Science.gov

Sample records for a2 emission scenarios

  1. Flying into the future: aviation emissions scenarios to 2050.

    PubMed

    Owen, Bethan; Lee, David S; Lim, Ling

    2010-04-01

    This study describes the methodology and results for calculating future global aviation emissions of carbon dioxide and oxides of nitrogen from air traffic under four of the IPCC/SRES (Intergovernmental Panel on Climate Change/Special Report on Emissions Scenarios) marker scenarios: A1B, A2, B1, and B2. In addition, a mitigation scenario has been calculated for the B1 scenario, requiring rapid and significant technology development and transition. A global model of aircraft movements and emissions (FAST) was used to calculate fuel use and emissions to 2050 with a further outlook to 2100. The aviation emission scenarios presented are designed to interpret the SRES and have been developed to aid in the quantification of the climate change impacts of aviation. Demand projections are made for each scenario, determined by SRES economic growth factors and the SRES storylines. Technology trends are examined in detail and developed for each scenario providing plausible projections for fuel efficiency and emissions control technology appropriate to the individual SRES storylines. The technology trends that are applied are calculated from bottom-up inventory calculations and industry technology trends and targets. Future emissions of carbon dioxide are projected to grow between 2000 and 2050 by a factor in the range of 2.0 and 3.6 depending on the scenario. Emissions of oxides of nitrogen associated with aviation over the same period are projected to grow by between a factor of 1.2 and 2.7. PMID:20225840

  2. Inventories and scenarios of nitrous oxide emissions

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.; Kanter, David

    2014-10-01

    Effective mitigation for N2O emissions, now the third most important anthropogenic greenhouse gas and the largest remaining anthropogenic source of stratospheric ozone depleting substances, requires understanding of the sources and how they may increase this century. Here we update estimates and their uncertainties for current anthropogenic and natural N2O emissions and for emissions scenarios to 2050. Although major uncertainties remain, ‘bottom-up’ inventories and ‘top-down’ atmospheric modeling yield estimates that are in broad agreement. Global natural N2O emissions are most likely between 10 and 12 Tg N2O-N yr-1. Net anthropogenic N2O emissions are now about 5.3 Tg N2O-N yr-1. Gross anthropogenic emissions by sector are 66% from agriculture, 15% from energy and transport sectors, 11% from biomass burning, and 8% from other sources. A decrease in natural emissions from tropical soils due to deforestation reduces gross anthropogenic emissions by about 14%. Business-as-usual emission scenarios project almost a doubling of anthropogenic N2O emissions by 2050. In contrast, concerted mitigation scenarios project an average decline of 22% relative to 2005, which would lead to a near stabilization of atmospheric concentration of N2O at about 350 ppb. The impact of growing demand for biofuels on future projections of N2O emissions is highly uncertain; N2O emissions from second and third generation biofuels could remain trivial or could become the most significant source to date. It will not be possible to completely eliminate anthropogenic N2O emissions from agriculture, but better matching of crop N needs and N supply offers significant opportunities for emission reductions.

  3. Analyses of Scenarios for Past and Possible Future Aircraft Emissions

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.; Patten, Kenneth O.; Rahmes, Tim

    1997-01-01

    This project contains several components to work with the NASA AEAP program in better definition of scenarios for aircraft emissions and in determining the sensitivity of the atmosphere to such emissions. Under this project, Don Wuebbles continues as chair of the Operations and Emissions Scenarios Committee for AEAP. We are also coordinating with the International Civil Aviation Organization (ICAO) to ensure the highest quality possible in the emissions scenarios promoted by the Emissions Scenarios committee. We continue to help coordination of NASA AEAP with international activities. This includes work with ICAO towards international analysis of aircraft emissions inventories; performing analyses to compare and evaluate databases of aircraft emissions developed for NASA and by various international groups and from these analyses, develop guidelines for future emissions scenarios development. Special sensitivity analyses, using our two-dimensional chemical-transport model of the global troposphere and stratosphere, have been used to determine potential sensitivity of further enhancements that could be made to emissions scenarios development. The latter studies are to be used in prioritizing further emissions scenario development.

  4. Misrepresentation of the IPCC CO2 emission scenarios

    SciTech Connect

    Manning, Martin; Edmonds, James A.; Emori, S.; Grubler, Arnulf; Hibbard, Kathleen A.; Joos, Fortunat; Kainuma, M.; Keeling, Ralph; Kram, Tom; Manning, Andrew; Meinhausen, Malte; Moss, Richard H.; Nakicenovic, Nebojsa; Riahi, Keywan; Rose, Steven K.; Smith, Steven J.; Swart, Robert; Van Vuuren, Detlef

    2010-06-01

    Estimates of recent fossil fuel CO2 emissions have been compared with the IPCC SRES (Special Report on Emission Scenarios) emission scenarios that had been developed for analysis of future climate change, impacts and mitigation. In some cases this comparison uses averages across subgroups of SRES scenarios and for one category of greenhouse gases (industrial sources of CO2). That approach can be misleading and cause confusion as it is inconsistent with many of the papers on future climate change projections that are based on a specific subset of closely scrutinized SRES scenarios, known as illustrative marker scenarios. Here, we show that comparison between recent estimates of fossil fuel emissions trends and the SRES illustrative marker scenarios leads to the conclusion that recent trends are not outside the SRES range. Furthermore, the recent economic downturn appears to have brought actual emission back toward the middle of the SRES illustrative marker scenarios. We also note that SRES emission scenarios are designed to reflect potential alternative long-term trends in a world without climate policy intervention and the trend in the resulting climate change is not sensitive to short-term fluctuations.

  5. Commercial Aircraft Emission Scenario for 2020: Database Development and Analysis

    NASA Technical Reports Server (NTRS)

    Sutkus, Donald J., Jr.; Baughcum, Steven L.; DuBois, Douglas P.; Wey, Chowen C. (Technical Monitor)

    2003-01-01

    This report describes the development of a three-dimensional database of aircraft fuel use and emissions (NO(x), CO, and hydrocarbons) for the commercial aircraft fleet projected to 2020. Global totals of emissions and fuel burn for 2020 are compared to global totals from previous aircraft emission scenario calculations.

  6. Climate Change Technology Scenarios: Energy, Emissions, and Economic Implications

    SciTech Connect

    Placet, Marylynn; Humphreys, Kenneth K.; Mahasenan, N Maha

    2004-08-15

    This report describes three advanced technology scenarios and various illustrative cases developed by staff of Pacific Northwest National Laboratory (PNNL) for the U.S. Climate Change Technology Program. These scenarios and illustrative cases explore the energy, emissions and economic implications of using advanced energy technologies and other climate change related technologies to reduce future emissions of greenhouse gases (GHGs). The cases were modeled using the Mini Climate Assessment Model (MiniCAM) developed by PNNL. The report describes the scenarios, the specifications for the cases, and the results. The report also provides background information on current emissions of GHGs and issues associated with stabilizing GHG concentrations.

  7. Modeling framework for exploring emission impacts of alternative future scenarios

    NASA Astrophysics Data System (ADS)

    Loughlin, D. H.; Benjey, W. G.; Nolte, C. G.

    2010-11-01

    This article presents an approach for creating anthropogenic emission scenarios that can be used to simulate future regional air quality. The approach focuses on energy production and use since these are principal sources of air pollution. We use the MARKAL model to characterize alternative realizations of the US energy system through 2050. Emission growth factors are calculated for major energy system categories using MARKAL, while growth factors from non-energy sectors are based on economic and population projections. The SMOKE model uses these factors to grow a base-year 2002 inventory to future years through 2050. The approach is demonstrated for two emission scenarios: Scenario 1 extends current air regulations through 2050, while Scenario 2 applies a hypothetical policy that limits carbon dioxide (CO2) emissions from the energy system. Although both scenarios show significant reductions in air pollutant emissions through time, these reductions are more pronounced in Scenario 2, where the CO2 policy results in the adoption of technologies with lower emissions of both CO2 and traditional air pollutants. The methodology is expected to play an important role in investigations of linkages among emission drivers, climate and air quality by the U.S. EPA and others.

  8. Does extreme precipitation intensity depend on the emissions scenario?

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline G.; Lehner, Flavio; Sanderson, Benjamin M.; Xu, Yangyang

    2015-10-01

    The rate of increase of global-mean precipitation per degree global-mean surface temperature increase differs for greenhouse gas and aerosol forcings and across emissions scenarios with differing composition of change in forcing. We investigate whether or not the rate of change of extreme precipitation also varies across the four emissions scenarios that force the Coupled Model Intercomparison Project, version 5 multimodel ensemble. In most models, the rate of increase of maximum annual daily precipitation per degree global warming in the multimodel ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extratropical land. These results indicate that in contrast to mean precipitation, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario in most models.

  9. Methods for Developing Emissions Scenarios for Integrated Assessment Models

    SciTech Connect

    Prinn, Ronald; Webster, Mort

    2007-08-20

    The overall objective of this research was to contribute data and methods to support the future development of new emissions scenarios for integrated assessment of climate change. Specifically, this research had two main objectives: 1. Use historical data on economic growth and energy efficiency changes, and develop probability density functions (PDFs) for the appropriate parameters for two or three commonly used integrated assessment models. 2. Using the parameter distributions developed through the first task and previous work, we will develop methods of designing multi-gas emission scenarios that usefully span the joint uncertainty space in a small number of scenarios. Results on the autonomous energy efficiency improvement (AEEI) parameter are summarized, an uncertainty analysis of elasticities of substitution is described, and the probabilistic emissions scenario approach is presented.

  10. Economically consistent long-term scenarios for air pollutant emissions

    SciTech Connect

    Smith, Steven J.; West, Jason; Kyle, G. Page

    2011-09-08

    Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant levels as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve agreement between modeled PM2.5 and economic income among world regions through time; agreement for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. The scenario examined here was used as the basis for one of the Representative Concentration Pathway (RCP) scenarios. This analysis methodology could also be used to examine the consistency of other pollutant emission scenarios.

  11. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  12. Allowable carbon emissions for a medium mitigation scenario

    NASA Astrophysics Data System (ADS)

    Tachiiri, K.; Hargreaves, J. C.; Annan, J. D.; Huntingford, C.; Kawamiya, M.

    2012-04-01

    The world climate research centres are currently running Earth System Models (ESMs) forced by Representative Concentration Pathways (RCP) scenarios. Based on these future pathways in atmospheric greenhouse gas concentrations, the emphasis has been mainly on estimating the associated levels of global warming that might be expected. There is also the important task of determining emission trajectories associated with the pathways, that may then be assessed by socio-economists for feasibility. Here we use an earth system model of intermediate complexity and a probabilistic framework to estimate the range of future temperature change and allowable emissions corresponding to a medium CO2 concentration pathway (RCP4.5). Uncertainty is initially estimated by allowing the equilibrium climate sensitivity, aerosol forcing and intrinsic physical and biogeochemical processes to vary within the widely accepted ranges. The results are then further constrained by extensive use of contemporary measurements. The resulting range of temperatures corresponding to RCP4.5 remains large. By year 2300, the predicted global temperature increase from pre-industrial has ± 2 standard deviation range of 1.4K, either side of a mean of 3.0K with 91% probability for increase over 2K. This result has major implications for future planning, as the difference between the upper and lower levels of warming may be expected to be enormous in terms of impacts, and quite possibly could differentiate between what is deemed "dangerous change" or otherwise. After constraint using contemporary data, the ensemble mean of the experiment allows similar emissions to the standard RCP4.5 emission scenario. The allowable emission for the peak emission period is projected as 11.5±2.0 PgC yr-1. Our ensemble demonstrates that, with high probability, drastic cuts in emissions will be required and that there is a probability of around 2% that there will need to be an extended period of time with global negative

  13. Climate impacts of the ECLIPSE future emissions mitigation scenario

    NASA Astrophysics Data System (ADS)

    Baker, Laura; Collins, Bill; Olivie, Dirk; Cherian, Ribu; Quaas, Johannes; Myhre, Gunnar; Hodnebrog, Oivind; Skeie, Ragnhild

    2016-04-01

    We investigate the possible near-term climate benefits from mitigating aerosols, ozone and methane. The ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) project developed a realistic emissions inventory based on current legislation for 2005-2050 (CLE), and a corresponding mitigation scenario designed to be beneficial for both air quality and short-term climate impact (MIT). We determine the climate impacts of the MIT scenario, focussing on the period 2040-2050. Four climate models with interactive chemistry and aerosols (HadGEM, NorESM, CESM-CAM4 and ECHAM-HAM) are used to provide multi-model ensembles of both atmosphere-only and coupled atmosphere-ocean simulations, to separate the effective radiative forcing (ERF) and the climate response. The ERFs are derived from the atmosphere-only simulations. In all models the MIT scenario leads to a negative global ERF which is driven mainly by methane emissions reductions. There is variability between models in the relative importance of methane and aerosol emissions reductions, and in the sign of ERF response to aerosol emissions reductions. The climate response to MIT is derived from the coupled simulations. In all models, MIT results in a decrease in the global mean temperature compared to CLE, with a model mean decrease of 0.22°C. The temperature decrease is seen most strongly in the Northern Hemisphere and is particularly strong in the Arctic. The ensembles of coupled-ocean simulations have therefore enabled us to identify a robust cooling signal from the air quality mitigation scenarios, which can be attributed to the different species using the ERFs.

  14. Beyond 'dangerous' climate change: emission scenarios for a new world.

    PubMed

    Anderson, Kevin; Bows, Alice

    2011-01-13

    The Copenhagen Accord reiterates the international community's commitment to 'hold the increase in global temperature below 2 degrees Celsius'. Yet its preferred focus on global emission peak dates and longer-term reduction targets, without recourse to cumulative emission budgets, belies seriously the scale and scope of mitigation necessary to meet such a commitment. Moreover, the pivotal importance of emissions from non-Annex 1 nations in shaping available space for Annex 1 emission pathways received, and continues to receive, little attention. Building on previous studies, this paper uses a cumulative emissions framing, broken down to Annex 1 and non-Annex 1 nations, to understand the implications of rapid emission growth in nations such as China and India, for mitigation rates elsewhere. The analysis suggests that despite high-level statements to the contrary, there is now little to no chance of maintaining the global mean surface temperature at or below 2°C. Moreover, the impacts associated with 2°C have been revised upwards, sufficiently so that 2°C now more appropriately represents the threshold between 'dangerous' and 'extremely dangerous' climate change. Ultimately, the science of climate change allied with the emission scenarios for Annex 1 and non-Annex 1 nations suggests a radically different framing of the mitigation and adaptation challenge from that accompanying many other analyses, particularly those directly informing policy. PMID:21115511

  15. Working Toward Policy-Relevant Air Quality Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Holloway, T.

    2010-12-01

    Though much work has been done to develop accurate chemical emission inventories, few publicly available inventories are appropriate for realistic policy analysis. Emissions from the electricity and transportation sectors, in particular, respond in complex ways to policy, technology, and energy use change. Many widely used inventories, such as the EPA National Emissions Inventory, are well-suited for modeling current air quality, but do not have the specificity needed to address "what if?" questions. Changes in electricity demand, fuel prices, new power sources, and emission controls all influence the emissions from regional power production, requiring a plant-by-plant assessment to capture the spatially explicit impacts. Similarly, land use, freight distribution, or driving behavior will yield differentiated transportation emissions for urban areas, suburbs, and rural highways. We here present results from three recent research projects at the University of Wisconsin—Madison, where bottom-up emission inventories for electricity, freight transport, and urban vehicle use were constructed to support policy-relevant air quality research. These three studies include: 1) Using the MyPower electricity dispatch model to calculate emissions and air quality impacts of Renewable Portfolio Standards and other carbon-management strategies; 2) Using advanced vehicle and commodity flow data from the Federal Highway Administration to evaluate the potential to shift commodities from truck to rail (assuming expanded infrastructure), and assess a range of alternative fuel suggestions; and 3) Working with urban planners to connect urban density with vehicle use to evaluate the air quality impacts of smart-growth in major Midwest cities. Drawing on the results of these three studies, and on challenges overcome in their execution, we discuss the current state of policy-relevant emission dataset generation, as well as techniques and attributes that need to be further refined in order

  16. Possible climate change over Eurasia under different emission scenarios

    NASA Astrophysics Data System (ADS)

    Sokolov, A. P.; Monier, E.; Scott, J. R.; Forest, C. E.; Schlosser, C. A.

    2011-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  17. Possible climate change over Eurasia under different emission scenarios

    NASA Astrophysics Data System (ADS)

    Sokolov, A. P.; Monier, E.; Gao, X.

    2012-12-01

    In an attempt to evaluate possible climate change over EURASIA, we analyze results of six AMIP type simulations with CAM version 3 (CAM3) at 2x2.5 degree resolution. CAM3 is driven by time series of sea surface temperatures (SSTs) and sea ice obtained by running the MIT IGSM2.3, which consists of a 3D ocean GCM coupled to a zonally-averaged atmospheric climate-chemistry model. In addition to changes in SSTs, CAM3 is forced by changes in greenhouse gases and ozone concentrations, sulfate aerosol forcing and black carbon loading calculated by the IGSM2.3. An essential feature of the IGSM is the possibility to vary its climate sensitivity (using a cloud adjustment technique) and the strength of the aerosol forcing. For consistency, new modules were developed in CAM3 to modify its climate sensitivity and aerosol forcing to match those used in the simulations with the IGSM2.3. The simulations presented in this paper were carried out for two emission scenarios, a "Business as usual" scenario and a 660 ppm of CO2-EQ stabilization, which are similar to the RCP8.5 and RCP4.5 scenarios, respectively. Values of climate sensitivity used in the simulations within the IGSM-CAM framework are median and the bounds of the 90% probability interval of the probability distribution obtained by comparing the 20th century climate simulated by different versions of the IGSM with observations. The associated strength of the aerosol forcing was chosen to ensure a good agreement with the observed climate change over the 20th century. Because the concentration of sulfate aerosol significantly decreases over the 21st century in both emissions scenarios, climate changes obtained in these simulations provide a good approximation for the median, and the 5th and 95th percentiles of the probability distribution of 21st century climate change.

  18. Developing Shipping Emissions Assessments, Inventories and Scenarios (Invited)

    NASA Astrophysics Data System (ADS)

    Corbett, J. J.

    2010-12-01

    Inventories of shipping have been important contributions to scientific understanding of regional pollution and transboundary transport. These inventories have also been used to evaluate global scale environmental and climate effects and trends. However, these inventories also inform policy making decisions and this role is increasingly occurring within the timescale of scientific assessment. Shipping exhibits a growth trend for uncontrolled pollutants that is highly coupled to economic activity, and historically increasing faster than many other anthropogenic sources on a global and regional scale. Shipping emissions are being regulated asymmetrically in various dimensions. Some pollutants are being controlled more than others, some regions are subject to stricter controls, and correlated changes in operations are affecting unregulated pollutant emissions. Shipping inventories require more than current assessments, including historic and future scenarios. Generally conceived as sets of business-as-usual (BAU) and high-growth scenarios, ship inventories now also need regulatory control pathways and maximum feasible reduction (MFR) scenarios. In this context, shipping inventories also present other challenges to both scientists and policymakers. Systemic bias can occur in non-shipping assessments when emissions along well-traveled shipping lanes are ignored by far offshore scientific studies, even some campaigns that control very carefully the potential influence of the shipping platforms for their measurements. Examples where shipping may contribute understood and potential biases include: a. Health impacts from transboundary pollution b. Ozone trends over the Pacific c. Sulfur emissions from biogenic sources in Northern hemisphere d. Acidification of coastal waters (potential) e. Arctic impacts on snow and ice Other challenges exist. The fuels and technology used by ships are unique from other transportation, from other stationary sources - and these are changing

  19. Modeling Future Land Use Scenarios in South Korea: Applying the IPCC Special Report on Emissions Scenarios and the SLEUTH Model on a Local Scale

    NASA Astrophysics Data System (ADS)

    Han, Haejin; Hwang, YunSeop; Ha, Sung Ryong; Kim, Byung Sik

    2015-05-01

    This study developed three scenarios of future land use/land cover on a local level for the Kyung-An River Basin and its vicinity in South Korea at a 30-m resolution based on the two scenario families of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emissions Scenarios (SRES): A2 and B1, as well as a business-as-usual scenario. The IPCC SRES A2 and B1 were used to define future local development patterns and associated land use change. We quantified the population-driven demand for urban land use for each qualitative storyline and allocated the urban demand in geographic space using the SLEUTH model. The model results demonstrate the possible land use/land cover change scenarios for the years from 2000 to 2070 by examining the broad narrative of each SRES within the context of a local setting, such as the Kyoungan River Basin, constructing narratives of local development shifts and modeling a set of `best guess' approximations of the future land use conditions in the study area. This study found substantial differences in demands and patterns of land use changes among the scenarios, indicating compact development patterns under the SRES B1 compared to the rapid and dispersed development under the SRES A2.

  20. Emissions from residential combustion considering end-uses and spatial constraints: Part II, emission reduction scenarios

    NASA Astrophysics Data System (ADS)

    Winijkul, Ekbordin; Bond, Tami C.

    2016-01-01

    Cooking, heating, and other activities in the residential sector are major sources of indoor and outdoor air pollution, especially when solid fuels are used to provide energy. Because of their deleterious effects on the atmosphere and human health, multinational strategies to reduce emissions have been proposed. This study examines the effects of some possible policies, considering realistic factors that constrain mitigation: end-uses, spatial constraints involving proximity to forest or electricity, existing technology, and assumptions about user behavior. Reduction scenarios are applied to a year-2010, spatially distributed baseline of emissions of particulate matter, black carbon, organic carbon, nitrogen oxides, methane, non-methane hydrocarbons, carbon monoxide, and carbon dioxide. Scenarios explored are: (1) cleanest current stove, where we assume that existing technology in each land type is applied to burn existing fuels; (2) stove standards, where we assume that stoves are designed to meet performance standards; and (3) clean fuels, where users adopt the cleanest fuels plausible in each land type. We assume that people living in forest access areas continue to use wood regardless of available fuels, so the clean-fuels scenario leads to a reduction in emissions of 18-25%, depending on the pollutant, across the study region. Cleaner stoves preferentially affect land types with forest access, where about half of the fuel is used; emission reductions range from 25 to 82%, depending on the pollutant. If stove performance standards can be met, particulate matter emissions are reduced by 62% for the loosest standards and 95% for the tightest standards, and carbon monoxide is reduced by 40% and 62% for the loosest and tightest standards. Reductions in specific regions and countries depend on the existing fuel mixture and the population division among land types, and are explored for Latin America, Africa, East Asia, South Asia, and Southeast Asia.

  1. Spatial patterns of European droughts under a moderate emission scenario

    NASA Astrophysics Data System (ADS)

    Spinoni, J.; Naumann, G.; Vogt, J.

    2015-07-01

    Meteorological drought is generally defined as a prolonged deficiency of precipitation and is considered one of the most relevant natural hazards as the related impacts can involve many different sectors. In this study, we investigated the spatial patterns of European droughts for the periods 1981-2010, 2041-2070, and 2071-2100, focusing on the projections under a moderate emissions scenario. To do that, we used the outputs of the KNMI-RACMO2 model, which belongs to the A1B family and whose spatial resolution is 0.25° × 0.25°. By means of monthly precipitation and potential evapotranspiration (PET), we computed the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) at the 12-month accumulation scale. Thereafter, we separately obtained drought frequency, duration, severity, and intensity for the whole of Europe, excluding Iceland. According to both indicators, the spatial drought patterns are projected to follow what recently characterized Europe: southern Europe, who experienced many severe drought events in the last decades, is likely to be involved by longer, more frequent, severe, and intense droughts in the near future (2041-2070) and even more in the far future (2071-2100). This tendency is more evident using the SPEI, which also depends on temperature and consequently reflects the expected warming that will be highest for the Mediterranean area in Europe. On the other side, less severe and fewer drought events are likely to occur in northern Europe. This tendency is more evident using the SPI, because the precipitation increase is projected to outbalance the temperature (and PET) rise in particular in Scandinavia. Regarding the mid-latitudes, the SPEI-based analyses point at more frequent drought events, while the SPI-based ones point at less frequent events in these regions.

