen, and NADH respectively. From the observed spectral differences and the ratio variables that resulted in better classification between groups, it is concluded that tryptophan, collagen, and NADH are the key fluorophores that undergo changes during tissue transformation process and hence they can be targeted as tumor markers for early neoplastic changes.
Farroway, L N; Gorman, S; Lawson, M A; Harvey, N L; Jones, D A; Shellam, G R; Singleton, G R
2005-08-01
To control plagues of free-living mice (Mus domesticus) in Australia, a recombinant murine cytomegalovirus (MCMV) expressing fertility proteins is being developed as an immunocontraceptive agent. Real-time quantitative PCR was used to monitor the transmission of two genetically variable field strains of MCMV through mouse populations after 25% of founding mice were infected with the N1 strain, followed by the G4 strain 6 weeks later. Pathogen-free wild-derived mice were released into outdoor enclosures located in northwestern Victoria (Australia). Of those mice not originally inoculated with virus, N1 DNA was detected in more than 80% of founder mice and a third of their offspring and similarly, G4 DNA was detected in 13% of founder mice and in 3% of their offspring. Thus, prior immunity to N1 did not prevent transmission of G4. This result is promising for successful transmission of an immunocontraceptive vaccine through Australian mouse populations where MCMV infection is endemic.
Sharma, Rajni; Di Dalmazi, Giulia
2016-01-01
Background: Cytotoxic T-lymphocyte associated protein 4 (CTLA-4) is a negative regulator of immune responses that suppresses the activity of effector T cells and contributes to the maintenance of self tolerance. When blocked therapeutically, CTLA-4 leads to an overall activation of T cells that has been exploited for cancer control, a control associated however with a variety of immune-related side effects such as autoimmune thyroiditis. To investigate the mechanism(s) underlying this form of thyroiditis, we used the NOD-H2h4 mouse, a model that develops thyroiditis at very high incidence after addition of iodine to the drinking water. Methods: NOD-H2h4 mice were started on drinking water supplemented with 0.05% sodium iodide when 8 weeks old and then injected with a hamster monoclonal antibody against mouse CTLA-4, polyclonal hamster immunoglobulins, or phosphate buffered saline when 11 weeks old. One month later (15 weeks of age), mice were sacrificed to assess thyroiditis, general immune responses in blood and spleen, and expression of indoleamine 2, 3-dioxygenase (IDO) in the thyroid and in isolated antigen-presenting cells after stimulation with interferon gamma. The study also analyzed IDO expression in four autopsy cases of metastatic melanoma who had received treatment with a CTLA-4 blocking antibody, and six surgical pathology Hashimoto thyroiditis controls. Results: CTLA-4 blockade worsened autoimmune thyroiditis, as assessed by a greater incidence, a more aggressive mononuclear cell infiltration in thyroids, and higher thyroglobulin antibody levels when compared to the control groups. CTLA-4 blockade also expanded the proportion of splenic CD4+ effector T cells, as well as the production of interleukin (IL)-2, interferon gamma, IL-10, and IL-13 cytokines. Interestingly, CTLA-4 blockade induced a strong expression of IDO in mouse and human thyroid glands, an expression that could represent a counter-regulatory mechanism to protect against the inflammatory environment. Conclusions: This study shows that CTLA-4 blockade exacerbates the iodine-accelerated form of thyroiditis typical of the NOD-H2h4 mouse. The study could also have implications for cancer patients who develop thyroiditis as an immune-related adverse event after CTLA-4 blockade. PMID:27296629
Improvement of mouse controlling in Essential tremor by a tremor filter: A case report.
López-Blanco, Roberto; Méndez-Guerrero, Antonio; Velasco, Miguel A
2018-07-15
The interaction with electronic devices is crucial in our technological society. Hand kinetic tremor complicates mouse driving in Essential tremor patients. To solve this issue some technological solutions are available and accessible online. We present a 71-year-old patient with prominent mouse controlling tremor who improved with one of these systems. Copyright © 2018 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang
2011-01-01
The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing…
In utero imaging of mouse embryonic development with optical coherence tomography
NASA Astrophysics Data System (ADS)
Syed, Saba H.; Dickinson, Mary E.; Larin, Kirill V.; Larina, Irina V.
2011-03-01
Studying progression of congenital diseases in animal models can greatly benefit from live embryonic imaging Mouse have long served as a model of mammalian embryonic developmental processes, however, due to intra-uterine nature of mammalian development live imaging is challenging. In this report we present results on live mouse embryonic imaging in utero with Optical Coherence Tomography. Embryos from 12.5 through 17.5 days post-coitus (dpc) were studied through the uterine wall. In longitudinal studies, same embryos were imaged at developmental stages 13.5, 15.5 and 17.5 dpc. This study suggests that OCT can serve as a powerful tool for live mouse embryo imaging. Potentially this technique can contribute to our understanding developmental abnormalities associated with mutations, toxic drugs.
Hoang, Ky V.; Adcox, Haley E.; Fitch, James R.; Gordon, David M.; Curry, Heather M.; Schlesinger, Larry S.; White, Peter; Gunn, John S.
2017-01-01
Francisella tularensis (F. tularensis) is the causative agent of tularemia and is classified as a Tier 1 select agent. No licensed vaccine is currently available in the United States and treatment of tularemia is confined to few antibiotics. In this study, we demonstrate that AR-13, a derivative of the cyclooxygenase-2 inhibitor celecoxib, exhibits direct in vitro bactericidal killing activity against Francisella including a type A strain of F. tularensis (SchuS4) and the live vaccine strain (LVS), as well as toward the intracellular proliferation of LVS in macrophages, without causing significant host cell toxicity. Identification of an AR-13-resistant isolate indicates that this compound has an intracellular target(s) and that efflux pumps can mediate AR-13 resistance. In the mouse model of tularemia, AR-13 treatment protected 50% of the mice from lethal LVS infection and prolonged survival time from a lethal dose of F. tularensis SchuS4. Combination of AR-13 with a sub-optimal dose of gentamicin protected 60% of F. tularensis SchuS4-infected mice from death. Taken together, these data support the translational potential of AR-13 as a lead compound for the further development of new anti-Francisella agents. PMID:28955308
Hoang, Ky V; Adcox, Haley E; Fitch, James R; Gordon, David M; Curry, Heather M; Schlesinger, Larry S; White, Peter; Gunn, John S
2017-01-01
Francisella tularensis ( F. tularensis ) is the causative agent of tularemia and is classified as a Tier 1 select agent. No licensed vaccine is currently available in the United States and treatment of tularemia is confined to few antibiotics. In this study, we demonstrate that AR-13, a derivative of the cyclooxygenase-2 inhibitor celecoxib, exhibits direct in vitro bactericidal killing activity against Francisella including a type A strain of F. tularensis (SchuS4) and the live vaccine strain (LVS), as well as toward the intracellular proliferation of LVS in macrophages, without causing significant host cell toxicity. Identification of an AR-13-resistant isolate indicates that this compound has an intracellular target(s) and that efflux pumps can mediate AR-13 resistance. In the mouse model of tularemia, AR-13 treatment protected 50% of the mice from lethal LVS infection and prolonged survival time from a lethal dose of F. tularensis SchuS4. Combination of AR-13 with a sub-optimal dose of gentamicin protected 60% of F. tularensis SchuS4-infected mice from death. Taken together, these data support the translational potential of AR-13 as a lead compound for the further development of new anti- Francisella agents.
Protective effects of black rice bran against chemically-induced inflammation of mouse skin
USDA-ARS?s Scientific Manuscript database
We investigated the inhibitory effects of black rice (cv. LK1-3-6-12-1-1) bran against 12-O-tetradecanolylphorbol-13-acetate (TPA)-induced skin edema and 2,4-dinitroflurobenzene (DNFB)-induced allergic contact dermatitis (ACD) in inflammatory mouse models. We also determined the effects of the bran...
Antitumor-promoting activity of oligomeric proanthocyanidins in mouse epidermis in vivo
Xiao Mei Gao; Elisabeth M. Perchellet; Hala U. Gali; Limarie Rodriguez; Richard W. Hemingway; Jean-Pierre Perchellet
1994-01-01
The flavanoid catechin and heterogenous samples of oligomeric proanthocyanidins extracted from various sources were compared for their ability to inhibit the biochemical and biological effects of l2-0-tetradecanoylphorbol-13-acetate (TPA) in mouse epidermis in vivo. Topical applications of catechin fail to alter the hydroperoxide response to TPA but...
Hirahata, Mio; Osaki, Mitsuhiko; Kanda, Yusuke; Sugimoto, Yui; Yoshioka, Yusuke; Kosaka, Nobuyoshi; Takeshita, Fumitaka; Fujiwara, Tomohiro; Kawai, Akira; Ito, Hisao; Ochiya, Takahiro; Okada, Futoshi
2016-05-01
Despite recent improvements in the therapy for osteosarcoma, 30-40% of osteosarcoma patients die of this disease, mainly due to its lung metastasis. We have previously reported that intravenous injection of miR-143 significantly suppresses lung metastasis of human osteosarcoma cells (143B) in a mouse model. In this study, we examined the biological role and mechanism of miR-143 in the metastasis of human osteosarcoma cells. We identified plasminogen activator inhibitor-1 (PAI-1) as a direct target gene of miR-143. To determine the role of PAI-1 in human osteosarcoma cells, siRNA was transfected into 143B cells for knockdown of PAI-1 expression. An in vitro study showed that downregulation of PAI-1 suppressed cell invasion activity, but not proliferation. Moreover, injection of PAI-1 siRNA into a primary lesion in the osteosarcoma mouse model inhibited lung metastasis compared to control siRNA-injected mice, without influencing the proliferative activity of the tumor cells. Subsequent examination using 143B cells revealed that knockdown of PAI-1 expression resulted in downregulation of the expression and secretion of matrix metalloproteinase-13 (MMP-13), which is also a target gene of miR-143 and a proteolytic enzyme that regulates tumor-induced osteolysis. Immunohistochemical analysis using clinical samples showed that higher miR-143 expressing cases showed poor expression of PAI-1 in the primary tumor cells. All such cases belonged to the lung metastasis-negative group. Moreover, the frequency of lung metastasis-positive cases was significantly higher in PAI-1 and MMP-13 double-positive cases than in PAI-1 or MMP-13 single-positive or double-negative cases (P < 0.05). These results indicated that PAI-1, a target gene of miR-143, regulates invasion and lung metastasis via enhancement of MMP-13 expression and secretion in human osteosarcoma cells, suggesting that these molecules could be potential therapeutic target genes for preventing lung metastasis in osteosarcoma patients. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien
2010-01-01
This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb swing with a gyration air mouse and a newly developed limb movement detection program (LMDP, i.e., a new software program that turns a gyration air mouse into a precise limb movement detector). The study was performed…
Iguchi, Mitsuko; Kakinuma, Yoshihiko; Kurabayashi, Atsushi; Sato, Takayuki; Shuin, Taro; Hong, Seung-Beom; Schmidt, Laura S.; Furihata, Mutsuo
2009-01-01
Background/Aims The von Hippel-Lindau (pVHL) protein functions as an E3 ubiquitin ligase, controlling the stability of hypoxia inducible factor (HIF). Pre-induction of HIF-1α before pathological insult activates a self-defense mechanism and suppresses further aggravation of organ or cellular injury by ischemia. We investigated whether acute inactivation of the VHL gene might play a role in the response of mice to ischemic renal injury. Methods We generated tamoxifen-inducible conditional VHL knockout (VHL-KO) mice to inactivate the VHL gene in an acute manner during renal ischemia-reperfusion injury (IRI) induced by bilateral clamping of kidney arteries. Renal IRI is characterized by renal dysfunction and tubular damage. Results After the procedure of IRI, blood urea nitrogen (BUN) and creatinine (CRN) levels in control mice were significantly higher (BUN, 138.10±13.03 mg/dL; CRN, 0.72±0.16 mg/dL) than in VHL-KO mice (BUN, 52.12±6.61 mg/dL; CRN, 0.24±0.04 mg/dL; BUN: p<0.05; CRN: p<0.05). Histologically, tubular injury scores were higher in control mice than in VHL-KO mice (p<0.05). Conclusion We suggest that the acute inactivation of the VHL gene contributes to protective effects of ischemic preconditioning in renal tubules of the mouse. PMID:18957870
Bakermans, Adrianus J; Abdurrachim, Desiree; van Nierop, Bastiaan J; Koeman, Anneke; van der Kroon, Inge; Baartscheer, Antonius; Schumacher, Cees A; Strijkers, Gustav J; Houten, Sander M; Zuurbier, Coert J; Nicolay, Klaas; Prompers, Jeanine J
2015-10-01
(31)P MRS provides a unique non-invasive window into myocardial energy homeostasis. Mouse models of cardiac disease are widely used in preclinical studies, but the application of (31)P MRS in the in vivo mouse heart has been limited. The small-sized, fast-beating mouse heart imposes challenges regarding localized signal acquisition devoid of contamination with signal originating from surrounding tissues. Here, we report the implementation and validation of three-dimensional image-selected in vivo spectroscopy (3D ISIS) for localized (31)P MRS of the in vivo mouse heart at 9.4 T. Cardiac (31)P MR spectra were acquired in vivo in healthy mice (n = 9) and in transverse aortic constricted (TAC) mice (n = 8) using respiratory-gated, cardiac-triggered 3D ISIS. Localization and potential signal contamination were assessed with (31)P MRS experiments in the anterior myocardial wall, liver, skeletal muscle and blood. For healthy hearts, results were validated against ex vivo biochemical assays. Effects of isoflurane anesthesia were assessed by measuring in vivo hemodynamics and blood gases. The myocardial energy status, assessed via the phosphocreatine (PCr) to adenosine 5'-triphosphate (ATP) ratio, was approximately 25% lower in TAC mice compared with controls (0.76 ± 0.13 versus 1.00 ± 0.15; P < 0.01). Localization with one-dimensional (1D) ISIS resulted in two-fold higher PCr/ATP ratios than measured with 3D ISIS, because of the high PCr levels of chest skeletal muscle that contaminate the 1D ISIS measurements. Ex vivo determinations of the myocardial PCr/ATP ratio (0.94 ± 0.24; n = 8) confirmed the in vivo observations in control mice. Heart rate (497 ± 76 beats/min), mean arterial pressure (90 ± 3.3 mmHg) and blood oxygen saturation (96.2 ± 0.6%) during the experimental conditions of in vivo (31)P MRS were within the normal physiological range. Our results show that respiratory-gated, cardiac-triggered 3D ISIS allows for non-invasive assessments of in vivo mouse myocardial energy homeostasis with (31)P MRS under physiological conditions. Copyright © 2015 John Wiley & Sons, Ltd.
Bossi, Simone; Musante, Ilaria; Bonfiglio, Tommaso; Bonifacino, Tiziana; Emionite, Laura; Cerminara, Maria; Cervetto, Chiara; Marcoli, Manuela; Bonanno, Giambattista; Ravazzolo, Roberto; Pittaluga, Anna; Puliti, Aldamaria
2018-01-01
Deleterious mutations in the glutamate receptor metabotropic 1 gene (GRM1) cause a recessive form of cerebellar ataxia, SCAR13. GRM1 and GRM5 code for the metabotropic glutamate type 1 (mGlu1) and type 5 (mGlu5) receptors, respectively. Their different expression profiles suggest they could have distinct functional roles. In a previous study, homozygous mice lacking mGlu1 receptors (Grm1 crv4/crv4 ) and exhibiting ataxia presented cerebellar overexpression of mGlu5 receptors, that was proposed to contribute to the mouse phenotype. To test this hypothesis, we here crossed Grm1 crv4 and Grm5 ko mice to generate double mutants (Grm1 crv4/crv4 Grm5 ko/ko ) lacking both mGlu1 and mGlu5 receptors. Double mutants and control mice were analyzed for spontaneous behavior and for motor activity by rotarod and footprint analyses. In the same mice, the release of glutamate from cerebellar nerve endings (synaptosomes) elicited by 12mM KCl or by α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) was also evaluated. Motor coordination resulted improved in double mutants when compared to Grm1 crv4/crv4 mice. Furthermore, in in vitro studies, glutamate release elicited by both KCl depolarization and activation of AMPA autoreceptors resulted reduced in Grm1 crv4/crv4 mice compared to wild type mice, while it presented normal levels in double mutants. Moreover, we found that Grm1 crv4/crv4 mice showed reduced expression of GluA2/3 AMPA receptor subunits in cerebellar synaptosomes, while it resulted restored to wild type level in double mutants. To conclude, blocking of mGlu5 receptor reduced the dysregulation of glutamate transmission and improved motor coordination in the Grm1 crv4 mouse model of SCAR13, thus suggesting the possible usefulness of pharmacological therapies based on modulation of mGlu5 receptor activity for the treatment of this type of ataxia. Copyright © 2017 Elsevier Inc. All rights reserved.
Loss of Matrix Metalloproteinase-13 Attenuates Murine Radiation-Induced Pulmonary Fibrosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flechsig, Paul; Hartenstein, Bettina; Teurich, Sybille
2010-06-01
Purpose: Pulmonary fibrosis is a disorder of the lungs with limited treatment options. Matrix metalloproteinases (MMPs) constitute a family of proteases that degrade extracellular matrix with roles in fibrosis. Here we studied the role of MMP13 in a radiation-induced lung fibrosis model using a MMP13 knockout mouse. Methods and Materials: We investigated the role of MMP13 in lung fibrosis by investigating the effects of MMP13 deficiency in C57Bl/6 mice after 20-Gy thoracic irradiation (6-MV Linac). The morphologic results in histology were correlated with qualitative and quantitative results of volume computed tomography (VCT), magnetic resonance imaging (MRI), and clinical outcome. Results:more » We found that MMP13 deficient mice developed less pulmonary fibrosis than their wildtype counterparts, showed attenuated acute pulmonary inflammation (days after irradiation), and a reduction of inflammation during the later fibrogenic phase (5-6 months after irradiation). The reduced fibrosis in MMP13 deficient mice was evident in histology with reduced thickening of alveolar septi and reduced remodeling of the lung architecture in good correlation with reduced features of lung fibrosis in qualitative and quantitative VCT and MRI studies. The partial resistance of MMP13-deficient mice to fibrosis was associated with a tendency towards a prolonged mouse survival. Conclusions: Our data indicate that MMP13 has a role in the development of radiation-induced pulmonary fibrosis. Further, our findings suggest that MMP13 constitutes a potential drug target to attenuate radiation-induced lung fibrosis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labosky, P.A.; Sakaki, Hiroshi; Hogan, B.L.M.
1996-06-01
Members of the winged helix family of transcription factors are required for the normal embryonic development of the mouse. Using the interspecific backcross panel from The Jackson Laboratory, we have determined the chromosomal locations of four genes that encode winged helix containing proteins. Mf1 was assigned to mouse Chromosome 8, Mf2 to Chromosome 4, Mf3 to Chromosome 9, and Mf4 to Chromosome 13. Since Mf3 is located in a region of Chromosome 9 containing many well-characterized mouse mutations such as short ear (se), ashen (ash), and dilute (d), we have analyzed deletion mutants to determine the location of Mf3 moremore » precisely. 14 refs., 3 figs.« less
Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos
2013-08-14
This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented.
Rosas-Cholula, Gerardo; Ramirez-Cortes, Juan Manuel; Alarcon-Aquino, Vicente; Gomez-Gil, Pilar; Rangel-Magdaleno, Jose de Jesus; Reyes-Garcia, Carlos
2013-01-01
This paper presents a project on the development of a cursor control emulating the typical operations of a computer-mouse, using gyroscope and eye-blinking electromyographic signals which are obtained through a commercial 16-electrode wireless headset, recently released by Emotiv. The cursor position is controlled using information from a gyroscope included in the headset. The clicks are generated through the user's blinking with an adequate detection procedure based on the spectral-like technique called Empirical Mode Decomposition (EMD). EMD is proposed as a simple and quick computational tool, yet effective, aimed to artifact reduction from head movements as well as a method to detect blinking signals for mouse control. Kalman filter is used as state estimator for mouse position control and jitter removal. The detection rate obtained in average was 94.9%. Experimental setup and some obtained results are presented. PMID:23948873
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leibo, S.P.; McGrath, J.J.; Cravalho, E.G.
A physical-chemical analysis of water loss from cells at subzero temperatures has shown that the likelihood of intracellular ice formation increased with increasing cooling rate. We have now used a modified version of a unique conduction-cooled cryomicroscope stage to observe the freezing of unfertilized mouse ova suspended in dimethyl sulfoxide. Survival measurements showed that the respective survivals of ova were about 65, 56, and 0% when they were cooled at rates of 0.2 to 1.5, 2.5, and 5.4/sup 0/C/min. Direct microscopic observation of mouse ova during freezing showed that the respective fractions of cells that foze intracellularly were 13, 72,more » and 100% when they were cooled at rates of 1.3, 2.9, and 4.8/sup 0/C/min or faster. These values agree with those predicted from the physical-chemical analysis for cells the size of mouse ova. The microscopic observations have also shown that intracellular freezing generally occurred at about -40 to -45/sup 0/C. We had previously observed that mouse embryos must be cooled slowly to -50/sup 0/C or below if they are to survive subsequent rapid cooling to -196/sup 0/C. The observation of intracellular ice formation at -45/sup 0/C supports the interpretation that at temperatures above -50/sup 0/C the embryos still contain water capable of freezing intracellulary.« less
2009-05-01
equilibrated for 4 min with Buffer A with a flow rate of 1 mL/min at room temperature. Once the HPLC lines and MARS column were flushed and equilibrated...ul 4 ) FT mouse control HPLC 10 ul 9) E mouse control Spin Column 10 ul 5) E mouse control HPLC 10 ul 10) Blue MW Standard The distinct...of Low Level Kidney Degradation in Response to Toxin Exposures Christopher L. Woolard Camilla A. Mauzy Biosciences and Protection
[Effects of postnatal lambda-cyhalothrin exposure on synaptic proteins in ICR mouse brain].
Bao, Xun-Di; Wang, Qu-Nan; Li, Fang-Fang; Chai, Xiao-Yu; Gao, Ye
2011-04-01
To evaluate the influence on the synaptic protein expression in different brain regions of ICR mice after lambda-cyhalothrin (LCT) exposure during postnatal period. Two male and 4 female healthy ICR mice were put in one cage. It was set as pregnancy if vaginal plug was founded. Offspring were divided into 5 groups randomly, and exposed to LCT (0.01% DMSO solution) at the doses of 0.1, 1.0 and 10.0 mg/kg by intragastric rout every other day from postnatal days (PND) 5 to PND13, control animals were treated with normal saline or DMSO by the same route. The brains were removed from pups on PND 14, the synaptic protein expression levels in cortex, hippocampus and striatum were measured by western blot. GFAP levels of cortex and hippocampus in the LCT exposure group increased with doses, as compared with control group (P < 0.05), while Tuj protein expression did not change significantly in the various brain regions of ICR mice. GAP-43 protein expression levels in the LCT exposed mouse hippocampus and in female ICR mouse cortex increased with doses, as compared with control group (P < 0.05). Presynaptic protein (Synapsin I) expression levels did not change obviously in various brain regions. However, postsynaptic density protein 95 (PSD95) expression levels of the hippocampus and striatum in male offspring of 10.0 mg/kg LCT group, of cortex of female LCT groups, and of female offspring in all exposure groups, of striatum, in 1.0 or 10.0 mg/kg LCT exposure groups significantly decreased (P < 0.05). Early postnatal exposure to LCT affects synaptic protein expression. These effects may ultimately affect the construction of synaptic connections.
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2010 CFR
2010-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
40 CFR 798.5200 - Mouse visible specific locus test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... control groups. (4) Control groups—(i) Concurrent controls. The use of positive or spontaneous controls is... control groups. (ii) Test chemical vehicle, doses used and rationale for dose selection, toxicity data... SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5200 Mouse...
Regulation of lung branching morphogenesis by bombesin-like peptides and neutral endopeptidase.
Aguayo, S M; Schuyler, W E; Murtagh, J J; Roman, J
1994-06-01
The expression of bombesin-like peptides (BLPs) by pulmonary neuroendocrine cells is transiently upregulated during lung development. A functional role for BLPs is supported by their ability to stimulate lung growth and maturation both in vitro and in vivo during the late stages of lung development. In addition, the cell membrane-associated enzyme CD10/neutral endopeptidase 24.11 (CD10/NEP), which inactivates BLPs and other regulatory peptides, is also expressed by developing lungs and modulates the stimulatory effects of BLPs on lung growth and maturation. We hypothesized that, in addition to expressing BLPs and CD10/NEP, embryonic lungs must express BLP receptors, and that BLPs may also regulate processes that occur during early lung development such as branching morphogenesis. Using reverse transcriptase-polymerase chain reaction and oligonucleotide primers designed for amplifying a BLP receptor originally isolated from Swiss 3T3 mouse fibroblasts, we found that embryonic mouse lungs express a similar BLP receptor mRNA during the pseudoglandular stage of lung development when branching morphogenesis take place. Subsequently, we evaluated the effects of ligands for this BLP receptor using embryonic mouse lungs in an in vitro model of lung branching morphogenesis. We found that, in comparison with control lungs, treatment with bombesin (1 to 100 nM) resulted in a modest increase in clefts or branching points. In contrast, embryonic mouse lungs treated with the BLP analog [Leu13-psi(CH2NH)Leu14]bombesin (1 microM), which also binds to this BLP receptor but has predominantly antagonistic effects, demonstrated fewer branching points.(ABSTRACT TRUNCATED AT 250 WORDS)
Szalai, Gabor; Romero, Roberto; Chaiworapongsa, Tinnakorn; Xu, Yi; Wang, Bing; Ahn, Hyunyoung; Xu, Zhonghui; Chiang, Po Jen; Sundell, Birgitta; Wang, Rona; Jiang, Yang; Plazyo, Olesya; Olive, Mary; Tarca, Adi L; Dong, Zhong; Qureshi, Faisal; Papp, Zoltan; Hassan, Sonia S; Hernandez-Andrade, Edgar; Than, Nandor Gabor
2015-01-01
Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3 ± 51.7 μg/mg vs. 19.3 ± 5.6 μg/mg, p = 4.4 x 10(-2); GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2 x 10(-2)). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR). A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the in vivo pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome.
Szalai, Gabor; Romero, Roberto; Chaiworapongsa, Tinnakorn; Xu, Yi; Wang, Bing; Ahn, Hyunyoung; Xu, Zhonghui; Chiang, Po Jen; Sundell, Birgitta; Wang, Rona; Jiang, Yang; Plazyo, Olesya; Olive, Mary; Tarca, Adi L.; Dong, Zhong; Qureshi, Faisal; Papp, Zoltan; Hassan, Sonia S.; Hernandez-Andrade, Edgar; Than, Nandor Gabor
2015-01-01
Objective Most anti-angiogenic preeclampsia models in rodents utilized the overexpression of a truncated soluble fms-like tyrosine kinase-1 (sFlt-1) not expressed in any species. Other limitations of mouse preeclampsia models included stressful blood pressure measurements and the lack of postpartum monitoring. We aimed to 1) develop a mouse model of preeclampsia by administering the most abundant human placental sFlt-1 isoform (hsFlt-1-e15a) in preeclampsia; 2) determine blood pressures in non-stressed conditions; and 3) develop a survival surgery that enables the collection of fetuses and placentas and postpartum (PP) monitoring. Methods Pregnancy status of CD-1 mice was evaluated with high-frequency ultrasound on gestational days (GD) 6 and 7. Telemetry catheters were implanted in the carotid artery on GD7, and their positions were verified by ultrasound on GD13. Mice were injected through tail-vein with adenoviruses expressing hsFlt-1-e15a (n = 11) or green fluorescent protein (GFP; n = 9) on GD8/GD11. Placentas and pups were delivered by cesarean section on GD18 allowing PP monitoring. Urine samples were collected with cystocentesis on GD6/GD7, GD13, GD18, and PPD8, and albumin/creatinine ratios were determined. GFP and hsFlt-1-e15a expression profiles were determined by qRT-PCR. Aortic ring assays were performed to assess the effect of hsFlt-1-e15a on endothelia. Results Ultrasound predicted pregnancy on GD7 in 97% of cases. Cesarean section survival rate was 100%. Mean arterial blood pressure was higher in hsFlt-1-e15a-treated than in GFP-treated mice (∆MAP = 13.2 mmHg, p = 0.00107; GD18). Focal glomerular changes were found in hsFlt-1-e15a -treated mice, which had higher urine albumin/creatinine ratios than controls (109.3±51.7μg/mg vs. 19.3±5.6μg/mg, p = 4.4x10-2; GD18). Aortic ring assays showed a 46% lesser microvessel outgrowth in hsFlt-1-e15a-treated than in GFP-treated mice (p = 1.2x10-2). Placental and fetal weights did not differ between the groups. One mouse with liver disease developed early-onset preeclampsia-like symptoms with intrauterine growth restriction (IUGR). Conclusions A mouse model of late-onset preeclampsia was developed with the overexpression of hsFlt-1-e15a, verifying the in vivo pathologic effects of this primate-specific, predominant placental sFlt-1 isoform. HsFlt-1-e15a induced early-onset preeclampsia-like symptoms associated with IUGR in a mouse with a liver disease. Our findings support that hsFlt-1-e15a is central to the terminal pathway of preeclampsia, and it can induce the full spectrum of symptoms in this obstetrical syndrome. PMID:25860260
Tefera, Tesfaye W; Borges, Karin
2018-01-01
Although alterations in energy metabolism are known in ALS, the specific mechanisms leading to energy deficit are not understood. We measured metabolite levels derived from injected [1- 13 C]glucose and [1,2- 13 C]acetate (i.p.) in cerebral cortex and spinal cord extracts of wild type and hSOD1 G93A mice at onset and mid disease stages using high-pressure liquid chromatography, 1 H and 13 C nuclear magnetic resonance spectroscopy. Levels of spinal and cortical CNS total lactate, [3- 13 C]lactate, total alanine and [3- 13 C]alanine, but not cortical glucose and [1- 13 C]glucose, were reduced mostly at mid stage indicating impaired glycolysis. The [1- 13 C]glucose-derived [4- 13 C]glutamate, [4- 13 C]glutamine and [2- 13 C]GABA amounts were diminished at mid stage in cortex and both time points in spinal cord, suggesting decreased [3- 13 C]pyruvate entry into the TCA cycle. Lack of changes in [1,2- 13 C]acetate-derived [4,5- 13 C]glutamate, [4,5- 13 C]glutamine and [1,2- 13 C]GABA levels indicate unchanged astrocytic 13 C-acetate metabolism. Reduced levels of leucine, isoleucine and valine in CNS suggest compensatory breakdown to refill TCA cycle intermediate levels. Unlabelled, [2- 13 C] and [4- 13 C]GABA concentrations were decreased in spinal cord indicating that impaired glucose metabolism contributes to hyperexcitability and supporting the use of treatments which increase GABA amounts. In conclusion, CNS glucose metabolism is compromised, while astrocytic TCA cycling appears to be normal in the hSOD1 G93A mouse model at symptomatic disease stages.
Powolny, Anna A.; Bommareddy, Ajay; Hahm, Eun-Ryeong; Normolle, Daniel P.; Beumer, Jan H.; Nelson, Joel B.
2011-01-01
Background This study was undertaken to determine the chemopreventative efficacy of phenethyl isothiocyanate (PEITC), a bioactive constituent of many edible cruciferous vegetables, in a mouse model of prostate cancer, and to identify potential biomarker(s) associated with PEITC response. Methods The chemopreventative activity of dietary PEITC was investigated in Transgenic Adenocarcinoma of Mouse Prostate mice that were fed a control diet or one containing 3 μmol PEITC/g (n = 21 mice per group) for 19 weeks. Dorsolateral prostate tissue sections were stained with hematoxylin and eosin for histopathologic evaluations and subjected to immunohistochemistry for analysis of cell proliferation (Ki-67 expression), autophagy (p62 and LC3 protein expression), and E-cadherin expression. Autophagosomes were visualized by transmission electron microscopy. Apoptotic bodies were detected by terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling. Plasma proteomics was performed by two-dimensional gel electrophoresis followed by mass spectrometry to identify potential biomarkers of PEITC activity. All statistical tests were two-sided. Results Administration of PEITC (3 μmol/g diet) decreased incidence (PEITC diet vs control diet, mean = 21.65 vs 57.58%, difference = −35.93%, 95% confidence interval = −45.48% to −13.10%, P = .04) as well as burden (affected area) (PEITC diet vs control diet, mean = 18.53% vs 45.01%, difference = −26.48%, 95% confidence interval = −49.78% to −3.19%, P = .02) of poorly differentiated tumors in the dorsolateral prostate of transgenic mice compared with control mice, with no toxic effects. PEITC-mediated inhibition of prostate carcinogenesis was associated with induction of autophagy and overexpression of E-cadherin in the dorsolateral prostate. However, PEITC treatment was not associated with a decrease in cellular proliferation, apoptosis induction, or inhibition of neoangiogenesis. Plasma proteomics revealed distinct changes in the expression of several proteins (eg, suppression of clusterin protein) in the PEITC-treated mice compared with control mice. Conclusions In this transgenic model, dietary PEITC suppressed prostate cancer progression by induction of autophagic cell death. Potential biomarkers to assess the response to PEITC treatment in plasma were identified. PMID:21330634
Pneumocystosis in wild small mammals from California
Laakkonen, Juha; Fisher, Robert N.; Case, Ted J.
2001-01-01
Cyst forms of the opportunistic fungal parasite Pneumocystis carinii were found in the lungs of 34% of the desert shrew, Notiosorex crawfordi (n = 59), 13% of the ornate shrew, Sorex ornatus (n = 55), 6% of the dusky-footed wood rat, Neotoma fuscipes (n = 16), 2.5% of the California meadow vole,Microtus californicus (n = 40), and 50% of the California pocket mouse, Chaetodipus californicus (n= 2) caught from southern California between February 1998 and February 2000. Cysts were not found in any of the harvest mouse, Reithrodontomys megalotis (n = 21), California mouse,Peromyscus californicus (n = 20), brush mouse, Peromyscus boylii (n = 7) or deer mouse, Peromyscus maniculatus (n = 4) examined. All infections were mild; extrapulmonary infections were not observed. Other lung parasites detected were Hepatozoon sp./spp. from M. californicus andNotiosorex crawfordi, Chrysosporium sp. (Emmonsia) from M. californicus, and a nematode from S. ornatus.
Marin-Valencia, Isaac; Cho, Steve K; Rakheja, Dinesh; Hatanpaa, Kimmo J; Kapur, Payal; Mashimo, Tomoyuki; Jindal, Ashish; Vemireddy, Vamsidhara; Good, Levi B; Raisanen, Jack; Sun, Xiankai; Mickey, Bruce; Choi, Changho; Takahashi, Masaya; Togao, Osamu; Pascual, Juan M; Deberardinis, Ralph J; Maher, Elizabeth A; Malloy, Craig R; Bachoo, Robert M
2012-10-01
It has been hypothesized that increased flux through the pentose phosphate pathway (PPP) is required to support the metabolic demands of rapid malignant cell growth. Using orthotopic mouse models of human glioblastoma (GBM) and renal cell carcinoma metastatic to brain, we estimated the activity of the PPP relative to glycolysis by infusing [1,2-(13) C(2) ]glucose. The [3-(13) C]lactate/[2,3-(13) C(2) ]lactate ratio was similar for both the GBM and brain metastasis and their respective surrounding brains (GBM, 0.197 ± 0.011 and 0.195 ± 0.033, respectively (p = 1); metastasis: 0.126 and 0.119 ± 0.033, respectively). This suggests that the rate of glycolysis is significantly greater than the PPP flux in these tumors, and that the PPP flux into the lactate pool is similar in both tumors. Remarkably, (13) C-(13) C coupling was observed in molecules derived from Krebs cycle intermediates in both tumor types, denoting glucose oxidation. In the renal cell carcinoma, in contrast with GBM, (13) C multiplets of γ-aminobutyric acid (GABA) differed from its precursor glutamate, suggesting that GABA did not derive from a common glutamate precursor pool. In addition, the orthotopic renal tumor, the patient's primary renal mass and brain metastasis were all strongly immunopositive for the 67-kDa isoform of glutamate decarboxylase, as were 84% of tumors on a renal cell carcinoma tissue microarray of the same histology, suggesting that GABA synthesis is cell autonomous in at least a subset of renal cell carcinomas. Taken together, these data demonstrate that (13) C-labeled glucose can be used in orthotopic mouse models to study tumor metabolism in vivo and to ascertain new metabolic targets for cancer diagnosis and therapy. Copyright © 2012 John Wiley & Sons, Ltd.
Antitumor-promoting activity of oligomeric proanthocyanidins in mouse epidermis in vivo
Mei Xiao Gao; Elisabeth M. Perchellet; Hala U. Gali; Limarie Rodriguez; Richard W. Hemingway; Jean-Pierre Perchellet
1994-01-01
The flavanoid catechin and heterogenous samples of oligomeric proanthocyanidins extracted from various sources were compared for their ability to inhibit the biochemical and biological effects of 12-o-tertra-decanoylphorbol-13-acetate (TPA) in mouse epidermis in vivo. Topical applications of catechin fail to alter the hydroperoxide response to TPA but inhibit the...
Corneal Expression of SLURP-1 by Age, Sex, Genetic Strain, and Ocular Surface Health
Swamynathan, Sudha; Delp, Emili E.; Harvey, Stephen A. K.; Loughner, Chelsea L.; Raju, Leela; Swamynathan, Shivalingappa K.
2015-01-01
Purpose Although secreted Ly6/urokinase-type plasminogen activator receptor–related protein-1 (Slurp1) transcript is highly abundant in the mouse cornea, corresponding protein expression remains uncharacterized. Also, SLURP1 was undetected in previous tear proteomics studies, resulting in ambiguity about its baseline levels. Here, we examine mouse corneal Slurp1 expression in different sexes, age groups, strains, and health conditions, and quantify SLURP1 in human tears from healthy or inflamed ocular surfaces. Methods Expression of Slurp1 in embryonic day-13 (E13), E16, postnatal day-1 (PN1), PN10, PN20, and PN70 Balb/C, FVBN, C57Bl/6, and DBA/2J mouse corneas, Klf4Δ/ΔCE corneas with corneal epithelial–specific ablation of Klf4, migrating cells in wild-type corneal epithelial wound edge, and in corneas exposed to pathogen-associated molecular patterns (PAMPs) poly(I:C), zymosan-A, or Pam3Csk4 was examined by QPCR, immunoblots, and immunofluorescent staining. Human SLURP1 levels were quantified by ELISA in tears from 34 men and women aged 18 to 80 years. Results Expression of Slurp1, comparable in different strains and sexes, was low in E13, E16, PN1, and PN10 mouse corneas, and increased rapidly after eyelid opening in a Klf4-dependent manner. We found Slurp1 was downregulated in corneas exposed to PAMPs, and in migrating cells at the wound edge. Human SLURP1 expression, comparable in different sexes and age groups, was significantly decreased in tears from inflamed ocular surfaces (0.34%) than those from healthy individuals (0.77%). Conclusions These data describe the influence of age, sex, genetic background, and ocular surface health on mouse corneal expression of Slurp1, establish the baseline for human tear SLURP1 expression, and identify SLURP1 as a useful diagnostic and/or therapeutic target for inflammatory ocular surface disorders. PMID:26670825
Pazos, Patricia; Lima, Luis; Diéguez, Carlos; García, María C
2014-01-01
The placenta produces a number of signaling molecules including metabolic and reproductive hormones as well as several inflammatory mediators. Among them, Interleukin-6 (IL-6), a well-known immune and metabolic regulator, acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. IL-6 interacts with key hypothalamic neuropeptidergic systems controlling energy homeostasis such as those producing the orexigenic/anabolic: neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorectic/catabolic neuropeptides: proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART). Human and rat placenta have been identified as source of these neuropeptides, but their expression and regulation in murine placental tissues remain unknown. Therefore, placental mRNA levels of IL-6, NPY, AgRP, POMC, and CART at different pregnancy stages (gestational days 13, 15, and 18) were analyzed by real time PCR, as were the effect of IL-6 deficiency (IL-6 knockout mice) on their placental expression. Our results showed that placenta-derived neuropeptides were regulated by gestational age and IL-6 throughout the second half of mouse pregnancy. These data suggest that IL-6 may participate in the fine tune control of energy balance during pregnancy by extending its action as a metabolic signal to the main organ at the fetomaternal interface: the placenta.
Stijnen, P; Brouwers, B; Dirkx, E; Ramos-Molina, B; Van Lommel, L; Schuit, F; Thorrez, L; Declercq, J; Creemers, J W M
2016-06-01
The proprotein convertase 1/3 (PC1/3), encoded by proprotein convertase subtilisin/kexin type 1 (PCSK1), cleaves and hence activates several orexigenic and anorexigenic proproteins. Congenital inactivation of PCSK1 leads to obesity in human but not in mice. However, a mouse model harboring the hypomorphic mutation N222D is obese. It is not clear why the mouse models differ in phenotype. Gene expression analysis was performed with pancreatic islets from Pcsk1(N222D/N222D) mice. Subsequently, biosynthesis, maturation, degradation and activity were studied in islets, pituitary, hypothalamus and cell lines. Coimmunoprecipitation of PC1/3-N222D and human PC1/3 variants associated with obesity with the endoplasmic reticulum (ER) chaperone BiP was studied in cell lines. Gene expression analysis of islets of Pcsk1(N222D/N222D) mice showed enrichment of gene sets related to the proteasome and the unfolded protein response. Steady-state levels of PC1/3-N222D and in particular the carboxy-terminally processed form were strongly reduced in islets, pituitary and hypothalamus. However, impairment of substrate cleavage was tissue dependent. Proinsulin processing was drastically reduced, while processing of proopiomelanocortin (POMC) to adrenocorticotropic hormone (ACTH) in pituitary was only mildly impaired. Growth hormone expression and IGF-1 levels were normal, indicating near-normal processing of hypothalamic proGHRH. PC1/3-N222D binds to BiP and is rapidly degraded by the proteasome. Analysis of human PC1/3 obesity-associated mutations showed increased binding to BiP and prolonged intracellular retention for all investigated mutations, in particular for PC1/3-T175M, PC1/3-G226R and PC1/3-G593R. This study demonstrates that the hypomorphic mutation in Pcsk1(N222D) mice has an effect on catalytic activity in pancreatic islets, pituitary and hypothalamus. Reduced substrate processing activity in Pcsk1(N222D/N222D) mice is due to enhanced degradation in addition to reduced catalytic activity of the mutant. PC1/3-N222D binds to BiP, suggesting impaired folding and reduced stability. Enhanced BiP binding is also observed in several human obesity-associated PC1/3 variants, suggesting a common mechanism.
Hoe, Victor C W; Urquhart, Donna M; Kelsall, Helen L; Sim, Malcolm R
2012-08-15
Work-related upper limb and neck musculoskeletal disorders (MSDs) are one of the most common occupational disorders around the world. Although ergonomic design and training are likely to reduce the risk of workers developing work-related upper limb and neck MSDs, the evidence is unclear. To assess the effects of workplace ergonomic design or training interventions, or both, for the prevention of work-related upper limb and neck MSDs in adults. We searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), CINAHL, AMED, Web of Science (Science Citation Index), SPORTDiscus, Cochrane Occupational Safety and Health Review Group Database and Cochrane Bone, Joint and Muscle Trauma Group Specialised Register to July 2010, and Physiotherapy Evidence Database, US Centers for Disease Control and Prevention, the National Institute for Occupational Safety and Health database, and International Occupational Safety and Health Information Centre database to November 2010. We included randomised controlled trials (RCTs) of ergonomic workplace interventions for preventing work-related upper limb and neck MSDs. We included only studies with a baseline prevalence of MSDs of the upper limb or neck, or both, of less than 25%. Two review authors independently extracted data and assessed risk of bias. We included studies with relevant data that we judged to be sufficiently homogeneous regarding the intervention and outcome in the meta-analysis. We assessed the overall quality of the evidence for each comparison using the GRADE approach. We included 13 RCTs (2397 workers). Eleven studies were conducted in an office environment and two in a healthcare setting. We judged one study to have a low risk of bias. The 13 studies evaluated effectiveness of ergonomic equipment, supplementary breaks or reduced work hours, ergonomic training, a combination of ergonomic training and equipment, and patient lifting interventions for preventing work-related MSDs of the upper limb and neck in adults.Overall, there was moderate-quality evidence that arm support with alternative mouse reduced the incidence of neck/shoulder disorders (risk ratio (RR) 0.52; 95% confidence interval (CI) 0.27 to 0.99) but not the incidence of right upper limb MSDs (RR 0.73; 95% CI 0.32 to 1.66); and low-quality evidence that this intervention reduced neck/shoulder discomfort (standardised mean difference (SMD) -0.41; 95% CI -0.69 to -0.12) and right upper limb discomfort (SMD -0.34; 95% CI -0.63 to -0.06).There was also moderate-quality evidence that the incidence of neck/shoulder and right upper limb disorders were not reduced when comparing alternative mouse and conventional mouse (neck/shoulder RR 0.62; 95% CI 0.19 to 2.00; right upper limb RR 0.91; 95% CI 0.48 to 1.72), arm support and no arm support with conventional mouse (neck/shoulder RR 0.67; 95% CI 0.36 to 1.24; right upper limb RR 1.09; 95% CI 0.51 to 2.29), and alternative mouse with arm support and conventional mouse with arm support (neck/shoulder RR 0.58; 95% CI 0.30 to 1.12; right upper limb RR 0.92; 95% CI 0.36 to 2.36).There was low-quality evidence that using an alternative mouse with arm support compared to conventional mouse with arm support reduced neck/shoulder discomfort (SMD -0.39; 95% CI -0.67 to -0.10). There was low- to very low-quality evidence that other interventions were not effective in reducing work-related upper limb and neck MSDs in adults. We found moderate-quality evidence to suggest that the use of arm support with alternative mouse may reduce the incidence of neck/shoulder MSDs, but not right upper limb MSDs. Moreover, we found moderate-quality evidence to suggest that the incidence of neck/shoulder and right upper limb MSDs is not reduced when comparing alternative and conventional mouse with and without arm support. However, given there were multiple comparisons made involving a number of interventions and outcomes, high-quality evidence is needed to determine the effectiveness of these interventions clearly. While we found very-low- to low-quality evidence to suggest that other ergonomic interventions do not prevent work-related MSDs of the upper limb and neck, this was limited by the paucity and heterogeneity of available studies. This review highlights the need for high-quality RCTs examining the prevention of MSDs of the upper limb and neck.
Derivatives of dibenzothiophene for PET imaging of α7-Nicotinic Acetylcholine Receptors
Gao, Yongjun; Kellar, Kenneth J.; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Dannals, Robert F.; Horti, Andrew G.
2013-01-01
A new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide with high binding affinities and selectivity for α7-nicotinic acetylcholine receptors (α7-nAChRs) (Ki = 0.4 – 20 nM) has been synthesized for PET imaging of α7-nAChRs. Two radiolabeled members of the series [18F]7a (Ki = 0.4 nM) and [18F]7c (Ki = 1.3 nM) were synthesized. [18F]7a and [18F]7c readily entered the mouse brain and specifically labeled α7-nAChRs. The α7-nAChR selective ligand 1 (SSR180711) blocked the binding of [18F]7a in the mouse brain in a dose-dependent manner. The mouse blocking studies with non-α7-nAChR CNS drugs demonstrated that [18F]7a is highly α7-nAChR selective. In agreement with its binding affinity the binding potential of [18F]7a (BPND = 5.3 – 8.0) in control mice is superior to previous α7-nAChR PET radioligands. Thus, [18F]7a displays excellent imaging properties in mice and has been chosen for further evaluation as a potential PET radioligand for imaging of α7-nAChR in non-human primates. PMID:24050653
De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego
2013-01-01
Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology 'reverse engineering' approaches. We 'reverse engineered' an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression ('hubs'). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central 'hub' of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation.
Anemia in new congenital adult type polycystic kidney mice.
Koumegawa, J; Nagano, N; Arai, H; Wada, M; Kusaka, M; Takahashi, H
1991-12-01
Mechanisms for the development of anemia and the effects of recombinant human erythropoietin (r-HuEPO) on hematological parameters were studied in new congenital adult type polycystic kidney (DBA/2FG-pcy) mice. The majority of DBA/2FG-pcy mice showed progressive anemia and an elevation of blood urea nitrogen, while a minority showed progressive anemia following polycythemia. Kidneys with numerous cysts in the cortex and medulla occupied virtually the entire abdominal cavity, and the combined kidney weight taken as a percentage of body weight reached 13.5% in the DBA/2FG-pcy mouse. The osmotic fragility of DBA/2FG-pcy mice erythrocytes was significantly increased compared with that of normal control mice. In addition, two-fold increases in serum EPO levels, determined by radioimmunoassay, and a decreased number of colony forming unit-erythroid (CFU-E) were observed in the DBA/2FG-pcy mice. The administration of r-HuEPO during anemia significantly increased the red blood cell count, hemoglobin concentration, hematocrit and reticulocyte percentage in a dose-dependent manner. These findings indicate that anemia in the DBA/2FG-pcy mouse is due to increased fragility of erythrocytes, a deficiency in EPO for the degree of anemia and a decreased number or a decreased response of erythroid progenitor cells. We suggest that the DBA/2FG-pcy mouse is a useful spontaneous model of chronic progressive renal failure.
The genomic landscape shaped by selection on transposable elements across 18 mouse strains.
Nellåker, Christoffer; Keane, Thomas M; Yalcin, Binnaz; Wong, Kim; Agam, Avigail; Belgard, T Grant; Flint, Jonathan; Adams, David J; Frankel, Wayne N; Ponting, Chris P
2012-06-15
Transposable element (TE)-derived sequence dominates the landscape of mammalian genomes and can modulate gene function by dysregulating transcription and translation. Our current knowledge of TEs in laboratory mouse strains is limited primarily to those present in the C57BL/6J reference genome, with most mouse TEs being drawn from three distinct classes, namely short interspersed nuclear elements (SINEs), long interspersed nuclear elements (LINEs) and the endogenous retrovirus (ERV) superfamily. Despite their high prevalence, the different genomic and gene properties controlling whether TEs are preferentially purged from, or are retained by, genetic drift or positive selection in mammalian genomes remain poorly defined. Using whole genome sequencing data from 13 classical laboratory and 4 wild-derived mouse inbred strains, we developed a comprehensive catalogue of 103,798 polymorphic TE variants. We employ this extensive data set to characterize TE variants across the Mus lineage, and to infer neutral and selective processes that have acted over 2 million years. Our results indicate that the majority of TE variants are introduced though the male germline and that only a minority of TE variants exert detectable changes in gene expression. However, among genes with differential expression across the strains there are twice as many TE variants identified as being putative causal variants as expected. Most TE variants that cause gene expression changes appear to be purged rapidly by purifying selection. Our findings demonstrate that past TE insertions have often been highly deleterious, and help to prioritize TE variants according to their likely contribution to gene expression or phenotype variation.
Goodrow, T; Reynolds, S; Maronpot, R; Anderson, M
1990-08-01
1,3-Butadiene has been detected in urban air, gasoline vapors, and cigarette smoke. It has been estimated that 65,000 workers are exposed to this chemical in occupational settings in the United States. Lymphomas, lung, and liver tumors were induced in female and male C57BL/6 X C3H F1 (hereafter called B6C3F1) mice by inhalation of 6.25 to 625 ppm 1,3-butadiene for 1 to 2 years. The objective of this study was to examine these tumors for the presence of activated protooncogenes by the NIH 3T3 transfection and nude mouse tumorigenicity assays. Transfection of DNA isolated from 7 of 9 lung tumors and 7 of 12 liver tumors induced morphological transformation of NIH 3T3 cells. Southern blot analysis indicated that the transformation induced by 6 lung and 3 liver tumor DNA samples was due to transfer of a K-ras oncogene. Four of the 7 liver tumors that were positive upon transfection contained an activated H-ras gene. The identity of the transforming gene in one of the lung tumors has not been determined but was not a member of the ras family or a met or raf gene. Eleven 1,3-butadiene-induced lymphomas were examined for transforming genes using the nude mouse tumorigenicity assay. Activated K-ras genes were detected in 2 of the 11 lymphomas assayed. DNA sequencing of polymerase chain reaction-amplified ras gene exons revealed that 9 of 11 of the activating K-ras mutations were G to C transversions in codon 13. One liver tumor contained an activated K-ras gene with mutations in both codons 60 and 61. The activating mutation in one of the K-ras genes from a lymphoma was not identified but DNA sequence analysis of amplified regions in proximity to codons 12, 13, and 61 demonstrated that the mutation was not located in or near these codons. Activation of K-ras genes by codon 13 mutations has not been found in any lung or liver tumors or lymphomas from untreated B6C3F1 mice. Thus, the K-ras activation found in 1,3-butadiene-induced B6C3F1 mouse tumors probably occurred as a result of genotoxic effects of this chemical. The oncogenes most frequently detected in human pulmonary adenocarcinomas are K-ras genes. Activated K-ras genes have also been found in some human lymphomas. This suggest that activation of K-ras may be important in the induction of human pulmonary adenocarcinomas and lymphomas.(ABSTRACT TRUNCATED AT 400 WORDS)
Increased 13-hydroxyoctadecadienoic acid content in lipopolysaccharide stimulated macrophages.
Schade, U F; Burmeister, I; Engel, R
1987-09-15
Endotoxin-stimulated mouse peritoneal macrophages were found to contain 13-hydroxyoctadecadienoic acid, which was released upon alkaline hydrolysis of the cells. Compared to untreated cells, incubation with LPS increased the content of 13-hydroxyoctadecadienoic acid in macrophage hydrolysates to about 8-fold. Analysis of the material on chiralphase HPLC revealed that it consisted prevalently of 13(S)-hydroxyoctadecadienoic acid. This indicates its enzymatic origine.
A humanoid mouse model of autism.
Takumi, Toru
2010-10-01
Even now fruit of the human genome project is available, we have difficulties to approach neuropsychiatric disorders at the molecular level. Autism is a complex psychiatric illness but has received considerable attention as a developmental brain disorder not only from basic researchers but also from society. Substantial evidence suggests that chromosomal abnormalities contribute to autism risk. The duplication of human chromosome 15q11-13 is known to be the most frequent cytogenetic abnormality in autism. We succeeded to generate mice with a 6.3-Mb-wide interstitial duplication in mouse chromosome 7c that is highly syntenic to human 15q11-13 by using a Cre-loxP-based chromosome-engineering technique. The only paternally duplicated mice display autistic behavioral features such as poor social interaction and stereotypical behavior, and exhibit a developmental abnormality in ultrasonic vocalizations as well as anxiety. The detailed analysis focusing on a non-coding small nucleolar RNA, MBII52, within the duplicated region, revealed that the paternally duplicated mice alter the editing ratio of serotonin (5-HT) 2c receptor pre-mRNA and intracellular calcium responses by a 5-HT2c receptor specific agonist are changed in neurons. This result may explain one of molecular mechanisms of abnormal behaviors in the paternal duplicated mice. The first chromosome-engineered mouse model for human chromosome 15q11-13 duplication fulfills not only face validity of human autistic phenotypes but also construct validity based on human chromosome abnormality. This model will be a founder mouse for forward genetics of autistic disease and an invaluable tool for its therapeutic development. Copyright © 2010 Elsevier B.V. All rights reserved.
Aït-Azzouzene, D; Langkopf, A; Cohen, J; Bleux, C; Gendron, M C; Kanellopoulos-Langevin, C
1998-05-01
Among the numerous hypotheses proposed to explain the absence of fetal rejection by the mother in mammals, it has been suggested that regulation of expression of the polymorphic major histocompatibility complex (MHC) at the fetal-maternal interface plays a major role. In addition to a lack of MHC gene expression in the placenta throughout gestation, the absence of polymorphic MHC molecules on the early embryo, as well as their low level of expression after midgestation, could contribute to this important biologic phenomenon. In order to test this hypothesis, we have produced transgenic mice able to express polymorphic MHC class I molecules early in embryogenesis. We have placed the MHC class la gene H-2Kb under the control of a housekeeping gene promoter, the hydroxy-methyl-glutaryl coenzyme A reductase (HMG) gene minimal promoter. This construct has been tested for functionality after transfection into mouse fibroblast L cells. The analysis of three founder transgenic mice and their progeny suggested that fetoplacental units that could express the H-2Kb heavy chains are unable to survive in utero beyond midgestation. We have shown further that a much higher resorption rate, on days 11 to 13 of embryonic development, is observed among transgenic embryos developing from eggs microinjected at the one-cell stage with the pHMG-Kb construct than in control embryos. This lethality is not due to immune phenomena, since it is observed in histocompatible combinations between mother and fetus. These results are discussed in the context of what is currently known about the regulation of MHC expression at the fetal-maternal interface and in various transgenic mouse models.
Resveratrol and para-coumarate serve as ring precursors for coenzyme Q biosynthesis[S
Xie, Letian X.; Williams, Kevin J.; He, Cuiwen H.; Weng, Emily; Khong, San; Rose, Tristan E.; Kwon, Ohyun; Bensinger, Steven J.; Marbois, Beth N.; Clarke, Catherine F.
2015-01-01
Coenzyme Q (Q or ubiquinone) is a redox-active polyisoprenylated benzoquinone lipid essential for electron and proton transport in the mitochondrial respiratory chain. The aromatic ring 4-hydroxybenzoic acid (4HB) is commonly depicted as the sole aromatic ring precursor in Q biosynthesis despite the recent finding that para-aminobenzoic acid (pABA) also serves as a ring precursor in Saccharomyces cerevisiae Q biosynthesis. In this study, we employed aromatic 13C6-ring-labeled compounds including 13C6-4HB, 13C6-pABA, 13C6-resveratrol, and 13C6-coumarate to investigate the role of these small molecules as aromatic ring precursors in Q biosynthesis in Escherichia coli, S. cerevisiae, and human and mouse cells. In contrast to S. cerevisiae, neither E. coli nor the mammalian cells tested were able to form 13C6-Q when cultured in the presence of 13C6-pABA. However, E. coli cells treated with 13C6-pABA generated 13C6-ring-labeled forms of 3-octaprenyl-4-aminobenzoic acid, 2-octaprenyl-aniline, and 3-octaprenyl-2-aminophenol, suggesting UbiA, UbiD, UbiX, and UbiI are capable of using pABA or pABA-derived intermediates as substrates. E. coli, S. cerevisiae, and human and mouse cells cultured in the presence of 13C6-resveratrol or 13C6-coumarate were able to synthesize 13C6-Q. Future evaluation of the physiological and pharmacological responses to dietary polyphenols should consider their metabolism to Q. PMID:25681964
Genetic and physical mapping at the limb-girdle muscular dystrophy locus (LGMD2B) on chromosome 2p
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bashir, R.; Keers, S.; Strachan, T.
1996-04-01
The limb-girdle muscular dystrophies (LGMD) are a genetically heterogeneous group of disorders, different forms of which have been mapped to at least six distinct genetic loci. We have mapped to at least six distinct genetic loci. We have mapped an autosomal recessive form of LGMD (LGMD2B) to chromosome 2p13. Two other conditions have been shown to map to this region or to the homologous region in mouse: a gene for a form of autosomal recessive distal muscular dystrophy, Miyoshi myopathy, shows linkage to the same markers on chromosome 2p as LGMD2B, and an autosomal recessive mouse mutation mnd2, in whichmore » there is rapidly progressive paralysis and muscle atrophy, has been mapped to mouse chromosome 6 to a region showing conserved synteny with human chromosome 2p12-p13. We have assembled a 6-cM YAC contig spanning the LGMD2B locus and have mapped seven genes and 13 anonymous polymorphic microsatellites to it. Using haplotype analysis in the linked families, we have narrowed our region of interest to a 0-cM interval between D2S2113 and D2S145, which does not overlap with the critical region for mnd2 in mouse. Use of these most closely linked markers will help to determine the relationship between LGMD2B and Miyoshi myopathy. YACs selected from our contig will be the starting point for the cloning of the LGMD2B gene and thereby establish the biological basis for this form of muscular dystrophy and its relationship with the other limb-girdle muscular dystrophies. 26 refs., 6 figs.« less
Studies on glyphosate-induced carcinogenicity in mouse skin: a proteomic approach.
