Science.gov

Sample records for a13 control mouse

  1. Generation and characterization of a novel CYP2A13--transgenic mouse model.

    PubMed

    Jia, Kunzhi; Li, Lei; Liu, Zhihua; Hartog, Matthew; Kluetzman, Kerri; Zhang, Qing-Yu; Ding, Xinxin

    2014-08-01

    CYP2A13, CYP2B6, and CYP2F1 are neighboring cytochrome P450 genes on human chromosome 19, and the enzymes that they encode overlap in substrate specificity. A CYP2A13/2B6/2F1-transgenic mouse, in which CYP2A13 and 2F1 are both expressed in the respiratory tract and CYP2B6 is expressed in the liver, was recently generated. We generated a CYP2A13 (only) transgenic mouse so that the specific activity of CYP2A13 can be determined. The CYP2B6 and CYP2F1 genes in the CYP2A13/2B6/2F1 genomic clone were inactivated via genetic manipulations, and CYP2A13 was kept intact. A CYP2A13 (only) transgenic (2A13-TG) mouse was generated using the engineered construct and then characterized to confirm transgene integrity and determine copy numbers. The 2A13-TG mice were normal in gross morphology, development, and fertility. As in the CYP2A13/2B6/2F1-transgenic mouse, CYP2A13 expression in the 2A13-TG mouse was limited to the respiratory tract; in contrast, CYP2B6 and 2F1 proteins were not detected. Additional studies using the CYP2A13-humanized (2A13-TG/Cyp2abfgs-null) mouse produced by intercrossing between 2A13-TG and Cyp2abfgs-null mice confirmed that the transgenic CYP2A13 is active in the bioactivation of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a lung procarcinogen. The 2A13-TG mouse should be valuable for assessing specific roles of human CYP2A13 in xenobiotic toxicity in the respiratory tract.

  2. Generation and characterization of a CYP2A13/2B6/2F1-transgenic mouse model.

    PubMed

    Wei, Yuan; Wu, Hong; Li, Lei; Liu, Zhihua; Zhou, Xin; Zhang, Qing-Yu; Weng, Yan; D'Agostino, Jaime; Ling, Guoyu; Zhang, Xiuling; Kluetzman, Kerri; Yao, Yunyi; Ding, Xinxin

    2012-06-01

    CYP2A13, CYP2B6, and CYP2F1, which are encoded by neighboring cytochrome P450 genes on human chromosome 19, are active in the metabolic activation of many drugs, respiratory toxicants, and chemical carcinogens. To facilitate studies on the regulation and function of these human genes, we have generated a CYP2A13/2B6/2F1-transgenic (TG) mouse model (all *1 alleles). Homozygous transgenic mice are normal with respect to gross morphological features, development, and fertility. The tissue distribution of transgenic mRNA expression agreed well with the known respiratory tract-selective expression of CYP2A13 and CYP2F1 and hepatic expression of CYP2B6 in humans. CYP2A13 protein was detected through immunoblot analyses in the nasal mucosa (NM) (∼100 pmol/mg of microsomal protein; similar to the level of mouse CYP2A5) and the lung (∼0.2 pmol/mg of microsomal protein) but not in the liver of the TG mice. CYP2F1 protein, which could not be separated from mouse CYP2F2 in immunoblot analyses, was readily detected in the NM and lung but not the liver of TG/Cyp2f2-null mice, at levels 10- and 40-fold, respectively, lower than that of mouse CYP2F2 in the TG mice. CYP2B6 protein was detected in the liver (∼0.2 pmol/mg of microsomal protein) but not the NM or lung (with a detection limit of 0.04 pmol/mg of microsomal protein) of the TG mice. At least one transgenic protein (CYP2A13) seems to be active, because the NM of the TG mice had greater in vitro and in vivo activities in bioactivation of a CYP2A13 substrate, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (a lung carcinogen), than did the NM of wild-type mice.

  3. Low levels of citrin (SLC25A13) expression in adult mouse brain restricted to neuronal clusters.

    PubMed

    Contreras, Laura; Urbieta, Almudena; Kobayashi, Keiko; Saheki, Takeyori; Satrústegui, Jorgina

    2010-04-01

    The mitochondrial aspartate-glutamate carriers (AGC) aralar (SLC25A12) and citrin (SLC25A13) are components of the malate aspartate shuttle (MAS), a major intracellular pathway to transfer reducing equivalents from NADH to the mitochondrial matrix. Aralar is the main AGC isoform present in the adult brain, and it is expressed mainly in neurons. To search for the other AGC isoform, citrin, in brain glial cells, we used a citrin knockout mouse in which the lacZ gene was inserted into the citrin locus as reporter gene. In agreement with the low citrin levels known to be present in the adult mouse brain, beta-galactosidase expression was very low. Surprisingly, unlike the case with astroglial cultures that express citrin, no beta-galactosidase was found in brain glial cells. It was confined to neuronal cells within discrete neuronal clusters. Double-immunolabelling experiments showed that beta-galactosidase colocalized not with glial cell markers but with the pan-neuronal marker NeuN. The deep cerebellar nuclei and a few midbrain nuclei (reticular tegmental pontine nuclei; magnocellular red nuclei) were the regions where beta-galactosidase expression was highest, and it was up-regulated in fasted mice, as was also the case for liver beta-galactosidase. The results support the notion that glial cells have much lower AGC levels and MAS activity than neurons. (c) 2009 Wiley-Liss, Inc.

  4. Control of nucleus positioning in mouse oocytes.

    PubMed

    Almonacid, Maria; Terret, Marie-Emilie; Verlhac, Marie-Hélène

    2017-08-12

    The position of the nucleus in a cell can instruct morphogenesis in some cases, conveying spatial and temporal information and abnormal nuclear positioning can lead to disease. In oocytes from worm, sea urchin, frog and some fish, nucleus position regulates embryo development, it marks the animal pole and in Drosophila it defines the future dorso-ventral axis of the embryo and of the adult body plan. However, in mammals, the oocyte nucleus is centrally located and does not instruct any future embryo axis. Yet an off-center nucleus correlates with poor outcome for mouse and human oocyte development. This is surprising since oocytes further undergo two extremely asymmetric divisions in terms of the size of the daughter cells (enabling polar body extrusion), requiring an off-centering of their chromosomes. In this review we address not only the bio-physical mechanism controlling nucleus positioning via an actin-mediated pressure gradient, but we also speculate on potential biological relevance of nuclear positioning in mammalian oocytes and early embryos. Copyright © 2017. Published by Elsevier Ltd.

  5. Spinal MRI in fighter pilots and controls: a 13-year longitudinal study.

    PubMed

    Sovelius, Roope; Salonen, Oili; Lamminen, Antti; Huhtala, Heini; Hämäläinen, Olavi

    2008-07-01

    Although it is known that some degenerative changes occur in the spines of fighter pilots, it is not clear whether their frequent exposure to high acceleration is associated with premature development of such changes. This case-control study was designed help answer that question. There were 12 Finnish Air Force pilot cadets and their controls who were examined using cervical and lumbar magnetic resonance imaging (MRI) before the pilots started fighter training (baseline) and 13 yr later (follow-up) when the pilots had accumulated a total of 1200 +/- 470 h in fighter aircraft. No statistical differences were found between groups with respect to the frequency of degenerative changes in either the cervical or lumbar spine. Cervical changes in pilots were for the most part observed in the lower part of the neck, while controls showed more variability as to location. In the lumbar region, pilots showed a non-significant tendency toward more changes in disks L4-S1, including changes in signal intensity, height, protrusions, and end plates. Occupational exposure to acceleration in fighter aircraft did not cause significant radiological changes in the spinal column during the first 13 yr of a fighter pilot's flying career. Assessments for the need of a fighter pilot's follow-up imaging should be based on clinical outcome, not on periodic imaging.

  6. Optogenetic Control of Mouse Outer Hair Cells.

    PubMed

    Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa; Chen, Fangyi; Porsov, Edward; Subhash, Hrebesh; Foster, Sarah; Zhang, Yuan; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John V; Jiang, Zhi-Gen; Mao, Tianyi; Nuttall, Alfred L

    2016-01-19

    Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Optogenetic Control of Mouse Outer Hair Cells

    PubMed Central

    Wu, Tao; Ramamoorthy, Sripriya; Wilson, Teresa; Chen, Fangyi; Porsov, Edward; Subhash, Hrebesh; Foster, Sarah; Zhang, Yuan; Omelchenko, Irina; Bateschell, Michael; Wang, Lingyan; Brigande, John V.; Jiang, Zhi-Gen; Mao, Tianyi; Nuttall, Alfred L.

    2016-01-01

    Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects. PMID:26789771

  8. Noninvasive tongue-motion controlled computer mouse for the disabled.

    PubMed

    Chou, C-H; Hwang, Y-S; Chen, C-C; Chen, S-C; Chou, S-W; Chen, Y-L

    2016-05-18

    A patient whose spinal cord was damaged due to accident may result in Tetraplegia or lose the ability to control his/her daily living environment. Currently, patients must use an invasive tool tongue movement, to help the patient communicate with the external environment. This study designed a non-invasive tongue movement computer mouse system that allows the patient to use tongue movement to control a computer to communicate with the external environment. Via a pressure sensor and assistive holder designed in this study, the pressure sensor can be moved using the assistive holder close to the mylohyoid muscle of the patient's lower jaw. The changes in pressure from the mylohyoid muscle are converted into computer mouse control signals to control a computer to communicate with the external environment. This study is based on ISO9241-Part 9 to design four kinds of training modes with varying difficulties. The data were collected from five able persons participating in the test over 7 days. The data includes throughput, path efficiency, test completion time and reaction time. The data verifies that the proposed system is stable and practical for persons with disabilities. The non-invasive computer mouse system for sensing tongue movement can completely breakthrough the limitations of the invasive tongue movement sensing system. This study uses non-invasive, simple tongue movements that correspond to the stretching and shrinking of the lower jaw mylohyoid muscle to control the computer mouse.

  9. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Control Environmental Stimulation through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan

    2009-01-01

    This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…

  10. Assisting People with Multiple Disabilities and Minimal Motor Behavior to Control Environmental Stimulation through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien; Lin, Kun-Tsan; Chiang, Ming-Shan

    2009-01-01

    This study assessed whether two people with profound multiple disabilities and minimal motor behavior would be able to control environmental stimulation using thumb poke ability with a mouse wheel and a newly developed mouse driver (i.e., a new mouse driver replacing standard mouse driver, and turning a mouse into a precise thumb poke detector).…

  11. System parameters for erythropoiesis control model: Comparison of normal values in human and mouse model

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The computer model for erythropoietic control was adapted to the mouse system by altering system parameters originally given for the human to those which more realistically represent the mouse. Parameter values were obtained from a variety of literature sources. Using the mouse model, the mouse was studied as a potential experimental model for spaceflight. Simulation studies of dehydration and hypoxia were performed. A comparison of system parameters for the mouse and human models is presented. Aside from the obvious differences expected in fluid volumes, blood flows and metabolic rates, larger differences were observed in the following: erythrocyte life span, erythropoietin half-life, and normal arterial pO2.

  12. Gamma interferon controls mouse polyomavirus infection in vivo.

    PubMed

    Wilson, Jarad J; Lin, Eugene; Pack, Christopher D; Frost, Elizabeth L; Hadley, Annette; Swimm, Alyson I; Wang, Jun; Dong, Ying; Breeden, Cynthia P; Kalman, Daniel; Newell, Kenneth A; Lukacher, Aron E

    2011-10-01

    Human polyomaviruses are associated with substantial morbidity in immunocompromised patients, including those with HIV/AIDS, recipients of bone marrow and kidney transplants, and individuals receiving immunomodulatory agents for autoimmune and inflammatory diseases. No effective antipolyomavirus agents are currently available, and no host determinants have been identified to predict susceptibility to polyomavirus-associated diseases. Using the mouse polyomavirus (MPyV) infection model, we recently demonstrated that perforin-granzyme exocytosis, tumor necrosis factor alpha (TNF-α), and Fas did not contribute to control of infection or virus-induced tumors. Gamma interferon (IFN-γ) was recently shown to inhibit replication by human BK polyomavirus in primary cultures of renal tubular epithelial cells. In this study, we provide evidence that IFN-γ is an important component of the host defense against MPyV infection and tumorigenesis. In immortalized and primary cells, IFN-γ reduces expression of MPyV proteins and impairs viral replication. Mice deficient for the IFN-γ receptor (IFN-γR(-/-)) maintain higher viral loads during MPyV infection and are susceptible to MPyV-induced tumors; this increased viral load is not associated with a defective MPyV-specific CD8(+) T cell response. Using an acute MPyV infection kidney transplant model, we further show that IFN-γR(-/-) donor kidneys harbor higher MPyV levels than donor kidneys from wild-type mice. Finally, administration of IFN-γ to persistently infected mice significantly reduces MPyV levels in multiple organs, including the kidney, a major reservoir for persistent mouse and human polyomavirus infections. These findings demonstrate that IFN-γ is an antiviral effector molecule for MPyV infection.

  13. Tolbutamide Controls Glucagon Release From Mouse Islets Differently Than Glucose

    PubMed Central

    Cheng-Xue, Rui; Gómez-Ruiz, Ana; Antoine, Nancy; Noël, Laura A.; Chae, Hee-Young; Ravier, Magalie A.; Chimienti, Fabrice; Schuit, Frans C.; Gilon, Patrick

    2013-01-01

    We evaluated the role of ATP-sensitive K+ (KATP) channels, somatostatin, and Zn2+ in the control of glucagon secretion from mouse islets. Switching from 1 to 7 mmol/L glucose inhibited glucagon release. Diazoxide did not reverse the glucagonostatic effect of glucose. Tolbutamide decreased glucagon secretion at 1 mmol/L glucose (G1) but stimulated it at 7 mmol/L glucose (G7). The reduced glucagon secretion produced by high concentrations of tolbutamide or diazoxide, or disruption of KATP channels (Sur1−/− mice) at G1 could be inhibited further by G7. Removal of the somatostatin paracrine influence (Sst−/− mice or pretreatement with pertussis toxin) strongly increased glucagon release, did not prevent the glucagonostatic effect of G7, and unmasked a marked glucagonotropic effect of tolbutamide. Glucose inhibited glucagon release in the absence of functional KATP channels and somatostatin signaling. Knockout of the Zn2+ transporter ZnT8 (ZnT8−/− mice) did not prevent the glucagonostatic effect of glucose. In conclusion, glucose can inhibit glucagon release independently of Zn2+, KATP channels, and somatostatin. Closure of KATP channels controls glucagon secretion by two mechanisms, a direct stimulation of α-cells and an indirect inhibition via somatostatin released from δ-cells. The net effect on glucagon release results from a balance between both effects. PMID:23382449

  14. GATA4 and GATA6 control mouse pancreas organogenesis

    PubMed Central

    Carrasco, Manuel; Delgado, Irene; Soria, Bernat; Martín, Francisco; Rojas, Anabel

    2012-01-01

    Recently, heterozygous mutations in GATA6 have been found in neonatal diabetic patients with failed pancreatic organogenesis. To investigate the roles of GATA4 and GATA6 in mouse pancreas organogenesis, we conditionally inactivated these genes within the pancreas. Single inactivation of either gene did not have a major impact on pancreas formation, indicating functional redundancy. However, double Gata4/Gata6 mutant mice failed to develop pancreata, died shortly after birth, and displayed hyperglycemia. Morphological defects in Gata4/Gata6 mutant pancreata were apparent during embryonic development, and the epithelium failed to expand as a result of defects in cell proliferation and differentiation. The number of multipotent pancreatic progenitors, including PDX1+ cells, was reduced in the Gata4/Gata6 mutant pancreatic epithelium. Remarkably, deletion of only 1 Gata6 allele on a Gata4 conditional knockout background severely reduced pancreatic mass. In contrast, a single WT allele of Gata4 in Gata6 conditional knockout mice was sufficient for normal pancreatic development, indicating differential contributions of GATA factors to pancreas formation. Our results place GATA factors at the top of the transcriptional network hierarchy controlling pancreas organogenesis. PMID:23006330

  15. Post-transcriptional control in the early mouse embryo.

    PubMed

    Braude, P; Pelham, H; Flach, G; Lobatto, R

    1979-11-01

    The earliest stages of mouse embryogenesis, from fertilisation to the two-cell stage, are characterised by an extremely low level of RNA synthesis. Indeed, during this period, RNA polymerase II activity and incorporation of labelled precurosrs into heterogeneous RNA are not detectable, and there is no increase in the poly(A) content of the embryo, but rather a slight decrease. The rate of protein synthesis remains low and relatively constant throughout the one- and two-cell stages. However, qualitative analysis of the protein synthetic profile on SDS gels has revealed changes which appear around the late one-cell to early two-cell stage. This early change in the pattern of polypeptide synthesis represents the first major qualitative molecular change found so far in development. We present evidence which suggests that the increased synthesis at the early two-cell stage of a small number of polypeptides of molecular weight 35,000 is not dependent on transcription, but rather represents control at a post-transcriptional level using mRNAs synthesised before fertilisation.

  16. Villification in the mouse: Bmp signals control intestinal villus patterning

    PubMed Central

    Walton, Katherine D.; Whidden, Mark; Kolterud, Åsa; K. Shoffner, Suzanne; Czerwinski, Michael J.; Kushwaha, Juhi; Parmar, Nishita; Chandhrasekhar, Deepa; Freddo, Andrew M.; Schnell, Santiago; Gumucio, Deborah L.

    2016-01-01

    In the intestine, finger-like villi provide abundant surface area for nutrient absorption. During murine villus development, epithelial Hedgehog (Hh) signals promote aggregation of subepithelial mesenchymal clusters that drive villus emergence. Clusters arise first dorsally and proximally and spread over the entire intestine within 24 h, but the mechanism driving this pattern in the murine intestine is unknown. In chick, the driver of cluster pattern is tensile force from developing smooth muscle, which generates deep longitudinal epithelial folds that locally concentrate the Hh signal, promoting localized expression of cluster genes. By contrast, we show that in mouse, muscle-induced epithelial folding does not occur and artificial deformation of the epithelium does not determine the pattern of clusters or villi. In intestinal explants, modulation of Bmp signaling alters the spatial distribution of clusters and changes the pattern of emerging villi. Increasing Bmp signaling abolishes cluster formation, whereas inhibiting Bmp signaling leads to merged clusters. These dynamic changes in cluster pattern are faithfully simulated by a mathematical model of a Turing field in which an inhibitor of Bmp signaling acts as the Turing activator. In vivo, genetic interruption of Bmp signal reception in either epithelium or mesenchyme reveals that Bmp signaling in Hh-responsive mesenchymal cells controls cluster pattern. Thus, unlike in chick, the murine villus patterning system is independent of muscle-induced epithelial deformation. Rather, a complex cocktail of Bmps and Bmp signal modulators secreted from mesenchymal clusters determines the pattern of villi in a manner that mimics the spread of a self-organizing Turing field. PMID:26721501

  17. Controlling complexity: the clinical relevance of mouse complex genetics

    PubMed Central

    Schughart, Klaus; Libert, Claude; Kas, Martien J

    2013-01-01

    Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches. PMID:23632795

  18. Controlling complexity: the clinical relevance of mouse complex genetics.

    PubMed

    Schughart, Klaus; Libert, Claude; Kas, Martien J

    2013-11-01

    Experimental animal models are essential to obtain basic knowledge of the underlying biological mechanisms in human diseases. Here, we review major contributions to biomedical research and discoveries that were obtained in the mouse model by using forward genetics approaches and that provided key insights into the biology of human diseases and paved the way for the development of novel therapeutic approaches.

  19. A 13-Weeks Mindfulness Based Pain Management Program Improves Psychological Distress in Patients with Chronic Pain Compared with Waiting List Controls

    PubMed Central

    Andersen, Tonny Elmose; Vægter, Henrik Bjarke

    2016-01-01

    Background: Eradication of pain is seldom an option in chronic pain management. Hence, mindfulness meditation has become popular in pain management. Objective: This pilot study compared the effect of a 13-weeks cognitive behavioural therapy program with integrated mindfulness meditation (CBTm) in patients with chronic non-malignant pain with a control condition. It was hypothesised that the CBTm program would reduce pain intensity and psychological distress compared to the control condition and that level of mindfulness and acceptance both would be associated with the reduction in pain intensity and psychological distress. Methods: A case-control design was used and data were collected from a convenience sample of 70 patients with chronic non-malignant pain. Fifty patients were consecutively recruited to the CBTm intervention and 20 patients matched waiting list controls. Assessments of clinical pain and psychological distress were performed in both groups at baseline and after 13 weeks. Results: The CBTm program reduced depression, anxiety and pain-catastrophizing compared with the control group. Increased level of mindfulness and acceptance were associated with change in psychological distress with the exception of depression, which was only associated with change in level of mindfulness. Surprisingly, changes in level of mindfulness did not correlate with changes in acceptance. Conclusions: The results indicate that different mechanisms are targeted with cognitive behavioural therapy and mindfulness. The finding that changes in level of mindfulness did not correlate with changes in acceptance may indicate that acceptance is not a strict prerequisite for coping with pain related distress. PMID:27708686

  20. Mouse Embryonic Retina Delivers Information Controlling Cortical Neurogenesis

    PubMed Central

    Bonetti, Ciro; Surace, Enrico Maria

    2010-01-01

    The relative contribution of extrinsic and intrinsic mechanisms to cortical development is an intensely debated issue and an outstanding question in neurobiology. Currently, the emerging view is that interplay between intrinsic genetic mechanisms and extrinsic information shape different stages of cortical development [1]. Yet, whereas the intrinsic program of early neocortical developmental events has been at least in part decoded [2], the exact nature and impact of extrinsic signaling are still elusive and controversial. We found that in the mouse developing visual system, acute pharmacological inhibition of spontaneous retinal activity (retinal waves-RWs) during embryonic stages increase the rate of corticogenesis (cell cycle withdrawal). Furthermore, early perturbation of retinal spontaneous activity leads to changes of cortical layer structure at a later time point. These data suggest that mouse embryonic retina delivers long-distance information capable of modulating cell genesis in the developing visual cortex and that spontaneous activity is the candidate long-distance acting extrinsic cue mediating this process. In addition, these data may support spontaneous activity to be a general signal coordinating neurogenesis in other developing sensory pathways or areas of the central nervous system. PMID:21170332

  1. A New Movement Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation with Hand Swing through a Commercial Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien

    2009-01-01

    This study assessed whether two persons with profound multiple disabilities would be able to control environmental stimulation using hand swing and a standard mouse with a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and turns a mouse into a precise two-dimensional motion detector). The study was performed…

  2. A New Movement Detector to Enable People with Multiple Disabilities to Control Environmental Stimulation with Hand Swing through a Commercial Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Shih, Ching-Tien

    2009-01-01

    This study assessed whether two persons with profound multiple disabilities would be able to control environmental stimulation using hand swing and a standard mouse with a newly developed mouse driver (i.e. a new mouse driver replaces standard mouse driver, and turns a mouse into a precise two-dimensional motion detector). The study was performed…

  3. Controlled Osteogenic Differentiation of Mouse Mesenchymal Stem Cells by Tetracycline-Controlled Transcriptional Activation of Amelogenin

    PubMed Central

    Wang, Fangfang; Okawa, Hiroko; Kamano, Yuya; Niibe, Kunimichi; Kayashima, Hiroki; Osathanon, Thanaphum; Pavasant, Prasit; Saeki, Makio; Yatani, Hirofumi; Egusa, Hiroshi

    2015-01-01

    Regenerative dental therapies for bone tissues rely on efficient targeting of endogenous and transplanted mesenchymal stem cells (MSCs) to guide bone formation. Amelogenin is the primary component of Emdogain, which is used to regenerate periodontal defects; however, the mechanisms underlying the therapeutic effects on alveolar bone remain unclear. The tetracycline (Tet)-dependent transcriptional regulatory system is a good candidate to investigate distinct roles of genes of interest during stem cell differentiation. Here, we investigated amelogenin-dependent regulation of osteogenesis in MSCs by establishing a Tet-controlled transcriptional activation system. Clonal mouse bone marrow-derived MSCs were lentivirally transduced with the Tet repressor (TetR) expression vector followed by drug selection to obtain MSCs constitutively expressing TetR (MSCs-TetR). Expression vectors that contained the Tet operator and amelogenin-coding (Amelx) cDNA fragments were constructed using the Gateway system and lentivirally introduced into MSCs-TetR to generate a Tet regulation system in MSCs (MSCs-TetR/Amelx). MSCs-TetR/Amelx significantly overexpressed the Amelx gene and protein in the presence of the tetracycline derivative doxycycline. Concomitant expression of osterix, bone sialoprotein (BSP), osteopontin, and osteocalcin was modulated by addition or removal of doxycycline under osteogenic guidance. During osteogenic induction, MSCs-TetR/Amelx treated with doxycycline showed significantly increased gene expression of osterix, type I collagen, BSP, and osteocalcin in addition to increased alkaline phosphatase activity and mineralized nodule formation. Enhanced extracellular matrix calcification was observed when forced Amelx expression commenced at the early stage but not at the intermediate or late stages of osteogenesis. These results suggest that a Tet-controlled Amelx gene regulation system for mouse MSCs was successfully established, in which transcriptional activation

  4. Which Governmental Agencies are Involved in Rat and Mouse Control?

    EPA Pesticide Factsheets

    EPA works with the Centers for Disease Control and Prevention (CDC) and various other state and local agencies and institutions to provide to the public information and tools for controlling rodents and the risks they may pose.

  5. Biological control agents elevate hantavirus by subsidizing deer mouse populations

    Treesearch

    Dean E. Pearson; Ragan M. Callaway

    2006-01-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted...

  6. Influence of disturbances on the control of PC-mouse, goal-directed arm movements.

    PubMed

    Rustighi, Emiliano; Dohnal, Fadi; Mace, Brian R

    2010-11-01

    This study concerns the influence of visuomotor rotating disturbance on motion dynamics and brain activity. It involves using a PC-mouse and introducing a predefined bias angle between the direction of motion of the mouse pointer and that of the screen cursor. Subjects were asked to execute three different tasks, designed to study the effect of visuomotor rotation on direction control, extent control or the two together. During each task, mouse movement, screen cursor movement and electroencephalograph (EEG) signals were recorded. An algorithm was used to detect and discard EEG signals contaminated by artifacts. Movement performance indexes and brain activity are used to evaluate motion control, tracking ability, learning and control. The results suggest the direction control is planned before the movement and controlled by an adaptive control while extent control is controlled by a real-time feedback. The measurements also confirm that increased motion and/or brain activity occur for bias angles in the ranges ±(90-120°) for both direction and extension controls. After-effects when changing the angle of visual rotation have been seen to be proportional to the variation in the adaptation angle.

  7. Biological control agents elevate hantavirus by subsidizing deer mouse populations.

    PubMed

    Pearson, Dean E; Callaway, Ragan M

    2006-04-01

    Biological control of exotic invasive plants using exotic insects is practiced under the assumption that biological control agents are safe if they do not directly attack non-target species. We tested this assumption by evaluating the potential for two host-specific biological control agents (Urophora spp.), widely established in North America for spotted knapweed (Centaurea maculosa) control, to indirectly elevate Sin Nombre hantavirus by providing food subsidies to populations of deer mice (Peromyscus maniculatus), the primary reservoir for the virus. We show that seropositive deer mice (mice testing positive for hantavirus) were over three times more abundant in the presence of the biocontrol food subsidy. Elevating densities of seropositive mice may increase risk of hantavirus infection in humans and significantly alter hantavirus ecology. Host specificity alone does not ensure safe biological control. To minimize indirect risks to non-target species, biological control agents must suppress pest populations enough to reduce their own numbers.

  8. Carcinogenicity evaluation: comparison of tumor data from dual control groups in the CD-1 mouse.

    PubMed

    Baldrick, Paul; Reeve, Lesley

    2007-06-01

    Current regulatory thinking allows for the use of single control groups for rodent carcinogenicity testing although there has been a trend until recently to use dual control groups. To date, virtually nothing has been published on whether a shift from dual to single control groups will affect the identification of tumorigenic risk potential in these studies. A recent evaluation of dual control carcinogenicity data in the rat (Baldrick, Toxicol Pathol 2005, 33: 283-291) showed that although no major differences in tumor incidences between the control groups were found, some interstudy variation occurred and in cases were a notable difference was seen, the use of 2 control groups, as well as robust, contemporary background data, allowed an easier interpretation of findings in drug-treated groups. In this paper, the results of 10 mouse carcinogenicity studies, performed between 1991 and 2004, with 2 control groups, are presented. As in the rat, interstudy variation was seen and in some cases, the use of dual control groups assisted in the tumor risk assessment. Thus, the continued use of 2 control groups can have a vital role in mouse carcinogenicity studies. The paper also presents an update on survival, on the range and extent of background spontaneous neoplasms and comments on genetic drift in this commonly used mouse strain.

  9. Management strategies for controlling endemic and seasonal mouse parvovirus infection in a barrier facility.

    PubMed

    Reuter, Jon D; Livingston, Robert; Leblanc, Mathias

    2011-05-01

    Despite improved diagnostic and rederivation capabilities, research facilities still struggle to manage parvovirus infections (e.g., mouse parvovirus (MPV) and minute virus of mice) in mouse colonies. Multi-faceted approaches are needed to prevent adventitious organisms such as MPV from breaching a barrier facility. In this article, the authors document recent changes to the Salk Institute's animal care program that were intended to help manage mouse parvovirus in the barrier facility. Specifically, the Institute started to use a new disinfectant and to give mice irradiated feed. The authors found an association between these modifications and a reduction in MPV incidence and prevalence in endemically infected colonies. These data suggest that using irradiated feed and appropriate disinfectants with contemporary management practices can be an effective plan for eradicating or controlling MPV infection in a research facility. The authors recommend further study of the environmental risk factors for parvovirus infection and of potential biological interactions associated with the use of irradiated feed.

  10. GABA transporters control GABAergic neurotransmission in the mouse subplate.

    PubMed

    Unichenko, P; Kirischuk, S; Luhmann, H J

    2015-09-24

    The subplate is a transient layer between the cortical plate and intermediate zone in the developing cortex. Thalamo-cortical axons form temporary synapses on subplate neurons (SPns) before invading the cortical plate. Neuronal activity within the subplate is of critical importance for the development of neocortical circuits and architecture. Although both glutamatergic and GABAergic inputs on SPns were reported, short-term plasticity of GABAergic transmission has not been investigated yet. GABAergic postsynaptic currents (GPSCs) were recorded from SPns in coronal neocortical slices prepared from postnatal day 3-4 mice using whole-cell patch-clamp technique. Evoked GPSCs (eGPSCs) elicited by electrical paired-pulse stimulation demonstrated paired-pulse depression at all interstimulus intervals tested. Baclofen, a specific GABAB receptor (GABABR) agonist, reduced eGPSC amplitudes and increased paired-pulse ratio (PPR), suggesting presynaptic location of functional GABABRs. Baclofen-induced effects were alleviated by (2S)-3-[[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl](phenylmethyl)phosphinic acid (CGP55845), a selective GABABR blocker. Moreover, CGP55845 increased eGPSC amplitudes and decreased PPR even under control conditions, indicating that GABABRs are tonically activated by ambient GABA. Because extracellular GABA concentration is mainly regulated by GABA transporters (GATs), we asked whether GATs release GABA. 1,2,5,6-tetrahydro-1-[2-[[(diphenylmethylene)amino]oxy]ethyl]-3-pyridinecarboxylic acid (NNC-711) (10μM), a selective GAT-1 blocker, increased eGPSC decay time, decreased eGPSC amplitudes and PPR. The two last effects but not the first one were blocked by CGP55845, indicating that GAT-1 blockade causes an elevation of extracellular GABA concentration and in turn activation of extrasynaptic GABAARs and presynaptic GABABRs. 1-[2-[tris(4-methoxyphenyl)methoxy]ethyl]-(S)-3-piperidinecarboxylic acid (SNAP-5114), a specific GAT-2/3 blocker, failed

  11. Blastocyst genotyping for quality control of mouse mutant archives: an ethical and economical approach.

    PubMed

    Scavizzi, Ferdinando; Ryder, Edward; Newman, Stuart; Raspa, Marcello; Gleeson, Diane; Wardle-Jones, Hannah; Montoliu, Lluis; Fernandez, Almudena; Dessain, Marie-Laure; Larrigaldie, Vanessa; Khorshidi, Zuzana; Vuolteenaho, Reetta; Soininen, Raija; André, Philippe; Jacquot, Sylvie; Hong, Yi; de Angelis, Martin Hrabe; Ramirez-Solis, Ramiro; Doe, Brendan

    2015-10-01

    With the advent of modern developmental biology and molecular genetics, the scientific community has generated thousands of newly genetically altered strains of laboratory mice with the aim of elucidating gene function. To this end, a large group of Institutions which form the International Mouse Phenotyping Consortium is generating and phenotyping a knockout mouse strain for each of the ~20,000 protein-coding genes using the mutant ES cell resource produced by the International Knockout Mouse Consortium. These strains are made available to the research community via public repositories, mostly as cryopreserved sperm or embryos. To ensure the quality of this frozen resource there is a requirement that for each strain the frozen sperm/embryos are proven able to produce viable mutant progeny, before the live animal resource is removed from cages. Given the current requirement to generate live pups to demonstrate their mutant genotype, this quality control check necessitates the use and generation of many animals and requires considerable time, cage space, technical and economic resources. Here, we describe a simple and efficient method of genotyping pre-implantation stage blastocysts with significant ethical and economic advantages especially beneficial for current and future large-scale mouse mutagenesis projects.

  12. Controlling mouse pointer position using an infrared head-operated joystick.

    PubMed

    Evans, D G; Drew, R; Blenkhorn, P

    2000-03-01

    This paper describes the motivation for and the design considerations of a low-cost head-operated joystick. The paper briefly summarizes the requirements of head-operated mouse pointer control for people with disabilities before discussing a set of technological approaches that can be used to satisfy these requirements. The paper focuses on the design of a head-operated joystick that uses infrared light emitting diodes (LED's) and photodetectors to determine head position, which is subsequently converted into signals that emulate a Microsoft mouse. There are two significant findings. The first is that, while nonideal device characteristics might appear to make the joystick difficult to use, users naturally compensate for nonlinearities, in a transparent manner, because of visual feedback of mouse pointer position. The second finding, from relatively informal, independent trials, indicates that disabled users prefer a head-operated device that has the characteristics of a joystick (a relative pointing device) to those of a mouse (an absolute pointing device).

  13. Pointright: a system to redirect mouse and keyboard control among multiple machines

    DOEpatents

    Johanson, Bradley E [Palo Alto, CA; Winograd, Terry A [Stanford, CA; Hutchins, Gregory M [Mountain View, CA

    2008-09-30

    The present invention provides a software system, PointRight, that allows for smooth and effortless control of pointing and input devices among multiple displays. With PointRight, a single free-floating mouse and keyboard can be used to control multiple screens. When the cursor reaches the edge of a screen it seamlessly moves to the adjacent screen and keyboard control is simultaneously redirected to the appropriate machine. Laptops may also redirect their keyboard and pointing device, and multiple pointers are supported simultaneously. The system automatically reconfigures itself as displays go on, go off, or change the machine they display.

  14. Cell-Specific Transcriptional Control of the Mouse DNA-Binding Protein mC/EBP

    NASA Astrophysics Data System (ADS)

    Xanthopoulos, Kleanthis G.; Mirkovitch, Jovan; Decker, Thomas; Kuo, C. Frank; Darnell, James E.

    1989-06-01

    The mRNA encoding the mouse homolog of C/EBP, a rat DNA-binding protein that participates in activating a number of genes in hepatocytes, is present in liver cells at a far higher concentration than in most other cells, including spleen, kidney, muscle, and the majority of the brain. However, fat cells and intestinal cells contain 25-50% as much mRNA as liver cells. ``Run-on'' experiments show that the basis for the restricted cellular distribution of the mouse C/EBP mRNA is transcriptional regulation of the gene. We also show that disruption of cell-cell contacts incident to liver cell dispersion results in a prompt and extensive reduction in mouse C/EBP transcription as we had earlier shown to be the case for a group of 10 genes transcribed in a hepatocyte-specific fashion. In contrast, breaking cell contacts and plating the hepatocytes in culture leads to a prolonged increase in transcription of the Jun-B gene that encodes a widely distributed transcription factor. These results illustrate that the regulation of expression of a mammalian regulatory protein with limited tissue distribution is controlled at the level of transcription and depends on cell contacts.

  15. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system

    PubMed Central

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-01-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. PMID:23834399

  16. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    PubMed

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  17. Mitochondrial dynamics controlled by mitofusins define organelle positioning and movement during mouse oocyte maturation.

    PubMed

    Wakai, Takuya; Harada, Yuichirou; Miyado, Kenji; Kono, Tomohiro

    2014-11-01

    Mitochondria are abundant in fully grown mammalian oocytes with a unique spherical morphology, but the mechanisms controlling mitochondria behavior are not well understood. Here we describe for the first time the control of mitochondrial behavior in mouse oocytes by a fusion/fission mechanism. Mitofusins (Mfn1 and Mfn2) and OPA1 proteins are required for outer and inner mitochondrial membrane fusion, respectively, whereas Drp1 is the key regulator of mitochondrial fission. We show that mouse oocytes express the Mfn1, Mfn2, Opa1 and Drp1 proteins, both in immature and mature oocytes at similar levels. Overexpression of Mfn1 or Mfn2 causes marked mitochondrial aggregation, particularly in the perinuclear region during meiotic progression. Tracking of mitochondria with chromosomes or endoplasmic reticulum (ER) throughout oocyte maturation demonstrates that Mfn1 and Mfn2-promoted mitochondrial aggregation disturbs the spatiotemporal dynamic of the chromosomes and ER, respectively. Our findings suggest that organelle dynamics are co-ordinately controlled during meiotic division, and an imbalance of mitochondrial fusion/fission leads to disorganization of the organelle compartments. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF

    PubMed Central

    Olleros, Maria L.; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L.; Vesin, Dominique; Kruglov, Andrey A.; Drutskaya, Marina S.; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V.; Chouchkova, Miliana; Kozlov, Sergei V.; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F. J.; Nedospasov, Sergei A.

    2015-01-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF. PMID:26123801

  19. Control of Mycobacterial Infections in Mice Expressing Human Tumor Necrosis Factor (TNF) but Not Mouse TNF.

    PubMed

    Olleros, Maria L; Chavez-Galan, Leslie; Segueni, Noria; Bourigault, Marie L; Vesin, Dominique; Kruglov, Andrey A; Drutskaya, Marina S; Bisig, Ruth; Ehlers, Stefan; Aly, Sahar; Walter, Kerstin; Kuprash, Dmitry V; Chouchkova, Miliana; Kozlov, Sergei V; Erard, François; Ryffel, Bernard; Quesniaux, Valérie F J; Nedospasov, Sergei A; Garcia, Irene

    2015-09-01

    Tumor necrosis factor (TNF) is an important cytokine for host defense against pathogens but is also associated with the development of human immunopathologies. TNF blockade effectively ameliorates many chronic inflammatory conditions but compromises host immunity to tuberculosis. The search for novel, more specific human TNF blockers requires the development of a reliable animal model. We used a novel mouse model with complete replacement of the mouse TNF gene by its human ortholog (human TNF [huTNF] knock-in [KI] mice) to determine resistance to Mycobacterium bovis BCG and M. tuberculosis infections and to investigate whether TNF inhibitors in clinical use reduce host immunity. Our results show that macrophages from huTNF KI mice responded to BCG and lipopolysaccharide similarly to wild-type macrophages by NF-κB activation and cytokine production. While TNF-deficient mice rapidly succumbed to mycobacterial infection, huTNF KI mice survived, controlling the bacterial burden and activating bactericidal mechanisms. Administration of TNF-neutralizing biologics disrupted the control of mycobacterial infection in huTNF KI mice, leading to an increased bacterial burden and hyperinflammation. Thus, our findings demonstrate that human TNF can functionally replace murine TNF in vivo, providing mycobacterial resistance that could be compromised by TNF neutralization. This new animal model will be helpful for the testing of specific biologics neutralizing human TNF.

  20. Control Board Digital Interface Input Devices – Touchscreen, Trackpad, or Mouse?

    SciTech Connect

    Thomas A. Ulrich; Ronald L. Boring; Roger Lew

    2015-08-01

    The authors collaborated with a power utility to evaluate input devices for use in the human system interface (HSI) for a new digital Turbine Control System (TCS) at a nuclear power plant (NPP) undergoing a TCS upgrade. A standalone dynamic software simulation of the new digital TCS and a mobile kiosk were developed to conduct an input device study to evaluate operator preference and input device effectiveness. The TCS software presented the anticipated HSI for the TCS and mimicked (i.e., simulated) the turbine systems’ responses to operator commands. Twenty-four licensed operators from the two nuclear power units participated in the study. Three input devices were tested: a trackpad, mouse, and touchscreen. The subjective feedback from the survey indicates the operators preferred the touchscreen interface. The operators subjectively rated the touchscreen as the fastest and most comfortable input device given the range of tasks they performed during the study, but also noted a lack of accuracy for selecting small targets. The empirical data suggest the mouse input device provides the most consistent performance for screen navigation and manipulating on screen controls. The trackpad input device was both empirically and subjectively found to be the least effective and least desired input device.

  1. Overexpression of p53 Improves Blood Glucose Control in an Insulin Resistant Diabetic Mouse Model.

    PubMed

    Zhang, Xuemei; Duan, Wei; Lee, Wai-Nang Paul; Zhang, Yuewei; Xiang, Fenfen; Liu, Qian; Go, Vay Liang W; Xiao, Gary Guishan

    2016-08-01

    This paper aimed to assess the physiological effects of p53 on glucose homeostasis in vivo. A recombinant adenoviral p53 (rAd-p53) vector was administered to insulin-resistant diabetic mice. Intraperitoneal glucose tolerance test was performed in all groups of mice. Changes in fasting blood glucose, serum triglycerides, C-peptide, and insulin concentrations in treated and untreated mice were measured. Analyses of the target genes related to glucose metabolism were performed. Treatment with the rAd-p53 improved glucose control in a dose- and time-dependent manner and lowered significantly the fasting blood glucose, the serum triglycerides, and improved tolerance test of glucose as compared to control. Lowered blood glucose was associated with up-regulation of genes in the glycogenesis pathways, and down-regulation of genes in the gluconeogenesis pathways in the liver. Overexpressions of GLUT2, GK, PPAR-γ, and insulin receptor precursor were also observed in the liver and the pancreas of treated animals. Activation of p53-mediated glucose metabolism led to insulin-like antidiabetic effect in the mouse model especially by changing hepatic insulin sensitivity in the diabetic mouse model.

  2. Early specific host response associated with starting effective tuberculosis treatment in an infection controlled placebo controlled mouse study.

    PubMed

    den Hertog, Alice L; de Vos, Alex F; Klatser, Paul R; Anthony, Richard M

    2013-01-01

    Recently we proposed exploring the potential of treatment stimulated testing as diagnostic method for tuberculosis (TB). An infection controlled placebo controlled mouse study was performed to investigate whether serum cytokine levels changed measurably during the early phase of TB chemotherapy. Serum was collected prior to and during the first 3 weeks of isoniazid (INH) and rifampicin (RIF) chemotherapy, and levels of 23 selected cytokines/chemokines were measured using a liquid bead array. The serum levels of IFNγ, IP-10, MIG, MCP-1, IL-17 and IL-6 were elevated in the TB infected mice compared to non-infected mice at least at 1 time point measured. In infected mice, IFNγ, IP-10, MIG and MCP-1 levels decreased within 7 days of treatment with RIF+INH compared to placebo. Treatment of non-infected mice in the absence of tuberculosis infection had no effect on these cytokines. IL-17 and IL-6 had decreased to baseline in all infected mice prior to the initiation of treatment. This study demonstrates that systemic levels of some cytokines, more specifically IFNγ, IP-10, MIG and MCP-1, rapidly and specifically change upon starting TB chemotherapy only in the presence of infection in a mouse model. Thus, IFNγ, IP-10, MIG and MCP-1 are promising 'Treat-to-Test' targets for the diagnosis of TB and deserve further investigation in a study on human TB suspects.

  3. Hydrogeophysical Cyberinfrastructure For Real-Time Interactive Browser Controlled Monitoring Of Near Surface Hydrology: Results Of A 13 Month Monitoring Effort At The Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Versteeg, R. J.; Johnson, T.; Henrie, A.; Johnson, D.

    2013-12-01

    . This infrastructure was used for the acquisition and processing of an electrical geophysical timelapse survey which was collected over a highly instrumented field site in the Hanford 300 Area. Over a 13 month period between November 2011 and December 2012 1823 timelapse datasets were collected (roughly 5 datasets a day for a total of 23 million individual measurements) on three parallel resistivity lines of 30 m each with 0.5 meter electrode spacing. In addition, hydrological and environmental data were collected from dedicated and general purpose sensors. This dataset contains rich information on near surface processes on a range of different spatial and temporal scales (ranging from hourly to seasonal). We will show how this cyberinfrastructure was used to manage and process this dataset and how the cyberinfrastructure can be used to access, mine and visualize the resulting data and information.

  4. Genetics and polymorphism of the mouse prion gene complex: control of scrapie incubation time.

    PubMed Central

    Carlson, G A; Goodman, P A; Lovett, M; Taylor, B A; Marshall, S T; Peterson-Torchia, M; Westaway, D; Prusiner, S B

    1988-01-01

    The mouse prion protein (PrP) gene (Prn-p), which encodes the only macromolecule that has been identified in scrapie prions, is tightly linked or identical to a gene (Prn-i) that controls the duration of the scrapie incubation period in mice. Constellations of restriction fragment length polymorphisms distinguish haplotypes a to f of Prn-p. The Prn-pb allele encodes a PrP that differs in sequence from those encoded by the other haplotypes and, in inbred mouse strains, correlates with long scrapie incubation time (Westaway et al., Cell 51: 651-662, 1987). In segregating crosses of mice, we identified rare individuals with a divergent scrapie incubation time phenotype and Prn-p genotype, but progeny testing to demonstrate meiotic recombination was not possible because scrapie is a lethal disease. Crosses involving the a, d, and e haplotypes demonstrated that genes unlinked to Prn-p could modulate scrapie incubation time and that there were only two alleles of Prn-i among the mouse strains tested. All inbred strains of mice that had the Prnb haplotype were probably direct descendants of the I/LnJ progenitors. We established the linkage relationship between the prion gene complex (Prn) and other chromosome 2 genes; the gene order, proximal to distal, is B2m-II-1a-Prn-Itp-A. Recombination suppression in the B2m-Prn-p interval occurred during the crosses involved in transferring the I/LnJ Prnb complex into a C57BL/6J background. Transmission ratio distortion by Prna/Prnb heterozygous males was also observed in the same crosses. These phenomena, together with the founder effect, would favor apparent linkage disequilibrium between Prn-p and Prn-i. Therefore, transmission genetics may underestimate the number of genes in Prn. Images PMID:3149717

  5. Prdm9 Incompatibility Controls Oligospermia and Delayed Fertility but No Selfish Transmission in Mouse Intersubspecific Hybrids

    PubMed Central

    Mihola, Ondřej; Piálek, Jaroslav; Forejt, Jiří; Trachtulec, Zdenek

    2014-01-01

    PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m. musculus (Mmm; the PWD strain) participates in the complete meiotic arrest of mouse intersubspecific (PWD×B6)F1 hybrid males. Other studies suggest that also semisterile intersubspecific hybrids are relevant for mouse speciation, but the genes responsible remain unknown. To investigate the causes of this semisterility, we analyzed the role of Prdm9 and Chr X in hybrids resulting from the crosses of PWK, another Mmm-derived inbred strain. We demonstrate that Prdm9 and Chr X control the partial meiotic arrest and reduced sperm count in (PWK×B6)F1 males. Asynapsis of heterosubspecific chromosomes and semisterility were partially suppressed by removal of the B6 allele of Prdm9. Polymorphisms between PWK and PWD on Chr X but not in the Prdm9 region were responsible for the modification of the outcome of Prdm9 - Chr X F1 hybrid incompatibility. Furthermore, (PWK×B6)F1 hybrid males displayed delayed fertility dependent on the Prdm9 incompatibility. While the Drosophila hybrid sterility gene Overdrive causes both delayed fertility and increased transmission of its own chromosome to the offspring, the segregation of Chr X and the Prdm9 region from the mouse (PWK×B6)F1 males was normal. Our results indicate extended functional consequences of Prdm9 - Chr X intersubspecific incompatibility on the fertility of hybrids and should influence the design of fertility analyses in hybrid zones and of laboratory crosses between Mmm and Mmd strains. PMID:24756080

  6. Prdm9 incompatibility controls oligospermia and delayed fertility but no selfish transmission in mouse intersubspecific hybrids.

    PubMed

    Flachs, Petr; Bhattacharyya, Tanmoy; Mihola, Ondřej; Piálek, Jaroslav; Forejt, Jiří; Trachtulec, Zdenek

    2014-01-01

    PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m. musculus (Mmm; the PWD strain) participates in the complete meiotic arrest of mouse intersubspecific (PWD×B6)F1 hybrid males. Other studies suggest that also semisterile intersubspecific hybrids are relevant for mouse speciation, but the genes responsible remain unknown. To investigate the causes of this semisterility, we analyzed the role of Prdm9 and Chr X in hybrids resulting from the crosses of PWK, another Mmm-derived inbred strain. We demonstrate that Prdm9 and Chr X control the partial meiotic arrest and reduced sperm count in (PWK×B6)F1 males. Asynapsis of heterosubspecific chromosomes and semisterility were partially suppressed by removal of the B6 allele of Prdm9. Polymorphisms between PWK and PWD on Chr X but not in the Prdm9 region were responsible for the modification of the outcome of Prdm9-Chr X F1 hybrid incompatibility. Furthermore, (PWK×B6)F1 hybrid males displayed delayed fertility dependent on the Prdm9 incompatibility. While the Drosophila hybrid sterility gene Overdrive causes both delayed fertility and increased transmission of its own chromosome to the offspring, the segregation of Chr X and the Prdm9 region from the mouse (PWK×B6)F1 males was normal. Our results indicate extended functional consequences of Prdm9-Chr X intersubspecific incompatibility on the fertility of hybrids and should influence the design of fertility analyses in hybrid zones and of laboratory crosses between Mmm and Mmd strains.

  7. Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity

    PubMed Central

    Giraldo, Patricia; Martínez, Antonio; Regales, Lucía; Lavado, Alfonso; García-Díaz, Angel; Alonso, Ángel; Busturia, Ana; Montoliu, Lluís

    2003-01-01

    Locus control regions (LCRs) are complex high-order chromatin structures harbouring several regulatory elements, including enhancers and boundaries. We have analysed the mouse tyrosinase LCR functions, in vitro, in cell lines and, in vivo, in transgenic mice and flies. The LCR-core (2.1 kb), located at –15 kb and carrying a previously described tissue-specific DNase I hypersensitive site, operates as a transcriptional enhancer that efficiently transactivates heterologous promoters in a cell-specific orientation-independent manner. Furthermore, we have investigated the boundary activity of these sequences in transgenic animals and cells. In mice, the LCR fragment (3.7 kb) rescued a weakly expressed reference construct that displays position effects. In Drosophila, the LCR fragment and its core insulated the expression of a white minigene reporter construct from chromosomal position effects. In cells, sequences located 5′ from the LCR-core displayed putative boundary activities. We have obtained genomic sequences surrounding the LCR fragment and found a LINE1 repeated element at 5′. In B16 melanoma and L929 fibroblast mouse cells, this element was found heavily methylated, supporting the existence of putative boundary elements that could prevent the spreading of condensed chromatin from the LINE1 sequences into the LCR fragment, experimentally shown to be in an open chromatin structure. PMID:14576318

  8. APC(FZR1) prevents nondisjunction in mouse oocytes by controlling meiotic spindle assembly timing.

    PubMed

    Holt, Janet E; Lane, Simon I R; Jennings, Phoebe; García-Higuera, Irene; Moreno, Sergio; Jones, Keith T

    2012-10-01

    FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ~1 h, and this is due to an earlier onset of spindle assembly checkpoint (SAC) satisfaction and APC(CDC20) activity. However, loss of FZR1 did not compromise SAC functionality; instead, earlier SAC satisfaction was achieved because the bipolar meiotic spindle was assembled more quickly in the absence of FZR1. This novel regulation of spindle assembly by FZR1 led to premature bivalent attachment to microtubules and loss of kinetochore-bound MAD2. Bivalents, however, were observed to congress poorly, leading to nondisjunction rates of 25%. We conclude that in mouse oocytes FZR1 controls the timing of assembly of the bipolar spindle and in so doing the timing of SAC satisfaction and APC(CDC20) activity. This study implicates FZR1 as a major regulator of prometaphase whose activity helps to prevent chromosome nondisjunction.

  9. Functional dissection of the mouse tyrosinase locus control region identifies a new putative boundary activity.

    PubMed

    Giraldo, Patricia; Martínez, Antonio; Regales, Lucía; Lavado, Alfonso; García-Díaz, Angel; Alonso, Angel; Busturia, Ana; Montoliu, Lluís

    2003-11-01

    Locus control regions (LCRs) are complex high-order chromatin structures harbouring several regulatory elements, including enhancers and boundaries. We have analysed the mouse tyrosinase LCR functions, in vitro, in cell lines and, in vivo, in transgenic mice and flies. The LCR-core (2.1 kb), located at -15 kb and carrying a previously described tissue-specific DNase I hypersensitive site, operates as a transcriptional enhancer that efficiently transactivates heterologous promoters in a cell-specific orientation-independent manner. Furthermore, we have investigated the boundary activity of these sequences in transgenic animals and cells. In mice, the LCR fragment (3.7 kb) rescued a weakly expressed reference construct that displays position effects. In Drosophila, the LCR fragment and its core insulated the expression of a white minigene reporter construct from chromosomal position effects. In cells, sequences located 5' from the LCR-core displayed putative boundary activities. We have obtained genomic sequences surrounding the LCR fragment and found a LINE1 repeated element at 5'. In B16 melanoma and L929 fibroblast mouse cells, this element was found heavily methylated, supporting the existence of putative boundary elements that could prevent the spreading of condensed chromatin from the LINE1 sequences into the LCR fragment, experimentally shown to be in an open chromatin structure.

  10. DNA synthesis in mouse brown adipose tissue is under. beta. -adrenergic control

    SciTech Connect

    Rehnmark, S.; Nedergaard, J. )

    1989-02-01

    The rate of DNA synthesis in mouse brown adipose tissue was followed with injections of ({sup 3}H)thymidine. Cold exposure led to a large increase in the rate of ({sup 3}H)thymidine incorporation, reaching a maximum after 8 days, after which the activity abruptly ceased. A series of norepinephrine injections was in itself able to increase ({sup 3}H)thymidine incorporation. When norepinephrine was injected in combination with the {alpha}-adrenergic antagonist phentolamine or with the {beta}-adrenergic antagonist propranolol, the stimulation was fully blocked by propranolol. It is suggested that stimulation of DNA synthesis in brown adipose tissue is a {beta}-adrenergically mediated process and that the tissue is an interesting model for studies of physiological control of DNA synthesis.

  11. The mouse mammary gland as a sentinel organ: distinguishing 'control' populations with diverse environmental histories.

    PubMed

    Kolla, SriDurgaDevi; Pokharel, Aastha; Vandenberg, Laura N

    2017-03-09

    There are numerous examples of laboratory animals that were inadvertently exposed to endocrine disrupting chemicals (EDCs) during the process of conducting experiments. Controlling contaminations in the laboratory is challenging, especially when their source is unknown. Unfortunately, EDC contaminations can interfere with the interpretation of data during toxicological evaluations. We propose that the male CD-1 mouse mammary gland is a sensitive bioassay to evaluate the inadvertent contamination of animal colonies. We evaluated mammary glands collected from two CD-1 mouse populations with distinct environmental histories. Population 1 was born and raised in a commercial laboratory with unknown EDC exposures; Population 2 was the second generation raised in an animal facility with limited exposures to xenoestrogens from caging, feed, etc. Mammary glands were collected from all animals and evaluated using morphometric techniques to quantify morphological characteristics of the mammary gland. Population 1 (with suspected history of environmental chemical exposure) and Population 2 (with known limited history of xenoestrogen exposure) were morphologically distinguishable in adult males, prepubertal females, and pubertal females. Mammary glands from males raised in the commercial animal facility were significantly more developed, with larger ductal trees and more branching points. The appearance of these mammary glands was consistent with prior reports of male mice exposed to low doses of bisphenol A (BPA) during early development. In females, the two populations were morphologically distinct at both prepuberty and puberty, with the most striking differences observed in the number, size, and density of terminal end buds, e.g. highly proliferative structures found in the developing mammary gland. Collectively, these results suggest that the mouse mammary gland has the potential to be used as a sentinel organ to evaluate and distinguish animal colonies raised in different

  12. Anx7 is required for nutritional control of gene expression in mouse pancreatic islets of Langerhans.

    PubMed Central

    Srivastava, Meera; Eidelman, Ofer; Leighton, Ximena; Glasman, Mirta; Goping, Gertrude; Pollard, Harvey B.

    2002-01-01

    BACKGROUND: Gene expression in islets of Langerhans is profoundly sensitive to glucose and other nutrients. Islets of Langerhans in the Anx7(+/-) knockout mouse exhibit a profound reduction in ITPR3 protein expression, defective intracellular calcium signaling, and defective insulin secretion. Additional data presented here also show that mRNA for ITPR3 is virtually undetectable in isolated Anx7(+/-) islets. IP3Receptor type 3 (ITPR3) expression in islets of Langerhans is closely regulated by secretory stimuli, and it has been suggested that the level of the ITPR3 expression controls the ability of the islets to respond to nutritional signals. We report that although control islets respond to glucose in vitro by a transient increment in ITPR3 mRNA, the islets from the Anx7(+/-) mouse remain low. We therefore hypothesized that the Anx7/IP3 Receptor(3)/Ca(2+) signaling pathway plays a role in beta cell responses to glucose, and that in the absence of the Anx7/ITPR3 signaling system, the islets would be unable to discriminate between fed or fasted states in vivo. MATERIALS AND METHODS: To test this hypothesis, we subjected Anx7(+/-) and control mice to either food and water ad libidum or to an overnight fast with access to water only. We then isolated the respective islets and compared nutrient-dependent changes in global gene expression under the four conditions using genome-based microarray technology. RESULTS: Anx7 protein expression in these islets is only about 50% of control levels in normal littermate controls, and IPTR3 message and protein are virtually zero. cDNA microarray analyses show that in control animals gene expression is significantly affected by the fasting state. Many of the affected genes have historical relevance to development and differentiation of islets. These include preproglucagon, APOJ, cadherin2, phosphoglucoisomerase, oncostatin M, PAX6, HGF, and cytokeratin 18. However, there are also many other nutritionally sensitive genes in control

  13. Rod electrical coupling is controlled by a circadian clock and dopamine in mouse retina

    PubMed Central

    Jin, Nan Ge; Chuang, Alice Z; Masson, Philippe J; Ribelayga, Christophe P

    2015-01-01

    Key points Rod photoreceptors play a key role in vision in dim light; in the mammalian retina, although rods are anatomically connected or coupled by gap junctions, a type of electrical synapse, the functional importance and regulation of rod coupling has remained elusive. We have developed a new technique in the mouse: perforated patch-clamp recording of rod inner segments in isolated intact retinae maintained by superfusion. We find that rod electrical coupling is controlled by a circadian clock and dopamine, and is weak during the day and stronger at night. The results also indicate that the signal-to-noise ratio for a dim light response is increased at night because of coupling. Our observations will provide a framework for understanding the daily variations in human vision as well as the basis of specific retinal malfunctions. Abstract Rod single-photon responses are critical for vision in dim light. Electrical coupling via gap junction channels shapes the light response properties of vertebrate photoreceptors, but the regulation of rod coupling and its impact on the single-photon response have remained unclear. To directly address these questions, we developed a perforated patch-clamp recording technique and recorded from single rod inner segments in isolated intact neural mouse retinae, maintained by superfusion. Experiments were conducted at different times of the day or under constant environmental conditions, at different times across the circadian cycle. We show that rod electrical coupling is regulated by a circadian clock and dopamine, so that coupling is weak during the day and strong at night. Altogether, patch-clamp recordings of single-photon responses in mouse rods, tracer coupling, receptive field measurements and pharmacological manipulations of gap junction and dopamine receptor activity provide compelling evidence that rod coupling is modulated in a circadian manner. These data are consistent with computer modelling. At night, single

  14. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse

    PubMed Central

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-01-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies. PMID:27104744

  15. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    PubMed

    Balcova, Maria; Faltusova, Barbora; Gergelits, Vaclav; Bhattacharyya, Tanmoy; Mihola, Ondrej; Trachtulec, Zdenek; Knopf, Corinna; Fotopulosova, Vladana; Chvatalova, Irena; Gregorova, Sona; Forejt, Jiri

    2016-04-01

    Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm) and Mus m. domesticus (Mmd), it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2) genomic locus on Chromosome X (Chr X) by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s) responsible for variation in the global recombination rate between closely related mouse subspecies.

  16. Retinoid signaling in control of progenitor cell differentiation during mouse development.

    PubMed

    Duester, Gregg

    2013-12-01

    The vitamin A metabolite retinoic acid (RA) serves as a ligand for nuclear RA receptors that control differentiation of progenitor cells important for vertebrate development. Genetic studies in mouse embryos deficient for RA-generating enzymes have been invaluable for deciphering RA function. RA first begins to act during early organogenesis when RA generated in trunk mesoderm begins to function as a diffusible signal controlling progenitor cell differentiation. In neuroectoderm, RA functions as an instructive signal to stimulate neuronal differentiation of progenitor cells in the hindbrain and spinal cord. RA is not required for early neuronal differentiation of the forebrain, but at later stages RA stimulates neuronal differentiation in forebrain basal ganglia. RA also acts as a permissive signal for differentiation by repressing fibroblast growth factor (FGF) signaling in differentiated cells as they emerge from progenitor populations in the caudal progenitor zone and second heart field. In addition, RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads. A more complete understanding of the normal functions of RA signaling during development will guide efforts to use RA as a differentiation agent for therapeutic purposes.

  17. Retinoid signaling in control of progenitor cell differentiation during mouse development

    PubMed Central

    Duester, Gregg

    2013-01-01

    The vitamin A metabolite retinoic acid (RA) serves as a ligand for nuclear RA receptors that control differentiation of progenitor cells important for vertebrate development. Genetic studies in mouse embryos deficient for RA-generating enzymes have been invaluable for deciphering RA function. RA first begins to act during early organogenesis when RA generated in trunk mesoderm begins to function as a diffusible signal controlling progenitor cell differentiation. In neuroectoderm, RA functions as an instructive signal to stimulate neuronal differentiation of progenitor cells in the hindbrain and spinal cord. RA is not required for early neuronal differentiation of the forebrain, but at later stages RA stimulates neuronal differentiation in forebrain basal ganglia. RA also acts as a permissive signal for differentiation by repressing fibroblast growth factor (FGF) signaling in differentiated cells as they emerge from progenitor populations in the caudal progenitor zone and second heart field. In addition, RA signaling stimulates differentiation of spermatogonial germ cells and induces meiosis in male but not female gonads. A more complete understanding of the normal functions of RA signaling during development will guide efforts to use RA as a differentiation agent for therapeutic purposes. PMID:23973941

  18. Emulation of computer mouse control with a noninvasive brain computer interface

    NASA Astrophysics Data System (ADS)

    McFarland, Dennis J.; Krusienski, Dean J.; Sarnacki, William A.; Wolpaw, Jonathan R.

    2008-06-01

    Brain-computer interface (BCI) technology can provide nonmuscular communication and control to people who are severely paralyzed. BCIs can use noninvasive or invasive techniques for recording the brain signals that convey the user's commands. Although noninvasive BCIs are used for simple applications, it has frequently been assumed that only invasive BCIs, which use electrodes implanted in the brain, will be able to provide multidimensional sequential control of a robotic arm or a neuroprosthesis. The present study shows that a noninvasive BCI using scalp-recorded electroencephalographic (EEG) activity and an adaptive algorithm can provide people, including people with spinal cord injuries, with two-dimensional cursor movement and target selection. Multiple targets were presented around the periphery of a computer screen, with one designated as the correct target. The user's task was to use EEG to move a cursor from the center of the screen to the correct target and then to use an additional EEG feature to select the target. If the cursor reached an incorrect target, the user was instructed not to select it. Thus, this task emulated the key features of mouse operation. The results indicate that people with severe motor disabilities could use brain signals for sequential multidimensional movement and selection.

  19. A network comprising short and long noncoding RNAs and RNA helicase controls mouse retina architecture

    PubMed Central

    Krol, Jacek; Krol, Ilona; Alvarez, Claudia Patricia Patino; Fiscella, Michele; Hierlemann, Andreas; Roska, Botond; Filipowicz, Witold

    2015-01-01

    Brain regions, such as the cortex and retina, are composed of layers of uniform thickness. The molecular mechanism that controls this uniformity is not well understood. Here we show that during mouse postnatal development the timed expression of Rncr4, a retina-specific long noncoding RNA, regulates the similarly timed processing of pri-miR-183/96/182, which is repressed at an earlier developmental stage by RNA helicase Ddx3x. Shifting the timing of mature miR-183/96/182 accumulation or interfering with Ddx3x expression leads to the disorganization of retinal architecture, with the photoreceptor layer being most affected. We identify Crb1, a component of the adhesion belt between glial and photoreceptor cells, as a link between Rncr4-regulated miRNA metabolism and uniform retina layering. Our results suggest that the precise timing of glia–neuron interaction controlled by noncoding RNAs and Ddx3x is important for the even distribution of cells across layers. PMID:26041499

  20. Layer-specific cholinergic control of human and mouse cortical synaptic plasticity

    PubMed Central

    Verhoog, Matthijs B.; Obermayer, Joshua; Kortleven, Christian A.; Wilbers, René; Wester, Jordi; Baayen, Johannes C.; De Kock, Christiaan P. J.; Meredith, Rhiannon M.; Mansvelder, Huibert D.

    2016-01-01

    Individual cortical layers have distinct roles in information processing. All layers receive cholinergic inputs from the basal forebrain (BF), which is crucial for cognition. Acetylcholinergic receptors are differentially distributed across cortical layers, and recent evidence suggests that different populations of BF cholinergic neurons may target specific prefrontal cortical (PFC) layers, raising the question of whether cholinergic control of the PFC is layer dependent. Here we address this issue and reveal dendritic mechanisms by which endogenous cholinergic modulation of synaptic plasticity is opposite in superficial and deep layers of both mouse and human neocortex. Our results show that in different cortical layers, spike timing-dependent plasticity is oppositely regulated by the activation of nicotinic acetylcholine receptors (nAChRs) either located on dendrites of principal neurons or on GABAergic interneurons. Thus, layer-specific nAChR expression allows functional layer-specific control of cortical processing and plasticity by the BF cholinergic system, which is evolutionarily conserved from mice to humans. PMID:27604129

  1. Dihydropyridine receptors actively control gating of ryanodine receptors in resting mouse skeletal muscle fibres

    PubMed Central

    Robin, Gaëlle; Allard, Bruno

    2012-01-01

    Contraction of skeletal muscle is triggered by the release of Ca2+ from the sarcoplasmic reticulum (SR) in response to depolarization of the muscle membrane. Depolarization is known to elicit a conformational change of the dihydropyridine receptor (DHPR) in the tubular membrane that controls in a time- and voltage-dependent manner the opening of the ryanodine receptor (RyR), the SR Ca2+ release channel. At rest, it is assumed that RyRs are kept in a closed state imposed by the repressive action of DHPRs; however, a direct control of the RyR gating by the DHPR has up to now never been demonstrated in resting adult muscle. In this study, we monitored slow changes in SR Ca2+ content using the Ca2+ indicator fluo-5N loaded in the SR of voltage-clamped mouse muscle fibres. We first show that external Ca2+ removal induced a reversible SR Ca2+ efflux at −80 mV and prevented SR Ca2+ refilling following depolarization-evoked SR Ca2+ depletion. The dihydropyridine compound nifedipine induced similar effects. The rate of SR Ca2+ efflux was also shown to be controlled in a time- and voltage-dependent manner within a membrane potential range more negative than −50 mV. Finally, intracellular addition of ryanodine produced an irreversible SR Ca2+ efflux and kept the SR in a highly depleted state following depolarization-evoked SR Ca2+ depletion. The fact that resting SR Ca2+ efflux is modulated by conformational changes of DHPRs induced by external Ca2+, nifedipine and voltage demonstrates that DHPRs exert an active control on gating of RyRs in resting skeletal muscle. PMID:23006480

  2. Isolation of a cDNA Clone for Mouse Urinary Proteins: Age- And Sex-Related Expression of Mouse Urinary Protein Genes is Transcriptionally Controlled

    NASA Astrophysics Data System (ADS)

    Derman, Eva

    1981-09-01

    A recombinant cDNA plasmid derived from mouse urinary protein (MUP) mRNA was isolated and used to determine the level of control of the developmentally regulated and the sex-linked expression of MUP genes by monitoring the transcription of MUP mRNA sequences in isolated liver nuclei. No transcription of MUP genes could be detected in liver nuclei of prepubescent animals whose livers do not contain measurable MUP mRNA. Transcription of MUP genes in the livers of adult male mice was 6-fold higher than in the livers of adult female mice, proportional to the difference in MUP mRNA concentrations. Transcriptional control mechanisms are therefore implicated as responsible for both the developmentally and the sex-linked changes in the expression of MUP genes.