  2. Global emissions of mercury to the atmosphere in 2005 and their 2020 scenarios

    NASA Astrophysics Data System (ADS)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Sundseth, Kyrre; Munthe, John; Wilson, Simon; Leaner, Joy

    2010-05-01

    About the three quarters of the total anthropogenic emissions of mercury in the year 2005 estimated to be 1930 tonnes comes from sources where mercury is emitted as a by-product, and the rest is emitted during various applications of mercury. The largest emissions of Hg to the global atmosphere occur from combustion of fossil fuels, mainly coal in utility, industrial, and residential boilers (almost 47 %), followed by artisanal mining (almost 17 %), non-ferrous metal production, including gold production (13.5%) and cement production (about 9.5 %). Doing nothing for the improvement of the Hg emission reductions (so-called Status Quo - SQ scenario) will cause an increase of the emissions in 2020 by almost 100 % compared to the 2020 Extended Emission Control (EXEC) emission reduction scenario. Even larger increase is estimated when the 2020 SQ scenario of Hg emissions is compared with the 2020 Maximum Feasible Technical Reduction (MFTR) emission reduction scenario. The EXEC scenario assumes economic progress at a rate dependent on the future development of industrial technologies and emission control technologies, i.e. mercury-reducing technology currently generally employed throughout Europe and North America would be implemented elsewhere. It further assumes that emissions control measures currently implemented or committed to in Europe to reduce mercury emission to air or water would be implemented around the world. The MFTR scenario assumes implementation of all solutions/ measures leading to the maximum degree of reduction of mercury emissions and its loads discharged to any environment; cost is taken into account but only as a secondary consideration. Emissions of Hg in various industrial sectors, such as cement production and metal manufacturing in the year 2020 can be 2 to 3 times larger if nothing will be done to improve emission control in comparison with the EXEC scenario.

  3. Jet aircraft engine exhaust emissions database development: Year 1990 and 2015 scenarios

    NASA Technical Reports Server (NTRS)

    Landau, Z. Harry; Metwally, Munir; Vanalstyne, Richard; Ward, Clay A.

    1994-01-01

    Studies relating to environmental emissions associated with the High Speed Civil Transport (HSCT) military jet and charter jet aircraft were conducted by McDonnell Douglas Aerospace Transport Aircraft. The report includes engine emission results for baseline 1990 charter and military scenario and the projected jet engine emissions results for a 2015 scenario for a Mach 1.6 HSCT charter and military fleet. Discussions of the methodology used in formulating these databases are provided.

  4. Scenario analysis to vehicular emission reduction in Beijing-Tianjin-Hebei (BTH) region, China.

    PubMed

    Guo, Xiurui; Fu, Liwei; Ji, Muse; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan

    2016-09-01

    Motor vehicle emissions are increasingly becoming one of the important factors affecting the urban air quality in China. It is necessary and useful to policy makers to demonstrate the situation given the relevant pollutants reduction measures are taken. This paper predicted the reduction potentials of conventional pollutants (PM10, NOx, CO, HC) under different control strategies and policies in the Beijing-Tianjin-Hebei (BTH) region during 2011-2020. There are the baseline and 5 control scenarios designed, which presented the different current and future possible vehicular emissions control measures. Future population of different kinds of vehicles were predicted based on the Gompertz model, and vehicle kilometers travelled estimated as well. After that, the emissions reduction under the different scenarios during 2011-2020 could be estimated using emission factors and activity level data. The results showed that, the vehicle population in the BTH region would continue to grow up, especially in Tianjin and Hebei. Comparing the different scenarios, emission standards updating scenario would achieve a substantial reduction and keep rising up for all the pollutants, and the scenario of eliminating high-emission vehicles can reduce emissions more effectively in short-term than in long-term, especially in Beijing. Due to the constraints of existing economical and technical level, the reduction effect of promoting new energy vehicles would not be significant, especially given the consideration of their lifetime impact. The reduction effect of population regulation scenario in Beijing cannot be ignorable and would keep going up for PM10, CO and HC, excluding NOx. Under the integrated scenario considering all the control measures it would achieve the maximum reduction potential of emissions, which means to reduce emissions of PM10, NOx, CO, HC, by 56%, 59%, 48%, 52%, respectively, compared to BAU scenario for the whole BTH region in 2020. PMID:27325548

  5. Emissions Scenarios, Costs, and Implementation Considerations of REDD Programs

    SciTech Connect

    Sathaye, Jayant; Andrasko, Ken; Chan, Peter

    2011-04-11

    Greenhouse gas emissions from the forestry sector are estimated to be 8.4 GtCO2-eq./year or about 17percent of the global emissions. We estimate that the cost forreducing deforestation is low in Africa and several times higher in Latin America and Southeast Asia. These cost estimates are sensitive to the uncertainties of how muchunsustainable high-revenue logging occurs, little understood transaction and program implementation costs, and barriers to implementation including governance issues. Due to lack of capacity in the affected countries, achieving reduction or avoidance of carbon emissions will require extensive REDD-plus programs. Preliminary REDD-plus Readiness cost estimates and program descriptions for Indonesia, Democratic Republic of the Congo, Ghana, Guyana and Mexico show that roughly one-third of potential REDD-plus mitigation benefits might come from avoided deforestation and the rest from avoided forest degradation and other REDD-plus activities.

  6. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050

    NASA Astrophysics Data System (ADS)

    Eyring, V.; KöHler, H. W.; Lauer, A.; Lemper, B.

    2005-09-01

    In this study the today's fleet-average emission factors of the most important ship exhausts are used to calculate emission scenarios for the future. To develop plausible future technology scenarios, first upcoming regulations and compliance with future regulations through technological improvements are discussed. We present geographically resolved emission inventory scenarios until 2050, based on a mid-term prognosis for 2020 and a long-term prognosis for 2050. The scenarios are based on some very strict assumptions on future ship traffic demands and technological improvements. The four future ship traffic demand scenarios are mainly determined by the economic growth, which follows the IPCC SRES storylines. The resulting fuel consumption is projected through extrapolations of historical trends in economic growth, total seaborne trade and number of ships, as well as the average installed power per ship. For the future technology scenarios we assume a diesel-only fleet in 2020 resulting in fuel consumption between 382 and 409 million metric tons (Mt). For 2050 one technology scenario assumes that 25% of the fuel consumed by a diesel-only fleet can be saved by applying future alternative propulsion plants, resulting in a fuel consumption that varies between 402 and 543 Mt. The other scenario is a business-as-usual scenario for a diesel-only fleet even in 2050 and gives an estimate between 536 and 725 Mt. Dependent on how rapid technology improvements for diesel engines are introduced, possible technology reduction factors are applied to the today's fleet-average emission factors of all important species to estimate future ship emissions. Combining the four traffic demand scenarios with the four technology scenarios, our results suggest emissions between 8.8 and 25.0 Tg (NO2) in 2020, and between 3.1 to 38.8 Tg (NO2) in 2050. The development of forecast scenarios for CO2, NOx, SOx, CO, hydrocarbons, and particulate matter is driven by the requirements for global model

  7. Development of Future Scenario Emission Inventories for East Asia in Support of Multiple Modeling Studies

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Woo, J. H.; Choi, K. C.; Lee, J. B.; Song, C. K.; Kim, S. K.; Hong, J.; Hong, S. C.; Zhang, Q.; Hong, C.; Tong, D.

    2015-12-01

    Future emission scenarios based on up-to-date regional socio-economic and control policy information were developed in support of climate-air quality integrated modeling research over East Asia. Two IPCC-participated Integrated Assessment Models(IAMs) were used to developed those scenario pathways. The two emission processing systems, KU-EPS and SMOKE-Asia, were used to convert these future scenario emissions to comprehensive chemical transport model-ready form. The NIER/KU-CREATE (Comprehensive Regional Emissions inventory for Atmospheric Transport Experiment) served as the regional base-year emission inventory. For anthropogenic emissions, it has 54 fuel classes, 201 sub-sectors and 13 pollutants, including CO2, CH4, N2O, SO2, NOx, CO, NMVOC, NH3, OC, BC, PM10, PM2.5, and mercury. Fast energy growth and aggressive penetration of the control measures make emissions projection very active for East Asia. Despite of more stringent air pollution control policies by the governments, however, air quality over the region seems not been improved as much - even worse in many cases. The needs of more scientific understanding of inter-relationship among emissions, transport, chemistry over the region are very high to effectively protect public health and ecosystems against ozone, fine particles, and other toxic pollutants in the air. After developing these long-term future emissions, therefore, we also tried to apply our future scenarios to develop the present emissions inventory for chemical weather forecasting and aircraft field campaign. On site, we will present; 1) the future scenario development framework and process methodologies, 2) initial development results of the future emission pathways, 3) present emission inventories from short-term projection, and 4) air quality modeling performance improvements over the region.

  8. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    NASA Astrophysics Data System (ADS)

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J.

    2016-06-01

    The Arctic temperature response to emissions of aerosols -- specifically black carbon (BC), organic carbon (OC), and sulfate -- depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions from the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. A properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions -- while simultaneously working toward longer-term goals of CO2 mitigation -- could potentially avoid some amount of short-term Arctic warming.

  9. Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis

    SciTech Connect

    Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

    1998-09-01

    This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

  10. Future climate change under RCP emission scenarios with GISS ModelE2

    DOE PAGESBeta

    Nazarenko, L.; Schmidt, G. A.; Miller, R. L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G. L.; Aleinov, I.; Bauer, M.; Bauer, S.; et al

    2015-02-24

    We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101–2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmosphericmore » version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5° C relative to 1850–1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 °C threshold at the end of the 21st century. For RCP8.5, the range is 3.5–4.5° C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO₂, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the

  11. Future climate change under RCP emission scenarios with GISS ModelE2

    SciTech Connect

    Nazarenko, L.; Schmidt, G. A.; Miller, R. L.; Tausnev, N.; Kelley, M.; Ruedy, R.; Russell, G. L.; Aleinov, I.; Bauer, M.; Bauer, S.; Bleck, R.; Canuto, V.; Cheng, Y.; Clune, T. L.; Del Genio, A. D.; Faluvegi, G.; Hansen, J. E.; Healy, R. J.; Kiang, N. Y.; Koch, D.; Lacis, A. A.; LeGrande, A. N.; Lerner, J.; Lo, K. K.; Menon, S.; Oinas, V.; Perlwitz, J.; Puma, M. J.; Rind, D.; Romanou, A.; Sato, M.; Shindell, D. T.; Sun, S.; Tsigaridis, K.; Unger, N.; Voulgarakis, A.; Yao, M. -S.; Zhang, Jinlun

    2015-02-24

    We examine the anthropogenically forced climate response for the 21st century representative concentration pathway (RCP) emission scenarios and their extensions for the period 2101–2500. The experiments were performed with ModelE2, a new version of the NASA Goddard Institute for Space Sciences (GISS) coupled general circulation model that includes three different versions for the atmospheric composition components: a noninteractive version (NINT) with prescribed composition and a tuned aerosol indirect effect (AIE), the TCAD version with fully interactive aerosols, whole-atmosphere chemistry, and the tuned AIE, and the TCADI version which further includes a parameterized first indirect aerosol effect on clouds. Each atmospheric version is coupled to two different ocean general circulation models: the Russell ocean model (GISS-E2-R) and HYCOM (GISS-E2-H). By 2100, global mean warming in the RCP scenarios ranges from 1.0 to 4.5° C relative to 1850–1860 mean temperature in the historical simulations. In the RCP2.6 scenario, the surface warming in all simulations stays below a 2 °C threshold at the end of the 21st century. For RCP8.5, the range is 3.5–4.5° C at 2100. Decadally averaged sea ice area changes are highly correlated to global mean surface air temperature anomalies and show steep declines in both hemispheres, with a larger sensitivity during winter months. By the year 2500, there are complete recoveries of the globally averaged surface air temperature for all versions of the GISS climate model in the low-forcing scenario RCP2.6. TCADI simulations show enhanced warming due to greater sensitivity to CO₂, aerosol effects, and greater methane feedbacks, and recovery is much slower in RCP2.6 than with the NINT and TCAD versions. All coupled models have decreases in the Atlantic overturning stream function by 2100. In RCP2.6, there is a complete recovery of the Atlantic overturning stream function by the year 2500 while with scenario RCP8.5, the E2-R

  12. Spatiotemporal Characteristics, Determinants and Scenario Analysis of CO2 Emissions in China Using Provincial Panel Data

    PubMed Central

    Wang, Shaojian

    2015-01-01

    This paper empirically investigated the spatiotemporal variations, influencing factors and future emission trends of China’s CO2 emissions based on a provincial panel data set. A series of panel econometric models were used taking the period 1995–2011 into consideration. The results indicated that CO2 emissions in China increased over time, and were characterized by noticeable regional discrepancies; in addition, CO2 emissions also exhibited properties of spatial dependence and convergence. Factors such as population scale, economic level and urbanization level exerted a positive influence on CO2 emissions. Conversely, energy intensity was identified as having a negative influence on CO2 emissions. In addition, the significance of the relationship between CO2 emissions and the four variables varied across the provinces based on their scale of economic development. Scenario simulations further showed that the scenario of middle economic growth, middle population increase, low urbanization growth, and high technology improvement (here referred to as Scenario BTU), constitutes the best development model for China to realize the future sustainable development. Based on these empirical findings, we also provide a number of policy recommendations with respect to the future mitigation of CO2 emissions. PMID:26397373

  13. Mapping of the CO2 and anthropogenic heat emission under spatially explicit urban land use scenarios

    NASA Astrophysics Data System (ADS)

    Nakamichi, K.; Yamagata, Y.; Seya, H.

    2010-12-01

    The serious further efforts on CO2 and other green house gases emission reduction by global climate change mitigation remain as an urgent global issue to be solved. From the viewpoint of urban land use measures, the realization of low-carbon city is the key to change people’s behavior to reduce CO2 emission. In this respect, a lot of studies aimed at realizing low-carbon city are progressing on a number of fronts, including city planning and transportation planning. With respect to the low-carbon city, compact city is expected to reduce CO2 emission from transportation sector. Hence many studies have been conducted with scenario analysis considering modal share change, for instance, increase of public transportation use and reduction of trip length by car. On the other hand, it is important that CO2 emission from not only transportation sector but also residential sector can be reduced by a move from a detached house to a condominium, the change of family composition types and so on. In regard to residential sector, it has been founded that CO2 emission units differ among family composition types, for example, the single-person household emit more CO2 in general. From the viewpoint of an urban climate prediction, the possible range of future land use change should be recognized as the input parameters for the climate models. In addition to CO2 emission, the anthropogenic heat emission is also important as an input data of climate models in order to evaluate the social and economic impacts of urban land use change. The objective of this study is to demonstrate a compact city scenario and a dispersion scenario in Tokyo metropolitan area, which is the largest metropolitan area in the world, and to examine future climate change mitigation policies including land use for realization of low-carbon city. We have created two scenarios of population distribution by using an urban economic model. In these scenarios we have assumed extreme cases in order to show the

  14. Scenario analysis for nutrient emission reduction in the European inland waters

    NASA Astrophysics Data System (ADS)

    Bouraoui, F.; Thieu, V.; Grizzetti, B.; Britz, W.; Bidoglio, G.

    2014-12-01

    Despite a large body of legislation, high nutrient loads are still emitted in European inland waters. In the present study we evaluate a set of alternative scenarios aiming at reducing nitrogen and phosphorus emissions from anthropogenic activities to all European Seas. In particular, we tested the full implementation of the European Urban Waste Water Directive, which controls emissions from point source. In addition, we associated the full implementation of this Directive with a ban of phosphorus-based laundry detergents. Then we tested two human diet scenarios and their impacts on nutrient emissions. We also developed a scenario based on an optimal use of organic manure. The impacts of all our scenarios were evaluated using a statistical model of nitrogen and phosphorus fate (GREEN) linked to an agro-economic model (CAPRI). We show that the ban of phosphorus-based laundry detergents coupled with the full implementation of the Urban Waste Water Directive is the most effective approach for reducing phosphorus emissions from human based activities. Concerning nitrogen, the highest reductions are obtained with the optimized use of organic manure.

  15. Emissions inventory and scenario analyses of air pollutants in Guangdong Province, China

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Meng, Jing

    2016-03-01

    Air pollution, causing significantly adverse health impacts and severe environmental problems, has raised great concerns in China in the past few decades. Guangdong Province faces major challenges to address the regional air pollution problem due to the lack of an emissions inventory. To fill this gap, an emissions inventory of primary fine particles (PM2.5) is compiled for the year 2012, and the key precursors (sulfur dioxide, nitrogen oxides) are identified. Furthermore, policy packages are simulated during the period of 2012-2030 to investigate the potential mitigation effect. The results show that in 2012, SO2, NO x , and PM2.5 emissions in Guangdong Province were as high as (951.7, 1363.6, and 294.9) kt, respectively. Industrial production processes are the largest source of SO2 and PM2.5 emissions, and transport is the top contributor of NO x emissions. Both the baseline scenario and policy scenario are constructed based on projected energy growth and policy designs. Under the baseline scenario, SO2, NO x , and PM2.5 emissions will almost double in 2030 without proper emissions control policies. The suggested policies are categorized into end-of-pipe control in power plants (ECP), end-of-pipe control in industrial processes (ECI), fuel improvement (FI), energy efficiency improvement (EEI), substitution-pattern development (SPD), and energy saving options (ESO). With the implementation of all these policies, SO2, NO x , and PM2.5 emissions are projected to drop to (303.1, 585.4, and 102.4) kt, respectively, in 2030. This inventory and simulated results will provide deeper insights for policy makers to understand the present situation and the evolution of key emissions in Guangdong Province.

  16. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect

    Toole, Gasper L.

    2009-01-01

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  17. ESP v1.0: Methodology for Exploring Emission Impacts of Future Scenarios in the United States

    EPA Science Inventory

    This article presents a methodology for creating anthropogenic emission inventories that can be used to simulate future regional air quality. The Emission Scenario Projection (ESP) methodology focuses on energy production and use, the principal sources of many air pollutants. Emi...

  18. Propagation of uncertainty in carbon emission scenarios through the global carbon cycle

    SciTech Connect

    Keller, A.A.; Goldstein, R.A. )

    1994-09-01

    The authors used the GLOCO model, which is a carbon cycling model that considers seven terrestrial biomes, two oceans and one atmosphere, to evaluate the rise in atmospheric CO[sub 2] concentration, (pCO[sub 2]) and the partitioning of carbon to the global compartments (ocean, atmosphere and terrestrial) as a function of time for a number of possible anthropogenic carbon emission scenarios, based on different energy policies as developed by the Energy Modeling Forum (EMF-12). The authors then evaluated the possible uncertainty in carbon emission scenarios and the propagation of this uncertainty in carbon emission scenarios and the propagation of this uncertainty throughout the model to obtain an envelope for the rise in pCO[sub 2]. Large fluctuations in the input signal are smoothed by the carbon cycle, resulting in more than a four-fold reduction in uncertainty in the output signal (pCO[sub 2]). In addition, they looked at the effect that other model variables have on the pCO[sub 2] envelope, specifically the ratio of carbon to nitrogen in the emissions. The carbon to nitrogen ratio (C:N) will vary throughout the next century depending on the mix on energy sources chosen. More nitrogen in the emissions can produce a cofertilization effect in the terrestrial biomes, which would lead to sequestration of additional carbon. The uncertainty in C:N will enlarge the pCO[sub 2] uncertainty envelope by up to 20 ppm.

  19. Future reef decalcification under a business-as-usual CO2 emission scenario

    PubMed Central

    Dove, Sophie G.; Kline, David I.; Pantos, Olga; Angly, Florent E.; Tyson, Gene W.; Hoegh-Guldberg, Ove

    2013-01-01

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century. PMID:24003127

  20. Future reef decalcification under a business-as-usual CO2 emission scenario.

    PubMed

    Dove, Sophie G; Kline, David I; Pantos, Olga; Angly, Florent E; Tyson, Gene W; Hoegh-Guldberg, Ove

    2013-09-17

    Increasing atmospheric partial pressure of CO2 (pCO2) is a major threat to coral reefs, but some argue that the threat is mitigated by factors such as the variability in the response of coral calcification to acidification, differences in bleaching susceptibility, and the potential for rapid adaptation to anthropogenic warming. However the evidence for these mitigating factors tends to involve experimental studies on corals, as opposed to coral reefs, and rarely includes the influence of multiple variables (e.g., temperature and acidification) within regimes that include diurnal and seasonal variability. Here, we demonstrate that the inclusion of all these factors results in the decalcification of patch-reefs under business-as-usual scenarios and reduced, although positive, calcification under reduced-emission scenarios. Primary productivity was found to remain constant across all scenarios, despite significant bleaching and coral mortality under both future scenarios. Daylight calcification decreased and nocturnal decalcification increased sharply from the preindustrial and control conditions to the future scenarios of low (reduced emissions) and high (business-as-usual) increases in pCO2. These changes coincided with deeply negative carbonate budgets, a shift toward smaller carbonate sediments, and an increase in the abundance of sediment microbes under the business-as-usual emission scenario. Experimental coral reefs demonstrated highest net calcification rates and lowest rates of coral mortality under preindustrial conditions, suggesting that reef processes may not have been able to keep pace with the relatively minor environmental changes that have occurred during the last century. Taken together, our results have serious implications for the future of coral reefs under business-as-usual environmental changes projected for the coming decades and century. PMID:24003127

  1. Emission scenario of non-CO2 gases from energy activities and other sources in China.

    PubMed

    Jiang, Kejun; Hu, Xiulian

    2005-09-01

    This paper gives a quantitative analysis on the non-CO(2) emissions related to energy demand, energy activities and land use change of six scenarios with different development pattern in 2030 and 2050 based on IPAC emission model. The various mitigation technologies and policies are assessed to understand the corresponding non-CO(2) emission reduction effect. The research shows that the future non-CO(2) emissions of China will grow along with increasing energy demand, in which thermal power and transportation will be the major emission and mitigation sectors. During the cause of future social and economic development, the control and mitigation of non-CO(2) emissions is a problem as challenging and pressing as that of CO(2) emissions. This study indicates that the energy efficiency improvement, renewable energy, advanced nuclear power generation, fuel cell, coal-fired combined cycle, clean coal and motor vehicle emission control technologies will contribute to non-CO(2) emissions control and mitigation. PMID:20549450

  2. Emission scenario of non-CO2 gases from energy activities and other sources in China.

    PubMed

    Jiang, Kejun; Hu, Xiulian

    2005-12-01

    This paper gives a quantitative analysis on the non-CO2 emissions related to energy demand, energy activities and land use change of six scenarios with different development pattern in 2030 and 2050 based on IPAC emission model. The various mitigation technologies and policies are assessed to understand the corresponding non-CO2 emission reduction effect. The research shows that the future non-CO2 emissions of China will grow along with increasing energy demand, in which thermal power and transportation will be the major emission and mitigation sectors. During the cause of future social and economic development, the control and mitigation of non-CO2 emissions is a problem as challenging and pressing as that of CO2 emissions. This study indicates that the energy efficiency improvement, renewable energy, advanced nuclear power generation, fuel cell, coal-fired combined cycle, clean coal and motor vehicle emission control technologies will contribute to non-CO2 emissions control and mitigation. PMID:16512217

  3. Land use change emission scenarios: anticipating a forest transition process in the Brazilian Amazon.

    PubMed

    Aguiar, Ana Paula Dutra; Vieira, Ima Célia Guimarães; Assis, Talita Oliveira; Dalla-Nora, Eloi L; Toledo, Peter Mann; Santos-Junior, Roberto Araújo Oliveira; Batistella, Mateus; Coelho, Andrea Santos; Savaget, Elza Kawakami; Aragão, Luiz Eduardo Oliveira Cruz; Nobre, Carlos Afonso; Ometto, Jean Pierre H

    2016-05-01

    Following an intense occupation process that was initiated in the 1960s, deforestation rates in the Brazilian Amazon have decreased significantly since 2004, stabilizing around 6000 km(2) yr(-1) in the last 5 years. A convergence of conditions contributed to this, including the creation of protected areas, the use of effective monitoring systems, and credit restriction mechanisms. Nevertheless, other threats remain, including the rapidly expanding global markets for agricultural commodities, large-scale transportation and energy infrastructure projects, and weak institutions. We propose three updated qualitative and quantitative land-use scenarios for the Brazilian Amazon, including a normative 'Sustainability' scenario in which we envision major socio-economic, institutional, and environmental achievements in the region. We developed an innovative spatially explicit modelling approach capable of representing alternative pathways of the clear-cut deforestation, secondary vegetation dynamics, and the old-growth forest degradation. We use the computational models to estimate net deforestation-driven carbon emissions for the different scenarios. The region would become a sink of carbon after 2020 in a scenario of residual deforestation (~1000 km(2) yr(-1)) and a change in the current dynamics of the secondary vegetation - in a forest transition scenario. However, our results also show that the continuation of the current situation of relatively low deforestation rates and short life cycle of the secondary vegetation would maintain the region as a source of CO2 - even if a large portion of the deforested area is covered by secondary vegetation. In relation to the old-growth forest degradation process, we estimated average gross emission corresponding to 47% of the clear-cut deforestation from 2007 to 2013 (using the DEGRAD system data), although the aggregate effects of the postdisturbance regeneration can partially offset these emissions. Both processes (secondary

  4. OCEANOGRAPHY. Contrasting futures for ocean and society from different anthropogenic CO₂ emissions scenarios.

    PubMed

    Gattuso, J-P; Magnan, A; Billé, R; Cheung, W W L; Howes, E L; Joos, F; Allemand, D; Bopp, L; Cooley, S R; Eakin, C M; Hoegh-Guldberg, O; Kelly, R P; Pörtner, H-O; Rogers, A D; Baxter, J M; Laffoley, D; Osborn, D; Rankovic, A; Rochette, J; Sumaila, U R; Treyer, S; Turley, C

    2015-07-01

    The ocean moderates anthropogenic climate change at the cost of profound alterations of its physics, chemistry, ecology, and services. Here, we evaluate and compare the risks of impacts on marine and coastal ecosystems—and the goods and services they provide—for growing cumulative carbon emissions under two contrasting emissions scenarios. The current emissions trajectory would rapidly and significantly alter many ecosystems and the associated services on which humans heavily depend. A reduced emissions scenario—consistent with the Copenhagen Accord's goal of a global temperature increase of less than 2°C—is much more favorable to the ocean but still substantially alters important marine ecosystems and associated goods and services. The management options to address ocean impacts narrow as the ocean warms and acidifies. Consequently, any new climate regime that fails to minimize ocean impacts would be incomplete and inadequate. PMID:26138982

  5. Integrated Modeling & Development of Emission Scenarios for Methane and Key Indirect Greenhouse Gases

    SciTech Connect

    Jain, Atul K.