George, Jasmine; Prasad, Sahdeo; Mahmood, Zafar; Shukla, Yogeshwer
2010-03-10
Glyphosate is a widely used broad spectrum herbicide, reported to induce various toxic effects in non-target species, but its carcinogenic potential is still unknown. Here we showed the carcinogenic effects of glyphosate using 2-stage mouse skin carcinogenesis model and proteomic analysis. Carcinogenicity study revealed that glyphosate has tumor promoting activity. Proteomic analysis using 2-dimensional gel electrophoresis and mass spectrometry showed that 22 spots were differentially expressed (>2 fold) on glyphosate, 7, 12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoyl-phorbol-13-acetate (TPA) application over untreated control. Among them, 9 proteins (translation elongation factor eEF-1 alpha chain, carbonic anhydrase III, annexin II, calcyclin, fab fragment anti-VEGF antibody, peroxiredoxin-2, superoxide dismutase [Cu-Zn], stefin A3, and calgranulin-B) were common and showed similar expression pattern in glyphosate and TPA-treated mouse skin. These proteins are known to be involved in several key processes like apoptosis and growth-inhibition, anti-oxidant responses, etc. The up-regulation of calcyclin, calgranulin-B and down-regulation of superoxide dismutase [Cu-Zn] was further confirmed by immunoblotting, indicating that these proteins can be good candidate biomarkers for skin carcinogenesis induced by glyphosate. Altogether, these results suggested that glyphosate has tumor promoting potential in skin carcinogenesis and its mechanism seems to be similar to TPA. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Mouse Model for Aerosol Infection of Influenza (Postprint)
2011-12-01
Min, J.-Y., Lamirande, E.W., Santos, C., Jin, H., Kemble, G. and Subbarao , K . (2011) Comparison of a live attenuated 2009 H1N1 vaccine with...AFRL-RX-TY-TP-2012-0010 MOUSE MODEL FOR AEROSOL INFECTION OF INFLUENZA POSTPRINT Rashelle S. McDonald, Brian K . Heimbuch Applied Research...AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT b . ABSTRACT c. THIS PAGE 17
Neuroprotective effect of the endogenous neural peptide apelin in cultured mouse cortical neurons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, Xiang Jun; Department of Anesthesiology, 101 Woodruff Circle, Suite 617, Emory University School of Medicine, Atlanta, GA 30322; Yu, Shan Ping
2010-07-01
The adipocytokine apelin and its G protein-coupled APJ receptor were initially isolated from a bovine stomach and have been detected in the brain and cardiovascular system. Recent studies suggest that apelin can protect cardiomyocytes from ischemic injury. Here, we investigated the effect of apelin on apoptosis in mouse primary cultures of cortical neurons. Exposure of the cortical cultures to a serum-free medium for 24 h induced nuclear fragmentation and apoptotic death; apelin-13 (1.0-5.0 nM) markedly prevented the neuronal apoptosis. Apelin neuroprotective effects were mediated by multiple mechanisms. Apelin-13 reduced serum deprivation (SD)-induced ROS generation, mitochondria depolarization, cytochrome c release andmore » activation of caspase-3. Apelin-13 prevented SD-induced changes in phosphorylation status of Akt and ERK1/2. In addition, apelin-13 attenuated NMDA-induced intracellular Ca{sup 2+} accumulation. These results indicate that apelin is an endogenous neuroprotective adipocytokine that may block apoptosis and excitotoxic death via cellular and molecular mechanisms. It is suggested that apelins may be further explored as a potential neuroprotective reagent for ischemia-induced brain damage.« less
Leow, Chiuan Herng; Jones, Martina; Cheng, Qin; Mahler, Stephen; McCarthy, James
2014-07-18
Early and accurate diagnosis of Plasmodium falciparum infection is important for providing appropriate treatment to patients with malaria. However, technical limitations of currently available diagnostic tests limit their use in control programs. One possible explanation for the vulnerability of current antibodies used in RDTs is their propensity to degrade at high ambient temperatures. Isolation of new antibodies with better thermal stability represents an appealing approach to improve the performance of RDTs. In this study, phage display technology was deployed to isolate novel binders by screening a human naïve scFv antibody library against recombinant Plasmodium falciparum histidine rich protein 2 (rPfHRP2). The isolated scFv clones were reformatted to whole IgG and the recombinant mAbs were produced in a mammalian CHO cell expression system. To verify the biological activity of these purified recombinant mAbs, range of functional assays were characterized. Two unique clones (D2 and F9) were isolated after five rounds of biopanning. The reformatted and expressed antibodies demonstrated high binding specificity to malaria recombinant PfHRP2 and native proteins. When 5 μg/mL of mAbs applied, mAb C1-13 had the highest sensitivity, with an OD value of 1, the detection achieved 5 ng/mL of rPfHRP2, followed by mAbs D2 and F9 at 10 ng/mL and 100 ng/mL of rPfHRP2, respectively. Although the sensitivity of mAbs D2 and F9 was lower than the control, these recombinant human mAbs have shown better stability compared to mouse mAb C1-13 at various temperatures in DSC and blot assays. In view of epitope mapping, the predominant motif of rPfHRP2 recognized by mAb D2 was AHHAADAHHA, whereas mAb F9 was one amino acid shorter, resulting in AHHAADAHH. mAb F9 had the strongest binding affinity to rPfHRP2 protein, with a KD value of 4.27 × 10(-11) M, followed by control mAb C1-13 at 1.03 × 10(-10) M and mAb D2 at 3.05 × 10(-10) M. Overall, the performance of these mAbs showed comparability to currently available PfHRP2-specific mouse mAb C1-13. The stability of these novel binders indicate that they merit further work to evaluate their utility in the development of new generation point of care diagnosis of malaria.
Ogneva, I V; Maximova, M V; Larina, I M
2014-05-15
The aim of the work was to analyze changes in the organization of the cortical cytoskeleton in fibers of the mouse soleus muscle, tibialis anterior muscle and left ventricular cardiomyocytes after completion of a 30-day space flight on board the BION-M1 biosatellite (Russia, 2013). The transversal stiffness of the cortical cytoskeleton of the cardiomyocytes and fibers of the skeletal muscles did not differ significantly within the study groups compared with the vivarium control group. The content of beta- and gamma-actin in the membranous fraction of proteins in the left ventricular cardiomyocytes did not differ significantly within all study groups and correlated with the transversal stiffness. A similar situation was revealed in fibers of the soleus muscle and tibialis anterior muscle. At the same time, the content of beta-actin in the cytoplasmic fraction of proteins was found to be decreased in all types of studied tissues compared with the control levels in the postflight group, with lowered beta-actin gene expression rates in the postflight group. After completion of the space flight, the content of alpha-actinin-4 was found to be reduced in the membranous fraction of proteins from the mouse cardiomyocytes, while its content in the cytoplasmic fraction of proteins did not change significantly. Furthermore, gene expression rates of this protein were decreased at the time of dissection (it was started after 13 h after landing). At the same time, the content of alpha-actinin-1 decreased in the membranous fraction and increased in the cytoplasmic fraction of proteins from the soleus muscle fibers. Copyright © 2014 the American Physiological Society.
Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Fatima K. Johnson; Amy W. Davis; Steven W. Newell; Richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellet
1996-01-01
m-Chloroperoxybenzoic acid (CPBA). which induces ornithine decarboxylase activity as much as 12-0-tetradecanoylphorbol-13-acetate (TPA ), was tested for its ability to induce DNA synthesis, hydroperoxide (HPx) production, and tumor promotion in mouse epidermis in vivo. After an early inhibition, CPBA stimulates...
Defective transport of the obesity mutant PC1/3 N222D contributes to loss of function.
Prabhu, Yogikala; Blanco, Elias H; Liu, Ming; Peinado, Juan R; Wheeler, Matthew C; Gekakis, Nicholas; Arvan, Peter; Lindberg, Iris
2014-07-01
Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3(N222D) mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3(N222D) mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity.
Defective Transport of the Obesity Mutant PC1/3 N222D Contributes to Loss of Function
Prabhu, Yogikala; Blanco, Elias H.; Liu, Ming; Peinado, Juan R.; Wheeler, Matthew C.; Gekakis, Nicholas; Arvan, Peter
2014-01-01
Mutations in the PCSK1 gene encoding prohormone convertase 1/3 (PC1/3) are strongly associated with obesity in humans. The PC1/3N222D mutant mouse thus far represents the only mouse model that mimics the PC1/3 obesity phenotype in humans. The present investigation addresses the cell biology of the N222D mutation. Metabolic labeling experiments reveal a clear defect in the kinetics of insulin biosynthesis in islets from PC1/3N222D mutant mice, resulting in an increase in both proinsulin and its processing intermediates, predominantly lacking cleavage at the Arg-Arg site. Although the mutant PC1/3 zymogen is correctly processed to the 87-kDa form, pulse-chase immunoprecipitation experiments, labeling, and immunohistochemical experiments using uncleavable variants all demonstrate that the PC1/3-N222D protein is largely mislocalized compared with similar wild-type (WT) constructs, being predominantly retained in the endoplasmic reticulum. The PC1/3-N222D mutant also undergoes more efficient degradation via the ubiquitin-proteasome system than the WT enzyme. Lastly, the mutant PC1/3-N222D protein coimmunoprecipitates with WT PC1/3 and exerts a modest effect on intracellular retention of the WT enzyme. These profound alterations in the cell biology of PC1/3-N222D are likely to contribute to the defective insulin biosynthetic events observed in the mutant mice and may be relevant to the dramatic contributions of polymorphisms in this gene to human obesity. PMID:24828610
Lawson, James S; Glenn, Wendy K
2017-01-01
Multiple oncogenic viruses including, mouse mammary tumor virus, bovine leukemia virus, human papilloma virus, and Epstein Barr virus, have been identified as separate infectious pathogens in human breast cancer. Here we demonstrate that these four viruses may be present in normal and benign breast tissues 1 to 11 years before the development of same virus breast cancer in the same patients. We combined the data we developed during investigations of the individual four oncogenic viruses and breast cancer. Patients who had benign breast biopsies 1-11 years prior to developing breast cancer were identified by pathology reports from a large Australian pathology service (Douglas Hanly Moir Pathology). Archival formalin fixed specimens from these patients were collected. The same archival specimens were used for (i) investigations of mouse mammary tumour virus (also known as human mammary tumour virus) conducted at the Icahn School of Medicine at Mount Sinai, New York and at the University of Pisa, Italy, (ii) bovine leukemia virus conducted at the University of California at Berkeley,(iii) human papilloma virus and Epstein Barr virus conducted at the University of New South Wales, Sydney, Australia. Seventeen normal breast tissues from cosmetic breast surgery conducted on Australian patients were used as controls. These patients were younger than those with benign and later breast cancer. Standard and in situ polymerase chain reaction (PCR) methods were used to identify the four viruses. The detailed methods are outlined in the separate publications.: mouse mammary tumor virus, human papilloma virus and Epstein Barr virus (Infect Agent Cancer 12:1, 2017, PLoS One 12:e0179367, 2017, Front Oncol 5:277, 2015, PLoS One 7:e48788, 2012). Epstein Barr virus and human papilloma virus were identified in the same breast cancer cells by in situ PCR. Mouse mammary tumour virus was identified in 6 (24%) of 25 benign breast specimens and in 9 (36%) of 25 breast cancer specimens which subsequently developed in the same patients. Bovine leukemia virus was identified in 18 (78%) of 23 benign breast specimens and in 20 (91%) of 22 subsequent breast cancers in the same patients. High risk human papilloma viruses were identified in 13 (72%) of 17 benign breast specimens and in 13 (76%) of 17 subsequent breast cancers in the same patients. Epstein Barr virus was not identified in any benign breast specimens but was identified in 3 (25%) of 12 subsequent breast cancers in the same patients. Mouse mammary tumour virus 3 (18%), bovine leukemia virus 6 (35%), high risk human papilloma virus 3 (18%) and Epstein Barr virus 5 (29%) were identified in 17 normal control breast specimens. These findings add to the evidence that multiple oncogenic viruses have potential roles in human breast cancer. This is an important observation because evidence of prior infection before the development of disease is a key criterion when assessing causation.
Chin, H; Krall, M; Kim, H L; Kozak, C A; Mock, B
1992-12-01
Cchl1a3 encodes the dihydropyridine-sensitive calcium channel alpha 1 subunit isoform predominantly expressed in skeletal muscle. mdg (muscular dysgenesis) has previously been implicated as a mutant allele of this gene. Hybridization of a rat brain cDNA probe for Cchl1a3 to Southern blots of DNAs from a panel of Chinese hamster x mouse somatic cell hybrids suggested that this gene maps to mouse Chromosome 1. Analysis of the progeny of an inbred strain cross-positioned Cchl1a3 1.3 cM proximal to the Pep-3 locus on Chr 1.
Immunization alters body odor.
Kimball, Bruce A; Opiekun, Maryanne; Yamazaki, Kunio; Beauchamp, Gary K
2014-04-10
Infections have been shown to alter body odor. Because immune activation accompanies both infection and immunization, we tested the hypothesis that classical immunization might similarly result in the alteration of body odors detectable by trained biosensor mice. Using a Y-maze, we trained biosensor mice to distinguish between urine odors from rabies-vaccinated (RV) and unvaccinated control mice. RV-trained mice generalized this training to mice immunized with the equine West Nile virus (WNV) vaccine compared with urine of corresponding controls. These results suggest that there are similarities between body odors of mice immunized with these two vaccines. This conclusion was reinforced when mice could not be trained to directly discriminate between urine odors of RV- versus WNV-treated mice. Next, we trained biosensor mice to discriminate the urine odors of mice treated with lipopolysaccharide (LPS; a general elicitor of innate immunological responses) from the urine of control mice. These LPS-trained biosensors could distinguish between the odors of LPS-treated mouse urine and RV-treated mouse urine. Finally, biosensor mice trained to distinguish between the odors of RV-treated mouse urine and control mouse urine did not generalize this training to discriminate between the odors of LPS-treated mouse urine and control mouse urine. From these experiments, we conclude that: (1) immunization alters urine odor in similar ways for RV and WNV immunizations; and (2) immune activation with LPS also alters urine odor but in ways different from those of RV and WNV. Published by Elsevier Inc.
Propranolol hydrochloride enhancement of tumor perfusion and uptake of gallium-67 in a mouse sarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bomber, P.; McCready, R.; Hammersley, P.
1986-02-01
The effect of propranolol hydrochloride on the blood perfusion of a mouse sarcoma and other tissues has been studied using /sup 86/Rb. The maximum increase in relative tumor perfusion (2x controls) occurred 15 min after an i.v. administration of 10 mg per kg propranolol hydrochloride. To study the effect of this drug on the uptake of /sup 67/Ga, it was injected at a concentration of 10 mg/kg 10 min before administering 3 microCi (110 kBq) (/sup 67/Ga)citrate. Tissue uptakes were measured 4 hr later. The tumor: blood ratio increased from 1.16 +/- 0.17 to 3.41 +/- 2.27 (s.d.) and tumor:more » liver ratio increased from 2.39 +/- 0.30 to 7.13 +/- 3.52 (s.d.). The results showed that propranolol hydrochloride can improve the relative tumor blood flow and radiopharmaceutical concentration in an animal model. It is hoped that this and other agents will yield similar results in the human situation.« less
Hirotsune, Shinji; Pack, Svetlana D.; Chong, Samuel S.; Robbins, Christiane M.; Pavan, William J.; Ledbetter, David H.; Wynshaw-Boris, Anthony
1997-01-01
Several human syndromes are associated with haploinsufficiency of chromosomal regions secondary to microdeletions. Isolated lissencephaly sequence (ILS), a human developmental disease characterized by a smooth cerebral surface (classical lissencephaly) and microscopic evidence of incomplete neuronal migration, is often associated with small deletions or translocations at chromosome 17p13.3. Miller–Dieker syndrome (MDS) is associated with larger deletions of 17p13.3 and consists of classical lissencephaly with additional phenotypes including facial abnormalities. We have isolated the murine homologs of three genes located inside and outside the MDS region: Lis1, Mnt/Rox, and 14-3-3ε. These genes are all located on mouse chromosome 11B2, as determined by metaphase FISH, and the relative order and approximate gene distance was determined by interphase FISH analysis. The transcriptional orientation and intergenic distance of Lis1 and Mnt/Rox were ascertained by fragmentation analysis of a mouse yeast artificial chromosome containing both genes. To determine the distance and orientation of 14-3-3ε with respect to Lis1 and Mnt/Rox, we introduced a super-rare cutter site (VDE) that is unique in the mouse genome into 14-3-3ε by gene targeting. Using the introduced VDE site, the orientation of this gene was determined by pulsed field gel electrophoresis and Southern blot analysis. Our results demonstrate that the MDS region is conserved between human and mouse. This conservation of linkage suggests that the mouse can be used to model microdeletions that occur in ILS and MDS. PMID:9199935
Wireless infrared computer control
NASA Astrophysics Data System (ADS)
Chen, George C.; He, Xiaofei
2004-04-01
Wireless mouse is not restricted by cable"s length and has advantage over its wired counterpart. However, all the mice available in the market have detection range less than 2 meters and angular coverage less than 180 degrees. Furthermore, commercial infrared mice are based on track ball and rollers to detect movements. This restricts them to be used in those occasions where users want to have dynamic movement, such as presentations and meetings etc. This paper presents our newly developed infrared wireless mouse, which has a detection range of 6 meters and angular coverage of 180 degrees. This new mouse uses buttons instead of traditional track ball and is developed to be a hand-held device like remote controller. It enables users to control cursor with a distance closed to computer and the mouse to be free from computer operation.
Prasad, Bibin; Kim, Subin; Cho, Woong; Kim, Suzy; Kim, Jung Kyung
2018-05-01
Computational techniques can enhance personalized hyperthermia-treatment planning by calculating tissue energy absorption and temperature distribution. This study determined the effect of tumor properties on energy absorption, temperature mapping, and thermal dose distribution in mild radiofrequency hyperthermia using a mouse xenograft model. We used a capacitive-heating radiofrequency hyperthermia system with an operating frequency of 13.56 MHz for in vivo mouse experiments and performed simulations on a computed tomography mouse model. Additionally, we measured the dielectric properties of the tumors and considered temperature dependence for thermal properties, metabolic heat generation, and perfusion. Our results showed that dielectric property variations were more dominant than thermal properties and other parameters, and that the measured dielectric properties provided improved temperature-mapping results relative to the property values taken from previous study. Furthermore, consideration of temperature dependency in the bio heat-transfer model allowed elucidation of precise thermal-dose calculations. These results suggested that this method might contribute to effective thermoradiotherapy planning in clinics. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mucklow, S.; Hartnell, A.; Crocker, P.R.
1995-07-20
Sialoadhesin is a cell-cell interaction molecule expressed by subpopulations of tissue macrophages. It contains 17 immunoglobulin (Ig)-like domains and is structurally related to CD22, MAG, and CD33. These molecules establish a distinct family of sialic acid-dependent adhesion molecules, the sialoadhesin family. We have mapped the rodent sialoadhesin gene, Sn, to chromosome 2F-H1 by in situ hybridization (ISH) and shown linkage to Il1b and four other markers by backcross linkage analysis. We have also used ISH and a human-mouse somatic cell hybrid panel to localize the human sialoadhesin gene, SN, to the conserved syntenic region on human chromosome 20p13. This demonstratesmore » that the sialoadhesin gene is not linked to the other members of the sialoadhesin family, CD22, MAG. and CD33, which have been independently mapped to the distal region of mouse chromosome 7 and to human chromosome 19q13.1-3. 19 refs., 1 fig.« less
Low-cost computer mouse for the elderly or disabled in Taiwan.
Chen, C-C; Chen, W-L; Chen, B-N; Shih, Y-Y; Lai, J-S; Chen, Y-L
2014-01-01
A mouse is an important communication interface between a human and a computer, but it is still difficult to use for the elderly or disabled. To develop a low-cost computer mouse auxiliary tool. The principal structure of the low-cost mouse auxiliary tool is the IR (infrared ray) array module and the Wii icon sensor module, which combine with reflective tape and the SQL Server database. This has several benefits including cheap hardware cost, fluent control, prompt response, adaptive adjustment and portability. Also, it carries the game module with the function of training and evaluation; to the trainee, it is really helpful to upgrade the sensitivity of consciousness/sense and the centralization of attention. The intervention phase/maintenance phase, with regard to clicking accuracy and use of time, p value (p< 0.05) reach the level of significance. The development of the low cost adaptive computer mouse auxiliary tool was completed during the study and was also verified as having the characteristics of low cost, easy operation and the adaptability. To patients with physical disabilities, if they have independent control action parts of their limbs, the mouse auxiliary tool is suitable for them to use, i.e. the user only needs to paste the reflective tape by the independent control action parts of the body to operate the mouse auxiliary tool.
Kono, Yoshiyasu; Kawano, Seiji; Takaki, Akinobu; Shimomura, Yasuyuki; Onji, Masahiro; Ishikawa, Hisashi; Takahashi, Sakuma; Horii, Joichiro; Kobayashi, Sayo; Kawai, Daisuke; Yamamoto, Kazuhide; Okada, Hiroyuki
2017-01-01
Video-capsule endoscopy (VCE) has shown that intestinal ulcers are common in non-steroidal anti-inflammatory drugs (NSAIDs) users, although the mechanisms and management have not been clearly defined. To explore the contribution of oxidative stress and potential of anti-oxidants for NSAIDs-induced intestinal ulcers, we assessed human serum oxidative stress balance and the effect of anti-oxidants using a mouse model. A total of 30 NSAIDs users (17 aspirin and 13 non-aspirin users) received VCE. Serum reactive oxygen metabolite (d-ROM) and antioxidative OXY-adsorbent test (OXY) were measured. The indomethacin (IND)-induced mouse intestinal ulcer model was used to assess the effect of anti-oxidants. Eight-week-old mice were divided into four groups; control diet and diet including IND (N group), IND and L-carnitine (NC group), and IND and vitamin E (NE group). Serum OXY levels among non-aspirin users were lower in the mucosal injuries positive group than the negative group (P < 0.05). In the mouse models, the degree of mucosal injuries was lower in NC and NE than N (P < 0.01). Serum d-ROM levels were lower in NC and NE than N (P < 0.01), and OXY levels were higher in NC than N and NE (P < 0.01). The degeneration of intestinal mitochondria was mild in NC and NE. The serum KC/CXCL-1 level and hepatic expression of the anti-oxidant molecule Gpx4 were lower in NC than N. Non-aspirin NSAID-induced intestinal ulcers are related to decreased anti-oxidative stress function. Anti-oxidants, especially L-carnitine, are good candidates for intestinal ulcers. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.
Guilan Chen; Elisabeth M. Perchellet; Xiao Mei Gao; Fatima K. Johnson; Amy W. Davis; Steven W. Newell; Richard W. Hemingway; Vittorio Bottari; Jean-Pierre Perchellett
1996-01-01
m-Chloroperoxybenzoic acid (CPBA). Which induces ornithine decarboxylase activity as much as 12-0- terradecanoyIp horbol-13-acetate (TPA ). was tested for its ability to induce DNA synthesis. bydroperoxide (HPx) production. and tumor promotion in mouse epidermis in vivo. After an early inhibition. CPBA stimulates DNA synthesis. A response which is maintained between 16...
Ghasem, Saki; Majid, Jasemi; Shiva, Razi
2013-07-01
To assess developmental capacity of fertilised oocytes by sperm of mouse exposed to forced swimming stress. The experimental study was conducted at the Physiology Research Center of Ahvaz Jundishapur University of Medical Sciences, from August 2011 to January 2012. It comprised 20 adult male and 10 female mice. The male mice were randomly divided into two equal groups (n=10): control and experimental. Animals of the experimental group were submitted to forced swimming stress. All male mice were euthanised and the cauda epididymis removed before contents were squeezed out. A pre-incubated capacitated sperm was gently added to the freshly collected ova of the two groups of study. The combined sperm-oocyte suspension was incubated for 4-6 hours under a condition of 5% Carbon dioxide and 37 degreeC temperature. The ova were then washed through several changes of medium and finally incubated. Fertilisation was assessed by recording the number of 1-cell embryos 4-6 hours after insemination. The 1-cell embryos were allowed to further develop in vitro for about 120 hours. Development of embryos everyday and during 5 days of culture was observed by using inverted microscope. SPSS 13.0.1 was used for statistical analysis. The percentage of oocytes fertilised was 75:96 (78.12+/-4.8%) and 50:10 (49.5+/-3.9%) in the control and experimental groups, respectively. The difference was significant (p <0.001). At 24 hours after insemination, 70:75 (93.33+/-2.7%) and 39:50 (78+/-3.5%)of fertilized oocytes developed to two=cell embryos in control and experimental groups respectively.The difference was significant (p <0.02).There were not significant differences (p>0.05) between the two groups in terms of speed and developmental capacity of blastocysts. Fertilisation capacity of male mice affected by forced swimming stress and also the developmental capacity of oocyte fertilised by sperm of mouse exposed to forced swimming stress decreased.
Aalto-Setälä, K; Fisher, E A; Chen, X; Chajek-Shaul, T; Hayek, T; Zechner, R; Walsh, A; Ramakrishnan, R; Ginsberg, H N; Breslow, J L
1992-01-01
Hypertriglyceridemia is common in the general population, but its mechanism is largely unknown. In previous work human apo CIII transgenic (HuCIIITg) mice were found to have elevated triglyceride levels. In this report, the mechanism for the hypertriglyceridemia was studied. Two different HuCIIITg mouse lines were used: a low expressor line with serum triglycerides of approximately 280 mg/dl, and a high expressor line with serum triglycerides of approximately 1,000 mg/dl. Elevated triglycerides were mainly in VLDL. VLDL particles were 1.5 times more triglyceride-rich in high expressor mice than in controls. The total amount of apo CIII (human and mouse) per VLDL particle was 2 and 2.5 times the normal amount in low and high expressors, respectively. Mouse apo E was decreased by 35 and 77% in low and high expressor mice, respectively. Under electron microscopy, VLDL particles from low and high expressor mice were found to have a larger mean diameter, 55.2 +/- 16.6 and 58.2 +/- 17.8 nm, respectively, compared with 51.0 +/- 13.4 nm from control mice. In in vivo studies, radiolabeled VLDL fractional catabolic rate (FCR) was reduced in low and high expressor mice to 2.58 and 0.77 pools/h, respectively, compared with 7.67 pools/h in controls, with no significant differences in the VLDL production rates. In an attempt to explain the reduced VLDL FCR in transgenic mice, tissue lipoprotein lipase (LPL) activity was determined in control and high expressor mice and no differences were observed. Also, VLDLs obtained from control and high expressor mice were found to be equally good substrates for purified LPL. Thus excess apo CIII in HuCIIITg mice does not cause reduced VLDL FCR by suppressing the amount of extractable LPL in tissues or making HuCIIITg VLDL a bad substrate for LPL. Tissue uptake of VLDL was studied in hepatoma cell cultures, and VLDL from transgenic mice was found to be taken up much more slowly than control VLDL (P < 0.0001), indicating that HuCIIITg VLDL is not well recognized by lipoprotein receptors. Additional in vivo studies with Triton-treated mice showed increased VLDL triglyceride, but not apo B, production in the HuCIIITg mice compared with controls. Tissue culture studies with primary hepatocytes showed a modest increase in triglyceride, but not apo B or total protein, secretion in high expressor mice compared with controls. In summary, hypertriglyceridemia in HuCIIITg mice appears to result primarily from decreased tissue uptake of triglyceride-rich particles from the circulation, which is most likely due to increased apo CIII and decreased apo E on VLDL particles. the HuCIIITg mouse appears to be a suitable animal model of primary familial hypertriglyceridemia, and these studies suggest a possible mechanism for this common lipoprotein disorder. Images PMID:1430212
Kass, Daniel; McKelvey, Wendy; Carlton, Elizabeth; Hernandez, Marta; Chew, Ginger; Nagle, Sean; Garfinkel, Robin; Clarke, Brian; Tiven, Julius; Espino, Christian; Evans, David
2009-01-01
Background Cockroaches and mice, which are common in urban homes, are sources of allergens capable of triggering asthma symptoms. Traditional pest control involves the use of scheduled applications of pesticides by professionals as well as pesticide use by residents. In contrast, integrated pest management (IPM) involves sanitation, building maintenance, and limited use of least toxic pesticides. Objectives We implemented and evaluated IPM compared with traditional practice for its impact on pests, allergens, pesticide use, and resident satisfaction in a large urban public housing authority. Methods We assigned IPM or control status to 13 buildings in five housing developments, and evaluated conditions at baseline, 3 months, and 6 months in 280 apartments in Brooklyn and Manhattan, in New York City (New York). We measured cockroach and mouse populations, collected cockroach and mouse urinary protein allergens in dust, and interviewed residents. All statistical models controlled for baseline levels of pests or allergens. Results Compared with controls, apartments receiving IPM had significantly lower counts of cockroaches at 3 months and greater success in reducing or sustaining low counts of cockroaches at both 3 and 6 months. IPM was associated with lower cockroach allergen levels in kitchens at 3 months and in beds and kitchens at 6 months. Pesticide use was reduced in IPM relative to control apartments. Residents of IPM apartments also rated building services more positively. Conclusions In contrast to previous IPM studies, which involved extensive cleaning, repeat visits, and often extensive resident education, we found that an easily replicable single IPM visit was more effective than the regular application of pesticides alone in managing pests and their consequences. PMID:19672400
1992-01-01
Mice expressing the minor lymphocyte stimulation antigens, Mls-1a, -2a, or -3a, singly on the B10.BR background have been generated. Mls phenotypes correlate with the integration of mouse mammary tumor viruses (MTV) in the mouse genome. The open reading frames within the 3' long terminal repeats of the integrated MTVs 1, 3, 6, and 13 encode V beta 3-specific superantigens. Sequence data for these viral superantigens is presented, indicating that it is the COOH-terminal portion of the viral superantigen that interacts with the T cell receptor V beta element. PMID:1309854
A candidate model for Angelman syndrome in the mouse.
Cattanach, B M; Barr, J A; Beechey, C V; Martin, J; Noebels, J; Jones, J
1997-07-01
Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are well-recognized examples of imprinting in humans. They occur most commonly with paternal and maternal 15q11-13 deletions, but also with maternal and paternal disomy. Both syndromes have also occurred more rarely in association with smaller deletions seemingly causing abnormal imprinting. A putative mouse model of PWS, occurring with maternal duplication (partial maternal disomy) for the homologous region, has been described in a previous paper but, although a second imprinting effect that could have provided a mouse model of AS was found, it appeared to be associated with a slightly different region of the chromosome. Here, we provide evidence that the same region is in fact involved and further demonstrate that animals with paternal duplication for the region exhibit characteristics of AS patients. A mouse model of AS is, therefore, strongly indicated.
Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo
Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M.; Dong, Zigang
2010-01-01
Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1α expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70S6K in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033
Connective tissue changes in a mouse model of vein graft disease.
Schachner, T; Heiss, S; Mayr, T; Steger, C; Zipponi, D; Reisinger, P; Bonaros, N; Laufer, G; Bonatti, J
2008-04-01
The extracellular matrix plays an important physiological role in the architecture of the vascular wall. In arterialized vein grafts severe early changes, such as thrombosis and neointimal hyperplasia occur. Paclitaxel is in clinical use as antiproliferative coating of coronary stents. We aimed to investigate the early connective tissue changes in arterialized vein grafts and the influence of perivascular paclitaxel treatment in an in vivo model. C57 black mice underwent interposition of the vena cava into the carotid artery. Neointimal hyperplasia, thrombosis, acid mucopolysaccharides (Alcian), collagen fibers (trichrome Masson), elastic fibers, and apoptosis rate (TUNEL) were quantified in paclitaxel treated veins and controls. In both, controls and paclitaxel treated vein grafts acid mucopolysaccharides and elastic fibers were found predominantly in the neointima, whereas collagen fibers were found mainly in the media and adventitia. At 4 weeks postoperatively the neointimal thickness in controls was 52 (13-130) microm, whereas in 0.6 mg/mL l paclitaxel treated veins it was 103 (43-318) microm (P=0.094). At 8 weeks postoperatively paclitaxel treated veins showed a significantly increased neointimal thickness of 136 (87-199) microm compared with 79 (62-146) microm in controls (P=0.032). There was no difference in apoptosis rate between the two groups (P=NS). Even with the lowest concentration of 0.008 mg/mL paclitaxel veins showed a neointimal thickness of 67 (46-205) microm at 4 weeks postoperatively (P=NS vs controls). Early vein graft disease is characterised by an accumulation of acid mucopolysaccharides and elastic fibers in the thickened neointima. Paclitaxel treatment increases the neointimal hyperplasia in mouse vein grafts in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miura, Keiji; Kurosawa, Yoshikazu; Hirai, Momoki
1996-06-01
Nucleobindin (Nuc) was first identified as a secreted protein of 55 kDa that promotes production of DNA-specific antibodies in lupus-prone MRL/lpr mice. Analysis of cDNA that encoded Nuc revealed that the protein is composed of a signal peptide, a DNA-binding site, two calcium-binding motifs (EF-hand motifs), and a leucine zipper. In the present study, we analysed the organization of the human gene for Nuc (NUC). It consists of 13 exons that are distributed in a region of 32 kb. The functional motifs listed above are encoded in corresponding exons. NUC was expressed in all organs examined. Comparison of nucleotide sequencesmore » in the promotre regions between human and mouse NCU genes revealed several conserved sequences. Among them, two Sp1-binding sites and a CCAAT box are of particular interest. The promoter is of the TATA-less type, and transcription starts at multiple sites in both the human and the mouse genes. These features suggest that NUC might normally play a role as a housekeeping gene. NUC was located at human chromosome 19q13.2-q13.4. 25 refs., 4 figs., 1 tab.« less
King, Trevor K; Severin, Colette N; Van Eerd, Dwayne; Ibrahim, Selahadin; Cole, Donald; Amick, Ben; Steenstra, Ivan A
2013-01-01
A pilot study examined the effectiveness of a biofeedback mouse in reducing upper extremity pain and discomfort in office workers; in addition, relative mouse use (RMU), satisfaction and the feasibility of running a randomised controlled trial (RCT) in a workplace setting were evaluated. The mouse would gently vibrate if the hand was idle for more than 12 s. The feedback reminded users to rest the arm in neutral, supported postures. Analysis showed a statistically significant reduction in shoulder pain and discomfort for the intervention group at T2 (38.7% lower than controls). Statistically significant differences in RMU time between groups were seen post intervention (-7% at T1 and +15% at T2 for the intervention group). Fifty-five percent of the intervention group was willing to continue using the mouse. It appears feasible to perform an RCT for this type of intervention in a workplace setting. Further study including more participants is suggested. The study findings support the feasibility of conducting randomised control trials in office settings to evaluate ergonomics interventions. The intervention resulted in reduced pain and discomfort in the shoulder. The intervention could be a relevant tool in the reduction of upper extremity musculoskeletal disorder. Further research will better explain the study's preliminary findings.
Jain, Neeraj; Kalailingam, Pazhanichamy; Tan, Kai Wei; Tan, Hui Bing; Sng, Ming Keat; Chan, Jeremy Soon Kiat; Tan, Nguan Soon; Thanabalu, Thirumaran
2016-01-01
Neural-Wiskott Aldrich Syndrome Protein (N-WASP) is expressed ubiquitously, regulates actin polymerization and is essential during mouse development. We have previously shown that N-WASP is critical for cell-ECM adhesion in fibroblasts. To characterize the role of N-WASP in fibroblast for skin development, we generated a conditional knockout mouse model in which fibroblast N-WASP was ablated using the Cre recombinase driven by Fibroblast Specific Protein promoter (Fsp-Cre). N-WASPFKO (N-WASPfl/fl; Fsp-cre) were born following Mendelian genetics, survived without any visible abnormalities for more than 1 year and were sexually reproductive, suggesting that expression of N-WASP in fibroblast is not critical for survival under laboratory conditions. Histological sections of N-WASPFKO mice skin (13 weeks old) showed thicker epidermis with higher percentage of cells staining for proliferation marker (PCNA), suggesting that N-WASP deficient fibroblasts promote keratinocyte proliferation. N-WASPFKO mice skin had elevated collagen content, elevated expression of FGF7 (keratinocyte growth factor) and TGFβ signaling proteins. Wound healing was faster in N-WASPFKO mice compared to control mice and N-WASP deficient fibroblasts were found to have enhanced collagen gel contraction properties. These results suggest that N-WASP deficiency in fibroblasts improves wound healing by growth factor-mediated enhancement of keratinocyte proliferation and increased wound contraction in mice. PMID:27909303
De Cegli, Rossella; Iacobacci, Simona; Flore, Gemma; Gambardella, Gennaro; Mao, Lei; Cutillo, Luisa; Lauria, Mario; Klose, Joachim; Illingworth, Elizabeth; Banfi, Sandro; di Bernardo, Diego
2013-01-01
Gene expression profiles can be used to infer previously unknown transcriptional regulatory interaction among thousands of genes, via systems biology ‘reverse engineering’ approaches. We ‘reverse engineered’ an embryonic stem (ES)-specific transcriptional network from 171 gene expression profiles, measured in ES cells, to identify master regulators of gene expression (‘hubs’). We discovered that E130012A19Rik (E13), highly expressed in mouse ES cells as compared with differentiated cells, was a central ‘hub’ of the network. We demonstrated that E13 is a protein-coding gene implicated in regulating the commitment towards the different neuronal subtypes and glia cells. The overexpression and knock-down of E13 in ES cell lines, undergoing differentiation into neurons and glia cells, caused a strong up-regulation of the glutamatergic neurons marker Vglut2 and a strong down-regulation of the GABAergic neurons marker GAD65 and of the radial glia marker Blbp. We confirmed E13 expression in the cerebral cortex of adult mice and during development. By immuno-based affinity purification, we characterized protein partners of E13, involved in the Polycomb complex. Our results suggest a role of E13 in regulating the division between glutamatergic projection neurons and GABAergic interneurons and glia cells possibly by epigenetic-mediated transcriptional regulation. PMID:23180766
Kashimata, M; Gresik, E W
1997-02-01
Epidermal growth factor (EGF) and transforming growth factor-alpha (TGF-alpha) regulate branching morphogenesis of fetal mouse submandibular gland (SMG) rudiments in vitro. The EGF system (EGF, TGF-alpha, and their shared receptor, EGFR) also regulates expression of integrins and their ligands in the extracellular matrix. We show here that inhibition of EGFR tyrosine-kinase activity by a tyrphostin retards in vitro development of SMGs. Using total RNA isolated from pooled SMGs taken from intact mouse fetuses, mRNA transcripts for EGF, TGF-alpha, and EGFR were detected by reverse transcription-polymerase chain reaction (RT-PCR), and age-dependent variations in the levels of these mRNA were quantitatively determined by nuclease protection assays. These findings suggest that the EGF system is operative in the in vivo development of this gland. alpha6-Integrin subunit was localized by immunofluorescence at the basal surface of epithelial cells. Branching morphogenesis of cultured SMG rudiments was inhibited by anti-alpha6 antibodies. Synthesis of alpha6-subunit in cultured SMGs, detected by metabolic labeling and immunoprecipitation, was increased by EGF and drastically reduced by tyrphostin. RT-PCR revealed that mRNAs for alpha6- and beta1- and beta4-integrin subunits are expressed at all ages between embryonic day 13 and postnatal day 7. These findings suggest that 1) the EGF system is a physiologic regulator of development of fetal mouse SMG, and 2) one mechanism by which it acts may be by regulating expression of integrins, which in turn control interaction of epithelial cells with the extracellular matrix.
Percival, Justin M; Whitehead, Nicholas P; Adams, Marvin E; Adamo, Candace M; Beavo, Joseph A; Froehner, Stanley C
2012-09-01
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy caused by mutations in the dystrophin gene. Loss of dystrophin initiates a progressive decline in skeletal muscle integrity and contractile capacity which weakens respiratory muscles including the diaphragm, culminating in respiratory failure, the leading cause of morbidity and mortality in DMD patients. At present, corticosteroid treatment is the primary pharmacological intervention in DMD, but has limited efficacy and adverse side effects. Thus, there is an urgent need for new safe, cost-effective, and rapidly implementable treatments that slow disease progression. One promising new approach is the amplification of nitric oxide-cyclic guanosine monophosphate (NO-cGMP) signalling pathways with phosphodiesterase 5 (PDE5) inhibitors. PDE5 inhibitors serve to amplify NO signalling that is attenuated in many neuromuscular diseases including DMD. We report here that a 14-week treatment of the mdx mouse model of DMD with the PDE5 inhibitor sildenafil (Viagra(®), Revatio(®)) significantly reduced mdx diaphragm muscle weakness without impacting fatigue resistance. In addition to enhancing respiratory muscle contractility, sildenafil also promoted normal extracellular matrix organization. PDE5 inhibition slowed the establishment of mdx diaphragm fibrosis and reduced matrix metalloproteinase-13 (MMP-13) expression. Sildenafil also normalized the expression of the pro-fibrotic (and pro-inflammatory) cytokine tumour necrosis factor α (TNFα). Sildenafil-treated mdx diaphragms accumulated significantly less Evans Blue tracer dye than untreated controls, which is also indicative of improved diaphragm muscle health. We conclude that sildenafil-mediated PDE5 inhibition significantly reduces diaphragm respiratory muscle dysfunction and pathology in the mdx mouse model of Duchenne muscular dystrophy. This study provides new insights into the therapeutic utility of targeting defects in NO-cGMP signalling with PDE5 inhibitors in dystrophin-deficient muscle. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Blake, Linda C.; Roy, Anuradha; Neul, David; Schoenen, Frank J.; Aubé, Jeffrey; Scott, Emily E.
2013-01-01
Purpose 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Methods Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is the major challenge in compound design. Results A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Conclusions Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure. PMID:23756756
Szeto, Grace P Y; Straker, Leon M; O'Sullivan, Peter B
2009-01-01
Do symptomatic female office workers perform computing tasks with higher cervical postural muscle loads (in terms of higher amplitudes and less muscular rest) and more discomfort compared with asymptomatic individuals? Are these differences in postural muscle loads consistent across bilateral (typing) and unilateral (mousing) conditions? an experimental case-control study. 18 symptomatic female office workers and 21 asymptomatic female office workers. Three conditions (typing, mousing, and type-and-mouse) were performed in random order. Muscle load was measured as median amplitude and gap frequency using surface EMG of bilateral cervical erector spinae and upper trapezius. Discomfort was measured using a numerical rating scale. The case group demonstrated 4.3% (95% CI 0.1 to 8.4) higher amplitude during typing and 3.5% (95% CI 0.1 to 6.9) higher amplitude during type-and-mouse in the right cervical erector spinae compared with the control group. There was a similar difference between groups in the left cervical erector spinae which also demonstrated a 1.2 gaps/min (95% CI -2.3 to 0.0) lower frequency during typing. The case group had significantly higher discomfort during all conditions compared with the control group. The case group demonstrated higher median amplitudes and lower gap frequencies than the control group during bilateral conditions (typing and type-and-mouse) compared with unilateral conditions (mousing) for both muscle groups. There was increased amplitude and decreased muscular rest in the cervical erector spinae of office workers performing typing and mousing tasks. These findings may represent a mechanism underlying computer-related musculoskeletal disorders.
Tablet PC interaction with digital micromirror device (DMD)
NASA Astrophysics Data System (ADS)
Refai, Hakki H.; Dahshan, Mostafa H.; Sluss, James J., Jr.
2007-02-01
Digital light processing (DLP) is an innovative display technology that uses an optical switch array, known as a digital micromirror device (DMD), which allows digital control of light. To date, DMDs have been used primarily as high-speed spatial light modulators for projector applications. A tablet PC is a notebook or slate-shaped mobile PC. Its touch screen or digitizing tablet technology allows the user to operate the notebook with a stylus or digital pen instead of using a keyboard or mouse. In this paper, we describe an interface solution that translates any sketch on the tablet PC screen to an identical mirror-copy over the cross-section of the DMD micromirrors such that the image of the sketch can be projected onto a special screen. An algorithm has been created to control each single micromirror of the hundreds of thousands of micromirrors that cover the DMD surface. We demonstrate the successful application of a DMD to a high-speed two-dimensional (2D) scanning environment, acquiring the data from the tablet screen and launching its contents to the projection screen; with very high accuracy up to 13.68 μm x 13.68 μm of mirror pitch.
Effect of deoxyribozymes targeting c-Jun on solid tumor growth and angiogenesis in rodents.
Zhang, Guishui; Dass, Crispin R; Sumithran, Eric; Di Girolamo, Nick; Sun, Lun-Quan; Khachigian, Levon M
2004-05-05
The basic region-leucine zipper protein c-Jun has been linked to cell proliferation, transformation, and apoptosis. However, a direct role for c-Jun in angiogenesis has not been shown. We used human microvascular endothelial cells (HMEC-1) transfected with a DNAzyme targeting the c-Jun mRNA (Dz13), related oligonucleotides, or vehicle in in vitro models of microvascular endothelial cell proliferation, migration, chemoinvasion, and tubule formation, a rat model of corneal neovascularization, and a mouse model of solid tumor growth and vascular endothelial growth factor (VEGF)-induced angiogenesis. All statistical tests were two-sided. Compared with mock-transfected cells, HMEC-1 cells transfected with Dz13 expressed less c-Jun protein and possessed lower DNA-binding activity. Dz13 blocked endothelial cell proliferation, migration, chemoinvasion, and tubule formation. Dz13 inhibited the endothelial cell expression and proteolytic activity of MMP-2, a c-Jun-dependent gene. Dz13 inhibited VEGF-induced neovascularization in the rat cornea compared with vehicle control (Dz13 versus vehicle: 4.0 neovessels versus 30.7 neovessels, difference = 26.7 neovessels; P =.004; area occupied by new blood vessels for Dz13 versus vehicle: 0.35 mm2 versus 1.52 mm2, difference = 1.17 mm2; P =.005) as well as solid melanoma growth in mice (Dz13 versus vehicle at 14 days: 108 mm3 versus 283 mm3, difference = 175 mm3; P =.006) with greatly reduced vascular density (Dz13 versus vehicle: 30% versus 100%, difference = 70%; P<.001). DNAzymes targeting c-Jun may have therapeutic potential as inhibitors of tumor angiogenesis and growth.
Honda, Shin-Ichiro; Wakatsuki, Toru; Harada, Nobuhiro
2011-01-01
Aromatase in the mouse brain is expressed only in the nerve cells of specific brain regions with a transient peak during the neonatal period when sexual behaviors become organized. The aromatase-knockout (ArKO) mouse, generated to shed light on the physiological functions of estrogen in the brain, exhibited various abnormal behaviors, concomitant with undetectable estrogen and increased androgen in the blood. To further elucidate the effects of neurosteroidal estrogens on behavioral phenotypes, we first prepared an brain-specific aromatase transgenic (bsArTG) mouse by introduction of a human aromatase transgene controlled under a −6.5 kb upstream region of the brain-specific promoter of the mouse aromatase gene into fertilized mouse eggs, because the −6.5 kb promoter region was previously shown to contain the minimal essential element responsible for brain-specific spatiotemporal expression. Then, an ArKO mouse expressing the human aromatase only in the brain was generated by crossing the bsArTG mouse with the ArKO mouse. The resulting mice (ArKO/bsArTG mice) nearly recovered from abnormal sexual, aggressive, and locomotive (exploratory) behaviors, in spite of having almost the same serum levels of estrogen and androgen as the adult ArKO mouse. These results suggest that estrogens locally synthesized in the specific neurons of the perinatal mouse brain directly act on the neurons and play crucial roles in the organization of neuronal networks participating in the control of sexual, aggressive, and locomotive (exploratory) behaviors. PMID:22654807
Effects of interleukins on connective tissue type mast cells co-cultured with fibroblasts.
Levi-Schaffer, F; Segal, V; Shalit, M
1991-01-01
We investigated the effects of interleukin-2 (IL-2), interleukin-3 (IL-3) and interleukin-4 (IL-4) on mouse and rat peritoneal mast cells (MC) co-cultured with 3T3 fibroblasts (MC/3T3). The continuous presence of these cytokines for 7-9 days in the culture media was neither toxic nor caused proliferation of MC, as determined by the stability of MC numbers in culture. Long-term incubation of mouse MC/3T3 with IL-2 (100 U/ml), IL-3 (50 U/ml), IL-4 (50 U/ml) or a mixture of IL-3 and IL-4 (25 U/ml) induced an increase in basal histamine release of 79.3 +/- 19.0%, 41.0 +/- 17.3%, 25.2 +/- 10.4% and 30.2 +/- 3.2%, respectively, over control cells incubated with medium alone. When rat MC/3T3 were incubated for 7 days with the various interleukins an enhancement in histamine release similar to that observed with mouse MC/3T3 was found. Preincubation (1 hr) of rat MC/3T3 with interleukins prior to immunological activation with anti-IgE antibodies enhanced histamine release. The highest effect was observed with IL-3 + IL-4 (60.4 +/- 10.8% increase) followed by IL-2 (51.5 +/- 4.5%), IL-4 (28.6 +/- 10.3%) and IL-3 (13.2 +/- 4.2%). This study demonstrates that when mouse and rat peritoneal MC are cultured with fibroblasts in the presence of interleukins they do not proliferate, suggesting that they preserve their connective tissue type MC phenotype. Moreover, interleukins display a pro-inflammatory effect on these cells by enhancing both basal and anti-IgE-mediated histamine release. PMID:2016117
Anti-inflammatory effects of alpinone 3-acetate from Alpinia japonica seeds.
Kakegawa, Tomohito; Miyazaki, Aya; Yasukawa, Ken
2016-07-01
We aimed to investigate the bioactive components of Alpinia japonica as anti-inflammatory compounds using searches of the Alpinia genus, and subsequently demonstrated that alpinone 3-acetate markedly inhibits 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation in a mouse model of ear edema. To assess other bioactivities of alpinone 3-acetate, we performed translatome analyses and compared them with those of hydrocortisone. Polysome-associated mRNAs were prepared from alpinone 3-acetate- or hydrocortisone-treated and control cells from 12-O-tetradecanoyiphorbol 13-acetate-induced THP-1-derived macrophages cultured in the presence of Escherichia coli O-111 lipopolysaccharide. Subsequent microarray analysis revealed that alpinone 3-acetate and hydrocortisone upregulated and downregulated the same 155 and 41 genes, respectively. Moreover, direct comparisons of translationally regulated genes indicated 5 and 10 gene probes that were upregulated and downregulated by alpinone 3-acetate and hydrocortisone, respectively. In conclusion, assays of 12-O-tetradecanoyiphorbol 13-acetate-induced inflammation ear edema in mice and polysome profiling of alpinone 3-acetate bioactivities indicated similar medicinal possibilities to those of hydrocortisone.
Scott, L F; Sundaram, S G; Smith, S
1993-09-01
To define both the limits of a mouse embryo bioassay for quality control in an assisted reproductive technology (ART) program and the areas where it can be effectively used. Embryos at the pronuclear and two-cell stage from three different strains of mice were used to assess the effectiveness of this assay for media quality control using five different media routinely used in ART. Pronuclear and two-cell embryos from CD-1 mice were used to test the ability of a mouse embryo bioassay to control for water quality, contaminants in the culture system, and fluctuations in the environmental conditions using a medium, culture system, and scoring technique that were optimized for this strain. The mouse embryo bioassay is not effective in differentiating media appropriate for supporting human embryo development since the development of mouse embryos in vitro is strain, stage, and media related. However, CD-1 embryos were shown to be sensitive to variations in water quality, pH, temperature, incubator conditions, and contaminants in the system when grown in a protein-free medium optimized for their development. Both total blastocyst number and the cell count in the blastocysts were affected. Pronuclear embryos were more sensitive to perturbations in the culture system than two-cell embryos. A mouse embryo bioassay can be effectively used as a means of quality control of water, chemicals, and contact materials and for technique standardization and training in an assisted reproduction program. All the conditions of the test should be defined, pronuclear embryos should be used, and the end point should be fully expanded blastocysts and/or cell numbers in these blastocysts where appropriate.
Sancheti, Harsh; Patil, Ishan; Kanamori, Keiko; Díaz Brinton, Roberta; Zhang, Wei; Lin, Ai-Ling; Cadenas, Enrique
2014-01-01
Alzheimer's disease (AD) is characterized by age-dependent biochemical, metabolic, and physiologic changes. These age-dependent changes ultimately converge to impair cognitive functions. This study was carried out to examine the metabolic changes by probing glucose and tricarboxylic acid cycle metabolism in a 7-month-old triple transgenic mouse model of AD (3xTg-AD). The effect of lipoic acid, an insulin-mimetic agent, was also investigated to examine its ability in modulating age-dependent metabolic changes. Seven-month-old 3xTg-AD mice were given intravenous infusion of [1-13C]glucose followed by an ex vivo 13C nuclear magnetic resonance to determine the concentrations of 13C-labeled isotopomers of glutamate, glutamine, aspartate, gamma aminobutyric acid, and N-acetylaspartate. An intravenous infusion of [1-13C]glucose+[1,2-13C]acetate was given for different periods of time to distinguish neuronal and astrocytic metabolism. Enrichments of glutamate, glutamine, and aspartate were calculated after quantifying the total (12C+13C) concentrations by high-performance liquid chromatography. A hypermetabolic state was clearly evident in 7-month-old 3xTg-AD mice in contrast to the hypometabolic state reported earlier in 13-month-old mice. Hypermetabolism was evidenced by prominent increase of 13C labeling and enrichment in the 3xTg-AD mice. Lipoic acid feeding to the hypermetabolic 3xTg-AD mice brought the metabolic parameters to the levels of nonTg mice. PMID:25099753
Evaluation of the leap motion controller as a new contact-free pointing device.
Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard
2014-12-24
This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8% for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC.
Evaluation of the Leap Motion Controller as a New Contact-Free Pointing Device
Bachmann, Daniel; Weichert, Frank; Rinkenauer, Gerhard
2015-01-01
This paper presents a Fitts' law-based analysis of the user's performance in selection tasks with the Leap Motion Controller compared with a standard mouse device. The Leap Motion Controller (LMC) is a new contact-free input system for gesture-based human-computer interaction with declared sub-millimeter accuracy. Up to this point, there has hardly been any systematic evaluation of this new system available. With an error rate of 7.8 % for the LMC and 2.8% for the mouse device, movement times twice as large as for a mouse device and high overall effort ratings, the Leap Motion Controller's performance as an input device for everyday generic computer pointing tasks is rather limited, at least with regard to the selection recognition provided by the LMC. PMID:25609043
Schubbert, R; Hohlweg, U; Renz, D; Doerfler, W
1998-10-01
We have previously shown that, when administered orally to mice, bacteriophage M13 DNA, as a paradigm foreign DNA without homology to the mouse genome, can persist in fragmented form in the gastrointestinal tract, penetrate the intestinal wall, and reach the nuclei of leukocytes, spleen and liver cells. Similar results were obtained when a plasmid containing the gene for the green fluorescent protein (pEGFP-C1) was fed to mice. In spleen, the foreign DNA was detected in covalent linkage to DNA with a high degree of homology to mouse genes, perhaps pseudogenes, or to authentic E. coli DNA. We have now extended these studies to the offspring of mice that were fed regularly during pregnancy with a daily dose of 50 microg of M13 or pEGFP-C1 DNA. Using the polymerase chain reaction (PCR) or the fluorescent in situ hybridization (FISH) method, foreign DNA, orally ingested by pregnant mice, can be discovered in various organs of fetuses and of newborn animals. The M13 DNA fragments have a length of about 830 bp. In various organs of the mouse fetus, clusters of cells contain foreign DNA as revealed by FISH. The foreign DNA is invariably located in the nuclei. We have never found all cells of the fetus to be transgenic for the foreign DNA. This distribution pattern argues for a transplacental pathway rather than for germline transmission which might be expected only after long-time feeding regimens. In rare cells of three different fetuses, whose mothers have been fed with M 13 DNA during gestation, the foreign DNA was detected by FISH in association with both chromatids. Is maternally ingested foreign DNA a potential mutagen for the developing fetus?
Sancheti, Harsh; Kanamori, Keiko; Patil, Ishan; Díaz Brinton, Roberta; Ross, Brian D; Cadenas, Enrique
2014-01-01
Alzheimer's disease is an age-related neurodegenerative disease characterized by deterioration of cognition and loss of memory. Several clinical studies have shown Alzheimer's disease to be associated with disturbances in glucose metabolism and the subsequent tricarboxylic acid (TCA) cycle-related metabolites like glutamate (Glu), glutamine (Gln), and N-acetylaspartate (NAA). These metabolites have been viewed as biomarkers by (a) assisting early diagnosis of Alzheimer's disease and (b) evaluating the efficacy of a treatment regimen. In this study, 13-month-old triple transgenic mice (a mouse model of Alzheimer's disease (3xTg-AD)) were given intravenous infusion of [1-13C]glucose followed by an ex vivo 13C NMR to determine the concentrations of 13C-labeled isotopomers of Glu, Gln, aspartate (Asp), GABA, myo-inositol, and NAA. Total (12C+13C) Glu, Gln, and Asp were quantified by high-performance liquid chromatography to calculate enrichment. Furthermore, we examined the effects of lipoic acid in modulating these metabolites, based on its previously established insulin mimetic effects. Total 13C labeling and percent enrichment decreased by ∼50% in the 3xTg-AD mice. This hypometabolism was partially or completely restored by lipoic acid feeding. The ability of lipoic acid to restore glucose metabolism and subsequent TCA cycle-related metabolites further substantiates its role in overcoming the hypometabolic state inherent in early stages of Alzheimer's disease. PMID:24220168
Mason, L.C.; Savidge, J.A.; Rodda, G.H.; Yackel Adams, A.A.
2011-01-01
Current methods for controlling the invasive Brown Treesnake (Boiga irregularis) on Guam include a modified minnow trap with a live mouse lure. We investigated the effects on capture success of augmenting these traps with scented guide ropes leading to trap entrances. Initial screening of scent preferences was based on time spent in scented and unscented arms of a Y-maze. Preferences of large and small snakes were scored for six different prey scents (live and carrion gecko, skink, and mouse). Large snakes spent more time in the maze arm scented with live gecko and carrion gecko, whereas small snakes spent more time in the arm scented with carrion mouse and carrion gecko. After the laboratory study, a pilot trapping session was conducted in the field using three treatments (live mouse-scented ropes, carrion gecko-scented ropes, and carrion mouse-scented ropes) and two controls (traps with unscented guide ropes and those with no ropes attached). Contrary to laboratory results, live mouse-scented ropes were most effective. We conducted a second trapping session using live mouse-scented ropes as well as the two controls used in the pilot study. For snakes of below-average to average condition, the number of captures for traps with live mouse-scented ropes was higher than for traps with no ropes. However, for snakes of above-average condition, there were no differences in capture rates between trap treatments. Overall, treatment effects were weaker than latent individual heterogeneity and the influence of snake body size, with large snakes trapped more readily. ?? 2011 Society for the Study of Amphibians and Reptiles.
Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and Perceived Stress
2017-10-01
AWARD NUMBER: W81XWH-13-1-0493 TITLE: Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and Perceived Stress PRINCIPAL INVESTIGATOR...CONTRACT NUMBER Psychosocial Stress and Ovarian Cancer Risk: Metabolomics and Perceived Stress 5b. GRANT NUMBER W81XWH-13-1-0493 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Mouse models suggest that chronic stress promotes ovarian tumorigenesis, but the relationship
Pazos, Patricia; Lima, Luis; Diéguez, Carlos; García, María C.