  3. Large-scale screen for genes controlling mammalian embryogenesis, using high-throughput gene expression analysis in mouse embryos.

    PubMed

    Neidhardt, L; Gasca, S; Wertz, K; Obermayr, F; Worpenberg, S; Lehrach, H; Herrmann, B G

    2000-11-01

    We have adapted the whole-mount in situ hybridization technique to perform high-throughput gene expression analysis in mouse embryos. A large-scale screen for genes showing specific expression patterns in the mid-gestation embryo was carried out, and a large number of genes controlling development were isolated. From 35760 clones of a 9.5 d.p.c. cDNA library, a total of 5348 cDNAs, enriched for rare transcripts, were selected and analyzed by whole-mount in situ hybridization. Four hundred and twenty-eight clones revealed specific expression patterns in the 9.5 d.p.c. embryo. Of 361 tag-sequenced clones, 198 (55%) represent 154 known mouse genes. Thirty-nine (25%) of the known genes are involved in transcriptional regulation and 33 (21%) in inter- or intracellular signaling. A large number of these genes have been shown to play an important role in embryogenesis. Furthermore, 24 (16%) of the known genes are implicated in human disorders and three others altered in classical mouse mutations. Similar proportions of regulators of embryonic development and candidates for human disorders or mouse mutations are expected among the 163 new mouse genes isolated. Thus, high-throughput gene expression analysis is suitable for isolating regulators of embryonic development on a large-scale, and in the long term, for determining the molecular anatomy of the mouse embryo. This knowledge will provide a basis for the systematic investigation of pattern formation, tissue differentiation and organogenesis in mammals.

  4. Lactose synthetase activity in mouse mammary glands is controlled by thyroid hormones

    PubMed Central

    1979-01-01

    Epithelial cells in explants from the mammary glands of euthyroid mature virgin mice are proliferatively dormant. They must undergo DNA synthesis and traverse the cell cycle in vitro before they are able to differentiate fully in response to insulin, hydrocortisone, and prolactin, and synthesize enzymatically active alpha-lactalbumin (measured as lactose synthetase activity). In contrast, glands from hyperthyroid mature virgin mice do not require DNA synthesis in vitro to differentiate. Explants from the euthyroid virgin tissue overcome their dependence on DNA synthesis when 10(-9) M 3,5,3'-triiodo-L- thyronine is added directly to the cultures in addition to the other three hormones. Explants from involuted mammary glands from euthyroid primiparous mice do not require DNA synthesis in vitro to make the milk protein even though they, like explants from mature euthyroid virgin tissue, are proliferatively dormant and do not contain detectable lactose synthetase activity in vivo. Glands from primiparous animals made mildly hypothyroid by ingestion of 0.1% thiouracil in drinking water during 7 wk of involution remain morphologically indistinguishable from glands of their euthyroid counterparts. However, explants from the glands of these hypothyroid animals revert to a state of dependence on DNA synthesis to differentiate functionally. These observations suggest that the dependence on DNA synthesis and cell cycle traversal for hormonal induction of lactose synthetase activity in the mouse mammary gland is controlled by thyroid hormones. PMID:117014

  5. Differentiation Induction of Mouse Neural Stem Cells in Hydrogel Tubular Microenvironments with Controlled Tube Dimensions.

    PubMed

    Onoe, Hiroaki; Kato-Negishi, Midori; Itou, Akane; Takeuchi, Shoji

    2016-05-01

    In this paper, a tubular 3D microenvironment created in a calcium alginate hydrogel microtube with respect to the effect of scaffold dimensions on the differentiation of mouse neuronal stem cells (mNSCs) is evaluated. Five types of hydrogel microtubes with different core diameters (≈65-200 μm) and shell thicknesses (≈30-110 μm) are fabricated by using a double coaxial microfluidic device, and differentiation of encapsulated mNSCs is induced by changing the growth medium to the differentiation medium. The influence of the microtube geometries is examined by using quantitative real-time polymerase chain reaction and fluorescent immunocytochemistry. The analyses reveal that differences in microtube thickness within 30-110 μm affected the relative Tuj1 expression but do not affect the morphology of encapsulated mNSCs. The diameters of cores influence both the relative Tuj1 expression and morphology of the differentiated neurons. It is found that the tubular microenvironment with a core diameter of less than ≈100 μm contributes to forming highly viable and aligned neural tissue. The tubular microenvironment can provide an effective method for constructing microfiber-shaped neural tissues with geometrically controlled differentiation induction.

  6. Positive control study for the intact immature Swiss-Webster mouse uterotrophic assay

    NASA Astrophysics Data System (ADS)

    Alisjahbana, Arlisa; Yusuf, Ayda T.

    2014-03-01

    significantly from controls. Based on the results, the immature mouse uterotrophic assay can be used as a test for estrogenicity except for the cell number parameter.

  7. A New Limb Movement Detector Enabling People with Multiple Disabilities to Control Environmental Stimulation through Limb Swing with a Gyration Air Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb swing with a gyration air mouse and a newly developed limb movement detection program (LMDP, i.e., a new software program that turns a gyration air mouse into a precise limb movement detector). The study was performed…

  8. Assisting People with Attention Deficit Hyperactivity Disorder by Actively Reducing Limb Hyperactive Behavior with a Gyration Air Mouse through a Controlled Environmental Stimulation

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2011-01-01

    The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing…

  9. A New Limb Movement Detector Enabling People with Multiple Disabilities to Control Environmental Stimulation through Limb Swing with a Gyration Air Mouse

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang; Chang, Man-Ling; Shih, Ching-Tien

    2010-01-01

    This study assessed whether two persons with multiple disabilities would be able to control environmental stimulation using limb swing with a gyration air mouse and a newly developed limb movement detection program (LMDP, i.e., a new software program that turns a gyration air mouse into a precise limb movement detector). The study was performed…

  10. Assisting People with Attention Deficit Hyperactivity Disorder by Actively Reducing Limb Hyperactive Behavior with a Gyration Air Mouse through a Controlled Environmental Stimulation

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2011-01-01

    The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing…

  11. Control of Neurotransmission by NaV1.7 in Human, Guinea Pig, and Mouse Airway Parasympathetic Nerves.

    PubMed

    Kocmalova, Michaela; Kollarik, Marian; Canning, Brendan J; Ru, Fei; Adam Herbstsomer, R; Meeker, Sonya; Fonquerna, Silvia; Aparici, Monica; Miralpeix, Montserrat; Chi, Xian Xuan; Li, Baolin; Wilenkin, Ben; McDermott, Jeff; Nisenbaum, Eric; Krajewski, Jeffrey L; Undem, Bradley J

    2017-04-01

    Little is known about the neuronal voltage-gated sodium channels (NaVs) that control neurotransmission in the parasympathetic nervous system. We evaluated the expression of the α subunits of each of the nine NaVs in human, guinea pig, and mouse airway parasympathetic ganglia. We combined this information with a pharmacological analysis of selective NaV blockers on parasympathetic contractions of isolated airway smooth muscle. As would be expected from previous studies, tetrodotoxin potently blocked the parasympathetic responses in the airways of each species. Gene expression analysis showed that that NaV 1.7 was virtually the only tetrodotoxin-sensitive NaV1 gene expressed in guinea pig and human airway parasympathetic ganglia, where mouse ganglia expressed NaV1.1, 1.3, and 1.7. Using selective pharmacological blockers supported the gene expression results, showing that blocking NaV1.7 alone can abolish the responses in guinea pig and human bronchi, but not in mouse airways. To block the responses in mouse airways requires that NaV1.7 along with NaV1.1 and/or NaV1.3 is blocked. These results may suggest novel indications for NaV1.7-blocking drugs, in which there is an overactive parasympathetic drive, such as in asthma. The data also raise the potential concern of antiparasympathetic side effects for systemic NaV1.7 blockers.

  12. A Self-regulatory System of Interlinked Signaling Feedback Loops Controls Mouse Limb Patterning

    NASA Astrophysics Data System (ADS)

    Benazet, Jean-Denis; Bischofberger, Mirko; Tiecke, Eva; Gonalves, Alexandre; Martin, James F.; Zuniga, Aime; Naef, Felix; Zeller, Rolf

    Developmental pathways need to be robust against environmental and genetic variation to enable reliable morphogenesis. Here, we take a systems biology approach to explain how robustness is achieved in the developing mouse limb, a classical model of organogenesis. By combining quantitative genetics with computational modeling we established a computational model of multiple interlocked feedback modules, involving sonic hedgehog (SHH) morphogen, fibroblast growth factor (FGFs) signaling, bone morphogenetic protein (BMP) and its antagonist GREM1. Earlier modeling work had emphasized the versatile kinetic characteristics of interlocked feedback loops operating at different time scales. Here we develop and then validate a similar computational model to show how BMP4 first initiates and SHH then propagates feedback in the network through differential transcriptional regulation of Grem1 to control digit specification. This switch occurs by linking a fast BMP4/GREM1 module to a slower SHH/GREM1/FGF feedback loop. Simulated gene expression profiles modeled normal limb development as well those of single-gene knockouts. Sensitivity analysis showed how the model was robust and insensitive to variability in parameters. A surprising prediction of the model was that an early Bmp4 signal is essential to kick-start Grem1 expression and the digit specification system. We experimentally validated the prediction using inducible alleles and showed that early, but not late, removal of Bmp4 dramatically disrupted limb development. Sensitivity analysis showed how robustness emerges from this circuitry. This study shows how modeling and computation can help us understand how self-regulatory signaling networks achieve robust regulation of limb development, by exploiting interconnectivity among the three signaling pathways. We expect that similar computational analyses will shed light on the origins of robustness in other developmental systems, and I will discuss some recent examples from

  13. Variation and genetic control of gene expression in primary immunocytes across inbred mouse strains.

    PubMed

    Mostafavi, Sara; Ortiz-Lopez, Adriana; Bogue, Molly A; Hattori, Kimie; Pop, Cristina; Koller, Daphne; Mathis, Diane; Benoist, Christophe

    2014-11-01

    To determine the breadth and underpinning of changes in immunocyte gene expression due to genetic variation in mice, we performed, as part of the Immunological Genome Project, gene expression profiling for CD4(+) T cells and neutrophils purified from 39 inbred strains of the Mouse Phenome Database. Considering both cell types, a large number of transcripts showed significant variation across the inbred strains, with 22% of the transcriptome varying by 2-fold or more. These included 119 loci with apparent complete loss of function, where the corresponding transcript was not expressed in some of the strains, representing a useful resource of "natural knockouts." We identified 1222 cis-expression quantitative trait loci (cis-eQTL) that control some of this variation. Most (60%) cis-eQTLs were shared between T cells and neutrophils, but a significant portion uniquely impacted one of the cell types, suggesting cell type-specific regulatory mechanisms. Using a conditional regression algorithm, we predicted regulatory interactions between transcription factors and potential targets, and we demonstrated that these predictions overlap with regulatory interactions inferred from transcriptional changes during immunocyte differentiation. Finally, comparison of these and parallel data from CD4(+) T cells of healthy humans demonstrated intriguing similarities in variability of a gene's expression: the most variable genes tended to be the same in both species, and there was an overlap in genes subject to strong cis-acting genetic variants. We speculate that this "conservation of variation" reflects a differential constraint on intraspecies variation in expression levels of different genes, either through lower pressure for some genes, or by favoring variability for others. Copyright © 2014 by The American Association of Immunologists, Inc.

  14. X Chromosome Control of Meiotic Chromosome Synapsis in Mouse Inter-Subspecific Hybrids

    PubMed Central

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-01-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2Mmm allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes. PMID:24516397

  15. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids.

    PubMed

    Bhattacharyya, Tanmoy; Reifova, Radka; Gregorova, Sona; Simecek, Petr; Gergelits, Vaclav; Mistrik, Martin; Martincova, Iva; Pialek, Jaroslav; Forejt, Jiri

    2014-02-01

    Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.

  16. Two structurally distinct {kappa}B sequence motifs cooperatively control LPS-induced KC gene transcription in mouse macrophages

    SciTech Connect

    Ohmori, Y.; Fukumoto, S.; Hamilton, T.A.

    1995-10-01

    The mouse KC gene is an {alpha}-chemokine gene whose transcription is induced in mononuclear phagocytes by LPS. DNA sequences necessary for transcriptional control of KC by LPS were identified in the region flanking the transcription start site. Transient transfection analysis in macrophages using deletion mutants of a 1.5-kb sequence placed in front of the chloramphenicol acetyl transferase (CAT) gene identified an LPS-responsive region between residues -104 and +30. This region contained two {kappa}B sequence motifs. The first motif (position -70 to -59, {kappa}B1) is highly conserved in all three human GRO genes and in the mouse macrophage inflammatory protein-2 (MIP-2) gene. The second {kappa}B motif (position -89 to -78, {kappa}B2) was conserved only between the mouse and the rat KC genes. Consistent with previous reports, the highly conserved {kappa}B site ({kappa}B1) was essential for LPS inducibility. Surprisingly, the distal {kappa}B site ({kappa}B2) was also necessary for optimal response; mutation of either {kappa}B site markedly reduced sensitivity to LPS in RAW264.7 cells and to TNF-{alpha} in NIH 3T3 fibroblasts. Although both {kappa}B1 and {kappa}B2 sequences were able to bind members of the Rel homology family, including NF{kappa}B1 (P50), RelA (65), and c-Rel, the {kappa}B1 site bound these factors with higher affinity and functioned more effectively than the {kappa}B2 site in a heterologous promoter. These findings demonstrate that transcriptional control of the KC gene requires cooperation between two {kappa}B sites and is thus distinct from that of the three human GRO genes and the mouse MIP-2 gene. 71 refs., 8 figs.

  17. Noradrenergic Control of Odor Recognition in a Nonassociative Olfactory Learning Task in the Mouse

    ERIC Educational Resources Information Center

    Veyrac, Alexandra; Nguyen, Veronique; Marien, Marc; Didier, Anne; Jourdan, Francois

    2007-01-01

    The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or…

  18. Noradrenergic Control of Odor Recognition in a Nonassociative Olfactory Learning Task in the Mouse

    ERIC Educational Resources Information Center

    Veyrac, Alexandra; Nguyen, Veronique; Marien, Marc; Didier, Anne; Jourdan, Francois

    2007-01-01

    The present study examined the influence of pharmacological modulations of the locus coeruleus noradrenergic system on odor recognition in the mouse. Mice exposed to a nonrewarded olfactory stimulation (training) were able to memorize this odor and to discriminate it from a new odor in a recall test performed 15 min later. At longer delays (30 or…

  19. Analogue mouse pointer control via an online steady state visual evoked potential (SSVEP) brain-computer interface

    NASA Astrophysics Data System (ADS)

    Wilson, John J.; Palaniappan, Ramaswamy

    2011-04-01

    The steady state visual evoked protocol has recently become a popular paradigm in brain-computer interface (BCI) applications. Typically (regardless of function) these applications offer the user a binary selection of targets that perform correspondingly discrete actions. Such discrete control systems are appropriate for applications that are inherently isolated in nature, such as selecting numbers from a keypad to be dialled or letters from an alphabet to be spelled. However motivation exists for users to employ proportional control methods in intrinsically analogue tasks such as the movement of a mouse pointer. This paper introduces an online BCI in which control of a mouse pointer is directly proportional to a user's intent. Performance is measured over a series of pointer movement tasks and compared to the traditional discrete output approach. Analogue control allowed subjects to move the pointer faster to the cued target location compared to discrete output but suffers more undesired movements overall. Best performance is achieved when combining the threshold to movement of traditional discrete techniques with the range of movement offered by proportional control.

  20. A Brain-Computer Interface (BCI) system to use arbitrary Windows applications by directly controlling mouse and keyboard.

    PubMed

    Spuler, Martin

    2015-08-01

    A Brain-Computer Interface (BCI) allows to control a computer by brain activity only, without the need for muscle control. In this paper, we present an EEG-based BCI system based on code-modulated visual evoked potentials (c-VEPs) that enables the user to work with arbitrary Windows applications. Other BCI systems, like the P300 speller or BCI-based browsers, allow control of one dedicated application designed for use with a BCI. In contrast, the system presented in this paper does not consist of one dedicated application, but enables the user to control mouse cursor and keyboard input on the level of the operating system, thereby making it possible to use arbitrary applications. As the c-VEP BCI method was shown to enable very fast communication speeds (writing more than 20 error-free characters per minute), the presented system is the next step in replacing the traditional mouse and keyboard and enabling complete brain-based control of a computer.

  1. Carbon dioxide pneumoperitoneum, intraperitoneal pressure, and peritoneal tissue hypoxia: a mouse study with controlled respiratory support.

    PubMed

    Matsuzaki, Sachiko; Jardon, Kris; Maleysson, Elodie; D'Arpiany, Francis; Canis, Michel; Bazin, Jean-Etienne; Mage, Gérard

    2010-11-01

    Animal experiments have suggested that the laparoscopic peritoneal environment is hypoxic. This study aimed to investigate whether peritoneal tissue is hypoxic on a cellular level during a carbon dioxide (CO(2)) pneumoperitoneum at different intraperitoneal pressures (IPPs) and to determine the short-term effects of surgical injury on the hypoxia status of peritoneal tissue in the injured peritoneum and the distant noninjured peritoneum at cellular and molecular levels. Experiment 1: Mice were divided into five groups according to the following treatments: anesthesia alone, laparotomy, and CO(2) pneumoperitoneum at IPPs of 2, 8, or 15 mmHg. Over the course of each experiment, the peritoneal tissue-oxygen tension (PitO(2)) was continuously monitored. Experiment 2: On the first day, the mice were divided into three groups according to the following treatments: CO(2) pneumoperitoneum at an IPP of either 2 or 8 mmHg or laparotomy. The bilateral caudal epigastric arteries and uterine horns then were coagulated using a bipolar cautery device. On day 7, peritoneal tissue samples were collected for real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemistry. In both experiments, pimonidazole hydrochloride was used to detect tissue hypoxia at a cellular level. Experiment 1: Peritoneal hypoxia at both tissue and cellular levels was detected only in the groups treated with an IPP of 15 mmHg (PitO(2): 5.2 ± 1.0 mmHg, mean ± SEM). Experiment 2: The percentage of pimonidazole immunostained mesothelial and stromal cells from the distant noninjured peritoneum was significantly higher in the group treated with an IPP of 8 mmHg than in the other groups. Hypoxia-inducible factor 1 alpha subunit mRNA expression in the distant noninjured peritoneum of the group treated with an IPP of 8 mmHg was significantly higher than in the control group (anesthesia alone). The CO(2) pneumoperitoneum itself did not cause peritoneal hypoxia at either a tissue or a

  2. Estrogen receptor β controls MMP-19 expression in mouse ovaries during ovulation.

    PubMed

    Nalvarte, Ivan; Töhönen, Virpi; Lindeberg, Maria; Varshney, Mukesh; Gustafsson, Jan-Åke; Inzunza, José

    2016-03-01

    Estrogen receptor beta (ERβ/ESR2) has a central role in mouse ovaries, as ERβ knockout (BERKO) mice are subfertile due to an increase in fibrosis around the maturing follicle and a decrease in blood supply. This has a consequence that these follicles rarely rupture to release the mature oocyte. Matrix metalloproteinases (MMPs) are modulators of the extracellular matrix, and the expression of one specific MMP, MMP-19, is normally increased in granulosa cells during their maturation until ovulation. In this study, we demonstrate that MMP-19 levels are downregulated in BERKO mouse ovaries. Using human MCF-7 cells that overexpress ERβ, we could identify MMP-19 to be a transcriptional target of ligand-bound activated ERβ acting on a specificity protein-1 binding site. These data provide a molecular explanation for the observed follicle rupture defect that contributes to the subfertility of female BERKO mice. © 2016 Society for Reproduction and Fertility.

  3. F-actin mechanics control spindle centring in the mouse zygote

    NASA Astrophysics Data System (ADS)

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

  4. F-actin mechanics control spindle centring in the mouse zygote

    PubMed Central

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition. PMID:26727405

  5. Wagging the dogma; tissue-specific cell cycle control in the mouse embryo.

    PubMed

    Pagano, Michele; Jackson, Peter K

    2004-09-03

    The family of cyclin-dependent kinases (Cdks) lies at the core of the machinery that drives the cell division cycle. Studies in cultured mammalian cells have provided insight into the cellular functions of many Cdks. Recent Cdk and cyclin knockouts in the mouse show that the functions of G1 cell cycle regulatory genes are often essential only in specific cell types, pointing to our limited understanding of tissue-specific expression, redundancy, and compensating mechanisms in the Cdk network.

  6. Healthy eating decisions require efficient dietary self-control in children: A mouse-tracking food decision study.

    PubMed

    Ha, Oh-Ryeong; Bruce, Amanda S; Pruitt, Stephen W; Cherry, J Bradley C; Smith, T Ryan; Burkart, Dominic; Bruce, Jared M; Lim, Seung-Lark

    2016-10-01

    Learning how to make healthy eating decisions, (i.e., resisting unhealthy foods and consuming healthy foods), enhances physical development and reduces health risks in children. Although healthy eating decisions are known to be challenging for children, the mechanisms of children's food choice processes are not fully understood. The present study recorded mouse movement trajectories while eighteen children aged 8-13 years were choosing between eating and rejecting foods. Children were inclined to choose to eat rather than to reject foods, and preferred unhealthy foods over healthy foods, implying that rejecting unhealthy foods could be a demanding choice. When children rejected unhealthy foods, mouse trajectories were characterized by large curvature toward an eating choice in the beginning, late decision shifting time toward a rejecting choice, and slowed response times. These results suggested that children exercised greater cognitive efforts with longer decision times to resist unhealthy foods, providing evidence that children require dietary self-control to make healthy eating-decisions by resisting the temptation of unhealthy foods. Developmentally, older children attempted to exercise greater cognitive efforts for consuming healthy foods than younger children, suggesting that development of dietary self-control contributes to healthy eating-decisions. The study also documents that healthy weight children with higher BMIs were more likely to choose to reject healthy foods. Overall, findings have important implications for how children make healthy eating choices and the role of dietary self-control in eating decisions. Published by Elsevier Ltd.

  7. Control of Hepatitis C Virus Replication in Mouse Liver-Derived Cells by MAVS-Dependent Production of Type I and Type III Interferons

    PubMed Central

    Anggakusuma; Frentzen, Anne; Gürlevik, Engin; Yuan, Qinggong; Steinmann, Eike; Ott, Michael; Staeheli, Peter; Schmid-Burgk, Jonathan; Schmidt, Tobias; Hornung, Veit; Kuehnel, Florian

    2015-01-01

    . In addition, we show that mouse MAVS induces both type I and type III IFNs, which together control HCV replication. Characterization of type I or type III-dependent interferon-stimulated genes in these cells should help to identify key murine restriction factors that preclude HCV propagation in immunocompetent mouse liver cells. PMID:25609814

  8. Creation of a Mouse with Stress-Induced Dystonia: Control of an ATPase Chaperone

    DTIC Science & Technology

    2012-10-01

    Mice with mutations in genes known to cause dystonia in humans are so far virtually asymptomatic. Only mild motor deficiencies have been seen, such...identified the gene for one of the subunits of Na,K- ATPase, ATP1A3, as the site of mutations in RDP (de Carvalho Aguiar et al. 2004). Our prior work in...first paper, and to be able to give the mouse line an official name based on the mutated gene . Funding has been applied for from the following

  9. A detailed analysis of the erythropoietic control system in the human, squirrel, monkey, rat and mouse

    NASA Technical Reports Server (NTRS)

    Nordheim, A. W.

    1985-01-01

    The erythropoiesis modeling performed in support of the Body Fluid and Blood Volume Regulation tasks is described. The mathematical formulation of the species independent model, the solutions to the steady state and dynamic versions of the model, and the individual species specific models for the human, squirrel monkey, rat and mouse are outlined. A detailed sensitivity analysis of the species independent model response to parameter changes and how those responses change from species to species is presented. The species to species response to a series of simulated stresses directly related to blood volume regulation during space flight is analyzed.

  10. Mapping the mouse dactylaplasia mutation, Dac, and a gene that controls its expression, mdac

    SciTech Connect

    Johnson, K.R.; Lane, P.W.; Ward-Bailey, P.; Davisson, M.T.

    1995-09-20

    Dactylaplasia is an inherited mouse limb malformation whose manifestation is clearly dependent on the interaction of two genes and thus represents an excellent model system for studying such gene interactions in vivo. The Dac mutation is inherited as a semidominant trait and may be a model for some forms of human ectrodactyly. Heterozygotes show absence of digits on each foot; the long bones are normal. On the SM/Ckc background on which the mutation occurred, Dac homozygotes die around birth. We mapped Dac to the distal end of Chr 19 by backcross segregation analysis. A closely linked marker was then used to distinguish -/+, Dac/+, and Dac/Dac genotypes of embryos and adults. When intercrossed with the NZB/BINJ strain, DAC homozygotes were shown to be viable and fertile, but had a more severe limb malformation (only a single remaining digit) than heterozygotes. Expression of the abnormal limb phenotypes of Dac/+ and Dac/Dac mice also depends on homozygosity for a recessive allele of another unlinked gene, mdac, that is polymorphic among inbred mouse strains. We mapped mdac to the middle Chr 13 by segregation analysis of both recombinant inbred strains and backcross progeny. 52 refs., 3 figs., 2 tabs.

  11. A gonogenic stimulated transition of mouse embryonic stem cells with enhanced control of diverse differentiation pathways

    PubMed Central

    Moshfegh, Cameron; Aires, Lina; Kisielow, Malgorzata; Vogel, Viola

    2016-01-01

    Embryonic stem (ES) cells share markers with undifferentiated primordial germ cells (PGCs). Here, we discovered that a cellular state with some molecular markers of male gonocyte induction, including a G1/S phase arrest and upregulation of specific genes such as Nanos2, Tdrd1, Ddx4, Zbtb16 and Plk1s1, can be chemically induced in male mouse ES cells in vitro, which we termed gonogenic stimulated transition (GoST). After longer culture of the resulting GoST cells without chemical stimulation, several molecular markers typical for early gonocytes were detected including the early gonocyte marker Tex101. Motivated by previous studies that found multipotency in cell lines derived from neonatal male germ cells in vitro, we then compared the differentiation potential of GoST cells to that of ES cells in vitro. Interestingly, GoST cells showed equal neurogenic, but enhanced cardiogenic and hepatogenic differentiation compared to ES cells in vitro. This work shows for the first time that some important molecular markers of the first developmental sexual differentiation program can be induced in male mouse ES cells in vitro and defines a novel concept to generate cells with enhanced multipotency. PMID:27157261

  12. Cyclic AMP in oocytes controls meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary.

    PubMed

    Wang, Yijing; Teng, Zhen; Li, Ge; Mu, Xinyi; Wang, Zhengpin; Feng, Lizhao; Niu, Wanbao; Huang, Kun; Xiang, Xi; Wang, Chao; Zhang, Hua; Xia, Guoliang

    2015-01-15

    In mammalian ovaries, a fixed population of primordial follicles forms during the perinatal stage and the oocytes contained within are arrested at the dictyate stage of meiotic prophase I. In the current study, we provide evidence that the level of cyclic AMP (cAMP) in oocytes regulates oocyte meiotic prophase I and primordial folliculogenesis in the perinatal mouse ovary. Our results show that the early meiotic development of oocytes is closely correlated with increased levels of intra-oocyte cAMP. Inhibiting cAMP synthesis in fetal ovaries delayed oocyte meiotic progression and inhibited the disassembly and degradation of synaptonemal complex protein 1. In addition, inhibiting cAMP synthesis in in vitro cultured fetal ovaries prevented primordial follicle formation. Finally, using an in situ oocyte chromosome analysis approach, we found that the dictyate arrest of oocytes is essential for primordial follicle formation under physiological conditions. Taken together, these results suggest a role for cAMP in early meiotic development and primordial follicle formation in the mouse ovary. © 2015. Published by The Company of Biologists Ltd.

  13. Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region.

    PubMed

    Haycock, Philip C; Ramsay, Michéle

    2009-10-01

    In the present study, it was hypothesized that disruption of imprinting control in the H19/Igf2 domain may be a mechanism of ethanol-induced growth retardation-a key clinical feature of the fetal alcohol spectrum disorders (FASD). To test this prediction, genomic bisulphite sequencing was carried out on 473 bp of the H19 imprinting control region in DNA obtained from midgestation F(1) hybrid mouse embryos (C57BL/6 x Mus musculus castaneus) exposed to ethanol during preimplantation development. Although ethanol-exposed placentae and embryos were severely growth retarded in comparison with saline-treated controls, DNA methylation at paternal and maternal alleles was unaffected in embryos. However, paternal alleles were significantly less methylated in ethanol-treated placentae in comparison with saline-treated controls. Partial correlations suggested that the relationship between ethanol and placental weight partly depended on DNA methylation at a CCCTC-binding factor site on the paternal allele in placentae, suggesting a novel mechanism of ethanol-induced growth retardation. In contrast, partial correlations suggested that embryo growth retardation was independent of placental growth retardation. Relaxation of allele-specific DNA methylation in control placentae in comparison with control embryos was also observed, consistent with a model of imprinting in which 1) regulation of allele-specific DNA methylation in the placenta depends on a stochastic interplay between silencer and enhancer chromatin assembly factors and 2) imprinting control mechanisms in the embryo are more robust to environmental perturbations.

  14. Improving mouse controlling and movement for people with Parkinson's disease and involuntary tremor using adaptive path smoothing technique via B-spline.

    PubMed

    Hashem, Seyed Yashar Bani; Zin, Nor Azan Mat; Yatim, Noor Faezah Mohd; Ibrahim, Norlinah Mohamed

    2014-01-01

    Many input devices are available for interacting with computers, but the computer mouse is still the most popular device for interaction. People who suffer from involuntary tremor have difficulty using the mouse in the normal way. The target participants of this research were individuals who suffer from Parkinson's disease. Tremor in limbs makes accurate mouse movements impossible or difficult without any assistive technologies to help. This study explores a new assistive technique-adaptive path smoothing via B-spline (APSS)-to enhance mouse controlling based on user's tremor level and type. APSS uses Mean filtering and B-spline to provide a smoothed mouse trajectory. Seven participants who have unwanted tremor evaluated APSS. Results show that APSS is very promising and greatly increases their control of the computer mouse. Result of user acceptance test also shows that user perceived APSS as easy to use. They also believe it to be a useful tool and intend to use it once it is available. Future studies could explore the possibility of integrating APSS with one assistive pointing technique, such as the Bubble cursor or the Sticky target technique, to provide an all in one solution for motor disabled users.

  15. Control of mouse U1a and U1b snRNA gene expression by differential transcription.

    PubMed Central

    Cáceres, J F; McKenzie, D; Thimmapaya, R; Lund, E; Dahlberg, J E

    1992-01-01

    The expression of mouse embryonic U1 snRNA (mU1b) genes is subject to stage- and tissue-specific control, being restricted to early embryos and adult tissues that contain a high proportion of stem cells capable of further differentiation. To determine the mechanism of this control we have sought to distinguish between differential RNA stability and regulation of U1 gene promoter activity in several cell types. We demonstrate here that mU1b RNA can accumulate to high levels in permanently transfected mouse 3T3 and C127 fibroblast cells which normally do not express the endogenous U1b genes, and apparently can do so without significantly interfering with cell growth. Expression of transfected chimeric U1 genes in such cells is much more efficient when their promoters are derived from a constitutively expressed mU1a gene rather than from an mU1b gene. In transgenic mice, introduced U1 transgenes with an mU1b 5' flanking region are subject to normal tissue-specific control, indicating that U1b promoter activity is restricted to tissues that normally express U1b genes. Inactivation of the embryonic genes during normal differentiation is not associated with methylation of upstream CpG-rich sequences; however, in NIH 3T3 fibroblasts, the 5' flanking regions of endogenous mU1b genes are completely methylated, indicating that DNA methylation serves to imprint the inactive state of the mU1b genes in cultured cells. Based on these results, we propose that the developmental control of U1b gene expression is due to differential activity of mU1a and mU1b promoters rather than to differential stability of U1a and U1b RNAs. Images PMID:1508717

  16. Assisting people with attention deficit hyperactivity disorder by actively reducing limb hyperactive behavior with a gyration air mouse through a controlled environmental stimulation.

    PubMed

    Shih, Ching-Hsiang

    2011-01-01

    The latest researches have adopted software technology turning the gyration air mouse into a high performance limb movement detector, and have assessed whether two persons with multiple disabilities would be able to control an environmental stimulation using limb movement. This study extends gyration air mouse functionality by actively reducing limb hyperactive behavior to assess whether two persons with attention deficit hyperactivity disorder (ADHD) would be able to actively reduce their limb hyperactive behavior by controlling their favorite stimulation on/off using a gyration air mouse with a newly developed actively limb hyperactive behavior reducing program (ALHBRP). The study was performed according to an ABAB design, in which A represented the baseline and B represented intervention phases. Data showed that both participants significantly increased their time duration of maintaining a static limb posture (TDMSLP) to activate the control system in order to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings are discussed.

  17. Deletion of neurturin impairs development of cholinergic nerves and heart rate control in postnatal mouse hearts.

    PubMed

    Downs, Anthony M; Jalloh, Hawa B; Prater, Kayla J; Fregoso, Santiago P; Bond, Cherie E; Hampton, Thomas G; Hoover, Donald B

    2016-05-01

    The neurotrophic factor neurturin is required for normal cholinergic innervation of adult mouse heart and bradycardic responses to vagal stimulation. Our goals were to determine effects of neurturin deletion on development of cardiac chronotropic and dromotropic functions, vagal baroreflex response, and cholinergic nerve density in nodal regions of postnatal mice. Experiments were performed on postnatal C57BL/6 wild-type (WT) and neurturin knockout (KO) mice. Serial electrocardiograms were recorded noninvasively from conscious pups using an ECGenie apparatus. Mice were treated with atenolol to evaluate and block sympathetic effects on heart rate (HR) and phenylephrine (PE) to stimulate the baroreflex. Immunohistochemistry was used to label cholinergic nerves in paraffin sections. WT and KO mice showed similar age-dependent increases in HR and decreases in PR interval between postnatal days (P) 2.5 and 21. Treatment with atenolol reduced HR significantly in WT and KO pups at P7.5. PE caused a reflex bradycardia that was significantly smaller in KO pups. Cholinergic nerve density was significantly less in nodal regions of P7.5 KO mice. We conclude that cholinergic nerves have minimal influence on developmental changes in HR and PR, QRS, and QTc intervals in mouse pups. However, cholinergic nerves mediate reflex bradycardia by 1 week postnatally. Deletion of neurturin impairs cholinergic innervation of the heart and the vagal efferent component of the baroreflex early during postnatal development. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  18. Bioenergetic and autophagic control by Sirt3 in response to nutrient deprivation in mouse embryonic fibroblasts.

    PubMed

    Liang, Qiuli; Benavides, Gloria A; Vassilopoulos, Athanassios; Gius, David; Darley-Usmar, Victor; Zhang, Jianhua

    2013-09-01

    Sirt3 (sirtuin 3) is an NAD-dependent deacetylase localized to mitochondria. Sirt3 expression is increased in mouse muscle and liver by starvation, which could protect against the starvation-dependent increase in oxidative stress and protein damage. Damaged proteins and organelles depend on autophagy for removal and this is critical for cell survival, but the role of Sirt3 is unclear. To examine this, we used Sirt3-KO (knockout) mouse embryonic fibroblast cells, and found that, under basal conditions, Sirt3-KO cells exhibited increased autophagy flux compared with WT (wild-type) cells. In response to nutrient deprivation, both WT and KO cells exhibited increased basal and ATP-linked mitochondrial respiration, indicating an increased energy demand. Both cells exhibited lower levels of phosphorylated mTOR (mammalian target of rapamycin) and higher autophagy flux, with KO cells exhibiting lower maximal mitochondrial respiration and reserve capacity, and higher levels of autophagy than WT cells. KO cells exhibit higher phospho-JNK (c-Jun N-terminal kinase) and phospho-c-Jun than WT cells under starvation conditions. However, inhibition of JNK activity in Sirt3-KO cells did not affect LC3-I (light chain 3-I) and LC3-II levels, indicating that Sirt3-regulated autophagy is independent of the JNK pathway. Caspase 3 activation and cell death are significantly higher in Sirt3-KO cells compared with WT cells in response to nutrient deprivation. Inhibition of autophagy by chloroquine exacerbated cell death in both WT and Sirt3-KO cells, and by 3-methyadenine exacerbated cell death in Sirt3-KO cells. These data suggest that nutrient deprivation-induced autophagy plays a protective role in cell survival, and Sirt3 decreases the requirement for enhanced autophagy and improves cellular bioenergetics.

  19. Transient Receptor Potential Canonical Type 3 Channels Control the Vascular Contractility of Mouse Mesenteric Arteries

    PubMed Central

    Yeon, Soo-In; Kim, Joo Young; Yeon, Dong-Soo; Abramowitz, Joel; Birnbaumer, Lutz; Muallem, Shmuel; Lee, Young-Ho

    2014-01-01

    Transient receptor potential canonical type 3 (TRPC3) channels are non-selective cation channels and regulate intracellular Ca2+ concentration. We examined the role of TRPC3 channels in agonist-, membrane depolarization (high K+)-, and mechanical (pressure)-induced vasoconstriction and vasorelaxation in mouse mesenteric arteries. Vasoconstriction and vasorelaxation of endothelial cells intact mesenteric arteries were measured in TRPC3 wild-type (WT) and knockout (KO) mice. Calcium concentration ([Ca2+]) was measured in isolated arteries from TRPC3 WT and KO mice as well as in the mouse endothelial cell line bEnd.3. Nitric oxide (NO) production and nitrate/nitrite concentrations were also measured in TRPC3 WT and KO mice. Phenylephrine-induced vasoconstriction was reduced in TRPC3 KO mice when compared to that of WT mice, but neither high K+- nor pressure-induced vasoconstriction was altered in TRPC3 KO mice. Acetylcholine-induced vasorelaxation was inhibited in TRPC3 KO mice and by the selective TRPC3 blocker pyrazole-3. Acetylcholine blocked the phenylephrine-induced increase in Ca2+ ratio and then relaxation in TRPC3 WT mice but had little effect on those outcomes in KO mice. Acetylcholine evoked a Ca2+ increase in endothelial cells, which was inhibited by pyrazole-3. Acetylcholine induced increased NO release in TRPC3 WT mice, but not in KO mice. Acetylcholine also increased the nitrate/nitrite concentration in TRPC3 WT mice, but not in KO mice. The present study directly demonstrated that the TRPC3 channel is involved in agonist-induced vasoconstriction and plays important role in NO-mediated vasorelaxation of intact mesenteric arteries. PMID:25310225

  20. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg

    PubMed Central

    Bianchi, Enrica; Sette, Claudio

    2011-01-01

    Fertilization is a very complex biological process that requires the perfect cooperation between two highly specialized cells: the male and female gametes. The oocyte provides the physical space where this process takes place, most of the energetic need, and half of the genetic contribution. The spermatozoon mostly contributes the other half of the chromosomes and it is specialized to reach and to penetrate the oocyte. Notably, the mouse oocyte and early embryo are transcriptionally inactive. Hence, they fully depend on the maternal mRNAs and proteins stored during oocyte maturation to drive the onset of development. The new embryo develops autonomously around the four-cell stage, when maternal supplies are exhausted and the zygotic genome is activated in mice. This oocyte-to-embryo transition needs an efficient and tightly regulated translation of the maternally-inherited mRNAs, which likely contributes to embryonic genome activation. Full understanding of post-transcriptional regulation of gene expression in early embryos is crucial to understand the reprogramming of the embryonic genome, it might help driving reprogramming of stem cells in vitro and will likely improve in vitro culturing of mammalian embryos for assisted reproduction. Nevertheless, the knowledge of the mechanism(s) underlying this fundamental step in embryogenesis is still scarce, especially if compared to other model organisms. We will review here the current knowledge on the post-transcriptional control of gene expression in mouse early embryos and discuss some of the unanswered questions concerning this fascinating field of biology. PMID:24710195

  1. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    PubMed Central

    Holguín, Angela V.; Rangel, Guillermo; Clavijo, Viviana; Prada, Catalina; Mantilla, Marcela; Gomez, María Catalina; Kutter, Elizabeth; Taylor, Corinda; Fineran, Peter C.; Barrios, Andrés Fernando González; Vives, Martha J.

    2015-01-01

    Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%). However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization. PMID:26274971

  2. Non-target effects of an introduced biological control agent on deer mouse ecology

    Treesearch

    Dean E. Pearson; Kevin S. McKelvey; Leonard F. Ruggiero

    2000-01-01

    Release of exotic insects as biological control agents is a common approach to controlling exotic plants. Though controversy has ensued regarding the deleterious direct effects of biological control agents to non-target species, few have examined the indirect effects of a "well-behaved" biological control agent on native fauna. We studied a grassland in west-...

  3. Does soaking temperature during controlled slow freezing of pre-pubertal mouse testes influence course of in vitro spermatogenesis?

    PubMed

    Arkoun, Brahim; Dumont, Ludovic; Milazzo, Jean-Pierre; Rondanino, Christine; Bironneau, Amandine; Wils, Julien; Rives, Nathalie

    2016-06-01

    The banking of testicular tissue before highly gonadotoxic treatment is a prerequisite for the preservation of fertility in pre-pubertal boys not yet producing sperm. The aim of the current study is to evaluate the impact of a soaking temperature performed at -7 °C, -8 °C or -9 °C on the ability of frozen-thawed mouse spermatogonial stem cells (SSCs) to generate haploid germ cells after in vitro maturation. Testes of 6.5-day-old post-partum CD-1 mice were cryopreserved by using a controlled slow freezing protocol with soaking at -7 °C, -8 °C or -9 °C. Frozen-thawed pre-pubertal testicular tissues were cultured in vitro on agarose gel for 30 days. Histological evaluations were performed and flagellated late spermatids were counted after mechanical dissection of the cultured tissues. The differentiation of frozen SSCs into elongated spermatids was more efficient after treatment at -9 °C than at -7 °C and -8 °C. After dissection, flagellated late spermatids were observed by using Shorr staining. The number of flagellated late spermatids was significantly decreased after slow freezing when compared with a fresh tissue control. Therefore, the soaking temperature during slow freezing of pre-pubertal mouse testicular tissue might positively influence the course of in vitro spermatogenesis. Our slow freezing protocol with a soaking temperature at -9 °C was the optimal condition in terms of the achievement of in vitro spermatogenesis with a higher production of elongated spermatids, although the effectiveness of the maturation process was reduced compared with the fresh tissue control.

  4. Salvinorin A exerts opposite presynaptic controls on neurotransmitter exocytosis from mouse brain nerve terminals.

    PubMed

    Grilli, Massimo; Neri, Elisa; Zappettini, Stefania; Massa, Francesca; Bisio, Angela; Romussi, Giovanni; Marchi, Mario; Pittaluga, Anna

    2009-01-01

    We investigated the effects of salvinorin A on the basal and the 12 mM K(+)-evoked release of preloaded [(3)H]noradenaline ([(3)H]NA) and [(3)H]serotonin ([(3)H]5-HT) from mouse hippocampal nerve terminals (synaptosomes), as well as on the basal and 12mM K(+)-evoked release of preloaded [(3)H]dopamine ([(3)H]DA) from mouse striatal and prefrontal cortex (PFc) synaptosomes. Salvinorin A (0.1-1000 nM) failed to affect the basal release of amines, but inhibited the 12 mM K(+)-evoked, Ca(2+)-dependent, exocytotic-like release of [(3)H]5-HT and [(3)H]DA. At the same concentration, salvinorin A facilitated the 12 mM K(+)-evoked, Ca(2+)-dependent, exocytotic-like release of [(3)H]NA. These effects could not be observed in pertussis toxin (PTx) entrapped synaptosomes. The broad spectrum kappa-opioid receptor (KOR) antagonist norbinaltorphimine (norBNI, 1-100 nM) antagonized the inhibition of [(3)H]5-HT and [(3)H]DA exocytosis as well as the facilitation of [(3)H]NA overflow induced by 100 nM salvinorin A. The KOR agonist U69593 (1-100 nM) mimicked salvinorin A in inhibiting [(3)H]5-HT and of [(3)H]DA exocytosis, its effect being prevented by norBNI, but leaving unchanged the K(+)-evoked release of [(3)H]NA. The effects of Salvinorin A on neurotransmitter exocytosis were not prevented by the selective mu opioid (MOR) receptor antagonist CTAP (10-100 nM), whereas facilitation of [(3)H]NA exocytosis, but not inhibition of [(3)H]5-HT and [(3)H]DA K(+)-evoked release, was counteracted by the delta opioid receptor (DOR) antagonist naltrindole (1-100 nM). We conclude that salvinorin A presynaptically modulates central NA, 5-HT, and DA exocytosis evoked by a mild depolarizing stimulus by acting at presynaptic opioid receptors having different pharmacological profiles.

  5. Semaphorin 4D induces vaginal epithelial cell apoptosis to control mouse postnatal vaginal tissue remodeling.

    PubMed

    Ito, Takuji; Bai, Tao; Tanaka, Tetsuji; Yoshida, Kenji; Ueyama, Takashi; Miyajima, Masayasu; Negishi, Takayuki; Kawasaki, Takahiko; Takamatsu, Hyota; Kikutani, Hitoshi; Kumanogoh, Atsushi; Yukawa, Kazunori

    2015-02-01

    The opening of the mouse vaginal cavity to the skin is a postnatal tissue remodeling process that occurs at approximately five weeks of age for the completion of female genital tract maturation at puberty. The tissue remodeling process is primarily composed of a hormonally triggered apoptotic process predominantly occurring in the epithelium of the distal section of the vaginal cavity. However, the detailed mechanism underlying the apoptotic induction remains to be elucidated. In the present study, it was observed that the majority of BALB/c mice lacking the class 4 semaphorin, semaphorin 4D (Sema4D), developed imperforate vagina and hydrometrocolpos resulting in a perpetually unopened vaginal cavity regardless of a normal estrogen level comparable with that in wild‑type (WT) mice. Administration of β‑estradiol to infant Sema4D‑deficient (Sema4D‑/‑) mice did not induce precocious vaginal opening, which was observed in WT mice subjected to the same β‑estradiol administration, excluding the possibility that the closed vaginal phenotype was due to insufficient estrogen secretion at the time of vaginal opening. In order to assess the role of Sema4D in the postnatal vaginal tissue remodeling process, the expression of Sema4D and its receptor, plexin‑B1, was examined as well as the level of apoptosis in the vaginal epithelia of five‑week‑old WT and Sema4D‑/‑ mice. Immunohistochemical analyses confirmed the localization of Sema4D and plexin‑B1 in the mouse vaginal epithelia. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay and immunohistochemistry detecting activated caspase‑3 revealed significantly fewer apoptotic cells in situ in the vaginal mucosa of five‑week‑old Sema4D‑/‑ mice compared with WT mice. The addition of recombinant Sema4D to Sema4D‑/‑ vaginal epithelial cells in culture significantly enhanced apoptosis of the vaginal epithelial cells, demonstrating the apoptosis‑inducing activity of Sema4D. The

  6. Constrained transcription factor spacing is prevalent and important for transcriptional control of mouse blood cells.

    PubMed

    Ng, Felicia S L; Schütte, Judith; Ruau, David; Diamanti, Evangelia; Hannah, Rebecca; Kinston, Sarah J; Göttgens, Berthold

    2014-12-16

    Combinatorial transcription factor (TF) binding is essential for cell-type-specific gene regulation. However, much remains to be learned about the mechanisms of TF interactions, including to what extent constrained spacing and orientation of interacting TFs are critical for regulatory element activity. To examine the relative prevalence of the 'enhanceosome' versus the 'TF collective' model of combinatorial TF binding, a comprehensive analysis of TF binding site sequences in large scale datasets is necessary. We developed a motif-pair discovery pipeline to identify motif co-occurrences with preferential distance(s) between motifs in TF-bound regions. Utilizing a compendium of 289 mouse haematopoietic TF ChIP-seq datasets, we demonstrate that haematopoietic-related motif-pairs commonly occur with highly conserved constrained spacing and orientation between motifs. Furthermore, motif clustering revealed specific associations for both heterotypic and homotypic motif-pairs with particular haematopoietic cell types. We also showed that disrupting the spacing between motif-pairs significantly affects transcriptional activity in a well-known motif-pair-E-box and GATA, and in two previously unknown motif-pairs with constrained spacing-Ets and Homeobox as well as Ets and E-box. In this study, we provide evidence for widespread sequence-specific TF pair interaction with DNA that conforms to the 'enhanceosome' model, and furthermore identify associations between specific haematopoietic cell-types and motif-pairs. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Organization of pontine reticulospinal inputs to motoneurons controlling axial and limb muscles in the neonatal mouse

    PubMed Central

    Sivertsen, Magne S.; Glover, Joel C.

    2014-01-01

    Using optical recording of synaptically mediated calcium transients and selective spinal lesions, we investigated the pattern of activation of spinal motoneurons (MNs) by the pontine reticulospinal projection in isolated brain stem-spinal cord preparations from the neonatal mouse. Stimulation sites throughout the region where the pontine reticulospinal neurons reside reliably activated MNs at cervical, thoracic, and lumbar levels. Activation was similar in MNs ipsi- and contralateral to the stimulation site, similar in medial and lateral motor columns that contain trunk and limb MNs, respectively, and similar in the L2 and L5 segments that predominantly contain flexor and extensor MNs, respectively. In nonlesioned preparations, responses in both ipsi- and contralateral MNs followed individual stimuli in stimulus trains nearly one-to-one (with few failures). After unilateral hemisection at C1 on the same side as the stimulation, responses had substantially smaller magnitudes and longer latencies and no longer followed individual stimuli. After unilateral hemisection at C1 on the side opposite to the stimulation, the responses were also smaller, but their latencies were not affected. Thus we distinguish two pontine reticulospinal pathways to spinal MNs, one uncrossed and the other crossed, of which the uncrossed pathway transmits more faithfully and appears to be more direct. PMID:24944221

  8. Developmental control of sumoylation pathway proteins in mouse male germ cells.

    PubMed

    La Salle, Sophie; Sun, Fengyun; Zhang, Xiang-Dong; Matunis, Michael J; Handel, Mary Ann

    2008-09-01

    Protein sumoylation regulates a variety of nuclear functions and has been postulated to be involved in meiotic chromosome dynamics as well as other processes of spermatogenesis. Here, the expression and distribution of sumoylation pathway genes and proteins were determined in mouse male germ cells, with a particular emphasis on prophase I of meiosis. Immunofluorescence microscopy revealed that SUMO1, SUMO2/3 and UBE2I (also known as UBC9) were localized to the XY body in pachytene and diplotene spermatocytes, while only SUMO2/3 and UBE2I were detected near centromeres in metaphase I spermatocytes. Quantitative RT-PCR and Western blotting were used to examine the expression of sumoylation pathway genes and proteins in enriched preparations of leptotene/zygotene spermatocytes, prepubertal and adult pachytene spermatocytes, as well as round spermatids. Two general expression profiles emerged from these data. The first profile, where expression was more prominent during meiosis, identified sumoylation pathway participants that could be involved in meiotic chromosome dynamics. The second profile, elevated expression in post-meiotic spermatids, suggested proteins that could be involved in spermiogenesis-related sumoylation events. In addition to revealing differential expression of protein sumoylation mediators, which suggests differential functioning, these data demonstrate the dynamic nature of SUMO metabolism during spermatogenesis.

  9. Effect of human mesenchymal stem cell transplantation on cerebral ischemic volume‐controlled photothrombotic mouse model

    PubMed Central

    Choi, Yun‐Kyong; Urnukhsaikhan, Enerelt; Yoon, Hee‐Hoon; Seo, Young‐Kwon

    2016-01-01

    Abstract Various animal models of stroke have been developed to simulate the human stroke with the development of the ischemic method facilitates preclinical stroke research. The photothrombotic ischemia model, based on the intravascular photochemical reaction, is widely used for in vivo studies. However, this study has limitations, which generated a relatively small‐sized infarction model on superficial cortex compared to that of the MCAO stroke model. In this study, the photothorombosis mouse model is adapted and the optimum conditions for generation of cell death and deficits with high reproducibility is determined. The extent of damage within the cortex was assessed by infarct volume and cellular/behavioral analyses. In this model, the neural cell death and inflammatory responses is detected; moreover, the degree of behavioral impairment is correlated with the brain infarct volume. Further, to enhance the understanding of neural repair, the effect of neural differentiation by transplantation of human bone marrow‐derived mesenchymal stem cells (BM‐MSCs) is analyzed. The authors demonstrated that transplantation of BM‐MSCs promoted the neural differentiation and behavioral performance in their photothrombosis model. Therefore, this research was meaningful to provide a stable animal model of stroke with low variability. Moreover, this model will facilitate development of novel MSC‐based therapeutics for stroke. PMID:27440447

  10. Mouse aldehyde-oxidase-4 controls diurnal rhythms, fat deposition and locomotor activity

    PubMed Central

    Terao, Mineko; Barzago, Maria Monica; Kurosaki, Mami; Fratelli, Maddalena; Bolis, Marco; Borsotti, Andrea; Bigini, Paolo; Micotti, Edoardo; Carli, Mirjana; Invernizzi, Roberto William; Bagnati, Renzo; Passoni, Alice; Pastorelli, Roberta; Brunelli, Laura; Toschi, Ivan; Cesari, Valentina; Sanoh, Seigo; Garattini, Enrico

    2016-01-01

    Aldehyde-oxidase-4 (AOX4) is one of the mouse aldehyde oxidase isoenzymes and its physiological function is unknown. The major source of AOX4 is the Harderian-gland, where the enzyme is characterized by daily rhythmic fluctuations. Deletion of the Aox4 gene causes perturbations in the expression of the circadian-rhythms gene pathway, as indicated by transcriptomic analysis. AOX4 inactivation alters the diurnal oscillations in the expression of master clock-genes. Similar effects are observed in other organs devoid of AOX4, such as white adipose tissue, liver and hypothalamus indicating a systemic action. While perturbations of clock-genes is sex-independent in the Harderian-gland and hypothalamus, sex influences this trait in liver and white-adipose-tissue which are characterized by the presence of AOX isoforms other than AOX4. In knock-out animals, perturbations in clock-gene expression are accompanied by reduced locomotor activity, resistance to diet induced obesity and to hepatic steatosis. All these effects are observed in female and male animals. Resistance to obesity is due to diminished fat accumulation resulting from increased energy dissipation, as white-adipocytes undergo trans-differentiation towards brown-adipocytes. Metabolomics and enzymatic data indicate that 5-hydroxyindolacetic acid and tryptophan are novel endogenous AOX4 substrates, potentially involved in AOX4 systemic actions. PMID:27456060

  11. Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model

    PubMed Central

    Chiu, B; Coburn, J; Pilichowska, M; Holcroft, C; Seib, F P; Charest, A; Kaplan, D L

    2014-01-01

    Background: Neuroblastoma tumour resection goal is maximal tumour removal. We hypothesise that combining surgery with sustained, local doxorubicin application can control tumour growth. Methods: We injected human neuroblastoma cells into immunocompromised mouse adrenal gland. When KELLY cell-induced tumour volume was >300 mm3, 80–90% of tumour was resected and treated as follows: instantaneous-release silk film with 100 μg doxorubicin (100IR), controlled-release film with 200 μg (200CR) over residual tumour bed; and 100 and 200 μg intravenous doxorubicin (100IV and 200IV). Tumour volume was measured and histology analysed. Results: Orthotopic tumours formed with KELLY, SK-N-AS, IMR-32, SH-SY5Y cells. Tumours reached 1800±180 mm3 after 28 days, 2200±290 mm3 after 35 days, 1280±260 mm3 after 63 days, and 1700±360 mm3 after 84 days, respectively. At 3 days post KELLY tumour resection, tumour volumes were similar across all groups (P=0.6210). Tumour growth rate was similar in untreated vs control film, 100IV vs 100IR, and 100IV vs 200IV. There was significant difference in 100IR vs 200CR (P=0.0004) and 200IV vs 200CR (P=0.0003). Tumour growth with all doxorubicin groups was slower than that of control (P: <0.0001–0.0069). At the interface of the 200CR film and tumour, there was cellular necrosis, surrounded by apoptotic cells before reaching viable tumour cells. Conclusions: Combining surgical resection and sustained local doxorubicin treatment is effective in tumour control. Administering doxorubicin in a local, controlled manner is superior to giving an equivalent intravenous dose in tumour control. PMID:24921912

  12. Signaling by FGFR2b controls the regenerative capacity of adult mouse incisors

    PubMed Central

    Parsa, Sara; Kuremoto, Koh-ichi; Seidel, Kerstin; Tabatabai, Reza; MacKenzie, BreAnne; Yamaza, Takayoshi; Akiyama, Kentaro; Branch, Jonathan; Koh, Chester J.; Alam, Denise Al; Klein, Ophir D.; Bellusci, Saverio

    2010-01-01

    Rodent incisors regenerate throughout the lifetime of the animal owing to the presence of epithelial and mesenchymal stem cells in the proximal region of the tooth. Enamel, the hardest component of the tooth, is continuously deposited by stem cell-derived ameloblasts exclusively on the labial, or outer, surface of the tooth. The epithelial stem cells that are the ameloblast progenitors reside in structures called cervical loops at the base of the incisors. Previous studies have suggested that FGF10, acting mainly through fibroblast growth factor receptor 2b (FGFR2b), is crucial for development of the epithelial stem cell population in mouse incisors. To explore the role of FGFR2b signaling during development and adult life, we used an rtTA transactivator/tetracycline promoter approach that allows inducible and reversible attenuation of FGFR2b signaling. Downregulation of FGFR2b signaling during embryonic stages led to abnormal development of the labial cervical loop and of the inner enamel epithelial layer. In addition, postnatal attenuation of signaling resulted in impaired incisor growth, characterized by failure of enamel formation and degradation of the incisors. At a cellular level, these changes were accompanied by decreased proliferation of the transit-amplifying cells that are progenitors of the ameloblasts. Upon release of the signaling blockade, the incisors resumed growth and reformed an enamel layer, demonstrating that survival of the stem cells was not compromised by transient postnatal attenuation of FGFR2b signaling. Taken together, our results demonstrate that FGFR2b signaling regulates both the establishment of the incisor stem cell niches in the embryo and the regenerative capacity of incisors in the adult. PMID:20978072

  13. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance.

    PubMed

    Langhi, Cédric; Arias, Noemí; Rajamoorthi, Ananthi; Basta, Jeannine; Lee, Richard G; Baldán, Ángel

    2017-01-01

    Obesity is a component of the metabolic syndrome, mechanistically linked to diabetes, fatty liver disease, and cardiovascular disease. Proteins that regulate the metabolic fate of intracellular lipid droplets are potential therapeutic candidates to treat obesity and its related consequences. CIDEC (cell death-inducing DFFA-like effector C), also known in mice as Fsp27 (fat-specific protein 27), is a lipid droplet-associated protein that prevents lipid mobilization and promotes intracellular lipid storage. The consequences of complete loss of FSP27 on hepatic metabolism and on insulin resistance are controversial, as both healthy and deleterious lipodystrophic phenotypes have been reported in Fsp27(-/-) mice. To test whether therapeutic silencing of Fsp27 might be useful to improve obesity, fatty liver, and glycemic control, we used antisense oligonucleotides (ASOs) in both nutritional (high-fat diet) and genetic (leptin-deficient ob/ob) mouse models of obesity, hyperglycemia, and hepatosteatosis. We show that partial silencing Fsp27 in either model results in the robust decrease in visceral fat, improved insulin sensitivity and whole-body glycemic control, and tissue-specific changes in transcripts controlling lipid oxidation and synthesis. These data suggest that partial reduction of FSP27 activity (e.g., using ASOs) might be exploited therapeutically in insulin-resistant obese or overweight patients. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. Mel-18 controls the enrichment of tumor-initiating cells in SP fraction in mouse breast cancer.

    PubMed

    Janakiraman, Harinarayanan; Nobukiyo, Asako; Inoue, Hiroko; Kanno, Masamoto

    2011-06-01

    Side population (SP) cell analysis has been used to identify and isolate a minor population of cells with stem cell properties in normal tissues and in many cancers including breast cancer cells. However, the molecular mechanisms that operate in tumor-initiating cells (TICs) in SP fraction remain unclear. The Polycomb group genes, including Bmi1 and Mel-18, have been implicated in the maintenance of hematopoietic stem cells (HSCs) and suggested to be oncogenic and tumor suppressive, respectively, in breast cancer. In this study, we determined the critical role of Mel-18 in the enrichment mechanisms of TICs with the SP phenotype in a mouse breast cancer cell line, MMK3, that was established from a breast cancer developed spontaneously in Mel-18+/- mice. The Mel-18 protein expression level significantly correlates to the percentage of SP fraction in the mouse breast cancer cell line MMK3 series. The comparison between MMK3V3 (V3) cells containing one copy of the Mel-18 gene and MMK3S2 (S2) cells having twice the amount of Mel-18 expression clearly demonstrates the above relationship. Similar results obtained with the percentage of ALDH+ cells in V3 and S2 further confirmed the correlation between protein expression level of Mel-18 and the TICs. More importantly, transplantation of SP and non-SP cells of V3 and S2 cells into the NOD/SCID mice clearly showed that the heterozygous level of Mel-18 leads to the disappearance of enrichment of TICs into SP fraction in vivo. Stem cell pathway focused gene expression profiling of V3 and S2 cells revealed that the genes Abcg2, Aldh1a1 and Dhh were highly down-regulated in V3 compared to S2. These results indicate that the precise Mel-18 expression level controls TIC enrichment mechanisms through the regulation of channel molecule of Abcg2 and functional TIC marker of Aldhlal. In conclusion, our findings revealed the significance of fine-tuning mechanisms for Mel-18 protein expression level in the maintenance of TIC into SP

  15. Characterization of the heterozygous glucokinase knockout mouse as a translational disease model for glucose control in type 2 diabetes

    PubMed Central

    Baker, D J; Atkinson, A M; Wilkinson, G P; Coope, G J; Charles, A D; Leighton, B

    2014-01-01

    Background and Purpose The global heterozygous glucokinase (GK) knockout (gkwt/del) male mouse, fed on a high-fat (60% by energy) diet, has provided a robust and reproducible model of hyperglycaemia. This model could be highly relevant to some facets of human type 2 diabetes (T2D). We aimed to investigate the ability of standard therapeutic agents to lower blood glucose at translational doses, and to explore the glucose-lowering potential of novel glucokinase activators (GKAs) in this model. Experimental Approach We measured the ability of insulin, metformin, glipizide, exendin-4 and sitagliptin, after acute or repeat dose administration, to lower free-feeding glucose levels in gkwt/del mice. Further, we measured the ability of novel GKAs, GKA23, GKA71 and AZD6370 to control glucose either alone or in combination with some standard agents. Key Results A single dose of insulin (1 unit·kg−1), metformin (150, 300 mg·kg−1), glipizide (0.1, 0.3 mg·kg−1), exendin-4 (2, 20 μg·kg−1) and GKAs reduced free-feeding glucose levels. Sitagliptin (10 mg·kg−1), metformin (300 mg·kg−1) and AZD6370 (30, 400 mg·kg−1) reduced glucose excursions on repeat dosing. At a supra-therapeutic dose (400 mg·kg−1), AZD6370 also lowered basal levels of glucose without inducing hypoglycaemia. Conclusion and Implications Standard glucose-lowering therapeutic agents demonstrated significant acute glucose lowering in male gkwt/del mice at doses corresponding to therapeutic free drug levels in man, suggesting the potential of these mice as a translatable model of human T2D. Novel GKAs also lowered glucose in this mouse model. PMID:24772483

  16. Oxygen-controlled automated neural differentiation of mouse embryonic stem cells.

    PubMed

    Mondragon-Teran, Paul; Tostoes, Rui; Mason, Chris; Lye, Gary J; Veraitch, Farlan S

    2013-03-01

    Automation and oxygen tension control are two tools that provide significant improvements to the reproducibility and efficiency of stem cell production processes. the aim of this study was to establish a novel automation platform capable of controlling oxygen tension during both the cell-culture and liquid-handling steps of neural differentiation processes. We built a bespoke automation platform, which enclosed a liquid-handling platform in a sterile, oxygen-controlled environment. An airtight connection was used to transfer cell culture plates to and from an automated oxygen-controlled incubator. Our results demonstrate that our system yielded comparable cell numbers, viabilities, metabolism profiles and differentiation efficiencies when compared with traditional manual processes. Interestingly, eliminating exposure to ambient conditions during the liquid-handling stage resulted in significant improvements in the yield of MAP2-positive neural cells, indicating that this level of control can improve differentiation processes. This article describes, for the first time, an automation platform capable of maintaining oxygen tension control during both the cell-culture and liquid-handling stages of a 2D embryonic stem cell differentiation process.

  17. Cancer Cell Expression of Autotaxin Controls Bone Metastasis Formation in Mouse through Lysophosphatidic Acid-Dependent Activation of Osteoclasts

    PubMed Central

    David, Marion; Wannecq, Estelle; Descotes, Françoise; Jansen, Silvia; Deux, Blandine; Ribeiro, Johnny; Serre, Claire-Marie; Grès, Sandra; Bendriss-Vermare, Nathalie; Bollen, Mathieu; Saez, Simone; Aoki, Junken; Saulnier-Blache, Jean-Sébastien; Clézardin, Philippe; Peyruchaud, Olivier

    2010-01-01

    Background Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorbtive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models. Methodology/Principal Findings Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to inmmunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis. Conclusion/Significance Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates

  18. Cancer cell expression of autotaxin controls bone metastasis formation in mouse through lysophosphatidic acid-dependent activation of osteoclasts.