    2005-09-30

    This report outlines main accomplishments on the development of Emission inventories and Scenarios for Key Indirect Greenhouse Gases (CO, VOCs, NOx) and methane supported by Office of Science (BER), US Department of Energy. This research produced 3 journal articles, 1 book chapter, and 4 research articles/abstracts in conference proceedings. In addition, this grant supported two PhD students and one undergraduate student at UIUC.

  6. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  7. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  8. Preliminary forecasts of Pacific bigeye tuna population trends under the A2 IPCC scenario

    NASA Astrophysics Data System (ADS)

    Lehodey, P.; Senina, I.; Sibert, J.; Bopp, L.; Calmettes, B.; Hampton, J.; Murtugudde, R.

    2010-07-01

    An improved version of the spatial ecosystem and population dynamics model SEAPODYM was used to investigate the potential impacts of global warming on tuna populations. The model included an enhanced definition of habitat indices, movements, and accessibility of tuna predators to different vertically migrant and non-migrant micronekton functional groups. The simulations covered the Pacific basin (model domain) at a 2° × 2° geographic resolution. The structure of the model allows an evaluation from multiple data sources, and parameterization can be optimized by adjoint techniques and maximum likelihood using fishing data. A first such optimized parameterization was obtained for bigeye tuna ( Thunnus obesus) in the Pacific Ocean using historical catch data for the last 50 years and a hindcast from a coupled physical-biogeochemical model driven by the NCEP atmospheric reanalysis. The parameterization provided very plausible biological parameter values and a good fit to fishing data from the different fisheries, both within and outside the time period used for optimization. We then employed this model to forecast the future of bigeye tuna populations in the Pacific Ocean. The simulation was driven by the physical-biogeochemical fields predicted from a global marine biogeochemistry - climate simulation. This global simulation was performed with the IPSL climate model version 4 (IPSL-CM4) coupled to the oceanic biogeochemical model PISCES and forced by atmospheric CO 2, from historical records over 1860-2000, and under the SRES A2 IPCC scenario for the 21st century (i.e. atmospheric CO 2 concentration reaching 850 ppm in the year 2100). Potential future changes in distribution and abundance under the IPCC scenario are presented but without taking into account any fishing effort. The simulation showed an improvement in bigeye tuna spawning habitat both in subtropical latitudes and in the eastern tropical Pacific (ETP) where the surface temperature becomes optimal for

  9. Interpreting global energy and emission scenarios: Methods for understanding and communicating policy insights

    NASA Astrophysics Data System (ADS)

    Hummel, Leslie

    Energy scenarios for the 21st century powerfully inform perceptions and expectations in the minds of energy investors, consumers, and policy-makers. Scenarios that stabilize global warming call for large-scale energy technology transitions, fueling debates about the relative roles for a range of technologies including nuclear power, carbon sequestration, biofuels, solar power, and efficient end-use devices. In the last decade, hundreds of scenarios have been published by more than a dozen research teams using different models, baselines and mitigation targets. Despite the efforts to summarize findings in a few major assessments, a gap in understanding remains at a critical science-policy juncture between scenario analysts and the audiences their work is designed to serve. Addressing the issue requires an interdisciplinary approach that incorporates knowledge and methods from the fields of energy engineering, economics, climate science, and policy analysis. This research applies two analytical techniques to investigate the effects of an imposed climate policy on the underlying energy system. The first disentangles the effect of a policy intervention on key demographic and technology drivers of fossil fuel use, and the second decomposes reductions in emissions by specific energy technology types. Because the techniques may be applied to any energy scenario with technology detail, this study demonstrates their application to ten sample stabilization scenarios from three leading models. Revealing the importance of data and assumptions overlooked or not well disclosed in the past, the results highlight an implausibly high pressure on energy supply innovations while the potential for energy efficiency improvements is systematically underestimated. The findings are significant to both scenario analysts and the decision-makers in public policy and private investment who are influenced by their work.

  10. Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: an assessment of scenarios in the scientific literature

    SciTech Connect

    Van Vuuren, Detlef; Bouwman, Lex; Smith, Steven J.; Dentener, Frank

    2011-09-17

    Most long-term scenarios of global N emissions are produced by Integrated Assessment Models in the context of climate change assessment. The scenarios indicate that N emissions are likely to increase in the next decades, followed by a stabilization or decline. Critical factors for future N emissions are the development of the underlying drivers (especially fertilizer use, animal husbandry, transport and power generation), air pollution control policy and climate policy. The new scenarios made for climate change assessment, the Representative Concentration Pathways - RCPs, are not representative of the range of possible N-emission projections. A more focused development of scenarios for air pollution may improve the relevance and quality of the scenarios.

  11. Global Scenarios of Air Pollutant Emissions from Road Transport through to 2050

    PubMed Central

    Takeshita, Takayuki

    2011-01-01

    This paper presents global scenarios of sulphur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions from road transport through to 2050, taking into account the potential impacts of: (1) the timing of air pollutant emission regulation implementation in developing countries; (2) global CO2 mitigation policy implementation; and (3) vehicle cost assumptions, on study results. This is done by using a global energy system model treating the transport sector in detail. The major conclusions are the following. First, as long as non-developed countries adopt the same vehicle emission standards as in developed countries within a 30-year lag, global emissions of SO2, NOx, and PM from road vehicles decrease substantially over time. Second, light-duty vehicles and heavy-duty trucks make a large and increasing contribution to future global emissions of SO2, NOx, and PM from road vehicles. Third, the timing of air pollutant emission regulation implementation in developing countries has a large impact on future global emissions of SO2, NOx, and PM from road vehicles, whereas there is a possibility that global CO2 mitigation policy implementation has a comparatively small impact on them. PMID:21845172

  12. NASA High Speed Research Program, Emissions Scenarios Committee report of meetings on September 26, 1991 and January 9, 1992

    SciTech Connect

    Wuebbles, D.J.

    1992-03-23

    An important step in the process of assessing the environmental effects of possible future High-Speed Civil Transports (HSCTs) is the definition of scenarios for the emissions from a fleet of such aircraft. These scenarios are then used in numerical models of the chemistry and physics of the global atmosphere to determine potential environmental effects, including concerns about changes in ozone and in climate. The Emissions Scenarios Committee was formed to provide a forum for meeting the combined needs of the atmospheric science community, the aircraft industry, NASA and the federal government in undertaking the development of scenarios for such assessments.

  13. Power plant emissions: particulate matter-related health damages and the benefits of alternative emission reduction scenarios

    SciTech Connect

    Schneider, C.

    2004-06-15

    This report estimates the avoidable health effects of each of a series of alternative regulatory scenarios for power plants, focusing on the adverse human health effects due to exposure to fine particulate matter (PM2.5) This report uses the same analytical methods that the U.S. Environmental Protection Agency used in 2003 to prepare an analysis of the potential health effects of the proposed Clear Skies Act (EPA 2003). This report conducts an analysis of the impacts in 2010 and 2020 of three policy alternatives to the proposed Clear Skies Act, The Jeffords/Lieberman/Collins 'The Clean Power Act', S. 366, and the EPA August 2001 Straw Proposal (one of several alternatives EPA analyzed prior to the announcement of the Clear Skies Initiative in 2002). The report also examines the health impacts associated with the total emissions from coal fired electricity generating units in 2010. Chapter 2 describes the emissions inventory estimates, and the changes in the emissions associated with each scenario analyzed. Chapter 3 describes the methods used to estimate changes in particulate matter concentrations. Chapter 4 describes general issues arising in estimating and valuing changes in adverse health effects associated with changes in particulate matter. Chapter 5 describes in some detail the methods used for estimating and valuing adverse health effects, and Chapter 6 presents the results of these analyses. Chapter 7 presents estimates of the impact of these alternative policy options on the PM non-attainment status. 117 refs., 21 figs., 32 tabs., 3 apps.

  14. Global Health Impacts of Future Aviation Emissions Under Alternative Control Scenarios

    PubMed Central

    2015-01-01

    There is strong evidence of an association between fine particulate matter less than 2.5 μm (PM2.5) in aerodynamic diameter and adverse health outcomes. This study analyzes the global excess mortality attributable to the aviation sector in the present (2006) and in the future (three 2050 scenarios) using the integrated exposure response model that was also used in the 2010 Global Burden of Disease assessment. The PM2.5 concentrations for the present and future scenarios were calculated using aviation emission inventories developed by the Volpe National Transportation Systems Center and a global chemistry-climate model. We found that while excess mortality due to the aviation sector emissions is greater in 2050 compared to 2006, improved fuel policies (technology and operations improvements yielding smaller increases in fuel burn compared to 2006, and conversion to fully sustainable fuels) in 2050 could lead to 72% fewer deaths for adults 25 years and older than a 2050 scenario with no fuel improvements. Among the four health outcomes examined, ischemic heart disease was the greatest cause of death. Our results suggest that implementation of improved fuel policies can have substantial human health benefits. PMID:25412200

  15. Uncertainties of the extreme high flows under climate change impact due to emission scenarios, hydrological models and parameters

    NASA Astrophysics Data System (ADS)

    Tian, Ye; Booij, Martijn; Zhu, Qian; Pan, Suli; Xu, Yue-Ping

    2013-04-01

    Climate change has exerted a significant impact on the hydrological cycle which is closely related to human's daily life. Due to the fact that the extreme precipitation is happening with increasing frequency and intensity, the study of extreme high flows has been an issue of great importance in recent years. Normally the future discharges are simulated by hydrological models with outputs from the RCMs. However the uncertainties are involved in every step of the processes, including GCMs, emission scenarios, downscaling methods, hydrological models and etc. In this study, the uncertainties in extreme high flows originating from greenhouse gas emission scenarios, hydrological model structures and their parameters were evaluated for the Jinhua River basin, East China. The baseline (1961-1990) climate and future (2011-2040) climate for scenario A1B, A2 and B2 were downscaled by the PRECIS Regional Climate Model with a spatial resolution of 50km×50km from the General Circulation Model (GCM). The outputs of the PRECIS (daily temperature and daily precipitation) were bias corrected by a distribution based method and a linear correction method. Three hydrological models (GR4J, HBV and Xinanjiang) were applied to simulate the daily discharge. The parameter uncertainty in hydrological models were taken into account and quantified by means of the Generalized Likelihood Uncertainty Estimation (GLUE) method. The GLUE was applied for each hydrological model in three emission scenarios. In total 30000 parameter sets were randomly generated within the parameter ranges, in which about 10% parameter sets were above the pre-assigned threshold and represented as the parameter uncertainty. The annual maximum discharge was used for the extreme high flow analysis. There was an overestimation for the monthly precipitation in July, August and September and an overestimation of 6.3-7.8 oC for monthly temperature all year round in the PRECIS output. The biases were reduced after bias

  16. Non-Kyoto Radiative Forcing in Long-Run Greenhouse Gas Emissions and Climate Change Scenarios

    SciTech Connect

    Rose, Steven K.; Richels, Richard G.; Smith, Steven J.; Riahi, Keywan; Stefler, Jessica; Van Vuuren, Detlef

    2014-04-27

    Climate policies designed to achieve climate change objectives must consider radiative forcing from the Kyoto greenhouse gas, as well as other forcing constituents, such as aerosols and tropospheric ozone. Net positive forcing leads to global average temperature increases. Modeling of non-Kyoto forcing is a relatively new component of climate management scenarios. Five of the nineteen models in the EMF-27 Study model both Kyoto and non-Kyoto forcing. This paper describes and assesses current non-Kyoto radiative forcing modeling within these integrated assessment models. The study finds negative forcing from aerosols masking significant positive forcing in reference non-climate policy projections. There are however large differences across models in projected non-Kyoto emissions and forcing, with differences stemming from differences in relationships between Kyoto and non-Kyoto emissions and fundamental differences in modeling structure and assumptions. Air pollution and non-Kyoto forcing decline in the climate policy scenarios. However, non-Kyoto forcing appears to be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited. Overall, there is substantial uncertainty related to non-Kyoto forcing that must be considered.

  17. Scenarios of animal waste production and fertilizer use and associated ammonia emission for the developing countries

    NASA Astrophysics Data System (ADS)

    Bouwman, A. F.; Van Der Hoek, K. W.

    Livestock production and the use of synthetic fertilizer are responsible for about half of the global emission of NH 3. Depending on the animal category between 10 and 36% of the N in animal excreta is lost as NH 3. The current annual NH 3 emission in developing countries of 15 million ton N accounts for 2/3 of the global emission from animal excreta. In addition, 7.2 million tons NH 3N of synthetic N fertilizers are lost as NH 3 in developing countries. This is 80% of the global NH 3 emission from synthetic fertilizer's use. Along with human population increase and economic growth, livestock production in developing countries may even increase by a factor of 3 between now and 2025. The net result of rapid increase of livestock production combined with higher efficiency is an increase in NH 3 emissions of only 60% from 15 to 24 million tons NH 3N between 1990 and 2025 in developing countries. Livestock production is an important consumer of feedstuffs, mainly cereals, thereby inducing additional demand for synthetic fertilizers. Despite the projected major increase of synthetic fertilizer use from 42 to 106 million ton N between 1990 and 2025, the NH 3 loss in developing countries may decrease if a shift towards other fertilizer types, that are less vulnerable to NH 3 volatilization, is realized. According to the scenario, the total emission of NH 3 associated with food production in developing countries will increase from 22 to 30 million ton N yr -1 between 1990 and 2025. Although the NH 3 emission increases more slowly than food production, in particular, animal production may show geographic concentration in certain regions, which may lead to high local emission densities and associated environmental problems.

  18. Large gain in air quality compared to an alternative anthropogenic emissions scenario

    NASA Astrophysics Data System (ADS)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-08-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistry-transport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the year-to-year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  19. Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario

    NASA Technical Reports Server (NTRS)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-01-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  20. Military, Charter, Unreported Domestic Traffic and General Aviation 1976, 1984, 1992, and 2015 Emission Scenarios

    NASA Technical Reports Server (NTRS)

    Mortlock, Alan; VanAlstyne, Richard

    1998-01-01

    The report describes development of databases estimating aircraft engine exhaust emissions for the years 1976 and 1984 from global operations of Military, Charter, historic Soviet and Chinese, Unreported Domestic traffic, and General Aviation (GA). These databases were developed under the National Aeronautics and Space Administration's (NASA) Advanced Subsonic Assessment (AST). McDonnell Douglas Corporation's (MDC), now part of the Boeing Company has previously estimated engine exhaust emissions' databases for the baseline year of 1992 and a 2015 forecast year scenario. Since their original creation, (Ward, 1994 and Metwally, 1995) revised technology algorithms have been developed. Additionally, GA databases have been created and all past NIDC emission inventories have been updated to reflect the new technology algorithms. Revised data (Baughcum, 1996 and Baughcum, 1997) for the scheduled inventories have been used in this report to provide a comparison of the total aviation emission forecasts from various components. Global results of two historic years (1976 and 1984), a baseline year (1992) and a forecast year (2015) are presented. Since engine emissions are directly related to fuel usage, an overview of individual aviation annual global fuel use for each inventory component is also given in this report.

  1. Future impact of traffic emissions on atmospheric ozone and OH based on two scenarios

    NASA Astrophysics Data System (ADS)

    Hodnebrog, Ø.; Berntsen, T. K.; Dessens, O.; Gauss, M.; Grewe, V.; Isaksen, I. S. A.; Koffi, B.; Myhre, G.; Olivié, D.; Prather, M. J.; Stordal, F.; Szopa, S.; Tang, Q.; van Velthoven, P.; Williams, J. E.

    2012-08-01

    The future impact of traffic emissions on atmospheric ozone and OH has been investigated separately for the three sectors AIRcraft, maritime SHIPping and ROAD traffic. To reduce uncertainties we present results from an ensemble of six different atmospheric chemistry models, each simulating the atmospheric chemical composition in a possible high emission scenario (A1B), and with emissions from each transport sector reduced by 5% to estimate sensitivities. Our results are compared with optimistic future emission scenarios (B1 and B1 ACARE), presented in a companion paper, and with the recent past (year 2000). Present-day activity indicates that anthropogenic emissions so far evolve closer to A1B than the B1 scenario. As a response to expected changes in emissions, AIR and SHIP will have increased impacts on atmospheric O3 and OH in the future while the impact of ROAD traffic will decrease substantially as a result of technological improvements. In 2050, maximum aircraft-induced O3 occurs near 80° N in the UTLS region and could reach 9 ppbv in the zonal mean during summer. Emissions from ship traffic have their largest O3 impact in the maritime boundary layer with a maximum of 6 ppbv over the North Atlantic Ocean during summer in 2050. The O3 impact of road traffic emissions in the lower troposphere peaks at 3 ppbv over the Arabian Peninsula, much lower than the impact in 2000. Radiative Forcing (RF) calculations show that the net effect of AIR, SHIP and ROAD combined will change from a~marginal cooling of -0.38 ± 13 mW m-2 in 2000 to a relatively strong cooling of -32 ± 8.9 (B1) or -31 ± 20 mW m-2 (A1B) in 2050, when taking into account RF due to changes in O3, CH4 and CH4-induced O3. This is caused both by the enhanced negative net RF from SHIP, which will change from -20 ± 5.4 mW m-2 in 2000 to -31 ± 4.8 (B1) or -40 ± 11 mW m-2 (A1B) in 2050, and from reduced O3 warming from ROAD, which is likely to turn from a positive net RF of 13 ± 7.9 mW m-2 in 2000 to

  2. Future impact of traffic emissions on atmospheric ozone and OH based on two scenarios

    NASA Astrophysics Data System (ADS)

    Hodnebrog, Ø.; Berntsen, T. K.; Dessens, O.; Gauss, M.; Grewe, V.; Isaksen, I. S. A.; Koffi, B.; Myhre, G.; Olivié, D.; Prather, M. J.; Stordal, F.; Szopa, S.; Tang, Q.; van Velthoven, P.; Williams, J. E.

    2012-12-01

    The future impact of traffic emissions on atmospheric ozone and OH has been investigated separately for the three sectors AIRcraft, maritime SHIPping and ROAD traffic. To reduce uncertainties we present results from an ensemble of six different atmospheric chemistry models, each simulating the atmospheric chemical composition in a possible high emission scenario (A1B), and with emissions from each transport sector reduced by 5% to estimate sensitivities. Our results are compared with optimistic future emission scenarios (B1 and B1 ACARE), presented in a companion paper, and with the recent past (year 2000). Present-day activity indicates that anthropogenic emissions so far evolve closer to A1B than the B1 scenario. As a response to expected changes in emissions, AIR and SHIP will have increased impacts on atmospheric O3 and OH in the future while the impact of ROAD traffic will decrease substantially as a result of technological improvements. In 2050, maximum aircraft-induced O3 occurs near 80° N in the UTLS region and could reach 9 ppbv in the zonal mean during summer. Emissions from ship traffic have their largest O3 impact in the maritime boundary layer with a maximum of 6 ppbv over the North Atlantic Ocean during summer in 2050. The O3 impact of road traffic emissions in the lower troposphere peaks at 3 ppbv over the Arabian Peninsula, much lower than the impact in 2000. Radiative forcing (RF) calculations show that the net effect of AIR, SHIP and ROAD combined will change from a marginal cooling of -0.44 ± 13 mW m-2 in 2000 to a relatively strong cooling of -32 ± 9.3 (B1) or -32 ± 18 mW m-2 (A1B) in 2050, when taking into account RF due to changes in O3, CH4 and CH4-induced O3. This is caused both by the enhanced negative net RF from SHIP, which will change from -19 ± 5.3 mW m-2 in 2000 to -31 ± 4.8 (B1) or -40 ± 9 mW m-2 (A1B) in 2050, and from reduced O3 warming from ROAD, which is likely to turn from a positive net RF of 12 ± 8.5 mW m-2 in 2000 to a

  3. Fermi Large Area Telescope observation of high-energy solar flares: constraining emission scenarios

    NASA Astrophysics Data System (ADS)

    Omodei, Nicola; Pesce-Rollins, Melissa; Petrosian, Vahe; Liu, Wei; Rubio da Costa, Fatima

    2015-08-01

    The Fermi Large Area Telescope (LAT) is the most sensitive instrument ever deployed in space for observing gamma-ray emission >100 MeV. This has also been demonstrated by its detection of quiescent gamma-ray emission from pions produced by cosmic-ray protons interacting in the solar atmosphere, and from cosmic-ray electron interactions with solar optical photons. The Fermi LAT has also detected high-energy gamma-ray emission associated with GOES M-class and X-class X-ray flares, each accompanied by a coronal mass ejection and a solar energetic particle event increasing the number of detected solar flares by almost a factor of 10 with respect to previous space observations. During the impulsive phase, gamma rays with energies up to several hundreds of MeV have been recorded by the LAT. Emission up to GeV energies lasting several hours after the flare has also been recorded by the LAT. Of particular interest are the recent detections of two solar flares whose position behind the limb was confirmed by the STEREO-B satellite. While gamma-ray emission up to tens of MeV resulting from proton interactions has been detected before from occulted solar flares, the significance of these particular events lies in the fact that these are the first detections of >100 MeV gamma-ray emission from footpoint-occulted flares. We will present the Fermi-LAT, RHESSI and STEREO observations of these flares and discuss the various emission scenarios for these sources.

  4. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario.

    PubMed

    Keller, David P; Feng, Ellias Y; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  5. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  6. Changes in land cover and carbon emissions to 2050 from African tropical forests using policy scenarios

    NASA Astrophysics Data System (ADS)

    Laporte, N.; Galford, G. L.; Soares Filho, B. S.