2014-01-01
The placenta produces a number of signaling molecules including metabolic and reproductive hormones as well as several inflammatory mediators. Among them, Interleukin-6 (IL-6), a well-known immune and metabolic regulator, acts peripherally modulating metabolic function and centrally increasing energy expenditure and reducing body fat. IL-6 interacts with key hypothalamic neuropeptidergic systems controlling energy homeostasis such as those producing the orexigenic/anabolic: neuropeptide Y (NPY) and agouti-related peptide (AgRP) and anorectic/catabolic neuropeptides: proopiomelanocortin (POMC) and cocaine and amphetamine regulated transcript (CART). Human and rat placenta have been identified as source of these neuropeptides, but their expression and regulation in murine placental tissues remain unknown. Therefore, placental mRNA levels of IL-6, NPY, AgRP, POMC, and CART at different pregnancy stages (gestational days 13, 15, and 18) were analyzed by real time PCR, as were the effect of IL-6 deficiency (IL-6 knockout mice) on their placental expression. Our results showed that placenta-derived neuropeptides were regulated by gestational age and IL-6 throughout the second half of mouse pregnancy. These data suggest that IL-6 may participate in the fine tune control of energy balance during pregnancy by extending its action as a metabolic signal to the main organ at the fetomaternal interface: the placenta. PMID:24744782
Shih, Ching-Hsiang
2011-01-01
The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing limb hyperactive behavior to assess whether two persons with attention deficit hyperactivity disorder (ADHD) would be able to actively reduce their limb hyperactive behavior by controlling their favorite stimulation on/off using a gyration air mouse with a newly developed actively limb hyperactive behavior reducing program (ALHBRP). The study was performed according to an ABAB design, in which A represented the baseline and B represented intervention phases. Data showed that both participants significantly increased their time duration of maintaining a static limb posture (TDMSLP) to activate the control system in order to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
Ross, Jeffrey A; Leavitt, Sharon A; Schmid, Judith E; Nelson, Garret B
2012-09-01
The mouse liver tumorigenic conazole fungicides triadimefon and propiconazole have previously been shown to be in vivo mouse liver mutagens in the Big Blue™ transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazole myclobutanil was not mutagenic. DNA sequencing of the mutants recovered from each treatment group as well as from animals receiving control diet revealed that propiconazole- and triadimefon-induced mutations do not represent general clonal expansion of background mutations, and support the hypothesis that they arise from the accumulation of endogenous reactive metabolic intermediates within the liver in vivo. We therefore measured the spectra of endogenous DNA adducts in the livers of mice from these studies to determine if there were quantitative or qualitative differences between mice receiving tumorigenic or nontumorigenic conazoles compared to concurrent control animals. We resolved and quantitated 16 individual adduct spots by (32)P postlabelling and thin layer chromatography using three solvent systems. Qualitatively, we observed the same DNA adducts in control mice as in mice receiving conazoles. However, the 13 adducts with the highest chromatographic mobility were, as a group, present at significantly higher amounts in the livers of mice treated with propiconazole and triadimefon than in their concurrent controls, whereas this same group of DNA adducts in the myclobutanil-treated mice was not different from controls. This same group of endogenous adducts were significantly correlated with mutant frequency across all treatment groups (P = 0.002), as were total endogenous DNA adduct levels (P = 0.005). We hypothesise that this treatment-related increase in endogenous DNA adducts, together with concomitant increases in cell proliferation previously reported to be induced by conazoles, explain the observed increased in vivo mutation frequencies previously reported to be induced by treatment with propiconazole and triadimefon.
Takeda, Kazuhisa; Hozumi, Hiroki; Ohba, Koji; Yamamoto, Hiroaki; Shibahara, Shigeki
2016-01-01
Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided evidence for the link between melanocyte development and the epidermal microenvironment.
Murphy, Sharon E.; von Weymarn, Linda B.; Schutten, Melissa M.; Kassie, Fekadu; Modiano, Jaime F.
2011-01-01
Nicotine replacement therapy (NRT) is often used to maintain smoking cessation. However, concerns exist about the safety of long term NRT use in ex-smokers and its concurrent use in smokers. In this study, we determined the effect of nicotine administration on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumors in A/J mice. Female mice were administered a single dose of NNK (10 μmol) and 0.44 μmol/ml nicotine in the drinking water. Nicotine was administered 2 weeks prior to NNK, 44 weeks after NNK, throughout the experiment, or without NNK treatment. The average weekly consumption of nicotine-containing water was 15 ± 3 mls/mouse, resulting in an estimated daily nicotine dose of 0.9 μmol (0.15 mg) per mouse. Nicotine administration alone for 46 weeks did not increase lung tumor multiplicity (0.32 ± 0.1 tumor/mouse versus 0.53 ± 0.1 tumors/mouse). Lung tumor multiplicity in NNK-treated mice was 18.4 ± 4.5 and was not different than for mice consuming nicotine before or after NNK administration, 21.9 ± 5.3 and 20.0 ± 5.4 tumors per mouse, respectively. Lung tumor multiplicity in animals consuming nicotine both before and after NNK administration was 20.4 ± 5.4. Tumor size and progression of adenomas to carcinomas was also not affected by nicotine consumption. In addition, nicotine consumption had no effect on the level of O6-methylguanine in the lung of NNK-treated mice. These negative findings in a commonly used model of human lung carcinogenesis should lead us to question the interpretation of the many in vitro studies that find nicotine stimulates cancer cell growth. PMID:22027684
Mosińska, P; Jacenik, D; Sałaga, M; Wasilewski, A; Cygankiewicz, A; Sibaev, A; Mokrowiecka, A; Małecka-Panas, E; Pintelon, I; Storr, M; Timmermans, J P; Krajewska, W M; Fichna, J
2018-05-01
The role of fatty acid binding protein 4 (FABP4) in lower gastrointestinal (GI) motility is unknown. We aimed to verify the effect of inhibition of FABP4 on GI transit in vivo, and to determine the expression of FABP4 in mouse and human tissues. Fatty acid binding protein 4 inhibitor, BMS309403, was administered acutely or chronically for 6 and 13 consecutive days and its effect on GI transit was assessed in physiological conditions and in loperamide-induced constipation. Intracellular recordings were made to examine the effects of BMS309403 on colonic excitatory and inhibitory junction potentials. Abdominal pain was evaluated using behavioral pain response. Localization and expression of selected adipokines were determined in the mouse colon and serum using immunohistochemistry and Enzyme-Linked ImmunoSorbent Assay respectively. mRNA expression of FABP4 and selected adipokines in colonic and serum samples from irritable bowel syndrome (IBS) patients and control group were assessed. Acute injection of BMS309403 significantly increased GI motility and reversed inhibitory effect of loperamide. BMS309403 did not change colonic membrane potentials. Chronic treatment with BMS309403 increased the number of pain-induced behaviors. In the mouse serum, level of resistin was significantly decreased after acute administration; no changes in adiponectin level were detected. In the human serum, level of adiponectin and resistin, but not of FABP4, were significantly elevated in patients with constipation-IBS (IBS-C). FABP4 mRNA expression was significantly downregulated in the human colon in IBS-C. Fatty acid binding protein 4 may be involved in IBS pathogenesis and become a novel target in the treatment of constipation-related diseases. © 2017 John Wiley & Sons Ltd.
Enalapril and captopril enhance glutathione-dependent antioxidant defenses in mouse tissues.
de Cavanagh, E M; Inserra, F; Ferder, L; Fraga, C G
2000-03-01
The effect of enalapril and captopril on total glutathione content (GSSG + GSH) and selenium-dependent glutathione peroxidase (Se-GPx) and glutathione reductase (GSSG-Rd) activities was investigated in mouse tissues. CF-1 mice (4-mo-old females) received water containing enalapril (20 mg/l) or captopril (50 mg/l) for 11 wk. Enalapril increased GSSG + GSH content (P < 0.05) in erythrocytes (147%), brain (112%), and lung (67%), and captopril increased GSSG + GSH content in erythrocytes (190%) and brain (132%). Enalapril enhanced Se-GPx activity in kidney cortex (42%) and kidney medulla (23%) and captopril in kidney cortex (30%). GSSG-Rd activity was enhanced by enalapril in erythrocytes (21%), brain (21%), liver (18%), and kidney cortex (53%) and by captopril in erythrocytes (25%), brain (19%), and liver (34%). In vitro erythrocyte oxidant stress was evaluated by thiobarbituric acid-reactive substances (TBARS) production (control 365 +/- 11, enalapril 221 +/- 26, captopril 206 +/- 17 nmol TBARS x g Hb(-1) x h(-1); both P < 0.05 vs. control) and phenylhydrazine-induced methemoglobin (MetHb) formation (control 66.5 +/- 3.5, enalapril 52.9 +/- 0.4, captopril: 56.4 +/- 2.9 micromol MetHb/g Hb; both P < 0.05 vs. control). Both angiotensin-converting enzyme inhibitor treatments were associated with increased nitric oxide production, as assessed by plasma NO-(3) + NO-(2) level determination (control 9.22 +/- 0.64, enalapril 13.7 +/- 1.9, captopril 17.3 +/- 3.0 micromol NO-(3) + NO-(2)/l plasma; both P < 0.05 vs. control). These findings support our previous reports on the enalapril- and captopril-induced enhancement of endogenous antioxidant defenses and include new data on glutathione-dependent defenses, thus furthering current knowledge on the association of ACE inhibition and antioxidants.
High salt reduces the activation of IL-4- and IL-13-stimulated macrophages.
Binger, Katrina J; Gebhardt, Matthias; Heinig, Matthias; Rintisch, Carola; Schroeder, Agnes; Neuhofer, Wolfgang; Hilgers, Karl; Manzel, Arndt; Schwartz, Christian; Kleinewietfeld, Markus; Voelkl, Jakob; Schatz, Valentin; Linker, Ralf A; Lang, Florian; Voehringer, David; Wright, Mark D; Hubner, Norbert; Dechend, Ralf; Jantsch, Jonathan; Titze, Jens; Müller, Dominik N
2015-11-02
A high intake of dietary salt (NaCl) has been implicated in the development of hypertension, chronic inflammation, and autoimmune diseases. We have recently shown that salt has a proinflammatory effect and boosts the activation of Th17 cells and the activation of classical, LPS-induced macrophages (M1). Here, we examined how the activation of alternative (M2) macrophages is affected by salt. In stark contrast to Th17 cells and M1 macrophages, high salt blunted the alternative activation of BM-derived mouse macrophages stimulated with IL-4 and IL-13, M(IL-4+IL-13) macrophages. Salt-induced reduction of M(IL-4+IL-13) activation was not associated with increased polarization toward a proinflammatory M1 phenotype. In vitro, high salt decreased the ability of M(IL-4+IL-13) macrophages to suppress effector T cell proliferation. Moreover, mice fed a high salt diet exhibited reduced M2 activation following chitin injection and delayed wound healing compared with control animals. We further identified a high salt-induced reduction in glycolysis and mitochondrial metabolic output, coupled with blunted AKT and mTOR signaling, which indicates a mechanism by which NaCl inhibits full M2 macrophage activation. Collectively, this study provides evidence that high salt reduces noninflammatory innate immune cell activation and may thus lead to an overall imbalance in immune homeostasis.
Need, utilization, and configuration of a large, multi-G centrifuge on the Space Station
NASA Technical Reports Server (NTRS)
Bonting, Sjoerd L.
1987-01-01
A large, multi-g centrifuge is required on the Space Station (1) to provide valid 1-g controls for the study of zero-g effects on animals and plants and to study readaptation to 1 g; (2) to store animals at 1 g prior to short-term zero-g experimentation; (3) to permit g-level threshold studies of gravity effects. These requirements can be met by a 13-ft-diam., center-mounted centrifuge, on which up to 48 modular habitats with animals (squirrel monkey, rat, mouse) and plants are attached. The advantages of locating this centrifuge with the vivarium, a common environmental control and life support system, a general-purpose work station and storage of food, water, and supplies in an attached short module, are elaborated. Servicing and operation of the centrifuge, as well as minimizing its impact on other Space Station functions are also considered.
Xenogeneic spermatogenesis following transplantation of hamster germ cells to mouse testes.
Ogawa, T; Dobrinski, I; Avarbock, M R; Brinster, R L
1999-02-01
It was recently demonstrated that rat spermatogenesis can occur in the seminiferous tubules of an immunodeficient recipient mouse after transplantation of testis cells from a donor rat. In the present study, hamster donor testis cells were transplanted to mice to determine whether xenogeneic spermatogenesis would result. The hamster diverged at least 16 million years ago from the mouse and produces spermatozoa that are larger than, and have a shape distinctly different from, those of the mouse. In four separate experiments with a total of 13 recipient mice, hamster spermatogenesis was identified in the testes of each mouse. Approximately 6% of the tubules examined demonstrated xenogeneic spermatogenesis. In addition, cryopreserved hamster testis cells generated spermatogenesis in recipients. However, abnormalities were noted in hamster spermatids and acrosomes in seminiferous tubules of recipient mice. Hamster spermatozoa were also found in the epididymis of recipient animals, but these spermatozoa generally lacked acrosomes, and heads and tails were separated. Thus, defects in spermiogenesis occur in hamster spermatogenesis in the mouse, which may reflect a limited ability of endogenous mouse Sertoli cells to support fully the larger and evolutionarily distant hamster germ cell. The generation of spermatogenesis from frozen hamster cells now adds this species to the mouse and rat, in which spermatogonial stem cells also can be cryopreserved. This finding has immediate application to valuable animals of many species, because the cells could be stored until suitable recipients are identified or culture techniques devised to expand the stem cell population.
2010-10-01
including breast (15), head and neck squa- mous carcinoma (18), melanoma, and chondrosarcoma (42). A previous report suggests involvement of MMP13 in the...2003;88: 1318–26. 42. Uria JA, Balbin M, Lopez JM, et al. Collagenase-3 (MMP-13) expres- sion in chondrosarcoma cells and its regulation by basic
Boido, Marina; Piras, Antonio; Valsecchi, Valeria; Spigolon, Giada; Mareschi, Katia; Ferrero, Ivana; Vizzini, Andrea; Temi, Santa; Mazzini, Letizia; Fagioli, Franca; Vercelli, Alessandro
2014-08-01
Mesenchymal stromal cells (MSCs), after intraparenchymal, intrathecal and endovenous administration, have been previously tested for cell therapy in amyotrophic lateral sclerosis in the SOD1 (superoxide dismutase 1) mouse. However, every administration route has specific pros and cons. We administrated human MSCs (hMSCs) in the cisterna lumbaris, which is easily accessible and could be used in outpatient surgery, in the SOD1 G93A mouse, at the earliest onset of symptoms. Control animals received saline injections. Motor behavior was checked starting from 2 months of age until the mice were killed. Animals were killed 2 weeks after transplantation; lumbar motoneurons were stereologically counted, astrocytes and microglia were analyzed and quantified after immunohistochemistry and cytokine expression was assayed by means of real-time polymerase chain reaction. We provide evidence that this route of administration can exert strongly positive effects. Motoneuron death and motor decay were delayed, astrogliosis was reduced and microglial activation was modulated. In addition, hMSC transplantation prevented the downregulation of the anti-inflammatory interleukin-10, as well as that of vascular endothelial growth factor observed in saline-treated transgenic mice compared with wild type, and resulted in a dramatic increase in the expression of the anti-inflammatory interleukin-13. Our results suggest that hMSCs, when intracisternally administered, can exert their paracrine potential, influencing the inflammatory response of the host. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Young Children's Skill in Using a Mouse to Control a Graphical Computer Interface.
ERIC Educational Resources Information Center
Crook, Charles
1992-01-01
Describes a study that investigated the performance of preschoolers and children in the first three years of formal education on tasks that involved skills using a mouse-based control of a graphical computer interface. The children's performance is compared with that of novice adult users and expert users. (five references) (LRW)
Kao, Jonathan C; Nuyujukian, Paul; Ryu, Stephen I; Shenoy, Krishna V
2017-04-01
Communication neural prostheses aim to restore efficient communication to people with motor neurological injury or disease by decoding neural activity into control signals. These control signals are both analog (e.g., the velocity of a computer mouse) and discrete (e.g., clicking an icon with a computer mouse) in nature. Effective, high-performing, and intuitive-to-use communication prostheses should be capable of decoding both analog and discrete state variables seamlessly. However, to date, the highest-performing autonomous communication prostheses rely on precise analog decoding and typically do not incorporate high-performance discrete decoding. In this report, we incorporated a hidden Markov model (HMM) into an intracortical communication prosthesis to enable accurate and fast discrete state decoding in parallel with analog decoding. In closed-loop experiments with nonhuman primates implanted with multielectrode arrays, we demonstrate that incorporating an HMM into a neural prosthesis can increase state-of-the-art achieved bitrate by 13.9% and 4.2% in two monkeys ( ). We found that the transition model of the HMM is critical to achieving this performance increase. Further, we found that using an HMM resulted in the highest achieved peak performance we have ever observed for these monkeys, achieving peak bitrates of 6.5, 5.7, and 4.7 bps in Monkeys J, R, and L, respectively. Finally, we found that this neural prosthesis was robustly controllable for the duration of entire experimental sessions. These results demonstrate that high-performance discrete decoding can be beneficially combined with analog decoding to achieve new state-of-the-art levels of performance.
MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil
NASA Astrophysics Data System (ADS)
Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin
2015-07-01
Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.
The use of twin-screen-based WIMPS in spacecraft control
NASA Astrophysics Data System (ADS)
Klim, R. D.
1990-10-01
The ergonomic problems of designing a sophisticated Windows Icons Mouse Pop-up (WIMP) based twin screen workstation are outlined. These same problems will be encountered by future spacecraft controllers. The design of a modern, advanced workstation for use on a distributed multicontrol center in a multisatellite control system is outlined. The system uses access control mechanisms to ensure that only authorized personnel can undertake certain operations on the workstation. Rules governing the use of windowing features, screen attributes, icons, keyboard and mouse in spacecraft control are discussed.
The Effectiveness of Gaze-Contingent Control in Computer Games.
Orlov, Paul A; Apraksin, Nikolay
2015-01-01
Eye-tracking technology and gaze-contingent control in human-computer interaction have become an objective reality. This article reports on a series of eye-tracking experiments, in which we concentrated on one aspect of gaze-contingent interaction: Its effectiveness compared with mouse-based control in a computer strategy game. We propose a measure for evaluating the effectiveness of interaction based on "the time of recognition" the game unit. In this article, we use this measure to compare gaze- and mouse-contingent systems, and we present the analysis of the differences as a function of the number of game units. Our results indicate that performance of gaze-contingent interaction is typically higher than mouse manipulation in a visual searching task. When tested on 60 subjects, the results showed that the effectiveness of gaze-contingent systems over 1.5 times higher. In addition, we obtained that eye behavior stays quite stabile with or without mouse interaction. © The Author(s) 2015.
Generation of a mouse model for studying the role of upregulated RTEL1 activity in tumorigenesis.
Wu, Xiaoli; Sandhu, Sumit; Nabi, Zinnatun; Ding, Hao
2012-10-01
Regulator of telomere length 1 (RTEL1) is a DNA helicase protein that has been demonstrated to be required for the maintenance of telomere length and genomic stability. It has also been found to be essential for DNA homologous recombination during DNA repairing. Human RTEL1 genomic locus (20q13.3) is frequently amplified in multiple types of human cancers, including hepatocellular carcinoma and gastrointestinal tract tumors, indicating that upregulated RTEL1 activity could be important for tumorigenesis. In this study, we have developed a conditional transgenic mouse model that overexpress mouse Rtel1 in a Cre-excision manner. By crossing with a ubiquitous Cre mouse line, we further demonstrated that these established Rtel1 conditional transgenic mice allow to efficiently and highly express a functional Rtel1 that is able to rescue the embryonic defects of Rtel1 null mouse allele. Furthermore, we demonstrated that more than 70% transgenic mice that widely overexpress Rtel1 developed liver tumors that recapitulate many malignant features of human hepatocellular carcinoma (HCC). Our work not only generated a valuable mouse model for determining the role of RTEL1 in the development of cancers, but also provided the first genetic evidence to support that amplification of RTEL1, as observed in several types of human cancers, is tumorigenic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoflack, J-C.; Mueller, L., E-mail: Lutz.Mueller@roche.com; Fowler, S.
2012-03-15
Introduction: Dalcetrapib is a cholesteryl ester transfer protein (CETP) modulator in clinical assessment for cardiovascular outcome benefits. In compliance with regulatory requirements, dalcetrapib was evaluated in rodent 2-year carcinogenesis bioassays. In the mouse bioassay, male mice demonstrated increased liver weight and statistically increased incidences of hepatocellular adenoma/carcinoma. Hepatic cytochrome p450 (Cyp) 2b10 mRNA induction and increased Cyp2b10 enzyme activity signify activation of hepatic nuclear receptor constitutive androstane receptor (CAR), a widely established promoter of rodent-specific hepatic tumors. We therefore monitored hepatic Cyp2b10 mRNA and its enzyme activity in a subset of dalcetrapib-treated male mice from the bioassay. Methods: Liver samplesmore » were obtained from ∼ 1/3 of male mice from each dose group including vehicle-controls (mean and earliest study day of death 678 and 459 respectively). Quantitative real time PCR (qRT-PCR) was performed to determine Cyp2b10 mRNA expression and Cyp1a-, Cyp2b10- and Cyp3a-selective activities were monitored. Results: Cyp2b10 mRNA was strongly induced by dalcetrapib with an expected wide inter-individual variation (5–1421-fold). Group average fold-induction versus vehicle-controls showed a dose-related increase from 48-fold (250 mg/kg/day) to 160-fold (750 mg/kg/day), which declined slightly at 2000 mg/kg/day (97-fold). Cyp enzyme activities showed approximate doubling of total Cyp P450 content per milligram protein and a 9-fold increase in Cyp2b10-selective pentoxyresorufin O-dealkylase activity (750 mg/kg/day). Discussion: These data from hepatic Cyp2b10 monitoring are strongly suggestive of CAR activation by dalcetrapib, a mechanism devoid of relevance towards hepatocarcinogenesis in humans; results show feasibility of Cyp2b10 as a surrogate marker for this mechanism at cessation of a carcinogenesis bioassay. -- Highlights: ► Liver tumors were induced in male mice by dalcetrapib in a 2-y study (bioassay). ► Cyp2b10 induction typifies activation of nuclear receptor CAR in mouse liver. ► First report of hepatic Cyp2b10 monitoring at the end of a mouse bioassay. ► Cyp2b10 induction supports CAR activation by dalcetrapib in mouse bioassay. ► CAR activation is a mechanism of hepatic tumorigenesis of no relevance to humans.« less
Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR.
Oguro-Ando, A; Rosensweig, C; Herman, E; Nishimura, Y; Werling, D; Bill, B R; Berg, J M; Gao, F; Coppola, G; Abrahams, B S; Geschwind, D H
2015-09-01
Rare maternally inherited duplications at 15q11-13 are observed in ~1% of individuals with an autism spectrum disorder (ASD), making it among the most common causes of ASD. 15q11-13 comprises a complex region, and as this copy number variation encompasses many genes, it is important to explore individual genotype-phenotype relationships. Cytoplasmic FMR1-interacting protein 1 (CYFIP1) is of particular interest because of its interaction with Fragile X mental retardation protein (FMRP), its upregulation in transformed lymphoblastoid cell lines from patients with duplications at 15q11-13 and ASD and the presence of smaller overlapping deletions of CYFIP1 in patients with schizophrenia and intellectual disability. Here, we confirm that CYFIP1 is upregulated in transformed lymphoblastoid cell lines and demonstrate its upregulation in the post-mortem brain from 15q11-13 duplication patients for the first time. To investigate how increased CYFIP1 dosage might predispose to neurodevelopmental disease, we studied the consequence of its overexpression in multiple systems. We show that overexpression of CYFIP1 results in morphological abnormalities including cellular hypertrophy in SY5Y cells and differentiated mouse neuronal progenitors. We validate these results in vivo by generating a BAC transgenic mouse, which overexpresses Cyfip1 under the endogenous promotor, observing an increase in the proportion of mature dendritic spines and dendritic spine density. Gene expression profiling on embryonic day 15 suggested the dysregulation of mammalian target of rapamycin (mTOR) signaling, which was confirmed at the protein level. Importantly, similar evidence of mTOR-related dysregulation was seen in brains from 15q11-13 duplication patients with ASD. Finally, treatment of differentiated mouse neuronal progenitors with an mTOR inhibitor (rapamycin) rescued the morphological abnormalities resulting from CYFIP1 overexpression. Together, these data show that CYFIP1 overexpression results in specific cellular phenotypes and implicate modulation by mTOR signaling, further emphasizing its role as a potential convergent pathway in some forms of ASD.
Meijer, Joost; Zeelenberg, Ingrid S; Sipos, Bence; Roos, Ed
2006-10-01
The chemokine receptor CXCR5 is expressed by B cells and certain T cells and controls their migration into and within lymph nodes. Its ligand BCA-1/CXCL13 is present in lymph nodes and spleen and also in the liver. Surprisingly, we detected CXCR5 in several mouse and human carcinoma cell lines. CXCR5 was particularly prominent in pancreatic carcinoma cell lines and was also detected by immunohistochemistry in 7 of 18 human pancreatic carcinoma tissues. Expression in CT26 colon carcinoma was low in vitro, up-regulated in vivo, and rapidly lost when cells were explanted in vitro. CXCL13 strongly promoted proliferation of CXCR5-transfected CT26 cells in vitro. In the liver, after intrasplenic injection, these CXCR5 transfectants initially grew faster than controls, but the growth rate of control tumors accelerated later to become similar to the transfectants, likely due to the up-regulation of CXCR5. Inhibition of CXCR5 function, by trapping CXCR5 in the endoplasmic reticulum using a CXCL13-KDEL "intrakine," had no effect on initial growth of liver foci but later caused a prolonged growth arrest. In contrast, s.c. and lung tumors of CXCR5- and intrakine-transfected cells grew at similar rates as controls. We conclude that expression of CXCR5 on tumor cells promotes the growth of tumor cells in the liver and, at least for CT26 cells, seems to be required for outgrowth to large liver tumors. Given the limited expression on normal cells, CXCR5 may constitute an attractive target for therapy, particularly for pancreatic carcinoma.
Bolor, Hasbaira; Wakasugi, Noboru; Zhao, Wei Dong; Ishikawa, Akira
2006-04-01
The small testis (Smt) mutant mouse is characterized by a small testis of one third to one half the size of a normal testis, and its spermatogenesis is mostly arrested at early stages of meiosis, although a small number of spermatocytes at the late prophase of meiosis and a few spermatids can sometimes be seen. We performed quantitative trait locus (QTL) analysis of these spermatogenic traits and testis weight using 221 F2 males obtained from a cross between Smt and MOM (Mus musculus molossinus) mice. At the genome-wide 5% level, we detected two QTLs affecting meiosis on chromosomes 4 and 13, and two QTLs for paired testis weight as a percentage of body weight on chromosomes 4 and X. In addition, we found several QTLs for degenerated germ cells and multinuclear giant cells on chromosomes 4, 7 and 13. Interestingly, for cell degeneration, the QTL on chromosome 13 interacted epistatically with the QTL on chromosome 4. These results reveal polygenic participation in the abnormal spermatogenesis and small testis size in the Smt mutant.
Spuler, Martin
2015-08-01
A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonardi, Roberta; Zhang, Yong-Mei; Lykidis, Athanasios
2007-09-07
Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.
Relkovic, Dinko; Doe, Christine M; Humby, Trevor; Johnstone, Karen A; Resnick, James L; Holland, Anthony J; Hagan, Jim J; Wilkinson, Lawrence S; Isles, Anthony R
2010-01-01
The genes in the imprinted cluster on human chromosome 15q11-q13 are known to contribute to psychiatric conditions such as schizophrenia and autism. Major disruptions of this interval leading to a lack of paternal allele expression give rise to Prader-Willi syndrome (PWS), a neurodevelopmental disorder with core symptoms of a failure to thrive in infancy and, on emergence from infancy, learning disabilities and over-eating. Individuals with PWS also display a number of behavioural problems and an increased incidence of neuropsychiatric abnormalities, which recent work indicates involve aspects of frontal dysfunction. To begin to examine the contribution of genes in this interval to relevant psychological and behavioural phenotypes, we exploited the imprinting centre (IC) deletion mouse model for PWS (PWS-IC(+/-)) and the five-choice serial reaction time task (5-CSRTT), which is primarily an assay of visuospatial attention and response control that is highly sensitive to frontal manipulations. Locomotor activity, open-field behaviour and sensorimotor gating were also assessed. PWS-IC(+/-) mice displayed reduced locomotor activity, increased acoustic startle responses and decreased prepulse inhibition of startle responses. In the 5-CSRTT, the PWS-IC(+/-) mice showed deficits in discriminative response accuracy, increased correct reaction times and increased omissions. Task manipulations confirmed that these differences were likely to be due to impaired attention. Our data recapitulate several aspects of the PWS clinical condition, including findings consistent with frontal abnormalities, and may indicate novel contributions of the imprinted genes found in 15q11-q13 to behavioural and cognitive function generally.
Smeland, Olav B; Hadera, Mussie G; McDonald, Tanya S; Sonnewald, Ursula; Borges, Karin
2013-01-01
Although certain metabolic characteristics such as interictal glucose hypometabolism are well established for temporal lobe epilepsy (TLE), its pathogenesis still remains unclear. Here, we performed a comprehensive study of brain metabolism in a mouse model of TLE, induced by pilocarpine–status epilepticus (SE). To investigate glucose metabolism, we injected mice 3.5–4 weeks after SE with [1,2-13C]glucose before microwave fixation of the head. Using 1H and 13C nuclear magnetic resonance spectroscopy, gas chromatography—mass spectrometry and high-pressure liquid chromatography, we quantified metabolites and 13C labeling in extracts of cortex and hippocampal formation (HF). Hippocampal levels of glutamate, glutathione and alanine were decreased in pilocarpine–SE mice compared with controls. Moreover, the contents of N-acetyl aspartate, succinate and reduced nicotinamide adenine dinucleotide (phosphate) NAD(P)H were decreased in HF indicating impairment of mitochondrial function. In addition, the reduction in 13C enrichment of hippocampal citrate and malate suggests decreased tricarboxylic acid (TCA) cycle turnover in this region. In cortex, we found reduced 13C labeling of glutamate, glutamine and aspartate via the pyruvate carboxylation and pyruvate dehydrogenation pathways, suggesting slower turnover of these amino acids and/or the TCA cycle. In conclusion, mitochondrial metabolic dysfunction and altered amino-acid metabolism is found in both cortex and HF in this epilepsy model. PMID:23611869
Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus
Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting
2017-01-01
Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391
Mogal, Ashish; Abdulkadir, Sarki A
2006-04-01
In quantitative RT-PCR (qRT-PCR), analysis of gene expression is dependent on normalization using housekeeping genes such as 18S rRNA, GAPDH and beta actin. However, variability in their expression has been reported to be caused by factors like drug treatment, pathological states and cell-cycle phase. An emerging area of cancer research focuses on identifying the role of epigenetic alterations such as histone modifications and DNA methylation in the initiation and progression of cancer. Histone acetylation is the best studied modification so far and has been probed through the use of histone deacetylase inhibitors (HDACi). Further, modulation of histone acetylation is currently being explored as a therapeutic strategy in the treatment of cancer and HDACis have shown promise in inhibiting tumorigenesis and metastasis. Trichostatin-A (TSA) is the most widely used HDACi. Therefore, we were driven to identify a suitable internal control for RT-PCR following TSA treatment. We performed quantitative RT-PCR analysis using mouse prostate tissue explants, human prostate cancer (LNCaP) cells and human breast cancer (T-47D and ZR-75-1) cells following TSA treatment. Expression of housekeeping genes including 18S rRNA, beta actin, GAPDH and ribosomal highly-basic 23-kDa protein (rb 23-kDa, RPL13A) were compared in vehicle versus TSA treated samples. Our results showed marked variations in 18S rRNA, beta actin mRNA and GAPDH mRNA levels in mouse prostate explants and a human prostate cancer (LNCaP) cell line following TSA treatment. Furthermore, in two human breast cancer cell lines (T-47D and ZR-75-1) 18S rRNA, beta actin mRNA and GAPDH mRNA levels varied significantly. However, RPL13A mRNA levels remained constant in all the conditions tested. Therefore, we recommend use of RPL13A as a standard for normalization during TSA treatment.
Liu, Meng-Yun; Yang, Zhen-Yu; Dai, Wen-Kui; Huang, Jian-Qiong; Li, Yin-Hu; Zhang, Juan; Qiu, Chuang-Zhao; Wei, Chun; Zhou, Qian; Sun, Xin; Feng, Xin; Li, Dong-Fang; Wang, He-Ping; Zheng, Yue-Jie
2017-01-01
AIM To determine whether oral administration of Bifidobacterium infantis CGMCC313-2 (B. infantis CGMCC313-2) inhibits allergen-induced airway inflammation and food allergies in a mouse model. METHODS Ovalbumin (OVA)-induced allergic asthma and β-lactoglobulin-induced food allergy mouse models were used in this study. Following oral administration of B. infantis CGMCC313-2 during or after allergen sensitization, histopathologic changes in the lung and intestine were evaluated by hematoxylin and eosin (HE) staining. In the allergic asthma mouse model, we evaluated the proportion of lung-infiltrating inflammatory cells. OVA-specific IgE and IgG1 levels in serum and cytokine levels in bronchoalveolar lavage fluid (BALF) were also assessed. In the food allergy mouse model, the levels of total IgE and cytokines in serum were measured. RESULTS Oral administration of B. infantis CGMCC313-2 during or after allergen sensitization suppressed allergic inflammation in lung and intestinal tissues, while the proportion of infiltrating inflammatory cells was significantly decreased in the BALF of allergic asthma mice. Moreover, B. infantis CGMCC313-2 decreased the serum levels of total IgE in food allergy mice, and reductions in IgE and IgG1 were also observed in OVA-induced allergic asthma mice. The expression of interleukin-4 (IL-4) and IL-13 in both serum and BALF was suppressed following the administration of B. infantis CGMCC313-2, while an effect on serum IL-10 levels was not observed. CONCLUSION B. infantis CGMCC313-2 inhibits the secretion of allergen-induced IgE, IL-4 and IL-13, and attenuates allergic inflammation. PMID:28405142
In Vivo Axial Loading of the Mouse Tibia
Melville, Katherine M.; Robling, Alexander G.
2015-01-01
Summary Non-invasive methods to apply controlled, cyclic loads to the living skeleton are used as an anabolic agent to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days. PMID:25331046
Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann
2009-09-01
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named "Dyc" for "Digit in Y and Carpe" phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over.
Cocquempot, Olivier; Brault, Véronique; Babinet, Charles; Herault, Yann
2009-01-01
Polyalanine expansion diseases are proposed to result from unequal crossover of sister chromatids that increases the number of repeats. In this report we suggest an alternative mechanism we put forward while we investigated a new spontaneous mutant that we named “Dyc” for “Digit in Y and Carpe” phenotype. Phenotypic analysis revealed an abnormal limb patterning similar to that of the human inherited congenital disease synpolydactyly (SPD) and to the mouse mutant model Spdh. Both human SPD and mouse Spdh mutations affect the Hoxd13 gene within a 15-residue polyalanine-encoding repeat in the first exon of the gene, leading to a dominant negative HOXD13. Genetic analysis of the Dyc mutant revealed a trinucleotide expansion in the polyalanine-encoding region of the Hoxd13 gene resulting in a 7-alanine expansion. However, unlike the Spdh mutation, this expansion cannot result from a simple duplication of a short segment. Instead, we propose the fork stalling and template switching (FosTeS) described for generation of nonrecurrent genomic rearrangements as a possible mechanism for the Dyc polyalanine extension, as well as for other polyalanine expansions described in the literature and that could not be explained by unequal crossing over. PMID:19546318
Shipboard Calibration Network Extension Utilizing COTS Products
2014-09-01
to emulate the MCS system console. C. KEYBOARD VIDEO AND MOUSE (KVM) SWITCH A ServSwitch Wizard IP Plus KVM switch is used to allow remote access...9 C. KEYBOARD VIDEO AND MOUSE (KVM) SWITCH .......................... 10 D. ROUTER...mechanical, and electrical KVM Keyboard Video and Mouse LAN Local Area Network MCS Machinery Control Systems NIST National Institute of Standards and
Chumarina, Margarita; Azevedo, Carla; Bigarreau, Julie; Vignon, Clémentine; Kim, Kwang-Soo; Li, Jia-Yi; Roybon, Laurent
2017-03-01
Mouse embryonic stem cell (mESC) lines were derived by crossing heterozygous transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase (TH) promoter, with homozygous alpha-synuclein (aSYN) mice expressing human mutant SNCA A53T under the control of the mouse Prion promoter (MoPrP), or wildtype (WT) mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kim, Jeonghee; Park, Hangue; Ghovanloo, Maysam
2014-01-01
Tongue Drive System (TDS) is a wireless and wearable assistive technology (AT) that enables people with severe disabilities to control their computers, wheelchairs, and electronic gadgets using their tongue motion. We developed the TDS to control smartphone's (iPhone/iPod Touch) built-in and downloadable apps with a customized Bluetooth mouse module by emulating finger taps on the touchscreen. The TDS-iPhone Bluetooth mouse interface was evaluated by four able-bodied subjects to complete a scenario consisting of seven tasks, which were randomly ordered by using touch on the iPhone screen with index finger, a computer mouse on iPhone, and TDS-iPhone Bluetooth mouse interface with tongue motion. Preliminary results show that the average completion times of a scenario with touch, mouse, and TDS are 165.6 ± 14.50 s, 186.1 ± 15.37 s, and 651.6 ± 113.4 s, respectively, showing that the TDS is 84.37% and 81.16% slower than touch and mouse for speed of typing with negligible errors. Overall, considering the limited number of commands and unfamiliarity of the subjects with the TDS, we achieved acceptable results for hands-free functionality. PMID:23366818
Kim, Jeonghee; Park, Hangue; Ghovanloo, Maysam
2012-01-01
Tongue Drive System (TDS) is a wireless and wearable assistive technology (AT) that enables people with severe disabilities to control their computers, wheelchairs, and electronic gadgets using their tongue motion. We developed the TDS to control smartphone's (iPhone/iPod Touch) built-in and downloadable apps with a customized Bluetooth mouse module by emulating finger taps on the touchscreen. The TDS-iPhone Bluetooth mouse interface was evaluated by four able-bodied subjects to complete a scenario consisting of seven tasks, which were randomly ordered by using touch on the iPhone screen with index finger, a computer mouse on iPhone, and TDS-iPhone Bluetooth mouse interface with tongue motion. Preliminary results show that the average completion times of a scenario with touch, mouse, and TDS are 165.6 ± 14.50 s, 186.1 ± 15.37 s, and 651.6 ± 113.4 s, respectively, showing that the TDS is 84.37% and 81.16% slower than touch and mouse for speed of typing with negligible errors. Overall, considering the limited number of commands and unfamiliarity of the subjects with the TDS, we achieved acceptable results for hands-free functionality.
NASA Astrophysics Data System (ADS)
Choi, Woo June; Wang, Ruikang K.
2015-10-01
We report noninvasive, in vivo optical imaging deep within a mouse brain by swept-source optical coherence tomography (SS-OCT), enabled by a 1.3-μm vertical cavity surface emitting laser (VCSEL). VCSEL SS-OCT offers a constant signal sensitivity of 105 dB throughout an entire depth of 4.25 mm in air, ensuring an extended usable imaging depth range of more than 2 mm in turbid biological tissue. Using this approach, we show deep brain imaging in mice with an open-skull cranial window preparation, revealing intact mouse brain anatomy from the superficial cerebral cortex to the deep hippocampus. VCSEL SS-OCT would be applicable to small animal studies for the investigation of deep tissue compartments in living brains where diseases such as dementia and tumor can take their toll.
Benedict, W F; Banerjee, A; Gardner, A; Jones, P A
1977-07-01
Various cancer chemotherapeutic agents including alkylating agents, antimetabolites, and antibiotics or natural products were studied for their ability to produce morphological transformation in the C3H/10T1/2 clone 8 mouse cell line and chromosomal damage in the A(T1)C1-3 hamster cell line following a 24-hr exposure of each agent at different concentrations. Those drugs that were known to be carcinogenic in vivo also produced morphological transformation and chromosomal damage, whereas those agents that have not been shown to be carcinogenic in vivo produced neither transformation nor chromosomal lesions. The concentrations used for these studies were in general similar to those actually reached in the plasma of patients treated with these same drugs for malignant, as well as certain nonmalignant, conditions.
Real-Time Ada Demonstration Project
1989-05-31
automatic self destruct (due to concerns about countermeasures). 12.2.4 Battle Status Battlefield conditions and statistics shall be continuously displayed...Mouse-oata.CON2status, RESPOSE ); -- wait for response if RESPONSE z Mouse-Oata.data new then Receive-Control(MouseData.CM2-data,RESPNSE); - clear out
Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...
Yamamoto, Hiroaki; Shibahara, Shigeki
2016-01-01
Microphthalmia-associated transcription factor (Mitf) is a key regulator for differentiation of melanoblasts, precursors to melanocytes. The mouse homozygous for the black-eyed white (Mitfmi-bw) allele is characterized by the white-coat color and deafness with black eyes due to the lack of melanocytes. The Mitfmi-bw allele carries LINE-1, a retrotransposable element, which results in the Mitf deficiency. Here, we have established the black spotting mouse that was spontaneously arisen from the homozygous Mitfmi-bw mouse lacking melanocytes. The black spotting mouse shows multiple black patches on the white coat, with age-related graying. Importantly, each black patch also contains hair follicles lacking melanocytes, whereas the white-coat area completely lacks melanocytes. RT-PCR analyses of the pigmented patches confirmed that the LINE-1 insertion is retained in the Mitf gene of the black spotting mouse, thereby excluding the possibility of the somatic reversion of the Mitfmi-bw allele. The immunohistochemical analysis revealed that the staining intensity for beta-catenin was noticeably lower in hair follicles lacking melanocytes of the homozygous Mitfmi-bw mouse and the black spotting mouse, compared to the control mouse. In contrast, the staining intensity for beta-catenin and cyclin D1 was higher in keratinocytes of the black spotting mouse, compared to keratinocytes of the control mouse and the Mitfmi-bw mouse. Moreover, the keratinocyte layer appears thicker in the Mitfmi-bw mouse, with the overexpression of Ki-67, a marker for cell proliferation. We also show that the presumptive black spots are formed by embryonic day 15.5. Thus, the black spotting mouse provides the unique model to explore the molecular basis for the survival and death of developing melanoblasts and melanocyte stem cells in the epidermis. These results indicate that follicular melanocytes are responsible for maintaining the epidermal homeostasis; namely, the present study has provided evidence for the link between melanocyte development and the epidermal microenvironment. PMID:26930598
Temporally and spatially controllable gene expression and knockout in mouse urothelium.
Zhou, Haiping; Liu, Yan; He, Feng; Mo, Lan; Sun, Tung-Tien; Wu, Xue-Ru
2010-08-01
Urothelium that lines almost the entire urinary tract performs important functions and is prone to assaults by urinary microbials, metabolites, and carcinogens. To improve our understanding of urothelial physiology and disease pathogenesis, we sought to develop two novel transgenic systems, one that would allow inducible and urothelium-specific gene expression, and another that would allow inducible and urothelium-specific knockout. Toward this end, we combined the ability of the mouse uroplakin II promoter (mUPII) to drive urothelium-specific gene expression with a versatile tetracycline-mediated inducible system. We found that, when constructed under the control of mUPII, only a modified, reverse tetracycline trans-activator (rtTA-M2), but not its original version (rtTA), could efficiently trans-activate reporter gene expression in mouse urothelium on doxycycline (Dox) induction. The mUPII/rtTA-M2-inducible system retained its strict urothelial specificity, had no background activity in the absence of Dox, and responded rapidly to Dox administration. Using a reporter gene whose expression was secondarily controlled by histone remodeling, we were able to identify, colocalize with 5-bromo-2-deoxyuridine incorporation, and semiquantify newly divided urothelial cells. Finally, we established that, when combined with a Cre recombinase under the control of the tetracycline operon, the mUPII-driven rtTA-M2 could inducibly inactivate any gene of interest in mouse urothelium. The establishment of these two new transgenic mouse systems enables the manipulation of gene expression and/or inactivation in adult mouse urothelium at any given time, thus minimizing potential compensatory effects due to gene overexpression or loss and allowing more accurate modeling of urothelial diseases than previously reported constitutive systems.
Linkage of loci associated with two pigment mutations on mouse chromosome 13.
Holcombe, R F; Stephenson, D A; Zweidler, A; Stewart, R M; Chapman, V M; Seidman, J G
1991-08-01
Progeny from one intra- and two inter-specific backcrosses between divergent strains of mice were typed to map multiple markers in relation to two pigment mutations on mouse chromosome 13, beige (bg) and pearl (pe). Both recessive mutants on a C57BL/6J background were crossed separately with laboratory strain PAC (M. domesticus) and the partially inbred M. musculus stock PWK. The intra- and inter-specific F1 hybrids were backcrossed to the C57BL/6J parental strain and DNA was prepared from progeny. Restriction fragment length polymorphisms were used to follow the segregation of alleles in the backcross offspring at loci identified with molecular probes. The linkage analysis defines the association between the bg and pe loci and the loci for the T-cell receptor gamma-chain gene (Tcrg), the spermatocyte specific histone gene (Hist1), the prolactin gene (Prl), the Friend murine leukaemia virus integration site 1 (Fim-1), the murine Hanukuh Factor gene (Muhf/Ctla-3) and the dihydrofolate reductase gene (Dhfr). This data confirms results of prior chromosomal mapping studies utilizing bg as an anchor locus, and provides previously unreported information defining the localization of the prolactin gene on mouse chromosome 13. The relationship of multiple loci in relation to pe is similarly defined. These results may help facilitate localization of the genes responsible for two human syndromes homologous with bg and pe, Chediak-Higashi syndrome and Hermansky-Pudlak syndrome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan
2013-09-06
Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2more » (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin.« less
Tributyltin Exposure Alters Cytokine Levels in Mouse Serum
Lawrence, Shanieek; Pellom, Samuel T.; Shanker, Anil; Whalen, Margaret M.
2016-01-01
Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, KC, MIP1β, MIP2 and RANTES was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40, and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in serum of mice exposed to TBT for less than 24 hr. IL1-β, IL-12βp40, IL-5 and IL-15 were also modulated in mouse serum depending on the specific experiment and the exposure concentration. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES, and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines. PMID:27602597
Tributyltin exposure alters cytokine levels in mouse serum.
Lawrence, Shanieek; Pellom, Samuel T; Shanker, Anil; Whalen, Margaret M
2016-11-01
Tributyltin (TBT), a toxic environmental contaminant, has been widely utilized for various industrial, agricultural and household purposes. Its usage has led to a global contamination and its bioaccumulation in aquatic organisms and terrestrial mammals. Previous studies suggest that TBT has debilitating effects on the overall immune function of animals, rendering them more vulnerable to diseases. TBT (at concentrations that have been detected in human blood) alters secretion of inflammatory cytokines from human lymphocytes ex vivo. Thus, it is important to determine if specified levels of TBT can alter levels of cytokines in an in vivo system. Mice were exposed to biologically relevant concentrations of TBT (200, 100 or 25 nM final concentrations). The quantitative determination of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL2, IL5, IL7, IL12βp40, IL13, IL15, keratinocyte chemoattractant (KC), macrophage inflammatory protein 1β (MIP), MIP2 and regulated on activation normal T-cell-expressed and secreted (RANTES) was performed in mouse sera by MAGPIX analysis and Western blot. Results indicated alterations (both decreases and increases) in several cytokines. The pro-inflammatory cytokines IFNγ, TNFα, IL-1β, IL-2, IL5, IL12βp40 and IL-15 were altered as were the chemokines MIP-1 and RANTES and the anti-inflammatory cytokine IL-13. Increases in IFNγ and TNFα were seen in the serum of mice exposed to TBT for less than 24 h. Levels of IL1β, IL-12 βp40, IL-5 and IL-15 were also modulated in mouse serum, depending on the specific experiment and exposure level. IL-2 was consistently decreased in mouse serum when animals were exposed to TBT. There were also TBT-induced increases in MIP-1β, RANTES and IL-13. These results from human and murine samples clearly suggest that TBT exposures modulate the secretion inflammatory cytokines.
Molecular regulation of urea cycle function by the liver glucocorticoid receptor.
Okun, Jürgen G; Conway, Sean; Schmidt, Kathrin V; Schumacher, Jonas; Wang, Xiaoyue; de Guia, Roldan; Zota, Annika; Klement, Johanna; Seibert, Oksana; Peters, Achim; Maida, Adriano; Herzig, Stephan; Rose, Adam J
2015-10-01
One of the major side effects of glucocorticoid (GC) treatment is lean tissue wasting, indicating a prominent role in systemic amino acid metabolism. In order to uncover a novel aspect of GCs and their intracellular-receptor, the glucocorticoid receptor (GR), on metabolic control, we conducted amino acid and acylcarnitine profiling in human and mouse models of GC/GR gain- and loss-of-function. Blood serum and tissue metabolite levels were determined in Human Addison's disease (AD) patients as well as in mouse models of systemic and liver-specific GR loss-of-function (AAV-miR-GR) with or without dexamethasone (DEX) treatments. Body composition and neuromuscular and metabolic function tests were conducted in vivo and ex vivo, the latter using precision cut liver slices. A serum metabolite signature of impaired urea cycle function (i.e. higher [ARG]:[ORN + CIT]) was observed in human (CTRL: 0.45 ± 0.03, AD: 1.29 ± 0.04; p < 0.001) and mouse (AAV-miR-NC: 0.97 ± 0.13, AAV-miR-GR: 2.20 ± 0.19; p < 0.001) GC/GR loss-of-function, with similar patterns also observed in liver. Serum urea levels were consistently affected by GC/GR gain- (∼+32%) and loss (∼-30%) -of-function. Combined liver-specific GR loss-of-function with DEX treatment revealed a tissue-autonomous role for the GR to coordinate an upregulation of liver urea production rate in vivo and ex vivo, and prevent hyperammonaemia and associated neuromuscular dysfunction in vivo. Liver mRNA expression profiling and GR-cistrome mining identified Arginase I (ARG1) a urea cycle gene targeted by the liver GR. The liver GR controls systemic and liver urea cycle function by transcriptional regulation of ARG1 expression.
Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars
2015-01-01
Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633
Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars
2015-08-07
Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.
How Mouse-tracking Can Advance Social Cognitive Theory.
Stillman, Paul E; Shen, Xi; Ferguson, Melissa J
2018-06-01
Mouse-tracking - measuring computer-mouse movements made by participants while they choose between response options - is an emerging tool that offers an accessible, data-rich, and real-time window into how people categorize and make decisions. In the present article we review recent research in social cognition that uses mouse-tracking to test models and advance theory. In particular, mouse-tracking allows examination of nuanced predictions about both the nature of conflict (e.g., its antecedents and consequences) as well as how this conflict is resolved (e.g., how decisions evolve). We demonstrate how mouse-tracking can further our theoretical understanding by highlighting research in two domains - social categorization and self-control. We conclude with future directions and a discussion of the limitations of mouse-tracking as a method. Copyright © 2018 Elsevier Ltd. All rights reserved.
Cichocki, Michal; Paluszczak, Jaroslaw; Szaefer, Hanna; Piechowiak, Adriana; Rimando, Agnes M; Baer-Dubowska, Wanda
2008-06-01
Resveratrol, a phytoalexin present in grapes, has been reported to inhibit multistage mouse skin carcinogenesis. Recent studies showed that topically applied resveratrol significantly inhibited cyclooxygenase-2 (COX-2) expression and activation of nuclear factor-kappaB (NF-kappaB) induced by tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse epidermis. The aim of the present study was to further explore the effect of resveratrol on TPA-induced signaling pathways in mouse epidermis and to compare with its dimethylether, pterostilbene. Resveratrol and pterostilbene significantly reduced activator protein 1 (AP-1) and NF-kappaB activation. In the case of AP-1, the binding of c-Jun subunit was particularly affected, while only slight effect on c-Fos binding to TPA-responsive element (AP-1 binding consensus sequence) (TRE) site was observed. Both stilbenes inhibited the activation of NF-kappaB by blocking the translocation of p65 to the nucleus and increasing the retention of IkappaBa in the cytosol. The latter might be related to decreased activity of IkappaB kinase and/or proteasome 20S. Reduced activation of transcription factors decreased the expression and activity of COX-2 and inducible nitric oxide synthase (iNOS). In most assays, pterostilbene was either equally or significantly more potent than resveratrol. Pterostilbene might show higher biological activity due to its possible better bioavailability, since substitution of hydroxy with methoxy group increases lipophilicity.
Ren, Jian-zhen; Huo, Ji-rong
2012-01-01
To determine the inhibitory effect of 5-aza-2'-deoxycytidine (5-Aza-CdR) on the growth of human colon carcinoma cells and xenografts in nude mice, to observe its effect on CDH13 gene expression and methylation in the xenografts, and to explore the possible mechanisms. Human colon carcinoma cell line HCT116 cells were treated with 5-Aza-CdR, and the cell morphology was observe by phase contrast microscopy. The cell growth was assessed by MTT assay. A tumor-bearing mouse model was generated by subcutaneous inoculation of human colon carcinoma HCT116 cells into nude mice. The tumor growth in the nude mice was observed, the CDH13 gene expression and its methylation status in the tumors were detected using methylation specific PCR (MSP), RT-PCR, Western blotting and immunohistochemistry. After treatment with 5-Aza-CdR, the inhibition rate of the growth of cultured HCT116 cells was increased as the concentration was increasing. The growth of the xenografts in nude mice was significantly inhibited, and the methylated CDH13 gene was reactivated. After 4 weeks of 5-Aza-CdR treatment, no significant difference was found between the body weights of nude mice in the 5-Aza-CdR group [(18.06 ± 1.29) g] and control group [(17.07 ± 0.84) g], (P > 0.10), and the average volume of xenografts of the 5-Aza-CdR group was (907.00 ± 87.29) mm(3), significantly smaller than the (1370.93 ± 130.20) mm(3) in the control group (P < 0.005). No expression of CDH13 gene was found in the control group. The expression of CDH13 gene in the 5-Aza-CdR group was increased along with the increasing concentration of 5-Aza-CdR. 5-Aza-CdR inhibits the growth of human colon cancer cells in culture and in nude mice, and induces the cancer cells to re-express CDH13 in nude mice. Its mechanism may be that demethylation of the methylated CDH13 promoter induced by 5-Aza-CdR restores CDH13 expression and thus inhibits the tumor growth in nude mice.
Transcriptional Reversion of Cardiac Myocyte Fate During Mammalian Cardiac Regeneration
O’Meara, Caitlin C.; Wamstad, Joseph A.; Gladstone, Rachel; Fomovsky, Gregory M.; Butty, Vincent L.; Shrikumar, Avanti; Gannon, Joseph; Boyer, Laurie A.; Lee, Richard T.
2014-01-01
Rationale Neonatal mice have the capacity to regenerate their hearts in response to injury, but this potential is lost after the first week of life. The transcriptional changes that underpin mammalian cardiac regeneration have not been fully characterized at the molecular level. Objective The objectives of our study were to determine if myocytes revert the transcriptional phenotype to a less differentiated state during regeneration and to systematically interrogate the transcriptional data to identify and validate potential regulators of this process. Methods and Results We derived a core transcriptional signature of injury-induced cardiac myocyte regeneration in mouse by comparing global transcriptional programs in a dynamic model of in vitro and in vivo cardiac myocyte differentiation, in vitro cardiac myocyte explant model, as well as a neonatal heart resection model. The regenerating mouse heart revealed a transcriptional reversion of cardiac myocyte differentiation processes including reactivation of latent developmental programs similar to those observed during de-stabilization of a mature cardiac myocyte phenotype in the explant model. We identified potential upstream regulators of the core network, including interleukin 13 (IL13), which induced cardiac myocyte cell cycle entry and STAT6/STAT3 signaling in vitro. We demonstrate that STAT3/periostin and STAT6 signaling are critical mediators of IL13 signaling in cardiac myocytes. These downstream signaling molecules are also modulated in the regenerating mouse heart. Conclusions Our work reveals new insights into the transcriptional regulation of mammalian cardiac regeneration and provides the founding circuitry for identifying potential regulators for stimulating heart regeneration. PMID:25477501
2013-01-01
Background Copy number variation (CNV), an important source of diversity in genomic structure, is frequently found in clusters called CNV regions (CNVRs). CNVRs are strongly associated with segmental duplications (SDs), but the composition of these complex repetitive structures remains unclear. Results We conducted self-comparative-plot analysis of all mouse chromosomes using the high-speed and large-scale-homology search algorithm SHEAP. For eight chromosomes, we identified various types of large SD as tartan-checked patterns within the self-comparative plots. A complex arrangement of diagonal split lines in the self-comparative-plots indicated the presence of large homologous repetitive sequences. We focused on one SD on chromosome 13 (SD13M), and developed SHEPHERD, a stepwise ab initio method, to extract longer repetitive elements and to characterize repetitive structures in this region. Analysis using SHEPHERD showed the existence of 60 core elements, which were expected to be the basic units that form SDs within the repetitive structure of SD13M. The demonstration that sequences homologous to the core elements (>70% homology) covered approximately 90% of the SD13M region indicated that our method can characterize the repetitive structure of SD13M effectively. Core elements were composed largely of fragmented repeats of a previously identified type, such as long interspersed nuclear elements (LINEs), together with partial genic regions. Comparative genome hybridization array analysis showed that whereas 42 core elements were components of CNVR that varied among mouse strains, 8 did not vary among strains (constant type), and the status of the others could not be determined. The CNV-type core elements contained significantly larger proportions of long terminal repeat (LTR) types of retrotransposon than the constant-type core elements, which had no CNV. The higher divergence rates observed in the CNV-type core elements than in the constant type indicate that the CNV-type core elements have a longer evolutionary history than constant-type core elements in SD13M. Conclusions Our methodology for the identification of repetitive core sequences simplifies characterization of the structures of large SDs and detailed analysis of CNV. The results of detailed structural and quantitative analyses in this study might help to elucidate the biological role of one of the SDs on chromosome 13. PMID:23834397
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emoto, Miho C.; Department of Neurology, Sapporo Medical University School of Medicine, Sapporo, Hokkaido 060-8556; Matsuoka, Yuta
Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index ofmore » the redox status in vivo and mapped as a “redox map”. The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. - Highlights: • Redox status of glutathione-depleted mouse brain was examined with EPR imaging. • Redox status of mouse brain changed depending on glutathione (GSH) levels in brains. • Linear relationship between GSH levels and redox status in brains was found. • Using this relation, estimation of GSH levels in brains is possible from EPR images.« less
Mouse models for human hair loss disorders
Porter, Rebecca M
2003-01-01
The outer surface of the hand, limb and body is covered by the epidermis, which is elaborated into a number of specialized appendages, evolved not only to protect and reinforce the skin but also for social signalling. The most prominent of these appendages is the hair follicle. Hair follicles are remarkable because of their prolific growth characteristics and their complexity of differentiation. After initial embryonic morphogenesis, the hair follicle undergoes repeated cycles of regression and regeneration throughout the lifetime of the organism. Studies of mouse mutants with hair loss phenotypes have suggested that the mechanisms controlling the hair cycle probably involve many of the major signalling molecules used elsewhere in development, although the complete pathway of hair follicle growth control is not yet understood. Mouse studies have also led to the discovery of genes underlying several human disorders. Future studies of mouse hair-loss mutants are likely to benefit the understanding of human hair loss as well as increasing our knowledge of mechanisms controlling morphogenesis and tumorigenesis. PMID:12587927
[Effects of the diet ratio of polyunsaturated fatty acids ω-3/ω-6 on experimental colitis in mice].