    PubMed

    David, Marion; Wannecq, Estelle; Descotes, Françoise; Jansen, Silvia; Deux, Blandine; Ribeiro, Johnny; Serre, Claire-Marie; Grès, Sandra; Bendriss-Vermare, Nathalie; Bollen, Mathieu; Saez, Simone; Aoki, Junken; Saulnier-Blache, Jean-Sébastien; Clézardin, Philippe; Peyruchaud, Olivier

    2010-03-17

    Bone metastases are highly frequent complications of breast cancers. Current bone metastasis treatments using powerful anti-resorptive agents are only palliative indicating that factors independent of bone resorption control bone metastasis progression. Autotaxin (ATX/NPP2) is a secreted protein with both oncogenic and pro-metastatic properties. Through its lysosphospholipase D (lysoPLD) activity, ATX controls the level of lysophosphatidic acid (LPA) in the blood. Platelet-derived LPA promotes the progression of osteolytic bone metastases of breast cancer cells. We asked whether ATX was involved in the bone metastasis process. We characterized the role of ATX in osteolytic bone metastasis formation by using genetically modified breast cancer cells exploited on different osteolytic bone metastasis mouse models. Intravenous injection of human breast cancer MDA-B02 cells with forced expression of ATX (MDA-B02/ATX) to immunodeficiency BALB/C nude mice enhanced osteolytic bone metastasis formation, as judged by increased bone loss, tumor burden, and a higher number of active osteoclasts at the metastatic site. Mouse breast cancer 4T1 cells induced the formation of osteolytic bone metastases after intracardiac injection in immunocompetent BALB/C mice. These cells expressed active ATX and silencing ATX expression inhibited the extent of osteolytic bone lesions and decreased the number of active osteoclasts at the bone metastatic site. In vitro, osteoclast differentiation was enhanced in presence of MDA-B02/ATX cell conditioned media or recombinant autotaxin that was blocked by the autotaxin inhibitor vpc8a202. In vitro, addition of LPA to active charcoal-treated serum restored the capacity of the serum to support RANK-L/MCSF-induced osteoclastogenesis. Expression of autotaxin by cancer cells controls osteolytic bone metastasis formation. This work demonstrates a new role for LPA as a factor that stimulates directly cancer growth and metastasis, and osteoclast

  19. Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency

    PubMed Central

    Schoorlemmer, Jon; Pérez-Palacios, Raquel; Climent, María; Guallar, Diana; Muniesa, Pedro

    2014-01-01

    About half of the mammalian genome is occupied by DNA sequences that originate from transposable elements. Retrotransposons can modulate gene expression in different ways and, particularly retrotransposon-derived long terminal repeats, profoundly shape expression of both surrounding and distant genomic loci. This is especially important in pre-implantation development, during which extensive reprograming of the genome takes place and cells pass through totipotent and pluripotent states. At this stage, the main mechanism responsible for retrotransposon silencing, i.e., DNA methylation, is inoperative. A particular retrotransposon called muERV-L/MERVL is expressed during pre-implantation stages and contributes to the plasticity of mouse embryonic stem cells. This review will focus on the role of MERVL-derived sequences as controlling elements of gene expression specific for pre-implantation development, two-cell stage-specific gene expression, and stem cell pluripotency, the epigenetic mechanisms that control their expression, and the contributions of the pluripotency marker REX1 and the related Yin Yang 1 family of transcription factors to this regulation process. PMID:24567914

  20. A gene linked to the Igh-C locus controls the production of rheumatoid factor in the mouse

    PubMed Central

    1981-01-01

    In certain specific pathogen-free colonies, mice, upon aging, produce autoantibodies (RF) specific for the Fc portion of their IgG. In our colony, 129/Sv mice (H-2bvl; Igh-1a) have 10-20 times higher RF levels than C5BL/6 (h-2b; Igh-1b). In addition, the 129 have mainly IgA anti- IgG2a, and the B6 have mainly IgM anti-IgGl. We analyzed the genetic factors that control these differences. The high RF-producer phenotype of strain 129 was inherited as a recessive trait as indicated by the low RF levels of (129 X B6) F1 mice. About 1 of 4 129 X F1 (129 X B6) backcrosses and 1 of 10 (129 X B6) F2 mice had high RF levels, suggesting the involvement of two recessive genes in the control of this RF production. All F2 mice and all but one backcross with high IgA anti-IgG2a levels were homozygous for the Ihg-1a allele of the 129 mouse. In contrast, the B6-type RF was eight times more frequent in Igh- 1bb than in Igh-1ab or Igh-1aa mice. High RF titers of either type were suppressed in Igh-1ab mice. PMID:6972988

  1. Gesture-Controlled Interface for Contactless Control of Various Computer Programs with a Hooking-Based Keyboard and Mouse-Mapping Technique in the Operating Room

    PubMed Central

    Park, Ben Joonyeon; Jang, Taekjin; Choi, Jong Woo; Kim, Namkug

    2016-01-01

    We developed a contactless interface that exploits hand gestures to effectively control medical images in the operating room. We developed an in-house program called GestureHook that exploits message hooking techniques to convert gestures into specific functions. For quantitative evaluation of this program, we used gestures to control images of a dynamic biliary CT study and compared the results with those of a mouse (8.54 ± 1.77 s to 5.29 ± 1.00 s; p < 0.001) and measured the recognition rates of specific gestures and the success rates of tasks based on clinical scenarios. For clinical applications, this program was set up in the operating room to browse images for plastic surgery. A surgeon browsed images from three different programs: CT images from a PACS program, volume-rendered images from a 3D PACS program, and surgical planning photographs from a basic image viewing program. All programs could be seamlessly controlled by gestures and motions. This approach can control all operating room programs without source code modification and provide surgeons with a new way to safely browse through images and easily switch applications during surgical procedures. PMID:26981146

  2. Gesture-Controlled Interface for Contactless Control of Various Computer Programs with a Hooking-Based Keyboard and Mouse-Mapping Technique in the Operating Room.

    PubMed

    Park, Ben Joonyeon; Jang, Taekjin; Choi, Jong Woo; Kim, Namkug

    2016-01-01

    We developed a contactless interface that exploits hand gestures to effectively control medical images in the operating room. We developed an in-house program called GestureHook that exploits message hooking techniques to convert gestures into specific functions. For quantitative evaluation of this program, we used gestures to control images of a dynamic biliary CT study and compared the results with those of a mouse (8.54 ± 1.77 s to 5.29 ± 1.00 s; p < 0.001) and measured the recognition rates of specific gestures and the success rates of tasks based on clinical scenarios. For clinical applications, this program was set up in the operating room to browse images for plastic surgery. A surgeon browsed images from three different programs: CT images from a PACS program, volume-rendered images from a 3D PACS program, and surgical planning photographs from a basic image viewing program. All programs could be seamlessly controlled by gestures and motions. This approach can control all operating room programs without source code modification and provide surgeons with a new way to safely browse through images and easily switch applications during surgical procedures.

  3. Effects of biological control agents and exotic plant invasion on deer mouse populations

    Treesearch

    Yvette K. Ortega; Dean E. Pearson; Kevin S. McKelvey

    2004-01-01

    Exotic insects are commonly introduced as biological control agents to reduce densities of invasive exotic plants. Although current biocontrol programs for weeds take precautions to minimize ecological risks, little attention is paid to the potential nontarget effects of introduced food subsidies on native consumers. Previous research demonstrated that two gall flies (...

  4. Yap controls stem/progenitor cell proliferation in the mouse postnatal epidermis.

    PubMed

    Beverdam, Annemiek; Claxton, Christina; Zhang, Xiaomeng; James, Gregory; Harvey, Kieran F; Key, Brian

    2013-06-01

    Tissue renewal is an ongoing process in the epithelium of the skin. We have begun to examine the genetic mechanisms that control stem/progenitor cell activation in the postnatal epidermis. The conserved Hippo pathway regulates stem cell turnover in arthropods through to vertebrates. Here we show that its downstream effector, yes-associated protein (YAP), is active in the stem/progenitor cells of the postnatal epidermis. Overexpression of a C-terminally truncated YAP mutant in the basal epidermis of transgenic mice caused marked expansion of epidermal stem/progenitor cell populations. Our data suggest that the C-terminus of YAP controls the balance between stem/progenitor cell proliferation and differentiation in the postnatal interfollicular epidermis. We conclude that YAP functions as a molecular switch of stem/progenitor cell activation in the epidermis. Moreover, our results highlight YAP as a possible therapeutic target for diseases such as skin cancer, psoriasis, and epidermolysis bullosa.

  5. Rb and N-ras Function Together To Control Differentiation in the Mouse

    PubMed Central

    Takahashi, Chiaki; Bronson, Roderick T.; Socolovsky, Merav; Contreras, Bernardo; Lee, Kwang Youl; Jacks, Tyler; Noda, Makoto; Kucherlapati, Raju; Ewen, Mark E.

    2003-01-01

    The product of the retinoblastoma tumor suppressor gene (Rb) can control cell proliferation and promote dif-ferentiation. Murine embryos nullizygous for Rb die midgestation with defects in cell cycle regulation, control of apoptosis, and terminal differentiation of several tissues, including skeletal muscle, nervous system, and lens. Previous cell culture-based experiments have suggested that the retinoblastoma protein (pRb) and Ras operate in a common pathway to control cellular differentiation. Here we have tested the hypothesis that the proto-oncogene N-ras participates in Rb-dependent regulation of differentiation by generating and characterizing murine embryos deficient in both N-ras and Rb. We show that deletion of N-ras rescues a unique subset of the developmental defects associated with nullizygosity of Rb, resulting in a significant extension of life span. Rb−/−; N-ras−/− skeletal muscle has normal fiber density, myotube length and thickness, in contrast to Rb-deficient embryos. Additionally, Rb−/−; N-ras−/− muscle shows a restoration in the expression of the late muscle-specific gene MCK, and this correlates with a significant potentiation of MyoD transcriptional activity in Rb−/−; N-ras−/−, compared to Rb−/− myoblasts in culture. The improved differentiation of skeletal muscle in Rb−/−; N-ras−/− embryos occurs despite evidence of deregulated proliferation and apoptosis, as seen in Rb-deficient animals. Our findings suggest that the control of differentiation and proliferation by Rb are genetically separable. PMID:12861012

  6. Creation of a Mouse with Stress-Induced Dystonia: Control of an ATPase Chaperone

    DTIC Science & Technology

    2013-04-01

    the dark; and hindlimb extension in apparent sleep . Hyperextension of the hindlimbs is the dominant symptom. Caudal hyperextension is seen when... sleeping mice are awakened and take their first steps, but then the animals gain some control. During continued ambulation, the legs often show caudal...climb upside down on their food rack. Affected mice display caudally extended hindlimb position during apparent sleep , scored ~50% of the time in

  7. The Gdap1 knockout mouse mechanistically links redox control to Charcot-Marie-Tooth disease.

    PubMed

    Niemann, Axel; Huber, Nina; Wagner, Konstanze M; Somandin, Christian; Horn, Michael; Lebrun-Julien, Frédéric; Angst, Brigitte; Pereira, Jorge A; Halfter, Hartmut; Welzl, Hans; Feltri, M Laura; Wrabetz, Lawrence; Young, Peter; Wessig, Carsten; Toyka, Klaus V; Suter, Ueli

    2014-03-01

    The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot-Marie-Tooth disease. We found that Gdap1 knockout mice (Gdap1(-/-)), mimicking genetic alterations of patients suffering from severe forms of Charcot-Marie-Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in Gdap1(-/-) mice and mitochondrial transport is impaired in cultured sensory neurons of Gdap1(-/-) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of Gdap1(-/-) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged Gdap1(-/-) mice compared with controls. Our findings demonstrate that Charcot-Marie-Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione.

  8. Retinoic acid controls the bilateral symmetry of somite formation in the mouse embryo.

    PubMed

    Vermot, Julien; Gallego Llamas, Jabier; Fraulob, Valérie; Niederreither, Karen; Chambon, Pierre; Dollé, Pascal

    2005-04-22

    A striking characteristic of vertebrate embryos is their bilaterally symmetric body plan, which is particularly obvious at the level of the somites and their derivatives such as the vertebral column. Segmentation of the presomitic mesoderm must therefore be tightly coordinated along the left and right embryonic sides. We show that mutant mice defective for retinoic acid synthesis exhibit delayed somite formation on the right side. Asymmetric somite formation correlates with a left-right desynchronization of the segmentation clock oscillations. These data implicate retinoic acid as an endogenous signal that maintains the bilateral synchrony of mesoderm segmentation, and therefore controls bilateral symmetry, in vertebrate embryos.

  9. Molecular mechanisms of cell cycle control in the mouse Y1 adrenal cell line.

    PubMed

    Costa, Erico T; Forti, Fábio L; Rocha, Kátia M; Moraes, Miriam S; Armelin, Hugo A

    2004-11-01

    Y1 adrenocortical tumor cells possess amplified and overexpressed c-Ki-ras proto-oncogene, displaying chronic high levels of the c-Ki-Ras-GTP protein. Despite this oncogenic lesion, we previously reported that Y1 cells retain tight regulatory mechanisms of cell cycle control typified by the mitogenic response triggered by FGF2 in G0/G1-arrested cells. ACTH, on the other hand, elicits cAMP/PKA-mediated antimitogenic mechanisms involving Akt/PKB dephosphorylation/deactivation and c-Myc protein degradation, blocking G1 phase progression stimulated by FGF2. In this paper we report that ACTH does not directly antagonize any of the early or late sequential steps comprising the mitogenic response triggered by FGF2. In effect, ACTH targets deactivation of constitutively phosphorylated-Akt, restraining the potential of c-Ki-Ras-GTP to subvert Y1 cell cycle control. Thus, we can consider ACTH a tumor suppressor rather than an antimitogenic hormone. In addition, we present initial results showing that high constitutive levels of c-Ki-Ras-GTP render Y1 cells susceptible to dye upon FGF2 treatment. This surprising FGF2 death-effect, that is independent of the well known FGF2-mitogenic activity, might involve a natural unsuspected mechanism for restraining oncogene-induced proliferation.

  10. Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha

    PubMed Central

    Martinot, Emmanuelle; Baptissart, Marine; Véga, Aurélie; Sèdes, Lauriane; Rouaisnel, Betty; Vaz, Fred; Saru, Jean-Paul; de Haze, Angélique; Baron, Silvère; Caira, Françoise; Beaudoin, Claude; Volle, David H.

    2017-01-01

    Bile acids (BAs) are molecules with endocrine activities controlling several physiological functions such as immunity, glucose homeostasis, testicular physiology and male fertility. The role of the nuclear BA receptor FXRα in the control of BA homeostasis has been well characterized. The present study shows that testis synthetize BAs. We demonstrate that mice invalidated for the gene encoding FXRα have altered BA homeostasis in both liver and testis. In the absence of FXRα, BA exposure differently alters hepatic and testicular expression of genes involved in BA synthesis. Interestingly, Fxrα-/- males fed a diet supplemented with BAs show alterations of testicular physiology and sperm production. This phenotype was correlated with the altered testicular BA homeostasis and the production of intermediate metabolites of BAs which led to the modulation of CAR signaling pathways within the testis. The role of the CAR signaling pathways within testis was validated using specific CAR agonist (TCPOBOP) and inverse agonist (androstanol) that respectively inhibited or reproduced the phenotype observed in Fxrα-/- males fed BA-diet. These data open interesting perspectives to better define how BA homeostasis contributes to physiological or pathophysiological conditions via the modulation of CAR activity. PMID:28181583

  11. Bile acid homeostasis controls CAR signaling pathways in mouse testis through FXRalpha.

    PubMed

    Martinot, Emmanuelle; Baptissart, Marine; Véga, Aurélie; Sèdes, Lauriane; Rouaisnel, Betty; Vaz, Fred; Saru, Jean-Paul; de Haze, Angélique; Baron, Silvère; Caira, Françoise; Beaudoin, Claude; Volle, David H

    2017-02-09

    Bile acids (BAs) are molecules with endocrine activities controlling several physiological functions such as immunity, glucose homeostasis, testicular physiology and male fertility. The role of the nuclear BA receptor FXRα in the control of BA homeostasis has been well characterized. The present study shows that testis synthetize BAs. We demonstrate that mice invalidated for the gene encoding FXRα have altered BA homeostasis in both liver and testis. In the absence of FXRα, BA exposure differently alters hepatic and testicular expression of genes involved in BA synthesis. Interestingly, Fxrα-/- males fed a diet supplemented with BAs show alterations of testicular physiology and sperm production. This phenotype was correlated with the altered testicular BA homeostasis and the production of intermediate metabolites of BAs which led to the modulation of CAR signaling pathways within the testis. The role of the CAR signaling pathways within testis was validated using specific CAR agonist (TCPOBOP) and inverse agonist (androstanol) that respectively inhibited or reproduced the phenotype observed in Fxrα-/- males fed BA-diet. These data open interesting perspectives to better define how BA homeostasis contributes to physiological or pathophysiological conditions via the modulation of CAR activity.

  12. p53 controls neuronal death in the CA3 region of the newborn mouse hippocampus.

    PubMed

    Murase, Sachiko; Poser, Steve W; Joseph, Joby; McKay, Ronald D

    2011-08-01

    It is important to determine the mechanisms controlling the number of neurons in the nervous system. Previously, we reported that neuronal activity plays a central role in controlling neuron number in the neonatal hippocampus of rodents. Neuronal survival requires sustained activation of the serine-threonine kinase Akt, which is initiated by neurotrophins and continued for several hours by neuronal activity and integrin signaling. Here, we focus on the CA3 region to show that neuronal apoptosis requires p53. As in wild-type animals, neuronal death occurs in the first postnatal week and ends by postnatal day (P)10 in p53(-/-) mice. During this period, the CA3 region of p53(-/-) mice contains significantly lower numbers of apoptotic cells, and at the end of the death period, it contains more neurons than the wild type. At P10, the p53(-/-) CA3 region contains a novel subpopulation of neurons with small soma size. These neurons show normal levels of tropomyosin receptor kinase receptor activation, but lower levels of activated Akt than the neurons with somata of normal size. These results suggest that p53 is the key downstream regulator of the novel survival-signaling pathway that regulates the number of CA3 neurons in the first 10 days of postnatal life.

  13. Controlled drug release from antibiotic-loaded layered double hydroxide coatings on porous titanium implants in a mouse model.

    PubMed

    Badar, Muhammad; Rahim, Muhammad Imran; Kieke, Marc; Ebel, Thomas; Rohde, Manfred; Hauser, Hansjörg; Behrens, Peter; Mueller, Peter P

    2015-06-01

    As an alternative to degradable organic coatings the possibility of using layered double hydroxides (LDHs) to generate implant coatings for controlled drug delivery was evaluated in vivo and in vitro. Coatings prepared from LDH suspensions dissolved slowly and appeared compatible with cultured cells. LDH coatings loaded with an antibiotic resulted in antibacterial effects in vitro. The LDH coating prolonged the drug release period and improved the proliferation of adherent cells in comparison to pure drug coatings. However, during incubation in physiological solutions the LDH coatings became brittle and pieces occasionally detached from the surface. For stress protection porous titanium implants were investigated as a substrate for the coatings. The pores prevented premature detachment of the coatings. To evaluate the coated porous implants in vivo a mouse model was established. To monitor bacterial infection of implants noninvasive in vivo imaging was used to monitor luminescently labeled Pseudomonas aeruginosa. In this model porous implants with antibiotic-loaded LDH coatings could antagonize bacterial infections for over 1 week. The findings provide evidence that delayed drug delivery from LDH coatings could be feasible in combination with structured implant surfaces.

  14. A new mouse line for cell ablation by diphtheria toxin subunit A controlled by a Cre-dependent FLEx switch.

    PubMed

    Plummer, Nicholas W; Ungewitter, Erica K; Smith, Kathleen G; Yao, Humphrey H-C; Jensen, Patricia

    2017-09-05

    Recombinase responsive mouse lines expressing diphtheria toxin subunit A (DTA) are well established tools for targeted ablation of genetically defined cell populations. Here we describe a new knock-in allele at the Gt(Rosa)26Sor locus that retains the best features of previously described DTA alleles-including a CAG promoter, attenuated mutant DTA cDNA, and ubiquitous EGFP labeling-with the addition of a Cre-dependent FLEx switch for tight control of expression. The FLEx switch consists of two pairs of antiparallel lox sites requiring Cre-mediated recombination for inversion of the DTA to the proper orientation for transcription. We demonstrate its utility by Cre-dependent ablation of both a broad domain in the embryonic nervous system and a discrete population of cells in the fetal gonads. We conclude that this new DTA line is useful for targeted ablation of genetically-defined cell populations. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  15. Inactivation of Six2 in mouse identifies a novel genetic mechanism controlling development and growth of the cranial base.

    PubMed

    He, Guiyuan; Tavella, Sara; Hanley, Karen Piper; Self, Michelle; Oliver, Guillermo; Grifone, Raphaëlle; Hanley, Neil; Ward, Christopher; Bobola, Nicoletta

    2010-08-15

    The cranial base is essential for integrated craniofacial development and growth. It develops as a cartilaginous template that is replaced by bone through the process of endochondral ossification. Here, we describe a novel and specific role for the homeoprotein Six2 in the growth and elongation of the cranial base. Six2-null newborn mice display premature fusion of the bones in the cranial base. Chondrocyte differentiation is abnormal in the Six2-null cranial base, with reduced proliferation and increased terminal differentiation. Gain-of-function experiments indicate that Six2 promotes cartilage development and growth in other body areas and appears therefore to control general regulators of chondrocyte differentiation. Our data indicate that the main factors restricting Six2 function to the cranial base are tissue-specific transcription of the gene and compensatory effects of other Six family members. The comparable expression during human embryogenesis and the high protein conservation from mouse to human implicate SIX2 loss-of-function as a potential congenital cause of anterior cranial base defects in humans.

  16. Vitamin D receptor controls expression of the anti-aging klotho gene in mouse and human renal cells.

    PubMed

    Forster, Ryan E; Jurutka, Peter W; Hsieh, Jui-Cheng; Haussler, Carol A; Lowmiller, Christine L; Kaneko, Ichiro; Haussler, Mark R; Kerr Whitfield, G

    2011-10-28

    Isoforms of the mammalian klotho protein serve as membrane co-receptors that regulate renal phosphate and calcium reabsorption. Phosphaturic effects of klotho are mediated in cooperation with fibroblast growth factor receptor-1 and its FGF23 ligand. The vitamin D receptor and its 1,25-dihydroxyvitamin D(3) ligand are also crucial for calcium and phosphate regulation at the kidney and participate in a feedback loop with FGF23 signaling. Herein we characterize vitamin D receptor-mediated regulation of klotho mRNA expression, including the identification of vitamin D responsive elements (VDREs) in the vicinity of both the mouse and human klotho genes. In keeping with other recent studies of vitamin D-regulated genes, multiple VDREs control klotho expression, with the most active elements located at some distance (-31 to -46 kb) from the klotho transcriptional start site. We therefore postulate that the mammalian klotho gene is up-regulated by liganded VDR via multiple remote VDREs. The phosphatemic actions of 1,25-dihydroxyvitamin D(3) are thus opposed via the combined phosphaturic effects of FGF23 and klotho, both of which are upregulated by the liganded vitamin D receptor. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Critical role of EBNA1-specific CD4+ T cells in the control of mouse Burkitt lymphoma in vivo.

    PubMed

    Fu, Tihui; Voo, Kui Shin; Wang, Rong-Fu

    2004-08-01

    CD4+ T cells play important roles in orchestrating host immune responses against cancer and infectious diseases. Although EBV-encoded nuclear antigen 1-specific (EBNA1-specific) CD4+ T cells have been implicated in controlling the growth of EBV-associated tumors such as Burkitt lymphoma (BL) in vitro, direct evidence for their in vivo function remains elusive due to the lack of an appropriate experimental BL model. Here, we describe the development of a mouse EBNA1-expressing BL tumor model and the identification of 2 novel MHC H-2I-A(b)-restricted T cell epitopes derived from EBNA1. Using our murine BL tumor model and the relevant peptides, we show that vaccination of mice with EBNA1 peptide-loaded DCs can elicit CD4+ T cell responses. These EBNA1-specific CD4+ T cells recognized peptide-pulsed targets as well as EBNA1-expressing tumor cells and were necessary and sufficient for suppressing tumor growth in vivo. By contrast, EBNA1 peptide-reactive CD8+ T cells failed to recognize tumor cells and did not contribute to protective immunity. These studies represent what we believe to be the first demonstration that EBNA1-specific CD4+ T cells can suppress tumor growth in vivo, which suggests that CD4+ T cells play an important role in generating protective immunity against EBV-associated cancer.

  18. Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression.

    PubMed

    Zuniga, Aimée; Michos, Odyssé; Spitz, François; Haramis, Anna-Pavlina G; Panman, Lia; Galli, Antonella; Vintersten, Kristina; Klasen, Christian; Mansfield, William; Kuc, Sylwia; Duboule, Denis; Dono, Rosanna; Zeller, Rolf

    2004-07-01

    The mouse limb deformity (ld) mutations cause limb malformations by disrupting epithelial-mesenchymal signaling between the polarizing region and the apical ectodermal ridge. Formin was proposed as the relevant gene because three of the five ld alleles disrupt its C-terminal domain. In contrast, our studies establish that the two other ld alleles directly disrupt the neighboring Gremlin gene, corroborating the requirement of this BMP antagonist for limb morphogenesis. Further doubts concerning an involvement of Formin in the ld limb phenotype are cast, as a targeted mutation removing the C-terminal Formin domain by frame shift does not affect embryogenesis. In contrast, the deletion of the corresponding genomic region reproduces the ld limb phenotype and is allelic to mutations in Gremlin. We resolve these conflicting results by identifying a cis-regulatory region within the deletion that is required for Gremlin activation in the limb bud mesenchyme. This distant cis-regulatory region within Formin is also altered by three of the ld mutations. Therefore, the ld limb bud patterning defects are not caused by disruption of Formin, but by alteration of a global control region (GCR) required for Gremlin transcription. Our studies reveal the large genomic landscape harboring this GCR, which is required for tissue-specific coexpression of two structurally and functionally unrelated genes.

  19. Gesture-Controlled Image Management for Operating Room: A Randomized Crossover Study to Compare Interaction Using Gestures, Mouse, and Third Person Relaying

    PubMed Central

    Dubois-Ferrière, Victor; Budry, Sylvain; Hoffmeyer, Pierre; Lovis, Christian

    2016-01-01

    Objective In this work, we aim at comparing formally three different interaction modes for image manipulation that are usable in a surgery setting: 1) A gesture-controlled approach using Kinect ®; 2) oral instructions to a third part dedicated to manipulate the images; and 3) direct manipulation using a mouse. Materials and Methods Each participant used the radiology image viewer Weasis with the three interaction modes. In a crossover randomized controlled trial participants were attributed block wise to six experimental groups. For each group, the order for testing the three modes was randomly assigned. Nine standardized scenarios were used. Results 30 physicians and senior medical students participated in the experiment. Efficiency, measured as time used to pass the scenario, was best when using the mouse (M = 109.10s, SD = 25.96), followed by gesture-controlled (M = 214.97s, SD = 46.29) and oral instructions (M = 246.33s, SD = 76.50). Satisfaction, measured by a questionnaire, was rated highest in the condition mouse (M = 6.63, SD = 0.56), followed by gesture-controlled (M = 5.77, SD = 0.93) and oral instructions (M = 4.40, SD = 1.71). Differences in efficiency and satisfaction rating were significant. No significant difference in effectiveness, measured with error rates, was found. Discussion The study shows with formal evaluation that the use of gestures is advantageous over instructions to a third person. In particular, the use of gestures is more efficient than verbalizing instructions. The given gestures could be learned easily and reliability of the tested gesture-control system is good. Conclusion Under the premise that mouse cannot be used directly during surgery, gesture-controlled approaches demonstrate to be superior to oral instructions for image manipulation. PMID:27082758

  20. Sexual Dimorphism in the Control of Amebic Liver Abscess in a Mouse Model of Disease

    PubMed Central

    Lotter, Hannelore; Jacobs, Thomas; Gaworski, Iris; Tannich, Egbert

    2006-01-01

    Amebic liver abscess (ALA) is the most common extraintestinal manifestation of human infection by the enteric protozoan parasite Entamoeba histolytica. In contrast to intestinal infection, ALA greatly predominates in males but is rare in females. Since humans are the only relevant host for E. histolytica, experimental studies concerning this sexual dimorphism have been hampered by the lack of a suitable animal model. By serial liver passage of cultured E. histolytica trophozoites in gerbils and mice, we generated amebae which reproducibly induce ALA in C57BL/6 mice. Interestingly, all animals developed ALA, but the time courses of abscess formation differed significantly between the genders. Female mice were able to clear the infection within 3 days, whereas in male mice the parasite could be recovered for at least 14 days. Accordingly, male mice showed a prolonged time of recovery from ALA. Immunohistology of abscesses revealed that polymorphonuclear leukocytes and macrophages were the dominant infiltrates, but in addition, γ,δ-T cells, NK cells, and natural killer T (NKT) cells were also present at early times during abscess development, whereas conventional α,β-T cells appeared later, when female mice had already cleared the parasite. Interestingly, male and female mice differed in early cytokine production in response to ameba infection. Enzyme-linked immunospot assays performed with spleen cells of infected animals revealed significantly higher numbers of interleukin-4-producing cells in male mice but significantly higher numbers of gamma interferon (IFN-γ)-producing cells in female mice. Early IFN-γ production and the presence of functional NKT cells were found to be important for the control of hepatic amebiasis as application of an IFN-γ-neutralizing monoclonal antibody or the use of NKT knockout mice (Vα14iNKT, Jα 18−/−) dramatically increased the size of ALA in female mice. In addition, E. histolytica trophozoites could be reisolated from

  1. The risk of vector-borne infections in sled dogs associated with existing and new endemic areas in Poland. Part 2: Occurrence and control of babesiosis in a sled dog kennel during a 13-year-long period.

    PubMed

    Bajer, Anna; Mierzejewska, Ewa J; Rodo, Anna; Welc-Falęciak, Renata

    2014-05-28

    The achievements of sled dogs in competitions depend both on their training and on their health. Vector-borne infections may lead to anemia, affect joints or heart muscles or even cause death. Canine babesiosis is an emerging, quickly spreading tick-borne disease in Central Europe. Over a 13-year period (2000-2012) the occurrence of babesiosis cases was analyzed in one sled dog kennel situated in Kury, a village near Tłuszcz (N 52°24'56.78″, E 21°30'37.55″) in Central Poland. Twenty cases/episodes of babesiosis were noted among the 10-12 dogs living in the kennel. In 2000-2004, no cases of babesiosis were noted; the first two cases were noted in April 2005. Since that time, only one dog remained uninfected; 6 dogs were infected once, 3 dogs demonstrated symptoms of babesiosis twice, one dog was infected three times and one dog had it five times. Babesiosis appeared in Spring and Autumn, despite the application of anti-tick treatment. No fatal cases were recorded, but in one case a splenectomy was performed due to splenomegaly and spleen rupture. Additionally, the abundance of the main Babesia canis vector, the Dermacentor reticulatus tick, was estimated and monitored during a 4-year period (2008-2012) close to the dog kennel. The abundance of questing ticks was high in 2008 and 2009, but dropped by 10-fold between 2010 and 2012, when the abandoned meadow was cut and used as horse pasture by the local farmer. The regular occurrence, typical seasonal pattern and identification of B. canis DNA in questing tick from this locality confirmed the establishment of a new hyper enzootic region for canine babesiosis. The effectiveness and schedule of applied preventive measures were discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Numerical constraints and feedback control of double-strand breaks in mouse meiosis.

    PubMed

    Kauppi, Liisa; Barchi, Marco; Lange, Julian; Baudat, Frédéric; Jasin, Maria; Keeney, Scott

    2013-04-15

    Different organisms display widely different numbers of the programmed double-strand breaks (DSBs) that initiate meiotic recombination (e.g., hundreds per meiocyte in mice and humans vs. dozens in nematodes), but little is known about what drives these species-specific DSB set points or the regulatory pathways that control them. Here we examine male mice with a lowered dosage of SPO11, the meiotic DSB catalyst, to gain insight into the effect of reduced DSB numbers on mammalian chromosome dynamics. An approximately twofold DSB reduction was associated with the reduced ability of homologs to synapse along their lengths, provoking prophase arrest and, ultimately, sterility. In many spermatocytes, chromosome subsets displayed a mix of synaptic failure and synapsis with both homologous and nonhomologous partners ("chromosome tangles"). The X chromosome was nearly always involved in tangles, and small autosomes were involved more often than large ones. We conclude that homolog pairing requirements dictate DSB set points during meiosis. Importantly, our results reveal that karyotype is a key factor: Smaller autosomes and heteromorphic sex chromosomes become weak links when DSBs are reduced below a critical threshold. Unexpectedly, unsynapsed chromosome segments trapped in tangles displayed an elevated density of DSB markers later in meiotic prophase. The unsynapsed portion of the X chromosome in wild-type males also showed evidence that DSB numbers increased as prophase progressed. These findings point to the existence of a feedback mechanism that links DSB number and distribution with interhomolog interactions.

  3. Mucosal and systemic anti-HIV immunity controlled by A20 in mouse dendritic cells.

    PubMed

    Hong, Bangxing; Song, Xiao-Tong; Rollins, Lisa; Berry, Lindsey; Huang, Xue F; Chen, Si-Yi

    2011-02-01

    Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20--an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs--restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses. Mechanistic studies revealed that A20 regulated DC production of retinoic acid and proinflammatory cytokines, inhibiting the expression of gut-homing receptors on T and B cells. Furthermore, A20-silenced, hyperactivated DCs exhibited an enhanced homing capacity to draining and gut-associated lymphoid tissues (GALTs) after systemic administration. Thus, this study provides insights into the role of A20 in innate immunity. This work may allow the development of an efficient HIV vaccination strategy that is capable of inducing both robust systemic and mucosal anti-HIV cellular and humoral responses.

  4. Mucosal and systemic anti-HIV immunity controlled by A20 in mouse dendritic cells

    PubMed Central

    Hong, Bangxing; Song, Xiao-Tong; Rollins, Lisa; Berry, Lindsey; Huang, Xue F.; Chen, Si-Yi

    2011-01-01

    Both mucosal and systemic immune responses are required for preventing or containing HIV transmission and chronic infection. However, currently described vaccination approaches are largely ineffective in inducing both mucosal and systemic responses. In this study, we found that the ubiquitin-editing enzyme A20 — an inducible feedback inhibitor of the TNFR, RIG-I, and TLR signaling pathways that broadly controls the maturation, cytokine production, and immunostimulatory potency of DCs — restricted systemically immunized DCs to induce both robust mucosal and systemic HIV-specific cellular and humoral responses. Mechanistic studies revealed that A20 regulated DC production of retinoic acid and proinflammatory cytokines, inhibiting the expression of gut-homing receptors on T and B cells. Furthermore, A20-silenced, hyperactivated DCs exhibited an enhanced homing capacity to draining and gut-associated lymphoid tissues (GALTs) after systemic administration. Thus, this study provides insights into the role of A20 in innate immunity. This work may allow the development of an efficient HIV vaccination strategy that is capable of inducing both robust systemic and mucosal anti-HIV cellular and humoral responses. PMID:21206085

  5. GPR18 Controls Reconstitution of Mouse Small Intestine Intraepithelial Lymphocytes following Bone Marrow Transplantation.

    PubMed

    Becker, Amy M; Callahan, Derrick J; Richner, Justin M; Choi, Jaebok; DiPersio, John F; Diamond, Michael S; Bhattacharya, Deepta

    2015-01-01

    Specific G protein coupled receptors (GPRs) regulate the proper positioning, function, and development of immune lineage subsets. Here, we demonstrate that GPR18 regulates the reconstitution of intraepithelial lymphocytes (IELs) of the small intestine following bone marrow transplantation. Through analysis of transcriptional microarray data, we find that GPR18 is highly expressed in IELs, lymphoid progenitors, and mature follicular B cells. To establish the physiological role of this largely uncharacterized GPR, we generated Gpr18-/- mice. Despite high levels of GPR18 expression in specific hematopoietic progenitors, Gpr18-/- mice have no defects in lymphopoiesis or myelopoiesis. Moreover, antibody responses following immunization with hapten-protein conjugates or infection with West Nile virus are normal in Gpr18-/- mice. Steady-state numbers of IELs are also normal in Gpr18-/- mice. However, competitive bone marrow reconstitution experiments demonstrate that GPR18 is cell-intrinsically required for the optimal restoration of small intestine TCRγδ+ and TCRαβ+ CD8αα+ IELs. In contrast, GPR18 is dispensable for the reconstitution of large intestine IELs. Moreover, Gpr18-/- bone marrow reconstitutes small intestine IELs similarly to controls in athymic recipients. Gpr18-/- chimeras show no changes in susceptibility to intestinal insults such as Citrobacter rodentium infections or graft versus host disease. These data reveal highly specific requirements for GPR18 in the development and reconstitution of thymus-derived intestinal IEL subsets in the steady-state and after bone marrow transplantation.

  6. Genetic analysis of fetal development and parturition control in the mouse.

    PubMed

    Muglia, L J

    2000-04-01

    The application of targeted gene inactivation methodologies to the study of late fetal development and control of the timing for parturition in mice has yielded insight into the mechanisms that enhance fetal survival. An essential role for glucocorticoids in promoting lung maturation sufficient for viability ex utero before the onset of normal parturition has been demonstrated in corticotropin-releasing hormone-deficient mice. In contrast, maternal deficiency in the prostaglandin synthetic enzyme cyclooxygenase-1 results in the markedly delayed onset of labor and fetal demise because of postdates gestation. The complex interplay of factors that govern the onset of labor is highlighted by mice deficient in both cyclooxygenase-1 and oxytocin. Whereas mice deficient in oxytocin demonstrate normal parturition, simultaneous cyclooxygenase-1 and oxytocin deficiency rescues the delayed onset of labor found in cyclooxygenase-1 knockout mice but results in the prolonged duration of labor. The consequences of complete deficiency of molecules involved in parturition in mice suggest novel interventions for human preterm labor.

  7. A Neural Circuit That Controls Cortical State, Plasticity, and the Gain of Sensory Responses in Mouse.

    PubMed

    Stryker, Michael P

    2014-01-01

    Neurons in the visual cortex were first found to be exquisitely selective for particular properties of visual stimuli in anesthetized animals, including mice. Studies of alert mice in an apparatus that allowed them to stand or run revealed that locomotion causes a change in cortical state that dramatically increases the magnitude of responses in neurons of the visual cortex without altering selectivity, effectively changing the gain of sensory responses. Locomotion also dramatically enhances adult plasticity in the recovery from long-term visual deprivation. We have studied the elements and operation of the neural circuit responsible for the enhancement of activity and shown that it enhances plasticity even in mice not free to run. The circuit consists of projections ascending from the midbrain locomotor region (MLR) to the basal forebrain, activating cholinergic and perhaps other projections to excite inhibitory interneurons expressing vasoactive intestinal peptide (VIP) in the visual cortex. VIP cells activated by locomotion inhibit interneurons that express somatostatin (SST), thereby disinhibiting the excitatory principal neurons and allowing them to respond more strongly to effective visual stimuli. These findings reveal in alert animals how the ascending reticular activating system described in anesthetized animals 50 years ago operates to control cortical state.

  8. Hepatocyte Nuclear Factor 4α Controls Iron Metabolism and Regulates Transferrin Receptor 2 in Mouse Liver*

    PubMed Central

    Matsuo, Shunsuke; Ogawa, Masayuki; Muckenthaler, Martina U.; Mizui, Yumiko; Sasaki, Shota; Fujimura, Takafumi; Takizawa, Masayuki; Ariga, Nagayuki; Ozaki, Hiroaki; Sakaguchi, Masakiyo; Gonzalez, Frank J.; Inoue, Yusuke

    2015-01-01

    Iron is an essential element in biological systems, but excess iron promotes the formation of reactive oxygen species, resulting in cellular toxicity. Several iron-related genes are highly expressed in the liver, a tissue in which hepatocyte nuclear factor 4α (HNF4α) plays a critical role in controlling gene expression. Therefore, the role of hepatic HNF4α in iron homeostasis was examined using liver-specific HNF4α-null mice (Hnf4aΔH mice). Hnf4aΔH mice exhibit hypoferremia and a significant change in hepatic gene expression. Notably, the expression of transferrin receptor 2 (Tfr2) mRNA was markedly decreased in Hnf4aΔH mice. Promoter analysis of the Tfr2 gene showed that the basal promoter was located at a GC-rich region upstream of the transcription start site, a region that can be transactivated in an HNF4α-independent manner. HNF4α-dependent expression of Tfr2 was mediated by a proximal promoter containing two HNF4α-binding sites located between the transcription start site and the translation start site. Both the GC-rich region of the basal promoter and the HNF4α-binding sites were required for maximal transactivation. Moreover, siRNA knockdown of HNF4α suppressed TFR2 expression in human HCC cells. These results suggest that Tfr2 is a novel target gene for HNF4α, and hepatic HNF4α plays a critical role in iron homeostasis. PMID:26527688

  9. Induction of cardiac hypertrophy by a controlled reproducible sutureless aortocaval shunt in the mouse.

    PubMed

    Karram, Tony; Hoffman, Aaron; Bishara, Bishara; Brodsky, Sergey; Golomb, Eliahu; Winaver, Joseph; Abassi, Zaid

    2005-01-01

    Much of the understanding about the pathophysiological responses to chronic cardiac overload has been gained by the use of rat and dog models of aortocaval fistula (ACF). The use of a similar model in genetically manipulated mice may further elucidate the molecular mechanisms in these responses. The only reports about ACF in mice to date have applied a needle puncture to create the ACF, which may result in an uncontrolled and irreproducible size of the shunt, and require several weeks to induce the characteristic cardiac changes. In order to obtain a more consistent approach to characterize this mode of cardiac hyperfunction, we present a surgical murine model of ACF that results in rapid progression of the typical systemic and cardiac changes. A sutureless side-to-side infrarenal surgical anastomosis of 0.6-0.8 mm in diameter was created between the abdominal aorta and inferior vena cava in ICR (Institute of Cancer Research) mice. Six to 7 days later, significant cardiac hypertrophy developed. The heart/body weight ratio increased from 0.45 +/- 0.02% in control mice to 0.77 +/- 0.03% in mice with ACF (p < .003). The dry heart weight ratio increased from 0.099 +/- 0.0033% to 0.13 +/- 0.008% (p < .006). The ACF dramatically induced the atrial and ventricular expression of atrial natriuretic factor mRNA, and increased the total cardiac content of endothelin-1 (162.5 +/- 50.6 vs. 83.9 +/- 9.0 pg). Mean arterial pressure in anesthetized mice with ACF decreased from 69.8 +/- 4.9 to 54.8 +/- 5.5 mm Hg (p < .025). Urinary sodium excretion returned to preoperative levels several days following surgery. These results demonstrate that cardiac hypertrophy could be rapidly and reproducibly achieved in mice by the placement of a surgical ACF. This model, when applied in genetically manipulated mice, may be a valuable tool for functional genomic studies about the pathogenesis of cardiac hypertrophy and heart failure.

  10. Visualization of a neurotropic flavivirus infection in mouse reveals unique viscerotropism controlled by host type I interferon signaling

    PubMed Central

    Li, Xiao-Feng; Li, Xiao-Dan; Deng, Cheng-Lin; Dong, Hao-Long; Zhang, Qiu-Yan; Ye, Qing; Ye, Han-Qing; Huang, Xing-Yao; Deng, Yong-Qiang; Zhang, Bo; Qin, Cheng-Feng

    2017-01-01

    Flavivirus includes a large group of human pathogens with medical importance. Especially, neurotropic flaviviruses capable of invading central and peripheral nervous system, e.g. Japanese encephalitis virus (JEV) and Zika virus (ZIKV), are highly pathogenic to human and constitute major global health problems. However, the dynamic dissemination and pathogenesis of neurotropic flavivirus infections remain largely unknown. Here, using JEV as a model, we rationally designed and constructed a recombinant reporter virus that stably expressed Renilla luciferase (Rluc). The resulting JEV reporter virus (named Rluc-JEV) and parental JEV exhibited similar replication and infection characteristics, and the magnitude of Rluc activity correlated well with progeny viral production in vitro and in vivo. By using in vivo bioluminescence imaging (BLI) technology, we dissected the replication and dissemination dynamics of JEV infection in mice upon different inoculation routes. Interestingly, besides replicating in mouse brain, Rluc-JEV predominantly invaded the abdominal organs in mice with typical viscerotropism. Further tests in mice deficient in type I interferon (IFN) receptors demonstrated robust and prolonged viral replication in the intestine, spleen, liver, kidney and other abdominal organs. Combined with histopathological and immunohistochemical results, the host type I IFN signaling was evidenced as the major barrier to the viscerotropism and pathogenicity of this neurotropic flavivirus. Additionally, the Rluc-JEV platform was readily adapted for efficacy assay of known antiviral compounds and a live JE vaccine. Collectively, our study revealed abdominal organs as important targets of JEV infection in mice and profiled the unique viscerotropism trait controlled by the host type I IFN signaling. This in vivo visualization technology described here provides a powerful tool for testing antiviral agents and vaccine candidates for flaviviral infection. PMID:28382163

  11. Orexin/Hypocretin and Histamine: Distinct Roles in the Control of Wakefulness Demonstrated Using Knock-Out Mouse Models

    PubMed Central

    Anaclet, Christelle; Parmentier, Régis; Ouk, Koliane; Guidon, Gérard; Buda, Colette; Sastre, Jean-Pierre; Akaoka, Hidéo; Sergeeva, Olga A.; Yanagisawa, Masashi; Ohtsu, Hiroshi; Franco, Patricia; Haas, Helmut L.; Lin, Jian Sheng

    2009-01-01

    To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep-wake phenotypes of orexin(Ox) knockout(−/−) mice and compared them with those of histidine-decarboxylase(HDC, HA-synthesizing enzyme)−/−mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep(PS), they presented a number of marked differences: 1) The PS-increase in HDC−/−mice was seen during lightness, whereas that in Ox−/−mice occurred during darkness; 2) Contrary to HDC−/−, Ox−/−mice had no W deficiency around lights-off, nor an abnormal EEG and responded to a new environment with increased W; 3) Only Ox−/−, but not HDC−/−mice, displayed narcolepsy and deficient W when faced with motor challenge. Thus, when placed on a wheel, WT, but not littermate Ox−/−mice, voluntarily spent their time in turning it and as a result, remained highly awake; this was accompanied by dense c-fos expression in many areas of their brains, including Ox-neurons in the dorsolateral hypothalamus. The W and motor deficiency of Ox−/−mice was due to the absence of Ox because intraventricular dosing of Ox-A restored their W amount and motor performance whereas SB-334867 (Ox1-receptor antagonist, i.p.) impaired W and locomotion of WT mice during the test. These data indicate that Ox, but not HA, promotes W through enhanced locomotion and suggest that HA and Ox neurons exert a distinct, but complementary and synergistic control of W: the neuropeptide being more involved in its behavioral aspects, whereas the amine is mainly responsible for its qualitative cognitive aspects and cortical-EEG activation. PMID:19923277

  12. Orexin/hypocretin and histamine: distinct roles in the control of wakefulness demonstrated using knock-out mouse models.

    PubMed

    Anaclet, Christelle; Parmentier, Régis; Ouk, Koliane; Guidon, Gérard; Buda, Colette; Sastre, Jean-Pierre; Akaoka, Hidéo; Sergeeva, Olga A; Yanagisawa, Masashi; Ohtsu, Hiroshi; Franco, Patricia; Haas, Helmut L; Lin, Jian-Sheng

    2009-11-18

    To determine the respective role played by orexin/hypocretin and histamine (HA) neurons in maintaining wakefulness (W), we characterized the behavioral and sleep-wake phenotypes of orexin (Ox) knock-out (-/-) mice and compared them with those of histidine-decarboxylase (HDC, HA-synthesizing enzyme)-/- mice. While both mouse strains displayed sleep fragmentation and increased paradoxical sleep (PS), they presented a number of marked differences: (1) the PS increase in HDC(-/-) mice was seen during lightness, whereas that in Ox(-/-) mice occurred during darkness; (2) contrary to HDC(-/-), Ox(-/-) mice had no W deficiency around lights-off, nor an abnormal EEG and responded to a new environment with increased W; (3) only Ox(-/-), but not HDC(-/-) mice, displayed narcolepsy and deficient W when faced with motor challenge. Thus, when placed on a wheel, wild-type (WT), but not littermate Ox(-/-) mice, voluntarily spent their time in turning it and as a result, remained highly awake; this was accompanied by dense c-fos expression in many areas of their brains, including Ox neurons in the dorsolateral hypothalamus. The W and motor deficiency of Ox(-/-) mice was due to the absence of Ox because intraventricular dosing of orexin-A restored their W amount and motor performance whereas SB-334867 (Ox1-receptor antagonist, i.p.) impaired W and locomotion of WT mice during the test. These data indicate that Ox, but not HA, promotes W through enhanced locomotion and suggest that HA and Ox neurons exert a distinct, but complementary and synergistic control of W: the neuropeptide being more involved in its behavioral aspects, whereas the amine is mainly responsible for its qualitative cognitive aspects and cortical EEG activation.

  13. Cytochrome redox states and respiratory control in mouse and beef heart mitochondria at steady-state levels of hypoxia.

    PubMed

    Harrison, David K; Fasching, Mario; Fontana-Ayoub, Mona; Gnaiger, Erich

    2015-11-15

    Mitochondrial control of cellular redox states is a fundamental component of cell signaling in the coordination of core energy metabolism and homeostasis during normoxia and hypoxia. We investigated the relationship between cytochrome redox states and mitochondrial oxygen consumption at steady-state levels of hypoxia in mitochondria isolated from beef and mouse heart (BHImt, MHImt), comparing two species with different cardiac dynamics and local oxygen demands. A low-noise, rapid spectrophotometric system using visible light for the measurement of cytochrome redox states was combined with high-resolution respirometry. Monophasic hyperbolic relationships were observed between oxygen consumption, JO2, and oxygen partial pressure, Po2, within the range <1.1 kPa (8.3 mmHg; 13 μM). P50j (Po2 at 0.5·Jmax) was 0.015 ± 0.0004 and 0.021 ± 0.003 kPa (0.11 and 0.16 mmHg) for BHImt and MHImt, respectively. Maximum oxygen consumption, Jmax, was measured at saturating ADP levels (OXPHOS capacity) with Complex I-linked substrate supply. Redox states of cytochromes aa3 and c were biphasic hyperbolic functions of Po2. The relationship between cytochrome oxidation state and oxygen consumption revealed a separation of distinct phases from mild to severe and deep hypoxia. When cytochrome c oxidation increased from fully reduced to 45% oxidized at 0.1 Jmax, Po2 was as low as 0.002 kPa (0.02 μM), and trace amounts of oxygen are sufficient to partially oxidize the cytochromes. At higher Po2 under severe hypoxia, respiration increases steeply, whereas redox changes are small. Under mild hypoxia, the steep slope of oxidation of cytochrome c when flux remains more stable represents a cushioning mechanism that helps to maintain respiration high at the onset of hypoxia. Copyright © 2015 the American Physiological Society.

  14. Deconstructing the molecular mechanisms of cell cycle control in a mouse adrenocortical cell line: roles of ACTH.

    PubMed

    Rocha, Kátia M; Forti, Fábio L; Lepique, Ana P; Armelin, Hugo A

    2003-06-15

    This is a progress report of an attempt to deconstruct the signaling network underlying cell cycle control in the mouse Y1 adrenocortical cell line, aiming to uncover ACTH growth regulatory pathways. Y1 adrenocortical tumor cells possess amplified and overexpressed c-Ki-ras proto-oncogene. Despite this oncogenic lesion, Y1 cells retain tight regulatory mechanisms of cell cycle control typified by the sequential events comprising the mitogenic response triggered by FGF2 in G0/G1-arrested Y1 cells: 1) activation of ERK1/2 and PI3K, by 5 minutes; 2) induction of c-Fos and c-Myc proteins by 2 hours; 3) induction of cyclin D1 protein by 5 hours; 4) phosphorylation of Rb protein between 6 and 8 hours; 5) onset of DNA synthesis by 8-9 hours. In this cell line, ACTH-receptor (ACTH-R) activates contradictory pathways of growth regulation. First, ACTH coordinately induces fos and jun gene families via activation of both ERK1/2 and cAMP/PKA pathways, resembling a mitogen. Second, ACTH-R triggers cAMP/PKA-mediated antimitogenic mechanisms comprised of Akt/PKB dephosphorylation/deactivation, c-Myc protein degradation, and p27(Kip1) protein induction. Induction of cyclin D1 depends on activation of both ERK1/2 and PI3K, but is not affected by ACTH action. As a consequence, ACTH antagonizes FGF2 mitogenic activity but ectopic expression of the c-Myc protein (via MycER fusion protein) is sufficient to abrogate this ACTH antagonistic effect over FGF2 mitogenic activity. Ectopic expression of both c-Myc and cyclin D1 is not sufficient to drive G0/G1-arrested Y1 cells into S phase, but when the sustained expression of these two proteins is complemented by ACTH treatment it promotes G1 phase progression and DNA synthesis initiation. In conclusion, ACTH-receptor lacks signaling potential sufficient to initiate a mitogenic response in Y1 adrenocortical cells and, therefore, cannot substitute for bona fide mitogens like FGF2. Copyright 2003 Wiley-Liss, Inc.

  15. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals

    PubMed Central

    Pridans, Clare; Lillico, Simon; Whitelaw, Bruce; Hume, David A

    2014-01-01

    The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE). We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery. PMID:26015955

  16. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals.

    PubMed

    Pridans, Clare; Lillico, Simon; Whitelaw, Bruce; Hume, David A

    2014-01-01

    The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE). We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large "cargo" for applications in gene therapy and vaccine delivery.

  17. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model

    PubMed Central

    McNerny, Erin M. B.; Gong, Bo; Morris, Michael D.; Kohn, David H.

    2014-01-01

    Collagen cross-linking is altered in many diseases of bone, and enzymatic collagen cross-links are important to bone quality as evidenced by losses of strength following lysyl oxidase inhibition (lathyrism). We hypothesized that cross-links also contribute directly to bone fracture toughness. A mouse model of lathyrism using subcutaneous injection of up to 500mg/kg β-aminopropionitrile (BAPN) was developed and characterized (60 animals across 4 dosage groups). Three weeks of 150 or 350 mg/kg BAPN treatment in young growing mice significantly reduced cortical bone fracture toughness, strength, and pyridinoline cross-link content. Ratios reflecting relative cross-link maturity were positive regressors of fracture toughness (HP/[DHLNL+HLNL] r2=0.208, p<0.05; [HP+LP]/[DHNL+HLNL] r2=0.196, p<0.1), whereas quantities of mature pyridinoline cross-links were significant positive regressors of tissue strength (lysyl pyridinoline r2=0.159, p=0.014; hydroxylysyl pyridinoline r2=0.112, p<0.05). Immature and pyrrole cross-links, which were not significantly reduced by BAPN, did not correlate with mechanical properties. The effect of BAPN treatment on mechanical properties was dose specific, with the greatest impact found at the intermediate (350mg/kg) dose. Calcein labeling was used to define locations of new bone formation, allowing for the identification of regions of normally cross-linked (preexisting) and BAPN treated (newly formed, cross-link-deficient) bone. Raman spectroscopy revealed spatial differences due to relative tissue age and effects of cross-link inhibition. Newly deposited tissues had lower mineral/matrix, carbonate/phosphate and Amide I cross-link (matrix maturity) ratios compared to preexisting tissues. BAPN treatment did not affect mineral measures, but significantly increased the cross-link (matrix maturity) ratio compared to newly formed control tissue. Our study reveals that spatially localized effects of short term BAPN cross-link inhibition can alter

  18. Protein-DNA interactions of the mouse alpha A-crystallin control regions. Differences between expressing and non-expressing cells.

    PubMed

    Kantorow, M; Cvekl, A; Sax, C M; Piatigorsky, J

    1993-03-20

    Genomic footprinting, in vitro footprinting and mobility shift assays were used to investigate the molecular basis for expression of mouse alpha A-crystallin, a major structural protein of the transparent lens of vertebrates. The putative control region of the mouse alpha A-crystallin gene was footprinted by DNase I digestion in nuclear extracts, by dimethylsulfate treatment in cultured cells, and by micrococcal nuclease digestion in isolated nuclei. The resulting digestion patterns were compared between alpha TN4-1 lens cells, which express alpha A-crystallin, and L929 fibroblasts, which do not express alpha A-crystallin. Four regions of DNA were found occupied in both cell types. These included positions -111 to -97 (DE-1 region), positions -75 to -55 (alpha A-CRYBP1 region), positions -35 to -12 (TATA box and PE-1 region), and positions +23 to +43 (an AP-1 consensus sequence). The DNase I footprints of the DE-1 and alpha A-CRYBP1 regions, previously implicated as functional control elements, were substantially more pronounced using nuclear extract from the alpha TN4-1 cells than from the L929 fibroblasts, suggesting more stable protein binding with the former than with the latter. Numerous in vivo binding variations were noted between the two cell types in all four of the footprinted regions examined. Finally, two complexes (A and B) were formed specifically with nuclear extracts from the alpha TN4-1 cells and a synthetic deoxyoligonucleotide comprising the alpha A-CRYBP1 region. These data indicate that specific differences in protein-DNA interactions with putative control regions are associated with tissue-preferred expression of the mouse alpha A-crystallin gene.

  19. Mouse lysocardiolipin acyltransferase controls the development of hematopoietic and endothelial lineages during in vitro embryonic stem-cell differentiation

    PubMed Central

    Wang, Chengyan; Faloon, Patrick W.; Tan, Zhijia; Lv, Yaxin; Zhang, Pengbo; Ge, Yu; Deng, Hongkui

    2007-01-01

    The blast colony-forming cell (BL-CFC) was identified as an equivalent to the hemangioblast during in vitro embryonic stem (ES) cell differentiation. However, the molecular mechanisms underlying the generation of the BL-CFC remain largely unknown. Here we report the isolation of mouse lysocardiolipin acyltransferase (Lycat) based on homology to zebrafish lycat, a candidate gene for the cloche locus. Mouse Lycat is expressed in hematopoietic organs and is enriched in the Lin−C-Kit+Sca-1+ hematopoietic stem cells in bone marrow and in the Flk1+/hCD4+(Scl+) hemangioblast population in embryoid bodies. The forced Lycat transgene leads to increased messenger RNA expression of hematopoietic and endothelial genes as well as increased blast colonies and their progenies, endothelial and hematopoietic lineages. The Lycat small interfering RNA transgene leads to a decrease expression of hematopoietic and endothelial genes. An unbiased genomewide microarray analysis further substantiates that the forced Lycat transgene specifically up-regulates a set of genes related to hemangioblasts and hematopoietic and endothelial lineages. Therefore, mouse Lycat plays an important role in the early specification of hematopoietic and endothelial cells, probably acting at the level of the hemangioblast. PMID:17675553

  20. Germinal vesicle material drives meiotic cell cycle of mouse oocyte through the 3'UTR-dependent control of cyclin B1 synthesis.

    PubMed

    Hoffmann, Steffen; Tsurumi, Chizuko; Kubiak, Jacek Z; Polanski, Zbigniew

    2006-04-01

    We compared the profile of histone H1 kinase activity, reflecting Maturation Promoting Factor (MPF) activity in oocytes bisected at the germinal vesicle (GV) stage and allowed to mature as separate oocyte halves in vitro. Whereas the oocyte halves containing the nucleus exhibited the same profile of increased kinase activity as that typical for intact oocytes, the anuclear halves revealed strong inhibition of the increase in this activity soon after germinal vesicle breakdown (GVBD). In contrast, the profile of MAP kinase activity did not differ significantly between anuclear and nucleus-containing oocyte halves throughout maturation. Of the two MPF components, CDK1 and cyclin B1, the amount of the latter was significantly reduced in anuclear halves, a reduction due to low-level synthesis and not to enhanced degradation. Expression of three reporter luciferase RNAs constructed, respectively, to contain cyclin B1-specific 3'UTR, the globin-specific 3'UTR, or no 3'UTR sequence was enhanced in nuclear halves, with significantly greater enhancement for the construct containing cyclin B1-specific 3'UTR as compared to the two other RNAs. We conclude that the profile of activity of MPF during mouse oocyte maturation is controlled by an unknown GV-associated factor(s) acting via 3'UTR-dependent control of cyclin B1 synthesis. These results require the revision of the hitherto prevailing view that the control of MPF activity during mouse oocyte maturation is independent of GV-derived material.

  1. Regulation of connexin 43-mediated gap junctional intercellular communication by Ca2+ in mouse epidermal cells is controlled by E- cadherin

    PubMed Central

    1991-01-01

    Gap junctional intercellular communication (GJIC) of cultured mouse epidermal cells is mediated by a gap junction protein, connexin 43, and is dependent on the calcium concentration in the medium, with higher GJIC in a high-calcium (1.2 mM) medium. In several mouse epidermal cell lines, we found a good correlation between the level of GJIC and that of immunohistochemical staining of E-cadherin, a calcium-dependent cell adhesion molecule, at cell-cell contact areas. The variant cell line P3/22 showed both low GJIC and E-cadherin protein expression in low- and high-Ca2+ media. P3/22 cells showed very low E-cadherin mRNA expression. To test directly whether E-cadherin is involved in the Ca(2+)-dependent regulation of GJIC, we transfected the E-cadherin expression vector into P3/22 cells and obtained several stable clones which expressed high levels of E-cadherin mRNA. All transfectants expressed E-cadherin molecules at cell-cell contact areas in a calcium- dependent manner. GJIC was also observed in these transfectants and was calcium dependent. These results suggest that Ca(2+)-dependent regulation of GJIC in mouse epidermal cells is directly controlled by a calcium-dependent cell adhesion molecule, E-cadherin. Furthermore, several lines of evidence suggest that GJIC control by E-cadherin involves posttranslational regulation (assembly and/or function) of the gap junction protein connexin 43. PMID:1650371

  2. Body weight considerations in the B6C3F1 mouse and the use of dietary control to standardize background tumor incidence in chronic bioassays.

    PubMed

    Leakey, Julian E A; Seng, John E; Allaben, William T

    2003-12-01

    In B6C3F1 mice, the rate of body growth influences susceptibility to liver neoplasia and large variations in body weight can complicate the interpretation of bioassay data. The relationship between body weight and liver tumor incidence was calculated for historical control populations of male and female ad libitum-fed mice (approx. 2,750 and 2,300 animals, respectively) and in populations of male and female mice which had been subjected to forced body weight reduction due to either dietary restriction or exposure to noncarcinogenic chemicals (approx. 1,600 and 1,700, respectively). Resulting tumor risk data were then used to construct idealized weight curves for male and female B6C3F1 mice; these curves predict a terminal background liver tumor incidence of 15-20%. Use of dietary control to manipulate body growth of male B6C3F1 mice to fit the idealized weight curve was evaluated in a 2-year bioassay of chloral hydrate. Cohorts of mice were successfully maintained at weights approximating their idealized target weights throughout the study. These mice exhibited less body weight variation than their ad libitum-fed counterparts (e.g., standard deviations of body weight were 1.4 and 3.4 g for respective control groups at 36 weeks). Historical control body weight and tumor risk data from the two male mouse populations were utilized to predict background liver tumor rates for each experimental group of the chloral hydrate study. The predicted background tumor rates closely matched the observed rates for both the dietary controlled and ad libitum-fed chloral hydrate control groups when each mouse was evaluated according to either its weekly food consumption or its weekly change in body weight.

  3. Neural control of unloaded leg posture and of leg swing in stick insect, cockroach, and mouse differs from that in larger animals.

    PubMed

    Hooper, Scott L; Guschlbauer, Christoph; Blümel, Marcus; Rosenbaum, Philipp; Gruhn, Matthias; Akay, Turgay; Büschges, Ansgar

    2009-04-01

    Stick insect (Carausius morosus) leg muscles contract and relax slowly. Control of stick insect leg posture and movement could therefore differ from that in animals with faster muscles. Consistent with this possibility, stick insect legs maintained constant posture without leg motor nerve activity when the animals were rotated in air. That unloaded leg posture was an intrinsic property of the legs was confirmed by showing that isolated legs had constant, gravity-independent postures. Muscle ablation experiments, experiments showing that leg muscle passive forces were large compared with gravitational forces, and experiments showing that, at the rest postures, agonist and antagonist muscles generated equal forces indicated that these postures depended in part on leg muscles. Leg muscle recordings showed that stick insect swing motor neurons fired throughout the entirety of swing. To test whether these results were specific to stick insect, we repeated some of these experiments in cockroach (Periplaneta americana) and mouse. Isolated cockroach legs also had gravity-independent rest positions and mouse swing motor neurons also fired throughout the entirety of swing. These data differ from those in human and horse but not cat. These size-dependent variations in whether legs have constant, gravity-independent postures, in whether swing motor neurons fire throughout the entirety of swing, and calculations of how quickly passive muscle force would slow limb movement as limb size varies suggest that these differences may be caused by scaling. Limb size may thus be as great a determinant as phylogenetic position of unloaded limb motor control strategy.

  4. Mouse phenotyping.

    PubMed

    Fuchs, Helmut; Gailus-Durner, Valérie; Adler, Thure; Aguilar-Pimentel, Juan Antonio; Becker, Lore; Calzada-Wack, Julia; Da Silva-Buttkus, Patricia; Neff, Frauke; Götz, Alexander; Hans, Wolfgang; Hölter, Sabine M; Horsch, Marion; Kastenmüller, Gabi; Kemter, Elisabeth; Lengger, Christoph; Maier, Holger; Matloka, Mikolaj; Möller, Gabriele; Naton, Beatrix; Prehn, Cornelia; Puk, Oliver; Rácz, Ildikó; Rathkolb, Birgit; Römisch-Margl, Werner; Rozman, Jan; Wang-Sattler, Rui; Schrewe, Anja; Stöger, Claudia; Tost, Monica; Adamski, Jerzy; Aigner, Bernhard; Beckers, Johannes; Behrendt, Heidrun; Busch, Dirk H; Esposito, Irene; Graw, Jochen; Illig, Thomas; Ivandic, Boris; Klingenspor, Martin; Klopstock, Thomas; Kremmer, Elisabeth; Mempel, Martin; Neschen, Susanne; Ollert, Markus; Schulz, Holger; Suhre, Karsten; Wolf, Eckhard; Wurst, Wolfgang; Zimmer, Andreas; Hrabě de Angelis, Martin

    2011-02-01

    Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]). Copyright © 2010 Elsevier Inc. All rights reserved.

  5. RNAi-Dependent and Independent Control of LINE1 Accumulation and Mobility in Mouse Embryonic Stem Cells

    PubMed Central

    Ciaudo, Constance; Jay, Florence; Okamoto, Ikuhiro; Chen, Chong-Jian; Sarazin, Alexis; Servant, Nicolas; Barillot, Emmanuel; Heard, Edith; Voinnet, Olivier

    2013-01-01

    In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5′-untranslated regions (5′-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5′-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer−/− mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer−/− mESCs. PMID:24244175

  6. Alpha1A-adrenoceptors predominate in the control of blood pressure in mouse mesenteric vascular bed.

    PubMed

    Martínez-Salas, S G; Campos-Peralta, J M; Pares-Hipolito, J; Gallardo-Ortíz, I A; Ibarra, M; Villalobos-Molina, R

    2007-07-01

    1 The pressor action of the alpha1A-adrenoceptor agonist, A61603 (N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl] methanesulfonamide) or the alpha1-adrenoceptor agonist phenylephrine, and their blockade by selective alpha1-adrenoceptor antagonists in the mouse isolated mesenteric vascular bed were evaluated. 2 A61603 showed a approximately 235-fold higher potency in elevating perfusion pressure in mesenteric bed compared to phenylephrine. 3 The alpha1A-adrenoceptor selective antagonist RS 100329 (5-methyl-3-[3-[4-[2-(2,2,2,-trifluoroethoxy) phenyl]-1-piperazinyl] propyl]-2,4-(1H)-pyrimidinedione), displaced with high affinity agonist concentration-response curves to the right in a concentration-dependent manner. 4 The alpha1D-adrenoceptor selective antagonist BMY 7378 (8-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-8-azaspiro[4.5] decane-7,9-dione), did not displace A61603 nor did it block the phenylephrine-induced pressor response. 5 The alpha1B/D-adrenoceptor alkylating antagonist chloroethylclonidine (CEC), caused a rightward shift of the phenylephrine concentration-response curve and reduced its maximum response; however, CEC only slightly modified A61603 evoked contraction. 6 The results indicate that the isolated mouse mesenteric vascular bed expresses alpha1A-adrenoceptors and suggest a very discrete role for 1B-adrenoceptors.

  7. RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells.

    PubMed

    Ciaudo, Constance; Jay, Florence; Okamoto, Ikuhiro; Chen, Chong-Jian; Sarazin, Alexis; Servant, Nicolas; Barillot, Emmanuel; Heard, Edith; Voinnet, Olivier

    2013-11-01

    In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5'-untranslated regions (5'-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5'-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer(-/-) mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer(-/-) mESCs.

  8. Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells.

    PubMed

    Jaeger, Ines; Arber, Charles; Risner-Janiczek, Jessica R; Kuechler, Judit; Pritzsche, Diana; Chen, I-Cheng; Naveenan, Thulasi; Ungless, Mark A; Li, Meng

    2011-10-01

    Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson's disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells.

  9. Temporally controlled modulation of FGF/ERK signaling directs midbrain dopaminergic neural progenitor fate in mouse and human pluripotent stem cells

    PubMed Central

    Jaeger, Ines; Arber, Charles; Risner-Janiczek, Jessica R.; Kuechler, Judit; Pritzsche, Diana; Chen, I-Cheng; Naveenan, Thulasi; Ungless, Mark A.; Li, Meng

    2011-01-01

    Effective induction of midbrain-specific dopamine (mDA) neurons from stem cells is fundamental for realizing their potential in biomedical applications relevant to Parkinson’s disease. During early development, the Otx2-positive neural tissues are patterned anterior-posteriorly to form the forebrain and midbrain under the influence of extracellular signaling such as FGF and Wnt. In the mesencephalon, sonic hedgehog (Shh) specifies a ventral progenitor fate in the floor plate region that later gives rise to mDA neurons. In this study, we systematically investigated the temporal actions of FGF signaling in mDA neuron fate specification of mouse and human pluripotent stem cells and mouse induced pluripotent stem cells. We show that a brief blockade of FGF signaling on exit of the lineage-primed epiblast pluripotent state initiates an early induction of Lmx1a and Foxa2 in nascent neural progenitors. In addition to inducing ventral midbrain characteristics, the FGF signaling blockade during neural induction also directs a midbrain fate in the anterior-posterior axis by suppressing caudalization as well as forebrain induction, leading to the maintenance of midbrain Otx2. Following a period of endogenous FGF signaling, subsequent enhancement of FGF signaling by Fgf8, in combination with Shh, promotes mDA neurogenesis and restricts alternative fates. Thus, a stepwise control of FGF signaling during distinct stages of stem cell neural fate conversion is crucial for reliable and highly efficient production of functional, authentic midbrain-specific dopaminergic neurons. Importantly, we provide evidence that this novel, small-molecule-based strategy applies to both mouse and human pluripotent stem cells. PMID:21880784

  10. Cyclin A2 is required for sister chromatid segregation, but not separase control, in mouse oocyte meiosis.

    PubMed

    Touati, Sandra A; Cladière, Damien; Lister, Lisa M; Leontiou, Ioanna; Chambon, Jean-Philippe; Rattani, Ahmed; Böttger, Franziska; Stemmann, Olaf; Nasmyth, Kim; Herbert, Mary; Wassmann, Katja

    2012-11-29

    In meiosis, two specialized cell divisions allow the separation of paired chromosomes first, then of sister chromatids. Separase removes the cohesin complex holding sister chromatids together in a stepwise manner from chromosome arms in meiosis I, then from the centromere region in meiosis II. Using mouse oocytes, our study reveals that cyclin A2 promotes entry into meiosis, as well as an additional unexpected role; namely, its requirement for separase-dependent sister chromatid separation in meiosis II. Untimely cyclin A2-associated kinase activity in meiosis I leads to precocious sister separation, whereas inhibition of cyclin A2 in meiosis II prevents it. Accordingly, endogenous cyclin A is localized to kinetochores throughout meiosis II, but not in anaphase I. Additionally, we found that cyclin B1, but not cyclin A2, inhibits separase in meiosis I. These findings indicate that separase-dependent cohesin removal is differentially regulated by cyclin B1 and A2 in mammalian meiosis.

