Science.gov

Sample records for a1c-derived average glucose

  1. Development of diagnotors based on time-average values of plasma glucose and immunoreactive insulin levels during intravenous glucose tolerance testing

    NASA Astrophysics Data System (ADS)

    Denisova, Tatyana P.; Malinov, Igor A.; Malinova, Lidia I.; Brook, Sergey B.

    2000-04-01

    The diagnostic algorithm of glucose-insulinic violations for the patients with a clinically obvious atherosclerosis of coronary arteries, non-insulin dependent diabetes mellitus and persons with the heritable predisposition to these forms of pathology was designed. The realization of intravenous glucose tolerance test in specially fitted groups of patients served as basis of the algorithm.

  2. Quaternion Averaging

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis; Cheng, Yang; Crassidis, John L.; Oshman, Yaakov

    2007-01-01

    Many applications require an algorithm that averages quaternions in an optimal manner. For example, when combining the quaternion outputs of multiple star trackers having this output capability, it is desirable to properly average the quaternions without recomputing the attitude from the the raw star tracker data. Other applications requiring some sort of optimal quaternion averaging include particle filtering and multiple-model adaptive estimation, where weighted quaternions are used to determine the quaternion estimate. For spacecraft attitude estimation applications, derives an optimal averaging scheme to compute the average of a set of weighted attitude matrices using the singular value decomposition method. Focusing on a 4-dimensional quaternion Gaussian distribution on the unit hypersphere, provides an approach to computing the average quaternion by minimizing a quaternion cost function that is equivalent to the attitude matrix cost function Motivated by and extending its results, this Note derives an algorithm that deterniines an optimal average quaternion from a set of scalar- or matrix-weighted quaternions. Rirthermore, a sufficient condition for the uniqueness of the average quaternion, and the equivalence of the mininiization problem, stated herein, to maximum likelihood estimation, are shown.

  3. Glucose control.

    PubMed

    Preiser, Jean-Charles

    2013-01-01

    Stress-related hyperglycemia is a common finding in acutely ill patients, and is related to the severity and outcome of the critical illness. The pathophysiology of stress hyperglycemia includes hormonal and neural signals, leading to increased production of glucose by the liver and peripheral insulin resistance mediated by the translocation of transmembrane glucose transporters. In one pioneering study, tight glycemic control by intensive insulin therapy in critically ill patients was associated with improved survival. However, this major finding was not confirmed in several other prospective randomized controlled trials. The reasons underlying the discrepancy between the first and the subsequent studies could include nutritional strategy (amount of calories provided, use of parenteral nutrition), case-mix, potential differences in the optimal blood glucose level (BG) in different types of patients, hypoglycemia and its correction, and the magnitude of glucose variability. Therefore, an improved understanding of the physiology and pathophysiology of glycemic regulation during acute illness is needed. Safe and effective glucose control will need improvement in the definition of optimal BG and in the measurement techniques, perhaps including continuous monitoring of insulin algorithms and closed-loop systems. PMID:23075589

  4. Glucose Variability

    PubMed Central

    2013-01-01

    The proposed contribution of glucose variability to the development of the complications of diabetes beyond that of glycemic exposure is supported by reports that oxidative stress, the putative mediator of such complications, is greater for intermittent as opposed to sustained hyperglycemia. Variability of glycemia in ambulatory conditions defined as the deviation from steady state is a phenomenon of normal physiology. Comprehensive recording of glycemia is required for the generation of any measurement of glucose variability. To avoid distortion of variability to that of glycemic exposure, its calculation should be devoid of a time component. PMID:23613565

  5. Neutron resonance averaging

    SciTech Connect

    Chrien, R.E.

    1986-10-01

    The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.

  6. Glucose kinetics in infants of diabetic mothers

    SciTech Connect

    Cowett, R.M.; Susa, J.B.; Giletti, B.; Oh, W.; Schwartz, R.

    1983-08-01

    Glucose kinetic studies were performed to define the glucose turnover rate with 78% enriched D-(U-13C) glucose by the prime constant infusion technique at less than or equal to 6 hours of age in nine infants of diabetic mothers (four insulin-dependent and five chemical diabetic patients) at term. Five normal infants were studied as control subjects. All infants received 0.9% saline intravenously during the study with the tracer. Fasting plasma glucose, insulin, and glucose13/12C ratios were measured during the steady state, and the glucose turnover rate was derived. The average plasma glucose concentration was similar during the steady state in the infants of the diabetic mothers and in the control infants, and the glucose turnover rate was not significantly different among the groups: 2.3 +/- 0.6 mg . kg-1 min-1 in infants of insulin-dependent diabetic patients; 2.4 +/- 0.4 mg . kg-1 min-1 in infants of chemical diabetic patients; and 3.2 +/- 0.3 mg . kg-1 min-1 in the control subjects. Good control of maternal diabetes evidenced by the normal maternal hemoglobin A1c and plasma glucose concentration at delivery and cord plasma glucose concentration resulted in glucose kinetic values in the infants of diabetic mothers that were indistinguishable from those of control subjects. The data further support the importance of good control of the diabetic state in the pregnant woman to minimize or prevent neonatal hypoglycemia.

  7. Glucose test (image)

    MedlinePlus

    ... person with diabetes constantly manages their blood's sugar (glucose) levels. After a blood sample is taken and tested, it is determined whether the glucose levels are low or high. If glucose levels ...

  8. Low Blood Glucose (Hypoglycemia)

    MedlinePlus

    ... Other Dental Problems Diabetic Eye Disease Low Blood Glucose (Hypoglycemia) What is hypoglycemia? Hypoglycemia, also called low ... actions can also help prevent hypoglycemia: Check blood glucose levels Knowing your blood glucose level can help ...

  9. On the Berdichevsky average

    NASA Astrophysics Data System (ADS)

    Rung-Arunwan, Tawat; Siripunvaraporn, Weerachai; Utada, Hisashi

    2016-04-01

    Through a large number of magnetotelluric (MT) observations conducted in a study area, one can obtain regional one-dimensional (1-D) features of the subsurface electrical conductivity structure simply by taking the geometric average of determinant invariants of observed impedances. This method was proposed by Berdichevsky and coworkers, which is based on the expectation that distortion effects due to near-surface electrical heterogeneities will be statistically smoothed out. A good estimation of a regional mean 1-D model is useful, especially in recent years, to be used as a priori (or a starting) model in 3-D inversion. However, the original theory was derived before the establishment of the present knowledge on galvanic distortion. This paper, therefore, reexamines the meaning of the Berdichevsky average by using the conventional formulation of galvanic distortion. A simple derivation shows that the determinant invariant of distorted impedance and its Berdichevsky average is always downward biased by the distortion parameters of shear and splitting. This means that the regional mean 1-D model obtained from the Berdichevsky average tends to be more conductive. As an alternative rotational invariant, the sum of the squared elements (ssq) invariant is found to be less affected by bias from distortion parameters; thus, we conclude that its geometric average would be more suitable for estimating the regional structure. We find that the combination of determinant and ssq invariants provides parameters useful in dealing with a set of distorted MT impedances.

  10. Averaging the inhomogeneous universe

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem

    2012-03-01

    A basic assumption of modern cosmology is that the universe is homogeneous and isotropic on the largest observable scales. This greatly simplifies Einstein's general relativistic field equations applied at these large scales, and allows a straightforward comparison between theoretical models and observed data. However, Einstein's equations should ideally be imposed at length scales comparable to, say, the solar system, since this is where these equations have been tested. We know that at these scales the universe is highly inhomogeneous. It is therefore essential to perform an explicit averaging of the field equations in order to apply them at large scales. It has long been known that due to the nonlinear nature of Einstein's equations, any explicit averaging scheme will necessarily lead to corrections in the equations applied at large scales. Estimating the magnitude and behavior of these corrections is a challenging task, due to difficulties associated with defining averages in the context of general relativity (GR). It has recently become possible to estimate these effects in a rigorous manner, and we will review some of the averaging schemes that have been proposed in the literature. A tantalizing possibility explored by several authors is that the corrections due to averaging may in fact account for the apparent acceleration of the expansion of the universe. We will explore this idea, reviewing some of the work done in the literature to date. We will argue however, that this rather attractive idea is in fact not viable as a solution of the dark energy problem, when confronted with observational constraints.

  11. Covariant approximation averaging

    NASA Astrophysics Data System (ADS)

    Shintani, Eigo; Arthur, Rudy; Blum, Thomas; Izubuchi, Taku; Jung, Chulwoo; Lehner, Christoph

    2015-06-01

    We present a new class of statistical error reduction techniques for Monte Carlo simulations. Using covariant symmetries, we show that correlation functions can be constructed from inexpensive approximations without introducing any systematic bias in the final result. We introduce a new class of covariant approximation averaging techniques, known as all-mode averaging (AMA), in which the approximation takes account of contributions of all eigenmodes through the inverse of the Dirac operator computed from the conjugate gradient method with a relaxed stopping condition. In this paper we compare the performance and computational cost of our new method with traditional methods using correlation functions and masses of the pion, nucleon, and vector meson in Nf=2 +1 lattice QCD using domain-wall fermions. This comparison indicates that AMA significantly reduces statistical errors in Monte Carlo calculations over conventional methods for the same cost.

  12. Average density in cosmology

    SciTech Connect

    Bonnor, W.B.

    1987-05-01

    The Einstein-Straus (1945) vacuole is here used to represent a bound cluster of galaxies embedded in a standard pressure-free cosmological model, and the average density of the cluster is compared with the density of the surrounding cosmic fluid. The two are nearly but not quite equal, and the more condensed the cluster, the greater the difference. A theoretical consequence of the discrepancy between the two densities is discussed. 25 references.

  13. Blood Test: Glucose

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Blood Test: Glucose KidsHealth > For Parents > Blood Test: Glucose Print A A A Text Size What's in ... de sangre: glucosa What It Is A blood glucose test measures the amount of glucose (the main ...

  14. Association between blood glucose level derived using the oral glucose tolerance test and glycated hemoglobin level

    PubMed Central

    Kim, Hyoung Joo; Kim, Young Geon; Park, Jin Soo; Ahn, Young Hwan; Ha, Kyoung Hwa; Kim, Dae Jung

    2016-01-01

    Background/Aims: Glycated hemoglobin (HbA1c) is widely used as a marker of glycemic control. Translation of the HbA1c level to an average blood glucose level is useful because the latter figure is easily understood by patients. We studied the association between blood glucose levels revealed by the oral glucose tolerance test (OGTT) and HbA1c levels in a Korean population. Methods: A total of 1,000 subjects aged 30 to 64 years from the Cardiovascular and Metabolic Diseases Etiology Research Center cohort were included. Fasting glucose levels, post-load glucose levels at 30, 60, and 120 minutes into the OGTT, and HbA1c levels were measured. Results: Linear regression of HbA1c with mean blood glucose levels derived using the OGTT revealed a significant correlation between these measures (predicted mean glucose [mg/dL] = 49.4 × HbA1c [%] − 149.6; R2 = 0.54, p < 0.001). Our linear regression equation was quite different from that of the Alc-Derived Average Glucose (ADAG) study and Diabetes Control and Complications Trial (DCCT) cohort. Conclusions: Discrepancies between our results and those of the ADAG study and DCCT cohort may be attributable to differences in the test methods used and the extent of insulin secretion. More studies are needed to evaluate the association between HbA1c and self monitoring blood glucose levels. PMID:26898598

  15. Americans' Average Radiation Exposure

    SciTech Connect

    NA

    2000-08-11

    We live with radiation every day. We receive radiation exposures from cosmic rays, from outer space, from radon gas, and from other naturally radioactive elements in the earth. This is called natural background radiation. It includes the radiation we get from plants, animals, and from our own bodies. We also are exposed to man-made sources of radiation, including medical and dental treatments, television sets and emission from coal-fired power plants. Generally, radiation exposures from man-made sources are only a fraction of those received from natural sources. One exception is high exposures used by doctors to treat cancer patients. Each year in the United States, the average dose to people from natural and man-made radiation sources is about 360 millirem. A millirem is an extremely tiny amount of energy absorbed by tissues in the body.

  16. Rapid and specific isolation of radioactive glucose from biological samples.

    PubMed

    Mills, S E; Armentano, L E; Russell, R W; Young, J W

    1981-08-01

    An easy, reliable, and specific ion-exchange method is presented for isolating glucose for specific radioactivity determinations from both blood plasma and buffered in vitro incubation media. The use of a glucose binding resin (borate-charged anion resin) combined speed of ion exchange with specificity of derivative formation. Glucose specific radioactivities, determined by ion exchange on protein-free filtrates of plasma containing [carbon-14] glucose, show excellent agreement with those from the popular glucose pentaacetate derivative method and are less variable. Carry-over of labeled acetate, propionate, lactate, glyoxylate, alanine, aspartate, or glutamate into the glucose fraction is less than .2%. Glycerol carryover is 1.2%. Glucose recovery is increased about three times that of the glucose pentaacetate derivative method and averaged 94% from plasma filtrates. PMID:7298970

  17. Glucose-6-phosphate dehydrogenase

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a type of ...

  18. Your Glucose Meter

    MedlinePlus

    ... by Audience For Women Women's Health Topics Your Glucose Meter Share Tweet Linkedin Pin it More sharing ... Español Basic Facts 7 Tips for Testing Your Blood Sugar and Caring for Your Meter Glucose meters test ...

  19. Continuous Glucose Monitoring

    MedlinePlus

    ... catalog. Additional Links ​ Alternative Devices for Taking Insulin Children and Diabetes Glucose Meters Juvenile Diabetes (Teens and Diabetes ) Know Your Blood Glucose Numbers Your Guide to Diabetes: Type 1 and Type 2 Contact Us Health Information Center ...

  20. CSF glucose test

    MedlinePlus

    Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 of the blood sugar level). Note: Normal value ranges may vary slightly ...

  1. Dissociating Averageness and Attractiveness: Attractive Faces Are Not Always Average

    ERIC Educational Resources Information Center

    DeBruine, Lisa M.; Jones, Benedict C.; Unger, Layla; Little, Anthony C.; Feinberg, David R.

    2007-01-01

    Although the averageness hypothesis of facial attractiveness proposes that the attractiveness of faces is mostly a consequence of their averageness, 1 study has shown that caricaturing highly attractive faces makes them mathematically less average but more attractive. Here the authors systematically test the averageness hypothesis in 5 experiments…

  2. [Glucose Metabolism: Stress Hyperglycemia and Glucose Control].

    PubMed

    Tanaka, Katsuya; Tsutsumi, Yasuo M

    2016-05-01

    It is important for the anesthesiologists to understand pathophysiology of perioperative stress hyperglycemia, because it offers strategies for treatment of stress hyperglycemia. The effect of glucose tolerance is different in the choice of the anesthetic agent used in daily clinical setting. Specifically, the volatile anesthetics inhibit insulin secretion after glucose load and affects glucose tolerance. During minor surgery by the remifentanil anesthesia, the stress reaction is hard to be induced, suggesting that we should consider low-dose glucose load. Finally it is necessary to perform the glycemic control of the patients who fell into stress hyperglycemia depending on the individual patient. However, there are a lot of questions to be answered in the future. The prognosis of the perioperative patients is more likely to be greatly improved if we can control stress hyperglycemia. PMID:27319094

  3. Acute effects of dichloroacetate in the depancreatized dog: glucose synthesis and turnover.

    PubMed

    Searle, G L; Felts, J M; Shakelford, R

    1982-07-01

    Blood glucose turnover (entry and removal rates) and the rate of recycling of radiolabelled glucose carbon into newly synthesized blood glucose have been evaluated before and acutely after the administration of dichloroacetate to depancreatized dogs. Blood glucose concentration began to decline immediately after dichloroacetate administration and fell to new steady state levels within 1.5-3 h. Analysis of blood glucose kinetics during the decline demonstrated a 52% (average) reduction in the rate of hepatic glucose supply. Glucose supply remained reduced over the duration of these studies (3-4.5 h). Glucose turnover in the steady state following dichloroacetate administration averaged 62% of pretreatment values. Cori cycle activity was depressed by 63% after dichloroacetate administration. The results of these studies are consistent with the hypothesis that a major mechanism underlying the hypoglycaemic action of this drug is the inhibition of glucose synthesis. PMID:7117727

  4. The Correlation of Hemoglobin A1c to Blood Glucose

    PubMed Central

    Sikaris, Ken

    2009-01-01

    The understanding that hemoglobin A1c (HbA1c) represents the average blood glucose level of patients over the previous 120 days underlies the current management of diabetes. Even in making such a statement, we speak of “average blood glucose” as though “blood glucose” were itself a simple idea. When we consider all the blood glucose forms—arterial versus venous versus capillary, whole blood versus serum versus fluoride-preserved plasma, fasting versus nonfasting—we can start to see that this is not a simple issue. Nevertheless, it seems as though HbA1c correlates to any single glucose measurement. Having more than one measurement and taking those measurements in the preceding month improves the correlation further. In particular, by having glucose measurements that reflect both the relatively lower overnight glucose levels and measurements that reflect the postprandial peaks improves not only our ability to manage diabetes patients, but also our understanding of how HbA1c levels are determined. Modern continuous glucose monitoring (CGM) devices may take thousands of glucose results over a week. Several studies have shown that CGM glucose averages account for the vast proportion of the variation of HbA1c. The ability to relate HbA1c to average glucose may become a popular method for reporting HbA1c, eliminating current concerns regarding differences in HbA1c standardization. Hemoglobin A1c expressed as an average glucose may be more understandable to patients and improve not only their understanding, but also their ability to improve their diabetes management. PMID:20144279

  5. Glucose: detection and analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glucose is an aldosic monosaccharide that is centrally entrenched in the processes of photosynthesis and respiration, serving as an energy reserve and metabolic fuel in most organisms. As both a monomer and as part of more complex structures such as polysaccharides and glucosides, glucose also pla...

  6. Monitor blood glucose - slideshow

    MedlinePlus

    ... medlineplus.gov/ency/presentations/100220.htm Monitoring blood glucose - Series—Monitoring blood glucose: Using a self-test meter To use the ... A.M. Editorial team. Related MedlinePlus Health Topics Blood Sugar A.D.A.M., Inc. is accredited by ...

  7. Glucose monitoring during Ramadan.

    PubMed

    Jabbar, Abdul

    2015-05-01

    In patients with diabetes who intend to fast during Ramadan, self-monitoring of blood glucose (SMBG) is an important tool. During this month, a long established treatment regimen, including medications, physical activity and diet plan, is changed to achieve concordance with the rules of fasting. Without proper glucose monitoring, it is not possible to achieve good glycaemic control. PMID:26013788

  8. Virtual Averaging Making Nonframe-Averaged Optical Coherence Tomography Images Comparable to Frame-Averaged Images

    PubMed Central

    Chen, Chieh-Li; Ishikawa, Hiroshi; Wollstein, Gadi; Bilonick, Richard A.; Kagemann, Larry; Schuman, Joel S.

    2016-01-01

    Purpose Developing a novel image enhancement method so that nonframe-averaged optical coherence tomography (OCT) images become comparable to active eye-tracking frame-averaged OCT images. Methods Twenty-one eyes of 21 healthy volunteers were scanned with noneye-tracking nonframe-averaged OCT device and active eye-tracking frame-averaged OCT device. Virtual averaging was applied to nonframe-averaged images with voxel resampling and adding amplitude deviation with 15-time repetitions. Signal-to-noise (SNR), contrast-to-noise ratios (CNR), and the distance between the end of visible nasal retinal nerve fiber layer (RNFL) and the foveola were assessed to evaluate the image enhancement effect and retinal layer visibility. Retinal thicknesses before and after processing were also measured. Results All virtual-averaged nonframe-averaged images showed notable improvement and clear resemblance to active eye-tracking frame-averaged images. Signal-to-noise and CNR were significantly improved (SNR: 30.5 vs. 47.6 dB, CNR: 4.4 vs. 6.4 dB, original versus processed, P < 0.0001, paired t-test). The distance between the end of visible nasal RNFL and the foveola was significantly different before (681.4 vs. 446.5 μm, Cirrus versus Spectralis, P < 0.0001) but not after processing (442.9 vs. 446.5 μm, P = 0.76). Sectoral macular total retinal and circumpapillary RNFL thicknesses showed systematic differences between Cirrus and Spectralis that became not significant after processing. Conclusion The virtual averaging method successfully improved nontracking nonframe-averaged OCT image quality and made the images comparable to active eye-tracking frame-averaged OCT images. Translational Relevance Virtual averaging may enable detailed retinal structure studies on images acquired using a mixture of nonframe-averaged and frame-averaged OCT devices without concerning about systematic differences in both qualitative and quantitative aspects. PMID:26835180

  9. Averaging Models: Parameters Estimation with the R-Average Procedure

    ERIC Educational Resources Information Center

    Vidotto, G.; Massidda, D.; Noventa, S.

    2010-01-01

    The Functional Measurement approach, proposed within the theoretical framework of Information Integration Theory (Anderson, 1981, 1982), can be a useful multi-attribute analysis tool. Compared to the majority of statistical models, the averaging model can account for interaction effects without adding complexity. The R-Average method (Vidotto &…

  10. Averaging Internal Consistency Reliability Coefficients

    ERIC Educational Resources Information Center

    Feldt, Leonard S.; Charter, Richard A.

    2006-01-01

    Seven approaches to averaging reliability coefficients are presented. Each approach starts with a unique definition of the concept of "average," and no approach is more correct than the others. Six of the approaches are applicable to internal consistency coefficients. The seventh approach is specific to alternate-forms coefficients. Although the…

  11. The Average of Rates and the Average Rate.

    ERIC Educational Resources Information Center

    Lindstrom, Peter

    1988-01-01

    Defines arithmetic, harmonic, and weighted harmonic means, and discusses their properties. Describes the application of these properties in problems involving fuel economy estimates and average rates of motion. Gives example problems and solutions. (CW)

  12. The Averaging Problem in Cosmology

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem

    2009-06-01

    This thesis deals with the averaging problem in cosmology, which has gained considerable interest in recent years, and is concerned with correction terms (after averaging inhomogeneities) that appear in the Einstein equations when working on the large scales appropriate for cosmology. It has been claimed in the literature that these terms may account for the phenomenon of dark energy which causes the late time universe to accelerate. We investigate the nature of these terms by using averaging schemes available in the literature and further developed to be applicable to the problem at hand. We show that the effect of these terms when calculated carefully, remains negligible and cannot explain the late time acceleration.

  13. Vascular Glucose Sensor Symposium

    PubMed Central

    Joseph, Jeffrey I; Torjman, Marc C.; Strasma, Paul J.

    2015-01-01

    Hyperglycemia, hypoglycemia, and glycemic variability have been associated with increased morbidity, mortality, length of stay, and cost in a variety of critical care and non–critical care patient populations in the hospital. The results from prospective randomized clinical trials designed to determine the risks and benefits of intensive insulin therapy and tight glycemic control have been confusing; and at times conflicting. The limitations of point-of-care blood glucose (BG) monitoring in the hospital highlight the great clinical need for an automated real-time continuous glucose monitoring system (CGMS) that can accurately measure the concentration of glucose every few minutes. Automation and standardization of the glucose measurement process have the potential to significantly improve BG control, clinical outcome, safety and cost. PMID:26078254

  14. Recombinant glucose uptake system

    DOEpatents

    Ingrahm, Lonnie O.; Snoep, Jacob L.; Arfman, Nico

    1997-01-01

    Recombinant organisms are disclosed that contain a pathway for glucose uptake other than the pathway normally utilized by the host cell. In particular, the host cell is one in which glucose transport into the cell normally is coupled to PEP production. This host cell is transformed so that it uses an alternative pathway for glucose transport that is not coupled to PEP production. In a preferred embodiment, the host cell is a bacterium other than Z. mobilis that has been transformed to contain the glf and glk genes of Z. mobilis. By uncoupling glucose transport into the cell from PEP utilization, more PEP is produced for synthesis of products of commercial importance from a given quantity of biomass supplied to the host cells.

  15. All about Blood Glucose

    MedlinePlus

    ... Blood Glucose Before meals: 80 to 130 mg/dl My Usual Results My Goals ______ to ______ ______ to ______ 2 ... the start of a meal: below 180 mg/dl below ______ below ______ What’s the best way to keep ...

  16. Blood Glucose Monitoring Devices

    MedlinePlus

    ... Glucose NIH Medline Plus - Diabetes Spotlight FDA permits marketing of first system of mobile medical apps for ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  17. High average power pockels cell

    DOEpatents

    Daly, Thomas P.

    1991-01-01

    A high average power pockels cell is disclosed which reduces the effect of thermally induced strains in high average power laser technology. The pockels cell includes an elongated, substantially rectangular crystalline structure formed from a KDP-type material to eliminate shear strains. The X- and Y-axes are oriented substantially perpendicular to the edges of the crystal cross-section and to the C-axis direction of propagation to eliminate shear strains.

  18. Vocal attractiveness increases by averaging.

    PubMed

    Bruckert, Laetitia; Bestelmeyer, Patricia; Latinus, Marianne; Rouger, Julien; Charest, Ian; Rousselet, Guillaume A; Kawahara, Hideki; Belin, Pascal

    2010-01-26

    Vocal attractiveness has a profound influence on listeners-a bias known as the "what sounds beautiful is good" vocal attractiveness stereotype [1]-with tangible impact on a voice owner's success at mating, job applications, and/or elections. The prevailing view holds that attractive voices are those that signal desirable attributes in a potential mate [2-4]-e.g., lower pitch in male voices. However, this account does not explain our preferences in more general social contexts in which voices of both genders are evaluated. Here we show that averaging voices via auditory morphing [5] results in more attractive voices, irrespective of the speaker's or listener's gender. Moreover, we show that this phenomenon is largely explained by two independent by-products of averaging: a smoother voice texture (reduced aperiodicities) and a greater similarity in pitch and timbre with the average of all voices (reduced "distance to mean"). These results provide the first evidence for a phenomenon of vocal attractiveness increases by averaging, analogous to a well-established effect of facial averaging [6, 7]. They highlight prototype-based coding [8] as a central feature of voice perception, emphasizing the similarity in the mechanisms of face and voice perception. PMID:20129047

  19. Determining GPS average performance metrics

    NASA Technical Reports Server (NTRS)

    Moore, G. V.

    1995-01-01

    Analytic and semi-analytic methods are used to show that users of the GPS constellation can expect performance variations based on their location. Specifically, performance is shown to be a function of both altitude and latitude. These results stem from the fact that the GPS constellation is itself non-uniform. For example, GPS satellites are over four times as likely to be directly over Tierra del Fuego than over Hawaii or Singapore. Inevitable performance variations due to user location occur for ground, sea, air and space GPS users. These performance variations can be studied in an average relative sense. A semi-analytic tool which symmetrically allocates GPS satellite latitude belt dwell times among longitude points is used to compute average performance metrics. These metrics include average number of GPS vehicles visible, relative average accuracies in the radial, intrack and crosstrack (or radial, north/south, east/west) directions, and relative average PDOP or GDOP. The tool can be quickly changed to incorporate various user antenna obscuration models and various GPS constellation designs. Among other applications, tool results can be used in studies to: predict locations and geometries of best/worst case performance, design GPS constellations, determine optimal user antenna location and understand performance trends among various users.

  20. Evaluations of average level spacings

    SciTech Connect

    Liou, H.I.

    1980-01-01

    The average level spacing for highly excited nuclei is a key parameter in cross section formulas based on statistical nuclear models, and also plays an important role in determining many physics quantities. Various methods to evaluate average level spacings are reviewed. Because of the finite experimental resolution, to detect a complete sequence of levels without mixing other parities is extremely difficult, if not totally impossible. Most methods derive the average level spacings by applying a fit, with different degrees of generality, to the truncated Porter-Thomas distribution for reduced neutron widths. A method that tests both distributions of level widths and positions is discussed extensivey with an example of /sup 168/Er data. 19 figures, 2 tables.

  1. On generalized averaged Gaussian formulas

    NASA Astrophysics Data System (ADS)

    Spalevic, Miodrag M.

    2007-09-01

    We present a simple numerical method for constructing the optimal (generalized) averaged Gaussian quadrature formulas which are the optimal stratified extensions of Gauss quadrature formulas. These extensions exist in many cases in which real positive Kronrod formulas do not exist. For the Jacobi weight functions w(x)equiv w^{(alpha,beta)}(x)D(1-x)^alpha(1+x)^beta ( alpha,beta>-1 ) we give a necessary and sufficient condition on the parameters alpha and beta such that the optimal averaged Gaussian quadrature formulas are internal.

  2. Glucose homoeostasis following injury.

    PubMed Central

    Wright, P. D.

    1979-01-01

    Metabolic changes following injury have been observed for many years, and John Hunter discussed such changes in 1794. Changes in carbohydrate metabolism have been observed for a similar length of time, and glycosuria and hyperglycaemia have been reported by a number of observers. This paper records and quantitates the extent of hyperglycaemia in patients undergoing surgery of different degrees of severity and relates them to changes in blood insulin, growth hormone, cortisol, and catecholamine concentrations. Further animal studies were performed which suggested that a fall in intracellular glucose utilisation may be a contributory factor. The use of isotope labelling of glucose in man has enabled further studies to be done to clarify changes in exchangeable glucose mass, replacement rate, and space both in the normal situation and in the presence of infusions of glucagon, noradrenaline, glucose, and amino-acids. The hyperglycaemia is clearly the result of a complex interaction of changes in the availability and activity of hormones which control glucose metabolism both within and outside the cell. PMID:496234

  3. Polyhedral Painting with Group Averaging

    ERIC Educational Resources Information Center

    Farris, Frank A.; Tsao, Ryan

    2016-01-01

    The technique of "group-averaging" produces colorings of a sphere that have the symmetries of various polyhedra. The concepts are accessible at the undergraduate level, without being well-known in typical courses on algebra or geometry. The material makes an excellent discovery project, especially for students with some background in…

  4. Averaged Electroencephalic Audiometry in Infants

    ERIC Educational Resources Information Center

    Lentz, William E.; McCandless, Geary A.

    1971-01-01

    Normal, preterm, and high-risk infants were tested at 1, 3, 6, and 12 months of age using averaged electroencephalic audiometry (AEA) to determine the usefulness of AEA as a measurement technique for assessing auditory acuity in infants, and to delineate some of the procedural and technical problems often encountered. (KW)

  5. Averaging inhomogeneous cosmologies - a dialogue.

    NASA Astrophysics Data System (ADS)

    Buchert, T.

    The averaging problem for inhomogeneous cosmologies is discussed in the form of a disputation between two cosmologists, one of them (RED) advocating the standard model, the other (GREEN) advancing some arguments against it. Technical explanations of these arguments as well as the conclusions of this debate are given by BLUE.

  6. Averaging inhomogenous cosmologies - a dialogue

    NASA Astrophysics Data System (ADS)

    Buchert, T.

    The averaging problem for inhomogeneous cosmologies is discussed in the form of a disputation between two cosmologists, one of them (RED) advocating the standard model, the other (GREEN) advancing some arguments against it. Technical explanations of these arguments as well as the conclusions of this debate are given by BLUE.

  7. Averaging facial expression over time

    PubMed Central

    Haberman, Jason; Harp, Tom; Whitney, David

    2010-01-01

    The visual system groups similar features, objects, and motion (e.g., Gestalt grouping). Recent work suggests that the computation underlying perceptual grouping may be one of summary statistical representation. Summary representation occurs for low-level features, such as size, motion, and position, and even for high level stimuli, including faces; for example, observers accurately perceive the average expression in a group of faces (J. Haberman & D. Whitney, 2007, 2009). The purpose of the present experiments was to characterize the time-course of this facial integration mechanism. In a series of three experiments, we measured observers’ abilities to recognize the average expression of a temporal sequence of distinct faces. Faces were presented in sets of 4, 12, or 20, at temporal frequencies ranging from 1.6 to 21.3 Hz. The results revealed that observers perceived the average expression in a temporal sequence of different faces as precisely as they perceived a single face presented repeatedly. The facial averaging was independent of temporal frequency or set size, but depended on the total duration of exposed faces, with a time constant of ~800 ms. These experiments provide evidence that the visual system is sensitive to the ensemble characteristics of complex objects presented over time. PMID:20053064

  8. Average Cost of Common Schools.

    ERIC Educational Resources Information Center

    White, Fred; Tweeten, Luther

    The paper shows costs of elementary and secondary schools applicable to Oklahoma rural areas, including the long-run average cost curve which indicates the minimum per student cost for educating various numbers of students and the application of the cost curves determining the optimum school district size. In a stratified sample, the school…

  9. How to monitor blood glucose.

    PubMed

    Dunning, Trisha

    2016-01-27

    Rationale and key points Capillary blood glucose monitoring is an essential component of diabetes care. Blood glucose tests provide important information about how the body is controlling blood glucose metabolism, and the effect of glucose-lowering medicines, illness and stress. ▶ The nurse should consider the rationale for testing blood glucose each time they perform a test, and reflect on the result, taking into consideration the patient's blood glucose target range and recommended care guidelines. ▶ Blood glucose testing times and testing frequency should be planned to suit the glucose-lowering medicine regimen and the clinical situation. Reflective activity Clinical skills articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. What you have gained from this article. 2. How this article will influence your practice when monitoring blood glucose. Subscribers can upload their reflective accounts at: rcni.com/portfolio . PMID:26967884

  10. Exact averaging of laminar dispersion

    NASA Astrophysics Data System (ADS)

    Ratnakar, Ram R.; Balakotaiah, Vemuri

    2011-02-01

    We use the Liapunov-Schmidt (LS) technique of bifurcation theory to derive a low-dimensional model for laminar dispersion of a nonreactive solute in a tube. The LS formalism leads to an exact averaged model, consisting of the governing equation for the cross-section averaged concentration, along with the initial and inlet conditions, to all orders in the transverse diffusion time. We use the averaged model to analyze the temporal evolution of the spatial moments of the solute and show that they do not have the centroid displacement or variance deficit predicted by the coarse-grained models derived by other methods. We also present a detailed analysis of the first three spatial moments for short and long times as a function of the radial Peclet number and identify three clearly defined time intervals for the evolution of the solute concentration profile. By examining the skewness in some detail, we show that the skewness increases initially, attains a maximum for time scales of the order of transverse diffusion time, and the solute concentration profile never attains the Gaussian shape at any finite time. Finally, we reason that there is a fundamental physical inconsistency in representing laminar (Taylor) dispersion phenomena using truncated averaged models in terms of a single cross-section averaged concentration and its large scale gradient. Our approach evaluates the dispersion flux using a local gradient between the dominant diffusive and convective modes. We present and analyze a truncated regularized hyperbolic model in terms of the cup-mixing concentration for the classical Taylor-Aris dispersion that has a larger domain of validity compared to the traditional parabolic model. By analyzing the temporal moments, we show that the hyperbolic model has no physical inconsistencies that are associated with the parabolic model and can describe the dispersion process to first order accuracy in the transverse diffusion time.

  11. Fluorescence lifetime-based glucose sensor using NADH

    NASA Astrophysics Data System (ADS)

    von Ketteler, A.; Siegberg, D.; Herten, D. P.; Horn, C.; Petrich, W.

    2012-03-01

    Fluorescence lifetime-based glucose sensing does not depend on fluctuations of the intensity of the light source, light scattering, or changes in the transmission of optical components. Here we demonstrate the sensing of glucose based on the fluorescence lifetime properties of dihydro nicotinamide adenine dinucleotide (NADH), which is reduced from NAD in the presence of glucose and glucose dehydrogenase. In particular we use the difference in the fluorescence properties of free and protein-bound NADH and calculate an average fluorescence lifetime, which arises from the two short lifetimes τ1=0.28ns and τ2=0.60ns (representing free NADH) and the longer lifetime of τ3=2.9ns (for the protein-bound NADH). While initial results were derived from measurements in aqueous solution, we also demonstrate the suitability of this method for determining the concentration of glucose in blood using test strips. We find that the average fluorescence lifetime changes linearly by a factor of 0.17 per 100mg/dl change in glucose concentration. As an alternative the ratio between free and protein-bound components Rs/l may also be used for quantification. Rs/l increases by a factor of 0.74 per 100mg/dl change in glucose concentration.

  12. Effects of exercise and metformin on the prevention of glucose intolerance: a comparative study

    PubMed Central

    Molena-Fernandes, C.; Bersani-Amado, C. A.; Ferraro, Z. M.; Hintze, L. J.; Nardo, N.; Cuman, R. K. N.

    2015-01-01

    We aimed to evaluate the effects of aerobic exercise training (4 days) and metformin exposure on acute glucose intolerance after dexamethasone treatment in rats. Forty-two adult male Wistar rats (8 weeks old) were divided randomly into four groups: sedentary control (SCT), sedentary dexamethasone-treated (SDX), training dexamethasone-treated (DPE), and dexamethasone and metformin treated group (DMT). Glucose tolerance tests and in situ liver perfusion were undertaken on fasting rats to obtain glucose profiles. The DPE group displayed a significant decrease in glucose values compared with the SDX group. Average glucose levels in the DPE group did not differ from those of the DMT group, so we suggest that exercise training corrects dexamethasone-induced glucose intolerance and improves glucose profiles in a similar manner to that observed with metformin. These data suggest that exercise may prevent the development of glucose intolerance induced by dexamethasone in rats to a similar magnitude to that observed after metformin treatment. PMID:26421869

  13. Effects of exercise and metformin on the prevention of glucose intolerance: a comparative study.

    PubMed

    Molena-Fernandes, C; Bersani-Amado, C A; Ferraro, Z M; Hintze, L J; Nardo, N; Cuman, R K N

    2015-12-01

    We aimed to evaluate the effects of aerobic exercise training (4 days) and metformin exposure on acute glucose intolerance after dexamethasone treatment in rats. Forty-two adult male Wistar rats (8 weeks old) were divided randomly into four groups: sedentary control (SCT), sedentary dexamethasone-treated (SDX), training dexamethasone-treated (DPE), and dexamethasone and metformin treated group (DMT). Glucose tolerance tests and in situ liver perfusion were undertaken on fasting rats to obtain glucose profiles. The DPE group displayed a significant decrease in glucose values compared with the SDX group. Average glucose levels in the DPE group did not differ from those of the DMT group, so we suggest that exercise training corrects dexamethasone-induced glucose intolerance and improves glucose profiles in a similar manner to that observed with metformin. These data suggest that exercise may prevent the development of glucose intolerance induced by dexamethasone in rats to a similar magnitude to that observed after metformin treatment. PMID:26421869

  14. Averaging Robertson-Walker cosmologies

    NASA Astrophysics Data System (ADS)

    Brown, Iain A.; Robbers, Georg; Behrend, Juliane

    2009-04-01

    The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the scalar spatial averaging formalism for the first time to linear Robertson-Walker universes containing matter, radiation and dark energy. The formalism employed is general and incorporates systems of multiple fluids with ease, allowing us to consider quantitatively the universe from deep radiation domination up to the present day in a natural, unified manner. Employing modified Boltzmann codes we evaluate numerically the discrepancies between the assumed and the averaged behaviour arising from the quadratic terms, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h = 0.701. For the ΛCDM concordance model, the backreaction is of the order of Ωeff0 approx 4 × 10-6, with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10-8 and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state weff < -1/3 can be found for strongly phantom models.

  15. Blood glucose monitoring.

    PubMed

    Davey, Sarah

    2014-06-10

    I found the CPD article on blood glucose monitoring and management in acute stroke care interesting and informative. As I am a mental health nursing student, my knowledge of chronic physical conditions is limited, so I learned a lot. PMID:24894257

  16. Glucose Tolerance and Hyperkinesis.

    ERIC Educational Resources Information Center

    Langseth, Lillian; Dowd, Judith

    Examined were medical records of 265 hyperkinetic children (7-9 years old). Clinical blood chemistries, hematology, and 5-hour glucose tolerance test (GTT) results indicated that hematocrit levels were low in 27% of the Ss, eosinophil levels were abnormally high in 86% of the Ss, and GTT results were abnormal in a maority of Ss. (CL)

  17. Glucose urine test

    MedlinePlus

    ... with a color-sensitive pad. The color the dipstick changes to tells the provider the level of glucose in your urine. If needed, your provider may ask you to collect your urine at home over 24 hours . Your provider will tell you how to do ...

  18. Renal Glucose Handling

    PubMed Central

    Ferrannini, Ele; Veltkamp, Stephan A.; Smulders, Ronald A.; Kadokura, Takeshi

    2013-01-01

    OBJECTIVE Ipragliflozin, a sodium-glucose cotransporter 2 inhibitor, stimulates glycosuria and lowers glycemia in patients with type 2 diabetes (T2DM). The objective of this study was to assess the pharmacodynamics of ipragliflozin in T2DM patients with impaired renal function. RESEARCH DESIGN AND METHODS Glycosuria was measured before and after a single ipragliflozin dose in 8 nondiabetic subjects and 57 T2DM patients (age 62 ± 9 years, fasting glucose 133 ± 39 mg/dL, mean ± SD) with normal renal function (assessed as the estimated glomerular filtration rate [eGFR]) (eGFR1 ≥90 mL · min–1 · 1.73 m−2), mild (eGFR2 ≥60 to <90), moderate (eGFR3 ≥30 to <60), or severe reduction in eGFR (eGFR4 ≤15 to <30). RESULTS Ipragliflozin significantly increased urinary glucose excretion in each eGFR class (P < 0.0001). However, ipragliflozin-induced glycosuria declined (median [IQR]) across eGFR class (from 46 mg/min [33] in eGFR1 to 8 mg/min [7] in eGFR4, P < 0.001). Ipragliflozin-induced fractional glucose excretion (excretion/filtration) was 39% [27] in the T2DM patients (pooled data), similar to that of the nondiabetic subjects (37% [17], P = ns). In bivariate analysis of the pooled data, ipragliflozin-induced glycosuria was directly related to eGFR and fasting glucose (P < 0.0001 for both, r2 = 0.55), predicting a decrement in 24-h glycosuria of 15 g for each 20 mL/min decline in eGFR and an increase of 7 g for each 10 mg/dL increase in glucose above fasting normoglycemia. CONCLUSIONS In T2DM patients, ipragliflozin increases glycosuria in direct, linear proportion to GFR and degree of hyperglycemia, such that its amount can be reliably predicted in the individual patient. Although absolute glycosuria decreases with declining GFR, the efficiency of ipragliflozin action (fractional glucose excretion) is maintained in patients with severe renal impairment. PMID:23359360

  19. Averaging Robertson-Walker cosmologies

    SciTech Connect

    Brown, Iain A.; Robbers, Georg; Behrend, Juliane E-mail: G.Robbers@thphys.uni-heidelberg.de

    2009-04-15

    The cosmological backreaction arises when one directly averages the Einstein equations to recover an effective Robertson-Walker cosmology, rather than assuming a background a priori. While usually discussed in the context of dark energy, strictly speaking any cosmological model should be recovered from such a procedure. We apply the scalar spatial averaging formalism for the first time to linear Robertson-Walker universes containing matter, radiation and dark energy. The formalism employed is general and incorporates systems of multiple fluids with ease, allowing us to consider quantitatively the universe from deep radiation domination up to the present day in a natural, unified manner. Employing modified Boltzmann codes we evaluate numerically the discrepancies between the assumed and the averaged behaviour arising from the quadratic terms, finding the largest deviations for an Einstein-de Sitter universe, increasing rapidly with Hubble rate to a 0.01% effect for h = 0.701. For the {Lambda}CDM concordance model, the backreaction is of the order of {Omega}{sub eff}{sup 0} Almost-Equal-To 4 Multiplication-Sign 10{sup -6}, with those for dark energy models being within a factor of two or three. The impacts at recombination are of the order of 10{sup -8} and those in deep radiation domination asymptote to a constant value. While the effective equations of state of the backreactions in Einstein-de Sitter, concordance and quintessence models are generally dust-like, a backreaction with an equation of state w{sub eff} < -1/3 can be found for strongly phantom models.

  20. Ensemble averaging of acoustic data

    NASA Technical Reports Server (NTRS)

    Stefanski, P. K.

    1982-01-01

    A computer program called Ensemble Averaging of Acoustic Data is documented. The program samples analog data, analyzes the data, and displays them in the time and frequency domains. Hard copies of the displays are the program's output. The documentation includes a description of the program and detailed user instructions for the program. This software was developed for use on the Ames 40- by 80-Foot Wind Tunnel's Dynamic Analysis System consisting of a PDP-11/45 computer, two RK05 disk drives, a tektronix 611 keyboard/display terminal, and FPE-4 Fourier Processing Element, and an analog-to-digital converter.

  1. Glucose Metabolism in Neisseria gonorrhoeae

    PubMed Central

    Morse, Stephen A.; Stein, Stefanie; Hines, James

    1974-01-01

    The metabolism of glucose was examined in several clinical isolates of Neisseria gonorrhoeae. Radiorespirometric studies revealed that growing cells metabolized glucose by a combination on the Entner-Doudoroff and pentose phosphate pathways. A portion of the glyceraldehyde-3-phosphate formed via the Entner-Doudoroff pathway was recycled by conversion to glucose-6-phosphate. Subsequent catabolism of this glucose-6-phosphate by either the Entner-Doudoroff or pentose phosphate pathways yielded CO2 from the original C6 of glucose. Enzyme analyses confirmed the presence of all enzymes of the Entner-Doudoroff, pentose phosphate, and Embden-Meyerhof-Parnas pathways. There was always a high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49) relative to that of 6-phosphogluconate dehydrogenase (EC 1.1.1.44). The glucose-6-phosphate dehydrogenase utilized either nicotinamide adenine dinucleotide phosphate or nicotinamide adenine dinucleotide as electron acceptor. Acetate was the only detectable nongaseous end product of glucose metabolism. Following the disappearance of glucose, acetate was metabolized by the tricarboxylic acid cycle as evidenced by the preferential oxidation of [1-14C]acetate over that of [2-14C]acetate. When an aerobically grown log-phase culture was subjected to anaerobic conditions, lactate and acetate were formed from glucose. Radiorespirometric studies showed that under these conditions, glucose was dissimilated entirely by the Entner-Doudoroff pathway. Further studies determined that this anaerobic dissimilation of glucose was not growth dependent. PMID:4156358

  2. Glucose and Aging

    NASA Astrophysics Data System (ADS)

    Ely, John T. A.

    2008-04-01

    When a human's enzymes attach glucose to proteins they do so at specific sites on a specific molecule for a specific purpose that also can include ascorbic acid (AA) at a high level such as 1 gram per hour during exposure. In an AA synthesizing animal the manifold increase of AA produced in response to illness is automatic. In contrast, the human non-enzymatic process adds glucose haphazardly to any number of sites along available peptide chains. As Cerami clarified decades ago, extensive crosslinking of proteins contributes to loss of elasticity in aging tissues. Ascorbic acid reduces the random non-enyzmatic glycation of proteins. Moreover, AA is a cofactor for hydroxylase enzymes that are necessary for the production and replacement of collagen and other structural proteins. We will discuss the relevance of ``aging is scurvy'' to the biochemistry of human aging.

  3. Flexible time domain averaging technique

    NASA Astrophysics Data System (ADS)

    Zhao, Ming; Lin, Jing; Lei, Yaguo; Wang, Xiufeng

    2013-09-01

    Time domain averaging(TDA) is essentially a comb filter, it cannot extract the specified harmonics which may be caused by some faults, such as gear eccentric. Meanwhile, TDA always suffers from period cutting error(PCE) to different extent. Several improved TDA methods have been proposed, however they cannot completely eliminate the waveform reconstruction error caused by PCE. In order to overcome the shortcomings of conventional methods, a flexible time domain averaging(FTDA) technique is established, which adapts to the analyzed signal through adjusting each harmonic of the comb filter. In this technique, the explicit form of FTDA is first constructed by frequency domain sampling. Subsequently, chirp Z-transform(CZT) is employed in the algorithm of FTDA, which can improve the calculating efficiency significantly. Since the signal is reconstructed in the continuous time domain, there is no PCE in the FTDA. To validate the effectiveness of FTDA in the signal de-noising, interpolation and harmonic reconstruction, a simulated multi-components periodic signal that corrupted by noise is processed by FTDA. The simulation results show that the FTDA is capable of recovering the periodic components from the background noise effectively. Moreover, it can improve the signal-to-noise ratio by 7.9 dB compared with conventional ones. Experiments are also carried out on gearbox test rigs with chipped tooth and eccentricity gear, respectively. It is shown that the FTDA can identify the direction and severity of the eccentricity gear, and further enhances the amplitudes of impulses by 35%. The proposed technique not only solves the problem of PCE, but also provides a useful tool for the fault symptom extraction of rotating machinery.

  4. Glucose-6-phosphate isomerase.

    PubMed

    Achari, A; Marshall, S E; Muirhead, H; Palmieri, R H; Noltmann, E A

    1981-06-26

    Glucose-6-phosphate isomerase (EC 5.3.1.9) is a dimeric enzyme of molecular mass 132000 which catalyses the interconversion of D-glucose-6-phosphate and D-fructose-6-phosphate. The crystal structure of the enzyme from pig muscle has been determined at a nominal resolution of 2.6 A. The structure is of the alpha/beta type. Each subunit consists of two domains and the active site is in both the domain interface and the subunit interface (P.J. Shaw & H. Muirhead (1976), FEBS Lett. 65, 50-55). Each subunit contains 13 methionine residues so that cyanogen bromide cleavage will produce 14 fragments, most of which have been identified and at least partly purified. Sequence information is given for about one-third of the molecule from 5 cyanogen bromide fragments. One of the sequences includes a modified lysine residue. Modification of this residue leads to a parallel loss of enzymatic activity. A tentative fit of two of the peptides to the electron density map has been made. It seems possible that glucose-6-phosphate isomerase, triose phosphate isomerase and pyruvate kinase all contain a histidine and a glutamate residue at the active site. PMID:6115414

  5. Estimation of glucose diffusion coefficient in scleral tissue

    NASA Astrophysics Data System (ADS)

    Bashkatov, Alexey N.; Genina, Elina A.; Sinichkin, Yurii P.; Lakodina, Nina A.; Kochubey, Vyacheslav I.; Tuchin, Valery V.

    2000-04-01

    Results of experimental and theoretical study of the optical properties of the eye sclera controlled by administration of osmotically active chemical, such as glucose, are presented. Glucose administration induces the diffusion of matter and as a result the equalization of the refractive indices of collagen fibrils and base material, and corresponding changes of transmittance spectra of scleral tissue. Transmittance spectra of the human scleral samples impregnated by glucose were measured. The significant increase of transmittance under action of osmotic liquid was observed. The diffusion coefficient of glucose within scleral tissue was estimated; the average value is 3.45 X 10-6 +/- 4.59 X 10-7 cm2/sec. The results are general and can be used to describe many other fibrous tissues impregnated by osmotically active chemical agents.

  6. A photonic crystal fiber glucose sensor filled with silver nanowires

    NASA Astrophysics Data System (ADS)

    Yang, X. C.; Lu, Y.; Wang, M. T.; Yao, J. Q.

    2016-01-01

    We report a photonic crystal fiber glucose sensor filled with silver nanowires in this paper. The proposed sensor is both analyzed by COMSOL multiphysics software and demonstrated by experiments. The extremely high average spectral sensitivity 19009.17 nm/RIU for experimental measurement is obtained, equivalent to 44.25 mg/dL of glucose in water, which is lower than 70 mg/dL for efficient detection of hypoglycemia episodes. The silver nanowires diameter which may affect the sensor's spectral sensitivity is also discussed and an optimal range of silver nanowires diameter 90-120 nm is obtained. We expect that the sensor can provide an effective platform for glucose sensing and potentially leading to a further development towards minimal-invasive glucose measurement.

  7. Glucose repression in Saccharomyces cerevisiae.

    PubMed

    Kayikci, Ömur; Nielsen, Jens

    2015-09-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  8. Glucose repression in Saccharomyces cerevisiae

    PubMed Central

    Kayikci, Ömur; Nielsen, Jens

    2015-01-01

    Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. PMID:26205245

  9. Optoelectronic Apparatus Measures Glucose Noninvasively

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Rovati, Luigi L.

    2003-01-01

    An optoelectronic apparatus has been invented as a noninvasive means of measuring the concentration of glucose in the human body. The apparatus performs polarimetric and interferometric measurements of the human eye to acquire data from which the concentration of glucose in the aqueous humor can be computed. Because of the importance of the concentration of glucose in human health, there could be a large potential market for instruments based on this apparatus.

  10. Optical monitoring of glucose concentration

    NASA Astrophysics Data System (ADS)

    Ross, I. N.; Mbanu, A.

    1985-02-01

    A device for the monitoring of blood glucose levels is investigated. It measures the sugar concentration using the effect of the glucose on the optical refractive index. Light is transmitted along an optical fibre, and, as most of the internal rays are incident at the fibre surface at an angle less than the critical angle, the refractive index of the surrounding liquid can be calculated. The device can measure glucose concentrations with a sensitivity of better than 0.1%.

  11. Thermoresponsive amperometric glucose biosensor.

    PubMed

    Pinyou, Piyanut; Ruff, Adrian; Pöller, Sascha; Barwe, Stefan; Nebel, Michaela; Alburquerque, Natalia Guerrero; Wischerhoff, Erik; Laschewsky, André; Schmaderer, Sebastian; Szeponik, Jan; Plumeré, Nicolas; Schuhmann, Wolfgang

    2016-03-01

    The authors report on the fabrication of a thermoresponsive biosensor for the amperometric detection of glucose. Screen printed electrodes with heatable gold working electrodes were modified by a thermoresponsive statistical copolymer [polymer I: poly(ω-ethoxytriethylenglycol methacrylate-co-3-(N,N-dimethyl-N-2-methacryloyloxyethyl ammonio) propanesulfonate-co-ω-butoxydiethylenglycol methacrylate-co-2-(4-benzoyl-phenoxy)ethyl methacrylate)] with a lower critical solution temperature of around 28 °C in aqueous solution via electrochemically induced codeposition with a pH-responsive redox-polymer [polymer II: poly(glycidyl methacrylate-co-allyl methacrylate-co-poly(ethylene glycol)methacrylate-co-butyl acrylate-co-2-(dimethylamino)ethyl methacrylate)-[Os(bpy)2(4-(((2-(2-(2-aminoethoxy)ethoxy)ethyl)amino)methyl)-N,N-dimethylpicolinamide)](2+)] and pyrroloquinoline quinone-soluble glucose dehydrogenase acting as biological recognition element. Polymer II bears covalently bound Os-complexes that act as redox mediators for shuttling electrons between the enzyme and the electrode surface. Polymer I acts as a temperature triggered immobilization matrix. Probing the catalytic current as a function of the working electrode temperature shows that the activity of the biosensor is dramatically reduced above the phase transition temperature of polymer I. Thus, the local modulation of the temperature at the interphase between the electrode and the bioactive layer allows switching the biosensor from an on- to an off-state without heating of the surrounding analyte solution. PMID:26702635

  12. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absorbed glucose and fructose differ in that glucose largely escapes first pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these two monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trig...

  13. Dietary fructose and glucose differentially affect lipid and glucose homeostasis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Absorbed glucose and fructose differ in that glucose largely escapes first-pass removal by the liver, whereas fructose does not, resulting in different metabolic effects of these 2 monosaccharides. In short-term controlled feeding studies, dietary fructose significantly increases postprandial trigly...

  14. Evaluation of a Novel Glucose Area Under the Curve (AUC) Monitoring System: Comparison with the AUC by Continuous Glucose Monitoring

    PubMed Central

    Maegawa, Hiroshi; Morino, Katsutaro; Nishio, Yoshihiko; Sato, Toshiyuki; Okada, Seiki; Kikkawa, Yasuo; Watanabe, Toshihiro; Nakajima, Hiromu; Kashiwagi, Atsunori

    2016-01-01

    Background Management of postprandial hyperglycemia is a key aspect in diabetes treatment. We developed a novel system to measure glucose area under the curve (AUC) using minimally invasive interstitial fluid extraction technology (MIET) for simple monitoring of postprandial glucose excursions. In this study, we evaluated the relationship between our system and continuous glucose monitoring (CGM) by comparing glucose AUC obtained using MIET with that obtained using CGM for a long duration. Methods Twenty diabetic inpatients wearing a CGM system were enrolled. For MIET measurement, a plastic microneedle array was applied to the skin as pretreatment, and hydrogels were placed on the pretreated area to collect interstitial fluid. Hydrogels were replaced every 2 or 4 hours and AUC was predicted on the basis of glucose and sodium ion levels. Results AUC predicted by MIET correlated well with that measured by CGM (r=0.93). Good performances of both consecutive 2- and 4-hour measurements were observed (measurement error: 11.7%±10.2% for 2 hours and 11.1%±7.9% for 4 hours), indicating the possibility of repetitive measurements up to 8 hours. The influence of neither glucose fluctuation nor average glucose level over the measurement accuracy was observed through 8 hours. Conclusion Our system showed good relationship with AUC values from CGM up to 8 hours, indicating that single pretreatment can cover a large portion of glucose excursion in a day. These results indicated possibility of our system to contribute to convenient monitoring of glucose excursions for a long duration. PMID:27535643

  15. Alginate cryogel based glucose biosensor

    NASA Astrophysics Data System (ADS)

    Fatoni, Amin; Windy Dwiasi, Dian; Hermawan, Dadan

    2016-02-01

    Cryogel is macroporous structure provides a large surface area for biomolecule immobilization. In this work, an alginate cryogel based biosensor was developed to detect glucose. The cryogel was prepared using alginate cross-linked by calcium chloride under sub-zero temperature. This porous structure was growth in a 100 μL micropipette tip with a glucose oxidase enzyme entrapped inside the cryogel. The glucose detection was based on the colour change of redox indicator, potassium permanganate, by the hydrogen peroxide resulted from the conversion of glucose. The result showed a porous structure of alginate cryogel with pores diameter of 20-50 μm. The developed glucose biosensor was showed a linear response in the glucose detection from 1.0 to 5.0 mM with a regression of y = 0.01x+0.02 and R2 of 0.994. Furthermore, the glucose biosensor was showed a high operational stability up to 10 times of uninterrupted glucose detections.