Tian, Yu; Tian, Yu-ling; Li, Jun-xia; Dai, Yun; Wang, Hua-hong; Liu, Xin-guang
2013-04-18
To investigate the effect of changed ratio of polyunsaturated fatty acids (PUFA) on dextran sulfate sodium (DSS)-induced colitis in mice. Thirty-two male BALB/c mice were randomly divided into two groups: control group and PUFA group, PUFA group was continuously divided into 3 sub-groups: PUFA ω-3/ω-6 1:3 group, PUFA ω-3/ω-6 1:15 group and PUFA ω-3/ω-6 1:30 group. According to the difference in the sub-groups, PUFA group mice were fed with the corresponding modified diet. The control group was fed with the common diet, whose ratio of PUFA ω-3/ω-6 was 1:15. After eight weeks of different diets, experimental colitis in the three sub-groups of PUFA group was induced by DSS exposure. The mice were placed on three five-day cycles of 30 g/L DSS with ten days of recovery after each cycle, then were sacrificed after the final ten-day period. Overall symptomatic score and histopathological score were evaluated. And levels of mucosal prostaglandin E2 (PGE2) in the proximal and distal colon were measured respectively by enzyme immunoassay. The changed ratio of PUFA ω-3/ω-6 had no effect on the weight gain of the growing mice. Although there were no significant differences among the PUFA groups from the three separate aspects: weight gain, stool character and blood in the stool, there were significant differences among the three groups in overall symptomatic scores. A further comparison showed the overall symptomatic score of 1:3 group was significantly lower than that of the 1:30 group (P<0.05). There were significant differences among the PUFA groups in the histopathological score. The following comparison between the sub-groups showed the histopathological score of the 1:3 group was significantly lower than that of the 1:30 group (P<0.05). One mouse in the 1:30 group died of severe hemorrhage and one mouse also in this group had a huge dysplastic adenomatous polyp. The mucosal PGE2 which could reflect the level of intestinal inflammation showed that in the distal colon, the inflammations were obvious, and the levels of mucosal PGE2 of the distal colon in the 1:15 group [(153.0 ± 49.4) ng/g tissue] and the 1:30 group [(192.4 ± 94.0) ng/g tissue] were significantly higher than that of the control group [(43.2 ± 13.4) ng/g tissue, P<0.05], but there was no significant difference between the 1:3 group [(43.4 ± 8.2) ng/g tissue] and the control group. Although the mucosa damages were sparing in proximal colon, the level of mucosal PGE2 of the proximal colon in 1:30 group [(97.4 ± 64.8) ng/g tissue] markedly increased as compared with the control group [(21.6 ± 16.0) ng/g tissue, P<0.01], there were no differences among the 1:3 group [(36.6 ± 4.6) ng/g tissue], the 1:15 group [(18.8 ± 6.4) ng/g tissue] and the control group. The colonic inflammatory severity and the level of mucosal PGE2 in the experimental colitis mice were affected by the changed ratio of PUFA ω-3/ω-6 in the feed. Increased ratio of PUFA ω-3/ω-6 in the feed had a protective effect on the intestinal mucosa in the experimental colitis mice, otherwise had hazards. Before the inflammation happened, changed ratio of PUFA ω-3/ω-6 firstly altered the local inflammatory factors, such as PGE2, and then affected the inflammatory severity.
Portal, Céline; Gouyer, Valérie; Gottrand, Frédéric; Desseyn, Jean-Luc
2017-01-01
Modification of mucous cell density and gel-forming mucin production are established hallmarks of mucosal diseases. Our aim was to develop and validate a mouse model to study live goblet cell density in pathological situations and under pharmacological treatments. We created a reporter mouse for the gel-forming mucin gene Muc5b. Muc5b-positive goblet cells were studied in the eye conjunctiva by immunohistochemistry and probe-based confocal laser endomicroscopy (pCLE) in living mice. Dry eye syndrome (DES) model was induced by topical application of benzalkonium chloride (BAK) and recombinant interleukine (rIL) 13 was administered to reverse the goblet cell loss in the DES model. Almost 50% of the total of conjunctival goblet cells are Muc5b+ in unchallenged mice. The decrease density of Muc5b+ conjunctival goblet cell population in the DES model reflects the whole conjunctival goblet cell loss. Ten days of BAK in one eye followed by 4 days without any treatment induced a -18.3% decrease in conjunctival goblet cell density. A four days of rIL13 application in the DES model restored the normal goblet cell density. Muc5b is a biological marker of DES mouse models. We bring the proof of concept that our model is unique and allows a better understanding of the mechanisms that regulate gel-forming mucin production/secretion and mucous cell differentiation in the conjunctiva of living mice and can be used to test treatment compounds in mucosal disease models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, R.A.; Dowler, L.L.; Angeloni, S.V.
Electron transfer flavoprotein (composed of {alpha} and {beta} subunits) is an obligatory electron acceptor for several dehydrogenases and is located in the mitochondrial matrix. Electrons accepted by electron transfer flavo-protein (ETF) are transferred to the main mitochondrial respiratory chain by the way of ETF dehydrogenase (ETFDH). In humans, deficiency of ETF or ETFDH leads to glutaric acidemia type II, an inherited metabolic disorder that can be fatal in its neonatal form and is characterized by severe hypoketotic hypoglycemia and acidosis. We used cDNA probes for the Etfdh, Etfb, and Etfa genes to determine localization of these mouse genes to chromosomesmore » 3, 7, and 13. 18 refs., 3 figs.« less
2013-06-01
Psychiatry, 2008. 13(1): p. 4-26. 2. McFarlane, H.G., et al., Autism -like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav, 2008. 7(2): p. 152...63. 3. Brodkin, E.S., BALB/c mice: low sociability and other phenotypes that may be relevant to autism . Behav Brain Res, 2007. 176(1): p. 53-65. 4...S.S., et al., Development of a mouse test for repetitive, restricted behaviors: relevance to autism . Behav Brain Res, 2008. 188(1): p. 178-94. 6
Harnessing the Power of Light to See and Treat Breast Cancer
2011-10-01
generate sarcomas include LSL- KrasG12D/+;Trp53Flox/Flox, BrafCa/+;Trp53 Flox/Flox and BrafCa/Ca;Trp53Flox/Flox.7,8 Soft tissue sarcomas were generated...temporally restricted mouse model of soft tissue sarcoma , Nat Med, 2007. 13(8): p. 992-7. 8. Dankort, D., et al., A new mouse model to explore the...resolution anatomical images of heterogeneous tissue. To do so we are employing the use of two ex vivo test beds: 1) murine sarcoma margins and 2
MACF1 Controls Migration and Positioning of Cortical GABAergic Interneurons in Mice.
Ka, Minhan; Moffat, Jeffrey J; Kim, Woo-Yang
2017-12-01
GABAergic interneurons develop in the ganglionic eminence in the ventral telencephalon and tangentially migrate into the cortical plate during development. However, key molecules controlling interneuron migration remain poorly identified. Here, we show that microtubule-actin cross-linking factor 1 (MACF1) regulates GABAergic interneuron migration and positioning in the developing mouse brain. To investigate the role of MACF1 in developing interneurons, we conditionally deleted the MACF1 gene in mouse interneuron progenitors and their progeny using Dlx5/6-Cre-IRES-EGFP and Nkx2.1-Cre drivers. We found that MACF1 deletion results in a marked reduction and defective positioning of interneurons in the mouse cerebral cortex and hippocampus, suggesting abnormal interneuron migration. Indeed, the speed and mode of interneuron migration were abnormal in the MACF1-mutant brain, compared with controls. Additionally, MACF1-deleted interneurons showed a significant reduction in the length of their leading processes and dendrites in the mouse brain. Finally, loss of MACF1 decreased microtubule stability in cortical interneurons. Our findings suggest that MACF1 plays a critical role in cortical interneuron migration and positioning in the developing mouse brain. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Measurements of radon activity concentration in mouse tissues and organs.
Ishimori, Yuu; Tanaka, Hiroshi; Sakoda, Akihiro; Kataoka, Takahiro; Yamaoka, Kiyonori; Mitsunobu, Fumihiro
2017-05-01
The purpose of this study is to investigate the biokinetics of inhaled radon, radon activity concentrations in mouse tissues and organs were determined after mice had been exposed to about 1 MBq/m 3 of radon in air. Radon activity concentrations in mouse blood and in other tissues and organs were measured with a liquid scintillation counter and with a well-type HP Ge detector, respectively. Radon activity concentration in mouse blood was 0.410 ± 0.016 Bq/g when saturated with 1 MBq/m 3 of radon activity concentration in air. In addition, average partition coefficients obtained were 0.74 ± 0.19 for liver, 0.46 ± 0.13 for muscle, 9.09 ± 0.49 for adipose tissue, and 0.22 ± 0.04 for other organs. With these results, a value of 0.414 for the blood-to-air partition coefficient was calculated by means of our physiologically based pharmacokinetic model. The time variation of radon activity concentration in mouse blood during exposure to radon was also calculated. All results are compared in detail with those found in the literature.
A method for simultaneous echo planar imaging of hyperpolarized 13C pyruvate and 13C lactate
NASA Astrophysics Data System (ADS)
Reed, Galen D.; Larson, Peder E. Z.; von Morze, Cornelius; Bok, Robert; Lustig, Michael; Kerr, Adam B.; Pauly, John M.; Kurhanewicz, John; Vigneron, Daniel B.
2012-04-01
A rapid echo planar imaging sequence for dynamic imaging of [1-13C] lactate and [1-13C] pyruvate simultaneously was developed. Frequency-based separation of these metabolites was achieved by spatial shifting in the phase-encoded direction with the appropriate choice of echo spacing. Suppression of the pyruvate-hydrate and alanine resonances is achieved through an optimized spectral-spatial RF waveform. Signal sampling efficiency as a function of pyruvate and lactate excitation angle was simulated using two site exchange models. Dynamic imaging is demonstrated in a transgenic mouse model, and phantom validations of the RF pulse frequency selectivity were performed.
Gogiashvili, Mikheil; Edlund, Karolina; Gianmoena, Kathrin; Marchan, Rosemarie; Brik, Alexander; Andersson, Jan T; Lambert, Jörg; Madjar, Katrin; Hellwig, Birte; Rahnenführer, Jörg; Hengstler, Jan G; Hergenröder, Roland; Cadenas, Cristina
2017-02-01
Metabolic perturbations resulting from excessive hepatic fat accumulation are poorly understood. Thus, in this study, leptin-deficient ob/ob mice, a mouse model of fatty liver disease, were used to investigate metabolic alterations in more detail. Metabolites were quantified in intact liver tissues of ob/ob (n = 8) and control (n = 8) mice using high-resolution magic angle spinning (HR-MAS) 1 H-NMR. In addition, after demonstrating that HR-MAS 1 H-NMR does not affect RNA integrity, transcriptional changes were measured by quantitative real-time PCR on RNA extracted from the same specimens after HR-MAS 1 H-NMR measurements. Importantly, the gene expression changes obtained agreed with those observed by Affymetrix microarray analysis performed on RNA isolated directly from fresh-frozen tissue. In total, 40 metabolites could be assigned in the spectra and subsequently quantified. Quantification of lactate was also possible after applying a lactate-editing pulse sequence that suppresses the lipid signal, which superimposes the lactate methyl resonance at 1.3 ppm. Significant differences were detected for creatinine, glutamate, glycine, glycolate, trimethylamine-N-oxide, dimethylglycine, ADP, AMP, betaine, phenylalanine, and uridine. Furthermore, alterations in one-carbon metabolism, supported by both metabolic and transcriptional changes, were observed. These included reduced demethylation of betaine to dimethylglycine and the reduced expression of genes coding for transsulfuration pathway enzymes, which appears to preserve methionine levels, but may limit glutathione synthesis. Overall, the combined approach is advantageous as it identifies changes not only at the single gene or metabolite level but also deregulated pathways, thus providing critical insight into changes accompanying fatty liver disease. Graphical abstract A Evaluation of RNA integrity before and after HR-MAS 1 H-NMR of intact mouse liver tissue. B Metabolite concentrations and gene expression levels assessed in ob/ob (steatotic) and ob/+ (control) mice using HR-MAS 1 H-NMR and qRT-PCR, respectively.
Olfactory predator recognition in predator-naïve gray mouse lemurs (Microcebus murinus).
Sündermann, Dina; Scheumann, Marina; Zimmermann, Elke
2008-05-01
Olfactory cues of predators, such as feces, are known to elicit antipredator responses in animals (e.g., avoidance, activity). To date, however, there is little information on olfactory predator recognition in primates. We tested whether the odor of feces of different predator categories (historical Malagasy predators and introduced predators) and of Malagasy nonpredators (control) induces antipredator behavior in captive born, predator-naïve gray mouse lemurs. In an olfactory predator experiment a mouse lemur was exposed to a particular odor, fixed at a preferred location, where the animal was trained to get a reward. The behavior of the mouse lemur toward the respective stimulus category was videotaped and quantified. Results showed that mouse lemurs avoided the place of odor presentation when the odor belonged to a predator. They reacted with a significantly enhanced activity when exposed to odors of carnivores compared to those of nonpredatory controls. These findings are in favor of a genetic predisposition of olfactory predator recognition that might be based on the perception of metabolites from meat digestion. PsycINFO Database Record (c) 2008 APA, all rights reserved.
A novel phantom model for mouse tumor dose assessment under MV beams
Gossman, Michael S.; Das, Indra J.; Sharma, Subhash C.; Lopez, Jeffrey P.; Howard, Candace M.; Claudio, Pier P.
2011-01-01
Purpose In order to determine a mouse’s dose accurately and prior to engaging in live mouse radiobiological research, a tissue-equivalent tumor-bearing phantom mouse was constructed and bored to accommodate detectors. Methods and Materials Comparisons were made between four different types of radiation detectors, each inserted into the phantom mouse for radiation measurement under a 6 MV linear accelerator beam. Dose detection response from a diode, thermoluminescent dosimeters, metal-oxide semiconductor field-effect transistors were used and compared to that of a reference pin-point ionization chamber. Likewise, a computerized treatment planning system was also directly compared. Results Each detector system demonstrated results similar to the dose computed by the therapeutic treatment planning system, although some differences were noted. The average disagreement from a accelerator calibrated output dose prescription in the range of 200–400 cGy were −0.4% ± 0.5σ for the diode, −2.4% ± 2.6σ for the TLD, −2.9% ± 5.0σ for the MOSFET and +1.3% ± 1.4σ for the treatment planning system. Conclusions This phantom mouse design is unique, simple, reproducible and therefore recommended as a standard approach to dosimetry for radiobiological mouse studies by means of any of the detectors used in this study. We fully advocate for treatment planning modeling when possible prior to linac-based dose delivery. PMID:22048493
Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution.
Vierstra, Jeff; Rynes, Eric; Sandstrom, Richard; Zhang, Miaohua; Canfield, Theresa; Hansen, R Scott; Stehling-Sun, Sandra; Sabo, Peter J; Byron, Rachel; Humbert, Richard; Thurman, Robert E; Johnson, Audra K; Vong, Shinny; Lee, Kristen; Bates, Daniel; Neri, Fidencio; Diegel, Morgan; Giste, Erika; Haugen, Eric; Dunn, Douglas; Wilken, Matthew S; Josefowicz, Steven; Samstein, Robert; Chang, Kai-Hsin; Eichler, Evan E; De Bruijn, Marella; Reh, Thomas A; Skoultchi, Arthur; Rudensky, Alexander; Orkin, Stuart H; Papayannopoulou, Thalia; Treuting, Piper M; Selleri, Licia; Kaul, Rajinder; Groudine, Mark; Bender, M A; Stamatoyannopoulos, John A
2014-11-21
To study the evolutionary dynamics of regulatory DNA, we mapped >1.3 million deoxyribonuclease I-hypersensitive sites (DHSs) in 45 mouse cell and tissue types, and systematically compared these with human DHS maps from orthologous compartments. We found that the mouse and human genomes have undergone extensive cis-regulatory rewiring that combines branch-specific evolutionary innovation and loss with widespread repurposing of conserved DHSs to alternative cell fates, and that this process is mediated by turnover of transcription factor (TF) recognition elements. Despite pervasive evolutionary remodeling of the location and content of individual cis-regulatory regions, within orthologous mouse and human cell types the global fraction of regulatory DNA bases encoding recognition sites for each TF has been strictly conserved. Our findings provide new insights into the evolutionary forces shaping mammalian regulatory DNA landscapes. Copyright © 2014, American Association for the Advancement of Science.
Murine Models for Viral Hemorrhagic Fever.
Gonzalez-Quintial, Rosana; Baccala, Roberto
2018-01-01
Hemorrhagic fever (HF) viruses, such as Lassa, Ebola, and dengue viruses, represent major human health risks due to their highly contagious nature, the severity of the clinical manifestations induced, the lack of vaccines, and the very limited therapeutic options currently available. Appropriate animal models are obviously critical to study disease pathogenesis and develop efficient therapies. We recently reported that the clone 13 (Cl13) variant of the lymphocytic choriomeningitis virus (LCMV-Cl13), a prototype arenavirus closely related to Lassa virus, causes in some mouse strains endothelial damage, vascular leakage, platelet loss, and death, mimicking pathological aspects typically observed in Lassa and other HF syndromes. This model has the advantage that the mice used are fully immunocompetent, allowing studies on the contribution of the immune response to disease progression. Moreover, LCMV is very well characterized and exhibits limited pathogenicity in humans, allowing handling in convenient BSL-2 facilities. In this chapter we outline protocols for the induction and analysis of arenavirus-mediated pathogenesis in the NZB/LCMV model, including mouse infection, virus titer determination, platelet counting, phenotypic analysis of virus-specific T cells, and assessment of vascular permeability.
Cai, Yeping; Zhou, Jiansheng; Webb, Dianne C
2009-01-01
Mouse models have provided a significant insight into the role of T-helper (Th) 2 cytokines such as IL-5 and IL-13 in regulating eosinophilia and other key features of asthma. However, the validity of these models can be compromised by inadvertent infection of experimental mouse colonies with pathogens such as oxyurid parasites (pinworms). While the benzimidazole derivative, fenbendazole (FBZ), is commonly used to treat such outbreaks, the effects of FBZ on mouse models of Th2 disease are largely unknown. In this investigation, we show that mice fed FBZ-supplemented food during the in utero and post-weaning period developed attenuated lung eosinophilia, antigen-specific IgG1 and Th2 cytokine responses in a model of asthma. Treatment of the mediastinal lymph node cells from allergic mice with FBZ in vitro attenuated cell proliferation, IL-5 and IL-13 production and expression of the early lymphocyte activation marker, CD69 on CD4(+) T cells and CD19(+) B cells. In addition, eosinophilia and Th2 responses remained attenuated after a 4-week withholding period in allergic mice treated preweaning with FBZ. Thus, FBZ modulates the amplitude of Th2 responses both in vivo and in vitro.
Monitoring blood-flow in the mouse cochlea using an endoscopic laser speckle contrast imaging system
Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia–reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia–reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light. PMID:29489849
Kong, Tae Hoon; Yu, Sunkon; Jung, Byungjo; Choi, Jin Sil; Seo, Young Joon
2018-01-01
Laser speckle contrast imaging (LSCI) enables continuous high-resolution assessment of microcirculation in real-time. We applied an endoscope to LSCI to measure cochlear blood-flow in an ischemia-reperfusion mouse model. We also explored whether using xenon light in combination with LSCI facilitates visualization of anatomical position. Based on a previous preliminary study, the appropriate wavelength for penetrating the thin bony cochlea was 830 nm. A 2.7-mm-diameter endoscope was used, as appropriate for the size of the mouse cochlea. Our endoscopic LSCI system was used to illuminate the right cochlea after dissection of the mouse. We observed changes in the speckle signals when we applied the endoscopic LSCI system to the ischemia-reperfusion mouse model. The anatomical structure of the mouse cochlea and surrounding structures were clearly visible using the xenon light. The speckle signal of the cochlea was scattered, with an intensity that varied between that of the stapes (with the lowest signal), the negative control, and the stapedial artery (with the highest signal), the positive control. In the cochlear ischemia-reperfusion mouse model, the speckle signal of the cochlea decreased during the ischemic phase, and increased during the reperfusion phase, clearly reflecting cochlear blood-flow. The endoscopic LSCI system generates high-resolution images in real-time, allowing visualization of blood-flow and its changes in the mouse cochlea. Anatomical structures were clearly matched using LSCI along with visible light.
NASA Astrophysics Data System (ADS)
Williams, Ifor R.; Kupper, Thomas S.
1994-10-01
Keratinocytes at sites of cutaneous inflammation have increased expression of intercellular adhesion molecule 1 (ICAM-1), a cytokine-inducible adhesion molecule which binds the leukocyte integrins LFA-1 and Mac-1. Transgenic mice were prepared in which the expression of mouse ICAM-1 was targeted to basal keratinocytes by using the human K14 keratin promoter. The level of constitutive expression attained in the transgenic mice exceeded the peak level of ICAM-1 expression induced on nontransgenic mouse keratinocytes in vitro by optimal combinations of interferon γ and tumor necrosis factor α or in vivo by proinflammatory stimuli such as phorbol 12-myristate 13-acetate. In vitro adhesion assays demonstrated that cultured transgenic keratinocytes were superior to normal keratinocytes as a substrate for the LFA-1-dependent binding of mouse T cells, confirming that the transgene-encoded ICAM-1 was expressed in a functional form. However, the high level of constitutive ICAM-1 expression achieved on keratinocytes in vivo in these transgenic mice did not result in additional recruitment of CD45^+ leukocytes into transgenic epidermis, nor did it elicit dermal inflammation. Keratinocyte ICAM-1 expression also did not potentiate contact-hypersensitivity reactions to epicutaneous application of haptens. The absence of a spontaneous phenotype in these transgenic mice was not the result of increased levels of soluble ICAM-1, since serum levels of soluble ICAM-1 were equal in transgenic mice and controls. We conclude that elevated ICAM-1 expression on keratinocytes cannot act independently to influence leukocyte trafficking and elicit cutaneous inflammation.
Roxithromycin treatment of mouse chlamydial salpingitis and protective effect on fertility.
Zana, J; Muffat-Joly, M; Thomas, D; Orfila, J; Salat-Baroux, J; Pocidalo, J J
1991-01-01
We used a mouse model of acute chlamydial salpingitis to evaluate the efficacy of roxithromycin in preventing irreversible inflammatory damage leading to tubal infertility. Female C3H/He mice were genitally inoculated with a human strain of Chlamydia trachomatis and then treated with roxithromycin glutamate subcutaneously. Treatment was initiated either 7 or 10 days postinfection (p.i.) and continued for 7 days at a dosage of 50 or 100 mg/kg of body weight per 24 h. The course of the disease was monitored serologically, bacteriologically, and histologically. At the end of the treatment, the mice were encaged with males and their reproductive capacity was recorded over a 19-week period. The protective effect of roxithromycin was assessed in terms of fertility parameters in comparison with values for noninfected control mice. When treatment was initiated on day 7 p.i. and given in twice-daily 25-mg/kg doses, all the mice remained fertile and the total number of offspring was similar to that of sham-infected mice (17.3 +/- 3.3 versus 17.2 +/- 2.3). When treatment was initiated on day 10 p.i. and given in a single daily dose of 50 or 100 mg/kg, 90 and 70% of the mice, respectively, remained fertile; however, in terms of total offspring, fertility was lower in the group treated with the lower dose (5.6 +/- 1.4 versus 13.0 +/- 3.8). Roxithromycin was found to be effective against C. trachomatis in the mouse genital tract, but fertility was only partially preserved when the time between infection and treatment was prolonged. Images PMID:2039193
Lee, S; Kozlov, S; Hernandez, L; Chamberlain, S J; Brannan, C I; Stewart, C L; Wevrick, R
2000-07-22
Prader-Willi syndrome (PWS) is caused by the loss of expression of imprinted genes in chromosome 15q11-q13. Affected individuals exhibit neonatal hypotonia, developmental delay and childhood-onset obesity. Necdin, a protein implicated in the terminal differentiation of neurons, is the only PWS candidate gene to reduce viability when disrupted in a mouse model. In this study, we have characterized MAGEL2 (also known as NDNL1), a gene with 51% amino acid sequence similarity to necdin and located 41 kb distal to NDN in the PWS deletion region. MAGEL2 is expressed predominantly in brain, the primary tissue affected in PWS and in several fetal tissues as shown by northern blot analysis. MAGEL2 is imprinted with monoallelic expression in control brain, and paternal-only expression in the central nervous system as demonstrated by its lack of expression in brain from a PWS-affected individual. The orthologous mouse gene (Magel2) is located within 150 kb of NDN:, is imprinted with paternal-only expression and is expressed predominantly in late developmental stages and adult brain as shown by northern blotting, RT-PCR and whole-mount RNA in situ hybridization. Magel2 distribution partially overlaps that of NDN:, with strong expression being detected in the central nervous system in mid-gestation mouse embryos by in situ hybridization. We hypothesize that, although loss of necdin expression may be important in the neonatal presentation of PWS, loss of MAGEL2 may be critical to abnormalities in brain development and dysmorphic features in individuals with PWS.
Baseline Muscle Mass Is a Poor Predictor of Functional Overload-Induced Gain in the Mouse Model
Kilikevicius, Audrius; Bunger, Lutz; Lionikas, Arimantas
2016-01-01
Genetic background contributes substantially to individual variability in muscle mass. Muscle hypertrophy in response to resistance training can also vary extensively. However, it is less clear if muscle mass at baseline is predictive of the hypertrophic response. The aim of this study was to examine the effect of genetic background on variability in muscle mass at baseline and in the adaptive response of the mouse fast- and slow-twitch muscles to overload. Males of eight laboratory mouse strains: C57BL/6J (B6, n = 17), BALB/cByJ (n = 7), DBA/2J (D2, n = 12), B6.A-(rs3676616-D10Utsw1)/Kjn (B6.A, n = 9), C57BL/6J-Chr10A/J/NaJ (B6.A10, n = 8), BEH+/+ (n = 11), BEH (n = 12), and DUHi (n = 12), were studied. Compensatory growth of soleus and plantaris muscles was triggered by a 4-week overload induced by synergist unilateral ablation. Muscle weight in the control leg (baseline) varied from 5.2 ± 07 mg soleus and 11.4 ± 1.3 mg plantaris in D2 mice to 18.0 ± 1.7 mg soleus in DUHi and 43.7 ± 2.6 mg plantaris in BEH (p < 0.001 for both muscles). In addition, soleus in the B6.A10 strain was ~40% larger (p < 0.001) compared to the B6. Functional overload increased muscle weight, however, the extent of gain was strain-dependent for both soleus (p < 0.01) and plantaris (p < 0.02) even after accounting for the baseline differences. For the soleus muscle, the BEH strain emerged as the least responsive, with a 1.3-fold increase, compared to a 1.7-fold gain in the most responsive D2 strain, and there was no difference in the gain between the B6.A10 and B6 strains. The BEH strain appeared the least responsive in the gain of plantaris as well, 1.3-fold, compared to ~1.5-fold gain in the remaining strains. We conclude that variation in muscle mass at baseline is not a reliable predictor of that in the overload-induced gain. This suggests that a different set of genes influence variability in muscle mass acquired in the process of normal development, growth, and maintenance, and in the process of adaptive growth of the muscle challenged by overload. PMID:27895593
High-resolution linkage map in the proximity of the host resistance locus Cmv1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Depatie, C.; Muise, E.; Gros, P.
1997-01-15
The mouse chromosome 6 locus Cmv1 controls replication of mouse Cytomegalovirus (MCMV) in the spleen of the infected host. In our effort to clone Cmv1, we have constructed a high-resolution genetic linkage map in the proximity of the gene. For this, a total of 45 DNA markers corresponding to either cloned genes or microsatellites were mapped within a 7.9-cM interval overlapping the Cmv1 region. We have followed the cosegregation of these markers with respect to Cmv1 in a total of 2248 backcross mice from a preexisting interspecific backcross panel of 281 (Mus spretus X C57BL/6J)F1 X C57BL/6J and 2 novelmore » panels of 989 (A/J X C57BL6)F1 X A/J and 978 (BALB/c X C57BL/6J)F1 X BALB/c segregating Cmv1. Combined pedigree analysis allowed us to determine the following gene order and intergene distances (in cM) on the distal region of mouse chromosome 6: D6Mit216-(1.9)-D6Mit336-(2.2)-D6Mit218-(1.0)-D6Mit52-(0.5)-D6Mit194-(0.2)-Nkrp1/D6Mit61/135/257/289/338-(0.4)-Cmv1/Ly49A/D6Mit370-(0.3)-Prp/Kap/D6Mit13/111/219-(0.3)-Tel/D6Mit374/290/220/196/195/110-(1.1)-D6Mit25. Therefore, the minimal genetic interval for Cmv1 of 0.7 cM is defined by 13 tightly linked markers including 2 markers, Ly49A and D6Mit370, that did not show recombination with Cmv1 in 1967 meioses analyzed; the proximal limit of the Cmv1 domain was defined by 8 crossovers between Nkrp1/D6Mit61/135/257/289/338 and Cmv1/Ly49A/D6Mit370, and the distal limit was defined by 5 crossovers between Cmv1/Ly49A/D6Mit370 and Prp/Kap/D6Mit13/111/219. This work demonstrates tight linkage between Cmv1 and genes from the natural killer complex (NKC), such as Nkrp1 and Ly49A suggesting that Cmv1 may represent an NK cell recognition structure encoded in the NKC region. 54 refs., 4 figs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Wilson, John J.; Palaniappan, Ramaswamy
2011-04-01
The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.
Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer
2005-07-01
Edwards, Prostate cancer and supplementation with alpha-tocopherol and beta -carotene: incidence and mortality in a controlled trial. J Natl Cancer ...1-0153 TITLE: Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer ...TITLE AND SUBTITLE Producing a Mouse Model to Explore the Linkages Between Tocopherol 5a. CONTRACT NUMBER Biology and Prostate Cancer 5b. GRANT
Walls, Anne B; Eyjolfsson, Elvar M; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S
2014-08-01
Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little is known about the effect of lower doses of kainate on cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-(13)C]acetate and [1-(13)C]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4,5-(13)C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and (13)C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose of kainate, whereas a higher dose is required to affect neuronal metabolism. The cerebral glycogen content was dose-dependently reduced by kainate supporting a role for glycogen during seizure activity.
Walls, Anne B; Eyjolfsson, Elvar M; Schousboe, Arne; Sonnewald, Ursula; Waagepetersen, Helle S
2014-01-01
Despite the well-established use of kainate as a model for seizure activity and temporal lobe epilepsy, most studies have been performed at doses giving rise to general limbic seizures and have mainly focused on neuronal function. Little is known about the effect of lower doses of kainate on cerebral metabolism and particularly that associated with astrocytes. We investigated astrocytic and neuronal metabolism in the cerebral cortex of adult mice after treatment with saline (controls), a subconvulsive or a mildly convulsive dose of kainate. A combination of [1,2-13C]acetate and [1-13C]glucose was injected and subsequent nuclear magnetic resonance spectroscopy of cortical extracts was employed to distinctively map astrocytic and neuronal metabolism. The subconvulsive dose of kainate led to an instantaneous increase in the cortical lactate content, a subsequent reduction in the amount of [4,5-13C]glutamine and an increase in the calculated astrocytic TCA cycle activity. In contrast, the convulsive dose led to decrements in the cortical content and 13C labeling of glutamate, glutamine, GABA, and aspartate. Evidence is provided that astrocytic metabolism is affected by a subconvulsive dose of kainate, whereas a higher dose is required to affect neuronal metabolism. The cerebral glycogen content was dose-dependently reduced by kainate supporting a role for glycogen during seizure activity. PMID:24824917
Kataoka, Ken; Kim, Dae Joon; Carbajal, Steve; Clifford, John L; DiGiovanni, John
2008-06-01
Constitutive activation of signal transducer and activator of transcription 3 (Stat3) has been found in a variety of human malignancies and has been suggested to play an important role in carcinogenesis. Recently, our laboratory demonstrated that Stat3 is required for the development of skin tumors via two-stage carcinogenesis using skin-specific loss-of-function transgenic mice. To investigate further the role of Stat3 in each stage of chemical carcinogenesis in mouse skin, i.e. initiation and promotion stages, we generated inducible Stat3-deficient mice (K5.Cre-ER(T2) x Stat3(fl/fl)) that show epidermal-specific disruption of Stat3 following topical treatment with 4-hydroxytamoxifen (TM). The epidermis of inducible Stat3-deficient mice treated with TM showed a significant increase in apoptosis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and reduced proliferation following exposure to 12-O-tetradecanoylphorbol-13-acetate. In two-stage skin carcinogenesis assays, inducible Stat3-deficient mice treated with TM during the promotion stage showed a significant delay of tumor development and a significantly reduced number of tumors compared with control groups. Inducible Stat3-deficient mice treated with TM before initiation with DMBA also showed a significant delay in tumor development and a significantly reduced number of tumors compared with control groups. Finally, treatment of inducible Stat3-deficient mice that had existing skin tumors generated by the two-stage carcinogenesis protocol with TM (by intraperitoneal injection) led to inhibition of tumor growth compared with tumors formed in control groups. Collectively, these results directly demonstrate that Stat3 is required for skin tumor development during both the initiation and promotion stages of skin carcinogenesis in vivo.
Seagraves, Nikki J.; McBride, Kim L.
2012-01-01
Maternal phenylketonuria (MPKU) is a syndrome including cardiovascular malformations (CVMs), microcephaly, intellectual impairment, and small for gestational age, caused by in-utero exposure to elevated serum phenylalanine (Phe) due to PKU in the mother. It is becoming a public health concern as more women with PKU reach child bearing age. Although a mouse model of PKU, BTBR Pahenu2, has been available for 20 years, it has not been well utilized for studying MPKU. We used this model to delineate critical parameters in Phe cardiovascular teratogenicity and study the effect of genetic background. Dosing and timing experiments were performed with the BTBR Pahenu2 mouse. A dose response curve was noted, with CVM rates at maternal serum Phe levels <360 μM (control), 360 – 600 μM (low), 600 – 900 μM (mid), and >900μM (high) of 11.86%, 16.67%, 30.86%, and 46.67% respectively. A variety of CVMs were noted on the BTBR background, including double outlet right ventricle (DORV), aortic arch artery (AAA)abnormalities, and ventricular septal defects (VSDs). Timed exposure experiments identified a teratogenic window from embryonic day 8.5-13.5, with higher rates of conotruncal and valve defects occurring in early exposure time and persistent truncus arteriosus (PTA) and aortic arch branching abnormalities occurring with late exposure. Compared to the BTBR strain, N10+ Pahenu2 congenics on the C3H/HeJ background had higher rates of CVMs in general and propensity to left ventricular outflow tract (LVOT) malformations, while the C57B/L6 background had similar CVM rates but predominately AAA abnormalities. We have delineated key parameters of Phe cardiovascular teratogenicity, demonstrated the utility of this MPKU model on different mouse strains, and shown how genetic background profoundly affects the phenotype. PMID:22951387
Urinary Peptides As a Novel Source of T Cell Allergen Epitopes
da Silva Antunes, Ricardo; Pham, John; McMurtrey, Curtis; Hildebrand, William H.; Phillips, Elizabeth; Mallal, Simon; Sidney, John; Busse, Paula; Peters, Bjoern; Schulten, Véronique; Sette, Alessandro
2018-01-01
Mouse allergy in both laboratory workers and in inner-city children is associated with allergic rhinitis and asthma, posing a serious public health concern. Urine is a major source of mouse allergens, as mice spray urine onto their surroundings, where the proteins dry up and become airborne on dust particles. Here, we tested whether oligopeptides that are abundant in mouse urine may contribute to mouse allergic T cell response. Over 1,300 distinct oligopeptides were detected by mass spectrometry analysis of the low molecular weight filtrate fraction of mouse urine (LoMo). Posttranslationally modified peptides were common, accounting for almost half of total peptides. A pool consisting of 225 unique oligopeptides of 13 residues or more in size identified within was tested for its capacity to elicit T cell reactivity in mouse allergic donors. Following 14-day in vitro stimulation of PBMCs, we detected responses in about 95% of donors tested, directed against 116 distinct peptides, predominantly associated with Th2 cytokines (IL-5). Peptides from non-urine related proteins such as epidermal growth factor, collagen, and Beta-globin accounted for the highest response (15.9, 9.1, and 8.1% of the total response, respectively). Peptides derived from major urinary proteins (MUPs), kidney androgen-regulated protein (KAP), and uromodulin were the main T cell targets from kidney or urine related sources. Further ex vivo analysis of enrichment of 4-1BB expressing cells demonstrated that LoMo pool-specific T cell reactivity can be detected directly ex vivo in mouse allergic but not in non-allergic donors. Further cytometric analysis of responding cells revealed a bone fide memory T cell phenotype and confirmed their Th2 polarization. Overall, these data suggest that mouse urine-derived oligopeptides are a novel target for mouse allergy-associated T cell responses, which may contribute to immunopathological mechanisms in mouse allergy. PMID:29755469
NASA Astrophysics Data System (ADS)
2004-09-01
Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a diameter of about 12 miles. Their formation is associated with a Type II supernova, the collapse and subsequent explosion of a massive star. The origin of a pulsar's high velocity is not known, but many astrophysicists suspect that it is directly related to the explosive circumstances involved in the birth of the pulsar. The rapid rotation and strong magnetic field of a pulsar can generate a wind of high-energy matter and antimatter particles that rush out at near the speed of light. These pulsar winds create large, magnetized bubbles of high-energy particles called pulsar wind nebulae. The X-ray and radio data on the Mouse have enabled Gaensler and his colleagues to constrain the properties of the ambient gas, to estimate the velocity of the pulsar, and to analyze the structure of the various shock waves created by the pulsar, the flow of particles away from the pulsar, and the magnetic field in the nebula. Zoom into Chandra's Image of the Mouse Zoom into Chandra's Image of the Mouse Other members of the research team were Eric van der Swaluw (FOM Institute of Physics, The Netherlands), Fernando Camilo (Columbia Univ., New York), Vicky Kaspi (McGill Univ., Montreal), Frederick K. Baganoff (MIT, Cambridge, Mass.), Farhad Yusef-Zadeh (Northwestern), and Richard Manchester (Australia Telescope National Facility). The pulsar in the Mouse was originally detected by Camilo et al. in 2002 using Australia's Parkes radio telescope. Chandra observed the Mouse on October 23 and 24, 2002. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Wolf, Nathan; Newsome, Seth D; Peters, Jacob; Fogel, Marilyn L
2015-08-15
The eco-physiological mechanisms that govern the incorporation and routing of macronutrients from dietary sources into consumer tissues determine the efficacy of stable isotope analysis (SIA) for studying animal foraging ecology. We document how changes in the relative amounts of dietary proteins and lipids affect the metabolic routing of these macronutrients and the consequent effects on tissue-specific discrimination factors in domestic mice using SIA. We also examine the effects of dietary macromolecular content on a commonly used methodological approach: lipid extraction of potential food sources. We used carbon ((13) C) and nitrogen ((15) N) isotopes to examine the routing of carbon from dietary proteins and lipids that were used by mice to biosynthesize hair, blood, muscle, and liver. Growing mice were fed one of four diet treatments in which the total dietary content of C4 -based lipids (δ(13) C = -14.5‰) and C(3) -based proteins (δ(13) C = -27‰) varied inversely between 5% and 40%. The δ(13) C values of mouse tissues increased by approximately 2-6‰ with increasing dietary lipid content. The difference in δ(13) C values between mouse tissues and bulk diet ranged from 0.1 ± 1.5‰ to 2.3 ± 0.6‰ for all diet treatments. The mean (±SD) difference between the δ(13) C values of mouse tissues and dietary protein varied systematically among tissues and ranged from 3.1 ± 0.1‰ to 4.5 ± 0.6‰ for low fat diets and from 5.4 ± 0.4‰ to 10.5 ± 7.3‰ for high fat diets. Mice used some fraction of their dietary lipid carbon to synthesize tissue proteins, suggesting flexibility in the routing of dietary macromolecules to consumer tissues based on dietary macromolecular availability. Consequently, all constituent dietary macromolecules, not just protein, should be considered when determining the relationship between diets and consumer tissues using SIA. In addition, in cases where animals consume diets with high lipid contents, non lipid-extracted prey samples should be analyzed to estimate diets using SIA. Copyright © 2015 John Wiley & Sons, Ltd.
LIANG, WENNA; LI, XIHAI; GAO, BIZHEN; GAN, HUIJUAN; LIN, XUEJUAN; LIAO, LINGHONG; LI, CANDONG
2016-01-01
The temporomandibular joint (TMJ) is a specialized synovial joint that is essential for the movement and function of the mammalian jaw. The TMJ develops from two mesenchymal condensations, and is composed of the glenoid fossa that originates from the otic capsule by intramembranous ossification, the mandibular condyle of the temporal bone and a fibrocartilagenous articular disc derived from a secondary cartilaginous joint by endochondral ossification. However, the development of the TMJ remains unclear. In the present study, the formation and development of the mouse TMJ was investigated between embryonic day 13.5 and post-natal day 180 in order to elucidate the morphological and molecular alterations that occur during this period. TMJ formation appeared to proceed in three stages: Initiation or blastema stage; growth and cavitation stage; and the maturation or completion stage. In order to investigate the activity of certain transcription factors on TMJ formation and development, the expression of extracellular matrix (ECM), sex determining region Y-box 9, runt-related transcription factor 2, Indian hedgehog homolog, Osterix, collagen I, collagen II, aggrecan, total matrix metalloproteinase (MMP), MMP-9 and MMP-13 were detected in the TMJ using in situ and/or immunohistochemistry. The results indicate that the transcription factors, ECM and MMP serve critical functions in the formation and development of the mouse TMJ. In summary, the development of the mouse TMJ was investigated, and the molecular regulation of mouse TMJ formation was partially characterized. The results of the present study may aid the systematic understanding of the physiological processes underlying TMJ formation and development in mice. PMID:26893634
Khoo, T-L; Xiros, N; Guan, F; Orellana, D; Holst, J; Joshua, D E; Rasko, J E J
2013-08-01
The CELL-DYN Emerald is a compact bench-top hematology analyzer that can be used for a three-part white cell differential analysis. To determine its utility for analysis of human and mouse samples, we evaluated this machine against the larger CELL-DYN Sapphire and Sysmex XT2000iV hematology analyzers. 120 human (normal and abnormal) and 30 mouse (normal and abnormal) samples were analyzed on both the CELL-DYN Emerald and CELL-DYN Sapphire or Sysmex XT2000iV analyzers. For mouse samples, the CELL-DYN Emerald analyzer required manual recalibration based on the histogram populations. Analysis of the CELL-DYN Emerald showed excellent precision, within accepted ranges (white cell count CV% = 2.09%; hemoglobin CV% = 1.68%; platelets CV% = 4.13%). Linearity was excellent (R² ≥ 0.99), carryover was minimal (<1%), and overall interinstrument agreement was acceptable for both human and mouse samples. Comparison between the CELL-DYN Emerald and Sapphire analyzers for human samples or Sysmex XT2000iV analyzer for mouse samples showed excellent correlation for all parameters. The CELL-DYN Emerald was generally comparable to the larger reference analyzer for both human and mouse samples. It would be suitable for use in satellite research laboratories or as a backup system in larger laboratories. © 2012 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dumouchel, Tyler; Thorn, Stephanie; Kordos, Myra; DaSilva, Jean; Beanlands, Rob S. B.; deKemp, Robert A.
2012-07-01
Quantification in cardiac mouse positron emission tomography (PET) imaging is limited by the imaging spatial resolution. Spillover of left ventricle (LV) myocardial activity into adjacent organs results in partial volume (PV) losses leading to underestimation of myocardial activity. A PV correction method was developed to restore accuracy of the activity distribution for FDG mouse imaging. The PV correction model was based on convolving an LV image estimate with a 3D point spread function. The LV model was described regionally by a five-parameter profile including myocardial, background and blood activities which were separated into three compartments by the endocardial radius and myocardium wall thickness. The PV correction was tested with digital simulations and a physical 3D mouse LV phantom. In vivo cardiac FDG mouse PET imaging was also performed. Following imaging, the mice were sacrificed and the tracer biodistribution in the LV and liver tissue was measured using a gamma-counter. The PV correction algorithm improved recovery from 50% to within 5% of the truth for the simulated and measured phantom data and image uniformity by 5-13%. The PV correction algorithm improved the mean myocardial LV recovery from 0.56 (0.54) to 1.13 (1.10) without (with) scatter and attenuation corrections. The mean image uniformity was improved from 26% (26%) to 17% (16%) without (with) scatter and attenuation corrections applied. Scatter and attenuation corrections were not observed to significantly impact PV-corrected myocardial recovery or image uniformity. Image-based PV correction algorithm can increase the accuracy of PET image activity and improve the uniformity of the activity distribution in normal mice. The algorithm may be applied using different tracers, in transgenic models that affect myocardial uptake, or in different species provided there is sufficient image quality and similar contrast between the myocardium and surrounding structures.
Crucian, Brian; Sams, Clarence
2015-01-01
Alterations in immune function have been documented during or post-spaceflight and in ground based models of microgravity. Identification of immune parameters that are dysregulated during spaceflight is an important step in mitigating crew health risks during deep space missions. The in vitro analysis of leukocyte activity post-spaceflight in both human and animal species is primarily focused on lymphocytic function. This report completes a broader spectrum analysis of mouse lymphocyte and monocyte changes post 13 days orbital flight (mission STS-135). Analysis includes an examination in surface markers for cell activation, and antigen presentation and co-stimulatory molecules. Cytokine production was measured after stimulation with T-cell mitogen or TLR-2, TLR-4, or TLR-5 agonists. Splenocyte surface marker analysis immediate post-spaceflight and after in vitro culture demonstrated unique changes in phenotypic populations between the flight mice and matched treatment ground controls. Post-spaceflight splenocytes (flight splenocytes) had lower expression intensity of CD4+CD25+ and CD8+CD25+ cells, lower percentage of CD11c+MHC II+ cells, and higher percentage of CD11c+MHC I+ populations compared to ground controls. The flight splenocytes demonstrated an increase in phagocytic activity. Stimulation with ConA led to decrease in CD4+ population but increased CD4+CD25+ cells compared to ground controls. Culturing with TLR agonists led to a decrease in CD11c+ population in splenocytes isolated from flight mice compared to ground controls. Consequently, flight splenocytes with or without TLR-agonist stimulation showed a decrease in CD11c+MHC I+, CD11c+MHC II+, and CD11c+CD86+ cells compared to ground controls. Production of IFN-γ was decreased and IL-2 was increased from ConA stimulated flight splenocytes. This study demonstrated that expression of surface molecules can be affected by conditions of spaceflight and impaired responsiveness persists under culture conditions in vitro. PMID:25970640
Isolation and clonal characterization of hematopoietic and liver stem cells.
Nakauchi, Hiromitsu
2004-11-01
Prospective isolation of stem cells is essential to understanding the mechanisms that control their proliferation and differentiation. Using 9 monoclonal antibodies and fluorescence-activated cell sorting (FACS), we have succeeded in prospectively identifying hematopoietic stem cells (HSCs) in adult mouse bone marrow. Mouse HSCs were exclusively enriched in CD34 negative, c-Kit Sca-1 Lineage Marker (CD34 KSL) cells representing 0.004% of bone marrow (BM) mononuclear cells. When single CD34-KSL cells were transplanted individually into a lethally irradiated mouse, 25% of the recipient mice survived and showed long-term reconstitution of the BM, providing evidence for multipotency and a self-renewal capacity of HSCs. Using a similar approach, we also prospectively identified hepatic stem cells with multilineage differentiation potential and self-renewal capability in the c-Met CD49f c-Kit CD45 Ter119 fraction of cells isolated from day 13.5 fetal mouse liver. On cell transplantation, these cells differentiated into hepatocytes and cholangiocytes. As an alternative to the antibody based stem cell isolation, Hoechst33342 staining is useful. To understand the mechanism responsible for SP phenotype, we performed an expression cloning and identified bcrp-1/ABCG2 gene, a member of ATP binding-cassette (ABC) transporter family. Bcrp-1 is almost exclusively expressed in CD34 KSL cells among blood cells; however their expression in other tissue specific stem cells remains to be studied. With the use of FACS and monoclonal antibodies, hematopoietic and liver stem cells were prospectively isolated and characterized. HSCs could also be purified by Hoechst 33342 staining. By expression cloning, we identify bcrp-1/ABCG2 transporter as a molecule responsible for SP phenotype. Elucidation of the physiological role of bcrp-1/ABCG2 in HSCs may provide us with clues to understand the molecular mechanisms of stem cell self-renewal and differentiation.
High-resolution vascular tissue characterization in mice using 55 MHz ultrasound hybrid imaging
Mahmoud, Ahmed M.; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B.; Martin, Karen H.; Mustafa, S. Jamal; Mukdadi, Osama M.
2012-01-01
Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (TIB), time variance (Tvar), time entropy (TE), frequency integrated backscatter (FIB), wavelet root mean square value (Wrms), and wavelet integrated backscatter (WIB). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A1 adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency = 55 MHz) and commercial array (center frequency = 40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of −10.11 ± 1.92 dB, −12.13 ± 2.13 dB, −7.54 ± 1.45 dB, −5.10 ± 1.06 dB, −5.25 ± 0.94 dB, and −10.23 ± 2.12 dB in TIB, Tvar, TE, FIB, Wrms, WIB hybrid images (n = 10, p < 0.05), respectively. Control segments of normal vascular tissue showed the lowest values of −20.20 ± 2.71 dB, −22.54 ± 4.54 dB, −14.94 ± 2.05 dB, −9.64 ± 1.34 dB, −10.20 ± 1.27 dB, and −19.36 ± 3.24 dB in same hybrid images (n = 6, p < 0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques. PMID:23218908
Non-target effects of an introduced biological control agent on deer mouse ecology.
Pearson, D E; McKelvey, K S; Ruggiero, L F
2000-01-01
Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-central Montana infested with spotted knapweed (Centaurea maculosa) to examine the effects of knapweed invasion and two gall flybiological control agents (Urophora affinis and U. quadrifasciata) on the native deer mouse (Peromyscus maniculatus). Stomach-content analysis revealed that Urophora were the primary food item in Peromyscus diets for most of the year and made up 84-86% of the winter diet. Stomach contents indicated that wild-caught mice consumed on average up to 247 Urophora larvae mouse -1 day -1 , while feeding trials revealed that deer mice could depredate nearly 5 times as many larvae under laboratory conditions. In feeding trials, deer mice selected knapweed seedheads with greater numbers of galls while avoiding uninfested seedheads. When Urophora larvae were present in knapweed seedheads, deer mice selected microhabitats with moderately high (31-45% cover) and high knapweed infestation (≥46% cover). After Urophora emerged and larvae were unavailable to Peromyscus, mice reversed habitat selection to favor sites dominated by native-prairie with low knapweed infestation (0-15%). Establishment of the biological control agent, Urophora spp., has altered deer mouse diets and habitat selection by effecting changes in foraging strategies. Deer mice and other predators may reduce Urophora populations below a threshold necessary to effectively control spotted knapweed.
Zeitlin, Larry; Pettitt, James; Scully, Corinne; Bohorova, Natasha; Kim, Do; Pauly, Michael; Hiatt, Andrew; Ngo, Long; Steinkellner, Herta; Whaley, Kevin J; Olinger, Gene G
2011-12-20
No countermeasures currently exist for the prevention or treatment of the severe sequelae of Filovirus (such as Ebola virus; EBOV) infection. To overcome this limitation in our biodefense preparedness, we have designed monoclonal antibodies (mAbs) which could be used in humans as immunoprotectants for EBOV, starting with a murine mAb (13F6) that recognizes the heavily glycosylated mucin-like domain of the virion-attached glycoprotein (GP). Point mutations were introduced into the variable region of the murine mAb to remove predicted human T-cell epitopes, and the variable regions joined to human constant regions to generate a mAb (h-13F6) appropriate for development for human use. We have evaluated the efficacy of three variants of h-13F6 carrying different glycosylation patterns in a lethal mouse EBOV challenge model. The pattern of glycosylation of the various mAbs was found to correlate to level of protection, with aglycosylated h-13F6 providing the least potent efficacy (ED(50) = 33 μg). A version with typical heterogenous mammalian glycoforms (ED(50) = 11 μg) had similar potency to the original murine mAb. However, h-13F6 carrying complex N-glycosylation lacking core fucose exhibited superior potency (ED(50) = 3 μg). Binding studies using Fcγ receptors revealed enhanced binding of nonfucosylated h-13F6 to mouse and human FcγRIII. Together the results indicate the presence of Fc N-glycans enhances the protective efficacy of h-13F6, and that mAbs manufactured with uniform glycosylation and a higher potency glycoform offer promise as biodefense therapeutics.
Grinding Inside A Toroidal Cavity
NASA Technical Reports Server (NTRS)
Mayer, Walter; Adams, James F.; Burley, Richard K.
1987-01-01
Weld lines ground smooth within about 0.001 in. Grinding tool for smoothing longitudinal weld lines inside toroidal cavity includes curved tunnel jig to guide grinding "mouse" along weld line. Curvature of tunnel jig matched to shape of toroid so grinding ball in mouse follows circular arc of correct radius as mouse is pushed along tunnel. Tool enables precise control of grindout shape, yet easy to use.
Williams, Scott C; Ward, Jeffrey S; Worthley, Thomas E; Stafford, Kirby C
2009-08-01
In many Connecticut forests with an overabundance of white-tailed deer (Odocoileus virginianus Zimmermann), Japanese barberry (Berberis thunbergii DC) has become the dominant understory shrub, which may provide a habitat favorable to blacklegged tick (Ixodes scapularis Say) and white-footed mouse (Peromyscus leucopus Rafinesque) survival. To determine mouse and larval tick abundances at three replicate sites over 2 yr, mice were trapped in unmanipulated dense barberry infestations, areas where barberry was controlled, and areas where barberry was absent. The number of feeding larval ticks/mouse was recorded. Adult and nymphal ticks were sampled along 200-m draglines in each treatment, retained, and were tested for Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner) presence. Total first-captured mouse counts did not differ between treatments. Mean number of feeding larval ticks per mouse was highest on mice captured in dense barberry. Adult tick densities in dense barberry were higher than in both controlled barberry and no barberry areas. Ticks sampled from full barberry infestations and controlled barberry areas had similar infection prevalence with B. burgdorferi the first year. In areas where barberry was controlled, infection prevalence was reduced to equal that of no barberry areas the second year of the study. Results indicate that managing Japanese barberry will have a positive effect on public health by reducing the number of B. burgdorferi-infected blacklegged ticks that can develop into motile life stages that commonly feed on humans.
NASA Astrophysics Data System (ADS)
Shin, Y. C.; Lee, J. H.; Kim, M. J.; Hong, S. W.; Oh, J.-W.; Kim, C.-S.; Kim, B.; Hyun, J. K.; Kim, Y.-J.; Han, D.-W.
2015-07-01
During the last decade, much attention has been paid to graphene-based nanomaterials because they are considered as potential candidates for biomedical applications such as scaffolds for tissue engineering and substrates for the differentiation of stem cells. Until now, electrospun matrices composed of various biodegradable copolymers have been extensively developed for tissue engineering and regeneration; however, their use in combination with graphene oxide (GO) is novel and challenging. In this study, nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 phage with RGD peptide displayed on its surface (RGD peptide-M13 phage) were prepared as extracellular matrix (ECM)-mimicking substrates. RGD peptide is a tripeptide (Arg-Gly-Asp) found on ECM proteins that promotes various cellular behaviors. The physicochemical properties of PLGA and RGD peptide-M13 phage (PLGA/RGD peptide) nanofiber matrices were characterized by atomic force microscopy, Fourier-transform infrared spectroscopy and thermogravimetric analysis. In addition, the growth of C2C12 mouse myoblasts on the PLGA/RGD peptide matrices was examined by measuring the metabolic activity. Moreover, the differentiation of C2C12 mouse myoblasts on the matrices when treated with GO was evaluated. The cellular behaviors, including growth and differentiation of C2C12 mouse myoblasts, were substantially enhanced on the PLGA/RGD peptide nanofiber matrices when treated with GO. Overall, these findings suggest that the PLGA/RGD peptide nanofiber matrices can be used in combination with GO as a novel strategy for skeletal tissue regeneration.
Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth
2016-12-01
lines as well as the peptides described above, we will assess the efficacy of SgI peptides on tumor growth in a mouse xenograft model. Opportunities...Award Number: W81XWH-13-1-0412 TITLE: Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth PRINCIPAL...SUBTITLE Seminal Plasma Proteins as Androgen Receptor Corregulators Promote Prostate Cancer Growth 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-13
Comparative Genome Sequence Analysis of the Bpa/Str Region in Mouse and Man
Mallon, A.-M.; Platzer, M.; Bate, R.; Gloeckner, G.; Botcherby, M.R.M.; Nordsiek, G.; Strivens, M.A.; Kioschis, P.; Dangel, A.; Cunningham, D.; Straw, R.N.A.; Weston, P.; Gilbert, M.; Fernando, S.; Goodall, K.; Hunter, G.; Greystrong, J.S.; Clarke, D.; Kimberley, C.; Goerdes, M.; Blechschmidt, K.; Rump, A.; Hinzmann, B.; Mundy, C.R.; Miller, W.; Poustka, A.; Herman, G.E.; Rhodes, M.; Denny, P.; Rosenthal, A.; Brown, S.D.M.
2000-01-01
The progress of human and mouse genome sequencing programs presages the possibility of systematic cross-species comparison of the two genomes as a powerful tool for gene and regulatory element identification. As the opportunities to perform comparative sequence analysis emerge, it is important to develop parameters for such analyses and to examine the outcomes of cross-species comparison. Our analysis used gene prediction and a database search of 430 kb of genomic sequence covering the Bpa/Str region of the mouse X chromosome, and 745 kb of genomic sequence from the homologous human X chromosome region. We identified 11 genes in mouse and 13 genes and two pseudogenes in human. In addition, we compared the mouse and human sequences using pairwise alignment and searches for evolutionary conserved regions (ECRs) exceeding a defined threshold of sequence identity. This approach aided the identification of at least four further putative conserved genes in the region. Comparative sequencing revealed that this region is a mosaic in evolutionary terms, with considerably more rearrangement between the two species than realized previously from comparative mapping studies. Surprisingly, this region showed an extremely high LINE and low SINE content, low G+C content, and yet a relatively high gene density, in contrast to the low gene density usually associated with such regions. [The sequence data described in this paper have been submitted to EMBL under the following accession nos.: Mouse Genomic Sequence: Mouse contig A (AL021127), Mouse contig B (AL049866), BAC41M10 (AL136328), PAC303O11(AL136329). Human Genomic Sequence: Human contig 1 (U82671, U82670), Human contig 2 (U82695).] PMID:10854409
Establishment of mouse neuron and microglial cell co-cultured models and its action mechanism.
Zhang, Bo; Yang, Yunfeng; Tang, Jun; Tao, Yihao; Jiang, Bing; Chen, Zhi; Feng, Hua; Yang, Liming; Zhu, Gang
2017-06-27
The objective of this study is to establish a co-culture model of mouse neurons and microglial cells, and to analyze the mechanism of action of oxygen glucose deprivation (OGD) and transient oxygen glucose deprivation (tOGD) preconditioning cell models. Mouse primary neurons and BV2 microglial cells were successfully cultured, and the OGD and tOGD models were also established. In the co-culture of mouse primary neurons and microglial cells, the cell number of tOGD mouse neurons and microglial cells was larger than the OGD cell number, observed by a microscope. CCK-8 assay result showed that at 1h after treatment, the OD value in the control group is lower compared to all the other three groups (P < 0.05). The treatment group exhibited the highest OD value among the four groups. The results observed at 5h were consistent with the results at 1 h. Flow cytometry results showed that at 1h after treatment the apoptosis percentages is higher in the control group compared to other three groups (P < 0.05). Mouse brain tissues were collected and primary neurons cells were cultured. In the meantime mouse BV2 microglia cells were cultured. Two types of cells were co-cultured, and OGD and tOGD cell models were established. There were four groups in the experiment: control group (OGD), treatment group (tOGD+OGD), placebo group (tOGD+OGD+saline) and minocycline intervention group (tOGD+OGD+minocycline). CCK-8 kit was used to detect cell viability and flow cytometry was used to detect apoptosis. In this study, mouse primary neurons and microglial cells were co-cultured. The OGD and tOGD models were established successfully. tOGD was able to effectively protect neurons and microglial cells from damage, and inhibit the apoptosis caused by oxygen glucose deprivation.
Pointright: a system to redirect mouse and keyboard control among multiple machines
Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA
2008-09-30
The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.
Determining Desirable Cursor Control Device Characteristics for NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Sandor, Aniko; Holden, Kritina L.