  11. Indoleamine 2,3-Dioxygenase 1 (Ido1) Is Involved in the Control of Mouse Caput Epididymis Immune Environment

    PubMed Central

    Damon-Soubeyrand, Christelle; Saez, Fabrice; Kocer, Ayhan; Janny, Laurent; Pons-Rejraji, Hanae; Munn, David H.; Mellor, Andrew L.; Gharbi, Najoua; Cadet, Rémi; Guiton, Rachel; Aitken, Robert J.; Drevet, Joël R.

    2013-01-01

    The epididymis maintains a state of immune tolerance towards spermatozoa while also protecting them and itself against infection and acute inflammation. The immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (Ido1) participates in this delicate local equilibrium. Using the mouse Ido1−/− model, we show here that the absence of IDO1 expression leads in the epididymis but not in serum to (1) an increase in the inflammatory state as evidenced by changes in the content of cytokines and chemokines, (2) the engagement of a Th1-driven inflammatory response as evidenced by changes in the Th17/Treg as well as Th1/Th2 equilibria, as well as (3) differences in the content of lipid intermediates classically involved in inflammation. Despite this more pronounced inflammatory state, Ido1−/− animals succeed in preserving the local epididymal immune situation due to the activation of compensatory mechanisms that are discussed. PMID:23840489

  12. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods

    PubMed Central

    Nymark, Soile; Kolesnikov, Alexander V.; Berry, Justin D.; Adler, Leopold; Koutalos, Yiannis; Kefalov, Vladimir J.; Cornwall, M. Carter

    2016-01-01

    Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1−/−), Arr1-deficient (Arr1−/−), and Arr1-overexpressing (Arr1ox) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1−/− rods (τ of ∼27 min), whereas it accelerates in Arr1ox rods (τ of ∼8 min) and Grk1−/− rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1. We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo. PMID:27353443

  13. Coordinate control of corticotropin, β-lipotropin, and β-endorphin release in mouse pituitary cell cultures

    PubMed Central

    Allen, Richard G.; Herbert, Edward; Hinman, Michael; Shibuya, Haruo; Pert, Candace B.

    1978-01-01

    Hypothalamic extract stimulates the release of corticotropin (ACTH) and endorphins 2.5- to 30-fold in mouse pituitary tumor cell cultures (AtT-20/D16v line) and primary cell cultures from mouse anterior pituitary. ACTH and endorphin activities were measured by radioimmunoassay and immunoprecipitation. Pretreatment of tumor cell cultures with 1 μM dexamethasone reduced the stimulatory effect of the extract on release of ACTH and endorphins. Pretreatment of primary cell cultures with 10-6 M dexamethasone reduced the stimulatory effect of both vasopressin and the extract on the release of ACTH and endorphins. Release of ACTH and endorphin was coupled in both kinds of cultures in the basal, stimulated, and inhibited states. The molecular weight forms of ACTH and endorphin in tumor cell culture medium were analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Radioimmunoassay and immunoprecipitation show that the 13,000-dalton and 4500-dalton forms of ACTH were present in about equal amounts in medium from cultures incubated with or without hypothalamic extract for 15 min, 30 min, or 2 hr. Smaller amounts of the high molecular weight forms of ACTH (20,000- to 23,000-dalton and 31,000-dalton ACTH) were observed in the culture medium at these times. The predominant forms of endorphin released after 20 min or 3 hr of incubation had molecular weights of 31,000, 11,700 (β-lipotropic hormone-size material) and 3500 (β-endorphin-size material). No degradation of the forms of endorphin released into the culture medium was observed after incubating the culture medium for 1.5 hr in the absence of cells. The proportions of the different forms of endorphin and ACTH present in the culture medium resembles that seen in cell extracts. PMID:217008

  14. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods.

    PubMed

    Frederiksen, Rikard; Nymark, Soile; Kolesnikov, Alexander V; Berry, Justin D; Adler, Leopold; Koutalos, Yiannis; Kefalov, Vladimir J; Cornwall, M Carter

    2016-07-01

    Photoactivation of vertebrate rhodopsin converts it to the physiologically active Meta II (R*) state, which triggers the rod light response. Meta II is rapidly inactivated by the phosphorylation of C-terminal serine and threonine residues by G-protein receptor kinase (Grk1) and subsequent binding of arrestin 1 (Arr1). Meta II exists in equilibrium with the more stable inactive form of rhodopsin, Meta III. Dark adaptation of rods requires the complete thermal decay of Meta II/Meta III into opsin and all-trans retinal and the subsequent regeneration of rhodopsin with 11-cis retinal chromophore. In this study, we examine the regulation of Meta III decay by Grk1 and Arr1 in intact mouse rods and their effect on rod dark adaptation. We measure the rates of Meta III decay in isolated retinas of wild-type (WT), Grk1-deficient (Grk1(-/-)), Arr1-deficient (Arr1(-/-)), and Arr1-overexpressing (Arr1(ox)) mice. We find that in WT mouse rods, Meta III peaks ∼6 min after rhodopsin activation and decays with a time constant (τ) of 17 min. Meta III decay slows in Arr1(-/-) rods (τ of ∼27 min), whereas it accelerates in Arr1(ox) rods (τ of ∼8 min) and Grk1(-/-) rods (τ of ∼13 min). In all cases, regeneration of rhodopsin with exogenous 11-cis retinal is rate limited by the decay of Meta III. Notably, the kinetics of rod dark adaptation in vivo is also modulated by the levels of Arr1 and Grk1. We conclude that, in addition to their well-established roles in Meta II inactivation, Grk1 and Arr1 can modulate the kinetics of Meta III decay and rod dark adaptation in vivo. © 2016 Frederiksen et al.

  15. 26 CFR 20.2056A-13 - Effective dates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Effective dates. 20.2056A-13 Section 20.2056A-13... ESTATE TAX; ESTATES OF DECEDENTS DYING AFTER AUGUST 16, 1954 Taxable Estate § 20.2056A-13 Effective dates... conformance with applicable local law is applicable to trusts for taxable years ending after January 2, 2004...

  16. Phylogenetic relationships of intraspecific forms of the house mouse Mus musculus: Analysis of variability of the control region (D-loop) of mitochondrial DNA.

    PubMed

    Maltsev, A N; Stakheev, V V; Bogdanov, A S; Fomina, E S; Kotenkova, E V

    2015-11-01

    Analysis of the control region of mitochondrial DNA (mtDNA) or D-loop of 96 house mice (Mus musculus) from Russia, Moldova, Armenia, Azerbaijan, Kazakhstan, and Turkmenistan has been used to reconstruct the phylogenetic relationships and phylogeographic patterns of intraspecific forms. New data on the phylogenetic structure of the house mouse are presented. Three phylogroups can be reliably distinguished in the eastern part of the M. musculus species range, the first one mainly comprising the haplotypes of mice from Transcaucasia (Armenia); the second one, the haplotypes of mice from Kazakhstan; and the third one, the haplotypes of mice from Siberia and some other regions. The morphological subspecies M. m. wagneri and M. m. gansuensis have proved to be genetically heterogeneous and did not form discrete phylogroups in the phylogenetic tree.

  17. Reduced type II interleukin-4 receptor signalling drives initiation, but not progression, of colorectal carcinogenesis: evidence from transgenic mouse models and human case–control epidemiological observations

    PubMed Central

    Hull, Mark A.

    2013-01-01

    We investigated the role of interleukin (IL)-4 receptor (IL-4R) signalling during mouse carcinogen-induced colorectal carcinogenesis and in a case–control genetic epidemiological study of IL-4Rα single nucleotide polymorphisms (SNPs). Azoxymethane-induced aberrant crypt focus (ACF; 6 weeks) and tumours (32 weeks) were analysed in wild-type (WT) BALB/c mice, as well as in IL-4Rα − /−, IL-13 −/− and ‘double-knockout’ (DKO) animals. Colorectal cancer (CRC) cases (1502) and controls (584) were genotyped for six coding IL-4Rα SNPs. The association with CRC risk and CRC-specific mortality was analysed by logistic regression. Lack of IL-4Rα expression was associated with increased ACFs [median 8.5 ACFs per mouse (IL-4Rα −/−) versus 3 (WT); P = 0.007], but no difference in the number of colorectal tumours [mean 1.4 per mouse (IL-4Rα −/−) versus 2 (WT)], which were smaller and demonstrated reduced nuclear/cytoplasmic β-catenin translocation compared with WT tumours. Tumour-bearing IL-4Rα −/− mice had fewer CD11b+/Gr1+ myeloid-derived suppressor splenocytes than WT animals. IL-13 −/− mice developed a similar number of ACFs to IL-4Rα −/− and DKO mice. There was a significant increase in CRC risk associated with the functional SNP Q576R [odds ratio 1.54 (95% confidence interval 0.94–2.54), P trend 0.03 for the minor G allele]. There was no effect of IL-4Rα genotype on either CRC-specific or all-cause mortality. These combined pre-clinical and human data together demonstrate that reduced IL-4R signalling has stage-specific effects on colorectal carcinogenesis (increased CRC initiation and risk but reduced tumour progression and no effect on CRC mortality). These results should prompt evaluation of the effect of pharmacological manipulation of IL-4R signalling on future CRC risk and for CRC treatment. PMID:23784081

  18. [Effects of Kuntai Capsules on endometrial thickness and expressions of leukemia inhibitory factor and epidermal growth factor in mouse after controlled ovarian hyperstimulation].

    PubMed

    Chu, Xiying; Song, Yuxia; Wan, Lijing; Tan, Li

    2014-08-05

    To explore the effects of Kuntai Capsules on endometrial thickness and the expressions of leukemia inhibitory factor (LIF) and epidermal growth factor (EGF) in mouse after controlled ovarian hyperstimulation. Healthy Sprague-Dawley mice were randomly allocated into 4 groups of control (group A), controlled ovarian hyperstimulation [COH (group B)], COH plus low-dose Kuntai Capsules (group C) and COH plus large-dose Kuntai Capsules [2x low-dose (group D)]. The controlled ovarian hyperstimulation model was established. The endometrial thickness was measured by computerized multi-functional image analyzer. And the expressions of LIF and EGF in proliferating endometrium were examined by immunohistochemistry. The endometrial thickness of groups C and D were higher than that of groups A and B. And there were significant differences (P < 0.05). The expression levels of LIF protein in proliferating endometrium was weaker than implantation window phase, the expression levels of EGF and LIF in group B was weaker than group A, groups C and D stronger than groups B and D was stronger than group C. And there were significant differences (P < 0.05). Kuntai Capsules can promote the growth of endometrium and enhance the expression levels of EGF and LIF in mice. And it may improve the ability of endometrial receptivity through optimized microenvironment. And a larger dose of Kuntai Capsules yields better outcomes.

  19. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls.

    PubMed

    Maruyama, Masahiro; Shimada, Hitoshi; Suhara, Tetsuya; Shinotoh, Hitoshi; Ji, Bin; Maeda, Jun; Zhang, Ming-Rong; Trojanowski, John Q; Lee, Virginia M-Y; Ono, Maiko; Masamoto, Kazuto; Takano, Harumasa; Sahara, Naruhiko; Iwata, Nobuhisa; Okamura, Nobuyuki; Furumoto, Shozo; Kudo, Yukitsuka; Chang, Qing; Saido, Takaomi C; Takashima, Akihiko; Lewis, Jada; Jang, Ming-Kuei; Aoki, Ichio; Ito, Hiroshi; Higuchi, Makoto

    2013-09-18

    Accumulation of intracellular tau fibrils has been the focus of research on the mechanisms of neurodegeneration in Alzheimer's disease (AD) and related tauopathies. Here, we have developed a class of tau ligands, phenyl/pyridinyl-butadienyl-benzothiazoles/benzothiazoliums (PBBs), for visualizing diverse tau inclusions in brains of living patients with AD or non-AD tauopathies and animal models of these disorders. In vivo optical and positron emission tomographic (PET) imaging of a transgenic mouse model demonstrated sensitive detection of tau inclusions by PBBs. A pyridinated PBB, [(11)C]PBB3, was next applied in a clinical PET study, and its robust signal in the AD hippocampus wherein tau pathology is enriched contrasted strikingly with that of a senile plaque radioligand, [(11)C]Pittsburgh Compound-B ([(11)C]PIB). [(11)C]PBB3-PET data were also consistent with the spreading of tau pathology with AD progression. Furthermore, increased [(11)C]PBB3 signals were found in a corticobasal syndrome patient negative for [(11)C]PIB-PET. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Genetic control of interferon action: mouse strain distribution and inheritance of an induced protein with guanylate-binding property.

    PubMed

    Staeheli, P; Prochazka, M; Steigmeier, P A; Haller, O

    1984-08-01

    Interferons (IFNs) induce in responsive cells the synthesis of various proteins including a set with high binding affinities to guanylates. These guanylate-binding proteins (GBPs) were analyzed in cells from 46 inbred mouse strains using GMP-agarose affinity chromatography. In cells of 11 strains, including A/J, BALB/cJ, and C3H/HeJ, type I and II IFNs induced the synthesis of a major GBP of Mr 65,000, designated here GBP-1, and of at least three minor GBPs. In contrast, cells of the remaining 35 strains, including DBA/2J, C57BL/6J, and A2G, failed to synthesize GBP-1 in response to both types of IFNs. Induction of the minor GBPs was comparable in cells of both groups of mice, confirming that they were all responsive to IFNs. Analysis of F1, F2, and BC1 offspring of crosses between GBP-1 inducible (A/J) and noninducible (DBA/2J or A2G) strains showed that inducibility of GBP-1 was inherited as a single autosomal gene. The symbol Gbp-1 is proposed for this locus, designated Gbp-1a for the allele causing inducibility and Gbp-1b for the other allele.

  1. Locus- and domain-dependent control of DNA methylation at mouse B1 retrotransposons during male germ cell development.

    PubMed

    Ichiyanagi, Kenji; Li, Yufeng; Li, Yungfeng; Watanabe, Toshiaki; Ichiyanagi, Tomoko; Fukuda, Kei; Kitayama, Junko; Yamamoto, Yasuhiro; Kuramochi-Miyagawa, Satomi; Nakano, Toru; Yabuta, Yukihiro; Seki, Yoshiyuki; Saitou, Mitinori; Sasaki, Hiroyuki

    2011-12-01

    In mammals, germ cells undergo striking dynamic changes in DNA methylation during their development. However, the dynamics and mode of methylation are poorly understood for short interspersed elements (SINEs) dispersed throughout the genome. We investigated the DNA methylation status of mouse B1 SINEs in male germ cells at different developmental stages. B1 elements showed a large locus-to-locus variation in methylation; loci close to RNA polymerase II promoters were hypomethylated, while most others were hypermethylated. Interestingly, a mutation that eliminates Piwi-interacting RNAs (piRNAs), which are involved in methylation of long interspersed elements (LINEs), did not affect the level of B1 methylation, implying a piRNA-independent mechanism. Methylation at B1 loci in SINE-poor genomic domains showed a higher dependency on the de novo DNA methyltransferase DNMT3A but not on DNMT3B, suggesting that DNMT3A plays a major role in methylation of these domains. We also found that many genes specifically expressed in the testis possess B1 elements in their promoters, suggesting the involvement of B1 methylation in transcriptional regulation. Taken altogether, our results not only reveal the dynamics and mode of SINE methylation but also suggest how the DNA methylation profile is created in the germline by a pair of DNA methyltransferases.

  2. Antagonistic interplay between necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex.

    PubMed

    Minamide, Ryohei; Fujiwara, Kazushiro; Hasegawa, Koichi; Yoshikawa, Kazuaki

    2014-01-01

    Neural precursor cells (NPCs) in the neocortex exhibit a high proliferation capacity during early embryonic development and give rise to cortical projection neurons after maturation. Necdin, a mammal-specific MAGE (melanoma antigen) family protein that possesses anti-mitotic and pro-survival activities, is expressed abundantly in postmitotic neurons and moderately in tissue-specific stem cells or progenitors. Necdin interacts with E2F transcription factors and suppresses E2F1-dependent transcriptional activation of the cyclin-dependent kinase Cdk1 gene. Here we show that necdin serves as a suppressor of NPC proliferation in the embryonic neocortex. Necdin is moderately expressed in the ventricular zone of mouse embryonic neocortex, in which proliferative cell populations are significantly increased in necdin-null mice. In the neocortex of necdin-null embryos, expression of Cdk1 and Sox2, a stem cell marker, is significantly increased, whereas expression of p16, a cyclin-dependent kinase inhibitor, is markedly diminished. Cdk1 and p16 expression levels are also significantly increased and decreased, respectively, in primary NPCs prepared from necdin-null embryos. Intriguingly, necdin interacts directly with Bmi1, a Polycomb group protein that suppresses p16 expression and promotes NPC proliferation. In HEK293A cells transfected with luciferase reporter constructs, necdin relieves Bmi1-dependent repression of p16 promoter activity, whereas Bmi1 counteracts necdin-mediated repression of E2F1-dependent Cdk1 promoter activity. In lentivirus-infected primary NPCs, necdin overexpression increases p16 expression, suppresses Cdk1 expression, and inhibits NPC proliferation, whereas Bmi1 overexpression suppresses p16 expression, increases Cdk1 expression, and promotes NPC proliferation. Our data suggest that embryonic NPC proliferation in the neocortex is regulated by the antagonistic interplay between necdin and Bmi1.

  3. Calcium-activated K+ Channels of Mouse β-cells are Controlled by Both Store and Cytoplasmic Ca2+

    PubMed Central

    Goforth, P.B.; Bertram, R.; Khan, F.A.; Zhang, M.; Sherman, A.; Satin, L.S.

    2002-01-01

    A novel calcium-dependent potassium current (Kslow) that slowly activates in response to a simulated islet burst was identified recently in mouse pancreatic β-cells (Göpel, S.O., T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renström, and P. Rorsman. 1999. J. Gen. Physiol. 114:759–769). Kslow activation may help terminate the cyclic bursts of Ca2+-dependent action potentials that drive Ca2+ influx and insulin secretion in β-cells. Here, we report that when [Ca2+]i handling was disrupted by blocking Ca2+ uptake into the ER with two separate agents reported to block the sarco/endoplasmic calcium ATPase (SERCA), thapsigargin (1–5 μM) or insulin (200 nM), Kslow was transiently potentiated and then inhibited. Kslow amplitude could also be inhibited by increasing extracellular glucose concentration from 5 to 10 mM. The biphasic modulation of Kslow by SERCA blockers could not be explained by a minimal mathematical model in which [Ca2+]i is divided between two compartments, the cytosol and the ER, and Kslow activation mirrors changes in cytosolic calcium induced by the burst protocol. However, the experimental findings were reproduced by a model in which Kslow activation is mediated by a localized pool of [Ca2+] in a subspace located between the ER and the plasma membrane. In this model, the subspace [Ca2+] follows changes in cytosolic [Ca2+] but with a gradient that reflects Ca2+ efflux from the ER. Slow modulation of this gradient as the ER empties and fills may enhance the role of Kslow and [Ca2+] handling in influencing β-cell electrical activity and insulin secretion. PMID:12198088

  4. Genomic DNA of MCF-7 breast cancer cells not an ideal choice as positive control for PCR amplification based detection of Mouse Mammary Tumor Virus-Like Sequences.

    PubMed

    Kulkarni, Bhushan B; Hiremath, Shivaprakash V; Kulkarni, Suyamindra S; Hallikeri, Umesh R; Patil, Basavaraj R; Gai, Pramod B

    2013-11-01

    The identification of the etiology of breast cancer is a crucial research issue for the development of an effective preventive and treatment strategies. Researchers are exploring the possible involvement of Mouse Mammary Tumor Virus (MMTV) in causing human breast cancer. Hence, it becomes very important to use a consistent positive control agent in PCR amplification based detection of MMTV-Like Sequence (MMTV-LS) in human breast cancer for accurate and reproducible results. This study was done to investigate the feasibility of using genomic DNA of MCF-7 breast cancer cells to detect MMTV-LS using PCR amplification based detection. MMTV env and SAG gene located at the 3' long terminal repeat (LTR) sequences were targeted for the PCR based detection. No amplification was observed in case of the genomic DNA of MCF-7 breast cancer cells. However, the 2.7 kb DNA fragment comprising MMTV env and SAG LTR sequences yielded the products of desired size. From these results it can be concluded that Genomic DNA of MCF-7 cell is not a suitable choice as positive control for PCR or RT-PCR based detection of MMTV-LS. It is also suggested that plasmids containing the cloned genes or sequences of MMTV be used as positive control for detection of MMTV-LS.

  5. Therapeutic silencing of fat-specific protein 27 improves glycemic control in mouse models of obesity and insulin resistance[S

    PubMed Central

    Langhi, Cédric; Arias, Noemí; Rajamoorthi, Ananthi; Basta, Jeannine; Lee, Richard G.; Baldán, Ángel

    2017-01-01

    Obesity is a component of the metabolic syndrome, mechanistically linked to diabetes, fatty liver disease, and cardiovascular disease. Proteins that regulate the metabolic fate of intracellular lipid droplets are potential therapeutic candidates to treat obesity and its related consequences. CIDEC (cell death-inducing DFFA-like effector C), also known in mice as Fsp27 (fat-specific protein 27), is a lipid droplet-associated protein that prevents lipid mobilization and promotes intracellular lipid storage. The consequences of complete loss of FSP27 on hepatic metabolism and on insulin resistance are controversial, as both healthy and deleterious lipodystrophic phenotypes have been reported in Fsp27−/− mice. To test whether therapeutic silencing of Fsp27 might be useful to improve obesity, fatty liver, and glycemic control, we used antisense oligonucleotides (ASOs) in both nutritional (high-fat diet) and genetic (leptin-deficient ob/ob) mouse models of obesity, hyperglycemia, and hepatosteatosis. We show that partial silencing Fsp27 in either model results in the robust decrease in visceral fat, improved insulin sensitivity and whole-body glycemic control, and tissue-specific changes in transcripts controlling lipid oxidation and synthesis. These data suggest that partial reduction of FSP27 activity (e.g., using ASOs) might be exploited therapeutically in insulin-resistant obese or overweight patients. PMID:27884961

  6. Involvement of EZH2, SUV39H1, G9a and associated molecules in pathogenesis of urethane induced mouse lung tumors: Potential targets for cancer control

    SciTech Connect

    Pandey, Manuraj; Sahay, Satya; Tiwari, Prakash; Upadhyay, Daya S.; Sultana, Sarwat; Gupta, Krishna P.

    2014-10-15

    In the present study, we showed the correlation of EZH2, SUV39H1 or G9a expression and histone modifications with the urethane induced mouse lung tumorigenesis in the presence or absence of antitumor agent, inositol hexaphosphate (IP6). Tumorigenesis and the molecular events involved therein were studied at 1, 4, 12 or 36 weeks after the exposure. There were no tumors at 1 or 4 weeks but tumors started appearing at 12 weeks and grew further till 36 weeks after urethane exposure. Among the molecular events, upregulation of EZH2 and SUV39H1 expressions appeared to be time dependent, but G9a expression was altered significantly only at later stages of 12 or 36 weeks. Alteration in miR-138 expression supports the upregulation of its target, EZH2. H3K9me2, H3K27me3 or H4K20me3 was found to be altered at 12 or 36 weeks. However, ChIP analysis of p16 and MLH1 promoters showed their binding with H3K9me2 and H3K27me3 which was maximum at 36 weeks. Thus, histone modification and their interactions with gene promoter resulted in the reduced expression of p16 and MLH1. IP6 prevented the incidence and the size of urethane induced lung tumors. IP6 also prevented the urethane induced alterations in EZH2, SUV39H1, G9a expressions and histone modifications. Our results suggest that the alterations in the histone modification pathways involving EZH2 and SUV39H1 expressions are among the early events in urethane induced mouse lung tumorigenesis and could be exploited for cancer control. - Highlights: • Urethane induces mouse lung tumor in a time dependent manner. • EZH2, SUV39H1, G9a induced by urethane and progress with time • Downregulation of miRNA-138 supports the EZH2 upregulation. • Methylation of histones showed a consequence of upregulated EZH2, SUV39H1 and G9a. • IP6 inhibits urethane induced changes and prevents tumor development.

  7. Cytosolic Phosphoenolpyruvate Carboxykinase Does Not Solely Control the Rate of Hepatic Gluconeogenesis in the Intact Mouse Liver

    PubMed Central

    Burgess, Shawn C.; He, Tian Teng; Yan, Zheng; Lindner, Jill; Sherry, A. Dean; Malloy, Craig R.; Browning, Jeffrey D.; Magnuson, Mark A.

    2009-01-01

    SUMMARY When dietary carbohydrate is unavailable, glucose required to support metabolism in vital tissues is generated via gluconeogenesis in the liver. Expression of phosphoenolpyruvate carboxykinase (PEPCK), commonly considered the control point for liver gluconeogenesis, is normally regulated by circulating hormones to match systemic glucose demand. However, this regulation fails in diabetes. Because other molecular and metabolic factors can also influence gluconeogenesis, the explicit role of PEPCK protein content in the control of gluconeogenesis was unclear. In this study, metabolic control of liver gluconeogenesis was quantified in groups of mice with varying PEPCK protein content. Surprisingly, livers with a 90% reduction in PEPCK content showed only a ~40% reduction in gluconeogenic flux, indicating a lower than expected capacity for PEPCK protein content to control gluconeogenesis. However, PEPCK flux correlated tightly with TCA cycle activity, suggesting that under some conditions in mice, PEPCK expression must coordinate with hepatic energy metabolism to control gluconeogenesis. PMID:17403375

  8. Using an Extended Dynamic Drag-and-Drop Assistive Program to Assist People with Multiple Disabilities and Minimal Motor Control to Improve Computer Drag-and-Drop Ability through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2012-01-01

    Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However,…

  9. Using an Extended Dynamic Drag-and-Drop Assistive Program to Assist People with Multiple Disabilities and Minimal Motor Control to Improve Computer Drag-and-Drop Ability through a Mouse Wheel

    ERIC Educational Resources Information Center

    Shih, Ching-Hsiang

    2012-01-01

    Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However,…

  10. Altered expression of O-GlcNAc-modified proteins in a mouse model whose glycemic status is controlled by a low carbohydrate ketogenic diet.

    PubMed

    Okuda, Tetsuya; Fukui, Asami; Morita, Naoki

    2013-11-01

    Abnormal modification of proteins by O-linked N-acetylglucosamine (O-GlcNAc) is known to be associated with the pathology induced by hyperglycemia. However, the dynamic mechanism of O-GlcNAc modification under hyperglycemic conditions in vivo has not been fully characterized. To understand the mechanism, we established an animal model in which the glycemic status is controlled by the diet. A mutant mouse (ob/ob) which exhibits diet-induced hyperglycemia when fed a regular chow (chow) was used to establish this model; the mice were fed a very low carbohydrate ketogenic diet (KD) to improve hyperglycemia. Using this model, we evaluated the levels of O-GlcNAc-modified proteins in tissues under a hyperglycemic or its improved condition. ELISA and Western blot analyses revealed that altered expression of certain proteins modified by O-GlcNAc were found in the mice tissues, although global O-GlcNAc levels in the tissues remained unaltered by improvement of hyperglycemia. We also found the Akt protein kinase was modified by O-GlcNAc in the liver of ob/ob mice, and the modification levels were decreased by improvement of hyperglycemia. Furthermore, aberrant phosphorylation of Akt was found in the liver of ob/ob mice under hyperglycemic condition. In conclusion, our established mouse model is useful for evaluating the dynamics of O-GlcNAc-modified proteins in tissues associated with glycemic status. This study revealed that the expression level of certain proteins modified by O-GlcNAc is altered when KD improves the hyperglycemia. These proteins could be prospective indexes for nutritional therapy for hyperglycemia-associated diseases, such as diabetes mellitus.

  11. Design and use of mouse control DNA for DNA biomarker extraction and PCR detection from urine: Application for transrenal Mycobacterium tuberculosis DNA detection.

    PubMed

    Bordelon, Hali; Ricks, Keersten M; Pask, Megan E; Russ, Patricia K; Solinas, Francesca; Baglia, Mark L; Short, Philip A; Nel, Andrew; Blackburn, Jonathan; Dheda, Keertan; Zamudio, Carlos; Cáceres, Tatiana; Wright, David W; Haselton, Frederick R; Pettit, April C

    2017-05-01

    Urine samples are increasingly used for diagnosing infections including Escherichia coli, Ebola virus, and Zika virus. However, extraction and concentration of nucleic acid biomarkers from urine is necessary for many molecular detection strategies such as polymerase chain reaction (PCR). Since urine samples typically have large volumes with dilute biomarker concentrations making them prone to false negatives, another impediment for urine-based diagnostics is the establishment of appropriate controls particularly to rule out false negatives. In this study, a mouse glyceraldehyde 3-phosphate dehydrogenase (GAPDH) DNA target was added to retrospectively collected urine samples from tuberculosis (TB)-infected and TB-uninfected patients to indicate extraction of intact DNA and removal of PCR inhibitors from urine samples. We tested this design on surrogate urine samples, retrospective 1milliliter (mL) urine samples from patients in Lima, Peru and retrospective 5mL urine samples from patients in Cape Town, South Africa. Extraction/PCR control DNA was detectable in 97% of clinical samples with no statistically significant differences among groups. Despite the inclusion of this control, there was no difference in the amount of TB IS6110 Tr-DNA detected between TB-infected and TB-uninfected groups except for samples from known HIV-infected patients. We found an increase in TB IS6110 Tr-DNA between TB/HIV co-infected patients compared to TB-uninfected/HIV-infected patients (N=18, p=0.037). The inclusion of an extraction/PCR control DNA to indicate successful DNA extraction and removal of PCR inhibitors should be easily adaptable as a sample preparation control for other acellular sample types.

  12. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH.

    PubMed

    Gabbia, Daniela; Dall'Acqua, Stefano; Di Gangi, Iole Maria; Bogialli, Sara; Caputi, Valentina; Albertoni, Laura; Marsilio, Ilaria; Paccagnella, Nicola; Carrara, Maria; Giron, Maria Cecilia; De Martin, Sara

    2017-02-15

    Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM.

  13. Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity

    PubMed Central

    Anthwal, Neal; Pelling, Michelle; Claxton, Suzanne; Mellitzer, Georg; Collin, Caitlin; Kessaris, Nicoletta; Richardson, William D.; Gradwohl, Gérard; Ang, Siew-Lan

    2013-01-01

    SUMMARY The ventral hypothalamus acts to integrate visceral and systemic information to control energy balance. The basic helix-loop-helix transcription factor neurogenin-3 (Ngn3) is required for pancreatic β-cell development and has been implicated in neuronal development in the hypothalamus. Here, we demonstrate that early embryonic hypothalamic inactivation of Ngn3 (also known as Neurog3) in mice results in rapid post-weaning obesity that is associated with hyperphagia and reduced energy expenditure. This obesity is caused by loss of expression of Pomc in Pomc- and Cart-expressing (Pomc/Cart) neurons in the arcuate nucleus, indicating an incomplete specification of anorexigenic first order neurons. Furthermore, following the onset of obesity, both the arcuate and ventromedial hypothalamic nuclei become insensitive to peripheral leptin treatment. This conditional mouse mutant therefore represents a novel model system for obesity that is associated with hyperphagia and underactivity, and sheds new light upon the roles of Ngn3 in the specification of hypothalamic neurons controlling energy balance. PMID:23649822

  14. Conditional deletion of neurogenin-3 using Nkx2.1iCre results in a mouse model for the central control of feeding, activity and obesity.

    PubMed

    Anthwal, Neal; Pelling, Michelle; Claxton, Suzanne; Mellitzer, Georg; Collin, Caitlin; Kessaris, Nicoletta; Richardson, William D; Gradwohl, Gérard; Ang, Siew-Lan

    2013-09-01

    The ventral hypothalamus acts to integrate visceral and systemic information to control energy balance. The basic helix-loop-helix transcription factor neurogenin-3 (Ngn3) is required for pancreatic β-cell development and has been implicated in neuronal development in the hypothalamus. Here, we demonstrate that early embryonic hypothalamic inactivation of Ngn3 (also known as Neurog3) in mice results in rapid post-weaning obesity that is associated with hyperphagia and reduced energy expenditure. This obesity is caused by loss of expression of Pomc in Pomc- and Cart-expressing (Pomc/Cart) neurons in the arcuate nucleus, indicating an incomplete specification of anorexigenic first order neurons. Furthermore, following the onset of obesity, both the arcuate and ventromedial hypothalamic nuclei become insensitive to peripheral leptin treatment. This conditional mouse mutant therefore represents a novel model system for obesity that is associated with hyperphagia and underactivity, and sheds new light upon the roles of Ngn3 in the specification of hypothalamic neurons controlling energy balance.

  15. The Phytocomplex from Fucus vesiculosus and Ascophyllum nodosum Controls Postprandial Plasma Glucose Levels: An In Vitro and In Vivo Study in a Mouse Model of NASH

    PubMed Central

    Gabbia, Daniela; Dall’Acqua, Stefano; Di Gangi, Iole Maria; Bogialli, Sara; Caputi, Valentina; Albertoni, Laura; Marsilio, Ilaria; Paccagnella, Nicola; Carrara, Maria; Giron, Maria Cecilia; De Martin, Sara

    2017-01-01

    Edible seaweeds have been consumed by Asian coastal communities since ancient times. Fucus vesiculosus and Ascophyllum nodosum extracts have been traditionally used for the treatment of obesity and several gastrointestinal diseases. We evaluated the ability of extracts obtained from these algae to inhibit the digestive enzymes α-amylase and α-glucosidase in vitro, and control postprandial plasma glucose levels in a mouse model of non-alcoholic steatohepatitis (NASH); a liver disease often preceding the development of Type 2 diabetes (T2DM). This model was obtained by the administration of a high-fat diet. Our results demonstrate that these algae only delayed and reduced the peak of blood glucose (p < 0.05) in mice fed with normal diet, without changing the area under the blood glucose curve (AUC). In the model of NASH, the phytocomplex was able to reduce both the postprandial glycaemic peak, and the AUC. The administration of the extract in a diet particularly rich in fat is associated with a delay in carbohydrate digestion, but also with a decrease in its assimilation. In conclusion, our results indicate that this algal extract may be useful in the control of carbohydrate digestion and absorption. This effect may be therapeutically exploited to prevent the transition of NASH to T2DM. PMID:28212301

  16. Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers.

    PubMed

    Lemieux, Hélène; Blier, Pierre U; Gnaiger, Erich

    2017-06-06

    Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.

  17. Nkx6-1 controls the identity and fate of red nucleus and oculomotor neurons in the mouse midbrain

    PubMed Central

    Prakash, Nilima; Puelles, Eduardo; Freude, Kristine; Trümbach, Dietrich; Omodei, Daniela; Di Salvio, Michela; Sussel, Lori; Ericson, Johan; Sander, Maike; Simeone, Antonio; Wurst, Wolfgang

    2009-01-01

    Summary Little is known about the cues controlling the generation of motoneuron populations in the mammalian ventral midbrain. We show that Otx2 provides the crucial anterior-posterior positional information for the generation of red nucleus neurons in the murine midbrain. Moreover, the homeodomain transcription factor Nkx6-1 controls the proper development of the red nucleus and of the oculomotor and trochlear nucleus neurons. Nkx6-1 is expressed in ventral midbrain progenitors and acts as a fate determinant of the Brn3a+ (also known as Pou4f1) red nucleus neurons. These progenitors are partially dorsalized in the absence of Nkx6-1, and a fraction of their postmitotic offspring adopts an alternative cell fate, as revealed by the activation of Dbx1 and Otx2 in these cells. Nkx6-1 is also expressed in postmitotic Isl1+ oculomotor and trochlear neurons. Similar to hindbrain visceral (branchio-) motoneurons, Nkx6-1 controls the proper migration and axon outgrowth of these neurons by regulating the expression of at least three axon guidance/neuronal migration molecules. Based on these findings, we provide additional evidence that the developmental mechanism of the oculomotor and trochlear neurons exhibits more similarity with that of special visceral motoneurons than with that controlling the generation of somatic motoneurons located in the murine caudal hindbrain and spinal cord. PMID:19592574

  18. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  19. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  20. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  1. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  2. 42 CFR 136a.13 - Authorization for contract health services.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Authorization for contract health services. 136a.13 Section 136a.13 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES INDIAN HEALTH What Services Are Available and Who...

  3. 29 CFR 1912a.13 - Subcommittees and subgroups.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Subcommittees and subgroups. 1912a.13 Section 1912a.13 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) NATIONAL ADVISORY COMMITTEE ON OCCUPATIONAL SAFETY AND HEALTH §...

  4. 18 CFR 3a.13 - Classification responsibility and procedure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Classification responsibility and procedure. 3a.13 Section 3a.13 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION Classification § 3a...

  5. Lnk controls mouse hematopoietic stem cell self-renewal and quiescence through direct interactions with JAK2

    PubMed Central

    Bersenev, Alexey; Wu, Chao; Balcerek, Joanna; Tong, Wei

    2008-01-01

    In addition to its role in megakaryocyte production, signaling initiated by thrombopoietin (TPO) activation of its receptor, myeloproliferative leukemia virus protooncogene (c-Mpl, or Mpl), controls HSC homeostasis and self-renewal. Under steady-state conditions, mice lacking the inhibitory adaptor protein Lnk harbor an expanded HSC pool with enhanced self-renewal. We found that HSCs from Lnk–/– mice have an increased quiescent fraction, decelerated cell cycle kinetics, and enhanced resistance to repeat treatments with cytoablative 5-fluorouracil in vivo compared with WT HSCs. We further provide genetic evidence demonstrating that Lnk controls HSC quiescence and self-renewal, predominantly through Mpl. Consistent with this observation, Lnk–/– HSCs displayed potentiated activation of JAK2 specifically in response to TPO. Biochemical experiments revealed that Lnk directly binds to phosphorylated tyrosine residues in JAK2 following TPO stimulation. Of note, the JAK2 V617F mutant, found at high frequencies in myeloproliferative diseases, retains the ability to bind Lnk. Therefore, we identified Lnk as a physiological negative regulator of JAK2 in stem cells and TPO/Mpl/JAK2/Lnk as a major regulatory pathway in controlling stem cell self-renewal and quiescence. PMID:18618018

  6. RNAi as a tool to control the sex ratio of mouse offspring by interrupting Zfx/Zfy genes in the testis.

    PubMed

    Zhang, YongSheng; Xi, JiFeng; Jia, Bin; Wang, XiangZu; Wang, XuHai; Li, ChaoCheng; Li, YaQiang; Zeng, XianCun; Ying, RuiWen; Li, Xin; Jiang, Song; Yuan, FangYuan

    2017-03-01

    The objective of this study was to explore a novel method to alter the sex-ratio balance of mouse offspring by silencing the paralogous genes Zfx/Zfy (Zinc finger X/Y-chromosomal transcription factor gene) during spermatogenesis. Four recombined vectors PRZ1, PRZ2, PRZ3, and PRZ4 (RNAi-Ready-pSIREN-RetroQ-ZsGreen) were constructed for interrupting the Zfx gene. Additionally, a recombined vector Psilencer/Zfy-shRNA was constructed for interrupting the Zfy gene. Male mice were randomly divided into 8 groups, with 20 animals per group. Five groups of mice were injected with PRZ1, PRZ2, PRZ3, PRZ4, and Psilencer/Zfy-shRNA vectors, respectively. The three control groups were injected with an equal volume of physiological saline, empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector, and empty Psilencer/Zfy-shRNA vector, respectively. All groups were injected every 7 days for a total of four injections. Fourteen days after the fourth injection, 10 male mice from each group were mated individually with 10 females. Testicular tissue of 10 male mice in each group was collected, and the expression level of Zfx/Zfy mRNA was determined by qRT-PCR. Results showed that, compared with the empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector and the physiological saline group, expression of Zfx mRNA decreased significantly after injection of PRZ1 (p < 0.01), PRZ3 (p < 0.01), and PRZ4 (p < 0.01), and 78.75 ± 7.50% of the offspring were male in PRZ4 group, significantly higher than the offspring derived from the empty RNAi-Ready-pSIREN-RetroQ-ZsGreen vector and physiological saline group (p < 0.01). In the PRZ1 group, the expression of Zfx mRNA was also significantly lower (p < 0.01), but the male rate of offspring was not different (p > 0.05). Conversely, the expression of Zfy mRNA decreased significantly after injection of Psilencer/Zfy-shRNA (p < 0.01) and 31.00 ± 11.00% of the offspring were male, significantly lower than in the physiological saline group

  7. Molecular mechanisms underlying postoperative peritoneal tumor dissemination may differ between a laparotomy and carbon dioxide pneumoperitoneum: a syngeneic mouse model with controlled respiratory support.

    PubMed

    Matsuzaki, Sachiko; Bourdel, Nicolas; Darcha, Claude; Déchelotte, Pierre J; Bazin, Jean-Etienne; Pouly, Jean-Luc; Mage, Gérard; Canis, Michel

    2009-04-01

    The mechanisms promoting postoperative peritoneal tumor dissemination are unclear. This study aimed to investigate postoperative tumor dissemination over time on both tissue and molecular levels. For this study, C57BL6 mice were randomized into four groups: anesthesia alone (control), carbon dioxide (CO(2)) pneumoperitoneum at low (2 mmHg) or high (8 mmHg) intraperitoneal pressure (IPP), and laparotomy. A mouse ovarian cancer cell line (ID8) was injected intraperitoneally just before surgery. The groups were further subdivided into three groups, and a laparotomy was performed to evaluate tumor dissemination on postoperative day (POD) 7, 14, or 42. The incidence of cancer cell invasion into the muscle layers of the abdominal wall was significantly higher in the laparotomy and high-IPP groups than in the low-IPP and control groups on PODs 7 and 42. Expression levels of beta 1 integrin, cMet, urokinase-type plasminogen activator (uPA), urokinase-type plasminogen activator receptor (uPAR), and type-1 plasminogen activator inhibitor (PAI-1) mRNA in the disseminated nodules were not significantly different among the four groups on POD 7. However, the expression levels of all these genes in the disseminated nodules in the laparotomy group were significantly higher on POD 14 than on POD 7. They then returned to control levels on POD 42. There were no significant differences in the expression levels of any of these genes among the groups on POD 42. The current study suggests that the molecular mechanisms underlying postoperative peritoneal tumor dissemination may differ between a laparotomy and CO(2) pneumoperitoneum. Therefore, strategies targeting postoperative tumor dissemination likely will need to account for the surgical environment.

  8. Kinematics of meniscal- and ACL-transected mouse knees during controlled tibial compressive loading captured using roentgen stereophotogrammetry.

    PubMed

    Adebayo, Olufunmilayo O; Ko, Frank C; Goldring, Steven R; Goldring, Mary B; Wright, Timothy M; van der Meulen, Marjolein C H

    2017-02-01

    Pre-clinical studies of post-traumatic OA have examined the pathways that lead to disease after injury by using surgical models such as the destabilization of the medial meniscus (DMM) and anterior cruciate ligament transection (ACLT). While the morphological, molecular, and genetic pathways leading to OA have been examined extensively; the effects of these injuries on joint kinematics, and thus disease progression, have yet to be fully characterized. To this end, we sought to understand the kinematics in the DMM and ACLT joints compared to intact joints subjected to controlled tibial compressive loading. We hypothesized that the DMM and ACLT models would result in different patterns of joint instability compared to intact joints, thus explaining the different patterns of OA initiation and severity in these models. Cadaver adult C57BL/6 mice were subjected to either a DMM or ACLT in their right knee joints, while the left limbs remained as intact controls. All limbs were labeled with fiducial markers, and the rigid body kinematics of the tibia and femur were examined using roentgen stereophotogrammetry (RSA) with application of compressive loads from 0 to 9 N. DMM and intact joints demonstrated similar kinematics under compressive loading, in contrast to ACLT joints, which dislocated even before load application. These results demonstrate the importance of rigorous kinematic analysis in defining the role of joint instability in animal models of OA and suggest significant differences in DMM and ACLT joint instabilities in the context of controlled mechanical loading. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:353-360, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  9. COUP-TFII Controls Mouse Pancreatic β-Cell Mass through GLP-1-β-Catenin Signaling Pathways

    PubMed Central

    Boutant, Marie; Ramos, Oscar Henrique Pereira; Tourrel-Cuzin, Cécile; Movassat, Jamileh; Ilias, Anissa; Vallois, David; Planchais, Julien; Pégorier, Jean-Paul; Schuit, Frans; Petit, Patrice X.; Bossard, Pascale; Maedler, Kathrin; Grapin-Botton, Anne; Vasseur-Cognet, Mireille

    2012-01-01

    Background The control of the functional pancreatic β-cell mass serves the key homeostatic function of releasing the right amount of insulin to keep blood sugar in the normal range. It is not fully understood though how β-cell mass is determined. Methodology/Principal Findings Conditional chicken ovalbumin upstream promoter transcription factor II (COUP-TFII)-deficient mice were generated and crossed with mice expressing Cre under the control of pancreatic duodenal homeobox 1 (pdx1) gene promoter. Ablation of COUP-TFII in pancreas resulted in glucose intolerance. Beta-cell number was reduced at 1 day and 3 weeks postnatal. Together with a reduced number of insulin-containing cells in the ductal epithelium and normal β-cell proliferation and apoptosis, this suggests decreased β-cell differentiation in the neonatal period. By testing islets isolated from these mice and cultured β-cells with loss and gain of COUP-TFII function, we found that COUP-TFII induces the expression of the β-catenin gene and its target genes such as cyclin D1 and axin 2. Moreover, induction of these genes by glucagon-like peptide 1 (GLP-1) via β-catenin was impaired in absence of COUP-TFII. The expression of two other target genes of GLP-1 signaling, GLP-1R and PDX-1 was significantly lower in mutant islets compared to control islets, possibly contributing to reduced β-cell mass. Finally, we demonstrated that COUP-TFII expression was activated by the Wnt signaling-associated transcription factor TCF7L2 (T-cell factor 7-like 2) in human islets and rat β-cells providing a feedback loop. Conclusions/Significance Our findings show that COUP-TFII is a novel component of the GLP-1 signaling cascade that increases β-cell number during the neonatal period. COUP-TFII is required for GLP-1 activation of the β-catenin-dependent pathway and its expression is under the control of TCF7L2. PMID:22292058

  10. Delineation of the central melanocortin circuitry controlling the kidneys by a virally mediated transsynaptic tracing study in transgenic mouse model

    PubMed Central

    Liu, Tao Tao; Liu, Bao Wen; He, Zhi Gang; Feng, Li; Liu, San Guang; Xiang, Hong Bing

    2016-01-01

    To examine if brain neurons involved in the efferent control of the kidneys possess melanocortin-4 receptor (MC4-R) and/or tryptophan hydroxylase (TPH). Retrograde tracing pseudorabies virus (PRV)-614 was injected into the kidneys in adult male MC4R-green fluorescent protein (GFP) transgenic mice. After a survival time of 3-7 days, spinal cord and brain were removed and sectioned, and processed for PRV-614 visualization. The neurochemical phenotype of PRV-614-positive neurons was identified using double or triple immunocytochemical labeling against PRV-614, MC4R, or TPH. Double and triple labeling was quantified using microscopy. The majority of PRV-614 immunopositive neurons which also expressed immunoreactivity for MC4R were located in the ipsilateral intermediolateral cell column (IML) of the thoracic spinal cord, the paraventricular nucleus (PVN) of the hypothalamus, and raphe pallidus (RPa), nucleus raphe magnus (NRM) and ventromedial medulla (VMM) of the brainstem. Triple-labeled MC4R/PRV-614/TPH neurons were concentrated in the PVN, RPa, NRM and VMM. These data strongly suggest that central MC4R and TPH are involved in the efferent neuronal control of the kidneys. PMID:27626491

  11. Cell competition in mouse NIH3T3 embryonic fibroblasts is controlled by the activity of Tead family proteins and Myc.

    PubMed

    Mamada, Hiroshi; Sato, Takashi; Ota, Mitsunori; Sasaki, Hiroshi

    2015-02-15

    Cell competition is a short-range communication originally observed in Drosophila. Relatively little is known about cell competition in mammals or in non-epithelial cells. Hippo signaling and its downstream transcription factors of the Tead family, control cell proliferation and apoptosis. Here, we established an in vitro model system that shows cell competition in mouse NIH3T3 embryo fibroblast cells. Co-culture of Tead-activity-manipulated cells with normal (wild-type) cells caused cell competition. Cells with reduced Tead activity became losers, whereas cells with increased Tead activity became super-competitors. Tead directly regulated Myc RNA expression, and cells with increased Myc expression also became super-competitors. At low cell density, cell proliferation required both Tead activity and Myc. At high cell density, however, reduction of either Tead activity or Myc was compensated for by an increase in the other, and this increase was sufficient to confer 'winner' activity. Collectively, NIH3T3 cells have cell competition mechanisms similar to those regulated by Yki and Myc in Drosophila. Establishment of this in vitro model system should be useful for analyses of the mechanisms of cell competition in mammals and in fibroblasts. © 2015. Published by The Company of Biologists Ltd.

  12. Identification of the cis-element and bZIP DNA binding motifs for the autogenous negative control of mouse NOSTRIN.

    PubMed

    Bae, Seong-Ho; Choi, Young-Joon; Kim, Kyung-hyun; Park, Sung-Soo

    2014-01-17

    mNOSTRIN is the mouse ortholog of hNOSTRIN. Unlike hNOSTRIN, which is alternatively spliced to produce two isoforms (α and β), only a single isoform of mNOSTRIN has been detected in either the nucleus or cytoplasm/membrane. Because mNOSTRIN represses its own transcription through direct binding onto its own promoter, this protein is constantly expressed in a temporally regulated pattern during differentiation of F9 embryonic carcinoma cells. In this study, we identified the specific cis-element in the mNOSTRIN regulatory region that is responsible for negative autogenous control. This element exhibits inverted dyad symmetry. Furthermore, we identified a putative bZIP motif in the middle region of mNOSTRIN, which is responsible for DNA binding, and showed that disruption of the leucine zippers abolished the DNA-binding activity of mNOSTRIN. Here, we report that a single form of mNOSTRIN functions in both the nucleus and cytoplasm/membrane. In the nucleus, mNOSTRIN acts as a transcriptional repressor by binding to the cis-element through its bZIP motif. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Regulation of mouse thymidylate synthase gene expression in growth-stimulated cells: upstream S phase control elements are indistinguishable from the essential promoter elements.

    PubMed Central

    Ash, J; Liao, W C; Ke, Y; Johnson, L F

    1995-01-01

    Expression of the mammalian thymidylate synthase (TS) gene in growth-stimulated cells is closely coordinated with entry into S phase. Previous studies with transfected TS minigenes have shown that sequences upstream of the coding region as well as an intron in the transcribed region are both necessary for proper regulation of TS mRNA content in growth-stimulated cells. The goal of the present study was to identify the upstream regulatory elements. Minigenes consisting of TS 5' flanking sequences linked to the TS coding region (interrupted by introns 1 and 2) were stably transfected into mouse 3T6 cells. Deletion and site-directed mutagenesis of the 5' flanking region revealed that there is a close correspondence between the upstream sequences that are necessary for S phase regulation and the 30 nucleotide region that is essential for promoter activity. These observations raised the possibility that regulation of the TS gene occurs at the transcriptional level. However, nuclear run-on assays showed that the rate of transcription of the TS gene changed very little during the G1-S phase transition. Furthermore, when the TS promoter was linked to an intron-less luciferase indicator gene, there was no change in expression following growth-stimulation. Therefore it appears that the TS gene is controlled primarily at the posttranscriptional level, and that the TS essential promoter region is necessary (although not sufficient) for proper S phase regulation. Images PMID:8524656

  14. Evidence in rat and mouse liver for temporal control of two forms of cytochrome P-450 inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin.

    PubMed

    Guenthner, T M; Nebert, D W

    1978-11-15

    In the liver of perinatal rats or mice, the ratio of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced aryl hydrocarbon hydroxylase to total cytochrome P-450 content decreases, whereas the ratio of 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced acetanilide 4-hydroxylase to total cytochrome P-450 content increases, between 18 or 19 days and 22 days following conception. The ontogenesis of inducible aryl hydrocarbon hydroxylase corresponds well with increases in a 56000-Mr electrophoretic band; we suggest this band represents the cytochrome P1-450 subunit. The later temporal expression of inducible acetanilide 4-hydroxylase closely parallels 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced increases in size of a 54000-Mr electrophoretic band and a 2--3-nm hypsochromic shift in the Soret peak of the total microsomal reduced cytochrome P-450 . CO complex. We suggest this band represents the cytochrome P-448 subunit. Previous work from this laboratory has shown that this developmental difference is separated by several weeks in rabbit liver, as compared with several day's separation shown in this report with rat or mouse liver. The data here therefore provide evidence in the rodent for temporal control of the expression of different structural gene products regulated by the Ah locus.

  15. Development and Evaluation of a Head-Controlled Human-Computer Interface with Mouse-Like Functions for Physically Disabled Users

    PubMed Central

    Pereira, César Augusto Martins; Neto, Raul Bolliger; Reynaldo, Ana Carolina; de Miranda Luzo, Maria Cândida; Oliveira, Reginaldo Perilo

    2009-01-01

    OBJECTIVES The objectives of this study were to develop a pointing device controlled by head movement that had the same functions as a conventional mouse and to evaluate the performance of the proposed device when operated by quadriplegic users. METHODS Ten individuals with cervical spinal cord injury participated in functional evaluations of the developed pointing device. The device consisted of a video camera, computer software, and a target attached to the front part of a cap, which was placed on the user’s head. The software captured images of the target coming from the video camera and processed them with the aim of determining the displacement from the center of the target and correlating this with the movement of the computer cursor. Evaluation of the interaction between each user and the proposed device was carried out using 24 multidirectional tests with two degrees of difficulty. RESULTS According to the parameters of mean throughput and movement time, no statistically significant differences were observed between the repetitions of the tests for either of the studied levels of difficulty. CONCLUSIONS The developed pointing device adequately emulates the movement functions of the computer cursor. It is easy to use and can be learned quickly when operated by quadriplegic individuals. PMID:19841704

  16. Absence of a gestational diabetes phenotype in the LepRdb/+ mouse is independent of control strain, diet, misty allele, or parity

    PubMed Central

    Plows, Jasmine F.; Yu, XinYang; Broadhurst, Ric; Vickers, Mark H.; Tong, Chao; Zhang, Hua; Qi, HongBo; Stanley, Joanna L.; Baker, Philip N.

    2017-01-01

    Treatment options for gestational diabetes (GDM) are limited. In order to better understand mechanisms and improve treatments, appropriate animal models of GDM are crucial. Heterozygous db mice (db/+) present with glucose intolerance, insulin resistance, and increased weight gain during, but not prior to, pregnancy. This makes them an ideal model for GDM. However, several recent studies have reported an absence of GDM phenotype in their colony. We investigated several hypotheses for why the phenotype may be absent, with the aim of re-establishing it and preventing further resources being wasted on an ineffective model. Experiments were carried out across two laboratories in two countries (New Zealand and China), and were designed to assess type of control strain, diet, presence of the misty allele, and parity as potential contributors to the lost phenotype. While hyperleptinemia and pre-pregnancy weight gain were present in all db/+mice across the four studies, we found no consistent evidence of glucose intolerance or insulin resistance during pregnancy. In conclusion, we were unable to acquire the GDM phenotype in any of our experiments, and we recommend researchers do not use the db/+ mouse as a model of GDM unless they are certain the phenotype remains in their colony. PMID:28338021

  17. Light-inducible and clock-controlled expression of MAP kinase phosphatase 1 in mouse central pacemaker neurons.

    PubMed

    Doi, Masao; Cho, Sehyung; Yujnovsky, Irene; Hirayama, Jun; Cermakian, Nicolas; Cato, Andrew C B; Sassone-Corsi, Paolo

    2007-04-01

    MAP kinase phosphatase 1 (MKP1) is a negative regulator for the mitogen-activated protein kinase (MAPK)-mediated signal transduction, a key pathway that leads to the regulated expression of circadian clock genes. Here the authors analyzed mkp1 expression by in situ hybridization and found that mkp1 is a light-inducible and clock-controlled gene expressed in the central pacemaker neurons of the hypothalamic SCN. Interestingly, mkp1 presents a marked similarity to the clock core gene per1 in terms of the gene expression profiles as well as the gene promoter organization. Both mkp1 and per1 are subject to bimodal regulation in the SCN: the external light-dependent acute up-regulation and the functional clock-dependent circadian oscillation. Consistent with this, the authors show that mkp1 gene has a per1-like promoter that contains 2 functionally distinct elements: cAMP-responsive element (CRE) and E-box. CRE sites present in the mkp1 promoter constitute the functional binding sites for the CRE binding protein (CREB), which serves as an important regulator that mediates the light-induced signaling cascades in the SCN neurons. Furthermore, the authors show that the E-box present in the mkp1 promoter is necessary and sufficient for transcriptional control exerted by circadian clock core regulators that include a positive complex CLOCK/BMAL1 and a negative factor CRY1. The authors' studies on mkp1 have identified for the first time a gene encoding a phosphatase that functions in light-dependent and time-of-day-dependent manners in the mammalian central clock structure SCN.

  18. Critical Role and Therapeutic Control of the Lectin Pathway of Complement Activation in an Abortion-Prone Mouse Mating.

    PubMed

    Petitbarat, Marie; Durigutto, Paolo; Macor, Paolo; Bulla, Roberta; Palmioli, Alessandro; Bernardi, Anna; De Simoni, Maria-Grazia; Ledee, Nathalie; Chaouat, Gerard; Tedesco, Francesco

    2015-12-15

    The abortion-prone mating combination CBA/J × DBA/2 has been recognized as a model of preeclampsia, and complement activation has been implicated in the high rate of pregnancy loss observed in CBA/J mice. We have analyzed the implantation sites collected from DBA/2-mated CBA/J mice for the deposition of the complement recognition molecules using CBA/J mated with BALB/c mice as a control group. MBL-A was observed in the implantation sites of CBA/J × DBA/2 combination in the absence of MBL-C and was undetectable in BALB/c-mated CBA/J mice. Conversely, C1q was present in both mating combinations. Searching for other complement components localized at the implantation sites of CBA/J × DBA/2, we found C4 and C3, but we failed to reveal C1r. These data suggest that complement is activated through the lectin pathway and proceeds to completion of the activation sequence as revealed by C9 deposition. MBL-A was detected as early as 3.5 d of pregnancy, and MBL-A deficiency prevented pregnancy loss in the abortion-prone mating combination. The contribution of the terminal complex to miscarriage was supported by the finding that pregnancy failure was largely inhibited by the administration of neutralizing Ab to C5. Treatment of DBA/2-mated CBA/J mice with Polyman2 that binds to MBL-A with high affinity proved to be highly effective in controlling the activation of the lectin pathway and in preventing fetal loss. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. Mouse models in oncoimmunology.

    PubMed

    Zitvogel, Laurence; Pitt, Jonathan M; Daillère, Romain; Smyth, Mark J; Kroemer, Guido

    2016-12-01

    Fundamental cancer research and the development of efficacious antineoplastic treatments both rely on experimental systems in which the relationship between malignant cells and immune cells can be studied. Mouse models of transplantable, carcinogen-induced or genetically engineered malignancies - each with their specific advantages and difficulties - have laid the foundations of oncoimmunology. These models have guided the immunosurveillance theory that postulates that evasion from immune control is an essential feature of cancer, the concept that the long-term effects of conventional cancer treatments mostly rely on the reinstatement of anticancer immune responses and the preclinical development of immunotherapies, including currently approved immune checkpoint blockers. Specific aspects of pharmacological development, as well as attempts to personalize cancer treatments using patient-derived xenografts, require the development of mouse models in which murine genes and cells are replaced with their human equivalents. Such 'humanized' mouse models are being progressively refined to characterize the leukocyte subpopulations that belong to the innate and acquired arms of the immune system as they infiltrate human cancers that are subjected to experimental therapies. We surmise that the ever-advancing refinement of murine preclinical models will accelerate the pace of therapeutic optimization in patients.

  20. Ca2+ imaging of mouse neocortical interneurone dendrites: Ia-type K+ channels control action potential backpropagation

    PubMed Central

    Goldberg, Jesse H; Tamas, Gabor; Yuste, Rafael

    2003-01-01

    GABAergic interneurones are essential in cortical processing, yet the functional properties of their dendrites are still poorly understood. In this first study, we combined two-photon calcium imaging with whole-cell recording and anatomical reconstructions to examine the calcium dynamics during action potential (AP) backpropagation in three types of V1 supragranular interneurones: parvalbumin-positive fast spikers (FS), calretinin-positive irregular spikers (IS), and adapting cells (AD). Somatically generated APs actively backpropagated into the dendritic tree and evoked instantaneous calcium accumulations. Although voltage-gated calcium channels were expressed throughout the dendritic arbor, calcium signals during backpropagation of both single APs and AP trains were restricted to proximal dendrites. This spatial control of AP backpropagation was mediated by Ia-type potassium currents and could be mitigated by by previous synaptic activity. Further, we observed supralinear summation of calcium signals in synaptically activated dendritic compartments. Together, these findings indicate that in interneurons, dendritic AP propagation is synaptically regulated. We propose that interneurones have a perisomatic and a distal dendritic functional compartment, with different integrative functions. PMID:12844506

  1. Impaired TNF-α Control of IP3R-mediated Ca2+ Release in Alzheimer's Disease Mouse Neurons

    PubMed Central

    Park, Keigan M.; Yule, David I.; Bowers, William J.

    2009-01-01

    The misguided control of inflammatory signaling has been previously implicated in the pathogenesis of several neurological disorders, including Alzheimer's disease (AD). Induction of tumor necrosis factor-alpha (TNF-α), a central mediator of neuroinflammation, occurs commensurate with the onset of early disease in 3xTg-AD mice, which develop both amyloid plaque and neurofibrillary tangle pathologies in an age- and region-dependent pattern. Herein, we describe regulation inherent to 3xTg-AD neurons, which results in the loss of TNF-α mediated enhancement of inositol 1,4,5 trisphosphate (IP3R)-mediated Ca2+ release. This modulation also leads to significant down regulation of IP3R signaling following protracted cytokine exposure. Through the experimental isolation of each AD-related transgene, it was determined that expression of the PS1M146V transgene product is responsible for the loss of the TNF-α effect on IP3R-mediated Ca2+ release. Furthermore, it was determined that the suppression of TNF-α receptor expression occurred in the presence of the presenilin transgene. Our findings attribute this familial AD mutation to suppressing a Ca2+-regulated signal cascade potentially intended to “inform” neurons of proximal neuroinflammatory events and trigger compensatory responses for protection of neural transmission. PMID:19922794

  2. Evaluation of magnetic nanoparticles coated by 5-fluorouracil imprinted polymer for controlled drug delivery in mouse breast cancer model.

    PubMed

    Hashemi-Moghaddam, Hamid; Kazemi-Bagsangani, Saeed; Jamili, Mahdi; Zavareh, Saeed

    2016-01-30

    Nanoparticles (NPs) have been extensively investigated to improve delivery efficiency of therapeutic and diagnostic agents. In this study, magnetic molecularly imprinted polymer (MIP) was synthesized by using polydopamine. Synthesized MIP was used for controlled 5-fluorouracil (5-FU) delivery in a spontaneous model of breast adenocarcinoma in Balb/c mice in the presence of an external magnetic field. Antitumor effectiveness of 5-FU imprinted polymer (5-FU-IP) was evaluated in terms of tumor-growth delay, tumor-doubling time, inhibition ratio, and histopathology. Results showed higher efficacy of 5-FU-IP in the presence of magnetic field upon suppressing tumor growth than free 5-FU and 5-FU-IP without magnetic field. The 5-FU and Fe distribution among tissues were evaluated by high-performance liquid chromatography and flame atomic absorption spectrometry, respectively. The obtained results, showed significantly deposition of 5-FU in the 5-FU-IP treated group with magnetic field. Thus, magnetic 5-FU-IP is promising for breast cancer therapy with high efficacy.

  3. FXR Controls the Tumor Suppressor NDRG2 and FXR Agonists Reduce Liver Tumor Growth and Metastasis in an Orthotopic Mouse Xenograft Model

    PubMed Central

    Deuschle, Ulrich; Schüler, Julia; Schulz, Andreas; Schlüter, Thomas; Kinzel, Olaf; Abel, Ulrich; Kremoser, Claus

    2012-01-01

    The farnesoid X receptor (FXR) is expressed predominantly in tissues exposed to high levels of bile acids and controls bile acid and lipid homeostasis. FXR−/− mice develop hepatocellular carcinoma (HCC) and show an increased prevalence for intestinal malignancies, suggesting a role of FXR as a tumor suppressor in enterohepatic tissues. The N-myc downstream-regulated gene 2 (NDRG2) has been recognized as a tumor suppressor gene, which is downregulated in human hepatocellular carcinoma, colorectal carcinoma and many other malignancies. We show reduced NDRG2 mRNA in livers of FXR−/− mice compared to wild type mice and both, FXR and NDRG2 mRNAs, are reduced in human HCC compared to normal liver. Gene reporter assays and Chromatin Immunoprecipitation data support that FXR directly controls NDRG2 transcription via IR1-type element(s) identified in the first introns of the human, mouse and rat NDRG2 genes. NDRG2 mRNA was induced by non-steroidal FXR agonists in livers of mice and the magnitude of induction of NDRG2 mRNA in three different human hepatoma cell lines was increased when ectopically expressing human FXR. Growth and metastasis of SK-Hep-1 cells was strongly reduced by non-steroidal FXR agonists in an orthotopic liver xenograft tumor model. Ectopic expression of FXR in SK-Hep1 cells reduced tumor growth and metastasis potential of corresponding cells and increased the anti-tumor efficacy of FXR agonists, which may be partly mediated via increased NDRG2 expression. FXR agonists may show a potential in the prevention and/or treatment of human hepatocellular carcinoma, a devastating malignancy with increasing prevalence and limited therapeutic options. PMID:23056173

  4. Neuronal Deletion of Caspase 8 Protects against Brain Injury in Mouse Models of Controlled Cortical Impact and Kainic Acid-Induced Excitotoxicity

    PubMed Central

    Krajewska, Maryla; You, Zerong; Rong, Juan; Kress, Christina; Huang, Xianshu; Yang, Jinsheng; Kyoda, Tiffany; Leyva, Ricardo; Banares, Steven; Hu, Yue; Sze, Chia-Hung; Whalen, Michael J.; Salmena, Leonardo; Hakem, Razqallah; Head, Brian P.; Reed, John C.; Krajewski, Stan

    2011-01-01

    Background Acute brain injury is an important health problem. Given the critical position of caspase 8 at the crossroads of cell death pathways, we generated a new viable mouse line (Ncasp8−/−), in which the gene encoding caspase 8 was selectively deleted in neurons by cre-lox system. Methodology/Principal Findings Caspase 8 deletion reduced rates of neuronal cell death in primary neuronal cultures and in whole brain organotypic coronal slice cultures prepared from 4 and 8 month old mice and cultivated up to 14 days in vitro. Treatments of cultures with recombinant murine TNFα (100 ng/ml) or TRAIL (250 ng/mL) plus cyclohexamide significantly protected neurons against cell death induced by these apoptosis-inducing ligands. A protective role of caspase 8 deletion in vivo was also demonstrated using a controlled cortical impact (CCI) model of traumatic brain injury (TBI) and seizure-induced brain injury caused by kainic acid (KA). Morphometric analyses were performed using digital imaging in conjunction with image analysis algorithms. By employing virtual images of hundreds of brain sections, we were able to perform quantitative morphometry of histological and immunohistochemical staining data in an unbiased manner. In the TBI model, homozygous deletion of caspase 8 resulted in reduced lesion volumes, improved post-injury motor performance, superior learning and memory retention, decreased apoptosis, diminished proteolytic processing of caspases and caspase substrates, and less neuronal degeneration, compared to wild type, homozygous cre, and caspase 8-floxed control mice. In the KA model, Ncasp8−/− mice demonstrated superior survival, reduced seizure severity, less apoptosis, and reduced caspase 3 processing. Uninjured aged knockout mice showed improved learning and memory, implicating a possible role for caspase 8 in cognitive decline with aging. Conclusions Neuron-specific deletion of caspase 8 reduces brain damage and improves post-traumatic functional

  5. Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A

    PubMed Central

    Chittoor, Vinita G.; Sooyeon, Lee; Rangaraju, Sunitha; Nicks, Jessica R.; Schmidt, Jordan T.; Madorsky, Irina; Narvaez, Diana C.; Notterpek, Lucia

    2013-01-01

    Charcot–Marie–Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS), autophagosomes and heat-shock proteins (HSPs). Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins. PMID:24175617

  6. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model.