  16. Antihypertensive drugs and glucose metabolism

    PubMed Central

    Rizos, Christos V; Elisaf, Moses S

    2014-01-01

    Hypertension plays a major role in the development and progression of micro- and macrovascular disease. Moreover, increased blood pressure often coexists with additional cardiovascular risk factors such as insulin resistance. As a result the need for a comprehensive management of hypertensive patients is critical. However, the various antihypertensive drug categories have different effects on glucose metabolism. Indeed, angiotensin receptor blockers as well as angiotensin converting enzyme inhibitors have been associated with beneficial effects on glucose homeostasis. Calcium channel blockers (CCBs) have an overall neutral effect on glucose metabolism. However, some members of the CCBs class such as azelnidipine and manidipine have been shown to have advantageous effects on glucose homeostasis. On the other hand, diuretics and β-blockers have an overall disadvantageous effect on glucose metabolism. Of note, carvedilol as well as nebivolol seem to differentiate themselves from the rest of the β-blockers class, being more attractive options regarding their effect on glucose homeostasis. The adverse effects of some blood pressure lowering drugs on glucose metabolism may, to an extent, compromise their cardiovascular protective role. As a result the effects on glucose homeostasis of the various blood pressure lowering drugs should be taken into account when selecting an antihypertensive treatment, especially in patients which are at high risk for developing diabetes. PMID:25068013

  17. Influence of ketamine on regional brain glucose use

    SciTech Connect

    Davis, D.W.; Mans, A.M.; Biebuyck, J.F.; Hawkins, R.A.

    1988-08-01

    The purpose of this study was to determine the effect of different doses of ketamine on cerebral function at the level of individual brain structures as reflected by glucose use. Rats received either 5 or 30 mg/kg ketamine intravenously as a loading dose, followed by an infusion to maintain a steady-state level of the drug. An additional group received 30 mg/kg as a single injection only, and was studied 20 min later, by which time they were recovering consciousness (withdrawal group). Regional brain energy metabolism was evaluated with (6-/sup 14/C)glucose and quantitative autoradiography during a 5-min experimental period. A subhypnotic, steady-state dose (5 mg/kg) of ketamine caused a stimulation of glucose use in most brain areas, with an average increase of 20%. At the larger steady-state dose (30 mg/kg, which is sufficient to cause anesthesia), there was no significant effect on most brain regions; some sensory nuclei were depressed (inferior colliculus, -29%; cerebellar dentate nucleus, -18%; vestibular nucleus, -16%), but glucose use in the ventral posterior hippocampus was increased by 33%. In contrast, during withdrawal from a 30-mg/kg bolus, there was a stimulation of glucose use throughout the brain (21-78%), at a time when plasma ketamine levels were similar to the levels in the 5 mg/kg group. At each steady-state dose, as well as during withdrawal, ketamine caused a notable stimulation of glucose use by the hippocampus.

  18. Glucose oxidase-magnetite nanoparticle bioconjugate for glucose sensing.

    PubMed

    Rossi, Liane M; Quach, Ashley D; Rosenzweig, Zeev

    2004-10-01

    Immobilization of bioactive molecules on the surface of magnetic nanoparticles is of great interest, because the magnetic properties of these bioconjugates promise to greatly improve the delivery and recovery of biomolecules in biomedical applications. Here we present the preparation and functionalization of magnetite (Fe3O4) nanoparticles 20 nm in diameter and the successful covalent conjugation of the enzyme glucose oxidase to the amino-modified nanoparticle surface. Functionalization of the magnetic nanoparticle surface with amino groups greatly increased the amount and activity of the immobilized enzyme compared with immobilization procedures involving physical adsorption. The enzymatic activity of the glucose oxidase-coated magnetic nanoparticles was investigated by monitoring oxygen consumption during the enzymatic oxidation of glucose using a ruthenium phenanthroline fluorescent complex for oxygen sensing. The glucose oxidase-coated magnetite nanoparticles could function as nanometric glucose sensors in glucose solutions of concentrations up to 20 mmol L(-1). Immobilization of glucose oxidase on the nanoparticles also increased the stability of the enzyme. When stored at 4 degrees C the nanoparticle suspensions maintained their bioactivity for up to 3 months. PMID:15448967

  19. Glucose-stat, a glucose-controlled continuous culture.

    PubMed Central

    Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R

    1991-01-01

    A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration. PMID:2059050

  20. Glucose-stat, a glucose-controlled continuous culture.

    PubMed

    Kleman, G L; Chalmers, J J; Luli, G W; Strohl, W R

    1991-04-01

    A predictive and feedback proportional control algorithm, developed for fed-batch fermentations and described in a companion paper (G. L. Kleman, J. J. Chalmers, G. W. Luli, and W. R. Strohl, Appl. Environ. Microbiol. 57:910-917, 1991), was used in this work to control a continuous culture on the basis of the soluble-glucose concentration (called the glucose-stat). This glucose-controlled continuous-culture system was found to reach and maintain steady state for 11 to 24 residence times when four different background glucose concentrations (0.27, 0.50, 0.7, and 1.5 g/liter) were used. The predictive-plus-feedback control system yielded very tight control of the continuous nutristat cultures; glucose concentrations were maintained at the set points with less than 0.003 standard error. Acetate production by Escherichia coli B in glucose-stats was found not to be correlated with the level of steady-state soluble-glucose concentration. PMID:2059050

  1. Uptake and release of glucose by the human kidney. Postabsorptive rates and responses to epinephrine.

    PubMed Central

    Stumvoll, M; Chintalapudi, U; Perriello, G; Welle, S; Gutierrez, O; Gerich, J

    1995-01-01

    Despite ample evidence that the kidney can both produce and use appreciable amounts of glucose, the human kidney is generally regarded as playing a minor role in glucose homeostasis. This view is based on measurements of arteriorenal vein glucose concentrations indicating little or no net release of glucose. However, inferences from net balance measurements do not take into consideration the simultaneous release and uptake of glucose by the kidney. Therefore, to assess the contribution of release and uptake of glucose by the human kidney to overall entry and removal of plasma glucose, we used a combination of balance and isotope techniques to measure renal glucose net balance, fractional extraction, uptake and release as well as overall plasma glucose appearance and disposal in 10 normal volunteers under basal postabsorptive conditions and during a 3-h epinephrine infusion. In the basal postabsorptive state, there was small but significant net output of glucose by the kidney (66 +/- 22 mumol.min-1, P = 0.016). However, since renal glucose fractional extraction averaged 2.9 +/- 0.3%, there was considerable renal glucose uptake (2.3 +/- 0.2 mumol.kg-1.min-1) which accounted for 20.2 +/- 1.7% of systemic glucose disposal (11.4 +/- 0.5 mumol.kg-1.min-1). Renal glucose release (3.2 +/- 0.2 mumol.kg-1.min-1) accounted for 27.8 +/- 2.1% of systemic glucose appearance (11.4 +/- 0.5 mumol.kg-1.min-1). Epinephrine infusion, which increased plasma epinephrine to levels observed during hypoglycemia (3722 +/- 453 pmol/liter) increased renal glucose release nearly twofold (5.2 +/- 0.5 vs 2.8 +/- 0.1 mol.kg-1.min-1, P = 0.01) so that at the end of the infusion, renal glucose release accounted for 40.3 +/- 5.5% of systemic glucose appearance and essentially all of the increase in systemic glucose appearance. These observations suggest an important role for the human kidney in glucose homeostasis. PMID:7593645

  2. Glucose screening and tolerance tests during pregnancy

    MedlinePlus

    Oral glucose tolerance test - pregnancy (OGTT); Glucose challenge test - pregnancy ... For the glucose screening test: You do not need to prepare or change your diet in any way. You will be asked to drink a ...

  3. Effect of Aegle marmelos and Hibiscus rosa sinensis leaf extract on glucose tolerance in glucose induced hyperglycemic rats (Charles foster).

    PubMed

    Sachdewa, A; Raina, D; Srivastava, A K; Khemani, L D

    2001-01-01

    In an effort to test the hypoglycemic activity of Aegle marmelos and Hibiscus rosa sinensis in glucose induced hyperglycemic rats, their alcoholic leaf extracts were studied. Both the groups of animals receiving either. A. marmelos or H. rosa sinensis leaf extract for seven consecutive days, at an oral dose equivalent to 250 mg kg-1 showed significant improvements in their ability to utilize the external glucose load. Average blood glucose lowering caused by A. marmelos and H. rosa sinensis was 67% and 39% respectively, which shows that former significantly (p < 0.001) improves the glucose tolerance curve. The magnitude of this effect showed time related variation with both the plants. Efficacy of A. marmelos and H. rosa sinensis was 71% and 41% of glybenclamide, respectively. These data throw some light on the possible mechanism of hypoglycemic activity of both the plants. The mechanism of action could be speculated partly to increased utilization of glucose, either by direct stimulation of glucose uptake or via the mediation of enhanced insulin secretion. PMID:11480352

  4. Below-Average, Average, and Above-Average Readers Engage Different and Similar Brain Regions while Reading

    ERIC Educational Resources Information Center

    Molfese, Dennis L.; Key, Alexandra Fonaryova; Kelly, Spencer; Cunningham, Natalie; Terrell, Shona; Ferguson, Melissa; Molfese, Victoria J.; Bonebright, Terri

    2006-01-01

    Event-related potentials (ERPs) were recorded from 27 children (14 girls, 13 boys) who varied in their reading skill levels. Both behavior performance measures recorded during the ERP word classification task and the ERP responses themselves discriminated between children with above-average, average, and below-average reading skills. ERP…

  5. Hyperglycaemic index as a tool to assess glucose control: a retrospective study

    PubMed Central

    Vogelzang, Mathijs; van der Horst, Iwan CC; Nijsten, Maarten WN

    2004-01-01

    Introduction Critically ill patients may benefit from strict glucose control. An objective measure of hyperglycaemia for assessing glucose control in acutely ill patients should reflect the magnitude and duration of hyperglycaemia, should be independent of the number of measurements, and should not be falsely lowered by hypoglycaemic values. The time average of glucose values above the normal range meets these requirements. Methods A retrospective, single-centre study was performed at a 12-bed surgical intensive care unit. From 1990 through 2001 all patients over 15 years, staying at least 4 days, were included. Admission type, sex, age, Acute Physiology and Chronic Health Evaluation II score and outcome were recorded. The hyperglycaemic index (HGI) was defined as the area under the curve above the upper limit of normal (glucose level 6.0 mmol/l) divided by the total length of stay. HGI, admission glucose, mean morning glucose, mean glucose and maximal glucose were calculated for each patient. The relations between these measures and 30-day mortality were determined. Results In 1779 patients with a median stay in the intensive care unit of 10 days, the 30-day mortality was 17%. A total of 65,528 glucose values were analyzed. Median HGI was 0.9 mmol/l (interquartile range 0.3–2.1 mmol/l) in survivors versus 1.8 mmol/l (interquartile range 0.7–3.4 mmol/l) in nonsurvivors (P < 0.001). The area under the receiver operator characteristic curve was 0.64 for HGI, as compared with 0.61 and 0.62 for mean morning glucose and mean glucose. HGI was the only significant glucose measure in binary logistic regression. Conclusion HGI exhibited a better relation with outcome than other glucose indices. HGI is a useful measure of glucose control in critically ill patients. PMID:15153239

  6. 40 CFR 76.11 - Emissions averaging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.11 Emissions averaging. (a) General... averaging plan is in compliance with the Acid Rain emission limitation for NOX under the plan only if...

  7. 40 CFR 76.11 - Emissions averaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.11 Emissions averaging. (a) General... averaging plan is in compliance with the Acid Rain emission limitation for NOX under the plan only if...

  8. RHIC BPM system average orbit calculations

    SciTech Connect

    Michnoff,R.; Cerniglia, P.; Degen, C.; Hulsart, R.; et al.

    2009-05-04

    RHIC beam position monitor (BPM) system average orbit was originally calculated by averaging positions of 10000 consecutive turns for a single selected bunch. Known perturbations in RHIC particle trajectories, with multiple frequencies around 10 Hz, contribute to observed average orbit fluctuations. In 2006, the number of turns for average orbit calculations was made programmable; this was used to explore averaging over single periods near 10 Hz. Although this has provided an average orbit signal quality improvement, an average over many periods would further improve the accuracy of the measured closed orbit. A new continuous average orbit calculation was developed just prior to the 2009 RHIC run and was made operational in March 2009. This paper discusses the new algorithm and performance with beam.

  9. Whole body glucose kinetics in type I diabetes studied with (6,6-/sup 2/H) and (U-/sup 13/C)-glucose and the artificial B-cell

    SciTech Connect

    Darmaun, D.; Cirillo, D.; Koziet, J.; Chauvet, D.; Young, V.R.; Robert, J.J.

    1988-05-01

    Dynamic aspects of whole body glucose metabolism were assessed in ten young adult insulin-dependent (type I) diabetic men. Using a primed, continuous intravenous infusion of (6,6-/sup 2/H)glucose and (U-/sup 13/C)glucose, endogenous production, tissue uptake, carbon recycling, and oxidation of glucose were measured in the postabsorptive state. These studies were undertaken after blood glucose had been maintained overnight at 5.9 +/- 0.4 mmol/L (n = 10), and on another night at 10.5 +/- 0.4 mmol/L (n = 4) or 15.2 +/- 0.6 mmol/L (n = 6). In the normoglycemic state, endogenous glucose production averaged 2.15 +/- 0.13 mg x kg-1 x min-1. This value, as well as the rate of glucose carbon recycling (0.16 +/- 0.04 mg x kg-1 x min-1) and glucose oxidation (1.52 +/- 0.16 mg x kg-1 x min-1) are comparable to those found in nondiabetic controls. In the hyperglycemic states at 10 or 15 mmol/L, endogenous glucose production was increased by 11% (P less than .01) and 60% (P less than .01) compared to the normoglycemic states, respectively. Glucose carbon recycling contributed only a small percentage to this variation in glucose production (15% at the 15 mmol/L glucose level). This suggests that if gluconeogenesis participates in the increased glucose output, it is not dependent on a greater systemic supply of three-carbon precursors. The increased rate of glucose production in the hyperglycemic state was quantitatively offset by a rise in urinary glucose excretion. Glucose tissue uptake, as well as glucose oxidation, did not vary between normoglycemic and hyperglycemic states.

  10. The glucose-6-phosphatase system.

    PubMed Central

    van Schaftingen, Emile; Gerin, Isabelle

    2002-01-01

    Glucose-6-phosphatase (G6Pase), an enzyme found mainly in the liver and the kidneys, plays the important role of providing glucose during starvation. Unlike most phosphatases acting on water-soluble compounds, it is a membrane-bound enzyme, being associated with the endoplasmic reticulum. In 1975, W. Arion and co-workers proposed a model according to which G6Pase was thought to be a rather unspecific phosphatase, with its catalytic site oriented towards the lumen of the endoplasmic reticulum [Arion, Wallin, Lange and Ballas (1975) Mol. Cell. Biochem. 6, 75--83]. Substrate would be provided to this enzyme by a translocase that is specific for glucose 6-phosphate, thereby accounting for the specificity of the phosphatase for glucose 6-phosphate in intact microsomes. Distinct transporters would allow inorganic phosphate and glucose to leave the vesicles. At variance with this substrate-transport model, other models propose that conformational changes play an important role in the properties of G6Pase. The last 10 years have witnessed important progress in our knowledge of the glucose 6-phosphate hydrolysis system. The genes encoding G6Pase and the glucose 6-phosphate translocase have been cloned and shown to be mutated in glycogen storage disease type Ia and type Ib respectively. The gene encoding a G6Pase-related protein, expressed specifically in pancreatic islets, has also been cloned. Specific potent inhibitors of G6Pase and of the glucose 6-phosphate translocase have been synthesized or isolated from micro-organisms. These as well as other findings support the model initially proposed by Arion. Much progress has also been made with regard to the regulation of the expression of G6Pase by insulin, glucocorticoids, cAMP and glucose. PMID:11879177

  11. Spectral averaging techniques for Jacobi matrices

    SciTech Connect

    Rio, Rafael del; Martinez, Carmen; Schulz-Baldes, Hermann

    2008-02-15

    Spectral averaging techniques for one-dimensional discrete Schroedinger operators are revisited and extended. In particular, simultaneous averaging over several parameters is discussed. Special focus is put on proving lower bounds on the density of the averaged spectral measures. These Wegner-type estimates are used to analyze stability properties for the spectral types of Jacobi matrices under local perturbations.

  12. Averaging and Adding in Children's Worth Judgements

    ERIC Educational Resources Information Center

    Schlottmann, Anne; Harman, Rachel M.; Paine, Julie

    2012-01-01

    Under the normative Expected Value (EV) model, multiple outcomes are additive, but in everyday worth judgement intuitive averaging prevails. Young children also use averaging in EV judgements, leading to a disordinal, crossover violation of utility when children average the part worths of simple gambles involving independent events (Schlottmann,…

  13. Conversion of glucose to sorbose

    DOEpatents

    Davis, Mark E.; Gounder, Rajamani

    2016-02-09

    The present invention is directed to methods for preparing sorbose from glucose, said method comprising: (a) contacting the glucose with a silica-containing structure comprising a zeolite having a topology of a 12 membered-ring or larger, an ordered mesoporous silica material, or an amorphous silica, said structure containing Lewis acidic Ti.sup.4+ or Zr.sup.4+ or both Ti.sup.4+ and Zr.sup.4+ framework centers, said contacting conducted under reaction conditions sufficient to isomerize the glucose to sorbose. The sorbose may be (b) separated or isolated; or (c) converted to ascorbic acid.

  14. [Contribution of the kidney to glucose homeostasis].

    PubMed

    Segura, Julián; Ruilope, Luis Miguel

    2013-09-01

    The kidney is involved in glucose homeostasis through three major mechanisms: renal gluconeogenesis, renal glucose consumption, and glucose reabsorption in the proximal tubule. Glucose reabsorption is one of the most important physiological functions of the kidney, allowing full recovery of filtered glucose, elimination of glucose from the urine, and prevention of calorie loss. Approximately 90% of the glucose is reabsorbed in the S1 segment of the proximal tubule, where glucose transporter-2 (GLUT2) and sodium-glucose transporter-2 (SGLT2) are located, while the remaining 10% is reabsorbed in the S3 segment by SGLT1 and GLUT1 transporters. In patients with hyperglycemia, the kidney continues to reabsorb glucose, thus maintaining hyperglycemia. Most of the renal glucose reabsorption is mediated by SGLT2. Several experimental and clinical studies suggest that pharmacological blockade of this transporter might be beneficial in the management of hyperglycemia in patients with type 2 diabetes. PMID:24444521

  15. Averaging procedures for flow within vegetation canopies

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Shaw, R. H.

    1982-01-01

    Most one-dimensional models of flow within vegetation canopies are based on horizontally averaged flow variables. This paper formalizes the horizontal averaging operation. Two averaging schemes are considered: pure horizontal averaging at a single instant, and time averaging followed by horizontal averaging. These schemes produce different forms for the mean and turbulent kinetic energy balances, and especially for the ‘wake production’ term describing the transfer of energy from large-scale motion to wake turbulence by form drag. The differences are primarily due to the appearance, in the covariances produced by the second scheme, of dispersive components arising from the spatial correlation of time-averaged flow variables. The two schemes are shown to coincide if these dispersive fluxes vanish.

  16. Single Glucose Biofuel Cells Implanted in Rats Power Electronic Devices

    PubMed Central

    Zebda, A.; Cosnier, S.; Alcaraz, J.-P.; Holzinger, M.; Le Goff, A.; Gondran, C.; Boucher, F.; Giroud, F.; Gorgy, K.; Lamraoui, H.; Cinquin, P.

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm−2 and a volumetric power of 161 μW mL−1. We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  17. Single glucose biofuel cells implanted in rats power electronic devices.

    PubMed

    Zebda, A; Cosnier, S; Alcaraz, J-P; Holzinger, M; Le Goff, A; Gondran, C; Boucher, F; Giroud, F; Gorgy, K; Lamraoui, H; Cinquin, P

    2013-01-01

    We describe the first implanted glucose biofuel cell (GBFC) that is capable of generating sufficient power from a mammal's body fluids to act as the sole power source for electronic devices. This GBFC is based on carbon nanotube/enzyme electrodes, which utilize glucose oxidase for glucose oxidation and laccase for dioxygen reduction. The GBFC, implanted in the abdominal cavity of a rat, produces an average open-circuit voltage of 0.57 V. This implanted GBFC delivered a power output of 38.7 μW, which corresponded to a power density of 193.5 μW cm(-2) and a volumetric power of 161 μW mL(-1). We demonstrate that one single implanted enzymatic GBFC can power a light-emitting diode (LED), or a digital thermometer. In addition, no signs of rejection or inflammation were observed after 110 days implantation in the rat. PMID:23519113

  18. Glucose-6-phosphatase deficiency

    PubMed Central

    2011-01-01

    Glucose-6-phosphatase deficiency (G6P deficiency), or glycogen storage disease type I (GSDI), is a group of inherited metabolic diseases, including types Ia and Ib, characterized by poor tolerance to fasting, growth retardation and hepatomegaly resulting from accumulation of glycogen and fat in the liver. Prevalence is unknown and annual incidence is around 1/100,000 births. GSDIa is the more frequent type, representing about 80% of GSDI patients. The disease commonly manifests, between the ages of 3 to 4 months by symptoms of hypoglycemia (tremors, seizures, cyanosis, apnea). Patients have poor tolerance to fasting, marked hepatomegaly, growth retardation (small stature and delayed puberty), generally improved by an appropriate diet, osteopenia and sometimes osteoporosis, full-cheeked round face, enlarged kydneys and platelet dysfunctions leading to frequent epistaxis. In addition, in GSDIb, neutropenia and neutrophil dysfunction are responsible for tendency towards infections, relapsing aphtous gingivostomatitis, and inflammatory bowel disease. Late complications are hepatic (adenomas with rare but possible transformation into hepatocarcinoma) and renal (glomerular hyperfiltration leading to proteinuria and sometimes to renal insufficiency). GSDI is caused by a dysfunction in the G6P system, a key step in the regulation of glycemia. The deficit concerns the catalytic subunit G6P-alpha (type Ia) which is restricted to expression in the liver, kidney and intestine, or the ubiquitously expressed G6P transporter (type Ib). Mutations in the genes G6PC (17q21) and SLC37A4 (11q23) respectively cause GSDIa and Ib. Many mutations have been identified in both genes,. Transmission is autosomal recessive. Diagnosis is based on clinical presentation, on abnormal basal values and absence of hyperglycemic response to glucagon. It can be confirmed by demonstrating a deficient activity of a G6P system component in a liver biopsy. To date, the diagnosis is most commonly confirmed

  19. Glucose regulation of glucagon secretion.

    PubMed

    Gylfe, Erik; Gilon, Patrick

    2014-01-01

    Glucagon secreted by pancreatic α-cells is the major hyperglycemic hormone correcting acute hypoglycaemia (glucose counterregulation). In diabetes the glucagon response to hypoglycaemia becomes compromised and chronic hyperglucagonemia appears. There is increasing awareness that glucagon excess may underlie important manifestations of diabetes. However opinions differ widely how glucose controls glucagon secretion. The autonomous nervous system plays an important role in the glucagon response to hypoglycaemia. But it is clear that glucose controls glucagon secretion also by mechanisms involving direct effects on α-cells or indirect effects via paracrine factors released from non-α-cells within the pancreatic islets. The present review discusses these mechanisms and argues that different regulatory processes are involved in a glucose concentration-dependent manner. Direct glucose effects on the α-cell and autocrine mechanisms are probably most significant for the glucagon response to hypoglycaemia. During hyperglycaemia, when secretion from β- and δ-cells is stimulated, paracrine inhibitory factors generate pulsatile glucagon release in opposite phase to pulsatile release of insulin and somatostatin. High concentrations of glucose have also stimulatory effects on glucagon secretion that tend to balance and even exceed the inhibitory influence. The latter actions might underlie the paradoxical hyperglucagonemia that aggravates hyperglycaemia in persons with diabetes. PMID:24367972

  20. Glucose tolerance test - non-pregnant

    MedlinePlus

    Oral glucose tolerance test - non-pregnant; OGTT - non-pregnant; Diabetes - glucose tolerance test ... The most common glucose tolerance test is the oral glucose tolerance test (OGTT). Before the test begins, a sample of blood will be taken. You will then ...

  1. Average-cost based robust structural control

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.

    1993-01-01

    A method is presented for the synthesis of robust controllers for linear time invariant structural systems with parameterized uncertainty. The method involves minimizing quantities related to the quadratic cost (H2-norm) averaged over a set of systems described by real parameters such as natural frequencies and modal residues. Bounded average cost is shown to imply stability over the set of systems. Approximations for the exact average are derived and proposed as cost functionals. The properties of these approximate average cost functionals are established. The exact average and approximate average cost functionals are used to derive dynamic controllers which can provide stability robustness. The robustness properties of these controllers are demonstrated in illustrative numerical examples and tested in a simple SISO experiment on the MIT multi-point alignment testbed.

  2. Averaging of Backscatter Intensities in Compounds

    PubMed Central

    Donovan, John J.; Pingitore, Nicholas E.; Westphal, Andrew J.

    2002-01-01

    Low uncertainty measurements on pure element stable isotope pairs demonstrate that mass has no influence on the backscattering of electrons at typical electron microprobe energies. The traditional prediction of average backscatter intensities in compounds using elemental mass fractions is improperly grounded in mass and thus has no physical basis. We propose an alternative model to mass fraction averaging, based of the number of electrons or protons, termed “electron fraction,” which predicts backscatter yield better than mass fraction averaging.

  3. Neutron resonance averaging with filtered beams

    SciTech Connect

    Chrien, R.E.

    1985-01-01

    Neutron resonance averaging using filtered beams from a reactor source has proven to be an effective nuclear structure tool within certain limitations. These limitations are imposed by the nature of the averaging process, which produces fluctuations in radiative intensities. The fluctuations have been studied quantitatively. Resonance averaging also gives us information about initial or capture state parameters, in particular the photon strength function. Suitable modifications of the filtered beams are suggested for the enhancement of non-resonant processes.

  4. Spatial limitations in averaging social cues.

    PubMed

    Florey, Joseph; Clifford, Colin W G; Dakin, Steven; Mareschal, Isabelle

    2016-01-01

    The direction of social attention from groups provides stronger cueing than from an individual. It has previously been shown that both basic visual features such as size or orientation and more complex features such as face emotion and identity can be averaged across multiple elements. Here we used an equivalent noise procedure to compare observers' ability to average social cues with their averaging of a non-social cue. Estimates of observers' internal noise (uncertainty associated with processing any individual) and sample-size (the effective number of gaze-directions pooled) were derived by fitting equivalent noise functions to discrimination thresholds. We also used reverse correlation analysis to estimate the spatial distribution of samples used by participants. Averaging of head-rotation and cone-rotation was less noisy and more efficient than averaging of gaze direction, though presenting only the eye region of faces at a larger size improved gaze averaging performance. The reverse correlation analysis revealed greater sampling areas for head rotation compared to gaze. We attribute these differences in averaging between gaze and head cues to poorer visual processing of faces in the periphery. The similarity between head and cone averaging are examined within the framework of a general mechanism for averaging of object rotation. PMID:27573589

  5. Spectral and parametric averaging for integrable systems

    NASA Astrophysics Data System (ADS)

    Ma, Tao; Serota, R. A.

    2015-05-01

    We analyze two theoretical approaches to ensemble averaging for integrable systems in quantum chaos, spectral averaging (SA) and parametric averaging (PA). For SA, we introduce a new procedure, namely, rescaled spectral averaging (RSA). Unlike traditional SA, it can describe the correlation function of spectral staircase (CFSS) and produce persistent oscillations of the interval level number variance (IV). PA while not as accurate as RSA for the CFSS and IV, can also produce persistent oscillations of the global level number variance (GV) and better describes saturation level rigidity as a function of the running energy. Overall, it is the most reliable method for a wide range of statistics.

  6. Statistics of time averaged atmospheric scintillation

    SciTech Connect

    Stroud, P.

    1994-02-01

    A formulation has been constructed to recover the statistics of the moving average of the scintillation Strehl from a discrete set of measurements. A program of airborne atmospheric propagation measurements was analyzed to find the correlation function of the relative intensity over displaced propagation paths. The variance in continuous moving averages of the relative intensity was then found in terms of the correlation functions. An empirical formulation of the variance of the continuous moving average of the scintillation Strehl has been constructed. The resulting characterization of the variance of the finite time averaged Strehl ratios is being used to assess the performance of an airborne laser system.

  7. Spatial limitations in averaging social cues

    PubMed Central

    Florey, Joseph; Clifford, Colin W. G.; Dakin, Steven; Mareschal, Isabelle

    2016-01-01

    The direction of social attention from groups provides stronger cueing than from an individual. It has previously been shown that both basic visual features such as size or orientation and more complex features such as face emotion and identity can be averaged across multiple elements. Here we used an equivalent noise procedure to compare observers’ ability to average social cues with their averaging of a non-social cue. Estimates of observers’ internal noise (uncertainty associated with processing any individual) and sample-size (the effective number of gaze-directions pooled) were derived by fitting equivalent noise functions to discrimination thresholds. We also used reverse correlation analysis to estimate the spatial distribution of samples used by participants. Averaging of head-rotation and cone-rotation was less noisy and more efficient than averaging of gaze direction, though presenting only the eye region of faces at a larger size improved gaze averaging performance. The reverse correlation analysis revealed greater sampling areas for head rotation compared to gaze. We attribute these differences in averaging between gaze and head cues to poorer visual processing of faces in the periphery. The similarity between head and cone averaging are examined within the framework of a general mechanism for averaging of object rotation. PMID:27573589

  8. Microdegree porlarimetry for glucose concentrations detection

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Wei, Yunlong; Zhou, Qi; Liu, Shenping; Chui, Jianguo

    2005-07-01

    Optical glucose measurement is an attractive research topic for years. One of the goals is to develop a noninvasive monitoring of long term, instantaneous blood glucose for diabetics. The principle of porlarimetry for glucose detection is introduced and several techniques of microdegree porlarimetry for glucose detection are summarized and the facts that effect measurement are discussed. Current and future research is focusing on the elimination of confounding factors such as other optically active substances for precise glucose detection.

  9. Determination of glucose concentration based on pulsed laser induced photoacoustic technique and least square fitting algorithm

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2015-08-01

    In this paper, a noninvasive glucose concentration monitoring setup based on the photoacoustic technique was established. In this setup, a 532nm pumped Q switched Nd: YAG tunable pulsed laser with repetition rate of 20Hz was used as the photoacoustic excitation light source, and a ultrasonic transducer with central response frequency of 9.55MHz was used as the detector of the photoacoustic signal of glucose. As the preliminary exploration of the blood glucose concentration, a series of in vitro photoacoustic monitoring of glucose aqueous solutions by using the established photoacoustic setup were performed. The photoacoustic peak-to-peak values of different concentrations of glucose aqueous solutions induced by the pulsed laser with output wavelength of 1300nm to 2300nm in interval of 10nm were obtained with the average times of 512. The differential spectral and the first order derivative spectral method were used to get the characteristic wavelengths. For the characteristic wavelengths of glucose, the least square fitting algorithm was used to establish the relationship between the glucose concentrations and photoacoustic peak-to-peak values. The characteristic wavelengths and the predicted concentrations of glucose solution were obtained. Experimental results demonstrated that the prediction effect of characteristic wavelengths of 1410nm and 1510nm were better than others, and this photoacoustic setup and analysis method had a certain potential value in the monitoring of the blood glucose concentration.

  10. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical

  11. Whatever Happened to the Average Student?

    ERIC Educational Resources Information Center

    Krause, Tom

    2005-01-01

    Mandated state testing, college entrance exams and their perceived need for higher and higher grade point averages have raised the anxiety levels felt by many of the average students. Too much focus is placed on state test scores and college entrance standards with not enough focus on the true level of the students. The author contends that…

  12. 40 CFR 63.846 - Emission averaging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... averaging. (a) General. The owner or operator of an existing potline or anode bake furnace in a State that... by total aluminum production. (c) Anode bake furnaces. The owner or operator may average TF emissions from anode bake furnaces and demonstrate compliance with the limits in Table 3 of this subpart...

  13. 40 CFR 63.846 - Emission averaging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... averaging. (a) General. The owner or operator of an existing potline or anode bake furnace in a State that... by total aluminum production. (c) Anode bake furnaces. The owner or operator may average TF emissions from anode bake furnaces and demonstrate compliance with the limits in Table 3 of this subpart...

  14. 40 CFR 76.11 - Emissions averaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Emissions averaging. 76.11 Section 76.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.11 Emissions averaging. (a) General provisions. In lieu of complying with the...

  15. A note on generalized averaged Gaussian formulas

    NASA Astrophysics Data System (ADS)

    Spalevic, Miodrag

    2007-11-01

    We have recently proposed a very simple numerical method for constructing the averaged Gaussian quadrature formulas. These formulas exist in many more cases than the real positive Gauss?Kronrod formulas. In this note we try to answer whether the averaged Gaussian formulas are an adequate alternative to the corresponding Gauss?Kronrod quadrature formulas, to estimate the remainder term of a Gaussian rule.

  16. Determinants of College Grade Point Averages

    ERIC Educational Resources Information Center

    Bailey, Paul Dean

    2012-01-01

    Chapter 2: The Role of Class Difficulty in College Grade Point Averages. Grade Point Averages (GPAs) are widely used as a measure of college students' ability. Low GPAs can remove a students from eligibility for scholarships, and even continued enrollment at a university. However, GPAs are determined not only by student ability but also by…

  17. 40 CFR 63.846 - Emission averaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operator may average TF emissions from potlines and demonstrate compliance with the limits in Table 1 of... operator also may average POM emissions from potlines and demonstrate compliance with the limits in Table 2... limit in Table 1 of this subpart (for TF emissions) and/or Table 2 of this subpart (for POM...

  18. 40 CFR 63.846 - Emission averaging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operator may average TF emissions from potlines and demonstrate compliance with the limits in Table 1 of... operator also may average POM emissions from potlines and demonstrate compliance with the limits in Table 2... limit in Table 1 of this subpart (for TF emissions) and/or Table 2 of this subpart (for POM...

  19. 40 CFR 63.846 - Emission averaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operator may average TF emissions from potlines and demonstrate compliance with the limits in Table 1 of... operator also may average POM emissions from potlines and demonstrate compliance with the limits in Table 2... limit in Table 1 of this subpart (for TF emissions) and/or Table 2 of this subpart (for POM...

  20. Average Transmission Probability of a Random Stack

    ERIC Educational Resources Information Center

    Lu, Yin; Miniatura, Christian; Englert, Berthold-Georg

    2010-01-01

    The transmission through a stack of identical slabs that are separated by gaps with random widths is usually treated by calculating the average of the logarithm of the transmission probability. We show how to calculate the average of the transmission probability itself with the aid of a recurrence relation and derive analytical upper and lower…

  1. Abnormal oral glucose tolerance and glucose malabsorption after vagotomy and pyloroplasty. A tracer method for measuring glucose absorption rates

    SciTech Connect

    Radziuk, J.; Bondy, D.C.

    1982-11-01

    The mechanisms underlying the abnormal glucose tolerance in patients who had undergone vagotomy and pyloroplasty were investigated by measuring the rates of absorption of ingested glucose and the clearance rate of glucose using tracer methods. These methods are based on labeling a 100-g oral glucose load with (1-/sup 14/C)glucose and measuring glucose clearance using plasma levels of infused (3-/sup 3/H)glucose. The rate of appearance of both ingested and total glucose is then calculated continuously using a two-compartment model of glucose kinetics. It was found that about 30% of the ingested glucose (100 g) failed to appear in the systemic circulation. That this was due to malabsorption was confirmed using breath-hydrogen analysis. The absorption period is short (101 +/- 11 min) compared with normal values but the clearance of glucose is identical to that in control subjects, and it peaks 132 +/- 7 min after glucose loading. The peak plasma insulin values were more than four times higher in patients than in normal subjects, and this may afford an explanation of rates of glucose clearance that are inappropriate for the short absorption period. The combination of glucose malabsorption and this clearance pattern could yield the hypoglycemia that may be observed in patients after gastric surgery.

  2. Breakfast, blood glucose, and cognition.

    PubMed

    Benton, D; Parker, P Y

    1998-04-01

    This article compares the findings of three studies that explored the role of increased blood glucose in improving memory function for subjects who ate breakfast. An initial improvement in memory function for these subjects was found to correlate with blood glucose concentrations. In subsequent studies, morning fasting was found to adversely affect the ability to recall a word list and a story read aloud, as well as recall items while counting backwards. Failure to eat breakfast did not affect performance on an intelligence test. It was concluded that breakfast consumption preferentially influences tasks requiring aspects of memory. In the case of both word list recall and memory while counting backwards, the decline in performance associated with not eating breakfast was reversed by the consumption of a glucose-supplemented drink. Although a morning fast also affected the ability to recall a story read aloud, the glucose drink did not reverse this decline. It appears that breakfast consumption influences cognition via several mechanisms, including an increase in blood glucose. PMID:9537627

  3. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  4. New results on averaging theory and applications

    NASA Astrophysics Data System (ADS)

    Cândido, Murilo R.; Llibre, Jaume

    2016-08-01

    The usual averaging theory reduces the computation of some periodic solutions of a system of ordinary differential equations, to find the simple zeros of an associated averaged function. When one of these zeros is not simple, i.e., the Jacobian of the averaged function in it is zero, the classical averaging theory does not provide information about the periodic solution associated to a non-simple zero. Here we provide sufficient conditions in order that the averaging theory can be applied also to non-simple zeros for studying their associated periodic solutions. Additionally, we do two applications of this new result for studying the zero-Hopf bifurcation in the Lorenz system and in the Fitzhugh-Nagumo system.

  5. The Hubble rate in averaged cosmology

    SciTech Connect

    Umeh, Obinna; Larena, Julien; Clarkson, Chris E-mail: julien.larena@gmail.com

    2011-03-01

    The calculation of the averaged Hubble expansion rate in an averaged perturbed Friedmann-Lemaître-Robertson-Walker cosmology leads to small corrections to the background value of the expansion rate, which could be important for measuring the Hubble constant from local observations. It also predicts an intrinsic variance associated with the finite scale of any measurement of H{sub 0}, the Hubble rate today. Both the mean Hubble rate and its variance depend on both the definition of the Hubble rate and the spatial surface on which the average is performed. We quantitatively study different definitions of the averaged Hubble rate encountered in the literature by consistently calculating the backreaction effect at second order in perturbation theory, and compare the results. We employ for the first time a recently developed gauge-invariant definition of an averaged scalar. We also discuss the variance of the Hubble rate for the different definitions.

  6. Short-Term Auditory Memory of Above-Average and Below-Average Grade Three Readers.

    ERIC Educational Resources Information Center

    Caruk, Joan Marie

    To determine if performance on short term auditory memory tasks is influenced by reading ability or sex differences, 62 third grade reading students (16 above average boys, 16 above average girls, 16 below average boys, and 14 below average girls) were administered four memory tests--memory for consonant names, memory for words, memory for…

  7. Clarifying the Relationship between Average Excesses and Average Effects of Allele Substitutions.

    PubMed

    Alvarez-Castro, José M; Yang, Rong-Cai

    2012-01-01

    Fisher's concepts of average effects and average excesses are at the core of the quantitative genetics theory. Their meaning and relationship have regularly been discussed and clarified. Here we develop a generalized set of one locus two-allele orthogonal contrasts for average excesses and average effects, based on the concept of the effective gene content of alleles. Our developments help understand the average excesses of alleles for the biallelic case. We dissect how average excesses relate to the average effects and to the decomposition of the genetic variance. PMID:22509178

  8. Light propagation in the averaged universe

    SciTech Connect

    Bagheri, Samae; Schwarz, Dominik J. E-mail: dschwarz@physik.uni-bielefeld.de

    2014-10-01

    Cosmic structures determine how light propagates through the Universe and consequently must be taken into account in the interpretation of observations. In the standard cosmological model at the largest scales, such structures are either ignored or treated as small perturbations to an isotropic and homogeneous Universe. This isotropic and homogeneous model is commonly assumed to emerge from some averaging process at the largest scales. We assume that there exists an averaging procedure that preserves the causal structure of space-time. Based on that assumption, we study the effects of averaging the geometry of space-time and derive an averaged version of the null geodesic equation of motion. For the averaged geometry we then assume a flat Friedmann-Lemaître (FL) model and find that light propagation in this averaged FL model is not given by null geodesics of that model, but rather by a modified light propagation equation that contains an effective Hubble expansion rate, which differs from the Hubble rate of the averaged space-time.

  9. Physics of the spatially averaged snowmelt process

    NASA Astrophysics Data System (ADS)

    Horne, Federico E.; Kavvas, M. Levent

    1997-04-01

    It has been recognized that the snowmelt models developed in the past do not fully meet current prediction requirements. Part of the reason is that they do not account for the spatial variation in the dynamics of the spatially heterogeneous snowmelt process. Most of the current physics-based distributed snowmelt models utilize point-location-scale conservation equations which do not represent the spatially varying snowmelt dynamics over a grid area that surrounds a computational node. In this study, to account for the spatial heterogeneity of the snowmelt dynamics, areally averaged mass and energy conservation equations for the snowmelt process are developed. As a first step, energy and mass conservation equations that govern the snowmelt dynamics at a point location are averaged over the snowpack depth, resulting in depth averaged equations (DAE). In this averaging, it is assumed that the snowpack has two layers. Then, the point location DAE are averaged over the snowcover area. To develop the areally averaged equations of the snowmelt physics, we make the fundamental assumption that snowmelt process is spatially ergodic. The snow temperature and the snow density are considered as the stochastic variables. The areally averaged snowmelt equations are obtained in terms of their corresponding ensemble averages. Only the first two moments are considered. A numerical solution scheme (Runge-Kutta) is then applied to solve the resulting system of ordinary differential equations. This equation system is solved for the areal mean and areal variance of snow temperature and of snow density, for the areal mean of snowmelt, and for the areal covariance of snow temperature and snow density. The developed model is tested using Scott Valley (Siskiyou County, California) snowmelt and meteorological data. The performance of the model in simulating the observed areally averaged snowmelt is satisfactory.

  10. Cosmic Inhomogeneities and Averaged Cosmological Dynamics

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Singh, T. P.

    2008-10-01

    If general relativity (GR) describes the expansion of the Universe, the observed cosmic acceleration implies the existence of a “dark energy.” However, while the Universe is on average homogeneous on large scales, it is inhomogeneous on smaller scales. While GR governs the dynamics of the inhomogeneous Universe, the averaged homogeneous Universe obeys modified Einstein equations. Can such modifications alone explain the acceleration? For a simple generic model with realistic initial conditions, we show the answer to be “no.” Averaging effects negligibly influence the cosmological dynamics.

  11. Average shape of transport-limited aggregates.

    PubMed

    Davidovitch, Benny; Choi, Jaehyuk; Bazant, Martin Z

    2005-08-12

    We study the relation between stochastic and continuous transport-limited growth models. We derive a nonlinear integro-differential equation for the average shape of stochastic aggregates, whose mean-field approximation is the corresponding continuous equation. Focusing on the advection-diffusion-limited aggregation (ADLA) model, we show that the average shape of the stochastic growth is similar, but not identical, to the corresponding continuous dynamics. Similar results should apply to DLA, thus explaining the known discrepancies between average DLA shapes and viscous fingers in a channel geometry. PMID:16196793

  12. Average Shape of Transport-Limited Aggregates

    NASA Astrophysics Data System (ADS)

    Davidovitch, Benny; Choi, Jaehyuk; Bazant, Martin Z.

    2005-08-01

    We study the relation between stochastic and continuous transport-limited growth models. We derive a nonlinear integro-differential equation for the average shape of stochastic aggregates, whose mean-field approximation is the corresponding continuous equation. Focusing on the advection-diffusion-limited aggregation (ADLA) model, we show that the average shape of the stochastic growth is similar, but not identical, to the corresponding continuous dynamics. Similar results should apply to DLA, thus explaining the known discrepancies between average DLA shapes and viscous fingers in a channel geometry.

  13. Development of the MOSFET hybrid biosensor for self-monitoring of blood glucose

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Kazuyoshi; Kuroda, Tatsuro; Hirai, Yasutomo; Iwamoto, Naoyuki; Nakanishi, Naoyuki; Uetsuji, Yasutomo; Nakamachi, Eiji

    2006-01-01

    We focus on the research to develop a compact Self Monitoring of Blood Glucose (SMBG). The SMBG consists of (1) a micro electrical pumping system for blood extraction, (2) a painless microneedle as same size as a female mosquito's labium and (3) a biosensor to detect and evaluate an amount of glucose in extracted blood, by using enzyme such as glucose oxidase (GOx). A gold (Au) plate immobilized GOx was used as a biosensor and attached to the gate electrode of MOSFET. GOx was immobilized on a self-assembled spacer combined with an Au electrode by the cross-link method using BSA (bovine serum albumin) as an additional bonding material. The electrode could detect electrons generated by the hydrolysis of hydrogen peroxide produced by the reaction between GOx and glucose using the constant electric current measurement system of the MOSFET type hybrid biosensor system. The system can measure the change of gate voltage. The extracting speed for whole blood using the micro electrical pumping system was about 2 μl/min. The extracted volume was sufficient to determine the glucose level in the blood; it was comparable to the volume extracted in a commercial glucose level monitor. In the functional evaluation of the biosensor system using hydrogen peroxide solution, it is shown that the averaged output voltage increases in alignment to hydrogen peroxide concentration. The linear value was shown with the averaged output voltage in corresponding hydrogen peroxide concentration with the averaged output voltage obtained from the biosensor system by glucose solution concentration. Furthermore, it is confirmed that the averaged output voltage from the biosensor system obtained by whole blood showed the same voltage in corresponding glucose solution concentration. The hybrid biosensor obtained the useful performance for the SMBG.

  14. Reengineered glucose oxidase for amperometric glucose determination in diabetes analytics.

    PubMed

    Arango Gutierrez, Erik; Mundhada, Hemanshu; Meier, Thomas; Duefel, Hartmut; Bocola, Marco; Schwaneberg, Ulrich

    2013-12-15

    Glucose oxidase is an oxidoreductase exhibiting a high β-D-glucose specificity and high stability which renders glucose oxidase well-suited for applications in diabetes care. Nevertheless, GOx activity is highly oxygen dependent which can lead to inaccuracies in amperometric β-D-glucose determinations. Therefore a directed evolution campaign with two rounds of random mutagenesis (SeSaM followed by epPCR), site saturation mutagenesis studies on individual positions, and one simultaneous site saturation library (OmniChange; 4 positions) was performed. A diabetes care well suited mediator (quinone diimine) was selected and the GOx variant (T30V I94V) served as starting point. For directed GOx evolution a microtiter plate detection system based on the quinone diimine mediator was developed and the well-known ABTS-assay was applied in microtiter plate format to validate oxygen independency of improved GOx variants. Two iterative rounds of random diversity generation and screening yielded to two subsets of amino acid positions which mainly improved activity (A173, A332) and oxygen independency (F414, V560). Simultaneous site saturation of all four positions with a reduced subset of amino acids using the OmniChange method yielded finally variant V7 with a 37-fold decreased oxygen dependency (mediator activity: 7.4 U/mg WT, 47.5 U/mg V7; oxygen activity: 172.3 U/mg WT, 30.1 U/mg V7). V7 is still highly β-D-glucose specific, highly active with the quinone diimine mediator and thermal resistance is retained (prerequisite for GOx coating of diabetes test stripes). The latter properties and V7's oxygen insensitivity make V7 a very promising candidate to replace standard GOx in diabetes care applications. PMID:23835222

  15. 40 CFR 76.11 - Emissions averaging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.11 Emissions averaging. (a) General... compliance with the Acid Rain emission limitation for NOX under the plan only if the following...

  16. 40 CFR 76.11 - Emissions averaging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) ACID RAIN NITROGEN OXIDES EMISSION REDUCTION PROGRAM § 76.11 Emissions averaging. (a) General... compliance with the Acid Rain emission limitation for NOX under the plan only if the following...

  17. 40 CFR 91.204 - Averaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... offset by positive credits from engine families below the applicable emission standard, as allowed under the provisions of this subpart. Averaging of credits in this manner is used to determine...

  18. Orbit-averaged implicit particle codes

    NASA Astrophysics Data System (ADS)

    Cohen, B. I.; Freis, R. P.; Thomas, V.

    1982-03-01

    The merging of orbit-averaged particle code techniques with recently developed implicit methods to perform numerically stable and accurate particle simulations are reported. Implicitness and orbit averaging can extend the applicability of particle codes to the simulation of long time-scale plasma physics phenomena by relaxing time-step and statistical constraints. Difference equations for an electrostatic model are presented, and analyses of the numerical stability of each scheme are given. Simulation examples are presented for a one-dimensional electrostatic model. Schemes are constructed that are stable at large-time step, require fewer particles, and, hence, reduce input-output and memory requirements. Orbit averaging, however, in the unmagnetized electrostatic models tested so far is not as successful as in cases where there is a magnetic field. Methods are suggested in which orbit averaging should achieve more significant improvements in code efficiency.

  19. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... may use averaging to offset an emission exceedance of a nonroad engine family caused by a NOX FEL... exceedance of a nonroad engine family caused by an NMHC+;NOX FEL or a PM FEL above the applicable...

  20. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... may use averaging to offset an emission exceedance of a nonroad engine family caused by a NOX FEL... exceedance of a nonroad engine family caused by an NMHC+;NOX FEL or a PM FEL above the applicable...

  1. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... may use averaging to offset an emission exceedance of a nonroad engine family caused by a NOX FEL... exceedance of a nonroad engine family caused by an NMHC+;NOX FEL or a PM FEL above the applicable...

  2. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... may use averaging to offset an emission exceedance of a nonroad engine family caused by a NOX FEL... exceedance of a nonroad engine family caused by an NMHC+;NOX FEL or a PM FEL above the applicable...

  3. 40 CFR 89.204 - Averaging.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... may use averaging to offset an emission exceedance of a nonroad engine family caused by a NOX FEL... exceedance of a nonroad engine family caused by an NMHC+;NOX FEL or a PM FEL above the applicable...

  4. Total-pressure averaging in pulsating flows.

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a nonsteady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered with the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles.

  5. Stochastic Averaging of Duhem Hysteretic Systems

    NASA Astrophysics Data System (ADS)

    YING, Z. G.; ZHU, W. Q.; NI, Y. Q.; KO, J. M.

    2002-06-01

    The response of Duhem hysteretic system to externally and/or parametrically non-white random excitations is investigated by using the stochastic averaging method. A class of integrable Duhem hysteresis models covering many existing hysteresis models is identified and the potential energy and dissipated energy of Duhem hysteretic component are determined. The Duhem hysteretic system under random excitations is replaced equivalently by a non-hysteretic non-linear random system. The averaged Ito's stochastic differential equation for the total energy is derived and the Fokker-Planck-Kolmogorov equation associated with the averaged Ito's equation is solved to yield stationary probability density of total energy, from which the statistics of system response can be evaluated. It is observed that the numerical results by using the stochastic averaging method is in good agreement with that from digital simulation.

  6. Geologic analysis of averaged magnetic satellite anomalies

    NASA Technical Reports Server (NTRS)

    Goyal, H. K.; Vonfrese, R. R. B.; Ridgway, J. R.; Hinze, W. J.

    1985-01-01

    To investigate relative advantages and limitations for quantitative geologic analysis of magnetic satellite scalar anomalies derived from arithmetic averaging of orbital profiles within equal-angle or equal-area parallelograms, the anomaly averaging process was simulated by orbital profiles computed from spherical-earth crustal magnetic anomaly modeling experiments using Gauss-Legendre quadrature integration. The results indicate that averaging can provide reasonable values at satellite elevations, where contributing error factors within a given parallelogram include the elevation distribution of the data, and orbital noise and geomagnetic field attributes. Various inversion schemes including the use of equivalent point dipoles are also investigated as an alternative to arithmetic averaging. Although inversion can provide improved spherical grid anomaly estimates, these procedures are problematic in practice where computer scaling difficulties frequently arise due to a combination of factors including large source-to-observation distances ( 400 km), high geographic latitudes, and low geomagnetic field inclinations.

  7. Spacetime Average Density (SAD) cosmological measures

    SciTech Connect

    Page, Don N.

    2014-11-01

    The measure problem of cosmology is how to obtain normalized probabilities of observations from the quantum state of the universe. This is particularly a problem when eternal inflation leads to a universe of unbounded size so that there are apparently infinitely many realizations or occurrences of observations of each of many different kinds or types, making the ratios ambiguous. There is also the danger of domination by Boltzmann Brains. Here two new Spacetime Average Density (SAD) measures are proposed, Maximal Average Density (MAD) and Biased Average Density (BAD), for getting a finite number of observation occurrences by using properties of the Spacetime Average Density (SAD) of observation occurrences to restrict to finite regions of spacetimes that have a preferred beginning or bounce hypersurface. These measures avoid Boltzmann brain domination and appear to give results consistent with other observations that are problematic for other widely used measures, such as the observation of a positive cosmological constant.

  8. Total pressure averaging in pulsating flows

    NASA Technical Reports Server (NTRS)

    Krause, L. N.; Dudzinski, T. J.; Johnson, R. C.

    1972-01-01

    A number of total-pressure tubes were tested in a non-steady flow generator in which the fraction of period that pressure is a maximum is approximately 0.8, thereby simulating turbomachine-type flow conditions. Most of the tubes indicated a pressure which was higher than the true average. Organ-pipe resonance which further increased the indicated pressure was encountered within the tubes at discrete frequencies. There was no obvious combination of tube diameter, length, and/or geometry variation used in the tests which resulted in negligible averaging error. A pneumatic-type probe was found to measure true average pressure, and is suggested as a comparison instrument to determine whether nonlinear averaging effects are serious in unknown pulsation profiles. The experiments were performed at a pressure level of 1 bar, for Mach number up to near 1, and frequencies up to 3 kHz.

  9. Grain sorghum muffin reduces glucose and insulin responses in men.

    PubMed

    Poquette, Nicole M; Gu, Xuan; Lee, Sun-Ok

    2014-05-01

    Diabetes and obesity have sparked interest in identifying healthy, dietary carbohydrates as functional ingredients for controlling blood glucose and insulin levels. Grain sorghum has been known to be a slowly digestible cereal; however, research is limited on its health effects in humans. The objectives of this study were to measure the contents of functional starch fractions, SDS (slowly-digestible starch) and RS (resistant starch), and to investigate the effects of grain sorghum on postprandial plasma glucose and insulin levels in 10 healthy men. A whole-wheat flour muffin (control) was compared with the grain sorghum muffin with both muffins containing 50 g of total starch. Using a randomized-crossover design, male subjects consumed treatments within a one-week washout period, and glucose and insulin levels were observed at 15 minutes before and 0, 15, 30, 45, 60, 75, 90, 120, 180 minutes after consumption. The mean glucose responses reduced after consuming grain sorghum, particularly at 45-120 minute intervals, and mean insulin responses reduced at 15-90 minute intervals compared to control (P < 0.05). The mean incremental area under the curve (iAUC) was significantly lowered for plasma glucose responses about an average of 35% from 3863 ± 443 to 2871 ± 163 mg (∼3 h) dL(-1) (P < 0.05). Insulin responses also reduced significantly from 3029 ± 965 μU (∼3 h) L(-1) for wheat to 1357 ± 204 with sorghum (P < 0.05). Results suggest that grain sorghum is a good functional ingredient to assist in managing glucose and insulin levels in healthy individuals. PMID:24608948

  10. Finger temperature controller for non-invasive blood glucose measurement

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Ting, Choon Meng; Yeo, Joon Hock

    2010-11-01

    Blood glucose level is an important parameter for doctors to diagnose and treat diabetes. The Near-Infra-Red (NIR) spectroscopy method is the most promising approach and this involves measurement on the body skin. However it is noted that the skin temperature does fluctuate with the environmental and physiological conditions and we found that temperature has important influences on the glucose measurement. In-vitro and in-vivo investigations on the temperature influence on blood glucose measurement have been carried out. The in-vitro results show that water temperature has significant influence on water absorption. Since 90% of blood components are water, skin temperature of measurement site has significant influence on blood glucose measurement. Also the skin temperature is related to the blood volume, blood volume inside capillary vessels changes with skin temperature. In this paper the relationship of skin temperature and signal from the skin and inside tissue was studied at different finger temperatures. Our OGTT (oral glucose tolerance test) trials results show the laser signals follow the skin temperature trend and the correlation of signal and skin temperature is much stronger than the correlation of signal and glucose concentration. A finger heater device is designed to heat and maintain the skin temperature of measurement site. The heater is controlled by an electronic circuit according to the skin temperature sensed by a thermocouple that is put close to the measurement site. In vivo trials were carried out and the results show that the skin temperature significantly influences the signal fluctuations caused by pulsate blood and the average signal value.

  11. Monthly average polar sea-ice concentration

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1995-01-01

    The data contained in this CD-ROM depict monthly averages of sea-ice concentration in the modern polar oceans. These averages were derived from the Scanning Multichannel Microwave Radiometer (SMMR) and Special Sensor Microwave/Imager (SSM/I) instruments aboard satellites of the U.S. Air Force Defense Meteorological Satellite Program from 1978 through 1992. The data are provided as 8-bit images using the Hierarchical Data Format (HDF) developed by the National Center for Supercomputing Applications.

  12. Heuristic approach to capillary pressures averaging

    SciTech Connect

    Coca, B.P.

    1980-10-01

    Several methods are available to average capillary pressure curves. Among these are the J-curve and regression equations of the wetting-fluid saturation in porosity and permeability (capillary pressure held constant). While the regression equation seem completely empiric, the J-curve method seems to be theoretically sound due to its expression based on a relation between the average capillary radius and the permeability-porosity ratio. An analysis is given of each of these methods.

  13. Peritoneal transport characteristics with glucose polymer based dialysate.

    PubMed

    Ho-dac-Pannekeet, M M; Schouten, N; Langendijk, M J; Hiralall, J K; de Waart, D R; Struijk, D G; Krediet, R T

    1996-09-01

    it remained unchanged during the dwell. In contrast, D/PNa+ of 1.36% glucose increased during the dwell, whereas D/PNa+ decreased with 3.86% glucose until 60 minutes, followed by a subsequent increase. The ultrafiltration coefficient (UFC) of the total peritoneal membrane was assessed using 3.86% glucose (0.18 +/- 0.04 ml/min/mm Hg), and the UFC of the small pores was assessed using icodextrin (0.06 +/- 0.008 ml/min/mm Hg). The difference between these represented the UFC through the transcellular pores, which averaged 50.5% of the total UFC, but with a very wide range (0 to 85%). An inverse relation existed between the duration of CAPD treatment and the total ultrafiltration coefficient (r = -0.68, P < 0.04), which could be attributed to a lower UFC of the transcellular pores in long-term patients (r = -0.66, P < 0.05), but not to the UFC of the small pores (r = -0.48, NS). The TCUFRo-60 min through the transcellular pores correlated with the sodium gradient, corrected for diffusion, in the first hour of the dwell (r = 0.69, P < 0.04), indicating that both parameters indeed measure transcellular water transport. It can be concluded that the glucose polymer solution induced sustained ultrafiltration and had no effect on peritoneal membrane characteristics. In addition, the results of the present study support the hypothesis that the glucose polymer solutions exerts its osmotic pressure across intercellular pores with radii of about 40 A. This leads to increased clearances of low molecular weight proteins such as beta 2m that are transported through these pores without sieving of Na+. The latter, as found during 3.86% glucose dialysate, is probably caused by transcellular water transport. The transcellular water transport accounted for 50% of the total ultrafiltration with glucose based dialysis solutions. It was lower in long-term CAPD patients. PMID:8872974

  14. Instrument to average 100 data sets

    NASA Technical Reports Server (NTRS)

    Tuma, G. B.; Birchenough, A. G.; Rice, W. J.