    2011-12-01

    Africa has the second largest block of rainforest in the world, next to the Amazon basin, with the majority of the carbon being stored in the dense humid forests of the Democratic Republic of the Congo (DRC). Historically, political instability in the DRC kept development and deforestation low, with primary forest uses being extensive logging and small scale agriculture. In the last decade, political stability has opened the country to foreign investment in forested areas, largely for industrial-scale oil palm plantations and more recently to rice production. The DRC ranks worst on the IFPRI global hunger index, scoring "extremely serious" based on the proportion of undernourished population, prevalence of underweight in children under 5 and the mortality rates of children under 5. In fact, DRC saw its hunger score increase (worsen) from 1990 to 2010, with a 66% gain compared to the other 8 worsening countries increasing only 21% or less. This is a critical time for policy in the DRC, where business-as-usual (relatively low deforestation rates) is unlikely to continue given today's relative political stability and economic stabilization compared to the 1990s. The country must examine options for forest conservation in balance with foreign investment for use of forest resources, national development of rural livelihoods and domestic production of food. Here we present deforestation trajectories simulated through the year 2050 under a set of scenarios. The scenarios consider the relative carbon emissions from business-as-usual (no new policy), conservation (policy favoring protection and enforcement for forest areas), and a food security scenario (favoring clearing for industrial agriculture, extractive timber resources and development of new agricultural areas). Carbon emissions for each scenario are estimated with a coupled bookkeeping model. These scenarios are not predictive of the future, rather, they are meant to provide an understanding of the outcomes of

  7. Municipal solid waste management scenarios for Attica and their greenhouse gas emission impact.

    PubMed

    Papageorgiou, Asterios; Karagiannidis, Avraam; Barton, John R; Kalogirou, Efstratios

    2009-11-01

    Disposal of municipal solid waste in sanitary landfills is still the main waste management method in the Attica region, as in most regions of Greece. Nevertheless, diversion from landfilling is being promoted by regional plans, in which the perspectives of new waste treatment technologies are being evaluated. The present study aimed to assess the greenhouse gas (GHG) emissions impact of different municipal solid waste treatment technologies currently under assessment in the new regional plan for Attica. These technologies are mechanical-biological treatment, mass-burn incineration and mechanical treatment and have been assessed in the context of different scenarios. The present study utilized existing methodologies and emission factors for the quantification of GHG emissions from the waste management process and found that all technologies under assessment could provide GHG emission savings. However, the performance and ranking of these technologies is strongly dependent on the existence of end markets for the waste-derived fuels produced by the mechanical-biological treatment processes. In the absence of these markets the disposal of these fuels would be necessary and thus significant GHG savings would be lost. PMID:19837710

  8. The Future of Land Use in the United States: Downscaling SRES Emission Scenarios to Ecoregions and Pixels

    NASA Astrophysics Data System (ADS)

    Sleeter, B. M.; Sohl, T. L.; Sayler, K.; Bouchard, M. A.; Reker, R.; Sleeter, R. R.; Zhu, Z.; Auch, R.; Acevedo, W.; Soulard, C. E.; Griffith, G.

    2011-12-01

    Scenario analysis has emerged as a useful tool for evaluating uncertain futures in ecological systems. We describe research initiated by the U.S. Geological Survey (USGS) to develop a comprehensive portfolio of future land-use and land-cover (LULC) scenarios for the United States. The USGS has identified LULC scenarios as a focal area of future research. Scenarios are used to assist in the understanding of possible future developments in complex systems that typically have high levels of scientific uncertainty. Scenarios generally require knowledge of history and current conditions, and specific understanding about how drivers of change have acted to influence the historical and current condition. We describe methods and results of downscaling LULC and associated narrative storylines from the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES). The downscaling methods leverage three primary sources of information: 1) comprehensive land-use histories developed through remote sensing and survey data, 2) modeled LULC outputs from global integrated assessment models (IAMs), and 3) expert knowledge of regional land change. First, national and ecoregional narrative storylines were derived from the global IPCC framework. Based on the characteristics of downscaled narrative storylines, experts used historical data and information on the rates and types of LULC change, in conjunction with coarse-scale IAM projections of land use, to produce future quantitative scenarios. An accounting model was developed to handle all aspects of scenario downscaling. Here we present the methods used to construct ecoregion-specific scenarios of LULC change consistent with the IPCC-SRES scenarios, as well as results at multiple geographic scales. The USGS LandCarbon assessment is implementing a scenario-based approach for projecting changes in LULC that may result in changes to ecosystem carbon flux and greenhouse gas (GHG) emissions. Results described

  9. Air quality impacts of motor vehicle emissions in the south coast air basin: Current versus more stringent control scenario

    NASA Astrophysics Data System (ADS)

    Collet, Susan; Kidokoro, Toru; Sonoda, Yukihiro; Lohman, Kristen; Karamchandani, Prakash; Chen, Shu-Yun; Minoura, Hiroaki

    2012-02-01

    States are working to comply with the ozone National Ambient Air Quality Standards (NAAQS). Often, regulations restricting vehicle emissions are promulgated in order to attain compliance with the NAAQS. Currently, more stringent vehicle emission regulations are being considered by government agencies. This paper compares emissions from passenger cars and light duty trucks under the current California Low Emission Vehicle (LEV II) standards to a control scenario which was anticipated in 2008 to become LEV III (referred to as "more stringent control" in this paper) and determines if the scenario would result in additional improvements to air quality in California's South Coast Air Basin. The air quality modeling was performed using the Community Multi-scale Air Quality Model (CMAQ) for years 2005, 2014 and 2020. The more stringent control sensitivity study simulated a scenario in which all new passenger cars and light duty trucks in the California South Coast Air Basin in year 2016 achieve Super Ultra-Low Emission Vehicle (SULEV) tail pipe emissions, zero evaporative emissions and more stringent aggressive driving requirements. The total on-road vehicles emissions difference when averaged across the South Coast Air Basin showed the more stringent scenario compared to LEV II to have reductions of 1% for oxides of nitrogen (NO x), 1% for as reactive organic gases (ROG) and 5% for carbon monoxide (CO) in 2030. LEV II modeled ozone levels in the western areas of the basin increased in 2014 and 2020 as compared to 2005, because these areas are VOC-sensitive and the reductions in NO x emissions in these regions are larger than the VOC reductions. In other areas of the South Coast Basin, ozone is reduced by 1.5% or less. The more stringent control scenario modeled levels of ozone have a maximum decrease from LEV II levels by 1% or less in 2014 and 1.5% or less in 2020.

  10. Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios

    NASA Astrophysics Data System (ADS)

    Braspenning Radu, Olivia; van den Berg, Maarten; Klimont, Zbigniew; Deetman, Sebastiaan; Janssens-Maenhout, Greet; Muntean, Marilena; Heyes, Chris; Dentener, Frank; van Vuuren, Detlef P.

    2016-09-01

    In this paper, we present ten scenarios developed using the IMAGE2.4 framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios describe emission developments in 26 world regions for the 21st century, using a matrix of climate and air pollution policies. For climate policy, the study uses a baseline resulting in forcing levels slightly above RCP6.0 and an ambitious climate policy scenario similar to RCP2.6. For air pollution, the study explores increasingly tight emission standards, ranging from no improvement, current legislation and three variants assuming further improvements. For all pollutants, the results show that more stringent control policies are needed after 2030 to prevent a rise in emissions due to increased activities and further reduce emissions. The results also show that climate mitigation policies have the highest impact on SO2 and NOX emissions, while their impact on BC and OC emissions is relatively low, determined by the overlap between greenhouse gas and air pollutant emission sources. Climate policy can have important co-benefits; a 10% decrease in global CO2 emissions by 2100 leads to a decrease of SO2 and NOX emissions by about 10% and 5%, respectively compared to 2005 levels. In most regions, low levels of air pollutant emissions can also be achieved by solely implementing stringent air pollution policies. The largest differences across the scenarios are found in Asia and other developing regions, where a combination of climate and air pollution policy is needed to bring air pollution levels below those of today.

  11. Mercury emissions to the atmosphere from anthropogenic sources in Europe in 2000 and their scenarios until 2020.

    PubMed

    Pacyna, Elisabeth G; Pacyna, Jozef M; Fudala, Janina; Strzelecka-Jastrzab, Ewa; Hlawiczka, Stanislaw; Panasiuk, Damian

    2006-10-15

    The paper reviews the current state of knowledge regarding European emissions of mercury and presents estimates of European emissions of mercury to the atmosphere from anthropogenic sources for the year 2000. This information was then used as a basis for Hg emission scenario development until the year 2020. Combustion of coal in power plants and residential heat furnaces generates about half of the European emissions being 239 tonnes. The coal combustion is followed by the production of caustic soda with the use of the Hg cell process (17%). Major points of mercury emission generation in the mercury cell process include: by-product hydrogen stream, end box ventilation air, and cell room ventilation air. This technology is now being changed to other caustic soda production technologies and further reduction of Hg emissions is expected in this connection. The third category on the list of the largest Hg emitters in Europe is cement production (about 13%). The largest emissions were estimated for Russia (the European part of the country), contributing with about 27% to the European emissions, followed by Poland, Germany, Spain, Ukraine, France, Italy and the United Kingdom. Most of these countries use coal as a major source of energy in order to meet the electricity and heat demands. In general, countries in the Central and Eastern Europe generated the main part of the European emissions in 2000. Emission reductions between 20% and 80% of the 2000 emission amounts can be obtained by the year 2020, as estimated by various scenarios. PMID:16887169

  12. Global Air Quality Predictions of Particulate Matter in the Middle East and Sensitivity to Future Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Couzo, E. A.; Holmes, C. D.; Paltsev, S.; Alawad, A.; Selin, N. E.

    2014-12-01

    We examine the influence of natural and anthropogenic drivers of future PM in the Middle East region using two future emissions scenarios to drive the GEOS-Chem atmospheric chemistry model. The Arabian Peninsula is a major source of windblown dust as well as anthropogenic aerosols. Future emissions - driven jointly and individually by climate change and anthropogenic emissions from this rapidly growing region - will play an important role in both climate forcing and human health impacts from particulate matter. We use two scenarios to compare their climate and air quality implications. First, we use the Intergovernmental Panel on Climate Change Representative Concentration Pathways (RCPs) for four radiative forcing cases. Second, we develop a consistent future greenhouse gas and conventional pollutant emission inventory using the MIT Emissions Prediction and Policy Analysis (EPPA) model, which is a general equilibrium model of the global economy that calculates how economic growth and anthropogenic emissions change as a result of policies and other stressors. With EPPA, we examine three emissions cases, a business-as-usual case and two stabilization cases leading to anthropogenic radiative forcings of 3.7 W/m2 and 4.5 W/m2. We use these scenarios to drive GEOS-Chem for present and future climate, assessing changes in chemical composition of aerosol and drivers, both natural and anthropogenic, out to 2050. We find that projected anthropogenic emissions are strong determinants of future particulate matter air quality in the Middle East region.

  13. Scenarios of land use and land cover change in the conterminous United States: Utilizing the special report on emission scenarios at ecoregional scales

    USGS Publications Warehouse

    Sleeter, Benjamin M.; Sohl, Terry L.; Bouchard, Michelle A.; Reker, Ryan R.; Soulard, Christopher E.; Acevedo, William; Griffith, Glenn E.; Sleeter, Rachel R.; Auch, Roger F.; Sayler, Kristi L.; Prisley, Stephen; Zhu, Zhi-Liang

    2012-01-01

    Global environmental change scenarios have typically provided projections of land use and land cover for a relatively small number of regions or using a relatively coarse resolution spatial grid, and for only a few major sectors. The coarseness of global projections, in both spatial and thematic dimensions, often limits their direct utility at scales useful for environmental management. This paper describes methods to downscale projections of land-use and land-cover change from the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios to ecological regions of the conterminous United States, using an integrated assessment model, land-use histories, and expert knowledge. Downscaled projections span a wide range of future potential conditions across sixteen land use/land cover sectors and 84 ecological regions, and are logically consistent with both historical measurements and SRES characteristics. Results appear to provide a credible solution for connecting regionalized projections of land use and land cover with existing downscaled climate scenarios, under a common set of scenario-based socioeconomic assumptions.

  14. PULMONARY AND SYSTEMIC EFFECTS OF ZINC-CONTAINING EMISSION PARTICLES IN THREE RAT STRAINS: MULTIPLE EXPOSURE SCENARIOS

    EPA Science Inventory

    Abstract
    Pulmonary and Systemic Effects of Zinc-Containing Emission Particles in Three Rat Strains: Multiple Exposure Scenarios. Kodavanti, U. P., Schladweiler, M. C. J., Ledbetter, A. D., Hauser, R.*, Christiani, D. C.*, McGee, J., Richards, J. R., and Costa, D. L. (2002)....

  15. Analysis of UK and European NOx and VOC emission scenarios in the Defra model intercomparison exercise

    NASA Astrophysics Data System (ADS)

    Derwent, Richard; Beevers, Sean; Chemel, Charles; Cooke, Sally; Francis, Xavier; Fraser, Andrea; Heal, Mathew R.; Kitwiroon, Nutthida; Lingard, Justin; Redington, Alison; Sokhi, Ranjeet; Vieno, Massimo

    2014-09-01

    Simple emission scenarios have been implemented in eight United Kingdom air quality models with the aim of assessing how these models compared when addressing whether photochemical ozone formation in southern England was NOx- or VOC-sensitive and whether ozone precursor sources in the UK or in the Rest of Europe (RoE) were the most important during July 2006. The suite of models included three Eulerian-grid models (three implementations of one of these models), a Lagrangian atmospheric dispersion model and two moving box air parcel models. The assignments as to NOx- or VOC-sensitive and to UK- versus RoE-dominant, turned out to be highly variable and often contradictory between the individual models. However, when the assignments were filtered by model performance on each day, many of the contradictions could be eliminated. Nevertheless, no one model was found to be the 'best' model on all days, indicating that no single air quality model could currently be relied upon to inform policymakers robustly in terms of NOx- versus VOC-sensitivity and UK- versus RoE-dominance on each day. It is important to maintain a diversity in model approaches.

  16. Climate Change Impacts on Agriculture and Food Security in 2050 under a Range of Plausible Socioeconomic and Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Wiebe, K.; Lotze-Campen, H.; Bodirsky, B.; Kavallari, A.; Mason-d'Croz, D.; van der Mensbrugghe, D.; Robinson, S.; Sands, R.; Tabeau, A.; Willenbockel, D.; Islam, S.; van Meijl, H.; Mueller, C.; Robertson, R.

    2014-12-01

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. New work extends that analysis to cover a range of plausible socioeconomic scenarios and emission pathways. Results from three general circulation models are combined with one crop model and five global economic models to examine the global and regional impacts of climate change on yields, area, production, prices and trade for coarse grains, rice, wheat, oilseeds and sugar to 2050. Results show that yield impacts vary with changes in population, income and technology as well as emissions, but are reduced in all cases by endogenous changes in prices and other variables.

  17. Changes in future air quality, deposition, and aerosol-cloud interactions under future climate and emission scenarios

    NASA Astrophysics Data System (ADS)

    Glotfelty, Timothy; Zhang, Yang; Karamchandani, Prakash; Streets, David G.

    2016-08-01

    The prospect of global climate change will have wide scale impacts, such as ecological stress and human health hazards. One aspect of concern is future changes in air quality that will result from changes in both meteorological forcing and air pollutant emissions. In this study, the GU-WRF/Chem model is employed to simulate the impact of changing climate and emissions following the IPCC AR4 SRES A1B scenario. An average of 4 future years (2020, 2030, 2040, and 2050) is compared against an average of 2 current years (2001 and 2010). Under this scenario, by the Mid-21st century global air quality is projected to degrade with a global average increase of 2.5 ppb in the maximum 8-hr O3 level and of 0.3 μg m-3 in 24-hr average PM2.5. However, PM2.5 changes are more regional due to regional variations in primary aerosol emissions and emissions of gaseous precursor for secondary PM2.5. Increasing NOx emissions in this scenario combines with a wetter climate elevating levels of OH, HO2, H2O2, and the nitrate radical and increasing the atmosphere's near surface oxidation state. This differs from findings under the RCP scenarios that experience declines in OH from reduced NOx emissions, stratospheric recovery of O3, and increases in CH4 and VOCs. Increasing NOx and O3 levels enhances the nitrogen and O3 deposition, indicating potentially enhanced crop damage and ecosystem stress under this scenario. The enhanced global aerosol level results in enhancements in aerosol optical depth, cloud droplet number concentration, and cloud optical thickness. This leads to dimming at the Earth's surface with a global average reduction in shortwave radiation of 1.2 W m-2. This enhanced dimming leads to a more moderate warming trend and different trends in radiation than those found in NCAR's CCSM simulation, which does not include the advanced chemistry and aerosol treatment of GU-WRF/Chem and cannot simulate the impacts of changing climate and emissions with the same level of detailed

  18. Multimodel ensemble projection of precipitation in eastern China under A1B emission scenario

    NASA Astrophysics Data System (ADS)

    Niu, Xiaorui; Wang, Shuyu; Tang, Jianping; Lee, Dong-Kyou; Gao, Xuejie; Wu, Jia; Hong, Songyou; Gutowski, William J.; McGregor, John

    2015-10-01

    As part of the Regional Climate Model Intercomparison Project for Asia, future precipitation projection in China is constructed using five regional climate models (RCMs) driven by the same global climate model (GCM) of European Centre/Hamburg version 5. The simulations cover both the control climate (1978-2000) and future projection (2041-2070) under the Intergovernmental Panel on Climate Change emission scenario A1B. For the control climate, the RCMs have an advantage over the driving GCM in reproducing the summer mean precipitation distribution and the annual cycle. The biases in simulating summer precipitation mainly are caused by the deficiencies in reproducing the low-level circulation, such as the western Pacific subtropical high. In addition, large inter-RCM differences exist in the summer precipitation simulations. For the future climate, consistent and inconsistent changes in precipitation between the driving GCM and the nested RCMs are observed. Similar changes in summer precipitation are projected by RCMs over western China, but model behaviors are quite different over eastern China, which is dominated by the Asian monsoon system. The inter-RCM difference of rainfall changes is more pronounced in spring over eastern China. North China and the southern part of South China are very likely to experience less summer rainfall in multi-RCM mean (MRM) projection, while limited credibility in increased summer rainfall MRM projection over the lower reaches of the Yangtze River Basin. The inter-RCM variability is the main contributor to the total uncertainty for the lower reaches of the Yangtze River Basin and South China during 2041-2060, while lowest for Northeast China, being less than 40%.

  19. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario

    NASA Astrophysics Data System (ADS)

    Pascale, Salvatore; Lucarini, Valerio; Feng, Xue; Porporato, Amilcare; ul Hasson, Shabeh

    2016-02-01

    In this diagnostic study we analyze changes of rainfall seasonality and dry spells by the end of the twenty-first century under the most extreme IPCC5 emission scenario (RCP8.5) as projected by twenty-four coupled climate models contributing to Coupled Model Intercomparison Project 5 (CMIP5). We use estimates of the centroid of the monthly rainfall distribution as an index of the rainfall timing and a threshold-independent, information theory-based quantity such as relative entropy (RE) to quantify the concentration of annual rainfall and the number of dry months and to build a monsoon dimensionless seasonality index (DSI). The RE is projected to increase, with high inter-model agreement over Mediterranean-type regions—southern Europe, northern Africa and southern Australia—and areas of South and Central America, implying an increase in the number of dry days up to 1 month by the end of the twenty-first century. Positive RE changes are also projected over the monsoon regions of southern Africa and North America, South America. These trends are consistent with a shortening of the wet season associated with a more prolonged pre-monsoonal dry period. The extent of the global monsoon region, characterized by large DSI, is projected to remain substantially unaltered. Centroid analysis shows that most of CMIP5 projections suggest that the monsoonal annual rainfall distribution is expected to change from early to late in the course of the hydrological year by the end of the twenty-first century and particularly after year 2050. This trend is particularly evident over northern Africa, southern Africa and western Mexico, where more than 90 % of the models project a delay of the rainfall centroid from a few days up to 2 weeks. Over the remaining monsoonal regions, there is little inter-model agreement in terms of centroid changes.

  20. Insights into future air quality: Analysis of future emissions scenarios using the MARKAL model

    EPA Science Inventory

    This presentation will provide an update on the development and evaluation of four Air Quality Futures (AQF) scenarios. These scenarios represent widely different assumptions regarding the evolution of the U.S. energy system over the next 40 years. The primary differences between...

  1. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, E.; Yamagata, Y.

    2014-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise below 2°C above pre-industrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large-scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full post-process combustion CO2 capture is deployed with a high fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required, however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise a conflict of land-use with food production is inevitable.

  2. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions

    NASA Astrophysics Data System (ADS)

    Kato, Etsushi; Yamagata, Yoshiki

    2014-09-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socioeconomic scenarios that aim to keep mean global temperature rise below 2°C above preindustrial, which would require net negative carbon emissions in the end of the 21st century. Because of the additional need for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of deploying large scale BECCS. We evaluated the feasibility of the large-scale BECCS in RCP2.6, which is a scenario with net negative emissions aiming to keep the 2°C temperature target, with a top-down analysis of required yields and a bottom-up evaluation of BECCS potential using a process-based global crop model. Land-use change carbon emissions related to the land expansion were examined using a global terrestrial biogeochemical cycle model. Our analysis reveals that first-generation bioenergy crops would not meet the required BECCS of the RCP2.6 scenario even with a high-fertilizer and irrigation application. Using second-generation bioenergy crops can marginally fulfill the required BECCS only if a technology of full postprocess combustion CO2 capture is deployed with a high-fertilizer application in the crop production. If such an assumed technological improvement does not occur in the future, more than doubling the area for bioenergy production for BECCS around 2050 assumed in RCP2.6 would be required; however, such scenarios implicitly induce large-scale land-use changes that would cancel half of the assumed CO2 sequestration by BECCS. Otherwise, a conflict of land use with food production is inevitable.

  3. The impact of shipping emissions on air pollution in the greater North Sea region - Part 2: Scenarios for 2030

    NASA Astrophysics Data System (ADS)

    Matthias, V.; Aulinger, A.; Backes, A.; Bieser, J.; Geyer, B.; Quante, M.; Zeretzke, M.

    2016-01-01

    Scenarios for future shipping emissions in the North Sea have been developed in the framework of the Clean North Sea Shipping project. The effects of changing NOx and SO2 emissions were investigated with the CMAQ chemistry transport model for the year 2030 in the North Sea area. It has been found that, compared to today, the contribution of shipping to the NO2 and O3 concentrations will increase due to the expected enhanced traffic by more than 20 and 5 %, respectively, by 2030 if no regulation for further emission reductions is implemented in the North Sea area. PM2.5 will decrease slightly because the sulfur contents in ship fuels will be reduced as international regulations foresee. The effects differ largely between regions, seasons and date of the implementation of stricter regulations for NOx emissions from newly built ships.

  4. The impact of shipping emissions on air pollution in the Greater North Sea region - Part 2: Scenarios for 2030

    NASA Astrophysics Data System (ADS)

    Matthias, V.; Aulinger, A.; Backes, A.; Bieser, J.; Geyer, B.; Quante, M.; Zeretzke, M.

    2015-04-01

    Scenarios for future shipping emissions in the North Sea have been developed in the framework of the Clean North Sea Shipping project. The effects of changing NOx and SO2 emissions were invesigated with the chemistry transport model CMAQ for the year 2030 in the North Sea area. It has been found that, compared to today, the contribution of shipping to the NO2 and O3 concentrations will increase due to the expected enhanced traffic by more than 20 and 5%, respectively, by 2030 if no regulation for further emission reductions will be implemented in the North Sea area. PM2.5 will decrease slightly because the sulphur contents in ship fuels will be reduced as international regulations foresee. The effects differ largely between regions, seasons and date of the implementation of stricter regulations for NOx emissions from new built ships.

  5. Hamburg 2K: Climate modeling and downscaling for Hamburg, Germany under a 2 K global warming scenario

    NASA Astrophysics Data System (ADS)

    Flagg, D. D.; Grawe, D.; Daneke, C.; Hoffmann, P.; Jacob, D.; Kirschner, P.; Kriegsmann, A.; Linde, M.; Mayer, B.; O'Driscoll, K. T.; Pohlmann, T.; Schlünzen, K. H.; Schoetter, R.; Teichert, W.; Zorita, E.