    PubMed

    Luo, Jing; Dong, Biying; Wang, Ke; Cai, Shuangqi; Liu, Tangjuan; Cheng, Xiaojing; Lei, Danqing; Chen, Yanling; Li, Yanan; Kong, Jinliang; Chen, Yiqiang

    2017-01-01

    The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the

  7. Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model

    PubMed Central

    Wang, Ke; Cai, Shuangqi; Liu, Tangjuan; Cheng, Xiaojing; Lei, Danqing; Chen, Yanling; Li, Yanan; Kong, Jinliang; Chen, Yiqiang

    2017-01-01

    The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the

  8. The Mouse That Soared

    NASA Astrophysics Data System (ADS)

    2004-09-01

    diameter of about 12 miles. Their formation is associated with a Type II supernova, the collapse and subsequent explosion of a massive star. The origin of a pulsar's high velocity is not known, but many astrophysicists suspect that it is directly related to the explosive circumstances involved in the birth of the pulsar. The rapid rotation and strong magnetic field of a pulsar can generate a wind of high-energy matter and antimatter particles that rush out at near the speed of light. These pulsar winds create large, magnetized bubbles of high-energy particles called pulsar wind nebulae. The X-ray and radio data on the Mouse have enabled Gaensler and his colleagues to constrain the properties of the ambient gas, to estimate the velocity of the pulsar, and to analyze the structure of the various shock waves created by the pulsar, the flow of particles away from the pulsar, and the magnetic field in the nebula. Zoom into Chandra's Image of the Mouse Zoom into Chandra's Image of the Mouse Other members of the research team were Eric van der Swaluw (FOM Institute of Physics, The Netherlands), Fernando Camilo (Columbia Univ., New York), Vicky Kaspi (McGill Univ., Montreal), Frederick K. Baganoff (MIT, Cambridge, Mass.), Farhad Yusef-Zadeh (Northwestern), and Richard Manchester (Australia Telescope National Facility). The pulsar in the Mouse was originally detected by Camilo et al. in 2002 using Australia's Parkes radio telescope. Chandra observed the Mouse on October 23 and 24, 2002. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov

  9. Relative biological effectiveness of carbon ions for tumor control, acute skin damage and late radiation-induced fibrosis in a mouse model.

    PubMed

    Sørensen, Brita S; Horsman, Michael R; Alsner, Jan; Overgaard, Jens; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Bassler, Niels

    2015-01-01

    The aim of the present study was to compare the biological effectiveness of carbon ions relative to x-rays between tumor control, acute skin reaction and late RIF of CDF1 mice. CDF1 mice with a C3H mouse mammary carcinoma implanted subcutaneously on the foot of the right hind limb were irradiated with single fractions of either photons, or (12)C ions using a 30-mm spread-out Bragg peak. The endpoint of the study was local control (no tumor recurrence within 90 days). For the acute skin reaction, non-tumor bearing CDF1 mice were irradiated with a comparable radiation scheme, and monitored for acute skin damage between Day 7 and 40. Late RIF was assessed in the irradiated mice. The TCD50 (dose producing tumor control in 50% of mice) values with 95% confidence interval were 29.7 (25.4-34.8) Gy for C ions and 43.9 (39.2-49.2) Gy for photons, with a corresponding Relative biological effectiveness (RBE) value of 1.48 (1.28-1.72). For acute skin damage the MDD50 (dose to produce moist desquamation in 50% of mice) values with 95% confidence interval were 26.3 (23.0-30.1) Gy for C ions and 35.8 (32.9-39.0) Gy for photons, resulting in a RBE of 1.36 (1.20-1.54). For late radiation-induced fibrosis the FD50 (dose to produce severe fibrosis in 50% of mice) values with 95% confidence interval were 26.5 (23.1-30.3) Gy for carbon ions and 39.8 (37.8-41.8) Gy for photons, with a RBE of 1.50 (1.33-1.69). The observed RBE values were very similar for tumor response, acute skin damage and late RIF when irradiated with large doses of high- linear energy transfer (LET) carbon ions. This study adds information to the variation in biological effectiveness in different tumor and normal tissue models.

  10. Involvement of the MyD88-independent pathway in controlling the intracellular fate of Burkholderia pseudomallei infection in the mouse macrophage cell line RAW 264.7.

    PubMed

    Tangsudjai, S; Pudla, M; Limposuwan, K; Woods, D E; Sirisinha, S; Utaisincharoen, P

    2010-05-01

    Burkholderia pseudomallei is a facultative intracellular Gram-negative bacterium which is capable of surviving and multiplying inside macrophages. B. pseudomallei strain SRM117, a LPS mutant which lacks the O-antigenic polysaccharide moiety, is more susceptible to macrophage killing during the early phase of infection than is its parental wild type strain (1026b). In this study, it was shown that the wild type is able to induce expression of genes downstream of the MyD88-dependent (ikappabzeta, il-6 and tnf-alpha), but not of the MyD88-independent (inos, ifn-beta and irg-1), pathways in the mouse macrophage cell line RAW 264.7. In contrast, LPS mutant-infected macrophages were able to express genes downstream of both pathways. To elucidate the significance of activation of the MyD88-independent pathway in B. pseudomallei-infected macrophages, the expression of TBK1, an essential protein in the MyD88-independent pathway, was silenced prior to the infection. The results showed that silencing the tbk1 expression interferes with the gene expression profile in LPS mutant-infected macrophages and allows the bacteria to replicate intracellularly, thus suggesting that the MyD88-independent pathway plays an essential role in controlling intracellular survival of the LPS mutant. Moreover, exogenous IFN-gamma upregulated gene expression downstream of the MyD88-independent pathway, and interfered with intracellular survival in both wild type and tbk1-knockdown macrophages infected with either the wild type or the LPS mutant. These results suggest that gene expression downstream of the MyD88-independent pathway is essential in regulating the intracellular fate of B. pseudomallei, and that IFN-gamma regulates gene expression through the TBK1-independent pathway.

  11. Tissue-Specific Inactivation of Type 2 Deiodinase Reveals Multilevel Control of Fatty Acid Oxidation by Thyroid Hormone in the Mouse

    PubMed Central

    Fonseca, Tatiana L.; Werneck-De-Castro, Joao Pedro; Castillo, Melany; Bocco, Barbara M.L.C.; Fernandes, Gustavo W.; McAninch, Elizabeth A.; Ignacio, Daniele L.; Moises, Caio C.S.; Ferreira, Alexandre; Gereben, Balázs

    2014-01-01

    Type 2 deiodinase (D2) converts the prohormone thyroxine (T4) to the metabolically active molecule 3,5,3′-triiodothyronine (T3), but its global inactivation unexpectedly lowers the respiratory exchange rate (respiratory quotient [RQ]) and decreases food intake. Here we used FloxD2 mice to generate systemically euthyroid fat-specific (FAT), astrocyte-specific (ASTRO), or skeletal-muscle-specific (SKM) D2 knockout (D2KO) mice that were monitored continuously. The ASTRO-D2KO mice also exhibited lower diurnal RQ and greater contribution of fatty acid oxidation to energy expenditure, but no differences in food intake were observed. In contrast, the FAT-D2KO mouse exhibited sustained (24 h) increase in RQ values, increased food intake, tolerance to glucose, and sensitivity to insulin, all supporting greater contribution of carbohydrate oxidation to energy expenditure. Furthermore, FAT-D2KO animals that were kept on a high-fat diet for 8 weeks gained more body weight and fat, indicating impaired brown adipose tissue (BAT) thermogenesis and/or inability to oxidize the fat excess. Acclimatization of FAT-D2KO mice at thermoneutrality dissipated both features of this phenotype. Muscle D2 does not seem to play a significant metabolic role given that SKM-D2KO animals exhibited no phenotype. The present findings are unique in that they were obtained in systemically euthyroid animals, revealing that brain D2 plays a dominant albeit indirect role in fatty acid oxidation via its sympathetic control of BAT activity. D2-generated T3 in BAT accelerates fatty acid oxidation and protects against diet-induced obesity. PMID:24487027

  12. A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis.

    PubMed

    Inoue, Yoshiaki; Chen, Yu; Hirsh, Mark I; Yip, Linda; Junger, Wolfgang G

    2008-08-01

    We have recently shown that A3 adenosine receptors and P2Y2 purinergic receptors play an important role in neutrophil chemotaxis. Chemotaxis of neutrophils to sites of infections is critical for immune defense. However, excessive accumulation of neutrophils in the lungs can cause acute lung tissue damage. Here we assessed the role of A3 and P2Y2 receptors in neutrophil sequestration to the lungs in a mouse model of sepsis. Sepsis was induced by cecal ligation and puncture (CLP) using adult male C57BL/6J mice (wild type [WT]), homozygous A3 receptor knockout (A3KO) mice, and P2Y2 receptor knockout (P2Y2KO) mice. Animals were killed 2, 4, 6, or 8 h after CLP, and peritoneal lavage fluid and blood were collected. Lungs were removed, and neutrophil infiltration was evaluated using elastase as a marker. Leukocyte and bacterial counts in peritoneal lavage fluid and blood samples were determined. Survival after sepsis was determined in a separate group. Leukocyte counts in the peritoneum were lower in A3KO and P2Y2KO mice than in WT mice. Conversely, initial leukocyte counts in the peripheral blood were higher in KO mice than in WT mice. Neutrophil sequestration to the lungs reached a maximum 2 h after CLP and remained significantly higher in WT mice compared with A3KO and P2Y2KO mice (P < 0.001). Survival after 24 h was significantly lower in WT mice (37.5%) than in A3KO or P2Y2KO mice (82.5%; P < 0.05). These data suggest that A3 and P2Y2 receptors are involved in the influx of neutrophils into the lungs after sepsis. Thus, pharmaceutical approaches that target these receptors might be useful to control acute lung tissue injury in sepsis.

  13. The Same Major Histocompatibility Complex Polymorphism Involved in Control of HIV Influences Peptide Binding in the Mouse H-2Ld System*

    PubMed Central

    Narayanan, Samanthi; Kranz, David M.

    2013-01-01

    Single-site polymorphisms in human class I major histocompatibility complex (MHC) products (HLA-B) have recently been shown to correlate with HIV disease progression or control. An identical single-site polymorphism (at residue 97) in the mouse class I product H-2Ld influences stability of the complex. To gain insight into the human polymorphisms, here we examined peptide binding, stability, and structures of the corresponding Ld polymorphisms, Trp97 and Arg97. Expression of LdW97 and LdR97 genes in a cell line that is antigen-processing competent showed that LdR97 was expressed at higher levels than LdW97, consistent with enhanced stability of self-peptide·LdR97 complexes. To further examine peptide-binding capacities of these two allelic variants, we used a high affinity pep-Ld specific probe to quantitatively examine a collection of self- and foreign peptides that bind to Ld. LdR97 bound more effectively than LdW97 to most peptides, although LdW97 bound more effectively to two peptides. The results support the view that many self-peptides in the Ld system (or the HLA-B system) would exhibit enhanced binding to Arg97 alleles compared with Trp97 alleles. Accordingly, the self-peptide·MHC-Arg97 complexes would influence T-cell selection behavior, impacting the T-cell repertoire of these individuals, and could also impact peripheral T cell activity through effects of self-peptide·Ld interacting with TCR and/or CD8. The structures of several peptide·LdR97 and peptide·LdW97 complexes provided a framework of how this single polymorphism could impact peptide binding. PMID:24064213

  14. Clinical Evaluation of a Royal Jelly Supplementation for the Restoration of Dry Eye: A Prospective Randomized Double Blind Placebo Controlled Study and an Experimental Mouse Model

    PubMed Central

    Inoue, Sachiko; Kawashima, Motoko; Hisamura, Ryuji; Imada, Toshihiro; Izuta, Yusuke; Nakamura, Shigeru; Ito, Masataka; Tsubota, Kazuo

    2017-01-01

    Background Dry eye is a multifactorial disease characterized by ocular discomfort and visual impairment. Lacrimal gland function has been shown to decrease with aging, a known potent risk factor for dry eye. We have previously found that orally administrated royal jelly (RJ) restored tear secretion in a rat model of dry eye. Methods and Findings We examined the effects of RJ oral administration on dry eye in this prospective, randomized, double-blind, placebo-controlled study. Forty-three Japanese patients aged 20–60 years with subjective dry eye symptoms were randomized to an RJ group (1200 mg/tablet, six tablets daily) or a placebo group for 8 weeks. Keratoconjunctival epithelial damage, tear film break-up time, tear secretion volume, meibum grade, biochemical data, and subjective dry eye symptoms based on a questionnaire were investigated at baseline, and at 4 and 8 weeks after intervention. Adverse events were reported via medical interviews. In the RJ group, tear volume significantly increased after intervention (p = 0.0009). In particular, patients with a baseline Schirmer value of ≤10 mm showed a significant increase compared with baseline volume (p = 0.0005) and volume in the placebo group (p = 0.0051). No adverse events were reported. We also investigated the effect of RJ (300 mg/kg per day) administration using a mouse model of dry eye. Orally repeated administration of RJ preserved tear secretion, potentially through direct activation of the secretory function of the lacrimal glands. Conclusion Our results suggest that RJ improves tear volume in patients with dry eye. Trial Registration Registered NO. the University Hospital Medical Information Network in Japan (UMIN000014446) PMID:28060936

  15. Opa3, a novel regulator of mitochondrial function, controls thermogenesis and abdominal fat mass in a mouse model for Costeff syndrome.

    PubMed

    Wells, Timothy; Davies, Jennifer R; Guschina, Irina A; Ball, Daniel J; Davies, Jeffrey S; Davies, Vanessa J; Evans, Bronwen A J; Votruba, Marcela

    2012-11-15

    The interrelationship between brown adipose tissue (BAT) and white adipose tissue (WAT) is emerging as an important factor in obesity, but the effect of impairing non-shivering thermogenesis in BAT on lipid storage in WAT remains unclear. To address this, we have characterized the metabolic phenotype of a mouse model for Costeff syndrome, in which a point mutation in the mitochondrial membrane protein Opa3 impairs mitochondrial activity. Opa3(L122P) mice displayed an 80% reduction in insulin-like growth factor 1, postnatal growth retardation and hepatic steatosis. A 90% reduction in uncoupling protein 1 (UCP1) expression in interscapular BAT was accompanied by a marked reduction in surface body temperature, with a 2.5-fold elevation in interscapular BAT mass and lipid storage. The sequestration of circulating lipid into BAT resulted in profound reductions in epididymal and retroperitoneal WAT mass, without affecting subcutaneous WAT. The histological appearance and intense mitochondrial staining in intra-abdominal WAT suggest significant 'browning', but with UCP1 expression in WAT of Opa3(L122P) mice only 62% of that in wild-type littermates, any precursor differentiation does not appear to result in thermogenically active beige adipocytes. Thus, we have identified Opa3 as a novel regulator of lipid metabolism, coupling lipid uptake with lipid processing in liver and with thermogenesis in BAT. These findings indicate that skeletal and metabolic impairment in Costeff syndrome may be more significant than previously thought and that uncoupling lipid uptake from lipid metabolism in BAT may represent a novel approach to controlling WAT mass in obesity.

  16. Evaluation of a bioluminescent mouse model expressing aromatase PII-promoter-controlled luciferase as a tool for the study of endocrine disrupting chemicals

    SciTech Connect

    Rivest, Patricia Devine, Patrick J. Sanderson, J. Thomas

    2010-11-15

    Dysfunction of the enzyme aromatase (CYP19) is associated with endocrine pathologies such as osteoporosis, impaired fertility and development of hormone-dependent cancers. Certain endocrine disrupting chemicals affect aromatase expression and activity in vitro, but little is known about their ability to do so in vivo. We evaluated a bioluminescent mouse model (LPTA (registered)) CD-1-Tg(Cyp19-luc)-Xen) expressing luciferase under control of the gonadal aromatase pII promoter as an in vivo screening tool for chemicals that may affect aromatase expression. We studied the effects of forskolin, pregnant mare serum gonadotropin and atrazine in this model (atrazine was previously shown to induced pII-promoter-driven aromatase expression in H295R human adrenocortical carcinoma cells). About 2-4 out of every group of 10 male or female Cyp19-luc mice injected i.p. with 10 mg/kg forskolin had increased gonadal bioluminescence after 3-5 days compared to controls; the others appeared non-responsive. Similarly, about 4 per group of 9 individual females injected with pregnant mare serum gonadotropin had increased ovarian bioluminescence after 24 h. There was a statistically significant correlation between ovarian bioluminescence and plasma estradiol concentrations (n = 14; p = 0.022). Males exposed to a single dose of 100 mg/kg or males and females exposed to 5 daily injections of 30 mg/kg atrazine showed no change in gonadal bioluminescence over a 7 day period, but a significant interaction was found between atrazine (100 mg/kg) and time in female mice (p < 0.05; two-way ANOVA). Ex vivo luciferase activity in dissected organs was increased by forskolin in testis, epididymis and ovaries. Atrazine (30 mg/kg/day) increased (30%) luciferase activity significantly in epididymis only. In conclusion, certain individual Cyp19-luc mice are highly responsive to aromatase inducers, suggesting this model, with further optimization, may have potential as an in vivo screening tool for

  17. Effect of caffeine on the expression of cytochrome P450 1A2, adenosine A2A receptor and dopamine transporter in control and 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine treated mouse striatum.

    PubMed

    Singh, Seema; Singh, Kavita; Gupta, Satya Prakash; Patel, Devendra Kumar; Singh, Vinod Kumar; Singh, Raj Kumar; Singh, Mahendra Pratap

    2009-08-04

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, characterized by the selective loss of dopaminergic neurons of the nigrostriatal pathway. Epidemiological studies have shown an inverse relationship between coffee consumption and susceptibility to PD. Cytochrome P450 1A2 (CYP1A2) is involved in caffeine metabolism and its clearance. Caffeine, on the other hand, antagonizes adenosine A(2A) receptor and regulates dopamine signaling through dopamine transporter (DAT). The present study was undertaken to investigate the expression of CYP1A2, adenosine A(2A) receptor and DAT in mouse striatum and to assess their levels in 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropryridine (MPTP) treated mouse striatum with and without caffeine treatment. The animals were treated intraperitoneally daily with caffeine (20 mg/kg) for 8 weeks, followed by MPTP (20 mg/kg)+caffeine (20 mg/kg) for 4 weeks or vice versa, along with respective controls. Tyrosine hydroxylase immunoreactivity, levels of dopamine and 1-methyl 4-phenylpyridinium ion (MPP(+)), expressions of CYP1A2, adenosine A(2A) receptor and DAT and CYP1A2 catalytic activity were measured in control and treated mouse brain. Caffeine partially protected MPTP-induced neurodegenerative changes and modulated MPTP-mediated alterations in the expression and catalytic activity of CYP1A2, expression of adenosine A(2A) receptor and DAT. The results demonstrate that caffeine alters the striatal CYP1A2, adenosine A(2A) receptor and DAT expressions in mice exposed to MPTP.

  18. Region-specific RNA m(6)A methylation represents a new layer of control in the gene regulatory network in the mouse brain.

    PubMed

    Chang, Mengqi; Lv, Hongyi; Zhang, Weilong; Ma, Chunhui; He, Xue; Zhao, Shunli; Zhang, Zhi-Wei; Zeng, Yi-Xin; Song, Shuhui; Niu, Yamei; Tong, Wei-Min

    2017-09-01

    N(6)-methyladenosine (m(6)A) is the most abundant epitranscriptomic mark found on mRNA and has important roles in various physiological processes. Despite the relatively high m(6)A levels in the brain, its potential functions in the brain remain largely unexplored. We performed a transcriptome-wide methylation analysis using the mouse brain to depict its region-specific methylation profile. RNA methylation levels in mouse cerebellum are generally higher than those in the cerebral cortex. Heterogeneity of RNA methylation exists across different brain regions and different types of neural cells including the mRNAs to be methylated, their methylation levels and methylation site selection. Common and region-specific methylation have different preferences for methylation site selection and thereby different impacts on their biological functions. In addition, high methylation levels of fragile X mental retardation protein (FMRP) target mRNAs suggest that m(6)A methylation is likely to be used for selective recognition of target mRNAs by FMRP in the synapse. Overall, we provide a region-specific map of RNA m(6)A methylation and characterize the distinct features of specific and common methylation in mouse cerebellum and cerebral cortex. Our results imply that RNA m(6)A methylation is a newly identified element in the region-specific gene regulatory network in the mouse brain. © 2017 The Authors.

  19. Mouse Curve Biometrics

    SciTech Connect

    Schulz, Douglas A.

    2007-10-08

    A biometric system suitable for validating user identity using only mouse movements and no specialized equipment is presented. Mouse curves (mouse movements with little or no pause between them) are individually classied and used to develop classication histograms, which are representative of an individual's typical mouse use. These classication histograms can then be compared to validate identity. This classication approach is suitable for providing continuous identity validation during an entire user session.

  20. Involvement of neuronal and glial activities in control of the extracellular d-serine concentrations by the AMPA glutamate receptor in the mouse medial prefrontal cortex.

    PubMed

    Ishiwata, Sayuri; Umino, Asami; Nishikawa, Toru

    2017-09-28

    It has been well accepted that d-serine may be an exclusive endogenous coagonist for the N-methyl-d-aspartate (NMDA)-type glutamate receptor in mammalian forebrain regions. We have recently found by using an in vivo dialysis method that an intra-medial prefrontal cortex infusion of S-α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (S-AMPA), a selective AMPA-type glutamate receptor agonist, causes a reduction in the extracellular levels of d-serine in a calcium-permeable AMPA receptor antagonist-sensitive manner. The inhibitory influence by the AMPA receptor on the extracellular d-serine, however, contradicts the data obtained from in vitro experiments that the AMPA receptor stimulation leads to facilitation of the d-serine liberation. This discrepancy appears to be due to the different cell setups between the in vivo and in vitro preparations. From the viewpoints of the previous reports indicating (1) the neuronal presence of d-serine synthesizing enzyme, serine racemase, and d-serine-like immunoreactivity and (2) the same high tissue concentrations of d-serine in the glia-enriched white matter and in the neuron-enriched gray matter of the mammalian neocortex, we have now investigated in the mouse medial prefrontal cortex, the effects of attenuation of neuronal and glial activities, by tetrodotoxin or fluorocitrate, respectively, on the S-AMPA-induced downregulation of the extracellular d-serine contents. In vivo dialysis studies revealed that a local infusion of tetrodotoxin or fluorocitrate eliminated the ability of S-AMPA given intra-cortically to cause a significant decrease in the dialysate concentrations of d-serine without affecting the elevating effects of S-AMPA on those of glycine, another intrinsic coagonist for the NMDA receptor. These findings suggest that the control by the AMPA receptor of the extracellular d-serine levels could be modulated by the neuronal and glial activities in the prefrontal cortex. It cannot be excluded that

  1. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  2. Building a Brainier Mouse.

    ERIC Educational Resources Information Center

    Tsien, Joe Z.

    2000-01-01

    Describes a genetic engineering project to build an intelligent mouse. Cites understanding the molecular basis of learning and memory as a very important step. Concludes that while science will never create a genius mouse that plays the stock market, it can turn a mouse into a quick learner with a better memory. (YDS)

  3. Differential proteomic and genomic profiling of mouse striatal cell model of Huntington's disease and control; probable implications to the disease biology.

    PubMed

    Choudhury, Kamalika Roy; Das, Srijit; Bhattacharyya, Nitai P

    2016-01-30

    Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock-in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock-in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential

  4. A signal regulating mouse histone H4 mRNA levels in a mammalian cell cycle mutant and sequences controlling RNA 3' processing are both contained within the same 80-bp fragment.

    PubMed Central

    Stauber, C; Lüscher, B; Eckner, R; Lötscher, E; Schümperli, D

    1986-01-01

    Fragments from the 3' end of a mouse histone H4 gene, when introduced into transcription units controlled by the SV40 early promoter, yield correctly processed RNA with histone-specific 3' ends, both in monkey and mouse cell lines. The processed RNA is regulated in parallel with endogenous H4 mRNAs in 21-Tb cells, a temperature-sensitive mouse mastocytoma cell cycle mutant that is specifically blocked in G1 phase at the non-permissive temperature. Mutational analyses of the H4 gene fragment indicate that the minimal sequences for this regulation and for RNA 3' processing are both contained within the same 80 bp. This fragment contains two histone-specific, highly conserved sequence elements that are located at the 3' end of histone mRNA and in the adjacent spacer region, respectively. Our data suggest that the observed cell cycle regulation is achieved either at RNA 3' processing or at some later step involving the conserved 3'-terminal sequence element of mature histone mRNA. Images Fig. 2. Fig. 4. PMID:3816761

  5. Endometrial adenocarcinoma in a 13-year-old girl

    PubMed Central

    Kim, Sung Mee; Shin, So Jin; Bae, Jin Gon; Kwon, Kun Young

    2016-01-01

    Endometrial cancer is the third most common gynecologic cancer in the Korea and occurs mainly in menopausal women. Although it can develop in young premenopausal women cancer as well, an attack in the adolescent girl is very rare. A 13-year-old girl visited gynecology department with the complaint of abnormal uterine bleeding. An endometrial biopsy revealed FIGO (International Federation of Gynecology and Obstetrics) grade II endometrial adenocarcinoma. In the treatment of endometrial cancer, conservative management should be considered if the patient is nulliparous or wants the fertility preservation. Therefore, we decided to perform a hormonal therapy and a follow-up endometrial biopsy after progestin administration for eight months revealed no residual tumor. We report a case of endometrial cancer occurred in a 13-year-old girl with a brief review of the literature. PMID:27004208

  6. Endometrial adenocarcinoma in a 13-year-old girl.

    PubMed

    Kim, Sung Mee; Shin, So Jin; Bae, Jin Gon; Kwon, Kun Young; Rhee, Jeong Ho

    2016-03-01

    Endometrial cancer is the third most common gynecologic cancer in the Korea and occurs mainly in menopausal women. Although it can develop in young premenopausal women cancer as well, an attack in the adolescent girl is very rare. A 13-year-old girl visited gynecology department with the complaint of abnormal uterine bleeding. An endometrial biopsy revealed FIGO (International Federation of Gynecology and Obstetrics) grade II endometrial adenocarcinoma. In the treatment of endometrial cancer, conservative management should be considered if the patient is nulliparous or wants the fertility preservation. Therefore, we decided to perform a hormonal therapy and a follow-up endometrial biopsy after progestin administration for eight months revealed no residual tumor. We report a case of endometrial cancer occurred in a 13-year-old girl with a brief review of the literature.

  7. Evaluation of the Genetic and Nutritional Control of Obesity and Type 2 Diabetes in a Novel Mouse Model on Chromosome 7: An Insight into Insulin Signaling and Glucose Homeostasis

    SciTech Connect

    Nelson, S.; Dhar, M.

    2003-01-01

    Obesity is the main cause of type 2 diabetes, accounting for 90-95% of all diabetes cases in the US. Human obesity is a complex trait and can be studied using appropriate mouse models. A novel polygenic mouse model for studying the genetic and environmental contributions to and the physiological ramifications of obesity and related phenotypes is found in specific lines of mice bred and maintained at Oak Ridge National Laboratory. Heterozygous mice with a maternally inherited copy of two radiation-induced deletions in the p region of mouse chromosome 7, p23DFioD and p30PUb, have significantly greater body fat and show hyperinsulinemia compared to the wild-type. A single gene, Atp10c, maps to this critical region and codes for a putative aminophospholipid translocase. Biochemical and molecular studies were initiated to gain insight into obesity and glucose homeostasis in these animals and to study the biological role of Atp10c in creating these phenotypes. Glucose and insulin tolerance tests were standardized for the heterozygous p23DFioD and control mice on a custom-made diet containing 20% protein, 70% carbohydrate, and 10% fat (kcal). Atp10c expression profiles were also generated using Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR). Heterozygous p23DFioD animals showed insulin resistance after receiving a dose of either 0.375 or 0.75 U/kg Illetin R insulin. RT-PCR data also shows differences in Atp10c expression in the mutants versus control mice. Using these standardized biochemical assays, future studies will further the understanding of genetic and nutritional controls of glucose homeostasis and obesity in animal models and subsequently in human populations.

  8. Benzylmorpholine analogs as selective inhibitors of lung cytochrome P450 2A13 for the chemoprevention of lung cancer in tobacco users.

    PubMed

    Blake, Linda C; Roy, Anuradha; Neul, David; Schoenen, Frank J; Aubé, Jeffrey; Scott, Emily E

    2013-09-01

    4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is a major challenge in compound design. A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure.

  9. Benzylmorpholine Analogs as Selective Inhibitors of Lung Cytochrome P450 2A13 for the Chemoprevention of Lung Cancer in Tobacco Users

    PubMed Central

    Blake, Linda C.; Roy, Anuradha; Neul, David; Schoenen, Frank J.; Aubé, Jeffrey; Scott, Emily E.

    2013-01-01

    Purpose 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), one of the most prevalent and procarcinogenic compounds in tobacco, is bioactivated by respiratory cytochrome P450 (CYP) 2A13, forming DNA adducts and initiating lung cancer. CYP2A13 inhibition offers a novel strategy for chemoprevention of tobacco-associated lung cancer. Methods Twenty-four analogs of a 4-benzylmorpholine scaffold identified by high throughput screening were evaluated for binding and inhibition of both functional human CYP2A enzymes, CYP2A13 and the 94%-identical hepatic CYP2A6, whose inhibition is undesirable. Thus, selectivity is the major challenge in compound design. Results A key feature resulting in CYP2A13-selective binding and inhibition was substitution at the benzyl ortho position, with three analogs being >25-fold selective for CYP2A13 over CYP2A6. Conclusions Two such analogs were negative for genetic and hERG toxicities and metabolically stable in human lung microsomes, but displayed rapid metabolism in human liver and in mouse and rat lung and liver microsomes, likely due to CYP2B-mediated degradation. A specialized knockout mouse mimicking the human lung demonstrates compound persistence in lung and provides an appropriate test model. Compound delivered by inhalation may be effective in the lung but rapidly cleared otherwise, limiting systemic exposure. PMID:23756756

  10. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  11. Augmented Computer Mouse Would Measure Applied Force

    NASA Technical Reports Server (NTRS)

    Li, Larry C. H.

    1993-01-01

    Proposed computer mouse measures force of contact applied by user. Adds another dimension to two-dimensional-position-measuring capability of conventional computer mouse; force measurement designated to represent any desired continuously variable function of time and position, such as control force, acceleration, velocity, or position along axis perpendicular to computer video display. Proposed mouse enhances sense of realism and intuition in interaction between operator and computer. Useful in such applications as three-dimensional computer graphics, computer games, and mathematical modeling of dynamics.

  12. The Zinc Transporter SLC39A13/ZIP13 Is Required for Connective Tissue Development; Its Involvement in BMP/TGF-β Signaling Pathways

    PubMed Central

    Shimoda, Shinji; Mishima, Kenji; Higashiyama, Hiroyuki; Idaira, Yayoi; Asada, Yoshinobu; Kitamura, Hiroshi; Yamasaki, Satoru; Hojyo, Shintaro; Nakayama, Manabu; Ohara, Osamu; Koseki, Haruhiko; dos Santos, Heloisa G.; Bonafe, Luisa; Ha-Vinh, Russia; Zankl, Andreas; Unger, Sheila; Kraenzlin, Marius E.; Beckmann, Jacques S.; Saito, Ichiro; Rivolta, Carlo; Ikegawa, Shiro; Superti-Furga, Andrea; Hirano, Toshio

    2008-01-01

    Background Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. Methodology/Principal Findings Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-β signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. Conclusions/Significance Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-β signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-β signaling and connective tissue dysfunction. PMID:18985159

  13. [Massive ovarian edema in a 13-year-old girl].

    PubMed

    Sailer, V; Huss, S; Wardelmann, E; Müller, A M

    2013-11-01

    Massive ovarian edema is a rare tumor-like condition found in young women resulting from accumulation of fluid mostly due to partial or intermittent torsion of the ovary or secondary, to a preexisting ovarian lesion. We report a case of a 13-year-old girl presenting with an ovarian mass measuring 16 cm. CA-12-5 levels were slightly elevated. Concerns regarding underlying malignancy led to salpingo-oophorectomy. Pathological evaluation revealed a massive ovarian edema and multiple thromboses of ovarian veins. Differentiating massive ovarian edema from malignant ovarian tumor is crucial to prevent patients from undergoing unnecessary surgery.

  14. Thermal behavior of a 13-molecule hydrogen cluster under pressure

    NASA Astrophysics Data System (ADS)

    Santamaria, Rubén; Soullard, Jacques; Jellinek, Julius

    2010-03-01

    The thermal behavior of a 13-molecule hydrogen cluster is studied as a function of pressure and temperature using a combination of trajectory and density functional theory simulations. The analysis is performed in terms of characteristic descriptors such as caloric curve, root-mean-square bond length fluctuation, pair correlation function, velocity autocorrelation function, volume thermal expansion, and diffusion coefficients. The discussion addresses on the peculiarities of the transition from the ordered-to-disordered state as exhibited by the cluster under different pressures and temperatures.

  15. Photoreceptors Regulating Circadian Behavior: A Mouse Model

    DTIC Science & Technology

    1994-03-14

    retina (Dr. M. Applebury. personal communication). On the basis of their similarity to human opsins and ERG responses recorded from the mouse eye they... opsin that is almost identical to the mouse and human green cone opsins . Whether mammalian circadian responses to light are mediated by cones themselves...transgenic (Tm) mice of various ages. Transgenic mice carry a DT-A gene under the control of the human rod opsin promoter. Phase shifting paradigm is

  16. The Knockout Mouse Project

    PubMed Central

    Austin, Christopher P; Battey, James F; Bradley, Allan; Bucan, Maja; Capecchi, Mario; Collins, Francis S; Dove, William F; Duyk, Geoffrey; Dymecki, Susan; Eppig, Janan T; Grieder, Franziska B; Heintz, Nathaniel; Hicks, Geoff; Insel, Thomas R; Joyner, Alexandra; Koller, Beverly H; Lloyd, K C Kent; Magnuson, Terry; Moore, Mark W; Nagy, Andras; Pollock, Jonathan D; Roses, Allen D; Sands, Arthur T; Seed, Brian; Skarnes, William C; Snoddy, Jay; Soriano, Philippe; Stewart, David J; Stewart, Francis; Stillman, Bruce; Varmus, Harold; Varticovski, Lyuba; Verma, Inder M; Vogt, Thomas F; von Melchner, Harald; Witkowski, Jan; Woychik, Richard P; Wurst, Wolfgang; Yancopoulos, George D; Young, Stephen G; Zambrowicz, Brian

    2009-01-01

    Mouse knockout technology provides a powerful means of elucidating gene function in vivo, and a publicly available genome-wide collection of mouse knockouts would be significantly enabling for biomedical discovery. To date, published knockouts exist for only about 10% of mouse genes. Furthermore, many of these are limited in utility because they have not been made or phenotyped in standardized ways, and many are not freely available to researchers. It is time to harness new technologies and efficiencies of production to mount a high-throughput international effort to produce and phenotype knockouts for all mouse genes, and place these resources into the public domain. PMID:15340423

  17. An encyclopedia of mouse DNA elements (Mouse ENCODE).

    PubMed

    Stamatoyannopoulos, John A; Snyder, Michael; Hardison, Ross; Ren, Bing; Gingeras, Thomas; Gilbert, David M; Groudine, Mark; Bender, Michael; Kaul, Rajinder; Canfield, Theresa; Giste, Erica; Johnson, Audra; Zhang, Mia; Balasundaram, Gayathri; Byron, Rachel; Roach, Vaughan; Sabo, Peter J; Sandstrom, Richard; Stehling, A Sandra; Thurman, Robert E; Weissman, Sherman M; Cayting, Philip; Hariharan, Manoj; Lian, Jin; Cheng, Yong; Landt, Stephen G; Ma, Zhihai; Wold, Barbara J; Dekker, Job; Crawford, Gregory E; Keller, Cheryl A; Wu, Weisheng; Morrissey, Christopher; Kumar, Swathi A; Mishra, Tejaswini; Jain, Deepti; Byrska-Bishop, Marta; Blankenberg, Daniel; Lajoie, Bryan R; Jain, Gaurav; Sanyal, Amartya; Chen, Kaun-Bei; Denas, Olgert; Taylor, James; Blobel, Gerd A; Weiss, Mitchell J; Pimkin, Max; Deng, Wulan; Marinov, Georgi K; Williams, Brian A; Fisher-Aylor, Katherine I; Desalvo, Gilberto; Kiralusha, Anthony; Trout, Diane; Amrhein, Henry; Mortazavi, Ali; Edsall, Lee; McCleary, David; Kuan, Samantha; Shen, Yin; Yue, Feng; Ye, Zhen; Davis, Carrie A; Zaleski, Chris; Jha, Sonali; Xue, Chenghai; Dobin, Alex; Lin, Wei; Fastuca, Meagan; Wang, Huaien; Guigo, Roderic; Djebali, Sarah; Lagarde, Julien; Ryba, Tyrone; Sasaki, Takayo; Malladi, Venkat S; Cline, Melissa S; Kirkup, Vanessa M; Learned, Katrina; Rosenbloom, Kate R; Kent, W James; Feingold, Elise A; Good, Peter J; Pazin, Michael; Lowdon, Rebecca F; Adams, Leslie B

    2012-08-13

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome.

  18. Control of radiosensitivity of F9 mouse teratocarcinoma cells by regulation of histone H2AX gene expression using a tetracycline turn-off system.

    PubMed

    Yoshida, Kayo; Morita, Takashi

    2004-06-15

    The mouse histone H2AX has unique COOH-terminal serine residues that are phosphorylated in response to double-strand DNA breaks introduced by ionizing radiation. This suggests that H2AX acts to maintain genomic stability. We constructed a tetracycline (tet)-directed turn-off vector and integrated it into F9 mouse teratocarcinoma cells by homologous recombination. In homozygously recombined cells, expression of the histone H2AX gene was repressed to 0.02% of the expression observed in wild-type cells by the addition of doxycycline, an analog of tet. Sensitivity of cells with repressed H2AX expression to X-irradiation was increased 1.95x, indicating that DNA repair was impaired by repression of H2AX. When we s.c. injected tet-regulated F9 cells into the flanks of mice, tumor growth was slightly suppressed by X-irradiation in H2AX-repressed tumors, whereas without X-irradiation, tumor growth did not differ by H2AX status. Thus, H2AX might be a potential molecular target for sensitizing cancer cells to radiotherapy to minimize required irradiation doses.

  19. Three uncommon adrenal incidentalomas: a 13-year surgical pathology review

    PubMed Central

    2012-01-01

    Background The discovery of adrenal incidentalomas due to the widespread use of sophisticated abdominal imaging techniques has resulted in an increasing trend of adrenal gland specimens being received in the pathology laboratory. In this context, we encountered three uncommon adrenal incidentalomas. The aim of this manuscript is to report in detail the three index cases of adrenal incidentalomas in the context of a 13-year retrospective surgical pathology review. Methods The three index cases were investigated and analyzed in detail with relevant review of the English literature as available in PubMed and Medline. A 13-year retrospective computer-based histopathological surgical review was conducted in our laboratory and the results were analyzed in the context of evidence-based literature on adrenal incidentalomas. Results A total of 94 adrenal specimens from incidentalomas were identified, accounting for 0.025% of all surgical pathology cases. In all 76.6% were benign and 23.4% were malignant. A total of 53 females (56.4%) and 41 males (43.6%) aged 4 to 85 years were identified. The benign lesions included cortical adenoma (43.1%), pheochromocytoma (29.3%) and inflammation/fibrosis/hemorrhage (8.3%). Metastatic neoplasms were the most common malignant lesions (50%) followed by primary adrenocortical carcinomas (31.8%) and neuroblastoma (13.6%). These cases were discovered as adrenal incidentalomas that led to surgical exploration. The three index cases of adrenal incidentalomas with unusual pathologies were encountered that included (a) adrenal ganglioneuroma, (b) periadrenal schwannoma and (c) primary adrenal pleomorphic leiomyosarcoma. These cases are discussed, with a literature and clinicopathological review. Conclusions Adrenal lesions are uncommon surgical specimens in the pathology laboratory. However, higher detection rates of adrenal incidentalomas aided by the ease of laparoscopic adrenalectomy has resulted in increased adrenal surgical specimens

  20. The MOUSE Squad

    ERIC Educational Resources Information Center

    Borja, Rhea R.

    2004-01-01

    This article presents a New York city after-school program started by MOUSE (Making Opportunities for Upgrading Schools and Education), a national nonprofit group that teaches students how to fix computers, and equips them with the communication and problem-solving skills to help them in the working world. The MOUSE program is part of a trend…

  1. Mouse genome database 2016

    PubMed Central

    Bult, Carol J.; Eppig, Janan T.; Blake, Judith A.; Kadin, James A.; Richardson, Joel E.

    2016-01-01

    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the primary community model organism database for the laboratory mouse and serves as the source for key biological reference data related to mouse genes, gene functions, phenotypes and disease models with a strong emphasis on the relationship of these data to human biology and disease. As the cost of genome-scale sequencing continues to decrease and new technologies for genome editing become widely adopted, the laboratory mouse is more important than ever as a model system for understanding the biological significance of human genetic variation and for advancing the basic research needed to support the emergence of genome-guided precision medicine. Recent enhancements to MGD include new graphical summaries of biological annotations for mouse genes, support for mobile access to the database, tools to support the annotation and analysis of sets of genes, and expanded support for comparative biology through the expansion of homology data. PMID:26578600

  2. Histochemical studies on genetical control of hormonal enzyme inducibility in the mouse. I. Non-specific esterase activity and regional histology of the epididymis.

    PubMed Central

    Blecher, S R; Kirkeby, S

    1978-01-01

    As a base line for future cell genetical studies the authors record the distribution of non-specific esterase reaction in the various histologically distinguishable cell types of the mouse epididymis. The findings are correlated with previous descriptions of the lobar structure of the organ. Assuming the sequence of lobes of the head to be as implied in these classical descriptions, the esterase activity of the epithelial cells gradates between strong to weak several times along the length of the epididymal duct. The relationship of the lobes to each other, as seen in transverse sections, is described. Methodological studies using different fixatives indicate that apparent similarity of esterase reaction at different sites may camouflage an underlying difference in the nature of the esterases at these sites. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:564339

  3. Preservation Analysis of Macrophage Gene Coexpression Between Human and Mouse Identifies PARK2 as a Genetically Controlled Master Regulator of Oxidative Phosphorylation in Humans

    PubMed Central

    Codoni, Veronica; Blum, Yuna; Civelek, Mete; Proust, Carole; Franzén, Oscar; Björkegren, Johan L. M.; Le Goff, Wilfried; Cambien, Francois; Lusis, Aldons J.; Trégouët, David-Alexandre

    2016-01-01

    Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between human and mouse to identify conserved networks across both species, and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of coexpressed genes (modules). Six modules were found preserved (P < 10−4) in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly [false discovery rate (FDR) = 8.9 × 10−11] enriched for genes belonging to the oxidative phosphorylation (OXPHOS) pathway. This pathway was also found significantly (FDR < 10−4) enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans-acting variant influencing (minimal P-value = 4.3 × 10−8) the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knockdown expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that PARK2 participates to the regulatory networks associated with oxidative phosphorylation and suggested that PARK2 genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans. PMID:27558669

  4. Independent genetic control of early and late stages of chemically induced skin tumors in a cross of a Japanese wild-derived inbred mouse strain, MSM/Ms.

    PubMed

    Okumura, Kazuhiro; Sato, Miho; Saito, Megumi; Miura, Ikuo; Wakana, Shigeharu; Mao, Jian-Hua; Miyasaka, Yuki; Kominami, Ryo; Wakabayashi, Yuichi

    2012-11-01

    MSM/Ms is an inbred mouse strain derived from a Japanese wild mouse, Mus musculus molossinus. In this study, we showed that MSM/Ms mice exhibit dominant resistance when crossed with susceptible FVB/N mice and subjected to the two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA)/ 12-O-tetradecanoylphorbol-13-acetate (TPA). A series of F1 backcross mice were generated by crossing p53(+/+) or p53(+/-) F1 (FVB/N × MSM/Ms) males with FVB/N female mice. These generated 228 backcross animals, approximately half of which were p53(+/-), enabling us to search for p53-dependent skin tumor modifier genes. Highly significant linkage for papilloma multiplicity was found on chromosomes 6 and 7 and suggestive linkage was found on chromosomes 3, 5 and 12. Furthermore, in order to identify stage-dependent linkage loci we classified tumors into three categories (<2mm, 2-6mm and >6mm), and did linkage analysis. The same locus on chromosome 7 showed strong linkage in groups with <2mm or 2-6mm papillomas. No linkage was detected on chromosome 7 to papillomas >6mm, but a different locus on chromosome 4 showed strong linkage both to papillomas >6mm and to carcinomas. This locus, which maps near the Cdkn2a/p19(Arf) gene, was entirely p53-dependent, and was not seen in p53 (+/-) backcross animals. Suggestive linkage conferring susceptibility to carcinoma was also found on chromosome 5. These results clearly suggest distinct loci regulate each stage of tumorigenesis, some of which are p53-dependent.

  5. Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down’s syndrome

    PubMed Central

    2013-01-01

    Background Down’s syndrome (DS) is caused by triplication of all or part of human chromosome 21 and is characterized by a decrease in the overall size of the brain. One of the brain regions most affected is the cerebellum, in which the number of granule cells (GCs) is markedly decreased. GCs process sensory information entering the cerebellum via mossy fibres and pass it on to Purkinje cells and inhibitory interneurons. How GCs transform incoming signals depends on their input–output relationship, which is adjusted by tonically active GABAA receptor channels. Results We report that in the Ts65Dn mouse model of DS, in which cerebellar volume and GC number are decreased as in DS, the tonic GABAA receptor current in GCs is smaller than in wild-type mice and is less effective in moderating input resistance and raising the minimum current required for action potential firing. We also find that tonically active GABAA receptors curb the height and broaden the width of action potentials in wild-type GCs but not in Ts65Dn GCs. Single-cell real-time quantitative PCR reveals that these electrical differences are accompanied by decreased expression of the gene encoding the GABAA receptor β3 subunit but not genes coding for some of the other GABAA receptor subunits expressed in GCs (α1, α6, β2 and δ). Conclusions Weaker moderation of excitability and action potential waveform in GCs of the Ts65Dn mouse by tonically active GABAA receptors is likely to contribute to atypical transfer of information through the cerebellum. Similar changes may occur in DS. PMID:23870245

  6. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  7. Discrimination of tumorigenic triazole conazoles from phenobarbital by transcriptional analyses of mouse liver gene expression

    EPA Science Inventory

    Conazoles are fungicides used to control fungal growth in environmental settings and to treat humans with fungal infections. Mouse hepatotumorigenic conazoles display many of the same hepatic toxicologic responses as the mouse liver carcinogen phenobarbital (PB): constitutive and...

  8. Teleconsultation in vascular surgery: a 13 year single centre experience.

    PubMed

    Schmidt, Christian A P; Schmidt-Weitmann, Sabine H; Lachat, Mario L; Brockes, Christiane M

    2014-01-01

    The University Hospital of Zurich has provided an email-based medical consultation service for the general public since 1999. We examined the enquiries in a 13-year period to identify those related to vascular surgery (based on 22 ICD-10 codes specific for vascular surgery). There were 40,062 questions, of which 643 (2%) were selected by ICD-10 codes. After exclusion of diagnoses not relevant to vascular surgery, 139 questions remained, i.e. an average rate of about one per month. The mean age of the users was 43 years (range 19-88). Most users (61%) were women. The majority of users asked questions about their own health problems (79%) with varicose veins and spider veins accounting for 63% of all questions. Arterial diseases accounted for 30%. The patient's intention in contacting the service was to obtain advice on treatment options (37%), information about a diagnosis or symptoms (27%), or a second opinion (15%). The online service responded with detailed information and advice (87%) and suggested a referral to the family doctor or a specialist in 75%. Most patients (82%) rated the service overall as good or very good. It appears likely that telemedicine and in particular email teleconsultations will increase in vascular surgery in the future.

  9. A 13-week research-based biochemistry laboratory curriculum.

    PubMed

    Lefurgy, Scott T; Mundorff, Emily C

    2017-03-02

    Here, we present a 13-week research-based biochemistry laboratory curriculum designed to provide the students with the experience of engaging in original research while introducing foundational biochemistry laboratory techniques. The laboratory experience has been developed around the directed evolution of an enzyme chosen by the instructor, with mutations designed by the students. Ideal enzymes for this curriculum are able to be structurally modeled, solubly expressed, and monitored for activity by UV/Vis spectroscopy, and an example curriculum for haloalkane dehalogenase is given. Unique to this curriculum is a successful implementation of saturation mutagenesis and high-throughput screening of enzyme function, along with bioinformatics analysis, homology modeling, structural analysis, protein expression and purification, polyacrylamide gel electrophoresis, UV/Vis spectroscopy, and enzyme kinetics. Each of these techniques is carried out using a novel student-designed mutant library or enzyme variant unique to the lab team and, importantly, not described previously in the literature. Use of a well-established set of protocols promotes student data quality. Publication may result from the original student-generated hypotheses and data, either from the class as a whole or individual students that continue their independent projects upon course completion. © 2017 by The International Union of Biochemistry and Molecular Biology, 2017.

  10. Mouse Models for Methylmalonic Aciduria

    PubMed Central

    Peters, Heidi L.; Pitt, James J.; Wood, Leonie R.; Hamilton, Natasha J.; Sarsero, Joseph P.; Buck, Nicole E.

    2012-01-01

    Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of methylmalonyl-CoA mutase (MCM). MMA is associated with significant morbidity and mortality, thus therapies are necessary to help improve quality of life and prevent renal and neurological complications. Transgenic mice carrying an intact human MCM locus have been produced. Four separate transgenic lines were established and characterised as carrying two, four, five or six copies of the transgene in a single integration site. Transgenic mice from the 2-copy line were crossed with heterozygous knockout MCM mice to generate mice hemizygous for the human transgene on a homozygous knockout background. Partial rescue of the uniform neonatal lethality seen in homozygous knockout mice was observed. These rescued mice were significantly smaller than control littermates (mice with mouse MCM gene). Biochemically, these partial rescue mice exhibited elevated methylmalonic acid levels in urine, plasma, kidney, liver and brain tissue. Acylcarnitine analysis of blood spots revealed elevated propionylcarnitine levels. Analysis of mRNA expression confirms the human transgene is expressed at higher levels than observed for the wild type, with highest expression in the kidney followed closely by brain and liver. Partial rescue mouse fibroblast cultures had only 20% of the wild type MCM enzyme activity. It is anticipated that this humanised partial rescue mouse model of MMA will enable evaluation of long-term pathophysiological effects of elevated methylmalonic acid levels and be a valuable model for the investigation of therapeutic strategies, such as cell transplantation. PMID:22792386

  11. C1q/TNF-related Protein-12 (CTRP12), a Novel Adipokine That Improves Insulin Sensitivity and Glycemic Control in Mouse Models of Obesity and Diabetes*

    PubMed Central

    Wei, Zhikui; Peterson, Jonathan M.; Lei, Xia; Cebotaru, Liudmila; Wolfgang, Michael J.; Baldeviano, G. Christian; Wong, G. William

    2012-01-01

    Despite the prevalence of insulin resistance and type 2 diabetes mellitus, their underlying mechanisms remain incompletely understood. Many secreted endocrine factors and the intertissue cross-talk they mediate are known to be dysregulated in type 2 diabetes mellitus. Here, we describe CTRP12, a novel adipokine with anti-diabetic actions. The mRNA and circulating levels of CTRP12 were decreased in a mouse model of obesity, but its expression in adipocytes was increased by the anti-diabetic drug rosiglitazone. A modest rise in circulating levels of CTRP12 by recombinant protein administration was sufficient to lower blood glucose in wild-type, leptin-deficient ob/ob, and diet-induced obese mice. A short term elevation of serum CTRP12 by adenovirus-mediated expression improved glucose tolerance and insulin sensitivity, normalized hyperglycemia and hyperinsulinemia, and lowered postprandial insulin resistance in obese and diabetic mice. CTRP12 improves insulin sensitivity in part by enhancing insulin signaling in the liver and adipose tissue. Further, CTRP12 also acts in an insulin-independent manner; in cultured hepatocytes and adipocytes, CTRP12 directly activated the PI3K-Akt signaling pathway to suppress gluconeogenesis and promote glucose uptake, respectively. Collectively, these data establish CTRP12 as a novel metabolic regulator linking adipose tissue to whole body glucose homeostasis through insulin-dependent and independent mechanisms. PMID:22275362

  12. Interleukin-1β-Targeted Vaccine Improves Glucose Control and β-Cell Function in a Diabetic KK-Ay Mouse Model

    PubMed Central

    Yu, Xiao-lin; Liu, Xiang-meng; Liu, Dong-qun; Zhu, Jie; Ji, Hui; Liu, Rui-tian

    2016-01-01

    Interleukin-1β (IL-1β) has been implicated as a key proinflammatory cytokine involved in the pancreatic islet inflammation of type 2 diabetes mellitus (T2DM). Excess IL-1β impairs islet function by inducing insulin resistance and β-cell apoptosis. Therefore, specifically reducing IL-1β activity provides a therapeutic improvement for T2DM by sustaining the inhibition of IL-1β-mediated islet inflammation. In this study, we developed an IL-1β-targeted epitope peptide vaccine adjuvanted with polylactic acid microparticles (1βEPP) and applied it to a diabetic KK-Ay mouse model. Results showed that the 1βEPP elicited high antibody responses, which neutralized the biological activity of IL-1β, and induced barely detectable inflammatory activity. 1βEPP immunization reduced body weight gain, protected KK-Ay mice from hyperglycemia, improved glucose tolerance and insulin sensitivity, and decreased the serum levels of free fatty acids, total cholesterol and triglyceride. Moreover, 1βEPP restored β-cell mass; inhibited β-cell apoptosis; decreased the expression of IL-1β; and interrupted NF-κB activation by reducing IKKβ and pRelA levels. These studies indicated that the IL-1β-targeted vaccine may be a promising immunotherapeutic for T2DM treatment. PMID:27152706

  13. Interleukin-1β-Targeted Vaccine Improves Glucose Control and β-Cell Function in a Diabetic KK-Ay Mouse Model.

    PubMed

    Zha, Jun; Chi, Xiao-Wei; Yu, Xiao-Lin; Liu, Xiang-Meng; Liu, Dong-Qun; Zhu, Jie; Ji, Hui; Liu, Rui-Tian

    2016-01-01

    Interleukin-1β (IL-1β) has been implicated as a key proinflammatory cytokine involved in the pancreatic islet inflammation of type 2 diabetes mellitus (T2DM). Excess IL-1β impairs islet function by inducing insulin resistance and β-cell apoptosis. Therefore, specifically reducing IL-1β activity provides a therapeutic improvement for T2DM by sustaining the inhibition of IL-1β-mediated islet inflammation. In this study, we developed an IL-1β-targeted epitope peptide vaccine adjuvanted with polylactic acid microparticles (1βEPP) and applied it to a diabetic KK-Ay mouse model. Results showed that the 1βEPP elicited high antibody responses, which neutralized the biological activity of IL-1β, and induced barely detectable inflammatory activity. 1βEPP immunization reduced body weight gain, protected KK-Ay mice from hyperglycemia, improved glucose tolerance and insulin sensitivity, and decreased the serum levels of free fatty acids, total cholesterol and triglyceride. Moreover, 1βEPP restored β-cell mass; inhibited β-cell apoptosis; decreased the expression of IL-1β; and interrupted NF-κB activation by reducing IKKβ and pRelA levels. These studies indicated that the IL-1β-targeted vaccine may be a promising immunotherapeutic for T2DM treatment.

  14. Cloning of the mouse BTG3 gene and definition of a new gene family (the BTG family) involved in the negative control of the cell cycle.

    PubMed

    Guéhenneux, F; Duret, L; Callanan, M B; Bouhas, R; Hayette, S; Berthet, C; Samarut, C; Rimokh, R; Birot, A M; Wang, Q; Magaud, J P; Rouault, J P

    1997-03-01

    It is well known that loss of tumor suppressor genes and more generally of antiproliferative genes plays a key role in the development of most tumors. We report here the cloning of the mouse BTG3 gene and show that its human counterpart maps on chromosome 21. This evolutionarily conserved gene codes for a 30 kDa protein and is expressed in most adult murine and human tissues analyzed. However, we demonstrate that its expression is cell cycle dependent and peaks at the end of the G1 phase. This gene is homologous to the human BTG1, BTG2 and TOB genes which were demonstrated to act as inhibitors of cell proliferation. Its description allowed us to define better this seven gene family (the BTG gene family) at the structural level and to speculate about its physiological role in normal and tumoral cells. This family is mainly characterized by the presence of two conserved domains (BTG boxes A and B) of as yet undetermined function which are separated by a non-conserved 20-25 amino acid sequence.

  15. Expression of Phenotypic Astrocyte Marker Is Increased in a Transgenic Mouse Model of Alzheimer's Disease versus Age-Matched Controls: A Presymptomatic Stage Study

    PubMed Central

    Doméné, Aurélie; Cavanagh, Chelsea; Page, Guylène; Bodard, Sylvie; Klein, Christophe; Delarasse, Cécile; Chalon, Sylvie

    2016-01-01

    Recent mouse studies of the presymptomatic stage of Alzheimer's disease (AD) have suggested that proinflammatory changes, such as glial activation and cytokine induction, may occur already at this early stage through unknown mechanisms. Because TNFα contributes to increased Aβ production from the Aβ precursor protein (APP), we assessed a putative correlation between APP/Aβ and TNFα during the presymptomatic stage as well as early astrocyte activation in the hippocampus of 3-month-old APPswe/PS1dE9 mice. While Western blots revealed significant APP expression, Aβ was not detectable by Western blot or ELISA attesting that 3-month-old, APPswe/PS1dE9 mice are at a presymptomatic stage of AD-like pathology. Western blots were also used to show increased GFAP expression in transgenic mice that positively correlated with both TNFα and APP, which were also mutually correlated. Subregional immunohistochemical quantification of phenotypic (GFAP) and functional (TSPO) markers of astrocyte activation indicated a selective and significant increase in GFAP-immunoreactive (IR) cells in the dentate gyrus of APPswe/PS1dE9 mice. Our data suggest that subtle morphological and phenotypic alterations, compatible with the engagement of astrocyte along the activation pathway, occur in the hippocampus already at the presymptomatic stage of AD. PMID:27672476

  16. Catecholamine exocytosis during low frequency stimulation in mouse adrenal chromaffin cells is primarily asynchronous and controlled by the novel mechanism of Ca2+ syntilla suppression

    PubMed Central

    Lefkowitz, Jason J; DeCrescenzo, Valerie; Duan, Kailai; Bellve, Karl D; Fogarty, Kevin E; Walsh, John V; ZhuGe, Ronghua

    2014-01-01

    Adrenal chromaffin cells (ACCs), stimulated by the splanchnic nerve, generate action potentials (APs) at a frequency near 0.5 Hz in the resting physiological state, at times described as ‘rest and digest’. How such low frequency stimulation in turn elicits sufficient catecholamine exocytosis to set basal sympathetic tone is not readily explained by the classical mechanism of stimulus–secretion coupling, where exocytosis is synchronized to AP-induced Ca2+ influx. By using simulated action potentials (sAPs) at 0.5 Hz in isolated patch-clamped mouse ACCs, we show here that less than 10% of all catecholaminergic exocytosis, measured by carbon fibre amperometry, is synchronized to an AP. The asynchronous phase, the dominant phase, of exocytosis does not require Ca2+ influx. Furthermore, increased asynchronous exocytosis is accompanied by an AP-dependent decrease in frequency of Ca2+ syntillas (i.e. transient, focal Ca2+ release from internal stores) and is ryanodine sensitive. We propose a mechanism of disinhibition, wherein APs suppress Ca2+ syntillas, which themselves inhibit exocytosis as they do in the case of spontaneous catecholaminergic exocytosis. PMID:25128575

  17. Differential hepatic protein tyrosine nitration of mouse due to aging - effect on mitochondrial energy metabolism, quality control machinery of the endoplasmic reticulum and metabolism of drugs.

    PubMed

    Marshall, Adrienne; Lutfeali, Reshma; Raval, Alpan; Chakravarti, Deb N; Chakravarti, Bulbul

    2013-01-04

    Aging is the inevitable fate of life which leads to the gradual loss of functions of different organs and organelles of all living organisms. The liver is no exception. Oxidative damage to proteins and other macromolecules is widely believed to be the primary cause of aging. One form of oxidative damage is tyrosine nitration of proteins, resulting in the potential loss of their functions. In this study, the effect of age on the nitration of tyrosine in mouse liver proteins was examined. Liver proteins from young (19-22 weeks) and old (24 months) C57/BL6 male mice were separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and electroblotted onto nitrocellulose membranes. Proteins undergoing tyrosine nitration were identified using anti-nitrotyrosine antibody. Three different protein bands were found to contain significantly increased levels of nitrotyrosine in old mice (Wilconxon rank-sum test, p<0.05). Electrospray ionization liquid chromatography tandem mass spectrometry (ESI-LC-MS/MS) was used to identify the proteins in these bands, which included aldehyde dehydrogenase 2, Aldehyde dehydrogenase family 1, subfamily A1, ATP synthase, H(+) transporting, mitochondrial F1 complex, β subunit, selenium-binding protein 2, and protein disulfide-isomerase precursor. The possible impairment of their functions can lead to altered hepatic activity and have been discussed. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. [Echocardiography in mouse].

    PubMed

    Fayssoil, A

    2008-06-01

    Assessing cardiac phenotype requires invasive or noninvasive techniques in mouse. Echocardiography is a noninvasive technique for evaluating cardiac function. The purpose of this paper is to underline echocardiography modalities and new tools Doppler applications like tissue Doppler imaging.

  19. Genetically Engineered Mouse Models for Studying Inflammatory Bowel Disease

    PubMed Central

    Mizoguchi, Atsushi; Takeuchi, Takahito; Himuro, Hidetomo; Okada, Toshiyuki; Mizoguchi, Emiko

    2015-01-01

    Inflammatory bowel disease (IBD) is a chronic intestinal inflammatory condition that is mediated by very complex mechanisms controlled by genetic, immune, and environmental factors. More than 74 kinds of genetically engineered mouse strains have been established since 1993 for studying IBD. Although mouse models cannot fully reflect human IBD, they have provided significant contributions for not only understanding the mechanism, but also developing new therapeutic means for IBD. Indeed, 20 kinds of genetically engineered mouse models carry the susceptibility genes identified in human IBD, and the functions of some other IBD susceptibility genes have also been dissected out using mouse models. Cutting-edge technologies such as cell-specific and inducible knockout systems, which were recently employed to mouse IBD models, have further enhanced the ability of investigators to provide important and unexpected rationales for developing new therapeutic strategies for IBD. In this review article, we briefly introduce 74 kinds of genetically engineered mouse models that spontaneously develop intestinal inflammation. PMID:26387641

  20. Mouse Cleaning Apparatus and Method

    NASA Technical Reports Server (NTRS)

    Williams, Glenn L. (Inventor)

    2005-01-01

    The method of using the mouse pad cleaning apparatus is disclosed and claimed. The method comprises the steps of uncovering the mouse cleaning surface, applying the mouse and ball of the mouse to the cleaning surface, moving the mouse in a rotational pattern on the mouse cleaning surface, removing the mouse form the mouse cleaning surface, washing the cleaning surface, and covering the mouse cleaning surface. A mouse pad cleaning apparatus comprising a plurality of substrates, each said substrate having adhesive thereon, said plurality of substrates residing in and affixed to a receptacle. A single substrate having adhesive, which may be washable or non-washable, thereon may be employed. The washable adhesive may be an organopolysiloxane or gelatinous elastomer.

  1. Quantitative trait loci that control plasma lipid levels in an F2 intercross between C57BL/6J and DDD.Cg-A(y) inbred mouse strains.

    PubMed

    Suto, Jun-ichi

    2012-04-01

    The objectives of this study were to characterize plasma lipid phenotypes and dissect the genetic basis of plasma lipid levels in an obese DDD.Cg-A(y) mouse strain. Plasma triglyceride (TG) levels were significantly higher in the DDD.Cg-A(y) strain than in the B6.Cg-A(y) strain. In contrast, plasma total-cholesterol (CHO) levels did not substantially differ between the two strains. As a rule, the A(y) allele significantly increased TG levels, but did not increase CHO levels. Quantitative trait locus (QTL) analyses for plasma TG and CHO levels were performed in two types of F(2) female mice [F(2)A(y) (F(2) mice carrying the A(y) allele) and F(2) non- A(y) mice (F(2) mice without the A(y) allele)] produced by crossing C57BL/6J females and DDD.Cg-A(y) males. Single QTL scan identified one significant QTL for TG levels on chromosome 1, and two significant QTLs for CHO levels on chromosomes 1 and 8. When the marker nearest to the QTL on chromosome 1 was used as covariates, four additional significant QTLs for CHO levels were identified on chromosomes 5, 6, and 17 (two loci). In contrast, consideration of the agouti locus genotype as covariates did not detect additional QTLs. DDD.Cg-A(y) showed a low CHO level, although it had Apoa2(b), which was a CHO-increasing allele at the Apoa2 locus. This may have been partly due to the presence of multiple QTLs, which were associated with decreased CHO levels, on chromosome 8.

  2. CD8+-T-Cell-Dependent Control of Trypanosoma cruzi Infection in a Highly Susceptible Mouse Strain after Immunization with Recombinant Proteins Based on Amastigote Surface Protein 2

    PubMed Central

    Araújo, Adriano F. S.; de Alencar, Bruna C. G.; Vasconcelos, José Ronnie C.; Hiyane, Meire I.; Marinho, Cláudio R. F.; Penido, Marcus L. O.; Boscardin, Silvia B.; Hoft, Daniel F.; Gazzinelli, Ricardo T.; Rodrigues, Mauricio M.

    2005-01-01

    We previously described that DNA vaccination with the gene encoding amastigote surface protein 2 (ASP-2) protects approximately 65% of highly susceptible A/Sn mice against the lethal Trypanosoma cruzi infection. Here, we explored the possibility that bacterial recombinant proteins of ASP-2 could be used to improve the efficacy of vaccinations. Initially, we compared the protective efficacy of vaccination regimens using either a plasmid DNA, a recombinant protein, or both sequentially (DNA priming and protein boosting). Survival after the challenge was not statistically different among the three mouse groups and ranged from 53.5 to 75%. The fact that immunization with a recombinant protein alone induced protective immunity revealed the possibility that this strategy could be pursued for vaccination. We investigated this possibility by using six different recombinant proteins representing distinct portions of ASP-2. The vaccination of mice with glutathione S-transferase fusion proteins representing amino acids 261 to 500 or 261 to 380 of ASP-2 in the presence of the adjuvants alum and CpG oligodeoxynucleotide 1826 provided remarkable immunity, consistently protecting 100% of the A/Sn mice. Immunity was completely reversed by the in vivo depletion of CD8+ T cells, but not CD4+ T cells, and was associated with the presence of CD8+ T cells specific for an epitope located between amino acids 320 and 327 of ASP-2. We concluded that a relatively simple formulation consisting of a recombinant protein with a selected portion of ASP-2, alum, and CpG oligodeoxynucleotide 1826 might be used to cross-prime strong CD8+-T-cell-dependent protective immunity against T. cruzi infection. PMID:16113322

  3. Bcrp1 transcription in mouse testis is controlled by a promoter upstream of a novel first exon (E1U) regulated by steroidogenic factor-1

    PubMed Central

    Xie, Yi; Natarajan, Karthika; Bauer, Kenneth S.; Nakanishi, Takeo; Beck, William T.; Moreci, Rebecca S.; Jeyasuria, Pancharatnam; Hussain, Arif; Ross, Douglas D.