    1977-01-01

    An instrumentation system is currently under development which will measure many of the important parameters associated with the operation of an internal combustion engine. Some of these parameters include mass-fraction burn rate, ignition energy, and the indicated mean effective pressure. One of the characteristics of an internal combustion engine is the cycle-to-cycle variation of these parameters. A curve-averaging instrument has been produced which will generate the average curve, over 100 cycles, of any engine parameter. the average curve is described by 2048 discrete points which are displayed on an oscilloscope screen to facilitate recording and is available in real time. Input can be any parameter which is expressed as a + or - 10-volt signal. Operation of the curve-averaging instrument is defined between 100 and 6000 rpm. Provisions have also been made for averaging as many as four parameters simultaneously, with a subsequent decrease in resolution. This provides the means to correlate and perhaps interrelate the phenomena occurring in an internal combustion engine. This instrument has been used successfully on a 1975 Chevrolet V8 engine, and on a Continental 6-cylinder aircraft engine. While this instrument was designed for use on an internal combustion engine, with some modification it can be used to average any cyclically varying waveform.

  15. On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: the role of glucose in meal initiation.

    PubMed

    Campfield, L A; Brandon, P; Smith, F J

    1985-06-01

    Louis-Sylvestre and LeMagnen have suggested that the premeal decline in blood glucose is or reflects a signal for meal initiation in rats. In order to extend and test this hypothesis, a computer controlled system for continuously and concurrently measuring blood glucose and food intake in free-feeding rats was developed. In 18 experiments (with and without intravenous saline infusions), blood glucose declined about 12 minutes prior to meal onset. During 2-1/2 hours of observation, no decline in blood glucose and no meal occurred in 19 other experiments. In 7 experiments in which 10 percent glucose was infused IV to partially block the premeal decline (average blockade = 46.5%), the subsequent meal was significantly delayed. These results suggest that the pre-meal decline in blood glucose is not only correlated with but is also caudally related to meal onset. These studies suggest that the premeal decline in blood glucose is among the signals for meal initiation. PMID:4027699

  16. Raman Spectroscopy as a Promising Tool for Noninvasive Point-of-Care Glucose Monitoring

    PubMed Central

    Bijlsma, Sabina; Fokkert, Marion J.; Slingerland, Robbert; van Veen, Sjaak J. F.

    2014-01-01

    Self-monitoring of glucose is important for managing diabetes. Noninvasive glucose monitors are not yet available, but patients would benefit highly from such a device. We present results that may lead to a novel, point-of-care noninvasive system to measure blood glucose based on Raman spectroscopy. A hospitalized cohort of 111 subjects was measured using a custom-made Raman spectrometer system. Blood glucose reference samples were used to correlate Raman data to glucose levels, using advanced preprocessing and analysis algorithms. A correlation coefficient (R 2) of .83 was found correlating independent Raman-based predictions on reference blood glucose for the full cohort. Stratification of the cohort in gender-specific groups raised correlation levels to .88 (females) and .94 (males). Glucose could be measured noninvasively with average errors as low as 0.9 mM. We conclude that this novel system shows promising results for the advance of noninvasive, point-of-care glucose monitoring. PMID:25037192

  17. Glucose transporter of the human brain and blood-brain barrier

    SciTech Connect

    Kalaria, R.N.; Gravina, S.A.; Schmidley, J.W.; Perry, G.; Harik, S.I.

    1988-12-01

    We identified and characterized the glucose transporter in the human cerebral cortex, cerebral microvessels, and choroid plexus by specific D-glucose-displaceable (3H)cytochalasin B binding. The binding was saturable, with a dissociation constant less than 1 microM. Maximal binding capacity was approximately 7 pmol/mg protein in the cerebral cortex, approximately 42 pmol/mg protein in brain microvessels, and approximately 27 pmol/mg protein in the choroid plexus. Several hexoses displaced specific (3H)cytochalasin B binding to microvessels in a rank-order that correlated well with their known ability to cross the blood-brain barrier; the only exception was 2-deoxy-D-glucose, which had much higher affinity for the glucose transporter than the natural substrate, D-glucose. Irreversible photoaffinity labeling of the glucose transporter of microvessels with (3H)cytochalasin B, followed by solubilization and polyacrylamide gel electrophoresis, labeled a protein band with an average molecular weight of approximately 55,000. Monoclonal and polyclonal antibodies specific to the human erythrocyte glucose transporter immunocytochemically stained brain blood vessels and the few trapped erythrocytes in situ, with minimal staining of the neuropil. In the choroid plexus, blood vessels did not stain, but the epithelium reacted positively. We conclude that human brain microvessels are richly endowed with a glucose transport moiety similar in molecular weight and antigenic characteristics to that of human erythrocytes and brain microvessels of other mammalian species.

  18. Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes.

    PubMed

    Hsu, Cheng-Teng; Hsiao, Hung-Chan; Fang, Mei-Yen; Zen, Jyh-Myng

    2009-10-15

    Disposable one shot usage blood glucose strips are routinely used in the diagnosis and management of diabetes mellitus and their performance can vary greatly. In this paper we critically evaluated the long-term stability of glucose strips made of barrel plating gold electrodes. Compared to other glucose biosensing platforms of vapor deposited palladium and screen printed carbon electrodes, the proposed glucose biosensor was found to show the best stability among the three biosensing platforms in thermal acceleration experiments at 40 degrees C for 6 months with an average bias of 3.4% at glucose concentrations of 5-20 mM. The precision test of this barrel plating gold glucose biosensor also showed the best performance (coefficients of variation in the range of 1.4-2.4%) in thermal acceleration experiments at 40 degrees C, 50 degrees C and 70 degrees C for 27 days. Error grid analysis revealed that all measurements fell in zone A and zone B. Regression analysis showed no significant difference between the proposed biosensor and the reference method at 99% confidence level. The amperometric glucose biosensor fabricated by inserting two barrel plating gold electrodes onto an injection-molding plastic base followed by immobilizing with a bio-reagent layer and membrane was very impressive with a long-term stability up to 2.5 years at 25 degrees C. Overall, these results indicated that the glucose oxidase/barrel plating gold biosensing platform is ideal for long-term accurate glycemic control. PMID:19729292

  19. Microwave-Based Biosensor for Glucose Detection

    NASA Astrophysics Data System (ADS)

    Salim, N. S. M.; Khalid, K.; Yusof, N. A.

    2010-07-01

    In this project, microwave-based biosensor for glucose detection has been studied. The study is based on the dielectric properties changes at microwave frequency for glucose-enzyme reaction. Glucose interaction with glucose oxidase (GOD) produced gluconic acid and hydrogen peroxide. The reaction of the glucose solutions with an enzyme was carried out in 1:3 of glucose and enzyme respectively. The measurements were done using the Open Ended Coaxial Probe (OECP) coupled with computer controlled software automated network analyzer (ANA) with frequency range from 200MHz to 20GHz at room temperature (25 °C). The differences of enzyme and glucose-enzyme reaction were calculated and plotted. In the microwave interaction with the glucose-enzyme reaction, ionic conduction and dipole molecules was detected at 0.99GHz and 16.44GHz respectively based on changes of dielectric loss factor.

  20. Genetics Home Reference: glucose phosphate isomerase deficiency

    MedlinePlus

    ... Me Understand Genetics Home Health Conditions GPI deficiency glucose phosphate isomerase deficiency Enable Javascript to view the ... boxes. Download PDF Open All Close All Description Glucose phosphate isomerase (GPI) deficiency is an inherited disorder ...

  1. Glucose Effect in the Acute Porphyrias

    MedlinePlus

    ... You are here Home Diet and Nutrition The glucose effect in acute porphyrias The disorders Acute Intermittent ... are treated initially with the administration of carbohydrate/glucose. This therapy has its basis in the ability ...

  2. Glucose sensing by means of silicon photonics

    NASA Astrophysics Data System (ADS)

    Bockstaele, Ronny; Ryckeboer, Eva; Hattasan, Nannicha; De Koninck, Yannick; Muneeb, Muhammad; Verstuyft, Steven; Delbeke, Danaë; Bogaerts, Wim; Roelkens, Gunther; Baets, Roel

    2014-03-01

    Diabetes is a fast growing metabolic disease, where the patients suffer from disordered glucose blood levels. Monitoring the blood glucose values in combination with extra insulin injection is currently the only therapy to keep the glucose concentration in diabetic patients under control, minimizing the long-term effects of elevated glucose concentrations and improving quality of life of the diabetic patients. Implantable sensors allow continuous glucose monitoring, offering the most reliable data to control the glucose levels. Infrared absorption spectrometers offer a non-chemical measurement method to determine the small glucose concentrations in blood serum. In this work, a spectrometer platform based on silicon photonics is presented, allowing the realization of very small glucose sensors suitable for building implantable sensors. A proof-of-concept of a spectrometer with integrated evanescent sample interface is presented, and the route towards a fully implantable spectrometer is discussed.

  3. Average luminosity distance in inhomogeneous universes

    SciTech Connect

    Kostov, Valentin

    2010-04-01

    Using numerical ray tracing, the paper studies how the average distance modulus in an inhomogeneous universe differs from its homogeneous counterpart. The averaging is over all directions from a fixed observer not over all possible observers (cosmic), thus is more directly applicable to our observations. In contrast to previous studies, the averaging is exact, non-perturbative, and includes all non-linear effects. The inhomogeneous universes are represented by Swiss-cheese models containing random and simple cubic lattices of mass-compensated voids. The Earth observer is in the homogeneous cheese which has an Einstein-de Sitter metric. For the first time, the averaging is widened to include the supernovas inside the voids by assuming the probability for supernova emission from any comoving volume is proportional to the rest mass in it. Voids aligned along a certain direction give rise to a distance modulus correction which increases with redshift and is caused by cumulative gravitational lensing. That correction is present even for small voids and depends on their density contrast, not on their radius. Averaging over all directions destroys the cumulative lensing correction even in a non-randomized simple cubic lattice of voids. At low redshifts, the average distance modulus correction does not vanish due to the peculiar velocities, despite the photon flux conservation argument. A formula for the maximal possible average correction as a function of redshift is derived and shown to be in excellent agreement with the numerical results. The formula applies to voids of any size that: (a)have approximately constant densities in their interior and walls; and (b)are not in a deep nonlinear regime. The average correction calculated in random and simple cubic void lattices is severely damped below the predicted maximal one after a single void diameter. That is traced to cancellations between the corrections from the fronts and backs of different voids. The results obtained

  4. Fluorescence lifetime measurements of boronate derivatives to determine glucose concentration

    SciTech Connect

    Gable, J H

    2000-06-01

    A novel investigation into the fluorescence lifetimes of molecules, both established and newly designed, was performed. These molecules are the basis of a continuous, minimally invasive, glucose sensor based on fluorescence lifetime measurements. This sensor, if coupled with an automated insulin delivery device, would effectively create an artificial pancreas allowing for the constant monitoring and control of glucose levels in a person with diabetes. The proposed sensor includes a fluorescent molecule that changes its' fluorescence properties upon binding selectively and reversibly to glucose. One possible sensor molecule is N-methyl-N-(9-methylene anthryl)-2-methylenephenylboronic acid (AB). The fluorescence intensity of AB was shown to change in response to changing glucose concentrations. (James, 1994) James proposed that when glucose binds to AB the fluorescence intensity increases due to an enhancement of the N{yields}B dative bond which prevents photoinduced electron transfer (PET). PET from the amine (N) to the fluorophore (anthracene) quenches the fluorescence. The dative bond between the boron and the amine can prevent PET by involving the lone pair of electrons on the amine in interactions with the boron rather than allowing them to be transferred to the fluorophore. Results of this research show the average fluorescence lifetime of AB also changes with glucose concentration. It is proposed that fluorescence is due to two components: (1) AB with an enhanced N{yields}B interaction, and no PET, and (2) AB with a weak N{yields}B interaction, resulting in fluorescence quenching by PET. Lifetime measurements of AB as a function of both the pH of the solvent and glucose concentration in the solution were made to characterize this two component system and investigate the nature of the N{yields}B bond. Measurements of molecules similar to AB were also performed in order to isolate behavior of specific AB constituents. These molecules are 9-(Methylaminomethyl

  5. Explicit cosmological coarse graining via spatial averaging

    NASA Astrophysics Data System (ADS)

    Paranjape, Aseem; Singh, T. P.

    2008-01-01

    The present matter density of the Universe, while highly inhomogeneous on small scales, displays approximate homogeneity on large scales. We propose that whereas it is justified to use the Friedmann Lemaître Robertson Walker (FLRW) line element (which describes an exactly homogeneous and isotropic universe) as a template to construct luminosity distances in order to compare observations with theory, the evolution of the scale factor in such a construction must be governed not by the standard Einstein equations for the FLRW metric, but by the modified Friedmann equations derived by Buchert (Gen Relat Gravit 32:105, 2000; 33:1381, 2001) in the context of spatial averaging in Cosmology. Furthermore, we argue that this scale factor, defined in the spatially averaged cosmology, will correspond to the effective FLRW metric provided the size of the averaging domain coincides with the scale at which cosmological homogeneity arises. This allows us, in principle, to compare predictions of a spatially averaged cosmology with observations, in the standard manner, for instance by computing the luminosity distance versus red-shift relation. The predictions of the spatially averaged cosmology would in general differ from standard FLRW cosmology, because the scale-factor now obeys the modified FLRW equations. This could help determine, by comparing with observations, whether or not cosmological inhomogeneities are an alternative explanation for the observed cosmic acceleration.

  6. Effects of ethanol ingestion on maternal and fetal glucose homeostasis

    SciTech Connect

    Singh, S.P.; Snyder, A.K.; Singh, S.K.

    1984-08-01

    Carbohydrate metabolism has been studied in the offspring of rats fed liqiud diet containing ethanol during gestation (EF group). Weight-matched control dams were given liquid diet either by the pair-fed technique (PF group) or ad libitum (AF group). EF and PF dams showed reduced food consumption and attenuated gain in body weight during the gestation period compared with the AF group. Blood glucose, liver glycogen, and plasma insulin levels were significantly reduced in EF and PF dams. Ethanol ingestion resulted in a significant decrease in litter survival and fetal body weight. At term, EF pups on average showed a 30% decrease in blood glucose levels and 40% decrease in plasma insulin levels compared with AF pups. One hour after birth, EF pups exhibited a marked increase in blood sugar level compared with either control group. Fetal hyperinsulinemia disappeared shortly after delivery in control pups, as expected; however, in EF pups, the fall in plasma insulin level was gradual. Fetal and neonatal plasma glucagon levels were not altered by ethanol exposure in utero. Blood glucose levels remained significantly low at 2 days of age in EF pups, but reached near control values at 4 days of age. Plasma insulin and glucagon were nearly equal in EF and control pups at 2 and 4 days of age. These results show aberrations in blood glucose, plasma insulin, and liver glycogen levels in offspring exposed to ethanol in utero.

  7. Near-infrared spectral methods for noninvasively measuring blood glucose

    NASA Astrophysics Data System (ADS)

    Fei, Sun; Kong, Deyi; Mei, Tao; Tao, Yongchun

    2004-05-01

    Determination of blood glucose concentrations in diabetic patients is a frequently occurring procedure and an important tool for diabetes management. Use of noninvasive detection techniques can relieve patients from the pain of frequent finger pokes and avoid the infection of disease via blood. This thesis discusses current research and analyzes the advantages and shortages of different measurement methods, including: optical methods (Transmission, Polarimetry and scattering), then, we give emphasis to analyze the technology of near-infrared (NIR) spectra. NIR spectral range 700 nm ~2300 nm was used because of its good transparency for biological tissue and presence of glucose absorption band. In this work, we present an outline of noninvasive blood glucose measurement. A near-infrared light beam is passed through the finger, and the spectral components of the emergent beam are measured using spectroscopic techniques. The device includes light sources having the wavelengths of 600 nm - 1800 nm to illuminate the tissue. Receptors associated with the light sources for receiving light and generating a transmission signal representing the light transmitted are also provided. Once a transmission signal is received by receptors, and the high and low values from each of the signals are stored in the device. The averaged values are then analyzed to determine the glucose concentration, which is displayed on the device.

  8. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of nutritive... equivalent), expressed as D-glucose, is not less than 20.0 percent m/m calculated on a dry basis. (2)...

  9. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of nutritive... equivalent), expressed as D-glucose, is not less than 20.0 percent m/m calculated on a dry basis. (2)...

  10. Books average previous decade of economic misery.

    PubMed

    Bentley, R Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20(th) century since the Depression, we find a strong correlation between a 'literary misery index' derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159

  11. High Average Power Yb:YAG Laser

    SciTech Connect

    Zapata, L E; Beach, R J; Payne, S A

    2001-05-23

    We are working on a composite thin-disk laser design that can be scaled as a source of high brightness laser power for tactical engagement and other high average power applications. The key component is a diffusion-bonded composite comprising a thin gain-medium and thicker cladding that is strikingly robust and resolves prior difficulties with high average power pumping/cooling and the rejection of amplified spontaneous emission (ASE). In contrast to high power rods or slabs, the one-dimensional nature of the cooling geometry and the edge-pump geometry scale gracefully to very high average power. The crucial design ideas have been verified experimentally. Progress this last year included: extraction with high beam quality using a telescopic resonator, a heterogeneous thin film coating prescription that meets the unusual requirements demanded by this laser architecture, thermal management with our first generation cooler. Progress was also made in design of a second-generation laser.

  12. Books Average Previous Decade of Economic Misery

    PubMed Central

    Bentley, R. Alexander; Acerbi, Alberto; Ormerod, Paul; Lampos, Vasileios

    2014-01-01

    For the 20th century since the Depression, we find a strong correlation between a ‘literary misery index’ derived from English language books and a moving average of the previous decade of the annual U.S. economic misery index, which is the sum of inflation and unemployment rates. We find a peak in the goodness of fit at 11 years for the moving average. The fit between the two misery indices holds when using different techniques to measure the literary misery index, and this fit is significantly better than other possible correlations with different emotion indices. To check the robustness of the results, we also analysed books written in German language and obtained very similar correlations with the German economic misery index. The results suggest that millions of books published every year average the authors' shared economic experiences over the past decade. PMID:24416159

  13. A MEMS Dielectric Affinity Glucose Biosensor.

    PubMed

    Huang, Xian; Li, Siqi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-06-20

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concentrations. This sensor features simplicity in sensor design, and possesses high specificity and accuracy in glucose detection. However, lack of glucose diffusion passage, this device is unable to fulfill real-time in-vivo monitoring. As a major improvement to this device, we present in this paper a fully implantable MEMS dielectric affinity glucose biosensor that contains a perforated electrode embedded in a suspended diaphragm. This capacitive-based sensor contains no moving parts, and enables glucose diffusion and real-time monitoring. The experimental results indicate that this sensor can detect glucose solutions at physiological concentrations and possesses good reversibility and reliability. This sensor has a time constant to glucose concentration change at approximately 3 min, which is comparable to commercial systems. The sensor has potential applications in fully implantable CGM that require excellent long-term stability and reliability. PMID:24511215

  14. Glucose Transport Machinery Reconstituted in Cell Models

    PubMed Central

    Hansen, Jesper S.; Elbing, Karin; Thompson, James R.; Malmstadt, Noah

    2015-01-01

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it. PMID:25562394

  15. Blood Glucose Levels and Problem Behavior

    ERIC Educational Resources Information Center

    Valdovinos, Maria G.; Weyand, David

    2006-01-01

    The relationship between varying blood glucose levels and problem behavior during daily scheduled activities was examined. The effects that varying blood glucose levels had on problem behavior during daily scheduled activities were examined. Prior research has shown that differing blood glucose levels can affect behavior and mood. Results of this…

  16. Glucose transport machinery reconstituted in cell models.

    PubMed

    Hansen, Jesper S; Elbing, Karin; Thompson, James R; Malmstadt, Noah; Lindkvist-Petersson, Karin

    2015-02-11

    Here we demonstrate the production of a functioning cell model by formation of giant vesicles reconstituted with the GLUT1 glucose transporter and a glucose oxidase and hydrogen peroxidase linked fluorescent reporter internally. Hence, a simplified artificial cell is formed that is able to take up glucose and process it. PMID:25562394

  17. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of...

  18. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of...

  19. 21 CFR 168.120 - Glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Glucose sirup. 168.120 Section 168.120 Food and... CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.120 Glucose sirup. (a) Glucose sirup is the purified, concentrated, aqueous solution of...

  20. Estimation of liver glucose metabolism after refeeding

    SciTech Connect

    Rognstad, R.

    1987-05-01

    Refeeding or infusing glucose to rats fasted for 24 hr or more causes rapid liver glycogen synthesis, the carbon source now considered to be largely from gluconeogenesis. While substrate cycling between plasma glucose and liver glucose-6P is known to occur, this cycling has apparently been ignored when calculations are made of % contribution of direct and indirect pathways to liver glycogen synthesis, or when hepatic glucose output is calculated from glucose turnover minus the glucose infusion rate. They show that, isotopically, an estimate of the fluxes of liver glucokinase and glucose-6-phosphatase is required to quantitate sources of carbon for liver glycogen synthesis, and to measure hepatic glucose output (or uptake). They propose a method to estimate these fluxes, involving a short infusion of a /sup 14/C labelled gluconeogenic precursor plus (6T)glucose, with determination of isotopic yields in liver glycogen and total glucose. Given also the rate of liver glycogen synthesis, this procedure permits the estimation of net gluconeogenesis and hepatic glucose output or uptake. Also, in vitro evidence against the notion of a drastic zonation of liver carbohydrate metabolism is presented, e.g. raising the glucose concentration from 10 to 25 mM increases the /sup 14/C yield from H/sup 14/CO/sub 3//sup -/ in lactate, with the increased pyruvate kinase flux and decreased gluconeogenesis occurring in the same cell type, not opposing pathways in different hepatocyte types (as has been postulated by some to occur in vivo after refeeding.

  1. Attractors and Time Averages for Random Maps

    NASA Astrophysics Data System (ADS)

    Araujo, Vitor

    2006-07-01

    Considering random noise in finite dimensional parameterized families of diffeomorphisms of a compact finite dimensional boundaryless manifold M, we show the existence of time averages for almost every orbit of each point of M, imposing mild conditions on the families. Moreover these averages are given by a finite number of physical absolutely continuous stationary probability measures. We use this result to deduce that situations with infinitely many sinks and Henon-like attractors are not stable under random perturbations, e.g., Newhouse's and Colli's phenomena in the generic unfolding of a quadratic homoclinic tangency by a one-parameter family of diffeomorphisms.

  2. An improved moving average technical trading rule

    NASA Astrophysics Data System (ADS)

    Papailias, Fotis; Thomakos, Dimitrios D.

    2015-06-01

    This paper proposes a modified version of the widely used price and moving average cross-over trading strategies. The suggested approach (presented in its 'long only' version) is a combination of cross-over 'buy' signals and a dynamic threshold value which acts as a dynamic trailing stop. The trading behaviour and performance from this modified strategy are different from the standard approach with results showing that, on average, the proposed modification increases the cumulative return and the Sharpe ratio of the investor while exhibiting smaller maximum drawdown and smaller drawdown duration than the standard strategy.

  3. The modulated average structure of mullite.

    PubMed

    Birkenstock, Johannes; Petříček, Václav; Pedersen, Bjoern; Schneider, Hartmut; Fischer, Reinhard X

    2015-06-01

    Homogeneous and inclusion-free single crystals of 2:1 mullite (Al(4.8)Si(1.2)O(9.6)) grown by the Czochralski technique were examined by X-ray and neutron diffraction methods. The observed diffuse scattering together with the pattern of satellite reflections confirm previously published data and are thus inherent features of the mullite structure. The ideal composition was closely met as confirmed by microprobe analysis (Al(4.82 (3))Si(1.18 (1))O(9.59 (5))) and by average structure refinements. 8 (5) to 20 (13)% of the available Si was found in the T* position of the tetrahedra triclusters. The strong tendencey for disorder in mullite may be understood from considerations of hypothetical superstructures which would have to be n-fivefold with respect to the three-dimensional average unit cell of 2:1 mullite and n-fourfold in case of 3:2 mullite. In any of these the possible arrangements of the vacancies and of the tetrahedral units would inevitably be unfavorable. Three directions of incommensurate modulations were determined: q1 = [0.3137 (2) 0 ½], q2 = [0 0.4021 (5) 0.1834 (2)] and q3 = [0 0.4009 (5) -0.1834 (2)]. The one-dimensional incommensurately modulated crystal structure associated with q1 was refined for the first time using the superspace approach. The modulation is dominated by harmonic occupational modulations of the atoms in the di- and the triclusters of the tetrahedral units in mullite. The modulation amplitudes are small and the harmonic character implies that the modulated structure still represents an average structure in the overall disordered arrangement of the vacancies and of the tetrahedral structural units. In other words, when projecting the local assemblies at the scale of a few tens of average mullite cells into cells determined by either one of the modulation vectors q1, q2 or q3 a weak average modulation results with slightly varying average occupation factors for the tetrahedral units. As a result, the real

  4. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, Matthew

    2013-11-01

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today's CEBAF polarized source operating at ~ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  5. Average: the juxtaposition of procedure and context

    NASA Astrophysics Data System (ADS)

    Watson, Jane; Chick, Helen; Callingham, Rosemary

    2014-09-01

    This paper presents recent data on the performance of 247 middle school students on questions concerning average in three contexts. Analysis includes considering levels of understanding linking definition and context, performance across contexts, the relative difficulty of tasks, and difference in performance for male and female students. The outcomes lead to a discussion of the expectations of the curriculum and its implementation, as well as assessment, in relation to students' skills in carrying out procedures and their understanding about the meaning of average in context.

  6. Mean Element Propagations Using Numerical Averaging

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.

    2009-01-01

    The long-term evolution characteristics (and stability) of an orbit are best characterized using a mean element propagation of the perturbed two body variational equations of motion. The averaging process eliminates short period terms leaving only secular and long period effects. In this study, a non-traditional approach is taken that averages the variational equations using adaptive numerical techniques and then numerically integrating the resulting EOMs. Doing this avoids the Fourier series expansions and truncations required by the traditional analytic methods. The resultant numerical techniques can be easily adapted to propagations at most solar system bodies.

  7. Dexamethasone increases glucose cycling, but not glucose production, in healthy subjects

    SciTech Connect

    Wajngot, A.; Khan, A.; Giacca, A.; Vranic, M.; Efendic, S. )

    1990-11-01

    We established that measurement of glucose fluxes through glucose-6-phosphatase (G-6-Pase; hepatic total glucose output, HTGO), glucose cycling (GC), and glucose production (HGP), reveals early diabetogenic changes in liver metabolism. To elucidate the mechanism of the diabetogenic effect of glucocorticoids, we treated eight healthy subjects with oral dexamethasone (DEX; 15 mg over 48 h) and measured HTGO with (2-3H)glucose and HGP with (6-3H)glucose postabsorptively and during a 2-h glucose infusion (11.1 mumol.kg-1.min-1). (2-3H)- minus (6-3H)glucose equals GC. DEX significantly increased plasma glucose, insulin, C peptide, and HTGO, while HGP was unchanged. In controls and DEX, glucose infusion suppressed HTGO (82 vs. 78%) and HGP (87 vs. 91%). DEX increased GC postabsorptively (three-fold) P less than 0.005 and during glucose infusion (P less than 0.05) but decreased metabolic clearance and glucose uptake (Rd), which eventually normalized, however. Because DEX increased HTGO (G-6-Pase) and not HGP (glycogenolysis + gluconeogenesis), we assume that DEX increases HTGO and GC in humans by activating G-6-Pase directly, rather than by expanding the glucose 6-phosphate pool. Hyperglycemia caused by peripheral effects of DEX can also contribute to an increase in GC by activating glucokinase. Therefore, measurement of glucose fluxes through G-6-Pase and GC revealed significant early effects of DEX on hepatic glucose metabolism, which are not yet reflected in HGP.

  8. Quantification of serial tumor glucose metabolism

    SciTech Connect

    Wu, Hsiao-Ming; Hoh, C.K.; Huang, Sung-Cheng; Yao, Wei-Jen

    1996-03-01

    We developed a method to improve the quantitative precision of FDG-PET scans in cancer patients. The total-lesion evaluation method generates a correlation coefficient (r) constrained Patlak parametric image of the lesion together with three calculated glucose metabolic indices: (a) the total-lesion metabolic index ({open_quotes}K{sub T-tie}{close_quotes}, ml/min/lesion); (b) the total-lesion voxel index ({open_quotes}V{sub T-tie}{close_quotes}, voxels/lesion); and (c) the global average metabolic index ({open_quotes}K{sub V-tie}{close_quotes}, ml/min/voxel). The glucose metabolic indices obtained from conventional region of interest (ROI) and multiplane evaluation were used as standards to evaluate the accuracy of the total-lesion evaluation method. Computer simulations and four patients with metastatic melanoma before and after chemotherapy were studied. Computer simulations showed that the total-lesion evaluation method has improved precision (%s.d. <0.6%) and accuracy ({approximately}10% error) compared with the conventional ROI method (%S.d. {approximately}5%; {approximately}25% error). The K{sub T-tie} and V{sub T-tie} indices from human FDG-PET studies using the total-lesion evaluation method showed excellent correlations with the corresponding values obtained from the conventional ROI methods and multiplane evaluation (r{approximately}1.0) and CT lesion volume measurements. This method is a simple but reliable way to quantitatively monitor tumor FDG uptake. The method has several advantages over the conventional ROI method: (a) less sensitive to the ROI definition, (b) no need for image registration of serial scan data and (c) includes tumor volume changes in the global tumor metabolism. 18 refs., 8 figs., 4 tabs.

  9. Experimental evidence and isotopomer analysis of mixotrophic glucose metabolism in the marine diatom Phaeodactylum tricornutum

    PubMed Central

    2013-01-01

    Background Heterotrophic fermentation using simple sugars such as glucose is an established and cost-effective method for synthesizing bioproducts from bacteria, yeast and algae. Organisms incapable of metabolizing glucose have limited applications as cell factories, often despite many other advantageous characteristics. Therefore, there is a clear need to investigate glucose metabolism in potential cell factories. One such organism, with a unique metabolic network and a propensity to synthesize highly reduced compounds as a large fraction of its biomass, is the marine diatom Phaeodactylum tricornutum (Pt). Although Pt has been engineered to metabolize glucose, conflicting lines of evidence leave it unresolved whether Pt can natively consume glucose. Results Isotope labeling experiments in which Pt was mixotrophically grown under light on 100% U-13C glucose and naturally abundant (~99% 12C) dissolved inorganic carbon resulted in proteinogenic amino acids with an average 13C-enrichment of 88%, thus providing convincing evidence of glucose uptake and metabolism. The dissolved inorganic carbon was largely incorporated through anaplerotic rather than photosynthetic fixation. Furthermore, an isotope labeling experiment utilizing 1-13C glucose and subsequent metabolic pathway analysis indicated that (i) the alternative Entner-Doudoroff and Phosphoketolase glycolytic pathways are active during glucose metabolism, and (ii) during mixotrophic growth, serine and glycine are largely synthesized from glyoxylate through photorespiratory reactions rather than from 3-phosphoglycerate. We validated the latter result for mixotrophic growth on glycerol by performing a 2-13C glycerol isotope labeling experiment. Additionally, gene expression assays showed that known, native glucose transporters in Pt are largely insensitive to glucose or light, whereas the gene encoding cytosolic fructose bisphosphate aldolase 3, an important glycolytic enzyme, is overexpressed in light but

  10. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean

    PubMed Central

    Muñoz-Marín, María del Carmen; Luque, Ignacio; Zubkov, Mikhail V.; Hill, Polly G.; Diez, Jesús; García-Fernández, José Manuel

    2013-01-01

    Prochlorococcus is responsible for a significant part of CO2 fixation in the ocean. Although it was long considered an autotrophic cyanobacterium, the uptake of organic compounds has been reported, assuming they were sources of limited biogenic elements. We have shown in laboratory experiments that Prochlorococcus can take up glucose. However, the mechanisms of glucose uptake and its occurrence in the ocean have not been shown. Here, we report that the gene Pro1404 confers capability for glucose uptake in Prochlorococcus marinus SS120. We used a cyanobacterium unable to take up glucose to engineer strains that express the Pro1404 gene. These recombinant strains were capable of specific glucose uptake over a wide range of glucose concentrations, showing multiphasic transport kinetics. The Ks constant of the high affinity phase was in the nanomolar range, consistent with the average concentration of glucose in the ocean. Furthermore, we were able to observe glucose uptake by Prochlorococcus in the central Atlantic Ocean, where glucose concentrations were 0.5–2.7 nM. Our results suggest that Prochlorococcus are primary producers capable of tuning their metabolism to energetically benefit from environmental conditions, taking up not only organic compounds with key limiting elements in the ocean, but also molecules devoid of such elements, like glucose. PMID:23569224

  11. Prochlorococcus can use the Pro1404 transporter to take up glucose at nanomolar concentrations in the Atlantic Ocean.

    PubMed

    Muñoz-Marín, María del Carmen; Luque, Ignacio; Zubkov, Mikhail V; Hill, Polly G; Diez, Jesús; García-Fernández, José Manuel

    2013-05-21

    Prochlorococcus is responsible for a significant part of CO2 fixation in the ocean. Although it was long considered an autotrophic cyanobacterium, the uptake of organic compounds has been reported, assuming they were sources of limited biogenic elements. We have shown in laboratory experiments that Prochlorococcus can take up glucose. However, the mechanisms of glucose uptake and its occurrence in the ocean have not been shown. Here, we report that the gene Pro1404 confers capability for glucose uptake in Prochlorococcus marinus SS120. We used a cyanobacterium unable to take up glucose to engineer strains that express the Pro1404 gene. These recombinant strains were capable of specific glucose uptake over a wide range of glucose concentrations, showing multiphasic transport kinetics. The Ks constant of the high affinity phase was in the nanomolar range, consistent with the average concentration of glucose in the ocean. Furthermore, we were able to observe glucose uptake by Prochlorococcus in the central Atlantic Ocean, where glucose concentrations were 0.5-2.7 nM. Our results suggest that Prochlorococcus are primary producers capable of tuning their metabolism to energetically benefit from environmental conditions, taking up not only organic compounds with key limiting elements in the ocean, but also molecules devoid of such elements, like glucose. PMID:23569224

  12. Altered insulin response to glucose in weight-losing cancer patients.

    PubMed

    Rofe, A M; Bourgeois, C S; Coyle, P; Taylor, A; Abdi, E A

    1994-01-01

    Cancer cachexia and the underlying metabolic disturbances are due in part to either altered insulin release and action. Glucose intolerance in cancer patients is frequently observed but the nature of the insulin response is not usually described. The aim of this study was to investigate the insulin response in fasted, weigh-losing cancer patients following an oral glucose load (75 g). All cancer patients (n = 35) showed glucose intolerance. Three types of response were identified; those with an increased insulin: glucose ratio (I:G) at 60 min, (average 12.3, n = 13), those with a normal I:G (average 7.2 n = 7) and those with a decrease I:G (average 4.2, n = 15). Fasting plasma glucose concentrations were normal in all groups prior to the glucose tolerance test. However, patients with the lowest I:G also had the lowest fasting plasma insulin concentrations, the lowest plasma albumin concentrations and the highest plasma triglyceride concentrations. Those patients with an abnormal insulin response (either high or low I:G) had significantly greater weight loss (16% for low I:G group, 13% for the high I:G) compared to the normal responders (8%). Plasma fatty acid concentrations were increased in all cancer patients and decreased appropriately after glucose administration, indicating that lipolysis remained sensitive to the action of insulin. It is concluded that weight loss in cancer is associated with glucose intolerance and an abnormal insulin response, and that this response is indicative of either insulin resistance (high I:G) or decreased pancreatic function (low I:G). These findings suggest a role for insulin replacement therapy in the latter group of patients. PMID:8010722

  13. 40 CFR 86.449 - Averaging provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the new FEL. Manufacturers must test the motorcycles according to 40 CFR part 1051, subpart D...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.449 Averaging provisions. (a) This section describes...

  14. A Functional Measurement Study on Averaging Numerosity

    ERIC Educational Resources Information Center

    Tira, Michael D.; Tagliabue, Mariaelena; Vidotto, Giulio

    2014-01-01

    In two experiments, participants judged the average numerosity between two sequentially presented dot patterns to perform an approximate arithmetic task. In Experiment 1, the response was given on a 0-20 numerical scale (categorical scaling), and in Experiment 2, the response was given by the production of a dot pattern of the desired numerosity…

  15. Cryo-Electron Tomography and Subtomogram Averaging.

    PubMed

    Wan, W; Briggs, J A G

    2016-01-01

    Cryo-electron tomography (cryo-ET) allows 3D volumes to be reconstructed from a set of 2D projection images of a tilted biological sample. It allows densities to be resolved in 3D that would otherwise overlap in 2D projection images. Cryo-ET can be applied to resolve structural features in complex native environments, such as within the cell. Analogous to single-particle reconstruction in cryo-electron microscopy, structures present in multiple copies within tomograms can be extracted, aligned, and averaged, thus increasing the signal-to-noise ratio and resolution. This reconstruction approach, termed subtomogram averaging, can be used to determine protein structures in situ. It can also be applied to facilitate more conventional 2D image analysis approaches. In this chapter, we provide an introduction to cryo-ET and subtomogram averaging. We describe the overall workflow, including tomographic data collection, preprocessing, tomogram reconstruction, subtomogram alignment and averaging, classification, and postprocessing. We consider theoretical issues and practical considerations for each step in the workflow, along with descriptions of recent methodological advances and remaining limitations. PMID:27572733

  16. Initial Conditions in the Averaging Cognitive Model

    ERIC Educational Resources Information Center

    Noventa, S.; Massidda, D.; Vidotto, G.

    2010-01-01

    The initial state parameters s[subscript 0] and w[subscript 0] are intricate issues of the averaging cognitive models in Information Integration Theory. Usually they are defined as a measure of prior information (Anderson, 1981; 1982) but there are no general rules to deal with them. In fact, there is no agreement as to their treatment except in…

  17. Averaging on Earth-Crossing Orbits

    NASA Astrophysics Data System (ADS)

    Gronchi, G. F.; Milani, A.

    The orbits of planet-crossing asteroids (and comets) can undergo close approaches and collisions with some major planet. This introduces a singularity in the N-body Hamiltonian, and the averaging of the equations of motion, traditionally used to compute secular perturbations, is undefined. We show that it is possible to define in a rigorous way some generalised averaged equations of motion, in such a way that the generalised solutions are unique and piecewise smooth. This is obtained, both in the planar and in the three-dimensional case, by means of the method of extraction of the singularities by Kantorovich. The modified distance used to approximate the singularity is the one used by Wetherill in his method to compute probability of collision. Some examples of averaged dynamics have been computed; a systematic exploration of the averaged phase space to locate the secular resonances should be the next step. `Alice sighed wearily. ``I think you might do something better with the time'' she said, ``than waste it asking riddles with no answers'' (Alice in Wonderland, L. Carroll)

  18. Averaging models for linear piezostructural systems

    NASA Astrophysics Data System (ADS)

    Kim, W.; Kurdila, A. J.; Stepanyan, V.; Inman, D. J.; Vignola, J.

    2009-03-01

    In this paper, we consider a linear piezoelectric structure which employs a fast-switched, capacitively shunted subsystem to yield a tunable vibration absorber or energy harvester. The dynamics of the system is modeled as a hybrid system, where the switching law is considered as a control input and the ambient vibration is regarded as an external disturbance. It is shown that under mild assumptions of existence and uniqueness of the solution of this hybrid system, averaging theory can be applied, provided that the original system dynamics is periodic. The resulting averaged system is controlled by the duty cycle of a driven pulse-width modulated signal. The response of the averaged system approximates the performance of the original fast-switched linear piezoelectric system. It is analytically shown that the averaging approximation can be used to predict the electromechanically coupled system modal response as a function of the duty cycle of the input switching signal. This prediction is experimentally validated for the system consisting of a piezoelectric bimorph connected to an electromagnetic exciter. Experimental results show that the analytical predictions are observed in practice over a fixed "effective range" of switching frequencies. The same experiments show that the response of the switched system is insensitive to an increase in switching frequency above the effective frequency range.

  19. A Measure of the Average Intercorrelation

    ERIC Educational Resources Information Center

    Meyer, Edward P.

    1975-01-01

    Bounds are obtained for a coefficient proposed by Kaiser as a measure of average correlation and the coefficient is given an interpretation in the context of reliability theory. It is suggested that the root-mean-square intercorrelation may be a more appropriate measure of degree of relationships among a group of variables. (Author)

  20. HIGH AVERAGE POWER OPTICAL FEL AMPLIFIERS.

    SciTech Connect

    BEN-ZVI, ILAN, DAYRAN, D.; LITVINENKO, V.

    2005-08-21

    Historically, the first demonstration of the optical FEL was in an amplifier configuration at Stanford University [l]. There were other notable instances of amplifying a seed laser, such as the LLNL PALADIN amplifier [2] and the BNL ATF High-Gain Harmonic Generation FEL [3]. However, for the most part FELs are operated as oscillators or self amplified spontaneous emission devices. Yet, in wavelength regimes where a conventional laser seed can be used, the FEL can be used as an amplifier. One promising application is for very high average power generation, for instance FEL's with average power of 100 kW or more. The high electron beam power, high brightness and high efficiency that can be achieved with photoinjectors and superconducting Energy Recovery Linacs (ERL) combine well with the high-gain FEL amplifier to produce unprecedented average power FELs. This combination has a number of advantages. In particular, we show that for a given FEL power, an FEL amplifier can introduce lower energy spread in the beam as compared to a traditional oscillator. This properly gives the ERL based FEL amplifier a great wall-plug to optical power efficiency advantage. The optics for an amplifier is simple and compact. In addition to the general features of the high average power FEL amplifier, we will look at a 100 kW class FEL amplifier is being designed to operate on the 0.5 ampere Energy Recovery Linac which is under construction at Brookhaven National Laboratory's Collider-Accelerator Department.

  1. Measuring Time-Averaged Blood Pressure

    NASA Technical Reports Server (NTRS)

    Rothman, Neil S.

    1988-01-01

    Device measures time-averaged component of absolute blood pressure in artery. Includes compliant cuff around artery and external monitoring unit. Ceramic construction in monitoring unit suppresses ebb and flow of pressure-transmitting fluid in sensor chamber. Transducer measures only static component of blood pressure.

  2. Reformulation of Ensemble Averages via Coordinate Mapping.

    PubMed

    Schultz, Andrew J; Moustafa, Sabry G; Lin, Weisong; Weinstein, Steven J; Kofke, David A

    2016-04-12

    A general framework is established for reformulation of the ensemble averages commonly encountered in statistical mechanics. This "mapped-averaging" scheme allows approximate theoretical results that have been derived from statistical mechanics to be reintroduced into the underlying formalism, yielding new ensemble averages that represent exactly the error in the theory. The result represents a distinct alternative to perturbation theory for methodically employing tractable systems as a starting point for describing complex systems. Molecular simulation is shown to provide one appealing route to exploit this advance. Calculation of the reformulated averages by molecular simulation can proceed without contamination by noise produced by behavior that has already been captured by the approximate theory. Consequently, accurate and precise values of properties can be obtained while using less computational effort, in favorable cases, many orders of magnitude less. The treatment is demonstrated using three examples: (1) calculation of the heat capacity of an embedded-atom model of iron, (2) calculation of the dielectric constant of the Stockmayer model of dipolar molecules, and (3) calculation of the pressure of a Lennard-Jones fluid. It is observed that improvement in computational efficiency is related to the appropriateness of the underlying theory for the condition being simulated; the accuracy of the result is however not impacted by this. The framework opens many avenues for further development, both as a means to improve simulation methodology and as a new basis to develop theories for thermophysical properties. PMID:26950263

  3. Bayesian Model Averaging for Propensity Score Analysis

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  4. 40 CFR 86.449 - Averaging provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the new FEL. Manufacturers must test the motorcycles according to 40 CFR part 1051, subpart D...) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1978 and Later New Motorcycles, General Provisions § 86.449 Averaging provisions. (a) This section describes...

  5. Average configuration of the induced venus magnetotail

    SciTech Connect

    McComas, D.J.; Spence, H.E.; Russell, C.T.

    1985-01-01

    In this paper we discuss the interaction of the solar wind flow with Venus and describe the morphology of magnetic field line draping in the Venus magnetotail. In particular, we describe the importance of the interplanetary magnetic field (IMF) X-component in controlling the configuration of field draping in this induced magnetotail, and using the results of a recently developed technique, we examine the average magnetic configuration of this magnetotail. The derived J x B forces must balance the average, steady state acceleration of, and pressure gradients in, the tail plasma. From this relation the average tail plasma velocity, lobe and current sheet densities, and average ion temperature have been derived. In this study we extend these results by making a connection between the derived consistent plasma flow speed and density, and the observational energy/charge range and sensitivity of the Pioneer Venus Orbiter (PVO) plasma analyzer, and demonstrate that if the tail is principally composed of O/sup +/, the bulk of the plasma should not be observable much of the time that the PVO is within the tail. Finally, we examine the importance of solar wind slowing upstream of the obstacle and its implications for the temperature of pick-up planetary ions, compare the derived ion temperatures with their theoretical maximum values, and discuss the implications of this process for comets and AMPTE-type releases.

  6. World average top-quark mass

    SciTech Connect

    Glenzinski, D.; /Fermilab

    2008-01-01

    This paper summarizes a talk given at the Top2008 Workshop at La Biodola, Isola d Elba, Italy. The status of the world average top-quark mass is discussed. Some comments about the challanges facing the experiments in order to further improve the precision are offered.

  7. Why Johnny Can Be Average Today.

    ERIC Educational Resources Information Center

    Sturrock, Alan

    1997-01-01

    During a (hypothetical) phone interview with a university researcher, an elementary principal reminisced about a lifetime of reading groups with unmemorable names, medium-paced math problems, patchworked social studies/science lessons, and totally "average" IQ and batting scores. The researcher hung up at the mention of bell-curved assembly lines…

  8. Non-invasive glucose monitor

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2001-01-01

    A non-invasive method for determining blood level of an analyte of interest, such as glucose, comprises: generating an excitation laser beam (e.g., at a wavelength of 700 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor in the anterior chamber is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated aqueous humor; and then determining the blood glucose level (or the level of another analyte of interest) for the subject from the Raman spectrum. Preferably, the detecting step is followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing method is also disclosed.

  9. Extraction of Silver by Glucose.

    PubMed

    Baksi, Ananya; Gandi, Mounika; Chaudhari, Swathi; Bag, Soumabha; Gupta, Soujit Sen; Pradeep, Thalappil

    2016-06-27

    Unprecedented silver ion leaching, in the range of 0.7 ppm was seen when metallic silver was heated in water at 70 °C in presence of simple carbohydrates, such as glucose, making it a green method of silver extraction. Extraction was facilitated by the presence of anions, such as carbonate and phosphate. Studies confirm a two-step mechanism of silver release, first forming silver ions at the metal surface and later complexation of ionic silver with glucose; such complexes have been detected by mass spectrometry. Extraction leads to microscopic roughening of the surface making it Raman active with an enhancement factor of 5×10(8) . PMID:27119514

  10. Orbit Averaging in Perturbed Planetary Rings

    NASA Astrophysics Data System (ADS)

    Stewart, Glen R.

    2015-11-01

    The orbital period is typically much shorter than the time scale for dynamical evolution of large-scale structures in planetary rings. This large separation in time scales motivates the derivation of reduced models by averaging the equations of motion over the local orbit period (Borderies et al. 1985, Shu et al. 1985). A more systematic procedure for carrying out the orbit averaging is to use Lie transform perturbation theory to remove the dependence on the fast angle variable from the problem order-by-order in epsilon, where the small parameter epsilon is proportional to the fractional radial distance from exact resonance. This powerful technique has been developed and refined over the past thirty years in the context of gyrokinetic theory in plasma physics (Brizard and Hahm, Rev. Mod. Phys. 79, 2007). When the Lie transform method is applied to resonantly forced rings near a mean motion resonance with a satellite, the resulting orbit-averaged equations contain the nonlinear terms found previously, but also contain additional nonlinear self-gravity terms of the same order that were missed by Borderies et al. and by Shu et al. The additional terms result from the fact that the self-consistent gravitational potential of the perturbed rings modifies the orbit-averaging transformation at nonlinear order. These additional terms are the gravitational analog of electrostatic ponderomotive forces caused by large amplitude waves in plasma physics. The revised orbit-averaged equations are shown to modify the behavior of nonlinear density waves in planetary rings compared to the previously published theory. This reserach was supported by NASA's Outer Planets Reserach program.

  11. Estimating average cellular turnover from 5-bromo-2'-deoxyuridine (BrdU) measurements.

    PubMed Central

    De Boer, Rob J; Mohri, Hiroshi; Ho, David D; Perelson, Alan S

    2003-01-01

    Cellular turnover rates in the immune system can be determined by labelling dividing cells with 5-bromo-2'-deoxyuridine (BrdU) or deuterated glucose ((2)H-glucose). To estimate the turnover rate from such measurements one has to fit a particular mathematical model to the data. The biological assumptions underlying various models developed for this purpose are controversial. Here, we fit a series of different models to BrdU data on CD4(+) T cells from SIV(-) and SIV(+) rhesus macaques. We first show that the parameter estimates obtained using these models depend strongly on the details of the model. To resolve this lack of generality we introduce a new parameter for each model, the 'average turnover rate', defined as the cellular death rate averaged over all subpopulations in the model. We show that very different models yield similar estimates of the average turnover rate, i.e. ca. 1% day(-1) in uninfected monkeys and ca. 2% day(-1) in SIV-infected monkeys. Thus, we show that one can use BrdU data from a possibly heterogeneous population of cells to estimate the average turnover rate of that population in a robust manner. PMID:12737664

  12. Reimbursement for Continuous Glucose Monitoring

    PubMed Central

    DeVries, J. Hans

    2016-01-01

    Abstract Continuous glucose monitoring (CGM) systems have been available for more than 15 years by now. However, market uptake is relatively low in most countries; in other words, relatively few patients with diabetes use CGM systems regularly. One major reason for the reluctance of patients to use CGM systems is the costs associated (i.e., in most countries no reimbursement is provided by the health insurance companies). In case reimbursement is in place, like in the United States, only certain patient groups get reimbursement that fulfills strict indications. This situation is somewhat surprising in view of the mounting evidence for benefits of CGM usage from clinical trials: most meta-analyses of these trials consistently show a clinically relevant improvement of glucose control associated with a reduction in hypoglycemic events. More recent trials with CGM systems with an improved CGM technology showed even more impressive benefits, especially if CGM systems are used in different combinations with an insulin pump (e.g., with automated bolus calculators and low glucose suspend features). Nevertheless, sufficient evidence is not available for all patient groups, and more data on cost–efficacy are needed. In addition, good data from real-world studies/registers documenting the benefits of CGM usage under daily life conditions would be of help to convince healthcare systems to cover the costs of CGM systems. In view of the ongoing improvements in established needle-type CGM systems, the fact that new CGM technology will come to the market soon (e.g., implantable sensors), that CGM-like systems are quite successfully at least in certain markets (like the flash glucose monitoring systems), and that the first artificial pancreas systems will come to the market in the next few years, there is a need to make sure that this major improvement in diabetes therapy becomes more widely available for patients with diabetes, for which better reimbursement is essential. PMID

  13. Reimbursement for Continuous Glucose Monitoring.

    PubMed

    Heinemann, Lutz; DeVries, J Hans

    2016-02-01

    Continuous glucose monitoring (CGM) systems have been available for more than 15 years by now. However, market uptake is relatively low in most countries; in other words, relatively few patients with diabetes use CGM systems regularly. One major reason for the reluctance of patients to use CGM systems is the costs associated (i.e., in most countries no reimbursement is provided by the health insurance companies). In case reimbursement is in place, like in the United States, only certain patient groups get reimbursement that fulfills strict indications. This situation is somewhat surprising in view of the mounting evidence for benefits of CGM usage from clinical trials: most meta-analyses of these trials consistently show a clinically relevant improvement of glucose control associated with a reduction in hypoglycemic events. More recent trials with CGM systems with an improved CGM technology showed even more impressive benefits, especially if CGM systems are used in different combinations with an insulin pump (e.g., with automated bolus calculators and low glucose suspend features). Nevertheless, sufficient evidence is not available for all patient groups, and more data on cost-efficacy are needed. In addition, good data from real-world studies/registers documenting the benefits of CGM usage under daily life conditions would be of help to convince healthcare systems to cover the costs of CGM systems. In view of the ongoing improvements in established needle-type CGM systems, the fact that new CGM technology will come to the market soon (e.g., implantable sensors), that CGM-like systems are quite successfully at least in certain markets (like the flash glucose monitoring systems), and that the first artificial pancreas systems will come to the market in the next few years, there is a need to make sure that this major improvement in diabetes therapy becomes more widely available for patients with diabetes, for which better reimbursement is essential. PMID:26784130

  14. Glucose metabolism in diabetic blood vessels

    SciTech Connect

    Brown, B.J.; Crass, M.F. III

    1986-03-05

    Since glycolysis appears to be coupled to active ion transport in vascular smooth muscle, alterations in glucose metabolism may contribute to cellular dysfunction and angiopathy in diabetes. Uptake and utilization of glucose were studied in perfused blood vessels in which pulsatile flow and perfusion pressure were similar to those measured directly in vivo. Thoracic aortae isolated from 8-wk alloxan diabetic (D) and nondiabetic control rabbits were cannulated, tethered, and perfused with oxygenated buffer containing 7 or 25 mM glucose and tracer amounts of glucose-U/sup -14/ C. Norepinephrine (NE) (10/sup -6/ M) and/or insulin (I) (150 ..mu..U/ml) and albumin (0.2%) were added. NE-induced tension development increased glucose uptake 39% and /sup 14/CO/sub 2/ and lactate production 2.3-fold. With 7 mM glucose, marked decreases in glucose uptake (74%), /sup 14/CO/sub 2/ (68%), lactate (30%), total tissue glycogen (75%), and tissue phospholipids (70%) were observed in D. Addition of I or elevation of exogenous glucose to 25 mM normalized glucose uptake, but had differential effects on the pattern of substrate utilization. Thus, in D, there was a marked depression of vascular glucose metabolism that was partially reversed by addition of low concentrations of insulin or D levels of glucose.

  15. Age-related metabolic fatigue during low glucose conditions in rat hippocampus

    PubMed Central

    Galeffi, Francesca; Shetty, Pavan K.; Sadgrove, Matthew P.; Turner, Dennis A.

    2015-01-01

    Previous reports have indicated that with aging, intrinsic brain tissue changes in cellular bioenergetics may hamper the brain’s ability to cope with metabolic stress. Therefore, we analyzed the effects of age on neuronal sensitivity to glucose deprivation by monitoring changes in field excitatory postsynaptic potentials (fEPSPs), tissue Po2, and NADH fluorescence imaging in the CA1 region of hippocampal slices obtained from F344 rats (1–2, 3–6, 12–20, and >22 months). Forty minutes of moderate low glucose (2.5 mM) led to approximately 80% decrease of fEPSP amplitudes and NADH decline in all 4 ages that reversed after reintroduction of 10 mM glucose. However, tissue slices from 12 to 20 months and >22-month-old rats were more vulnerable to low glucose: fEPSPs decreased by 50% on average 8 minutes faster compared with younger slices. Tissue oxygen utilization increased after onset of 2.5 mM glucose in all ages of tissue slices, which persisted for 40 minutes in younger tissue slices. But, in older tissue slices the increased oxygen utilization slowly faded and tissue Po2 levels increased toward baseline values after approximately 25 minutes of glucose deprivation. In addition, with age the ability to regenerate NADH after oxidation was diminished. The NAD+/NADH ratio remained relatively oxidized after low glucose, even during recovery. In young slices, glycogen levels were stable throughout the exposure to low glucose. In contrast, with aging utilization of glycogen stores was increased during low glucose, particularly in hippocampal slices from >22 months old rats, indicating both inefficient metabolism and increased demand for glucose. Lactate addition (20 mM) improved oxidative metabolism by directly supplementing the mitochondrial NADH pool and maintained fEPSPs in young as well as aged tissue slices, indicating that inefficient metabolism in the aging tissue can be improved by directly enhancing NADH regeneration. PMID:25443286

  16. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.