2007-01-01
A test battery was developed for cursor control device evaluation: four tasks were taken from ISO 9241-9, and three from previous studies conducted at NASA. The tasks focused on basic movements such as pointing, clicking, and dragging. Four cursor control devices were evaluated with and without Extravehicular Activity (EVA) gloves to identify desirable cursor control device characteristics for NASA missions: 1) the Kensington Expert Mouse, 2) the Hulapoint mouse, 3) the Logitech Marble Mouse, and 4) the Honeywell trackball. Results showed that: 1) the test battery is an efficient tool for differentiating among input devices, 2) gloved operations were about 1 second slower and had at least 15% more errors; 3) devices used with gloves have to be larger, and should allow good hand positioning to counteract the lack of tactile feedback, 4) none of the devices, as designed, were ideal for operation with EVA gloves.
Lamoral-Theys, Delphine; Wauthoz, Nathalie; Heffeter, Petra; Mathieu, Véronique; Jungwirth, Utte; Lefranc, Florence; Nève, Jean; Dubois, Jacques; Dufrasne, François; Amighi, Karim; Berger, Walter; Gailly, Philippe; Kiss, Robert
2012-01-01
Abstract Cancer cells exhibit de-regulation of multiple cellular signalling pathways and treatments of various types of cancers with polyphenols are promising. We recently reported the synthesis of a series of 33 novel divanillic and trivanillic polyphenols that displayed anticancer activity, at least in vitro, through inhibiting various kinases. This study revealed that minor chemical modifications of a trivanillate scaffold could convert cytotoxic compounds into cytostatic ones. Compound 13c, a tri-chloro derivative of trivanillic ester, displayed marked inhibitory activities against FGF-, VEGF-, EGF- and Src-related kinases, all of which are implicated not only in angiogenesis but also in the biological aggressiveness of various cancer types. The pan-anti-kinase activity of 13c occurs at less than one-tenth of its mean IC50in vitro growth inhibitory concentrations towards a panel of 12 cancer cell lines. Of the 26 kinases for which 13c inhibited their activity by >75%, eight (Yes, Fyn, FGF-R1, EGFR, Btk, Mink, Ret and Itk) are implicated in control of the actin cytoskeleton organization to varying degrees. Compound 13c accordingly impaired the typical organization of the actin cytoskeleton in human U373 glioblastoma cells. The pan-anti-kinase activity and actin cytoskeleton organization impairment provoked by 13c concomitantly occurs with calcium homeostasis impairment but without provoking MDR phenotype activation. All of these anticancer properties enabled 13c to confer therapeutic benefits in vivo in a mouse melanoma pseudometastatic lung model. These data argue in favour of further chemically modifying trivanillates to produce novel and potent anticancer drugs. PMID:21810170
2010-01-01
Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756
ERIC Educational Resources Information Center
Saviola, Anthony J.; Chiszar, David; Bealor, Matthew T.; Smith, Hobart M.
2010-01-01
Eight western diamondback rattlesnakes ("Crotalus atrox") were exposed to 6 stimuli: (1) clean, unused bedding; (2) an adult male mouse; (3) an adult lactating female mouse; (4) an adult lactating female mouse with a litter; (5) 2 adult nonlactating female mice, to control for the extra surface area in Condition 4; and (6) a litter of newborn…
Shin, Jun-Wan; Kundu, Joydeb Kumar
2012-01-01
Abstract The present study investigated the effect of phloretin [2′,4′,6′-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)–induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis. PMID:22181070
Shin, Jun-Wan; Kundu, Joydeb Kumar; Surh, Young-Joon
2012-03-01
The present study investigated the effect of phloretin [2',4',6'-trihydroxy-3-(4-hydroxyphenyl)-propiophenone] on 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced cyclooxygenase-2 (COX-2) expression and tumor promotion in mouse skin and explored the underlying molecular mechanisms. Topical application of phloretin significantly inhibited 7,12-dimethylbenz[a]anthracene-initiated and TPA-promoted mouse skin carcinogenesis. Pretreatment with phloretin on the dorsal skin of mice inhibited TPA-induced COX-2 expression in a dose-dependent manner. To elucidate the molecular mechanism underlying COX-2 inhibition by phloretin, we examined its effect on TPA-induced activation of nuclear factor-κB (NF-κB), a ubiquitous transcription factor responsible for TPA-induced COX-2 expression in mouse skin. Topically applied phloretin decreased the TPA-induced DNA binding of NF-κB. In addition, phloretin inhibited the phosphorylation as well as the catalytic activity of extracellular signal-regulated kinase (ERK), which was previously found to activate NF-κB and induce COX-2 expression in TPA-treated mouse skin. Taken together, the inhibitory effects of phloretin on TPA-induced NF-κB activation and COX-2 expression through the modulation of ERK signaling may partly account for its antitumor-promoting effect on mouse skin carcinogenesis.
Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy.
Lang, Franziska; Aravamudhan, Sriram; Nolte, Hendrik; Türk, Clara; Hölper, Soraya; Müller, Stefan; Günther, Stefan; Blaauw, Bert; Braun, Thomas; Krüger, Marcus
2017-07-01
Loss of neuronal stimulation enhances protein breakdown and reduces protein synthesis, causing rapid loss of muscle mass. To elucidate the pathophysiological adaptations that occur in atrophying muscles, we used stable isotope labelling and mass spectrometry to quantify protein expression changes accurately during denervation-induced atrophy after sciatic nerve section in the mouse gastrocnemius muscle. Additionally, mice were fed a stable isotope labelling of amino acids in cell culture (SILAC) diet containing 13 C 6 -lysine for 4, 7 or 11 days to calculate relative levels of protein synthesis in denervated and control muscles. Ubiquitin remnant peptides (K-ε-GG) were profiled by immunoaffinity enrichment to identify potential substrates of the ubiquitin-proteasomal pathway. Of the 4279 skeletal muscle proteins quantified, 850 were differentially expressed significantly within 2 weeks after denervation compared with control muscles. Moreover, pulse labelling identified Lys6 incorporation in 4786 proteins, of which 43 had differential Lys6 incorporation between control and denervated muscle. Enrichment of diglycine remnants identified 2100 endogenous ubiquitination sites and revealed a metabolic and myofibrillar protein diglycine signature, including myosin heavy chains, myomesins and titin, during denervation. Comparative analysis of these proteomic data sets with known atrogenes using a random forest approach identified 92 proteins subject to atrogene-like regulation that have not previously been associated directly with denervation-induced atrophy. Comparison of protein synthesis and proteomic data indicated that upregulation of specific proteins in response to denervation is mainly achieved by protein stabilization. This study provides the first integrated analysis of protein expression, synthesis and ubiquitin signatures during muscular atrophy in a living animal. © 2017. Published by The Company of Biologists Ltd.
A 20-Channel Receive-Only Mouse Array Coil for a 3T Clinical MRI System
Keil, Boris; Wiggins, Graham C.; Triantafyllou, Christina; Wald, Lawrence L.; Meise, Florian M.; Schreiber, Laura M.; Klose, Klaus J.; Heverhagen, Johannes T.
2010-01-01
A 20-channel phased-array coil for Magnetic Resonance Imaging (MRI) of mice has been designed, constructed and validated with bench measurements and high resolution accelerated imaging. The technical challenges of designing a small, high density array have been overcome using individual small-diameter coil elements arranged on a cylinder in a hexagonal overlapping design with adjacent low impedance preamplifiers to further decouple the array elements. Signal-to-noise ratio (SNR) and noise amplification in accelerated imaging were simulated and quantitatively evaluated in phantoms and in vivo mouse images. Comparison between the 20-channel mouse array and a length-matched quadrature driven small animal birdcage coil showed an SNR increase at the periphery and in the center of the phantom of 3-fold and 1.3-fold, respectively. Comparison to a shorter but SNR-optimized birdcage coil (aspect ratio 1:1 and only half mouse coverage) showed an SNR gain of 2-fold at the edge of the phantom and similar SNR in the center. G-factor measurements indicate that the coil is well suited to acquire highly accelerated images. PMID:21433066
Enhancement of lymphocyte proliferation by mouse glandular kallikrein.
Hu, Z Q; Murakami, K; Ikigai, H; Shimamura, T
1992-03-01
Mouse glandular kallikrein (mGK) strongly enhanced the spontaneous and mitogen-induced proliferation of lymphocytes. Both blast formation and 3H-TdR incorporation were dose-dependently enhanced at the same time many cells were killed. The enhancing activity was independent of EGF, because EGF-binding proteins (mGK-9 in mGK-6,9 mixture and mGK-13), renal kallikrein (mGK-6) and human kallikrein all displayed the same enhancement. A serine proteinase inhibitor, diisopropyl fluorophosphate, could block the enhancement by mGK. The new function suggests that mGK is important in the immune system as a regulatory molecule.
Deficiency of merosin in dystrophic dy mouse homologue of congenital muscular dystrophy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sunada, Y.; Campbell, K.P.; Bernier, S.M.
1994-09-01
Merosin (laminin M chain) is the predominant laminin isoform in the basal lamina of striated muscle and peripheral nerve and is a native ligand for {alpha}-dystroglycan, a novel laminin receptor. Merosin is linked to the subsarcolemmal actin cytoskeleton via the dystrophin-glycoprotein complex (DGC), which plays an important role for maintenance of normal muscle function. We have mapped the mouse merosin gene, Lamm, to the region containing the dystrophia muscularis (dy) locus on chromosome 10. This suggested the possibility that a mutation in the merosin gene could be responsible for the dy mouse, an animal model for autosomal recessive muscular dystrophy,more » and prompted us to test this hypothesis. We analyzed the status of merosin expression in dy mouse by immunofluorescence and immunoblotting. In dy mouse skeletal and cardiac muscle and peripheral nerve, merosin was reduced greater than 90% as compared to control mice. However, the expression of laminin B1/B2 chains and collagen type IV was smaller to that in control mice. These findings strongly suggest that merosin deficiency may be the primary defect in the dy mouse. Furthermore, we have identified two patients afflicted with congenital muscular dystrophy with merosin deficiency, providing the basis for future studies of molecular pathogenesis and gene therapy.« less
Baranova, Ancha; Hammarsund, Marianne; Ivanov, Dmitry; Skoblov, Mikhail; Sangfelt, Olle; Corcoran, Martin; Borodina, Tatiana; Makeeva, Natalia; Pestova, Anna; Tyazhelova, Tatiana; Nazarenko, Svetlana; Gorreta, Francesco; Alsheddi, Tariq; Schlauch, Karen; Nikitin, Eugene; Kapanadze, Bagrat; Shagin, Dmitry; Poltaraus, Andrey; Ivanovich Vorobiev, Andrey; Zabarovsky, Eugene; Lukianov, Sergey; Chandhoke, Vikas; Ibbotson, Rachel; Oscier, David; Einhorn, Stefan; Grander, Dan; Yankovsky, Nick
2003-12-04
In the present study, we describe the human and mouse RFP2 gene structure, multiple RFP2 mRNA isoforms in the two species that have different 5' UTRs and a human-specific antisense transcript RFP2OS. Since the human RFP2 5' UTR is not conserved in mouse, these findings might indicate a different regulation of RFP2 in the two species. The predicted human and mouse RFP2 proteins are shown to contain a tripartite RING finger-B-box-coiled-coil domain (RBCC), also known as a TRIM domain, and therefore belong to a subgroup of RING finger proteins that are often involved in developmental and tumorigenic processes. Because homozygous deletions of chromosomal region 13q14.3 are found in a number of malignancies, including chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), we suggest that RFP2 might be involved in tumor development. This study provides necessary information for evaluation of the role of RFP2 in malignant transformation and other biological processes.
Armed Forces Institute of Regenerative Medicine
2009-01-01
constructs healed faster than controls and were able to self -organize into skin that appeared almost identical to normal mouse skin. Research...mouse model using the device. They also determined that printed constructs healed faster than controls and were able to self - organize into skin...iiiAFIRM Annual Report 2009 IV Scarless Wound Healing IV-1 Background
Grossman, E A; Martonik, J
1990-01-01
In its 1980 benzene decision [Industrial Union Department, ALF-CIO v. American Petroleum Institute, 448 U.S. 607 (1980)], the Supreme Court ruled that "before he can promulgate any permanent health or safety standard, the Secretary [of Labor] is required to make a threshold finding that a place of employment is unsafe--in the sense that significant risks are present and can be lessened by a change in practices" (448 U.S. at 642). The Occupational Safety and Health Administration (OSHA) has interpreted this to mean that whenever possible, it must quantify the risk associated with occupational exposure to a toxic substance at the current permissible exposure limit (PEL). If OSHA determines that there is significant risk to workers' health at its current standard, then it must quantify the risk associated with a variety of alternative standards to determine at what level, if any, occupational exposure to a substance no longer poses a significant risk. For rulemaking on occupational exposure to 1,3-butadiene, there are two studies that are suitable for quantitative risk assessment. One is a mouse inhalation bioassay conducted by the National Toxicology Program (NTP), and the other is a rat inhalation bioassay conducted by Hazelton Laboratories Europe. Of the four risk assessments that have been submitted to OSHA, all four have used the mouse and/or rat data with a variety of models to quantify the risk associated with occupational exposure to 1,3-butadiene. In addition, OSHA has performed its own risk assessment using the female mouse and female rat data and the one-hit and multistage models.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2401254
Emoto, Miho C; Matsuoka, Yuta; Yamada, Ken-Ichi; Sato-Akaba, Hideo; Fujii, Hirotada G
2017-04-15
Glutathione (GSH) is the most abundant non-protein thiol that buffers reactive oxygen species in the brain. GSH does not reduce nitroxides directly, but in the presence of ascorbates, addition of GSH increases ascorbate-induced reduction of nitroxides. In this study, we used electron paramagnetic resonance (EPR) imaging and the nitroxide imaging probe, 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), to non-invasively obtain spatially resolved redox data from mouse brains depleted of GSH with diethyl maleate compared to control. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of the redox status in vivo and mapped as a "redox map". The obtained redox maps from control and GSH-depleted mouse brains showed a clear change in the brain redox status, which was due to the decreased levels of GSH in brains as measured by a biochemical assay. We observed a linear relationship between the reduction rate constant of MCP and the level of GSH for both control and GSH-depleted mouse brains. Using this relationship, the GSH level in the brain can be estimated from the redox map obtained with EPR imaging. Copyright © 2017 Elsevier Inc. All rights reserved.
Iwase, Y; Takemura, Y; Ju-ichi, M; Ito, C; Furukawa, H; Kawaii, S; Yano, M; Mou, X Y; Takayasu, J; Tokuda, H; Nishino, H
2000-06-01
To search for possible anti-tumor promoters, thirteen flavones (1-13) obtained from the peel of Citrus plants were examined for their inhibitory effects on the Epstein-Barr virus early antigen (EBV-EA) activation by a short-term in vitro assay. Of these flavones, 3,5,6,7,8,3',4'-heptamethoxyflavone (HPT) (13) exhibited significant inhibitory effects on the EBV-EA activation induced by the tumor promoter, 12-O-tetradecanoylphorbol 13-acetate (TPA). Further, compound 13 exhibited remarkable inhibitory effects on mouse skin tumor promotion in an in vivo two-stage carcinogenesis test.
Yu, Zheyong; Schneider, Claus; Boeglin, William E.; Brash, Alan R.
2008-01-01
Genetic and biochemical evidence suggests a functional link between human 12R-lipoxygenase (12R-LOX) and epidermal lipoxygenase-3 (eLOX3) in normal differentiation of the epidermis; LOX-derived fatty acid hydroperoxide is isomerized by the atypical eLOX3 into a specific epoxyalcohol that is a potential mediator in the pathway. Mouse epidermis expresses a different complement of LOX enzymes, and therefore this metabolic linkage could differ. To test this concept, we compared the substrate specificities of recombinant mouse and human eLOX3 toward sixteen hydroperoxy stereoisomers of arachidonic and linoleic acids. Both enzymes metabolized R-hydroperoxides 2–3 times faster than the corresponding S enantiomers. Whereas 12R-hydroperoxyeicosatetraenoic acid (12R-HPETE) is the best substrate for human eLOX3 (2.4 sec−1; at 30 µM substrate), mouse eLOX3 shows the highest turnover with 8R-HPETE (2.9 sec−1) followed by 8S-HPETE (1.3 sec−1). Novel product structures were characterized from reactions of mouse eLOX3 with 5S-, 8R-, and 8S-HPETEs. 8S-HPETE is converted specifically to a single epoxyalcohol, identified as 10R-hydroxy-8S,9S-epoxyeicosa-5Z,11Z,14Z-trienoic acid. The substrate preference of mouse eLOX3 and the unique occurrence of an 8S-LOX enzyme in mouse skin point to a potential LOX pathway for the production of epoxyalcohol in murine epidermal differentiation. PMID:17045234
Gfi1-Cre knock-in mouse line: A tool for inner ear hair cell-specific gene deletion
Yang, Hua; Gan, Jean; Xie, Xiaoling; Deng, Min; Feng, Liang; Chen, Xiaowei; Gao, Zhiqiang; Gan, Lin
2010-01-01
Summary Gfi1encodes a zinc-finger transcription factor essential for the development and maintenance of haematopoiesis and the inner ear. In mouse inner ear, Gfi1 expression is confined to hair cells during development and in adulthood. To construct a genetic tool for inner ear hair cell-specific gene deletion, we generated a Gfi1-Cre mouse line by knocking-in Cre coding sequences into the Gfi1 locus and inactivating the endogenous Gfi1. The specificity and efficiency of Gfi1-Cre recombinase-mediated recombination in the developing inner ear was revealed through the expression of the conditional R26R-lacZ reporter gene. The onset of lacZ expression in the Gfi1Cre/+ inner ear was first detected at E13.5 in the vestibule and at E15.5 in the cochlea, coinciding with the generation of hair cells. Throughout inner ear development, lacZ expression was detected only in hair cells. Thus, Gfi1-Cre knock-in mouse line provides a useful tool for gene manipulations specifically in inner ear hair cells. PMID:20533399
Schuhmacher, Laura-Nadine; Smith, Ewan St John
2016-12-13
Acid-sensing ion channels (ASICs) are a family of ion channels comprised of six subunits encoded by four genes and they are expressed throughout the peripheral and central nervous systems. ASICs have been implicated in a wide range of physiological and pathophysiological processes: pain, breathing, synaptic plasticity and excitotoxicity. Unlike mice and humans, naked mole-rats do not perceive acid as a noxious stimulus, even though their sensory neurons express functional ASICs, likely an adaptation to living in a hypercapnic subterranean environment. Previous studies of ASIC expression in the mammalian nervous system have often not examined all subunits, or have failed to adequately quantify expression between tissues; to date there has been no attempt to determine ASIC expression in the central nervous system of the naked mole-rat. Here we perform a geNorm study to identify reliable housekeeping genes in both mouse and naked mole-rat and then use quantitative real-time PCR to estimate the relative amounts of ASIC transcripts in different tissues of both species. We identify RPL13A (ribosomal protein L13A) and CANX (calnexin), and β-ACTIN and EIF4A (eukaryotic initiation factor 4a) as being the most stably expressed housekeeping genes in mouse and naked mole-rat, respectively. In both species, ASIC3 was most highly expressed in dorsal root ganglia (DRG), and ASIC1a, ASIC2b and ASIC3 were more highly expressed across all brain regions compared to the other subunits. We also show that ASIC4, a proton-insensitive subunit of relatively unknown function, was highly expressed in all mouse tissues apart from DRG and hippocampus, but was by contrast the lowliest expressed ASIC in all naked mole-rat tissues.
Lu, Qing-Yi; Zhang, Lifeng; Moro, Aune; Chen, Monica C.; Harris, Diane M.; Eibl, Guido; Go, Vay-Liang W.
2011-01-01
Objectives Scutellaria baicalensis has been a subject of research interests due to its potential multiple therapeutic benefits. This study was to examine the distribution of baicalein, wogonin, oroxylin A and their glucuronide/sulfate conjugated metabolites in plasma, colon, small intestine, lung, liver, pancreas, kidney, and prostate tissues and in pancreatic tumor in a xenograft animal model. In addition, we examined metabolic stability of baicalin in these tissues. Methods A mouse xenograft model was prepared by injection of 3×106 human pancreatic cancer MiaPaCa-2 cells subcutaneously into nude mice. Mice were randomly allocated to control diet (AIN76A) and 1% SB diet (n=8 per group) for 13 weeks. Levels of baicalein, wogonin, oroxylin A, and their conjugates in mouce tissues were measured by high-pressure liquid chromatography following enzymatic hydrolysis and then extraction. Results A substantial amount of baicalin (34–63%) was methylated to oroxylin A and its conjugates in various organs during absorption. While plasma contained predominantly conjugates of baicalein, wogonin, and oroxylin A, both aglycones and conjugates were found in all other tissues investigated and in tumor. Conclusions Substantial accumulation of bioactive metabolites are found in target tissues, suggesting strong potential for SB use as a preventive or adjuvant supplement for pancreatic cancer. PMID:22158070
Widney, Daniel P.; Olafsen, Tove; Wu, Anna M.; Kitchen, Christina M. R.; Said, Jonathan W.; Smith, Jeffrey B.; Peña, Guadalupe; Magpantay, Larry I.; Penichet, Manuel L.; Martinez-Maza, Otoniel
2013-01-01
Currently, few rodent models of AIDS-associated non-Hodgkin’s lymphoma (AIDS-NHL) exist. In these studies, a novel mouse/human xenograft model of AIDS-associated Burkitt lymphoma (AIDS-BL) was created by injecting cells of the human AIDS-BL cell line, 2F7, intraperitoneally into NOD-SCID mice. Mice developed tumors in the peritoneal cavity, with metastases to the spleen, thymus, and mesenteric lymph nodes. Expression of the chemokine receptor, CXCR5, was greatly elevated in vivo on BL tumor cells in this model, as shown by flow cytometry. CXCL13 is the ligand for CXCR5, and serum and ascites levels of murine, but not human, CXCL13 showed a striking elevation in tumor-bearing mice, with levels as high as 200,000 pg/ml in ascites, as measured by ELISA. As shown by immunohistochemistry, murine CXCL13 was associated with macrophage-like tumor-infiltrating cells that appeared to be histiocytes. Blocking CXCR5 on 2F7 cells with neutralizing antibodies prior to injection into the mice substantially delayed tumor formation. The marked elevations in tumor cell CXCR5 expression and in murine CXCL13 levels seen in the model may potentially identify an important link between tumor-interacting histiocytes and tumor cells in AIDS-BL. These results also identify CXCL13 as a potential biomarker for this disease, which is consistent with previous studies showing that serum levels of CXCL13 were elevated in human subjects who developed AIDS-lymphoma. This mouse model may be useful for future studies on the interactions of the innate immune system and AIDS-BL tumor cells, as well as for the assessment of potential tumor biomarkers for this disease. PMID:23936541
Widney, Daniel P; Olafsen, Tove; Wu, Anna M; Kitchen, Christina M R; Said, Jonathan W; Smith, Jeffrey B; Peña, Guadalupe; Magpantay, Larry I; Penichet, Manuel L; Martinez-Maza, Otoniel
2013-01-01
Currently, few rodent models of AIDS-associated non-Hodgkin's lymphoma (AIDS-NHL) exist. In these studies, a novel mouse/human xenograft model of AIDS-associated Burkitt lymphoma (AIDS-BL) was created by injecting cells of the human AIDS-BL cell line, 2F7, intraperitoneally into NOD-SCID mice. Mice developed tumors in the peritoneal cavity, with metastases to the spleen, thymus, and mesenteric lymph nodes. Expression of the chemokine receptor, CXCR5, was greatly elevated in vivo on BL tumor cells in this model, as shown by flow cytometry. CXCL13 is the ligand for CXCR5, and serum and ascites levels of murine, but not human, CXCL13 showed a striking elevation in tumor-bearing mice, with levels as high as 200,000 pg/ml in ascites, as measured by ELISA. As shown by immunohistochemistry, murine CXCL13 was associated with macrophage-like tumor-infiltrating cells that appeared to be histiocytes. Blocking CXCR5 on 2F7 cells with neutralizing antibodies prior to injection into the mice substantially delayed tumor formation. The marked elevations in tumor cell CXCR5 expression and in murine CXCL13 levels seen in the model may potentially identify an important link between tumor-interacting histiocytes and tumor cells in AIDS-BL. These results also identify CXCL13 as a potential biomarker for this disease, which is consistent with previous studies showing that serum levels of CXCL13 were elevated in human subjects who developed AIDS-lymphoma. This mouse model may be useful for future studies on the interactions of the innate immune system and AIDS-BL tumor cells, as well as for the assessment of potential tumor biomarkers for this disease.
Trisubstituted Pyrimidines as Efficacious and Fast-Acting Antimalarials
2016-01-01
In this paper we describe the optimization of a phenotypic hit against Plasmodium falciparum, based on a trisubstituted pyrimidine scaffold. This led to compounds with good pharmacokinetics and oral activity in a P. berghei mouse model of malaria. The most promising compound (13) showed a reduction in parasitemia of 96% when dosed at 30 mg/kg orally once a day for 4 days in the P. berghei mouse model of malaria. It also demonstrated a rapid rate of clearance of the erythrocytic stage of P. falciparum in the SCID mouse model with an ED90 of 11.7 mg/kg when dosed orally. Unfortunately, the compound is a potent inhibitor of cytochrome P450 enzymes, probably due to a 4-pyridyl substituent. Nevertheless, this is a lead molecule with a potentially useful antimalarial profile, which could either be further optimized or be used for target hunting. PMID:27314305
Ahmad, Bashir; Rizwan, Muhammad; Rauf, Abdur; Raza, Muslim; Azam, Sadiq; Bashir, Shumaila; Molnar, Joseph; Csonka, Akos; Szabo, Diana
2016-01-01
A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.
Diesner, Susanne C.; Bergmayr, Cornelia; Pfitzner, Barbara; Assmann, Vera; Krishnamurthy, Durga; Starkl, Philipp; Endesfelder, David; Rothballer, Michael; Welzl, Gerhard; Rattei, Thomas; Eiwegger, Thomas; Szépfalusi, Zsolt; Fehrenbach, Heinz; Jensen-Jarolim, Erika; Hartmann, Anton
2017-01-01
In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbiota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a non-responding phenotype in this mouse model. PMID:27789346
Nakahara, Keiko; Bannai, Makoto; Maruyama, Keisuke; Suzuki, Yoshihiro; Okame, Rieko; Murakami, Noboru
2013-08-01
Obesity is a critical risk factor for the development of metabolic syndrome, and many obese animal models are used to investigate the mechanisms responsible for the appearance of symptoms. To establish a new obese mouse model, we screened ∼13,000 ICR mice and discovered a mouse demonstrating spontaneous obesity. We named this mouse "Daruma" after a traditional Japanese ornament. Following the fixation of the genotype, these animals exhibited obese phenotypes according to Mendel's law of inheritance. In the Daruma mouse, the leptin receptor gene sequence carried two base mutations that are good candidates for the variation(s) responsible for the obese phenotype. The Daruma mice developed characteristic visceral fat accumulation at 4 wk of age, and the white adipose and liver tissues exhibited increases in cell size and lipid droplets, respectively. No histological abnormalities were observed in other tissues of the Daruma mice, even after the mice reached 25 wk of age. Moreover, the onset of impaired leptin signaling was early and manifested as hyperleptinemia and hyperinsulinemia. Pair feeding completely inhibited obesity, although these mice rapidly developed hyperphagia and obesity followed by hyperleptinemia when pair feeding ceased and free-access feeding was permitted. Therefore, the Daruma mice exhibited unique characteristics and may be a good model for studying human metabolic syndrome.
Leke, Renata; Bak, Lasse K; Schousboe, Arne; Waagepetersen, Helle S
2008-12-01
Co-cultures of neurons and astrocytes were prepared from dissociated embryonic mouse cerebral cortex and cultured for 7 days. To investigate if these cultures may serve as a functional model system to study neuron-glia interaction with regard to GABA biosynthesis, the cells were incubated either in media containing [U-(13)C]glutamine (0.1, 0.3 and 0.5 mM) or 1 mM acetate plus 2.5 mM glucose plus 1 mM lactate. In the latter case one of the 3 substrates was uniformly (13)C labeled. Cellular contents and (13)C labeling of glutamate, GABA, aspartate and glutamine were determined in the cells after an incubation period of 2.5 h. The GABA biosynthetic machinery exhibited the expected complexity with regard to metabolic compartmentation and involvement of TCA cycle activity as seen in other culture systems containing GABAergic neurons. Metabolism of acetate clearly demonstrated glial synthesis of glutamine and its transfer to the neuronal compartment. It is concluded that this co-culture system serves as a reliable model in which functional and pharmacological aspects of GABA biosynthesis can be investigated.
Sánchez-Marín, Laura; Ladrón de Guevara-Miranda, David; Mañas-Padilla, M Carmen; Alén, Francisco; Moreno-Fernández, Román D; Díaz-Navarro, Caridad; Pérez-Del Palacio, José; García-Fernández, María; Pedraza, Carmen; Pavón, Francisco J; Rodríguez de Fonseca, Fernando; Santín, Luis J; Serrano, Antonia; Castilla-Ortega, Estela
2018-05-01
The systemic administration of lysophosphatidic acid (LPA) LPA 1/3 receptor antagonists is a promising clinical tool for cancer, sclerosis and fibrosis-related diseases. Since LPA 1 receptor-null mice engage in increased ethanol consumption, we evaluated the effects of systemic administration of an LPA 1/3 receptor antagonist (intraperitoneal ki16425, 20 mg/kg) on ethanol-related behaviors as well as on brain and plasma correlates. Acute administration of ki16425 reduced motivation for ethanol but not for saccharine in ethanol self-administering Wistar rats. Mouse experiments were conducted in two different strains. In Swiss mice, ki16425 treatment reduced both ethanol-induced sedation (loss of righting reflex, LORR) and ethanol reward (escalation in ethanol consumption and ethanol-induced conditioned place preference, CPP). Furthermore, in the CPP-trained Swiss mice, ki16425 prevented the effects of ethanol on basal c-Fos expression in the medial prefrontal cortex and on adult neurogenesis in the hippocampus. In the c57BL6/J mouse strain, however, no effects of ki16425 on LORR or voluntary drinking were observed. The c57BL6/J mouse strain was then evaluated for ethanol withdrawal symptoms, which were attenuated when ethanol was preceded by ki16425 administration. In these animals, ki16425 modulated the expression of glutamate-related genes in brain limbic regions after ethanol exposure; and peripheral LPA signaling was dysregulated by either ki16425 or ethanol. Overall, these results suggest that LPA 1/3 receptor antagonists might be a potential new class of drugs that are suitable for treating or preventing alcohol use disorders. A pharmacokinetic study revealed that systemic ki16425 showed poor brain penetration, suggesting the involvement of peripheral events to explain its effects. Copyright © 2018 Elsevier Ltd. All rights reserved.
Role of voltage-gated L-type Ca2+ channel isoforms for brain function.
Striessnig, J; Koschak, A; Sinnegger-Brauns, M J; Hetzenauer, A; Nguyen, N K; Busquet, P; Pelster, G; Singewald, N
2006-11-01
Voltage-gated LTCCs (L-type Ca2+ channels) are established drug targets for the treatment of cardiovascular diseases. LTCCs are also expressed outside the cardiovascular system. In the brain, LTCCs control synaptic plasticity in neurons, and DHP (dihydropyridine) LTCC blockers such as nifedipine modulate brain function (such as fear memory extinction and depression-like behaviour). Voltage-sensitive Ca2+ channels Cav1 .2 and Cav1.3 are the predominant brain LTCCs. As DHPs and other classes of organic LTCC blockers inhibit both isoforms, their pharmacological distinction is impossible and their individual contributions to defined brain functions remain largely unknown. Here, we summarize our recent experiments with two genetically modified mouse strains, which we generated to explore the individual biophysical features of Cav1.2 and Cav1.3 LTCCs and to determine their relative contributions to various physiological peripheral and neuronal functions. The results described here also allow predictions about the pharmacotherapeutic potential of isoform-selective LTCC modulators.
Carrasco-Pozo, Catalina
2017-01-01
Abstract Temporal lobe epilepsy is a common form of adult epilepsy and shows high resistance to treatment. Increasing evidence has suggested that metabolic dysfunction contributes to the development of seizures, with previous studies indicating impairments in brain glucose metabolism. Here we aim to elucidate which pathways involved in glucose metabolism are impaired, by tracing the hippocampal metabolism of injected [U-13C]glucose (i.p.) during the chronic stage of the pilocarpine-status epilepticus mouse model of epilepsy. The enrichment of 13C in the intermediates of glycolysis and the TCA cycle were quantified in hippocampal extracts using liquid chromatography–tandem mass spectroscopy, along with the measurement of the activities of enzymes in each pathway. We show that there is reduced incorporation of 13C in the intermediates of glycolysis, with the percentage enrichment of all downstream intermediates being highly correlated with those of glucose 6-phosphate. Furthermore, the activities of all enzymes in this pathway including hexokinase and phosphofructokinase were unaltered, suggesting that glucose uptake is reduced in this model without further impairments in glycolysis itself. The key findings were 33% and 55% losses in the activities of pyruvate dehydrogenase and 2-oxoglutarate dehydrogenase, respectively, along with reduced 13C enrichment in TCA cycle intermediates. This lower 13C enrichment is best explained in part by the reduced enrichment in glycolytic intermediates, whereas the reduction of key TCA cycle enzyme activity indicates that TCA cycling is also impaired in the hippocampal formation. Together, these data suggest that multitarget approaches may be necessary to restore metabolism in the epileptic brain. PMID:28303258
Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing.
Liu, Zhen; Lu, Zongyang; Yang, Guang; Huang, Shisheng; Li, Guanglei; Feng, Songjie; Liu, Yajing; Li, Jianan; Yu, Wenxia; Zhang, Yu; Chen, Jia; Sun, Qiang; Huang, Xingxu
2018-06-14
A recently developed adenine base editor (ABE) efficiently converts A to G and is potentially useful for clinical applications. However, its precision and efficiency in vivo remains to be addressed. Here we achieve A-to-G conversion in vivo at frequencies up to 100% by microinjection of ABE mRNA together with sgRNAs. We then generate mouse models harboring clinically relevant mutations at Ar and Hoxd13, which recapitulates respective clinical defects. Furthermore, we achieve both C-to-T and A-to-G base editing by using a combination of ABE and SaBE3, thus creating mouse model harboring multiple mutations. We also demonstrate the specificity of ABE by deep sequencing and whole-genome sequencing (WGS). Taken together, ABE is highly efficient and precise in vivo, making it feasible to model and potentially cure relevant genetic diseases.
Tang, Tao; He, Bixiu
2013-01-01
We evaluated the effects of Lycium barbarum polysaccharides LBP) on D-galactose aging model mouse, and explored its possible mechanism. Kunming mice were randomly divided into the control group, the model group, the high-dose LBP group, and the low-dose LBP group. Except the control group, D-galactose was used for modelling. The drug was administrated when modelling. Mouse behavioural, learning and memory changes were observed, and the contents of lipid peroxidation (LPO), lipofuscin (LF) and monoamine oxidase B (MAO-B) in mouse brain tissue and the weight of immune organs were measured after 6 weeks. Compared with the control group, mouse weight gain in the model group reduced significantly. Compared with model group, after mice drank LBP, the times of electric shock was less than aging mice (in which, the high-dose LBP group, P<0.05), and electric shock incubation period was longer (P<0.01). On Day 45 after modelling and drug administration, the contents of LPO, LF and MAO-B in mouse brain tissue in the model group increased significantly, while those in the drug administration groups decreased significantly. The thymus index in the aging model group decreased significantly; the thymus index and the spleen index in the high-dose LBP group and the low-dose LBP group rebounded significantly (P<0.01). We concluded that LBP has an anti-aging effect on D-galactose induced aging model mouse, and its mechanism may be related with the alleviation of glucose metabolism disorder and the resistance of the generation of lipid peroxide and other substances, which damage cell membrane lipid.
Synthesis of chiral chloroquine and its analogues as antimalarial agents.
Sinha, Manish; Dola, Vasanth R; Soni, Awakash; Agarwal, Pooja; Srivastava, Kumkum; Haq, Wahajul; Puri, Sunil K; Katti, Seturam B
2014-11-01
In this investigation, we describe a new approach to chiral synthesis of chloroquine and its analogues. All tested compounds displayed potent activity against chloroquine sensitive as well as chloroquine resistant strains of Plasmodium falciparum in vitro and Plasmodium yoelii in vivo. Compounds S-13 b, S-13c, S-13 d and S-13 i displayed excellent in vitro antimalarial activity with an IC50 value of 56.82, 60.41, 21.82 and 7.94 nM, respectively, in the case of resistant strain. Furthermore, compounds S-13a, S-13c and S-13 d showed in vivo suppression of 100% parasitaemia on day 4 in the mouse model against Plasmodium yoelii when administered orally. These results underscore the application of synthetic methodology and need for further lead optimization. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pai, Vinay M; Kozlowski, Megan; Donahue, Danielle; Miller, Elishiah; Xiao, Xianghui; Chen, Marcus Y; Yu, Zu-Xi; Connelly, Patricia; Jeffries, Kenneth; Wen, Han
2012-05-01
The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO(4) ) solution. As a tissue-staining contrast agent, OsO(4) is retained in the vessel wall and surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO(4) preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE(-/-) ) mice at 10 μm resolution. The results show that walls of coronary arteries as small as 45 μm in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO(4) and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts. Published 2012. This article is a US Government work and is in the public domain in the USA. Journal of Anatomy © 2012 Anatomical Society.
Krznar, Petra; Hörl, Manuel; Ammar, Zeinab; Montessuit, Sylvie; Pierredon, Sandra; Zamboni, Nicola; Martinou, Jean-Claude
2016-01-01
Mitochondrial import of pyruvate by the mitochondrial pyruvate carrier (MPC) is a central step which links cytosolic and mitochondrial intermediary metabolism. To investigate the role of the MPC in mammalian physiology and development, we generated a mouse strain with complete loss of MPC1 expression. This resulted in embryonic lethality at around E13.5. Mouse embryonic fibroblasts (MEFs) derived from mutant mice displayed defective pyruvate-driven respiration as well as perturbed metabolic profiles, and both defects could be restored by reexpression of MPC1. Labeling experiments using 13C-labeled glucose and glutamine demonstrated that MPC deficiency causes increased glutaminolysis and reduced contribution of glucose-derived pyruvate to the TCA cycle. Morphological defects were observed in mutant embryonic brains, together with major alterations of their metabolome including lactic acidosis, diminished TCA cycle intermediates, energy deficit and a perturbed balance of neurotransmitters. Strikingly, these changes were reversed when the pregnant dams were fed a ketogenic diet, which provides acetyl-CoA directly to the TCA cycle and bypasses the need for a functional MPC. This allowed the normal gestation and development of MPC deficient pups, even though they all died within a few minutes post-delivery. This study establishes the MPC as a key player in regulating the metabolic state necessary for embryonic development, neurotransmitter balance and post-natal survival. PMID:27176894
Chen, Zhangguo; Gowan, Katherine; Leach, Sonia M; Viboolsittiseri, Sawanee S; Mishra, Ameet K; Kadoishi, Tanya; Diener, Katrina; Gao, Bifeng; Jones, Kenneth; Wang, Jing H
2016-10-21
Whole genome next generation sequencing (NGS) is increasingly employed to detect genomic rearrangements in cancer genomes, especially in lymphoid malignancies. We recently established a unique mouse model by specifically deleting a key non-homologous end-joining DNA repair gene, Xrcc4, and a cell cycle checkpoint gene, Trp53, in germinal center B cells. This mouse model spontaneously develops mature B cell lymphomas (termed G1XP lymphomas). Here, we attempt to employ whole genome NGS to identify novel structural rearrangements, in particular inter-chromosomal translocations (CTXs), in these G1XP lymphomas. We sequenced six lymphoma samples, aligned our NGS data with mouse reference genome (in C57BL/6J (B6) background) and identified CTXs using CREST algorithm. Surprisingly, we detected widespread CTXs in both lymphomas and wildtype control samples, majority of which were false positive and attributable to different genetic backgrounds. In addition, we validated our NGS pipeline by sequencing multiple control samples from distinct tissues of different genetic backgrounds of mouse (B6 vs non-B6). Lastly, our studies showed that widespread false positive CTXs can be generated by simply aligning sequences from different genetic backgrounds of mouse. We conclude that mapping and alignment with reference genome might not be a preferred method for analyzing whole-genome NGS data obtained from a genetic background different from reference genome. Given the complex genetic background of different mouse strains or the heterogeneity of cancer genomes in human patients, in order to minimize such systematic artifacts and uncover novel CTXs, a preferred method might be de novo assembly of personalized normal control genome and cancer cell genome, instead of mapping and aligning NGS data to mouse or human reference genome. Thus, our studies have critical impact on the manner of data analysis for cancer genomics.
Pythons metabolize prey to fuel the response to feeding.
Starck, J. Matthias; Moser, Patrick; Werner, Roland A.; Linke, Petra
2004-01-01
We investigated the energy source fuelling the post-feeding metabolic upregulation (specific dynamic action, SDA) in pythons (Python regius). Our goal was to distinguish between two alternatives: (i) snakes fuel SDA by metabolizing energy depots from their tissues; or (ii) snakes fuel SDA by metabolizing their prey. To characterize the postprandial response of pythons we used transcutaneous ultrasonography to measure organ-size changes and respirometry to record oxygen consumption. To discriminate unequivocally between the two hypotheses, we enriched mice (= prey) with the stable isotope of carbon (13C). For two weeks after feeding we quantified the CO2 exhaled by pythons and determined its isotopic 13C/12C signature. Ultrasonography and respirometry showed typical postprandial responses in pythons. After feeding, the isotope ratio of the exhaled breath changed rapidly to values that characterized enriched mouse tissue, followed by a very slow change towards less enriched values over a period of two weeks after feeding. We conclude that pythons metabolize their prey to fuel SDA. The slowly declining delta13C values indicate that less enriched tissues (bone, cartilage and collagen) from the mouse become available after several days of digestion. PMID:15255044
Weed-biocontrol insects reduce native-plant recruitment through second-order apparent competition.
Pearson, Dean E; Callaway, Ragan M
2008-09-01
Small-mammal seed predation is an important force structuring native-plant communities that may also influence exotic-plant invasions. In the intermountain West, deer mice (Peromyscus maniculatus) are prominent predators of native-plant seeds, but they avoid consuming seeds of certain widespread invasives like spotted knapweed (Centaurea maculosa). These mice also consume the biological-control insects Urophora spp. introduced to control C. maculosa, and this food resource substantially increases deer mouse populations. Thus, mice may play an important role in the invasion and management of C. maculosa through food-web interactions. We examined deer mouse seed predation and its effects on seedling emergence and establishment of a dominant native grass, Pseudoroegneria spicata, and forb, Balsamorhiza sagittata, in C. maculosa-invaded grasslands that were treated with herbicide to suppress C. maculosa or left untreated as controls. Deer mice readily took seeds of both native plants but removed 2-20 times more of the larger B. sagittata seeds than the smaller P. spicata seeds. Seed predation reduced emergence and establishment of both species but had greater impacts on B. sagittata. The intensity of seed predation corresponded with annual and seasonal changes in deer mouse abundance, suggesting that abundance largely determined mouse impacts on native-plant seeds. Accordingly, herbicide treatments that reduced mouse abundance by suppressing C. maculosa and its associated biocontrol food subsidies to mice also reduced seed predation and decreased the impact of deer mice on B. sagittata establishment. These results provide evidence that Urophora biocontrol agents may exacerbate the negative effects of C. maculosa on native plants through a form of second-order apparent competition-a biocontrol indirect effect that has not been previously documented. Herbicide suppressed C. maculosa and Urophora, reducing mouse populations and moderating seed predation on native plants, but the herbicide's direct negative effects on native forb seedlings overwhelmed the indirect positive effect of reducing deer mouse seed predation. By manipulating this four-level food chain, we illustrate that host-specific biological control agents may impact nontarget plant species through food-web interactions, and herbicides may influence management outcomes through indirect trophic interactions in addition to their direct effects on plants.
Appleby, Ryan; Zur Linden, Alex; Sears, William
2017-05-01
Diagnostic imaging plays an important role in the operating room, providing surgeons with a reference and surgical plan. Surgeon autonomy in the operating room has been suggested to decrease errors that stem from communication mistakes. A standard computer mouse was compared to a wireless remote-control style controller for computer game consoles (Wiimote) for the navigation of diagnostic imaging studies by sterile personnel in this prospective survey study. Participants were recruited from a cohort of residents and faculty that use the surgical suites at our institution. Outcome assessments were based on survey data completed by study participants following each use of either the mouse or Wiimote, and compared using an analysis of variance. The mouse was significantly preferred by the study participants in the categories of handling, accuracy and efficiency, and overall satisfaction (P <0.05). The mouse was preferred to both the Wiimote and to no device, when participants were asked to rank options for image navigation. This indicates the need for the implementation of intraoperative image navigation devices, to increase surgeon autonomy in the operating room. © 2017 American College of Veterinary Radiology.
Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K
2017-02-01
Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse -1 . At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL) -1 ·mouse -1 ) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.
Mullen, Yoko
2017-04-01
In 1974, the discovery of a mouse and a rat that spontaneously developed hyperglycemia led to the development of 2 autoimmune diabetes models: nonobese diabetic (NOD) mouse and Bio-Breeding rat. These models have contributed to our understanding of autoimmune diabetes, provided tools to dissect autoimmune islet damage, and facilitated development of early detection, prevention, and treatment of type 1 diabetes. The genetic characterization, monoclonal antibodies, and congenic strains have made NOD mice especially useful.Although the establishment of the inbred NOD mouse strain was documented by Makino et al (Jikken Dobutsu. 1980;29:1-13), this review will focus on the not-as-well-known history leading to the discovery of a glycosuric female mouse by Yoshihiro Tochino. This discovery was spearheaded by years of effort by Japanese scientists from different disciplines and dedicated animal care personnel and by the support of the Shionogi Pharmaceutical Company, Osaka, Japan. The history is based on the early literature, mostly written in Japanese, and personal communications especially with Dr Tochino, who was involved in diabetes animal model development and who contributed to the release of NOD mice to the international scientific community. This article also reviews the scientific contributions made by the Bio-Breeding rat to autoimmune diabetes.
Coronary artery wall imaging in mice using osmium tetroxide and micro-computed tomography (micro-CT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai, Vinay M.; Kozlowski, Megan; Donahue, Danielle
2012-05-10
The high spatial resolution of micro-computed tomography (micro-CT) is ideal for 3D imaging of coronary arteries in intact mouse heart specimens. Previously, micro-CT of mouse heart specimens utilized intravascular contrast agents that hardened within the vessel lumen and allowed a vascular cast to be made. However, for mouse coronary artery disease models, it is highly desirable to image coronary artery walls and highlight plaques. For this purpose, we describe an ex vivo contrast-enhanced micro-CT imaging technique based on tissue staining with osmium tetroxide (OsO{sub 4}) solution. As a tissue-staining contrast agent, OsO{sub 4} is retained in the vessel wall andmore » surrounding tissue during the fixation process and cleared from the vessel lumens. Its high X-ray attenuation makes the artery wall visible in CT. Additionally, since OsO{sub 4} preferentially binds to lipids, it highlights lipid deposition in the artery wall. We performed micro-CT of heart specimens of 5- to 25-week-old C57BL/6 wild-type mice and 5- to 13-week-old apolipoprotein E knockout (apoE{sup -/-}) mice at 10 {mu}m resolution. The results show that walls of coronary arteries as small as 45 {mu}m in diameter are visible using a table-top micro-CT scanner. Similar image clarity was achieved with 1/2000th the scan time using a synchrotron CT scanner. In 13-week-old apoE mice, lipid-rich plaques are visible in the aorta. Our study shows that the combination of OsO{sub 4} and micro-CT permits the visualization of the coronary artery wall in intact mouse hearts.« less
NASA Astrophysics Data System (ADS)
Cabral-Prieto, A.; López-Callejas, R.; Rodríguez-Méndez, B. G.; Santos-Cuevas, C. L.; Celis-Almazán, J.; Olea-Mejía, O.; Gómez-Morales, J. L.; Peña-Eguiluz, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Muñoz-Castro, A. E.; García-Santibañez, F.
2017-11-01
The survival of Escherichia coli bacteria and mouse glioma cells were studied under different temperatures using direct heating in water, ultrasound, and magnetic fluid hyperthermia. The survival of these microorganisms depended on whether the heating mode was continuous or discontinuous, surviving more in the former than in the discontinuous heating mode. Whereas Escherichia coli bacteria did not survive at temperatures ≥50∘C, the mouse glioma cells did not survive at temperatures ≥48∘C. The survival of both these microorganisms was independent of the presence or absence of the magnetic nanoparticles of magnetite, suggesting that these, having mean particle sizes of 9.5, 8.5 and 5, did not show any apparent cytotoxicity effect. Present results also showed that the inductive heating system which used a radiofrequency of 13.56 MHz, providing a maximum magnetic field strength of 160 A/m, the electric rather than magnetic heating predominated.
Pituitary Androgen Receptor Signalling Regulates Prolactin but Not Gonadotrophins in the Male Mouse
O’Hara, Laura; Curley, Michael; Tedim Ferreira, Maria; Cruickshanks, Lyndsey; Milne, Laura; Smith, Lee B.
2015-01-01
Production of the androgen testosterone is controlled by a negative feedback loop within the hypothalamic-pituitary-gonadal (HPG) axis. Stimulation of testicular Leydig cells by pituitary luteinising hormone (LH) is under the control of hypothalamic gonadotrophin releasing hormone (GnRH), while suppression of LH secretion by the pituitary is controlled by circulating testosterone. Exactly how androgens exert their feedback control of gonadotrophin secretion (and whether this is at the level of the pituitary), as well as the role of AR in other pituitary cell types remains unclear. To investigate these questions, we exploited a transgenic mouse line (Foxg1Cre/+; ARfl/y) which lacks androgen receptor in the pituitary gland. Both circulating testosterone and gonadotrophins are unchanged in adulthood, demonstrating that AR signalling is dispensable in the male mouse pituitary for testosterone-dependent regulation of LH secretion. In contrast, Foxg1Cre/+; ARfl/y males have a significant increase in circulating prolactin, suggesting that, rather than controlling gonadotrophins, AR-signalling in the pituitary acts to suppress aberrant prolactin production in males. PMID:25799562
BOOT-HANDFORD, R. P.; MICHAELIDIS, T. M.; HILLARBY, M. C.; ZAMBELLI, A.; DENTON, J.; HOYLAND, J. A.; FREEMONT, A. J.; GRANT, M. E.; WALLIS, G. A.
1998-01-01
Histological examination of long bones from 1-day-old bcl-2 knockout and age-matched control mice revealed no obvious differences in length of bone, growth plate architecture or stage of endochondral ossification. In 35-day-old bcl-2 knockout mice that are growth retarded or ‘dwarfed’, the proliferative zone of the growth plate appeared slightly thinner and the secondary centres of ossification less well developed than their age-matched wild-type controls. The most marked histological effects of bcl-2 ablation were on osteoblasts and bone. 35-day-old knockout mouse bones exhibited far greater numbers of osteoblasts than controls and the osteoblasts had a cuboidal phenotype in comparison with the normal flattened cell appearance. In addition, the collagen deposited by the osteoblasts in the bcl-2 knockout mouse bone was disorganized in comparison with control tissue and had a pseudo-woven appearance. The results suggest an important role for Bcl-2 in controlling osteoblast phenotype and bone deposition in vivo. PMID:10193316
Wolf, Cynthia J; Takacs, Margy L; Schmid, Judith E; Lau, Christopher; Abbott, Barbara D
2008-11-01
Perfluoroalkyl acids (PFAAs) are surfactants used in consumer products and persist in the environment. Some PFAAs elicit adverse effects on rodent development and survival. PFAAs can activate peroxisome proliferator-activated receptor alpha (PPARalpha) and may act via PPARalpha to produce some of their effects. This study evaluated the ability of numerous PFAAs to induce mouse and human PPARalpha activity in a transiently transfected COS-1 cell assay. COS-1 cells were transfected with either a mouse or human PPARalpha receptor-luciferase reporter plasmid. After 24 h, cells were exposed to either negative controls (water or dimethyl sulfoxide, 0.1%); positive control (WY-14643, PPARalpha agonist); perfluorooctanoic acid or perfluorononanoic acid at 0.5-100 microM; perfluorobutanoic acid, perfluorohexanoic acid, perfluorohexane sulfonate, or perfluorodecanoic acid (PFDA) at 5-100 microM; or perfluorobutane sulfonate or perfluorooctane sulfonate at 1-250 microM. After 24 h of exposure, luciferase activity from the plasmid was measured. Each PFAA activated both mouse and human PPARalpha in a concentration-dependent fashion, except PFDA with human PPARalpha. Activation of PPARalpha by PFAA carboxylates was positively correlated with carbon chain length, up to C9. PPARalpha activity was higher in response to carboxylates compared to sulfonates. Activation of mouse PPARalpha was generally higher compared to that of human PPARalpha. We conclude that, in general, (1) PFAAs of increasing carbon backbone chain lengths induce increasing activity of the mouse and human PPARalpha with a few exceptions, (2) PFAA carboxylates are stronger activators of mouse and human PPARalpha than PFAA sulfonates, and (3) in most cases, the mouse PPARalpha appears to be more sensitive to PFAAs than the human PPARalpha in this model.
Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters.
Contreras, Laura; Urbieta, Almudena; Kobayashi, Keiko; Saheki, Takeyori; Satrústegui, Jorgina
2010-04-01
The mitochondrial aspartate-glutamate carriers (AGC) aralar (SLC25A12) and citrin (SLC25A13) are components of the malate aspartate shuttle (MAS), a major intracellular pathway to transfer reducing equivalents from NADH to the mitochondrial matrix. Aralar is the main AGC isoform present in the adult brain, and it is expressed mainly in neurons. To search for the other AGC isoform, citrin, in brain glial cells, we used a citrin knockout mouse in which the lacZ gene was inserted into the citrin locus as reporter gene. In agreement with the low citrin levels known to be present in the adult mouse brain, beta-galactosidase expression was very low. Surprisingly, unlike the case with astroglial cultures that express citrin, no beta-galactosidase was found in brain glial cells. It was confined to neuronal cells within discrete neuronal clusters. Double-immunolabelling experiments showed that beta-galactosidase colocalized not with glial cell markers but with the pan-neuronal marker NeuN. The deep cerebellar nuclei and a few midbrain nuclei (reticular tegmental pontine nuclei; magnocellular red nuclei) were the regions where beta-galactosidase expression was highest, and it was up-regulated in fasted mice, as was also the case for liver beta-galactosidase. The results support the notion that glial cells have much lower AGC levels and MAS activity than neurons. (c) 2009 Wiley-Liss, Inc.
Meier, Remo; Lutz, Christian; Cosín-Roger, Jesus; Fagagnini, Stefania; Bollmann, Gabi; Hünerwadel, Anouk; Mamie, Celine; Lang, Silvia; Tchouboukov, Alexander; Weber, Franz E; Weber, Achim; Rogler, Gerhard; Hausmann, Martin
2016-03-01
Fibrosis as a common problem in patients with Crohn's disease is a result of an imbalance toward excessive tissue repair. At present, there is no specific treatment option. Pirfenidone is approved for the treatment of idiopathic pulmonary fibrosis with both antifibrotic and anti-inflammatory effects. We subsequently investigated the impact of pirfenidone treatment on development of fibrosis in a new mouse model of intestinal fibrosis. Small bowel resections from donor mice were transplanted subcutaneously into the neck of recipients. Animals received either pirfenidone (100 mg/kg, three times daily, orally) or vehicle. After administration of pirfenidone, a significantly decreased collagen layer thickness was revealed as compared to vehicle (9.7 ± 1.0 versus 13.5 ± 1.5 µm, respectively, **P < 0.001). Transforming growth factor-β and matrix metalloproteinase-9 were significantly decreased after treatment with pirfenidone as confirmed by real-time PCR (0.42 ± 0.13 versus 1.00 ± 0.21 and 0.46 ± 0.24 versus 1.00 ± 0.62 mRNA expression level relative to GAPDH, respectively, *P < 0.05). Significantly decreased transforming growth factor-β after administration of pirfenidone was confirmed by Western blotting. In our mouse model, intestinal fibrosis can be reliably induced and is developed within 7 days. Pirfenidone partially prevented the development of fibrosis, making it a potential treatment option against Crohn's disease-associated fibrosis.
Augmented Computer Mouse Would Measure Applied Force
NASA Technical Reports Server (NTRS)
Li, Larry C. H.
1993-01-01
Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.
The IgG2a antibody response to thyroglobulin is linked to the Igh locus in mouse.
Kuppers, R C; Epstein, L D; Outschoorn, I M; Rose, N R
1994-01-01
The IgG-subclass usage by several strains of mice in the response to immunization with mouse thyroglobulin (mTg) was examined in the experimental autoimmune thyroiditis model. While the subclass usage by most mouse strains was similar, the Ighb allotype-bearing mice consistently produced lower IgG2a levels to mTg. Using CBA-Ighb congenic and recombinant inbred strains of mice, the lower level of IgG2a in the Ighb mouse was mapped to the Igh locus. The regulation of IgG2a appeared to be cis controlled, as the CBA x C57BL/6F1 mouse also produced reduced IgG2a of the Ighb (B6) allotype but not of the Ighj (CBA) allotype.
William, Basem M.; An, Wei; Feng, Dan; Nadeau, Scott; Mohapatra, Bhopal C; Storck, Matthew A.; Band, Vimla; Band, Hamid
2017-01-01
Objectives Mutations in Cbl or Cbl-b gene occur in 10% of MPD patients and are associated with poor prognosis. Hematopoietic Cbl/Cbl-b double knockout (DKO) leads to a disease in mice phenotypically similar to human MPDs. The aim of this study was to evaluate the anti-MPD activity of a clinical safe drug, Fasudil identified in an in vitro kinase inhibitor as an inhibitor of proliferation of DKO mouse hematopoietic stem/progenitor cells (HSPCs). Methods Fasudil exhibited relatively selective anti-proliferative activity against Cbl/Cbl-b DKO vs. control murine bone marrow HSPCs. We established a mouse model with uniform time of MPD onset by transplanting Cbl/Cbl-b DKO HSPCs into busulfan-conditioned NOD/SCID/gamma chain-deficient mice. Four weeks post-transplant, mice were treated with 100 mg/kg fasudil (13 mice) or water (control, 8 mice) daily by oral gavage, followed by blood cell count every two weeks. Results By two weeks of treatment, total white cell and monocyte counts were significantly lower in mice treated with fasudil. We observed a trend towards improved survival in fasudil-treated mice that didn’t reach statistical significance. Notably, prolonged survival beyond 27 weeks was observed in 2 fasudil-treated mice, nearly twice the 16-week average life-span in the Cbl/Cbl-b DKO MPD model. Conclusions Our results suggest a therapeutic potential for fasudil, a clinically-safe drug with promising results in vascular diseases, in the treatment of MPDs or other mutant Cbl-driven myeloid disorders. PMID:26177294
Role of carbonic anhydrase in bone resorption induced by prostaglandin E2 in vitro
NASA Technical Reports Server (NTRS)
Hall, G. E.; Kenny, A. D.
1985-01-01
The possible role of carbonic anhydrase in bone resorption induced by prostaglandin E2 (PGE2) was studied using an in vitro neonatal mouse calvarial culture system. PGE2 (10 to the -6th M) was effective in stimulating resorption, as assessed by calcium release into culture media. This enhanced resorption was accompanied by significant increases in calvarial carbonic anhydrase activity over control values at 48 and 96 h. At 48 h, bones treated with PGE2 had 20 percent more carbonic anhydrase activity than controls. By 96 h, treated bones contained 79 percent more carbonic anhydrase activity than controls. PGE2-induced bone resorption was inhibited by the carbonic anhydrase inhibitor acetazolamide in a dose-dependent fashion from 10 to the -5th to 10 to the -4th M with 77 percent inhibition observed at 10 to the -4th M. The acetazolamide analogue CL 13,850 (N-t-butylacetazolamide), which does not inhibit carbonic anhydrase, failed to inhibit PGE2-induced resorption. These results are consistent with the hypothesis that carbonic anhydrase is a necessary component of the osteoclastic bone resorptive mechanism.