    2013-01-01

    Alternative promoter usage is typically associated with mRNAs with differing first exons that contain or consist entirely of a 5′ untranslated region. The murine Bcrp1 (Abcg2) transporter has three alternative promoters associated with mRNAs containing alternative untranslated first exons designated E1A, E1B, and E1C. The E1B promoter regulates Bcrp1 transcription in mouse intestine. Here, we report the identification and characterization of a novel Bcrp1 promoter and first exon, E1U, located upstream from the other Bcrp1 promoters/first exons, which is the predominant alternative promoter utilized in murine testis. Using in silico analysis we identified a putative steroidogenic factor-1 (SF-1) response element that was unique to the Bcrp1 E1U alternative promoter. Overexpression of SF-1 in murine TM4 Sertoli cells enhanced Bcrp1 E1U mRNA expression and increased Bcrp1 E1U alternative promoter activity in a reporter assay, whereas mutation of the SF-1 binding site totally eliminated Bcrp1 E1U alternative promoter activity. Moreover, expression of Bcrp1 E1U and total mRNA and Bcrp1 protein was markedly diminished in testes from adult Sertoli cell-specific SF-1 knockout mice, in comparison to testes from wild-type mice. Binding of SF-1 to the SF-1 response element in the E1U promoter was demonstrated by chromatin immunoprecipitation assays. In conclusion, nuclear transcription factor SF-1 is involved with the regulation of a novel promoter of Bcrp1 that governs transcription of the E1U mRNA isoform in mice. The present study furthers understanding of the complex regulation of Bcrp1 expression in specific tissues of a mammalian model. PMID:24189494

  4. Calcium-activated K+ channels of mouse beta-cells are controlled by both store and cytoplasmic Ca2+: experimental and theoretical studies.

    PubMed

    Goforth, P B; Bertram, R; Khan, F A; Zhang, M; Sherman, A; Satin, L S

    2002-09-01

    A novel calcium-dependent potassium current (K(slow)) that slowly activates in response to a simulated islet burst was identified recently in mouse pancreatic beta-cells (Göpel, S.O., T. Kanno, S. Barg, L. Eliasson, J. Galvanovskis, E. Renström, and P. Rorsman. 1999. J. Gen. Physiol. 114:759-769). K(slow) activation may help terminate the cyclic bursts of Ca(2+)-dependent action potentials that drive Ca(2+) influx and insulin secretion in beta-cells. Here, we report that when [Ca(2+)](i) handling was disrupted by blocking Ca(2+) uptake into the ER with two separate agents reported to block the sarco/endoplasmic calcium ATPase (SERCA), thapsigargin (1-5 microM) or insulin (200 nM), K(slow) was transiently potentiated and then inhibited. K(slow) amplitude could also be inhibited by increasing extracellular glucose concentration from 5 to 10 mM. The biphasic modulation of K(slow) by SERCA blockers could not be explained by a minimal mathematical model in which [Ca(2+)](i) is divided between two compartments, the cytosol and the ER, and K(slow) activation mirrors changes in cytosolic calcium induced by the burst protocol. However, the experimental findings were reproduced by a model in which K(slow) activation is mediated by a localized pool of [Ca(2+)] in a subspace located between the ER and the plasma membrane. In this model, the subspace [Ca(2+)] follows changes in cytosolic [Ca(2+)] but with a gradient that reflects Ca(2+) efflux from the ER. Slow modulation of this gradient as the ER empties and fills may enhance the role of K(slow) and [Ca(2+)] handling in influencing beta-cell electrical activity and insulin secretion.

  5. PARP-1 expression in the mouse is controlled by an autoregulatory loop: PARP-1 binding to an upstream S/MAR element and to a novel recognition motif in its promoter suppresses transcription.

    PubMed

    Vidaković, Melita; Gluch, Angela; Qiao, Junhua; Oumard, Andrè; Frisch, Matthias; Poznanović, Goran; Bode, Juergen

    2009-05-15

    This work identifies central components of a feedback mechanism for the expression of mouse poly(ADP-ribose) polymerase-1 (PARP-1). Using the stress-induced duplex destabilization algorithm, multiple base-unpairing regions (BURs) could be localized in the 5' region of the mouse PARP-1 gene (muPARP-1). Some of these could be identified as scaffold/matrix-attachment regions (S/MARs), suggesting an S/MAR-mediated transcriptional regulation. PARP-1 binding to the most proximal element, S/MAR 1, and to three consensus motifs, AGGCC, in its own promoter (basepairs -956 to +100), could be traced by electrophoretic mobility-shift assay. The AGGCC-complementary GGCCT motif was detected by cis-diammine-dichloro platinum cross-linking and functionally characterized by the effects of site-directed mutagenesis on its performance in wild type (PARP-1(+/+)) and PARP-1 knockout cells (PARP-1(-/-)). Mutation of the central AGGCC tract at basepairs -554 to -550 prevented PARP-1/promoter interactions, whereby muPARP-1 expression became up-regulated. Transfection of a series of reporter gene constructs with or without S/MAR 1 (basepairs -1523 to -1007) and the more distant S/MAR 2 (basepairs -8373 to -6880), into PARP-1(+/+) as well as PARP-1(-/-) cells, revealed an additional, major level of muPARP-1 promoter down-regulation, triggered by PARP-1 binding to S/MAR 1. We conclude that S/MAR 1 represents an upstream control element that acts in conjunction with the muPARP-1 promoter. These interactions are part of a negative autoregulatory loop.

  6. Evidence for the genetic control of antibody affinity from breeding studies with inbred mouse strains producing high and low affinity antibody.

    PubMed Central

    Steward, M W; Petty, R E

    1976-01-01

    The amount (Abt) and relative affinity (KR) of antibody produced in response to protein antigens injected in saline has been measured in the parents, F1 hybrids and backcross offspring of inbred mice which produce high and low KR antibody to these antigens. The results obtained support the view that antibody affinity is under polygenic control. Furthermore, strain related variation in Abt is independent of KR and the breeding experiments indicate that these two parameters are under independent genetic control. PMID:1027713

  7. Surfing the internet with a BCI mouse.

    PubMed

    Yu, Tianyou; Li, Yuanqing; Long, Jinyi; Gu, Zhenghui

    2012-06-01

    In this paper, we present a new web browser based on a two-dimensional (2D) brain-computer interface (BCI) mouse, where our major concern is the selection of an intended target in a multi-target web page. A real-world web page may contain tens or even hundreds of targets, including hyperlinks, input elements, buttons, etc. In this case, a target filter designed in our system can be used to exclude most of those targets of no interest. Specifically, the user filters the targets of no interest out by inputting keywords with a P300-based speller, while keeps those containing the keywords. Such filtering largely facilitates the target selection task based on our BCI mouse. When there are only several targets in a web page (either an original sparse page or a target-filtered page), the user moves the mouse toward the target of interest using his/her electroencephalographic signal. The horizontal movement and vertical movement are controlled by motor imagery and P300 potential, respectively. If the mouse encounters a target of no interest, the user rejects it and continues to move the mouse. Otherwise the user selects the target and activates it. With the collaboration of the target filtering and a series of mouse movements and target selections/rejections, the user can select an intended target in a web page. Based on our browser system, common navigation functions, including history rolling forward and backward, hyperlink selection, page scrolling, text input, etc, are available. The system has been tested on seven subjects. Experimental results not only validated the efficacy of the proposed method, but also showed that free internet surfing with a BCI mouse is feasible.

  8. Using an Extended Dynamic Drag-and-Drop Assistive Program to assist people with multiple disabilities and minimal motor control to improve computer Drag-and-Drop ability through a mouse wheel.

    PubMed

    Shih, Ching-Hsiang

    2012-01-01

    Software technology is adopted by the current research to improve the Drag-and-Drop abilities of two people with multiple disabilities and minimal motor control. This goal was realized through a Dynamic Drag-and-Drop Assistive Program (DDnDAP) in which the complex dragging process is replaced by simply poking the mouse wheel and clicking. However, DDnDAP has one limitation--users cannot freely define their desired destinations because the program only allows for the dragging of targets to fixed destinations. This study evaluated whether two children with developmental disabilities and minimal motor control would be able to improve their DnD performance through an Extended Dynamic Drag-and-Drop Assistive Program (EDDnDAP), which improves on the aforementioned limitation of DDnDAP. A multiple probe design across participants was used in this study to assess the effects of using EDDnDAP in enhancing participants' DnD abilities. Participants typically received three 20-min EDDnDAP training sessions per week, for a period of about 6-7 weeks. Both participants significantly improved their DnD efficiency with the help of EDDnDAP, and both remained highly successful through the maintenance phase. The implications of these findings are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Mouse bladder wall injection.

    PubMed

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  10. Mouse models in tendon and ligament research.

    PubMed

    Mienaltowski, Michael J; Birk, David E

    2014-01-01

    Mutant mouse models are valuable resources for the study of tendon and ligament biology. Many mutant mouse models are used because their manifested phenotypes mimic clinical pathobiology for several heritable disorders, such as Ehlers-Danlos Syndrome and Osteogenesis Imperfecta. Moreover, these models are helpful for discerning roles of specific genes in the development, maturation, and repair of musculoskeletal tissues. There are several categories of genes with essential roles in the synthesis and maintenance of tendon and ligament structures. The form and function of these tissues depend highly upon fibril-forming collagens, the primary extracellular macromolecules of tendons and ligaments. Models for these fibril-forming collagens, as well as for regulatory molecules like FACITs and SLRPs, are important for studying fibril assembly, growth, and maturation. Additionally, mouse models for growth factors and transcription factors are useful for defining regulation of cell proliferation, cell differentiation, and cues that stimulate matrix synthesis. Models for membrane-bound proteins assess the roles of cell-cell communication and cell-matrix interaction. In some cases, special considerations need to be given to spatio-temporal control of a gene in a model. Thus, conditional and inducible mouse models allow for specific regulation of genes of interest. Advances in mouse models have provided valuable tools for gaining insight into the form and function of tendons and ligaments.

  11. RYGB Produces more Sustained Body Weight Loss and Improvement of Glycemic Control Compared with VSG in the Diet-Induced Obese Mouse Model.

    PubMed

    Hao, Zheng; Townsend, R Leigh; Mumphrey, Michael B; Morrison, Christopher D; Münzberg, Heike; Berthoud, Hans-Rudolf

    2017-04-06

    Weight regain and type-2 diabetes relapse has been reported in a significant proportion of vertical sleeve gastrectomy (VSG) patients in some studies, but definitive conclusions regarding the long-term comparative effectiveness of VSG and Roux-en-Y gastric bypass (RYGB) surgery are lacking both in humans and rodent models. This study's objective was to compare the effects of murine models of VSG and RYGB surgery on body weight, body composition, food intake, energy expenditure, and glycemic control. VSG, RYGB, and sham surgery was performed in high-fat diet-induced obese mice, and the effects on body weight and glycemic control were observed for a period of 12 weeks. After the initial weight loss, VSG mice regained significant amounts of body weight and fat mass that were only marginally lower than in sham-operated mice. In contrast, RYGB produced sustained loss of body weight and fat mass up to 12 weeks and drastically improved fasting insulin and HOMA-IR compared with sham-operated mice. Using weight-matched control groups, we also found that the adaptive hypometabolic response to weight loss was blunted by both VSG and RYGB, and that despite large weight/fat regain, fasting insulin and HOMA-IR were markedly improved, but not reversed, in VSG mice. VSG is less effective to lastingly suppress body weight and improve glycemic control compared with RYGB in mice. Given similar observations in many human studies, the run towards replacing RYGB with VSG is premature and should await carefully controlled randomized long-term trials with VSG and RYGB.

  12. An encyclopedia of mouse DNA elements (Mouse ENCODE)

    PubMed Central

    2012-01-01

    To complement the human Encyclopedia of DNA Elements (ENCODE) project and to enable a broad range of mouse genomics efforts, the Mouse ENCODE Consortium is applying the same experimental pipelines developed for human ENCODE to annotate the mouse genome. PMID:22889292

  13. Cytochrome P450 2A13 enhances the sensitivity of human bronchial epithelial cells to aflatoxin B1-induced DNA damage

    SciTech Connect

    Yang, Xuejiao; Zhang, Zhan; Wang, Xichen; Wang, Yun; Zhang, Xiaoming; Lu, Huiyuan; Wang, Shou-Lin

    2013-07-15

    Cytochrome P450 2A13 (CYP2A13) mainly expresses in human respiratory system and mediates the metabolic activation of aflatoxin B1 (AFB1). Our previous study suggested that CYP2A13 could increase the cytotoxic and apoptotic effects of AFB1 in immortalized human bronchial epithelial cells (BEAS-2B). However, the role of CYP2A13 in AFB1-induced DNA damage is unclear. Using BEAS-2B cells that stably express CYP2A13 (B-2A13), CYP1A2 (B-1A2), and CYP2A6 (B-2A6), we compared their effects in AFB1-induced DNA adducts, DNA damage, and cell cycle changes. BEAS-2B cells that were transfected with vector (B-vector) were used as a control. The results showed that AFB1 (5–80 nM) dose- and time-dependently induced DNA damage in B-2A13 cells. AFB1 at 10 and 80 nM significantly augmented this effect in B-2A13 and B-1A2 cells, respectively. B-2A6 cells showed no obvious DNA damage, similar to B-vector cells and the vehicle control. Similarly, compared with B-vector, B-1A2 or B-2A6 cells, B-2A13 cells showed more sensitivity in AFB1-induced γH2AX expression, DNA adduct 8-hydroxy-deoxyguanosine formation, and S-phase cell-cycle arrest. Furthermore, AFB1 activated the proteins related to DNA damage responses, such as ATM, ATR, Chk2, p53, BRCA1, and H2AX, rather than the proteins related to DNA repair. These effects could be almost completely inhibited by 100 μM nicotine (a substrate of CYP2A13) or 1 μM 8-methoxypsoralen (8-MOP; an inhibitor of CYP enzyme). Collectively, these findings suggest that CYP2A13 plays an important role in low-concentration AFB1-induced DNA damage, possibly linking environmental airborne AFB1 to genetic injury in human respiratory system. - Highlights: • CYP2A13 plays a critical role in low concentration of AFB1-induced DNA damage. • B-2A13 cells were more sensitive to AFB1 than B-1A2 cells and B-2A6 cells. • AFB1 dose- and time-dependently induced DNA damage in B-2A13 cells • AFB1-induced DNA adducts and damage can be inhibited by nicotine and 8

  14. Researchers Create Artificial Mouse 'Embryo'

    MedlinePlus

    ... news/fullstory_163881.html Researchers Create Artificial Mouse 'Embryo' Experiment used two types of gene-modified stem ... they've created a kind of artificial mouse embryo using stem cells, which can be coaxed to ...

  15. The Mouse SAGE Site: database of public mouse SAGE libraries.

    PubMed

    Divina, Petr; Forejt, Jirí

    2004-01-01

    The Mouse SAGE Site is a web-based database of all available public libraries generated by the Serial Analysis of Gene Expression (SAGE) from various mouse tissues and cell lines. The database contains mouse SAGE libraries organized in a uniform way and provides web-based tools for browsing, comparing and searching SAGE data with reliable tag-to-gene identification. A modified approach based on the SAGEmap database is used for reliable tag identification. The Mouse SAGE Site is maintained on an ongoing basis at the Institute of Molecular Genetics, Academy of Sciences of the Czech Republic and is accessible at the internet address http://mouse.biomed.cas.cz/sage/.

  16. An In Vitro Co-culture Mouse Model Demonstrates Efficient Vaccine-Mediated Control of Francisella tularensis SCHU S4 and Identifies Nitric Oxide as a Predictor of Efficacy

    PubMed Central

    Golovliov, Igor; Lindgren, Helena; Eneslätt, Kjell; Conlan, Wayne; Mosnier, Amandine; Henry, Thomas; Sjöstedt, Anders

    2016-01-01

    Francisella tularensis is a highly virulent intracellular bacterium and cell-mediated immunity is critical for protection, but mechanisms of protection against highly virulent variants, such as the prototypic strain F. tularensis strain SCHU S4, are poorly understood. To this end, we established a co-culture system, based on splenocytes from naïve, or immunized mice and in vitro infected bone marrow-derived macrophages that allowed assessment of mechanisms controlling infection with F. tularensis. We utilized the system to understand why the clpB gene deletion mutant, ΔclpB, of SCHU S4 shows superior efficacy as a vaccine in the mouse model as compared to the existing human vaccine, the live vaccine strain (LVS). Compared to naïve splenocytes, ΔclpB-, or LVS-immune splenocytes conferred very significant control of a SCHU S4 infection and the ΔclpB-immune splenocytes were superior to the LVS-immune splenocytes. Cultures with the ΔclpB-immune splenocytes also contained higher levels of IFN-γ, IL-17, and GM-CSF and nitric oxide, and T cells expressing combinations of IFN-γ, TNF-α, and IL-17, than did cultures with LVS-immune splenocytes. There was strong inverse correlation between bacterial replication and levels of nitrite, an end product of nitric oxide, and essentially no control was observed when BMDM from iNOS−/− mice were infected. Collectively, the co-culture model identified a critical role of nitric oxide for protection against a highly virulent strain of F. tularensis. PMID:27933275

  17. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study.

    PubMed

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-08-07

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia.

  18. Wrist Hypothermia Related to Continuous Work with a Computer Mouse: A Digital Infrared Imaging Pilot Study

    PubMed Central

    Reste, Jelena; Zvagule, Tija; Kurjane, Natalja; Martinsone, Zanna; Martinsone, Inese; Seile, Anita; Vanadzins, Ivars

    2015-01-01

    Computer work is characterized by sedentary static workload with low-intensity energy metabolism. The aim of our study was to evaluate the dynamics of skin surface temperature in the hand during prolonged computer mouse work under different ergonomic setups. Digital infrared imaging of the right forearm and wrist was performed during three hours of continuous computer work (measured at the start and every 15 minutes thereafter) in a laboratory with controlled ambient conditions. Four people participated in the study. Three different ergonomic computer mouse setups were tested on three different days (horizontal computer mouse without mouse pad; horizontal computer mouse with mouse pad and padded wrist support; vertical computer mouse without mouse pad). The study revealed a significantly strong negative correlation between the temperature of the dorsal surface of the wrist and time spent working with a computer mouse. Hand skin temperature decreased markedly after one hour of continuous computer mouse work. Vertical computer mouse work preserved more stable and higher temperatures of the wrist (>30 °C), while continuous use of a horizontal mouse for more than two hours caused an extremely low temperature (<28 °C) in distal parts of the hand. The preliminary observational findings indicate the significant effect of the duration and ergonomics of computer mouse work on the development of hand hypothermia. PMID:26262633

  19. Chimeric elk/mouse prion proteins in transgenic mice.

    PubMed

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L; DeArmond, Stephen J; Prusiner, Stanley B

    2013-02-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions.

  20. Chimeric elk/mouse prion proteins in transgenic mice

    PubMed Central

    Tamgüney, Gültekin; Giles, Kurt; Oehler, Abby; Johnson, Natrina L.; DeArmond, Stephen J.

    2013-01-01

    Chronic wasting disease (CWD) of deer and elk is a highly communicable neurodegenerative disorder caused by prions. Investigations of CWD are hampered by slow bioassays in transgenic (Tg) mice. Towards the development of Tg mice that will be more susceptible to CWD prions, we created a series of chimeric elk/mouse transgenes that encode the N terminus of elk PrP (ElkPrP) up to residue Y168 and the C terminus of mouse PrP (MoPrP) beyond residue 169 (mouse numbering), designated Elk3M(SNIVVK). Between codons 169 and 219, six residues distinguish ElkPrP from MoPrP: N169S, T173N, V183I, I202V, I214V and R219K. Using chimeric elk/mouse PrP constructs, we generated 12 Tg mouse lines and determined incubation times after intracerebral inoculation with the mouse-passaged RML scrapie or Elk1P CWD prions. Unexpectedly, one Tg mouse line expressing Elk3M(SNIVVK) exhibited incubation times of <70 days when inoculated with RML prions; a second line had incubation times of <90 days. In contrast, mice expressing full-length ElkPrP had incubation periods of >250 days for RML prions. Tg(Elk3M,SNIVVK) mice were less susceptible to CWD prions than Tg(ElkPrP) mice. Changing three C-terminal mouse residues (202, 214 and 219) to those of elk doubled the incubation time for mouse RML prions and rendered the mice resistant to Elk1P CWD prions. Mutating an additional two residues from mouse to elk at codons 169 and 173 increased the incubation times for mouse prions to >300 days, but made the mice susceptible to CWD prions. Our findings highlight the role of C-terminal residues in PrP that control the susceptibility and replication of prions. PMID:23100369

  1. 3-Nitropropionic acid modifies neurotrophin mRNA expression in the mouse striatum: 18S-rRNA is a reliable control gene for studies of the striatum.

    PubMed

    Espíndola, S; Vilches-Flores, A; Hernández-Echeagaray, E

    2012-10-01

    The aim of the present study was to determine the changes in the mRNA levels of neurotrophins and their receptors in the striatal tissue of mice treated with 3-nitropropionic acid (3-NP). At 1 and 48 h after the last drug administration, the mRNA expression of nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 as well as their receptors p75, TrkA, TrkB and TrkC, was evaluated using semi-quantitative (semi-Q) and real-time RT-PCR. β-actin mRNA and ribosomal 18S (18S rRNA) were tested as internal controls. 3-NP treatment did not affect mRNA expression of all neurotrophins and their respective receptors equally. Also, differences in neurotrophin and receptor mRNA expression were observed between semi-Q and real-time RT-PCR. Real-time RT-PCR was more accurate in evaluating the mRNA expression of the neurotrophins than semi-Q, and 18S rRNA was more reliable than β-actin as an internal control. Neurotrophins and their receptors expression is differentially affected by neuronal damage produced by inhibition of mitochondrial respiration with 3-NP treatment in low, sub-chronic doses in vivo.

  2. Host-dependent control of early regulatory and effector T-cell differentiation underlies the genetic susceptibility of RAG2-deficient mouse strains to transfer colitis.

    PubMed

    Valatas, V; He, J; Rivollier, A; Kolios, G; Kitamura, K; Kelsall, B L

    2013-05-01

    De novo differentiation of CD4(+)Foxp3(+) regulatory T cells (induced (i) Tregs) occurs preferentially in the gut-associated lymphoid tissues (GALT). We addressed the contribution of background genetic factors in affecting the balance of iTreg, T helper type 1 (Th1), and Th17 cell differentiation in GALT in vivo following the transfer of naive CD4(+)CD45RB(high) T cells to strains of RAG2-deficient mice with differential susceptibility to inflammatory colitis. iTregs represented up to 5% of CD4(+) T cells in mesenteric lymph nodes of less-susceptible C57BL/6 RAG2(-/-) mice compared with <1% in highly susceptible C57BL/10 RAG2(-/-) mice 2 weeks following T-cell transfer before the onset of colitis. Early Treg induction was correlated inversely with effector cell expansion and the severity of colitis development, was controlled primarily by host and not T-cell-dependent factors, and was strongly associated with interleukin-12 (IL-12)/23 production by host CD11c(+)CD103(+) dendritic cells. These data highlight the importance of genetic factors regulating IL-12/23 production in controlling the balance between iTreg differentiation and effector-pathogenic CD4(+) T-cell expansion in lymphopenic mice and indicate a direct role for iTregs in the regulation of colonic inflammation in vivo.

  3. Domain regulation of imprinting cluster in Kip2/Lit1 subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Lit1 is a putative imprinting control region.

    PubMed

    Yatsuki, Hitomi; Joh, Keiichiro; Higashimoto, Ken; Soejima, Hidenobu; Arai, Yuji; Wang, Youdong; Hatada, Izuho; Obata, Yayoi; Morisaki, Hiroko; Zhang, Zhongming; Nakagawachi, Tetsuji; Satoh, Yuji; Mukai, Tsunehiro

    2002-12-01

    Mouse chromosome 7F4/F5, where the imprinting domain is located, is syntenic to human 11p15.5, the locus for Beckwith-Wiedemann syndrome. The domain is thought to consist of the two subdomains Kip2 (p57(kip2))/Lit1 and Igf2/H19. Because DNA methylation is believed to be a key factor in genomic imprinting, we performed large-scale DNA methylation analysis to identify the cis-element crucial for the regulation of the Kip2/Lit1 subdomain. Ten CpG islands (CGIs) were found, and these were located at the promoter sites, upstream of genes, and within intergenic regions. Bisulphite sequencing revealed that CGIs 4, 5, 8, and 10 were differentially methylated regions (DMRs). CGIs 4, 5, and 10 were methylated paternally in somatic tissues but not in germ cells. CGI8 was methylated in oocyte and maternally in somatic tissues during development. Parental-specific DNase I hypersensitive sites (HSSs) were found near CGI8. These data indicate that CGI8, called DMR-Lit1, is not only the region for gametic methylation but might also be the imprinting control region (ICR) of the subdomain.

  4. Delayed control of herpes simplex virus infection and impaired CD4(+) T-cell migration to the skin in mouse models of DOCK8 deficiency.

    PubMed

    Flesch, Inge E A; Randall, Katrina L; Hollett, Natasha A; Di Law, Hsei; Miosge, Lisa A; Sontani, Yovina; Goodnow, Christopher C; Tscharke, David C

    2015-07-01

    DOCK8 deficiency in humans and mice leads to multiple defects in immune cell numbers and function. Patients with this immunodeficiency have a high morbidity and mortality, and are distinguished by chronic cutaneous viral infections, including those caused by herpes simplex virus (HSV). The underlying mechanism of the specific susceptibility to these chronic cutaneous viral infections is currently unknown, largely because the effect of DOCK8 deficiency has not been studied in suitable models. A better understanding of these mechanisms is required to underpin the development of more specific therapies. Here we show that DOCK8-deficient mice have poor control of primary cutaneous herpes simplex lesions and this is associated with increased virus loads. Furthermore, DOCK8-deficient mice showed a lack of CD4(+) T-cell infiltration into HSV-infected skin.

  5. Expressions of Tight Junction Proteins Occludin and Claudin-1 Are under the Circadian Control in the Mouse Large Intestine: Implications in Intestinal Permeability and Susceptibility to Colitis

    PubMed Central

    Oh-oka, Kyoko; Kono, Hiroshi; Ishimaru, Kayoko; Miyake, Kunio; Kubota, Takeo; Ogawa, Hideoki; Okumura, Ko; Shibata, Shigenobu; Nakao, Atsuhito

    2014-01-01

    Background & Aims The circadian clock drives daily rhythms in behavior and physiology. A recent study suggests that intestinal permeability is also under control of the circadian clock. However, the precise mechanisms remain largely unknown. Because intestinal permeability depends on tight junction (TJ) that regulates the epithelial paracellular pathway, this study investigated whether the circadian clock regulates the expression levels of TJ proteins in the intestine. Methods The expression levels of TJ proteins in the large intestinal epithelium and colonic permeability were analyzed every 4, 6, or 12 hours between wild-type mice and mice with a mutation of a key clock gene Period2 (Per2; mPer2m/m). In addition, the susceptibility to dextran sodium sulfate (DSS)-induced colitis was compared between wild-type mice and mPer2m/m mice. Results The mRNA and protein expression levels of Occludin and Claudin-1 exhibited daily variations in the colonic epithelium in wild-type mice, whereas they were constitutively high in mPer2m/m mice. Colonic permeability in wild-type mice exhibited daily variations, which was inversely associated with the expression levels of Occludin and Claudin-1 proteins, whereas it was constitutively low in mPer2m/m mice. mPer2m/m mice were more resistant to the colonic injury induced by DSS than wild-type mice. Conclusions Occludin and Claudin-1 expressions in the large intestine are under the circadian control, which is associated with temporal regulation of colonic permeability and also susceptibility to colitis. PMID:24845399

  6. Subtle alterations in breathing and heart rate control in the 5-HT1A receptor knockout mouse in early postnatal development.

    PubMed

    Barrett, Karlene T; Kinney, Hannah C; Li, Aihua; Daubenspeck, J Andrew; Leiter, James C; Nattie, Eugene E

    2012-11-01

    We hypothesized that absence of the 5-HT(1A) receptor would negatively affect the development of cardiorespiratory control. In conscious wild type (WT) and 5-HT(1A) receptor knockout (KO) mice, we measured resting ventilation (Ve), oxygen consumption (Vo(2)), heart rate (HR), breathing and HR variability, and the hypercapnic ventilatory response (HCVR) at postnatal day 5 (P5), day 15 (P15), and day 25 (P25). In KO mice compared with WT, we found a 17% decrease in body weight at only P5 (P < 0.01) and no effect on Vo(2). Ve was significantly (P < 0.001) lower at P5 and P25, but there was no effect on the HCVR. Breathing variability (interbreath interval), measured by standard deviation, the root mean square of the standard deviation (RMSSD), and the product of the major (L) and minor axes (T) of the Poincaré first return plot, was 57% to 187% higher only at P5 (P < 0.001). HR was 6-10% slower at P5 (P < 0.001) but 7-9% faster at P25 (P < 0.001). This correlated with changes in the spectral analysis of HR variability; the low frequency to high frequency ratio was 47% lower at P5 but 68% greater at P25. The RMSSD and (L × T) of HR variability were ~2-fold greater at P5 only (P < 0.001; P < 0.05). We conclude that 5-HT(1A) KO mice have a critical period of potential vulnerability at P5 when pups hypoventilate and have a slower respiratory frequency and HR with enhanced variability of both, suggesting abnormal maturation of cardiorespiratory control.

  7. Screening of SLC25A13 mutation in the Thai population

    PubMed Central

    Wongkittichote, Parith; Sukasem, Chonlaphat; Kikuchi, Atsuo; Aekplakorn, Wichai; Jensen, Laran T; Kure, Shigeo; Wattanasirichaigoon, Duangrurdee

    2013-01-01

    AIM: To determine the prevalence of SLC25A13 mutations in the Thai population. METHODS: A total of 1537 subjects representing the Thai population were screened for a novel pathologic allele p.Met1? (c.2T > C) and six previously known common SLC25A13 mutations: [I] (c.851_854delGTAT), [II] (g.IVS11 + 1G > A), [III] (c.1638_1660dup), [IV] (p.S225X), [V] (IVS13 + 1G > A), and [XIX] (g.IVS16ins3kb) using a newly developed TaqMan and established HybProbe assay, respectively. Sanger sequencing was employed for specimens showing an aberrant peak to confirm the targeted mutation as well as the unknown aberrant peaks detected. Frequencies of the mutations identified were compared in each region. Carrier frequency and disease prevalence of citrin deficiency caused by SCL25A13 mutations were estimated. RESULTS: p.Met1? was identified in the heterozygous state in 85 individuals, giving a carrier frequency of 1/18, which suggests possible selective advantage of this variant. The question of p.Met1? homozygote lethality remains unanswered which may serve as an explanation as to why this homozygote has yet to be identified in patients/controls even with high allele frequency. The p.Met1? mutation has rarely been studied in populations other than Thai and Chinese; therefore, may have been overlooked. Development of the TaqMan assay in the present study would allow a simple, rapid, and cost-effective method for mass screening. Heterozygous mutations: [XIX] and [I] were identified in 17 individuals, giving a carrier rate of 1/90 and a calculated homozygote rate of 1/33000. Two novel variants, g.IVS11 + 17C > G and c.1311C > T, of unknown clinical significance were identified at low frequency. CONCLUSION: This study highlighted the current underestimation of citrin deficiency and suggests the possible selective advantage of the p.Met1? allele. PMID:24282362

  8. Markers of glycemic control in the mouse: comparisons of 6-h- and overnight-fasted blood glucoses to Hb A1c.

    PubMed

    Han, Byoung Geun; Hao, Chuan-Ming; Tchekneva, Elena E; Wang, Ying-Ying; Lee, Chieh Allen; Ebrahim, Benyamin; Harris, Raymond C; Kern, Timothy S; Wasserman, David H; Breyer, Matthew D; Qi, Zhonghua

    2008-10-01

    The present studies examined the relationship between fasting blood glucose and Hb A(1c) in C57BL/6J, DBA/2J, and KK/HlJ mice with and without diabetes mellitus. Daily averaged blood glucose levels based on continuous glucose monitoring and effects of 6-h vs. overnight fasting on blood glucose were determined. Daily averaged blood glucose levels were highly correlated with Hb A(1c), as determined with a hand-held automated device using an immunodetection method. R(2) values were 0.90, 0.95, and 0.99 in KK/HIJ, C57BL/6J, and DBA/2J, respectively. Six-hour fasting blood glucose correlated more closely with the level of daily averaged blood glucose and with Hb A(1c) than did blood glucose following an overnight fast. To validate the immunoassay-determined Hb A(1c), we also measured total glycosylated hemoglobin using boronate HPLC. Hb A(1c) values correlated well with total glycosylated hemoglobin in all three strains but were relatively lower than total glycosylated hemoglobin in diabetic DBA/2J mice. These results show that 6-h fasting glucose provides a superior index of glycemic control and correlates more closely with Hb A(1c) than overnight-fasted blood glucose in these strains of mice.

  9. Local tumor control following single dose irradiation of human melanoma xenografts: Relationship to cellular radiosensitivity and influence of an immune response by the athymic mouse

    SciTech Connect

    Rofstad, E.K.

    1989-06-15

    The potential usefulness of untreated congenitally athymic adult mice as hosts for human tumors in radiocurability studies was investigated using five human melanoma xenograft lines (E.E., E.F., G.E., M.F., V.N.). The tumor radiocurability was found to differ considerably among the lines; the radiation doses required to achieve local control of 50% of the tumors irradiated (TCD50 values) ranged from 29.6 +/- 2.1 (SE) to 67.9 +/- 3.5 Gy. Since the clinical relevance of experimentally determined TCD50 values depends on to what extent they are modified by a host immune response, a possible immune reactivity against the melanomas was investigated by comparing the radiocurability data with cell survival data measured in vitro after irradiation in vivo and by performing quantitative tumor transplantability studies. The radiocurability and the cell survival data were found to agree well for the E.F., G.E., and M.F. melanomas. Moreover, the number of tumor cells required to achieve tumors in 50% of the inoculation sites (TD50 values) in untreated and in whole-body irradiated mice were similar, suggesting that the TCD50 values measured for these lines were not significantly influenced by a host immune response. On the other hand, the E.E. and V.N. melanomas showed significantly lower TCD50 values in vivo than predicted theoretically from the in vitro cell survival data and a significantly lower number of tumor cells required to achieve tumors in 50% of the inoculation sites in whole-body irradiated than in untreated mice, suggesting that the radiocurability of these two lines was enhanced due to an immune response by the host. Athymic mice may thus express a significant immune reactivity against some human tumor xenograft lines but not against others.

  10. Polygenic Control of Carotid Atherosclerosis in a BALB/cJ × SM/J Intercross and a Combined Cross Involving Multiple Mouse Strains

    PubMed Central

    Grainger, Andrew T.; Jones, Michael B.; Chen, Mei-Hua; Shi, Weibin

    2016-01-01

    Atherosclerosis in the carotid arteries is a major cause of ischemic stroke, which accounts for 85% of all stroke cases. Genetic factors contributing to carotid atherosclerosis remain poorly understood. The aim of this study was to identify chromosomal regions harboring genes contributing to carotid atherosclerosis in mice. From an intercross between BALB/cJ (BALB) and SM/J (SM) apolipoprotein E-deficient (Apoe−/−) mice, 228 female F2 mice were generated and fed a “Western” diet for 12 wk. Atherosclerotic lesion sizes in the left carotid artery were quantified. Across the entire genome, 149 genetic markers were genotyped. Quantitative trait locus (QTL) analysis revealed eight loci for carotid lesion sizes, located on chromosomes 1, 5, 12, 13, 15, 16, and 18. Combined cross-linkage analysis using data from this cross, and two previous F2 crosses derived from BALB, C57BL/6J and C3H/HeJ strains, identified five significant QTL on chromosomes 5, 9, 12, and 13, and nine suggestive QTL for carotid atherosclerosis. Of them, the QTL on chromosome 12 had a high LOD score of 9.95. Bioinformatic analysis prioritized Arhgap5, Akap6, Mipol1, Clec14a, Fancm, Nin, Dact1, Rtn1, and Slc38a6 as probable candidate genes for this QTL. Atherosclerotic lesion sizes were significantly correlated with non-HDL cholesterol levels (r = 0.254; p = 0.00016) but inversely correlated with HDL cholesterol levels (r = −0.134; p = 0.049) in the current cross. Thus, we demonstrated the polygenic control of carotid atherosclerosis in mice. The correlations of carotid lesion sizes with non-HDL and HDL suggest that genetic factors exert effects on carotid atherosclerosis partially through modulation of lipoprotein homeostasis. PMID:28040783

  11. Targeted deletion of the Nesp55 DMR defines another Gnas imprinting control region and provides a mouse model of autosomal dominant PHP-Ib.

    PubMed

    Fröhlich, Leopold F; Mrakovcic, Maria; Steinborn, Ralf; Chung, Ung-Il; Bastepe, Murat; Jüppner, Harald

    2010-05-18

    Approximately 100 genes undergo genomic imprinting. Mutations in fewer than 10 imprinted genetic loci, including GNAS, are associated with complex human diseases that differ phenotypically based on the parent transmitting the mutation. Besides the ubiquitously expressed Gsalpha, which is of broad biological importance, GNAS gives rise to an antisense transcript and to several Gsalpha variants that are transcribed from the nonmethylated parental allele. We previously identified two almost identical GNAS microdeletions extending from exon NESP55 to antisense (AS) exon 3 (delNESP55/delAS3-4). When inherited maternally, both deletions are associated with erasure of all maternal GNAS methylation imprints and autosomal-dominant pseudohypoparathyroidism type Ib, a disorder characterized by parathyroid hormone-resistant hypocalcemia and hyperphosphatemia. As for other imprinting disorders, the mechanisms resulting in abnormal GNAS methylation are largely unknown, in part because of a paucity of suitable animal models. We now showed in mice that deletion of the region equivalent to delNESP55/delAS3-4 on the paternal allele (DeltaNesp55(p)) leads to healthy animals without Gnas methylation changes. In contrast, mice carrying the deletion on the maternal allele (DeltaNesp55(m)) showed loss of all maternal Gnas methylation imprints, leading in kidney to increased 1A transcription and decreased Gsalpha mRNA levels, and to associated hypocalcemia, hyperphosphatemia, and secondary hyperparathyroidism. Besides representing a murine autosomal-dominant pseudohypoparathyroidism type Ib model and one of only few animal models for imprinted human disorders, our findings suggest that the Nesp55 differentially methylated region is an additional principal imprinting control region, which directs Gnas methylation and thereby affects expression of all maternal Gnas-derived transcripts.

  12. Interleukin-1 controls the constitutive expression of the Cyp7a1 gene by regulating the expression of Cyp7a1 transcriptional regulators in the mouse liver.

    PubMed

    Kojima, Misaki; Ashino, Takashi; Yoshida, Takemi; Iwakura, Yoichiro; Degawa, Masakuni

    2011-01-01

    Our previous study using interleukin-1α/β-knockout (IL-1-KO) and wild-type (WT) mice demonstrated that IL-1 acts as a positive factor for constitutive gene expression of hepatic cytochrome P4507a1 (Cyp7a1). In this study, to clarify the role of IL-1 in the expression of the hepatic Cyp7a1 gene, we focused on Cyp7a1 transcriptional regulators such as α-fetoprotein transcription factor (FTF), liver X receptor α (LXRα), hepatocyte nuclear factor 4α (HNF4α) and small heterodimer partner (SHP) and examined the effects of IL-1 on their gene expression by real-time reverse-transcription polymerase chain reaction using IL-1-KO and WT mice. We observed no significant differences between sex-matched IL-1-KO and WT mice with regard to gene expression levels of FTF, LXRα, and HNF4α, all of which are positive transcriptional regulators for the Cyp7a1 gene. However, interindividual differences in hepatic FTF and LXRα expression were closely dependent on the gene expression level(s) of hepatic IL-1 and tumor necrosis factor-α (TNF-α), while interindividual differences in hepatic HNF4α were clearly correlated with the expression of IL-1, but not TNF-α. In contrast, the gene expression level of SHP, which is a negative transcriptional regulator of the Cyp7a1 gene through inhibition of FTF function, was higher in IL-1-KO mice than in sex-matched WT mice. These findings demonstrate that, like TNF-α, IL-1 positively controls the gene expression of Cyp7a1 transcriptional upregulators but, in contrast to the previously reported action of TNF-α, IL-1 also acts to downregulate SHP gene expression.

  13. Modulation of anxiety behavior by intranasally administered vaccinia virus complement control protein and curcumin in a mouse model of Alzheimer's disease.

    PubMed

    Kulkarni, A P; Govender, D A; Kotwal, G J; Kellaway, L A

    2011-02-01

    Widespread neuroinflammation in the central nervous system (CNS) of Alzheimer's disease (AD) patients, involving pro-inflammatory mediators such as complement components, might be responsible for AD associated behavioral symptoms such as anxiety. Vaccinia virus complement control protein (VCP) and curcumin (Cur) are the bioactive compounds of natural origin shown to inhibit the in-vitro complement activation. In order to develop complement regulatory compounds which could be delivered to the CNS by a non-invasive route, VCP, its truncated version (tVCP), and Cur were administered to Wistar rats intranasally. The distribution of these compounds in cerebrospinal fluid (CSF) was studied using an enzyme linked immunosorbent assay (ELISA), using VCP and tVCP as antigens and a modified fluorimetric method (Cur). VCP and tVCP were also detected in the olfactory lobes of the rat brain using immunohistochemical analysis. These compounds were then compared for their ability to attenuate the anxiety levels in APPswePS1δE9 mice using an elevated plus maze (EPM) apparatus. VCP treatment significantly improved the exploratory behavior and reduced the anxiety behavior in APPswePS1δE9 mice. tVCP however showed an opposite effect to VCP, whereas Cur showed no effect on the anxiety behavior of these mice. When these mice were subsequently tested for their cognitive performance in the Morris water maze (MWM), they showed tendencies to collide with the periphery of the walls of MWM. This unusual activity was termed "kissperi" behavior. This newly defined index of anxiety was comparable to the anxiety profile of the VCP and tVCP treated groups on EPM. VCP can thus be delivered to the CNS effectively via intranasal route of administration to attenuate anxiety associated with AD.

  14. Fibrosis and inflammation are greater in muscles of beta-sarcoglycan-null mouse than mdx mouse.

    PubMed

    Gibertini, Sara; Zanotti, Simona; Savadori, Paolo; Curcio, Maurizio; Saredi, Simona; Salerno, Franco; Andreetta, Francesca; Bernasconi, Pia; Mantegazza, Renato; Mora, Marina

    2014-05-01

    The Sgcb-null mouse, with knocked-down β-sarcoglycan, develops severe muscular dystrophy as in type 2E human limb girdle muscular dystrophy. The mdx mouse, lacking dystrophin, is the most used model for Duchenne muscular dystrophy (DMD). Unlike DMD, the mdx mouse has mild clinical features and shows little fibrosis in limb muscles. To characterize ECM protein deposition and the progression of muscle fibrosis, we evaluated protein and transcript levels of collagens I, III and VI, decorin, and TGF-β1, in quadriceps and diaphragm, at 2, 4, 8, 12, 26, and 52 weeks in Sgcb-null mice, and protein levels at 12, 26, and 52 weeks in mdx mice. In Sgcb-null mice, severe morphological disruption was present from 4 weeks in both quadriceps and diaphragm, and included conspicuous deposition of extracellular matrix components. Histopathological features of Sgcb-null mouse muscles were similar to those of age-matched mdx muscles at all ages examined, but, in the Sgcb-null mouse, the extent of connective tissue deposition was generally greater than mdx. Furthermore, in the Sgcb-null mouse, the amount of all three collagen isoforms increased steadily, while, in the mdx, they remained stable. We also found that, at 12 weeks, macrophages were significantly more numerous in mildly inflamed areas of Sgcb-null quadriceps compared to mdx quadriceps (but not in highly inflamed regions), while, in the diaphragm, macrophages did not differ significantly between the two models, in either region. Osteopontin mRNA was also significantly greater at 12 weeks in laser-dissected highly inflamed areas of the Sgcb-null quadriceps compared to the mdx quadriceps. TGF-β1 was present in areas of degeneration-regeneration, but levels were highly variable and in general did not differ significantly between the two models and controls. The roles of the various subtypes of macrophages in muscle repair and fibrosis in the two models require further study. The Sgcb-null mouse, which develops early fibrosis

  15. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Bult, Carol J.; Bogue, Molly A.

    2014-01-01

    The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements. PMID:24243846

  16. RIKEN mouse genome encyclopedia.

    PubMed

    Hayashizaki, Yoshihide

    2003-01-01

    We have been working to establish the comprehensive mouse full-length cDNA collection and sequence database to cover as many genes as we can, named Riken mouse genome encyclopedia. Recently we are constructing higher-level annotation (Functional ANnoTation Of Mouse cDNA; FANTOM) not only with homology search based annotation but also with expression data profile, mapping information and protein-protein database. More than 1,000,000 clones prepared from 163 tissues were end-sequenced to classify into 159,789 clusters and 60,770 representative clones were fully sequenced. As a conclusion, the 60,770 sequences contained 33,409 unique. The next generation of life science is clearly based on all of the genome information and resources. Based on our cDNA clones we developed the additional system to explore gene function. We developed cDNA microarray system to print all of these cDNA clones, protein-protein interaction screening system, protein-DNA interaction screening system and so on. The integrated database of all the information is very useful not only for analysis of gene transcriptional network and for the connection of gene to phenotype to facilitate positional candidate approach. In this talk, the prospect of the application of these genome resourced should be discussed. More information is available at the web page: http://genome.gsc.riken.go.jp/.

  17. Mouse Models of Aneuploidy

    PubMed Central

    Sheppard, Olivia; Wiseman, Frances K.; Ruparelia, Aarti; Tybulewicz, Victor L. J.; Fisher, Elizabeth M. C.

    2012-01-01

    Abnormalities of chromosome copy number are called aneuploidies and make up a large health load on the human population. Many aneuploidies are lethal because the resulting abnormal gene dosage is highly deleterious. Nevertheless, some whole chromosome aneuploidies can lead to live births. Alterations in the copy number of sections of chromosomes, which are also known as segmental aneuploidies, are also associated with deleterious effects. Here we examine how aneuploidy of whole chromosomes and segmental aneuploidy of chromosomal regions are modeled in the mouse. These models provide a whole animal system in which we aim to investigate the complex phenotype-genotype interactions that arise from alteration in the copy number of genes. Although our understanding of this subject is still in its infancy, already research in mouse models is highlighting possible therapies that might help alleviate the cognitive effects associated with changes in gene number. Thus, creating and studying mouse models of aneuploidy and copy number variation is important for understanding what it is to be human, in both the normal and genomically altered states. PMID:22262951

  18. Results of a 13 week safety assurance study with rats fed grain from glyphosate tolerant corn.

    PubMed

    Hammond, B; Dudek, R; Lemen, J; Nemeth, M

    2004-06-01

    The current study presents the results of a 13 week feeding study in rats with grain from Roundup Ready corn which is tolerant to the herbicide glyphosate. Herbicide tolerance was accomplished through the introduction of cp4 epsps coding sequences into the corn genome for in planta production of CP4 EPSPS enzymes. Unlike related corn EPSPS enzymes, CP4 EPSPS enzymes are not inhibited by the herbicide glyphosate. Purina TestDiets formulated Roundup Ready corn grain into rodent diets at levels of 11 and 33% (w/w). The responses of rats fed diets containing Roundup Ready corn grain were compared to that of rats fed diets containing non-transgenic grain (controls). All diets were nutritionally balanced and conformed to Purina Mills, Inc. specifications for Certified LabDiet 5002. There were 400 rats in the study divided into 10 groups of 20 rats/sex/group. Overall health, body weight, food consumption, clinical pathology parameters (hematology, blood chemistry, urinalysis), organ weights, gross and microscopic appearance of tissues were comparable between groups fed diets containing Roundup Ready and control corn grain. This study complements extensive agronomic, compositional and farm animal feeding studies with Roundup Ready corn grain, confirming it is as safe and nutritious as existing commercial corn hybrids.

  19. Switching off HER-2/neu in a tetracycline-controlled mouse tumor model leads to apoptosis and tumor-size-dependent remission.

    PubMed

    Schiffer, Ilka B; Gebhard, Susanne; Heimerdinger, Carolin K; Heling, Annette; Hast, Jochem; Wollscheid, Ursula; Seliger, Barbara; Tanner, Berno; Gilbert, Sandra; Beckers, Thomas; Baasner, Silke; Brenner, Walburgis; Spangenberg, Christian; Prawitt, Dirk; Trost, Tatjana; Schreiber, Wolfgang G; Zabel, Bernhard; Thelen, Manfred; Lehr, Hans-Anton; Oesch, Franz; Hengstler, Jan G

    2003-11-01

    Overexpression of the receptor tyrosine kinase HER-2/neu is associated with poor prognosis in patients with breast and ovarian cancer. Recent excitement has surrounded the therapeutic effects of HER-2-blocking therapy strategies and has rekindled interest on the molecular mechanisms of HER-2/neu in tumor biology. To study the role of HER-2/neu overexpression in vivo, we used a murine fibroblast cell line (NIH3T3-her2) conditionally expressing human HER-2/neu under control of a tetracycline-responsive promoter. Expression of HER-2 could be down-regulated below detection limit (>625-fold dilution) by exposure of NIH3T3-her2 cells to anhydrotetracycline (ATc). Subcutaneous injection of NIH3T3-her2 cells into nude mice resulted in rapid tumor growth. Mice with mean tumor volumes of 0.2, 0.8, 1.9, and 14.9 cm(3) were treated daily with 10 mg/kg ATc to switch off HER-2/neu expression, producing reductions in tumor size of 100, 98.1, 81.4, and 74.2%, respectively, by 7 days after onset of ATc administration (P = 0.005, Kruskal-Wallis test). Different long-term effects of HER-2 down-regulation were observed when mice with small (0.2 cm(3); n = 7), intermediate (0.8-1.2 cm(3); n = 10) and large (> or =1.9 cm(3); n = 11) tumors received ATc for up to 40 days. Complete remission was observed for 100, 40, and 18% of the small-, intermediate-, and large-sized tumors, respectively (P = 0.003). However, after 20-45 days of ATc administration, recurrent tumor growth was observed for all mice, even in those with previous complete remissions. The time periods for which mean tumor volume could be suppressed to volumes <0.1 cm(3) under ATc administration were 34, 22, 8, and 0 days for tumors with initial volumes of 0.2, 0.8, 1.9 and 14.9 cm(3), respectively (P = 0.005, Kruskal-Wallis test). Interestingly, HER-2 remained below the detection limit in recurrent tumor tissue, suggesting that initially HER-2-dependent tumors switched to HER-2 independence. The "second hits" leading to HER

  20. Effects of verbenalin on prostatitis mouse model

    PubMed Central

    Miao, Mingsan; Guo, Lin; Yan, Xiaoli; Wang, Tan; Li, Zuming

    2015-01-01

    The aim of this study was to observe the treatment characteristics of verbenalin on a prostatitis mouse model. Give Xiaozhiling injection in the prostate locally to make a prostatitis mouse model. High, medium and low doses of verbenalin were each given to different mouse groups. The amount of water was determined in 14th, 28th. The number of white cells and lecithin corpuscle density in prostatic fluid were determined. Morphological changes in the prostate, testis, epididymis and kidney were detected. Compared with the model control group, the mice treated with high, medium and low doses of verbenalin had significantly increased amounts of water, and prostate white blood cell count and prostate volume density (Vv) were decreased significantly, the density of lecithin corpuscle score increased, and pathologic prostatitis changes were significantly reduced. Pathological change in the testis was significantly reduced and the change in the epididymis was obviously reduced. The thymic cortex thickness and the number of lymphocytes increased significantly and could reduce the renal pathological changes in potential. Verbenalin has a good therapeutic effect on the prostatitis mouse model. PMID:26858560

  1. Searching the Mouse Genome Informatics (MGI) Resources for Information on Mouse Biology from Genotype to Phenotype.

    PubMed

    Shaw, David R

    2016-12-08

    The Mouse Genome Informatics (MGI) resource provides the research community with access to information on the genetics, genomics, and biology of the laboratory mouse. Core data in MGI include gene characterization and function, phenotype and disease model descriptions, DNA and protein sequence data, gene expression data, vertebrate homologies, SNPs, mapping data, and links to other bioinformatics databases. Semantic integration is supported through the use of standardized nomenclature, and through the use of controlled vocabularies such as the mouse Anatomical Dictionary, the Mammalian Phenotype Ontology, and the Gene Ontologies. MGI extracts and organizes data from primary literature. MGI data are shared with and widely displayed from other bioinformatics resources. The database is updated weekly with curated annotations, and regularly adds new datasets and features. This unit provides a guide to using the MGI bioinformatics resource. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  2. Manipulation of Mouse Embryonic Stem Cells for Knockout Mouse Production

    PubMed Central

    Limaye, Advait; Hall, Bradford; Kulkarni, Ashok B

    2009-01-01

    The establishment of mouse embryonic stem (ES) cell liness has allowed for the generation of the knockout mouse. ES cells that are genetically altered in culture can then be manipulated to derive a whole mouse containing the desired mutation. To successfully generate a knockout mouse, however, the ES cells must be carefully cultivated in a pluripotent state throughout the gene targeting experiment. This unit describes detailed step-by-step protocols, reagents, equipment, and strategies needed for the successful generation of gene knockout embryonic stem cells using homologous recombination technologies. PMID:19731225

  3. 26 CFR 1.411(a)(13)-1 - Statutory hybrid plans.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Statutory hybrid plans. 1.411(a)(13)-1 Section 1...)(13)-1 Statutory hybrid plans. (a) In general. This section sets forth certain rules that apply to statutory hybrid plans under section 411(a)(13). Paragraph (b) of this section describes special rules...

  4. 26 CFR 1.411(a)(13)-1 - Statutory hybrid plans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Statutory hybrid plans. 1.411(a)(13)-1 Section 1...)(13)-1 Statutory hybrid plans. (a) In general. This section sets forth certain rules that apply to statutory hybrid plans under section 411(a)(13). Paragraph (b) of this section describes special rules...

  5. 26 CFR 1.411(a)(13)-1 - Statutory hybrid plans.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Statutory hybrid plans. 1.411(a)(13)-1 Section 1...)(13)-1 Statutory hybrid plans. (a) In general. This section sets forth certain rules that apply to statutory hybrid plans under section 411(a)(13). Paragraph (b) of this section describes special rules...

  6. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Itemized Deductions for Individuals and Corporations (continued)...

  7. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations...

  8. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations...

  9. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations...

  10. 26 CFR 1.170A-13 - Recordkeeping and return requirements for deductions for charitable contributions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Recordkeeping and return requirements for deductions for charitable contributions. 1.170A-13 Section 1.170A-13 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations...

  11. 7 CFR 15a.13 - Military and merchant marine educational institution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Military and merchant marine educational institution. 15a.13 Section 15a.13 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR... marine educational institution. This part does not apply to an educational institution whose...

  12. 7 CFR 15a.13 - Military and merchant marine educational institution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Military and merchant marine educational institution. 15a.13 Section 15a.13 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR... marine educational institution. This part does not apply to an educational institution whose...

  13. Mouse genetics: catalogue and scissors.

    PubMed

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin Soo; Lee, Han-Woong

    2012-12-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics.

  14. A new mouse model for infantile neuroaxonal dystrophy, inad mouse, maps to mouse chromosome 1.

    PubMed

    Matsushima, Yoshibumi; Kikuchi, Tateki; Kikuchi, Hisae; Ichihara, Nobutsune; Ishikawa, Akira; Ishijima, Yasushi; Tachibana, Masayoshi

    2005-02-01

    Infantile neuroaxonal dystrophy (INAD) is a rare autosomal recessive hereditary neurodegenerative disease of humans. So far, no responsible gene has been cloned or mapped to any chromosome. For chromosome mapping and positional cloning of the responsible gene, establishment of an animal model would be useful. Here we describe a new mouse model for INAD, named inad mouse. In this mouse, the phenotype is inherited in an autosomal recessive manner, symptoms occur in the infantile period, and the mouse dies before sexual maturity. Axonal dystrophic change appearing as spheroid bodies in central and peripheral nervous system was observed. These features more closely resembled human INAD than did those of the gad mouse, the traditional mouse model for INAD. Linkage analysis linked the inad gene to mouse Chromosome 1, with the highest LOD score (=128.6) at the D1Mit45 marker, and haplotype study localized the inad gene to a 7.5-Mb region between D1Mit84 and D1Mit25. In this linkage area some 60 genes exist: Mutation of one of these 60 genes is likely responsible for the inad mouse phenotype. Our preliminary mutation analysis in 15 genes examining the nucleotide sequence of exons of these genes did not find any sequence difference between inad mouse and C57BL/6 mouse.

  15. Neuro-hormonal control of bone metabolism: vasoactive intestinal peptide stimulates alkaline phosphatase activity and mRNA expression in mouse calvarial osteoblasts as well as calcium accumulation mineralized bone nodules.

    PubMed

    Lundberg, P; Boström, I; Mukohyama, H; Bjurholm, A; Smans, K; Lerner, U H

    1999-11-30

    Based upon the immunohistochemical demonstration of neuropeptides in the skeleton, including vasoactive intestinal peptide (VIP), we have addressed the question of whether neuropeptides may exert regulatory roles on bone tissue metabolism or not. In the present communication, we have investigated if VIP can affect anabolic processes in osteoblasts. Osteoblasts were isolated from neonatal mouse calvariae by time sequential enzyme-digestion and subsequently cultured for 2-28 days in the presence of VIP and other modulators of cyclic AMP formation. VIP (10(-6) M) stimulated ALP activity and calcium content. The cyclic AMP phosphodiesterase inhibitors ZK 62 711 (10(-4) M) and isobutyl-methylxanthine (10(-4) M) stimulated ALP activity and synergistically potentiated the effect of VIP. Neither VIP, nor isobutyl-methylxanthine or ZK 62 711, in the absence or presence of VIP, affected cell number. The stimulatory effect of VIP on ALP activity, in the presence of ZK 62 711, was dependent on time and concentration of VIP. The stimulatory effects of VIP and ZK 62 711 on ALP activity was seen also in cells stained for ALP. VIP (10(-6) M), in the presence of ZK 62 711 (10(-6) M), significantly enhanced mRNA for tissue non-specific ALP. VIP (10(-6) M), in the presence of ZK 62 711, stimulated cyclic AMP production. Forskolin and choleratoxin stimulated ALP activity and cyclic AMP formation in a concentration-dependent manner, without affecting cell number. VIP (10(-6) M) and ZK 62 711 (10(-5) M) stimulated, and their combination synergistically enhanced, calcium content in bone noduli. These data show that VIP, without affecting cell proliferation, can stimulate osteoblastic ALP biosynthesis and bone noduli formation by a mechanism mediated by cyclic AMP. Our observations suggest a possibility that anabolic processes in bone are under neurohormonal control.

  16. Bioenergetic characterization of mouse podocytes

    PubMed Central

    Abe, Yoshifusa; Sakairi, Toru; Kajiyama, Hiroshi; Shrivastav, Shashi; Beeson, Craig

    2010-01-01

    Mitochondrial dysfunction contributes to podocyte injury, but normal podocyte bioenergetics have not been characterized. We measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR), using a transformed mouse podocyte cell line and the Seahorse Bioscience XF24 Extracellular Flux Analyzer. Basal OCR and ECAR were 55.2 ± 9.9 pmol/min and 3.1 ± 1.9 milli-pH units/min, respectively. The complex V inhibitor oligomycin reduced OCR to ∼45% of baseline rates, indicating that ∼55% of cellular oxygen consumption was coupled to ATP synthesis. Rotenone, a complex I inhibitor, reduced OCR to ∼25% of the baseline rates, suggesting that mitochondrial respiration accounted for ∼75% of the total cellular respiration. Thus ∼75% of mitochondrial respiration was coupled to ATP synthesis and ∼25% was accounted for by proton leak. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), which uncouples electron transport from ATP generation, increased OCR and ECAR to ∼360% and 840% of control levels. FCCP plus rotenone reduced ATP content by 60%, the glycolysis inhibitor 2-deoxyglucose reduced ATP by 35%, and 2-deoxyglucose in combination with FCCP or rotenone reduced ATP by >85%. The lactate dehydrogenase inhibitor oxamate and 2-deoxyglucose did not reduce ECAR, and 2-deoxyglucose had no effect on OCR, although 2-deoxyglucose reduced ATP content by 25%. Mitochondrial uncoupling induced by FCCP was associated with increased OCR with certain substrates, including lactate, glucose, pyruvate, and palmitate. Replication of these experiments in primary mouse podocytes yielded similar data. We conclude that mitochondria play the primary role in maintaining podocyte energy homeostasis, while glycolysis makes a lesser contribution. PMID:20445170

  17. Bioenergetic characterization of mouse podocytes.

    PubMed

    Abe, Yoshifusa; Sakairi, Toru; Kajiyama, Hiroshi; Shrivastav, Shashi; Beeson, Craig; Kopp, Jeffrey B

    2010-08-01

    Mitochondrial dysfunction contributes to podocyte injury, but normal podocyte bioenergetics have not been characterized. We measured oxygen consumption rates (OCR) and extracellular acidification rates (ECAR), using a transformed mouse podocyte cell line and the Seahorse Bioscience XF24 Extracellular Flux Analyzer. Basal OCR and ECAR were 55.2 +/- 9.9 pmol/min and 3.1 +/- 1.9 milli-pH units/min, respectively. The complex V inhibitor oligomycin reduced OCR to approximately 45% of baseline rates, indicating that approximately 55% of cellular oxygen consumption was coupled to ATP synthesis. Rotenone, a complex I inhibitor, reduced OCR to approximately 25% of the baseline rates, suggesting that mitochondrial respiration accounted for approximately 75% of the total cellular respiration. Thus approximately 75% of mitochondrial respiration was coupled to ATP synthesis and approximately 25% was accounted for by proton leak. Carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP), which uncouples electron transport from ATP generation, increased OCR and ECAR to approximately 360% and 840% of control levels. FCCP plus rotenone reduced ATP content by 60%, the glycolysis inhibitor 2-deoxyglucose reduced ATP by 35%, and 2-deoxyglucose in combination with FCCP or rotenone reduced ATP by >85%. The lactate dehydrogenase inhibitor oxamate and 2-deoxyglucose did not reduce ECAR, and 2-deoxyglucose had no effect on OCR, although 2-deoxyglucose reduced ATP content by 25%. Mitochondrial uncoupling induced by FCCP was associated with increased OCR with certain substrates, including lactate, glucose, pyruvate, and palmitate. Replication of these experiments in primary mouse podocytes yielded similar data. We conclude that mitochondria play the primary role in maintaining podocyte energy homeostasis, while glycolysis makes a lesser contribution.

  18. Human anti-mouse antibodies.

    PubMed

    Klee, G G

    2000-06-01

    Human anti-mouse antibodies (HAMA) are human immunoglobulins with specificity for mouse immunoglobulins. This topic currently is of interest because of the increased use of monoclonal mouse antibodies as diagnostic reagents both for in vitro laboratory measurements and for in vivo imaging studies. Monoclonal mouse antibodies also are being used therapeutically. This short article reviews the production of HAMA in patients receiving monoclonal antibodies and illustrates the potential ways that HAMA can interfere with immunoassay measurements. Methods for measuring and neutralizing HAMA also are discussed.

  19. Testing of gastric contents for peanut proteins in a 13-year old anaphylaxis victim.

    PubMed

    Beavers, Charles; Stauble, M Elaine; Jortani, Saeed A

    2014-02-15

    We report the case of a 13-y female who went into anaphylactic shock following the ingestion of a meal suspected to be contaminated by peanuts. The teenager had a known sensitivity to peanuts, however, the restaurant claimed that no peanut products were used in the preparation of her meal. The gastric contents of the decedent were retained and tested for peanut proteins due to the possible legal liability of the proprietor. Using antibodies against peanut proteins (roasted and unroasted), we optimized a method to detect total soluble peanut proteins by Western-blot analysis in gastric contents. In addition, we validated two commercially available tests which were originally intended for detection of peanut proteins in food matrices to examine the same gastric sample. One was an enzyme-linked immunosorbent assay (ELISA) that utilized polyclonal antibodies against Ara h 1 (Tepnel Life Sciences). The other was a laminar-flow assay directed against Ara h 1, Ara h 2 and Ara h 3 (R-Biopharm). A positive food-based control was created by reducing bread and peanuts (1:1, w/w) with water (1:1, w/v) using a mortar and pestle. A food-based negative food control was created similar to the positive control, except the peanuts were omitted and the amount of bread was doubled. The Western-blot assay was sensitive down to 2.5ng/ml of total peanut protein. The laminar flow was the most rapid and least complex. The ELISA was the most analytically sensitive with a cut-off of 1ng/ml of Ara h 1 protein compared to the laminar flow which had a cut-off of 4ng/ml Ara h 1 equivalent. Both ELISA and laminar flow assays were able to detect peanut proteins in the food matrices and positive controls, and not in negative controls. No peanut related proteins were detected in the decedent's gastric sample. The gastric sample spiked with peanuts was reliably detectable. The anaphylaxis patient had no peanut allergens detected in her gastric contents by any of the three methods employed. Both

  20. [A 13-week toxicity study of simultaneous administration of cochineal and aluminum potassium sulfate in rats].

    PubMed

    Kawasaki, Y; Umemura, T; Sai, K; Hasegawa, R; Momma, J; Saitoh, M; Matsushima, Y; Nakaji, Y; Tsuda, M; Kurokawa, Y

    1994-01-01

    Cochineal (C), a scarlet material extracted from the powdered pregnant insect, Dactylopius Coceus Costa, is used as a color food additive in the form of aluminum lakes. A 13 week subchronic toxicity study was conducted to investigate the effects of simultaneous administration of C and aluminum potassium sulfate (A). Male and female Wistar rats (5-weeks-old, 15 rats/group) were given diets containing 0.75%A and 0.75%C (1.5%AC), 1.5%A and 1.5%C (3%AC), 3%C alone or 3%A alone. The following results were obtained. 1) No toxic symptoms or death occurred in any treated group. Body weight gain in male rats of the 3%A group decreased significantly. 2) Serum levels of phospholipids, triglycerides (TG) and total cholesterol in male rats and TG in female rats fed 3%C, 3%A or 3%AC were significantly decreased at the 13th week. The serum level of glutamate dehydrogenase (GIDH) in male rats treated with 1.5% or 3%AC was increased at the 4th week but no difference from control was observed at the 13th week. 3) No histopathological changes attributable to A and/or C administration were observed. In this 13-week oral toxicity study, no dose-dependent synergistic effects of simultaneous administration of C and A were found except for an increase in serum GIDH.

  1. Case report of an epidural cervical Onchocerca lupi infection in a 13-year-old boy.

    PubMed

    Chen, Tsinsue; Moon, Karam; deMello, Daphne E; Feiz-Erfan, Iman; Theodore, Nicholas; Bhardwaj, Ratan D

    2015-08-01

    A 13-year-old boy presented with fever and neck pain and stiffness, which was initially misdiagnosed as culture-negative meningitis. Magnetic resonance images of the brain and cervical spine demonstrated what appeared to be an intradural extramedullary mass at the C1-3 level, resulting in moderate cord compression, and a Chiari Type I malformation. The patient underwent a suboccipital craniectomy and a C1-3 laminectomy with intradural exploration for excisional biopsy and resection. The lesion containing the parasite was extradural, extending laterally through the C2-3 foramina. Inflammatory tissue secondary to Onchocerca lupi infection was identified, and treatment with steroids and doxycycline was initiated. At the 6-month follow-up, the patient remained asymptomatic, with MR images demonstrating a significant reduction in lesional size. However, 10 weeks postoperatively, the infection recurred, necessitating a second operation. The patient was treated with an additional course of doxycycline and is currently maintained on ivermectin therapy. This is the second reported case of cervical O. lupi infection in a human. In the authors' experience, oral doxycycline alone was insufficient in controlling the disease, and the addition of ivermectin therapy was necessary.