    PubMed

    Xu, Hao; Aylott, Jonathan W; Kopelman, Raoul

    2002-11-01

    Polyacrylamide-based, ratiometric, spherical, optical nanosensors, or polyacrylamide PEBBLEs (Probes Encapsulated By Biologically Localized Embedding), have been fabricated, aimed at real-time glucose imaging in intact biological systems, i.e. living cells. These nanosensors are prepared using a microemulsion polymerization process, and their average size is about 45 nm in diameter. The sensors incorporate glucose oxidase (GOx), an oxygen sensitive fluorescent indicator (Ru[dpp(SO3Na)2]3)Cl2, and an oxygen insensitive fluorescent dye, Oregon Green 488-dextran or Texas Red-dextran, as a reference for the purpose of ratiometric intensity measurements. The enzymatic oxidation of glucose to gluconic acid results in the local depletion of oxygen, which is measured by the oxygen sensitive ruthenium dye. The small size and inert matrix of these sensors allows them to be inserted into living cells with minimal physical and chemical perturbations to their biological functions. The PEBBLE matrix protects the enzyme and fluorescent dyes from interference by proteins in cells, enabling reliable in vivo chemical analysis. Conversely, the matrix also significantly reduces the toxicity of the indicator and reference dyes to the cells, so that a larger variety of dyes can be used in optimal fashion. Furthermore, the PEBBLE matrix enables the synergistic approach in which there is a steady state of local oxygen consumption, and this cannot be achieved by separately introducing free enzyme and dyes into a cell. The work presented here describes the production and characterization of glucose sensitive PEBBLEs, and their potential for intracellular glucose measurements. The sensor response is determined in terms of the linear range, ratiometric operation, response time, sensor stability, reversibility and immunity to interferences. PMID:12475037

  17. Noninvasive Ultrasonic Glucose Sensing with Large Pigs (∼200 Pounds) Using a Lightweight Cymbal Transducer Array and Biosensors

    PubMed Central

    Park, Eun-Joo; Werner, Jacob; Beebe, Joshua; Chan, Samantha; Barrie Smith, Nadine

    2009-01-01

    Background To prevent complications in diabetes, the proper management of blood glucose levels is essential. Since conventional glucose meters require pricking fingers or other areas of the skin, a noninvasive method for monitoring blood glucose levels is desired. Using a lightweight cymbal transducer array, this study was conducted to noninvasively determine the glucose levels of pigs having a similar size to humans. Method In vivo experiments using eight pigs (∼200 pounds) were performed in five groups. A cymbal array with four biosensors was attached to the axillary area of the pig. The array was operated at 20 kHz at special peak–temporal peak intensity (Isptp) equal to 50 or 100 mW/cm2 for 5, 10, or 20 minutes. After the ultrasound exposure, glucose concentrations of the interstitial fluid were determined using biosensors. For comparison, glucose levels of blood samples collected from the ear vein were measured by a commercial glucose meter. Result In comparison, glucose levels determined by a cymbal array and biosensor system were close to those measured by a glucose meter. After a 20-minute ultrasound exposure at Isptp = 100 mW/cm2, the average glucose level determined by the ultrasound system was 175 ± 7 mg/dl, which is close to 166 ± 5 mg/dl measured by the glucose meter. Conclusion Results indicate the feasibility of using a cymbal array for noninvasive glucose sensing on pigs having a similar size to humans. Further studies on the ultrasound conditions, such as frequency, intensity, and exposure time, will be continued for effective glucose sensing. PMID:20144290

  18. What is a normal blood glucose?

    PubMed

    Güemes, Maria; Rahman, Sofia A; Hussain, Khalid

    2016-06-01

    Glucose is the key metabolic substrate for tissue energy production. In the perinatal period the mother supplies glucose to the fetus and for most of the gestational period the normal lower limit of fetal glucose concentration is around 3 mmol/L. Just after birth, for the first few hours of life in a normal term neonate appropriate for gestational age, blood glucose levels can range between 1.4 mmol/L and 6.2 mmol/L but by about 72 h of age fasting blood glucose levels reach normal infant, child and adult values (3.5-5.5 mmol/L). Normal blood glucose levels are maintained within this narrow range by factors which control glucose production and glucose utilisation. The key hormones which regulate glucose homoeostasis include insulin, glucagon, epinephrine, norepinephrine, cortisol and growth hormone. Pathological states that affect either glucose production or utilisation will lead to hypoglycaemia. Although hypoglycaemia is a common biochemical finding in children (especially in the newborn) it is not possible to define by a single (or a range of) blood glucose value/s. It can be defined as the concentration of glucose in the blood or plasma at which the individual demonstrates a unique response to the abnormal milieu caused by the inadequate delivery of glucose to a target organ (eg, the brain). Hypoglycaemia should therefore be considered as a continuum and the blood glucose level should be interpreted within the clinical scenario and with respect to the counter-regulatory hormonal responses and intermediate metabolites. PMID:26369574

  19. Lidar uncertainty and beam averaging correction

    NASA Astrophysics Data System (ADS)

    Giyanani, A.; Bierbooms, W.; van Bussel, G.

    2015-05-01

    Remote sensing of the atmospheric variables with the use of Lidar is a relatively new technology field for wind resource assessment in wind energy. A review of the draft version of an international guideline (CD IEC 61400-12-1 Ed.2) used for wind energy purposes is performed and some extra atmospheric variables are taken into account for proper representation of the site. A measurement campaign with two Leosphere vertical scanning WindCube Lidars and metmast measurements is used for comparison of the uncertainty in wind speed measurements using the CD IEC 61400-12-1 Ed.2. The comparison revealed higher but realistic uncertainties. A simple model for Lidar beam averaging correction is demonstrated for understanding deviation in the measurements. It can be further applied for beam averaging uncertainty calculations in flat and complex terrain.

  20. Rigid shape matching by segmentation averaging.

    PubMed

    Wang, Hongzhi; Oliensis, John

    2010-04-01

    We use segmentations to match images by shape. The new matching technique does not require point-to-point edge correspondence and is robust to small shape variations and spatial shifts. To address the unreliability of segmentations computed bottom-up, we give a closed form approximation to an average over all segmentations. Our method has many extensions, yielding new algorithms for tracking, object detection, segmentation, and edge-preserving smoothing. For segmentation, instead of a maximum a posteriori approach, we compute the "central" segmentation minimizing the average distance to all segmentations of an image. For smoothing, instead of smoothing images based on local structures, we smooth based on the global optimal image structures. Our methods for segmentation, smoothing, and object detection perform competitively, and we also show promising results in shape-based tracking. PMID:20224119

  1. Polarized electron beams at milliampere average current

    SciTech Connect

    Poelker, M.

    2013-11-07

    This contribution describes some of the challenges associated with developing a polarized electron source capable of uninterrupted days-long operation at milliAmpere average beam current with polarization greater than 80%. Challenges will be presented in the context of assessing the required level of extrapolation beyond the performance of today’s CEBAF polarized source operating at ∼ 200 uA average current. Estimates of performance at higher current will be based on hours-long demonstrations at 1 and 4 mA. Particular attention will be paid to beam-related lifetime-limiting mechanisms, and strategies to construct a photogun that operate reliably at bias voltage > 350kV.

  2. Apparent and average accelerations of the Universe

    SciTech Connect

    Bolejko, Krzysztof; Andersson, Lars E-mail: larsa@math.miami.edu

    2008-10-15

    In this paper we consider the relation between the volume deceleration parameter obtained within the Buchert averaging scheme and the deceleration parameter derived from supernova observation. This work was motivated by recent findings that showed that there are models which despite having {Lambda} = 0 have volume deceleration parameter q{sup vol}<0. This opens the possibility that back-reaction and averaging effects may be used as an interesting alternative explanation to the dark energy phenomenon. We have calculated q{sup vol} in some Lemaitre-Tolman models. For those models which are chosen to be realistic and which fit the supernova data, we find that q{sup vol}>0, while those models which we have been able to find which exhibit q{sup vol}<0 turn out to be unrealistic. This indicates that care must be exercised in relating the deceleration parameter to observations.

  3. Emissions averaging top option for HON compliance

    SciTech Connect

    Kapoor, S. )

    1993-05-01

    In one of its first major rule-setting directives under the CAA Amendments, EPA recently proposed tough new emissions controls for nearly two-thirds of the commercial chemical substances produced by the synthetic organic chemical manufacturing industry (SOCMI). However, the Hazardous Organic National Emission Standards for Hazardous Air Pollutants (HON) also affects several non-SOCMI processes. The author discusses proposed compliance deadlines, emissions averaging, and basic operating and administrative requirements.

  4. The Average Velocity in a Queue

    ERIC Educational Resources Information Center

    Frette, Vidar

    2009-01-01

    A number of cars drive along a narrow road that does not allow overtaking. Each driver has a certain maximum speed at which he or she will drive if alone on the road. As a result of slower cars ahead, many cars are forced to drive at speeds lower than their maximum ones. The average velocity in the queue offers a non-trivial example of a mean…

  5. Stochastic Games with Average Payoff Criterion

    SciTech Connect

    Ghosh, M. K.; Bagchi, A.

    1998-11-15

    We study two-person stochastic games on a Polish state and compact action spaces and with average payoff criterion under a certain ergodicity condition. For the zero-sum game we establish the existence of a value and stationary optimal strategies for both players. For the nonzero-sum case the existence of Nash equilibrium in stationary strategies is established under certain separability conditions.

  6. Average Annual Rainfall over the Globe

    ERIC Educational Resources Information Center

    Agrawal, D. C.

    2013-01-01

    The atmospheric recycling of water is a very important phenomenon on the globe because it not only refreshes the water but it also redistributes it over land and oceans/rivers/lakes throughout the globe. This is made possible by the solar energy intercepted by the Earth. The half of the globe facing the Sun, on the average, intercepts 1.74 ×…

  7. Representation of average drop sizes in sprays

    NASA Astrophysics Data System (ADS)

    Dodge, Lee G.

    1987-06-01

    Procedures are presented for processing drop-size measurements to obtain average drop sizes that represent overall spray characteristics. These procedures are not currently in general use, but they would represent an improvement over current practice. Clear distinctions are made between processing data for spatial- and temporal-type measurements. The conversion between spatial and temporal measurements is discussed. The application of these procedures is demonstrated by processing measurements of the same spray by two different types of instruments.

  8. Modern average global sea-surface temperature

    USGS Publications Warehouse

    Schweitzer, Peter N.

    1993-01-01

    The data contained in this data set are derived from the NOAA Advanced Very High Resolution Radiometer Multichannel Sea Surface Temperature data (AVHRR MCSST), which are obtainable from the Distributed Active Archive Center at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. The JPL tapes contain weekly images of SST from October 1981 through December 1990 in nine regions of the world ocean: North Atlantic, Eastern North Atlantic, South Atlantic, Agulhas, Indian, Southeast Pacific, Southwest Pacific, Northeast Pacific, and Northwest Pacific. This data set represents the results of calculations carried out on the NOAA data and also contains the source code of the programs that made the calculations. The objective was to derive the average sea-surface temperature of each month and week throughout the whole 10-year series, meaning, for example, that data from January of each year would be averaged together. The result is 12 monthly and 52 weekly images for each of the oceanic regions. Averaging the images in this way tends to reduce the number of grid cells that lack valid data and to suppress interannual variability.

  9. Digital Averaging Phasemeter for Heterodyne Interferometry

    NASA Technical Reports Server (NTRS)

    Johnson, Donald; Spero, Robert; Shaklan, Stuart; Halverson, Peter; Kuhnert, Andreas

    2004-01-01

    A digital averaging phasemeter has been built for measuring the difference between the phases of the unknown and reference heterodyne signals in a heterodyne laser interferometer. This phasemeter performs well enough to enable interferometric measurements of distance with accuracy of the order of 100 pm and with the ability to track distance as it changes at a speed of as much as 50 cm/s. This phasemeter is unique in that it is a single, integral system capable of performing three major functions that, heretofore, have been performed by separate systems: (1) measurement of the fractional-cycle phase difference, (2) counting of multiple cycles of phase change, and (3) averaging of phase measurements over multiple cycles for improved resolution. This phasemeter also offers the advantage of making repeated measurements at a high rate: the phase is measured on every heterodyne cycle. Thus, for example, in measuring the relative phase of two signals having a heterodyne frequency of 10 kHz, the phasemeter would accumulate 10,000 measurements per second. At this high measurement rate, an accurate average phase determination can be made more quickly than is possible at a lower rate.

  10. Disk-averaged synthetic spectra of Mars

    NASA Technical Reports Server (NTRS)

    Tinetti, Giovanna; Meadows, Victoria S.; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-01-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin.

  11. Disk-averaged synthetic spectra of Mars.

    PubMed

    Tinetti, Giovanna; Meadows, Victoria S; Crisp, David; Fong, William; Velusamy, Thangasamy; Snively, Heather

    2005-08-01

    The principal goal of the NASA Terrestrial Planet Finder (TPF) and European Space Agency's Darwin mission concepts is to directly detect and characterize extrasolar terrestrial (Earthsized) planets. This first generation of instruments is expected to provide disk-averaged spectra with modest spectral resolution and signal-to-noise. Here we use a spatially and spectrally resolved model of a Mars-like planet to study the detectability of a planet's surface and atmospheric properties from disk-averaged spectra. We explore the detectability as a function of spectral resolution and wavelength range, for both the proposed visible coronograph (TPFC) and mid-infrared interferometer (TPF-I/Darwin) architectures. At the core of our model is a spectrum-resolving (line-by-line) atmospheric/surface radiative transfer model. This model uses observational data as input to generate a database of spatially resolved synthetic spectra for a range of illumination conditions and viewing geometries. The model was validated against spectra recorded by the Mars Global Surveyor-Thermal Emission Spectrometer and the Mariner 9-Infrared Interferometer Spectrometer. Results presented here include disk-averaged synthetic spectra, light curves, and the spectral variability at visible and mid-infrared wavelengths for Mars as a function of viewing angle, illumination, and season. We also considered the differences in the spectral appearance of an increasingly ice-covered Mars, as a function of spectral resolution, signal-to-noise and integration time for both TPF-C and TPFI/ Darwin. PMID:16078866

  12. Viewpoint: observations on scaled average bioequivalence.

    PubMed

    Patterson, Scott D; Jones, Byron

    2012-01-01

    The two one-sided test procedure (TOST) has been used for average bioequivalence testing since 1992 and is required when marketing new formulations of an approved drug. TOST is known to require comparatively large numbers of subjects to demonstrate bioequivalence for highly variable drugs, defined as those drugs having intra-subject coefficients of variation greater than 30%. However, TOST has been shown to protect public health when multiple generic formulations enter the marketplace following patent expiration. Recently, scaled average bioequivalence (SABE) has been proposed as an alternative statistical analysis procedure for such products by multiple regulatory agencies. SABE testing requires that a three-period partial replicate cross-over or full replicate cross-over design be used. Following a brief summary of SABE analysis methods applied to existing data, we will consider three statistical ramifications of the proposed additional decision rules and the potential impact of implementation of scaled average bioequivalence in the marketplace using simulation. It is found that a constraint being applied is biased, that bias may also result from the common problem of missing data and that the SABE methods allow for much greater changes in exposure when generic-generic switching occurs in the marketplace. PMID:22162308

  13. Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing.

    PubMed

    Shamsipur, Mojtaba; Tabrizi, Mahmoud Amouzadeh

    2014-12-01

    In this paper, the direct electrochemistry of glucose oxidase (GOD) was accomplished at a glassy carbon electrode modified with electrochemically reduced graphene oxide/sodium dodecyl sulfate (GCE/ERGO/SDS). A pair of reversible peaks is exhibited on GCE/ERGO/SDS/GOD by cyclic voltammetry. The peak-to-peak potential separation of immobilized GOD is 28 mV in 0.1 M phosphate buffer solution (pH7.0) with a scan rate of 50 mV/s. The average surface coverage is 2.62×10(-10) mol cm(-2). The resulting biosensor exhibited a good response to glucose with linear range from 1 to 8 mM (R(2)=0.9878), good reproducibility and detection limit of 40.8 μM. The results from the biosensor were similar (±5%) to those obtained from the clinical analyzer. PMID:25491807

  14. A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring.

    PubMed

    Huang, Xian; Li, Siqi; Davis, Erin; Leduc, Charles; Ravussin, Yann; Cai, Haogang; Song, Bing; Li, Dachao; Accili, Domenico; Leibel, Rudolph; Wang, Qian; Lin, Qiao

    2013-05-01

    Micromachined viscometric affinity glucose sensors have been previously demonstrated using vibrational cantilever and diaphragm. These devices featured a single glucose detection module that determines glucose concentrations through viscosity changes of glucose-sensitive polymer solutions. However, fluctuations in temperature and other environmental parameters might potentially affect the stability and reliability of these devices, creating complexity in their applications in subcutaneously implanted continuous glucose monitoring (CGM). To address these issues, we present a MEMS differential sensor that can effectively reject environmental disturbances while allowing accurate glucose detection. The sensor consists of two magnetically driven vibrating diaphragms situated inside microchambers filled with a boronic-acid based glucose-sensing solution and a reference solution insensitive to glucose. Glucose concentrations can be accurately determined by characteristics of the diaphragm vibration through differential capacitive detection. Our in-vitro and preliminary in-vivo experimental data demonstrate the potential of this sensor for highly stable subcutaneous CGM applications. PMID:23956499

  15. A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring

    NASA Astrophysics Data System (ADS)

    Huang, Xian; Li, Siqi; Davis, Erin; Leduc, Charles; Ravussin, Yann; Cai, Haogang; Song, Bing; Li, Dachao; Accili, Domenico; Leibel, Rudolph; Wang, Qian; Lin, Qiao

    2013-05-01

    Micromachined viscometric affinity glucose sensors have been previously demonstrated using vibrational cantilever and diaphragm. These devices featured a single glucose detection module that determines glucose concentrations through viscosity changes of glucose-sensitive polymer solutions. However, fluctuations in temperature and other environmental parameters might potentially affect the stability and reliability of these devices, creating complexity in their applications in subcutaneously implanted continuous glucose monitoring (CGM). To address these issues, we present a MEMS differential sensor that can effectively reject environmental disturbances while allowing accurate glucose detection. The sensor consists of two magnetically driven vibrating diaphragms situated inside microchambers filled with a boronic-acid based glucose-sensing solution and a reference solution insensitive to glucose. Glucose concentrations can be accurately determined by characteristics of the diaphragm vibration through differential capacitive detection. Our in vitro and preliminary in vivo experimental data demonstrate the potential of this sensor for highly stable subcutaneous CGM applications.

  16. A MEMS differential viscometric sensor for affinity glucose detection in continuous glucose monitoring

    PubMed Central

    Huang, Xian; Li, Siqi; Davis, Erin; Leduc, Charles; Ravussin, Yann; Cai, Haogang; Song, Bing; Li, Dachao; Accili, Domenico; Leibel, Rudolph; Wang, Qian; Lin, Qiao

    2013-01-01

    Micromachined viscometric affinity glucose sensors have been previously demonstrated using vibrational cantilever and diaphragm. These devices featured a single glucose detection module that determines glucose concentrations through viscosity changes of glucose-sensitive polymer solutions. However, fluctuations in temperature and other environmental parameters might potentially affect the stability and reliability of these devices, creating complexity in their applications in subcutaneously implanted continuous glucose monitoring (CGM). To address these issues, we present a MEMS differential sensor that can effectively reject environmental disturbances while allowing accurate glucose detection. The sensor consists of two magnetically driven vibrating diaphragms situated inside microchambers filled with a boronic-acid based glucose-sensing solution and a reference solution insensitive to glucose. Glucose concentrations can be accurately determined by characteristics of the diaphragm vibration through differential capacitive detection. Our in-vitro and preliminary in-vivo experimental data demonstrate the potential of this sensor for highly stable subcutaneous CGM applications. PMID:23956499

  17. Continuous Glucose Monitoring in Patients with Abnormal Glucose Tolerance during Pregnancy: A Case Series.

    PubMed

    Tonoike, Mie; Kishimoto, Miyako; Yamamoto, Mayumi; Yano, Tetsu; Noda, Mitsuhiko

    2016-01-01

    Abnormal glucose tolerance during pregnancy is associated with perinatal complications. We used continuous glucose monitoring (CGM) in pregnant women with glucose intolerance to achieve better glycemic control and to evaluate the maternal glucose fluctuations. We also used CGM in women without glucose intolerance (the control cases). Furthermore, the standard deviation (SD) and mean amplitude of glycemic excursions (MAGE) were calculated for each case. For the control cases, the glucose levels were tightly controlled within a very narrow range; however, the SD and MAGE values in pregnant women with glucose intolerance were relativity high, suggesting postprandial hyperglycemia. Our results demonstrate that pregnant women with glucose intolerance exhibited greater glucose fluctuations compared with the control cases. The use of CGM may help to improve our understanding of glycemic patterns and may have beneficial effects on perinatal glycemic control, such as the detection of postprandial hyperglycemia in pregnant women. PMID:26949348

  18. Continuous Glucose Monitoring in Patients with Abnormal Glucose Tolerance during Pregnancy: A Case Series

    PubMed Central

    Tonoike, Mie; Kishimoto, Miyako; Yamamoto, Mayumi; Yano, Tetsu; Noda, Mitsuhiko

    2016-01-01

    Abnormal glucose tolerance during pregnancy is associated with perinatal complications. We used continuous glucose monitoring (CGM) in pregnant women with glucose intolerance to achieve better glycemic control and to evaluate the maternal glucose fluctuations. We also used CGM in women without glucose intolerance (the control cases). Furthermore, the standard deviation (SD) and mean amplitude of glycemic excursions (MAGE) were calculated for each case. For the control cases, the glucose levels were tightly controlled within a very narrow range; however, the SD and MAGE values in pregnant women with glucose intolerance were relativity high, suggesting postprandial hyperglycemia. Our results demonstrate that pregnant women with glucose intolerance exhibited greater glucose fluctuations compared with the control cases. The use of CGM may help to improve our understanding of glycemic patterns and may have beneficial effects on perinatal glycemic control, such as the detection of postprandial hyperglycemia in pregnant women. PMID:26949348

  19. Experiments of glucose solution measurement based on the tunable pulsed laser induced photoacoustic spectroscopy method

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Xiong, Zhihua; Huang, Zhen

    2015-07-01

    Photoacoustic spectroscopy (PAS) is a hybrid, well-established and promising detection technique that has widely applied into a lot of fields such as bio-medical, material and environment monitoring etc. PAS has high contrast and resolution because of combining the advantages of the pure-optical and the pure-acoustic. In this paper, a photoacoustic experiment of glucose solution induced by 532nm pumped Nd:YAG tunable pulsed laser with repetition rate of 20Hz and pulse width of 10ns is performed. The time-resolved photoacoustic signals of glucose solution induced by pulsed laser in the average time of 512 are obtained. And the photoacoustic experiments of different concentrations of glucose solutions and different wavelengths of pulsed laser are carried out in this paper. Experimental results demonstrate that the bipolar sine-wave profiles for the time-resolved photoacoustic signal of glucose solution are in good agreement with the past reported literatures. And the different absorbing coefficients of glucose solution can be gotten according to the slope of the first part of the time-resolved photoacoustic signals. In addition, the different acoustic velocities of glucose solution can also be gotten according to the shift change of the time-resolved photoacoustic peak values. Research results illustrate that the characteristic wavelengths, different optical and acoustic properties of glucose solution can be interpreted by the time-resolved and peak-to-peak photoacoustic signals induced by the pulsed laser.

  20. Synergistic binding of glucose and aluminium ATP to hexokinase from Saccharomyces cerevisiae.

    PubMed

    Woolfitt, A R; Kellett, G L; Hoggett, J G

    1988-08-10

    The binding of glucose, AlATP and AlADP to the monomeric and dimeric forms of the native yeast hexokinase PII isoenzyme and to the proteolytically modified SII monomeric form was monitored at pH 6.7 by the concomitant quenching of intrinsic protein fluorescence. No fluorescence changes were observed when free enzyme was mixed with AlATP at concentrations up to 7500 microM. In the presence of saturating concentrations of glucose, the maximal quenching of fluorescence induced by AlATP was between 1.5 and 3.5% depending on species, and the average value of [L]0.5, the concentration of ligand at half-saturation, over all monomeric species was 0.9 +/- 0.4 microM. The presence of saturating concentrations of AlATP diminished [L]0.5 for glucose binding by between 260- and 670-fold for hexokinase PII and SII monomers, respectively (dependent on the ionic strength), and by almost 4000-fold for PII dimer. The data demonstrate extremely strong synergistic interactions in the binding of glucose and AlATP to yeast hexokinase, arising as a consequence of conformational changes in the free enzyme induced by glucose and in enzyme-glucose complex induced by AlATP. The synergistic interactions of glucose and AlATP are related to their kinetic synergism and to the ability of AlATP to act as a powerful inhibitor of the hexokinase reaction. PMID:3042027

  1. Glucose transport in brain - effect of inflammation.

    PubMed

    Jurcovicova, J

    2014-01-01

    Glucose is transported across the cell membrane by specific saturable transport system, which includes two types of glucose transporters: 1) sodium dependent glucose transporters (SGLTs) which transport glucose against its concentration gradient and 2) sodium independent glucose transporters (GLUTs), which transport glucose by facilitative diffusion in its concentration gradient. In the brain, both types of transporters are present with different function, affinity, capacity, and tissue distribution. GLUT1 occurs in brain in two isoforms. The more glycosylated GLUT1 is produced in brain microvasculature and ensures glucose transport across the blood brain barrier (BBB). The less glycosylated form is localized in astrocytic end-feet and cell bodies and is not present in axons, neuronal synapses or microglia. Glucose transported to astrocytes by GLUT1 is metabolized to lactate serving to neurons as energy source. Proinflammatory cytokine interleukin (IL)-1β upregulates GLUT1 in endothelial cells and astrocytes, whereas it induces neuronal death in neuronal cell culture. GLUT2 is present in hypothalamic neurons and serves as a glucose sensor in regulation of food intake. In neurons of the hippocampus, GLUT2 is supposed to regulate synaptic activity and neurotransmitter release. GLUT3 is the most abundant glucose transporter in the brain having five times higher transport capacity than GLUT1. It is present in neuropil, mostly in axons and dendrites. Its density and distribution correlate well with the local cerebral glucose demands. GLUT5 is predominantly fructose transporter. In brain, GLUT5 is the only hexose transporter in microglia, whose regulation is not yet clear. It is not present in neurons. GLUT4 and GLUT8 are insulin-regulated glucose transporters in neuronal cell bodies in the cortex and cerebellum, but mainly in the hippocampus and amygdala, where they maintain hippocampus-dependent cognitive functions. Insulin translocates GLUT4 from cytosol to plasma

  2. Improving Reading Abilities of Average and Below Average Readers through Peer Tutoring.

    ERIC Educational Resources Information Center

    Galezio, Marne; And Others

    A program was designed to improve the progress of average and below average readers in a first-grade, a second-grade, and a sixth-grade classroom in a multicultural, multi-social economic district located in a three-county area northwest of Chicago, Illinois. Classroom teachers noted that students were having difficulty making adequate progress in…

  3. Parents' Reactions to Finding Out That Their Children Have Average or above Average IQ Scores.

    ERIC Educational Resources Information Center

    Dirks, Jean; And Others

    1983-01-01

    Parents of 41 children who had been given an individually-administered intelligence test were contacted 19 months after testing. Parents of average IQ children were less accurate in their memory of test results. Children with above average IQ experienced extremely low frequencies of sibling rivalry, conceit or pressure. (Author/HLM)

  4. Coping with an exogenous glucose overload: glucose kinetics of rainbow trout during graded swimming.

    PubMed

    Choi, Kevin; Weber, Jean-Michel

    2016-03-15

    This study examines how chronically hyperglycemic rainbow trout modulate glucose kinetics in response to graded exercise up to critical swimming speed (Ucrit), with or without exogenous glucose supply. Our goals were 1) to quantify the rates of hepatic glucose production (Ra glucose) and disposal (Rd glucose) during graded swimming, 2) to determine how exogenous glucose affects the changes in glucose fluxes caused by exercise, and 3) to establish whether exogenous glucose modifies Ucrit or the cost of transport. Results show that graded swimming causes no change in Ra and Rd glucose at speeds below 2.5 body lengths per second (BL/s), but that glucose fluxes may be stimulated at the highest speeds. Excellent glucoregulation is also achieved at all exercise intensities. When exogenous glucose is supplied during exercise, trout suppress hepatic production from 16.4 ± 1.6 to 4.1 ± 1.7 μmol·kg(-1)·min(-1) and boost glucose disposal to 40.1 ± 13 μmol·kg(-1)·min(-1). These responses limit the effects of exogenous glucose to a 2.5-fold increase in glycemia, whereas fish showing no modulation of fluxes would reach dangerous levels of 114 mM of blood glucose. Exogenous glucose reduces metabolic rate by 16% and, therefore, causes total cost of transport to decrease accordingly. High glucose availability does not improve Ucrit because the fish are unable to take advantage of this extra fuel during maximal exercise and rely on tissue glycogen instead. In conclusion, trout have a remarkable ability to adjust glucose fluxes that allows them to cope with the cumulative stresses of a glucose overload and graded exercise. PMID:26719305

  5. FRET-based glucose monitoring for bioprocessing

    NASA Astrophysics Data System (ADS)

    Bartolome, Amelita; Smalls-Mantey, Lauren; Lin, Debora; Rao, Govind; Tolosa, Leah

    2006-02-01

    The glucose-mediated conformational changes in the glucose binding protein (GBP) have been exploited in the development of fluorescence based glucose sensors. The fluorescence response is generated by a polarity sensitive dye attached to a specific site. Such fluorescent sensors respond to submicromolar glucose at diffusion-controlled rates mimicking the wild type. However, such sensors have been limited to in vitro glucose sensing because of the preliminary dye-labeling step. In the study described here, the dye-labeling step is omitted by genetically encoding the GBP with two green fluorescent mutants namely, the green fluorescent protein (GFP) and the yellow fluorescent protein (YFP) in the N- and C-terminal ends, respectively. These two GFP mutants comprise a fluorescence resonance energy transfer (FRET) donor and acceptor pair. Thus, when glucose binds with GBP, the conformational changes affect the FRET efficiency yielding a dose-dependent response. A potential application for this FRET-based glucose biosensor is online glucose sensing in bioprocessing and cell culture. This was demonstrated by the measurement of glucose consumption in yeast fermentation. Further development of this system should yield in vivo measurement of glucose in bioprocesses.

  6. Regulation of Blood Glucose by Hypothalamic Pyruvate Metabolism

    NASA Astrophysics Data System (ADS)

    Lam, Tony K. T.; Gutierrez-Juarez, Roger; Pocai, Alessandro; Rossetti, Luciano

    2005-08-01

    The brain keenly depends on glucose for energy, and mammalians have redundant systems to control glucose production. An increase in circulating glucose inhibits glucose production in the liver, but this negative feedback is impaired in type 2 diabetes. Here we report that a primary increase in hypothalamic glucose levels lowers blood glucose through inhibition of glucose production in rats. The effect of glucose requires its conversion to lactate followed by stimulation of pyruvate metabolism, which leads to activation of adenosine triphosphate (ATP)-sensitive potassium channels. Thus, interventions designed to enhance the hypothalamic sensing of glucose may improve glucose homeostasis in diabetes.

  7. A Green's function quantum average atom model

    DOE PAGESBeta

    Starrett, Charles Edward

    2015-05-21

    A quantum average atom model is reformulated using Green's functions. This allows integrals along the real energy axis to be deformed into the complex plane. The advantage being that sharp features such as resonances and bound states are broadened by a Lorentzian with a half-width chosen for numerical convenience. An implementation of this method therefore avoids numerically challenging resonance tracking and the search for weakly bound states, without changing the physical content or results of the model. A straightforward implementation results in up to a factor of 5 speed-up relative to an optimized orbital based code.

  8. Average shape of fluctuations for subdiffusive walks

    NASA Astrophysics Data System (ADS)

    Yuste, S. B.; Acedo, L.

    2004-03-01

    We study the average shape of fluctuations for subdiffusive processes, i.e., processes with uncorrelated increments but where the waiting time distribution has a broad power-law tail. This shape is obtained analytically by means of a fractional diffusion approach. We find that, in contrast with processes where the waiting time between increments has finite variance, the fluctuation shape is no longer a semicircle: it tends to adopt a tablelike form as the subdiffusive character of the process increases. The theoretical predictions are compared with numerical simulation results.

  9. The averaging method in applied problems

    NASA Astrophysics Data System (ADS)

    Grebenikov, E. A.

    1986-04-01

    The totality of methods, allowing to research complicated non-linear oscillating systems, named in the literature "averaging method" has been given. THe author is describing the constructive part of this method, or a concrete form and corresponding algorithms, on mathematical models, sufficiently general , but built on concrete problems. The style of the book is that the reader interested in the Technics and algorithms of the asymptotic theory of the ordinary differential equations, could solve individually such problems. For specialists in the area of applied mathematics and mechanics.

  10. Auto-exploratory average reward reinforcement learning

    SciTech Connect

    Ok, DoKyeong; Tadepalli, P.

    1996-12-31

    We introduce a model-based average reward Reinforcement Learning method called H-learning and compare it with its discounted counterpart, Adaptive Real-Time Dynamic Programming, in a simulated robot scheduling task. We also introduce an extension to H-learning, which automatically explores the unexplored parts of the state space, while always choosing greedy actions with respect to the current value function. We show that this {open_quotes}Auto-exploratory H-learning{close_quotes} performs better than the original H-learning under previously studied exploration methods such as random, recency-based, or counter-based exploration.

  11. [Glucose metabolic changes in stress].

    PubMed

    Foia, L; Costuleanu, N; Trandafirescu, M; Saila, V; Pavel, M

    1999-01-01

    Provision of a better understanding of the pathogenic pathways underlying injured sugar metabolism during stress should ideally translate into a more rational approach to the provision of nutritional support. Patients with burns, trauma, severe injuries or infections commonly develop a hypermetabolic state that is associated with several changes in carbohydrate metabolism. The hypermetabolic state is induced either by the area of injury and by organs involved in the immunologic response to stress; further it determines a glycemic milieu which will be directed toward satisfaction of the requirements for glucose as an energy support. PMID:10756928

  12. Hepatic glucose and lipid metabolism.

    PubMed

    Jones, John G

    2016-06-01

    The liver has a central role in the regulation of systemic glucose and lipid fluxes during feeding and fasting and also relies on these substrates for its own energy needs. These parallel requirements are met by coordinated control of carbohydrate and lipid fluxes into and out of the Krebs cycle, which is highly tuned to nutrient availability and heavily regulated by insulin and glucagon. During progression of type 2 diabetes, hepatic carbohydrate and lipid biosynthesis fluxes become elevated, thus contributing to hyperglycaemia and hypertriacylglycerolaemia. Over this interval there are also significant fluctuations in hepatic energy state. To date, it is not known to what extent abnormal glucose and lipid fluxes are causally linked to altered energy states. Recent evidence that the glucose-lowering effects of metformin appear to be mediated by attenuation of hepatic energy generation places an additional spotlight on the interdependence of hepatic biosynthetic and oxidative fluxes. The transition from fasting to feeding results in a significant re-direction of hepatic glucose and lipid fluxes and may also incur a temporary hepatic energy deficit. At present, it is not known to what extent these variables are additionally modified by type 2 diabetes and/or non-alcoholic fatty liver disease. Thus, there is a compelling need to measure fluxes through oxidative, gluconeogenic and lipogenic pathways and determine their relationship with hepatic energy state in both fasting and fed conditions. New magnetic resonance-based technologies allow these variables to be non-invasively studied in animal models and humans. This review summarises a presentation given at the symposium entitled 'The liver in focus' at the 2015 annual meeting of the EASD. It is accompanied by two other reviews on topics from this symposium (by Kenneth Cusi, DOI: 10.1007/s00125-016-3952-1 , and by Hannele Yki-Järvinen, DOI: 10.1007/s00125-016-3944-1 ) and a commentary by the Session Chair, Michael

  13. Average observational quantities in the timescape cosmology

    SciTech Connect

    Wiltshire, David L.

    2009-12-15

    We examine the properties of a recently proposed observationally viable alternative to homogeneous cosmology with smooth dark energy, the timescape cosmology. In the timescape model cosmic acceleration is realized as an apparent effect related to the calibration of clocks and rods of observers in bound systems relative to volume-average observers in an inhomogeneous geometry in ordinary general relativity. The model is based on an exact solution to a Buchert average of the Einstein equations with backreaction. The present paper examines a number of observational tests which will enable the timescape model to be distinguished from homogeneous cosmologies with a cosmological constant or other smooth dark energy, in current and future generations of dark energy experiments. Predictions are presented for comoving distance measures; H(z); the equivalent of the dark energy equation of state, w(z); the Om(z) measure of Sahni, Shafieloo, and Starobinsky; the Alcock-Paczynski test; the baryon acoustic oscillation measure, D{sub V}; the inhomogeneity test of Clarkson, Bassett, and Lu; and the time drift of cosmological redshifts. Where possible, the predictions are compared to recent independent studies of similar measures in homogeneous cosmologies with dark energy. Three separate tests with indications of results in possible tension with the {lambda}CDM model are found to be consistent with the expectations of the timescape cosmology.

  14. MACHINE PROTECTION FOR HIGH AVERAGE CURRENT LINACS

    SciTech Connect

    Jordan, Kevin; Allison, Trent; Evans, Richard; Coleman, James; Grippo, Albert

    2003-05-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high current accelerators. The Jefferson Lab FEL [1,2] has multiple electron beam paths and many different types of diagnostic insertion devices. The MPS [3] needs to monitor both the status of these devices and the magnet settings which define the beam path. The matrix of these devices and beam paths are programmed into gate arrays, the output of the matrix is an allowable maximum average power limit. This power limit is enforced by the drive laser for the photocathode gun. The Beam Loss Monitors (BLMs), RF status, and laser safety system status are also inputs to the control matrix. There are 8 Machine Modes (electron path) and 8 Beam Modes (average power limits) that define the safe operating limits for the FEL. Combinations outside of this matrix are unsafe and the beam is inhibited. The power limits range from no beam to 2 megawatts of electron beam power.

  15. Climatology of globally averaged thermospheric mass density

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Picone, J. M.

    2010-09-01

    We present a climatological analysis of daily globally averaged density data, derived from orbit data and covering the years 1967-2007, along with an empirical Global Average Mass Density Model (GAMDM) that encapsulates the 1986-2007 data. The model represents density as a function of the F10.7 solar radio flux index, the day of year, and the Kp geomagnetic activity index. We discuss in detail the dependence of the data on each of the input variables, and demonstrate that all of the terms in the model represent consistent variations in both the 1986-2007 data (on which the model is based) and the independent 1967-1985 data. We also analyze the uncertainty in the results, and quantify how the variance in the data is apportioned among the model terms. We investigate the annual and semiannual variations of the data and quantify the amplitude, height dependence, solar cycle dependence, and interannual variability of these oscillatory modes. The auxiliary material includes Fortran 90 code for evaluating GAMDM.

  16. Global atmospheric circulation statistics: Four year averages

    NASA Technical Reports Server (NTRS)

    Wu, M. F.; Geller, M. A.; Nash, E. R.; Gelman, M. E.

    1987-01-01

    Four year averages of the monthly mean global structure of the general circulation of the atmosphere are presented in the form of latitude-altitude, time-altitude, and time-latitude cross sections. The numerical values are given in tables. Basic parameters utilized include daily global maps of temperature and geopotential height for 18 pressure levels between 1000 and 0.4 mb for the period December 1, 1978 through November 30, 1982 supplied by NOAA/NMC. Geopotential heights and geostrophic winds are constructed using hydrostatic and geostrophic formulae. Meridional and vertical velocities are calculated using thermodynamic and continuity equations. Fields presented in this report are zonally averaged temperature, zonal, meridional, and vertical winds, and amplitude of the planetary waves in geopotential height with zonal wave numbers 1-3. The northward fluxes of sensible heat and eastward momentum by the standing and transient eddies along with their wavenumber decomposition and Eliassen-Palm flux propagation vectors and divergences by the standing and transient eddies along with their wavenumber decomposition are also given. Large interhemispheric differences and year-to-year variations are found to originate in the changes in the planetary wave activity.

  17. Continuous Glucose Monitoring Systems: A Review

    PubMed Central

    Vashist, Sandeep Kumar

    2013-01-01

    There have been continuous advances in the field of glucose monitoring during the last four decades, which have led to the development of highly evolved blood glucose meters, non-invasive glucose monitoring (NGM) devices and continuous glucose monitoring systems (CGMS). Glucose monitoring is an integral part of diabetes management, and the maintenance of physiological blood glucose concentration is the only way for a diabetic to avoid life-threatening diabetic complications. CGMS have led to tremendous improvements in diabetic management, as shown by the significant lowering of glycated hemoglobin (HbA1c) in adults with type I diabetes. Most of the CGMS have been minimally-invasive, although the more recent ones are based on NGM techniques. This manuscript reviews the advances in CGMS for diabetes management along with the future prospects and the challenges involved. PMID:26824930

  18. Modeling Glucose Metabolism in the Kidney.

    PubMed

    Chen, Ying; Fry, Brendan C; Layton, Anita T

    2016-06-01

    The mammalian kidney consumes a large amount of energy to support the reabsorptive work it needs to excrete metabolic wastes and to maintain homeostasis. Part of that energy is supplied via the metabolism of glucose. To gain insights into the transport and metabolic processes in the kidney, we have developed a detailed model of the renal medulla of the rat kidney. The model represents water and solute flows, transmural fluxes, and biochemical reactions in the luminal fluid of the nephrons and vessels. In particular, the model simulates the metabolism of oxygen and glucose. Using that model, we have identified parameters concerning glucose transport and basal metabolism that yield predicted blood glucose concentrations that are consistent with experimental measurements. The model predicts substantial axial gradients in blood glucose levels along various medullary structures. Furthermore, the model predicts that in the inner medulla, owing to the relatively limited blood flow and low tissue oxygen tension, anaerobic metabolism of glucose dominates. PMID:27371260

  19. Roles of the Gut in Glucose Homeostasis.

    PubMed

    Holst, Jens Juul; Gribble, Fiona; Horowitz, Michael; Rayner, Chris K

    2016-06-01

    The gastrointestinal tract plays a major role in the regulation of postprandial glucose profiles. Gastric emptying is a highly regulated process, which normally ensures a limited and fairly constant delivery of nutrients and glucose to the proximal gut. The subsequent digestion and absorption of nutrients are associated with the release of a set of hormones that feeds back to regulate subsequent gastric emptying and regulates the release of insulin, resulting in downregulation of hepatic glucose production and deposition of glucose in insulin-sensitive tissues. These remarkable mechanisms normally keep postprandial glucose excursions low, regardless of the load of glucose ingested. When the regulation of emptying is perturbed (e.g., pyloroplasty, gastric sleeve or gastric bypass operation), postprandial glycemia may reach high levels, sometimes followed by profound hypoglycemia. This article discusses the underlying mechanisms. PMID:27222546

  20. Bioluminescence Imaging of Glucose in Tissue Surrounding Polyurethane and Glucose Sensor Implants

    PubMed Central

    Prichard, Heather L; Schroeder, Thies; Reichert, William M; Klitzman, Bruce

    2010-01-01

    Background The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. Methods Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. Results For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5–6.5 mM more than 100 μmm from the surface. Conclusions The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical. PMID:20920425

  1. Measurement of tear glucose levels with amperometric glucose biosensor/capillary tube configuration.

    PubMed

    Yan, Qinyi; Peng, Bo; Su, Gang; Cohan, Bruce E; Major, Terry C; Meyerhoff, Mark E

    2011-11-01

    An amperometric needle-type electrochemical glucose sensor intended for tear glucose measurements is described and employed in conjunction with a 0.84 mm i.d. capillary tube to collect microliter volumes of tear fluid. The sensor is based on immobilizing glucose oxidase on a 0.25 mm o.d. platinum/iridium (Pt/Ir) wire and anodically detecting the liberated hydrogen peroxide from the enzymatic reaction. Inner layers of Nafion and an electropolymerized film of 1,3-diaminobenzene/resorcinol greatly enhance the selectivity for glucose over potential interferences in tear fluid, including ascorbic acid and uric acid. Further, the new sensor is optimized to achieve very low detection limits of 1.5 ± 0.4 μM of glucose (S/N = 3) that is required to monitor glucose levels in tear fluid with a glucose sensitivity of 0.032 ± 0.02 nA/μM (n = 6). Only 4-5 μL of tear fluid in the capillary tube is required when the needle sensor is inserted into the capillary. The glucose sensor was employed to measure tear glucose levels in anesthetized rabbits over an 8 h period while also measuring the blood glucose values. A strong correlation between tear and blood glucose levels was found, suggesting that measurement of tear glucose is a potential noninvasive substitute for blood glucose measurements, and the new sensor configuration could aid in conducting further research in this direction. PMID:21961809

  2. Parsing glucose entry into the brain: novel findings obtained with enzyme-based glucose biosensors.

    PubMed

    Kiyatkin, Eugene A; Wakabayashi, Ken T

    2015-01-21

    Extracellular levels of glucose in brain tissue reflect dynamic balance between its gradient-dependent entry from arterial blood and its use for cellular metabolism. In this work, we present several sets of previously published and unpublished data obtained by using enzyme-based glucose biosensors coupled with constant-potential high-speed amperometry in freely moving rats. First, we consider basic methodological issues related to the reliability of electrochemical measurements of extracellular glucose levels in rats under physiologically relevant conditions. Second, we present data on glucose responses induced in the nucleus accumbens (NAc) by salient environmental stimuli and discuss the relationships between local neuronal activation and rapid glucose entry into brain tissue. Third, by presenting data on changes in NAc glucose induced by intravenous and intragastric glucose delivery, we discuss other mechanisms of glucose entry into the extracellular domain following changes in glucose blood concentrations. Lastly, by showing the pattern of NAc glucose fluctuations during glucose-drinking behavior, we discuss the relationships between "active" and "passive" glucose entry to the brain, its connection to behavior-related metabolic activation, and the possible functional significance of these changes in behavioral regulation. These data provide solid experimental support for the "neuronal" hypothesis of neurovascular coupling, which postulates the critical role of neuronal activity in rapid regulation of vascular tone, local blood flow, and entry of glucose and oxygen to brain tissue to maintain active cellular metabolism. PMID:25490002

  3. A self-powered glucose biosensing system.

    PubMed

    Slaughter, Gymama; Kulkarni, Tanmay

    2016-04-15

    A self-powered glucose biosensor (SPGS) system is fabricated and in vitro characterization of the power generation and charging frequency characteristics in glucose analyte are described. The bioelectrodes consist of compressed network of three-dimensional multi-walled carbon nanotubes with redox enzymes, pyroquinoline quinone glucose dehydrogenase (PQQ-GDH) and laccase functioning as the anodic and cathodic catalyst, respectively. When operated in 45 mM glucose, the biofuel cell exhibited an open circuit voltage and power density of 681.8 mV and 67.86 µW/cm(2) at 335 mV, respectively, with a current density of 202.2 µA/cm(2). Moreover, at physiological glucose concentration (5mM), the biofuel cell exhibits open circuit voltage and power density of 302.1 mV and 15.98 µW/cm(2) at 166.3 mV, respectively, with a current density of 100 µA/cm(2). The biofuel cell assembly produced a linear dynamic range of 0.5-45 mM glucose. These findings show that glucose biofuel cells can be further investigated in the development of a self-powered glucose biosensor by using a capacitor as the transducer element. By monitoring the capacitor charging frequencies, which are influenced by the concentration of the glucose analyte, a linear dynamic range of 0.5-35 mM glucose is observed. The operational stability of SPGS is monitored over a period of 63 days and is found to be stable with 15.38% and 11.76% drop in power density under continuous discharge in 10mM and 20mM glucose, respectively. These results demonstrate that SPGSs can simultaneously generate bioelectricity to power ultra-low powered devices and sense glucose. PMID:26594885

  4. Is fructose sweeter than glucose for rats?

    PubMed

    Ramirez, I

    1996-11-01

    Because it is generally thought that the intensity of the taste of fructose is greater than that of glucose for rats, it seemed surprising when sham-fed rats drank substantially less of a mixture of 6% fructose plus saccharin than of a mixture of 6% glucose plus saccharin. At least 3 different factors contribute to this effect. First, the taste of fructose is less attractive to rats than is the taste of glucose; sham-fed rats strongly preferred glucose over fructose (no saccharin was used in this experiment). The second factor is experience. Rats having substantial previous experience with glucose, but not with fructose, consistently preferred glucose over fructose. Conversely, rats having substantial previous experience with fructose, but not with glucose, initially showed no consistent preference but subsequently tended to prefer glucose. The third factor is an interaction between saccharin and the type of sugar. Rats given only one solution at a time drink approximately as much fructose as glucose when the solutions contain no saccharin. The addition of 0.25% saccharin to 6% glucose stimulated intake, whereas the addition of the same amount of saccharin to 6% fructose did not stimulate intake. As a result, rats ingested substantially more of a mixture of 0.25% saccharin plus 6% glucose than they did of a comparable mixture of saccharin and fructose, even though rats ingest similar amounts of fructose and glucose without saccharin in single-bottle tests. Because the differential effect of saccharin on intake appeared within 2 h in naive rats, and did not greatly change over a 3-day period, it is probably not attributable to conditioning. These results suggest that these sugars have qualitatively different tastes. PMID:8916185

  5. Glucose transport in human skeletal muscle cells in culture. Stimulation by insulin and metformin.

    PubMed Central

    Sarabia, V; Lam, L; Burdett, E; Leiter, L A; Klip, A

    1992-01-01

    Primary human muscle cell cultures were established and the regulation of glucose transport was investigated. Primary cultures were allowed to proceed to the stage of myotubes through fusion of myoblasts or were used for clonal selection based on fusion potential. In clonally selected cultures, hexose (2-deoxy-glucose) uptake into myotubes was linear within the time of study and inhibitable by cytochalasin B (IC50 = 400 nM). Cytochalasin B photolabeled a protein(s) of 45,000-50,000 D in a D-glucose-protectable manner, suggesting identity with the glucose transporters. In the myotube stage, the cells expressed both the GLUT1 and GLUT4 glucose transporter protein isoforms at an average molar ratio of 7:1. Preincubation in media of increasing glucose concentrations (range 5-25 mM) progressively decreased the rate of 2-deoxyglucose uptake. Insulin elevated 2-deoxyglucose uptake in a dose-dependent manner, with half maximal stimulation achieved at 3.5 nM. Insulin also stimulated the transport of the nonmetabolizable hexose 3-O-methylglucose, as well as the activity of glycogen synthase, responsible for nonoxidative glucose metabolism. The oral antihyperglycemic drug metformin stimulated the cytochalasin B-sensitive component of both 2-deoxyglucose and 3-O-methylglucose uptake. Maximal stimulation was observed at 8 h of exposure to 50 microM metformin, and this effect was not prevented by incubation with the protein-synthesis inhibitor cycloheximide. The relative effect of metformin was higher in cells incubated in 25 mM glucose than in 5 mM glucose, consistent with its selective action in hyperglycemic conditions in vivo. Metformin (50 microM for 24 h) was more effective than insulin (1 microM for 1 h) in stimulating hexose uptake and the hormone was effective on top of the stimulation caused by the biguanide, suggesting independent mechanisms of action. Images PMID:1401073

  6. Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep.

    PubMed Central

    Van Cauter, E; Blackman, J D; Roland, D; Spire, J P; Refetoff, S; Polonsky, K S

    1991-01-01

    To define the roles of circadian rhythmicity (intrinsic effects of time of day independent of the sleep or wake condition) and sleep (intrinsic effects of the sleep condition, irrespective of the time of day) on the 24-h variation in glucose tolerance, eight normal men were studied during constant glucose infusion for a total of 53 h. The period of study included 8 h of nocturnal sleep, 28 h of continuous wakefulness, and 8 h of daytime sleep. Blood samples for the measurement of glucose, insulin, C-peptide, cortisol, and growth hormone were collected at 20-min intervals throughout the entire study. Insulin secretion rates were derived from C-peptide levels by deconvolution. Sleep was polygraphically monitored. During nocturnal sleep, levels of glucose and insulin secretion increased by 31 +/- 5% and 60 +/- 11%, respectively, and returned to baseline in the morning. During sleep deprivation, glucose levels and insulin secretion rose again to reach a maximum at a time corresponding to the beginning of the habitual sleep period. The magnitude of the rise above morning levels averaged 17 +/- 5% for glucose and 49 +/- 8% for calculated insulin secretion. Serum insulin levels did not parallel the circadian variation in insulin secretion, indicating the existence of an approximate 40% increase in insulin clearance during the night. Daytime sleep was associated with a 16 +/- 3% rise in glucose levels, a 55 +/- 7% rise in insulin secretion, and a 39 +/- 5% rise in serum insulin. The diurnal variation in insulin secretion was inversely related to the cortisol rhythm, with a significant correlation of the magnitudes of their morning to evening excursions. Sleep-associated rises in glucose correlated with the amount of concomitant growth hormone secreted. These studies demonstrate previously underappreciated effects of circadian rhythmicity and sleep on glucose levels, insulin secretion, and insulin clearance, and suggest that these effects could be partially mediated by

  7. Effects of exenatide and liraglutide on 24-hour glucose fluctuations in type 2 diabetes.

    PubMed

    Nagakura, Jo; Yamakawa, Tadashi; Taguri, Masataka; Tsuchiya, Hirohisa; Shigematsu, Erina; Suzuki, Jun; Morita, Satoshi; Kadonosono, Kazuaki; Terauchi, Yasuo

    2016-03-31

    We evaluated the influence of short-term treatment with exenatide twice daily or liraglutide once daily on daily blood glucose fluctuations in 40 patients with type 2 diabetes inadequately controlled by sulfonylureas. The patients in a multicenter, open-label trial were randomly assigned to receive add-on exenatide (10 μg/day, n = 21) or add-on liraglutide (0.3-0.9 mg/day, n = 19), and underwent 24-hour continuous subcutaneous glucose monitoring. There was no significant between-group difference in glucose fluctuations during the day, as assessed by calculating mean amplitude of glycemic excursion (MAGE) and standard deviation (SD). However, the mean blood glucose levels at 3 hours after breakfast and dinner were significantly lower in the exenatide group than the liraglutide group (breakfast: 127.3 ± 24.1 vs. 153.4 ± 28.7 mg/dL; p = 0.006, dinner: 108.7 ± 17.3 vs. 141.9 ± 24.2 mg/dL; p < 0.001). In contrast, mean blood glucose levels and their SD were significantly lower between 0000 h and 0600 h in the liraglutide group than the exenatide group (average glucose: 126.9 ± 27.1 vs. 107.1 ± 24.0 mg/dL; p = 0.029, SD: 15.2 ± 10.5 vs. 8.7 ± 3.8; p = 0.020). Both groups had similar glucose fluctuations despite differences in 24-hour blood glucose profiles. Therefore, each of these agents may have advantages or disadvantages and should be selected according to the blood glucose profile of the patient. PMID:26743240

  8. Pancreatic regulation of glucose homeostasis.

    PubMed

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  9. Pancreatic regulation of glucose homeostasis

    PubMed Central

    Röder, Pia V; Wu, Bingbing; Liu, Yixian; Han, Weiping

    2016-01-01

    In order to ensure normal body function, the human body is dependent on a tight control of its blood glucose levels. This is accomplished by a highly sophisticated network of various hormones and neuropeptides released mainly from the brain, pancreas, liver, intestine as well as adipose and muscle tissue. Within this network, the pancreas represents a key player by secreting the blood sugar-lowering hormone insulin and its opponent glucagon. However, disturbances in the interplay of the hormones and peptides involved may lead to metabolic disorders such as type 2 diabetes mellitus (T2DM) whose prevalence, comorbidities and medical costs take on a dramatic scale. Therefore, it is of utmost importance to uncover and understand the mechanisms underlying the various interactions to improve existing anti-diabetic therapies and drugs on the one hand and to develop new therapeutic approaches on the other. This review summarizes the interplay of the pancreas with various other organs and tissues that maintain glucose homeostasis. Furthermore, anti-diabetic drugs and their impact on signaling pathways underlying the network will be discussed. PMID:26964835

  10. Sex steroids and glucose metabolism.

    PubMed

    Allan, Carolyn A

    2014-01-01

    Testosterone levels are lower in men with metabolic syndrome and type 2 diabetes mellitus (T2DM) and also predict the onset of these adverse metabolic states. Body composition (body mass index, waist circumference) is an important mediator of this relationship. Sex hormone binding globulin is also inversely associated with insulin resistance and T2DM but the data regarding estrogen are inconsistent. Clinical models of androgen deficiency including Klinefelter's syndrome and androgen deprivation therapy in the treatment of advanced prostate cancer confirm the association between androgens and glucose status. Experimental manipulation of the insulin/glucose milieu and suppression of endogenous testicular function suggests the relationship between androgens and insulin sensitivity is bidirectional. Androgen therapy in men without diabetes is not able to differentiate the effect on insulin resistance from that on fat mass, in particular visceral adiposity. Similarly, several small clinical studies have examined the efficacy of exogenous testosterone in men with T2DM, however, the role of androgens, independent of body composition, in modifying insulin resistance is uncertain. PMID:24457840

  11. Circadian control of glucose metabolism

    PubMed Central

    Kalsbeek, Andries; la Fleur, Susanne; Fliers, Eric

    2014-01-01

    The incidence of obesity and type 2 diabetes mellitus (T2DM) has risen to epidemic proportions. The pathophysiology of T2DM is complex and involves insulin resistance, pancreatic β-cell dysfunction and visceral adiposity. It has been known for decades that a disruption of biological rhythms (which happens the most profoundly with shift work) increases the risk of developing obesity and T2DM. Recent evidence from basal studies has further sparked interest in the involvement of daily rhythms (and their disruption) in the development of obesity and T2DM. Most living organisms have molecular clocks in almost every tissue, which govern rhythmicity in many domains of physiology, such as rest/activity rhythms, feeding/fasting rhythms, and hormonal secretion. Here we present the latest research describing the specific role played by the molecular clock mechanism in the control of glucose metabolism and speculate on how disruption of these tissue clocks may lead to the disturbances in glucose homeostasis. PMID:24944897

  12. Effect of a Prolonged Altitude Expedition on Glucose Tolerance and Abdominal Fatness

    ERIC Educational Resources Information Center

    Chen, Mu-Tsung; Lee, Wen-Chih; Chen, Shih-Chang; Chen, Chiu-Chou; Chen, Chung-Yu; Lee, Shin-Da; Jensen, Jorgen; Kuo, Chia-Hua

    2010-01-01

    In the present study, we investigated the effect of a long-term mountain expedition on glucose tolerance and insulin action. Twelve registered mountaineers ages 31 years (SD = 1.1) participated in a 25-day expedition at a 2,200-3,800-m altitude with an average duration of 8 hr per day. Arterial oxygen saturation (SaO[subscript 2]) was…

  13. Enzyme Analysis to Determine Glucose Content

    NASA Astrophysics Data System (ADS)

    Carpenter, Charles; Ward, Robert E.

    Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.