    2011-12-01

    The European Union has established a 2 K warming of average annual global surface temperature above pre-industrial levels as a target to avoid disruptive climate change. The Hamburg 2K project seeks to model the climate of Hamburg, Germany subject to this target warming by the end of the 21st century. A general circulation model (ECHAM5) with a greenhouse gas scenario consistent with this target (E1) provides a source for dynamical and statistical-dynamical model downscaling at the regional scale, using the Regional Model (REMO), and at the mesoscale, using the Mesoscale Transport and fluid (Stream) Model (METRAS). Regional scale model estimates provide forcing for off-line modeling of the North Sea circulation with the Hamburg Shelf-Ocean Model (HAMSOM). This presentation concentrates on the urban climate component of the 2K scenario. The approach quantifies the projected change in both the meteorology and the urban development. The modeling strategy allows for a discrete diagnosis of each contribution. For the meteorology, the project identifies an urban climate change signal between the late 20th and late 21st centuries using a statistical-dynamical downscaling technique. Cluster analysis of multiple REMO realizations generates a series of archetypical synoptic conditions, a.k.a., weather types. The frequency change of these weather types between present and future climate yields a climate change signal. The potential for distinctively new weather types in the future climate is also investigated. Regional weather types provide the forcing for simulations with METRAS at 1 km resolution. These simulations provide further assessment of urban climate change at a scale more sensitive to the heterogeneous urban surface. Some initial METRAS modeling results will be presented here. For the urban development, the METRAS model simulations benefit from a detailed surface cover map including over 50 classes of natural and artificial surfaces tailored specifically for

  6. The Change of the North American Monsoon Seasonal Precipitation in the CCSMv.4 under IPCC CO2 Emission Scenarios

    NASA Astrophysics Data System (ADS)

    Hernandez, M.; Tribbia, J. J.; Caron, J.

    2012-12-01

    The North American monsoon (NAM), characterized by distinct seasonal precipitation over western Mexico and the Southwestern United States, is a summertime phenomenon that depends on complex interactions between the Pacific Ocean, Gulf of Mexico, and the North American land mass. Thus, the NAM is strongly influenced by the El Niño Southern Oscillation, a dominant mode of interannual Pacific sea surface temperature (SST) and atmospheric variability, as well as the North Pacific Oscillation, a low-frequency (decadal) Pacific variation. This study assesses present day and projected changes in the NAM precipitation on a yearly and seasonal basis. Observations from the NCEP-NCAR Reanalysis project are compared to the Community Climate System Model version 4 (CCSM) from 1980 to 2000. Spatial patterns agree well, but still show an overestimation in precipitation within the NAM region. Fifteen CCSM ensemble runs, for various IPCC AR4 emission scenarios (A1, B1, and constant CO2), are assessed within each specific scenario and averaged, for comparisons between 1980-2000 and 2080-2100. In the NAM region we find yearly and seasonal decreases in precipitation and increases in temperature for all IPCC emission scenarios. Our analysis further finds statistical significance to the differences in mean precipitation and temperature over the NAM region, due in part to different levels of CO2 in the atmosphere.; Future temperature climate (2080-2100) within a "high emission" scenario is compared to present temperature climate (1980-2000) to create a difference temperature plot throughout the southwestern United States.

  7. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  8. ESP v2.0: Enhanced method for exploring emission impacts of future scenarios in the United States – addressing spatial allocation

    EPA Science Inventory

    The Emission Scenario Projection (ESP) method produces future-year air pollutant emissions for mesoscale air quality modeling applications. We present ESP v2.0, which expands upon ESP v1.0 by spatially allocating future-year emissions to account for projected population and land ...

  9. COMPARATIVE ANALYSIS OF TWO FORMATION SCENARIOS OF BURSTY RADIO EMISSION FROM ULTRACOOL DWARFS

    SciTech Connect

    Kuznetsov, A. A.; Doyle, J. G.; Yu, S.; Hallinan, G.; Antonova, A.; Golden, A.

    2012-02-10

    Recently, a number of ultracool dwarfs have been found to produce periodic radio bursts with high brightness temperature and polarization degree; the emission properties are similar to the auroral radio emissions of the magnetized planets of the solar system. We simulate the dynamic spectra of radio emission from ultracool dwarfs. The emission is assumed to be generated due to the electron-cyclotron maser instability. We consider two source models: the emission caused by interaction with a satellite and the emission from a narrow sector of active longitudes; the stellar magnetic field is modeled by a tilted dipole. We have found that for the dwarf TVLM 513-46546, the model of the satellite-induced emission is inconsistent with observations. On the other hand, the model of emission from an active sector is able to reproduce qualitatively the main features of the radio light curves of this dwarf; the magnetic dipole seems to be highly tilted (by about 60 Degree-Sign ) with respect to the rotation axis.

  10. Sea-level rise and impacts projections under a future scenario with large greenhouse gas emission reductions

    NASA Astrophysics Data System (ADS)

    Pardaens, A. K.; Lowe, J. A.; Brown, S.; Nicholls, R. J.; de Gusmão, D.

    2011-06-01

    Using projections from two coupled climate models (HadCM3C and HadGEM2-AO), we consider the effect on 21st century sea-level rise (SLR) of mitigation policies relative to a scenario of business-as-usual (BAU). Around a third of the global-mean SLR over the century is avoided by a mitigation scenario under which global-mean near surface air temperature stabilises close to the Copenhagen Accord limit of a 2°C increase. Under BAU (a variant of the A1B scenario) the model-averaged projected SLR for 2090-2099 relative to 1980-1999 is 0.29 m-0.51 m (5%-95% uncertainties from treatment of land-based ice melt); under mitigation (E1 scenario) it is 0.17 m-0.34 m. This reduction is primarily from reduced thermal expansion. The spatial patterns of regional SLR are fairly dissimilar between the models, but are qualitatively similar across scenarios for a particular model. An impacts model suggests that by the end of the 21st century and without upgrade in defences around 55% of the 84 million additional people flooded per year globally under BAU (from SLR alone) could be avoided under such mitigation. The above projections of SLR follow the methodology of the IPCC Fourth Assessment. We have, however, also conducted a sensitivity study of SLR and its impacts where the possibility of accelerated ice sheet dynamics is accounted for.

  11. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    USGS Publications Warehouse

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  12. A scenario analysis of the life cycle greenhouse gas emissions of a new residential area

    NASA Astrophysics Data System (ADS)

    Säynäjoki, Antti; Heinonen, Jukka; Junnila, Seppo

    2012-09-01

    While buildings are often credited as accounting for some 40% of the global greenhouse gas (GHG) emissions, the construction phase is typically assumed to account for only around one tenth of the overall emissions. However, the relative importance of construction phase emissions is quickly increasing as the energy efficiency of buildings increases. In addition, the significance of construction may actually be much higher when the temporal perspective of the emissions is taken into account. The construction phase carbon spike, i.e. high GHG emissions in a short time associated with the beginning of the building’s life cycle, may be high enough to question whether new construction, no matter how energy efficient the buildings are, can contribute to reaching the greenhouse gas mitigation goals of the near future. Furthermore, the construction of energy efficient buildings causes more GHG emissions than the construction of conventional buildings. On the other hand, renovating the current building stock together with making energy efficiency improvements might lead to a smaller construction phase carbon spike and still to the same reduced energy consumption in the use phase as the new energy efficient buildings. The study uses a new residential development project in Northern Europe to assess the overall life cycle GHG emissions of a new residential area and to evaluate the influence of including the temporal allocation of the life cycle GHG emissions in the assessment. In the study, buildings with different energy efficiency levels are compared with a similar hypothetical area of buildings of the average existing building stock, as well as with a renovation of an area with average buildings from the 1960s. The GHG emissions are modeled with a hybrid life cycle assessment. The study suggests that the carbon payback time of constructing new residential areas is several decades long even when using very energy efficient buildings compared to utilizing the current

  13. Potential health risks from exposure to hazardous waste incinerator emissions -- Worst-case scenarios

    SciTech Connect

    Kosalwat, P.; Whitten, M.

    1995-12-31

    Potential health hazards to persons exposed to maximum permitted levels of air emissions from a hypothetical hazardous waste incinerator were investigated. By using extremely conservative assumptions, a multiple pathway, health risk assessment was performed for the facility. The procedures used to perform the risk analysis were based on US EPA ``Methodology for Assessing Health Risks Associated with Exposure to Combustor Emissions.`` Ambient air concentrations of chemicals in air approved dispersion model (ISCST model). The model is based on maximum (instantaneous) allowable emission rates for permitted constituents, which is likely to overstate exposures and resultant health risks associated with facility emissions. The analysis focused on 22 key chemicals which typically exist in emissions from hazardous waste incinerators. Exposure pathways included inhalation, soil contact, and consumption of locally derived food products (fruits and vegetables, beef, milk, and fish). The receptors were hypothetical residents living in an area of maximum air concentrations and deposition downwind of the facility. The results showed that the theoretical excess cancer risk levels for lifetime exposure to the incinerator emissions for residents was 1.3 {times} 10{sup {minus}5} (i.e., 1 in 100,000 exposed individuals), which is approximately one magnitude higher than EPA`s target risk level of 10{sup {minus}6} (i.e., 1 in 1 million exposed individuals) used for environmentally-related chemical exposures. Long-term exposure to noncarcinogenic chemicals potentially present in the emissions was not expected to result in adverse health effects for adults or children living in the immediate vicinity. Total hazard quotients which included oral, dermal, and inhalation exposures, were below unity (i.e., 0.30 and 0.26 for a maximally exposed child and a maximally exposed adult, respectively).

  14. Scenario analysis on the goal of carbon emission peaking around 2030 of China proposed in the China-U.S. joint statement on climate change

    NASA Astrophysics Data System (ADS)

    Zheng, T.

    2015-12-01

    A goal of carbon (C) emission peaking around 2030 of China was declared in the China-U.S. joint statement on climate change, and emphasized in China's intended nationally determined contributions (INDC). Here, we predicted the carbon emission of China during the period 2011~2050 under seven scenarios, and analyzed the scientific and social implications of realizing the goal. Our results showed that: (1) C emissions of China will reach their peaks at 2022~2045 (with peak values 3.15~5.10 Pg C), and the predicted decay rates of C intensity were 2.1~4.2% in 2011~2050; (2) the precondition that the national C emission reaches the peak before 2030 is that the annual decay rates of C intensity must exceed 3.3% , as decay rates under different scenarios were predicted higher than that except for Past G8 scenario; (3) the national C emission would reach the peak before 2030, if the government of China should realize the C emissions reduction goals of China's 12th five-year plan, climate commitments of Copenhagen and INDC; (4) Chinese government could realize the goal of C emission peaking around 2030 from just controlling C emission intensity , but associated with relatively higher government's burden. In summary, China's C emission may well peak before 2030, meanwhile the combination of emissions reduction and economic macro-control would be demanded to avoid heavier social pressure of C emissions reduction occurred.

  15. Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Impacts of climate change on hydrology, soil erosion, and wheat production during 2010-2039 at El Reno in central Oklahoma, USA, were simulated using the Water Erosion Prediction Project (WEPP) model. Projections from four GCMs (CCSR/NIES, CGCM2, CSIRO-Mk2, and HadCM3) under three emissions scenari...

  16. Can trace gas emission be modified by management scenarios in the northern Corn Belt?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field plots were established in 2002 in west central Minnesota to compare tillage, rotation and fertilizer treatments and to identify and develop economically-viable and environmentally- sustainable farming systems. Greenhouse gas emission (nitrous oxide, methane and carbon dioxide) was monitored in...

  17. Greenhouse Gas Emission from Contrasting Management Scenarios in the Northern Corn Belt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term cropping systems field plots were established in 2002 in west central Minnesota to compare tillage, rotation and fertilizer treatments and to identify and develop economically viable and environmentally sustainable farming systems. Greenhouse gas (GHG) emission was monitored in three scena...

  18. Downscaling socioeconomic and emissions scenarios for global environmental change research:a review

    SciTech Connect

    Van Vuuren, Detlet; Smith, Steven J.; Riahi, Keywan

    2010-05-01

    Abstract: Global change research encompasses global to local scale analysis. Impacts analysis in particular often requires spatial downscaling, whereby socio-economic and emissions variables specified at relatively large spatial scales are translated to values at a country or grid level. The methods used for spatial downscaling are reviewed, classified, and current applications discussed.

  19. Hadronic Scenarios for Gamma-Ray Emission from Three Supernova Remnants Interacting with Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Yu, Huan; Fang, Jun; Zhang, Li

    2014-04-01

    GeV γ-rays detected with the large area telescope on board the Fermi Gamma-ray space telescope in the direction of HB21, MSH 17-39 and G337.0-0.1 have been recently reported. The three supernova remnants (SNRs) show interactions with molecular clouds, and they are effective gamma-ray emitters as the relativistic protons accelerated by the SNR shocks inelastically colliding with the dense gas in the clouds. The origin of the observed γ-rays for the three remnants is investigated in the scenario of the diffusive shock acceleration. In the model, a part of the SNR shock transmits into the nearby molecular clouds, and the shock velocity is greatly reduced. As a result, a shock with a relatively low Alfvén Mach number is generated, and the spectra of the accelerated protons and the γ-ray photons produced via proton-proton interaction can be obtained. The results show that the observed γ-ray spectra for the three SNRs interacting with the molecular clouds can be reproduced. It can be concluded that the hadronic origin of the γ-rays for the three SNRs is approved, and the ability of SNR shocks to accelerate protons is also supported.

  20. Canadian economic and emissions model for agriculture, C.E.E.M.A., version 1.0, report 2: Preliminary results of selected scenarios

    SciTech Connect

    Kulshreshtha, S.N.

    1999-09-01

    This is one of three technical reports which document an integrated agro-ecological economic modelling system that can be used to simultaneously assess the economic and the greenhouse gas emission impacts of agricultural policies at the regional and national levels. After an introduction on the importance of agricultural emissions of greenhouse gases and the need for a study of this issue, chapter 2 reviews the greenhouse gas emission model. Chapter 3 contains model-based estimates of greenhouse gas emission levels for the base year of 1990. Chapter 4 predicts future levels of emissions under medium-term baseline projections. Chapter 5 reviews some of the mitigation strategies available to Canadian farmers and assesses their impact on greenhouse emissions. Implications of trends in livestock production are also examined as a separate scenario. Using the scenarios developed in chapter 5, chapter 6 presents results of greenhouse gas emission estimates for individual gases, various production regions, and various emissions activities. The final chapter summarizes major results and discusses their implications for agricultural policy. Appendices include a description of the modelling methodology and a table showing estimates of the distribution of greenhouse gas emissions by crop and livestock production activities under various scenarios.

  1. Study of the impact of cruise and passenger ships on a Mediterranean port city air quality - Study of future emission mitigation scenarios

    NASA Astrophysics Data System (ADS)

    Liora, Natalia; Poupkou, Anastasia; Kontos, Serafim; Giannaros, Christos; Melas, Dimitrios

    2015-04-01

    An increase of the passenger ships traffic is expected in the Mediterranean Sea as targeted by the EU Blue Growth initiative. This increase is expected to impact the Mediterranean port-cities air quality considering not only the conventional atmospheric pollutants but also the toxic ones that are emitted by the ships (e.g. Nickel). The aim of this study is the estimation of the present and future time pollutant emissions from cruise and passenger maritime transport in the port area of Thessaloniki (Greece) as well as the impact of those emissions on the city air quality. Cruise and passenger ship emissions have been estimated for the year 2013 over a 100m spatial resolution grid which covers the greater port area of Thessaloniki. Emissions have been estimated for the following macro-pollutants; NOx, SO2, NMVOC, CO, CO2 and particulate matter (PM). In addition, the most important micro-pollutants studied in this work are As, Cd, Pb, Ni and Benzo(a)pyrene for which air quality limits have been set by the EU. Emissions have been estimated for three operation modes; cruising, maneuvering and hotelling. For the calculation of the present time maritime emissions, the activity data used were provided by the Thessaloniki Port Authority S.A. Moreover, future pollutant emissions are estimated using the future activity data provided by the Port Authority and the IMO legislation for shipping in the future. In addition, two mitigation emission scenarios are examined; the use of Liquefied Natural Gas (LNG) as a fuel used by ships and the implementation of cold ironing which is the electrification of ships during hotelling mode leading to the elimination of the corresponding emissions. The impact of the present and future passenger ship emissions on the air quality of Thessaloniki is examined with the use of the model CALPUFF applied over the 100m spatial resolution grid using the meteorology of WRF. Simulations of the modeling system are performed for four different emission

  2. Mars methane emission and transport scenarios using the GEM-Mars GCM

    NASA Astrophysics Data System (ADS)

    Neary, Lori; Daerden, Frank; Kaminski, J. W.; McConnell, J. C.

    2010-05-01

    The observation of methane (Formisano et al., 2004; Krasnopolsky et al., 2004; Mumma et al., 2009) in the Martian atmosphere has raised questions about its source and origin as well as its chemical behaviour. The photochemical lifetime of methane is on the order of several hundred years which would give a well-mixed, uniform distribution but measurements suggest locally enhanced "plumes". The GEM-Mars three-dimensional global chemistry-climate model is used to investigate the possible emission rates and lifetime of methane. The model simulations have a horizontal resolution of 4x4 degrees with 101 vertical levels up to approximately 140 km. References Formisano, V., S. Atreya, T. Encrenaz, N. Ignatiev, and M. Giuranna (2004), Detection of Methane in the Atmosphere of Mars, Science 306, 1758 (2004). Krasnopolsky, V. A., J. P. Maillard, and T. C. Owen (2004), Icarus 172, 537. Mumma, M.J., G.L. Villanueva, R.E. Novak, T. Hewagama, B.P. Bonev, M.A. DiSanti, A.M. Mandell, and M.D. Smith (2009), Strong Release of Methane on Mars in Northern Summer 2003. Science, 2009. 323: p. 1041-1045.

  3. Assessing concentrations and health impacts of air quality management strategies: Framework for Rapid Emissions Scenario and Health impact ESTimation (FRESH-EST).

    PubMed

    Milando, Chad W; Martenies, Sheena E; Batterman, Stuart A

    2016-09-01

    In air quality management, reducing emissions from pollutant sources often forms the primary response to attaining air quality standards and guidelines. Despite the broad success of air quality management in the US, challenges remain. As examples: allocating emissions reductions among multiple sources is complex and can require many rounds of negotiation; health impacts associated with emissions, the ultimate driver for the standards, are not explicitly assessed; and long dispersion model run-times, which result from the increasing size and complexity of model inputs, limit the number of scenarios that can be evaluated, thus increasing the likelihood of missing an optimal strategy. A new modeling framework, called the "Framework for Rapid Emissions Scenario and Health impact ESTimation" (FRESH-EST), is presented to respond to these challenges. FRESH-EST estimates concentrations and health impacts of alternative emissions scenarios at the urban scale, providing efficient computations from emissions to health impacts at the Census block or other desired spatial scale. In addition, FRESH-EST can optimize emission reductions to meet specified environmental and health constraints, and a convenient user interface and graphical displays are provided to facilitate scenario evaluation. The new framework is demonstrated in an SO2 non-attainment area in southeast Michigan with two optimization strategies: the first minimizes emission reductions needed to achieve a target concentration; the second minimizes concentrations while holding constant the cumulative emissions across local sources (e.g., an emissions floor). The optimized strategies match outcomes in the proposed SO2 State Implementation Plan without the proposed stack parameter modifications or shutdowns. In addition, the lower health impacts estimated for these strategies suggest that FRESH-EST could be used to identify potentially more desirable pollution control alternatives in air quality management planning

  4. Enduse Global Emissions Mitigation Scenarios (EGEMS): A New Generation of Energy Efficiency Policy Planning Models

    SciTech Connect

    McNeil, Michael A.; de la Rue du Can, Stephane; McMahon, James E.

    2009-05-29

    This paper presents efforts to date and prospective goals towards development of a modelling and analysis framework which is comprehensive enough to address the global climate crisis, and detailed enough to provide policymakers with concrete targets and achievable outcomes. In terms of energy efficiency policy, this requires coverage of the entire world, with emphasis on countries and regions with large and/or rapidly growing energy-related emissions, and analysis at the 'technology' level-building end use, transport mode or industrial process. These elements have not been fully addressed by existing modelling efforts, which usually take either a top-down approach, or concentrate on a few fully industrialized countries where energy demand is well-understood. Inclusion of details such as appliance ownership rates, use patterns and efficiency levels throughout the world allows for a deeper understanding of the demand for energy today and, more importantly, over the coming decades. This is a necessary next step for energy analysts and policy makers in assessment of mitigation potentials. The modelling system developed at LBNL over the past 3 years takes advantage of experience in end use demand and in forecasting markets for energy-consuming equipment, in combination with known technology-based efficiency opportunities and policy types. A particular emphasis has been placed on modelling energy growth in developing countries. Experiences to date include analyses covering individual countries (China and India), end uses (refrigerators and air conditioners) and policy types (standards and labelling). Each of these studies required a particular effort in data collection and model refinement--they share, however, a consistent approach and framework which allows comparison, and forms the foundation of a comprehensive analysis system leading to a roadmap to address the greenhouse gas mitigation targetslikely to be set in the coming years.

  5. ESP v2.0: enhanced method for exploring emission impacts of future scenarios in the United States - addressing spatial allocation

    NASA Astrophysics Data System (ADS)

    Ran, L.; Loughlin, D. H.; Yang, D.; Adelman, Z.; Baek, B. H.; Nolte, C. G.

    2015-06-01

    The Emission Scenario Projection (ESP) method produces future-year air pollutant emissions for mesoscale air quality modeling applications. We present ESP v2.0, which expands upon ESP v1.0 by spatially allocating future-year non-power sector emissions to account for projected population and land use changes. In ESP v2.0, US Census division-level emission growth factors are developed using an energy system model. Regional factors for population-related emissions are spatially disaggregated to the county level using population growth and migration projections. The county-level growth factors are then applied to grow a base-year emission inventory to the future. Spatial surrogates are updated to account for future population and land use changes, and these surrogates are used to map projected county-level emissions to a modeling grid for use within an air quality model. We evaluate ESP v2.0 by comparing US 12 km emissions for 2005 with projections for 2050. We also evaluate the individual and combined effects of county-level disaggregation and of updating spatial surrogates. Results suggest that the common practice of modeling future emissions without considering spatial redistribution over-predicts emissions in the urban core and under-predicts emissions in suburban and exurban areas. In addition to improving multi-decadal emission projections, a strength of ESP v2.0 is that it can be applied to assess the emissions and air quality implications of alternative energy, population and land use scenarios.

  6. The particle production at the event horizon of a black hole as gravitational Fowler-Nordheim emission in uniformly accelerated frame, in the non-relativistic scenario

    NASA Astrophysics Data System (ADS)

    De, Sanchari; Ghosh, Sutapa; Chakrabarty, Somenath

    2015-11-01

    In the conventional scenario, the Hawking radiation is believed to be a tunneling process at the event horizon of the black hole. In the quantum field theoretic approach the Schwinger's mechanism is generally used to give an explanation of this tunneling process. It is the decay of quantum vacuum into particle anti-particle pairs near the black hole surface. However, in a reference frame undergoing a uniform accelerated motion in an otherwise flat Minkowski space-time geometry, in the non-relativistic approximation, the particle production near the event horizon of a black hole may be treated as a kind of Fowler-Nordheim field emission, which is the typical electron emission process from a metal surface under the action of an external electrostatic field. This type of emission from metal surface is allowed even at extremely low temperature. It has been noticed that in one-dimensional scenario, the Schrödinger equation satisfied by the created particle (anti-particle) near the event horizon, can be reduced to a differential form which is exactly identical with that obeyed by an electron immediately after the emission from the metal surface under the action of a strong electrostatic field. The mechanism of particle production near the event horizon of a black hole is therefore identified with Schwinger process in relativistic quantum field theory, whereas in the non-relativistic scenario it may be interpreted as Fowler-Nordheim emission process, when observed from a uniformly accelerated frame.

  7. Assessment of air quality benefits from national air pollution control policies in China. Part I: Background, emission scenarios and evaluation of meteorological predictions

    NASA Astrophysics Data System (ADS)

    Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon

    2010-09-01

    Under the 11th Five Year Plan (FYP, 2006-2010) for national environmental protection by the Chinese government, the overarching goal for sulfur dioxide (SO 2) controls is to achieve a total national emissions level of SO 2 in 2010 10% lower than the level in 2005. A similar nitrogen oxides (NO x) emissions control plan is currently under development and could be enforced during the 12th FYP (2011-2015). In this study, the U.S. Environmental Protection Agency (U.S.EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) modeling system was applied to assess the air quality improvement that would result from the targeted SO 2 and NO x emission controls in China. Four emission scenarios — the base year 2005, the 2010 Business-As-Usual (BAU) scenario, the 2010 SO 2 control scenario, and the 2010 NO x control scenario—were constructed and simulated to assess the air quality change from the national control plan. The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) was applied to generate the meteorological fields for the CMAQ simulations. In this Part I paper, the model performance for the simulated meteorology was evaluated against observations for the base case in terms of temperature, wind speed, wind direction, and precipitation. It is shown that MM5 model gives an overall good performance for these meteorological variables. The generated meteorological fields are acceptable for using in the CMAQ modeling.