  2. MouseBook: an integrated portal of mouse resources.

    PubMed

    Blake, Andrew; Pickford, Karen; Greenaway, Simon; Thomas, Steve; Pickard, Amanda; Williamson, Christine M; Adams, Niels C; Walling, Alison; Beck, Tim; Fray, Martin; Peters, Jo; Weaver, Tom; Brown, Steve D M; Hancock, John M; Mallon, Ann-Marie

    2010-01-01

    The MouseBook (http://www.mousebook.org) databases and web portal provide access to information about mutant mouse lines held as live or cryopreserved stocks at MRC Harwell. The MouseBook portal integrates curated information from the MRC Harwell stock resource, and other Harwell databases, with information from external data resources to provide value-added information above and beyond what is available through other routes such as International Mouse Stain Resource (IMSR). MouseBook can be searched either using an intuitive Google style free text search or using the Mammalian Phenotype (MP) ontology tree structure. Text searches can be on gene, allele, strain identifier (e.g. MGI ID) or phenotype term and are assisted by automatic recognition of term types and autocompletion of gene and allele names covered by the database. Results are returned in a tabbed format providing categorized results identified from each of the catalogs in MouseBook. Individual result lines from each catalog include information on gene, allele, chromosomal location and phenotype, and provide a simple click-through link to further information as well as ordering the strain. The infrastructure underlying MouseBook has been designed to be extensible, allowing additional data sources to be added and enabling other sites to make their data directly available through MouseBook.

  3. Metabolic activation of the tobacco carcinogen 4-(methylnitrosamino)-(3-pyridyl)-1-butanone by cytochrome P450 2A13 in human fetal nasal microsomes.

    PubMed

    Wong, Hansen L; Zhang, Xiuling; Zhang, Qing-Yu; Gu, Jun; Ding, Xinxin; Hecht, Stephen S; Murphy, Sharon E

    2005-06-01

    Among human P450s studied to date, P450 2A13 is the most efficient catalyst of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) alpha-hydroxylation. This reaction is a key bioactivation pathway in NNK-induced carcinogenesis. P450 2A13 mRNA has been detected in human tissues, but it is unknown whether the enzyme is functional in vivo. Therefore, we studied NNK alpha-hydroxylation in human fetal nasal mucosal microsomes, which have been shown to contain high levels of P450 2A protein, presumed to be a mixture of P450 2A6 and 2A13. The microsomes efficiently catalyzed NNK alpha-hydroxylation at the methylene and methyl carbons, as well as carbonyl reduction. Antibodies against mouse P450 2A5 inhibited alpha-hydroxylation by these microsomes greater than 90%. K(m) and V(max) values for alpha-methylene hydroxylation were 6.5 +/- 1.1 muM and 3.0 +/- 0.1 pmol/min/mg; for alpha-methyl hydroxylation, they were 6.7 +/- 0.8 microM and 0.85 +/- 0.03 pmol/min/mg. The K(m) values agree closely with those for NNK metabolism by P450 2A13. Using a new technique, we separated P450 2A13 from P450 2A6 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Quantitative immunoblot analysis indicated that the level of P450 2A13 in the pooled fetal nasal microsome sample used for kinetic analysis was approximately 1.6 pmol/mg protein. In the same sample, P450 2A6 was not detected (detection limit, 67 fmol/mg protein). These kinetic, immunoinhibition, and immunoblot data confirm that P450 2A13 is a functional enzyme and the catalyst of NNK alpha-hydroxylation in human fetal nasal mucosa. The results are also the first to demonstrate high efficiency NNK alpha-hydroxylation in a human tissue.

  4. Growth of Lactobacillus paracasei A13 in Argentinian probiotic cheese and its impact on the characteristics of the product.

    PubMed

    Vinderola, G; Prosello, W; Molinari, F; Ghiberto, D; Reinheimer, J

    2009-10-31

    The growth capacity of probiotic Lactobacillus paracasei A13, Bifidobacterium bifidum A1 and L. acidophilus A3 in a probiotic fresh cheese commercialized in Argentina since 1999 was studied during its manufacture and refrigerated storage at 5 degrees C and 12 degrees C for 60 days. Additionally, viable cell counts for probiotic bacteria in the commercial product are reported for batch productions over the last 9 years. L. paracasei A13 grew a half log order at 43 degrees C during the manufacturing process of probiotic cheese and another half log order during the first 15 days of storage at 5 degrees C, without negative effects on sensorial properties of the product. However, a negative impact on sensorial characteristics was observed when cheeses were stored at 12 degrees C for 60 days. Colony counts in the commercial product showed variations from batch to batch over the last 9 years. However, colony counts for each probiotic bacterium were always above the minimum suggested. Growth capacity of L. paracasei A13 in cheese during manufacturing and storage, mainly at temperatures commonly found in retail display cabinets in supermarkets (12 degrees C or more), would make it necessary to re-evaluate its role as possible probiotic starter and the consequences on food sensorial characteristics if storage temperature during commercial shelf life is not tightly controlled.

  5. Non-Hodgkin's lymphoma “masquerading” as Pott's disease in a 13-year old boy

    PubMed Central

    Adegboye, Olasunkanmi Abdulrasheed

    2011-01-01

    Lymphomas are malignant neoplasms of the lymphoid lineage. They are broadly classified as either Hodgkin disease or as non-Hodgkin lymphoma (NHL). Burkitt's lymphoma, a variety of NHL, is significantly most common in sub-Saharan Africa, where it accounts for approximately one half of childhood cancers. Lymphoblastic lymphoma is less common. A case of paravertebral high grade non-Hodgkin's lymphoma (lymphoblastic lymphoma) “masquerading” as Pott's disease in a 13-year-old child is reported. The present report was informed by the unusual presentation of this case and the intent of increasing the index of diagnostic suspicion. A brief appraisal is provided of the clinical parameters, management strategies and challenges. AT was a 13-year boy that presented on account of a slowly evolving and progressively increasing hunch on the back and inability to walk over 4 and 8 months duration, respectively. There was subsequent inability to control defecation and urination. There was no history of cough. He and his twin brother lived with their paternal grandfather who had chronic cough with associated weight loss. The grandfather died shortly before the child's admission. The child had no BCG immunization. The essential findings on examination were in keeping with lower motor neurons (LMN) paralysis of the lower limbs. The upper limbs appeared normal. There was loss of cutaneous sensation from the umbilicus (T10) downward. There was a firm, (rather tense), non-tender non-pulsatile, smooth swelling over the mid-third of the back (T6-L1) the mass had no differential warmth. It measures about 20×12 cm. Chest radiograph showed no active focal lung lesion, but the thoraco-lumbar spine showed a vertebral planner at L1 and a wedged collapse of T11-T12 vertebrae. There was sclerosis of the end plates of all the vertebral bodies with associated reduction in the bone density. He had an excision biopsy on the 90th day on admission, following which his clinical state rapidly

  6. Chandra Catches the `Mouse'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.

  7. A 13-week dermal repeat-dose neurotoxicity study of hydrodesulfurized kerosene in rats.

    PubMed

    Breglia, Rudolph; Bui, Quang; Burnett, Donald; Koschier, Francis; Lapadula, Elizabeth; Podhasky, Paula; Schreiner, Ceinwen; White, Russell

    2014-01-01

    A 13-week dermal repeat-dose toxicity study was conducted with hydrodesulfurized (HDS) kerosene, a test material that also met the commercial specifications for aviation turbine fuel (jet A). The objectives were to assess the potential for target organ toxicity and neurotoxicity. The HDS kerosene was applied to the shaved backs of Sprague-Dawley CD rats, 12/sex/group, 6 h/d, 5 d/wk in doses of 0 (vehicle control), 165 mg/kg (20% HDS kerosene), 330 mg/kg (40% HDS kerosene), or 495 mg/kg (60% HDS kerosene). Additional rats (12/sex) from the control and the high-dose groups were held without treatment for 4 weeks to assess recovery. Standard parameters of toxicity were investigated during the in-life phase. At necropsy, organs were weighed and selected tissues were processed for microscopic evaluation. Neurobehavioral evaluations included tests of motor activity and functional observations that were conducted pretest, at intervals during the exposure period and after recovery. No test substance-related effects on mortality, clinical observations (except dermal irritation), body weight, or clinical chemistry values were observed. A dose-related increase in skin irritation, confirmed histologically as minimal, was evident at the dosing site. The only statistically significant change considered potentially treatment related was an increase in the neutrophil count in females at 13 weeks. No test article-related effects were observed in the neurobehavioral assessments or gross or microscopic findings in the peripheral or central nervous system tissues in any of the dose groups. Excluding skin irritation, the no observed adverse effect level value for all effects was considered 495 mg/kg/d.

  8. Association between tooth loss and cognitive decline: A 13-year longitudinal study of Chinese older adults

    PubMed Central

    Li, Juan; Xu, Hanzhang; Pan, Wei; Wu, Bei

    2017-01-01

    Objectives To examine the association between the number of teeth remaining and cognitive decline among Chinese older adults over a 13-year period. Design A large national longitudinal survey of Chinese older adults Setting The Chinese Longitudinal Healthy Longevity Survey (CLHLS) (1998–2011). Participants A total of 8,153 eligible participants aged 60+ interviewed in up to six waves. Measurements Cognitive function and teeth number were measured at each interview. Cognitive function was measured by the Mini-Mental Status Examination (MMSE). Number of natural teeth was self-reported. Individuals with severe cognitive impairment were excluded. Covariates included demographic characteristics, adult socioeconomic status characteristics, childhood socioeconomic status, health conditions, and health behaviors. Linear mixed models were applied in the analysis. Results The mean teeth number at baseline was 17.5(SD = 0.1), and the mean of baseline cognitive function was 27.3(SD = 0.0). Cognitive function declined over time (β = -0.19, P < .001) after controlling covariates. But, regardless of time, more teeth were associated with better cognitive function (β = 0.01, P < .001). The interaction of teeth number and time was significant (β = 0.01, P < .001), suggesting that the participants who had more teeth showed a slower pace of cognitive decline over time than those with fewer teeth after controlling for other covariates. Conclusion This study showed that tooth loss was associated with cognitive decline among Chinese older adults. Further studies are needed to examine the linkages between cognitive decline and oral health status using clinical examination data. PMID:28158261

  9. Oral recombinant human or mouse lactoferrin reduces Mycobacterium tuberculosis TDM induced granulomatous lung pathology.

    PubMed

    Hwang, Shen-An; Kruzel, Marian L; Actor, Jeffrey K

    2017-02-01

    Trehalose 6'6-dimycolate (TDM) is the most abundant glycolipid on the cell wall of Mycobacterium tuberculosis (MTB). TDM is capable of inducing granulomatous pathology in mouse models that resembles those induced by MTB infection. Using the acute TDM model, this work investigates the effect of recombinant human and mouse lactoferrin to reduce granulomatous pathology. C57BL/6 mice were injected intravenously with TDM at a dose of 25 μg·mouse(-1). At day 4 and 6, recombinant human or mouse lactoferrin (1 mg·(100 μL)(-1)·mouse(-1)) were delivered by gavage. At day 7 after TDM injection, mice were evaluated for lung pathology, cytokine production, and leukocyte populations. Mice given human or mouse lactoferrin had reduced production of IL-12p40 in their lungs. Mouse lactoferrin increased IL-6 and KC (CXCL1) in lung tissue. Increased numbers of macrophages were observed in TDM-injected mice given human or mouse lactoferrin. Granulomatous pathology, composed of mainly migrated leukocytes, was visually reduced in mice that received human or mouse lactoferrin. Quantitation of granulomatous pathology demonstrated a significant decrease in mice given human or mouse lactoferrin compared with TDM control mice. This report is the first to directly compare the immune modulatory effects of both heterologous recombinant human and homologous mouse lactoferrin on the development of TDM-induced granulomas.

  10. Identification of transcriptional regulators in the mouse immune system

    PubMed Central

    Jojic, Vladimir; Shay, Tal; Sylvia, Katelyn; Zuk, Or; Sun, Xin; Kang, Joonsoo; Regev, Aviv; Koller, Daphne

    2013-01-01

    The differentiation of hematopoietic stem cells into immune cells has been extensively studied in mammals, but the transcriptional circuitry controlling it is still only partially understood. Here, the Immunological Genome Project gene expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. Using a computational algorithm called Ontogenet, we uncovered differentiation-stage specific regulators of mouse hematopoiesis, identifying many known hematopoietic regulators, and 175 new candidate regulators, their target genes, and the cell types in which they act. Among the novel regulators, we highlight the role of ETV5 in γδT cells differntiation. Since the transcriptional program of human and mouse cells is highly conserved1, it is likely that many lessons learned from the mouse model apply to humans. PMID:23624555

  11. Identification of transcriptional regulators in the mouse immune system.

    PubMed

    Jojic, Vladimir; Shay, Tal; Sylvia, Katelyn; Zuk, Or; Sun, Xin; Kang, Joonsoo; Regev, Aviv; Koller, Daphne; Best, Adam J; Knell, Jamie; Goldrath, Ananda; Joic, Vladimir; Koller, Daphne; Shay, Tal; Regev, Aviv; Cohen, Nadia; Brennan, Patrick; Brenner, Michael; Kim, Francis; Rao, Tata Nageswara; Wagers, Amy; Heng, Tracy; Ericson, Jeffrey; Rothamel, Katherine; Ortiz-Lopez, Adriana; Mathis, Diane; Benoist, Christophe; Bezman, Natalie A; Sun, Joseph C; Min-Oo, Gundula; Kim, Charlie C; Lanier, Lewis L; Miller, Jennifer; Brown, Brian; Merad, Miriam; Gautier, Emmanuel L; Jakubzick, Claudia; Randolph, Gwendalyn J; Monach, Paul; Blair, David A; Dustin, Michael L; Shinton, Susan A; Hardy, Richard R; Laidlaw, David; Collins, Jim; Gazit, Roi; Rossi, Derrick J; Malhotra, Nidhi; Sylvia, Katelyn; Kang, Joonsoo; Kreslavsky, Taras; Fletcher, Anne; Elpek, Kutlu; Bellemarte-Pelletier, Angelique; Malhotra, Deepali; Turley, Shannon

    2013-06-01

    The differentiation of hematopoietic stem cells into cells of the immune system has been studied extensively in mammals, but the transcriptional circuitry that controls it is still only partially understood. Here, the Immunological Genome Project gene-expression profiles across mouse immune lineages allowed us to systematically analyze these circuits. To analyze this data set we developed Ontogenet, an algorithm for reconstructing lineage-specific regulation from gene-expression profiles across lineages. Using Ontogenet, we found differentiation stage-specific regulators of mouse hematopoiesis and identified many known hematopoietic regulators and 175 previously unknown candidate regulators, as well as their target genes and the cell types in which they act. Among the previously unknown regulators, we emphasize the role of ETV5 in the differentiation of γδ T cells. As the transcriptional programs of human and mouse cells are highly conserved, it is likely that many lessons learned from the mouse model apply to humans.

  12. Localization and regulation of mouse pantothenate kinase 2.

    PubMed

    Leonardi, Roberta; Zhang, Yong-Mei; Lykidis, Athanasios; Rock, Charles O; Jackowski, Suzanne

    2007-10-02

    Coenzyme A (CoA) biosynthesis is initiated by pantothenate kinase (PanK) and CoA levels are controlled through differential expression and feedback regulation of PanK isoforms. PanK2 is a mitochondrial protein in humans, but comparative genomics revealed that acquisition of a mitochondrial targeting signal was limited to primates. Human and mouse PanK2 possessed similar biochemical properties, with inhibition by acetyl-CoA and activation by palmitoylcarnitine. Mouse PanK2 localized in the cytosol, and the expression of PanK2 was higher in human brain compared to mouse brain. Differences in expression and subcellular localization should be considered in developing a mouse model for human PanK2 deficiency.

  13. Evaluating eyegaze targeting to improve mouse pointing for radiology tasks.

    PubMed

    Tan, Yan; Tien, Geoffrey; Kirkpatrick, Arthur E; Forster, Bruce B; Atkins, M Stella

    2011-02-01

    In current radiologists' workstations, a scroll mouse is typically used as the primary input device for navigating image slices and conducting operations on an image. Radiological analysis and diagnosis rely on careful observation and annotation of medical images. During analysis of 3D MRI and CT volumes, thousands of mouse clicks are performed everyday, which can cause wrist fatigue. This paper presents a dynamic control-to-display (C-D) gain mouse movement method, controlled by an eyegaze tracker as the target predictor. By adjusting the C-D gain according to the distance to the target, the mouse click targeting time is reduced. Our theoretical and experimental studies show that the mouse movement time to a known target can be reduced by up to 15%. We also present an experiment with 12 participants to evaluate the role of eyegaze targeting in the realistic situation of unknown target positions. These results indicate that using eyegaze to predict the target position, the dynamic C-D gain method can improve pointing performance by 8% and reduce the error rate over traditional mouse movement.

  14. Regulation of mouse satellite DNA replication time.

    PubMed

    Selig, S; Ariel, M; Goitein, R; Marcus, M; Cedar, H

    1988-02-01

    The satellite DNA sequences located near the centromeric regions of mouse chromosomes replicate very late in S in both fibroblast and lymphocyte cells and are heavily methylated at CpG residues. F9 teratocarcinoma cells, on the other hand, contain satellite sequences which are undermethylated and replicate much earlier in S. DNA methylation probably plays some role in the control of satellite replication time since 5-azacytidine treatment of RAG fibroblasts causes a dramatic temporal shift of replication to mid S. In contrast to similar changes accompanying the inactivation of the X-chromosome, early replication of satellite DNA is not associated with an increase in local chromosomal DNase I sensitivity. Fusion of F9 with mouse lymphocytes caused a dramatic early shift in the timing of the normally late replicating lymphocyte satellite heterochromatin, suggesting that trans-activating factors may be responsible for the regulation of replication timing.

  15. Mouse models for neurological disease.

    PubMed

    Hafezparast, Majid; Ahmad-Annuar, Azlina; Wood, Nicholas W; Tabrizi, Sarah J; Fisher, Elizabeth M C

    2002-08-01

    The mouse has many advantages over human beings for the study of genetics, including the unique property that genetic manipulation can be routinely carried out in the mouse genome. Most importantly, mice and human beings share the same mammalian genes, have many similar biochemical pathways, and have the same diseases. In the minority of cases where these features do not apply, we can still often gain new insights into mouse and human biology. In addition to existing mouse models, several major programmes have been set up to generate new mouse models of disease. Alongside these efforts are new initiatives for the clinical, behavioural, and physiological testing of mice. Molecular genetics has had a major influence on our understanding of the causes of neurological disorders in human beings, and much of this has come from work in mice.

  16. Mouse models of gastrointestinal tumors.

    PubMed

    Taketo, Makoto Mark

    2006-05-01

    The laboratory mouse (Mus musculus) has become one of the best model animal species in biomedical research today because of its abundant genetic/genomic information, and easy mutagenesis using transgenic and gene knockout technology. Genetically engineered mice have become essential tools in both mechanistic studies and drug development. In this article I will review recent topics in gastrointestinal cancer model mice, with emphasis on the results obtained in our laboratory. They include: (i) mouse models for familial adenomatous polyposis (Apc mutant mice; modifier genes of Apc intestinal polyposis; stabilizing beta-catenin mutant mice); (ii) mouse models for colon cancer (mouse models for hereditary non-polyposis colon cancer; additional mutations in Apc mutant mice; models with mutations in other genes; models for colon cancer associated with inflammatory bowel diseases); and (iii) mouse models for gastric cancer.

  17. View south; interior structural detail at column A13 south bay ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View south; interior structural detail at column A13 south bay - Naval Base Philadelphia-Philadelphia Naval Shipyard, Foundry-Propeller Shop, North of Porter Avenue, west of Third Street West, Philadelphia, Philadelphia County, PA

  18. MR images of mouse brain using clinical 3T MR scanner and 4CH-Mouse coil

    NASA Astrophysics Data System (ADS)

    Lim, Soo Mee; Park, Eun Mi; Lyoo, In Kyoon; Lee, Junghyun; Han, Bo Mi; Lee, Jeong Kyong; Lee, Su Bin

    2015-07-01

    Objectives: Although small-bore high-field magnets are useful for research in small rodent models,this technology, however, has not been easily accessible to most researchers. This current study, thus,tried to evaluate the usability of 4CH-Mouse coil (Philips Healthcare, Best, the Netherlands) forpreclinical investigations in clinical 3T MR scan environment. We evaluated the effects of ischemicpreconditioning (IP) in the mouse stroke model with clinical 3T MR scanner and 4CH-Mouse coil. Materials and Methods: Experiments were performed on male C57BL/6 mice that either received the IP or sham operation (control). Three different MR sequences including diffusion weighted images (DWI), T2-weighted images (T2WI), and fluid attenuated inversion recovery (FLAIR) were performed on the mouse brains following 24, 72 hours of middle cerebral artery occlusion (MCAO) and analyzed for infarct lesions. Results: The images showed that the IP-treated mouse brains had significantly smaller infarct volumes compared to the control group. Of the MR sequences employed, the T2WI showed the highest level of correlations with postmortem infarct volume measurements. Conclusions: The clinical 3T MR scanner turned out to have a solid potential as a practical tool for imaging small animal brains. MR sequences including DWI, T2WI, FLAIR were obtained with acceptable resolution and in a reasonable time constraint in evaluating a mouse stroke model brain.

  19. CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells.

    PubMed

    Li, Yan; Rivera, Chloe M; Ishii, Haruhiko; Jin, Fulai; Selvaraj, Siddarth; Lee, Ah Young; Dixon, Jesse R; Ren, Bing

    2014-01-01

    The pluripotency of embryonic stem cells (ESCs) is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE) located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs.

  20. CRISPR Reveals a Distal Super-Enhancer Required for Sox2 Expression in Mouse Embryonic Stem Cells

    PubMed Central

    Jin, Fulai; Selvaraj, Siddarth; Lee, Ah Young; Dixon, Jesse R.; Ren, Bing

    2014-01-01

    The pluripotency of embryonic stem cells (ESCs) is maintained by a small group of master transcription factors including Oct4, Sox2 and Nanog. These core factors form a regulatory circuit controlling the transcription of a number of pluripotency factors including themselves. Although previous studies have identified transcriptional regulators of this core network, the cis-regulatory DNA sequences required for the transcription of these key pluripotency factors remain to be defined. We analyzed epigenomic data within the 1.5 Mb gene-desert regions around the Sox2 gene and identified a 13kb-long super-enhancer (SE) located 100kb downstream of Sox2 in mouse ESCs. This SE is occupied by Oct4, Sox2, Nanog, and the mediator complex, and physically interacts with the Sox2 locus via DNA looping. Using a simple and highly efficient double-CRISPR genome editing strategy we deleted the entire 13-kb SE and characterized transcriptional defects in the resulting monoallelic and biallelic deletion clones with RNA-seq. We showed that the SE is responsible for over 90% of Sox2 expression, and Sox2 is the only target gene along the chromosome. Our results support the functional significance of a SE in maintaining the pluripotency transcription program in mouse ESCs. PMID:25486255

  1. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 3 2013-04-01 2013-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general... section 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each separate...

  2. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 3 2011-04-01 2011-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general... section 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each separate...

  3. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 3 2012-04-01 2012-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general... section 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each...

  4. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 3 2014-04-01 2014-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES (CONTINUED) Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general... section 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each...

  5. 26 CFR 1.263A-13 - Oil and gas activities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 3 2010-04-01 2010-04-01 false Oil and gas activities. 1.263A-13 Section 1.263A... (CONTINUED) INCOME TAXES Items Not Deductible § 1.263A-13 Oil and gas activities. (a) In general. This... 263A(g)) of oil or gas property. For this purpose, oil or gas property consists of each...

  6. Control of Collagen Production in Mouse Chondrocytes by Using a Combination of Bone Morphogenetic Protein-2 and Small Interfering RNA Targeting Col1a1 for Hydrogel-Based Tissue-Engineered Cartilage

    PubMed Central

    Perrier-Groult, Emeline; Pasdeloup, Marielle; Malbouyres, Marilyne; Galéra, Philippe

    2013-01-01

    Because articular cartilage does not self-repair, tissue-engineering strategies should be considered to regenerate this tissue. Autologous chondrocyte implantation is already used for treatment of focal damage of articular cartilage. Unfortunately, this technique includes a step of cell amplification, which results in dedifferentiation of chondrocytes, with expression of type I collagen, a protein characteristic of fibrotic tissues. Therefore, the risk of producing a fibrocartilage exists. The aim of this study was to propose a new strategy for authorizing the recovery of the differentiated status of the chondrocytes after their amplification on plastic. Because the bone morphogenetic protein (BMP)-2 and the transforming growth factor (TGF)-β1 are cytokines both proposed as stimulants for cartilage repair, we undertook a detailed comparative analysis of their biological effects on chondrocytes. As a cellular model, we used mouse chondrocytes after their expansion on plastic and we tested the capability of BMP-2 or TGF-β1 to drive their redifferentiation, with special attention given to the nature of the proteins synthesized by the cells. To prevent any fibrotic character of the newly synthesized extracellular matrix, we silenced type I collagen by transfecting small interfering RNA (siRNA) into the chondrocytes, before their exposure to BMP-2 or TGF-β1. Our results showed that addition of siRNA targeting the mRNA encoded by the Col1a1 gene (Col1a1 siRNA) and BMP-2 represents the most efficient combination to control the production of cartilage-characteristic collagen proteins. To go one step further toward scaffold-based cartilage engineering, Col1a1 siRNA-transfected chondrocytes were encapsulated in agarose hydrogel and cultured in vitro for 1 week. The analysis of the chondrocyte–agarose constructs by using real-time polymerase chain reaction, Western-blotting, immunohistochemistry, and electron microscopy techniques demonstrated that the BMP-2/Col1a1 si

  7. Mouse anesthesia and analgesia.

    PubMed

    Adams, Sean; Pacharinsak, Cholawat

    2015-03-02

    Providing anesthesia and analgesia for mouse subjects is a common and critical practice in the laboratory setting. These practices are necessary for performing invasive procedures, achieving prolonged immobility for sensitive imaging modalities (magnetic resonance imaging for instance), and providing intra- and post-procedural pain relief. In addition to facilitating the procedures performed by the investigator, the provision of anesthesia and analgesia is crucial for the preservation of animal welfare and for humane treatment of animals used in research. Furthermore, anesthesia and analgesia are important components of animal use protocols reviewed by Institutional Animal Care and Use Committees, requiring careful consideration and planning for the particular animal model. In this article, we provide technical outlines for the investigator covering the provision of anesthesia by two routes (injectable and inhalant), guidelines for monitoring anesthesia, current techniques for recognition of pain, and considerations for administering preventative analgesia. Copyright © 2015 John Wiley & Sons, Inc.

  8. A transgenic tri-modality reporter mouse.

    PubMed

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C; Gambhir, Sanjiv S

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This "Tri-Modality Reporter Mouse" system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R(2)=0.89 for TdTomato vs Fluc, R(2)=0.94 for Fluc vs TTK, R(2)=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R(2)=0.99 for bioluminescence imaging (BLI)). Both BLI (R(2)=0.93) and micro-PET (R(2)=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R(2)=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4(th) week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell

  9. Whole mouse cryo-imaging

    NASA Astrophysics Data System (ADS)

    Wilson, David; Roy, Debashish; Steyer, Grant; Gargesha, Madhusudhana; Stone, Meredith; McKinley, Eliot

    2008-03-01

    The Case cryo-imaging system is a section and image system which allows one to acquire micron-scale, information rich, whole mouse color bright field and molecular fluorescence images of an entire mouse. Cryo-imaging is used in a variety of applications, including mouse and embryo anatomical phenotyping, drug delivery, imaging agents, metastastic cancer, stem cells, and very high resolution vascular imaging, among many. Cryo-imaging fills the gap between whole animal in vivo imaging and histology, allowing one to image a mouse along the continuum from the mouse -> organ -> tissue structure -> cell -> sub-cellular domains. In this overview, we describe the technology and a variety of exciting applications. Enhancements to the system now enable tiled acquisition of high resolution images to cover an entire mouse. High resolution fluorescence imaging, aided by a novel subtraction processing algorithm to remove sub-surface fluorescence, makes it possible to detect fluorescently-labeled single cells. Multi-modality experiments in Magnetic Resonance Imaging and Cryo-imaging of a whole mouse demonstrate superior resolution of cryo-images and efficiency of registration techniques. The 3D results demonstrate the novel true-color volume visualization tools we have developed and the inherent advantage of cryo-imaging in providing unlimited depth of field and spatial resolution. The recent results continue to demonstrate the value cryo-imaging provides in the field of small animal imaging research.

  10. Cognitive changes in people with temporal lobe epilepsy over a 13-year period.

    PubMed

    Mameniškienė, Rūta; Rimšienė, Justė; Puronaitė, Roma

    2016-10-01

    The aims of our study were to evaluate cognitive decline in people with temporal lobe epilepsy over a period of 13years and to determine what clinical and treatment characteristics may have been associated with these. Thirty-three individuals with temporal lobe epilepsy underwent the same neuropsychological assessment of verbal and nonverbal memory, attention, and executive functions using the same cognitive test battery as one used 13years ago. Long-term verbal and nonverbal memory was tested four weeks later. Results were compared with those carried out 13years earlier. There was no significant change in verbal and verbal-logical memory tests; however, nonverbal memory worsened significantly. Long-term verbal memory declined for 21.9% of participants, long-term verbal-logical memory for 34.4%, and long-term nonverbal memory for 56.3%. Worsening of working verbal and verbal-logical memory was associated with longer epilepsy duration and lower levels of patients' education; worsening of verbal delayed recall and long-term verbal-logical memory was associated with higher seizure frequency. Decline in long-term nonverbal memory had significant association with a longer duration of epilepsy. The worsening of reaction and attention inversely correlated with the symptoms of depression. Over a 13-year period, cognitive functions did not change significantly. Good seizure control and reduced symptoms of depression in this sample of people with temporal lobe epilepsy were associated with better cognitive functioning. The predictors of change of cognitive functions could be complex and require further study. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Structure of the human lung cytochrome P450 2A13.

    PubMed

    Smith, Brian D; Sanders, Jason L; Porubsky, Patrick R; Lushington, Gerald H; Stout, C David; Scott, Emily E

    2007-06-08

    The human lung cytochrome P450 2A13 (CYP2A13) activates the nicotine-derived procarcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) into DNA-altering compounds that cause lung cancer. Another cytochrome P450, CYP2A6, is also present in human lung, but at much lower levels. Although these two enzymes are 93.5% identical, CYP2A13 metabolizes NNK with much lower K(m) values than does CYP2A6. To investigate the structural differences between these two enzymes the structure of CYP2A13 was determined to 2.35A by x-ray crystallography and compared with structures of CYP2A6. As expected, the overall CYP2A13 and CYP2A6 structures are very similar with an average root mean square deviation of 0.5A for the Calpha atoms. Like CYP2A6, the CYP2A13 active site cavity is small and highly hydrophobic with a cluster of Phe residues composing the active site roof. Active site residue Asn(297) is positioned to hydrogen bond with an adventitious ligand, identified as indole. Amino acid differences between CYP2A6 and CYP2A13 at positions 117, 300, 301, and 208 relate to different orientations of the ligand plane in the two protein structures and may underlie the significant variations observed in binding and catalysis of many CYP2A ligands. In addition, docking studies suggest that residues 365 and 366 may also contribute to differences in NNK metabolism.

  12. Biological characteristics of mouse skin melanocytes.

    PubMed

    Shi, Zhanquan; Ji, Kaiyuan; Yang, Shanshan; Zhang, Junzhen; Yao, Jianbo; Dong, Changsheng; Fan, Ruiwen

    2016-04-01

    The objective of this research was to evaluate the optimal passage number according to the biological characteristics of mouse skin melanocytes from different passages. Skin punch biopsies harvested from the dorsal region of 2-day old mice were used to establish melanocyte cultures. The cells from passage 4, 7, 10 and 13 were collected and evaluated for their melanogenic activity. Histochemical staining for tyrosinase (TYR) activity and immunostaining for the melanocyte specific markers including S-100 antigen, TYR, tyrosinase related protein 1 (TYRP1), tyrosinase related protein 2 (TYRP2) and micropthalmia associated transcription factor (MITF) confirmed purity and melanogenic capacity of melanocytes from different passages, with better melanogenic activity of passage 10 and 13 cells being observed. Treatment of passage 13 melanocytes with α-melanocyte stimulating hormone (α-MSH) showed increased expression of MITF, TYR and TYRP2 mRNA. However, considering the TYR mRNA dramatically high expression which is the characteristics of melanoma cells, melanocytes from passage 10 was the optimal passage number for the further research. Our results demonstrate culture of pure populations of mouse melanocytes to at least 10 passages and illustrate the potential utility of passage 10 cells for studies of intrinsic and extrinsic regulation of genes controlling pigmentation and coat color in mouse.

  13. Experimental photoallergic contact dermatitis: a mouse model

    SciTech Connect

    Maguire, H.C. Jr.; Kaidbey, K.

    1982-09-01

    We have induced photoallergic contact dermatitis in mice to 3,3',4',5 tetrachlorosalicylanilide (TCSA), chlorpromazine and 6-methylcoumarin. These compounds are known to produce photoallergic contact dermatitis in humans. The photoallergic contact dermatitis reaction in the mouse is immunologically specific viz. mice photosensitized to TCSA react, by photochallenge, to that compound and not to chlorpromazine, and conversely. The reaction requires UVA at both sensitization and challenge. It appears to be T-cell mediated in that it can be passively transferred to syngeneic mice by lymph node cells from actively sensitized mice, the histology of the reactions resembles that of classic allergic contact dermatitis in mice, challenge reactions are seen at 24 but not at 4 hr, and photoallergic contact dermatitis can be induced in B-cell deficient mice. The availability of a mouse model for the study of photo-ACD will facilitate the identification of pertinent control mechanisms and may aid in the management of the disease. It is likely that a bioassay for photoallergens of humans can be based on this mouse model.

  14. Cell cycle in mouse development.

    PubMed

    Ciemerych, Maria A; Sicinski, Peter

    2005-04-18

    Mice likely represent the most-studied mammalian organism, except for humans. Genetic engineering in embryonic stem cells has allowed derivation of mouse strains lacking particular cell cycle proteins. Analyses of these mutant mice, and cells derived from them, facilitated the studies of the functions of cell cycle apparatus at the organismal and cellular levels. In this review, we give some background about the cell cycle progression during mouse development. We next discuss some insights about in vivo functions of the cell cycle proteins, gleaned from mouse knockout experiments. Our text is meant to provide examples of the recent experiments, rather than to supply an extensive and complete list.

  15. Mouse Models of Gastric Carcinogenesis

    PubMed Central

    Yu, Sungsook; Yang, Mijeong

    2014-01-01

    Gastric cancer is one of the most common cancers in the world. Animal models have been used to elucidate the details of the molecular mechanisms of various cancers. However, most inbred strains of mice have resistance to gastric carcinogenesis. Helicobacter infection and carcinogen treatment have been used to establish mouse models that exhibit phenotypes similar to those of human gastric cancer. A large number of transgenic and knockout mouse models of gastric cancer have been developed using genetic engineering. A combination of carcinogens and gene manipulation has been applied to facilitate development of advanced gastric cancer; however, it is rare for mouse models of gastric cancer to show aggressive, metastatic phenotypes required for preclinical studies. Here, we review current mouse models of gastric carcinogenesis and provide our perspectives on future developments in this field. PMID:25061535

  16. Recent Progress in Magnetic Resonance Imaging of the Embryonic and Neonatal Mouse Brain

    PubMed Central

    Wu, Dan; Zhang, Jiangyang

    2016-01-01

    The laboratory mouse has been widely used as a model system to investigate the genetic control mechanisms of mammalian brain development. Magnetic resonance imaging (MRI) is an important tool to characterize changes in brain anatomy in mutant mouse strains and injury progression in mouse models of fetal and neonatal brain injury. Progress in the last decade has enabled us to acquire MRI data with increasing anatomical details from the embryonic and neonatal mouse brain. High-resolution ex vivo MRI, especially with advanced diffusion MRI methods, can visualize complex microstructural organizations in the developing mouse brain. In vivo MRI of the embryonic mouse brain, which is critical for tracking anatomical changes longitudinally, has become available. Applications of these techniques may lead to further insights into the complex and dynamic processes of brain development. PMID:26973471

  17. Conjecture: Can continuous regeneration lead to immortality? Studies in the MRL mouse.

    PubMed

    Heber-Katz, Ellen; Leferovich, John; Bedelbaeva, Khamilia; Gourevitch, Dmitri; Clark, Lise

    2006-01-01

    A particular mouse strain, the MRL mouse, has been shown to have unique healing properties that show normal replacement of tissue without scarring. The serendipitous discovery that the MRL mouse has a profound capacity for regeneration in some ways rivaling the classic newt and axolotl species raises the possibility that humans, too, may have an innate regenerative ability. We propose this mouse as a model for continuous regeneration with possible life-extending properties. We will use the classical "immortal" organism, the hydra, for comparison and examine those key phenotypes that contribute to their immortality as they are expressed in the MRL mouse versus control mouse strains. The phenotypes to be examined include the rate of proliferation and the rate of cell death, which leads to a continual turnover in cells without an increase in mass.

  18. Reactivity of mouse antibodies against bromelain-treated mouse erythrocytes with thrombin-treated mouse platelets.

    PubMed Central

    Kawaguchi, S

    1989-01-01

    The reactivity of mouse antibodies against bromelain-treated mouse erythrocytes (BrMRBC) with mouse platelets before and after thrombin treatment was assessed by flow cytometry. Anti-BrMRBC antibodies could bind to thrombin-treated platelets, although normal platelets were also weakly reactive with the antibodies. The binding of anti-BrMRBC antibodies to platelets was confirmed by complement-dependent lysis. It is suggested that thrombin-activated platelets may be a real target for anti-BrMRBC antibodies. PMID:2467876

  19. Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer

    DTIC Science & Technology

    2005-07-01

    Edwards, Prostate cancer and supplementation with alpha-tocopherol and beta -carotene: incidence and mortality in a controlled trial. J Natl Cancer ...1-0153 TITLE: Producing a Mouse Model to Explore the Linkages Between Tocopherol Biology and Prostate Cancer ...TITLE AND SUBTITLE Producing a Mouse Model to Explore the Linkages Between Tocopherol 5a. CONTRACT NUMBER Biology and Prostate Cancer 5b. GRANT

  20. Mouse Phenome Database

    PubMed Central

    Grubb, Stephen C.; Maddatu, Terry P.; Bult, Carol J.; Bogue, Molly A.

    2009-01-01

    The Mouse Phenome Database (MPD; http://www.jax.org/phenome) is an open source, web-based repository of phenotypic and genotypic data on commonly used and genetically diverse inbred strains of mice and their derivatives. MPD is also a facility for query, analysis and in silico hypothesis testing. Currently MPD contains about 1400 phenotypic measurements contributed by research teams worldwide, including phenotypes relevant to human health such as cancer susceptibility, aging, obesity, susceptibility to infectious diseases, atherosclerosis, blood disorders and neurosensory disorders. Electronic access to centralized strain data enables investigators to select optimal strains for many systems-based research applications, including physiological studies, drug and toxicology testing, modeling disease processes and complex trait analysis. The ability to select strains for specific research applications by accessing existing phenotype data can bypass the need to (re)characterize strains, precluding major investments of time and resources. This functionality, in turn, accelerates research and leverages existing community resources. Since our last NAR reporting in 2007, MPD has added more community-contributed data covering more phenotypic domains and implemented several new tools and features, including a new interactive Tool Demo available through the MPD homepage (quick link: http://phenome.jax.org/phenome/trytools). PMID:18987003

  1. Ovarian abnormalities in the staggerer mutant mouse.

    PubMed

    Guastavino, Jean-Marie; Boufares, Salima; Crusio, Wim E

    2005-08-24

    Disturbances in several reproductive functions of the staggerer cerebellar mutant mouse have been observed. In this study, reproductive efficiency of staggerer mice was compared to normal mice by recording the number of pups produced and the number of oocytes occurring. It was found that staggerer mothers produced smaller litters than controls and the number of oocytes produced in their ovaries was reduced by the staggerer mutation. These results indicate a pleiotropic effect on fertility of the Rora(sg) gene underlying the cerebellar abnormalities of the staggerer mutant.

  2. Mouse genetics: Catalogue and scissors

    PubMed Central

    Sung, Young Hoon; Baek, In-Jeoung; Seong, Je Kyung; Kim, Jin-Soo; Lee, Han-Woong

    2012-01-01

    Phenotypic analysis of gene-specific knockout (KO) mice has revolutionized our understanding of in vivo gene functions. As the use of mouse embryonic stem (ES) cells is inevitable for conventional gene targeting, the generation of knockout mice remains a very time-consuming and expensive process. To accelerate the large-scale production and phenotype analyses of KO mice, international efforts have organized global consortia such as the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotype Consortium (IMPC), and they are persistently expanding the KO mouse catalogue that is publicly available for the researches studying specific genes of interests in vivo. However, new technologies, adopting zinc-finger nucleases (ZFNs) or Transcription Activator-Like Effector (TALE) Nucleases (TALENs) to edit the mouse genome, are now emerging as valuable and effective shortcuts alternative for the conventional gene targeting using ES cells. Here, we introduce the recent achievement of IKMC, and evaluate the significance of ZFN/TALEN technology in mouse genetics. [BMB Reports 2012; 45(12): 686-692] PMID:23261053

  3. Interrogating the mouse thalamus to correct human neurodevelopmental disorders

    PubMed Central

    Schmitt, L. Ian; Halassa, Michael M.

    2016-01-01

    While localizing sensory and motor deficits is one of the cornerstones of clinical neurology, behavioral and cognitive deficits in psychiatry remain impervious to this approach. In psychiatry, major challenges include the relative subtlety by which neural circuits are perturbed, and the limited understanding of how basic circuit functions relate to thought and behavior. Neurodevelopmental disorders offer a window to addressing the first challenge given their strong genetic underpinnings, which can be linked to biological mechanisms. Such links have benefited from genetic modeling in the mouse, and in this review we highlight how this small mammal is now allowing us to crack neural circuits as well. We review recent studies of mouse thalamus, discussing how they revealed general principles that may underlie human perception and attention. Controlling the magnitude (gain) of thalamic sensory responses is a mechanism of attention, and the mouse has enabled its functional dissection at an unprecedented resolution. Further, modeling human genetic neurodevelopmental disease in the mouse has shown how diminished thalamic gain control can lead to attention deficits. This breaks new ground in how we untangle the complexity of psychiatric diseases; by making thalamic circuits accessible to mechanistic dissection, the mouse has not only taught us how they fundamentally work, but also how their dysfunction can be precisely mapped onto behavioral and cognitive deficits. Future studies promise even more progress, with the hope that principled targeting of identified thalamic circuits can be uniquely therapeutic. PMID:27725660

  4. In vivo axial loading of the mouse tibia.

    PubMed

    Melville, Katherine M; Robling, Alexander G; van der Meulen, Marjolein C H

    2015-01-01

    Noninvasive methods to apply controlled, cyclic loads to the living skeleton are used as anabolic procedures to stimulate new bone formation in adults and enhance bone mass accrual in growing animals. These methods are also invaluable for understanding bone signaling pathways. Our focus here is on a particular loading model: in vivo axial compression of the mouse tibia. An advantage of loading the tibia is that changes are present in both the cancellous envelope of the proximal tibia and the cortical bone of the tibial diaphysis. To load the tibia of the mouse axially in vivo, a cyclic compressive load is applied up to five times a week to a single tibia per mouse for a duration lasting from 1 day to 6 weeks. With the contralateral limb as an internal control, the anabolic response of the skeleton to mechanical stimuli can be studied in a pairwise experimental design. Here, we describe the key parameters that must be considered before beginning an in vivo mouse tibial loading experiment, including methods for in vivo strain gauging of the tibial midshaft, and then we describe general methods for loading the mouse tibia for an experiment lasting multiple days.

  5. Effect of environmental intervention on mouse allergen levels in homes of inner-city Boston children with asthma

    PubMed Central

    Cronin, Beth; Wood, Robert A.; Eggleston, Peyton A.; Shih, Mei-Chiung; Song, Leslie; Tachdjian, Raffi; Oettgen, Hans C.

    2005-01-01

    Background: Recent studies have suggested that mouse allergen exposure and sensitization are common in urban children with asthma. The effectiveness of environmental intervention in reducing mouse allergen exposure has not been established. Objective: To evaluate whether environmental intervention of mouse extermination and cleaning results in a reduction in mouse allergen levels. Methods: Eighteen homes of children with positive mouse allergen skin test results and at least mild persistent asthma in urban Boston, MA, with evidence of mouse infestation or exposure were randomized in a 2:1 ratio (12 intervention and 6 control homes). The intervention homes received an integrated pest management intervention, which consisted of filling holes with copper mesh, vacuuming and cleaning, and using low-toxicity pesticides and traps. Dust samples were collected and analyzed for major mouse allergen (Mus m 1) and cockroach allergen (Bla g 1) at baseline and 1, 3, and 5 months after the intervention was started and compared with control homes. Results: Mouse allergen levels were significantly decreased compared with control homes by the end of the intervention period at month 5 in the kitchen and bedroom (kitchen intervention, 78.8% reduction; control, 319% increase; P = .02; bedroom intervention, 77.3% reduction; control, 358% increase; P < .01; and living room intervention, 67.6% reduction; control, 32% reduction; P = .07). Conclusions: Mouse allergen levels were significantly reduced during a 5-month period using an integrated pest management intervention. PMID:15104193

  6. Effect of environmental intervention on mouse allergen levels in homes of inner-city Boston children with asthma.

    PubMed

    Phipatanakul, Wanda; Cronin, Beth; Wood, Robert A; Eggleston, Peyton A; Shih, Mei-Chiung; Song, Leslie; Tachdjian, Raffi; Oettgen, Hans C

    2004-04-01

    Recent studies have suggested that mouse allergen exposure and sensitization are common in urban children with asthma. The effectiveness of environmental intervention in reducing mouse allergen exposure has not been established. To evaluate whether environmental intervention of mouse extermination and cleaning results in a reduction in mouse allergen levels. Eighteen homes of children with positive mouse allergen skin test results and at least mild persistent asthma in urban Boston, MA, with evidence of mouse infestation or exposure were randomized in a 2:1 ratio (12 intervention and 6 control homes). The intervention homes received an integrated pest management intervention, which consisted of filling holes with copper mesh, vacuuming and cleaning, and using low-toxicity pesticides and traps. Dust samples were collected and analyzed for major mouse allergen (Mus m 1) and cockroach allergen (Bla g 1) at baseline and 1, 3, and 5 months after the intervention was started and compared with control homes. Mouse allergen levels were significantly decreased compared with control homes by the end of the intervention period at month 5 in the kitchen and bedroom (kitchen intervention, 78.8% reduction; control, 319% increase; P = .02; bedroom intervention, 77.3% reduction; control, 358% increase; P < .01; and living room intervention, 67.6% reduction; control, 32% reduction; P = .07). Mouse allergen levels were significantly reduced during a 5-month period using an integrated pest management intervention.

  7. Mouse models for graft arteriosclerosis.

    PubMed

    Qin, Lingfeng; Yu, Luyang; Min, Wang

    2013-05-14

    Graft arteriosclerois (GA), also called allograft vasculopathy, is a pathologic lesion that develops over months to years in transplanted organs characterized by diffuse, circumferential stenosis of the entire graft vascular tree. The most critical component of GA pathogenesis is the proliferation of smooth muscle-like cells within the intima. When a human coronary artery segment is interposed into the infra-renal aortae of immunodeficient mice, the intimas could be expand in response to adoptively transferred human T cells allogeneic to the artery donor or exogenous human IFN-γ in the absence of human T cells. Interposition of a mouse aorta from one strain into another mouse strain recipient is limited as a model for chronic rejection in humans because the acute cell-mediated rejection response in this mouse model completely eliminates all donor-derived vascular cells from the graft within two-three weeks. We have recently developed two new mouse models to circumvent these problems. The first model involves interposition of a vessel segment from a male mouse into a female recipient of the same inbred strain (C57BL/6J). Graft rejection in this case is directed only against minor histocompatibility antigens encoded by the Y chromosome (present in the male but not the female) and the rejection response that ensues is sufficiently indolent to preserve donor-derived smooth muscle cells for several weeks. The second model involves interposing an artery segment from a wild type C57BL/6J mouse donor into a host mouse of the same strain and gender that lacks the receptor for IFN-γ followed by administration of mouse IFN-γ (delivered via infection of the mouse liver with an adenoviral vector. There is no rejection in this case as both donor and recipient mice are of the same strain and gender but donor smooth muscle cells proliferate in response to the cytokine while host-derived cells, lacking receptor for this cytokine, are unresponsive. By backcrossing additional

  8. A Transgenic Tri-Modality Reporter Mouse

    PubMed Central

    Yan, Xinrui; Ray, Pritha; Paulmurugan, Ramasamy; Tong, Ricky; Gong, Yongquan; Sathirachinda, Ataya; Wu, Joseph C.; Gambhir, Sanjiv S.

    2013-01-01

    Transgenic mouse with a stably integrated reporter gene(s) can be a valuable resource for obtaining uniformly labeled stem cells, tissues, and organs for various applications. We have generated a transgenic mouse model that ubiquitously expresses a tri-fusion reporter gene (fluc2-tdTomato-ttk) driven by a constitutive chicken β-actin promoter. This “Tri-Modality Reporter Mouse” system allows one to isolate most cells from this donor mouse and image them for bioluminescent (fluc2), fluorescent (tdTomato), and positron emission tomography (PET) (ttk) modalities. Transgenic colonies with different levels of tri-fusion reporter gene expression showed a linear correlation between all three-reporter proteins (R2=0.89 for TdTomato vs Fluc, R2=0.94 for Fluc vs TTK, R2=0.89 for TdTomato vs TTK) in vitro from tissue lysates and in vivo by optical and PET imaging. Mesenchymal stem cells (MSCs) isolated from this transgenics showed high level of reporter gene expression, which linearly correlated with the cell numbers (R2=0.99 for bioluminescence imaging (BLI)). Both BLI (R2=0.93) and micro-PET (R2=0.94) imaging of the subcutaneous implants of Tri-Modality Reporter Mouse derived MSCs in nude mice showed linear correlation with the cell numbers and across different imaging modalities (R2=0.97). Serial imaging of MSCs transplanted to mice with acute myocardial infarction (MI) by intramyocardial injection exhibited significantly higher signals in MI heart at days 2, 3, 4, and 7 (p<0.01). MSCs transplanted to the ischemic hindlimb of nude mice showed significantly higher BLI and PET signals in the first 2 weeks that dropped by 4th week due to poor cell survival. However, laser Doppler perfusion imaging revealed that blood circulation in the ischemic limb was significantly improved in the MSCs transplantation group compared with the control group. In summary, this mouse can be used as a source of donor cells and organs in various research areas such as stem cell research

  9. A 13-year review of lisinopril ingestions in children less than 6 years of age.

    PubMed

    Lewis, J C; Alsop, J A

    2013-11-01

    Lisinopril is an angiotensin converting enzyme inhibitor used for treatment of hypertension, congestive heart failure, and acute myocardial infarction. Reports of clinical experience with pediatric ingestions are minimal. A 13-year retrospective study of lisinopril ingestions in children reported to the California Poison Control System was analyzed and case notes were reviewed. Institutional Review Board approval was obtained and cases were blinded. Inclusion criteria were lisinopril as a single ingestant, age less than 6 years, treatment in a health care facility, case followed to a known outcome. Inclusion criteria were met in 296 cases. Demographics include 51% of male patients and the mean age was 1.97 years (range: 9 months-5 years). Of the 296 patients, 8 patients (2.7%) developed hypotension (ranges: 55-74 mm Hg systolic and 22-48 mm Hg diastolic). The lowest blood pressure of 55/22 mm Hg was recorded in a 22-month old male who ingested an estimated 120-mg lisinopril (13.3 mg/kg). The lowest dose of lisinopril causing hypotension was with an estimated dose of approximately 50 mg or 3.9 mg/kg in a 2-year old. Two hundred and eighty-two patients (95.3%) were treated and released from the emergency department and 14 patients (4.7%) were admitted. The dose ingested was reported in 189 cases and an exact-dose of lisinopril was reported in 61 patients (20.6%); mean amount ingested was 3.0 mg/kg, median amount ingested was 2.1 mg/kg (range: 0.1-10.9 mg/kg, N = 38); and mean total dose was 33.4 mg, median total dose was 20 mg (range: 2.5-160 mg, N = 61). None of the patients with exact-dose lisinopril ingestions developed hypotension, received intravenous fluids, or were admitted. The lowest estimated dose of lisinopril to cause hypotension was 50 mg or 3.9 mg/kg. Although continued evaluation of pediatric lisinopril ingestions is essential to determine more specific thresholds of toxicity, the lack of effect on blood pressure in children with exact-dose ingestions

  10. Multiple facial and left eye injuries in a 13 day old baby secondary to rat bite.

    PubMed

    Ibraheem, Waheed Ademola; Ibraheem, Anifat Boladale; Ibraheem, Ajagbe Kayode

    2014-01-01

    A case of traumatic blepharectomy secondary to a rat bite in a 13 day old neonate. Infants should not be kept in an isolated place in a rat endemic area. This case suggests an existence of a relationship between poverty and rat bite.

  11. 29 CFR 788.6 - Scope of the section 13(a)(13) exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Scope of the section 13(a)(13) exemption. 788.6 Section 788.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING...

  12. 29 CFR 788.6 - Scope of the section 13(a)(13) exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Scope of the section 13(a)(13) exemption. 788.6 Section 788.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING...

  13. 29 CFR 788.6 - Scope of the section 13(a)(13) exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Scope of the section 13(a)(13) exemption. 788.6 Section 788.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING...

  14. 29 CFR 788.6 - Scope of the section 13(a)(13) exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Scope of the section 13(a)(13) exemption. 788.6 Section 788.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING...

  15. 29 CFR 788.6 - Scope of the section 13(a)(13) exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Scope of the section 13(a)(13) exemption. 788.6 Section 788.6 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL POLICY OR INTERPRETATION NOT DIRECTLY RELATED TO REGULATIONS FORESTRY OR LOGGING...

  16. 7 CFR 15a.13 - Military and merchant marine educational institution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Military and merchant marine educational institution... ACTIVITIES RECEIVING OR BENEFITTING FROM FEDERAL FINANCIAL ASSISTANCE Coverage § 15a.13 Military and merchant... purpose is the training of individuals for a military service of the United States or for the...

  17. Eating Order: A 13-Week Trust Model Class for Dieting Casualties

    ERIC Educational Resources Information Center

    Jackson, Elizabeth G.

    2008-01-01

    Chronic dieting distorts eating behaviors and causes weight escalation. Desperation about losing weight results in pursuit of extreme weight loss measures. Instead of offering yet another diet, nutrition educators can teach chronic dieters (dieting casualties) to develop eating competence. Eating Order, a 13-week class for chronic dieters based on…

  18. Eating Order: A 13-Week Trust Model Class for Dieting Casualties

    ERIC Educational Resources Information Center

    Jackson, Elizabeth G.

    2008-01-01

    Chronic dieting distorts eating behaviors and causes weight escalation. Desperation about losing weight results in pursuit of extreme weight loss measures. Instead of offering yet another diet, nutrition educators can teach chronic dieters (dieting casualties) to develop eating competence. Eating Order, a 13-week class for chronic dieters based on…

  19. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart....

  20. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart....

  1. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart....

  2. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart....

  3. 42 CFR 59a.13 - Who is eligible for a grant?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Establishment of Regional Medical Libraries § 59a.13 Who is eligible for a grant? Except as... to operate a medical library is eligible for a grant under this subpart....

  4. Transcriptome-scale similarities between mouse and human skeletal muscles with normal and myopathic phenotypes

    PubMed Central

    Kho, Alvin T; Kang, Peter B; Kohane, Isaac S; Kunkel, Louis M

    2006-01-01

    Background Mouse and human skeletal muscle transcriptome profiles vary by muscle type, raising the question of which mouse muscle groups have the greatest molecular similarities to human skeletal muscle. Methods Orthologous (whole, sub-) transcriptome profiles were compared among four mouse-human transcriptome datasets: (M) six muscle groups obtained from three mouse strains (wildtype, mdx, mdx5cv); (H1) biopsied human quadriceps from controls and Duchenne muscular dystrophy patients; (H2) four different control human muscle types obtained at autopsy; and (H3) 12 different control human tissues (ten non-muscle). Results Of the six mouse muscles examined, mouse soleus bore the greatest molecular similarities to human skeletal muscles, independent of the latters' anatomic location/muscle type, disease state, age and sampling method (autopsy versus biopsy). Significant similarity to any one mouse muscle group was not observed for non-muscle human tissues (dataset H3), indicating this finding to be muscle specific. Conclusion This observation may be partly explained by the higher type I fiber content of soleus relative to the other mouse muscles sampled. PMID:16522209

  5. 32 CFR 169a.13 - CAs involving forty-five or fewer DoD civilian employees.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false CAs involving forty-five or fewer DoD civilian employees. 169a.13 Section 169a.13 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING COMMERCIAL ACTIVITIES PROGRAM PROCEDURES Procedures § 169a.13 CAs involving forty-five...

  6. Pulmonary expression of CYP2A13 and ABCB1 is regulated by FOXA2, and their genetic interaction is associated with lung cancer.

    PubMed

    Xiang, Chan; Wang, Jiucun; Kou, Xiaochen; Chen, Xiabin; Qin, Zhaoyu; Jiang, Yan; Sun, Chang; Xu, Jibin; Tan, Wen; Jin, Li; Lin, Dongxin; He, Fuchu; Wang, Haijian

    2015-05-01

    Inhaled xenobiotics such as tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone are mainly metabolized by phase I oxidase cytochrome P450, family 2, subfamily A, polypeptide 13 (CYP2A13), phase II conjugate UDP glucuronosyltransferase 2 family, polypeptide B17 (UGT2B17), and phase III transporter ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1), with genetic polymorphisms implicated in lung cancer. Their genetic interaction and pulmonary expression regulation are largely unknown. We analyzed joint association for CYP2A13 and ABCB1 polymorphisms in 2 independent lung cancer case populations (669 and 566 patients) and 1 common control population (749 subjects), and characterized the trans-acting function of the lung development-related transcription factor forkhead box A2 (FOXA2). We undertook FOXA2 overexpression and down-regulation in lung epithelial cell lines, analyzed functional impact on the transactivation of CYP2A13, UGT2B17, and ABCB1, and measured correlation for their expressions in lung tissues. We found a substantial reduction in cancer risk (OR 0.39; 95% CI 0.25-0.61; Pinteraction = 0.029) associated with combined genotypes for CYP2A13 R257C and a functionary regulatory variant in the cis element of ABCB1 synergistically targeted by GATA binding protein 6 and FOXA2. Genetic manipulation of FOXA2 consistently influenced its binding to and transactivation of the promoters of CYP2A13, UGT2B17, and ABCB1, whose mRNA and protein expressions were all consistently correlated with those of FOXA2 in both tumorous and normal lung tissues. We therefore establish FOXA2 as a core transcriptional modulator for pulmonary xenobiotic metabolic pathways and uncover an etiologically relevant interaction between CYP2A13 and ABCB1, furthering our understanding of expression and function of the xenobiotic metabolism system.

  7. Tracking Mouse Bone Marrow Monocytes In Vivo

    PubMed Central

    Hamon, Pauline; Rodero, Mathieu Paul; Combadière, Christophe; Boissonnas, Alexandre

    2015-01-01

    Real time multiphoton imaging provides a great opportunity to study cell trafficking and cell-to-cell interactions in their physiological 3-dimensionnal environment. Biological activities of immune cells mainly rely on their motility capacities. Blood monocytes have short half-life in the bloodstream; they originate in the bone marrow and are constitutively released from it. In inflammatory condition, this process is enhanced, leading to blood monocytosis and subsequent infiltration of the peripheral inflammatory tissues. Identifying the biomechanical events controlling monocyte trafficking from the bone marrow towards the vascular network is an important step to understand monocyte physiopathological relevance. We performed in vivo time-lapse imaging by two-photon microscopy of the skull bone marrow of the Csf1r-Gal4VP16/UAS-ECFP (MacBlue) mouse. The MacBlue mouse expresses the fluorescent reporters enhanced cyan fluorescent protein (ECFP) under the control of a myeloid specific promoter 1, in combination with vascular network labelling. We describe how this approach enables the tracking of individual medullar monocytes in real time to further quantify the migratory behaviour within the bone marrow parenchyma and the vasculature, as well as cell-to-cell interactions. This approach provides novel insights into the biology of the bone marrow monocyte subsets and allows to further address how these cells can be influenced in specific pathological conditions. PMID:25867540

  8. Three dimensional path integration in the house mouse (Mus domestica).

    PubMed

    Bardunias, P M; Jander, R

    2000-12-01

    Previous studies have explored two-dimensional path integration in rodents by recording responses to passive rotation on a horizontal plane. This study adds the element of passive rotation in a vertical plane, necessitating the mouse to integrate positional information from three dimensions. Mice were trained to climb a wire mesh joining two horizontal planes. The whole arena was rotated 90 degrees while the mouse was vertically oriented as it moved between planes. Rotation was conducted both clockwise and counter-clockwise, controls being provided by rotation of the arena while the mouse was in its nest-box. All 16 mice tested altered their direction of travel subsequent to rotation in the vertical plane, compensating with a change in their path on the following horizontal plane.

  9. Ultrastructure of Campylobacter jejuni in gamma-irradiated mouse jejunum

    SciTech Connect

    Sosula, L.; Nicholls, E.M.; Skeen, M.

    1988-04-01

    This paper describes the ultrastructure of intracellular elongated, transitional and coccoid forms of Campylobacter jejuni, in irradiated mouse jejunum infected both in vitro and in vivo and in cultured human skin fibroblasts. Jejunum of irradiated mouse incubated for 1 hour under conditions favorable to the organisms showed minimal tissue degeneration. The intracellular organisms in this material were free cytoplasmic forms showing inner membrane degeneration, loss of cytoplasmic granules, and absence of flagella. The diameter of the coccoids was up to four times that of the elongated forms, as in plate cultures. Intracellular organisms were not found in challenged unirradiated controls, indicating that irradiation of mouse cells may be required for intracellular infection with human strains of C jejuni. In contrast, challenged human fibroblasts contained typical elongated organisms in cytoplasmic vacuoles. These findings are discussed with reference to Campylobacter strain, host resistance, and natural animal and human Campylobacter infections.

  10. Three dimensional path integration in the house mouse (Mus domestica)

    NASA Astrophysics Data System (ADS)

    Bardunias, Paul M.; Jander, R.

    Previous studies have explored two-dimensional path integration in rodents by recording responses to passive rotation on a horizontal plane. This study adds the element of passive rotation in a vertical plane, necessitating the mouse to integrate positional information from three dimensions. Mice were trained to climb a wire mesh joining two horizontal planes. The whole arena was rotated 90° while the mouse was vertically oriented as it moved between planes. Rotation was conducted both clockwise and counter-clockwise, controls being provided by rotation of the arena while the mouse was in its nest-box. All 16 mice tested altered their direction of travel subsequent to rotation in the vertical plane, compensating with a change in their path on the following horizontal plane.

  11. Prolyl carboxypeptidase mRNA expression in the mouse brain.

    PubMed

    Jeong, Jin Kwon; Diano, Sabrina

    2014-01-13

    Prolyl carboxypeptidase (PRCP), a serine protease, is widely expressed in the body including liver, lung, kidney and brain, with a variety of known substrates such as plasma prekallikrein, bradykinin, angiotensins II and III, and α-MSH, suggesting its role in the processing of tissue-specific substrates. In the brain, PRCP has been shown to inactivate hypothalamic α-MSH, thus modulating melanocortin signaling in the control of energy metabolism. While its expression pattern has been reported in the hypothalamus, little is known on the distribution of PRCP throughout the mouse brain. This study was undertaken to determine PRCP expression in the mouse brain. Radioactive in situ hybridization was performed to determine endogenous PRCP mRNA expression. In addition, using a gene-trap mouse model for PRCP deletion, X-gal staining was performed to further determine PRCP distribution. Results from both approaches showed that PRCP gene is broadly expressed in the brain.

  12. Ultrastructure of Campylobacter jejuni in gamma-irradiated mouse jejunum.

    PubMed Central

    Sosula, L.; Nicholls, E. M.; Skeen, M.

    1988-01-01

    This paper describes the ultrastructure of intracellular elongated, transitional and coccoid forms of Campylobacter jejuni, in irradiated mouse jejunum infected both in vitro and in vivo and in cultured human skin fibroblasts. Jejunum of irradiated mouse incubated for 1 hour under conditions favorable to the organisms showed minimal tissue degeneration. The intracellular organisms in this material were free cytoplasmic forms showing inner membrane degeneration, loss of cytoplasmic granules, and absence of flagella. The diameter of the coccoids was up to four times that of the elongated forms, as in plate cultures. Intracellular organisms were not found in challenged unirradiated controls, indicating that irradiation of mouse cells may be required for intracellular infection with human strains of C jejuni. In contrast, challenged human fibroblasts contained typical elongated organisms in cytoplasmic vacuoles. These findings are discussed with reference to Campylobacter strain, host resistance, and "natural" animal and human Campylobacter infections. Images Figure 1 Figure 2 Figure 3 PMID:3354638

  13. Husbandry of the "nude" mouse in conventional and germfree environments.

    PubMed

    Eaton, G J; Outzen, H C; Custer, R P; Johnson, F N

    1975-06-01

    The "nude" mouse is a unique tool for immunologic studies. Its relatively short life span dictates the application of rigid environmental controls to increase longevity if the mouse is to assume the role of a practical experimental animal. In this paper we discussed the husbandry procedures employed to raise "nude" mice in our facilities under conventional, defined flora, and germfree conditions. Conventional and defined flora mice were raised on laminar flow stay-clean rocks, and germfree "nudes" were housed in self-contained germfree isolators. The major cause of morbidity and mortality among conventional and defined flora "nude" mice was fulminating hepatitis. We presented evidence that the etiologic agent of the disease was mouse hepatitis virus (MHV). Germfree "nude" mice were completely free from viral and bacterial diseases.

  14. 10. international mouse genome conference

    SciTech Connect

    Meisler, M.H.

    1996-12-31

    Ten years after hosting the First International Mammalian Genome Conference in Paris in 1986, Dr. Jean-Louis Guenet presided over the Tenth Conference at the Pasteur Institute, October 7--10, 1996. The 1986 conference was a satellite to the Human Gene Mapping Workshop and had approximately 50 attendees. The 1996 meeting was attended by 300 scientists from around the world. In the interim, the number of mapped loci in the mouse increased from 1,000 to over 20,000. This report contains a listing of the program and its participants, and two articles that review the meeting and the role of the laboratory mouse in the Human Genome project. More than 200 papers were presented at the conference covering the following topics: International mouse chromosome committee meetings; Mutant generation and identification; Physical and genetic maps; New technology and resources; Chromatin structure and gene regulation; Rate and hamster genetic maps; Informatics and databases; and Quantitative trait analysis.

  15. Mouse Models of Frontotemporal Dementia

    PubMed Central

    Roberson, Erik D.

    2012-01-01

    The pace of discovery in frontotemporal dementia (FTD) has accelerated dramatically with the discovery of new genetic causes and pathological substrates of the disease. MAPT/Tau, GRN/progranulin, and C9ORF72 have emerged as common FTD genes, and TARDBP/TDP-43, VCP, FUS, and CHMP2B have been identified as less common genetic causes. TDP-43 and FUS have joined Tau as common neuropathological substrates of the disease. Mouse models provide an important tool for understanding the role of these molecules in FTD pathogenesis. Here, we review recent progress with mouse models based on Tau, TDP-43, progranulin, VCP, and CHMP2B. We also consider future prospects for FTD models, including developing new models to address unanswered questions. There are also opportunities for capitalizing on conservation of the salience network, which is selectively vulnerable in FTD, and the availability of FTD-related behavioral paradigms to analyze mouse models of the disease. PMID:23280835

  16. Mouse spleen tissue as a staining intensity reference for immunohistochemistry.

    PubMed

    Moon, Yeonsook; Park, Gyeongsin; Han, Kyungja; Kang, Chang-Suk; Lee, Wonbae

    2008-01-01

    Immunohistochemistry (IHC) is widely used in diagnostic practice and research, but it is limited due to its subjective nature and weakness in reproducibility. For successful interpretation, IHC requires an internal reference system that controls for procedural variables and provides a staining intensity reference. We investigated the feasibility of using mouse spleen tissue as an intensity reference in conventional IHC. Formalin-fixed, paraffin-embedded mouse (BALB/c) spleen tissue was stained with variable procedural conditions including primary antibody (Ab) types, antigen retrieval methods, chromogen exposure times, and secondary Ab concentrations. Mouse spleen tissue showed identical staining intensity regardless of primary Ab types, even without primary Ab, and showed minimal differences according to retrieval methods. However, it showed various staining intensities according to chromogen exposure time and secondary Ab concentration. When mouse spleen was included in tissue microarrays and compared with the c-erbB2 IHC scoring system, splenic B cells showed weak membrane staining compatible with score 1+, whereas splenic plasma cells showed strong staining intensity compatible with score 3+. These results show that mouse spleen tissue can serve as a staining intensity reference for the interpretation of IHC.