  14. Glucose metabolism in rat retinal pigment epithelium.

    PubMed

    Coffe, Víctor; Carbajal, Raymundo C; Salceda, Rocío

    2006-01-01

    The retinal pigment epithelium (RPE) is the major transport pathway for exchange of metabolites and ions between choroidal blood supply and the neural retina. To gain insight into the mechanisms controlling glucose metabolism in RPE and its possible relationship to retinopathy, we studied the influence of different glucose concentrations on glycogen and lactate levels and CO(2) production in RPE from normal and streptozotocin-treated diabetic rats. Incubation of normal RPE in the absence of glucose caused a decrease in lactate production and glycogen content. In normal RPE, increasing glucose concentrations from 5.6 mM to 30 mM caused a four-fold increase in glucose accumulation and CO(2) yield, as well as reduction in lactate and glycogen production. In RPE from diabetic rats glucose accumulation did not increase in the presence of high glucose substrate, but it showed a four- and a seven-fold increase in CO(2) production through the mitochondrial and pentose phosphate pathways, respectively. We found high glycogen levels in RPE which can be used as an energy reserve for RPE itself and/or neural retina. Findings further show that the RPE possesses a high oxidative capacity. The large increase in glucose shunting to the pentose phosphate pathway in diabetic retina exposed to high glucose suggests a need for reducing capacity, consistent with increased oxidative stress. PMID:16475003

  15. Fabrication of Nanoindented Electrodes for Glucose Detection

    PubMed Central

    Slaughter, Gymama

    2010-01-01

    Background The objective of this article was to design, fabricate, and evaluate a novel type of glucose biosensors based on the use of atomic force microscopy to create nanoindented electrodes (NIDEs) for the selective detection of glucose. Methods Atomic force microscopy nanoindentation techniques were extended to covalently immobilized glucose oxidase on NIDEs via composite hydrogel membranes composed of interpenetrating networks of inherently conductive poly(3,4-ethylenedioxythiophene) tetramethacrylate grown within ultraviolet cross-linked hydroxyethylmethacrylate-based hydrogels to produce an in vitro amperometric NIDE biosensor for the long-term monitoring of glucose. Results The calibration curve for glucose was linear from 0.25 to 20 mM. Results showed that the NIDE glucose biosensor has a much higher detection sensitivity of 0.32 μA/mM and rapid response times (<5 seconds). There was no interference from the competing interferent (fructose) present; the only interference was from species that react with H2O2 (ascorbic acid). The linear equation was Bresponse (μA) = 0.323 [glucose] (mM) + 0.634 (μA); n = 24, r2 = 0.994. Conclusion Results showed that the resultant NIDE glucose biosensor increases the dynamic range, device sensitivity, and response time and has excellent detecting performance for glucose. PMID:20307392

  16. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    PubMed Central

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  17. Naked eye detection of glucose in urine using glucose oxidase immobilized gold nanoparticles.

    PubMed

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2011-04-01

    Colloidal gold is extensively used for molecular sensing because of the flexibilities it offers in terms of modification of the gold nanoparticle surface with a variety of functional groups using thiol chemistry. We describe a simple assay that allows the visual detection of glucose in aqueous samples and demonstrates its applicability by estimating glucose in urine. To enable the glucose detection, we functionalized the thiol capped gold nanoparticles with glucose oxidase, the enzyme specific to β-D glucose, using carbodiimide chemistry. The visible color change of the GOD-functionalized gold nanoparticles from red to blue on interaction with glucose is the principle applied here for the sensing of urine glucose level. The solution turns blue when the glucose concentration exceeds 100 μg/mL. The approach depicted here seems to be important, particularly in third world countries where high tech diagnostics aids are inaccessible to the bulk of the population. PMID:21391552

  18. Average Gait Differential Image Based Human Recognition

    PubMed Central

    Chen, Jinyan; Liu, Jiansheng

    2014-01-01

    The difference between adjacent frames of human walking contains useful information for human gait identification. Based on the previous idea a silhouettes difference based human gait recognition method named as average gait differential image (AGDI) is proposed in this paper. The AGDI is generated by the accumulation of the silhouettes difference between adjacent frames. The advantage of this method lies in that as a feature image it can preserve both the kinetic and static information of walking. Comparing to gait energy image (GEI), AGDI is more fit to representation the variation of silhouettes during walking. Two-dimensional principal component analysis (2DPCA) is used to extract features from the AGDI. Experiments on CASIA dataset show that AGDI has better identification and verification performance than GEI. Comparing to PCA, 2DPCA is a more efficient and less memory storage consumption feature extraction method in gait based recognition. PMID:24895648

  19. Quetelet, the average man and medical knowledge.

    PubMed

    Caponi, Sandra

    2013-01-01

    Using two books by Adolphe Quetelet, I analyze his theory of the 'average man', which associates biological and social normality with the frequency with which certain characteristics appear in a population. The books are Sur l'homme et le développement de ses facultés and Du systeme social et des lois qui le régissent. Both reveal that Quetelet's ideas are permeated by explanatory strategies drawn from physics and astronomy, and also by discursive strategies drawn from theology and religion. The stability of the mean as opposed to the dispersion of individual characteristics and events provided the basis for the use of statistics in social sciences and medicine. PMID:23970171

  20. Average power laser experiment (APLE) design

    NASA Astrophysics Data System (ADS)

    Parazzoli, C. G.; Rodenburg, R. E.; Dowell, D. H.; Greegor, R. B.; Kennedy, R. C.; Romero, J. B.; Siciliano, J. A.; Tong, K.-O.; Vetter, A. M.; Adamski, J. L.; Pistoresi, D. J.; Shoffstall, D. R.; Quimby, D. C.

    1992-07-01

    We describe the details and the design requirements for the 100 kW CW radio frequency free electron laser at 10 μm to be built at Boeing Aerospace and Electronics Division in Seattle with the collaboration of Los Alamos National Laboratory. APLE is a single-accelerator master-oscillator and power-amplifier (SAMOPA) device. The goal of this experiment is to demonstrate a fully operational RF-FEL at 10 μm with an average power of 100 kW. The approach and wavelength were chosen on the basis of maximum cost effectiveness, including utilization of existing hardware and reasonable risk, and potential for future applications. Current plans call for an initial oscillator power demonstration in the fall of 1994 and full SAMOPA operation by December 1995.

  1. Asymmetric network connectivity using weighted harmonic averages

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Mahadevan, L.

    2011-02-01

    We propose a non-metric measure of the "closeness" felt between two nodes in an undirected, weighted graph using a simple weighted harmonic average of connectivity, that is a real-valued Generalized Erdös Number (GEN). While our measure is developed with a collaborative network in mind, the approach can be of use in a variety of artificial and real-world networks. We are able to distinguish between network topologies that standard distance metrics view as identical, and use our measure to study some simple analytically tractable networks. We show how this might be used to look at asymmetry in authorship networks such as those that inspired the integer Erdös numbers in mathematical coauthorships. We also show the utility of our approach to devise a ratings scheme that we apply to the data from the NetFlix prize, and find a significant improvement using our method over a baseline.

  2. Average deployments versus missile and defender parameters

    SciTech Connect

    Canavan, G.H.

    1991-03-01

    This report evaluates the average number of reentry vehicles (RVs) that could be deployed successfully as a function of missile burn time, RV deployment times, and the number of space-based interceptors (SBIs) in defensive constellations. Leakage estimates of boost-phase kinetic-energy defenses as functions of launch parameters and defensive constellation size agree with integral predictions of near-exact calculations for constellation sizing. The calculations discussed here test more detailed aspects of the interaction. They indicate that SBIs can efficiently remove about 50% of the RVs from a heavy missile attack. The next 30% can removed with two-fold less effectiveness. The next 10% could double constellation sizes. 5 refs., 7 figs.

  3. Average prime-pair counting formula

    NASA Astrophysics Data System (ADS)

    Korevaar, Jaap; Riele, Herman Te

    2010-04-01

    Taking r>0 , let π_{2r}(x) denote the number of prime pairs (p, p+2r) with p≤ x . The prime-pair conjecture of Hardy and Littlewood (1923) asserts that π_{2r}(x)˜ 2C_{2r} {li}_2(x) with an explicit constant C_{2r}>0 . There seems to be no good conjecture for the remainders ω_{2r}(x)=π_{2r}(x)- 2C_{2r} {li}_2(x) that corresponds to Riemann's formula for π(x)-{li}(x) . However, there is a heuristic approximate formula for averages of the remainders ω_{2r}(x) which is supported by numerical results.

  4. The balanced survivor average causal effect.

    PubMed

    Greene, Tom; Joffe, Marshall; Hu, Bo; Li, Liang; Boucher, Ken

    2013-01-01

    Statistical analysis of longitudinal outcomes is often complicated by the absence of observable values in patients who die prior to their scheduled measurement. In such cases, the longitudinal data are said to be "truncated by death" to emphasize that the longitudinal measurements are not simply missing, but are undefined after death. Recently, the truncation by death problem has been investigated using the framework of principal stratification to define the target estimand as the survivor average causal effect (SACE), which in the context of a two-group randomized clinical trial is the mean difference in the longitudinal outcome between the treatment and control groups for the principal stratum of always-survivors. The SACE is not identified without untestable assumptions. These assumptions have often been formulated in terms of a monotonicity constraint requiring that the treatment does not reduce survival in any patient, in conjunction with assumed values for mean differences in the longitudinal outcome between certain principal strata. In this paper, we introduce an alternative estimand, the balanced-SACE, which is defined as the average causal effect on the longitudinal outcome in a particular subset of the always-survivors that is balanced with respect to the potential survival times under the treatment and control. We propose a simple estimator of the balanced-SACE that compares the longitudinal outcomes between equivalent fractions of the longest surviving patients between the treatment and control groups and does not require a monotonicity assumption. We provide expressions for the large sample bias of the estimator, along with sensitivity analyses and strategies to minimize this bias. We consider statistical inference under a bootstrap resampling procedure. PMID:23658214

  5. Averaged implicit hydrodynamic model of semiflexible filaments.

    PubMed

    Chandran, Preethi L; Mofrad, Mohammad R K

    2010-03-01

    We introduce a method to incorporate hydrodynamic interaction in a model of semiflexible filament dynamics. Hydrodynamic screening and other hydrodynamic interaction effects lead to nonuniform drag along even a rigid filament, and cause bending fluctuations in semiflexible filaments, in addition to the nonuniform Brownian forces. We develop our hydrodynamics model from a string-of-beads idealization of filaments, and capture hydrodynamic interaction by Stokes superposition of the solvent flow around beads. However, instead of the commonly used first-order Stokes superposition, we do an equivalent of infinite-order superposition by solving for the true relative velocity or hydrodynamic velocity of the beads implicitly. We also avoid the computational cost of the string-of-beads idealization by assuming a single normal, parallel and angular hydrodynamic velocity over sections of beads, excluding the beads at the filament ends. We do not include the end beads in the averaging and solve for them separately instead, in order to better resolve the drag profiles along the filament. A large part of the hydrodynamic drag is typically concentrated at the filament ends. The averaged implicit hydrodynamics methods can be easily incorporated into a string-of-rods idealization of semiflexible filaments that was developed earlier by the authors. The earlier model was used to solve the Brownian dynamics of semiflexible filaments, but without hydrodynamic interactions incorporated. We validate our current model at each stage of development, and reproduce experimental observations on the mean-squared displacement of fluctuating actin filaments . We also show how hydrodynamic interaction confines a fluctuating actin filament between two stationary lateral filaments. Finally, preliminary examinations suggest that a large part of the observed velocity in the interior segments of a fluctuating filament can be attributed to induced solvent flow or hydrodynamic screening. PMID:20365783

  6. The entropy in finite N-unit nonextensive systems: The normal average and q-average

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hideo

    2010-09-01

    We discuss the Tsallis entropy in finite N-unit nonextensive systems by using the multivariate q-Gaussian probability distribution functions (PDFs) derived by the maximum entropy methods with the normal average and the q-average (q: the entropic index). The Tsallis entropy obtained by the q-average has an exponential N dependence: Sq(N)/N≃e(1-q)NS1(1) for large N (≫1/(1-q)>0). In contrast, the Tsallis entropy obtained by the normal average is given by Sq(N)/N≃[1/(q-1)N] for large N (≫1/(q -1)>0). N dependences of the Tsallis entropy obtained by the q- and normal averages are generally quite different, although both results are in fairly good agreement for |q -1|≪1.0. The validity of the factorization approximation (FA) to PDFs, which has been commonly adopted in the literature, has been examined. We have calculated correlations defined by Cm=⟨(δxiδxj)m⟩-⟨(δxi)m⟩⟨(δxj)m⟩ for i ≠j where δxi=xi-⟨xi⟩, and the bracket ⟨ṡ⟩ stands for the normal and q-averages. The first-order correlation (m =1) expresses the intrinsic correlation and higher-order correlations with m ≥2 include nonextensivity-induced correlation, whose physical origin is elucidated in the superstatistics.

  7. Interference by acetaminophen in the glucose oxidase-peroxidase method for blood glucose determination.

    PubMed

    Kaufmann-Raab, I; Jonen, H G; Jähnchen, E; Kahl, G F; Groth, U

    1976-10-01

    Acetaminophen, p-aminophenol, and oxyphenbutazone interfere with the glucose oxidase/peroxidase method for glucose. Structurally related compounds that lack a free phenolic hydroxyl group (acetanilide, aniline, and phenylbutazone) do not interfere. During the analytical procedure acetaminophen is consumed. One mole of acetaminophen leads to an apparent loss of four moles of glucose. The hexokinase/glucose-6-phosphate dehydrogenase method (Boehringer Hexokinase method) is not affected by these substances. PMID:975521

  8. Improved Oxygen-Beam Texturing of Glucose-Monitoring Optics

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.

    2006-01-01

    An improved method has been devised for using directed, hyperthermal beams of oxygen atoms and ions to impart desired textures to the tips of polymethylmethacrylate [PMMA] optical fibers to be used in monitoring the glucose content of blood. The improved method incorporates, but goes beyond, the method described in Texturing Blood-Glucose- Monitoring Optics Using Oxygen Beams (LEW-17642-1), NASA Tech Briefs, Vol. 29, No. 4 (April 2005), page 11a. The basic principle of operation of such a glucose-monitoring sensor is as follows: The textured surface of the optical fiber is coated with chemicals that interact with glucose in such a manner as to change the reflectance of the surface. Light is sent down the optical fiber and is reflected from, the textured surface. The resulting change in reflectance of the light is measured as an indication of the concentration of glucose. The required texture on the ends of the optical fibers is a landscape of microscopic cones or pillars having high aspect ratios (microscopic structures being taller than they are wide). The average distance between hills must be no more than about 5 mso that blood cells (which are wider) cannot enter the valleys between the hills, where they would interfere with optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and high aspect ratio structures are needed to maximize the surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose-measurement sensitivity with a relatively small volume of blood. There is an additional requirement that the hills be wide enough that a sufficient amount of light can propagate into them and, after reflection, can propagate out of them. The method described in the cited prior article produces a texture comprising cones and pillars that conform to the average-distance and aspect-ratio requirements. However, a significant fraction of the cones and pillars are so

  9. Development of a Robust Optical Glucose Sensor

    NASA Astrophysics Data System (ADS)

    Cote, Gerard Laurence

    1990-01-01

    The long term objective of this research was the development of a noninvasive, optically-based, polarimetric sensor to monitor in vivo glucose concentrations. The goal of diabetes therapy is to approximate the 24-hour blood glucose profile of a normal individual. There have been major advances in the development of reliable, versatile, and accurate pumps for the delivery of insulin to diabetic patients and in the development of control algorithms for closed-loop insulin delivery, however, there remain major obstacles to the development of clinically useful, continuous glucose sensors. The development of an accurate noninvasive glucose sensor would have significant application in the diagnosis and management of diabetes mellitis both in conjunction with, and independent of, the glucose pump controller applications. The linear polarization vector of light routes when it interacts with an optically active material such as glucose. The amount of rotation of polarization is directly proportional to the glucose concentration and to the path length. The ability to quantitate blood glucose levels for the limited available path length in our primary sensing site, namely, the anterior chamber of the eye, therefore depends on the signal-to-noise ratio of the polarization detector. Our primary research focused on the development and testing of a prototype optical polarimetry system using D + glucose solution in a test cell, as well as using an enucleated human eye to assess the sensitivity of the system to measure physiologic glucose levels for the approximate one centimeter path length present in the anterior chamber of the eye. Our research has led to the development of a true phase technique in which helium neon laser light was coupled through a rotating linear polarizer along with two stationary linear polarizers and two detectors to produce reference and signal outputs whose amplitudes varied sinusoidally and whose phase was proportional to the rotation of light caused by

  10. Hypothalamic glucose sensing: making ends meet

    PubMed Central

    Routh, Vanessa H.; Hao, Lihong; Santiago, Ammy M.; Sheng, Zhenyu; Zhou, Chunxue

    2014-01-01

    The neuroendocrine system governs essential survival and homeostatic functions. For example, growth is needed for development, thermoregulation maintains optimal core temperature in a changing environment, and reproduction ensures species survival. Stress and immune responses enable an organism to overcome external and internal threats while the circadian system regulates arousal and sleep such that vegetative and active functions do not overlap. All of these functions require a significant portion of the body's energy. As the integrator of the neuroendocrine system, the hypothalamus carefully assesses the energy status of the body in order to appropriately partition resources to provide for each system without compromising the others. While doing so the hypothalamus must ensure that adequate glucose levels are preserved for brain function since glucose is the primary fuel of the brain. To this end, the hypothalamus contains specialized glucose sensing neurons which are scattered throughout the nuclei controlling distinct neuroendocrine functions. We hypothesize that these neurons play a key role in enabling the hypothalamus to partition energy to meet these peripheral survival needs without endangering the brain's glucose supply. This review will first describe the varied mechanisms underlying glucose sensing in neurons within discrete hypothalamic nuclei. We will then evaluate the way in which peripheral energy status regulates glucose sensitivity. For example, during energy deficit such as fasting specific hypothalamic glucose sensing neurons become sensitized to decreased glucose. This increases the gain of the information relay when glucose availability is a greater concern for the brain. Finally, changes in glucose sensitivity under pathological conditions (e.g., recurrent insulin-hypoglycemia, diabetes) will be addressed. The overall goal of this review is to place glucose sensing neurons within the context of hypothalamic control of neuroendocrine function

  11. 21 CFR 862.1345 - Glucose test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Glucose test system. 862.1345 Section 862.1345....1345 Glucose test system. (a) Identification. A glucose test system is a device intended to measure glucose quantitatively in blood and other body fluids. Glucose measurements are used in the diagnosis...

  12. 21 CFR 862.1345 - Glucose test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Glucose test system. 862.1345 Section 862.1345....1345 Glucose test system. (a) Identification. A glucose test system is a device intended to measure glucose quantitatively in blood and other body fluids. Glucose measurements are used in the diagnosis...

  13. Glucose concentration in parotid saliva after glucose/food intake in individuals with glucose intolerance and diabetes mellitus.

    PubMed

    Borg Andersson, A; Birkhed, D; Berntorp, K; Lindgärde, F; Matsson, L

    1998-10-01

    The concentration of glucose in parotid saliva was measured after glucose/food intake in two separate studies (A and B). In Study A, 10 subjects with impaired glucose tolerance (IGT), 10 subjects with newly diagnosed Type 2 diabetes and 12 healthy controls were included. Study B comprised 15 subjects with Type 1 or Type 2 diabetes on insulin treatment, nine subjects with Type 2 diabetes on treatment with oral antidiabetic drugs and 12 healthy controls. After a 10-h overnight fast, the participants in Study A were given a 75 g oral glucose load, while those in Study B received a standardized breakfast. Citric acid-stimulated parotid saliva was collected up to two hours after the intake. Capillary blood and gingival exudate samples were also taken. On the basis of AUC values (area under the curve over baseline), the glucose concentration in parotid saliva increased significantly in individuals with IGT and Type 2 diabetes compared with controls in Study A and in diabetic patients on treatment with insulin and oral antidiabetic drugs compared with controls in Study B. No effect by the glucose/food intake on the glucose concentration in gingival exudate could be demonstrated in any of the studies. The correlation coefficient between the AUC values of glucose in saliva and blood, when all three groups were combined, was 0.38 in Study A and 0.52 in Study B. It is concluded that the concentration of glucose in parotid saliva is elevated at least 2 h after glucose/food intake in individuals with both IGT and manifest diabetes mellitus. PMID:9786322

  14. Glucose-6-Phosphate Dehydrogenase Deficiency.

    PubMed

    Luzzatto, Lucio; Nannelli, Caterina; Notaro, Rosario

    2016-04-01

    G6PD is a housekeeping gene expressed in all cells. Glucose-6-phosphate dehydrogenase (G6PD) is part of the pentose phosphate pathway, and its main physiologic role is to provide NADPH. G6PD deficiency, one of the commonest inherited enzyme abnormalities in humans, arises through one of many possible mutations, most of which reduce the stability of the enzyme and its level as red cells age. G6PD-deficient persons are mostly asymptomatic, but they can develop severe jaundice during the neonatal period and acute hemolytic anemia when they ingest fava beans or when they are exposed to certain infections or drugs. G6PD deficiency is a global health issue. PMID:27040960

  15. Flux-Averaged and Volume-Averaged Concentrations in Continuum Approaches to Solute Transport

    NASA Astrophysics Data System (ADS)

    Parker, J. C.; van Genuchten, M. Th.

    1984-07-01

    Transformations between volume-averaged pore fluid concentrations and flux-averaged concentrations are presented which show that both modes of concentration obey convective-dispersive transport equations of identical mathematical form for nonreactive solutes. The pertinent boundary conditions for the two modes, however, do not transform identically. Solutions of the convection-dispersion equation for a semi-infinite system during steady flow subject to a first-type inlet boundary condition is shown to yield flux concentrations, while solutions subject to a third-type boundary condition yield volume-averaged concentrations. These solutions may be applied with reasonable impunity to finite as well as semi-infinite media if back mixing at the exit is precluded. Implications of the distinction between resident and flux concentrations to laboratory and field studies of solute transport are discussed. It is suggested that perceived limitations of the convection-dispersion model for media with large variations in pore water velocities may in certain cases be attributable to a failure to distinguish between volume-averaged and flux-averaged concentrations.

  16. Glucose kinetics during prolonged exercise in highly trained human subjects: effect of glucose ingestion

    PubMed Central

    Jeukendrup, Asker E; Raben, Anne; Gijsen, Annemie; Stegen, Jos H C H; Brouns, Fred; Saris, Wim H M; Wagenmakers, Anton J M

    1999-01-01

    The objectives of this study were (1) to investigate whether glucose ingestion during prolonged exercise reduces whole body muscle glycogen oxidation, (2) to determine the extent to which glucose disappearing from the plasma is oxidized during exercise with and without carbohydrate ingestion and (3) to obtain an estimate of gluconeogenesis. After an overnight fast, six well-trained cyclists exercised on three occasions for 120 min on a bicycle ergometer at 50% maximum velocity of O2 uptake and ingested either water (Fast), or a 4% glucose solution (Lo-Glu) or a 22% glucose solution (Hi-Glu) during exercise. Dual tracer infusion of [U-13C]-glucose and [6,6-2H2]-glucose was given to measure the rate of appearance (Ra) of glucose, muscle glycogen oxidation, glucose carbon recycling, metabolic clearance rate (MCR) and non-oxidative disposal of glucose. Glucose ingestion markedly increased total Ra especially with Hi-Glu. After 120 min Ra and rate of disappearance (Rd) of glucose were 51-52 μmol kg−1 min−1 during Fast, 73-74 μmol kg−1 min−1 during Lo-Glu and 117–119 μmol kg−1 min−1 during Hi-Glu. The percentage of Rd oxidized was between 96 and 100% in all trials. Glycogen oxidation during exercise was not reduced by glucose ingestion. The vast majority of glucose disappearing from the plasma is oxidized and MCR increased markedly with glucose ingestion. Glucose carbon recycling was minimal suggesting that gluconeogenesis in these conditions is negligible. PMID:10050023

  17. Thermoinactivation Mechanism of Glucose Isomerase

    NASA Astrophysics Data System (ADS)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  18. Optimizing Average Precision Using Weakly Supervised Data.

    PubMed

    Behl, Aseem; Mohapatra, Pritish; Jawahar, C V; Kumar, M Pawan

    2015-12-01

    Many tasks in computer vision, such as action classification and object detection, require us to rank a set of samples according to their relevance to a particular visual category. The performance of such tasks is often measured in terms of the average precision (ap). Yet it is common practice to employ the support vector machine ( svm) classifier, which optimizes a surrogate 0-1 loss. The popularity of svmcan be attributed to its empirical performance. Specifically, in fully supervised settings, svm tends to provide similar accuracy to ap-svm, which directly optimizes an ap-based loss. However, we hypothesize that in the significantly more challenging and practically useful setting of weakly supervised learning, it becomes crucial to optimize the right accuracy measure. In order to test this hypothesis, we propose a novel latent ap-svm that minimizes a carefully designed upper bound on the ap-based loss function over weakly supervised samples. Using publicly available datasets, we demonstrate the advantage of our approach over standard loss-based learning frameworks on three challenging problems: action classification, character recognition and object detection. PMID:26539857

  19. Calculating Free Energies Using Average Force

    NASA Technical Reports Server (NTRS)

    Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.

  20. Average oxidation state of carbon in proteins

    PubMed Central

    Dick, Jeffrey M.

    2014-01-01

    The formal oxidation state of carbon atoms in organic molecules depends on the covalent structure. In proteins, the average oxidation state of carbon (ZC) can be calculated as an elemental ratio from the chemical formula. To investigate oxidation–reduction (redox) patterns, groups of proteins from different subcellular locations and phylogenetic groups were selected for comparison. Extracellular proteins of yeast have a relatively high oxidation state of carbon, corresponding with oxidizing conditions outside of the cell. However, an inverse relationship between ZC and redox potential occurs between the endoplasmic reticulum and cytoplasm. This trend provides support for the hypothesis that protein transport and turnover are ultimately coupled to the maintenance of different glutathione redox potentials in subcellular compartments. There are broad changes in ZC in whole-genome protein compositions in microbes from different environments, and in Rubisco homologues, lower ZC tends to occur in organisms with higher optimal growth temperature. Energetic costs calculated from thermodynamic models are consistent with the notion that thermophilic organisms exhibit molecular adaptation to not only high temperature but also the reducing nature of many hydrothermal fluids. Further characterization of the material requirements of protein metabolism in terms of the chemical conditions of cells and environments may help to reveal other linkages among biochemical processes with implications for changes on evolutionary time scales. PMID:25165594

  1. Master Regulators in Plant Glucose Signaling Networks

    PubMed Central

    Sheen, Jen

    2014-01-01

    The daily life of photosynthetic plants revolves around sugar production, transport, storage and utilization, and the complex sugar metabolic and signaling networks integrate internal regulators and environmental cues to govern and sustain plant growth and survival. Although diverse sugar signals have emerged as pivotal regulators from embryogenesis to senescence, glucose is the most ancient and conserved regulatory signal that controls gene and protein expression, cell-cycle progression, central and secondary metabolism, as well as growth and developmental programs. Glucose signals are perceived and transduced by two principal mechanisms: direct sensing through glucose sensors and indirect sensing via a variety of energy and metabolite sensors. This review focuses on the comparative and functional analyses of three glucose-modulated master regulators in Arabidopsis thaliana, the hexokinase1 (HXK1) glucose sensor, the energy sensor kinases KIN10/KIN11 inactivated by glucose, and the glucose-activated target of rapamycin (TOR) kinase. These regulators are evolutionarily conserved, but have evolved universal and unique regulatory wiring and functions in plants and animals. They form protein complexes with multiple partners as regulators or effectors to serve distinct functions in different subcellular locales and organs, and play integrative and complementary roles from cellular signaling and metabolism to development in the plant glucose signaling networks. PMID:25530701

  2. Fundamental sensing limit of electrochemical glucose sensors.

    PubMed

    Louchis, Kevin; O'Driscoll, Stephen

    2011-01-01

    This paper investigates the inherent sensitivity limit, deactivation of glucose oxidase, of a glucose oxidase based electrochemical glucose sensor for in vivo monitoring of blood glucose concentration. Results in this paper show that the current density sensitivity to glucose decreases from 1200 nA/mm(2)/mM at initial implantation to 100 nA/mm(2)/mM after an implantation time of 2 years, when degradation due to glucose oxidase deactivation only is considered. Even as the sensor signal strength decreases, if the sensing electronics are sufficiently discriminating then a useful measure of blood glucose concentration can be extracted. This work aims to determine both how the glucose oxidase based sensor's signal-to-noise ratio degrades over long time scales and the electronic circuit requirements to achieve multi-year device lifetimes. Two sensing amplifier techniques are presented which can be used to detect the signal generated by the sensor. The noise performance of each technique is compared with the noise performance of the sensor and mutli-year lifetimes are shown to be feasible. PMID:22256115

  3. A Differential Dielectric Affinity Glucose Sensor

    PubMed Central

    Huang, Xian; Leduc, Charles; Ravussin, Yann; Li, Siqi; Davis, Erin; Song, Bing; Li, Dachao; Xu, Kexin; Accili, Domenico; Wang, Qian; Leibel, Rudolph; Lin, Qiao

    2013-01-01

    A continuous glucose monitor with a differential dielectric sensor implanted within the subcutaneous tissue that determines the glucose in the interstitial fluid is presented. The device, created using microelectromechanical systems (MEMS) technology, consists of sensing and reference modules that are identical in design and placed in close proximity. Each module contains a microchamber housing a pair of capacitive electrodes residing on the device substrate and embedded in a suspended, perforated polymer diaphragm. The microchambers, enclosed in semi-permeable membranes, are filled with either a polymer solution that has specific affinity to glucose or a glucose-insensitive reference solution. To accurately determine the glucose concentration, changes in the permittivity of the sensing and the reference solutions induced by changes in glucose concentration are measured differentially. In vitro characterization demonstrated the sensor capable of measuring glucose concentrations from 0 to 500 mg/dL with resolution and accuracy of ∼1.7 μg/dL and ∼1.74 mg/dL, respectively. In addition, device drift was reduced to 1.4% (uncontrolled environment) and 11% (5 °C of temperature variation) of that from non-differential measurements, indicating significant stability improvements. Preliminary animal testing demonstrated that the differential sensor accurately tracks glucose concentration in blood. This sensor can potentially be used clinically as a subcutaneously implanted continuous monitoring device in diabetic patients. PMID:24220675

  4. Ophthalmic glucose monitoring using disposable contact lenses.

    PubMed

    Geddes, Chris

    2004-01-01

    We have developed a range of disposable and colorless tear glucose sensing contact lenses, using off-the-shelf lenses embedded with new water soluble, highly fluorescent and glucose sensitive boronic acid containing fluorophores. The new lenses are readily able to track tear glucose levels and therefore blood glucose levels, which are ideally suited for potential use by diabetics. The fluorescence responses from the lenses can be monitored using simple excitation and emission detection devices. The novelty of our approach is two fold. Firstly, the notion of sensing extremely low glucose concentrations in tears, which track blood levels, by our contact lens approach, and secondly, the unique compatibility of our new glucose signaling probes with the internal mildly acidic contact lens environment. The new lenses are therefore ideal for the noninvasive and continuous monitoring of tear glucose, with a 15 minute response time, and a measured shelf life in excess of 3 months. In this invited article, we show that fluorescence based signaling using plastic disposable lenses, which have already been industrially optimized with regard to vision correction and oxygen / analyte permeability etc, may a notable alternative to invasive and random finger pricking, the most widely used glucose monitoring technology by diabetics. PMID:17271473

  5. A bioluminescent assay for measuring glucose uptake.

    PubMed

    Valley, Michael P; Karassina, Natasha; Aoyama, Natsuyo; Carlson, Coby; Cali, James J; Vidugiriene, Jolanta

    2016-07-15

    Identifying activators and inhibitors of glucose uptake is critical for both diabetes management and anticancer therapy. To facilitate such studies, easy-to-use nonradioactive assays are desired. Here we describe a bioluminescent glucose uptake assay for measuring glucose transport in cells. The assay is based on the uptake of 2-deoxyglucose and the enzymatic detection of the 2-deoxyglucose-6-phosphate that accumulates. Uptake can be measured from a variety of cell types, it can be inhibited by known glucose transporter inhibitors, and the bioluminescent assay yields similar results when compared with the radioactive method. With HCT 116 cells, glucose uptake can be detected in as little as 5000 cells and remains linear up to 50,000 cells with signal-to-background values ranging from 5 to 45. The assay can be used to screen for glucose transporter inhibitors, or by multiplexing with viability readouts, changes in glucose uptake can be differentiated from overall effects on cell health. The assay also can provide a relevant end point for measuring insulin sensitivity. With adipocytes and myotubes, insulin-dependent increases in glucose uptake have been measured with 10- and 2-fold assay windows, respectively. Significant assay signals of 2-fold or more have also been measured with human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and skeletal myoblasts. PMID:27130501

  6. Glucose-Induced Acidification in Yeast Cultures

    ERIC Educational Resources Information Center

    Myers, Alan; Bourn, Julia; Pool, Brynne

    2005-01-01

    We present an investigation (for A-level biology students and equivalent) into the mechanism of glucose-induced extracellular acidification in unbuffered yeast suspensions. The investigation is designed to enhance understanding of aspects of the A-level curriculum that relate to the phenomenon (notably glucose catabolism) and to develop key skills…

  7. Acute Glucose Response Properties Beyond Feeding.

    PubMed

    Burnett, C Joseph; Krashes, Michael J

    2016-05-01

    Hypothalamic AgRP neurons potently coordinate feeding behavior to ensure an organism's viability. However, their acute role in glucose-regulatory function remains to be addressed. Steculorum et al. now report that activation of a specific set of AgRP neurons results in an impairment of insulin-stimulated glucose uptake in brown fat through a myogenic signature program. PMID:27052261

  8. Glucose tolerance test - non-pregnant

    MedlinePlus

    ... have pre-diabetes or diabetes: A 2 hour value between 140 and 200 mg/dL is called impaired glucose tolerance. Your doctor may call this "pre-diabetes." It means you are at increased risk of developing diabetes over time. A glucose level ...

  9. Glucose Disappearance in Biological Treatment Systems

    PubMed Central

    Jeris, John S.; Cardenas, Raul R.

    1966-01-01

    Laboratory scale anaerobic and aerobic treatment units were conditioned with a daily slug-feed of glucose. After a period of acclimation and stabilization, glucose disappearance was monitored continuously after the slug feed. A continuous sampling apparatus is described. Mathematical analysis of the data indicate zero-order reactions for both biological treatment systems. PMID:16349685

  10. Glucose metabolism in patients with Cushing's syndrome.

    PubMed

    Bowes, S B; Benn, J J; Scobie, I N; Umpleby, A M; Lowy, C; Sönksen, P H

    1991-04-01

    Glucose intolerance, sometimes severe enough to cause frank diabetes mellitus, is a frequent feature of Cushing's syndrome. The primary cause of the hyperglycaemia, whether due to glucose over-production or under-utilization, remains unresolved. We therefore measured glucose turnover using an intravenous bolus of 3-3H glucose in 14 normoglycaemic patients with Cushing's syndrome and 14 control subjects. Seven of the patients with Cushing's syndrome were also restudied post-operatively. Plasma glucose concentrations were similar in all three groups whereas glucose metabolic clearance rate (MCR) (1.80 +/- 0.06 ml/min/kg) and glucose turnover rate (9.09 +/- 0.36 mumol/min/kg) were significantly reduced in patients with Cushing's syndrome compared to normal subjects (2.21 +/- 0.1; P less than 0.001; 10.90 +/- 0.50; P less than 0.01) and rose post-operatively to normal values (2.35 +/- 0.14 ml/min/kg; 11.07 +/- 0.48 mumol/min/kg). We conclude from these results that the hyperglycaemia sometimes found in Cushing's syndrome may be primarily due to decreased utilization rather than increased glucose production. PMID:1879061

  11. Glucose Biosensor Based on Immobilization of Glucose Oxidase in Platinum Nanoparticles/Graphene/Chitosan Nanocomposite Film

    SciTech Connect

    Wu, Hong; Wang, Jun; Kang, Xinhuang; Wang, Chong M.; Wang, Donghai; Liu, Jun; Aksay, Ilhan A.; Lin, Yuehe

    2009-09-01

    The bionanocomposite film consisting of glucose oxidase/Pt/functional graphene sheets/chitosan (GOD/Pt/FGS/chitosan) for glucose sensing was described. With the electrocatalytic synergy of FGS and Pt nanoparticles to hydrogen peroxide, a sensitive biosensor with detection limit of 0.6 µM glucose was achieved. The biosensor also had good reproducibility, long term stability and negligible interfering signals from ascorbic acid and uric acid comparing to the response to glucose. The large surface area and good conductivity of graphene suggests that graphene is a potential candidate for sensor material. The hybrid nanocomposite glucose sensor provides new opportunity for clinical diagnosis and point-of-care applications.

  12. Immune system and glucose metabolism interaction in schizophrenia: a chicken-egg dilemma.

    PubMed

    Steiner, Johann; Bernstein, Hans-Gert; Schiltz, Kolja; Müller, Ulf J; Westphal, Sabine; Drexhage, Hemmo A; Bogerts, Bernhard

    2014-01-01

    Impaired glucose metabolism and the development of metabolic syndrome contribute to a reduction in the average life expectancy of individuals with schizophrenia. It is unclear whether this association simply reflects an unhealthy lifestyle or whether weight gain and impaired glucose tolerance in patients with schizophrenia are directly attributable to the side effects of atypical antipsychotic medications or disease-inherent derangements. In addition, numerous previous studies have highlighted alterations in the immune system of patients with schizophrenia. Increased concentrations of interleukin (IL)-1, IL-6, and transforming growth factor-beta (TGF-β) appear to be state markers, whereas IL-12, interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and soluble IL-2 receptor (sIL-2R) appear to be trait markers of schizophrenia. Moreover, the mononuclear phagocyte system (MPS) and microglial activation are involved in the early course of the disease. This review illustrates a "chicken-egg dilemma", as it is currently unclear whether impaired cerebral glucose utilization leads to secondary disturbances in peripheral glucose metabolism, an increased risk of cardiovascular complications, and accompanying pro-inflammatory changes in patients with schizophrenia or whether immune mechanisms may be involved in the initial pathogenesis of schizophrenia, which leads to disturbances in glucose metabolism such as metabolic syndrome. Alternatively, shared underlying factors may be responsible for the co-occurrence of immune system and glucose metabolism disturbances in schizophrenia. PMID:23085507

  13. Enzymatic deposition of Au nanoparticles on the designed electrode surface and its application in glucose detection.

    PubMed

    Zhang, Hongfang; Liu, Ruixiao; Sheng, Qinglin; Zheng, Jianbin

    2011-02-01

    This paper reported the enzymatic deposition of Au nanoparticles (AuNPs) on the designed 3-mercapto-propionic acid/glucose oxidase/chitosan (MPA/GOD/Chit) modified glassy carbon electrode and its application in glucose detection. Chit served as GOD immobilization matrix and interacted with MPA through electrostatic attraction. AuNPs, without nano-seeds presented on the electrode surface, was produced through the glucose oxidase catalyzed oxidation of glucose. The mechanism of production of AuNPs was confirmed to be that enzymatic reaction products H(2)O(2) in the solution reduce gold complex to AuNPs. The characterizations of the electrode modified after each assembly step was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. Scanning electron microscopy showed the average particle size of the AuNPs is 40nm with a narrow particle size distribution. The content of AuNPs on the electrode surfaces was measured by differential pulse stripping voltammetry. The electrochemical signals on voltammogram showed a linear increase with the glucose concentration in the range of 0.010-0.12mM with a detection limit of 4μM. This provided a method to the determination of glucose. PMID:21115279

  14. Glucose Recognition in Vitro Using Fluorescent Spectroscopy

    SciTech Connect

    Noronha, G; Heiss, A M; Reilly, J R; Vachon, Jr, D J; Cary, D R; Zaitseva, N P; Reibold, R A; Lane, S M; Peyser, T A; Satcher, J H

    2001-04-25

    Diabetes is a disease that affects over 16 million people in the USA at a cost of 100 billion dollars annually. The ability to regulate insulin delivery in people with Type 1 diabetes is imperative as is the need to manage glucose levels in all people with this disease. Our current method for monitoring glucose is a (FDA approved) minimally invasive enzymatic sensor that can measure glucose levels in vivo for three days. We are focused on developing a noninvasive implantable glucose sensor that will be interrogated by an external device. The material must be robust, easy to process, biocompatible and resistant to biofouling. In this Presentation we will discuss the development of a new polymeric matrix that can recognize physiological levels of glucose in vitro using fluorescent spectroscopy.

  15. Glucose-lactose diauxie in Escherichia coli.

    PubMed

    Loomis, W F; Magasanik, B

    1967-04-01

    Growth of Escherichia coli in medium containing glucose, at a concentration insufficient to support full growth, and containing lactose, is diauxic. A mutation in the gene, CR, which determines catabolite repression specific to the lac operon, was found to relieve glucose-lactose but not glucose-maltose diauxie. Furthermore, a high concentration of lactose was shown to overcome diauxie in a CR(+) strain. Studies on the induction of beta-galactosidase by lactose suggested that glucose inhibits induction by 10(-2)m lactose. Preinduction of the lac operon was found to overcome this effect. The ability of glucose to prevent expression of the lac operon by reducing the internal concentration of inducer as well as by catabolite repression is discussed. PMID:5340309

  16. Diurnal Variation in Response to Intravenous Glucose*

    PubMed Central

    Whichelow, Margaret J.; Sturge, R. A.; Keen, H.; Jarrett, R. J.; Stimmler, L.; Grainger, Susan

    1974-01-01

    Intravenous glucose tolerance tests (25 g) were performed in the morning and afternoon on 13 apparently normal persons. The individual K values (rate of decline of blood sugar) were all higher in the morning tests, and the mean values were significantly higher in the morning. Fasting blood sugar levels were slightly lower in the afternoon. There was no difference between the fasting morning and afternoon plasma insulin levels, but the levels after glucose were lower in the afternoon. Growth hormone levels were low at all times in non-apprehensive subjects and unaffected by glucose. The results suggest that the impaired afternoon intravenous glucose tolerance, like oral glucose tolerance, is associated with impaired insulin release and insulin resistance. PMID:4817160

  17. Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell.

    PubMed

    Yang, Lu; Zhang, Yijia; Chu, Mi; Deng, Wenfang; Tan, Yueming; Ma, Ming; Su, Xiaoli; Xie, Qingji; Yao, Shuozhuo

    2014-02-15

    We report here on the facile fabrication of network film electrodes with ultrathin Au nanowires (AuNWs) and their electrochemical applications for high-performance nonenzymatic glucose sensing and glucose/O2 fuel cell under physiological conditions (pH 7.4, containing 0.15M Cl(-)). AuNWs with an average diameter of ~7 or 2 nm were prepared and can self-assemble into robust network films on common electrodes. The network film electrode fabricated with 2-nm AuNWs exhibits high sensitivity (56.0 μA cm(-2)mM(-1)), low detection limit (20 μM), short response time (within 10s), excellent selectivity, and good storage stability for nonenzymatic glucose sensing. Glucose/O2 fuel cells were constructed using network film electrodes as the anode and commercial Pt/C catalyst modified glassy carbon electrode as cathode. The glucose/O2 fuel cell using 2-nm AuNWs as anode catalyst output a maximum power density of is 126 μW cm(-2), an open-circuit cell voltage of 0.425 V, and a short-circuit current density of 1.34 mA cm(-2), respectively. Due to the higher specific electroactive surface area of 2-nm AuNWs, the network film electrode fabricated with 2-nm AuNWs exhibited higher electrocatalytic activity toward glucose oxidation than the network film electrode fabricated with 7-nm AuNWs. The network film electrode exhibits high electrocatalytic activity toward glucose oxidation under physiological conditions, which is helpful for constructing implantable electronic devices. PMID:24035853

  18. Cell Based Metabolic Barriers to Glucose Diffusion: Macrophages and Continuous Glucose Monitoring

    PubMed Central

    Klueh, Ulrike; Frailey, Jackman; Qiao, Yi; Antar, Omar; Kreutzer, Donald L.

    2014-01-01

    It is assumed that MQ are central to glucose sensor bio-fouling and therefore have a major negative impact on continuous glucose monitoring (CGM) performance in vivo. However to our knowledge there is no data in the literature to directly support or refute this assumption. Since glucose and oxygen (O2) are key to glucose sensor function in vivo, understanding and controlling glucose and O2 metabolic activity of MQ is likely key to successful glucose sensor performance. We hypothesized that the accumulation of MQ at the glucose sensor-tissue interface will act as “Cell Based Metabolic Barriers” (CBMB) to glucose diffusing from the interstitial tissue compartment to the implanted glucose sensor and as such creating an artificially low sensor output, thereby compromising sensor function and CGM. Our studies demonstrated that 1) direct injections of MQ at in vivo sensor implantation sites dramatically decreased sensor output (measured in nA), 2) addition of MQ to glucose sensors in vitro resulted in a rapid and dramatic fall in sensor output and 3) lymphocytes did not affect sensor function in vitro or in vivo. These data support our hypothesis that MQ can act as metabolic barriers to glucose and O2 diffusion in vivo and in vitro. PMID:24461328

  19. Radiometric assays for glycerol, glucose, and glycogen.

    PubMed

    Bradley, D C; Kaslow, H R

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus (1971, J. Biol. Chem. 246, 3885-3894) for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays. PMID:2817333

  20. Identification of Glucose Transporters in Aspergillus nidulans

    PubMed Central

    dos Reis, Thaila Fernanda; Menino, João Filipe; Bom, Vinícius Leite Pedro; Brown, Neil Andrew; Colabardini, Ana Cristina; Savoldi, Marcela; Goldman, Maria Helena S.; Rodrigues, Fernando; Goldman, Gustavo Henrique

    2013-01-01

    To characterize the mechanisms involved in glucose transport, in the filamentous fungus Aspergillus nidulans, we have identified four glucose transporter encoding genes hxtB-E. We evaluated the ability of hxtB-E to functionally complement the Saccharomyces cerevisiae EBY.VW4000 strain that is unable to grow on glucose, fructose, mannose or galactose as single carbon source. In S. cerevisiae HxtB-E were targeted to the plasma membrane. The expression of HxtB, HxtC and HxtE was able to restore growth on glucose, fructose, mannose or galactose, indicating that these transporters accept multiple sugars as a substrate through an energy dependent process. A tenfold excess of unlabeled maltose, galactose, fructose, and mannose were able to inhibit glucose uptake to different levels (50 to 80 %) in these s. cerevisiae complemented strains. Moreover, experiments with cyanide-m-chlorophenylhydrazone (CCCP), strongly suggest that hxtB, -C, and –E mediate glucose transport via active proton symport. The A. nidulans ΔhxtB, ΔhxtC or ΔhxtE null mutants showed ~2.5-fold reduction in the affinity for glucose, while ΔhxtB and -C also showed a 2-fold reduction in the capacity for glucose uptake. The ΔhxtD mutant had a 7.8-fold reduction in affinity, but a 3-fold increase in the capacity for glucose uptake. However, only the ΔhxtB mutant strain showed a detectable decreased rate of glucose consumption at low concentrations and an increased resistance to 2-deoxyglucose. PMID:24282591

  1. Radiometric assays for glycerol, glucose, and glycogen

    SciTech Connect

    Bradley, D.C.; Kaslow, H.R. )

    1989-07-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with (32P)ATP and glycerokinase, residual (32P)ATP is hydrolyzed by heating in acid, and free (32P)phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays.

  2. Evaluation of Correlation of Blood Glucose and Salivary Glucose Level in Known Diabetic Patients

    PubMed Central

    Singh, Siddharth Kumar; Padmavathi, B.N.; Rajan, S.Y.; Mamatha, G.P.; Kumar, Sandeep; Roy, Sayak; Sareen, Mohit

    2015-01-01

    Introduction Diabetes mellitus is a chronic heterogenous disease in which there is dysregulation of carbohydrates, protein and lipid metabolism; leading to elevated blood glucose levels. The present study was conducted to evaluate the correlation between blood glucose and salivary glucose levels in known diabetic patients and control group and also to evaluate salivary glucose level as a diagnostic tool in diabetic patients. Materials and Methods A total number of 250 patients were studied, out of which 212 formed the study group and 38 formed the control group. Result Among 250 patients, correlation was evaluated between blood glucose and salivary glucose values which on analysis revealed Pearson correlation of 0.073. The p-value was 0.247, which was statistically non significant. Conclusion Salivary glucose values cannot be considered as a diagnostic tool for diabetic individuals. PMID:26155553

  3. Potentiometric measurement of glucose concentration with an immobilized glucose oxidase/catalase electrode.

    PubMed

    Wingard, L B; Liu, C C; Wolfson, S K; Yao, S J; Drash, A L

    1982-01-01

    A series of enzyme electrodes for measurement of glucose have been constructed. The electrodes contain glucose oxidase immobilized on platinum, either with or without co-immobilization of catalase. When placed in buffered glucose, the enzyme electrodes show a potentiometric response to glucose with respect to a Ag/AgCl reference electrode. This response is reproducible in the physiologic range of glucose concentrations. The immobilization technique, some of the environmental variables such as oxygen concentration and pH, and several compounds that might interfere with the selectivity of the enzyme electrodes for glucose have received preliminary study. This direct potentiometric approach is undergoing further evaluation to determine the basic electrochemical mechanism responsible for the potentiometric signal and whether it can be adapted for continuous in vivo monitoring of the glucose concentration in body fluids. PMID:7172983

  4. A glucose oxidase-coupled DNAzyme sensor for glucose detection in tears and saliva.

    PubMed

    Liu, Chengcheng; Sheng, Yongjie; Sun, Yanhong; Feng, Junkui; Wang, Shijin; Zhang, Jin; Xu, Jiacui; Jiang, Dazhi

    2015-08-15

    Biosensors have been widely investigated and utilized in a variety of fields ranging from environmental monitoring to clinical diagnostics. Glucose biosensors have triggered great interest and have been widely exploited since glucose determination is essential for diabetes diagnosis. In here, we designed a novel dual-enzyme biosensor composed of glucose oxidase (GOx) and pistol-like DNAzyme (PLDz) to detect glucose levels in tears and saliva. First, GOx, as a molecular recognition element, catalyzes the oxidation of glucose forming H2O2; then PLDz recognizes the produced H2O2 as a secondary signal and performs a self-cleavage reaction promoted by Mn(2+), Co(2+) and Cu(2+). Thus, detection of glucose could be realized by monitoring the cleavage rate of PLDz. The slope of the cleavage rate of PLDz versus glucose concentration curve was fitted with a Double Boltzmann equation, with a range of glucose from 100 nM to 10mM and a detection limit of 5 μM. We further applied the GOx-PLDz 1.0 biosensor for glucose detection in tears and saliva, glucose levels in which are 720±81 μM and 405±56 μM respectively. Therefore, the GOx-PLDz 1.0 biosensor is able to determine glucose levels in tears and saliva as a noninvasive glucose biosensor, which is important for diabetic patients with frequent/continuous glucose monitoring requirements. In addition, induction of DNAzyme provides a new approach in the development of glucose biosensors. PMID:25863343

  5. Glucose uptake saturation explains glucose kinetics profiles measured by different tests.

    PubMed

    Bizzotto, Roberto; Natali, Andrea; Gastaldelli, Amalia; Muscelli, Elza; Krssak, Martin; Brehm, Attila; Roden, Michael; Ferrannini, Ele; Mari, Andrea

    2016-08-01

    It is known that for a given insulin level glucose clearance depends on glucose concentration. However, a quantitative representation of the concomitant effects of hyperinsulinemia and hyperglycemia on glucose clearance, necessary to describe heterogeneous tests such as euglycemic and hyperglycemic clamps and oral tests, is lacking. Data from five studies (123 subjects) using a glucose tracer and including all the above tests in normal and diabetic subjects were collected. A mathematical model was developed in which glucose utilization was represented as a Michaelis-Menten function of glucose with constant Km and insulin-controlled Vmax, consistently with the basic notions of glucose transport. Individual values for the model parameters were estimated using a population approach. Tracer data were accurately fitted in all tests. The estimated Km was 3.88 (2.83-5.32) mmol/l [median (interquartile range)]. Median model-derived glucose clearance at 600 pmol/l insulin was reduced from 246 to 158 ml·min(-1)·m(-2) when glucose was raised from 5 to 10 mmol/l. The model reproduced the characteristic lack of increase in glucose clearance when moderate hyperinsulinemia was accompanied by hyperglycemia. In all tests, insulin sensitivity was inversely correlated with BMI, as expected (R(2) = 0.234, P = 0.0001). In conclusion, glucose clearance in euglycemic and hyperglycemic clamps and oral tests can be described with a unifying model, consistent with the notions of glucose transport and able to reproduce the suppression of glucose clearance due to hyperglycemia observed in previous studies. The model may be important for the design of reliable glucose homeostasis simulators. PMID:27245333

  6. Fluorodeoxyglucose rate constants, lumped constant, and glucose metabolic rate in rabbit heart

    SciTech Connect

    Krivokapich, J.; Huang, S.C.; Selin, C.E.; Phelps, M.E.

    1987-04-01

    The isolated arterial perfused rabbit interventricular septum was used to measure myocardial metabolic rate for glucose (MMRGlc) and rate constants and lumped constant (LC) for the glucose analogue (/sup 18/F)fluorodeoxyglucose (FDG) using a tracer kinetic model. FDG was delivered by constant infusion during coincidence counting of tissue /sup 18/F radioactivity. The MMRGlc was measured by the Fick method. Control septa were paced at 72 beats/min and perfused at 1.5 ml/min with oxygenated perfusate containing 5.6 mM glucose and 5 mU/ml insulin. The following conditions were tested: 3.0 and 4.5 ml/min; insulin increased to 25 mU/ml; insulin omitted; 2.8 mM and 11.2 mM glucose; 144 beats/min and 96 paired stimuli/min; and anoxia. Under all conditions studied the phosphorylation (hexokinase) reaction was rate limiting relative to transport. Compared with control conditions, the phosphorylation rate constant was significantly increased with 2.8 mM glucose as well as in anoxia. With 4.5 ml/min and 11.2 mM glucose, conditions that should increase glucose flux into tissue without increasing demand, the phosphorylation rate constant decreased significantly. With 11.2 mM glucose, 96 paired stimuli/min, and anoxia without insulin, a significant increase in the hydrolysis rate of FDG 6-phosphate was observed and suggests that hydrolysis is also an important mechanism for regulating the MMRGlc. Increased transport rate constants were observed with increased flow rates, 96 paired stimuli/min, and anoxia at 96 beats/min. The LC was not significantly different from control in 11 of 14 conditions studied. Therefore, under most conditions in average LC can be used to calculate MMRGlc estimates.

  7. Role of glucose transport in glycogen supercompensation in reweighted rat skeletal muscle.

    PubMed

    Henriksen, E J; Stump, C S; Trinh, T H; Beaty, S D

    1996-05-01

    Hindlimb weight bearing after a 3-day period of hindlimb suspension (reweighting) of juvenile rats results in a marked transient elevation in soleus glycogen concentration that cannot be explained on the basis of the activities of glycogen synthase and phosphorylase. We have hypothesized that enhanced glucose transport activity could underlie this response. We directly tested this hypothesis by assessing the response of insulin-dependent and insulin-independent glucose transport activity (in vitro 2-[1,2-3H]deoxy-D-glucose uptake) as well as glucose transporter (GLUT-4) protein levels during a 48-h reweighting period. After a net glycogen loss (from 29 +/- 2 to 16 +/- 1 nmol/mg muscle; P < 0.05) during the first 2 h of reweighting, glycogen accumulated at an average rate of 1.4 nmol.mg-1.h-1 up to 18 h, reaching an apex of 38 +/- 1 nmol/mg. During this same reweighting period, insulin-independent, but not insulin-dependent, glucose transport activity was significantly enhanced (P < 0.05 vs. weight-bearing control values) and was associated with an elevated level of GLUT-4 protein and the specific activity of total hexokinase. The specific activity of citrate synthase was also increased. By 24 h of reweighting, although insulin-independent glucose transport activity and GLUT-4 protein remained elevated, glycogen accumulation had ceased, likely due to enhanced phosphorylase activity at this time point. These results are consistent with the interpretation that the glycogen supercompensation seen during reweighting of the rat soleus may be regulated in part by an enhanced glucose flux arising from an increase in insulin-independent glucose transport activity and hexokinase activity. PMID:8727537

  8. Optimal estimation of the diffusion coefficient from non-averaged and averaged noisy magnitude data

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Anders

    2007-08-01

    The magnitude operation changes the signal distribution in MRI images from Gaussian to Rician. This introduces a bias that must be taken into account when estimating the apparent diffusion coefficient. Several estimators are known in the literature. In the present paper, two novel schemes are proposed. Both are based on simple least squares fitting of the measured signal, either to the median (MD) or to the maximum probability (MP) value of the Probability Density Function (PDF). Fitting to the mean (MN) or a high signal-to-noise ratio approximation to the mean (HS) is also possible. Special attention is paid to the case of averaged magnitude images. The PDF, which cannot be expressed in closed form, is analyzed numerically. A scheme for performing maximum likelihood (ML) estimation from averaged magnitude images is proposed. The performance of several estimators is evaluated by Monte Carlo (MC) simulations. We focus on typical clinical situations, where the number of acquisitions is limited. For non-averaged data the optimal choice is found to be MP or HS, whereas uncorrected schemes and the power image (PI) method should be avoided. For averaged data MD and ML perform equally well, whereas uncorrected schemes and HS are inadequate. MD provides easier implementation and higher computational efficiency than ML. Unbiased estimation of the diffusion coefficient allows high resolution diffusion tensor imaging (DTI) and may therefore help solving the problem of crossing fibers encountered in white matter tractography.

  9. A non-invasive blood glucose meter design using multi-type sensors

    NASA Astrophysics Data System (ADS)

    Nguyen, D.; Nguyen, Hienvu; Roveda, Janet

    2012-10-01

    In this paper, we present a design of a multi optical modalities blood glucose monitor. The Monte Carlo tissues optics simulation with typical human skin model suggests the SNR ratio for a detector sensor is 104 with high sensitivity that can detect low blood sugar limit at 1 mMole/dL ( <20 mg/dL). A Bayesian filtering algorithm is proposed for multisensor fusion to identify whether e user has the danger of having diabetes. The new design has real time response (on the average of 2 minutes) and provides great potential to perform real time monitoring for blood glucose.

  10. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average...

  11. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average...

  12. 40 CFR 80.205 - How is the annual refinery or importer average and corporate pool average sulfur level determined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average and corporate pool average sulfur level determined? 80.205 Section 80.205 Protection of... ADDITIVES Gasoline Sulfur Gasoline Sulfur Standards § 80.205 How is the annual refinery or importer average and corporate pool average sulfur level determined? (a) The annual refinery or importer average...

  13. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-05-01

    We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ˜1.5-2 mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies.

  14. Exercising Tactically for Taming Postmeal Glucose Surges

    PubMed Central

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20–30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%–80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time. PMID:27073714

  15. Noninvasive glucose sensing by transcutaneous Raman spectroscopy

    PubMed Central

    Shih, Wei-Chuan; Bechtel, Kate L.; Rebec, Mihailo V.