Leskovjan, Andreana C; Kretlow, Ariane; Miller, Lisa M
2010-04-01
Polyunsaturated fatty acids are essential to brain functions such as membrane fluidity, signal transduction, and cell survival. It is also thought that low levels of unsaturated lipid in the brain may contribute to Alzheimer's disease (AD) risk or severity. However, it is not known how accumulation of unsaturated lipids is affected in different regions of the hippocampus, which is a central target of AD plaque pathology, during aging. In this study, we used Fourier transform infrared imaging (FTIRI) to visualize the unsaturated lipid content in specific regions of the hippocampus in the PSAPP mouse model of AD as a function of plaque formation. Specifically, the unsaturated lipid content was imaged using the olefinic =CH stretching mode at 3012 cm(-1). The axonal, dendritic, and somatic layers of the hippocampus were examined in the mice at 13, 24, 40, and 56 weeks old. Results showed that lipid unsaturation in the axonal layer was significantly increased with normal aging in control (CNT) mice (p < 0.01) but remained low and relatively constant in PSAPP mice. Thus, these findings indicate that unsaturated lipid content is reduced in hippocampal white matter during amyloid pathogenesis and that maintaining unsaturated lipid content early in the disease may be critical in avoiding progression of the disease.
Higuti, Eliza; Cecchi, Claudia R; Oliveira, Nelio A J; Vieira, Daniel P; Jensen, Thomas G; Jorge, Alexander A L; Bartolini, Paolo; Peroni, Cibele N
2012-12-01
In previous work, sustained levels of circulating human growth hormone (hGH) and a highly significant weight increase were observed after electrotransfer of naked plasmid DNA (hGH-DNA) into the muscle of immunodeficient dwarf mice (lit/scid). In the present study, the efficacy of this in vivo gene therapy strategy is compared to daily injections (5 μg/twice a day) of recombinant hGH (r-hGH) protein, as assessed on the basis of several growth parameters. The slopes of the two growth curves were found to be similar (P > 0.05): 0.095 g/mouse/d for protein and 0.094 g/mouse/d for DNA injection. In contrast, the weight increases averaged 35.5% (P < 0.001) and 23.1% (P < 0.01) for protein and DNA administration, respectively, a difference possibly related to the electroporation methodology. The nose-to-tail linear growth increases were 15% and 9.6% for the protein and DNA treatments, respectively, but mouse insulin-like growth factor I (mIGF-I) showed a greater increase over the control with DNA (5- to 7-fold) than with protein (3- to 4-fold) administration. The weight increases of several organs and tissues (kidneys, spleen, liver, heart, quadriceps and gastrocnemius muscles) were 1.3- to 4.6-fold greater for protein than for DNA administration, which gave a generally more proportional growth. Glucose levels were apparently unaffected, suggesting the absence of effects on glucose tolerance. A gene transfer strategy based on a single hGH-DNA administration thus appears to be comparable to repeated hormone injections for promoting growth and may represent a feasible alternative for the treatment of growth hormone deficiency.
Peart, J; Headrick, J P
2000-11-01
We assessed the role of A(1) adenosine receptor (A(1)AR) activation by endogenous adenosine in the modulation of ischemic contracture and postischemic recovery in Langendorff-perfused mouse hearts subjected to 20 min of total ischemia and 30 min of reperfusion. In control hearts, the rate-pressure product (RPP) and first derivative of pressure development over time (+dP/dt) recovered to 57 +/- 3 and 58 +/- 3% of preischemia, respectively. Diastolic pressure remained elevated at 20 +/- 2 mmHg (compared with 3 +/- 1 mmHg preischemia). Interstitial adenosine, assessed by microdialysis, rose from approximately 0.3 to 1.9 microM during ischemia compared with approximately 15 microM in rat heart. Nonetheless, these levels will near maximally activate A(1)ARs on the basis of effects of exogenous adenosine and 2-chloroadenosine. Neither A(1)AR blockade with 200 nM 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) during the ischemic period alone nor A(1)AR activation with 50 nM N(6)-cyclopentyladenosine altered rapidity or extent of ischemic contracture. However, ischemic DPCPX treatment significantly depressed postischemic recovery of RPP and +dP/dt (44 +/- 3 and 40 +/- 4% of preischemia, respectively). DPCPX treatment during the reperfusion period alone also reduced recovery of RPP and +dP/dt (to 44 +/- 2 and 47 +/- 2% of preischemia, respectively). These data indicate that 1) interstitial adenosine is lower in mouse versus rat myocardium during ischemia, 2) A(1)AR activation by endogenous adenosine or exogenous agonists does not modify ischemic contracture in murine myocardium, 3) A(1)AR activation by endogenous adenosine during ischemia attenuates postischemic stunning, and 4) A(1)AR activation by endogenous adenosine during the reperfusion period also improves postischemic contractile recovery.
Ghanem, Louis R; Kromer, Andrew; Silverman, Ian M; Chatterji, Priya; Traxler, Elizabeth; Penzo-Mendez, Alfredo; Weiss, Mitchell J; Stanger, Ben Z; Liebhaber, Stephen A
2016-01-15
RNA-binding proteins participate in a complex array of posttranscriptional controls essential to cell type specification and somatic development. Despite their detailed biochemical characterizations, the degree to which each RNA-binding protein impacts mammalian embryonic development remains incompletely defined, and the level of functional redundancy among subsets of these proteins remains open to question. The poly(C) binding proteins, PCBPs (αCPs and hnRNP E proteins), are encoded by a highly conserved and broadly expressed gene family. The two major Pcbp isoforms, Pcbp2 and Pcbp1, are robustly expressed in a wide range of tissues and exert both nuclear and cytoplasmic controls over gene expression. Here, we report that Pcbp1-null embryos are rendered nonviable in the peri-implantation stage. In contrast, Pcbp2-null embryos undergo normal development until midgestation (12.5 to 13.5 days postcoitum), at which time they undergo a dramatic loss in viability associated with combined cardiovascular and hematopoietic abnormalities. Mice heterozygous for either Pcbp1 or Pcbp2 null alleles display a mild and nondisruptive defect in initial postpartum weight gain. These data reveal that Pcbp1 and Pcbp2 are individually essential for mouse embryonic development and have distinct impacts on embryonic viability and that Pcpb2 has a nonredundant in vivo role in hematopoiesis. These data further provide direct evidence that Pcbp1, a retrotransposed derivative of Pcpb2, has evolved an essential function(s) in the mammalian genome. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
2011-01-01
Background PreImplantation Factor (PIF), a novel peptide secreted by viable embryos is essential for pregnancy: PIF modulates local immunity, promotes decidual pro-adhesion molecules and enhances trophoblast invasion. To determine the role of PIF in post-fertilization embryo development, we measured the peptide's concentration in the culture medium and tested endogenous PIF's potential trophic effects and direct interaction with the embryo. Methods Determine PIF levels in culture medium of multiple mouse and single bovine embryos cultured up to the blastocyst stage using PIF-ELISA. Examine the inhibitory effects of anti-PIF-monoclonal antibody (mAb) added to medium on cultured mouse embryos development. Test FITC-PIF uptake by cultured bovine blastocysts using fluorescent microscopy. Results PIF levels in mouse embryo culture medium significantly increased from the morula to the blastocyst stage (ANOVA, P = 0.01). In contrast, atretic embryos medium was similar to the medium only control. Detectable - though low - PIF levels were secreted already by 2-cell stage mouse embryos. In single bovine IVF-derived embryos, PIF levels in medium at day 3 of culture were higher than non-cleaving embryos (control) (P = 0.01) and at day 7 were higher than day 3 (P = 0.03). In non-cleaving embryos culture medium was similar to medium alone (control). Anti-PIF-mAb added to mouse embryo cultures lowered blastocyst formation rate 3-fold in a dose-dependent manner (2-way contingency table, multiple groups, X2; P = 0.01) as compared with non-specific mouse mAb, and medium alone, control. FITC-PIF was taken-up by cultured bovine blastocysts, but not by scrambled FITC-PIF (control). Conclusions PIF is an early embryo viability marker that has a direct supportive role on embryo development in culture. PIF-ELISA use to assess IVF embryo quality prior to transfer is warranted. Overall, our data supports PIF's endogenous self sustaining role in embryo development and the utility of PIF- ELISA to detect viable embryos in a non-invasive manner. PMID:21569635
Loss of lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in rd11 mice
Friedman, James S.; Chang, Bo; Krauth, Daniel S.; Lopez, Irma; Waseem, Naushin H.; Hurd, Ron E.; Feathers, Kecia L.; Branham, Kari E.; Shaw, Manessa; Thomas, George E.; Brooks, Matthew J.; Liu, Chunqiao; Bakeri, Hirva A.; Campos, Maria M.; Maubaret, Cecilia; Webster, Andrew R.; Rodriguez, Ignacio R.; Thompson, Debra A.; Bhattacharya, Shomi S.; Koenekoop, Robert K.; Heckenlively, John R.; Swaroop, Anand
2010-01-01
Retinal degenerative diseases, such as retinitis pigmentosa and Leber congenital amaurosis, are a leading cause of untreatable blindness with substantive impact on the quality of life of affected individuals and their families. Mouse mutants with retinal dystrophies have provided a valuable resource to discover human disease genes and helped uncover pathways critical for photoreceptor function. Here we show that the rd11 mouse mutant and its allelic strain, B6-JR2845, exhibit rapid photoreceptor dysfunction, followed by degeneration of both rods and cones. Using linkage analysis, we mapped the rd11 locus to mouse chromosome 13. We then identified a one-nucleotide insertion (c.420–421insG) in exon 3 of the Lpcat1 gene. Subsequent screening of this gene in the B6-JR2845 strain revealed a seven-nucleotide deletion (c.14–20delGCCGCGG) in exon 1. Both sequence changes are predicted to result in a frame-shift, leading to premature truncation of the lysophosphatidylcholine acyltransferase-1 (LPCAT1) protein. LPCAT1 (also called AYTL2) is a phospholipid biosynthesis/remodeling enzyme that facilitates the conversion of palmitoyl-lysophosphatidylcholine to dipalmitoylphosphatidylcholine (DPPC). The analysis of retinal lipids from rd11 and B6-JR2845 mice showed substantially reduced DPPC levels compared with C57BL/6J control mice, suggesting a causal link to photoreceptor dysfunction. A follow-up screening of LPCAT1 in retinitis pigmentosa and Leber congenital amaurosis patients did not reveal any obvious disease-causing mutations. Previously, LPCAT1 has been suggested to be critical for the production of lung surfactant phospholipids and biosynthesis of platelet-activating factor in noninflammatory remodeling pathway. Our studies add another dimension to an essential role for LPCAT1 in retinal photoreceptor homeostasis. PMID:20713727
Identifying novel genetic determinants of hemostatic balance.
Ginsburg, D
2005-08-01
Incomplete penetrance and variable expressivity confound the diagnosis and therapy of most inherited thrombotic and hemorrhagic disorders. For many of these diseases, some or most of this variability is determined by genetic modifiers distinct from the primary disease gene itself. Clues toward identifying such modifier genes may come from studying rare Mendelian disorders of hemostasis. Examples include identification of the cause of combined factor V and VIII deficiency as mutations in the ER Golgi intermediate compartment proteins LMAN1 and MCFD2. These proteins form a cargo receptor that facilitates the transport of factors V and VIII, and presumably other proteins, from the ER to the Golgi. A similar positional cloning approach identified ADAMTS-13 as the gene responsible for familial TTP. Along with the work of many other groups, these findings identified VWF proteolysis by ADAMTS-13 as a key regulatory pathway for hemostasis. Recent advances in mouse genetics also provide powerful tools for the identification of novel genes contributing to hemostatic balance. Genetic studies of inbred mouse lines with unusually high and unusually low plasma VWF levels identified polymorphic variation in the expression of a glycosyltransferase gene, Galgt2, as an important determinant of plasma VWF levels in the mouse. Ongoing studies in mice genetically engineered to carry the factor V Leiden mutation may similarly identify novel genes contributing to thrombosis risk in humans.
Geldof, Lore; Lootens, Leen; Polet, Michael; Eichner, Daniel; Campbell, Thane; Nair, Vinod; Botrè, Francesco; Meuleman, Philip; Leroux-Roels, Geert; Deventer, Koen; Eenoo, Peter Van
2014-07-01
Anti-doping laboratories need to be aware of evolutions on the steroid market and elucidate steroid metabolism to identify markers of misuse. Owing to ethical considerations, in vivo and in vitro models are preferred to human excretion for nonpharmaceutical grade substances. In this study the chimeric mouse model and human liver microsomes (HLM) were used to elucidate the phase I metabolism of a new steroid product containing, according to the label, methylstenbolone. Analysis revealed the presence of both methylstenbolone and methasterone, a structurally closely related steroid. Via HPLC fraction collection, methylstenbolone was isolated and studied with both models. Using HLM, 10 mono-hydroxylated derivatives (U1-U10) and a still unidentified derivative of methylstenbolone (U13) were detected. In chimeric mouse urine only di-hydroxylated metabolites (U11-U12) were identified. Although closely related, neither methasterone nor its metabolites were detected after administration of isolated methylstenbolone. Administration of the steroid product resulted mainly in the detection of methasterone metabolites, which were similar to those already described in the literature. Methylstenbolone metabolites previously described were not detected. A GC-MS/MS multiple reaction monitoring method was developed to detect methylstenbolone misuse. In one out of three samples, previously tested positive for methasterone, methylstenbolone and U13 were additionally detected, indicating the applicability of the method. Copyright © 2014 John Wiley & Sons, Ltd.
Okumura, Kazuhiro; Sato, Miho; Saito, Megumi; Miura, Ikuo; Wakana, Shigeharu; Mao, Jian-Hua; Miyasaka, Yuki; Kominami, Ryo; Wakabayashi, Yuichi
2012-11-01
MSM/Ms is an inbred mouse strain derived from a Japanese wild mouse, Mus musculus molossinus. In this study, we showed that MSM/Ms mice exhibit dominant resistance when crossed with susceptible FVB/N mice and subjected to the two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA)/ 12-O-tetradecanoylphorbol-13-acetate (TPA). A series of F1 backcross mice were generated by crossing p53(+/+) or p53(+/-) F1 (FVB/N × MSM/Ms) males with FVB/N female mice. These generated 228 backcross animals, approximately half of which were p53(+/-), enabling us to search for p53-dependent skin tumor modifier genes. Highly significant linkage for papilloma multiplicity was found on chromosomes 6 and 7 and suggestive linkage was found on chromosomes 3, 5 and 12. Furthermore, in order to identify stage-dependent linkage loci we classified tumors into three categories (<2mm, 2-6mm and >6mm), and did linkage analysis. The same locus on chromosome 7 showed strong linkage in groups with <2mm or 2-6mm papillomas. No linkage was detected on chromosome 7 to papillomas >6mm, but a different locus on chromosome 4 showed strong linkage both to papillomas >6mm and to carcinomas. This locus, which maps near the Cdkn2a/p19(Arf) gene, was entirely p53-dependent, and was not seen in p53 (+/-) backcross animals. Suggestive linkage conferring susceptibility to carcinoma was also found on chromosome 5. These results clearly suggest distinct loci regulate each stage of tumorigenesis, some of which are p53-dependent.
Review of Virtual Environment Interface Technology.
1996-03-01
1.9 SpacePad 56 1.10 CyberTrack 3.2 57 1.11 Wayfinder-VR 57 1.12 Mouse-Sense3D 57 1.13 Selcom AB, SELSPOT H 57 1.14 OPTOTRAK 3020 58 1.15...Wayfinder-VR 57 Figure 38. Mouse-Sense3D 57 Figure 39. SELSPOTII 58 Figure 40. OPTOTRAK 3020 58 Figure 41. MacReflex 58 Figure 42. DynaSight 59...OPTOTRAK3020 The OPTOTRAK 3020 by Northern Digital Inc. is an infra-red (IR)-based, non- contact position and motion measurement sys- tem. Small IR LEDs
De Angelis, Meri; Giesert, Florian; Finan, Brian; Clemmensen, Christoffer; Müller, Timo D; Vogt-Weisenhorn, Daniela; Tschöp, Matthias H; Schramm, Karl-Werner
2016-10-15
Thyroid hormones (THs) play a critical role in the regulation of many biological processes such as growth, metabolism and development both in humans and wildlife. In general, TH levels are measured by immunoassay (IA) methods but the specificity of the antibodies used in these assays limits selectivity. In the last decade, several analytical methods using liquid chromatography-mass spectrometry (LC-MS) and tandem mass spectrometry (LC-MS/MS) have been developed to measure THs. These new techniques proved to be more accurate than the IA analysis and they were widely used for the determination of TH level in different human and animal tissues. A large part of LC-MS/MS methods described in literature employed between 200 and 500mg of sample, however this quantity can be considered too high especially when preclinical studies are conducted using mice as test subjects. Thus an analytical method that reduces the amount of tissue is essential. In this study, we developed a procedure for the analysis of six THs; L-thyroxine (T4), 3,3',5-triiodo-l-thyronine (T3), 3,3',5'-triiodo-l-thyronine (rT3), 3,5-diiodo-l-thyronine (rT2), 3,3'-diiodo-l-thyronine (T2), 3-iodo-l-thyronine (T1) using isotope ((13)C6-T4, (13)C6-T3, (13)C6-rT3, (13)C6-T2) dilution liquid chromatography-mass spectrometry. The major difference with previously described methods lies in the utilization of a nano-UPLC (Ultra Performance Liquid Chromatography) system in micro configuration. This approach leads to a reduction compared to the published methods, of column internal diameter, flow rate, and injected volume. The result of all these improvements is a decrease in the amount of sample necessary for the analysis. The method was tested on six different mouse tissues: liver, heart, kidney, muscle, lung and brown adipose tissue (BAT). The nano-UPLC system was interfaced with a quadrupole time-of-flight mass spectrometer (Q-TOF2-MS) using the positive ion mode electrospray ionization. In our analytical method the instrumental calibration curves were constructed from 0 to 100pgμL(-1) and all of them showed good linearity (r(2)>0.99). The limit of quantification was from 2.5 to 5pg injected into the column. The method recoveries calculated using spiked mouse liver and spiked mouse muscle were between 83% and 118% (except T1 and rT2 at high concentration) with a coefficient of variation (CV) of <10% for all derivatives. The new methodology allows us to measure T4 and T3 concentrations in a range from 21 to about 100mg and give a more extensive insight on thyroid hormone concentration in different mouse tissue. Copyright © 2016 Elsevier B.V. All rights reserved.
Okamoto, Toshiaki; Koda, Masahiko; Miyoshi, Kennichi; Onoyama, Takumi; Kishina, Manabu; Matono, Tomomitsu; Sugihara, Takaaki; Hosho, Keiko; Okano, Junichi; Isomoto, Hajime; Murawaki, Yoshikazu
2016-01-01
AIM To examine the effects of the endothelin type A receptor antagonist ambrisentan on hepatic steatosis and fibrosis in a steatohepatitis mouse model. METHODS Fatty liver shionogi (FLS) FLS-ob/ob mice (male, 12 wk old) received ambrisentan (2.5 mg/kg orally per day; n = 8) or water as a control (n = 5) for 4 wk. Factors were compared between the two groups, including steatosis, fibrosis, inflammation, and endothelin-related gene expression in the liver. RESULTS In the ambrisentan group, hepatic hydroxyproline content was significantly lower than in the control group (18.0 μg/g ± 6.1 μg/g vs 33.9 μg/g ± 13.5 μg/g liver, respectively, P = 0.014). Hepatic fibrosis estimated by Sirius red staining and areas positive for α-smooth muscle actin, indicative of activated hepatic stellate cells, were also significantly lower in the ambrisentan group (0.46% ± 0.18% vs 1.11% ± 0.28%, respectively, P = 0.0003; and 0.12% ± 0.08% vs 0.25% ± 0.11%, respectively, P = 0.047). Moreover, hepatic RNA expression levels of procollagen-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1) were significantly lower by 60% and 45%, respectively, in the ambrisentan group. Inflammation, steatosis, and endothelin-related mRNA expression in the liver were not significantly different between the groups. CONCLUSION Ambrisentan attenuated the progression of hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing procollagen-1 and TIMP-1 gene expression. Ambrisentan did not affect inflammation or steatosis. PMID:27574547
Okamoto, Toshiaki; Koda, Masahiko; Miyoshi, Kennichi; Onoyama, Takumi; Kishina, Manabu; Matono, Tomomitsu; Sugihara, Takaaki; Hosho, Keiko; Okano, Junichi; Isomoto, Hajime; Murawaki, Yoshikazu
2016-08-08
To examine the effects of the endothelin type A receptor antagonist ambrisentan on hepatic steatosis and fibrosis in a steatohepatitis mouse model. Fatty liver shionogi (FLS) FLS-ob/ob mice (male, 12 wk old) received ambrisentan (2.5 mg/kg orally per day; n = 8) or water as a control (n = 5) for 4 wk. Factors were compared between the two groups, including steatosis, fibrosis, inflammation, and endothelin-related gene expression in the liver. In the ambrisentan group, hepatic hydroxyproline content was significantly lower than in the control group (18.0 μg/g ± 6.1 μg/g vs 33.9 μg/g ± 13.5 μg/g liver, respectively, P = 0.014). Hepatic fibrosis estimated by Sirius red staining and areas positive for α-smooth muscle actin, indicative of activated hepatic stellate cells, were also significantly lower in the ambrisentan group (0.46% ± 0.18% vs 1.11% ± 0.28%, respectively, P = 0.0003; and 0.12% ± 0.08% vs 0.25% ± 0.11%, respectively, P = 0.047). Moreover, hepatic RNA expression levels of procollagen-1 and tissue inhibitor of metalloproteinase-1 (TIMP-1) were significantly lower by 60% and 45%, respectively, in the ambrisentan group. Inflammation, steatosis, and endothelin-related mRNA expression in the liver were not significantly different between the groups. Ambrisentan attenuated the progression of hepatic fibrosis by inhibiting hepatic stellate cell activation and reducing procollagen-1 and TIMP-1 gene expression. Ambrisentan did not affect inflammation or steatosis.
Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver.
Kakinuma, Sei; Ohta, Haruhiko; Kamiya, Akihide; Yamazaki, Yuji; Oikawa, Tsunekazu; Okada, Ken; Nakauchi, Hiromitsu
2009-07-01
Hepatic stem/progenitor cells possess active proliferative ability and the capacity for differentiation into hepatic and cholangiocytic lineages. Our group and others have shown that a prospectively defined population in mid-gestational fetal liver contains hepatic stem/progenitor cells. However, the phenotypes of such cells are incompletely elucidated. We analyzed the profile of cell-surface molecules on primary hepatic stem/progenitor cells. Expression of cell surface molecules on primary hepatic stem/progenitor cells in mouse mid-gestational fetal liver was analyzed using flow cytometric multicolor analyses and colony-formation assays. The potential of the cells for liver repopulation was examined by transplantation assay. We found that CD13 (aminopeptidase N) was detected on the cells of the previously reported (Dlk/Pref-1(+)) hepatic stem/progenitor fraction. Colony-formation assays revealed that the CD13(+) fraction, compared with the Dlk(+) fraction, of non-hematopoietic cells in fetal liver was enriched in hepatic stem/progenitor cells. Transplantation assay showed the former fraction exhibited repopulating potential in regenerating liver. Moreover, flow cytometric analysis for over 90 antigens demonstrated enrichment of hepatic stem/progenitor cells using several positive selection markers, including (hitherto unknown) CD13, CD73, CD106, and CD133. Our data indicated that CD13 is a positive selection marker for hepatic stem/progenitor cells in mid-gestational fetal liver.
Geng, Peiwu; Luo, Jun; Weng, Ziwei; Fan, Zhehua; Zhang, Bin; Ma, Jianshe; Wang, Xianqin; Zhang, Meiling
2018-05-03
The purpose of this study was to develop an ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS) method to determine armepavine in mouse blood. Nuciferine was used as internal standard. Chromatographic separation was performed on a UPLC BEH (2.1 × 50 mm, 1.7 μm) column with a gradient elution of acetonitrile and 10 mmol/L ammonium acetate solution (containing 0.1% formic acid). The quantitative analysis was conducted in multiple reaction monitoring mode with m/z 314.1 → 106.9 for armepavine and m/z 296.2 → 265.1 for nuciferine. Calibration curves were linear (r > 0.995) over the concentration range 1-1000 ng/mL in mouse blood with a lowest limit of quantitation of 1 ng/mL. The intra- and inter-day precisions of armepavine in mouse were < 13.5 and 10.8%, respectively. The accuracy ranged between 86.8 and 103.3%. Meanwhile, the average recovery was >70.7% and the matrix effect was within the range 109.5-113.7%. All of the obtained data confirmed the satisfactory sensitivity and selectivity of the developed method which was then successfully applied to evaluate the pharmacokinetic behavior of armepavine in mouse for the first time. The bioavailability of armepavine in mouse was calculated to be 11.3%. Copyright © 2018 John Wiley & Sons, Ltd.
Abualhassan, Nasser; Sapozhnikov, Lena; Pawlick, Rena L; Kahana, Meygal; Pepper, Andrew R; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A M James
2016-01-01
There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ.
Pawlick, Rena L.; Kahana, Meygal; Pepper, Andrew R.; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A. M. James
2016-01-01
There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ. PMID:27227978
Marshall, Clement D; Hu, Michael S; Leavitt, Tripp; Barnes, Leandra A; Cheung, Alexander T M; Malhotra, Samir; Lorenz, H Peter; Delp, Scott L; Quake, Stephen R; Longaker, Michael T
2017-02-01
Sanativo is an over-the-counter Brazilian product derived from Amazon rainforest plant extract that is purported to improve the healing of skin wounds. Two experimental studies have shown accelerated closure of nonsplinted excisional wounds in rat models. However, these models allow for significant contraction of the wound and do not approximate healing in the tight skin of humans. Full-thickness excisional wounds were created on the dorsal skin of mice and were splinted with silicone rings, a model that forces the wound to heal by granulation and reepithelialization. Sanativo or a control solution was applied either daily or every other day to the wounds. Photographs were taken every other day, and the degree of reepithelialization of the wounds was determined. With both daily and every-other-day applications, Sanativo delayed reepithelialization of the wounds. Average time to complete healing was faster with control solution versus Sanativo in the daily application group (9.4 versus 15.2 days; p < 0.0001) and the every-other-day application group (11 versus 13 days; p = 0.017). The size of visible scar at the last time point of the study was not significantly different between the groups, and no differences were found on histologic examination. Sanativo wound healing compound delayed wound reepithelialization in a mouse splinted excisional wound model that approximates human wound healing. The size of visible scar after complete healing was not improved with the application of Sanativo. These results should cast doubt on claims that this product can improve wound healing in humans.
Masticatory muscles of mouse do not undergo atrophy in space
Philippou, Anastassios; Minozzo, Fabio C.; Spinazzola, Janelle M.; Smith, Lucas R.; Lei, Hanqin; Rassier, Dilson E.; Barton, Elisabeth R.
2015-01-01
Muscle loading is important for maintaining muscle mass; when load is removed, atrophy is inevitable. However, in clinical situations such as critical care myopathy, masticatory muscles do not lose mass. Thus, their properties may be harnessed to preserve mass. We compared masticatory and appendicular muscles responses to microgravity, using mice aboard the space shuttle Space Transportation System-135. Age- and sex-matched controls remained on the ground. After 13 days of space flight, 1 masseter (MA) and tibialis anterior (TA) were frozen rapidly for biochemical and functional measurements, and the contralateral MA was processed for morphologic measurements. Flight TA muscles exhibited 20 ± 3% decreased muscle mass, 2-fold decreased phosphorylated (P)-Akt, and 4- to 12-fold increased atrogene expression. In contrast, MAs had no significant change in mass but a 3-fold increase in P-focal adhesion kinase, 1.5-fold increase in P-Akt, and 50–90% lower atrogene expression compared with limb muscles, which were unaltered in microgravity. Myofibril force measurements revealed that microgravity caused a 3-fold decrease in specific force and maximal shortening velocity in TA muscles. It is surprising that myofibril-specific force from both control and flight MAs were similar to flight TA muscles, yet power was compromised by 40% following flight. Continued loading in microgravity prevents atrophy, but masticatory muscles have a different set point that mimics disuse atrophy in the appendicular muscle.—Philippou, A., Minozzo, F. C., Spinazzola, J. M., Smith, L. R., Lei, H., Rassier, D. E., Barton, E. R. Masticatory muscles of mouse do not undergo atrophy in space. PMID:25795455
Shintyapina, A B; Safronova, O G; Vavilin, V A; Kandalintseva, N V; Prosenko, A E; Lyakhovich, V V
2014-08-01
The study examined dynamics of the effect of novel phenol antioxidant preparation 3-(3'-tertbutyl- 4'-hydroxyphenyl)propyl thiosulfonate sodium (TS-13) on expression of antioxidant protection enzymes genes GSTP1 and NQO1 and on the content of protein transcription factors NF-κB and ATF-2 in mouse liver. Expression of GSTP1 gene decreased significantly on days 4 and 7 after per os administration of TS-13 (100 mg/kg), but increased on post-administration day 14. On days 7 and 14 post-administration, expression of NQO1 gene was significantly increased. On day 7, the hepatic content of the phosphorylated form of ATF-2 and two subunits of nuclear factor NF-κB (p50, p65) decreased significantly.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang
2012-01-01
Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However,…
Age-dependent phenotypic characteristics of a triple transgenic mouse model of Alzheimer disease.
Pietropaolo, Susanna; Feldon, Joram; Yee, Benjamin K
2008-08-01
The triple-transgenic mouse line (3 x Tg-AD) harboring PS1M146V, APPSwe, and taup301L transgenes represents the only transgenic model for Alzheimer's disease (AD) to date capturing both beta-amyloid and tau neuropathology. The present study provides an extensive behavioral characterization of the 3 x Tg-AD mouse line, evaluating the emergence of noncognitive and cognitive AD-like symptoms at two ages corresponding to the early (6-7 months) and advanced (12-13 months) stages of AD-pathology. Enhanced responsiveness to aversive stimulation was detected in mutant mice at both ages: the 3 x Tg-AD genotype enhanced acoustic startle response and facilitated performance in the cued-version of the water maze. These noncognitive phenotypes were accompanied by hyperactivity and reduced locomotor habituation in the open field at the older age. Signs of cognitive aberrations were also detected at both ages, but they were limited to associative learning. The present study suggests that this popular transgenic mouse model of AD has clear phenotypes beyond the cognitive domain, and their potential relationship to the cognitive phenotypes should be further explored.
Donczo, Boglarka; Szarka, Mate; Tovari, Jozsef; Ostoros, Gyorgyi; Csanky, Eszter; Guttman, Andras
2017-06-01
Capillary electrophoresis with laser-induced fluorescence (CE-LIF) detection was used to analyze endoglycosidase released and fluorophore-labeled N-glycans from formalin-fixed paraffin-embedded (FFPE) mouse tissue samples of lung, brain, heart, spleen, liver, kidney and intestine. The FFPE samples were first deparaffinized followed by solubilization and glycoprotein retrieval. PNGase F mediated release of the N-linked oligosaccharides was followed by labeling with aminopyrene trisulfonate. After CE-LIF glycoprofiling of the FFPE mouse tissues, the N-glycan pool of the lung specimen was subject to further investigation by exoglycosidase array based carbohydrate sequencing. Structural assignment of the oligosaccharides was accomplished by the help of the GUcal software and the associated database, based on the mobility shifts after treatments with the corresponding exoglycosidase reaction mixtures. Sixteen major N-linked carbohydrate structures were sequenced from the mouse lung FFPE tissue glycome and identified, as high mannose (3) neutral biantennary (3) sialylated monoantennary (1) and sialylated bianennary (9) oligosaccharides. Two of these latter ones also possessed alpha(1-3) linked galactose residues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kim, Do Hyun; Kim, Su Jeong; Ullah, Sultan; Yun, Hwi Young; Chun, Pusoon; Moon, Hyung Ryong
2017-01-01
The authors designed and synthesized 17 (2-substituted phenyl-1,3-dithiolan-4-yl) methanol (PDTM) derivatives to find a new chemical scaffold, showing excellent tyrosinase-inhibitory activity. Their tyrosinase-inhibitory activities were evaluated against mushroom tyrosinase at 50 μM, and five of the PDTM derivatives (PDTM3, PDTM7–PDTM9, and PDTM13) were found to inhibit mushroom tyrosinase more than kojic acid or arbutin, the positive controls. Of seventeen PDTMs, PDTM3 (half-maximal inhibitory concentration 13.94±1.76 μM), with a 2,4-dihydroxyphenyl moiety, exhibited greatest inhibitory effects (kojic acid half-maximal inhibitory concentration 18.86±2.14 μM). Interestingly, PDTM compounds with no hydroxyl group, PDTM7–PDTM9, also had stronger inhibitory activities than kojic acid. In silico studies of interactions between tyrosinase and the five PDTMs suggested their binding affinities were closely related to their tyrosinase-inhibitory activities. Cell-based experiments performed using B16F10 mouse-skin melanoma cells showed that PDTM3 effectively inhibited melanogenesis and cellular tyrosinase activity. A cell-viability study conducted using B16F10 cells indicated that the antimelanogenic effect of PDTM3 was not attributable to its cytotoxicity. Kinetic studies showed PDTM3 competitively inhibited tyrosinase, indicating binding to the tyrosinase-active site. We found that PDTM3 with a new chemical scaffold could be a promising candidate for skin-whitening agents, and that the 1,3-dithiolane ring could be used as a chemical scaffold for potent tyrosinase inhibition. PMID:28352157
Iwamoto, Ushio; Hori, Hideo; Takami, Yoshihiro; Tokushima, Yasuo; Shinzato, Masanori; Yasutake, Mikitomo; Kitaguchi, Nobuya
2015-12-01
The efficacy of skin regeneration devices consisting of nonwoven filters and peripheral blood cells was investigated for wound healing. We previously found that human peripheral blood cells enhanced their production of growth factors, such as transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor, when they were captured on nonwoven filters. Cells on biodegradable filters were expected to serve as a local supply of growth factors and cell sources when they were placed in wounded skin. Nonwoven filters made of biodegradable polylactic acid (PLA) were cut out as 13-mm disks and placed into cell-capturing devices. Mouse peripheral blood was filtered, resulting in PLA filters with mouse peripheral blood cells (m-PBCs) at capture rates of 65.8 ± 5.2%. Then, the filters were attached to full-thickness surgical wounds in a diabetic db/db mouse skin for 14 days as a model of severe chronic wounds. The wound area treated with PLA nonwoven filters with m-PBCs (PLA/B+) was reduced to 8.5 ± 12.2% when compared with day 0, although the non-treated control wounds showed reduction only to 60.6 ± 27.8%. However, the PLA filters without m-PBCs increased the wound area to 162.9 ± 118.7%. By histopathological study, the PLA/B+ groups more effectively accelerated formation of epithelium. The m-PBCs captured on the PLA filters enhanced keratinocyte growth factor (FGF-7) and TGF-β1 productions in vitro, which may be related to wound healing. This device is useful for regeneration of wounded skin and may be adaptable for another application.
Carvedilol induces endogenous hydrogen sulfide tissue concentration changes in various mouse organs.
Wiliński, Bogdan; Wiliński, Jerzy; Somogyi, Eugeniusz; Piotrowska, Joanna; Góralska, Marta; Macura, Barbara
2011-01-01
Carvedilol, a third generation non-selective adrenoreceptor blocker, is widely used in cardiology. Its action has been proven to reach beyond adrenergic antagonism and involves multiple biological mechanisms. The interaction between carvedilol and endogenous 'gasotransmitter' hydrogen sulfide (H2S) is unknown. The aim of the study is to assess the influence of carvedilol on the H2S tissue level in mouse brain, liver, heart and kidney. Twenty eight SJL strain female mice were administered intraperitoneal injections of 2.5 mg/kg b.w./d (group D1, n=7), 5 mg/kg b.w./d (group D2, n=7) or 10 mg/kg b.w./d of carvedilol (group D3, n=7). The control group (n=7) received physiological saline in portions of the same volume (0.2 ml). Measurements of the free tissue H2S concentrations were performed according to the modified method of Siegel. A progressive decline in H2S tissue concentration along with an increase in carvedilol dose was observed in the brain (12.5%, 13.7% and 19.6%, respectively). Only the highest carvedilol dose induced a change in H2S tissue level in the heart - an increase by 75.5%. In the liver medium and high doses of carvedilol increased the H2S level by 48.1% and 11.8%, respectively. In the kidney, group D2 showed a significant decrease of H2S tissue level (22.5%), while in the D3 group the H2S concentration increased by 12.9%. Our study has proven that carvedilol affects H2S tissue concentration in different mouse organs.
Kulikova, E A; Bazovkina, D V; Antonov, Y V; Akulov, A E; Kulikov, A V; Kondaurova, E M
2017-04-01
Catalepsy is an inability to correct an externally imposed awkward posture; it is associated with schizophrenia and depression in human. We created new recombinant B6.CBA-D13Mit76C and B6.CBA-D13Mit76B mouse lines on the C57Bl/6 genome, carrying the 102.73-110.56Mbp fragment of chromosome 13 derived from the catalepsy-prone CBA strain and catalepsy-resistant C57BL/6 strain, respectively. We compared the behavior and brain morphology (11.7T BioSpec 117/16 USR tomograph, Germany) in these lines. The effects of acute emotional stress on corticosterone's level in the blood and mRNA expression of Bdnf and Arc genes in the brain were investigated. The B6.CBA-D13Mit76B mice were non-cataleptic, while about 17% of B6.CBA-D13Mit76C mice demonstrated catalepsy-like immobility. No difference between these lines was revealed in the open field and social interaction tests. In the Morris water maze test, both lines effectively found the platform on the fourth day; however B6.CBA-D13Mit76B mice achieved significantly better results than cataleptic-prone animals. B6.CBA-D13Mit76C mice were characterized by decreased volume of the total brain and reduced sizes of striatum, cerebellum and pituitary gland. The both lines showed the similar basal and stress-induced levels of corticosterone, while the brain expression of Bdnf and Arc genes was more vulnerable to stress in the catalepsy-prone B6.CBA-D13Mit76C line. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.
Kessler, Sharon E; Radespiel, Ute; Hasiniaina, Alida I F; Leliveld, Lisette M C; Nash, Leanne T; Zimmermann, Elke
2014-02-20
Maternal kin selection is a driving force in the evolution of mammalian social complexity and it requires that kin are distinctive from nonkin. The transition from the ancestral state of asociality to the derived state of complex social groups is thought to have occurred via solitary foraging, in which individuals forage alone, but, unlike the asocial ancestors, maintain dispersed social networks via scent-marks and vocalizations. We hypothesize that matrilineal signatures in vocalizations were an important part of these networks. We used the solitary foraging gray mouse lemur (Microcebus murinus) as a model for ancestral solitary foragers and tested for matrilineal signatures in their calls, thus investigating whether such signatures are already present in solitary foragers and could have facilitated the kin selection thought to have driven the evolution of increased social complexity in mammals. Because agonism can be very costly, selection for matrilineal signatures in agonistic calls should help reduce agonism between unfamiliar matrilineal kin. We conducted this study on a well-studied population of wild mouse lemurs at Ankarafantsika National Park, Madagascar. We determined pairwise relatedness using seven microsatellite loci, matrilineal relatedness by sequencing the mitrochondrial D-loop, and sleeping group associations using radio-telemetry. We recorded agonistic calls during controlled social encounters and conducted a multi-parametric acoustic analysis to determine the spectral and temporal structure of the agonistic calls. We measured 10 calls for each of 16 females from six different matrilineal kin groups. Calls were assigned to their matriline at a rate significantly higher than chance (pDFA: correct = 47.1%, chance = 26.7%, p = 0.03). There was a statistical trend for a negative correlation between acoustic distance and relatedness (Mantel Test: g = -1.61, Z = 4.61, r = -0.13, p = 0.058). Mouse lemur agonistic calls are moderately distinctive by matriline. Because sleeping groups consisted of close maternal kin, both genetics and social learning may have generated these acoustic signatures. As mouse lemurs are models for solitary foragers, we recommend further studies testing whether the lemurs use these calls to recognize kin. This would enable further modeling of how kin recognition in ancestral species could have shaped the evolution of complex sociality.
X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.
Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri
2014-02-01
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.
X Chromosome Control of Meiotic Chromosome Synapsis in Mouse Inter-Subspecific Hybrids
Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri
2014-01-01
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. PMID:24516397
NASA Astrophysics Data System (ADS)
Ohira, Tomotaka; Ohira, Takashi; Kawano, F.; Shibaguchi, T.; Okabe, H.; Ohno, Y.; Nakai, N.; Ochiai, T.; Goto, K.; Ohira, Y.
2013-02-01
Neck muscles are known to play important roles in the maintenance of head posture against gravity. However, it is not known how the properties of neck muscle are influenced by gravity. Therefore, the current study was performed to investigate the responses of neck muscle (rhomboideus capitis) in mice to inhibition of gravity and/or increase to 2-G for 3 months to test the hypothesis that the properties of neck muscles are regulated in response to the level of mechanical load applied by the gravitational load. Three male wild type C57BL/10J mice (8 weeks old) were launched by space shuttle Discovery (STS-128) and housed in Japanese Experimental Module “KIBO” on the International Space Station in mouse drawer system (MDS) project, which was organized by Italian Space Agency. Only 1 mouse returned to the Earth alive after 3 months by space shuttle Atlantis (STS-129). Neck muscles were sampled from both sides within 3 hours after landing. Cage and laboratory control experiments were also performed on the ground. Further, 3-month ground-based control experiments were performed with 6 groups, i.e. pre-experiment, 3-month hindlimb suspension, 2-G exposure by using animal centrifuge, and vivarium control (n=5 each group). Five mice were allowed to recover from hindlimb suspension (including 5 cage control) for 3 months in the cage. Neck muscles were sampled bilaterally before and after 3-month suspension and 2-G exposure, and at the end of 3-month ambulation recovery. Spaceflight-associated shift of myosin heavy chain phenotype from type I to II and atrophy of type I fibers were observed. In response to spaceflight, 17 genes were up-regulated and 13 genes were down-regulated vs. those in the laboratory control. Expression of 6 genes were up-regulated and that of 88 genes were down-regulated by 3-month exposure to 2-G vs. the age-matched cage control. In response to chronic hindlimb suspension, 4 and 20 genes were up- or down-regulated. Further, 98 genes responded significantly to both hindlimb unloading and exposure to 2-G. Thirteen genes were up-regulated and 85 were down-regulated. In conclusion, long-term gravitational unloading of mouse caused shift of fiber phenotype toward fast-twitch type and atrophy of slow-twitch fibers in neck muscle. These responses were closely related to the up- or down-regulation of genes, suggesting that oxidative muscular metabolism may be inhibited in microgravity environment.
Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2015-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641
Effects of Quercetin in a Mouse Model of Experimental Dry Eye.
Oh, Ha Na; Kim, Chae Eun; Lee, Ji Hyun; Yang, Jae Wook
2015-09-01
To evaluate the effect of treatment with quercetin in a mouse model of dry eye. 0.5% quercetin eye drops were prepared and an experimental dry eye model was induced in NOD.B10.H2(b) mice through desiccation stress. The mice were divided into 3 groups according to the treatment regimen: the DS 10D group (desiccation stress for 10 days), the phosphate buffered saline (PBS) group, and the quercetin group. Tear volumes and corneal irregularity scores were measured at 3, 5, 7, and 10 days after treatment. Hematoxylin and eosin staining, periodic acid-Schiff staining, and immunohistochemistry were performed at the end of the experiment. The quercetin group had increased tear volumes (0.2 ± 0.03 μm, P < 0.05) and decreased corneal irregularity scores (0.7 ± 0.6, P < 0.05) compared with those of the PBS group. On histological examination, the quercetin group exhibited restored smooth corneal surfaces without detaching corneal epithelial cells and had significantly increased goblet cell density (13.8 ± 0.8 cells/0.1 mm², P < 0.05) compared with the PBS group. The quercetin group also exhibited significant declines of MMP-2 (5.1-fold of control, P < 0.01), MMP-9 (2.5-fold of control, P < 0.01), ICAM-1 (2.2-fold of control, P < 0.01), and VCAM-1 (2.3-fold of control, P < 0.01) levels in the lacrimal gland than did the PBS group. Topical application of quercetin can help to improve ocular surface disorders of dry eye not only by decreasing the corneal surface irregularity but also by increasing the tear volume and goblet cell density. Moreover, quercetin has the potential for use in eye drops as a treatment for dry eye disease with antiinflammatory effects on the lacrimal functional unit.
Pavlin, T; Nagelhus, E A; Brekken, C; Eyjolfsson, E M; Thoren, A; Haraldseth, O; Sonnewald, U; Ottersen, O P; Håberg, A K
2017-01-01
The first aim of this study was to determine how complete or perivascular loss of aquaporin-4 (AQP4) water channels affects membrane permeability for water in the mouse brain grey matter in the steady state. Time-dependent diffusion magnetic resonance imaging was performed on global Aqp4 knock out (KO) and α-syntrophin (α-syn) KO mice, in the latter perivascular AQP4 are mislocalized, but still functioning. Control animals were corresponding wild type (WT) mice. By combining in vivo diffusion measurements with the effective medium theory and previously measured extra-cellular volume fractions, the effects of membrane permeability and extracellular volume fraction were uncoupled for Aqp4 and α-syn KO. The second aim was to assess the effect of α-syn KO on cortical intermediary metabolism combining in vivo [1- 13 C]glucose and [1,2- 13 C]acetate injection with ex vivo 13 C MR spectroscopy. Aqp4 KO increased the effective diffusion coefficient at long diffusion times by 5%, and a 14% decrease in membrane water permeability was estimated for Aqp4 KO compared with WT mice. α-syn KO did not affect the measured diffusion parameters. In the metabolic analyses, significantly lower amounts of [4- 13 C]glutamate and [4- 13 C]glutamine, and percent enrichment in [4- 13 C]glutamate were detected in the α-syn KO mice. [1,2- 13 C]acetate metabolism was unaffected in α-syn KO, but the contribution of astrocyte derived metabolites to GABA synthesis was significantly increased. Taken together, α-syn KO mice appeared to have decreased neuronal glucose metabolism, partly compensated for by utilization of astrocyte derived metabolites.
Niedermaier, Michael; Schwabe, Georg C; Fees, Stephan; Helmrich, Anne; Brieske, Norbert; Seemann, Petra; Hecht, Jochen; Seitz, Volkhard; Stricker, Sigmar; Leschik, Gundula; Schrock, Evelin; Selby, Paul B; Mundlos, Stefan
2005-04-01
Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5-E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development.
Niedermaier, Michael; Schwabe, Georg C.; Fees, Stephan; Helmrich, Anne; Brieske, Norbert; Seemann, Petra; Hecht, Jochen; Seitz, Volkhard; Stricker, Sigmar; Leschik, Gundula; Schrock, Evelin; Selby, Paul B.; Mundlos, Stefan
2005-01-01
Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5–E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development. PMID:15841179
Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots.
Wu, Min; Kwoh, Chee-Keong; Przytycka, Teresa M; Li, Jing; Zheng, Jie
2012-06-21
The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots.
Epigenetic functions enriched in transcription factors binding to mouse recombination hotspots
2012-01-01
The regulatory mechanism of recombination is a fundamental problem in genomics, with wide applications in genome-wide association studies, birth-defect diseases, molecular evolution, cancer research, etc. In mammalian genomes, recombination events cluster into short genomic regions called "recombination hotspots". Recently, a 13-mer motif enriched in hotspots is identified as a candidate cis-regulatory element of human recombination hotspots; moreover, a zinc finger protein, PRDM9, binds to this motif and is associated with variation of recombination phenotype in human and mouse genomes, thus is a trans-acting regulator of recombination hotspots. However, this pair of cis and trans-regulators covers only a fraction of hotspots, thus other regulators of recombination hotspots remain to be discovered. In this paper, we propose an approach to predicting additional trans-regulators from DNA-binding proteins by comparing their enrichment of binding sites in hotspots. Applying this approach on newly mapped mouse hotspots genome-wide, we confirmed that PRDM9 is a major trans-regulator of hotspots. In addition, a list of top candidate trans-regulators of mouse hotspots is reported. Using GO analysis we observed that the top genes are enriched with function of histone modification, highlighting the epigenetic regulatory mechanisms of recombination hotspots. PMID:22759569
Multi-Coil Shimming of the Mouse Brain
Juchem, Christoph; Brown, Peter B.; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.
2011-01-01
MR imaging and spectroscopy allow the non-invasive measurement of brain function and physiology, but excellent magnetic field homogeneity is required for meaningful results. The homogenization of the magnetic field distribution in the mouse brain (i.e. shimming) is a difficult task due to complex susceptibility-induced field distortions combined with the small size of the object. To date, the achievement of satisfactory whole brain shimming in the mouse remains a major challenge. The magnetic fields generated by a set of 48 circular coils (diameter 13 mm) that were arranged in a cylinder-shaped pattern of 32 mm diameter and driven with individual dynamic current ranges of ±1 A are shown to be capable of substantially reducing the field distortions encountered in the mouse brain at 9.4 Tesla. Static multi-coil shim fields allowed the reduction of the standard deviation of Larmor frequencies by 31% compared to second order spherical harmonics shimming and a 66% narrowing was achieved with the slice-specific application of the multi-coil shimming with a dynamic approach. For gradient echo imaging, multi-coil shimming minimized shim-related signal voids in the brain periphery and allowed overall signal gains of up to 51% compared to spherical harmonics shimming. PMID:21442653
Narayan, Malathi; Seeley, Kent W; Jinwal, Umesh K
2016-06-01
Mass spectrometry data collected in a study analyzing the effect of withaferin A (WA) on a mouse microglial (N9) cell line is presented in this article. Data was collected from SILAC-based quantitative analysis of lysates from mouse microglial cells treated with either WA or DMSO vehicle control. This article reports all the proteins that were identified in this analysis. The data presented here is related to the published research article on the effect of WA on the differential regulation of proteins in mouse microglial cells [1]. Mass spectrometry data has also been deposited in the ProteomeXchange with the identifier PXD003032.
Depletion of Stercobilin in Fecal Matter from a Mouse Model of Autism Spectrum Disorders
Sekera, Emily R.; Rudolph, Heather L.; Carro, Stephen D.; Morales, Michael J.; Bett, Glenna C. L.; Rasmusson, Randall L.; Wood, Troy D.
2017-01-01
Introduction Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders lacking a clinical biomarker for diagnosis. Emerging evidence shows that intestinal microflora from ASD subjects can be distinguished from controls, suggesting metabolite differences due to the action of intestinal microbes may provide a means for identifying potential biomarkers for ASD. Objectives The aim of this study was to determine if quantitative differences in levels of stercobilin and stercobilinogen, metabolites produced by biological action of intestinal microflora, exist in the fecal matter between an ASD mouse model population and controls. Methods Pairs of fecal samples were collected from two mouse groups, an ASD model group with Timothy syndrome 2 (TS2-NEO) and a gender-matched control group. After centrifugation, supernatant was spiked with an 18O-labeled stercobilin isotopomer and subjected to solid phase extraction for processing. Extracted samples were spotted on a stainless steel plate and subjected to matrix-assisted laser desorption and ionization mass spectrometry using dihydroxybenzoic acid as the matrix (n = 5). Peak areas for bilins and 18O-stercobilin isotopomers were determined in each fecal sample. Results A 40–45% depletion in stercobilin in TS2-NEO fecal samples compared with controls was observed with p < 0.05; a less dramatic depletion was observed for stercobilinogen. Conclusions The results show that stercobilin depletion in feces is observed for an ASD mouse model vs. controls. This may help to explain recent observations of a less diverse microbiome in humans with ASD and may prove helpful in developing a clinical ASD biomarker. PMID:29147105
Renal Phenotype of UT-A Urea Transporter Knockout Mice
Fenton, Robert A.; Flynn, Anneliese; Shodeinde, Adetola; Smith, Craig P.; Schnermann, Jurgen; Knepper, Mark A.
2006-01-01
The urea transporters UT-A1 and UT-A3 mediate rapid transepithelial urea transport across the inner medullary collecting duct (IMCD). In a previous study, using a new mouse model in which both UT-A1 and UT-A3 were genetically deleted from the IMCD (UT-A1/3−/− mice), we investigated the role of these transporters in the function of the renal inner medulla. Here we report a series of studies investigating more generally the renal phenotype of UT-A1/3−/− mice. Pathological screening revealed abnormalities in both the testis (increased size) and kidney (decreased size and vascular congestion) of UT-A1/3−/− mice. Total urinary nitrate and nitrite excretion rates in UT-A1/3−/− mice were more than double those in wildtype mice. Total renal blood flow was not different between UT-A1/3−/− and wildtype mice, but underwent a greater percentage decrease in response to NG-Nitro-L-arginine Methyl Ester Hydrochloride (L-NAME) infusion. Whole kidney glomerular filtration rate was not different in UT-A1/3−/− mice compared to controls and underwent a similar increase in response to a greater dietary protein intake. Fractional urea excretion was markedly elevated in UT-A1/3−/− mice on a 40% protein diet, reaching 102.4 ± 8.8% of the filtered load, suggesting that there may be active urea secretion along the renal tubule. Although there was a marked urinary concentrating defect in UT-A1/3−/− mice, there was no decrease in aquaporin-2 or -3 expression. Furthermore, although urea accumulation in the inner medulla was markedly attenuated, there was no decrease in NaCl concentration in tissue from outer medulla or 2 levels of the inner medulla. PMID:15829709
Biological and metabolic response in STS-135 space-flown mouse skin.
Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S
2014-08-01
There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.
Circuit II--A Conversational Graphical Interface.
ERIC Educational Resources Information Center
Singer, Ronald A.
1993-01-01
Provides an overview of Circuit II, an interactive system that provides users with a graphical representation of an electronic circuit within which questions may be posed and manipulated, and discusses how mouse selections have analogous roles to certain natural language features, such as anaphora, deixis, and ellipsis. (13 references) (EA)
Tracking Bioluminescent ETEC during In vivo BALB/c Mouse Colonization
Rodea, Gerardo E.; Montiel-Infante, Francisco X.; Cruz-Córdova, Ariadnna; Saldaña-Ahuactzi, Zeus; Ochoa, Sara A.; Espinosa-Mazariego, Karina; Hernández-Castro, Rigoberto; Xicohtencatl-Cortes, Juan
2017-01-01
Enterotoxigenic Escherichia coli (ETEC) is a leading cause of diarrhea worldwide. Adhesion to the human intestinal tract is crucial for colonization. ETEC adhesive structures have been extensively studied; however, colonization dynamics remain uncharacterized. The aim of this study was to track bioluminescent ETEC during in vivo infection. The promoter region of dnaK was fused with the luc gene, resulting in the pRMkluc vector. E. coli K-12 and ETEC FMU073332 strains were electroporated with pRMkluc. E. coli K-12 pRMkluc was bioluminescent; in contrast, the E. coli K-12 control strain did not emit bioluminescence. The highest light emission was measured at 1.9 OD600 (9 h) and quantified over time. The signal was detected starting at time 0 and up to 12 h. Streptomycin-treated BALB/c mice were orogastrically inoculated with either ETEC FMU073332 pRMkluc or E. coli K-12 pRMkluc (control), and bacterial colonization was determined by measuring bacterial shedding in the feces. ETEC FMU073332 pRMkluc shedding started and stopped after inoculation of the control strain, indicating that mouse intestinal colonization by ETEC FMU073332 pRMkluc lasted longer than colonization by the control. The bioluminescence signal of ETEC FMU073332 pRMkluc was captured starting at the time of inoculation until 12 h after inoculation. The bioluminescent signal emitted by ETEC FMU073332 pRMkluc in the proximal mouse ileum was located, and the control signal was identified in the cecum. The detection of maximal light emission and bioluminescence duration allowed us to follow ETEC during in vivo infection. ETEC showed an enhanced colonization and tropism in the mouse intestine compared with those in the control strain. Here, we report the first study of ETEC colonization in the mouse intestine accompanied by in vivo imaging. PMID:28560186
Musso, Antonia E; Gries, Regine; Zhai, Huimin; Takács, Stephen; Gries, Gerhard
2017-03-01
Urine of male house mice, Mus musculus, is known to have primer pheromone effects on the reproductive physiology of female mice. Urine-mediated releaser pheromone effects that trigger certain behavioral responses are much less understood, and no field studies have investigated whether urine deposits by male or female mice, or synthetic mouse pheromone, increase trap captures of mice. In field experiments, we baited traps with bedding soiled with urine and feces of caged female or male mice, and recorded captures of mice in these and in control traps containing clean bedding. Traps baited with female bedding preferentially captured adult males, whereas traps baited with male bedding preferentially captured juvenile and adult females, indicating the presence of male- and female-specific sex pheromones in soiled bedding. Analyses of headspace volatiles emanating from soiled bedding by gas chromatography/mass spectrometry revealed that 3,4-dehydro-exo-brevicomin (DEB) was seven times more prevalent in male bedding and that 2-sec-butyl-4,5-dihydrothiazole (DHT) was male-specific. In a follow-up field experiment, traps baited with DEB and DHT captured 4 times more female mice than corresponding control traps, thus indicating that DEB and DHT are sex attractant pheromone components of house mouse males. Our study provides impetus to identify the sex attractant pheromone of female mice, and to develop synthetic mouse pheromone as a lure to enhance the efficacy of trapping programs for mouse control.
Spallanzani's mouse: a model of restoration and regeneration.
Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D
2004-01-01
The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.
Li, Li; Shaik, Ahmad Ali; Zhang, Jinhui; Nhkata, Katai; Wang, Lei; Zhang, Yong; Xing, Chengguo; Kim, Sung-Hoon; Lü, Junxuan
2011-02-20
The gallotannin penta-O-galloyl-beta-D-glucose (PGG) has many biological activities including in vivo anti-cancer efficacy. We present in this paper a scaled-up protocol for its preparation in high purity from tannic acid by acidic methanolysis with typical yield of 15%. We also describe a method for the analysis of PGG in mouse plasma by HPLC and its application in preliminary pharmacokinetic studies. A liquid-liquid extraction (LLE) protocol was optimized for the extraction of PGG from mouse plasma. The extraction efficiency for PGG at 1 μg/mL in mouse plasma was 70.0±1.3% (n=5). The limit of detection (LOD) for PGG was approximately 0.2 μg/mL. Preliminary pharmacokinetic parameters of PGG following a single i.p. injection with 5% ethanol/saline vehicle in mice were established. The peak plasma PGG concentrations (C(max)) were approximately 3-4 μM at a dose of 0.5 mg per mouse (∼20 mg/kg) at 2 h post-injection (T(max)). Copyright © 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chajekshaul, T.; Hayek, T.; Walsh, A.