  17. Mouse Models of Prostate Cancer

    PubMed Central

    Valkenburg, Kenneth C.; Williams, Bart O.

    2011-01-01

    The development and optimization of high-throughput screening methods has identified a multitude of genetic changes associated with human disease. The use of immunodeficient and genetically engineered mouse models that mimic the human disease has been crucial in validating the importance of these genetic pathways in prostate cancer. These models provide a platform for finding novel therapies to treat human patients afflicted with prostate cancer as well as those who have debilitating bone metastases. In this paper, we focus on the historical development and phenotypic descriptions of mouse models used to study prostate cancer. We also comment on how closely each model recapitulates human prostate cancer. PMID:22111002

  18. Photobiomodulation of early mouse embryo development

    NASA Astrophysics Data System (ADS)

    Sviridova-Chailakhyan, T. A.; Fakhranurova, L. I.; Simonova, N. B.; Khramov, R. N.; Manokhin, A. A.; Paskevich, S. I.; Chailakhyan, L. M.

    2008-04-01

    The effect of artificial sunlight (AS) from a xenon source and of converted AS with an additional orange-red luminescent (λ MAX=626 nm) component (AS+L) on the development of mouse zygotes was investigated. A plastic screen with a photoluminophore layer was used for production of this orange-red luminescent (L) component. A single short-term (15 min) exposure produced a long-term stable positive effect on early embryo development of mice, which persisted during several days. After exposure to AS+L, a stimulating influence on preimplantation development was observed, in comparison with the control group without AS exposure. The positive effects were as follows: increase in percent of embryos (P <= 0.05) developed to the blastocyst stage (96.2 %) with hatching from the zona pellucida (80.8 %) within 82-96 hours in vitro compared to the control (67.1 % and 28.8 %, respectively).

  19. Spallanzani's mouse: a model of restoration and regeneration.

    PubMed

    Heber-Katz, E; Leferovich, J M; Bedelbaeva, K; Gourevitch, D

    2004-01-01

    The ability to regenerate is thought to be a lost phenotype in mammals, though there are certainly sporadic examples of mammalian regeneration. Our laboratory has identified a strain of mouse, the MRL mouse, which has a unique capacity to heal complex tissue in an epimorphic fashion, i.e., to restore a damaged limb or organ to its normal structure and function. Initial studies using through-and-through ear punches showed rapid full closure of the ear holes with cartilage growth, new hair follicles, and normal tissue architecture reminiscent of regeneration seen in amphibians as opposed to the scarring usually seen in mammals. Since the ear hole closure phenotype is a quantitative trait, this has been used to show-through extensive breeding and backcrossing--that the trait is heritable. Such analysis reveals that there is a complex genetic basis for this trait with multiple loci. One of the major phenotypes of the MRL mouse is a potent remodeling response with the absence or a reduced level of scarring. MRL healing is associated with the upregulation of the metalloproteinases MMP-2 and MMP-9 and the downregulation of their inhibitors TIMP-2 and TIMP-3, both present in inflammatory cells such as neutrophils and macrophages. This model has more recently been extended to the heart. In this case, a cryoinjury to the right ventricle leads to near complete scarless healing in the MRL mouse whereas scarring is seen in the control mouse. In the MRL heart, bromodeoxyuridine uptake by cardiomyocytes filling the wound site can be seen 60 days after injury. This does not occur in the control mouse. Function in the MRL heart, as measured by echocardiography, returns to normal.

  20. OCT angiography in the mouse: A novel evaluation method for vascular pathologies of the mouse retina.

    PubMed

    Alnawaiseh, Maged; Rosentreter, André; Hillmann, Anja; Alex, Anne F; Niekämper, Daniel; Heiduschka, Peter; Pap, Thomas; Eter, Nicole

    2016-04-01

    To investigate the application of optical coherence tomography (OCT) angiography in the retinas of healthy mice and to evaluate choroidal neovascularization (CNV) in a mouse model of laser-induced CNV. C57BL/6J mice aged 18-25 weeks were examined using the spectral-domain optical coherence tomography device RTVue XR Avanti (Optovue, Inc, Fremont, California, USA). Blood flow in different retinal layers was detected using the split-spectrum amplitude-decorrelation angiography algorithm. Fluorescein angiography (FA) images were obtained using the Heidelberg Spectralis device (Heidelberg, Germany). Using the RTVue XR Avanti, we were able to obtain high-quality OCT angiography images of normal vasculature in the superficial, deep capillary and choriocapillary layers in laser-treated mice and untreated controls. Whereas no blood flow was detectable in the outer retina of untreated mice, blood flow and hence neovascular vessels were found in laser-treated mice. OCT angiography can clearly visualize the normal vascular plexus in the different retinal layers in the mouse retina and choroid. With OCT angiography, it is possible to verify the choroidal neovascularization induced by laser treatment. Thus, OCT angiography is a helpful imaging tool for non-invasive, in vivo evaluation of laser-induced CNV in the mouse. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Atypical Fibroxanthoma in a 13-Year-Old Guatemalan Girl with Xeroderma Pigmentosum.

    PubMed

    Chappell, Ava G; Chase, Elizabeth P; Chang, Beverly; Cunningham, Eric; Mihm, Fred; Calame, Antoanella; Fudem, Gary; Cunningham, Bari

    2016-05-01

    Xeroderma pigmentosum (XP) is a rare, autosomal recessive disease involving a defect in DNA repair leading to the premature development of numerous aggressive cutaneous malignancies. Although atypical fibroxanthoma (AFX) is a neoplasm typically found in the setting of extensive sun exposure or therapeutic radiation, AFXs are rarely associated with children with XP. We report the case of a 13-year-old Guatemalan girl with the XP type C variant who developed one of the largest AFXs reported on a child's finger.

  2. Sacro-iliac osteomyelitis in a 13 year old boy following perforated appendicitis.

    PubMed

    Whelan-Johnson, Sophie; Isaacs, John; Pullan, Rupert D

    2013-05-01

    Appendicitis is a common cause of acute abdominal pain in children and is treated by an open or laparoscopic appendicectomy. Well documented post-operative complications include wound infection, intra-abdominal collection, and adhesional bowel obstruction. We present the rare case of right sacro-iliitis and iliac bone osteomyelitis in a 13 year old boy following an open appendicectomy for a perforated appendicitis.

  3. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  4. Mouse Models of Rheumatoid Arthritis.

    PubMed

    Caplazi, P; Baca, M; Barck, K; Carano, R A D; DeVoss, J; Lee, W P; Bolon, B; Diehl, L

    2015-09-01

    Rheumatoid arthritis (RA) is a chronic debilitating autoimmune disorder characterized by synovitis that leads to cartilage and bone erosion by invading fibrovascular tissue. Mouse models of RA recapitulate many features of the human disease. Despite the availability of medicines that are highly effective in many patient populations, autoimmune diseases (including RA) remain an area of active biomedical research, and consequently mouse models of RA are still extensively used for mechanistic studies and validation of therapeutic targets. This review aims to integrate morphologic features with model biology and cover the key characteristics of the most commonly used induced and spontaneous mouse models of RA. Induced models emphasized in this review include collagen-induced arthritis and antibody-induced arthritis. Collagen-induced arthritis is an example of an active immunization strategy, whereas antibody- induced arthritis models, such as collagen antibody-induced arthritis and K/BxN antibody transfer arthritis, represent examples of passive immunization strategies. The coverage of spontaneous models in this review is focused on the TNFΔ (ARE) mouse, in which arthritis results from overexpression of TNF-α, a master proinflammatory cytokine that drives disease in many patients.

  5. Mouse models of myasthenia gravis.

    PubMed

    Ban, Joanne; Phillips, William D

    2015-01-01

    Myasthenia gravis is a muscle weakness disease characterized by autoantibodies that target components of the neuromuscular junction, impairing synaptic transmission. The most common form of myasthenia gravis involves antibodies that bind the nicotinic acetylcholine receptors in the postsynaptic membrane. Many of the remaining cases are due to antibodies against muscle specific tyrosine kinase (MuSK). Recently, autoantibodies against LRP4 (another component of the MuSK signaling complex in the postsynaptic membrane) were identified as the likely cause of myasthenia gravis in some patients. Fatiguing weakness is the common symptom in all forms of myasthenia gravis, but muscles of the body are differentially affected, for reasons that are not fully understood. Much of what we have learnt about the immunological and neurobiological aspects of the pathogenesis derives from mouse models. The most widely used mouse models involve either passive transfer of autoantibodies, or active immunization of the mouse with acetylcholine receptors or MuSK protein. These models can provide a robust replication of many of the features of the human disease. Depending upon the protocol, acute fatiguing weakness develops 2 - 14 days after the start of autoantibody injections (passive transfer) or might require repeated immunizations over several weeks (active models). Here we review mouse models of myasthenia gravis, including what they have contributed to current understanding of the pathogenic mechanisms and their current application to the testing of therapeutics.

  6. High-throughput mouse phenotyping.

    PubMed

    Gates, Hilary; Mallon, Ann-Marie; Brown, Steve D M

    2011-04-01

    Comprehensive phenotyping will be required to reveal the pleiotropic functions of a gene and to uncover the wider role of genetic loci within diverse biological systems. The challenge will be to devise phenotyping approaches to characterise the thousands of mutants that are being generated as part of international efforts to acquire a mutant for every gene in the mouse genome. In order to acquire robust datasets of broad based phenotypes from mouse mutants it is necessary to design and implement pipelines that incorporate standardised phenotyping platforms that are validated across diverse mouse genetics centres or mouse clinics. We describe here the rationale and methodology behind one phenotyping pipeline, EMPReSSslim, that was designed as part of the work of the EUMORPHIA and EUMODIC consortia, and which exemplifies some of the challenges facing large-scale phenotyping. EMPReSSslim captures a broad range of data on diverse biological systems, from biochemical to physiological amongst others. Data capture and dissemination is pivotal to the operation of large-scale phenotyping pipelines, including the definition of parameters integral to each phenotyping test and the associated ontological descriptions. EMPReSSslim data is displayed within the EuroPhenome database, where a variety of tools are available to allow the user to search for interesting biological or clinical phenotypes.

  7. APOPTOSIS IN WHOLE MOUSE OVARIES

    EPA Science Inventory

    Apoptosis in Whole Mouse Ovaries
    Robert M. Zucker Susan C. Jeffay and Sally D. Perreault
    Reproductive Toxicology Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, 27711.

  8. [Vaccination against mouse pox].

    PubMed

    Mahnel, H

    1985-01-01

    Attenuated MVA-strain of vaccinia virus has been efficient in the control of enzootic mousepox and in prophylactic vaccination. The virus has been used as a live vaccine for prophylactic and emergency vaccinations as well as for sanitation of populations. More than 100 000 vaccinations were carried out safely. Even after suspension of the obligatory vaccination of humans against smallpox the MVA-vaccine can be employed without risk and danger.

  9. Cytogenetic effect of griseofulvin in mouse spermatocytes.

    PubMed

    Fahmy, M A; Hassan, N H

    1996-01-01

    The genotoxic effects of griseofulvin (GF) in mouse primary spermatocytes at diakinesis metaphase I of meiosis were investigated. Griseofulvin was administered orally as a single dose of 500, 1000, 1500 and 2000 mg kg-1 body wt. and a multiple treatment with a daily dose of 1000 mg kg-1 body wt. for three and five successive doses. Both single and multiple treatment induced a statistically significant increase in the percentage of chromosomal aberrations which have a dose and time-dependent relationship. The frequency of chromosomal aberrations peaked 6 and 12 h post treatment; with the highest dose of the drug it reached 27.8% +/- 0.87 and 27.66% +/- 0.48 6 and 12 h respectively, compared with 5.6% +/- 0.39 and 5.2% +/- 0.48 for the control. The types of aberrations recorded were structural, including X-Y and autosomal univalent, gaps, breaks, fragments, chain IV and numerical in the form of diploid, triploid, tetraploid and aneuploid. The results of this study suggest that griseofulvin has a genotoxic effect in mouse spermatocytes.

  10. Life without white fat: a transgenic mouse

    PubMed Central

    Moitra, Jaideep; Mason, Mark M.; Olive, Michelle; Krylov, Dmitry; Gavrilova, Oksana; Marcus-Samuels, Bernice; Feigenbaum, Lionel; Lee, Eric; Aoyama, Toshifumi; Eckhaus, Michael; Reitman, Marc L.; Vinson, Charles

    1998-01-01

    We have generated a transgenic mouse with no white fat tissue throughout life. These mice express a dominant-negative protein, termed A-ZIP/F, under the control of the adipose-specific aP2 enhancer/promoter. This protein prevents the DNA binding of B-ZIP transcription factors of both the C/EBP and Jun families. The transgenic mice (named A-ZIP/F-1) have no white adipose tissue and dramatically reduced amounts of brown adipose tissue, which is inactive. They are initially growth delayed, but by week 12, surpass their littermates in weight. The mice eat, drink, and urinate copiously, have decreased fecundity, premature death, and frequently die after anesthesia. The physiological consequences of having no white fat tissue are profound. The liver is engorged with lipid, and the internal organs are enlarged. The mice are diabetic, with reduced leptin (20-fold) and elevated serum glucose (3-fold), insulin (50- to 400-fold), free fatty acids (2-fold), and triglycerides (3- to 5-fold). The A-ZIP/F-1 phenotype suggests a mouse model for the human disease lipoatrophic diabetes (Seip-Berardinelli syndrome), indicating that the lack of fat can cause diabetes. The myriad of consequences of having no fat throughout development can be addressed with this model. PMID:9784492

  11. Overview of mouse models of Parkinson's disease.

    PubMed

    Bobela, Wojciech; Zheng, Lu; Schneider, Bernard L

    2014-09-03

    Parkinson's disease is a neurodegenerative disorder characterized by the loss of neurons in specific regions of the nervous system, notably in the substantia nigra pars compacta and, in most cases, by the deposition of intraneuronal inclusions named Lewy bodies. These pathological alterations have profound effects on the brain function, leading to the progressive development of various symptoms, the most prominent being the impaired initiation of voluntary movements caused by the loss of dopamine signaling in the basal ganglia. Here, we provide an overview of the mouse models of Parkinson's disease, with the goal of guiding selection of the most appropriate model for studying the question at hand. Pharmacological approaches targeting dopamine signaling and toxins leading to selective degeneration of nigral neurons are used to validate symptomatic treatments that aim at restoring effective dopaminergic function for motor control. Alternative mouse models are based on genetic modifications that are meant to reproduce the inherited alterations associated with familial forms of Parkinson's disease. Although genetic models have most often failed to induce overt degeneration of nigral dopaminergic neurons, they provide essential tools to explore the multifactorial etiology of this complex neurodegenerative disorder. Copyright © 2014 John Wiley & Sons, Inc.

  12. Tauroursodeoxycholic acid improves the implantation and live-birth rates of mouse embryos.

    PubMed

    Lin, Tao; Diao, Yun Fei; Kang, Jung Won; Lee, Jae Eun; Kim, Dong Kyu; Jin, Dong Il

    2015-06-01

    We previously demonstrated that tauroursodeoxycholic acid (TUDCA) improved the developmental competence of mouse embryos by attenuating endoplasmic reticulum (ER) stress-induced apoptosis during preimplantation development. Here, we present a follow-up study examining whether TUDCA enhances the implantation and live-birth rate of mouse embryos. Mouse 2-cell embryos were collected by oviduct flushing and cultured in the presence or absence of 50 μM TUDCA. After culture (52 h), blastocysts were transferred to 2.5-day pseudopregnant foster mothers. It was found that the rates of pregnancy and implantation as well as the number of live pups per surrogate mouse were significantly higher in the TUDCA-treated group compared to the control group, but there was no significant difference in the mean weights of the pups or placentae. Thus, we report for the first time that TUDCA supplementation of the embryo culture medium increased the implantation and livebirth rates of transferred mouse embryos.

  13. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies.

    PubMed

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-Ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-Aki K; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-05-20

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module ("Kibo") on the International Space Station. The CBEF provides "space-based controls" by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments.

  14. Pyogenic Sacroiliitis in a 13-Month-Old Child: A Case Report and Literature Review.

    PubMed

    Leroux, Julien; Julien, Leroux; Bernardini, Isabelle; Isabelle, Bernardini; Grynberg, Lucie; Lucie, Grynberg; Grandguillaume, Claire; Claire, Grandguillaume; Michelin, Paul; Paul, Michelin; Ould Slimane, Mourad; Slimane, Ould Slimane; Nectoux, Eric; Eric, Nectoux; Deroussen, François; François, Deroussen; Gouron, Richard; Richard, Gouron; Angelliaume, Audrey; Audrey, Angelliaume; Ilharreborde, Brice; Brice, Ilharreborde; Renaux-Petel, Mariette; Mariette, Renaux-Petel

    2015-10-01

    Pyogenic sacroiliitis is exceptional in very young children. Diagnosis is difficult because clinical examination is misleading. FABER test is rarely helpful in very young children. Inflammatory syndrome is frequent. Bone scintigraphy and MRI are very sensitive for the diagnosis. Joint fluid aspiration and blood cultures are useful to identify the pathogen. Appropriate antibiotic therapy provides rapid regression of symptoms and healing. We report the case of pyogenic sacroiliitis in a 13-month-old child.Clinical, biological, and imaging data of this case were reviewed and reported retrospectively.A 13-month-old girl consulted for decreased weight bearing without fever or trauma. Clinical examination was not helpful. There was an inflammatory syndrome. Bone scintigraphy found a sacroiliitis, confirmed on MRI. Aspiration of the sacroiliac joint was performed. Empiric intravenous biantibiotic therapy was started. Patient rapidly recovered full weight bearing. On the 5th day, clinical examination and biological analysis returned to normal. Intravenous antibiotic therapy was switched for oral. One month later, clinical examination and biological analysis were normal and antibiotic therapy was stopped.Hematogenous osteoarticular infections are common in children but pyogenic sacroiliitis is rare and mainly affects older children. Diagnosis can be difficult because clinical examination is poor. Moreover, limping and decreased weight bearing are very common reasons for consultation. This may delay the diagnosis or refer misdiagnosis. Bone scintigraphy is useful to locate a bone or joint disease responsible for limping. In this observation, bone scintigraphy located the infection at the sacroiliac joint. Given the young age, MRI was performed to confirm the diagnosis. Despite the very young age of the patient, symptoms rapidly disappeared with appropriate antibiotic therapy.We report the case of pyogenic sacroiliitis in a 13-month-old child. It reminds the risk of

  15. [Pheochromocytoma presenting with secondary enuresis in a 13-year-old girl].

    PubMed

    Zoido Garrote, Elia; Fernández Fernández, Marta; Álvarez Cañas, María C; García Aparicio, Cristina; Revilla Orias, María D; Martínez Badás, Juan P

    2017-08-01

    Pheochromocytoma is a rare tumor which is infrequent in children. Although the clinical presentation in children can be atypical, the classic symptoms are headache, sweating and tachycardia. Hypertension is often a constant sign in most patients. There are few cases in literature reporting pheochromocytoma presented with polyuria. We present a 13-year-old girl who came to the Pediatric Nephrologist due to a year of evolution of secondary enuresis. When her blood pressure was taken, she was above the 99th percentile that corresponds to her age and her height that is why she was admitted for treatment and diagnostic study. Sociedad Argentina de Pediatría.

  16. Bilateral xanthogranulomatous funiculitis and orchiepididymitis in a 13-year-old adolescent boy.

    PubMed

    Repetto, Paolo; Bianchini, Maria Anastasia; Ceccarelli, Pier Luca; Roncati, Luca; Durante, Viviana; Biondini, Diego; Maiorana, Antonio; Barbolini, Giuseppe; Cacciari, Alfredo

    2012-10-01

    Xanthogranulomatous orchitis is an extremely rare inflammatory nonneoplastic lesion of the testis. We report a case of a 13-year-old adolescent boy who presented a painless left hemiscrotal swelling. The subsequent ultrasonography and magnetic resonance imaging revealed the presence of abnormal expanding tissue located in both testes and spermatic cord, reaching the internal inguinal ring. Testicular tumor markers were normal. The frozen section examination of the surgical specimen showed only inflammatory tissue and not neoplastic tissue. No orchiectomy was performed. Definitive histopathologic diagnosis was xanthogranulomatous inflammation. To our knowledge, this is the youngest case of xanthogranulomatous orchiepididymitis and funiculitis found in medical literature.

  17. Ethics and the proposed treatment for a 13-year-old with atypical gender identity.

    PubMed

    Spriggs, Merle P

    2004-09-20

    The case of a 13-year-old girl given permission by the Family Court of Australia to begin a sex-change process involves complex issues. Nevertheless, the ethical justification for the decision is not complicated. In this case, it can be argued that the net benefit eclipses concerns about competence, autonomy and the appropriateness of the intervention. The debate this case generated in the media reminds us that one of the essential tasks in ethics debates is to get our facts straight.

  18. Complex Hallucinations and Panic Attacks in a 13-Year-Old with Migraines

    PubMed Central

    Bernard, Paul

    2013-01-01

    This case report describes a 13-year-old girl whose family requested a referral from the pediatrician for Child and Adolescent Mental Health Services in order to understand her recent onset of bizarre behavior. On assessment, she was found to have episodes of complex audiovisual hallucinations and panic attacks with intervals of complete recovery associated with episodes of migraine headaches. The “Alice in Wonderland Syndrome,” which is intimately associated with migraine and epilepsy, as well as a number of other neurological conditions, could explain her episodic neurobehavioral disturbance. PMID:23441026

  19. Acute basilar artery dissection treated by emergency stenting in a 13-year-old boy.

    PubMed

    Komiyama, Masaki; Yoshimura, Masaki; Honnda, Yuji; Matsusaka, Yasuhiro; Yasui, Toshihiro

    2005-01-01

    We report a 13-year-old boy who presented with acute basilar artery occlusion due to traumatic arterial dissection. Because a grave prognosis was expected if left untreated, and the chance of neurological recovery was believed to be unlikely but not zero, given that emergency stenting for the dissection was performed within 6 h of ictus. Recanalization of the basilar artery with stent placement did not change the poor prognosis in this patient because there was extension of dissection into the posterior cerebral arteries. Copyright (c) 2005 S. Karger AG, Basel.

  20. Functional specializations of intestinal dendritic cell and macrophage subsets that control Th17 and regulatory T cell responses are dependent on the T cell/APC ratio, source of mouse strain, and regional localization.

    PubMed

    Denning, Timothy L; Norris, Brian A; Medina-Contreras, Oscar; Manicassamy, Santhakumar; Geem, Duke; Madan, Rajat; Karp, Christopher L; Pulendran, Bali

    2011-07-15

    Although several subsets of intestinal APCs have been described, there has been no systematic evaluation of their phenotypes, functions, and regional localization to date. In this article, we used 10-color flow cytometry to define the major APC subsets in the small and large intestine lamina propria. Lamina propria APCs could be subdivided into CD11c(+)CD11b(-), CD11c(+)CD11b(+), and CD11c(dull)CD11b(+) subsets. CD11c(+)CD11b(-) cells were largely CD103(+)F4/80(-) dendritic cells (DCs), whereas the CD11c(+)CD11b(+) subset comprised CD11c(+)CD11b(+)CD103(+)F4/80(-) DCs and CD11c(+)CD11b(+)CD103(-)F4/80(+) macrophage-like cells. The majority of CD11c(dull)CD11b(+) cells were CD103(-)F4/80(+) macrophages. Although macrophages were more efficient at inducing Foxp3(+) regulatory T (T(reg)) cells than DCs, at higher T cell/APC ratios, all of the DC subsets efficiently induced Foxp3(+) T(reg) cells. In contrast, only CD11c(+)CD11b(+)CD103(+) DCs efficiently induced Th17 cells. Consistent with this, the regional distribution of CD11c(+)CD11b(+)CD103(+) DCs correlated with that of Th17 cells, with duodenum > jejunum > ileum > colon. Conversely, CD11c(+)CD11b(-)CD103(+) DCs, macrophages, and Foxp3(+) T(reg) cells were most abundant in the colon and scarce in the duodenum. Importantly, however, the ability of DC and macrophage subsets to induce Foxp3(+) T(reg) cells versus Th17 cells was strikingly dependent on the source of the mouse strain. Thus, DCs from C57BL/6 mice from Charles River Laboratories (that have segmented filamentous bacteria, which induce robust levels of Th17 cells in situ) were more efficient at inducing Th17 cells and less efficient at inducing Foxp3(+) T(reg) cells than DCs from B6 mice from The Jackson Laboratory. Thus, the functional specializations of APC subsets in the intestine are dependent on the T cell/APC ratio, regional localization, and source of the mouse strain.

  1. Expression of cytochrome P450 2A13 in human non-small cell lung cancer and its clinical significance

    PubMed Central

    Sun, Li; Fan, Xiaoli

    2013-01-01

    Lung cancer is one of the most important causes of cancer-related mortality worldwide. Human cytochrome P450 2A13 enzyme (CYP2A13) is predominantly expressed in the respiratory tract and could catalyze various carcinogens. In this study, we quantified CYP2A13 expression in non-small cell lung cancer (NSCLC) tissues and examined the relation between CYP2A13 and clinicopathologic factors. Thirty-five paired lung cancer and normal tissues were studied for the expression of the CYP2A13 gene by using real-time PCR and Western blotting assays. We also investigated the relationship between CYP2A13 expression and clinicopathologic factors such as age, gender, histology and lymph node status in tumor tissues. SPSS (17.0) statistical software was applied for data analysis. The real-time PCR results showed that there was no significant difference in the CYP2A13 mRNA transcript levels between tumor and paired normal tissues in the 35 samples and in 12 paired squamous cell carcinomas. In adenocarcinoma, the expression of CYP2A13 mRNA in tumor tissues was 12.5% of that in adjacent tissues (P < 0.05) and it was not associated with age, gender, histology and lymph node status of the patients. The amounts of CYP2A13 proteins detected by Western blotting assays correlated well with those of the corresponding mRNAs. In conclusion, the expression of CYP2A13 was downregulated in lung adenocarcinoma. CYP2A13 may be involved in the development and progression of lung adenocarcinoma. PMID:23720675

  2. Mouse intragastric infusion (iG) model

    PubMed Central

    Ueno, Akiko; Lazaro, Raul; Wang, Ping-Yen; Higashiyama, Reiichi; Machida, Keigo; Tsukamoto, Hidekazu

    2014-01-01

    Direct intragastric delivery of a diet, nutrient or test substance can be achieved in rodents (mice and rats) on a long-term (2–3 months) basis using a chronically implanted gastrostomy catheter and a flow-through swivel system. This rodent intragastric infusion (iG) model has broad applications in research on food intake, gastrointestinal (GI) physiology, GI neuroendocrinology, drug metabolism and toxicity, obesity and liver disease. It achieves maximal control over the rate and pattern of delivery and it can be combined with normal ad libitum feeding of solid diet if so desired. It may be adopted to achieve infusion at other sites of the GI system to test the role of a bypassed GI segment in neuroendocrine physiology, and its use in genetic mouse models facilitates the genetic analysis of a central question under investigation. PMID:22461066

  3. Placental copper transport in the brindled mouse

    SciTech Connect

    Garnica, A.; Bates, J.

    1986-03-01

    Pregnant brindled (brin) mice were injected at 16 or 19 days gestation with 2 doses of CuCl/sub 2/ 6 mcg/g/dose, separated by 12 h, and sacrificed 6 h after the second. The copper conc. in placenta (P) and kidneys (K) of uninjected (UI) brin mice were higher than in UI controls, while conc. in liver (L) and fetal carcass (F) were lower. After injection (I), placental copper conc. increased while the carcass conc. remained unchanged. Brin mouse is a model for the human inborn error of copper metabolism, Menkes syndrome, which is characterized by signs of copper deficiency. These data indicate that metabolism of copper in brin fetus is abnormal, but depressed fetal copper levels cannot be corrected by acute copper dosing because of the sequestration of copper in placenta.

  4. A Transgenic Mouse Model of Poliomyelitis.

    PubMed

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  5. Purification, biochemical characterization, and genetic cloning of the phytase produced by Burkholderia sp. strain a13.

    PubMed

    Graminho, Eduardo Rezende; Takaya, Naoki; Nakamura, Akira; Hoshino, Takayuki

    2015-01-01

    A phytase-producing bacterium, Burkholderia sp. a13 (JCM 30421), was isolated from Lake Kasumigaura by enrichment cultivation using minimum medium containing phytic acid as the sole phosphorus source. The phytase production by strain a13 was induced by the presence of phytic acid and repressed by the addition of glucose. The purified enzyme had a molecular weight of 44 kDa and a phytase activity of 174 μmol min(-1) mg(-1). The enzyme showed broad substrate specificity, but the highest activity was observed with phytic acid. The enzyme activity was strongly inhibited by Cu(2+), Zn(2+), Hg(2+), and iodoacetic acid, indicating the requirement of a thiol group for the activity. Genetic cloning reveals that the mature portion of this enzyme consists of 428 amino acids with a calculated molecular weight of 46 kDa. The amino acid sequence showed the highest similarity to the phytase produced by Hafnia alvei with 48% identity; it also contained histidine acid phosphatase (HAP) motifs (RHGXRXP and HD), indicating the classification of this enzyme in the HAP phytase family. We have successfully expressed the cloned gene in Escherichia coli from its putative initiation codon, showing that the gene actually encodes the phytase.

  6. Physical restraint deaths in a 13-year national cohort of nursing home residents.

    PubMed

    Bellenger, Emma; Ibrahim, Joseph Elias; Bugeja, Lyndal; Kennedy, Briohny

    2017-07-01

    this paper aims to investigate the nature and extent of physical restraint deaths reported to Coroners in Australia over a 13-year period. the study comprised a retrospective cohort study of residents dwelling in accredited nursing homes in Australia whose deaths were reported to the Coroners between 1 July 2000 and 30 June 2013 and was attributed to physical restraint. five deaths in nursing home residents due to physical restraint were reported in Australia over a 13-year period. The median age of residents was 83 years; all residents had impaired mobility and had restraints applied for falls prevention. Neck compression and entrapment by the restraints was the mechanism of harm in all cases, resulting in restraint asphyxia and mechanical asphyxia, respectively. this national study confirms that the use of physical restraint does cause fatalities, although rare. Further research is still needed to identify which alternatives strategies to restraint are most effective, and to examine the reporting system for physical restraint-related deaths.

  7. Disseminated Histoplasmosis in a 13-year-old girl: a case report.

    PubMed

    Ubesie, A C; Okafo, O C; Ibeziako, N S; Onukwuli, V O; Mbanefo, N R; Uzoigwe, J C; Bede, C; Ibe, B C

    2013-06-01

    Disseminated histoplasmosis is a rare fungal infection and most documented cases are in immune-compromised individuals such as those with acquired immuno-deficiency syndrome. To describe a case of disseminated histoplasmosis in an adolescent girl. We report a case of disseminated histoplasmosis in a 13-year-old adolescent girl. She was admitted for 16 days because of neck masses of 3 years duration, generalized body swelling of 3 months and reduction in urinary output of 2 months. She tested negative for human immunodeficiency virus antibodies. An autopsy was performed because a definitive diagnosis could not be made while the patient was still alive. The autopsy revealed central caseating areas in the lymph nodes and membranoproliferative glomerulonephritis. The periodic acid-Schiff staining technique for tissues showed viable yeast cells suggestive of histoplasmosis. Zeihl-Neelsen's staining for mycobacteria tuberculosis was negative. Undiagnosed case of disseminated histoplasmosis while the patient was alive is being reported in a 13-year-old girl. Disseminated histoplasmosis should be considered as a differential diagnosis of childhood chronic infections and malignancies as in Nigeria.

  8. Methods of in-vivo mouse lung micro-CT

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Nixon, Earl; Thiesse, Jacqueline; McLennan, Geoffrey; Ross, Alan; Hoffman, Eric

    2005-04-01

    Micro-CT will have a profound influence on the accumulation of anatomical and physiological phenotypic changes in natural and transgenetic mouse models. Longitudinal studies will be greatly facilitated, allowing for a more complete and accurate description of events if in-vivo studies are accomplished. The purpose of the ongoing project is to establish a feasible and reproducible setup for in-vivo mouse lung micro-computed tomography (μCT). We seek to use in-vivo respiratory-gated μCT to follow mouse models of lung disease with subsequent recovery of the mouse. Methodologies for optimizing scanning parameters and gating for the in-vivo mouse lung are presented. A Scireq flexiVent ventilated the gas-anesthetized mice at 60 breaths/minute, 30 cm H20 PEEP, 30 ml/kg tidal volume and provided a respiratory signal to gate a Skyscan 1076 μCT. Physiologic monitoring allowed the control of vital functions and quality of anesthesia, e.g. via ECG monitoring. In contrary to longer exposure times with ex-vivo scans, scan times for in-vivo were reduced using 35μm pixel size, 158ms exposure time and 18μm pixel size, 316ms exposure time to reduce motion artifacts. Gating via spontaneous breathing was also tested. Optimal contrast resolution was achieved at 50kVp, 200μA, applying an aluminum filter (0.5mm). There were minimal non-cardiac related motion artifacts. Both 35μm and 1μm voxel size images were suitable for evaluation of the airway lumen and parenchymal density. Total scan times were 30 and 65 minutes respectively. The mice recovered following scanning protocols. In-vivo lung scanning with recovery of the mouse delivered reasonable image quality for longitudinal studies, e.g. mouse asthma models. After examining 10 mice, we conclude μCT is a feasible tool evaluating mouse models of lung pathology in longitudinal studies with increasing anatomic detail available for evaluation as one moves from in-vivo to ex-vivo studies. Further developments include automated

  9. Transcription of the catalytic 180-kDa subunit gene of mouse DNA polymerase alpha is controlled by E2F, an Ets-related transcription factor, and Sp1.

    PubMed

    Izumi, M; Yokoi, M; Nishikawa, N S; Miyazawa, H; Sugino, A; Yamagishi, M; Yamaguchi, M; Matsukage, A; Yatagai, F; Hanaoka, F

    2000-07-24

    We have isolated a genomic DNA fragment spanning the 5'-end of the gene encoding the catalytic subunit of mouse DNA polymerase alpha. The nucleotide sequence of the upstream region was G/C-rich and lacked a TATA box. Transient expression assays in cycling NIH 3T3 cells demonstrated that the GC box of 20 bp (at nucleotides -112/-93 with respect to the transcription initiation site) and the palindromic sequence of 14 bp (at nucleotides -71/-58) were essential for basal promoter activity. Electrophoretic mobility shift assays showed that Sp1 binds to the GC box. We also purified a protein capable of binding to the palindrome and identified it as GA-binding protein (GABP), an Ets- and Notch-related transcription factor. Transient expression assays in synchronized NIH 3T3 cells revealed that three variant E2F sites near the transcription initiation site (at nucleotides -23/-16, -1/+7 and +17/+29) had no basal promoter activity by themselves, but were essential for growth-dependent stimulation of the gene expression. These data indicate that E2F, GABP and Sp1 regulate the gene expression of this principal replication enzyme.

  10. Vitrification solution without sucrose for cryopreservation in mouse blastocysts.

    PubMed

    Joo, Jong Kil; Lee, Young Ju; Jeong, Ju Eun; Kim, Seung Chul; Ko, Gyoung Rae; Lee, Kyu Sup

    2014-09-01

    This study was designed to investigate the survival rate of vitrified mouse blastocysts depending on the presence or absence of sucrose in vitrification solution. Mouse two-cell embryos were collected and cultured to blastocysts. Two vitrification solutions were prepared. The control solution was composed of 25% glycerol, 25% ethylene glycol, and 0.5 M sucrose (G25E250.5S) containing 2.5 mL glycerol, 2.5 mL ethylene glycol, 2 mL SSS, and 0.855 g sucrose in 5 mL PB1. The experimental solution was composed of 25% glycerol and 25% ethylene glycol (G25E25) and contained 2.5 mL glycerol and 2.5 mL ethylene glycol in 5 mL PB1. Artificial shrinkage was conducted by aspirating the blastocoelic fluid using an ICSI pipette. To examine the effect of sucrose in the vitrification solution on the survival rate of mouse blastocysts, the shrunken-equilibrated blastocysts were rehydrated or vitrified after being exposed to one of the two vitrification solutions. After exposure and the vitrification-thawing process, the re-expansion rate and hatching rate were evaluated after 6 hours of in vitro culture. The re-expansion rate of mouse blastocysts exposed to vitrification solution with and without sucrose were not different in the experimental solution (without sucrose) (98%) and the control solution (with sucrose) (92%) (p>0.05). The hatching rate was higher in the experimental solution (95%) than in the control solution (88%), but did not differ across two treatments (p>0.05). The re-expansion rate of mouse blastocysts vitrified in the control solution was 92% and 94%, respectively (p>0.05), and the hatching rate was higher in the experimental solution (90%) than in the control solution (74%) (p<0.05). Sucrose need not be added in vitrification solution for freezing of artificially shrunken mouse blastocysts.

  11. Aging Research Using Mouse Models.

    PubMed

    Ackert-Bicknell, Cheryl L; Anderson, Laura C; Sheehan, Susan; Hill, Warren G; Chang, Bo; Churchill, Gary A; Chesler, Elissa J; Korstanje, Ron; Peters, Luanne L

    2015-06-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in "health-span," or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, and immune function, as well as physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process.

  12. Mouse Models of Human Phenylketonuria

    PubMed Central

    Shedlovsky, A.; McDonald, J. D.; Symula, D.; Dove, W. F.

    1993-01-01

    Phenylketonuria (PKU) results from a deficiency in phenylalanine hydroxylase, the enzyme catalyzing the conversion of phenylalanine (PHE) to tyrosine. Although this inborn error of metabolism was among the first in humans to be understood biochemically and genetically, little is known of the mechanism(s) involved in the pathology of PKU. We have combined mouse germline mutagenesis with screens for hyperphenylalaninemia to isolate three mutants deficient in phenylalanine hydroxylase (PAH) activity and cross-reactive protein. Two of these have reduced PAH mRNA and display characteristics of untreated human PKU patients. A low PHE diet partially reverses these abnormalities. Our success in using high frequency random germline point mutagenesis to obtain appropriate disease models illustrates how such mutagenesis can complement the emergent power of targeted mutagenesis in the mouse. The mutants now can be used as models in studying both maternal PKU and somatic gene therapy. PMID:8375656

  13. Aging Research Using Mouse Models

    PubMed Central

    Ackert-Bicknell, Cheryl L.; Anderson, Laura; Sheehan, Susan; Hill, Warren G.; Chang, Bo; Churchill, Gary A.; Chesler, Elissa J.; Korstanje, Ron; Peters, Luanne L.

    2015-01-01

    Despite the dramatic increase in human lifespan over the past century, there remains pronounced variability in “health-span”, or the period of time in which one is generally healthy and free of disease. Much of the variability in health-span and lifespan is thought to be genetic in origin. Understanding the genetic mechanisms of aging and identifying ways to boost longevity is a primary goal in aging research. Here, we describe a pipeline of phenotypic assays for assessing mouse models of aging. This pipeline includes behavior/cognition testing, body composition analysis, and tests of kidney function, hematopoiesis, immune function and physical parameters. We also describe study design methods for assessing lifespan and health-span, and other important considerations when conducting aging research in the laboratory mouse. The tools and assays provided can assist researchers with understanding the correlative relationships between age-associated phenotypes and, ultimately, the role of specific genes in the aging process. PMID:26069080

  14. Evidence for a mouse pathogenicity locus in certain temperature-sensitive mutants of foot-and-mouth disease virus.

    PubMed Central

    Richmond, J Y

    1977-01-01

    Serial tissue culture passaging of three foot-and-mouth disease temperature-sensitive mutants demonstrated the stability of their temperature sensitivity and mouse avirulence characteristics. Recovery of mouse-virulent temperature-sensitive viruses after passage of the mutants in mice suggested that these were not covariant expressions of the same locus, but were under the control of different genes. PMID:197007

  15. Biological and metabolic response in STS-135 space-flown mouse skin.

    PubMed

    Mao, X W; Pecaut, M J; Stodieck, L S; Ferguson, V L; Bateman, T A; Bouxsein, M L; Gridley, D S

    2014-08-01

    There is evidence that space flight condition-induced biological damage is associated with increased oxidative stress and extracellular matrix (ECM) remodeling. To explore possible mechanisms, changes in gene expression profiles implicated in oxidative stress and in ECM remodeling in mouse skin were examined after space flight. The metabolic effects of space flight in skin tissues were also characterized. Space Shuttle Atlantis (STS-135) was launched at the Kennedy Space Center on a 13-day mission. Female C57BL/6 mice were flown in the STS-135 using animal enclosure modules (AEMs). Within 3-5 h after landing, the mice were euthanized and skin samples were harvested for gene array analysis and metabolic biochemical assays. Many genes responsible for regulating production and metabolism of reactive oxygen species (ROS) were significantly (p < 0.05) altered in the flight group, with fold changes >1.5 compared to AEM control. For ECM profile, several genes encoding matrix and metalloproteinases involved in ECM remodeling were significantly up-/down-regulated following space flight. To characterize the metabolic effects of space flight, global biochemical profiles were evaluated. Of 332 named biochemicals, 19 differed significantly (p < 0.05) between space flight skin samples and AEM ground controls, with 12 up-regulated and 7 down-regulated including altered amino acid, carbohydrate metabolism, cell signaling, and transmethylation pathways. Collectively, the data demonstrated that space flight condition leads to a shift in biological and metabolic homeostasis as the consequence of increased regulation in cellular antioxidants, ROS production, and tissue remodeling. This indicates that astronauts may be at increased risk for pathophysiologic damage or carcinogenesis in cutaneous tissue.

  16. Dietary manipulation of mouse metabolism.

    PubMed

    Feige, Jérôme N; Lagouge, Marie; Auwerx, Johan

    2008-10-01

    The maintenance of metabolic homeostasis relies on the balanced intake of nutrients from food. Consequently, diet composition strongly impacts whole-body physiology. Dietary formulations with strong nutrient imbalances can lead to metabolic disorders, with lipids and simple sugars playing a prominent role. This unit describes how diet formulation can be modified to generate mouse models of human metabolic pathologies, and it details methodological procedures linked to dietary manipulations, including caloric restriction and introduction of a test compound.

  17. In vivo microinjection and electroporation of mouse testis.

    PubMed

    Michaelis, Marten; Sobczak, Alexander; Weitzel, Joachim M

    2014-08-23

    This video and article contribution gives a comprehensive description of microinjection and electroporation of mouse testis in vivo. This particular transfection technique for testicular mouse cells allows the study of unique processes in spermatogenesis. The following protocol focuses on transfection of testicular mouse cells with plasmid constructs. Specifically, we used the reporter vector pEGFP-C1, which expresses enhanced green fluorescent protein (eGFP) and also the pDsRed2-N1 vector expressing red fluorescent protein (DsRed2). Both encoded reporter genes were under the control of the human cytomegalovirus immediate-early promoter (CMV). For performing gene transfer into mouse testes, the reporter plasmid constructs are injected into testes of living mice. To that end, the testis of an anaesthetized animal is exposed and the site of microinjection is prepared. Our preferred place of injection is the efferent duct, with the ultimately connected rete testis as the anatomical transport route of the spermatozoa between the testis and the epididymis. In this way, the filling of the seminiferous tubules after microinjection is excellently managed and controlled due to the use of stained DNA solutions. After observing a sufficient filling of the testis by its colored tubule structure, the organ is electroporated. This enables the transfer of the DNA solution into the testicular cells. Following 3 days of incubation, the testis is removed and investigated under the microscope for green or red fluorescence, illustrating transfection success. Generally, this protocol can be employed for delivering DNA- or RNA- constructs into living mouse testis in order to (over)express or knock down genes, facilitating in vivo gene function analysis. Furthermore, it is suitable for studying reporter constructs or putative gene regulatory elements. Thus, the main advantages of the electroporation technique are fast performance in combination with low effort as well as the moderate

  18. 42 CFR 68a.13 - Under what circumstances can the service or payment obligation be canceled, waived, or suspended?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Under what circumstances can the service or payment obligation be canceled, waived, or suspended? 68a.13 Section 68a.13 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH...

  19. 42 CFR 68a.13 - Under what circumstances can the service or payment obligation be canceled, waived, or suspended?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Under what circumstances can the service or payment obligation be canceled, waived, or suspended? 68a.13 Section 68a.13 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH...

  20. 42 CFR 68a.13 - Under what circumstances can the service or payment obligation be canceled, waived, or suspended?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Under what circumstances can the service or payment obligation be canceled, waived, or suspended? 68a.13 Section 68a.13 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH...

  1. 26 CFR 31.3121(a)(13)-1 - Payments under certain employers' plans after retirement, disability, or death.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...' plans after retirement, disability, or death. (a) In general. The term “wages” does not include the... 26 Internal Revenue 15 2012-04-01 2012-04-01 false Payments under certain employers' plans after retirement, disability, or death. 31.3121(a)(13)-1 Section 31.3121(a)(13)-1 Internal Revenue INTERNAL...

  2. 26 CFR 31.3121(a)(13)-1 - Payments under certain employers' plans after retirement, disability, or death.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...' plans after retirement, disability, or death. (a) In general. The term “wages” does not include the... 26 Internal Revenue 15 2014-04-01 2014-04-01 false Payments under certain employers' plans after retirement, disability, or death. 31.3121(a)(13)-1 Section 31.3121(a)(13)-1 Internal Revenue INTERNAL...

  3. 26 CFR 31.3121(a)(13)-1 - Payments under certain employers' plans after retirement, disability, or death.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...' plans after retirement, disability, or death. (a) In general. The term “wages” does not include the... 26 Internal Revenue 15 2013-04-01 2013-04-01 false Payments under certain employers' plans after retirement, disability, or death. 31.3121(a)(13)-1 Section 31.3121(a)(13)-1 Internal Revenue INTERNAL...

  4. 26 CFR 31.3121(a)(13)-1 - Payments under certain employers' plans after retirement, disability, or death.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...' plans after retirement, disability, or death. (a) In general. The term “wages” does not include the... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Payments under certain employers' plans after retirement, disability, or death. 31.3121(a)(13)-1 Section 31.3121(a)(13)-1 Internal Revenue INTERNAL...

  5. 26 CFR 31.3121(a)(13)-1 - Payments under certain employers' plans after retirement, disability, or death.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...' plans after retirement, disability, or death. (a) In general. The term “wages” does not include the... 26 Internal Revenue 15 2011-04-01 2011-04-01 false Payments under certain employers' plans after retirement, disability, or death. 31.3121(a)(13)-1 Section 31.3121(a)(13)-1 Internal Revenue INTERNAL...

  6. Mouse Models of Gastric Cancer

    PubMed Central

    Hayakawa, Yoku; Fox, James G.; Gonda, Tamas; Worthley, Daniel L.; Muthupalani, Sureshkumar; Wang, Timothy C.

    2013-01-01

    Animal models have greatly enriched our understanding of the molecular mechanisms of numerous types of cancers. Gastric cancer is one of the most common cancers worldwide, with a poor prognosis and high incidence of drug-resistance. However, most inbred strains of mice have proven resistant to gastric carcinogenesis. To establish useful models which mimic human gastric cancer phenotypes, investigators have utilized animals infected with Helicobacter species and treated with carcinogens. In addition, by exploiting genetic engineering, a variety of transgenic and knockout mouse models of gastric cancer have emerged, such as INS-GAS mice and TFF1 knockout mice. Investigators have used the combination of carcinogens and gene alteration to accelerate gastric cancer development, but rarely do mouse models show an aggressive and metastatic gastric cancer phenotype that could be relevant to preclinical studies, which may require more specific targeting of gastric progenitor cells. Here, we review current gastric carcinogenesis mouse models and provide our future perspectives on this field. PMID:24216700

  7. Retinofugal Projections in the Mouse

    PubMed Central

    Morin, Lawrence P.; Studholme, Keith M.

    2014-01-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species’ visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 Am free floating sections with diaminobenzidine as the chromogen. The mouse retina projects to approximately 46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition. PMID:24889098

  8. Retinofugal projections in the mouse.

    PubMed

    Morin, Lawrence P; Studholme, Keith M

    2014-11-01

    The laboratory mouse is increasingly a subject for visual system investigation, but there has been no comprehensive evaluation of this species' visual projections. Here, projections were visualized and mapped following intraocular injection of cholera toxin B subunit. Tissue was processed using standard procedures applied to 30 μm free-floating sections with diaminobenzidine as the chromogen. The mouse retina projects to ~46 brain regions, including 14 not previously described in this species. These include two amygdaloid nuclei, the horizontal limb of the diagonal band, the paraventricular hypothalamic nucleus, several visual thalamic nuclei, the paranigral nucleus, several pretectal nuclei, and the dorsal cortex of the inferior colliculus. Dense retinal patches were also observed in a narrow portion of the ipsilateral intermediate layer of the superior colliculus. The superior fasciculus of the accessory optic tract, which innervates the medial terminal nucleus, was also determined to be a terminal zone throughout its length. The results are compared with previous descriptions of projections from mouse intrinsically photoreceptive retinal ganglion cells, and with data from the hamster, Nile grass rat, and laboratory rat. The retinal projection patterns are similar in all four species, although there are many differences with respect to the details. The specific visual functions of most retinorecipient areas are unknown, but there is substantial convergence of retinal projections onto regions concerned with olfaction and audition.

  9. Mouse models of frontotemporal dementia.

    PubMed

    Roberson, Erik D

    2012-12-01

    The pace of discovery in frontotemporal dementia (FTD) has accelerated dramatically with the discovery of new genetic causes and pathological substrates of the disease. MAPT/tau, GRN/progranulin, and C9ORF72 have emerged as common FTD genes, and TARDBP/TDP-43, VCP, FUS, and CHMP2B have been identified as less common genetic causes. TDP-43 and FUS have joined tau as common neuropathological substrates of the disease. Mouse models provide an important tool for understanding the role of these molecules in FTD pathogenesis. Here, we review recent progress with mouse models based on tau, TDP-43, progranulin, VCP, and CHMP2B. We also consider future prospects for FTD models, including developing new models to address unanswered questions. There are also opportunities for capitalizing on conservation of the salience network, which is selectively vulnerable in FTD, and the availability of FTD-related behavioral paradigms to analyze mouse models of the disease. Copyright © 2012 American Neurological Association.

  10. Localization and regulation of mouse pantothenate kinase 2 [The PanK2 Genes of Mouse and Human Specify Proteins with Distinct Subcellular Locations

    SciTech Connect

    Leonardi, Roberta; Zhang, Yong-Mei; Lykidis, Athanasios; Rock, Charles O.; Jackowski, Suzanne

    2007-09-07

    Coenzyme A (CoA) biosynthesis is initiated by pantothenatekinase (PanK) and CoA levels are controlled through differentialexpression and feedback regulation of PanK isoforms. PanK2 is amitochondrial protein in humans, but comparative genomics revealed thatacquisition of a mitochondrial targeting signal was limited to primates.Human and mouse PanK2 possessed similar biochemical properties, withinhibition by acetylCoA and activation by palmitoylcarnitine. Mouse PanK2localized in the cytosol, and the expression of PanK2 was higher in humanbrain compared to mouse brain. Differences in expression and subcellularlocalization should be considered in developing a mouse model for humanPanK2 deficiency.

  11. Ground-based assessment of JAXA mouse habitat cage unit by mouse phenotypic studies

    PubMed Central

    Shimbo, Miki; Kudo, Takashi; Hamada, Michito; Jeon, Hyojung; Imamura, Yuki; Asano, Keigo; Okada, Risa; Tsunakawa, Yuki; Mizuno, Seiya; Yagami, Ken-ichi; Ishikawa, Chihiro; Li, Haiyan; Shiga, Takashi; Ishida, Junji; Hamada, Juri; Murata, Kazuya; Ishimaru, Tomohiro; Hashimoto, Misuzu; Fukamizu, Akiyoshi; Yamane, Mutsumi; Ikawa, Masahito; Morita, Hironobu; Shinohara, Masahiro; Asahara, Hiroshi; Akiyama, Taishin; Akiyama, Nobuko; Sasanuma, Hiroki; Yoshida, Nobuaki; Zhou, Rui; Wang, Ying-Ying; Ito, Taito; Kokubu, Yuko; Noguchi, Taka-aki K.; Ishimine, Hisako; Kurisaki, Akira; Shiba, Dai; Mizuno, Hiroyasu; Shirakawa, Masaki; Ito, Naoki; Takeda, Shin; Takahashi, Satoru

    2016-01-01

    The Japan Aerospace Exploration Agency developed the mouse Habitat Cage Unit (HCU) for installation in the Cell Biology Experiment Facility (CBEF) onboard the Japanese Experimental Module (“Kibo”) on the International Space Station. The CBEF provides “space-based controls” by generating artificial gravity in the HCU through a centrifuge, enabling a comparison of the biological consequences of microgravity and artificial gravity of 1 g on mice housed in space. Therefore, prior to the space experiment, a ground-based study to validate the habitability of the HCU is necessary to conduct space experiments using the HCU in the CBEF. Here, we investigated the ground-based effect of a 32-day housing period in the HCU breadboard model on male mice in comparison with the control cage mice. Morphology of skeletal muscle, the thymus, heart, and kidney, and the sperm function showed no critical abnormalities between the control mice and HCU mice. Slight but significant changes caused by the HCU itself were observed, including decreased body weight, increased weights of the thymus and gastrocnemius, reduced thickness of cortical bone of the femur, and several gene expressions from 11 tissues. Results suggest that the HCU provides acceptable conditions for mouse phenotypic analysis using CBEF in space, as long as its characteristic features are considered. Thus, the HCU is a feasible device for future space experiments. PMID:26822934

  12. Generation of mouse ES cell lines engineered for the forced induction of transcription factors

    PubMed Central

    Correa-Cerro, Lina S.; Piao, Yulan; Sharov, Alexei A.; Nishiyama, Akira; Cadet, Jean S.; Yu, Hong; Sharova, Lioudmila V.; Xin, Li; Hoang, Hien G.; Thomas, Marshall; Qian, Yong; Dudekula, Dawood B.; Meyers, Emily; Binder, Bernard Y.; Mowrer, Gregory; Bassey, Uwem; Longo, Dan L.; Schlessinger, David; Ko, Minoru S. H.

    2011-01-01

    Here we report the generation and characterization of 84 mouse ES cell lines with doxycycline-controllable transcription factors (TFs) which, together with the previous 53 lines, cover 7–10% of all TFs encoded in the mouse genome. Global gene expression profiles of all 137 lines after the induction of TFs for 48 hrs can associate each TF with the direction of ES cell differentiation, regulatory pathways, and mouse phenotypes. These cell lines and microarray data provide building blocks for a variety of future biomedical research applications as a community resource. PMID:22355682

  13. From transplantation to transgenics: mouse models of developmental hematopoiesis.

    PubMed

    Schmitt, Christopher E; Lizama, Carlos O; Zovein, Ann C

    2014-08-01

    The mouse is integral to our understanding of hematopoietic biology. Serving as a mammalian model system, the mouse has allowed for the discovery of self-renewing multipotent stem cells, provided functional assays to establish hematopoietic stem cell identity and function, and has become a tool for understanding the differentiation capacity of early hematopoietic progenitors. The advent of genetic technology has strengthened the use of mouse models for identifying critical pathways in hematopoiesis. Full genetic knockout models, tissue-specific gene deletion, and genetic overexpression models create a system for the dissection and identification of critical cellular and genetic processes underlying hematopoiesis. However, the murine model has also introduced perplexity in understanding developmental hematopoiesis. Requisite in utero development paired with circulation has historically made defining sites of origin and expansion in the murine hematopoietic system challenging. However, the genetic accessibility of the mouse as a mammalian system has identified key regulators of hematopoietic development. Technological advances continue to generate extremely powerful tools that when translated to the murine system provide refined in vivo spatial and temporal control of genetic deletion or overexpression. Future advancements may add the ability of reversible genetic manipulation. In this review, we describe the major contributions of the murine model to our understanding of hematopoiesis. Copyright © 2014 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.

  14. A Mouse Geneticist’s Practical Guide to CRISPR Applications

    PubMed Central

    Singh, Priti; Schimenti, John C.; Bolcun-Filas, Ewelina

    2015-01-01

    CRISPR/Cas9 system of RNA-guided genome editing is revolutionizing genetics research in a wide spectrum of organisms. Even for the laboratory mouse, a model that has thrived under the benefits of embryonic stem (ES) cell knockout capabilities for nearly three decades, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 technology enables one to manipulate the genome with unprecedented simplicity and speed. It allows generation of null, conditional, precisely mutated, reporter, or tagged alleles in mice. Moreover, it holds promise for other applications beyond genome editing. The crux of this system is the efficient and targeted introduction of DNA breaks that are repaired by any of several pathways in a predictable but not entirely controllable manner. Thus, further optimizations and improvements are being developed. Here, we summarize current applications and provide a practical guide to use the CRISPR/Cas9 system for mouse mutagenesis, based on published reports and our own experiences. We discuss critical points and suggest technical improvements to increase efficiency of RNA-guided genome editing in mouse embryos and address practical problems such as mosaicism in founders, which complicates genotyping and phenotyping. We describe a next-generation sequencing strategy for simultaneous characterization of on- and off-target editing in mice derived from multiple CRISPR experiments. Additionally, we report evidence that elevated frequency of precise, homology-directed editing can be achieved by transient inhibition of the Ligase IV-dependent nonhomologous end-joining pathway in one-celled mouse embryos. PMID:25271304

  15. Contrast Imaging in Mouse Embryos Using High-frequency Ultrasound

    PubMed Central

    Denbeigh, Janet M.; Nixon, Brian A.; Puri, Mira C.; Foster, F. Stuart

    2015-01-01

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior. PMID:25867243

  16. Preimplantation death of xenomitochondrial mouse embryo harbouring bovine mitochondria.

    PubMed

    Kawahara, Manabu; Koyama, Shiori; Iimura, Satomi; Yamazaki, Wataru; Tanaka, Aiko; Kohri, Nanami; Sasaki, Keisuke; Takahashi, Masashi

    2015-09-29

    Mitochondria, cellular organelles playing essential roles in eukaryotic cell metabolism, are thought to have evolved from bacteria. The organization of mtDNA is remarkably uniform across species, reflecting its vital and conserved role in oxidative phosphorylation (OXPHOS). Our objectives were to evaluate the compatibility of xenogeneic mitochondria in the development of preimplantation embryos in mammals. Mouse embryos harbouring bovine mitochondria (mtB-M embryos) were prepared by the cell-fusion technique employing the haemagglutinating virus of Japan (HVJ). The mtB-M embryos showed developmental delay at embryonic days (E) 3.5 after insemination. Furthermore, none of the mtB-M embryos could implant into the maternal uterus after embryo transfer, whereas control mouse embryos into which mitochondria from another mouse had been transferred developed as well as did non-manipulated embryos. When we performed quantitative PCR (qPCR) of mouse and bovine ND5, we found that the mtB-M embryos contained 8.3% of bovine mitochondria at the blastocyst stage. Thus, contamination with mitochondria from another species induces embryonic lethality prior to implantation into the maternal uterus. The heteroplasmic state of these xenogeneic mitochondria could have detrimental effects on preimplantation development, leading to preservation of species-specific mitochondrial integrity in mammals.

  17. Mouse Tumor Biology Database (MTB): status update and future directions.

    PubMed

    Begley, Dale A; Krupke, Debra M; Vincent, Matthew J; Sundberg, John P; Bult, Carol J; Eppig, Janan T

    2007-01-01

    The Mouse Tumor Biology (MTB) database provides access to data about endogenously arising tumors (both spontaneous and induced) in genetically defined mice (inbred, hybrid, mutant and genetically engineered mice). Data include information on the frequency and latency of mouse tumors, pathology reports and images, genomic changes occurring in the tumors, genetic (strain) background and literature or contributor citations. Data are curated from the primary literature or submitted directly from researchers. MTB is accessed via the Mouse Genome Informatics web site (http://www.informatics.jax.org). Integrated searches of MTB are enabled through use of multiple controlled vocabularies and by adherence to standardized nomenclature, when available. Recently MTB has been redesigned and its database infrastructure replaced with a robust relational database management system (RDMS). Web interface improvements include a new advanced query form and enhancements to already existing search capabilities. The Tumor Frequency Grid has been revised to enhance interactivity, providing an overview of reported tumor incidence across mouse strains and an entrée into the database. A new pathology data submission tool allows users to submit, edit and release data to the MTB system.

  18. Contrast imaging in mouse embryos using high-frequency ultrasound.

    PubMed

    Denbeigh, Janet M; Nixon, Brian A; Puri, Mira C; Foster, F Stuart

    2015-03-04

    Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.

  19. Monogenic mouse models of social dysfunction: implications for autism.

    PubMed

    Oddi, D; Crusio, W E; D'Amato, F R; Pietropaolo, S

    2013-08-15

    Autism is a pervasive disorder characterized by a complex symptomatology, based principally on social dysfunction. The disorder has a highly complex, largely genetic etiology, involving an impressive variety of genes, the precise contributions of which still remain to be determined. For this reason, a reductionist approach to the study of autism has been proposed, employing monogenic animal models of social dysfunction, either by targeting a candidate gene, or by mimicking a single-gene disorder characterized by autistic symptoms. In the present review, we discuss this monogenic approach by comparing examples of each strategy: the mu opioid receptor knock-out (KO) mouse line, which targets the opioid system (known to be involved in the control of social behaviors); and the Fmr1-KO mouse, a model for Fragile X syndrome (a neurodevelopmental syndrome that includes autistic symptoms). The autistic-relevant behavioral phenotypes of the mu-opioid and Fmr1-KO mouse lines are described here, summarizing previous work by our research group and others, but also providing novel experimental evidence. Relevant factors influencing the validity of the two models, such as sex differences and age at testing, are also addressed, permitting an extensive evaluation of the advantages and limits of monogenic mouse models for autism. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. XYY syndrome: a 13-year-old boy with tall stature.

    PubMed

    Jo, Won Ha; Jung, Mo Kyung; Kim, Ki Eun; Chae, Hyun Wook; Kim, Duk Hee; Kwon, Ah Reum; Kim, Ho-Seong

    2015-09-01

    When evaluating the underlying causes of tall stature, it is important to differentiate pathologic tall stature from familial tall stature. Various pathologic conditions leading to adult tall stature include excess growth hormone secretion, Marfan syndrome, androgen or estrogen deficiency, testicular feminization, and sex chromosome anomaly, such as Klinefelter syndrome and XYY syndrome. Men with 47,XYY syndrome can exhibit multiple phenotypes. A 13-year-old boy visited the hospital for evaluation of tall stature. The boy had no other physical abnormalities except tall stature. All biochemical and imaging studies were within the normal ranges. He was diagnosed with XYY syndrome in this chromosome study. When evaluating men with tall stature, XYY syndrome should be ruled out.

  1. Measurement of neutral gas temperature in a 13.56 MHz inductively coupled plasma

    SciTech Connect

    Jayapalan, Kanesh K.; Chin, Oi Hoong

    2015-04-24

    Measuring the temperature of neutrals in inductively coupled plasmas (ICP) is important as heating of neutral particles will influence plasma characteristics such as the spatial distributions of plasma density and electron temperature. Neutral gas temperatures were deduced using a non-invasive technique that combines gas actinometry, optical emission spectroscopy and simulation which is described here. Argon gas temperature in a 13.56 MHz ICP were found to fall within the range of 500 − 800 K for input power of 140 − 200 W and pressure of 0.05 − 0.2 mbar. Comparing spectrometers with 0.2 nm and 0.5 nm resolution, improved fitting sensitivity was observed for the 0.2 nm resolution.

  2. A 13-15/21 Translocation Chromosome in Carrier Father and Mongol Son

    PubMed Central

    Sergovich, Frederick R.; Soltan, Hubert C.; Carr, David H.

    1962-01-01

    Cytogenetic and dermatoglyphic features were studied in a family in which the mongoloid propositus inherited a 13-15/21 translocation chromosome from his father. Seven other healthy male carriers scattered throughout the pedigree produced nine chromosomally normal children and five carrier children in addition to the mongoloid propositus. These results show that carrier males do not necessarily produce an unusually large proportion of carrier children as previous reports would indicate. Dermatoglyphic studies showed that translocation carriers in this family have neither significantly more centralized nor less centralized palmar axial triradii than non-carrier relatives. No direct evidence was therefore found for the hypothesis that an allele is present on chromosome 21 which influences the height of the triradius. ImagesFig. 1Fig. 2Fig. 3 PMID:13988069

  3. Chronic recurrent multifocal osteomyelitis in a 13 year old female athlete: a case report

    PubMed Central

    Ferguson, Brad; Gryfe, David; Hsu, William

    2013-01-01

    Chronic recurrent mutlifocal osteomyelitis (CRMO) is an extremely rare skeletal disorder in the younger population. It presents with multifocal bony lesions that often mimic more sinister diagnoses such as infection or neoplasm. The cause of this condition remains unknown and there is limited evidence on effective treatments. In this case, a 13-year-old female athlete presented to a sports chiropractic clinic with non-traumatic onset of right ankle pain. After failed conservative management, radiographs and MRI were obtained exhibiting a bony lesion of the distal tibia resembling osteomyelitis. The patient was non-responsive to antibiotics, which lead to the diagnosis of CRMO. CRMO should be considered as a differential diagnosis for chronic bone pain with affinity for the long bones of the lower extremity in children and adolescents. The role of the primary clinician in cases of CRMO is primarily that of recognition and referral for further diagnostic investigations. PMID:24302781

  4. New-onset diabetic ketoacidosis in a 13-months old african toddler: a case report

    PubMed Central

    Katte, Jean-Claude; Djoumessi, Romance; Njindam, Gisele; Fetse, Gerard Tama; Dehayem, Mesmin; Kengne, Andre-Pascal

    2015-01-01

    Type 1 diabetes mellitus is very rare in infants and toddlers and is usually associated with high mortality when complicated with diabetic ketoacidosis (DKA). Toddlers in DKA are often missed in our typical African setting where there is low index of suspicion. Usually, the classical symptoms are not usually at the forefront and many infants and toddlers who develop DKA are mistreated for infections. The case of a 13-months old toddler with new-onset type 1 diabetes mellitus, complicated with DKA at diagnosis is reported in view of its rarity and elevated mortality even when diagnosed in our African setting. She was subsequently treated with intravenous insulin and was passed over to subcutaneous insulin after the eradication of ketones in urine. She continues follow-up at the out-patient children diabetes clinic at the Bafoussam Regional Hospital. PMID:26966489

  5. A 13-Month-Old With Xanthogranulomatous Pyelonephritis With Features of Renal Malakoplakia

    PubMed Central

    Appleson, Tova; Sharif, Asma; Setty, Suman; Liu, Dennis; Wang, Shihtien; Kanard, Robert; Czech, Kimberly

    2016-01-01

    Xanthogranulomatous pyelonephritis is an uncommon chronic inflammatory renal disorder caused by chronic infection with gram-negative bacteria leading to destruction of the renal parenchyma and replacement with foamy lipid-laden macrophages. Renal malakoplakia is another rare form of chronic inflammatory granulomatous disease in the kidney associated with infection usually occurring in adults with immunocompromised status or debilitating disease. It is hallmarked by the finding of foamy histiocytes with distinctive basophilic inclusions (Michaelis-Gutmann bodies). We present a case of a 13-month-old male with history of congenital hydronephrosis who presented with clinical and radiologic findings suggestive of xanthogranulomatous pyelonephritis. However, further pathologic studies revealed the presence of Michaelis-Gutmann bodies, which are pathognomonic for renal malakoplakia. With this case we hope to bring further evidence to support that these two conditions are not mutually exclusive but rather represent two pathologic processes on the same disease spectrum. PMID:26894199

  6. Biosynthesis of Nudicaulins: A (13) CO2 -pulse/chase labeling study with Papaver nudicaule.

    PubMed

    Tatsis, Evangelos C; Eylert, Eva; Maddula, Ravi Kumar; Ostrozhenkova, Elena; Svatoš, Aleš; Eisenreich, Wolfgang; Schneider, Bernd

    2014-07-21

    Nudicaulins are unique alkaloids responsible for the yellow color of the petals of some papaveraceaous plants. To elucidate the unknown biosynthetic origin of the skeleton, a (13) CO2 -pulse/chase experiment was performed with growing Papaver nudicaule plants. (13) C NMR analysis revealed more than 20 multiple (13) C-enriched isotopologues in nudicaulins from the petals of (13) CO2 -labeled plants. The complex labeling pattern was compared with the isotopologue composition of a kaempferol derivative that was isolated from petals of the same (13) CO2 -labeled plants. The deconvolution of the labeling profiles indicated that the nudicaulin scaffold is assembled from products or intermediates of indole metabolism, the phenylpropanoid pathway, and the polyketide biosynthesis. Naringenin-type compounds and tryptophan/tryptamine are potential substrates for the condensation reaction finally generating the aglycone skeleton of nudicaulins.