  8. Inhibition of light emission in a 2.5D photonic structure

    SciTech Connect

    Peretti, Romain; Seassal, Christian; Viktorovich, Pierre; Letartre, Xavier

    2014-07-14

    We analyse inhibition of emission in a 2.5D photonic structures made up of a photonic crystal (PhC) and Bragg mirrors using Finite Differences Time Domaine (FDTD) simulations. A comparison is made between an isolated PhC membrane and the same PhC suspended onto a Bragg mirror or sandwiched between 2 Bragg mirrors. Strong inhibition of the Purcell factor is observed in a broad spectral range, whatever the in-plane orientation and location of the emitting dipole. We analysed these results numerically and theoretically by simulating the experimentally observed lifetime of a collection of randomly distributed emitters, showing that their average emission rate is decreased by more than one decade, both for coupled or isolated emitters.

  9. Effects of “Reduced” and “Business-As-Usual” CO2 Emission Scenarios on the Algal Territories of the Damselfish Pomacentrus wardi (Pomacentridae)

    PubMed Central

    Bender, Dorothea; Champ, Connor Michael; Kline, David; Diaz-Pulido, Guillermo; Dove, Sophie

    2015-01-01

    Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 “reduced” and the A1FI “business-as-usual” CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under “reduced” CO2 emission, but not “business-as-usual” scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under “reduced” emission scenarios. PMID:26121163

  10. Effects of "Reduced" and "Business-As-Usual" CO2 Emission Scenarios on the Algal Territories of the Damselfish Pomacentrus wardi (Pomacentridae).

    PubMed

    Bender, Dorothea; Champ, Connor Michael; Kline, David; Diaz-Pulido, Guillermo; Dove, Sophie

    2015-01-01

    Turf algae are a very important component of coral reefs, featuring high growth and turnover rates, whilst covering large areas of substrate. As food for many organisms, turf algae have an important role in the ecosystem. Farming damselfish can modify the species composition and productivity of such algal assemblages, while defending them against intruders. Like all organisms however, turf algae and damselfishes have the potential to be affected by future changes in seawater (SW) temperature and pCO2. In this study, algal assemblages, in the presence and absence of farming Pomacentrus wardi were exposed to two combinations of SW temperature and pCO2 levels projected for the austral spring of 2100 (the B1 "reduced" and the A1FI "business-as-usual" CO2 emission scenarios) at Heron Island (GBR, Australia). These assemblages were dominated by the presence of red algae and non-epiphytic cyanobacteria, i.e. cyanobacteria that grow attached to the substrate rather than on filamentous algae. The endpoint algal composition was mostly controlled by the presence/absence of farming damselfish, despite a large variability found between the algal assemblages of individual fish. Different scenarios appeared to be responsible for a mild, species specific change in community composition, observable in some brown and green algae, but only in the absence of farming fish. Farming fish appeared unaffected by the conditions to which they were exposed. Algal biomass reductions were found under "reduced" CO2 emission, but not "business-as-usual" scenarios. This suggests that action taken to limit CO2 emissions may, if the majority of algae behave similarly across all seasons, reduce the potential for phase shifts that lead to algal dominated communities. At the same time the availability of food resources to damselfish and other herbivores would be smaller under "reduced" emission scenarios. PMID:26121163

  11. FUSE Observations of CO and H2 emission in Comet C/2001 A2 (LINEAR)

    NASA Astrophysics Data System (ADS)

    Feldman, P. D.; Weaver, H. A.; Burgh, E. B.

    2001-11-01

    We report observations of comet C/2001 A2 (LINEAR) with the Far Ultraviolet Spectroscopic Explorer beginning July 12.58 coinciding with a photometric increase of ~1.5 magnitudes. Spectra were obtained in the 905--1180 Å range at 0.3 Å spectral resolution using the 30'' x 30'' aperture. Several new cometary emissions were identified, particularly the (0,0) bands of the CO Birge-Hopfield systems (C-X and B-X) at 1088 and 1151 Å, respectively, O 1 (1D - 1D) at 1152 Å, and three lines of the H2 Lyman system at 1071.6, 1118.6, and 1166.8 Å, pumped by solar Lyman-β fluorescence. Also detected were O 1 multiplets at 989, 1027, and 1040 Å, and several lines of the H 1 Lyman series. The rotational envelopes of the CO bands are resolved and appear to consist of both cold and warm components, the cold component accounting for 80% of the flux and with a rotational temperature of 60 K. The warm component may be indicative of a CO2 source. Both the CO bands and the O 1 λ 1152 emission (an indicator of H2O production) decreased by a factor of two over the 7.5 hr observation. Preliminary estimates of the production rates at the beginning of the observation are Q(CO) = 4 x 1027 molecules s-1 and Q(H2O) = 3 x 1029 molecules s-1 (vectorial model). These values may be uncertain by as much as a factor of two due to uncertainties in the solar flux. No emission is detected from Ar I at 1048 and 1067 Å and He 1 at 584 Å (in second order). We derive Q(Ar) <= 6 x 1025 atoms s-1 (5σ upper limit), which implies that Ar/O is more than a factor of ten less than solar. In addition to the features listed above, there are about two dozen other emissions that have not yet been definitively identified, although some appear to be from N 1, C 1, and S 1. We do not detect any emission from O 6, which may constrain models that seek to explain cometary X-ray emission as being produced by charge exchange of solar wind ions with cometary neutrals. This work is based on data obtained for the

  12. Downscaling of sea level and fluxes in the Malacca and Singapore Straits using A2 scenario projections of AR4 GCMs

    NASA Astrophysics Data System (ADS)

    Tkalich, Pavel; Koshebutsky, Volodymyr; Maderich, Vladimir; Thompson, Bijoy

    2013-04-01

    IPCC-coordinated work has been completed within Fourth Assessment Report (AR4) to project climate and ocean variables for the 21st century using coupled atmospheric-ocean General Circulation Models (GCMs). Resolution of the GCMs is not sufficient to resolve local features of narrow Malacca and Singapore Straits, having complex coastal line and bathymetry; therefore, dynamical downscaling of ocean variables from the global grid to the regional scale is advisable using ocean models, such as Regional Ocean Modeling System (ROMS). ROMS is customized for the domain centered on the Singapore and Malacca Straits, extending from 98°E to 109°E and 6°S to 14°N. Following IPCC methodology, the modelling is done for the past reference period 1961-1990, and then for the 21st century projections; subsequently, established past and projected trends and variability of ocean parameters are inter-compared. Boundary conditions for the past reference period are extracted from Simple Ocean Data Assimilation (SODA), while the projections are made using A2 scenario runs of ECHAM5 and CCSM3 GCMs. Atmospheric forcing for ROMS is downscaled with WRF using ERA-40 dataset for the past period, and outputs of atmospheric variables of respective GCMs for the projections. ROMS-downscaled regional sea level change during 1961-1990, corrected for the global thermosteric effect, land-ice melting and Global Isostatic Adjustment (GIA) effect, corresponds to a mean total trend of 1.52 mm/year, which is higher than the global estimate 1.25 mm/year and observed global sea-level rise (1.44 mm/year) for the same period. Local linear trend in the Singapore Strait (0.9 mm/year) corresponds to the observed trend at Victoria Dock tide gauge (1.1 mm/year) for the past period. Mean discharges through the Karimata, Malacca and Singapore Straits are 0.9, 0.21 and 0.12 Sv, respectively, fall in the range of observations and recent model estimates. A2 scenario projections using ROMS-ECHAM5 and ROMS-CCSM3 for

  13. Characterizing the emission implications of future natural gas production and use in the U.S. and Rocky Mountain region: A scenario-based energy system modeling approach

    NASA Astrophysics Data System (ADS)

    McLeod, Jeffrey

    The recent increase in U.S. natural gas production made possible through advancements in extraction techniques including hydraulic fracturing has transformed the U.S. energy supply landscape while raising questions regarding the balance of environmental impacts associated with natural gas production and use. Impact areas at issue include emissions of methane and criteria pollutants from natural gas production, alongside changes in emissions from increased use of natural gas in place of coal for electricity generation. In the Rocky Mountain region, these impact areas have been subject to additional scrutiny due to the high level of regional oil and gas production activity and concerns over its links to air quality. Here, the MARKAL (MArket ALlocation) least-cost energy system optimization model in conjunction with the EPA-MARKAL nine-region database has been used to characterize future regional and national emissions of CO 2, CH4, VOC, and NOx attributed to natural gas production and use in several sectors of the economy. The analysis is informed by comparing and contrasting a base case, business-as-usual scenario with scenarios featuring variations in future natural gas supply characteristics, constraints affecting the electricity generation mix, carbon emission reduction strategies and increased demand for natural gas in the transportation sector. Emission trends and their associated sensitivities are identified and contrasted between the Rocky Mountain region and the U.S. as a whole. The modeling results of this study illustrate the resilience of the short term greenhouse gas emission benefits associated with fuel switching from coal to gas in the electric sector, but also call attention to the long term implications of increasing natural gas production and use for emissions of methane and VOCs, especially in the Rocky Mountain region. This analysis can help to inform the broader discussion of the potential environmental impacts of future natural gas production

  14. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD

    NASA Astrophysics Data System (ADS)

    Schmittner, Andreas; Oschlies, Andreas; Matthews, H. Damon; Galbraith, Eric D.

    2008-03-01

    A new model of global climate, ocean circulation, ecosystems, and biogeochemical cycling, including a fully coupled carbon cycle, is presented and evaluated. The model is consistent with multiple observational data sets from the past 50 years as well as with the observed warming of global surface air and sea temperatures during the last 150 years. It is applied to a simulation of the coming two millennia following a business-as-usual scenario of anthropogenic CO2 emissions (SRES A2 until year 2100 and subsequent linear decrease to zero until year 2300, corresponding to a total release of 5100 GtC). Atmospheric CO2 increases to a peak of more than 2000 ppmv near year 2300 (that is an airborne fraction of 72% of the emissions) followed by a gradual decline to ˜1700 ppmv at year 4000 (airborne fraction of 56%). Forty-four percent of the additional atmospheric CO2 at year 4000 is due to positive carbon cycle-climate feedbacks. Global surface air warms by ˜10°C, sea ice melts back to 10% of its current area, and the circulation of the abyssal ocean collapses. Subsurface oxygen concentrations decrease, tripling the volume of suboxic water and quadrupling the global water column denitrification. We estimate 60 ppb increase in atmospheric N2O concentrations owing to doubling of its oceanic production, leading to a weak positive feedback and contributing about 0.24°C warming at year 4000. Global ocean primary production almost doubles by year 4000. Planktonic biomass increases at high latitudes and in the subtropics whereas it decreases at midlatitudes and in the tropics. In our model, which does not account for possible direct impacts of acidification on ocean biology, production of calcium carbonate in the surface ocean doubles, further increasing surface ocean and atmospheric pCO2. This represents a new positive feedback mechanism and leads to a strengthening of the positive interaction between climate change and the carbon cycle on a multicentennial to millennial

  15. Environmental Distributions of Benzo[a]pyrene in China: Current and Future Emission Reduction Scenarios Explored Using a Spatially Explicit Multimedia Fate Model.

    PubMed

    Zhu, Ying; Tao, Shu; Price, Oliver R; Shen, Huizhong; Jones, Kevin C; Sweetman, Andrew J

    2015-12-01

    SESAMe v3.0, a spatially explicit multimedia fate model with 50 × 50 km(2) resolution, has been developed for China to predict environmental concentrations of benzo[a]pyrene (BaP) using an atmospheric emission inventory for 2007. Model predictions are compared with environmental monitoring data obtained from an extensive review of the literature. The model performs well in predicting multimedia concentrations and distributions. Predicted concentrations are compared with guideline values; highest values with some exceedances occur mainly in the North China Plain, Mid Inner Mongolia, and parts of three northeast provinces, Xi'an, Shanghai, and south of Jiangsu province, East Sichuan Basin, middle of Guizhou and Guangzhou. Two potential future scenarios have been assessed using SESAMe v3.0 for 2030 as BaP emission is reduced by (1) technological improvement for coal consumption in energy production and industry sectors in Scenario 1 (Sc1) and (2) technological improvement and control of indoor biomass burning for cooking and indoor space heating and prohibition of open burning of biomass in 2030 in Scenario 2 (Sc2). Sc2 is more efficient in reducing the areas with exceedance of guideline values. Use of SESAMe v3.0 provides insights on future research needs and can inform decision making on options for source reduction. PMID:25942589

  16. Projected SST trends across the Caribbean Sea based on PRECIS downscaling of ECHAM4, under the SRES A2 and B2 scenarios

    NASA Astrophysics Data System (ADS)

    Nurse, Leonard A.; Charlery, John L.

    2016-01-01

    The Caribbean Sea and adjacent land areas are highly sensitive to the projected impacts of global climate change. The countries bordering the Caribbean Sea depend heavily on coastal and marine assets as a major source of livelihood support. Rising sea surface temperatures (SSTs) are known to be associated with coral bleaching, ocean acidification, and other phenomena that threaten livelihoods in the region. The paucity of SST systematic observations in both the Caribbean Sea and adjoining Western Atlantic waters is a limiting factor in the projection of future climate change impacts on the region's marine resources. Remote sensing of SST by satellites began only within the last three decades and although the data collected so far might be insufficient to provide conclusive definitions of long-term SST variations in the Caribbean waters, these data along with the output from climate model simulations provide a useful basis for gaining further insights into plausible SST futures under IPCC SRES scenarios. In this paper, we examine the recent SST records from the NESDIS AVHRR satellite data and NOAA Optimum Interpolation (OI) sea surface temperature V2 and provide a comparative analysis of projected SST changes for the Caribbean Sea up to the end of the twenty-first century, under the SRES A2 and B2 scenarios' simulations of the sea surface skin temperatures (SSsT) using the Hadley Centre's regional model, PRECIS. The implications of these projected SST changes for bleaching of coral reefs, one of the region's most valuable marine resource, and for rainfall are also discussed.

  17. N2O emission from full-scale urban wastewater treatment plants: a comparison between A(2)O and SBR.

    PubMed

    Sun, Shichang; Cheng, Xiang; Li, Sha; Qi, Fei; Liu, Yan; Sun, Dezhi

    2013-01-01

    The emission of nitrous oxide (N2O) from full-scale anoxic/anaerobic/oxic (A(2)O) and sequencing batch reactor (SBR) processes was measured to evaluate N2O emission from urban wastewater treatment plants (WWTPs). The results showed that N2O flux in the A(2)O WWTP followed an order of A(2)O-oxic zone > aerated grit tank > A(2)O-anaerobic zone > A(2)O-anoxic zone > final clarifier > primary clarifier, while in the SBR WWTP the order was SBR tank > swirl grit tank > wastewater distribution tank and within the SBR tank in an order of SBR-feeding period > SBR-aeration period > SBR-settling period > SBR-decanting period. N2O emission from the A(2)O WWTP was approximately 486.61 kg d(-1), 96.9% of which was from the A(2)O-oxic zone. In the SBR WWTP, the emission of N2O was 339.24 kg d(-1) with 99.9% of the total emission coming from the periods of feeding and aeration. There was 6.52% of nitrogen-load in the influent being transformed to the emitted N2O in the SBR WWTP; the percentage was 3.35 times higher than that in the A(2)O WWTP. PMID:23656929

  18. Impact of passenger car NOx emissions and NO2 fractions on urban NO2 pollution - Scenario analysis for the city of Antwerp, Belgium

    NASA Astrophysics Data System (ADS)

    Degraeuwe, Bart; Thunis, Philippe; Clappier, Alain; Weiss, Martin; Lefebvre, Wouter; Janssen, Stijn; Vranckx, Stijn

    2016-02-01

    The annual NO2 concentrations in many European cities exceed the established air quality standard. This situation is mainly caused by Diesel cars whose NOx emissions are higher on the road than during type approval in the laboratory. Moreover, the fraction of NO2 in the NOx emissions of modern diesel cars appears to have increased as compared to previous models. In this paper, we assess 1) to which level the distance-specific NOx emissions of Diesel cars should be reduced to meet established air quality standards and 2) if it would be useful to introduce a complementary NO2 emissions limit. We develop a NO2 pollution model that accounts in an analysis of 9 emission scenarios for changes in both, the urban background NO2 concentrations and the local NO2 emissions at street level. We apply this model to the city of Antwerp, Belgium. The results suggest that a reduction in NOx emissions decreases the regional and urban NO2 background concentration; high NO2 fractions increase the ambient NO2 concentrations only in close spatial proximity to the emission source. In a busy access road to the city centre, the average NO2 concentration can be reduced by 23% if Diesel cars emitted 0.35 g NOx/km instead of the current 0.62 g NOx/km. Reductions of 45% are possible if the NOX emissions of Diesel cars decreased to the level of gasoline cars (0.03 g NOx/km). Our findings suggest that the Real-Driving Emissions (RDE) test procedure can solve the problem of NO2 exceedances in cities if it reduced the on-road NOx emissions of diesel cars to the permissible limit of 0.08 g/km. The implementation of a complementary NO2 emissions limit may then become superfluous. If Diesel cars continue to exceed by several factors their NOx emissions limit on the road, a shift of the vehicle fleet to gasoline cars may be necessary to solve persisting air quality problems.

  19. Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenario, climate projection, and ecosystem simulation using the ISI-MIP result

    NASA Astrophysics Data System (ADS)

    Nishina, K.; Ito, A.; Falloon, P.; Friend, A. D.; Beerling, D. J.; Ciais, P.; Clark, D. B.; Kahana, R.; Kato, E.; Lucht, W.; Lomas, M.; Pavlick, R.; Schaphoff, S.; Warszawaski, L.; Yokohata, T.

    2014-10-01

    Changes to global net primary production (NPP), vegetation biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVM) obtained from an Inter-Sectoral Impact Model Intercomparison Project study were examined. Simulation results were obtained using five global climate models (GCM) forced with four representative concentration pathway (RCP) scenarios. To clarify which component (emission scenarios, climate projections, or global vegetation models) contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied to 70 projected simulation sets. In the end of simulation period, the changes from the year of 2000 in all three variables considerably varied from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC, and SOC projections, GVMs dominate uncertainties (60 and 90%, respectively) rather than climate driving scenarios, i.e., RCPs and GCMs. These results suggested that we don't have still enough resolution among each RCP scenario to evaluate climate change impacts on ecosystem conditions in global terrestrial C cycling. In addition, we found that the contributions of each uncertainty source were spatio-temporally heterogeneous and differed among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division gets cooler (from ca. 80% in the equatorial division to 40% in the snow climatic division). To evaluate the effects of climate change on ecosystems with practical resolution in RCP scenarios, GVMs require further improvement to reduce the uncertainties in global C cycling as much as, if not more than, GCMs. Our study suggests that the improvement of GVMs is a priority for

  20. CH4 emission and conversion from A2O and SBR processes in full-scale wastewater treatment plants.

    PubMed

    Liu, Yan; Cheng, Xiang; Lun, Xiaoxiu; Sun, Dezhi

    2014-01-01

    Wastewater treatment systems are important anthropogenic sources of CH4 emission. A full-scale experiment was carried out to monitor the CH4 emission from anoxic/anaerobic/oxic process (A20) and sequencing batch reactor (SBR) wastewater treatment plants (WWTPs) for one year from May 2011 to April 2012. The main emission unit of the A2O process was an oxic tank, accounting for 76.2% of CH4 emissions; the main emission unit of the SBR process was the feeding and aeration phase, accounting for 99.5% of CH4 emissions. CH4 can be produced in the anaerobic condition, such as in the primary settling tank and anaerobic tank of the A2O process. While CH4 can be consumed in anoxic denitrification or the aeration condition, such as in the anoxic tank and oxic tank of the A2O process and the feeding and aeration phase of the SBR process. The CH4 emission flux and the dissolved CH4 concentration rapidly decreased in the oxic tank of the A2O process. These metrics increased during the first half of the phase and then decreased during the latter half of the phase in the feeding and aeration phase of the SBR process. The CH4 oxidation rate ranged from 32.47% to 89.52% (mean: 67.96%) in the A2O process and from 12.65% to 88.31% (mean: 47.62%) in the SBR process. The mean CH4 emission factors were 0.182 g/ton of wastewater and 24.75 g CH4/(person x year) for the A2O process, and 0.457 g/ton of wastewater and 36.55 g CH4/(person x year) for the SBR process. PMID:24649710

  1. Forest carbon response to management scenarios intended to mitigate GHG emissions and reduce fire impacts in the US West Coast region

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Law, B. E.; Thornton, P. E.; Luyssaert, S.

    2012-12-01

    US West coast forests are among the most carbon dense biomes in the world and the potential for biomass accumulation in mesic coastal forests is the highest recorded (Waring and Franklin 1979, Hudiburg et al. 2009). Greenhouse gas (GHG) mitigation strategies have recently expanded to include forest woody biomass as bioenergy, with the expectation that this will also reduce forest mortality. We examined forest carbon response and life cycle assessment (LCA) of net carbon emissions following varying combinations of bioenergy management scenarios in Pacific Northwest forests for the period from 2010-2100. We use the NCAR CLM4 model combined with a regional atmospheric forcing dataset and account for future environmental change using the IPCC RCP4.5 and RCP 8.5 scenarios. Bioenergy management strategies include a repeated thinning harvest, a repeated clearcut harvest, and a single salvage harvest in areas with projected insect-related mortality. None of the bioenergy management scenarios reduce net emissions to the atmosphere compared to continued business-as-usual harvest (BAU) by the end of the 21st century. Forest regrowth and reduced fire emissions are not large enough to balance the wood removals from harvest. Moreover, the substitution of wood for fossil fuel energy and products is not large enough to offset the wood losses through decomposition and combustion. However, in some ecoregions (Blue Mountains and East Cascades), emissions from the thinning harvests begin to improve over BAU at the end of the century and could lead to net reductions in those ecoregions over a longer time period (> 100 years). For salvage logging, there is no change compared to BAU emissions by the end of the 21st century because the treatment area is minimal compared to the other treatments and only performed once. These results suggest that managing forests for carbon sequestration will need to include a variety of approaches accounting for forest baseline conditions and in some

  2. Non-variable TeV emission from the extended jet of a blazar in the stochastic acceleration scenario: the case of the hard TeV emission of 1ES 1101-232

    NASA Astrophysics Data System (ADS)

    Yan, Dahai; Zeng, Houdun; Zhang, Li

    2012-08-01

    The detections of X-ray emission from the kiloparsec-scale jets of blazars and radio galaxies could imply the existence of high-energy electrons in these extended jets, and these electrons could produce high-energy emission through the inverse Compton (IC) process. In this paper, we study the non-variable hard TeV emission from a blazar. The multiband emission consists of two components: (i) the traditional synchrotron self-Compton (SSC) emission from the inner jet; (ii) the emission produced via SSC and IC scattering of cosmic microwave background (CMB) photons (IC/CMB) and extragalactic background light (EBL) photons by relativistic electrons in the extended jet under the stochastic acceleration scenario. Such a model is applied to 1ES 1101-232. The results indicate the following. (i) The non-variable hard TeV emission of 1ES 1101-232, which is dominated by IC/CMB emission from the extended jet, can be reproduced well by using three characteristic values of the Doppler factor (δD = 5, 10 and 15) for the TeV-emitting region in the extended jet. (ii) In the cases of δD = 15 and 10, the physical parameters can achieve equipartition (or quasi-equipartition) between the relativistic electrons and the magnetic field. In contrast, the physical parameters largely deviate from equipartition for the case of δD = 5. Therefore, we conclude that the TeV emission region of 1ES 1101-232 in the extended jet should be moderately or highly beamed.