    2015-01-01

    Abstract. We present the development of a transcutaneous Raman spectroscopy system and analysis algorithm for noninvasive glucose sensing. The instrument and algorithm were tested in a preclinical study in which a dog model was used. To achieve a robust glucose test system, the blood levels were clamped for periods of up to 45 min. Glucose clamping and rise/fall patterns have been achieved by injecting glucose and insulin into the ear veins of the dog. Venous blood samples were drawn every 5 min and a plasma glucose concentration was obtained and used to maintain the clamps, to build the calibration model, and to evaluate the performance of the system. We evaluated the utility of the simultaneously acquired Raman spectra to be used to determine the plasma glucose values during the 8-h experiment. We obtained prediction errors in the range of ∼1.5−2  mM. These were in-line with a best-case theoretical estimate considering the limitations of the signal-to-noise ratio estimates. As expected, the transition regions of the clamp study produced larger predictive errors than the stable regions. This is related to the divergence of the interstitial fluid (ISF) and plasma glucose values during those periods. Two key contributors to error beside the ISF/plasma difference were photobleaching and detector drift. The study demonstrated the potential of Raman spectroscopy in noninvasive applications and provides areas where the technology can be improved in future studies. PMID:25688542

  16. Exercising Tactically for Taming Postmeal Glucose Surges.

    PubMed

    Chacko, Elsamma

    2016-01-01

    This review seeks to synthesize data on the timing, intensity, and duration of exercise found scattered over some 39 studies spanning 3+ decades into optimal exercise conditions for controlling postmeal glucose surges. The results show that a light aerobic exercise for 60 min or moderate activity for 20-30 min starting 30 min after meal can efficiently blunt the glucose surge, with minimal risk of hypoglycemia. Exercising at other times could lead to glucose elevation caused by counterregulation. Adding a short bout of resistance exercise of moderate intensity (60%-80%  VO2max) to the aerobic activity, 2 or 3 times a week as recommended by the current guidelines, may also help with the lowering of glucose surges. On the other hand, high-intensity exercise (>80%  VO2max) causes wide glucose fluctuations and its feasibility and efficacy for glucose regulation remain to be ascertained. Promoting the kind of physical activity that best counters postmeal hyperglycemia is crucial because hundreds of millions of diabetes patients living in developing countries and in the pockets of poverty in the West must do without medicines, supplies, and special diets. Physical activity is the one tool they may readily utilize to tame postmeal glucose surges. Exercising in this manner does not violate any of the current guidelines, which encourage exercise any time. PMID:27073714

  17. Taeniid tapeworm responses to in vitro glucose.

    PubMed

    Willms, Kaethe; Presas, Ana María Fernández; Jiménez, José Agustín; Landa, Abraham; Zurabián, Rimma; Ugarte, María Eugenia Juárez; Robert, Lilia

    2005-07-01

    Experimental taeniid strobilae from Taenia solium and T. crassiceps (WFU strain) were incubated for 0-72 h in 0, 5 or 20 mM glucose solutions and further exposed for 15 min to the gap junction fluorochrome Lucifer Yellow. Frozen sections were obtained from each worm and observed under an epifluorescent microscope. Worm sections from strobilae incubated with glucose, revealed intense fluorescence in the base of the tegumentary surface, suggesting that this tissue behaves as a gap junction complex. Fluorescence intensity differences between control worms not exposed to glucose and worms incubated with glucose, were highly significant. The results demonstrate that under in vitro conditions, glucose is taken up along the whole strobilar tegument in both taeniid species, suggesting, that although taeniids attached to the duodenum probably take up most of their nutrients directly from the mucosal wall, the capacity for absorbing glucose along the tegumentary surface is always active and may increase the survival capacity of these intestinal worms by promoting glucose absorption at other points in the intestinal lumen. PMID:15918070

  18. Blood-Brain Glucose Transfer: Repression in Chronic Hyperglycemia

    NASA Astrophysics Data System (ADS)

    Gjedde, Albert; Crone, Christian

    1981-10-01

    Diabetic patients with increased plasma glucose concentrations may develop cerebral symptoms of hypoglycemia when their plasma glucose is rapidly lowered to normal concentrations. The symptoms may indicate insufficient transport of glucose from blood to brain. In rats with chronic hyperglycemia the maximum glucose transport capacity of the blood-brain barrier decreased from 400 to 290 micromoles per 100 grams per minute. When plasma glucose was lowered to normal values, the glucose transport rate into brain was 20 percent below normal. This suggests that repressive changes of the glucose transport mechanism occur in brain endothelial cells in response to increased plasma glucose.

  19. Hepatic Carboxylesterase 1 Is Induced by Glucose and Regulates Postprandial Glucose Levels

    PubMed Central

    Xu, Jiesi; Yin, Liya; Xu, Yang; Li, Yuanyuan; Zalzala, Munaf; Cheng, Gang; Zhang, Yanqiao

    2014-01-01

    Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1) is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL), an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels. PMID:25285996

  20. Resistin modulates glucose uptake and glucose transporter-1 (GLUT-1) expression in trophoblast cells

    PubMed Central

    Di Simone, Nicoletta; Di Nicuolo, Fiorella; Marzioni, Daniela; Castellucci, Mario; Sanguinetti, Maurizio; D’lppolito, Silvia; Caruso, Alessandro

    2009-01-01

    Abstract The adipocytokine resistin impairs glucose tolerance and insulin sensitivity. Here, we examine the effect of resistin on glucose uptake in human trophoblast cells and we demonstrate that transplacental glucose transport is mediated by glucose transporter (GLUT)-1. Furthermore, we evaluate the type of signal transduction induced by resistin in GLUT-1 regulation. BeWo choriocarcinoma cells and primary cytotrophoblast cells were cultured with increasing resistin concentrations for 24 hrs. The main outcome measures include glucose transport assay using [3H]-2-deoxy glucose, GLUT-1 protein expression by Western blot analysis and GLUT-1 mRNA detection by quantitative real-time RT-PCR. Quantitative determination of phospho(p)-ERK1/2 in cell lysates was performed by an Enzyme Immunometric Assay and Western blot analysis. Our data demonstrate a direct effect of resistin on normal cytotrophoblastic and on BeWo cells: resistin modulates glucose uptake, GLUT-1 messenger ribonucleic acid (mRNA) and protein expression in placental cells. We suggest that ERK1/2 phosphorylation is involved in the GLUT-1 regulation induced by resistin. In conclusion, resistin causes activation of both the ERK1 and 2 pathway in trophoblast cells. ERK1 and 2 activation stimulated GLUT-1 synthesis and resulted in increase of placental glucose uptake. High resistin levels (50–100 ng/ml) seem able to affect glucose-uptake, presumably by decreasing the cell surface glucose transporter. PMID:18410529

  1. Glucose Homeostatic Law: Insulin Clearance Predicts the Progression of Glucose Intolerance in Humans

    PubMed Central

    Uda, Shinsuke; Kubota, Hiroyuki; Iwaki, Toshinao; Fukuzawa, Hiroki; Komori, Yasunori; Fujii, Masashi; Toyoshima, Yu; Sakaguchi, Kazuhiko; Ogawa, Wataru; Kuroda, Shinya

    2015-01-01

    Homeostatic control of blood glucose is regulated by a complex feedback loop between glucose and insulin, of which failure leads to diabetes mellitus. However, physiological and pathological nature of the feedback loop is not fully understood. We made a mathematical model of the feedback loop between glucose and insulin using time course of blood glucose and insulin during consecutive hyperglycemic and hyperinsulinemic-euglycemic clamps in 113 subjects with variety of glucose tolerance including normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). We analyzed the correlation of the parameters in the model with the progression of glucose intolerance and the conserved relationship between parameters. The model parameters of insulin sensitivity and insulin secretion significantly declined from NGT to IGT, and from IGT to T2DM, respectively, consistent with previous clinical observations. Importantly, insulin clearance, an insulin degradation rate, significantly declined from NGT, IGT to T2DM along the progression of glucose intolerance in the mathematical model. Insulin clearance was positively correlated with a product of insulin sensitivity and secretion assessed by the clamp analysis or determined with the mathematical model. Insulin clearance was correlated negatively with postprandial glucose at 2h after oral glucose tolerance test. We also inferred a square-law between the rate constant of insulin clearance and a product of rate constants of insulin sensitivity and secretion in the model, which is also conserved among NGT, IGT and T2DM subjects. Insulin clearance shows a conserved relationship with the capacity of glucose disposal among the NGT, IGT and T2DM subjects. The decrease of insulin clearance predicts the progression of glucose intolerance. PMID:26623647

  2. Postprandial glucose and insulin profiles following a glucose-loaded meal in cats and dogs.

    PubMed

    Hewson-Hughes, Adrian K; Gilham, Matthew S; Upton, Sarah; Colyer, Alison; Butterwick, Richard; Miller, Andrew T

    2011-10-01

    Data from intravenous (i.v.) glucose tolerance tests suggest that glucose clearance from the blood is slower in cats than in dogs. Since different physiological pathways are activated following oral administration compared with i.v. administration, we investigated the profiles of plasma glucose and insulin in cats and dogs following ingestion of a test meal with or without glucose. Adult male and female cats and dogs were fed either a high-protein (HP) test meal (15 g/kg body weight; ten cats and eleven dogs) or a HP + glucose test meal (13 g/kg body-weight HP diet + 2 g/kg body-weight D-glucose; seven cats and thirteen dogs) following a 24 h fast. Marked differences in plasma glucose and insulin profiles were observed in cats and dogs following ingestion of the glucose-loaded meal. In cats, mean plasma glucose concentration reached a peak at 120 min (10.2, 95 % CI 9.7, 10.8 mmol/l) and returned to baseline by 240 min, but no statistically significant change in plasma insulin concentration was observed. In dogs, mean plasma glucose concentration reached a peak at 60 min (6.3, 95 % CI 5.9, 6.7 mmol/l) and returned to baseline by 90 min, while plasma insulin concentration was significantly higher than pre-meal values from 30 to 120 min following the glucose-loaded meal. These results indicate that cats are not as efficient as dogs at rapidly decreasing high blood glucose levels and are consistent with a known metabolic adaptation of cats, namely a lack of glucokinase, which is important for both insulin secretion and glucose uptake from the blood. PMID:22005400

  3. Single Cell "Glucose Nanosensor" Verifies Elevated Glucose Levels in Individual Cancer Cells.

    PubMed

    Nascimento, Raphael A S; Özel, Rıfat Emrah; Mak, Wai Han; Mulato, Marcelo; Singaram, Bakthan; Pourmand, Nader

    2016-02-10

    Because the transition from oxidative phosphorylation to anaerobic glycolytic metabolism is a hallmark of cancer progression, approaches to identify single living cancer cells by their unique glucose metabolic signature would be useful. Here, we present nanopipettes specifically developed to measure glucose levels in single cells with temporal and spatial resolution, and we use this technology to verify the hypothesis that individual cancer cells can indeed display higher intracellular glucose levels. The nanopipettes were functionalized as glucose nanosensors by immobilizing glucose oxidase (GOx) covalently to the tip so that the interaction of glucose with GOx resulted in a catalytic oxidation of β-d-glucose to d-gluconic acid, which was measured as a change in impedance due to drop in pH of the medium at the nanopipette tip. Calibration studies showed a direct relationship between impedance changes at the tip and glucose concentration in solution. The glucose nanosensor quantified single cell intracellular glucose levels in human fibroblasts and the metastatic breast cancer lines MDA-MB-231 and MCF7 and revealed that the cancer cells expressed reproducible and reliable increases in glucose levels compared to the nonmalignant cells. Nanopipettes allow repeated sampling of the same cell, as cells remain viable during and after measurements. Therefore, nanopipette-based glucose sensors provide an approach to compare changes in glucose levels with changes in proliferative or metastatic state. The platform has great promise for mechanistic investigations, as a diagnostic tool to distinguish cancer cells from nonmalignant cells in heterogeneous tissue biopsies, as well as a tool for monitoring cancer progression in situ. PMID:26752097

  4. Glucose and fructose metabolism in Zymomonas anaerobia

    PubMed Central

    McGill, D. J.; Dawes, E. A.

    1971-01-01

    Isotopic and enzymic evidence indicates that Zymomonas anaerobia ferments glucose via the Entner–Doudoroff pathway. The molar growth yields with glucose (5.89) and fructose (5.0) are lower than those for the related organism Zymomonas mobilis and the observed linear growth suggests that energetically uncoupled growth occurs. A survey of enzymes of carbohydrate metabolism revealed the presence of weak phosphofructokinase and fructose 1,6-diphosphate aldolase activities but phosphoketolase, transketolase and transaldolase were not detected. Fermentation balances for glucose and fructose are reported; acetaldehyde accumulated in both fermentations, to a greater extent with fructose which also yielded glycerol and dihydroxyacetone as minor products. PMID:4259336

  5. Role of glucose signaling in yeast metabolism

    SciTech Connect

    Dam, K. van

    1996-10-05

    The conversion of glucose to ethanol and carbon dioxide by yeast was the first biochemical pathway to be studied in detail. The initial observation that this process is catalyzed by an extract of yeast led to the discovery of enzymes and coenzymes and laid the foundation for modern biochemistry. In this article, knowledge concerning the relation between uptake of and signaling by glucose in the yeast Saccharomyces cerevisiae is reviewed and compared to the analogous process in prokaryotes. It is concluded that (much) more fundamental knowledge concerning these processes is required before rational redesign of metabolic fluxes from glucose in yeast can be achieved.

  6. [Microbial production of glucose/fructose syrups].

    PubMed

    Matur, A; Sağlam, N

    1982-04-01

    With the ever-increasing demand for sugar and the trend in rising price, rapid progress in research on new and/or alternative sweeteners has been inevitable during the past decade or so. Pure glucose, glucose/fructose, glucose/maltose syrups are often called "isosyrups". Isosyrups have been recognized as a good alternative sources of sugar. These are used today in the manufacture of soft drinks, jams and jellies, confectionary, baking fermentation, dietetic and infant food, ice-cream, pharmaceutical processes, etc. Isosyrups are produced by hydrolysis of starch and cellulocis raw materials have been utilized for the production of isosyrups. PMID:7144624

  7. Optimal glucose management in the perioperative period.

    PubMed

    Evans, Charity H; Lee, Jane; Ruhlman, Melissa K

    2015-04-01

    Hyperglycemia is a common finding in surgical patients during the perioperative period. Factors contributing to poor glycemic control include counterregulatory hormones, hepatic insulin resistance, decreased insulin-stimulated glucose uptake, use of dextrose-containing intravenous fluids, and enteral and parenteral nutrition. Hyperglycemia in the perioperative period is associated with increased morbidity, decreased survival, and increased resource utilization. Optimal glucose management in the perioperative period contributes to reduced morbidity and mortality. To readily identify hyperglycemia, blood glucose monitoring should be instituted for all hospitalized patients. PMID:25814110

  8. Determining average path length and average trapping time on generalized dual dendrimer

    NASA Astrophysics Data System (ADS)

    Li, Ling; Guan, Jihong

    2015-03-01

    Dendrimer has wide number of important applications in various fields. In some cases during transport or diffusion process, it transforms into its dual structure named Husimi cactus. In this paper, we study the structure properties and trapping problem on a family of generalized dual dendrimer with arbitrary coordination numbers. We first calculate exactly the average path length (APL) of the networks. The APL increases logarithmically with the network size, indicating that the networks exhibit a small-world effect. Then we determine the average trapping time (ATT) of the trapping process in two cases, i.e., the trap placed on a central node and the trap is uniformly distributed in all the nodes of the network. In both case, we obtain explicit solutions of ATT and show how they vary with the networks size. Besides, we also discuss the influence of the coordination number on trapping efficiency.

  9. Instantaneous, phase-averaged, and time-averaged pressure from particle image velocimetry

    NASA Astrophysics Data System (ADS)

    de Kat, Roeland

    2015-11-01

    Recent work on pressure determination using velocity data from particle image velocimetry (PIV) resulted in approaches that allow for instantaneous and volumetric pressure determination. However, applying these approaches is not always feasible (e.g. due to resolution, access, or other constraints) or desired. In those cases pressure determination approaches using phase-averaged or time-averaged velocity provide an alternative. To assess the performance of these different pressure determination approaches against one another, they are applied to a single data set and their results are compared with each other and with surface pressure measurements. For this assessment, the data set of a flow around a square cylinder (de Kat & van Oudheusden, 2012, Exp. Fluids 52:1089-1106) is used. RdK is supported by a Leverhulme Trust Early Career Fellowship.

  10. The Effects of Redesigning the IDEATel Architecture on Glucose Uploads

    PubMed Central

    Hilliman, Charlyn A.; Cimino, James J.; Kaufman, David R.; Starren, Justin B.; Shea, Steven

    2009-01-01

    Abstract The objective of this evaluation was to determine the effect of redesigning the Informatics for Diabetes Education and Telemedicine (IDEATel) telemedicine architecture on the average upload delay and on the average number of glucose uploads to a central database. These two measures positively influence our ability to deliver timely and accurate patient care to the study population. The redesign was also undertaken to improve the patients' experience in using the system and thereby increase the frequency and timeliness of their self-monitoring behavior. Using the total number of glucose uploads, we compared the delay in glucose upload times according to the type of home telemedicine unit the study participants used and the region where the participants lived. The participants were Medicare beneficiaries with diabetes living in medically underserved neighborhoods in New York City and rural Upstate New York. The populations in these two regions differed considerably in terms of ethnicity, language spoken (Spanish, English), and education level. Participants who had Generation 2 (Gen 2) (mean = 10.75, SD ± 7.96) home telemedicine units had significantly shorter upload delay times (p < 0.001) as measured in days than those participants with Generation 1 (Gen 1) (mean = 22.44, SD ± 11.18) and those who were upgraded from Gen 1 (mean = 20.67, SD ± 8.85) to Gen 2 (mean = 14.93, SD ± 9.37). Additionally, the delay was significantly shorter for participants living upstate (mean = 24.14 days, SD ± 11.95 days) than downstate (mean = 15.30 days, SD ± 7.87 days), t (975) = 13.98, p < 0.01. The system redesign made a significant impact in reducing glucose upload delays of IDEATel participants. However, upload delays were significantly impacted by the region where the participants resided. PMID:19382862

  11. 40 CFR 80.67 - Compliance on average.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Compliance on average. 80.67 Section...) REGULATION OF FUELS AND FUEL ADDITIVES Reformulated Gasoline § 80.67 Compliance on average. The requirements... with one or more of the requirements of § 80.41 is determined on average (“averaged gasoline”)....

  12. 20 CFR 226.62 - Computing average monthly compensation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Computing average monthly compensation. 226... RETIREMENT ACT COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Years of Service and Average Monthly Compensation § 226.62 Computing average monthly compensation. The employee's average monthly compensation...

  13. 20 CFR 226.62 - Computing average monthly compensation.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false Computing average monthly compensation. 226... RETIREMENT ACT COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Years of Service and Average Monthly Compensation § 226.62 Computing average monthly compensation. The employee's average monthly compensation...

  14. 20 CFR 226.62 - Computing average monthly compensation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true Computing average monthly compensation. 226.62... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Years of Service and Average Monthly Compensation § 226.62 Computing average monthly compensation. The employee's average monthly compensation is...

  15. 20 CFR 226.62 - Computing average monthly compensation.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true Computing average monthly compensation. 226.62... COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Years of Service and Average Monthly Compensation § 226.62 Computing average monthly compensation. The employee's average monthly compensation is...

  16. 20 CFR 226.62 - Computing average monthly compensation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false Computing average monthly compensation. 226... RETIREMENT ACT COMPUTING EMPLOYEE, SPOUSE, AND DIVORCED SPOUSE ANNUITIES Years of Service and Average Monthly Compensation § 226.62 Computing average monthly compensation. The employee's average monthly compensation...

  17. Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells

    SciTech Connect

    Durand, Fabien; Stines-Chaumeil, Claire; Flexer, Victoria; Andre, Isabelle; Mano, Nicolas

    2010-11-26

    Research highlights: {yields} A new mutant of PQQ-GDH designed for glucose biosensors application. {yields} First mutant of PQQ-GDH with higher activity for D-glucose than the Wild type. {yields} Position N428 is a key point to increase the enzyme activity. {yields} Molecular modeling shows that the N428 C mutant displays a better interaction for PQQ than the WT. -- Abstract: We report for the first time a soluble PQQ-glucose dehydrogenase that is twice more active than the wild type for glucose oxidation and was obtained by combining site directed mutagenesis, modelling and steady-state kinetics. The observed enhancement is attributed to a better interaction between the cofactor and the enzyme leading to a better electron transfer. Electrochemical experiments also demonstrate the superiority of the new mutant for glucose oxidation and make it a promising enzyme for the development of high-performance glucose biosensors and biofuel cells.

  18. Trimetallic Au/Pt/Rh Nanoparticles as Highly Active Catalysts for Aerobic Glucose Oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Haijun; Cao, Yingnan; Lu, Lilin; Cheng, Zhong; Zhang, Shaowei

    2015-02-01

    This paper reports the findings of an investigation of the correlations between the catalytic activity for aerobic glucose oxidation and the composition of Au/Pt/Rh trimetallic nanoparticles (TNPs) with average diameters of less than 2.0 nm prepared by rapid injection of NaBH4. The prepared TNPs were characterized by UV-Vis, TEM, and HR-TEM. The catalytic activity of the alloy-structured TNPs for aerobic glucose oxidation is several times higher than that of Au monometallic nanoparticles with nearly the same particle size. The catalytic activities of the TNP catalysts were dependent not only on the composition, but also on the electronic structure. The high catalytic activities of the Au/Pt/Rh TNPs can be ascribed to the formed negative-charged Au atoms due to electron donation of Rh neighboring atoms acting as catalytically active sites for aerobic glucose oxidation.

  19. Improving the Glucose Meter Error Grid With the Taguchi Loss Function.

    PubMed

    Krouwer, Jan S

    2016-07-01

    Glucose meters often have similar performance when compared by error grid analysis. This is one reason that other statistics such as mean absolute relative deviation (MARD) are used to further differentiate performance. The problem with MARD is that too much information is lost. But additional information is available within the A zone of an error grid by using the Taguchi loss function. Applying the Taguchi loss function gives each glucose meter difference from reference a value ranging from 0 (no error) to 1 (error reaches the A zone limit). Values are averaged over all data which provides an indication of risk of an incorrect medical decision. This allows one to differentiate glucose meter performance for the common case where meters have a high percentage of values in the A zone and no values beyond the B zone. Examples are provided using simulated data. PMID:26719136

  20. A signal processing application for evaluating self-monitoring blood glucose strategies in a software agent model.

    PubMed

    Wang, Zhanle; Paranjape, Raman

    2015-07-01

    We propose the signal processing technique of calculating a cross-correlation function and an average deviation between the continuous blood glucose and the interpolation of limited blood glucose samples to evaluate blood glucose monitoring frequency in a self-aware patient software agent model. The diabetic patient software agent model [1] is a 24-h circadian, self-aware, stochastic model of a diabetic patient's blood glucose levels in a software agent environment. The purpose of this work is to apply a signal processing technique to assist patients and physicians in understanding the extent of a patient's illness using a limited number of blood glucose samples. A second purpose of this work is to determine an appropriate blood glucose monitoring frequency in order to have a minimum number of samples taken that still provide a good understanding of the patient's blood glucose levels. For society in general, the monitoring cost of diabetes is an extremely important issue, and these costs can vary tremendously depending on monitoring approaches and monitoring frequencies. Due to the cost and discomfort associated with blood glucose monitoring, today, patients expect monitoring frequencies specific to their health profile. The proposed method quantitatively assesses various monitoring protocols (from 6 times per day to 1 time per week) in nine predefined categories of patient agents in terms of risk factors of health status and age. Simulation results show that sampling 6 times per day is excessive, and not necessary for understanding the dynamics of the continuous signal in the experiments. In addition, patient agents in certain conditions only need to sample their blood glucose 1 time per week to have a good understanding of the characteristics of their blood glucose. Finally, an evaluation scenario is developed to visualize this concept, in which appropriate monitoring frequencies are shown based on the particular conditions of patient agents. This base line can

  1. The Effect of Exercise with or Without Metformin on Glucose Profiles in Type 2 Diabetes: A Pilot Study.

    PubMed

    Myette-Côté, Étienne; Terada, Tasuku; Boulé, Normand G

    2016-04-01

    The study's goals were 1) to confirm the previously observed increase in postprandial glucose levels immediately after exercise in people with type 2 diabetes who are being treated with metformin; 2) to determine how long the increased glucose persists; 3) to examine the effect of skipping a dose of metformin before or after exercise. We recruited 10 participants with type 2 diabetes who were taking metformin. They completed 4 experimental conditions in random order: 1) morning and evening metformin doses, without exercise (M-M); 2) morning and evening metformin doses, with exercise (M-Ex-M); 3) exercise with evening metformin dose only (Ex-M); and 4) morning metformin dose only, with exercise (M-Ex). Exercise consisted of walking for 50 minutes at a moderate intensity at 11 am on the first day of each condition. Glucose was measured for 72 hours using continuous glucose monitoring systems. Standardized breakfasts were provided for 3 days in each condition, and standardized lunches and dinners were provided on the first day. Compared to M-M, M-Ex-M increased the average 2-hour incremental postprandial area under the curve following the 5 standardized meals (p<0.01) but did not affect daily mean glucose or fasting glucose concentrations. M-Ex (p<0.05), but not Ex-M (p=0.08) increased mean glucose concentrations compared to M-Ex-M on day 1. There were no differences among the 3 exercise conditions for fasting or postprandial glucose concentrations. The addition of a bout of exercise to metformin led to an increase in postprandial glucose levels without affecting mean glucose concentrations. Removing a metformin dose before or after exercise did not attenuate this negative effect. PMID:26711719

  2. A glucose-centric perspective of hyperglycemia.

    PubMed

    Ramasarma, T; Rafi, M

    2016-02-01

    Digestion of food in the intestines converts the compacted storage carbohydrates, starch and glycogen, to glucose. After each meal, a flux of glucose (> 200 g) passes through the blood pool (4-6 g) in a short period of 2 h, keeping its concentration ideally in the range of 80-120 mg/100 mL. Tissue-specific glucose transporters (GLUTs) aid in the distribution of glucose to all tissues. The balance glucose after meeting the immediate energy needs is converted into glycogen and stored in liver (up to 100 g) and skeletal muscle (up to 300 g) for later use. High blood glucose gives the signal for increased release of insulin from pancreas. Insulin binds to insulin receptor on the plasma membrane and activates its autophosphorylation. This initiates the post-insulin-receptor signal cascade that accelerates synthesis of glycogen and triglyceride. Parallel control by phos-dephos and redox regulation of proteins exists for some of these steps. A major action of insulin is to inhibit gluconeogensis in the liver decreasing glucose output into blood. Cases with failed control of blood glucose have alarmingly increased since 1960 coinciding with changed life-styles and large scale food processing. Many of these turned out to be resistant to insulin, usually accompanied by dysfunctional glycogen storage. Glucose has an extended stay in blood at 8 mM and above and then indiscriminately adds on to surface protein-amino groups. Fructose in common sugar is 10-fold more active. This random glycation process interferes with the functions of many proteins (e.g., hemoglobin, eye lens proteins) and causes progressive damage to heart, kidneys, eyes and nerves. Some compounds are known to act as insulin mimics. Vanadium-peroxide complexes act at post-receptor level but are toxic. The fungus-derived 2,5-dihydroxybenzoquinone derivative is the first one known to act on the insulin receptor. The safe herbal products in use for centuries for glucose control have multiple active principles and

  3. Genetics Home Reference: glucose-galactose malabsorption

    MedlinePlus

    ... mutations in SGLT1 cause glucose-galactose malabsorption by trafficking defects. Biochim Biophys Acta. 1999 Feb 24;1453( ... Accessibility FOIA Viewers & Players U.S. Department of Health & Human Services National Institutes of Health National Library of ...

  4. Glucose loading and dehydration in the camel.

    PubMed

    Yagil, R; Berlyne, G M

    1977-05-01

    Five female bedouin camels were subjected to large infusions of glucose, both when water was readily available and following 10 days of water deprivation. When the camels were hydrated the extra glucose was readily given off in the urine with only a slight increase in blood levels. Following dehydration, the blood glucose levels increased greatly while the urinary excretion was limited. Dehydration led to decreased blood insulin levels, while glucose infusion led to increased levels. The data show that the acclimatization of the camel to dehydration is not only a question of long-term adaption to desert conditions but that even following acute nonphysiological stress, i.e., glucosuria, excess loss of body water was prevented. PMID:863833

  5. Pulmonary glucose transport in the fetal sheep.

    PubMed Central

    Barker, P M; Boyd, C A; Ramsden, C A; Strang, L B; Walters, D V

    1989-01-01

    1. In the chronically catheterized sheep fetus between 122 and 143 days gestation the concentration of D-glucose in lung liquid was very low (usually less than 0.01 mM, the lower limit of detection of the analytical method) whereas the mean plasma concentration was 0.19 mM (S.E.M. 0.4, n = 13). 2. When the lung liquid concentration of D-glucose was raised to 1.67-5.00 mM, rapid uptake was observed until the concentration had fallen to its preceding low level. The uptake showed saturation kinetics (Vmax = 2.29-8.78 mumol/min, increasing with gestation; mean Km = 0.14 +/- 0.02 mM, n = 11, no change with gestation). This active uptake of glucose was blocked by phloridzin (10(-4) M). It was associated with a decrease in lung liquid secretion rate from which a change in net sodium flux could be inferred of an order suggesting one-to-one glucose-sodium co-transport. 3. Radiolabelled 3-O-methyl-D-glucose (3-O-meG) - a monosaccharide which is transported but not metabolized - was taken up rapidly from lung liquid and this rapid uptake was inhibited by D-glucose with 50% inhibition at 0.35 mM (+/- 0.08, n = 9). It was also inhibited by phloridzin (10(-4) M). 4. Radiolabelled 2-deoxy-D-glucose - a monosaccharide which is not a substrate for sodium-coupled transport - was taken up only very slowly from lung liquid; the rate of uptake was appropriate for passive diffusional transport and it was unaffected by the addition of D-glucose or phloridzin to lung liquid. 5. Intravenous infusion of D-glucose caused no detectable increase in the concentration of glucose in lung liquid unless phloridzin was added, when a slow increase was observed. 6. In two experiments with active transport blocked by phloridzin in lung liquid (10(-4) M), the rate of entry of labelled 3-O-meG from plasma to lung liquid was measured during intravenous infusion of this tracer for 29 and 23 h. The rates of entry were similar to the rate of efflux of the tracer from lung liquid when uptake was blocked by

  6. Effects of fasting on plasma glucose and prolonged tracer measurement of hepatic glucose output in NIDDM

    SciTech Connect

    Glauber, H.; Wallace, P.; Brechtel, G.

    1987-10-01

    We studied the measurement of hepatic glucose output (HGO) with prolonged (3-/sup 3/H)glucose infusion in 14 patients with non-insulin-dependent diabetes mellitus (NIDDM). Over the course of 10.5 h, plasma glucose concentration fell with fasting by one-third, from 234 +/- 21 to 152 +/- 12 mg/dl, and HGO fell from 2.35 +/- 0.18 to 1.36 +/- 0.07 mg . kg-1 . min-1 (P less than .001). In the basal state, HGO and glucose were significantly correlated (r = 0.68, P = .03), and in individual patients, HGO and glucose were closely correlated as both fell with fasting (mean r = 0.79, P less than .01). Plasma (3-/sup 3/H)glucose radioactivity approached a steady state only 5-6 h after initiation of the primed continuous infusion, and a 20% overestimate of HGO was demonstrated by not allowing sufficient time for tracer labeling of the glucose pool. Assumption of steady-state instead of non-steady-state kinetics in using Steele's equations to calculate glucose turnover resulted in a 9-24% overestimate of HGO. Stimulation of glycogenolysis by glucagon injection demonstrated no incorporation of (3-/sup 3/H)glucose in hepatic glycogen during the prolonged tracer infusion. In a separate study, plasma glucose was maintained at fasting levels (207 +/- 17 mg/dl) for 8 h with the glucose-clamp technique. Total glucose turnover rates remained constant during this prolonged tracer infusion. However, HGO fell to 30% of the basal value simply by maintaining fasting hyperglycemia in the presence of basal insulin levels.

  7. Acid hydrolysis of cellulose to yield glucose

    DOEpatents

    Tsao, George T.; Ladisch, Michael R.; Bose, Arindam

    1979-01-01

    A process to yield glucose from cellulose through acid hydrolysis. Cellulose is recovered from cellulosic materials, preferably by pretreating the cellulosic materials by dissolving the cellulosic materials in Cadoxen or a chelating metal caustic swelling solvent and then precipitating the cellulose therefrom. Hydrolysis is accomplished using an acid, preferably dilute sulfuric acid, and the glucose is yielded substantially without side products. Lignin may be removed either before or after hydrolysis.

  8. Nonlinear optical measurements of glucose concentration

    NASA Astrophysics Data System (ADS)

    Yakovlev, V. V.

    2008-02-01

    Diabetes mellitus is a metabolic disease that currently affects about 7% of the US population, or roughly about 20 million people. Effectively controlling diabetes requires regular measurements of the blood sugar levels to ensure the one time insulin injection when the concentration of glucose reaches a critical level. In this report, nonlinear Raman microspectroscopy is demonstrated to be a promising new way of continuous and noninvasive way of measuring the glucose concentration.

  9. Arithmetic averaging: A versatile technique for smoothing and trend removal

    SciTech Connect

    Clark, E.L.

    1993-12-31

    Arithmetic averaging is simple, stable, and can be very effective in attenuating the undesirable components in a complex signal, thereby providing smoothing or trend removal. An arithmetic average is easy to calculate. However, the resulting modifications to the data, in both the time and frequency domains, are not well understood by many experimentalists. This paper discusses the following aspects of averaging: (1) types of averages -- simple, cumulative, and moving; and (2) time and frequency domain effects of the averaging process.

  10. Effect of insulin on the distribution and disposition of glucose in man.

    PubMed Central

    Ferrannini, E; Smith, J D; Cobelli, C; Toffolo, G; Pilo, A; DeFronzo, R A

    1985-01-01

    Understanding the influence of insulin on glucose turnover is the key to interpreting a great number of metabolic situations. Little is known, however, about insulin's effect on the distribution and exchange of glucose in body pools. We developed a physiological compartmental model to describe the kinetics of plasma glucose in normal man in the basal state and under steady-state conditions of euglycemic hyperinsulinemia. A bolus of [3-3H]glucose was rapidly injected into a peripheral vein in six healthy volunteers, and the time-course of plasma radioactivity was monitored at very short time intervals for 150 min. A 1-mU/min kg insulin clamp was then started, thereby raising plasma insulin levels to a high physiological plateau (approximately 100 microU/ml). After 90 min of stable euglycemic hyperinsulinemia, a second bolus of [3-3H]glucose was given, and plasma radioactivity was again sampled frequently for 90 min more while the clamp was continued. Three exponential components were clearly identified in the plasma disappearance curves of tracer glucose of each subject studied, both before and after insulin. Based on stringent statistical criteria, the data in the basal state were fitted to a three-compartment model. The compartment of initial distribution was identical to the plasma pool (40 +/- 3 mg/kg); the other two compartments had similar size (91 +/- 12 and 96 +/- 9 mg/kg), but the former was in rapid exchange with plasma (at an average rate of 1.09 +/- 0.15 min-1), whereas the latter exchanged 10 times more slowly (0.12 +/- 0.01 min-1). The basal rate of glucose turnover averaged 2.15 +/- 0.12 mg/min kg, and the total distribution volume of glucose in the postabsorptive state was 26 +/- 1% of body weight. In view of current physiological information, it was assumed that the more rapidly exchanging pool represented the insulin-independent tissues of the body, while the slowly exchanging pool was assimilated to the insulin-dependent tissues. Insulin

  11. Glucose as substrate and signal in priming: Results from experiments with non-metabolizable glucose analogues

    NASA Astrophysics Data System (ADS)

    Mason-Jones, Kyle; Kuzyakov, Yakov

    2016-04-01

    Priming of soil organic matter remains the subject of intense research, but a mechanistic explanation of the phenomenon remains to be demonstrated. This is largely due to the multiple effects of easily available carbon on the soil microbial community, and the challenge of separating these influences from one another. Several glucose analogues can be taken up by microbial glucose transporters and have similar regulatory effects on metabolism. These substances are, however, not easily catabolized by the common glycolytic pathway, limiting their energy value. Therefore, they can be used to distinguish between the action of glucose as a metabolic signal, and its influence as an energy source. We incubated an agricultural Haplic Luvisol under controlled conditions for 24 days after addition of: 1) glucose, 2) 3-O-methyl-glucose, 3) α-methylglucoside or 4) 2-deoxyglucose, at three concentration levels, along with a control treatment of water addition. CO2 efflux from soil was monitored by trapping evolved CO2 in NaOH and back-titration with HCl. On the first day after amendment, CO2 efflux from soil increased strongly for glucose and much less for the analogues, relative to the control. Only glucose caused a peak in efflux within the first two days. Peak mineralization of 2-deoxyglucose and α-methylglucoside was delayed until the third day, while CO2 from 3-O-methyl-glucose increased gradually, with a peak delayed by approximately a week. For glucose, the immediate increase in respiration was strongly dependent on the amount of glucose added, but this was not the case for the analogues, indicating that the catabolic potential for these substances was saturated. This is consistent with only a small part of the microbial community being capable of utilizing these carbon sources. In a subsequent experiment, 14C-labelled glucose or 14C-labelled 3-O-methyl-glucose were added to the same soil, enabling quantification of the priming effect. For 3-O-methyl-glucose, priming was

  12. Sodium coupled glucose co-transporters contribute to hypothalamic glucose-sensing

    PubMed Central

    O'Malley, Dervla; Reimann, Frank; Simpson, Anna K; Gribble, Fiona M

    2007-01-01

    Specialised neurons within the hypothalamus have the ability to sense and respond to changes in ambient glucose concentrations. We investigated the mechanisms underlying glucose-triggered activity in glucose-excited (GE) neurons, using primary cultures of rat hypothalamic neurons monitored by fluorescence calcium imaging. 35% (738/2139) of neurons were excited by increasing glucose from 3 to 15mM, but only 9% (6/64) of these GE neurons were activated by tolbutamide, suggesting the involvement of a KATP channel-independent mechanism. α-Methylglucopyranoside (αMDG, 12mM), a non-metabolisable substrate of sodium glucose co-transporters (SGLTs), mimicked the effect of high glucose in 67% of GE neurons, and both glucose and αMDG-triggered excitation were blocked by Na+ removal or by the SGLT inhibitor, phloridzin (100nM). In the presence of 0.5mM glucose and tolbutamide, responses could also be triggered by 3.5mM αMDG, supporting a role for an SGLT-associated mechanism at low as well as high substrate concentrations. By RT-PCR, we detected SGLT1, SGLT3a, SGLT3b in both cultured neurons and adult rat hypothalamus. Our findings suggest a novel role for SGLTs in glucose-sensing by hypothalamic GE neurons. PMID:17130483

  13. A Glucose Sensing Contact Lens: A Non-Invasive Technique for Continuous Physiological Glucose Monitoring

    PubMed Central

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2016-01-01

    We have developed a range of glucose sensing contact lenses, using a daily, disposable contact lens embedded with newly developed boronic acid containing fluorophores. Our findings show that our approach may be suitable for the continuous monitoring of tear glucose levels in the range 50–1000 μM, which typically track blood glucose levels, which are ≈5–10 fold higher. Our non-invasive approach may well offer an alternative solution to current invasive glucose monitoring techniques for diabetes, such as “finger pricking.” PMID:27340364

  14. Regulation and biological function of a flagellar glucose transporter in Leishmania mexicana: a potential glucose sensor.

    PubMed

    Rodriguez-Contreras, Dayana; Aslan, Hamide; Feng, Xiuhong; Tran, Khoa; Yates, Phillip A; Kamhawi, Shaden; Landfear, Scott M

    2015-01-01

    In Leishmania mexicana parasites, a unique glucose transporter, LmxGT1, is selectively targeted to the flagellar membrane, suggesting a possible sensory role that is often associated with ciliary membrane proteins. Expression of LmxGT1 is down-regulated ∼20-fold by increasing cell density but is up-regulated ∼50-fold by depleting glucose from the medium, and the permease is strongly down-regulated when flagellated insect-stage promastigotes invade mammalian macrophages and transform into intracellular amastigotes. Regulation of LmxGT1 expression by glucose and during the lifecycle operates at the level of protein stability. Significantly, a ∆lmxgt1 null mutant, grown in abundant glucose, undergoes catastrophic loss of viability when parasites deplete glucose from the medium, a property not exhibited by wild-type or add-back lines. These results suggest that LmxGT1 may function as a glucose sensor that allows parasites to enter the stationary phase when they deplete glucose and that in the absence of this sensor, parasites do not maintain viability when they run out of glucose. However, alternate roles for LmxGT1 in monitoring glucose availability are considered. The absence of known sensory receptors with defined ligands and biologic functions in Leishmania and related kinetoplastid parasites underscores the potential significance of these observations. PMID:25300620

  15. Wireless glucose monitoring watch enabled by an implantable self-sustaining glucose sensor system

    NASA Astrophysics Data System (ADS)

    Rai, Pratyush; Varadan, Vijay K.

    2012-10-01

    Implantable glucose sensors can measure real time blood glucose as compared to conventional techniques involving drawing blood samples and in-vitro processing. An implantable sensor requires energy source for operation with wire inout provision for power and sending signals. Implants capable of generation-transmission of sensory signals, with minimal or no power requirement, can solve this problem. An implantable nanosensor design has been presented here, which can passively detect glucose concentration in blood stream and transmit data to a wearable receiver-recorder system or a watch. The glucose sensitive component is a redox pair of electrodes that generates voltage proportional to glucose concentration. The bio-electrode, made of carbon nanotubes-enzyme nanocluster, has been investigated because of the large surface area for taping electrical signals. This glucose sensor can charge a capacitor, which can be a part of a LCR resonance/inductive coupling based radio frequency (RF) sensor telemetry. Such a system can measure change in glucose concentration by the induced frequency shift in the LCR circuit. A simultaneous power transmission and signal transmission can be achieved by employing two separate LCR oscillating loops, one for each operation. The corresponding coupling LCR circuits can be housed in the wearable receiving watch unit. The data logged in this glucose monitoring watch can be instrumental in managing blood glucose as trigger for an insulin dispensing payload worn on person or implanted.

  16. Noninvasive Continuous Monitoring of Tear Glucose Using Glucose-Sensing Contact Lenses.

    PubMed

    Ascaso, Francisco J; Huerva, Valentín

    2016-04-01

    : The incidence of diabetes mellitus is dramatically increasing in the developed countries. Tight control of blood glucose concentration is crucial to diabetic patients to prevent microvascular complications. Self-monitoring of blood glucose is widely used for controlling blood glucose levels and usually performed by an invasive test using a portable glucometer. Many technologies have been developed over the past decades with the purpose of obtaining a continuous physiological glycemic monitoring. A contact lens is the ideal vehicle for continuous tear glucose monitoring of glucose concentration in tear film. There are several research groups that are working in the development of contact lenses with embedded biosensors for continuously and noninvasively monitoring tear glucose levels. Although numerous aspects must be improved, contact lens technology is one step closer to helping diabetic subjects better manage their condition, and these contact lenses will be able to measure the level of glucose in the wearer's tears and communicate the information to a mobile phone or computer. This article reviews studies on ocular glucose and its monitoring methods as well as the attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors. PMID:26390345

  17. Okara ameliorates glucose tolerance in GK rats

    PubMed Central

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-01-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  18. Okara ameliorates glucose tolerance in GK rats.

    PubMed

    Hosokawa, Masaya; Katsukawa, Michiko; Tanaka, Hiroshi; Fukuda, Hitomi; Okuno, Sonomi; Tsuda, Kinsuke; Iritani, Nobuko

    2016-05-01

    Okara, a food by-product from the production of tofu and soy milk, is rich in three beneficial components: insoluble dietary fiber, β-conglycinin, and isoflavones. Although isoflavones and β-conglycinin have recently been shown to improve glucose tolerance, the effects of okara have not yet been elucidated. Therefore, we herein investigated the effects of okara on glucose tolerance in Goto-Kakizaki (GK) rats, a representative animal model of Japanese type 2 diabetes. Male GK rats were fed a 10% lard diet with or without 5% dry okara powder for 2 weeks and an oral glucose tolerance test was performed. Rats were then fed each diet for another week and sacrificed. The expression of genes that are the master regulators of glucose metabolism in adipose tissue was subsequently examined. No significant differences were observed in body weight gain or food intake between the two groups of GK rats. In the oral glucose tolerance test, increases in plasma glucose levels were suppressed by the okara diet. The mRNA expression levels of PPARγ, adiponectin, and GLUT4, which up-regulate the effects of insulin, were increased in epididymal adipose tissue by the okara diet. These results suggest that okara provides a useful means for treating type 2 diabetes. PMID:27257347

  19. Glucose determination with fiber optic spectrometers

    NASA Astrophysics Data System (ADS)

    Starke, Eva; Kemper, Ulf; Barschdorff, Dieter

    1999-05-01

    Noninvasive blood glucose monitoring is the aim of research activities concerning the detection of small glucose concentrations dissolved in water and blood plasma. One approach for these measurements is the exploitation of absorption bands in the near infrared. However, the strong absorption of water represents a major difficulty. Transmission measurements of glucose dissolved in water and in blood plasma in the spectral region around 1600 nm with one- beam spectrometers and a FT-IR spectrometer are discussed. The evaluation of the data is carried out using a two-layer Lambert-Beer model and neural networks. In order to reduce the dimensions of a potential measuring device, an integrated acousto-optic tunable filter (AOTF) with an Erbium doped fiber amplifier as a radiation source is used. The fiber optic components are examined concerning their suitability. The smallest concentrations of glucose dissolved in water that can be separated are approximately 50 mg/dl. In the range of 50 mg/dl to 1000 mg/dl a correlation coefficient of 0.98 between real and estimated glucose concentrations is achieved using neural networks. In blood plasma so far glucose concentrations of about 100 mg/dl can be distinguished with good accuracy.

  20. Statins impair glucose uptake in human cells

    PubMed Central

    Nowis, Dominika; Malenda, Agata; Furs, Karolina; Oleszczak, Bozenna; Sadowski, Radoslaw; Chlebowska, Justyna; Firczuk, Malgorzata; Bujnicki, Janusz M; Staruch, Adam D; Zagozdzon, Radoslaw; Glodkowska-Mrowka, Eliza; Szablewski, Leszek; Golab, Jakub

    2014-01-01

    Objective Considering the increasing number of clinical observations indicating hyperglycemic effects of statins, this study was designed to measure the influence of statins on the uptake of glucose analogs by human cells derived from liver, adipose tissue, and skeletal muscle. Design Flow cytometry and scintillation counting were used to measure the uptake of fluorescently labeled or tritiated glucose analogs by differentiated visceral preadipocytes, skeletal muscle cells, skeletal muscle myoblasts, and contact-inhibited human hepatocellular carcinoma cells. A bioinformatics approach was used to predict the structure of human glucose transporter 1 (GLUT1) and to identify the presence of putative cholesterol-binding (cholesterol recognition/interaction amino acid consensus (CRAC)) motifs within this transporter. Mutagenesis of CRAC motifs in SLC2A1 gene and limited proteolysis of membrane GLUT1 were used to determine the molecular effects of statins. Results Statins significantly inhibit the uptake of glucose analogs in all cell types. Similar effects are induced by methyl-β-cyclodextrin, which removes membrane cholesterol. Statin effects can be rescued by addition of mevalonic acid, or supplementation with exogenous cholesterol. Limited proteolysis of GLUT1 and mutagenesis of CRAC motifs revealed that statins induce conformational changes in GLUTs. Conclusions Statins impair glucose uptake by cells involved in regulation of glucose homeostasis by inducing cholesterol-dependent conformational changes in GLUTs. This molecular mechanism might explain hyperglycemic effects of statins observed in clinical trials. PMID:25452863

  1. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Urinary glucose (nonquantitative) test system. 862... Test Systems § 862.1340 Urinary glucose (nonquantitative) test system. (a) Identification. A urinary glucose (nonquantitative) test system is a device intended to measure glucosuria (glucose in...

  2. 21 CFR 862.1340 - Urinary glucose (nonquantitative) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urinary glucose (nonquantitative) test system. 862... Test Systems § 862.1340 Urinary glucose (nonquantitative) test system. (a) Identification. A urinary glucose (nonquantitative) test system is a device intended to measure glucosuria (glucose in...

  3. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... HUMAN CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which...

  4. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... HUMAN CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which...

  5. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... HUMAN CONSUMPTION SWEETENERS AND TABLE SIRUPS Requirements for Specific Standardized Sweeteners and Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which...

  6. Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly

    PubMed Central

    Convit, Antonio; Wolf, Oliver T.; Tarshish, Chaim; de Leon, Mony J.

    2003-01-01

    Poor glucose tolerance and memory deficits, short of dementia, often accompanies aging. The purpose of this study was to ascertain whether, among nondiabetic, nondemented middle-aged and elderly individuals, poorer glucose tolerance is associated with reductions in memory performance and smaller hippocampal volumes. We studied 30 subjects who were evaluated consecutively in an outpatient research setting. The composition of the participant group was 57% female and 68.6 ± 7.5 years of age; the participants had an average education of 16.2 ± 2.3 years, a score on the Mini Mental State Examination of 28.6 ± 1.5, a glycosylated hemoglobin (HbA1C) of 5.88 ± 0.74%, and a body mass index of 24.9 ± 4.1 kg/m2. Glucose tolerance was measured by an i.v. glucose tolerance test. Memory was tested by using the Wechsler Paragraphs recall tests at the time of administering the i.v. glucose tolerance test. The hippocampus and other brain volumes were measured by using validated methods on standardized MRIs. Decreased peripheral glucose regulation was associated with decreased general cognitive performance, memory impairments, and atrophy of the hippocampus, a brain area that is key for learning and memory. These associations were independent of age and Mini Mental State Examination scores. Therefore, these data suggest that metabolic substrate delivery may influence hippocampal structure and function. This observation may bring to light a mechanism for aging brain injury that may have substantial medical impact, given the large number of elderly individuals with impaired glucose metabolism. PMID:12571363

  7. A novel multicomponent redox polymer nanobead based high performance non-enzymatic glucose sensor.

    PubMed

    Gopalan, A I; Muthuchamy, N; Komathi, S; Lee, K-P

    2016-10-15

    The fabrication of a highly sensitive electrochemical non-enzymatic glucose sensor based on copper nanoparticles (Cu NPs) dispersed in a graphene (G)-ferrocene (Fc) redox polymer multicomponent nanobead (MCNB) is reported. The preparation of MCNB involves three major steps, namely: i) the preparation of a poly(aniline-co-anthranilic acid)-grafted graphene (G-PANI(COOH), ii) the covalent linking of ferrocene to G-PANI(COOH) via a polyethylene imine (PEI), and iii) the electrodeposition of Cu NPs. The prepared MCNB (designated as G-PANI(COOH)-PEI-Fc/Cu-MCNB), contains a conductive G-PANI(COOH), electron mediating Fc, and electrocatalytic Cu NPs that make it suitable for ultrasensitive non-enzymatic electrochemical sensing. The morphology, structure, and electro activities of MCNB were characterized. Electrochemical measurements showed that the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE modified electrode exhibited good electrocatalytic behavior towards the detection of glucose in a wide linear range (0.50 to 15mM), with a low detection limit (0.16mM) and high sensitivity (14.3µAmM(-1)cm(-2)). Besides, the G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE sensor electrode did not respond to the presence of electroactive interferrants (such as uric acid, ascorbic acid, and dopamine) and saccharides or carbohydrates (fructose, lactose, d-isoascorbic acid, and dextrin), demonstrating its selectivity towards glucose. The fabricated NEG sensor exhibited high precision for measuring glucose in serum samples, with an average RSD of 4.3% and results comparable to those of commercial glucose test strips. This reliability and stability of glucose sensing indicates that G-PANI(COOH)-PEI-Fc/Cu-MCNB/GCE would be a promising material for the non-enzymatic detection of glucose in physiological fluids. PMID:26584775

  8. Quantitative PET imaging of bone marrow glucose metabolic response to hematopoietic cytokines

    SciTech Connect

    Yao, W.J.; Hoh, C.K.; Hawkins, R.A.

    1995-05-01

    To evaluate the effects of hematopoietic cytokines on bone marrow glucose metabolism noninvasively, the authors studied serial quantitative FDG-PET images in 18 patients with metastic melanoma and normal bone marrow who were undergoing granulocyte-macrophage colony-stimulating factor (GMCSF) or macrophage colony-stimulating factor (MCSF) administration as an adjunct to chemotherapy. All patients received 14 days of cytokine therapy in three groups; four patients were treated with GMCSF (5 {mu}g/kg/d SQ), eight patients were treated with GMCSF (5 {mu}g/kg/d SQ) and monoclonal antibody (MAbR24) and six patients were treated with MCSF (80 {mu}g/kg/d IVCI) and MAbR24. Dynamic FDG-PET imaging was performed over the lower thoracic or upper lumbar spine at four time points in each patient. Baseline glucose metabolic rates in the bone marrow of these three groups of patients were similar (5.2 {plus_minus} 0.7, 4.4 {plus_minus} 0.8 and 4.8 {plus_minus} 1.2 {mu}g/min/g as mean value and standard deviations, respectively). In both GMCSF and GMCSF + R24 groups, rapid increases in bone marrow glucose metabolic rates were observed during therapy. After GMCSF was stopped, bone marrow glucose metabolic rates rapdily decreased in both groups. The glucose metabolic response in these two groups was not significantly different by pooled t-statistics (p = 0.105). In the MCSF + R24 group, the increase of glucose metabolic rate on Days 3 and 10 was 35% and 31% above baseline on the average, but was not significant. The results support the use of parametric FDG-PET imaging for noninvasive quantitation of bone marrow glucose metabolic changes to hematopoietic cytokines in vivo. 32 refs., 2 figs., 2 tabs.

  9. Blood glucose levels and cortical thinning in cognitively normal, middle-aged adults.

    PubMed

    Wennberg, Alexandra M V; Spira, Adam P; Pettigrew, Corinne; Soldan, Anja; Zipunnikov, Vadim; Rebok, George W; Roses, Allen D; Lutz, Michael W; Miller, Michael M; Thambisetty, Madhav; Albert, Marilyn S

    2016-06-15

    Type II diabetes mellitus (DM) increases risk for cognitive decline and is associated with brain atrophy in older demented and non-demented individuals. We investigated (1) the cross-sectional association between fasting blood glucose level and cortical thickness in a sample of largely middle-aged, cognitively normal adults, and (2) whether these associations were modified by genes associated with both lipid processing and dementia. To explore possible modifications by genetic status, we investigated the interaction between blood glucose levels and the apolipoprotein E (APOE) ε4 allele and the translocase of the outer mitochondrial membrane (TOMM) 40 '523 genotype on cortical thickness. Cortical thickness measures were based on mean thickness in a subset of a priori-selected brain regions hypothesized to be vulnerable to atrophy in Alzheimer's disease (AD) (i.e., 'AD vulnerable regions'). Participants included 233 cognitively normal subjects in the BIOCARD study who had a measure of fasting blood glucose and cortical thickness measures, quantified by magnetic resonance imaging (MRI) scans. After adjustment for age, sex, race, education, depression, and medical conditions, higher blood glucose was associated with thinner parahippocampal gyri (B=-0.002; 95% CI -0.004, -0.0004) and temporal pole (B=-0.002; 95% CI -0.004, -0.0001), as well as reduced average thickness over AD vulnerable regions (B=-0.001; 95% CI -0.002, -0.0001). There was no evidence for greater cortical thinning in ε4 carriers of the APOE gene or in APOE ε3/3 individuals carrying the TOMM40 VL/VL genotypes. When individuals with glucose levels in the diabetic range (≥126mg/dL), were excluded from the analysis, the associations between glucose levels and cortical thickness were no longer significant. These findings suggest that glucose levels in the diabetic range are associated with reduced cortical thickness in AD vulnerable regions as early as middle age. PMID:27206882

  10. Fermentation performance and structure characteristics of xanthan produced by Xanthomonas campestris with a glucose/xylose mixture.

    PubMed

    Zhang, Zhiguo; Chen, Hongzhang

    2010-03-01

    The ability of Xanthomonas campestris to convert glucose and xylose to xanthan and the structure of xanthan derived from the glucose/xylose mixture media are important when the lignocelluloses hydrolysate was used in xanthan production. In this paper, the features related to xanthan fermentation in the glucose/xylose mixture media and the structures of xanthan derived from the mixture media were studied. Glucose was the preferred carbon source to produce xanthan while xylose was also utilized with a very low consumption rate. When the fraction of glucose decreased from 100% to 25%, the glucose consumption rate and xanthan production rate reduced from 0.44 g L(-1) h(-1) to 0.25 g L(-1) h(-1) and 0.21 g L(-1) h(-1) to 0.04 g L(-1) h(-1) respectively while xylose was consumed at a very stable rate (0.053-0.060 g L(-1) h(-1)). On the other hand, when the xylose fraction increased from 0% to 50%, pyruvate and acetate content of xanthan increased from 2.43% to 3.78% and 2.55% to 7.05%. The existence of xylose also led to higher average molecular weight. Therefore, it could be concluded that xylose was not efficiently utilized by X. campestris to produce xanthan. The concentration of glucose rather than the total sugar was the main factor to determine the xanthan production. But xylose was helpful to improve the quality of xanthan. PMID:19459070

  11. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery

    PubMed Central

    Yu, Jicheng; Zhang, Yuqi; Ye, Yanqi; DiSanto, Rocco; Sun, Wujin; Ranson, Davis; Ligler, Frances S.; Buse, John B.; Gu, Zhen

    2015-01-01

    A glucose-responsive “closed-loop” insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch (“smart insulin patch”) containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GOx) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy. PMID:26100900

  12. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery.