1991-08-01
Transgenic mice carrying the human apolipoprotein (apo) A-I gene (HuAITg mice) were used to examine the effects of overexpression of the human gene on high density lipoprotein (HDL) particle size distribution and metabolism. On a chow diet, control mice had HDL cholesterol and apo A-I levels of 49 {plus minus} 2 and 137 {plus minus} 12 mg/dl of plasma, respectively. HuAITg mice had HDL cholesterol, human apo A-I, and mouse apo A-I levels of 88 {plus minus} 2, 255 {plus minus} 19, and 16 {plus minus} 2 mg/dl, respectively. Nondenaturing gradient gel electrophoresis revealed control mouse plasma HDL to bemore » primarily monodisperse with a particle diameter of 10.2 nm, whereas HuAITg mouse plasma HDL was polydisperse with particles of diameter 11.4, 10.2, and 8.7 nm, which correspond in size to human HDL1, HDL2, and HDL3, respectively. In vivo turnover studies of HDL labeled with (3H)cholesteryl linoleyl ether and 125I-apo A-I were performed. In control animals, the fractional catabolic rate (FCR) for HDL cholesteryl ester was significantly more than the apo A-I FCR. In the HuAITg mice, the HDL cholesteryl ester FCR was the same as the apo A-I FCR. There were no significant differences between control and HuAITg animals in the sites of tissue removal of HDL cholesteryl ester, with the liver extracting most of the injected radioactivity. Control and HuAITg animals had comparable liver and intestinal cholesterol synthesis and LDL FCR. In conclusion, HuAITg mice have principally human and not mouse apo A-I in their plasma. This apparently causes a change in HDL particle size distribution in the transgenic mice to one resembling the human pattern. The replacement of mouse by human apo A-I also apparently causes the loss of the selective uptake pathway of HDL cholesteryl esters present in control mice.« less
Khalyfa, Abdelnaby; Almendros, Isaac; Gileles-Hillel, Alex; Akbarpour, Mahzad; Trzepizur, Wojciech; Mokhlesi, Babak; Huang, Lei; Andrade, Jorge; Farré, Ramon; Gozal, David
2016-01-01
Background Chronic sleep fragmentation (SF) increases cancer aggressiveness in mice. Exosomes exhibit pleiotropic biological functions, including immune regulatory functions, antigen presentation, intracellular communication and inter-cellular transfer of RNA and proteins. We hypothesized that SF-induced alterations in biosynthesis and cargo of plasma exosomes may affect tumor cell properties. Results SF-derived exosomes increased tumor cell proliferation (~13%), migration (~2.3-fold) and extravasation (~10%) when compared to exosomes from SC-exposed mice. Similarly, Pre exosomes from OSA patients significantly enhanced proliferation and migration of human adenocarcinoma cells compared to Post. SF-exosomal cargo revealed 3 discrete differentially expressed miRNAs, and exploration of potential mRNA targets in TC1 tumor cells uncovered 132 differentially expressed genes that encode for multiple cancer-related pathways. Methods Plasma-derived exosomes from C57/B6 mice exposed to 6 wks of SF or sleep control (SC), and from adult human patients with obstructive sleep apnea (OSA) before (Pre) and after adherent treatment for 6 wks (Post) were co-cultured with mouse lung TC1 or human adenocarcinoma tumor cell lines, respectively. Proliferation, migration, invasion, endothelial barrier integrity and extravasation assays of tumor cells were performed. Plasma mouse exosomal miRNAs were profiled with arrays, and transcriptomic assessments of TC1 cells exposed to SF or SC exosomes were conducted to identify gene targets. Conclusions Chronic SF induces alterations in exosomal miRNA cargo that alter the biological properties of TC1 lung tumor cells to enhance their proliferative, migratory and extravasation properties, and similar findings occur in OSA patients, in whom SF is a constitutive component of their sleep disorder. Thus, exosomes could participate, at least in part, in the adverse cancer outcomes observed in OSA. PMID:27419627
Mourik, Bas C; Leenen, Pieter J M; de Knegt, Gerjo J; Huizinga, Ruth; van der Eerden, Bram C J; Wang, Jinshan; Krois, Charles R; Napoli, Joseph L; Bakker-Woudenberg, Irma A J M; de Steenwinkel, Jurriaan E M
2017-02-01
Immune-modulating drugs that target myeloid-derived suppressor cells or stimulate natural killer T cells have been shown to reduce mycobacterial loads in tuberculosis (TB). We aimed to determine if a combination of these drugs as adjunct immunotherapy to conventional antibiotic treatment could also increase therapeutic efficacy against TB. In our model of pulmonary TB in mice, we applied treatment with isoniazid, rifampicin, and pyrazinamide for 13 weeks alone or combined with immunotherapy consisting of all-trans retinoic acid, 1,25(OH) 2 -vitamin D3, and α-galactosylceramide. Outcome parameters were mycobacterial load during treatment (therapeutic activity) and 13 weeks after termination of treatment (therapeutic efficacy). Moreover, cellular changes were analyzed using flow cytometry and cytokine expression was assessed at the mRNA and protein levels. Addition of immunotherapy was associated with lower mycobacterial loads after 5 weeks of treatment and significantly reduced relapse of disease after a shortened 13-week treatment course compared with antibiotic treatment alone. This was accompanied by reduced accumulation of immature myeloid cells in the lungs at the end of treatment and increased TNF-α protein levels throughout the treatment period. We demonstrate, in a mouse model of pulmonary TB, that immunotherapy consisting of three clinically approved drugs can improve the therapeutic efficacy of standard antibiotic treatment.
NASA Technical Reports Server (NTRS)
Duke, J.
1985-01-01
Studies on the development of embryonic mouse tissues exposed to excess gravity in vitro and in vivo are discussed. Suppression is seen in limb buds cultured under 3G. Mouse palates were exposed to excess G in vitro, 13- and 14-day palates were exposed to 2.6G for 24 hours. For in vivo studies, a small animal centrifuge was constructed. When the centrifuge is operated at 40 and 45 rpm, the linear accelerations generated range from 1.8 to 3.5G. The effects of gravity on body weights and on reproduction is also presented.
Identification of transcriptional regulators in the mouse immune system
Jojic, Vladimir; Shay, Tal; Sylvia, Katelyn; Zuk, Or; Sun, Xin; Kang, Joonsoo; Regev, Aviv; Koller, Daphne
2013-01-01
The differentiation of hematopoietic stem cells into immune cells has been extensively studied in mammals, but the transcriptional circuitry controlling it is still only partially understood. Here, the Immunological Genome Project gene expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. Using a computational algorithm called Ontogenet, we uncovered differentiation-stage specific regulators of mouse hematopoiesis, identifying many known hematopoietic regulators, and 175 new candidate regulators, their target genes, and the cell types in which they act. Among the novel regulators, we highlight the role of ETV5 in γδT cells differntiation. Since the transcriptional program of human and mouse cells is highly conserved1, it is likely that many lessons learned from the mouse model apply to humans. PMID:23624555
Hull, M L; Prentice, A; Wang, D Y; Butt, R P; Phillips, S C; Smith, S K; Charnock-Jones, D S
2005-02-01
Women with endometriosis have elevated levels of cyclooxygenase-2 (COX-2) in peritoneal macrophages and endometriotic tissue. Inhibition of COX-2 has been shown to reduce inflammation, angiogenesis and cellular proliferation. It may also downregulate aromatase activity in ectopic endometrial lesions. Ectopic endometrial establishment and growth are therefore likely to be suppressed in the presence of COX-2 inhibitors. We hypothesized that COX-2 inhibition would reduce the size and number of ectopic human endometrial lesions in a nude mouse model of endometriosis. The selective COX-2 inhibitor, nimesulide, was administered to estrogen-supplemented nude mice implanted with human endometrial tissue. Ten days after implantation, the number and size of ectopic endometrial lesions were evaluated and compared with lesions from a control group. Immunohistochemical assessment of vascular development and macrophage and myofibroblast infiltration in control and treated lesions was performed. There was no difference in the number or size of ectopic endometrial lesions in control and nimesulide-treated nude mice. Nimesulide did not induce a visually identifiable difference in blood vessel development or macrophage or myofibroblast infiltration in nude mouse explants. The hypothesized biological properties of COX-2 inhibition did not influence lesion number or size in the nude mouse model of endometriosis.
Hu, Jie-Lun; Nie, Shao-Ping; Wu, Qi-Meng; Li, Chang; Fu, Zhi-Hong; Gong, Joshua; Cui, Steve W; Xie, Ming-Yong
2014-01-08
Polysaccharide from the seeds of Plantago asiatica L. was given via oral administration to mice (0.4 g/kg body weight, 30 days) to observe its effects on mouse nutrient metabolism and colon microbiota. It was found the polysaccharide intake could lower the apparent absorption of lipid. Total triglyceride, cholesterol, and atherogenic index in blood serum with total lipid and cholesterol levels in liver of polysaccharide group mice were all significantly lower than those of the control group (p < 0.05). Furthermore, the effect of the polysaccharide intake on mouse colon bacterial communities was investigated. Mice from the polysaccharide group showed a higher colon bacterial diversity than the control group. Bacteroides sp., Eubacterium sp., butyrate-producing bacteria Butyrivibrio sp., and probiotics Bifidobacterium bifidum , Lactobacillus fermentum , and Lactobacillus reuteri in mouse colon were all increased after polysaccharide intake. These indicated that the intake of polysaccharide from P. asiatica L. could be beneficial for lipid metabolism and colon microbiota.
Diesner, Susanne C; Bergmayr, Cornelia; Pfitzner, Barbara; Assmann, Vera; Krishnamurthy, Durga; Starkl, Philipp; Endesfelder, David; Rothballer, Michael; Welzl, Gerhard; Rattei, Thomas; Eiwegger, Thomas; Szépfalusi, Zsolt; Fehrenbach, Heinz; Jensen-Jarolim, Erika; Hartmann, Anton; Pali-Schöll, Isabella; Untersmayr, Eva
2016-12-01
In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbiota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a non-responding phenotype in this mouse model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Kaneko, Mika K; Kunita, Akiko; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Chang, Yao-Wen; Handa, Saori; Ogasawara, Satoshi; Ohishi, Tomokazu; Abe, Shinji; Itai, Shunsuke; Harada, Hiroyuki; Kawada, Manabu; Nishioka, Yasuhiko; Fukayama, Masashi; Kato, Yukinari
2017-08-01
Podocalyxin (PODXL) is expressed in several cancers, including brain tumors and colorectal cancers. PODXL overexpression is an independent predictor of progression, metastasis, and poor outcome. We recently immunized mice with recombinant human PODXL, which was produced using LN229 glioblastoma cells, and produced a clone PcMab-47 that could be used for investigating PODXL expression by flow cytometry and immunohistochemical analysis. Herein, we produced a human-mouse chimeric PcMab-47 (chPcMab-47) and investigated its antitumor activity against PODXL-expressing tumors. chPcMab-47 reacted with LN229, LN229/PODXL, and Chinese hamster ovary (CHO)/PODXL cells, but it did not react with CHO-K1 or PODXL-knockout LN229 cell line (PDIS-13). chPcMab-47 exerted antitumor activity against a mouse xenograft model using CHO/PODXL. Furthermore, chPcMab-47 was reactive with colorectal cancer cell lines such as HCT-15, Caco-2, HCT-8, and DLD-1. chPcMab-47 also exhibited antitumor activity against a mouse xenograft model using HCT-15. These results suggest that chPcMab-47 could be useful for antibody therapy against PODXL-expressing cancers.
An In Vitro Perfusion System to Enhance Outflow Studies in Mouse Eyes
Kizhatil, Krishnakumar; Chlebowski, Arthur; Tolman, Nicholas G.; Freeburg, Nelson F.; Ryan, Margaret M.; Shaw, Nicholas N.; Kokini, Alexander D. M.; Marchant, Jeffrey K.; John, Simon W. M.
2016-01-01
Purpose The molecular mechanisms controlling aqueous humor (AQH) outflow and IOP need much further definition. The mouse is a powerful system for characterizing the mechanistic basis of AQH outflow. To enhance outflow studies in mice, we developed a perfusion system that is based on human anterior chamber perfusion culture systems. Our mouse system permits previously impractical experiments. Methods We engineered a computer-controlled, pump-based perfusion system with a platform for mounting whole dissected mouse eyes (minus lens and iris, ∼45% of drainage tissue is perfused). We tested the system's ability to monitor outflow and tested the effects of the outflow-elevating drug, Y27632, a rho-associated protein kinase (ROCK) inhibitor. Finally, we tested the system's ability to detect genetically determined decreases in outflow by determining if deficiency of the candidate genes Nos3 and Cav1 alter outflow. Results Using our system, the outflow facility (C) of C57BL/6J mouse eyes was found to range between 7.7 and 10.4 nl/minutes/mm Hg (corrected for whole eye). Our system readily detected a 74.4% Y27632-induced increase in C. The NOS3 inhibitor L-NG-nitroarginine methyl ester (L-NAME) and a Nos3 null mutation reduced C by 28.3% and 35.8%, respectively. Similarly, in Cav1 null eyes C was reduced by 47.8%. Conclusions We engineered a unique perfusion system that can accurately measure changes in C. We then used the system to show that NOS3 and CAV1 are key components of mechanism(s) controlling outflow. PMID:27701632
Ramp, A A; Hall, C; Orian, J M
2010-07-01
Parasitic infections are a concern in animal facilities, in view of their influence on physiological processes and the immune status of animals. Pinworms are effectively controlled with the anthelminthic fenbendazole (FBZ, [5-(phenylthio)-1H-benzamidazol-2-yl]carbamic acid methyl ester; C(15)H(13)N(3)O(2)S); however, questions remain as to whether prolonged FBZ exposure alters the disease course in specific experimental models, such as those pertaining to the immune system. We report that a three-month regimen of FBZ-medicated feed severely affected the onset and disease severity of murine experimental autoimmune encephalomyelitis (EAE), a disease that mimics multiple sclerosis. Differences were recorded between mouse strains used. Our data suggest that where the use of FBZ is mandatory, its full effect should be verified on the particular EAE variant adopted by the laboratory.
Yasuhiko, Yukuto; Shiokawa, Koichiro; Mochizuki, Toshio; Asashima, Makoto; Yokoyama, Takahiko
2006-04-01
The homozygous inv (inversion of embryonic turning) mouse mutant shows situs inversus and polycystic kidney disease, both of which result from the lack of the inv gene. Previously, we suggested that inv may be important for the left-right axis formation, not only in mice but also in Xenopus, and that calmodulin regulates this inv protein function. Here, we isolated and characterized two Xenopus laevis homologs (Xinv-1 and Xinv-2) of the mouse inv gene, and performed functional analysis of the conserved IQ motifs that interact with calmodulin. Xinv-1 expresses early in development in the same manner as mouse inv does. Unexpectedly, a full-length Xenopus inv mRNA did not randomize cardiac orientation when injected into Xenopus embryos, which is different from mouse inv mRNA. Contrary to mouse inv mRNA, Xenopus inv mRNA with mutated IQ randomized cardiac orientation. The present study indicates that calmodulin binding sites (IQ motifs) are crucial in controlling the biological activity of both mouse and Xenopus inv proteins. Although mouse and Xenopus inv genes have a quite similar structure, the interaction with calmodulin and IQ motifs of Xenopus inv and mouse inv proteins may regulate their function in different ways.
Verma, Mukesh; Liu, Sucai; Michalec, Lidia; Sripada, Anand; Gorska, Magdalena M; Alam, Rafeul
2017-11-10
IL-33 plays an important role in the development of experimental asthma. We sought to study the role of the IL-33 receptor suppressor of tumorigenicity 2 (ST2) in the persistence of asthma in a mouse model. We studied allergen-induced experimental asthma in ST2 knockout (KO) and wild-type control mice. We measured airway hyperresponsiveness by using flexiVent; inflammatory indices by using ELISA, histology, and real-time PCR; and type 2 innate lymphoid cells (ILC2s) in lung single-cell preparations by using flow cytometry. Airway hyperresponsiveness was increased in allergen-treated ST2 KO mice and comparable with that in allergen-treated wild-type control mice. Peribronchial and perivascular inflammation and mucus production were largely similar in both groups. Persistence of experimental asthma in ST2 KO mice was associated with an increase in levels of thymic stromal lymphopoietin (TSLP), IL-9, and IL-13, but not IL-5, in bronchoalveolar lavage fluid. Expectedly, ST2 deletion caused a reduction in IL-13 + CD4 T cells, forkhead box P3-positive regulatory T cells, and IL-5 + ILC2s. Unexpectedly, ST2 deletion led to an overall increase in innate lymphoid cells (CD45 + lin - CD25 + cells) and IL-13 + ILC2s, emergence of a TSLP receptor-positive IL-9 + ILC2 population, and an increase in intraepithelial mast cell numbers in the lung. An anti-TSLP antibody abrogated airway hyperresponsiveness, inflammation, and mucus production in allergen-treated ST2 KO mice. It also caused a reduction in innate lymphoid cell, ILC2, and IL-9 + and IL-13 + ILC2 numbers in the lung. Genetic deletion of the IL-33 receptor paradoxically increases TSLP production, which stimulates the emergence of IL-9 + and IL-13 + ILC2s and mast cells and leads to development of chronic experimental asthma. An anti-TSLP antibody abrogates all pathologic features of asthma in this model. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Cerebellar associative sensory learning defects in five mouse autism models
Kloth, Alexander D; Badura, Aleksandra; Li, Amy; Cherskov, Adriana; Connolly, Sara G; Giovannucci, Andrea; Bangash, M Ali; Grasselli, Giorgio; Peñagarikano, Olga; Piochon, Claire; Tsai, Peter T; Geschwind, Daniel H; Hansel, Christian; Sahin, Mustafa; Takumi, Toru; Worley, Paul F; Wang, Samuel S-H
2015-01-01
Sensory integration difficulties have been reported in autism, but their underlying brain-circuit mechanisms are underexplored. Using five autism-related mouse models, Shank3+/ΔC, Mecp2R308/Y, Cntnap2−/−, L7-Tsc1 (L7/Pcp2Cre::Tsc1flox/+), and patDp(15q11-13)/+, we report specific perturbations in delay eyeblink conditioning, a form of associative sensory learning requiring cerebellar plasticity. By distinguishing perturbations in the probability and characteristics of learned responses, we found that probability was reduced in Cntnap2−/−, patDp(15q11-13)/+, and L7/Pcp2Cre::Tsc1flox/+, which are associated with Purkinje-cell/deep-nuclear gene expression, along with Shank3+/ΔC. Amplitudes were smaller in L7/Pcp2Cre::Tsc1flox/+ as well as Shank3+/ΔC and Mecp2R308/Y, which are associated with granule cell pathway expression. Shank3+/ΔC and Mecp2R308/Y also showed aberrant response timing and reduced Purkinje-cell dendritic spine density. Overall, our observations are potentially accounted for by defects in instructed learning in the olivocerebellar loop and response representation in the granule cell pathway. Our findings indicate that defects in associative temporal binding of sensory events are widespread in autism mouse models. DOI: http://dx.doi.org/10.7554/eLife.06085.001 PMID:26158416
Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F.; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A.; Kurbatova, Natalja; Mason, Jeremy C.; Matthews, Peter; Oakley, Darren J.; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A.; Sneddon, Duncan J.; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J.; Melvin, David G.; Smedley, Damian; Brown, Steve D. M.; Flicek, Paul; Skarnes, William C.; Mallon, Ann-Marie; Parkinson, Helen
2014-01-01
The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases. PMID:24194600
Ahmad, Bashir; Rizwan, Muhammad; Rauf, Abdur; Raza, Muslim; Bashir, Shumaila; Molnar, Joseph; Csonka, Akos; Szabo, Diana; Mubarak, Mohammad S; Noor, Mah; Siddiqui, Bina S
2017-01-01
Fungi performing a wide range of function in soil by secreting low molecular weight compound known as secondary metabolites. S. rolfsii is a soil borne phytopathogenic fungi was used for the production of bioactive compounds. The present study belongs to evaluate the anticancer potentials of a secondary metabolites isolated from S. rolfsii, their multidrug resistance (MDR), and molecular docking study. (1S,3R,4R,5R,E)-3-(3-(3,4-Dihydroxyphenyl)acryloyloxy)-1,4,5 trihydroxycyclohexanecarboxylic acid (1), or best known as chlorogenic acid, was isolated from the ethyl acetate fraction of crude secondary metabolites produced by the soil borne Fungus Screlotium rolfsii. Structure of chlorogenic acid (1) was confirmed by means of FT-IR, 1H NMR, 13C NMR, and mass spectrometry as well as by melting point. Effect of compound 1 on the reversion of multidrug resistant (MDR) mediated by Pglycoprotein (P-gp) against cancer cells was evaluated with a rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma. Compound 1 was also evaluated for Anti-proliferative effect on the L5178 mouse Tcell lymphoma cell line. Results from the present investigation revealed that compound 1 exhibits excellent MDR reversing effect in a dose-dependent manner against mouse T-lymphoma cell line. Compound 1 also showed anti-proliferative effect on L5178Y mouse T-lymphoma cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Prevention of carcinogenesis of mouse mammary epithelial cells RIII/MG by epigallocatechin gallate.
Yanaga, Hiroshi; Fujii, Teruhiko; Koga, Toshihiro; Araki, Ruriko; Shirouzu, Kazuo
2002-09-01
The chemopreventive effect of the polyphenols abundant in green tea on carcinogenesis has been attracting attention in recent years. Among tea polyphenols, epigallocatechin gallate (EGCG) has been studied as a preventive substance for carcinogenesis. We investigated the chemopreventive effect in a group treated with EGCG in vitro and in vivo using mouse mammary epithelial cells RIII/MG. In the in vitro experiment, crude catechin (catechin) containing 50% or more EGCG significantly inhibited the growth of RIII/MG cells, which were precancerous cultured cells. Many cells died, and a DNA ladder was observed. In the in vivo experiment, RIII/MG cells formed a tumor after 13 weeks in a group without catechin treatment, and the tumor formation rate in the 20th week was 40%. In a group treated with 0.1% catechin, a tumor began to grow in the 13th week, and the tumor formation rate in the 20th week was 20%. In a group treated with 1% catechin, no tumor was detected even in the 20th week. There was no significant difference in the change in body weight between the catechin treatment groups and the non-treatment group during the observation period. Tissue samples were stained by the nick-end-labeling method and apoptosis was observed in many cells. Based on the above findings, EGCG inhibited growth in the mouse viral mammary epithelial carcinogenesis model RIII/MG, and induced apoptosis, suggesting a clinical usefulness of EGCG as a chemopreventive substance.
2008-01-01
study demonstrates that the F1-V antigen can also protect ferrets against plague contracted via ingestion of a Y. pestis-infected mouse , a probable...boost by feeding each one a Y. pestis-infected mouse . All eight vaccinates survived challenge, while the four controls succumbed to plague within 3 days...survived an initial SC challenge with Y. pestis were com- pletely resistant to a secondary exposure via consumption of a Y. pestis-infected mouse (Rocke et
Spindler, Matthew J.; Burmeister, Brian T.; Huang, Yu; Hsiao, Edward C.; Salomonis, Nathan; Scott, Mark J.; Srivastava, Deepak; Carnegie, Graeme K.; Conklin, Bruce R.
2013-01-01
Background A-kinase anchoring proteins (AKAPs) are scaffolding molecules that coordinate and integrate G-protein signaling events to regulate development, physiology, and disease. One family member, AKAP13, encodes for multiple protein isoforms that contain binding sites for protein kinase A (PKA) and D (PKD) and an active Rho-guanine nucleotide exchange factor (Rho-GEF) domain. In mice, AKAP13 is required for development as null embryos die by embryonic day 10.5 with cardiovascular phenotypes. Additionally, the AKAP13 Rho-GEF and PKD-binding domains mediate cardiomyocyte hypertrophy in cell culture. However, the requirements for the Rho-GEF and PKD-binding domains during development and cardiac hypertrophy are unknown. Methodology/Principal Findings To determine if these AKAP13 protein domains are required for development, we used gene-trap events to create mutant mice that lacked the Rho-GEF and/or the protein kinase D-binding domains. Surprisingly, heterozygous matings produced mutant mice at Mendelian ratios that had normal viability and fertility. The adult mutant mice also had normal cardiac structure and electrocardiograms. To determine the role of these domains during β-adrenergic-induced cardiac hypertrophy, we stressed the mice with isoproterenol. We found that heart size was increased similarly in mice lacking the Rho-GEF and PKD-binding domains and wild-type controls. However, the mutant hearts had abnormal cardiac contractility as measured by fractional shortening and ejection fraction. Conclusions These results indicate that the Rho-GEF and PKD-binding domains of AKAP13 are not required for mouse development, normal cardiac architecture, or β-adrenergic-induced cardiac hypertrophic remodeling. However, these domains regulate aspects of β-adrenergic-induced cardiac hypertrophy. PMID:23658642
Bigalke, Hans; Rummel, Andreas
2015-11-25
The historical method for the detection of botulinum neurotoxin (BoNT) is represented by the mouse bioassay (MBA) measuring the animal survival rate. Since the endpoint of the MBA is the death of the mice due to paralysis of the respiratory muscle, an ex vivo animal replacement method, called mouse phrenic nerve (MPN) assay, employs the isolated N. phrenicus-hemidiaphragm tissue. Here, BoNT causes a dose-dependent characteristic decrease of the contraction amplitude of the indirectly stimulated muscle. Within the EQuATox BoNT proficiency 13 test samples were analysed using the MPN assay by serial dilution to a bath concentration resulting in a paralysis time within the range of calibration curves generated with BoNT/A, B and E standards, respectively. For serotype identification the diluted samples were pre-incubated with polyclonal anti-BoNT/A, B or E antitoxin or a combination of each. All 13 samples were qualitatively correctly identified thereby delivering superior results compared to single in vitro methods like LFA, ELISA and LC-MS/MS. Having characterized the BoNT serotype, the final bath concentrations were calculated using the calibration curves and then multiplied by the respective dilution factor to obtain the sample concentration. Depending on the source of the BoNT standards used, the quantitation of ten BoNT/A containing samples delivered a mean z-score of 7 and of three BoNT/B or BoNT/E containing samples z-scores <2, respectively.
The Role of Akt Isoforms in Colorectal Cancer
2015-09-01
AD_________________ Award Number: W81XWH-13-1-0198 TITLE: The Role of Akt Isoforms in Colorectal Cancer PRINCIPAL INVESTIGATOR: Jatin Roper...CONTRACT NUMBER The Role of Akt Isoforms in Colorectal Cancer 5b. GRANT NUMBER W81XWH-13-1-0198 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER...substantially reduces colorectal tumorigenesis in our genetically engineered mouse model. We also successfully ablated novel downstream targets of Akt in our
Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation
Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P.; Zhou, Feng C.
2009-01-01
Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88 mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10 and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p < 0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in gene expression, which together may contribute to the observed abnormal fetal development. PMID:20009564
Alcohol exposure alters DNA methylation profiles in mouse embryos at early neurulation.
Liu, Yunlong; Balaraman, Yokesh; Wang, Guohua; Nephew, Kenneth P; Zhou, Feng C
2009-10-01
Alcohol exposure during development can cause variable neurofacial deficit and growth retardation known as fetal alcohol spectrum disorders (FASD). The mechanism underlying FASD is not fully understood. However, alcohol, which is known to affect methyl donor metabolism, may induce aberrant epigenetic changes contributing to FASD. Using a tightly controlled whole-embryo culture, we investigated the effect of alcohol exposure (88mM) at early embryonic neurulation on genome-wide DNA methylation and gene expression in the C57BL/6 mouse. The DNA methylation landscape around promoter CpG islands at early mouse development was analyzed using MeDIP (methylated DNA immunoprecipitation) coupled with microarray (MeDIP-chip). At early neurulation, genes associated with high CpG promoters (HCP) had a lower ratio of methylation but a greater ratio of expression. Alcohol-induced alterations in DNA methylation were observed, particularly in genes on chromosomes 7, 10, and X; remarkably, a >10 fold increase in the number of genes with increased methylation on chromosomes 10 and X was observed in alcohol-exposed embryos with a neural tube defect phenotype compared to embryos without a neural tube defect. Significant changes in methylation were seen in imprinted genes, genes known to play roles in cell cycle, growth, apoptosis, cancer, and in a large number of genes associated with olfaction. Altered methylation was associated with significant (p<0.01) changes in expression for 84 genes. Sequenom EpiTYPER DNA methylation analysis was used for validation of the MeDIP-chip data. Increased methylation of genes known to play a role in metabolism (Cyp4f13) and decreased methylation of genes associated with development (Nlgn3, Elavl2, Sox21 and Sim1), imprinting (Igf2r) and chromatin (Hist1h3d) was confirmed. In a mouse model for FASD, we show for the first time that alcohol exposure during early neurulation can induce aberrant changes in DNA methylation patterns with associated changes in gene expression, which together may contribute to the observed abnormal fetal development.
75 FR 15724 - National Register of Historic Places; Weekly Listing of Historic Properties
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-30
...., Washington, DC 20240; in person (by appointment), 1201 Eye St., NW., 8th floor, Washington, DC 20005; by fax... WASHINGTON Pierce County Blue Mouse Theatre, 2611 N. Proctor St., Tacoma, 09001235, LISTED, 1/13/10 (Movie...
Kasamatsu, Jun; Takahashi, Shojiro; Azuma, Masahiro; Matsumoto, Misako; Morii-Sakai, Akiko; Imamura, Masahiro; Teshima, Takanori; Takahashi, Akari; Hirohashi, Yoshihiko; Torigoe, Toshihiko; Sato, Noriyuki; Seya, Tsukasa
2015-01-01
CD4(+) T cell effectors are crucial for establishing antitumor immunity. Dendritic cell maturation by immune adjuvants appears to facilitate subset-specific CD4(+) T cell proliferation, but the adjuvant effect for CD4 T on induction of cytotoxic T lymphocytes (CTLs) is largely unknown. Self-antigenic determinants with low avidity are usually CD4 epitopes in mutated proteins with tumor-associated class I-antigens (TAAs). In this study, we made a chimeric version of survivin, a target of human CTLs. The chimeric survivin, where human survivin-2B containing a TAA was embedded in the mouse survivin frame (MmSVN2B), was used to immunize HLA-A-2402/K(b)-transgenic (HLA24(b)-Tg) mice. Subcutaneous administration of MmSVN2B or xenogeneic human survivin (control HsSNV2B) to HLA24(b)-Tg mice failed to induce an immune response without co-administration of an RNA adjuvant polyI:C, which was required for effector induction in vivo. Although HLA-A-2402/K(b) presented the survivin-2B peptide in C57BL/6 mice, 2B-specific tetramer assays showed that no CD8(+) T CTLs specific to survivin-2B proliferated above the detection limit in immunized mice, even with polyI:C treatment. However, the CD4(+) T cell response, as monitored by IFN-γ, was significantly increased in mice given polyI:C+MmSVN2B. The Th1 response and antibody production were enhanced in the mice with polyI:C. The CD4 epitope responsible for effector function was not Hs/MmSNV13-27, a nonconserved region between human and mouse survivin, but region 53-67, which was identical between human and mouse survivin. These results suggest that activated, self-reactive CD4(+) helper T cells proliferate in MmSVN2B+polyI:C immunization and contribute to Th1 polarization followed by antibody production, but hardly participate in CTL induction. Copyright © 2014 Elsevier GmbH. All rights reserved.
Pei, Ke-Ling; Yuan, Yi; Qin, San-Hai; Wang, Yan; Zhou, Ling; Zhang, Hou-Li; Qu, Xian-Jun; Cui, Shu-Xiang
2012-04-01
Aminopeptidase N (APN/CD13) is highly expressed on the surface of cancer cells and is thought to be involved in cancer growth and metastasis. The research of APN/CD13 inhibitors is considered as a strategy of cancer treatment. We aimed to evaluate the efficacy of CIP-13F, a novel APN/CD13 inhibitor, using a Lewis lung carcinoma (LLC) implantation mouse model. C57BL/6 mice were subcutaneously inoculated with LLC cells in anterior flank. Then, 0, 50 and 100 mg/kg of CIP-13F were injected via vena caudalis. Bestatin was used as the positive control. Administration of CIP-13F or bestatin was performed daily for 3 consecutive weeks. Mice were killed, and the tumors in anterior flank and metastasis nodules in lungs were examined. The assays of immunohistochemical staining, immunofluorescent flow cytometry and western blotting were performed to estimate the expression of APN/CD13 in LLC cells. We carried out the experiments of Annexin-V/PI staining, DNA fragmentation analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining to determine apoptotic cells in LLC tissues. Using immunohistochemical staining with CD34, the antiangiogenesis of CIP-13F was evaluated in LLC tissue sections. CIP-13F treatment resulted in a significant delay of LLC growth in anterior flank. Examination of lungs showed that the number of metastatic nodules of LLC was also markedly decreased. The inhibitory effect of CIP-13F on LLC growth was further evidenced by the induction of LLC apoptosis, showing the increases in Annexin-V/PI staining cells, DNA fragmentation and TUNEL staining cells. Molecular analyses of LLC tissues in CIP-13F-treated mice suggested that the decrease in APN/CD13 expression by CIP-13F might account for its actions of mechanism. Further, the inhibition of angiogenesis in LLC tissues was determined, showing the decreases in microvessel density (MVD) and angiogenic factors including vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor-alpha (TGF-α). Our results showed that CIP-13F effectively inhibited LLC growth and pulmonary metastasis in mice and suggested that CIP-13F is a potential drug for the treatment for cancers with positive APN/CD13 expression.
High-resolution vascular tissue characterization in mice using 55MHz ultrasound hybrid imaging.
Mahmoud, Ahmed M; Sandoval, Cesar; Teng, Bunyen; Schnermann, Jurgen B; Martin, Karen H; Mustafa, S Jamal; Mukdadi, Osama M
2013-03-01
Ultrasound and Duplex ultrasonography in particular are routinely used to diagnose cardiovascular disease (CVD), which is the leading cause of morbidity and mortality worldwide. However, these techniques may not be able to characterize vascular tissue compositional changes due to CVD. This work describes an ultrasound-based hybrid imaging technique that can be used for vascular tissue characterization and the diagnosis of atherosclerosis. Ultrasound radiofrequency (RF) data were acquired and processed in time, frequency, and wavelet domains to extract six parameters including time integrated backscatter (T(IB)), time variance (T(var)), time entropy (T(E)), frequency integrated backscatter (F(IB)), wavelet root mean square value (W(rms)), and wavelet integrated backscatter (W(IB)). Each parameter was used to reconstruct an image co-registered to morphological B-scan. The combined set of hybrid images were used to characterize vascular tissue in vitro and in vivo using three mouse models including control (C57BL/6), and atherosclerotic apolipoprotein E-knockout (APOE-KO) and APOE/A(1) adenosine receptor double knockout (DKO) mice. The technique was tested using high-frequency ultrasound including single-element (center frequency=55 MHz) and commercial array (center frequency=40 MHz) systems providing superior spatial resolutions of 24 μm and 40 μm, respectively. Atherosclerotic vascular lesions in the APOE-KO mouse exhibited the highest values (contrast) of -10.11±1.92 dB, -12.13±2.13 dB, -7.54±1.45 dB, -5.10±1.06 dB, -5.25±0.94 dB, and -10.23±2.12 dB in T(IB), T(var), T(E), F(IB), W(rms), W(IB) hybrid images (n=10, p<0.05), respectively. Control segments of normal vascular tissue showed the lowest values of -20.20±2.71 dB, -22.54±4.54 dB, -14.94±2.05 dB, -9.64±1.34 dB, -10.20±1.27 dB, and -19.36±3.24 dB in same hybrid images (n=6, p<0.05). Results from both histology and optical images showed good agreement with ultrasound findings within a maximum error of 3.6% in lesion estimation. This study demonstrated the feasibility of a high-resolution hybrid imaging technique to diagnose atherosclerosis and characterize plaque components in mouse. In the future, it can be easily implemented on commercial ultrasound systems and eventually translated into clinics as a screening tool for atherosclerosis and the assessment of vulnerable plaques. Copyright © 2012 Elsevier B.V. All rights reserved.
A high resolution spatiotemporal atlas of gene expression of the developing mouse brain
Thompson, Carol L.; Ng, Lydia; Menon, Vilas; Martinez, Salvador; Lee, Chang-Kyu; Glattfelder, Katie; Sunkin, Susan M.; Henry, Alex; Lau, Christopher; Dang, Chinh; Garcia-Lopez, Raquel; Martinez-Ferre, Almudena; Pombero, Ana; Rubenstein, John L.R.; Wakeman, Wayne B.; Hohmann, John; Dee, Nick; Sodt, Andrew J.; Young, Rob; Smith, Kimberly; Nguyen, Thuc-Nghi; Kidney, Jolene; Kuan, Leonard; Jeromin, Andreas; Kaykas, Ajamete; Miller, Jeremy; Page, Damon; Orta, Geri; Bernard, Amy; Riley, Zackery; Smith, Simon; Wohnoutka, Paul; Hawrylycz, Mike; Puelles, Luis; Jones, Allan R.
2015-01-01
SUMMARY To provide a temporal framework for the genoarchitecture of brain development, in situ hybridization data were generated for embryonic and postnatal mouse brain at 7 developmental stages for ~2100 genes, processed with an automated informatics pipeline and manually annotated. This resource comprises 434,946 images, 7 reference atlases, an ontogenetic ontology, and tools to explore co-expression of genes across neurodevelopment. Gene sets coinciding with developmental phenomena were identified. A temporal shift in the principles governing the molecular organization of the brain was detected, with transient neuromeric, plate-based organization of the brain present at E11.5 and E13.5. Finally, these data provided a transcription factor code that discriminates brain structures and identifies the developmental age of a tissue, providing a foundation for eventual genetic manipulation or tracking of specific brain structures over development. The resource is available as the Allen Developing Mouse Brain Atlas (developingmouse.brain-map.org). PMID:24952961
Han, Jong-Min; Kim, Hyeong-Geug; Lee, Jin-Seok; Choi, Min-Kyung; Kim, Young-Ae; Son, Chang-Gue
2014-01-01
Obesity-related disorders, especially metabolic syndrome, contribute to 2.8 million deaths each year worldwide, with significantly increasing morbidity. Eating at regular times and proper food quantity are crucial for maintaining a healthy status. However, many people in developed countries do not follow a regular eating schedule due to a busy lifestyle. Herein, we show that a repeated sense of hunger leads to a high risk of developing visceral obesity and metabolic syndrome in a mouse model (both 3-week and 6-week-old age, 10 mice in each group). The ad libitum (AL) group (normal eating pattern) and the food restriction (FR) group (alternate-day partially food restriction by given only 1/3 of average amount) were compared after 8-week experimental period. The total food consumption in the FR group was lower than in the AL group, however, the FR group showed a metabolic syndrome-like condition with significant fat accumulation in adipose tissues. Consequently, the repeated sense of hunger induced the typical characteristics of metabolic syndrome in an animal model; a distinct visceral obesity, hyperlipidemia, hyperglycemia and hepatic steatosis. Furthermore, we found that specifically leptin, a major metabolic hormone, played a major role in the development of these pathological disorders. Our study indicated the importance of regular eating habits besides controlling calorie intake.
Poudrier, J; Graber, P; Herren, S; Berney, C; Gretener, D; Kosco-Vilbois, M H; Gauchat, J F
2000-11-01
Responsiveness to IL-13 involves at least two chains, IL-4Ralpha and IL-13Ralpha1. Although mouse B cells express IL-4Ralpha, little is known about their expression of IL-13Ralpha chains. To investigate this topic further, we have generated a monoclonal antibody (C41) specific for murine IL-13Ralpha1. Using C41, IL-13Ralpha1 expression was detected on germinal center (GC) B cells by flow cytometry and immunohistochemistry. In addition, IL-13Ralpha1 was observed on follicular dendritic cells, but not interdigitating dendritic cells in the T cell areas. Furthermore, resting B cells also expressed IL-13Ralpha1, and in the presence of IL-13 produced increased amounts of IgM in response to in vitro CD40 stimulation. However, C41 was unable to neutralize this bioactivity. The distribution of IL-13Ralpha1 on murine B cells and during GC reactions suggests a role for IL-13 during B cell differentiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukai, Kazuyoshi; Oh, Jangsuk; Karim, M.A.
Chediak-Higashi syndrome (CHS) is an autosomal recessive disorder characterized by hypopigmentation or oculocutaneous albinism and severe immunologic deficiency with neutropenia and lack of natural killer (NK) cell function. Most patients die in childhood from pyogenic infections or an unusual lymphoma-like condition. A hallmark of the disorder is giant inclusion bodies seen in all granule-containing cells, including granulocytes, lymphocytes, melanocytes, mast cells, and neurons. Similar ultrastructural abnormalities occur in the beige mouse, which thus has been suggested to be homologous to human CHS. High-resolution genetic mapping has indicated that the bg gene region of mouse chromosome 13 is likely homologous tomore » the distal portion of human chromosome 1q. Accordingly, we carried out homozygosity mapping using markers derived from distal human chromosome 1q in four inbred families or probands with CHS. Our results indicate that the human CHS gene maps to an 18.8-cM interval in chromosome segment 1q42-q44 and that human CHS therefore is very likely homologous to mouse bg. 43 refs., 2 figs.« less
Priorities and trends in the study of proteins in eye research, 1924–2014
Semba, Richard D.; Lam, Maggie; Sun, Kai; Zhang, Pingbo; Schaumberg, Debra A.; Ferrucci, Luigi; Ping, Peipei; Van Eyk, Jennifer E.
2015-01-01
Purpose To identify the proteins that are relevant to eye research and develop assays for the study of a set of these proteins. Experimental Design We conducted a bibliometric analysis by merging gene lists for human and mouse from the National Center for Biotechnology Information FTP site and combining them with PubMed references that were retrieved with the search terms “eye”[MeSH Terms] OR “eye”[All Fields] OR “eyes”[All Fields]. Results For human and mouse eye studies, respectively, the total number of publications was 13,525 and 23,895, and the total number of proteins was 4,050 and 4,717. For proteins in human and mouse eye studies, respectively, 88.7% and 81.7% had five or fewer citations. The top fifty most intensively studied proteins for human and mouse eye studies were generally in the areas of photoreceptors and phototransduction, inflammation and angiogenesis, neurodevelopment, lens transparency, and cell cycle and cellular processes. We proposed selected reaction monitoring assays that were developed in silico for the top fifty most intensively studied proteins in human and mouse eye research. Conclusions and clinical relevance We conclude that scientists engaged in eye research tend to focus on the same proteins. Newer resources and tools in proteomics can expand the investigations to lesser-known proteins of the eye. PMID:26123431
Mousseau, D D; Larson, A A
1994-09-01
We have previously observed similarities in the behavioral effects produced by the NH2-terminus of the undecapeptide substance P (SP) and by 1,3-di(2-tolyl)-guanidine (DTG) in the adult mouse. The present series of experiments indicate differences in the rank-order of potency of sigma ligands [DTG; haloperidol (HAL)], SP analogs [SP; SP(1-7); SP(5-11); [D-Pro2, D-Phe7]-SP(1-7) (D-SP(1-7))] and miscellaneous compounds [morphine (MOR), naloxone (NAL)] at competing for [3H]-DTG binding sites in the mouse brain and spinal cord in vitro: Brain; DTG = HAL > SP = MOR = NAL > SP(1-7) > D-SP(1-7) > SP(5-11): Spinal cord; DTG = HAL > SP(1-7) = MOR = NAL > SP > D-SP(1-7) = SP(5-11). The observed difference in the rank-order potencies of the displacing ligands at these same binding sites supports the notion of two distinct populations of sigma binding sites in these tissues in the adult mouse. Given the low (micromolar) potency of SP analogs at displacing [3H]-DTG binding in the present series of experiments, it is unlikely that the similar behavioral effects we have previously observed elicited by SP(1-7) and DTG in the adult mouse are a result of a direct action of SP(1-7) at the sigma binding site.
Organization and roles of nucleosomes at mouse meiotic recombination hotspots
Getun, Irina V.; Wu, Zhen K.; Bois, Philippe R.J.
2012-01-01
Meiotic double strand breaks (DSBs) occur at discrete regions in the genome coined hotspots. Precisely what directs site selection of these DSBs is hotly debated and in particular it is unclear which chromatin features, and regulatory factors are necessary for a genomic region to initiate and resolve DSBs as a crossover (CO) event. In human and mouse, one layer of hotspot selection control is a recognition sequence element present at these sites that is bound by the Prdm9 zinc-finger protein. Furthermore, an overall open chromatin structure is thought to be required to allow access of the recombination machinery, and this is often dictated by the packaging of DNA around nucleosomes. We recently defined the nucleosome occupancy maps of four mouse recombination hotspots throughout meiosis. These analyses revealed no obvious dynamic changes in nucleosome occupancy, suggesting an intrinsic nature of recombinogenic sites, yet they also revealed that nucleosomes define zones of exclusion for CO resolution. Here, we discuss new evidence implicating nucleosome occupancy in recombinogenic repair and its potential roles in controlling chromatin structure at mouse meiotic hotspots. PMID:22572955
Mercher, Thomas; Raffel, Glen D.; Moore, Sandra A.; Cornejo, Melanie G.; Baudry-Bluteau, Dominique; Cagnard, Nicolas; Jesneck, Jonathan L.; Pikman, Yana; Cullen, Dana; Williams, Ifor R.; Akashi, Koichi; Shigematsu, Hirokazu; Bourquin, Jean-Pierre; Giovannini, Marco; Vainchenker, William; Levine, Ross L.; Lee, Benjamin H.; Bernard, Olivier A.; Gilliland, D. Gary
2009-01-01
Acute megakaryoblastic leukemia (AMKL) is a form of acute myeloid leukemia (AML) associated with a poor prognosis. The genetics and pathophysiology of AMKL are not well understood. We generated a knockin mouse model of the one twenty-two–megakaryocytic acute leukemia (OTT-MAL) fusion oncogene that results from the t(1;22)(p13;q13) translocation specifically associated with a subtype of pediatric AMKL. We report here that OTT-MAL expression deregulated transcriptional activity of the canonical Notch signaling pathway transcription factor recombination signal binding protein for immunoglobulin κ J region (RBPJ) and caused abnormal fetal megakaryopoiesis. Furthermore, cooperation between OTT-MAL and an activating mutation of the thrombopoietin receptor myeloproliferative leukemia virus oncogene (MPL) efficiently induced a short-latency AMKL that recapitulated all the features of human AMKL, including megakaryoblast hyperproliferation and maturation block, thrombocytopenia, organomegaly, and extensive fibrosis. Our results establish that concomitant activation of RBPJ (Notch signaling) and MPL (cytokine signaling) transforms cells of the megakaryocytic lineage and suggest that specific targeting of these pathways could be of therapeutic value for human AMKL. PMID:19287095
Yu, Xing-Jiang; Yi, Zhaohong; Gao, Zheng; Qin, Dandan; Zhai, Yanhua; Chen, Xue; Ou-Yang, Yingchun; Wang, Zhen-Bo; Zheng, Ping; Zhu, Min-Sheng; Wang, Haibin; Sun, Qing-Yuan; Dean, Jurrien; Li, Lei
2014-09-11
Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development.
NASA Astrophysics Data System (ADS)
Sudheendran, Narendran; Bake, Shameena; Miranda, Rajesh C.; Larin, Kirill V.
2014-03-01
Consumption of alcohol during pregnancy can be severely detrimental to the development of the brain in fetuses. This study explores the usage of optical coherence tomography (OCT) to the study the effects of maternal consumption of ethanol on brain development in mouse fetuses. On gestational day 14.5, fetuses were collected and fixed in 4% paraformaldehyde. A swept-source OCT (SSOCT) system was used to acquire 3D images of the brain of ethanol-exposed and control fetuses. The volume of right and left brain ventricles were measured and used to compare between ethanol-exposed and control fetuses. A total of 5 fetuses were used for each of the two groups. The average volumes of the right and left ventricles were measured to be 0.35 and 0.15 mm3 for ethanol-exposed and control fetuses, respectively. The results demonstrated that there is an alcohol-induced developmental delay in mouse fetal brains.
Independent feeding and metabolic actions of orexins in mice.
Lubkin, M; Stricker-Krongrad, A
1998-12-18
Orexin-A and orexin-B (OX peptides) are two putative products of a newly discovered secreted protein encoded by a mRNA restricted to neuronal cell bodies of the lateral hypothalamus (LH). Because the activation of the LH can induce changes in energy balance, we wanted to investigate the actions of OX peptides on energy metabolism in mice. We injected male C57BL/6J mice with different doses (1, 3, and 10 nmol) of orexin-A and orexin-B into the third ventricle (i3vt). A single i3vt injection of orexin-A 3 h into the light period slightly stimulated feeding at the lowest dose only over the following 4 h (11 +/- 09 mg/mouse vs 80 +/- 13 mg/mouse, p < 0.05). Orexin-B showed no effects at any dose. We therefore investigated the effects of 3 nmol orexin-A on energy utilization using indirect calorimetry. Single i3vt injection 3 h after light on, or just before dark onset, or in 4-h fasted mice resulted in increases in the metabolic rate. These effects were associated with decreases or increases in the respiratory quotient regarding the time of injection or the underlying metabolic state of the mice. The present findings provide direct evidence that OX peptides are more likely to be involved in the control of energy metabolism than of food intake in mice. Copyright 1998 Academic Press.
Effects of environmental enrichment on the amyotrophic lateral sclerosis mouse model.
Sorrells, A D; Corcoran-Gomez, K; Eckert, K A; Fahey, A G; Hoots, B L; Charleston, L B; Charleston, J S; Roberts, C R; Markowitz, H
2009-04-01
The manner in which an animal's environment is furnished may have significant implications for animal welfare as well as research outcomes. We evaluated four different housing conditions to determine the effects of what has been considered standard rodent enrichment and the exercise opportunities those environments allow on disease progression in the amyotrophic lateral sclerosis mouse model. Forty-eight copper/zinc superoxide dismutase mice (strain: B6SJL-TgN [SOD1-G931]1Gur) (SOD1) and 48 control (C) (strain: B6SJL-TgN[SOD1]2Gur) male mice were randomly assigned to four different conditions where 12 SOD1 and 12 C animals were allotted to each condition (n = 96). Conditions tested the effects of standard housing, a forced exercise regime, access to a mouse house and opportunity for ad libitum exercise on a running wheel. In addition to the daily all-occurrence behavioural sampling, mice were weighed and tested twice per week on gait and Rotor-Rod performance until the mice reached the age of 150 days (C) or met the criteria for our humane endpoint (SOD1). The SOD1 mice exposed to the forced exercise regime and wheel access did better in average lifespan and Rotor-Rod performance, than SOD1 mice exposed to the standard cage and mouse house conditions. In SOD1 mice, stride length remained longest throughout the progression of the disease in mice exposed to the forced exercise regime compared with other SOD1 conditions. Within the control group, mice in the standard cage and forced exercise regime conditions performed significantly less than the mice with the mouse house and wheels on the Rotor-Rod. Alpha motor neuron counts were highest in mice with wheels and in mice exposed to forced exercise regime in both mouse strains. All SOD1 mice had significantly lower alpha neuron counts than controls (P < 0.05). These data show that different enrichment strategies affect behaviour and disease progression in a transgenic mouse model, and may have implications for the effects of these strategies on experimental outcomes.
Fishbein, Anna B; Lee, Todd A; Cai, Miao; Oh, Sam S; Eng, Celeste; Hu, Donglei; Huntsman, Scott; Farber, Harold J; Serebrisky, Denise; Silverberg, Jonathan; Williams, L Keoki; Seibold, Max A; Sen, Saunak; Borrell, Luisa N; Avila, Pedro; Rodriguez-Cintron, William; Rodriguez-Santana, Jose R; Burchard, Esteban G; Kumar, Rajesh
2016-07-01
Pest allergen sensitization is associated with asthma morbidity in urban youth but minimally explored in Latino populations. Specifically, the effect of mouse sensitization on the risk of asthma exacerbation has been unexplored in Latino subgroups. To evaluate whether pest allergen sensitization is a predictor of asthma exacerbations and poor asthma control in urban minority children with asthma. Latino and African American children (8-21 years old) with asthma were recruited from 4 sites across the United States. Logistic regression models evaluated the association of mouse or cockroach sensitization with asthma-related acute care visits or hospitalizations. A total of 1,992 children with asthma in the Genes-environments and Admixture in Latino American (GALA-II) and Study of African-Americans, Asthma, Genes, and Environments (SAGE-II) cohorts were studied. Asthmatic children from New York had the highest rate of pest allergen sensitization (42% mouse, 56% cockroach), with the lowest rate in San Francisco (4% mouse, 8% cockroach). Mouse sensitization, more than cockroach, was associated with increased odds of acute care visits (adjusted odds ratio [aOR], 1.47; 95% CI, 1.07-2.03) or hospitalizations (aOR, 3.07; 95% CI, 1.81-5.18), even after controlling for self-reported race and site of recruitment. In stratified analyses, Mexican youth sensitized to mouse allergen did not have higher odds of asthma exacerbation. Other Latino and Puerto Rican youth sensitized to mouse had higher odds of hospitalization for asthma (aORs, 4.57 [95% CI, 1.86-11.22] and 10.01 [95% CI, 1.77-56.6], respectively) but not emergency department visits. Pest allergen sensitization is associated with a higher odds of asthma exacerbations in urban minority youth. Puerto Rican and Other Latino youth sensitized to mouse were more likely to have asthma-related hospitalizations than Mexican youth. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Efficacy of Alteplase® in a mouse model of acute ischemic stroke: a retrospective pooled analysis
Orset, Cyrille; Haelewyn, Benoit; Allan, Stuart M.; Ansar, Saema; Campos, Francesco; Cho, Tae Hee; Durand, Anne; El Amki, Mohamad; Fatar, Marc; Garcia-Yébenes, Isaac; Gauberti, Maxime; Grudzenski, Saskia; Lizasoain, Ignacio; Lo, Eng; Macrez, Richard; Margaill, Isabelle; Maysami, Samaneh; Meairs, Stephen; Nighoghossian, Norbert; Orbe, Josune; Paramo, Jose Antonio; Parienti, Jean-Jacques; Rothwell, Nancy J.; Rubio, Marina; Waeber, Christian; Young, Alan R.
2016-01-01
Background and purpose The debate over the fact that experimental drugs proposed for the treatment of stroke fail in the translation to the clinical situation, has attracted considerable attention in the literature. In this context, we present a retrospective pooled analysis of a large dataset from pre-clinical studies, in order to examine the effects of early versus late administration of intravenous recombinant tissue type plasminogen activator (rt-PA). Methods We collected data from 26 individual studies from 9 international centers (13 researchers, 716 animals) that compared rt-PA to controls, in a unique mouse model of thromboembolic stroke induced by an in situ injection of thrombin into the middle cerebral artery. Studies were classified into early (<3h) versus late (≥3h) drug administration. Final infarct volumes, assessed by histology or MRI, were compared in each study and the absolute differences were pooled in a random-effect meta-analysis. The influence of time of administration was tested. Results When compared to saline controls, early rt-PA administration was associated with a significant benefit (absolute difference = −6.63 mm3; 95%CI, −9.08 to −4.17; I2=76%) whereas late rt-PA treatment showed a deleterious effect (+5.06 mm3; 95%CI, +2.78 to +7.34; I2=42%, Pint<0.00001). Results remained unchanged following subgroup analyses. Conclusion Our results provide the basis needed for the design of future pre-clinical studies on recanalization therapies using this model of thromboembolic stroke in mice. The power analysis reveals that a multi-center trial would require 123 animals per group instead of 40 for a single center trial. PMID:27032444
Crist, Richard C; Roth, Jacquelyn J; Lisanti, Michael P; Siracusa, Linda D; Buchberg, Arthur M
2011-04-01
Colorectal cancer is a heterogeneous disease resulting from a combination of genetic and environmental factors. The C57BL/6J (B6) Apc (Min/+) mouse develops polyps throughout the gastrointestinal tract and has been a valuable model for understanding the genetic basis of intestinal tumorigenesis. Apc (Min/+) mice have been used to study known oncogenes and tumor suppressor genes on a controlled genetic background. These studies often utilize congenic knockout alleles, which can carry an unknown amount of residual donor DNA. The Apc (Min) model has also been used to identify modifer loci, known as Modifier of Min (Mom) loci, which alter Apc (Min) -mediated intestinal tumorigenesis. B6 mice carrying a knockout allele generated in WW6 embryonic stem cells were crossed to B6 Apc (Min/+) mice to determine the effect on polyp multiplicity. The newly generated colony developed significantly more intestinal polyps than Apc (Min/+) controls. Polyp multiplicity did not correlate with inheritance of the knockout allele, suggesting the presence of one or more modifier loci segregating in the colony. Genotyping of simple sequence length polymorphism (SSLP) markers revealed residual 129X1/SvJ genomic DNA within the congenic region of the parental knockout line. An analysis of polyp multiplicity data and SSLP genotyping indicated the presence of two Mom loci in the colony: 1) Mom12, a dominant modifier linked to the congenic region on chromosome 6, and 2) Mom13, which is unlinked to the congenic region and whose effect is masked by Mom12. The identification of Mom12 and Mom13 demonstrates the potential problems resulting from residual heterozygosity present in congenic lines.
Defective Bone Repair in C57Bl6 Mice With Acute Systemic Inflammation.
Behrends, D A; Hui, D; Gao, C; Awlia, A; Al-Saran, Y; Li, A; Henderson, J E; Martineau, P A
2017-03-01
Bone repair is initiated with a local inflammatory response to injury. The presence of systemic inflammation impairs bone healing and often leads to malunion, although the underlying mechanisms remain poorly defined. Our research objective was to use a mouse model of cortical bone repair to determine the effect of systemic inflammation on cells in the bone healing microenvironment. QUESTION/PURPOSES: (1) Does systemic inflammation, induced by lipopolysaccharide (LPS) administration affect the quantity and quality of regenerating bone in primary bone healing? (2) Does systemic inflammation alter vascularization and the number or activity of inflammatory cells, osteoblasts, and osteoclasts in the bone healing microenvironment? Cortical defects were drilled in the femoral diaphysis of female and male C57BL/6 mice aged 5 to 9 months that were treated with daily systemic injections of LPS or physiologic saline as control for 7 days. Mice were euthanized at 1 week (Control, n = 7; LPS, n = 8), 2 weeks (Control, n = 7; LPS, n = 8), and 6 weeks (Control, n = 9; LPS, n = 8) after surgery. The quantity (bone volume per tissue volume [BV/TV]) and microarchitecture (trabecular separation and thickness, porosity) of bone in the defect were quantified with time using microCT. The presence or activity of vascular endothelial cells (CD34), macrophages (F4/80), osteoblasts (alkaline phosphatase [ALP]), and osteoclasts (tartrate-resistant acid phosphatase [TRAP]) were evaluated using histochemical analyses. Only one of eight defects was bridged completely 6 weeks after surgery in LPS-injected mouse bones compared with seven of nine defects in the control mouse bones (odds ratio [OR], 0.04; 95% CI, 0.003-0.560; p = 0.007). The decrease in cortical bone in LPS-treated mice was reflected in reduced BV/TV (21% ± 4% vs 39% ± 10%; p < 0.01), increased trabecular separation (240 ± 36 μm vs 171 ± 29 μm; p < 0.01), decreased trabecular thickness (81 ± 18 μm vs 110 ± 22 μm; p = 0.02), and porosity (79% ± 4% vs 60% ± 10%; p < 0.01) at 6 weeks postoperative. Defective healing was accompanied by decreased CD34 (1.1 ± 0.6 vs 3.4 ± 0.9; p < 0.01), ALP (1.9 ± 0.9 vs 6.1 ± 3.2; p = 0.03), and TRAP (3.3 ± 4.7 vs 7.2 ± 4.0; p = 0.01) activity, and increased F4/80 (13 ± 2.6 vs 6.8 ± 1.7; p < 0.01) activity at 2 weeks postoperative. The results indicate that LPS-induced systemic inflammation reduced the amount and impaired the quality of bone regenerated in mouse femurs. The effects were associated with impaired revascularization, decreased bone turnover by osteoblasts and osteoclasts, and by increased catabolic activity by macrophages. Results from this preclinical study support clinical observations of impaired primary bone healing in patients with systemic inflammation. Based on our data, local administration of VEGF in the callus to stimulate revascularization, or transplantation of stem cells to enhance bone turnover represent potentially feasible approaches to improve outcomes in clinical practice.
Genetically engineered mouse models for studying inflammatory bowel disease.
Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko
2016-01-01
Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. Copyright © 2015 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Dissociation of sensitivities to tumor promotion and progression in outbred and inbred SENCAR mice.