  3. Effect of Sea Breeze on Air Pollution in the Greater Athens Area. Part II: Analysis of Different Emission Scenarios.

    NASA Astrophysics Data System (ADS)

    Grossi, Paola; Thunis, Philippe; Martilli, Alberto; Clappier, Alain

    2000-04-01

    The Mediterranean Campaign of Photochemical Tracers-Transport and Chemical Evolution that took place in the greater Athens area from 20 August to 20 September 1994 has confirmed the role of sea-breeze circulation in photochemical smog episodes that had been suggested already by a number of experiments and numerical studies.The meteorological and photochemical modeling of this campaign were discussed in Part I. Part II focuses on the study of the 14 September photochemical smog event associated with a sea-breeze circulation. The objective of the study is to identify and to understand better the nonlinear processes that produce high ozone concentrations. In particular, the effect of land and sea breezes is investigated by isolating the effect of nighttime and daytime emissions on ozone concentrations. The same principle then is used to isolate the effect on ozone concentrations of the two main sources of emissions in the greater Athens area: the industrial area around Elefsis and the Athens urban area. Last, the buildup of ozone from one day to another is investigated.From this study, it comes out that ozone production in the Athens area is mainly a 1-day phenomenon. The increased values of photochemical pollutant (up to 130 ppb at ground level) reached during summertime late afternoons on mountain slopes to the north and northeast of the city are related mainly to the current-day emissions. Nevertheless, the recirculation of old pollutants can have an important effect on ozone concentrations in downtown Athens, the southern part of the peninsula, and over the sea, especially near Aigina Island.

  4. O{sub 3} and stratospheric H{sub 2}O radiative forcing resulting from a supersonic jet transport emission scenario

    SciTech Connect

    Grossman, A.S.; Kinnison, D.E.; Penner, J.E.; Grant, K.E.; Tamaresis, J.; Connell, P.S.

    1996-01-01

    The tropospheric radiative forcing has been calculated for ozone and water vapor perturbations caused by a realistic High Speed Civil Transport (HSCT) aircraft emission scenario. Atmospheric profiles of water vapor and ozone were obtained using the LLNL 2-D chemical-radiative-transport model (CRT) of the global troposphere and stratosphere. IR radiative forcing calculations were made with the LLNL correlated k-distribution radiative transfer model. UV-Visible-Near IR radiative forcing calculations were made with the LLNL two stream solar radiation model. For the case of water vapor the IR and Near IR radiative forcing was determined at five different latitudes and then averaged using an appropriate latitudinal average to obtain the global average value. Global average values of radiative forcing were approximately 1.2--2.6 10{sup {minus}3} W/m{sup 2}, depending on the background atmospheric water vapor profile. This result is consistent with prior published values for a similar aircraft scenario and supports the conclusion that the water vapor climate forcing effect is very small. The radiative forcing in the IR and UV-Visible spectral ranges, due to the ozone perturbation, was calculated for the globally averaged atmosphere. Global average values of the radiative forcing were 0.034 W/m{sup 2} for the UV-Visible spectral range and 0.006 W/m{sup 2} for the IR spectral range (0.04 W/m{sup 2} total). This result is also consistent with the range of published values obtained for a similar HSCT scenario. As was the case for water vapor, the ozone forcing is too small to be of major consequence.

  5. The impact of CO2 emission scenarios and nutrient enrichment on a common coral reef macroalga is modified by temporal effects.

    PubMed

    Bender, Dorothea; Diaz-Pulido, Guillermo; Dove, Sophie

    2014-02-01

    Future coral reefs are expected to be subject to higher pCO2 and temperature due to anthropogenic greenhouse gas emissions. Such global stressors are often paired with local stressors thereby potentially modifying the response of organisms. Benthic macroalgae are strong competitors to corals and are assumed to do well under future conditions. The present study aimed to assess the impact of past and future CO2 emission scenarios as well as nutrient enrichment on the growth, productivity, pigment, and tissue nutrient content of the common tropical brown alga Chnoospora implexa. Two experiments were conducted to assess the differential impacts of the manipulated conditions in winter and spring. Chnoospora implexa's growth rate averaged over winter and spring declined with increasing pCO2 and temperature. Furthermore, nutrient enrichment did not affect growth. Highest growth was observed under spring pre-industrial (PI) conditions, while slightly reduced growth was observed under winter A1FI ("business-as-usual") scenarios. Productivity was not a good proxy for growth, as net O2 flux increased under A1FI conditions. Nutrient enrichment, whilst not affecting growth, led to luxury nutrient uptake that was greater in winter than in spring. The findings suggest that in contrast with previous work, C. implexa is not likely to show enhanced growth under future conditions in isolation or in conjunction with nutrient enrichment. Instead, the results suggest that greatest growth rates for this species appear to be a feature of the PI past, with A1FI winter conditions leading to potential decreases in the abundance of this species from present day levels. PMID:26988019

  6. Decomposing uncertainties in the future terrestrial carbon budget associated with emission scenarios, climate projections, and ecosystem simulations using the ISI-MIP results

    NASA Astrophysics Data System (ADS)

    Nishina, K.; Ito, A.; Falloon, P.; Friend, A. D.; Beerling, D. J.; Ciais, P.; Clark, D. B.; Kahana, R.; Kato, E.; Lucht, W.; Lomas, M.; Pavlick, R.; Schaphoff, S.; Warszawaski, L.; Yokohata, T.

    2015-07-01

    We examined the changes to global net primary production (NPP), vegetation biomass carbon (VegC), and soil organic carbon (SOC) estimated by six global vegetation models (GVMs) obtained from the Inter-Sectoral Impact Model Intercomparison Project. Simulation results were obtained using five global climate models (GCMs) forced with four representative concentration pathway (RCP) scenarios. To clarify which component (i.e., emission scenarios, climate projections, or global vegetation models) contributes the most to uncertainties in projected global terrestrial C cycling by 2100, analysis of variance (ANOVA) and wavelet clustering were applied to 70 projected simulation sets. At the end of the simulation period, changes from the year 2000 in all three variables varied considerably from net negative to positive values. ANOVA revealed that the main sources of uncertainty are different among variables and depend on the projection period. We determined that in the global VegC and SOC projections, GVMs are the main influence on uncertainties (60 % and 90 %, respectively) rather than climate-driving scenarios (RCPs and GCMs). Moreover, the divergence of changes in vegetation carbon residence times is dominated by GVM uncertainty, particularly in the latter half of the 21st century. In addition, we found that the contribution of each uncertainty source is spatiotemporally heterogeneous and it differs among the GVM variables. The dominant uncertainty source for changes in NPP and VegC varies along the climatic gradient. The contribution of GVM to the uncertainty decreases as the climate division becomes cooler (from ca. 80 % in the equatorial division to 40 % in the snow division). Our results suggest that to assess climate change impacts on global ecosystem C cycling among each RCP scenario, the long-term C dynamics within the ecosystems (i.e., vegetation turnover and soil decomposition) are more critical factors than photosynthetic processes. The different trends in the

  7. Calculated hydroxyl A2 sigma --> X2 pi (0, 0) band emission rate factors applicable to atmospheric spectroscopy

    NASA Technical Reports Server (NTRS)

    Cageao, R. P.; Ha, Y. L.; Jiang, Y.; Morgan, M. F.; Yung, Y. L.; Sander, S. P.

    1997-01-01

    A calculation of the A2 sigma --> X2 pi (0, 0) band emission rate factors and line center absorption cross sections of OH applicable to its measurement using solar resonant fluorescence in the terrestrial atmosphere is presented in this paper. The most accurate available line parameters have been used. Special consideration has been given to the solar input flux because of its highly structured Fraunhofer spectrum. The calculation for the OH atmospheric emission rate factor in the solar resonant fluorescent case is described in detail with examples and intermediate results. Results of this calculation of OH emission rate factors for individual rotational lines are on average 30% lower than the values obtained in an earlier work.

  8. Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-24

    The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target 'Lead' due to interaction of electron beam. Results indicated that an appropriate design of hollow anode with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.

  9. The Mediterranean surface wave climate inferred from future scenario simulations

    NASA Astrophysics Data System (ADS)

    Lionello, P.; Cogo, S.; Galati, M. B.; Sanna, A.

    2008-09-01

    This study is based on 30-year long simulations of the wind-wave field in the Mediterranean Sea carried out with the WAM model. Wave fields have been computed for the 2071-2100 period of the A2, B2 emission scenarios and for the 1961-1990 period of the present climate (REF). The wave model has been forced by the wind field computed by a regional climate model with 50 km resolution. The mean SWH (Significant Wave Height) field over large fraction of the Mediterranean sea is lower for the A2 scenario than for the present climate during winter, spring and autumn. During summer the A2 mean SWH field is also lower everywhere, except for two areas, those between Greece and Northern Africa and between Spain and Algeria, where it is significantly higher. All these changes are similar, though smaller and less significant, in the B2 scenario, except during winter in the north-western Mediterranean Sea, when the B2 mean SWH field is higher than in the REF simulation. Also extreme SWH values are smaller in future scenarios than in the present climate and such SWH change is larger for the A2 than for the B2 scenario. The only exception is the presence of higher SWH extremes in the central Mediterranean during summer for the A2 scenario. In general, changes of SWH, wind speed and atmospheric circulation are consistent, and results show milder marine storms in future scenarios than in the present climate.

  10. Cocoa Intensification Scenarios and Their Predicted Impact on CO2 Emissions, Biodiversity Conservation, and Rural Livelihoods in the Guinea Rain Forest of West Africa

    NASA Astrophysics Data System (ADS)

    Gockowski, Jim; Sonwa, Denis

    2011-08-01

    The Guinean rain forest (GRF) of West Africa, identified over 20 years ago as a global biodiversity hotspot, had reduced to 113,000 km2 at the start of the new millennium which was 18% of its original area. The principal driver of this environmental change has been the expansion of extensive smallholder agriculture. From 1988 to 2007, the area harvested in the GRF by smallholders of cocoa, cassava, and oil palm increased by 68,000 km2. Field results suggest a high potential for significantly increasing crop yields through increased application of seed-fertilizer technologies. Analyzing land-use change scenarios, it was estimated that had intensified cocoa technology, already developed in the 1960s, been pursued in Cote d'Ivoire, Ghana, Nigeria and Cameroon that over 21,000 km2 of deforestation and forest degradation could have been avoided along with the emission of nearly 1.4 billion t of CO2. Addressing the low productivity of agriculture in the GRF should be one of the principal objectives of REDD climate mitigation programs.

  11. Marine storminess in the Mediterranean in future climate scenarios

    NASA Astrophysics Data System (ADS)

    Lionello, P.

    2009-09-01

    This talk reviews the analysis that is presently available on marine storms, their climatology and change in future climate scenarios. The cyclones that are responsible for the storms are analyzed using a regional climate model simulations of present day (1961-1990) and future (2071-2100, A2 and B2 emission scenarios) and the differences between northern Europe and Mediterranean are discussed. In the A2 and B2 scenarios the annual average storm track intensity increases over the North-East Atlantic and decreases over the Eastern Mediterranean region with respect to present day conditions,. The number of cyclones decreases in future scenarios throughout Europe, except over the central Europe and Mediterranean in summer, where it increases. This overall change pattern is larger in the A2 than in the B2 simulations. Wind-wave field changes are discussed considering a similar analysis. The mean SWH (Significant Wave Height) field over large fraction of the Mediterranean Sea is lower for the A2 scenario than for the present climate during winter, spring and autumn. During summer the A2 mean SWH field is also lower everywhere, except for two areas, those between Greece and Northern Africa and between Spain and Algeria, where it is significantly higher. All these changes are similar, though smaller and less significant, in the B2 scenario, except during winter in the north-western Mediterranean Sea, when the B2 mean SWH field is higher than in the REF simulation. Also extreme SWH values are smaller in future scenarios than in the present climate and such SWH change is larger for the A2 than for the B2 scenario. In general, changes of SWH, wind speed and atmospheric circulation are consistent, and results show milder marine storms in future scenarios than in the present climate.

  12. Effects of alkylate fuel on exhaust emissions and secondary aerosol formation of a 2-stroke and a 4-stroke scooter

    NASA Astrophysics Data System (ADS)

    Zardini, Alessandro A.; Platt, Stephen M.; Clairotte, Michael; El Haddad, Imad; Temime-Roussel, Brice; Marchand, Nicolas; Ježek, Irena; Drinovec, Luka; Močnik, Griša; Slowik, Jay G.; Manfredi, Urbano; Prévôt, André S. H.; Baltensperger, Urs; Astorga, Covadonga

    2014-09-01

    Regulated and unregulated emissions from a 2-stroke and a 4-stroke scooter were characterized during a legislative driving cycle in a certified laboratory. Scooter exhaust was analyzed at the tailpipe, in a dilution tunnel, and partly collected in a mobile smog chamber for photochemical ageing. We present evidence that the photochemically aged exhaust from a 2-stroke and a 4-stroke scooter produces considerable amounts of secondary organic aerosol: from 1.5 to 22.0 mg/km, and from 5.5 to 6.6 mg/km, respectively. Tests were repeated after replacing the standard petrol and synthetic lube oil with an alkylate fuel (with low content of aromatic compounds) and ultra-clean lube oil (low ash forming potential). We observed emission reduction (with some exceptions) for several gaseous and particulate phase species, in particular for carbon monoxide (from 8% up to 38% and from 31% to 50%, for the 2-stroke and the 4-stroke scooters, respectively), particulate mass (from 32% up to 75% for the 2-stroke scooter), aromatic compounds (89% and 97% for the 2-stroke and the 4-stroke scooter, respectively), and secondary organic aerosol (from 87% to 100% and 99% for the 2-stroke and the 4-stroke scooters, respectively). We attribute the organic aerosol reduction to the low content of aromatics in the alkylate fuel.

  13. Emission-Line Galaxies from the PEARS Hubble Ultra Deep Field: A 2-D Detection Method and First Results

    NASA Technical Reports Server (NTRS)

    Gardner, J. P.; Straughn, Amber N.; Meurer, Gerhardt R.; Pirzkal, Norbert; Cohen, Seth H.; Malhotra, Sangeeta; Rhoads, james; Windhorst, Rogier A.; Gardner, Jonathan P.; Hathi, Nimish P.; Xu, Chun; Gronwall, Caryl; Koekemoer, Anton M.; Walsh, Jeremy; diSeregoAlighieri, Sperello

    2007-01-01

    The Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) grism PEARS (Probing Evolution And Reionization Spectroscopically) survey provides a large dataset of low-resolution spectra from thousands of galaxies in the GOODS North and South fields. One important subset of objects in these data are emission-line galaxies (ELGs), and we have investigated several different methods aimed at systematically selecting these galaxies. Here we present a new methodology and results of a search for these ELGs in the PEARS observations of the Hubble Ultra Deep Field (HUDF) using a 2D detection method that utilizes the observation that many emission lines originate from clumpy knots within galaxies. This 2D line-finding method proves to be useful in detecting emission lines from compact knots within galaxies that might not otherwise be detected using more traditional 1D line-finding techniques. We find in total 96 emission lines in the HUDF, originating from 81 distinct "knots" within 63 individual galaxies. We find in general that [0 1111 emitters are the most common, comprising 44% of the sample, and on average have high equivalent widths (70% of [0 1111 emitters having rest-frame EW> 100A). There are 12 galaxies with multiple emitting knots; several show evidence of variations in H-alpha flux in the knots, suggesting that the differing star formation properties across a single galaxy can in general be probed at redshifts approximately greater than 0.2 - 0.4. The most prevalent morphologies are large face-on spirals and clumpy interacting systems, many being unique detections owing to the 2D method described here, thus highlighting the strength of this technique.

  14. Signatures of periodicity and randomness in the angular emission profile of a 2-D on-average periodic optofluidic random laser.

    PubMed

    Sarkar, Anirban; Shivakiran Bhaktha, B N

    2015-11-01

    Angle-dependent emission from a dye infiltrated 2-D on-average periodic structured optofluidic random laser is studied. Distinct signatures of periodicity and randomness are observed in the angle-resolved emission spectra of the device. Emission patterns composed of concentric ellipses are observed on transverse excitation of the device, attributed to the in-plane diffraction of light by a 2-D square lattice. The effect of randomness on the emission spectra is demonstrated by a highly resolved angle-dependent spectral scan of a single diffraction fringe. Finally, we conclude that the randomness in the size of the scatterers resolves the random lasing modes angularly. PMID:26512491

  15. From "farm to fork" strawberry system: current realities and potential innovative scenarios from life cycle assessment of non-renewable energy use and green house gas emissions.

    PubMed

    Girgenti, Vincenzo; Peano, Cristiana; Baudino, Claudio; Tecco, Nadia

    2014-03-01

    In this study, we analysed the environmental profile of the strawberry industry in Northern Italy. The analysis was conducted using two scenarios as reference systems: strawberry crops grown in unheated plastic tunnels using currently existing cultivation techniques, post-harvest management practices and consumption patterns (scenario 1) and the same strawberry cultivation chain in which some of the materials used were replaced with bio-based materials (scenario 2). In numerous studies, biodegradable polymers have been shown to be environmentally friendly, thus potentially reducing environmental impacts. These materials can be recycled into carbon dioxide and water through composting. Many materials, such as Mater-BI® and PLA®, are also derived from renewable resources. The methodology chosen for the environmental analysis was a life cycle assessment (LCA) based on a consequential approach developed to assess a product's overall environmental impact from the production system to its usage and disposal. In the field stage, a traditional mulching film (non-biodegradable) could be replaced with a biodegradable product. This change would result in waste production of 0 kg/ha for the bio-based product compared to 260 kg/ha of waste for polyethylene (PE). In the post-harvest stage, the issue addressed was the use and disposal of packaging materials. The innovative scenario evaluated herein pertains to the use of new packaging materials that increase the shelf life of strawberries, thereby decreasing product losses while increasing waste management efficiency at the level of a distribution platform and/or sales outlet. In the event of product deterioration or non-sale of the product, the packaging and its contents could be collected together as organic waste without any additional processes because the packaging is compostable according to EN13432. Scenario 2 would achieve reductions of 20% in the global warming potential and non-renewable energy impact categories. PMID

  16. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect

    Ramsden, T.; Ruth, M.; Diakov, V.; Laffen, M.; Timbario, T. A.

    2013-03-01

    This report describes a life-cycle assessment conducted by the National Renewable Energy Laboratory (NREL) of 10 hydrogen production, delivery, dispensing, and use pathways that were evaluated for cost, energy use, and greenhouse gas (GHG) emissions. This evaluation updates and expands on a previous assessment of seven pathways conducted in 2009. This study summarizes key results, parameters, and sensitivities to those parameters for the 10 hydrogen pathways, reporting on the levelized cost of hydrogen in 2007 U.S. dollars as well as life-cycle well-to-wheels energy use and GHG emissions associated with the pathways.

  17. Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the Switch Electric Power Sector Planning Model: California's Carbon Challenge Phase II, Volume II

    SciTech Connect

    Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was

  18. Photochemical model evaluation of the ground-level ozone impacts on ambient air quality and vegetation health in the Alberta oil sands region: Using present and future emission scenarios

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, Krish; Cho, Sunny; Morris, Ralph; Spink, David; Jung, Jaegun; Pauls, Ron; Duffett, Katherine

    2016-09-01

    One of the potential environmental issues associated with oil sands development is increased ozone formation resulting from NOX and volatile organic compound emissions from bitumen extraction, processing and upgrading. To manage this issue in the Athabasca Oil Sands Region (AOSR) in northeast Alberta, a regional multi-stakeholder group, the Cumulative Environmental Management Association (CEMA), developed an Ozone Management Framework that includes a modelling based assessment component. In this paper, we describe how the Community Multi-scale Air Quality (CMAQ) model was applied to assess potential ground-level ozone formation and impacts on ambient air quality and vegetation health for three different ozone precursor cases in the AOSR. Statistical analysis methods were applied, and the CMAQ performance results met the U.S. EPA model performance goal at all sites. The modelled 4th highest daily maximum 8-h average ozone concentrations in the base and two future year scenarios did not exceed the Canada-wide standard of 65 ppb or the newer Canadian Ambient Air Quality Standards of 63 ppb in 2015 and 62 ppb in 2020. Modelled maximum 1-h ozone concentrations in the study were well below the Alberta Ambient Air Quality Objective of 82 ppb in all three cases. Several ozone vegetation exposure metrics were also evaluated to investigate the potential impact of ground-level ozone on vegetation. The chronic 3-months SUM60 exposure metric is within the CEMA baseline range (0-2000 ppb-hr) everywhere in the AOSR. The AOT40 ozone exposure metric predicted by CMAQ did not exceed the United Nations Economic Commission for Europe (UN/ECE) threshold of concern of 3000 ppb-hr in any of the cases but is just below the threshold in high-end future emissions scenario. In all three emission scenarios, the CMAQ predicted W126 ozone exposure metric is within the CEMA baseline threshold of 4000 ppb-hr. This study outlines the use of photochemical modelling of the impact of an industry (oil

  19. Projections of uncertainties in climate change scenarios into expected winter wheat yields

    NASA Astrophysics Data System (ADS)

    Trnka, M.; Dubrovský, M.; Semerádová, D.; Žalud, Z.

    The crop model CERES-Wheat in combination with the stochastic weather generator were used to quantify the effect of uncertainties in selected climate change scenarios on the yields of winter wheat, which is the most important European cereal crop. Seven experimental sites with the high quality experimental data were selected in order to evaluate the crop model and to carry out the climate change impact analysis. The analysis was based on the multi-year crop model simulations run with the daily weather series prepared by the stochastic weather generator. Seven global circulation models (GCMs) were used to derive the climate change scenarios. In addition, seven GCM-based scenarios were averaged in order to derive the average scenario (AVG). The scenarios were constructed for three time periods (2025, 2050 and 2100) and two SRES emission scenarios (A2 and B1). The simulated results showed that: (1) Wheat yields tend to increase (40 out of 42 applied scenarios) in most locations in the range of 7.5-25.3% in all three time periods. In case of the CCSR scenario that predicts the most severe increase of air temperature, the yields would be reduced by 9.6% in 2050 and by 25.8% in 2100 if the A2 emission scenario would become reality. Differences between individual scenarios are large and statistically significant. Particularly for the time periods 2050 and 2100 there are doubts about the trend of the yield shifts. (2) The site effect was caused by the site-specific soil and climatic conditions. Importance of the site influence increases with increasing severity of imposed climatic changes and culminates for the emission scenario A2 and the time period 2100. The sustained tendency benefiting two warmest sites has been found as well as more positive response to the changed climatic conditions of the sites with deeper soil profiles. (3) Temperature variability proved to be an important factor and influenced both mean and standard deviation of the yields. Change of temperature

  20. Sensitivity of future continental United States water deficit projections to general circulation models, the evapotranspiration estimation method, and the greenhouse gas emission scenario

    NASA Astrophysics Data System (ADS)

    Chang, Seungwoo; Graham, Wendy D.; Hwang, Syewoon; Muñoz-Carpena, Rafael

    2016-08-01

    Projecting water deficit under various possible future climate scenarios depends on the choice of general circulation model (GCM), reference evapotranspiration (ET0) estimation method, and Representative Concentration Pathway (RCP) trajectory. The relative contribution of each of these factors must be evaluated in order to choose an appropriate ensemble of future scenarios for water resources planning. In this study variance-based global sensitivity analysis and Monte Carlo filtering were used to evaluate the relative sensitivity of projected changes in precipitation (P), ET0, and water deficit (defined here as P-ET0) to choice of GCM, ET0 estimation method, and RCP trajectory over the continental United States (US) for two distinct future periods: 2030-2060 (future period 1) and 2070-2100 (future period 2). A total of 9 GCMs, 10 ET0 methods, and 3 RCP trajectories were used to quantify the range of future projections and estimate the relative sensitivity of future projections to each of these factors. In general, for all regions of the continental US, changes in future precipitation are most sensitive to the choice of GCM, while changes in future ET0 are most sensitive to the choice of ET0 estimation method. For changes in future water deficit, the choice of GCM is the most influential factor in the cool season (December-March), and the choice of ET0 estimation method is most important in the warm season (May-October) for all regions except the Southeast US, where GCMs and ET0 have approximately equal influence throughout most of the year. Although the choice of RCP trajectory is generally less important than the choice of GCM or ET0 method, the impact of RCP trajectory increases in future period 2 over future period 1 for all factors. Monte Carlo filtering results indicate that particular GCMs and ET0 methods drive the projection of wetter or drier future conditions much more than RCP trajectory; however, the set of GCMs and ET0 methods that produce wetter or

  1. DISENTANGLING HADRONIC AND LEPTONIC CASCADE SCENARIOS FROM THE VERY-HIGH-ENERGY GAMMA-RAY EMISSION OF DISTANT HARD-SPECTRUM BLAZARS

    SciTech Connect

    Takami, Hajime; Murase, Kohta; Dermer, Charles D. E-mail: murase@ias.edu

    2013-07-10

    Recent data from the Fermi Large Area Telescope have revealed about a dozen distant hard-spectrum blazars that have very-high-energy (VHE; {approx}> 100 GeV) photons associated with them, but most of them have not yet been detected by imaging atmospheric Cherenkov Telescopes. Most of these high-energy gamma-ray spectra, like those of other extreme high-frequency peaked BL Lac objects, can be well explained either by gamma rays emitted at the source or by cascades induced by ultra-high-energy cosmic rays, as we show specifically for KUV 00311-1938. We consider the prospects for detection of the VHE sources by the planned Cherenkov Telescope Array (CTA) and show how it can distinguish the two scenarios by measuring the integrated flux above {approx}500 GeV (depending on source redshift) for several luminous sources with z {approx}< 1 in the sample. Strong evidence for the origin of ultra-high-energy cosmic rays could be obtained from VHE observations with CTA. Depending on redshift, if the often quoted redshift of KUV 00311-1938 (z = 0.61) is believed, then preliminary H.E.S.S. data favor cascades induced by ultra-high-energy cosmic rays. Accurate redshift measurements of hard-spectrum blazars are essential for this study.