    PubMed

    Yu, Jicheng; Zhang, Yuqi; Ye, Yanqi; DiSanto, Rocco; Sun, Wujin; Ranson, Davis; Ligler, Frances S; Buse, John B; Gu, Zhen

    2015-07-01

    A glucose-responsive "closed-loop" insulin delivery system mimicking the function of pancreatic cells has tremendous potential to improve quality of life and health in diabetics. Here, we report a novel glucose-responsive insulin delivery device using a painless microneedle-array patch ("smart insulin patch") containing glucose-responsive vesicles (GRVs; with an average diameter of 118 nm), which are loaded with insulin and glucose oxidase (GOx) enzyme. The GRVs are self-assembled from hypoxia-sensitive hyaluronic acid (HS-HA) conjugated with 2-nitroimidazole (NI), a hydrophobic component that can be converted to hydrophilic 2-aminoimidazoles through bioreduction under hypoxic conditions. The local hypoxic microenvironment caused by the enzymatic oxidation of glucose in the hyperglycemic state promotes the reduction of HS-HA, which rapidly triggers the dissociation of vesicles and subsequent release of insulin. The smart insulin patch effectively regulated the blood glucose in a mouse model of chemically induced type 1 diabetes. The described work is the first demonstration, to our knowledge, of a synthetic glucose-responsive device using a hypoxia trigger for regulation of insulin release. The faster responsiveness of this approach holds promise in avoiding hyperglycemia and hypoglycemia if translated for human therapy. PMID:26100900

  13. Scaling of average weighted shortest path and average receiving time on weighted expanded Koch networks

    NASA Astrophysics Data System (ADS)

    Wu, Zikai; Hou, Baoyu; Zhang, Hongjuan; Jin, Feng

    2014-04-01

    Deterministic network models have been attractive media for discussing dynamical processes' dependence on network structural features. On the other hand, the heterogeneity of weights affect dynamical processes taking place on networks. In this paper, we present a family of weighted expanded Koch networks based on Koch networks. They originate from a r-polygon, and each node of current generation produces m r-polygons including the node and whose weighted edges are scaled by factor w in subsequent evolutionary step. We derive closed-form expressions for average weighted shortest path length (AWSP). In large network, AWSP stays bounded with network order growing (0 < w < 1). Then, we focus on a special random walks and trapping issue on the networks. In more detail, we calculate exactly the average receiving time (ART). ART exhibits a sub-linear dependence on network order (0 < w < 1), which implies that nontrivial weighted expanded Koch networks are more efficient than un-weighted expanded Koch networks in receiving information. Besides, efficiency of receiving information at hub nodes is also dependent on parameters m and r. These findings may pave the way for controlling information transportation on general weighted networks.

  14. Abomasal amino acid infusion in postpartum dairy cows: Effect on whole-body, splanchnic, and mammary glucose metabolism.

    PubMed

    Galindo, C; Larsen, M; Ouellet, D R; Maxin, G; Pellerin, D; Lapierre, H

    2015-11-01

    Nine Holstein cows fitted with rumen cannulas and indwelling catheters in splanchnic blood vessels were used to study the effects of supplementing AA on milk lactose secretion, whole-body rate of appearance (WB-Ra) of glucose, and tissue metabolism of glucose, lactate, glycerol, and β-OH-butyrate (BHBA) in postpartum dairy cows according to a generalized randomized incomplete block design with repeated measures in time. At calving, cows were blocked according to parity (second and third or greater) and were allocated to 2 treatments: abomasal infusion of water (n=4) or abomasal infusion of free AA with casein profile (AA-CN; n=5) in addition to the same basal diet. The AA-CN infusion started with half the maximal dose at 1 d in milk (DIM) and then steadily decreased from 791 to 226 g/d from DIM 2 to 29 to cover the estimated essential AA deficit. On DIM 5, 15, and 29, D[6,6-(2)H2]-glucose (23.7 mmol/h) was infused into a jugular vein for 5h, and 6 blood samples were taken from arterial, portal, hepatic, and mammary sources at 45-min intervals, starting 1h after the initiation of the D[6,6-(2)H2]glucose infusion. Trans-organ fluxes were calculated as veno-arterial differences times plasma flow (splanchnic: downstream dilution of deacetylated para-aminohippurate; mammary: Fick principle using Phe+Tyr). Energy-corrected milk and lactose yields increased on average with AA-CN by 6.4 kg/d and 353 g/d, respectively, with no DIM × treatment interaction. Despite increased AA supply and increased demand for lactose secretion with AA-CN, net hepatic release of glucose remained unchanged, but WB-Ra of glucose tended to increase with AA-CN. Portal true flux of glucose increased with AA-CN and represented, on average, 17% of WB-Ra. Splanchnic true flux of glucose was unaltered by treatments and was numerically equivalent to WB-Ra, averaging 729 and 741 mmol/h, respectively. Mammary glucose utilization increased with AA-CN infusion, averaging 78% of WB-Ra, and increased

  15. Glucose Variability: Timing, Risk Analysis, and Relationship to Hypoglycemia in Diabetes.

    PubMed

    Kovatchev, Boris; Cobelli, Claudio

    2016-04-01

    Glucose control, glucose variability (GV), and risk for hypoglycemia are intimately related, and it is now evident that GV is important in both the physiology and pathophysiology of diabetes. However, its quantitative assessment is complex because blood glucose (BG) fluctuations are characterized by both amplitude and timing. Additional numerical complications arise from the asymmetry of the BG scale. In this Perspective, we focus on the acute manifestations of GV, particularly on hypoglycemia, and review measures assessing the amplitude of GV from routine self-monitored BG data, as well as its timing from continuous glucose monitoring (CGM) data. With availability of CGM, the latter is not only possible but also a requirement-we can now assess rapid glucose fluctuations in real time and relate their speed and magnitude to clinically relevant outcomes. Our primary message is that diabetes control is all about optimization and balance between two key markers-frequency of hypoglycemia and HbA1c reflecting average BG and primarily driven by the extent of hyperglycemia. GV is a primary barrier to this optimization, including to automated technologies such as the "artificial pancreas." Thus, it is time to standardize GV measurement and thereby streamline the assessment of its two most important components-amplitude and timing. PMID:27208366

  16. Accuracy evaluation of blood glucose monitoring systems in children on overnight closed-loop control.

    PubMed

    DeSalvo, Daniel J; Shanmugham, Satya; Ly, Trang T; Wilson, Darrell M; Buckingham, Bruce A

    2014-09-01

    This pilot study evaluated the difference in accuracy between the Bayer Contour® Next (CN) and HemoCue® (HC) glucose monitoring systems in children with type 1 diabetes participating in overnight closed-loop studies. Subjects aged 10-18 years old were admitted to a clinical research center and glucose values were obtained every 30 minutes overnight. Glucose values were measured using whole blood samples for CN and HC readings and results were compared to Yellow Springs Instrument (YSI) reference values obtained with plasma from the same sample. System accuracy was compared using mean absolute relative difference (MARD) and International Organization for Standardization (ISO) accuracy standards. A total of 28 subjects were enrolled in the study. Glucose measurements were evaluated at 457 time points. CN performed better than HC with an average MARD of 3.13% compared to 10.73% for HC (P < .001). With a limited sample size, CN met ISO criteria (2003 and 2013) at all glucose ranges while HC did not. CN performed very well, and would make an excellent meter for future closed-loop studies outside of a research center. PMID:24876427

  17. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    SciTech Connect

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.

  18. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    DOE PAGESBeta

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; et al

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less

  19. Is There a Relationship between Mean Blood Glucose and Glycated Hemoglobin?

    PubMed Central

    Makris, Konstantinos; Spanou, Loukia

    2011-01-01

    Measurement of hemoglobin A1c (HbA1c) is considered the gold standard for monitoring chronic glycemia of diabetes patients. Hemoglobin A1c indicates an average of blood glucose levels over the past 3 months. Its close association with the risk for the development of long-term complications is well established. However, HbA1c does not inform patients about blood glucose values on a daily basis; therefore, frequent measurements of blood glucose levels are necessary for the day-to-day management of diabetes. Clinicians understand what HbA1c means and how it relates to glucose, but this is not the case with patients. Therefore, the translation of the HbA1c results into something more familiar to patients seemed a necessity. The scope of this article is to review the literature to search for enough scientific evidence to support the idea of a close relationship between HbA1c and mean blood glucose (MBG), and to justify the translation of HbA1c into something that reflects the MBG. Most studies confirm a close relationship between HbA1c and MBG, although different studies result in different linear equations. Factors affecting this relationship may limit the usefulness and applicability of a unique mathematical equation to all diabetes populations. PMID:22226280

  20. Insulin Control of Blood Glucose and GLUT4 Expression in the Skeletal Muscle of Septic Rats

    PubMed Central

    Lu, GP; Cui, P; Cheng, Y; Lu, ZJ; Zhang, LE; Kissoon, N

    2015-01-01

    ABSTRACT Background: Insulin resistance is common in septic patients. The level at which the serum glucose should be maintained using insulin infusions for optimal utilization by skeletal muscles is not yet established. Objective: The objective of the present study was to compare glucose transporter 4 (GLUT4) mRNA and GLUT4 expression and glucose utilization at the recommended glucose levels of 6–8 mmol/L (110-140 mg/dL) and 8–10 mmol/L (140–180 mg/dL) in septic rats. Subjects and Methods: This was a prospective randomized study using 44 Sprague-Dawley rats (260– 330 g). Rats were anaesthetized with gaseous diethyl ether. Catheters were implanted into the jugular vein and artery. Following a laparotomy, rats in the experimental group (n = 36) were rendered septic by standard caecal ligation and puncture (CLP) and intraperitoneal lipopolysaccharide (LPS) infusion (O111:[B4], 1 mg/kg). Control animals (n = 8) underwent laparotomy, but no caecal ligation or puncture and no LPS injection. Four experimental groups were studied: sham-operated control, sepsis treated with fluid maintenance only, sepsis treated with fluid and insulin infusion controlling blood glucose concentration at 6–8 mmol/L and sepsis treated with fluid and insulin infusion controlling blood glucose concentration at 8–10 mmol/L. Hyperinsulinaemic-euglycaemic clamp experiment was done before fluid maintenance and insulin treatment to calculate average glucose infusion rate. Results: All septic rats were markedly hyperglycaemic compared with sham-operated controls two hours after operation. Glucose infusion rate during hyperinsulinaemic-euglycaemic clamp experiment was slower in septic rats, suggesting that they were insulin resistant. At the 12th and 24th hour, skeletal muscle was taken to observe pathological change and analyse the GLUT4 mRNA and GLUT4 levels. There were more inflammatory cells, less GLUT4 mRNA and GLUT4 expression in the skeletal muscles of septic rats. Insulin increased

  1. Dichloroacetate increases glucose use and decreases lactate in developing rat brain

    SciTech Connect

    Miller, A.L.; Hatch, J.P.; Prihoda, T.J. )

    1990-12-01

    Dichloroacetate (DCA) activates pyruvate dehydrogenase (PDH) by inhibiting PDH kinase. Neutralized DCA (100 mg/kg) or saline was intravenously administered to 20 to 25-day-old rats (50-75g). Fifteen minutes later a mixture of {sup 6-14}C glucose and {sup 3}H fluorodeoxyglucose (FDG) was administered intravenously and the animals were sacrificed by microwave irradiation (2450 MHz, 8.0 kW, 0.6-0.8 sec) after 2 or 5 min. Brain regional rates of glucose use and metabolite levels were determined. DCA-treated rats had increased rates of glucose use in all regions studied (cortex, thalamus, striatum, and brain stem), with an average increase of 41%. Lactate levels were lower in all regions, by an average of 35%. There were no significant changes in levels of ATP, creatine phosphate, or glycogen in any brain region. Blood levels of lactate did not differ significantly between the DCA- and the saline-treated groups. Blood glucose levels were higher in the DCA group. In rats sacrificed by freeze-blowing, DCA treatment caused lower brain levels of both lactate and pyruvate. These results cannot be explained by any systemic effect of DCA. Rather, it appears that in the immature rat, DCA treatment results in activation of brain PDH, increased metabolism of brain pyruvate and lactate, and a resulting increase in brain glycolytic rate.

  2. Thermogenic Effect of Glucose in Hypothyroid Subjects

    PubMed Central

    Kozacz, Agnieszka; Grunt, Paulina; Steczkowska, Marta; Mikulski, Tomasz; Dąbrowski, Jan; Górecka, Monika; Sanocka, Urszula; Ziemba, Andrzej Wojciech

    2014-01-01

    The importance of thyroid hormone, catecholamines, and insulin in modification of the thermogenic effect of glucose (TEG) was examined in 34 healthy and 32 hypothyroid subjects. We calculated the energy expenditure at rest and during oral glucose tolerance test. Blood samples for determinations of glucose, plasma insulin, adrenaline (A), and noradrenaline (NA) were collected. It was found that TEG was lower in hypothyroid than in control group (19.68 ± 3.90 versus 55.40 ± 7.32 kJ, resp., P < 0.0004). Mean values of glucose and insulin areas under the curve were higher in women with hypothyroidism than in control group (286.79 ± 23.65 versus 188.41 ± 15.84 mmol/L·min, P < 0.003 and 7563.27 ± 863.65 versus 4987.72 ± 583.88 mU/L·min, P < 0.03 resp.). Maximal levels of catecholamines after glucose ingestion were higher in hypothyroid patients than in control subjects (Amax—0.69 ± 0.08 versus 0.30 ± 0.07 nmol/L, P < 0.0001, and NAmax—6.42 ± 0.86 versus 2.54 ± 0.30 nmol/L, P < 0.0002). It can be concluded that in hypothyroidism TEG and glucose tolerance are decreased while the adrenergic response to glucose administration is enhanced. Presumably, these changes are related to decreased insulin sensitivity and responsiveness to catecholamine action. PMID:24711817

  3. Microfabricated glucose biosensor for culture well operation.

    PubMed

    Pemberton, R M; Cox, T; Tuffin, R; Sage, I; Drago, G A; Biddle, N; Griffiths, J; Pittson, R; Johnson, G; Xu, J; Jackson, S K; Kenna, G; Luxton, R; Hart, J P

    2013-04-15

    A water-based carbon screen-printing ink formulation, containing the redox mediator cobalt phthalocyanine (CoPC) and the enzyme glucose oxidase (GOx), was investigated for its suitability to fabricate glucose microbiosensors in a 96-well microplate format: (1) the biosensor ink was dip-coated onto a platinum (Pt) wire electrode, leading to satisfactory amperometric performance; (2) the ink was deposited onto the surface of a series of Pt microelectrodes (10-500 μm diameter) fabricated on a silicon substrate using MEMS (microelectromechanical systems) microfabrication techniques: capillary deposition proved to be successful; a Pt microdisc electrode of ≥100 μm was required for optimum biosensor performance; (3) MEMS processing was used to fabricate suitably sized metal (Pt) tracks and pads onto a silicon 96 well format base chip, and the glucose biosensor ink was screen-printed onto these pads to create glucose microbiosensors. When formed into microwells, using a 340 μl volume of buffer, the microbiosensors produced steady-state amperometric responses which showed linearity up to 5 mM glucose (CV=6% for n=5 biosensors). When coated, using an optimised protocol, with collagen in order to aid cell adhesion, the biosensors continued to show satisfactory performance in culture medium (linear range to 2 mM, dynamic range to 7 mM, CV=5.7% for n=4 biosensors). Finally, the operation of these collagen-coated microbiosensors, in 5-well 96-well format microwells, was tested using a 5-channel multipotentiostat. A relationship between amperometric response due to glucose, and cell number in the microwells, was observed. These results indicate that microphotolithography and screen-printing techniques can be combined successfully to produce microbiosensors capable of monitoring glucose metabolism in 96 well format cell cultures. The potential application areas for these microbiosensors are discussed. PMID:23265827

  4. Glucose kinases from Streptomyces peucetius var. caesius.

    PubMed

    Ruiz-Villafán, Beatriz; Rodríguez-Sanoja, Romina; Aguilar-Osorio, Guillermo; Gosset, Guillermo; Sanchez, Sergio

    2014-07-01

    Glucose kinases (Glks) are enzymes of the glycolytic pathway involved in glucose phosphorylation. These enzymes can use various phosphoryl donors such as ATP, ADP, and polyphosphate. In several streptomycetes, ATP-glucose kinase (ATP-Glk) has been widely studied and regarded as the main glucose phosphorylating enzyme and is likely a regulatory protein in carbon catabolite repression. In cell extracts from the doxorubicin overproducing strain Streptomyces peucetius var. caesius, grown in glucose, a polyphosphate-dependent Glk (Pp-Glk) was detected by zymogram. Maximum activity was observed during the stationary growth phase (48 h) of cells grown in 100 mM glucose. No activity was detected when 20 mM glutamate was used as the only carbon source, supporting a role for glucose in inducing this enzyme. Contrary to wild-type strains of Streptomyces coelicolor, Streptomyces lividans, and Streptomyces thermocarboxydus K-155, S. peucetius var. caesius produced 1.8 times more Pp-Glk than ATP-Glk. In addition, this microorganism produced five and four times more Pp-Glk and anthracyclines, respectively, than its wild-type S. peucetius parent strain, supporting a role for this enzyme in antibiotic production in the overproducer strain. A cloned 726-bp DNA fragment from S. peucetius var. caesius encoded a putative Pp-Glk, with amino acid identities between 83 and 87 % to orthologous sequences from the above-cited streptomycetes. The cloned fragment showed the polyphosphate-binding sequences GXDIGGXXIK, TXGTGIGSA, and KEX(4)SWXXWA. Sequences for the Zn-binding motif were not detected in this fragment, suggesting that Pp-Glk is not related to the Glk ROK family of proteins. PMID:24687748

  5. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2)...

  6. 21 CFR 168.121 - Dried glucose sirup.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dried glucose sirup. 168.121 Section 168.121 Food... Table Sirups § 168.121 Dried glucose sirup. (a) Dried glucose sirup is glucose sirup from which the... equivalent), expressed as D-glucose, is not less than 88.0 percent m/m, calculated on a dry basis; or (2)...

  7. Determination of Glucose Concentration in Yeast Culture Medium

    NASA Astrophysics Data System (ADS)

    Hara, Seiichi; Kishimoto, Tomokazu; Muraji, Masafumi; Tsujimoto, Hiroaki; Azuma, Masayuki; Ooshima, Hiroshi

    The present paper describes a sensor for measuring the glucose concentration of yeast culture medium. The sensor determines glucose concentration by measuring the yield of hydrogen peroxide produced by glucose oxidase, which is monitored as luminescence using photomultiplier. The present sensor is able to measure low glucose concentration in media in which yeast cells keep respiration state. We herein describe the system and the characteristics of the glucose sensor.

  8. A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer

    PubMed Central

    Huang, Xian; Li, Siqi; Schultz, Jerome S.; Wang, Qian; Lin, Qiao

    2013-01-01

    We present a MEMS affinity sensor that can potentially allow long-term continuous monitoring of glucose in subcutaneous tissue for diabetes management. The sensing principle is based on detection of viscosity changes due to affinity binding between glucose and poly(acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-ran-PAAPBA), a biocompatible, glucose-specific polymer. The device uses a magnetically driven vibrating microcantilever as a sensing element, which is fabricated from Parylene and situated in a microchamber. A solution of PAA-ran-PAAPBA fills the microchamber, which is separated from the surroundings by a semi-permeable membrane. Glucose permeates through the membrane and binds reversibly to the phenylboronic acid moiety of the polymer. This results in a viscosity change of the sensing solution, which is obtained by measuring the damped cantilever vibration using an optical lever setup, allowing determination of the glucose concentration. Experimental results demonstrate that the device is capable of detecting glucose at physiologically relevant concentrations from 27 mg/dL to 324 mg/dL. The glucose response time constant of the sensor is approximately 3 min, which can be further improved with device design optimization. Excellent reversibility and stability are observed in sensor responses, as highly desired for long-term, stable continuous glucose monitoring. PMID:24511207

  9. Non-invasive measurement of glucose uptake of skeletal muscle tissue models using a glucose nanobiosensor.

    PubMed

    Obregón, Raquel; Ahadian, Samad; Ramón-Azcón, Javier; Chen, Luyang; Fujita, Takeshi; Shiku, Hitoshi; Chen, Mingwei; Matsue, Tomokazu

    2013-12-15

    Skeletal muscle tissues play a significant role to maintain the glucose level of whole body and any dysfunction of this tissue leads to the diabetes disease. A culture medium was created in which the muscle cells could survive for a long time and meanwhile it did not interfere with the glucose sensing. We fabricated a model of skeletal muscle tissues in vitro to monitor its glucose uptake. A nanoporous gold as a high sensitive nanobiosensor was then successfully developed and employed to detect the glucose uptake of the tissue models in this medium upon applying the electrical stimulation in a rapid, and non-invasive approach. The response of the glucose sensor was linear in a wide concentration range of 1-50 mM, with a detection limit of 3 μM at a signal-to-noise ratio of 3.0. The skeletal muscle tissue was electrically stimulated during 24 h and glucose uptake was monitored during this period. During the first 3 h of stimulation, electrically stimulated muscle tissue consumed almost twice the amount of glucose than counterpart non-stimulated sample. In total, the glucose consumption of muscle tissues was higher for the electrically stimulated tissues compared to those without applying the electrical field. PMID:23856563

  10. Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection.

    PubMed

    Wu, Chao; Sun, Huihui; Li, Yufei; Liu, Xueying; Du, Xiaoyu; Wang, Xia; Xu, Ping

    2015-04-15

    Promoting the electrocatalytic oxidation of glucose is crucial in glucose biosensor design. In this study, nanoporous gold (NPG) was selected for glucose oxidase (GOx) immobilization and glucose biosensor fabrication because of its open, highly conductive, biocompatible, and interconnected porous structure, which also facilitates the electrocatalytic oxidation of glucose. The electrochemical reaction on the surface of the resulting GOx/NPG/GCE bioelectrode was attributed to the co-catalysis effect of GOx and NPG. A surface-confined reaction in a phosphate buffer solution was observed at the bioelectrode during cyclic voltammetry experiments. Linear responses were observed for large glucose concentrations ranging from 50μM to 10mM, with a high sensitivity of 12.1μAmM(-1)cm(-2) and a low detection limit of 1.02μM. Furthermore, the GOx/NPG/GCE bioelectrode presented strong anti-interference capability against cholesterol, urea, tributyrin, ascorbic acid, and uric acid, along with a long shelf-life. For the detection of glucose in human serum, the data generated by the GOx/NPG/GCE bioelectrode were in good agreement with those produced by an automatic biochemical analyzer. These unique properties make the GOx/NPG/GCE bioelectrode an excellent choice for the construction of a glucose biosensor. PMID:25463642

  11. A MEMS affinity glucose sensor using a biocompatible glucose-responsive polymer.

    PubMed

    Huang, Xian; Li, Siqi; Schultz, Jerome S; Wang, Qian; Lin, Qiao

    2009-07-16

    We present a MEMS affinity sensor that can potentially allow long-term continuous monitoring of glucose in subcutaneous tissue for diabetes management. The sensing principle is based on detection of viscosity changes due to affinity binding between glucose and poly(acrylamide-ran-3-acrylamidophenylboronic acid) (PAA-ran-PAAPBA), a biocompatible, glucose-specific polymer. The device uses a magnetically driven vibrating microcantilever as a sensing element, which is fabricated from Parylene and situated in a microchamber. A solution of PAA-ran-PAAPBA fills the microchamber, which is separated from the surroundings by a semi-permeable membrane. Glucose permeates through the membrane and binds reversibly to the phenylboronic acid moiety of the polymer. This results in a viscosity change of the sensing solution, which is obtained by measuring the damped cantilever vibration using an optical lever setup, allowing determination of the glucose concentration. Experimental results demonstrate that the device is capable of detecting glucose at physiologically relevant concentrations from 27 mg/dL to 324 mg/dL. The glucose response time constant of the sensor is approximately 3 min, which can be further improved with device design optimization. Excellent reversibility and stability are observed in sensor responses, as highly desired for long-term, stable continuous glucose monitoring. PMID:24511207

  12. 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice

    PubMed Central

    Li, You-Gui; Ji, Dong-Feng; Zhong, Shi; Lin, Tian-Bao; Lv, Zhi-Qiang; Hu, Gui-Yan; Wang, Xin

    2013-01-01

    We investigated the role of 1-deoxynojirimycin (DNJ) on glucose absorption and metabolism in normal and diabetic mice. Oral and intravenous glucose tolerance tests and labeled 13C6-glucose uptake assays suggested that DNJ inhibited intestinal glucose absorption in intestine. We also showed that DNJ down-regulated intestinal SGLT1, Na+/K+-ATP and GLUT2 mRNA and protein expression. Pretreatment with DNJ (50 mg/kg) increased the activity, mRNA and protein levels of hepatic glycolysis enzymes (GK, PFK, PK, PDE1) and decreased the expression of gluconeogenesis enzymes (PEPCK, G-6-Pase). Assays of protein expression in hepatic cells and in vitro tests with purified enzymes indicated that the increased activity of glucose glycolysis enzymes was resulted from the relative increase in protein expression, rather than from direct enzyme activation. These results suggest that DNJ inhibits intestinal glucose absorption and accelerates hepatic glucose metabolism by directly regulating the expression of proteins involved in glucose transport systems, glycolysis and gluconeogenesis enzymes. PMID:23536174

  13. Effects of iriflophenone 3-C-β-glucoside on fasting blood glucose level and glucose uptake

    PubMed Central

    Pranakhon, Ratree; Aromdee, Chantana; Pannangpetch, Patchareewan

    2015-01-01

    Background: One of the biological activities of agar wood (Aquilaria sinensis Lour., Thymelaeaceae), is anti-hyperglycemic activity. The methanolic extract (ME) was proven to possess the fasting blood glucose activity in rat and glucose uptake transportation by rat adipocytes. Objective: To determine the decreasing fasting blood glucose level of constituents affordable for in vivo test. If the test was positive, the mechanism which is positive to the ME, glucose transportation, will be performed. Materials and Methods: The ME was separated by column chromatography and identified by spectroscopic methods. Mice was used as an animal model (in vivo), and rat adipocytes were used for the glucose transportation activity (in vitro). Result: Iriflophenone 3-C-β-glucoside (IPG) was the main constituent, 3.17%, and tested for the activities. Insulin and the ME were used as positive controls. The ME, IPG and insulin lowered blood glucose levels by 40.3, 46.4 and 41.5%, respectively, and enhanced glucose uptake by 152, 153, and 183%, respectively. Conclusion: These findings suggest that IPG is active in lowering fasting blood glucose with potency comparable to that of insulin. PMID:25709215

  14. Cost averaging techniques for robust control of flexible structural systems

    NASA Technical Reports Server (NTRS)

    Hagood, Nesbitt W.; Crawley, Edward F.

    1991-01-01

    Viewgraphs on cost averaging techniques for robust control of flexible structural systems are presented. Topics covered include: modeling of parameterized systems; average cost analysis; reduction of parameterized systems; and static and dynamic controller synthesis.

  15. Glucose sensing by time-resolved fluorescence of sol-gel immobilized glucose oxidase.

    PubMed

    Esposito, Rosario; Della Ventura, Bartolomeo; De Nicola, Sergio; Altucci, Carlo; Velotta, Raffaele; Mita, Damiano Gustavo; Lepore, Maria

    2011-01-01

    A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM. PMID:22163807

  16. Glucose-lowering effects of intestinal bile acid sequestration through enhancement of splanchnic glucose utilization.

    PubMed

    Prawitt, Janne; Caron, Sandrine; Staels, Bart

    2014-05-01

    Intestinal bile acid (BA) sequestration efficiently lowers plasma glucose concentrations in type 2 diabetes (T2D) patients. Because BAs act as signaling molecules via receptors, including the G protein-coupled receptor TGR5 and the nuclear receptor FXR (farnesoid X receptor), to regulate glucose homeostasis, BA sequestration, which interrupts the entero-hepatic circulation of BAs, constitutes a plausible action mechanism of BA sequestrants. An increase of intestinal L-cell glucagon-like peptide-1 (GLP-1) secretion upon TGR5 activation is the most commonly proposed mechanism, but recent studies also argue for a direct entero-hepatic action to enhance glucose utilization. We discuss here recent findings on the mechanisms of sequestrant-mediated glucose lowering via an increase of splanchnic glucose utilization through entero-hepatic FXR signaling. PMID:24731596

  17. Multispectral polarimetric system for glucose monitoring

    NASA Astrophysics Data System (ADS)

    Cote, Gerard L.; Gorde, Harshal; Janda, Joseph; Cameron, Brent D.

    1998-05-01

    In this preliminary investigation, a two wavelength optical polarimetric system was used to show the potential of the approach to be used as an in vivo noninvasive glucose monitor. The dual wavelength method is shown as a means of overcoming two of them ore important problems with this approach for glucose monitoring, namely, motion artifact and the presence of other optically chiral components. The use of polarized light is based on the fact that the polarization vector of the light rotates when it interacts with an optically active material such as glucose. The amount of rotation of the light polarization is directly proportional to the optically active molecular concentration and to the sample path length. The end application of this system would be to estimate blood glucose concentrations indirectly by measuring the amount of rotation of the light beam's polarization state due to glucose variations within the aqueous humor of the anterior chamber of the eye. The system was evaluated in vitro in the presence of motion artifact and in combination with albumin, another interfering optical rotatory chemical component. It was shown that the dual wavelength approach has potential for overcoming these problems.

  18. OXIDATIVE ASSIMILATION OF GLUCOSE BY PSEUDOMONAS AERUGINOSA

    PubMed Central

    Duncan, Margaret G.; Campbell, J. J. R.

    1962-01-01

    Duncan, Margaret G. (The University of British Columbia, Vancouver, British Columbia, Canada) and J. J. R. Campbell. Oxidative assimilation of glucose by Pseudomonas aeruginosa. J. Bacteriol. 84:784–792. 1962—Oxidative assimilation of glucose by washed-cell suspensions of Pseudomonas aeruginosa was studied using C14-labeled substrate. At the time of glucose disappearance, only small amounts of radioactivity were present in the cells, and α-ketoglutaric acid accumulated in the supernatant fluid. Most of the material synthesized by the cells during oxidative assimilation was nitrogenous, the ammonia being supplied by the endogenous respiration. The cold trichloroacetic acid-soluble fraction and the lipid fraction appeared to be important during the early stages of oxidative assimilation, and the largest percentage of the incorporated radioactivity was found in the protein fraction. In the presence of added ammonia, assimilation was greatly increased and no α-ketoglutaric acid was found in the supernatant fluid. Sodium azide partially inhibited incorporation into all major cell fractions, and at higher concentrations depressed the rate of glucose oxidation. During oxidative assimilation, chloramphenicol specifically inhibited the synthesis of protein. Oxidative assimilation of glucose by this organism did not appear to involve the synthesis of a primary product such as is found in the majority of bacteria. PMID:16561965

  19. Glucose Oxidation Modulates Anoikis and Tumor Metastasis

    PubMed Central

    Kamarajugadda, Sushama; Stemboroski, Lauren; Cai, Qingsong; Simpson, Nicholas E.; Nayak, Sushrusha; Tan, Ming

    2012-01-01

    Cancer cells exhibit altered glucose metabolism characterized by a preference for aerobic glycolysis or the Warburg effect, and the cells resist matrix detachment-induced apoptosis, which is called anoikis, a barrier to metastasis. It remains largely unclear whether tumor metabolism influences anoikis and metastasis. Here we show that when detached from the matrix, untransformed mammary epithelial cells undergo metabolic reprogramming by markedly upregulating pyruvate dehydrogenase (PDH) kinase 4 (PDK4) through estrogen-related receptor gamma (ERRγ), thereby inhibiting PDH and attenuating the flux of glycolytic carbon into mitochondrial oxidation. To decipher the significance of this metabolic response, we found that depletion of PDK4 or activation of PDH increased mitochondrial respiration and oxidative stress in suspended cells, resulting in heightened anoikis. Conversely, overexpression of PDKs prolonged survival of cells in suspension. Therefore, decreased glucose oxidation following cell detachment confers anoikis resistance. Unlike untransformed cells, most cancer cells demonstrate reduced glucose oxidation even under attached conditions, and thus they inherently possess a survival advantage when suspended. Normalization of glucose metabolism by stimulating PDH in cancer cells restores their susceptibility to anoikis and impairs their metastatic potential. These results suggest that the Warburg effect, more specifically, diminished glucose oxidation, promotes anoikis resistance and metastasis and that PDKs are potential targets for antimetastasis therapy. PMID:22431524

  20. MicroRNA 33 Regulates Glucose Metabolism

    PubMed Central

    Ramírez, Cristina M.; Goedeke, Leigh; Rotllan, Noemi; Yoon, Je-Hyun; Cirera-Salinas, Daniel; Mattison, Julie A.; Suárez, Yajaira; de Cabo, Rafael; Gorospe, Myriam

    2013-01-01

    Metabolic diseases are characterized by the failure of regulatory genes or proteins to effectively orchestrate specific pathways involved in the control of many biological processes. In addition to the classical regulators, recent discoveries have shown the remarkable role of small noncoding RNAs (microRNAs [miRNAs]) in the posttranscriptional regulation of gene expression. In this regard, we have recently demonstrated that miR-33a and miR33b, intronic miRNAs located within the sterol regulatory element-binding protein (SREBP) genes, regulate lipid metabolism in concert with their host genes. Here, we show that miR-33b also cooperates with SREBP1 in regulating glucose metabolism by targeting phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC), key regulatory enzymes of hepatic gluconeogenesis. Overexpression of miR-33b in human hepatic cells inhibits PCK1 and G6PC expression, leading to a significant reduction of glucose production. Importantly, hepatic SREBP1c/miR-33b levels correlate inversely with the expression of PCK1 and G6PC upon glucose infusion in rhesus monkeys. Taken together, these results suggest that miR-33b works in concert with its host gene to ensure a fine-tuned regulation of lipid and glucose homeostasis, highlighting the clinical potential of miR-33a/b as novel therapeutic targets for a range of metabolic diseases. PMID:23716591

  1. Noninvasive blood glucose monitoring with laser diode

    NASA Astrophysics Data System (ADS)

    Zhang, Xiqin; Chen, Jianhong; Ooi, Ean Tat; Yeo, Joon Hock

    2006-02-01

    The non-invasive measurement of blood sugar level was studied by use of near infrared laser diodes. The in vitro and in vivo experiments were carried out using six laser diodes having wavelengths range from 1550 nm to 1750nm. Several volunteers were tested for OGTT (Oral Glucose Tolerance Test) experiment. We took blood from a fingertip and measured its concentration with a glucose meter while taking signal voltage from laser diodes system. The data of signal voltage were processed to do calibration and prediction; in this paper PLS (Partial Least Square) method was used to do modeling. For in vitro experiment, good linear relationship between predicted glucose concentration and real glucose concentration was obtained. For in vivo experiments, we got the blood sugar level distributions in Clarke error grid that is a reference for doctors to do diagnosis and treatment. In the Clarke error grid, 75% of all data was in area A and 25 % was in area B. From the in vitro and in vivo results we know that multiple laser diodes are suitable for non-invasive blood glucose monitoring.

  2. FOXN3 Regulates Hepatic Glucose Utilization.

    PubMed

    Karanth, Santhosh; Zinkhan, Erin K; Hill, Jonathon T; Yost, H Joseph; Schlegel, Amnon

    2016-06-21

    A SNP (rs8004664) in the first intron of the FOXN3 gene is associated with human fasting blood glucose. We find that carriers of the risk allele have higher hepatic expression of the transcriptional repressor FOXN3. Rat Foxn3 protein and zebrafish foxn3 transcripts are downregulated during fasting, a process recapitulated in human HepG2 hepatoma cells. Transgenic overexpression of zebrafish foxn3 or human FOXN3 increases zebrafish hepatic gluconeogenic gene expression, whole-larval free glucose, and adult fasting blood glucose and also decreases expression of glycolytic genes. Hepatic FOXN3 overexpression suppresses expression of mycb, whose ortholog MYC is known to directly stimulate expression of glucose-utilization enzymes. Carriers of the rs8004664 risk allele have decreased MYC transcript abundance. Human FOXN3 binds DNA sequences in the human MYC and zebrafish mycb loci. We conclude that the rs8004664 risk allele drives excessive expression of FOXN3 during fasting and that FOXN3 regulates fasting blood glucose. PMID:27292639

  3. Nanomaterial-mediated Biosensors for Monitoring Glucose

    PubMed Central

    Taguchi, Masashige; Ptitsyn, Andre; McLamore, Eric S.

    2014-01-01

    Real-time monitoring of physiological glucose transport is crucial for gaining new understanding of diabetes. Many techniques and equipment currently exist for measuring glucose, but these techniques are limited by complexity of the measurement, requirement of bulky equipment, and low temporal/spatial resolution. The development of various types of biosensors (eg, electrochemical, optical sensors) for laboratory and/or clinical applications will provide new insights into the cause(s) and possible treatments of diabetes. State-of-the-art biosensors are improved by incorporating catalytic nanomaterials such as carbon nanotubes, graphene, electrospun nanofibers, and quantum dots. These nanomaterials greatly enhance biosensor performance, namely sensitivity, response time, and limit of detection. A wide range of new biosensors that incorporate nanomaterials such as lab-on-chip and nanosensor devices are currently being developed for in vivo and in vitro glucose sensing. These real-time monitoring tools represent a powerful diagnostic and monitoring tool for measuring glucose in diabetes research and point of care diagnostics. However, concerns over the possible toxicity of some nanomaterials limit the application of these devices for in vivo sensing. This review provides a general overview of the state of the art in nanomaterial-mediated biosensors for in vivo and in vitro glucose sensing, and discusses some of the challenges associated with nanomaterial toxicity. PMID:24876594

  4. FOXN3 regulates hepatic glucose utilization

    PubMed Central

    Karanth, Santhosh; Zinkhan, Erin K.; Hill, Jonathon T.; Yost, H. Joseph; Schlegel, Amnon

    2016-01-01

    SUMMARY A SNP (rs8004664) in the first intron of the FOXN3 gene is associated with human fasting blood glucose. We find that carriers of the risk allele have higher hepatic expression of the transcriptional repressor FOXN3. Rat Foxn3 protein and zebrafish foxn3 transcripts are downregulated during fasting, a process recapitulated in human HepG2 hepatoma cells. Transgenic overexpression of zebrafish foxn3 or human FOXN3 increases zebrafish hepatic gluconeogenic gene expression, whole-larval free glucose, and adult fasting blood glucose, and also decreases expression of glycolytic genes. Hepatic FOXN3 overexpression suppresses expression of mycb, whose ortholog MYC is known to directly stimulate expression of glucose-utilization enzymes. Carriers of the rs8004664 risk allele have decreased MYC transcript abundance. Human FOXN3 binds DNA sequences in the human FOXN3 and zebrafish mycb loci. We conclude that the rs8004664 risk allele drives excessive expression of FOXN3 during fasting and that FOXN3 regulates fasting blood glucose. PMID:27292639

  5. Facilitated diffusion of 6-deoxy-D-glucose in bakers' yeast: evidence against phosphorylation-associated transport of glucose.

    PubMed Central

    Romano, A H

    1982-01-01

    6-Deoxy-D-glucose, a structural homomorph of D-glucose which lacks a hydroxyl group at carbon 6 and thus cannot be phosphorylated, is transported by Saccharomyces cerevisiae via a facilitated diffusion system with affinity equivalent to that shown with D-glucose. This finding supports the facilitated diffusion mechanism for glucose transport and contradicts theories of transport-associated phosphorylation which hold that sugar phosphorylation is necessary for high-affinity operation of the glucose carrier. PMID:6754704

  6. Sample Size Bias in Judgments of Perceptual Averages

    ERIC Educational Resources Information Center

    Price, Paul C.; Kimura, Nicole M.; Smith, Andrew R.; Marshall, Lindsay D.

    2014-01-01

    Previous research has shown that people exhibit a sample size bias when judging the average of a set of stimuli on a single dimension. The more stimuli there are in the set, the greater people judge the average to be. This effect has been demonstrated reliably for judgments of the average likelihood that groups of people will experience negative,…

  7. Averaging in SU(2) open quantum random walk

    NASA Astrophysics Data System (ADS)

    Clement, Ampadu

    2014-03-01

    We study the average position and the symmetry of the distribution in the SU(2) open quantum random walk (OQRW). We show that the average position in the central limit theorem (CLT) is non-uniform compared with the average position in the non-CLT. The symmetry of distribution is shown to be even in the CLT.

  8. 76 FR 57081 - Annual Determination of Average Cost of Incarceration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... of Prisons Annual Determination of Average Cost of Incarceration AGENCY: Bureau of Prisons, Justice. ACTION: Notice. SUMMARY: The fee to cover the average cost of incarceration for Federal inmates in Fiscal Year 2010 was $28,284. The average annual cost to confine an inmate in a Community Corrections...

  9. 78 FR 16711 - Annual Determination of Average Cost of Incarceration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-18

    ... of Prisons Annual Determination of Average Cost of Incarceration AGENCY: Bureau of Prisons, Justice. ACTION: Notice. SUMMARY: The fee to cover the average cost of incarceration for Federal inmates in Fiscal Year 2011 was $28,893.40. The average annual cost to confine an inmate in a Community...

  10. 76 FR 6161 - Annual Determination of Average Cost of Incarceration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... of Prisons Annual Determination of Average Cost of Incarceration AGENCY: Bureau of Prisons, Justice. ACTION: Notice. SUMMARY: The fee to cover the average cost of incarceration for Federal inmates in Fiscal Year 2009 was $25,251. The average annual cost to confine an inmate in a Community Corrections...

  11. 47 CFR 1.959 - Computation of average terrain elevation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Radial average terrain elevation is calculated as the average of the elevation along a straight line path... radial path extends over foreign territory or water, such portion must not be included in the computation of average elevation unless the radial path again passes over United States land between 16 and...

  12. 7 CFR 760.640 - National average market price.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false National average market price. 760.640 Section 760.640....640 National average market price. (a) The Deputy Administrator will establish the National Average Market Price (NAMP) using the best sources available, as determined by the Deputy Administrator,...

  13. 7 CFR 760.640 - National average market price.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false National average market price. 760.640 Section 760.640....640 National average market price. (a) The Deputy Administrator will establish the National Average Market Price (NAMP) using the best sources available, as determined by the Deputy Administrator,...

  14. 7 CFR 760.640 - National average market price.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false National average market price. 760.640 Section 760.640....640 National average market price. (a) The Deputy Administrator will establish the National Average Market Price (NAMP) using the best sources available, as determined by the Deputy Administrator,...

  15. 7 CFR 760.640 - National average market price.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 7 2013-01-01 2013-01-01 false National average market price. 760.640 Section 760.640....640 National average market price. (a) The Deputy Administrator will establish the National Average Market Price (NAMP) using the best sources available, as determined by the Deputy Administrator,...

  16. 7 CFR 760.640 - National average market price.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false National average market price. 760.640 Section 760.640....640 National average market price. (a) The Deputy Administrator will establish the National Average Market Price (NAMP) using the best sources available, as determined by the Deputy Administrator,...

  17. 20 CFR 404.221 - Computing your average monthly wage.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Computing your average monthly wage. 404.221... DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.221 Computing your average monthly wage. (a) General. Under the...

  18. 20 CFR 404.221 - Computing your average monthly wage.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Computing your average monthly wage. 404.221... DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.221 Computing your average monthly wage. (a) General. Under the...

  19. 20 CFR 404.221 - Computing your average monthly wage.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Computing your average monthly wage. 404.221... DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.221 Computing your average monthly wage. (a) General. Under the...

  20. 20 CFR 404.221 - Computing your average monthly wage.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Computing your average monthly wage. 404.221... DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.221 Computing your average monthly wage. (a) General. Under the...

  1. 20 CFR 404.221 - Computing your average monthly wage.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Computing your average monthly wage. 404.221... DISABILITY INSURANCE (1950- ) Computing Primary Insurance Amounts Average-Monthly-Wage Method of Computing Primary Insurance Amounts § 404.221 Computing your average monthly wage. (a) General. Under the...

  2. 27 CFR 19.37 - Average effective tax rate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Average effective tax rate... effective tax rate. (a) The proprietor may establish an average effective tax rate for any eligible... recompute the average effective tax rate so as to include only the immediately preceding 6-month period....

  3. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis

    PubMed Central

    Fu, Jing; Li, Ning; Wang, Zhiwen; Tang, Ya-jie; Chen, Tao

    2016-01-01

    Glucose, xylose and arabinose are the three most abundant monosaccharide found in lignocellulosic biomass. Effectively and simultaneously utilization of these sugars by microorganisms for production of the biofuels and bio-chemicals is essential toward directly fermentation of the lignocellulosic biomass. In our previous study, the recombinant Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain was already shown to efficiently utilize xylose for production of acetoin, with a yield of 0.36 g/g xylose. In the current study, the Bacillus subtilis168ARSRCPΔacoAΔbdhA strain was further engineered to produce acetoin from a glucose, xylose, and arabinose mixtures. To accomplish this, the endogenous xylose transport protein AraE, the exogenous xylose isomerase gene xylA and the xylulokinase gene xylB from E. coli were co-overexpressed in the Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain, which enabled the resulting strain, denoted ZB02, to simultaneously utilize glucose and xylose. Unexpectedly, the ZB02 strain could simultaneously utilize glucose and arabinose also. Further results indicated that the transcriptional inhibition of the arabinose transport protein gene araE was the main limiting factor for arabinose utilization in the presence of glucose. Additionally, the arabinose operon in B. subtilis could be activated by the addition of arabinose, even in the presence of glucose. Through fed-batch fermentation, strain ZB02 could simultaneously utilize glucose, xylose, and arabinose, with an average sugar consumption rate of 3.00 g/l/h and an average production of 62.2 g/l acetoin at a rate of 0.864 g/l/h. Finally, the strain produced 11.2 g/l acetoin from lignocellulosic hydrolysate (containing 20.6g/l glucose, 12.1 g/l xylose and 0.45 g/l arabinose) in flask cultivation, with an acetoin yield of 0.34 g/g total sugar. The result demonstrates that this strain has good potential for the utilization of lignocellulosic hydrolysate for production of acetoin. PMID:27467131

  4. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.

    PubMed

    Zhang, Bo; Li, Xin-Li; Fu, Jing; Li, Ning; Wang, Zhiwen; Tang, Ya-Jie; Chen, Tao

    2016-01-01

    Glucose, xylose and arabinose are the three most abundant monosaccharide found in lignocellulosic biomass. Effectively and simultaneously utilization of these sugars by microorganisms for production of the biofuels and bio-chemicals is essential toward directly fermentation of the lignocellulosic biomass. In our previous study, the recombinant Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain was already shown to efficiently utilize xylose for production of acetoin, with a yield of 0.36 g/g xylose. In the current study, the Bacillus subtilis168ARSRCPΔacoAΔbdhA strain was further engineered to produce acetoin from a glucose, xylose, and arabinose mixtures. To accomplish this, the endogenous xylose transport protein AraE, the exogenous xylose isomerase gene xylA and the xylulokinase gene xylB from E. coli were co-overexpressed in the Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain, which enabled the resulting strain, denoted ZB02, to simultaneously utilize glucose and xylose. Unexpectedly, the ZB02 strain could simultaneously utilize glucose and arabinose also. Further results indicated that the transcriptional inhibition of the arabinose transport protein gene araE was the main limiting factor for arabinose utilization in the presence of glucose. Additionally, the arabinose operon in B. subtilis could be activated by the addition of arabinose, even in the presence of glucose. Through fed-batch fermentation, strain ZB02 could simultaneously utilize glucose, xylose, and arabinose, with an average sugar consumption rate of 3.00 g/l/h and an average production of 62.2 g/l acetoin at a rate of 0.864 g/l/h. Finally, the strain produced 11.2 g/l acetoin from lignocellulosic hydrolysate (containing 20.6g/l glucose, 12.1 g/l xylose and 0.45 g/l arabinose) in flask cultivation, with an acetoin yield of 0.34 g/g total sugar. The result demonstrates that this strain has good potential for the utilization of lignocellulosic hydrolysate for production of acetoin. PMID:27467131

  5. The glucose metabolite methylglyoxal inhibits expression of the glucose transporter genes by inactivating the cell surface glucose sensors Rgt2 and Snf3 in yeast

    PubMed Central

    Roy, Adhiraj; Hashmi, Salman; Li, Zerui; Dement, Angela D.; Hong Cho, Kyu; Kim, Jeong-Ho

    2016-01-01

    Methylglyoxal (MG) is a cytotoxic by-product of glycolysis. MG has inhibitory effect on the growth of cells ranging from microorganisms to higher eukaryotes, but its molecular targets are largely unknown. The yeast cell-surface glucose sensors Rgt2 and Snf3 function as glucose receptors that sense extracellular glucose and generate a signal for induction of expression of genes encoding glucose transporters (HXTs). Here we provide evidence that these glucose sensors are primary targets of MG in yeast. MG inhibits the growth of glucose-fermenting yeast cells by inducing endocytosis and degradation of the glucose sensors. However, the glucose sensors with mutations at their putative ubiquitin-acceptor lysine residues are resistant to MG-induced degradation. These results suggest that the glucose sensors are inactivated through ubiquitin-mediated endocytosis and degraded in the presence of MG. In addition, the inhibitory effect of MG on the glucose sensors is greatly enhanced in cells lacking Glo1, a key component of the MG detoxification system. Thus the stability of these glucose sensors seems to be critically regulated by intracellular MG levels. Taken together, these findings suggest that MG attenuates glycolysis by promoting degradation of the cell-surface glucose sensors and thus identify MG as a potential glycolytic inhibitor. PMID:26764094

  6. Texturing Blood-Glucose-Monitoring Optics Using Oxygen Beams

    NASA Technical Reports Server (NTRS)

    Banks, Bruce

    2005-01-01

    A method has been invented for utilizing directed, hyperthermal oxygen atoms and ions for texturing tips of polymeric optical fibers or other polymeric optical components for use in optical measurement of concentration of glucose in blood. The required texture of the sensory surface of such a component amounts to a landscape of microscopic hills having high aspect ratios (hills taller than they are wide), with an average distance between hills of no more than about 5 m. This limit on the average distance between hills is chosen so that blood cells (which are wider) cannot enter the valleys between the hills, where they could obstruct optical sensing of glucose in the blood plasma. On the other hand, the plasma is required to enter the valleys, and a high aspect ratio is intended to maximize the hillside and valley surface area in contact with the plasma, thereby making it possible to obtain a given level of optical glucose- measurement sensitivity with a relatively small volume of blood. The present method of texturing by use of directed, hyperthermal (particle energy >1 eV) oxygen atoms and ions stands in contrast to a prior method of texturing by use of thermal monatomic oxygen characterized by a temperature of the order of 0.5 eV. The prior method yields low-aspect- ratio (approximately hemispherical) craters that are tens of microns wide . too wide to exclude blood cells. The figure schematically depicts parts of a typical apparatus for texturing according to the present method. One or more polymeric optical components to be textured (e.g., multiple optical fibers bundled together for simultaneous processing) are mounted in a vacuum chamber facing a suitable ion- or atom-accelerating device capable of generating a beam of oxygen atoms and/or ions having kinetic energies >1 eV. Typically, such a device includes a heated cathode, in which case it is desirable to interpose a water-cooled thermal-radiation shield to prevent melting of the polymeric component(s) to

  7. Stable and flexible system for glucose homeostasis

    NASA Astrophysics Data System (ADS)

    Hong, Hyunsuk; Jo, Junghyo; Sin, Sang-Jin

    2013-09-01

    Pancreatic islets, controlling glucose homeostasis, consist of α, β, and δ cells. It has been observed that α and β cells generate out-of-phase synchronization in the release of glucagon and insulin, counter-regulatory hormones for increasing and decreasing glucose levels, while β and δ cells produce in-phase synchronization in the release of the insulin and somatostatin. Pieces of interactions between the islet cells have been observed for a long time, although their physiological role as a whole has not been explored yet. We model the synchronized hormone pulses of islets with coupled phase oscillators that incorporate the observed cellular interactions. The integrated model shows that the interaction from β to δ cells, of which sign is a subject of controversy, should be positive to reproduce the in-phase synchronization between β and δ cells. The model also suggests that δ cells help the islet system flexibly respond to changes of glucose environment.

  8. [Regulation of bone homeostasis by glucose].

    PubMed

    Fukasawa, Kazuya; Hinoi, Eiichi

    2016-08-01

    Synthesis of type Ⅰ collagen, a major component of the bone matrix, precedes the expression of Runt-related transcription factor 2(Runx2), a master regulator in osteoblast differentiation. Thus, a direct link between osteoblast differentiation and bone formation is seemingly absent, and how these are maintained in a coordinated matter remains unclear. It was recently demonstrated that osteoblasts depend on glucose, which glucose transporter type 1(GLUT1)takes up as an energy source, and it was found that glucose uptake promotes osteoblast differentiation and bone formation via AMP-activated protein kinase. It was also shown that Runx2 upregulates GLUT1 expression, and this Runx2-GLUT1 feedforward regulation integrates and coordinates osteoblast differentiation and bone formation throughout life. These previous findings revealed that the energy metabolism balance in osteoblasts integrates the differentiation and function of osteoblasts, and re-emphasized the importance of crosstalk between bone and sugar metabolism. PMID:27461500

  9. Roles of Glucose in Photoreceptor Survival*

    PubMed Central

    Chertov, Andrei O.; Holzhausen, Lars; Kuok, Iok Teng; Couron, Drew; Parker, Ed; Linton, Jonathan D.; Sadilek, Martin; Sweet, Ian R.; Hurley, James B.

    2011-01-01

    Vertebrate photoreceptor neurons have a high demand for metabolic energy, and their viability is very sensitive to genetic and environmental perturbations. We investigated the relationship between energy metabolism and cell death by evaluating the metabolic effects of glucose deprivation on mouse photoreceptors. Oxygen consumption, lactate production, ATP, NADH/NAD+, TCA cycle intermediates, morphological changes, autophagy, and viability were evaluated. We compared retinas incubated with glucose to retinas deprived of glucose or retinas treated with a mixture of mitochondrion-specific fuels. Rapid and slow phases of cell death were identified. The rapid phase is linked to reduced mitochondrial activity, and the slower phase reflects a need for substrates for cell maintenance and repair. PMID:21840997

  10. Sleep Control, GPCRs, and Glucose Metabolism.

    PubMed

    Tsuneki, Hiroshi; Sasaoka, Toshiyasu; Sakurai, Takeshi

    2016-09-01

    Modern lifestyles prolong daily activities into the nighttime, disrupting circadian rhythms, which may cause sleep disturbances. Sleep disturbances have been implicated in the dysregulation of blood glucose levels and reported to increase the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are treated using anti-insomnia drugs that target ionotropic and G protein-coupled receptors (GPCRs), including γ-aminobutyric acid (GABA) agonists, melatonin agonists, and orexin receptor antagonists. A deeper understanding of the effects of these medications on glucose metabolism and their underlying mechanisms of action is crucial for the treatment of diabetic patients with sleep disorders. In this review we focus on the beneficial impact of sleep on glucose metabolism and suggest a possible strategy for therapeutic intervention against sleep-related metabolic disorders. PMID:27461005

  11. Dynamics of water molecules in glucose solutions.

    SciTech Connect

    Talon, C.; Smith, L. J.; Brady, J. W.; Copley, J. R. D.; Price, D. L.; Saboungi, M. L.; Materials Science Division; Centre de Recherche sur la Matiyre Divisye; Cornell Univ.; NIST; Centre de Recherche sur les Matyriaux y Haute Tempyrature

    2004-04-22

    The effects of the solution of glucose molecules on the dynamics of solvent water have been studied by quasielastic neutron scattering (QENS) measurements on solutions of selectively deuterated glucose in natural water. The data are fitted to two Lorentzians ascribed to pure translational and mixed translational and rotational character, respectively. The addition of the glucose to the water causes a substantial slowing down, by a factor 10 for the translational diffusion and 3-4 for the rotational motion at the highest concentration studied, 1:11 C{sub 6}H{sub 12}O{sub 6}:H{sub 2}O. The values obtained for water diffusion constants are consistent with previous QENS and NMR experiments on monosaccharide solutions but an order of magnitude higher than those derived from a recent molecular dynamics simulation.

  12. Robust Morphological Averages in Three Dimensions for Anatomical Atlas Construction

    NASA Astrophysics Data System (ADS)

    Márquez, Jorge; Bloch, Isabelle; Schmitt, Francis

    2004-09-01

    We present original methods for obtaining robust, anatomical shape-based averages of features of the human head anatomy from a normal population. Our goals are computerized atlas construction with representative anatomical features and morphopometry for specific populations. A method for true-morphological averaging is proposed, consisting of a suitable blend of shape-related information for N objects to obtain a progressive average. It is made robust by penalizing, in a morphological sense, the contributions of features less similar to the current average. Morphological error and similarity, as well as penalization, are based on the same paradigm as the morphological averaging.

  13. Glucose Biosensors: An Overview of Use in Clinical Practice

    PubMed Central

    Yoo, Eun-Hyung; Lee, Soo-Youn

    2010-01-01

    Blood glucose monitoring has been established as a valuable tool in the management of diabetes. Since maintaining normal blood glucose levels is recommended, a series of suitable glucose biosensors have been developed. During the last 50 years, glucose biosensor technology including point-of-care devices, continuous glucose monitoring systems and noninvasive glucose monitoring systems has been significantly improved. However, there continues to be several challenges related to the achievement of accurate and reliable glucose monitoring. Further technical improvements in glucose biosensors, standardization of the analytical goals for their performance, and continuously assessing and training lay users are required. This article reviews the brief history, basic principles, analytical performance, and the present status of glucose biosensors in the clinical practice. PMID:22399892

  14. Electropolymerized Conducting Polymers as Glucose Sensors

    NASA Astrophysics Data System (ADS)

    Sadik, Omowunmi A.; Brenda, Sharin; Joasil, Patrick; Lord, John

    1999-07-01

    Conducting polymers are of considerable interest. Their electrochemical synthesis requires only inexpensive starting materials and low-cost equipment. This paper presents a laboratory-based experiment for possible inclusion in the undergraduate instrumental analysis laboratory curriculum. The objectives are to perform cyclic voltammetry on electropolymerized conducting polymers, to observe the effects of various parameters on the voltammogram obtained, and to perform quantitative analysis of glucose. In a typical experiment, glucose oxidase enzyme (GOx) was immobilized at an electrode surface by the electropolymerization of pyrrole from an aqueous solution containing the enzyme. The chemical activity of the immobilized GOx was evaluated by indirectly monitoring glucose oxidation using the electropolymerized PPy-modified electrode. The amount of glucose present was then determined by observing the rate at which hydrogen peroxide was produced. The magnitude of the current was linearly proportional to the concentration of glucose over the range 1 x 10-3 to 5 x 10-5M. The limit of detection was estimated at 3 times the background noise, 8 x 10-5 M glucose. The Michaelis-Menten parameters, Km and Vmax, were calculated to be approximately 1.5 x 10-3 M and 10-9 m/s, respectively, comparable with values cited in literature. This experiment illustrates the fundamental electrochemical and biosensor concepts. It reinforces the underlying principles of dynamic electrochemistry and illustrates the potential of using conducting polymers for analytical applications. The simple low-cost procedure employed should be attractive for undergraduate research projects, particularly in departments with modest means.