Gimenez-Conti, I B; Bianchi, A B; Fischer, S M; Reiners, J J; Conti, C J; Slaga, T J
1992-06-15
The sensitivity of outbred SENCAR mice and inbred SENCAR (SSIN) mice to multistage carcinogenesis was studied. Tumors were induced using either 7,12-dimethylbenz[a]anthracene or N-methyl-N'-nitro-N-nitrosoguanidine as initiators and 12-O-tetradecanoylphorbol-13-acetate or benzoyl peroxide as promoting agents. Although the number of papillomas per mouse was higher in SSIN than in outbred SENCAR mice, the number of carcinomas observed in the SSIN strain was significantly lower regardless of the initiator or promoter used. It was also observed that the expression of markers of premalignant progression (i.e., dysplasia, expression of keratin K13, and loss of keratin K1 expression) was markedly suppressed in SSIN papillomas. After 50 wk of promotion with 12-O-tetradecanoylphorbol-13-acetate, the pattern of expression of K13 and K1 in SSIN mice was comparable to the pattern observed in outbred SENCAR mice after 10 to 20 wk of promotion with 12-O-tetradecanoylphorbol-13-acetate. It was also observed that 67% of the tumors induced in SSIN mice by initiation with 7,12-dimethylbenz[a]anthracene exhibited a mutation in codon 61 of the Ha-ras-1 gene. This latter finding suggests that the differences observed in tumor progression between the inbred strain and the outbred stock are not related to a genetic alteration in the Ha-ras-1 gene but rather to an independent event that we have postulated to involve a putative suppressor gene. The data reported here suggest that the putative gene(s) that confers susceptibility to tumor promotion was segregated from the gene(s) involved in tumor progression during selection and inbreeding of the SENCAR mouse stock.
Tode, Jan; Richert, Elisabeth; Koinzer, Stefan; Klettner, Alexa; von der Burchard, Claus; Brinkmann, Ralf; Lucius, Ralph; Roider, Johann
2018-05-01
To investigate the effect of thermal stimulation of the retina (TS-R) on Bruch's membrane (BrM) thickness in age-related macular degeneration (AMD) mouse models as a novel concept for the prophylaxis and treatment of dry AMD. Two knockout AMD mouse models, B6.129P2-Apoe tm1Unc /J (ApoE-/-) and B6.129X1-Nfe2I2 tm1Ywk /J (NRF2-/-), were chosen. One randomized eye of each mouse in four different groups (two of different age, two of different genotype) of five mice was treated by TS-R (532 nm, 10-ms duration, 50-μm spot size), the fellow eye served as control. Laser power was titrated to barely visible laser burns, then reduced by 70% to guarantee for thermal elevation without damage to the neuroretina, then applied uniformly to the murine retina. Fundus, optical coherence tomography (OCT), and fluorescein angiography (FLA) images were obtained at the day of treatment and 1 month after treatment. Eyes were enucleated thereafter to analyze BrM thickness by transmission electron microscopy (TEM) in a standardized blinded manner. Fundus images revealed that all ApoE-/- and NRF2-/- mice had AMD associated retinal alterations. BrM thickness was increased in untreated controls of both mouse models. Subvisible TS-R laser spots were not detectable by fundus imaging, OCT, or FLA 2 hours or 1 month after laser treatment. TEM revealed a significant reduction of BrM thickness in laser-treated eyes of all four groups compared to their fellow control eyes. TS-R reduces BrM thickness in AMD mouse models ApoE-/- and NRF2-/- without damage to the neuroretina. It may become a prophylactic or even therapeutic treatment option for dry AMD. TS-R may become a prophylactic or even therapeutic treatment option for dry AMD.
Longitudinal in vivo imaging of retinal gliosis in a diabetic mouse model.
Kumar, Saravana; Zhuo, Lang
2010-10-01
In this study, we visualize and quantify retinal gliosis in vivo for monitoring early diabetic retinopathy (DR) in a transgenic mouse model. Onset of diabetes was triggered via intraperitoneal injection of streptozotocin (STZ) into transgenic F1 hybrid (FVB/N × C57BL/6J) mice expressing green fluorescent protein (GFP) under the control of glial fibrillary acidic protein (GFAP) promoter. Retinal glial cells are imaged once pre-STZ treatment followed by weekly post-STZ imaging for five weeks using a confocal scanning laser ophthalmoscope. Mice develop diabetes one week after STZ induction as confirmed from the high blood glucose levels (>13.9 mmol/L). A significant increase is observed in the GFAP-GFP transgene expression from astrocytic cell bodies and processes as early as week 5 for the STZ-treated mice. Retinal astrocytes also undergo hyperplasia progressively from week 0 to 5. This precedes any structural abnormalities to the retinal vasculature. Immunohistochemistry (IHC) on retinal sections as well as quantitative RT-PCR of endogenous and transgene GFAP mRNA supports our in vivo observation. Our in vivo data correlates with clinical reports with regards to retinal gliosis-related inflammatory response during early diabetic retinopathy. This opens up the possibility of using in vivo molecular imaging of retinal glial cells as a platform for monitoring the efficacy of anti-DR drug candidates which intervene at an early stage.
Buri, Marcus V; Dias, Carol C; Barbosa, Christiano M V; Nogueira-Pedro, Amanda; Ribeiro-Filho, Antonio C; Miranda, Antonio; Paredes-Gamero, Edgar J
2016-11-01
Due to the cytotoxic effect of antimicrobial peptides (AMP) against several microorganism and tumor cells has been proposed their association with the immune system. However, just a few reports have shown this relationship. In this study, mice were treated with gomesin, a β-hairpin AMP that exhibit high cytotoxicity against bacterial and tumor cells. Different effects in the immune system were observed, such as, decrease of CD3 + in T lymphocytes (Control: 17.7±1.4%; Gomesin: 7.67±1.2%) and in hematopoietic progenitors and increase of hematopoietic stem cell (Control: 0.046±0.004%; Gomesin: 0.067±0.003%), B220 + B lymphocytes (Control: 38.63±1.5%; Gomesin: 47.83±0.48%), and Mac-1 + F4/80 + macrophages (Control: 11.76±3.4%; Gomesin: 27.13±4.0%). Additionally, macrophage increase was accompanied by an increase of macrophage phagocytosis (Control 20.85±1.53; Gomesin 31.32±1 Geometric mean), interleukin 6 (Control: 47.24±1.9ng/mL; Gomesin: 138.68±33.68ng/mL) and monocyte chemoattractant protein-1 (Control: 0.872±0.093ng/mL; Gomesin: 1.83±0.067ng/mL). Thus, this report showed immunomodulatory activity of gomesin in the immune system of mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Viral Diversity of House Mice in New York City
Williams, Simon H.; Che, Xiaoyu; Garcia, Joel A.; Klena, John D.; Lee, Bohyun; Muller, Dorothy; Ulrich, Werner; Corrigan, Robert M.; Nichol, Stuart; Jain, Komal
2018-01-01
ABSTRACT The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus. PMID:29666290
Koopmans, Bastijn; Smit, August B; Verhage, Matthijs; Loos, Maarten
2017-04-04
Systematic, standardized and in-depth phenotyping and data analyses of rodent behaviour empowers gene-function studies, drug testing and therapy design. However, no data repositories are currently available for standardized quality control, data analysis and mining at the resolution of individual mice. Here, we present AHCODA-DB, a public data repository with standardized quality control and exclusion criteria aimed to enhance robustness of data, enabled with web-based mining tools for the analysis of individually and group-wise collected mouse phenotypic data. AHCODA-DB allows monitoring in vivo effects of compounds collected from conventional behavioural tests and from automated home-cage experiments assessing spontaneous behaviour, anxiety and cognition without human interference. AHCODA-DB includes such data from mutant mice (transgenics, knock-out, knock-in), (recombinant) inbred strains, and compound effects in wildtype mice and disease models. AHCODA-DB provides real time statistical analyses with single mouse resolution and versatile suite of data presentation tools. On March 9th, 2017 AHCODA-DB contained 650 k data points on 2419 parameters from 1563 mice. AHCODA-DB provides users with tools to systematically explore mouse behavioural data, both with positive and negative outcome, published and unpublished, across time and experiments with single mouse resolution. The standardized (automated) experimental settings and the large current dataset (1563 mice) in AHCODA-DB provide a unique framework for the interpretation of behavioural data and drug effects. The use of common ontologies allows data export to other databases such as the Mouse Phenome Database. Unbiased presentation of positive and negative data obtained under the highly standardized screening conditions increase cost efficiency of publicly funded mouse screening projects and help to reach consensus conclusions on drug responses and mouse behavioural phenotypes. The website is publicly accessible through https://public.sylics.com and can be viewed in every recent version of all commonly used browsers.
Yamamizu, Kohei; Sharov, Alexei A; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B; Schlessinger, David; Ko, Minoru S H
2016-05-06
Mouse embryonic stem cells (ESCs) can differentiate into a wide range - and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this "NIA Mouse ESC Bank," we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs.
Mice Expressing RHAG and RHD Human Blood Group Genes
Goossens, Dominique; da Silva, Nelly; Metral, Sylvain; Cortes, Ulrich; Callebaut, Isabelle; Picot, Julien; Mouro-Chanteloup, Isabelle; Cartron, Jean-Pierre
2013-01-01
Anti-RhD prophylaxis of haemolytic disease of the fetus and newborn (HDFN) is highly effective, but as the suppressive mechanism remains uncertain, a mouse model would be of interest. Here we have generated transgenic mice expressing human RhAG and RhD erythrocyte membrane proteins in the presence and, for human RhAG, in the absence, of mouse Rhag. Human RhAG associates with mouse Rh but not mouse Rhag on red blood cells. In Rhag knockout mice transgenic for human RHAG, the mouse Rh protein is “rescued” (re-expressed), and co-immunoprecipitates with human RhAG, indicating the presence of hetero-complexes which associate mouse and human proteins. RhD antigen was expressed from a human RHD gene on a BAC or from RHD cDNA under control of β-globin regulatory elements. RhD was never observed alone, strongly indicative that its expression absolutely depends on the presence of transgenic human RhAG. This first expression of RhD in mice is an important step in the creation of a mouse model of RhD allo-immunisation and HDFN, in conjunction with the Rh-Rhag knockout mice we have developed previously. PMID:24260394
Xu, Xiaoyun; Xiao, Wei; Zhang, Zhe; Pan, Jianhao; Yan, Yixi; Zhu, Tao; Tang, Dan; Ye, Kaihe; Paranjpe, Manish; Qu, Lintao; Nie, Hong
2018-05-31
Allergic contact dermatitis (ACD) is a highly prevalent inflammatory disease of the skin. As a result of the complex etiology in ACD, therapeutic compounds targeting refractory pruritus in ACD lack efficacy and lead to numerous side effects. In this study, we investigated the anti-pruritic effects of oxymatrine (OMT) and explored its mechanism of action in a mouse model of ACD. 72 male SPF C57BL/6 mice were randomly divided into control group, ACD model group, dexamethasone positive control group (0.08 mg kg -1 ) and 3 OMT groups (80, 40, 20 mg kg -1 ). OMT was administrated by intraperitoneal injection 1 h before video recording on day 10, 24 h after 2nd challenge with SADBE. Cheek skin fold thickness was measured before treatment and after recording. H&E staining was used for pathological observation. RT-qPCR, Immunohistochemistry and LEGENDplexTM assay were used to detect cytokines levels. The population of Treg cells in peripheral blood were detected via flow cytometry. OMT treatment significantly decreases the skin inflammation and scratching bouts. It rescues defects in epidermal keratinization and inflammatory cell infiltration in ACD mice. Administration of OMT significantly reduced levels of IFN-γ, IL-13, IL-17A, TNF-α, IL-22 and mRNA expression of TNF-α and IL-1β. Furthermore, it increased the percentage of Treg cells in peripheral blood of ACD mice. We have demonstrated that OMT exhibits anti-pruritic and anti-inflammatory effects in ACD mice by regulating inflammatory mediators. OMT might emerge as a potential drug for the treatment of pruritus and skin inflammation in the setting of ACD. Copyright © 2018. Published by Elsevier B.V.
Rpl13a small nucleolar RNAs regulate systemic glucose metabolism
Lee, Jiyeon; Harris, Alexis N.; Holley, Christopher L.; Mahadevan, Jana; Pyles, Kelly D.; Lavagnino, Zeno; Scherrer, David E.; Fujiwara, Hideji; Sidhu, Rohini; Zhang, Jessie; Huang, Stanley Ching-Cheng; Piston, David W.; Remedi, Maria S.; Urano, Fumihiko; Ory, Daniel S.
2016-01-01
Small nucleolar RNAs (snoRNAs) are non-coding RNAs that form ribonucleoproteins to guide covalent modifications of ribosomal and small nuclear RNAs in the nucleus. Recent studies have also uncovered additional non-canonical roles for snoRNAs. However, the physiological contributions of these small RNAs are largely unknown. Here, we selectively deleted four snoRNAs encoded within the introns of the ribosomal protein L13a (Rpl13a) locus in a mouse model. Loss of Rpl13a snoRNAs altered mitochondrial metabolism and lowered reactive oxygen species tone, leading to increased glucose-stimulated insulin secretion from pancreatic islets and enhanced systemic glucose tolerance. Islets from mice lacking Rpl13a snoRNAs demonstrated blunted oxidative stress responses. Furthermore, these mice were protected against diabetogenic stimuli that cause oxidative stress damage to islets. Our study illuminates a previously unrecognized role for snoRNAs in metabolic regulation. PMID:27820699
Osaki, Mitsuhiko; Takeshita, Fumitaka; Sugimoto, Yui; Kosaka, Nobuyoshi; Yamamoto, Yusuke; Yoshioka, Yusuke; Kobayashi, Eisuke; Yamada, Tesshi; Kawai, Akira; Inoue, Toshiaki; Ito, Hisao; Oshimura, Mitsuo; Ochiya, Takahiro
2011-01-01
Pulmonary metastases are the main cause of death in patients with osteosarcoma, however, the molecular mechanisms of metastasis are not well understood. To detect lung metastasis-related microRNA (miRNA) in human osteosarcoma, we compared parental (HOS) and its subclone (143B) human osteosarcoma cell lines showing lung metastasis in a mouse model. miR-143 was the most downregulated miRNA (P < 0.01), and transfection of miR-143 into 143B significantly decreased its invasiveness, but not cell proliferation. Noninvasive optical imaging technologies revealed that intravenous injection of miR-143, but not negative control miRNA, significantly suppressed lung metastasis of 143B (P < 0.01). To search for miR-143 target mRNA in 143B, microarray analyses were performed using an independent RNA pool extracted by two different comprehensive miR-143-target mRNA collecting systems. Western blot analyses revealed that MMP-13 was mostly protein downregulated by miR-143. Immunohistochemistry using clinical samples clearly revealed MMP-13-positive cells in lung metastasis-positive cases, but not in at least three cases showing higher miR-143 expression in the no metastasis group. Taken together, these data indicated that the downregulation of miR-143 correlates with the lung metastasis of human osteosarcoma cells by promoting cellular invasion, probably via MMP-13 upregulation, suggesting that miRNA could be used to develop new molecular targets for osteosarcoma metastasis. PMID:21427707
Cavaillé, Jérôme; Buiting, Karin; Kiefmann, Martin; Lalande, Marc; Brannan, Camilynn I.; Horsthemke, Bernhard; Bachellerie, Jean-Pierre; Brosius, Jürgen; Hüttenhofer, Alexander
2000-01-01
We have identified three C/D-box small nucleolar RNAs (snoRNAs) and one H/ACA-box snoRNA in mouse and human. In mice, all four snoRNAs (MBII-13, MBII-52, MBII-85, and MBI-36) are exclusively expressed in the brain, unlike all other known snoRNAs. Two of the human RNA orthologues (HBII-52 and HBI-36) share this expression pattern, and the remainder, HBII-13 and HBII-85, are prevalently expressed in that tissue. In mice and humans, the brain-specific H/ACA box snoRNA (MBI-36 and HBI-36, respectively) is intron-encoded in the brain-specific serotonin 2C receptor gene. The three human C/D box snoRNAs map to chromosome 15q11–q13, within a region implicated in the Prader–Willi syndrome (PWS), which is a neurogenetic disease resulting from a deficiency of paternal gene expression. Unlike other C/D box snoRNAs, two snoRNAs, HBII-52 and HBII-85, are encoded in a tandemly repeated array of 47 or 24 units, respectively. In mouse the homologue of HBII-52 is processed from intronic portions of the tandem repeats. Interestingly, these snoRNAs were absent from the cortex of a patient with PWS and from a PWS mouse model, demonstrating their paternal imprinting status and pointing to their potential role in the etiology of PWS. Despite displaying hallmarks of the two families of ubiquitous snoRNAs that guide 2′-O-ribose methylation and pseudouridylation of rRNA, respectively, they lack any telltale rRNA complementarity. Instead, brain-specific C/D box snoRNA HBII-52 has an 18-nt phylogenetically conserved complementarity to a critical segment of serotonin 2C receptor mRNA, pointing to a potential role in the processing of this mRNA. PMID:11106375
Relative biological effectiveness of tritium for induction of myeloid leukemia in CBA/H mice.
Johnson, J R; Myers, D K; Jackson, J S; Dunford, D W; Gragtmans, N J; Wyatt, H M; Jones, A R; Percy, D H
1995-10-01
To help resolve uncertainties as to the most appropriate weighting factor for tritium beta rays, a large experiment was carried out to measure the relative biological effectiveness (RBE) of tritiated water compared to X rays for the induction of myeloid leukemia in male mice of the CBA/H strain. The study was designed to estimate the lifetime incidence of myeloid leukemia in seven groups of about 750 mice each; radiation exposures were approximately 0, 1, 2 and 3 Gy both for tritiated water and for X rays. The lifetime incidence of leukemia in these mice increased from 0.13% in the control group to 6-8% in groups exposed to higher radiation doses. The results were fitted to various equations relating leukemia incidence to radiation dose, using both the raw data and data corrected for cumulative mouse-days at risk. The calculated RBE values for tritium beta rays compared to X rays ranged from 1.0 +/- 0.5 to 1.3 +/- 0.3. A best estimate of the RBE for this experiment was about 1.2 +/- 0.3. A wR value of 1 would thus appear to be more appropriate than a wR of 2 for tritium beta rays.
Igarashi, Kentaro; Kawaguchi, Kei; Li, Shukuan; Han, Qinghong; Tan, Yuying; Gainor, Emily; Kiyuna, Tasuku; Miyake, Kentaro; Miyake, Masuyo; Higuchi, Takashi; Oshiro, Hiromichi; Singh, Arun S.; Eckardt, Mark A.; Nelson, Scott D.; Russell, Tara A.; Dry, Sarah M.; Li, Yunfeng; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Eilber, Fritz C.; Hoffman, Robert M.
2018-01-01
Synovial sarcoma (SS) is a recalcitrant subgroup of soft tissue sarcoma (STS). A tumor from a patient with high grade SS from a lower extremity was grown orthotopically in the right biceps femoris muscle of nude mice to establish a patient-derived orthotopic xenograft (PDOX) mouse model. The PDOX mice were randomized into the following groups when tumor volume reached approximately 100 mm3: G1, control without treatment; G2, doxorubicin (DOX) (3 mg/kg, intraperitoneal [i.p.] injection, weekly, for 2 weeks; G3, rMETase (100 unit/mouse, i.p., daily, for 2 weeks); G4 DOX (3mg/kg), i.p. weekly, for 2 weeks) combined with rMETase (100 unit/mouse, i.p., daily, for 2 weeks). On day 14 after treatment initiation, all therapies significantly inhibited tumor growth compared to untreated control, except DOX: (DOX: p = 0.48; rMETase: p < 0.005; DOX combined with rMETase < 0.0001). DOX combined with rMETase was significantly more effective than both DOX alone (p < 0.001) and rMETase alone (p < 0.05). The relative body weight on day 14 compared with day 0 did not significantly differ between any treatment group or untreated control. The results indicate that r-METase can overcome DOX-resistance in this recalcitrant disease. PMID:29721200
Quattrone, Federica; Sanchez, Ana Maria; Pannese, Maria; Hemmerle, Teresa; Viganò, Paola; Candiani, Massimo; Petraglia, Felice; Neri, Dario; Panina-Bordignon, Paola
2015-09-01
Endometriosis is caused by the displacement of endometrium outside the uterus contributing heavily to infertility and debilitating pelvic pain. Ectopic adhesion and growth are believed to occur under the influence of a favorable hormonal environment and immunological factors. The objective of this study is to analyze the effect of a targeted therapy with an antibody-based pharmacodelivery of interleukin 4 (F8-IL4) in a mouse model of experimentally induced endometriosis. Endometriosis-like lesions were induced in Balb/c mice. The animals were treated intravenously with F8-IL4 or with untargeted IL4 (KSF-IL4). Twelve days after disease induction, the lesions were isolated. A significant reduction in the number of total lesions/mouse and in the total volume of lesions/mouse was observed in mice treated with F8-IL4 compared to controls (P = .029 and P = .006, respectively), while no difference was found between KSF-IL4-treated mice and their controls. Gene expression was evaluated by quantitative real-time polymerase chain reaction. Expression of genes involved in cell adhesion, extracellular matrix invasion, and neovascularization was significantly downregulated in F8-IL4-treated mice compared to their controls (integrin β1: P = .02; metalloproteinase [MMP] 3: P = .02; MMP9: P = .04; vascular endothelial growth factor: P = .04). Gene expression of inflammatory cytokines (tumor necrosis factor α, IL1β, IL1α, and IL6) did not vary in the ectopic lesions isolated from F8-IL4-treated mice compared to their controls. Immunohistochemistry demonstrated a significantly reduced expression of E-cadherin and β-catenin in the lesions of mice treated with F8-IL4. Our results show that the antibody-mediated targeted delivery of IL4 inhibits the development of endometriosis in a syngeneic mouse model by likely impairing adhesion, invasion, and vascularization of the ectopic endometrium. © The Author(s) 2015.
Lee, Kang-Hoon; Lim, Debora; Chiu, Sophia; Greenhalgh, David; Cho, Kiho
2016-04-01
Laboratory strains of mice, both conventional and genetically engineered, have been introduced as critical components of a broad range of studies investigating normal and disease biology. Currently, the genetic identity of laboratory mice is primarily confirmed by surveying polymorphisms in selected sets of "conventional" genes and/or microsatellites in the absence of a single completely sequenced mouse genome. First, we examined variations in the genomic landscapes of transposable repetitive elements, named the TREome, in conventional and genetically engineered mouse strains using murine leukemia virus-type endogenous retroviruses (MLV-ERVs) as a probe. A survey of the genomes from 56 conventional strains revealed strain-specific TREome landscapes, and certain families (e.g., C57BL) of strains were discernible with defined patterns. Interestingly, the TREome landscapes of C3H/HeJ (toll-like receptor-4 [TLR4] mutant) inbred mice were different from its control C3H/HeOuJ (TLR4 wild-type) strain. In addition, a CD14 knock-out strain had a distinct TREome landscape compared to its control/backcross C57BL/6J strain. Second, an examination of superantigen (SAg, a "TREome gene") coding sequences of mouse mammary tumor virus-type ERVs in the genomes of the 46 conventional strains revealed a high diversity, suggesting a potential role of SAgs in strain-specific immune phenotypes. The findings from this study indicate that unexplored and intricate genomic variations exist in laboratory mouse strains, both conventional and genetically engineered. The TREome-based high-resolution genetics surveillance system for laboratory mice would contribute to efficient study design with quality control and accurate data interpretation. This genetics system can be easily adapted to other species ranging from plants to humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Xing, Zhuqing; Tang, Wei; Yang, Ying; Geng, Weitao; Rehman, Rizwan Ur; Wang, Yanping
2018-06-01
This study evaluated the distribution and colonization of Lactobacillus kefiranofaciens ZW3 and determined its capacity to modulate the gut microbiota in an animal model. Based on (1) fluorescence imaging, (2) flow cytometry, and (3) qPCR, we found that ZW3 successfully adhered to mouse mucous tissue and colonized the mouse ileum. Gut microbiota profiling was performed using high-throughput sequencing. After continuous intubation with ZW3 for 1 week, the proportion of Lachnospiraceae, a family of butyric acid-producing bacteria, increased at day 7 (11.9% at day 0 versus 18.4% at day 7). In addition, Lactobacillaceae showed an increasing trend (4% at day 0 versus 13% at day 7) that was accompanied by an observable decline in the Rikenellaceae family (1.58% at day 7, 0.14% at day 14, and 0.75% at day 21) in the tested mouse. The results demonstrate that ZW3 could successfully adhere to and colonize the mouse gut throughout the course of the experiment. The profiling analysis of the gut microbiota also provided evidence supporting the function of ZW3 in improving the intestinal flora of mice.
Zailani, Ahmed H; Balogun, Elizabeth A; Adebayo, Joseph O
2009-05-01
Evaluation of the effects of daily oral administration of ethanolic extract of C. violaceum leaves (13 mg/kg body weight) for 5 days on some kidney function indices of uninfected and Plasmodium berghei-infected mice was done on days 3, 8 and 14 post-infection. The indices studied include serum urea and creatinine concentrations with the specific activities of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase in the kidney. Treatment of P. berghei-infected mice with ethanolic extract of C. violaceum leaves (13 mg/kg body weight) for 5 days was able to ameliorate significantly the alterations in the various parameters observed in infected untreated mice, comparing favourably with chloroquine treatment in most cases. Administration of extract to uninfected mice had no significant effect on both serum and kidney parameters compared to the uninfected control. The results suggest that the ethanolic extract of C. violaceum leaves does not adversely affect kidney function at the dose used in traditional medicine for the treatment of malaria but rather enhances it.
Diesel engine exhaust accelerates plaque formation in a mouse model of Alzheimer's disease.
Hullmann, Maja; Albrecht, Catrin; van Berlo, Damiën; Gerlofs-Nijland, Miriam E; Wahle, Tina; Boots, Agnes W; Krutmann, Jean; Cassee, Flemming R; Bayer, Thomas A; Schins, Roel P F
2017-08-30
Increasing evidence from toxicological and epidemiological studies indicates that the central nervous system is an important target for ambient air pollutants. We have investigated whether long-term inhalation exposure to diesel engine exhaust (DEE), a dominant contributor to particulate air pollution in urban environments, can aggravate Alzheimer's Disease (AD)-like effects in female 5X Familial AD (5XFAD) mice and their wild-type female littermates. Following 3 and 13 weeks exposures to diluted DEE (0.95 mg/m 3 , 6 h/day, 5 days/week) or clean air (controls) behaviour tests were performed and amyloid-β (Aβ) plaque formation, pulmonary histopathology and systemic inflammation were evaluated. In a string suspension task, assessing for grip strength and motor coordination, 13 weeks exposed 5XFAD mice performed significantly less than the 5XFAD controls. Spatial working memory deficits, assessed by Y-maze and X-maze tasks, were not observed in association with the DEE exposures. Brains of the 3 weeks DEE-exposed 5XFAD mice showed significantly higher cortical Aβ plaque load and higher whole brain homogenate Aβ42 levels than the clean air-exposed 5XFAD littermate controls. After the 13 weeks exposures, with increasing age and progression of the AD-phenotype of the 5XFAD mice, DEE-related differences in amyloid pathology were no longer present. Immunohistochemical evaluation of lungs of the mice revealed no obvious genetic background-related differences in tissue structure, and the DEE exposure did not cause histopathological changes in the mice of both backgrounds. Luminex analysis of plasma cytokines demonstrated absence of sustained systemic inflammation upon DEE exposure. Inhalation exposure to DEE causes accelerated plaque formation and motor function impairment in 5XFAD transgenic mice. Our study provides further support that the brain is a relevant target for the effects of inhaled DEE and suggests that long-term exposure to this ubiquitous air pollution mixture may promote the development of Alzheimer's disease.
Dropkin, Jonathan; Kim, Hyun; Punnett, Laura; Wegman, David H; Warren, Nicholas; Buchholz, Bryan
2015-01-01
Office computer workers are at increased risk for neck/upper extremity (UE) musculoskeletal pain. A seven-month office ergonomic intervention study evaluated the effect of two engineering controls plus training on neck/UE pain and mechanical exposures in 113 computer workers, including a 3-month follow-up period. Participants were randomised into an intervention group, who received a keyboard/mouse tray (KBT), touch pad (TP) for the non-dominant hand and keyboard shortcuts, and a control group who received keyboard shortcuts. Participants continued to have available a mouse at the dominant hand. Outcomes were pain severity, computer rapid upper limb assessment (RULA), and hand activity level. Prevalence ratios (PRs) evaluated intervention effects using dichotomised pain and exposure scores. In the intervention group, the dominnt proximal UE pain PR=0.9, 95% CI 0.7 to 1.2 and the dominant distal UE PR=0.8, 95% CI 0.5 to 1.3, postintervention. The non-dominant proximal UE pain PR=1.0, 95% CI 0.8 to 1.4, while the non-dominant distal UE PR=1.2, 95% CI 0.6 to 2.2, postintervention. Decreases in non-neutral postures were found in two RULA elements (non-dominant UE PR=0.9, 95% CI 0.8 to 0.9 and full non-dominant RULA PR=0.8, 95% CI 0.8 to 0.9) of the intervention group. Hand activity increased on the non-dominant side (PR=1.4, 95% CI 1.2 to 1.6) in this group. While the intervention reduced non-neutral postures in the non-dominant UE, it increased hand activity in the distal region of this extremity. To achieve lower hand activity, a KBT and TP used in the non-dominant hand may not be the best devices to use. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Wei, Wen-Jie; Sun, Hai-Ying; Ting, Kai Yiu; Zhang, Li-He; Lee, Hon-Cheung; Li, Gui-Rong; Yue, Jianbo
2012-01-01
Cyclic adenosine diphosphoribose (cADPR) is an endogenous Ca2+ mobilizing messenger that is formed by ADP-ribosyl cyclases from nicotinamide adenine dinucleotide (NAD). The main ADP-ribosyl cyclase in mammals is CD38, a multi-functional enzyme and a type II membrane protein. Here we explored the role of CD38-cADPR-Ca2+ in the cardiomyogenesis of mouse embryonic stem (ES) cells. We found that the mouse ES cells are responsive to cADPR and possess the key components of the cADPR signaling pathway. In vitro cardiomyocyte (CM) differentiation of mouse ES cells was initiated by embryoid body (EB) formation. Interestingly, beating cells appeared earlier and were more abundant in CD38 knockdown EBs than in control EBs. Real-time RT-PCR and Western blot analyses further showed that the expression of several cardiac markers, including GATA4, MEF2C, NKX2.5, and α-MLC, were increased markedly in CD38 knockdown EBs than those in control EBs. Similarly, FACS analysis showed that more cardiac Troponin T-positive CMs existed in CD38 knockdown or 8-Br-cADPR, a cADPR antagonist, treated EBs compared with that in control EBs. On the other hand, overexpression of CD38 in mouse ES cells significantly inhibited CM differentiation. Moreover, CD38 knockdown ES cell-derived CMs possess the functional properties characteristic of normal ES cell-derived CMs. Last, we showed that the CD38-cADPR pathway negatively modulated the FGF4-Erks1/2 cascade during CM differentiation of ES cells, and transiently inhibition of Erk1/2 blocked the enhanced effects of CD38 knockdown on the differentiation of CM from ES cells. Taken together, our data indicate that the CD38-cADPR-Ca2+ signaling pathway antagonizes the CM differentiation of mouse ES cells. PMID:22908234
Mouse allergen, lung function, and atopy in Puerto Rican children.
Forno, Erick; Cloutier, Michelle M; Datta, Soma; Paul, Kathryn; Sylvia, Jody; Calvert, Deanna; Thornton-Thompson, Sherell; Wakefield, Dorothy B; Brehm, John; Hamilton, Robert G; Alvarez, María; Colón-Semidey, Angel; Acosta-Pérez, Edna; Canino, Glorisa; Celedón, Juan C
2012-01-01
To examine the relation between mouse allergen exposure and asthma in Puerto Rican children. Mus m 1, Der p 1, Bla g 2, and Fel d 1 allergens were measured in dust samples from homes of Puerto Rican children with (cases) and without (controls) asthma in Hartford, CT (n = 449) and San Juan (SJ), Puerto Rico (n = 678). Linear or logistic regression was used for the multivariate analysis of mouse allergen (Mus m 1) and lung function (FEV(1) and FEV(1)/FVC) and allergy (total IgE and skin test reactivity (STR) to ≥1 allergen) measures. Homes in SJ had lower mouse allergen levels than those in Hartford. In multivariate analyses, mouse allergen was associated with higher FEV(1) in cases in Hartford (+70.6 ml, 95% confidence interval (CI) = 8.6-132.7 ml, P = 0.03) and SJ (+45.1 ml, 95% CI = -0.5 to 90.6 ml, P = 0.05). In multivariate analyses of controls, mouse allergen was inversely associated with STR to ≥1 allergen in non-sensitized children (odds ratio [OR] for each log-unit increment in Mus m 1 = 0.7, 95% CI = 0.5-0.9, P<0.01). In a multivariate analysis including all children at both study sites, each log-increment in mouse allergen was positively associated with FEV(1) (+28.3 ml, 95% CI = 1.4-55.2 ml, P = 0.04) and inversely associated with STR to ≥1 allergen (OR for each log-unit increment in Mus m 1 = 0.8, 95% CI = 0.6-0.9, P<0.01). Mouse allergen is associated with a higher FEV(1) and lower odds of STR to ≥1 allergen in Puerto Rican children. This may be explained by the allergen itself or correlated microbial exposures.
Mouse Allergen, Lung Function, and Atopy in Puerto Rican Children
Forno, Erick; Cloutier, Michelle M.; Datta, Soma; Paul, Kathryn; Sylvia, Jody; Calvert, Deanna; Thornton-Thompson, Sherell; Wakefield, Dorothy B.; Brehm, John; Hamilton, Robert G.; Alvarez, María; Colón-Semidey, Angel; Acosta-Pérez, Edna; Canino, Glorisa; Celedón, Juan C.
2012-01-01
Objective To examine the relation between mouse allergen exposure and asthma in Puerto Rican children. Methods Mus m 1, Der p 1, Bla g 2, and Fel d 1 allergens were measured in dust samples from homes of Puerto Rican children with (cases) and without (controls) asthma in Hartford, CT (n = 449) and San Juan (SJ), Puerto Rico (n = 678). Linear or logistic regression was used for the multivariate analysis of mouse allergen (Mus m 1) and lung function (FEV1 and FEV1/FVC) and allergy (total IgE and skin test reactivity (STR) to ≥1 allergen) measures. Results Homes in SJ had lower mouse allergen levels than those in Hartford. In multivariate analyses, mouse allergen was associated with higher FEV1 in cases in Hartford (+70.6 ml, 95% confidence interval (CI) = 8.6–132.7 ml, P = 0.03) and SJ (+45.1 ml, 95% CI = −0.5 to 90.6 ml, P = 0.05). In multivariate analyses of controls, mouse allergen was inversely associated with STR to ≥1 allergen in non-sensitized children (odds ratio [OR] for each log-unit increment in Mus m 1 = 0.7, 95% CI = 0.5–0.9, P<0.01). In a multivariate analysis including all children at both study sites, each log-increment in mouse allergen was positively associated with FEV1 (+28.3 ml, 95% CI = 1.4–55.2 ml, P = 0.04) and inversely associated with STR to ≥1 allergen (OR for each log-unit increment in Mus m 1 = 0.8, 95% CI = 0.6–0.9, P<0.01). Conclusions Mouse allergen is associated with a higher FEV1 and lower odds of STR to ≥1 allergen in Puerto Rican children. This may be explained by the allergen itself or correlated microbial exposures. PMID:22815744
Chai, J H; Locke, D P; Ohta, T; Greally, J M; Nicholls, R D
2001-11-01
Prader-Willi syndrome (PWS) results from loss of function of a 1.0- to 1.5-Mb domain of imprinted, paternally expressed genes in human Chromosome (Chr) 15q11-q13. The loss of imprinted gene expression in the homologous region in mouse Chr 7C leads to a similar neonatal PWS phenotype. Several protein-coding genes in the human PWS region are intronless, possibly arising by retrotransposition. Here we present evidence for continued acquisition of genes by the mouse PWS region during evolution. Bioinformatic analyses identified a BAC containing four genes, Mkrn3, Magel2, Ndn, Frat3, and the Atp5l-ps1 pseudogene, the latter two genes derived from recent L1-mediated retrotransposition. Analyses of eight overlapping BACs indicate that these genes are clustered within 120 kb in two inbred strains, in the order tel-Atp5l-ps1-Frat3-Mkrn3-Magel2-Ndn-cen. Imprinting analyses show that Frat3 is differentially methylated and expressed solely from the paternal allele in a transgenic mouse model of Angelman syndrome, with no expression from the maternal allele in a mouse model of PWS. Loss of Frat3 expression may, therefore, contribute to the phenotype of mouse models of PWS. The identification of five intronless genes in a small genomic interval suggests that this region is prone to retroposition in germ cells or their zygotic and embryonic cell precursors, and that it allows the subsequent functional expression of these foreign sequences. The recent evolutionary acquisition of genes that adopt the same imprint as older, flanking genes indicates that the newly acquired genes become 'innocent bystanders' of a primary epigenetic signal causing imprinting in the PWS domain.
You can't touch this: touch-free navigation through radiological images.
Ebert, Lars C; Hatch, Gary; Ampanozi, Garyfalia; Thali, Michael J; Ross, Steffen
2012-09-01
Keyboards, mice, and touch screens are a potential source of infection or contamination in operating rooms, intensive care units, and autopsy suites. The authors present a low-cost prototype of a system, which allows for touch-free control of a medical image viewer. This touch-free navigation system consists of a computer system (IMac, OS X 10.6 Apple, USA) with a medical image viewer (OsiriX, OsiriX foundation, Switzerland) and a depth camera (Kinect, Microsoft, USA). They implemented software that translates the data delivered by the camera and a voice recognition software into keyboard and mouse commands, which are then passed to OsiriX. In this feasibility study, the authors introduced 10 medical professionals to the system and asked them to re-create 12 images from a CT data set. They evaluated response times and usability of the system compared with standard mouse/keyboard control. Users felt comfortable with the system after approximately 10 minutes. Response time was 120 ms. Users required 1.4 times more time to re-create an image with gesture control. Users with OsiriX experience were significantly faster using the mouse/keyboard and faster than users without prior experience. They rated the system 3.4 out of 5 for ease of use in comparison to the mouse/keyboard. The touch-free, gesture-controlled system performs favorably and removes a potential vector for infection, protecting both patients and staff. Because the camera can be quickly and easily integrated into existing systems, requires no calibration, and is low cost, the barriers to using this technology are low.
Using Phun to Study ``Perpetual Motion'' Machines
NASA Astrophysics Data System (ADS)
Koreš, Jaroslav
2012-05-01
The concept of "perpetual motion" has a long history. The Indian astronomer and mathematician Bhaskara II (12th century) was the first person to describe a perpetual motion (PM) machine. An example of a 13th- century PM machine is shown in Fig. 1. Although the law of conservation of energy clearly implies the impossibility of PM construction, over the centuries numerous proposals for PM have been made, involving ever more elements of modern science in their construction. It is possible to test a variety of PM machines in the classroom using a program called Phun2 or its commercial version Algodoo.3 The programs are designed to simulate physical processes and we can easily simulate mechanical machines using them. They provide an intuitive graphical environment controlled with a mouse; a programming language is not needed. This paper describes simulations of four different (supposed) PM machines.4
Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.
Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru
2016-05-20
The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.
Lee, Shauna A; Roques, Céline; Magwood, Alissa C; Masson, Jean-Yves; Baker, Mark D
2009-02-01
The BRCA2 tumor suppressor is important in maintaining genomic stability. BRCA2 is proposed to control the availability, cellular localization and DNA binding activity of the central homologous recombination protein, RAD51, with loss of BRCA2 resulting in defective homologous recombination. Nevertheless, the roles of BRCA2 in regulating RAD51 and how other proteins implicated in RAD51 regulation, such as RAD52 and RAD54 function relative to BRCA2 is not known. In this study, we tested whether defective homologous recombination in Brca2-depleted mouse hybridoma cells could be rectified by expression of mouse Rad51 or the Rad51-interacting mouse proteins, Rad52 and Rad54. In the Brca2-depleted cells, defective homologous recombination can be restored by over-expression of wild-type mouse Rad51, but not mouse Rad52 or Rad54. Correction of the homologous recombination defect requires Rad51 ATPase activity. A sizeable fraction ( approximately 50%) of over-expressed wild-type Rad51 is nuclear localized. The restoration of homologous recombination in the presence of a low (i.e., non-functional) level of Brca2 by wild-type Rad51 over-expression is unexpected. We suggest that Rad51 may access the nuclear compartment in a Brca2-independent manner and when Rad51 is over-expressed, the normal requirement for Brca2 control over Rad51 function in homologous recombination is dispensable. Our studies support loss of Rad51 function as a critical underlying factor in the homologous recombination defect in the Brca2-depleted cells.
Aboul-Ela, Ezzat I
2002-04-26
The protective effect of Nigella sativa seed extract and its main constituents thymoquinone (TQ) was studied on mouse cells infected with schistosomiasis. Bone marrow cells in the in vivo experiments and spleen cells in the in vitro one were used to evaluate the potentially protective effect of these natural compounds on the induction of chromosomal aberrations. Karyotyping of the mice cells illustrated that the main abnormalities were gaps, fragments and deletions especially in chromosomes 2, 6 and some in chromosomes 13 and 14. Both N. sativa extract and TQ were considered as protective agents against the chromosomal aberrations induced as a result of schistosomiasis.
X-Windows Widget for Image Display
NASA Technical Reports Server (NTRS)
Deen, Robert G.
2011-01-01
XvicImage is a high-performance XWindows (Motif-compliant) user interface widget for displaying images. It handles all aspects of low-level image display. The fully Motif-compliant image display widget handles the following tasks: (1) Image display, including dithering as needed (2) Zoom (3) Pan (4) Stretch (contrast enhancement, via lookup table) (5) Display of single-band or color data (6) Display of non-byte data (ints, floats) (7) Pseudocolor display (8) Full overlay support (drawing graphics on image) (9) Mouse-based panning (10) Cursor handling, shaping, and planting (disconnecting cursor from mouse) (11) Support for all user interaction events (passed to application) (12) Background loading and display of images (doesn't freeze the GUI) (13) Tiling of images.
Targeted mutant models are common in mechanistic toxicology experiments investigating the absorption, metabolism, distribution, or elimination (ADME) of chemicals from individuals. Key models include those for xenosensing transcription factors and cytochrome P450s (CYP). Here we ...
NASA Astrophysics Data System (ADS)
Lee, Ju.-Woon; Seo, Ji.-Hyun; Kim, Jae.-Hun; Lee, Soo.-Young; Kim, Kwan.-Soo; Byun, Myung.-Woo
2005-04-01
Changes of the antigenicity and allergenicity of a hen's egg albumin (ovalbumin, OVA) in white layer cakes containing egg white gamma-irradiated with 10 or 20 kGy were monitored by an enzyme-linked immunosorbent assay (ELISA), individually formatted with mouse anti-OVA IgG (mouse IgG) and with egg allergic patients' IgE. Mouse IgG recognized OVA in the cakes with irradiated egg white better than that in the control with a non-irradiated one. Whereas, the detected concentrations of intact OVA in the control significantly decreased in the treatments, when determined by IgE-based ELISA. The results appeared to indicate that the antigenicity of the OVA increased, but that the allergenicity was decreased by irradiation and processing. Egg white irradiated for reducing the egg allergy could be used for producing a safer cake from the egg allergy.
El-Kattan, A F; Asbill, C S; Michniak, B B
2000-04-05
The percutaneous permeation of hydrocortisone (HC) was investigated in hairless mouse skin after application of an alcoholic hydrogel using a diffusion cell technique. The formulations contained one of 12 terpenes, the selection of which was based on an increase in their lipophilicity (log P 1.06-5.36). Flux, cumulative receptor concentrations, skin content, and lag time of HC were measured over 24 h and compared with control gels (containing no terpene). Furthermore, HC skin content and the solubility of HC in the alcoholic hydrogel solvent mixture in the presence of terpene were determined, and correlated to the enhancing activity of terpenes. The in vitro permeation experiments with hairless mouse skin revealed that the terpene enhancers varied in their ability to enhance the flux of HC. Nerolidol which possessed the highest lipophilicity (log P = 5.36+/-0.38) provided the greatest enhancement for HC flux (35.3-fold over control). Fenchone (log P = 2.13+/-0.30) exhibited the lowest enhancement of HC flux (10.1-fold over control). In addition, a linear relationship was established between the log P of terpenes and the cumulative amount of HC in the receptor after 24 h (Q(24)). Nerolidol, provided the highest Q(24) (1733+/-93 microg/cm(2)), whereas verbenone produced the lowest Q(24) (653+/-105 microg/cm(2)). Thymol provided the lowest HC skin content (1151+/-293 microg/g), while cineole produced the highest HC skin content (18999+/-5666 microg/g). No correlation was established between the log P of enhancers and HC skin content. A correlation however, existed between the log P of terpenes and the lag time. As log P increased, a linear decrease in lag time was observed. Cymene yielded the shortest HC lag time, while fenchone produced the longest lag time. Also, the increase in the log P of terpenes resulted in a proportional increase in HC solubility in the formulation solvent mixture.
Emoto, Miho C; Yamato, Mayumi; Sato-Akaba, Hideo; Yamada, Ken-ichi; Fujii, Hirotada G
2015-11-03
Much evidence supports the idea that oxidative stress is involved in the pathogenesis of epilepsy, and therapeutic interventions with antioxidants are expected as adjunct antiepileptic therapy. The aims of this study were to non-invasively obtain spatially resolved redox data from control and pentylenetetrazole (PTZ)-induced kindled mouse brains by electron paramagnetic resonance (EPR) imaging and to visualize the brain regions that are sensitive to oxidative damage. After infusion of the redox-sensitive imaging probe 3-methoxycarbonyl-2,2,5,5-tetramethyl-piperidine-1-oxyl (MCP), a series of EPR images of PTZ-induced mouse heads were measured. Based on the pharmacokinetics of the reduction reaction of MCP in the mouse heads, the pixel-based rate constant of its reduction reaction was calculated as an index of redox status in vivo and mapped as a redox map. The obtained redox map showed heterogeneity in the redox status in PTZ-induced mouse brains compared with control. The co-registered image of the redox map and magnetic resonance imaging (MRI) for both control and PTZ-induced mice showed a clear change in the redox status around the hippocampus after PTZ. To examine the role of antioxidants on the brain redox status, the levels of antioxidants were measured in brain tissues of control and PTZ-induced mice. Significantly lower concentrations of glutathione in the hippocampus of PTZ-kindled mice were detected compared with control. From the results of both EPR imaging and the biochemical assay, the hippocampus was found to be susceptible to oxidative damage in the PTZ-induced animal model of epilepsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
In vivo evidence for unidentified leptin-induced circulating factors that control white fat mass.
Harris, Ruth B S
2015-12-15
Fat transplants increase body fat mass without changing the energy status of an animal and provide a tool for investigating control of total body fat. Early transplant studies found that small pieces of transplanted fat took on the morphology of the transplant recipient. Experiments described here tested whether this response was dependent upon expression of leptin receptors in either transplanted fat or the recipient mouse. Fat from leptin receptor deficient db/db mice or wild-type mice was placed subcutaneously in db/db mice. After 12 wk, cell size distribution in the transplant was the same as in endogenous fat of the recipient. Thus, wild-type fat cells, which express leptin receptors, were enlarged in a hyperleptinemic environment, indicating that leptin does not directly control adipocyte size. By contrast, db/db or wild-type fat transplanted into wild-type mice decreased in size, suggesting that a functional leptin system in the recipient is required for body fat mass to be controlled. In the final experiment, wild-type fat was transplanted into a db/db mouse parabiosed to either another db/db mouse to an ob/ob mouse or in control pairs in which both parabionts were ob/ob mice. Transplants increased in size in db/db-db/db pairs, decreased in db/db-ob/ob pairs and did not change in ob/ob-ob/ob pairs. We propose that leptin from db/db parabionts activated leptin receptors in their ob/ob partners. This, in turn, stimulated release of unidentified circulating factors, which travelled back to the db/db partner and acted on the transplant to reduce fat cell size. Copyright © 2015 the American Physiological Society.
Pointing Device Performance in Steering Tasks.
Senanayake, Ransalu; Goonetilleke, Ravindra S
2016-06-01
Use of touch-screen-based interactions is growing rapidly. Hence, knowing the maneuvering efficacy of touch screens relative to other pointing devices is of great importance in the context of graphical user interfaces. Movement time, accuracy, and user preferences of four pointing device settings were evaluated on a computer with 14 participants aged 20.1 ± 3.13 years. It was found that, depending on the difficulty of the task, the optimal settings differ for ballistic and visual control tasks. With a touch screen, resting the arm increased movement time for steering tasks. When both performance and comfort are considered, whether to use a mouse or a touch screen for person-computer interaction depends on the steering difficulty. Hence, a input device should be chosen based on the application, and should be optimized to match the graphical user interface. © The Author(s) 2016.
Zhang, Yuanwei; Jiang, Xiaohua; Zhang, Huan; Ma, Tieliang; Zheng, Wei; Sun, Rui; Shen, Wei; Sha, Jiahao; Cooke, Howard J.; Shi, Qinghua
2011-01-01
Primordial follicles, providing all the oocytes available to a female throughout her reproductive life, assemble in perinatal ovaries with individual oocytes surrounded by granulosa cells. In mammals including the mouse, most oocytes die by apoptosis during primordial follicle assembly, but factors that regulate oocyte death remain largely unknown. Proliferating cell nuclear antigen (PCNA), a key regulator in many essential cellular processes, was shown to be differentially expressed during these processes in mouse ovaries using 2D-PAGE and MALDI-TOF/TOF methodology. A V-shaped expression pattern of PCNA in both oocytes and somatic cells was observed during the development of fetal and neonatal mouse ovaries, decreasing from 13.5 to 18.5 dpc and increasing from 18.5 dpc to 5 dpp. This was closely correlated with the meiotic prophase I progression from pre-leptotene to pachytene and from pachytene to diplotene when primordial follicles started to assemble. Inhibition of the increase of PCNA expression by RNA interference in cultured 18.5 dpc mouse ovaries strikingly reduced the apoptosis of oocytes, accompanied by down-regulation of known pro-apoptotic genes, e.g. Bax, caspase-3, and TNFα and TNFR2, and up-regulation of Bcl-2, a known anti-apoptotic gene. Moreover, reduced expression of PCNA was observed to significantly increase primordial follicle assembly, but these primordial follicles contained fewer guanulosa cells. Similar results were obtained after down-regulation by RNA interference of Ing1b, a PCNA-binding protein in the UV-induced apoptosis regulation. Thus, our results demonstrate that PCNA regulates primordial follicle assembly by promoting apoptosis of oocytes in fetal and neonatal mouse ovaries. PMID:21253613
Kim, Hyeon-Joong; Kim, Dae-Joong; Shin, Eun-Ju; Lee, Byung-Hwan; Choi, Sun-Hye; Hwang, Sung-Hee; Rhim, Hyewhon; Cho, Ik-Hyun; Kim, Hyoung-Chun; Nah, Seung-Yeol
2016-12-01
We previously showed that gintonin, an exogenous lysophosphatidic acid (LPA) receptor ligand, attenuated β-amyloid plaque formation in the cortex and hippocampus, and restored β-amyloid-induced memory dysfunction. Both endogenous LPA and LPA receptors play a key role in embryonic brain development. However, little is known about whether gintonin can induce hippocampal cell proliferation in adult wild-type mice and an APPswe/PSEN-1 double Tg mouse model of Alzheimer's disease (AD). In the present study, we examined the effects of gintonin on the proliferation of hippocampal neural progenitor cells (NPCs) in vitro and its effects on the hippocampal cell proliferation in wild-type mice and a transgenic AD mouse model. Gintonin treatment increased 5-bromo-2'-deoxyuridine (BrdU) incorporation in hippocampal NPCs in a dose- and time-dependent manner. Gintonin (0.3 μg/ml) increased the immunostaining of glial fibrillary acidic protein, NeuN, and LPA1 receptor in hippocampal NPCs. However, the gintonin-induced increase in BrdU incorporation and immunostaining of biomarkers was blocked by an LPA1/3 receptor antagonist and Ca 2+ chelator. Oral administration of the gintonin-enriched fraction (50 and 100 mg/kg) increased hippocampal BrdU incorporation and LPA1/3 receptor expression in adult wild-type and transgenic AD mice. The present study showed that gintonin could increase the number of hippocampal neurons in adult wild-type mice and a transgenic AD mouse model. Our results indicate that gintonin-mediated hippocampal cell proliferation contributes to the gintonin-mediated restorative effect against β-amyloid-induced hippocampal dysfunction. These results support the use of gintonin for the prevention or treatment of neurodegenerative diseases such as AD via promotion of hippocampal neurogenesis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental investigation on the vascular thermal response to near-infrared laser pulses.
Li, Dong; Chen, Bin; Wu, Wenjuan; Ying, Zhaoxia
2017-12-01
Port wine stains (PWS) are congenital vascular malformations that progressively darken and thicken with age. To improve the effect of laser therapy in clinical practice, thermal response of blood vessel to a 1064 nm Nd:YAG laser with controlled energy doses and pulse durations was evaluated using the dorsal skin chamber model. A total of 137 vessels with 30-300 μm diameters were selected from the dorsal skin of the mouse to match those capillaries in port wine stains. Experimental results showed that the thermal response of blood vessels to 1064 nm laser irradiation can be classified as follows: vessel dilation, coagulation, constriction with decreased diameter, complete constriction, hemorrhage, and collagen damage with increasing laser radiant exposure. In most cases, that is, 83 of 137 blood vessels (60.6%), Nd:YAG laser irradiation was characterized by complete constriction (immediate blood vessel disappearance). To reveal the possible damage mechanisms and evaluate blood vessel photocoagulation patterns, theoretical investigation using bioheat transfer equation was conducted in mouse skin with a depth of 1000 μm. Complete constriction as the dominant thermal response as evidenced by uniform blood heating within the vessel lumen was noted in both experimental observation and theoretical investigation. To achieve the ideal clinical effect using the Nd:YAG laser treatment, the radiant exposure should not only be high enough to induce complete constriction of the blood vessels but also controlled carefully to avoid surrounding collagen damage. The short pulse duration of 1-3 ms is better than long pulse durations because hemorrhaging of small capillaries is occasionally observed postirradiation with pulse durations longer than 10 ms.
Bat Accelerated Regions Identify a Bat Forelimb Specific Enhancer in the HoxD Locus
Mason, Mandy K.; VanderMeer, Julia E.; Zhao, Jingjing; Eckalbar, Walter L.; Logan, Malcolm; Illing, Nicola; Pollard, Katherine S.; Ahituv, Nadav
2016-01-01
The molecular events leading to the development of the bat wing remain largely unknown, and are thought to be caused, in part, by changes in gene expression during limb development. These expression changes could be instigated by variations in gene regulatory enhancers. Here, we used a comparative genomics approach to identify regions that evolved rapidly in the bat ancestor, but are highly conserved in other vertebrates. We discovered 166 bat accelerated regions (BARs) that overlap H3K27ac and p300 ChIP-seq peaks in developing mouse limbs. Using a mouse enhancer assay, we show that five Myotis lucifugus BARs drive gene expression in the developing mouse limb, with the majority showing differential enhancer activity compared to the mouse orthologous BAR sequences. These include BAR116, which is located telomeric to the HoxD cluster and had robust forelimb expression for the M. lucifugus sequence and no activity for the mouse sequence at embryonic day 12.5. Developing limb expression analysis of Hoxd10-Hoxd13 in Miniopterus natalensis bats showed a high-forelimb weak-hindlimb expression for Hoxd10-Hoxd11, similar to the expression trend observed for M. lucifugus BAR116 in mice, suggesting that it could be involved in the regulation of the bat HoxD complex. Combined, our results highlight novel regulatory regions that could be instrumental for the morphological differences leading to the development of the bat wing. PMID:27019019
Mansour, Sameeh Abdel-Kader; Gamet-Payrastre, Laurence
2016-07-01
Pesticides are omnipresent in environment, water, fruits, and vegetables and are considered as risk factors for human health. Consumers are mainly exposed to pesticides through diet, and the main question to be answered concerns the impact of such exposure on health. In this study, we developed a mouse model to mimic consumer exposure. During gestation and lactation periods, the experimental mouse dams (M) received one of the following treatments: (a) diet-free of pesticides; (b) diet enriched with chlorpyrifos (CPF; 44.0 μg kg(-1)); c) diet + oral vitamin E (vit. E; α-tocopherol; 200 mg/kg/mouse); and (d) diet enriched with CPF (44.0 μg/kg + oral vit. E (200 mg/kg/mouse). At weaning, pups (P) and dams were killed, and organs as well as blood samples were collected. Compared with control results, CPF induced alteration of measured parameters (e.g. organ weight, alkaline phosphatase, urea, malondialdehyde, superoxide dismutase, and cholinesterase) either in mouse dams or in their offspring. Also, CPF induced histological impairment in kidney, liver, and ovary. Administration of vit. E in conjunction with CPF clearly alleviated deviation of these parameters than those of control ones. In conclusion, a dietary exposure of mice during gestation and lactation to low dose of CPF led to significant changes in the mother but also in the weaned animals that have not been directly exposed to this pesticide. These biological and histological modifications could be reversed by an oral supplementation of vit. E. © The Author(s) 2014.
Fetal DNA does not induce preeclampsia-like symptoms when delivered in late pregnancy in the mouse.
Čonka, Jozef; Konečná, Barbora; Lauková, Lucia; Vlková, Barbora; Celec, Peter
2017-04-01
The etiology of preeclampsia is unclear. Fetal DNA is present in higher concentrations in the plasma of pregnant women suffering from preeclampsia than in the plasma of healthy pregnant women. A previously published study has shown that human fetal DNA injected into pregnant mice induces preeclampsia-like symptoms when administered between gestation days 10-14. The aim of our experiment was to determine whether or not similar effects would be induced by administration of human and mouse fetal DNA, as well as mouse adult DNA and lipopolysaccharide during late pregnancy in the mouse. Experimental animals were injected daily intraperitoneally during gestation days 14-18 with either saline - negative control, lipopolysaccharide - positive control, or various types of DNA. On gestation day 19, blood pressure and proteinuria were measured, and placental and fetal weights were recorded. Fetal and placental hypotrophy were induced only by lipopolysaccharide (p < 0.001). Neither fetal nor adult DNA induced changes in fetal/placental weight. None of the experimental groups had higher blood pressure or urinary protein in comparison to saline treated animals. In our experiment, we found that there was no effect from intraperitoneally injected human fetal DNA, mouse fetal DNA, or mouse adult DNA on pregnant mice. Additionally, relatively high doses of various types of DNA did not induce preeclampsia-like symptoms in mice when administered in late pregnancy. Our negative results support the hypothesis that the increase of fetal DNA circulating in maternal circulation during the third trimester is rather a consequence than a cause of preeclampsia. Copyright © 2017 Elsevier Ltd. All rights reserved.
Protective effects of a grape-supplemented diet in a mouse model of retinal degeneration.
Patel, Amit K; Davis, Ashley; Rodriguez, Maria Esperanza; Agron, Samantha; Hackam, Abigail S
2016-03-01
Retinal degenerations are a class of devastating blinding diseases that are characterized by photoreceptor dysfunction and death. In this study, we tested whether grape consumption, in the form of freeze-dried grape powder (FDGP), improves photoreceptor survival in a mouse model of retinal degeneration. Retinal degeneration was induced in mice by acute oxidative stress using subretinal injection of paraquat. The grape-supplemented diet was made by formulating base mouse chow with FDGP, corresponding to three daily human servings of grapes, and a control diet was formulated with equivalent sugar composition as FDGP (0.68% glucose-0.68% fructose mixture). Mice were placed on the diets at weaning for 5 wk before oxidative stress injury until analysis at 2 wk post-injection. Retinal function was measured using electroretinography, thickness of the photoreceptor layer was measured using optical coherence tomography, and rows of photoreceptor nuclei were counted on histologic sections. In mice fed the control diet, oxidative stress significantly reduced photoreceptor layer thickness and photoreceptor numbers. In contrast, retinal thickness and photoreceptor numbers were not reduced by oxidative stress in mice on the grape-supplemented diet, indicating significantly higher photoreceptor survival after injury than mice on the control diet. Furthermore, mice on the grape diet showed preservation of retinal function after oxidative stress injury compared with mice on the control diet. A diet supplemented with grapes rescued retinal structure and function in an oxidative stress-induced mouse model of retinal degeneration, which demonstrates the beneficial effect of grapes on photoreceptors. Copyright © 2016 Elsevier Inc. All rights reserved.