  15. Familial renal glycosuria and modifications of glucose renal excretion.

    PubMed

    Prié, D

    2014-12-01

    Under physiological conditions, the kidneys contribute to glucose homoeostasis by producing glucose by gluconeogenesis and preventing glucose loss in urine. The glucose filtered by the glomeruli is completely reabsorbed in the renal proximal tubule. Renal gluconeogenesis produces 25% of the circulating glucose in the postabsorptive state, while the amount of glucose reabsorbed by the kidneys largely exceeds the quantity synthesized by kidney gluconeogenesis. Sodium-glucose cotransporter type 2 (SGLT-2) and glucose transporter 2 (GLUT2) carry out more than 90% of renal glucose uptake. In diabetes, both gluconeogenesis and renal glucose reabsorption are increased. The augmentation of glucose uptake in diabetes is due to the overexpression of renal glucose transporters SGLT-2 and GLUT2 in response to the increase in expression of transcription activator hepatic nuclear factor 1-alpha (HNF1α). The rise in glucose uptake contributes to hyperglycaemia and induces glomerular hyperfiltration by increasing sodium and water reabsorption in the proximal tubule that, in turn, modifies urine flux at the macula densa. SGLT-2 inhibitors improve glycaemic control and prevent renal hyperfiltration in diabetes. Loss of SGLT-2 transporter function is a benign state characterized by glycosuria. In contrast, mutations of other glucose transporters expressed in the kidney are responsible for severe disorders. PMID:25554066

  16. Calculating High Speed Centrifugal Compressor Performance from Averaged Measurements

    NASA Astrophysics Data System (ADS)

    Lou, Fangyuan; Fleming, Ryan; Key, Nicole L.

    2012-12-01

    To improve the understanding of high performance centrifugal compressors found in modern aircraft engines, the aerodynamics through these machines must be experimentally studied. To accurately capture the complex flow phenomena through these devices, research facilities that can accurately simulate these flows are necessary. One such facility has been recently developed, and it is used in this paper to explore the effects of averaging total pressure and total temperature measurements to calculate compressor performance. Different averaging techniques (including area averaging, mass averaging, and work averaging) have been applied to the data. Results show that there is a negligible difference in both the calculated total pressure ratio and efficiency for the different techniques employed. However, the uncertainty in the performance parameters calculated with the different averaging techniques is significantly different, with area averaging providing the least uncertainty.

  17. Study of potential utility of new radiopharmaceuticals based on technetium-99m labeled derivative of glucose

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.

    2016-08-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 min at room temperature. After centrifugation of the vials with cells, the supernatant was removed. The radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25 MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 min. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D-glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3 ± 0.15 MBq and 1.07 ± 0.6 MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio-D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  18. Experimental study of radiopharmaceuticals based on technetium-99m labeled derivative of glucose for tumor diagnosis

    NASA Astrophysics Data System (ADS)

    Zeltchan, R.; Medvedeva, A.; Sinilkin, I.; Bragina, O.; Chernov, V.; Stasyuk, E.; Rogov, A.; Il'ina, E.; Larionova, L.; Skuridin, V.; Dergilev, A.

    2016-06-01

    Purpose: to study the potential utility of 1-thio-D-glucose labeled with 99mTc for cancer imaging in laboratory animals. Materials and method: the study was carried out in cell cultures of normal CHO (Chinese hamster ovary cells CHO) and malignant tissues MCF-7 (human breast adenocarcinoma MCF-7). To evaluate the uptake of 99mTc-1-thio-D-glucose in normal and tumor tissue cells, 25 MBq of 1-thio-D-glucose labeled with 99mTc was added to the vials with 3 million cells and incubated for 30 minutes at room temperature. After centrifugation of the vials with cells, the supernatant was removed. Radioactivity in vials with normal and tumor cells was then measured. In addition, the study included 40 mice of C57B 1/6j lines with tumor lesion of the right femur. For neoplastic lesions, Lewis lung carcinoma model was used. Following anesthesia, mice were injected intravenously with 25MBq of 99mTc-1-thio-D-glucose. Planar scintigraphy was performed 15 minutes later in a matrix of 512x512 pixels for 5 minutes. Results: when measuring the radioactivity of normal and malignant cells after incubation with 99mTc-1-thio-D- glucose, it was found that the radioactivity of malignant cells was higher than that of normal cells. The mean values of radioactivity levels in normal and malignant cells were 0.3±0.15MBq and 1.07±0.6MBq, respectively. All examined animals had increased accumulation of 99mTc-1-thio- D-glucose at the tumor site. The accumulation of 99mTc-1-thio-D-glucose in the tumor was on average twice as high as compared to the symmetric region. Conclusion: The present study demonstrated that 99mTc-1-thio-D-glucose is a prospective radiopharmaceutical for cancer visualization. In addition, high accumulation of 99mTc-1-thio-D-glucose in the culture of cancer cells and in tumor tissue of animals demonstrates tumor tropism of the radiopharmaceutical.

  19. Nonenzymatic glucose detection using mesoporous platinum.

    PubMed

    Park, Sejin; Chung, Taek Dong; Kim, Hee Chan

    2003-07-01

    Roughness of nanoscopic dimensions can be used to selectively enhance the faradaic current of a sluggish reaction. Using this principle, we constructed mesoporous structures on the surfaces of pure platinum electrodes responding even more sensitively to glucose than to common interfering species, such as L-ascorbic acid and 4-acetamidophenol. Good sensitivities, as high as 9.6 microA cm(-2) mM(-1), were reproducibly observed in the presence of high concentration of chloride ion. The selectivities, sensitivities, and stabilities determined experimentally have demonstrated the potential of mesoporous platinum as a novel candidate for nonenzymatic glucose sensors. PMID:12964749

  20. Glucose transporter expression in rat mammary gland.

    PubMed Central

    Burnol, A F; Leturque, A; Loizeau, M; Postic, C; Girard, J

    1990-01-01

    The expression of different glucose transporter isoforms was measured during the development and differentiation of the rat mammary gland. Before conception, when the mammary gland is mainly composed of adipocytes, Glut 4 and Glut 1 mRNAs and proteins were present. During pregnancy, the expression of Glut 4 decreased progressively, whereas that of Glut 1 increased. In the lactating mammary gland only Glut 1 was present, and was expressed at a high level. The absence of Glut 4 suggests that glucose transport is not regulated by insulin in the lactating rat mammary gland. Images Fig. 1. Fig. 2. PMID:2396989

  1. Limitations of Continuous Glucose Monitor Usage.

    PubMed

    Anhalt, Henry

    2016-03-01

    Much progress has been made in diabetes treatments since the first dose of insulin was administered in 1921. However, a truly transformational moment in diabetes care occurred when urine testing gave way to capillary blood home glucose monitoring. As improvements were made to these devices, continuous glucose monitoring (CGM) was introduced. The advantages of experiential learnings gleaned from seeing continuous real-time data have been borne out in numerous peer-reviewed journals. Limitations to use of CGM include patient's level of numeracy and literacy, development of alarm fatigue, interfering substances leading to erroneous readings, high rates of discontinuation, and poor reimbursement. PMID:26983025

  2. Detection of Trace Glucose on the Surface of a Semipermeable Membrane Using a Fluorescently Labeled Glucose-Binding Protein: A Promising Approach to Noninvasive Glucose Monitoring

    PubMed Central

    Ge, Xudong; Rao, Govind; Kostov, Yordan; Kanjananimmanont, Sunsanee; Viscardi, Rose M.; Woo, Hyung; Tolosa, Leah

    2013-01-01

    Background Our motivation for this study was to develop a noninvasive glucose sensor for low birth weight neonates. We hypothesized that the underdeveloped skin of neonates will allow for the diffusion of glucose to the surface where it can be sampled noninvasively. On further study, we found that measurable amounts of glucose can also be collected on the skin of adults. Method Cellulose acetate dialysis membrane was used as surrogate for preterm neonatal skin. Glucose on the surface was collected by saline-moistened swabs and analyzed with glucose-binding protein (GBP). The saline-moistened swab was also tested in the neonatal intensive care unit. Saline was directly applied on adult skin and collected for analysis with two methods: GBP and high-performance anion-exchange chromatography (HPAEC). Results The amount of glucose on the membrane surface was found (1) to accumulate with time but gradually level off, (2) to be proportional to the swab dwell time, and (3) the concentration of the glucose solution on the opposite side of the membrane. The swab, however, failed to absorb glucose on neonatal skin. On direct application of saline onto adult skin, we were able to measure by HPAEC and GBP the amount of glucose collected on the surface. Blood glucose appears to track transdermal glucose levels. Conclusions We were able to measure trace amounts of glucose on the skin surface that appear to follow blood glucose levels. The present results show modest correlation with blood glucose. Nonetheless, this method may present a noninvasive alternative to tracking glucose trends. PMID:23439155

  3. Effects of Different Proportion of Carbohydrate in Breakfast on Postprandial Glucose Excursion in Normal Glucose Tolerance and Impaired Glucose Regulation Subjects

    PubMed Central

    Kang, Xin; Wang, Chun; Lifang, Lv; Chen, Dawei; Yang, Yanzhi; Liu, Guanjian; Wen, Hu; Chen, Lihong; He, Liping; Li, Xiujun; Tian, Haoming; Jia, Weiping

    2013-01-01

    Abstract Background The variability of postprandial plasma glucose is an independent risk factor for diabetes. The type and amount of carbohydrate may be important determinants of glycemic control. The aim of the study was to compare the effects of different proportions of carbohydrate in breakfast on postprandial blood glucose fluctuations in impaired glucose regulation (IGR) and normal glucose tolerance (NGT) subjects. Subjects and Methods This is a cross-sectional study of two groups including 55 subjects with IGR and 78 individuals with NGT. Their recorded breakfast was sorted into low-carbohydrate (LC) (carbohydrate <45%), medium-carbohydrate (MC) (carbohydrate 45–65%), and high-carbohydrate (HC) (carbohydrate >65%) meals according to the proportion of carbohydrate. Glucose concentrations were continuously measured with a continuous glucose monitoring system, and parameters such as the incremental area under the curve (iAUC) of glucose and postprandial glucose excursion (PPGE) were calculated to evaluate postprandial glucose fluctuations. Results The postprandial fluctuations of glucose increased gradually with increased proportions of carbohydrate in breakfast in both IGR and NGT subjects. For the MC and HC meals, iAUC, PPGE, postprandial glucose spike (PGS), and mean blood glucose were significantly greater than those in the NGT group (P<0.05), respectively. The median time to PGS and the time period in which glucose concentrations decreased to baseline after the MC and HC meals in the IGR group were significantly longer than those in the NGT group (P<0.01), respectively. Compared with the NGT subjects for the HC meal, the IGR subjects consuming the MC meal had greater PGS, range of glucose concentrations, SD, and PPGE (P<0.05). Conclusions The proportion of carbohydrate in breakfast contributes to glucose excursions in the NGT and IGR subjects. In the IGR subjects, a HC meal should be avoided and a LC meal should be recommended to prevent development of

  4. A glucose-sensing contact lens: a new approach to noninvasive continuous physiological glucose monitoring

    NASA Astrophysics Data System (ADS)

    Badugu, Ramachandram; Lakowicz, Joseph R.; Geddes, Chris D.

    2004-06-01

    We have developed a new technology for the non-invasive continuous monitoring of tear glucose using a daily use, disposable contact lens, embedded with sugar-sensing boronic acid containing fluorophores. Our findings show that our approach may be suitable for the continuous monitoring of tear glucose levels in the range 50 - 500 μM, which track blood glucose levels that are typically ~ 5-10 fold higher. We initially tested the sensing concept with well-established, previously published, boronic acid probes and the results could conclude the used probes, with higher pKa values, are almost insensitive toward glucose within the contact lens, attributed to the low pH and polarity inside the lens. Subsequently, we have developed a range of probes based on the quinolinium backbone, having considerably lower pKa values, which enables them to be suitable to sense the physiological glucose in the acidic pH contact lens. Herein we describe the results based on our findings towards the development of glucose sensing contact lens and therefore an approach to non-invasive continuous monitoring of tear glucose using a contact lens.

  5. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose.

    PubMed

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-04-15

    Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ(em max)=650 nm, λ(ex max)=507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O2 to produce H2O2, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0×10(-6)-140×10(-6)M and a detection limit of 0.7×10(-6)M (S/N=3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells. PMID:23540251

  6. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase.

    PubMed

    Yamashita, Yuki; Ferri, Stefano; Huynh, Mai Linh; Shimizu, Hitomi; Yamaoka, Hideaki; Sode, Koji

    2013-02-01

    The FAD-dependent glucose dehydrogenase (FADGDH) from Burkholderia cepacia has several attractive features for glucose sensing. However, expanding the application of this enzyme requires improvement of its substrate specificity, especially decreasing its high activity toward maltose. A three-dimensional structural model of the FADGDH catalytic subunit was generated by homology modeling. By comparing the predicted active site with that of glucose oxidase, the two amino acid residues serine 326 and serine 365 were targeted for site-directed mutagenesis. The single mutations that produced the highest glucose specificity were combined, leading to the creation of the S326Q/S365Y double mutant, which was virtually nonreactive to maltose while retaining high glucose dehydrogenase activity. The engineered FADGDH was used to develop a direct electron transfer-type, disposable glucose sensor strip by immobilizing the enzyme complex onto a carbon screen-printed electrode. While the electrode employing wild-type FADGDH provided dangerously flawed results in the presence of maltose, the sensor employing our engineered FADGDH showed a clear glucose concentration-dependent response that was not affected by the presence of maltose. PMID:23273282

  7. Antipsychotics inhibit glucose transport: Determination of olanzapine binding site in Staphylococcus epidermidis glucose/H+ symporter

    PubMed Central

    Babkin, Petr; George Thompson, Alayna M.; Iancu, Cristina V.; Walters, D. Eric; Choe, Jun-yong

    2015-01-01

    The antipsychotic drug olanzapine is widely prescribed to treat schizophrenia and other psychotic disorders. However, it often causes unwanted side effects, including diabetes, due to disruption of insulin-dependant glucose metabolism through a mechanism yet to be elucidated. To determine if olanzapine can affect the first step in glucose metabolism – glucose transport inside cells – we investigated the effect of this drug on the transport activity of a model glucose transporter. The glucose transporter from Staphylococcus epidermidis (GlcPSe) is specific for glucose, inhibited by various human glucose transporter (GLUT) inhibitors, has high sequence and structure homology to GLUTs, and is readily amenable to transport assay, mutagenesis, and computational modeling. We found that olanzapine inhibits glucose transport of GlcPSe with an IC50 0.9 ± 0.1 mM. Computational docking of olanzapine to the GlcPSe structure revealed potential binding sites that were further examined through mutagenesis and transport assay to identify residues important for olanzapine inhibition. These investigations suggest that olanzapine binds in a polar region of the cytosolic part of the transporter, and interacts with residues R129, strictly conserved in all GLUTs, and N136, conserved in only a few GLUTs, including the insulin-responsive GLUT4. We propose that olanzapine inhibits GlcPSe by impeding the alternating opening and closing of the substrate cavity necessary for glucose transport. It accomplishes this by disrupting a key salt bridge formed by conserved residues R129 and E362, that stabilizes the outward-facing conformation of the transporter. PMID:25941630

  8. Antipsychotics inhibit glucose transport: Determination of olanzapine binding site in Staphylococcus epidermidis glucose/H(+) symporter.

    PubMed

    Babkin, Petr; George Thompson, Alayna M; Iancu, Cristina V; Walters, D Eric; Choe, Jun-Yong

    2015-01-01

    The antipsychotic drug olanzapine is widely prescribed to treat schizophrenia and other psychotic disorders. However, it often causes unwanted side effects, including diabetes, due to disruption of insulin-dependant glucose metabolism through a mechanism yet to be elucidated. To determine if olanzapine can affect the first step in glucose metabolism - glucose transport inside cells - we investigated the effect of this drug on the transport activity of a model glucose transporter. The glucose transporter from Staphylococcus epidermidis (GlcPSe) is specific for glucose, inhibited by various human glucose transporter (GLUT) inhibitors, has high sequence and structure homology to GLUTs, and is readily amenable to transport assay, mutagenesis, and computational modeling. We found that olanzapine inhibits glucose transport of GlcPSe with an IC50 0.9 ± 0.1 mM. Computational docking of olanzapine to the GlcPSe structure revealed potential binding sites that were further examined through mutagenesis and transport assay to identify residues important for olanzapine inhibition. These investigations suggest that olanzapine binds in a polar region of the cytosolic part of the transporter, and interacts with residues R129, strictly conserved in all GLUTs, and N136, conserved in only a few GLUTs, including the insulin-responsive GLUT4. We propose that olanzapine inhibits GlcPSe by impeding the alternating opening and closing of the substrate cavity necessary for glucose transport. It accomplishes this by disrupting a key salt bridge formed by conserved residues R129 and E362, that stabilizes the outward-facing conformation of the transporter. PMID:25941630

  9. Localized surface plasmon resonance of silver nanoisland based glucose sensor

    NASA Astrophysics Data System (ADS)

    Venugopal, N.; Mitra, Anirban

    2013-06-01

    Study of optical properties of glucose is an attractive research topic for years. One of the goals is to develop a portable device for simple, reliable, cost effective and non-invasive monitoring of glucose in blood for diabetics. In this work, we study localized surface plasmon resonance (LSPR) of Ag nanoisland based glucose sensor. The progressive shift in LSPR caused by the various concentration of glucose from 2M to 10M has been investigated to monitor the sensing property. We correlate the redshift of LSPR is due to the change in refractive index of surrounding glucose medium. Preliminary results show that this may possibly reveal a new pathway for sensing glucose.

  10. Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures.

    PubMed

    Meng, Ling; Jin, Juan; Yang, Gaixiu; Lu, Tianhong; Zhang, Hui; Cai, Chenxin

    2009-09-01

    A new electrocatalyst, palladium nanoparticle-single-walled carbon nanotube (Pd-SWNTs) hybrid nanostructure, for the nonenzymatic oxidation of glucose was developed and characterized by X-ray diffraction (XRD) and the transmission electron microscope (TEM). The hybrid nanostructures were prepared by depositing palladium nanoparticles with average diameters of 4-5 nm on the surface of single-walled carbon nanotubes (SWNTs) via chemical reduction of the precursor (Pd(2+)). The electrocatalyst showed good electrocatalytic activity toward the oxidation of glucose in the neutral phosphate buffer solution (PBS, pH 7.4) even in the presence of a high concentration of chloride ions. A nonenzymatic amperometric glucose sensor was developed with the use of the Pd-SWNT nanostructure as an electrocatalyst. The sensor had good electrocatalytic activity toward oxidation of glucose and exhibited a rapid response (ca.3 s), a low detection limit (0.2 +/- 0.05 microM), a wide and useful linear range (0.5-17 mM), and high sensitivity (approximately 160 microA mM(-1) cm(-2)) as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, 4-acetamidophenol, 3,4-dihydroxyphenylacetic acid, and so forth did not cause any interference due to the use of a low detection potential (-0.35 V vs SCE). The sensor can also be used for quantification of the concentration of glucose in real clinical samples. Therefore, this work has demonstrated a simple and effective sensing platform for nonenzymatic detection of glucose. PMID:19715358

  11. Dietary starch sources affect net portal appearance of amino acids and glucose in growing pigs.

    PubMed

    Li, T-J; Dai, Q-Z; Yin, Y-L; Zhang, J; Huang, R-L; Ruan, Z; Deng, Z; Xie, M

    2008-05-01

    Four male pigs (Duroc × Landrace × Yorkshire; average initial (mean ± SEM) BW = 22.5 ± 1.1 kg), fitted with permanent catheters in the portal vein, ileal vein and carotid artery, were used in a 4 × 4 Latin square experimental design to measure the effect of dietary starch sources on the net portal appearance of glucose and amino acids. Dietary starch sources were resistant starch (RS), maize, sticky rice and brown rice. Diets were provided at 0730, 1530 and 2330 h during a 6-day adjustment period and 1-day collection period. On day 7 of each period, blood samples were collected from the portal vein and carotid artery at 0730 h (prior to feeding) and hourly up to 8 h after meal. Blood samples were used to determine glucose, amino acid, packed cell volume and partial pressure of oxygen (pO2). When calculated per 100 g feed intake, cumulative portal glucose appearance was lower (P < 0.05) for resistant starch than for maize, sticky rice or brown rice up to 8 h after the meal. Cumulative portal glucose appearance was higher (P < 0.05) for sticky rice and brown rice than for other diets until 4 h after the meal, but maize had higher cumulative glucose appearance after 4 h. Net cumulative portal concentrations of most amino acids for resistant starch were also reduced (P < 0.05) than for the other starch sources. Cumulative portal appearance of amino acid represented 48.39%, 63.76%, 61.80% and 59.18% of dietary intake for resistant starch, maize, sticky rice and brown rice, respectively. Collectively, our results indicate that dietary starch sources substantially affect the appearance of amino acids and glucose in the portal circulation. PMID:22443597

  12. Outpatient Assessment of Determinants of Glucose Excursions in Adolescents with Type 1 Diabetes: Proof of Concept

    PubMed Central

    Mayer-Davis, Elizabeth; Bishop, Franziska K.; Wang, Lily; Mangan, Meg; McMurray, Robert G.

    2012-01-01

    Abstract Objective Controlled inpatient studies on the effects of food, physical activity (PA), and insulin dosing on glucose excursions exist, but such outpatient data are limited. We report here outpatient data on glucose excursions and its key determinants over 5 days in 30 adolescents with type 1 diabetes (T1D) as a proof-of-principle pilot study. Subjects and Methods Subjects (20 on insulin pumps, 10 receiving multiple daily injections; 15±2 years old; diabetes duration, 8±4 years; hemoglobin A1c, 8.1±1.0%) wore a continuous glucose monitor (CGM) and an accelerometer for 5 days. Subjects continued their existing insulin regimens, and time-stamped insulin dosing data were obtained from insulin pump downloads or insulin pen digital logs. Time-stamped cell phone photographs of food pre- and post-consumption and food logs were used to augment 24-h dietary recalls for Days 1 and 3. These variables were incorporated into regression models to predict glucose excursions at 1–4 h post-breakfast. Results CGM data on both Days 1 and 3 were obtained in 57 of the possible 60 subject-days with an average of 125 daily CGM readings (out of a possible 144). PA and dietary recall data were obtained in 100% and 93% of subjects on Day 1 and 90% and 100% of subjects on Day 3, respectively. All of these variables influenced glucose excursions at 1–4 h after waking, and 56 of the 60 subject-days contributed to the modeling analysis. Conclusions Outpatient high-resolution time-stamped data on the main inputs of glucose variability in adolescents with T1D are feasible and can be modeled. Future applications include using these data for in silico modeling and for monitoring outpatient iterations of closed-loop studies, as well as to improve clinical advice regarding insulin dosing to match diet and PA behaviors. PMID:22853720

  13. Diurnal Cortisol Patterns, Future Diabetes, and Impaired Glucose Metabolism in the Whitehall II Cohort Study

    PubMed Central

    Kivimäki, Mika; Kumari, Meena; Steptoe, Andrew

    2016-01-01

    Context: The hypothalamic pituitary-adrenal axis is thought to play a role in type 2 diabetes (T2D). However, evidence for an association between cortisol and future glucose disturbance is sparse. Objective: The aim was to examine the association of diurnal cortisol secretion with future T2D and impaired glucose metabolism in a community-dwelling population. Design: This is a prospective cohort study of salivary cortisol measured at the 2002–2004 clinical examination of the Whitehall II study, United Kingdom. We measured cortisol (nmol/l) from six saliva samples obtained over the course of a day: at waking, +30 minutes, +2.5 hours, +8 hours, +12 hours, and bedtime. Participants who were normoglycemic in 2002–2004 (phase 7) were reexamined in 2012–2013 (phase 11). Setting: The occupational cohort was originally recruited in 1985–1988. Participants: A total of 3270 men and women with an average age of 60.85 years at phase 7 (2002–2004). Outcome Measures: Incident T2D and impaired fasting glucose in 2012–2013 were measured. Results: Raised evening cortisol at phase 7 was predictive of new-onset T2D at phase 11 (odds ratio [OR], 1.18; 95% confidence interval [CI], 1.01–1.37) with a trend for a flatter slope in participants with incident T2D (odds ratio, 1.15; 95% CI, 0.99–1.33). When expanding this analysis to a broader category of glucose disturbance we found that a flattened diurnal cortisol slope at phase 7 was predictive of future impaired fasting glucose or T2D at phase 11 (OR, 1.12; 95% CI, 1.02–1.22), as was high bedtime cortisol (OR, 1.10; 95% CI, 1.01–1.20). Conclusions: In this nonclinical population, alterations in diurnal cortisol patterns were predictive of future glucose disturbance. PMID:26647151

  14. Continuous Glucose Monitoring, Future Products, and Update on Worldwide Artificial Pancreas Projects

    PubMed Central

    DeVries, J. Hans

    2016-01-01

    Abstract The development of accurate and easy-to-use continuous glucose monitoring (CGM) improved diabetes treatment by providing additional temporal information on glycemia and glucose trends to patient and physician. Although CGM enables users to lower their average glucose level without an increased incidence of hypoglycemia, this comes at the price of additional patient effort. Automation of insulin administration, also known as closed-loop (CL) or artificial pancreas treatment, has the promise to reduce patient effort and improve glycemic control. CGM data serve as the conditional input for insulin automation devices. The first commercial product for partial automation of insulin administration used insulin delivery shutoff at a predefined glucose level. These systems showed a reduction in hypoglycemia. Insulin-only CL devices show increased time spent in euglycemia and a reduction of hypo- and hyperglycemia. Improved glycemic control, coinciding with a minor decrease in hemoglobin A1c level, was confirmed in recent long-term home studies investigating these devices, paving the way for pivotal studies for commercialization of the artificial pancreas. Although the first results from dual-hormone CL systems are promising, because of increased cost of consumables of these systems, long-term head-to-head studies will have to prove superiority over insulin-only approaches. Now CL glucose control for daily use might finally become reality. Improved continuous glucose sensing technology, miniaturization of electrical devices, and development of algorithms were key in making this possible. Clinical adoption challenges, including device usability and reimbursement, need to be addressed. Time will tell for which patient groups CL systems will be reimbursed and whether these devices can deliver the promise that they hold. PMID:26784131

  15. Continuous Glucose Monitoring, Future Products, and Update on Worldwide Artificial Pancreas Projects.

    PubMed

    Kropff, Jort; DeVries, J Hans

    2016-02-01

    The development of accurate and easy-to-use continuous glucose monitoring (CGM) improved diabetes treatment by providing additional temporal information on glycemia and glucose trends to patient and physician. Although CGM enables users to lower their average glucose level without an increased incidence of hypoglycemia, this comes at the price of additional patient effort. Automation of insulin administration, also known as closed-loop (CL) or artificial pancreas treatment, has the promise to reduce patient effort and improve glycemic control. CGM data serve as the conditional input for insulin automation devices. The first commercial product for partial automation of insulin administration used insulin delivery shutoff at a predefined glucose level. These systems showed a reduction in hypoglycemia. Insulin-only CL devices show increased time spent in euglycemia and a reduction of hypo- and hyperglycemia. Improved glycemic control, coinciding with a minor decrease in hemoglobin A1c level, was confirmed in recent long-term home studies investigating these devices, paving the way for pivotal studies for commercialization of the artificial pancreas. Although the first results from dual-hormone CL systems are promising, because of increased cost of consumables of these systems, long-term head-to-head studies will have to prove superiority over insulin-only approaches. Now CL glucose control for daily use might finally become reality. Improved continuous glucose sensing technology, miniaturization of electrical devices, and development of algorithms were key in making this possible. Clinical adoption challenges, including device usability and reimbursement, need to be addressed. Time will tell for which patient groups CL systems will be reimbursed and whether these devices can deliver the promise that they hold. PMID:26784131

  16. Variability of capillary blood glucose monitoring measured on home glucose monitoring devices

    PubMed Central

    Kotwal, Narendra; Pandit, Aditi

    2012-01-01

    Self monitoring of blood glucose helps achieve glycemic goals. Glucometers must be accurate. Many variables affect blood glucose levels. Factors are analytical variables (intrinsic to glucometer and glucose strips) and pre analytical related to patients. Analytical variables depend on factors like shelf life, amount of blood and enzymatic reactions. Preanalytical variables include pH of blood, hypoxia, hypotension, hematocrit etc. CGMS has the potential to revolutionise diabetes care but accuracy needs to be proven beyond doubt before replacing current glucometer devices. PMID:23565391

  17. Glucose metabolism in pregnant sheep when placental growth is restricted

    SciTech Connect

    Owens, J.A.; Falconer, J.; Robinson, J.S. )

    1989-08-01

    The effect of restricting placental growth on glucose metabolism in pregnant sheep in late gestation was determined by primed constant infusions of D-(U-{sup 14}C)- and D-(2-{sup 3}H)glucose and antipyrine into fetuses of six control sheep and six sheep from which endometrial caruncles had been removed before pregnancy (caruncle sheep). In the latter, placental and fetal weights were reduced, as was the concentration of glucose in fetal arterial blood. Fetal glucose turnover in caruncle sheep was only 52-59% of that in controls, largely because of lower umbilical loss of glucose back to the placenta (38-39% of control) and lower fetal glucose utilization (61-74% of control). However, fetal glucose utilization on a weight-specific basis was similar in control and caruncle sheep. Significant endogenous glucose production occurred in control and caruncle fetal sheep. Maternal glucose production and partition of glucose between the gravid uterus and other maternal tissues were similar in control and caruncle sheep. In conclusion, when placental and fetal growth are restricted, fetal glucose utilization is maintained by reduced loss of glucose back to the placenta and mother and by maintaining endogenous glucose production.

  18. Colorimetric estimation of human glucose level using γ-Fe₂O₃ nanoparticles: an easily recoverable effective mimic peroxidase.

    PubMed

    Mitra, Kamala; Ghosh, Abhisek Brata; Sarkar, Arpita; Saha, Namrata; Dutta, Amit Kumar

    2014-08-15

    This article reports simple, green and efficient synthesis of γ-Fe₂O₃ nanoparticles (NPs) (maghemite) through single-source precursor approach for colorimetric estimation of human glucose level. The γ-Fe₂O₃ NPs, having cubic morphology with an average particle size of 30 nm, exhibited effective peroxidase-like activity through the catalytic oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H₂O₂ producing a blue-colored solution. On the basis of this colored-reaction, we have developed a simple, cheap, highly sensitive and selective colorimetric method for estimation of glucose using γ-Fe₂O₃/TMB/glucose-glucose oxidase (GOx) system in the linear range from 1 to 80 μM with detection limit of 0.21 μM. The proposed glucose sensor displays faster response, good stability, reproducibility and anti-interference ability. Based on this simple reaction process, human blood and urine glucose level can be monitored conveniently. PMID:25019982

  19. Regulation of Glucose Homeostasis by GLP-1

    PubMed Central

    Nadkarni, Prashant; Chepurny, Oleg G.; Holz, George G.

    2014-01-01

    Glucagon-like peptide-1(7–36)amide (GLP-1) is a secreted peptide that acts as a key determinant of blood glucose homeostasis by virtue of its abilities to slow gastric emptying, to enhance pancreatic insulin secretion, and to suppress pancreatic glucagon secretion. GLP-1 is secreted from L cells of the gastrointestinal mucosa in response to a meal, and the blood glucose-lowering action of GLP-1 is terminated due to its enzymatic degradation by dipeptidyl-peptidase-IV (DPP-IV). Released GLP-1 activates enteric and autonomic reflexes while also circulating as an incretin hormone to control endocrine pancreas function. The GLP-1 receptor (GLP-1R) is a G protein-coupled receptor that is activated directly or indirectly by blood glucose-lowering agents currently in use for the treatment of type 2 diabetes mellitus (T2DM). These therapeutic agents include GLP-1R agonists (exenatide, liraglutide, lixisenatide, albiglutide, dulaglutide, and langlenatide) and DPP-IV inhibitors (sitagliptin, vildagliptin, saxagliptin, linagliptin, and alogliptin). Investigational agents for use in the treatment of T2DM include GPR119 and GPR40 receptor agonists that stimulate the release of GLP-1 from L cells. Summarized here is the role of GLP-1 to control blood glucose homeo-stasis, with special emphasis on the advantages and limitations of GLP-1-based therapeutics. PMID:24373234

  20. Glucose regulates amyloid β production via AMPK.

    PubMed

    Yang, Ting-Ting; Shih, Yao-Shan; Chen, Yun-Wen; Kuo, Yu-Min; Lee, Chu-Wan

    2015-10-01

    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Accumulation of Aβ peptides in the brain has been suggested as the cause of AD (amyloid cascade hypothesis); however, the mechanism for the abnormal accumulation of Aβ in the brains of AD patients remains unclear. A plethora of evidence has emerged to support a link between metabolic disorders and AD. This study was designed to examine the relationship between energy status and Aβ production. Neuro 2a neuroblastoma cells overexpressing human amyloid precursor protein 695 (APP cells) were cultured in media containing different concentrations of glucose and agonist or antagonist of AMP-activated-protein-kinase (AMPK), a metabolic master sensor. The results showed that concentrations of glucose in the culture media were negatively associated with the activation statuses of AMPK in APP cells, but positively correlated with the levels of secreted Aβ. Modulating AMPK activities affected the production of Aβ. If APP cells were cultured in high glucose medium (i.e., AMPK was inactive), stimulation of AMPK activity decreased the production levels of Aβ. On the contrary, if APP cells were incubated in medium containing no glucose (i.e., AMPK was activated), inhibition of AMPK activity largely increased Aβ production. As AMPK activation is a common defect in metabolic abnormalities, our study supports the premise that metabolic disorders may aggravate AD pathogenesis. PMID:26071020

  1. Clean conversion of cellulose into fermentable glucose.

    PubMed

    Sun, Yong; Zhuang, Junping; Lin, Lu; Ouyang, Pingkai

    2009-01-01

    We studied the process of conversion of microcrystalline-cellulose into fermentable glucose in the formic acid reaction system using cross polarization/magic angle spinning (13)C-nuclear magnetic resonance, X-ray diffraction and Fourier transform infrared spectroscopy. The results indicated that formic acid as an active agent was able to effectively penetrate into the interior space of the cellulose molecules, thus collapsing the rigid crystalline structure and allowing hydrolysis to occur easily in the amorphous zone as well as in the crystalline zone. The microcrystalline-cellulose was hydrolyzed using formic acid and 4% hydrochloric acid under mild conditions. The effects of hydrochloric acid concentration, the ratio of solid to liquid, temperature (55-75 degrees C) and retention time (0-9 h), and the concentration of glucose were analyzed. The hydrolysis velocities of microcrystalline-cellulose were 6.14 x 10(-3) h(-1) at 55 degrees C, 2.94 x 10(-2) h(-1) at 65 degrees C, and 6.84x10(-2) h(-1) at 75 degrees C. The degradation velocities of glucose were 0.01 h(-1) at 55 degrees C, 0.14 h(-1) at 65 degrees C, 0.34 h(-1) at 75 degrees C. The activation energy of microcrystalline-cellulose hydrolysis was 105.61 kJ/mol, and the activation energy of glucose degradation was 131.37 kJ/mol. PMID:19409478

  2. Design of nanostructured-based glucose biosensors

    NASA Astrophysics Data System (ADS)

    Komirisetty, Archana; Williams, Frances; Pradhan, Aswini; Konda, Rajini B.; Dondapati, Hareesh; Samantaray, Diptirani

    2012-04-01

    This paper presents the design of glucose sensors that will be integrated with advanced nano-materials, bio-coatings and electronics to create novel devices that are highly sensitive, inexpensive, accurate, and reliable. In the work presented, a glucose biosensor and its fabrication process flow have been designed. The device is based on electrochemical sensing using a working electrode with bio-functionalized zinc oxide (ZnO) nano-rods. Among all metal oxide nanostructures, ZnO nano-materials play a significant role as a sensing element in biosensors due to their properties such as high isoelectric point (IEP), fast electron transfer, non-toxicity, biocompatibility, and chemical stability which are very crucial parameters to achieve high sensitivity. Amperometric enzyme electrodes based on glucose oxidase (GOx) are used due to their stability and high selectivity to glucose. The device also consists of silicon dioxide and titanium layers as well as platinum working and counter electrodes and a silver/silver chloride reference electrode. Currently, the biosensors are being fabricated using the process flow developed. Once completed, the sensors will be bio-functionalized and tested to characterize their performance, including their sensitivity and stability.

  3. Psoriatic therapeutics and glucose-6-phosphate dehydrogenase.

    PubMed

    Cotton, D W; van Rossum, E

    1975-01-01

    The inhibitory effects of various agents on the enzyme glucose-6-phosphate dehydrogenase have been studied in vitro. Stress is laid on the calculation of kinetic parameters such as true K-I values. The most active inhibitor was methotrexate, closely followed by cGMP. The increase in inhibitory activity after incubation of methotrexate with liver slices is discussed. PMID:167665

  4. Diabetic neuropathy and plasma glucose control.

    PubMed

    Porte, D; Graf, R J; Halter, J B; Pfeifer, M A; Halar, E

    1981-01-01

    Diabetic neuropathy is defined, and theories of its pathogenesis are reviewed. Recent studies designed to investigate the influence of plasma glucose on nerve function in noninsulin-dependent diabetic patients are summarized. Motor nerve conduction velocities in the median and peroneal nerves were measured using a double-stimulus technique, and sensory conduction velocity was measured by conventional methods before and after therapy with oral agents or insulin. The degree of hyperglycemia was assessed by measurement of fasting plasma glucose and glycosylated hemoglobin concentrations. The degree of slowing in motor nerve conduction velocity in untreated patients was found to correlate with the fasting plasma glucose and glycosylated hemoglobin concentrations, but sensory nerve function, although abnormal, did not show such correlation. Reduction of hyperglycemia was associated with improvement in motor nerve conduction velocity in the peroneal and median motor nerves of these patients, but sensory nerve conduction velocity showed no such improvement. Improvement in median motor nerve conduction velocity was directly related to the degree of reduction in fasting plasma glucose concentration. These findings suggest that metabolic factors related to hyperglycemia are important in the impaired motor nerve function seen in noninsulin-dependent patients with maturity-onset diabetes. PMID:7457487

  5. Enzymatic production of hydrogen from glucose

    SciTech Connect

    Woodward, J.; Mattingly, S.M.

    1995-06-01

    The objective of this research is to optimize conditions for the enzymatic production of hydrogen gas from biomass-derived glucose. This new project is funded at 0.5 PY level of effort for FY 1995. The rationale for the work is that cellulose is, potentially, a vast source of hydrogen and that enzymes offer a specific and efficient method for its extraction with minimal environmental impact. This work is related to the overall hydrogen program goal of technology development and validation. The approach is based on knowledge that glucose is oxidized by the NADP{sup +} requiring enzyme glucose dehydrogenase (GDH) and that the resulting NADPH can donate its electrons to hydrogenase (H{sub 2}ase) which catalyzes the evolution of H{sub 2}. Thus hydrogen production from glucose was achieved using calf liver GDH and Pyrococcus furiosus H{sub 2}ase yielding 17% of theoretical maximum expected. The cofactor NADP{sup +} for this reaction was regenerated and recycled. Current and future work includes understanding the rate limiting steps of this process and the stabilization/immobilization of the enzymes for long term hydrogen production. Cooperative interactions with the Universities of Georgia and Bath for obtaining thermally stable enzymes are underway.

  6. Enzymatic production of hydrogen from glucose

    NASA Astrophysics Data System (ADS)

    Woodward, J.; Mattingly, S. M.

    The objective of this research is to optimize conditions for the enzymatic production of hydrogen gas from biomass-derived glucose. This new project is funded at 0.5 PY level of effort for FY 1995. The rationale for the work is that cellulose is, potentially, a vast source of hydrogen and that enzymes offer a specific and efficient method for its extraction with minimal environmental impact. This work is related to the overall hydrogen program goal of technology development and validation. The approach is based on knowledge that glucose is oxidized by the NADP(sup +) requiring enzyme glucose dehydrogenase (GDH) and that the resulting NADPH can donate its electrons to hydrogenase (H2ase) which catalyzes the evolution of H2. Thus hydrogen production from glucose was achieved using calf liver GDH and Pyrococcus furiosus H2ase yielding 17% of theoretical maximum expected. The cofactor NADP(sup +) for this reaction was regenerated and recycled. Current and future work includes understanding the rate limiting steps of this process and the stabilization/immobilization of the enzymes for long term hydrogen production. Cooperative interactions with the Universities of Georgia and Bath for obtaining thermally sta

  7. Effect of local corticosteroid injection of the hand and wrist on blood glucose in patients with diabetes mellitus.

    PubMed

    Catalano, Louis W; Glickel, Steven Z; Barron, O Alton; Harrison, Richard; Marshall, Astrid; Purcelli-Lafer, Marissa

    2012-12-01

    Locally administered corticosteroids are a common therapy in many hand and wrist disorders. Corticosteroids pose a theoretical risk to patients with diabetes mellitus by potentially raising blood glucose to hyperglycemic levels. Although oral corticosteroids are known to have an effect on blood glucose control, limited data exist on extra-articular administration. The purpose of this study was to examine the systemic impact of extra-articularly administered corticosteroids in the hand and wrist on serum glucose concentration in patients with diabetes mellitus.Twenty-three patients with diabetes mellitus received a 1-mL triamcinolone acetonide injection for de Quervain's tenosynovitis, trigger finger, flexor carpi ulnaris tendonitis, or carpal tunnel syndrome. Patients recorded their daily morning blood glucose levels for 1 week before injection and for 4 weeks after injection. Average blood glucose levels increased slightly from baseline after injection, reaching statistical significance 1, 5, and 6 days after injection, but were not clinically significant (average increase, 14.2, 9.7, and 32.7 mg/dL, respectively). Isolated increases more than 2 times the standard deviation of preinjection values occurred at least once in the majority of patients. The frequency of hyperglycemic episodes increased after injection, but the proportions of patients with at least 1 hyperglycemic episode before and after injection were not significantly different.These results suggest that local corticosteroid injections are a clinically safe treatment option for inflammatory processes of the hand and wrist in patients with diabetes mellitus. On average, patients experienced slight increases in blood glucose after receiving an injection. Most experienced isolated increases substantially beyond baseline and isolated hyperglycemic effects, but these did not pose an apparent clinical risk. PMID:23218632

  8. Average g-Factors of Anisotropic Polycrystalline Samples

    SciTech Connect

    Fishman, Randy Scott; Miller, Joel S.

    2010-01-01

    Due to the lack of suitable single crystals, the average g-factor of anisotropic polycrystalline samples are commonly estimated from either the Curie-Weiss susceptibility or the saturation magnetization. We show that the average g-factor obtained from the Curie constant is always greater than or equal to the average g-factor obtained from the saturation magnetization. The average g-factors are equal only for a single crystal or an isotropic polycrystal. We review experimental results for several compounds containing the anisotropic cation [Fe(C5Me5)2]+ and propose an experiment to test this inequality using a compound with a spinless anion.

  9. Aberration averaging using point spread function for scanning projection systems

    NASA Astrophysics Data System (ADS)

    Ooki, Hiroshi; Noda, Tomoya; Matsumoto, Koichi

    2000-07-01

    Scanning projection system plays a leading part in current DUV optical lithography. It is frequently pointed out that the mechanically induced distortion and field curvature degrade image quality after scanning. On the other hand, the aberration of the projection lens is averaged along the scanning direction. This averaging effect reduces the residual aberration significantly. The aberration averaging based on the point spread function and phase retrieval technique in order to estimate the effective wavefront aberration after scanning is described in this paper. Our averaging method is tested using specified wavefront aberration, and its accuracy is discussed based on the measured wavefront aberration of recent Nikon projection lens.

  10. Thermodynamic properties of average-atom interatomic potentials for alloys

    NASA Astrophysics Data System (ADS)

    Nöhring, Wolfram Georg; Curtin, William Arthur

    2016-05-01

    The atomistic mechanisms of deformation in multicomponent random alloys are challenging to model because of their extensive structural and compositional disorder. For embedded-atom-method interatomic potentials, a formal averaging procedure can generate an average-atom EAM potential and this average-atom potential has recently been shown to accurately predict many zero-temperature properties of the true random alloy. Here, the finite-temperature thermodynamic properties of the average-atom potential are investigated to determine if the average-atom potential can represent the true random alloy Helmholtz free energy as well as important finite-temperature properties. Using a thermodynamic integration approach, the average-atom system is found to have an entropy difference of at most 0.05 k B/atom relative to the true random alloy over a wide temperature range, as demonstrated on FeNiCr and Ni85Al15 model alloys. Lattice constants, and thus thermal expansion, and elastic constants are also well-predicted (within a few percent) by the average-atom potential over a wide temperature range. The largest differences between the average atom and true random alloy are found in the zero temperature properties, which reflect the role of local structural disorder in the true random alloy. Thus, the average-atom potential is a valuable strategy for modeling alloys at finite temperatures.

  11. Glucose Fermentation Pathway of Thermoanaerobium brockii

    PubMed Central

    Lamed, R.; Zeikus, J. G.

    1980-01-01

    Thermoanaerobium brockii was shown to catabolize glucose via the Embden-Meyerhof-Parnas pathway into ethanol, acetic acid, H2-CO2, and lactic acid. Radioactive tracer studies, employing specifically labeled [14C]glucose, demonstrated significant fermentation of 14CO2 from C-3 and C-4 of the substrate exclusively. All extracts contained sufficient levels of activity (expressed in micromoles per minute per milligram of protein at 40°C) to assign a catabolic role for the following enzymes: glucokinase, 0.40; fructose-1,6-diphosphate aldolase, 0.23; glyceraldehyde-3-phosphate dehydrogenase, 1.73; pyruvate kinase, 0.36; lactate dehydrogenase (fructose-1,6-diphosphate activated), 0.55; pyruvate dehydrogenase (coenzyme A acetylating), 0.53; hydrogenase, 3.3; phosphotransacetylase, 0.55; acetaldehyde dehydrogenase (coenzyme A acetylating), 0.15; ethanol dehydrogenase, 1.57; and acetate kinase, 1.50. All pyridine nucleotide-linked oxidoreductases examined were specific for nicotinamide adenine dinucleotide, except ethanol dehydrogenase which displayed both nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-linked activities. Fermentation product balances and cell growth yields supported the glucose catabolic pathway described. Representative balanced end product yields (in moles per mole of glucose fermented) were: ethanol, 0.94; l-lactate, 0.84; acetate, 0.20; CO2, 1.31; and H2, 0.50. Growth yields of 16.4 g of cells per mole of glucose were demonstrated. Both growth and end product yields varied significantly in accordance with the specific medium composition and incubation time. PMID:6767705

  12. Fabrication of Amperometric Glucose Sensor Using Glucose Oxidase-Cellulose Nanofiber Aqueous Solution.

    PubMed

    Yasuzawa, Mikito; Omura, Yuya; Hiura, Kentaro; Li, Jiang; Fuchiwaki, Yusuke; Tanaka, Masato

    2015-01-01

    Cellulose nanofiber aqueous solution, which remained virtually transparent for more than one week, was prepared by using the clear upper layer of diluted cellulose nanofiber solution produced by wet jet milling. Glucose oxidase (GOx) was easily dissolved in this solution and GOx-immobilized electrode was easily fabricated by simple repetitious drops of GOx-cellulose solution on the surface of a platinum-iridium electrode. Glucose sensor properties of the obtained electrodes were examined in phosphate buffer solution of pH 7.4 at 40°C. The obtained electrode provided a glucose sensor response with significantly high response speed and good linear relationship between glucose concentration and response current. After an initial decrease of response sensitivity for a few days, relatively constant sensitivity was obtained for about 20 days. Nevertheless, the influence of electroactive compounds such as ascorbic acid, uric acid and acetoaminophen were not negletable. PMID:26561252

  13. Increased airway glucose increases airway bacterial load in hyperglycaemia

    PubMed Central

    Gill, Simren K.; Hui, Kailyn; Farne, Hugo; Garnett, James P.; Baines, Deborah L.; Moore, Luke S.P.; Holmes, Alison H.; Filloux, Alain; Tregoning, John S.

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  14. Increased airway glucose increases airway bacterial load in hyperglycaemia.

    PubMed

    Gill, Simren K; Hui, Kailyn; Farne, Hugo; Garnett, James P; Baines, Deborah L; Moore, Luke S P; Holmes, Alison H; Filloux, Alain; Tregoning, John S

    2016-01-01

    Diabetes is associated with increased frequency of hospitalization due to bacterial lung infection. We hypothesize that increased airway glucose caused by hyperglycaemia leads to increased bacterial loads. In critical care patients, we observed that respiratory tract bacterial colonisation is significantly more likely when blood glucose is high. We engineered mutants in genes affecting glucose uptake and metabolism (oprB, gltK, gtrS and glk) in Pseudomonas aeruginosa, strain PAO1. These mutants displayed attenuated growth in minimal medium supplemented with glucose as the sole carbon source. The effect of glucose on growth in vivo was tested using streptozocin-induced, hyperglycaemic mice, which have significantly greater airway glucose. Bacterial burden in hyperglycaemic animals was greater than control animals when infected with wild type but not mutant PAO1. Metformin pre-treatment of hyperglycaemic animals reduced both airway glucose and bacterial load. These data support airway glucose as a critical determinant of increased bacterial load during diabetes. PMID:27273266

  15. Glucose tracer, kinetics and turnover in monkeys and chickens infused with ethanol, 1,3-butanediol, or fructose

    SciTech Connect

    Armstrong, M.K.

    1985-01-01

    Mixtures of (2-/sup 3/H) and (U-/sup 14/C) glucose were injected as single doses into fasted cynomolgus monkeys to assess glucose tracer kinetics and obtain rates of turnover. Data were treated by stochastic and compartmental analyses and results from both analyses closely agreed. However, (2-/sup 3/H) data analyzed by the compartmental analysis required three pools to fit the glucose disappearance curve while (6-/sup 3/H) data fit a two or three pool model equally well. Turnover rates averaged 4.9-4.0, and 3.0 mg/min x kg/sup -1/ body weight with (2-/sup 3/H), 6-/sup 3/H) and (U-/sup 14/C) glucose tracers, respectively. The data heuristically suggest that the slow turnover pool that was necessary to fit (2-/sup 3/H) glucose data is related to isotope discrimination. The effects of four treatment solutions on (6-/sup 3/H) glucose metabolism in monkeys were examined. The solutions and their rates of infusion (umoles/min x kg/sup -1/) were: (1) ethanol, 110; (2) 1,3-butanediol, 110; (3) fructose, 30; and (4) ethanol pus fructose, 110 and 30, respectively. The glucose clearance rate was lowest during the ethanol plus fructose infusions. Ethanol infusions (222 or 444 umoles/min x kg/sup -1/ body weight) in chickens (1500 g) fasted 64 hours did not cause hypoglycemia although the high dose slightly decreased the rate of glucose turnover 15% (14.0 versus 12.0 mg/min x kg/sup -1/). It was further found that neither the hepatic cytosolic nor the mitochondrial redox state significantly changed in chickens infused with the high dose of ethanol. The unchanged hepatic metabolite ratios in chickens are consistent with their unusual resistance to ethanol-induced hypoglycemia.

  16. Sensitive detection of glucose in human serum with oligonucleotide modified gold nanoparticles by using dynamic light scattering technique.

    PubMed

    Miao, Xiangmin; Ling, Liansheng; Shuai, Xintao

    2013-03-15

    Dynamic light scattering based sensor for glucose was developed with oligonucleotide functionalized gold nanoparticles (Oligo-AuNPs). Oligonucleotide 5'-SH-(A)(12)-AGACAAGAGAGG-3' (Oligo 1) modified AuNPs and oligonucleotide 5'-CAACAGAGAACG-(A)(12)-HS-3' (Oligo 2) modified AuNPs could hybridize with oligonulceotide 5'-CGTTCTCTGTTGCCTCTCTTGTCT-3' (Oligo 3), which resulted in the aggregation of Oligo-AuNPs probes, and triggered the increase of their average diameter. However, Oligo 3 could be cleaved into DNA fragments by the mixture of glucose, glucose oxidase (GOD) and Fe(2+), and the DNA fragments could not hybridize with Oligo-AuNPs probes. Under the conditions of 3.7 nM Oligo 1-AuNPs, 3.7 nM Oligo 2-AuNPs, 8.0 μg/mL GOD, 100 nM Oligo 3 and 900 nM Fe(2+), the average diameter of Oligo-AuNPs probes decreased linearly with the increasing concentration of glucose over the range from 50 pmol/L to 5.0 nmol/L, with a detection limit of 38 pmol/L (3σ/slope). Moreover, five sugars had no effect on the average diameter of mixture of Oligo-AuNPs probes, GOD and Fe(2+), which demonstrated the good selectivity of the assay. PMID:23084753

  17. Effect of protein quality on /sup 14/C glucose utilization in isolated rat mammary acini

    SciTech Connect

    Masor, M.L.; Grundleger, M.L.; Jansen, G.R.

    1986-03-01

    Poor protein quality has a deleterious effect on lactation in rats. Dams consuming a 13% wheat gluten (WG) diet are unable to maintain litters. Glucose utilization in isolated mammary acini taken from dams at either day 20 of gestation (G20) or day 4 of lactation (L4) was examined in dams consuming 13% WG vs 13% casein-methionine (CM) diets from day of breeding. Dams consuming WG had significantly smaller inguinal-abdominal mammary glands than CM dams at both G20 and L4, and mammary glands of CM but not WG dams were larger at L4 than G20. Both average pup weight and pup daily gain were smaller in WG litters. Basal levels of /sup 14/C glucose oxidation (GO) and /sup 14/C glucose incorporation into lipid (GL) and lactose were examined. A large significant increase in GO and GL occurred in CM dams from G20 to L4 but not in WG dams. Both GO and GL were higher in CM dams on L4 but not at G20. The ratio of GO:GO+GL changed at parturition in CM but not WG dams. The normal changes in glucose utilization by mammary epithelial cells which occur at parturition were impaired by the WG diet.

  18. Glucose-conjugated chitosan nanoparticles for targeted drug delivery and their specific interaction with tumor cells

    NASA Astrophysics Data System (ADS)

    Li, Jing; Ma, Fang-Kui; Dang, Qi-Feng; Liang, Xing-Guo; Chen, Xi-Guang

    2014-12-01

    A novel targeted drug delivery system, glucose-conjugated chitosan nanoparticles (GCNPs), was developed for specific recognition and interaction with glucose transporters (Gluts) over-expressed by tumor cells. GC was synthesized by using succinic acid as a linker between glucosamine and chitosan (CS), and successful synthesis was confirmed by NMR and elemental analysis. GCNPs were prepared by ionic crosslinking method, and characterized in terms of morphology, size, and zeta potential. The optimally prepared nanoparticles showed spherical shapes with an average particle size of (187.9 ± 3.8) nm and a zeta potential of (- 15.43 ± 0.31) mV. The GCNPs showed negligible cytotoxicity to mouse embryo fibroblast and 4T1 cells. Doxorubicin (DOX) could be efficiently entrapped into GCNPs, with a loading capacity and encapsulation efficiency of 20.11% and 64.81%, respectively. DOX-loaded nanoparticles exhibited sustained-release behavior in phosphate buffered saline (pH 7.4). In vitro cellular uptake studies showed that the GCNPs had better endocytosis ability than CSNPs, and the antitumor activity of DOX/GCNPs was 4-5 times effectiveness in 4T1 cell killing than that of DOX/CSNPs. All the results demonstrate that nanoparticles decorated with glucose have specific interactions with cancer cells via the recognition between glucose and Gluts. Therefore, Gluts-targeted GCNPs may be promising delivery agents in cancer therapies.

  19. ZnO nano-array-based EGFET biosensor for glucose detection

    NASA Astrophysics Data System (ADS)

    Qi, Junjie; Zhang, Huihui; Ji, Zhaoxia; Xu, Minxuan; Zhang, Yue

    2015-06-01

    Electrochemical biosensors are normally based on enzymatic catalysis of a reaction that produces or consumes electrons and the sensing membranes dominate the performance. In this work, ZnO nano-array-based EGFETs were fabricated for pH and glucose detection. The ZnO nano-arrays prepared via low-temperature hydrothermal method were well-aligned, with an average length of 2 μm and diameter of 100-150 nm, and have a typical hexagonal wurtzite structure. The sensor performed with a sensitivity of 45 mV/pH and response time of about 6-7 s from pH = 4-12. UV irradiation can improve the Vref response as a result of the formation of a depletion region at the surface of ZnO nanomaterials. Due to its high specific surface area, the ZnO nano-array EGFET sensor showed a sensitivity of -0.395 mV/μM to the glucose detection in a concentration range between 20 and 100 μM. These EGFET glucose biosensors demonstrate a low detectable concentration (20 μM) with good linearity, therefore may be used to detect glucose in saliva and tears at much lower concentrations than that in blood.

  20. Self-tuning GMV control of glucose concentration in fed-batch baker's yeast production.

    PubMed

    Hitit, Zeynep Yilmazer; Boyacioglu, Havva; Ozyurt, Baran; Ertunc, Suna; Hapoglu, Hale; Akay, Bulent

    2014-04-01

    A detailed system identification procedure and self-tuning generalized minimum variance (STGMV) control of glucose concentration during the aerobic fed-batch yeast growth were realized. In order to determine the best values of the forgetting factor (λ), initial value of the covariance matrix (α), and order of the Auto-Regressive Moving Average with eXogenous (ARMAX) model (n a, n b), transient response data obtained from the real process wereutilized. Glucose flow rate was adjusted according to the STGMV control algorithm coded in Visual Basic in an online computer connected to the system. Conventional PID algorithm was also implemented for the control of the glucose concentration in aerobic fed-batch yeast cultivation. Controller performances were examined by evaluating the integrals of squared errors (ISEs) at constant and random set point profiles. Also, batch cultivation was performed, and microorganism concentration at the end of the batch run was compared with the fed-batch cultivation case. From the system identification step, the best parameter estimation was accomplished with the values λ = 0.9, α = 1,000 and n a = 3, n b = 2. Theoretical control studies show that the STGMV control system was successful at both constant and random glucose concentration set profiles. In addition, random effects given to the set point, STGMV control algorithm were performed successfully in experimental study. PMID:24569909