  2. Climate Change Projections for Sri Lanka for the mid-twentieth Century from CMIP5 Simulations under a High Emissions Scenario

    NASA Astrophysics Data System (ADS)

    Zubair, L.; Agalawatte, P.

    2014-12-01

    Under the Agricultural Model Inter-Comparison program (AgMIP), climate change projections for Sri Lanka were undertaken from the Coupled Model Inter-comparison Project (CMIP5) archives for five locations covering Sri Lanka. These datasets were first quality checked after removing questionable data entries. The gaps in data were filled using AgMERRA data set for the specific location developed by Alex Ruane and Sonali McDermid at NASA- GISS after applying the necessary bias corrections. Future climate projections for 2040- 2070 are based on projections for high Carbon Dioxide emissions (RCP8.5). Analysis was undertaken on the outputs of 20 General Circulation Models (GCMs). Observed climate datasets (for the period 1980- 2010) for each location were used to generate downscaled future predictions. Future projections for maximum temperature, minimum temperature and rainfall were generated while holding solar radiation constant and changing the CO2 value up to 499 ppm. Results for 5 GCMs that simulate the monsoon region best were then selected for further analysis. These are CCSM4, GFDL-ESM2M, HadGEM2-ES, MIROC5, MPI-ESM-MR. All 20 GCM outputs predicted that both minimum and maximum temperature shall rise by around 2 ⁰C throughout the year. This result is consistent across all 5 locations and the uncertainty associated with this prediction was observed to be low compared to that of rainfall. In the case of the rainfall, majority (80- 95%) of GCMs predicted an increment in the annual rainfall by around 0.5 mm/day. Rainfall during September- October- November was predicted to have a high increment (around 2- 7 mm/day) and during February- March a decrement of around 1- 2 mm/day was predicted. The uncertainty of this prediction based on outputs of all 20 GCMs were observed to be high. These results are consistent with the Fourth Assessment Report by the Inter-governmental Panel on Climate Change.

  3. Novel functional conjugative hyperbranched polymers with aggregation-induced emission: synthesis through one-pot "A2+B4" polymerization and application as explosive chemsensors and PLEDs.

    PubMed

    Wu, Wenbo; Ye, Shanghui; Yu, Gui; Liu, Yunqi; Qin, Jingui; Li, Zhen

    2012-01-01

    With the aim to develop new tetraphenylethylene (TPE)-based conjugated hyperbranched polymer, TPE units, one famous aggregation-induced emission (AIE) active group, are utilized to construct hyperbranched polymers with three other aromatic blocks, through an "A2+B4" approach by using one-pot Suzuki polycondensation reaction. These three hyperbranched polymers exhibit interesting AIEE behavior and act as explosive chemsensors with high sensitivity both in the nanoparticles and solid states. This is the first report of the AIE activity of the TPE-based conjugated hyperbranched polymers. Their corresponding PLED devices also demonstrate good performance. PMID:22134953

  4. Climate change scenarios and its impact on water resources of Langtang Khola Basin, Nepal

    NASA Astrophysics Data System (ADS)

    Adhikari, T. Raj; Prasad Devkota, L.; Bhakta Shrestha, A.

    2014-09-01

    General Circulation Models (GCMs) successfully simulate future climate variability and climate change on a global scale; however, poor spatial resolution constrains their application for impact studies at a regional or a local level. The dynamically downscaled precipitation and temperature data were used for the future climate scenarios prediction for the period 2000-2050s, under the Special Report on Emissions Scenarios (SRES) A2 and A1B scenarios. In addition, rating equation was developed from measured discharge and gauge (stage) height data. The generated precipitation and temperature data from downscale and rating equation was used to run the HBV-Light 3.0 conceptual rainfall-runoff model for the calibration and validation of the model, gauge height was taken in the reference period (1988-2009). In the HBV-Light 3.0, a GAP optimization approach was used to calibrate the observed streamflow. From the precipitation scenarios with SRES A2 and A1B emissions at Kyanging, an increase of precipitation during summer and spring and a decrease during winter and autumn seasons was shown. The model projected annual precipitation for the 2050s of both the A2 and A1B scenarios are 716.4 mm and 703.6 mm, respectively. Such precipitation projections indicate the future increase of precipitation in all seasons except the summer. By the end of the 2050s simulation projects an increase maximum (minimum) discharge of 37.8 m3/s (13.9 m3/s) for A1B scenario and 36.2 m3/s (14.3 m3/s) for A2 scenario. A maximum projected discharge will increase for all seasons except for spring, whereas the minimum will decrease in summer.

  5. Evaluation of Future Precipitation Scenario Using Statistical Downscaling MODEL over Three Climatic Region of Nepal Himalaya

    NASA Astrophysics Data System (ADS)

    Sigdel, M.

    2014-12-01

    Statistical downscaling model (SDSM) was applied in downscaling precipitation in the three climatic regions such as humid, sub-humid and arid region of Nepal Himalaya. The study includes the calibration of the SDSM model by using large-scale atmospheric variables encompassing NCEP reanalysis data, the validation of the model and the outputs of downscaled scenarios A2 (high green house gases emission) and B2 (low green house gases emission) of the HadCM3 model for the future. Under both scenarios H3A2 and H3B2, during the prediction period of 2010-2099, the change of annual mean precipitation in the three climatic regions would present a tendency of surplus of precipitation as compared to the mean values of the base period. On the average for all three climatic regions of Nepal the annual mean precipitation would increase by about 13.75% under scenario H3A2 and increase near about 11.68% under scenario H3B2 in the 2050s. For the 2080s there would be increase of 8.28% and 13.30% under H3A2 and H3B2 respectively compared to the base period.

  6. Arctic Climate Change Analysed By Two 30-year Scenario Regional Climate Model Runs

    NASA Astrophysics Data System (ADS)

    Kiilsholm, S.; Christensen, J. H.

    High-resolution climate change simulations for an area covering the entire Arctic have been conducted with the regional climate model (RCM) HIRHAM. The emission sce- narios used were the IPCC SRES1 marker scenarios A2 and B2. Three 30-year time slice experiments were conducted with HIRHAM for periods representing present-day (1961-1990) and the future (2071-2100) in the two scenarios. Changes of the climate between these two periods will be presented with special emphasize on the climate of Greenland.

  7. Integrated Advanced Microwave Sounding Unit-A (AMSU-A). Engineering Test Report: Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, 08

    NASA Technical Reports Server (NTRS)

    Valdez, A.

    2000-01-01

    This is the Engineering Test Report, Radiated Emissions and SARR, SARP, DCS Receivers, Link Frequencies EMI Sensitive Band Test Results, AMSU-A2, S/N 108, for the Integrated Advanced Microwave Sounding Unit-A (AMSU-A).

  8. overlineA2Σ + → overlineX2Π i emission spectra of the phosphaethyne cations HCP + and DCP +

    NASA Astrophysics Data System (ADS)

    King, M. A.; Klapstein, D.; Kroto, H. W.; Maier, J. P.; Nixon, J. F.

    1982-03-01

    Electron impact excited overlineA2Σ + → overlineX2Π i emission spectra of HCP + and DCP + have been observed. The spectra consist of short progressions in ν″ 3. The 0 0 00 → 0 0 10 bands have been studied under high resolution and rotational analyses carried out. Some of the more important derived constants are (in cm -1) HCP +; ν ″3 = 1150(10), A ″0 = -146.97(3), B ″0 = 0.6224(16), B '0 = 0.6690(17); DCP +; ν ″3 = 1110(10), A ″0 = -146.71(1), B ″0 = 0.5284(2), B '0 = 0.5682(2).

  9. Mars base buildup scenarios

    NASA Technical Reports Server (NTRS)

    Blacic, J. D.

    1986-01-01

    Two Mars surface based build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second senario, Earth development of an infrastructure to exploit the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first in this scenario relative to the first, but once begun develops rapidly, aided by the presence of a permanently manned orbital station.

  10. Mars base buildup scenarios

    SciTech Connect

    Blacic, J.D.

    1985-01-01

    Two surface base build-up scenarios are presented in order to help visualize the mission and to serve as a basis for trade studies. In the first scenario, direct manned landings on the Martian surface occur early in the missions and scientific investigation is the main driver and rationale. In the second scenario, early development of an infrastructure to exploite the volatile resources of the Martian moons for economic purposes is emphasized. Scientific exploration of the surface is delayed at first, but once begun develops rapidly aided by the presence of a permanently manned orbital station.

  11. GLOBAL ALTERNATIVE FUTURE SCENARIOS

    EPA Science Inventory

    One way to examine possible future outcomes for environmental protection is through the development and analysis of alternative future scenarios. This type of assessment postulates two or more different paths that social and environmental development might take, using correspond...

  12. Scenarios for gluino coannihilation

    NASA Astrophysics Data System (ADS)

    Ellis, John; Evans, Jason L.; Luo, Feng; Olive, Keith A.

    2016-02-01

    We study supersymmetric scenarios in which the gluino is the next-to-lightest supersymmetric particle (NLSP), with a mass sufficiently close to that of the lightest supersymmetric particle (LSP) that gluino coannihilation becomes important. One of these scenarios is the MSSM with soft supersymmetry-breaking squark and slepton masses that are universal at an input GUT renormalization scale, but with non-universal gaugino masses. The other scenario is an extension of the MSSM to include vector-like supermultiplets. In both scenarios, we identify the regions of parameter space where gluino coannihilation is important, and discuss their relations to other regions of parameter space where other mechanisms bring the dark matter density into the range allowed by cosmology. In the case of the non-universal MSSM scenario, we find that the allowed range of parameter space is constrained by the requirement of electroweak symmetry breaking, the avoidance of a charged LSP and the measured mass of the Higgs boson, in particular, as well as the appearance of other dark matter (co)annihilation processes. Nevertheless, LSP masses m χ ≲ 8 TeV with the correct dark matter density are quite possible. In the case of pure gravity mediation with additional vector-like supermultiplets, changes to the anomaly- mediated gluino mass and the threshold effects associated with these states can make the gluino almost degenerate with the LSP, and we find a similar upper bound.

  13. BCube Ocean Scenario

    NASA Astrophysics Data System (ADS)

    Santoro, Mattia; Schofield, Oscar; Pearlman, Jay; Nativi, Stefano

    2015-04-01

    To address complex Earth system issues such as climate change and water resources, geoscientists must work across disciplinary boundaries; this requires them to access data outside of their fields. Scientists are being called upon to find, access, and use diverse and voluminous data types that are described with semantics. Within the framework of the NSF EarthCube programme, the BCube project (A Broker Framework for Next Generation Geoscience) is addressing the need for effective and efficient multi-disciplinary collaboration and interoperability through the advancement of brokering technologies. BCube develops science scenarios as key elements in providing an environment for demonstrating capabilities, benefits, and challenges of the developed e-infrastructure. The initial focus is on hydrology, oceans, polar and weather, with the intent to make the technology applicable and available to all the geosciences. This presentation focuses on the BCube ocean scenario. The purpose of this scenario is to increase the understanding of the ocean dynamics through incorporation of a wide range of in-situ and satellite data into ocean models using net primary productivity as the initial variable. The science scenario aims to identify spatial and temporal domains in ocean models, and key ecological variables. Field data sets and remote observations data sets from distributed and heterogeneous systems are accessed through the broker and will be incorporated into the models. In this work we will present the achievements in the development of the BCube ocean scenario.

  14. Attractive scenario writing.

    PubMed

    Takahashi, Yuzo; Oku, Sachiko Alexandra

    2009-05-01

    This article describes the key steps of scenario writing to facilitate problem-based learning discussion to aid student learning of basic medical science in combination with clinical medicine. The scenario has to amplify and deepen the students' thinking so that they can correlate findings from the case and knowledge from textbooks. This can be achieved in three ways: (1) a comparison of cases; (2) demonstrating a scientific link between symptoms and basic medicine; and (3) introducing a personal and emotional aspect to the scenario. A comparison of two cases enables us to shed light on the pathological differences and think about the underlying biological mechanisms. These include: (a) a comparison of two cases with similar symptoms, but different diseases; (b) a comparison of two cases with different symptoms, but the same cause; and (c) a comparison of two cases, with an easy case, followed by a complicated case. The scenarios may be disclosed in a sequence to show a scientific link between symptoms of the patient and basic medicine, which may help to cultivate a physician with a scientific mind. Examples are given by the relationship between: (a) symptoms, pathology and morphology; and (b) symptoms, pathology and physiology. When the scenario is written in such a way that students are personally and/or emotionally involved in the case, they will be more motivated in learning as if involved in the case themselves. To facilitate this, the scenario can be written in the first-person perspective. Examples include "I had a very bad headache, and vomited several times...", and "I noticed that my father was screaming at night...". The description of the events may be in chronological order with actual time, which makes students feel as if they are really the primary responding person. PMID:19502145

  15. The SAFRR Tsunami Scenario

    USGS Publications Warehouse

    Porter, K.; Jones, Lucile M.; Ross, Stephanie L.; Borrero, J.; Bwarie, J.; Dykstra, D.; Geist, Eric L.; Johnson, L.; Kirby, Stephen H.; Long, K.; Lynett, P.; Miller, K.; Mortensen, Carl E.; Perry, S.; Plumlee, G.; Real, C.; Ritchie, L.; Scawthorn, C.; Thio, H.K.; Wein, Anne; Whitmore, P.; Wilson, R.; Wood, Nathan J.

    2013-01-01

    The U.S. Geological Survey and several partners operate a program called Science Application for Risk Reduction (SAFRR) that produces (among other things) emergency planning scenarios for natural disasters. The scenarios show how science can be used to enhance community resiliency. The SAFRR Tsunami Scenario describes potential impacts of a hypothetical, but realistic, tsunami affecting California (as well as the west coast of the United States, Alaska, and Hawaii) for the purpose of informing planning and mitigation decisions by a variety of stakeholders. The scenario begins with an Mw 9.1 earthquake off the Alaska Peninsula. With Pacific basin-wide modeling, we estimate up to 5m waves and 10 m/sec currents would strike California 5 hours later. In marinas and harbors, 13,000 small boats are damaged or sunk (1 in 3) at a cost of $350 million, causing navigation and environmental problems. Damage in the Ports of Los Angeles and Long Beach amount to $110 million, half of it water damage to vehicles and containerized cargo. Flooding of coastal communities affects 1800 city blocks, resulting in $640 million in damage. The tsunami damages 12 bridge abutments and 16 lane-miles of coastal roadway, costing $85 million to repair. Fire and business interruption losses will substantially add to direct losses. Flooding affects 170,000 residents and workers. A wide range of environmental impacts could occur. An extensive public education and outreach program is underway, as well as an evaluation of the overall effort.

  16. Biomass Scenario Model

    SciTech Connect

    2015-09-01

    The Biomass Scenario Model (BSM) is a unique, carefully validated, state-of-the-art dynamic model of the domestic biofuels supply chain which explicitly focuses on policy issues, their feasibility, and potential side effects. It integrates resource availability, physical/technological/economic constraints, behavior, and policy. The model uses a system dynamics simulation (not optimization) to model dynamic interactions across the supply chain.

  17. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    to a similar audience, namely the emissions scenario communities that are organizing to undertake a new round of scenario development in the lead-up to the IPCC Fifth Assessment Report. His focus is primarily on a set of concerns that need to be addressed if the new set of socio-economic and emissions scenario products are to adequately support climate model runs, mitigation analyses, and impacts, adaptation and vulnerability research. Pitcher flags issues associated with assessment and measurement of economic growth, challenges associated with downscaling long-term, global scenarios to finer geographic and time scales, and possible ways to grapple with probability and uncertainty in scenario analyses. Garb et al (2008) shift focus to the process aspects of scenarios, focusing on how scenarios simultaneously shape and embed their social contexts. They outline and give examples from a research agenda, drawing on concepts and methods from sociology, political science, and science and technology studies, aimed at redressing the growing imbalance between the increasing technical sophistication of the quantitative components of scenarios on the one hand, and the continued simplicity of our understandings of the social origins, linkages, and implications of the narratives to which they are coupled on the other. Focusing on the treatment of equity concerns in the IPCC Special Report on Emissions Scenarios, Baer (2009) offers a concrete example of how particular social assumptions and definitions of equity are built into scenarios which then create particular worldviews about rights and responsibilities. Baer argues that incorporating distributions of income within—and not only between—countries in quantitative scenario exercises makes visible questions regarding the assignment of rights and the distribution of costs and benefits; such equity considerations, he argues, are central to engendering the cooperation necessary to address the climate crisis. For Parson (2008

  18. Climate Change Scenarios in the Yucatan Peninsula to the year 2020

    NASA Astrophysics Data System (ADS)

    Orellana, R.; Espadas, C.; Conde, C.; Gay, C.

    2010-03-01

    A topic that has not been sufficiently analyzed is that the global warming is already affecting, and that it will have worst consequences in those regions with transitional climates, which have more sensibility to changes. This is the case of the Yucatan Peninsula which is semi-arid in their northern portion, and toward the south is subhumid, with a tendency to be more rainy toward the south. To have an estimation of what could happen in the future, the Intergovernmental Panel of Climatic Change (IPCC) has promoted the use of General Circulation Models (GCM), as well as the construction of possible emission scenarios that integrate different global and regional socioeconomic and demographic conditions, which project then a possible increase of emissions of greenhouse gases. These conditions are recognized as the decisive forces that will determine the variations of temperature and of precipitation. These projections are useful for the analysis of climatic change, and in particular for the assessments of the possible impacts and of the initiatives of adaptation and of mitigation that should be implemented in every country or region. In Mexico, most of those evaluations of climate change have been carried out generally at country level. For that reason, it is necessary to direct the research at regional level. In this work, we evaluated the potential climatic changes on the Yucatan Peninsula, considering the different changes of temperature and precipitation as a consequence for different emission scenarios and for the horizon 2020. To project the environmental responses of the region, we used as a base scenario the available temperature and precipitation information of the period 1961-1990, registered in 85 meteorological stations of the peninsula. With these data, we generated climate change scenarios using the outputs of four General Circulation Models: HADLEY, ECHAM, GFDL and CGCM, and the emission scenarios A1FI, A2, B1 and B2. The outputs of these models were

  19. Model and Scenario Variations in Predicted Number of Generations of Spodoptera litura Fab. on Peanut during Future Climate Change Scenario

    PubMed Central

    Srinivasa Rao, Mathukumalli; Swathi, Pettem; Rama Rao, Chitiprolu Anantha; Rao, K. V.; Raju, B. M. K.; Srinivas, Karlapudi; Manimanjari, Dammu; Maheswari, Mandapaka

    2015-01-01

    The present study features the estimation of number of generations of tobacco caterpillar, Spodoptera litura. Fab. on peanut crop at six locations in India using MarkSim, which provides General Circulation Model (GCM) of future data on daily maximum (T.max), minimum (T.min) air temperatures from six models viz., BCCR-BCM2.0, CNRM-CM3, CSIRO-Mk3.5, ECHams5, INCM-CM3.0 and MIROC3.2 along with an ensemble of the six from three emission scenarios (A2, A1B and B1). This data was used to predict the future pest scenarios following the growing degree days approach in four different climate periods viz., Baseline-1975, Near future (NF) -2020, Distant future (DF)-2050 and Very Distant future (VDF)—2080. It is predicted that more generations would occur during the three future climate periods with significant variation among scenarios and models. Among the seven models, 1–2 additional generations were predicted during DF and VDF due to higher future temperatures in CNRM-CM3, ECHams5 & CSIRO-Mk3.5 models. The temperature projections of these models indicated that the generation time would decrease by 18–22% over baseline. Analysis of variance (ANOVA) was used to partition the variation in the predicted number of generations and generation time of S. litura on peanut during crop season. Geographical location explained 34% of the total variation in number of generations, followed by time period (26%), model (1.74%) and scenario (0.74%). The remaining 14% of the variation was explained by interactions. Increased number of generations and reduction of generation time across the six peanut growing locations of India suggest that the incidence of S. litura may increase due to projected increase in temperatures in future climate change periods. PMID:25671564

  20. Scenarios Based on Shared Socioeconomic Pathway Assumptions

    NASA Astrophysics Data System (ADS)

    Edmonds, J.

    2013-12-01

    A set of new scenarios is being developed by the international scientific community as part of a larger program that was articulated in Moss, et al. (2009), published in Nature. A long series of meetings including climate researchers drawn from the climate modeling, impacts, adaptation and vulnerability (IAV) and integrated assessment modeling (IAM) communities have led to the development of a set of five Shared Socioeconomic Pathways (SSPs), which define the state of human and natural societies at a macro scale over the course of the 21st century without regard to climate mitigation or change. SSPs were designed to explore a range of possible futures consistent with greater or lesser challenges to mitigation and challenges to adaptation. They include a narrative storyline and a set of quantified measures--e.g. demographic and economic profiles--that define the high-level state of society as it evolves over the 21st century under the assumption of no significant climate feedback. SSPs can be used to develop quantitative scenarios of human Earth systems using IAMs. IAMs produce information about greenhouse gas emissions, energy systems, the economy, agriculture and land use. Each set of SSPs will have a different human Earth system realization for each IAM. Five groups from the IAM community have begun to explore the implications of SSP assumptions for emissions, energy, economy, agriculture and land use. We report the quantitative results of initial experiments from those groups. A major goal of the Moss, et al. strategy was to enable the use of CMIP5 climate model ensemble products for IAV research. CMIP5 climate scenarios used four Representative Concentration Pathway (RCP) scenarios, defined in terms of radiative forcing in the year 2100: 2.6, 4.5, 6.0, and 8.5 Wm-2. There is no reason to believe that the SSPs will generate year 2100 levels of radiative forcing that correspond to the four RCP levels, though it is important that at least one SSP produce a

  1. Daily relative humidity projections in an Indian river basin for IPCC SRES scenarios

    NASA Astrophysics Data System (ADS)

    Anandhi, Aavudai; Srinivas, V. V.; Kumar, D. Nagesh; Nanjundiah, Ravi S.

    2012-04-01

    A two-stage methodology is developed to obtain future projections of daily relative humidity in a river basin for climate change scenarios. In the first stage, Support Vector Machine (SVM) models are developed to downscale nine sets of predictor variables (large-scale atmospheric variables) for Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES) (A1B, A2, B1, and COMMIT) to R H in a river basin at monthly scale. Uncertainty in the future projections of R H is studied for combinations of SRES scenarios, and predictors selected. Subsequently, in the second stage, the monthly sequences of R H are disaggregated to daily scale using k-nearest neighbor method. The effectiveness of the developed methodology is demonstrated through application to the catchment of Malaprabha reservoir in India. For downscaling, the probable predictor variables are extracted from the (1) National Centers for Environmental Prediction reanalysis data set for the period 1978-2000 and (2) simulations of the third-generation Canadian Coupled Global Climate Model for the period 1978-2100. The performance of the downscaling and disaggregation models is evaluated by split sample validation. Results show that among the SVM models, the model developed using predictors pertaining to only land location performed better. The R H is projected to increase in the future for A1B and A2 scenarios, while no trend is discerned for B1 and COMMIT.

  2. Evolving practices in environmental scenarios: a new scenario typology

    NASA Astrophysics Data System (ADS)

    Wilkinson, Angela; Eidinow, Esther

    2008-10-01

    A new approach to scenarios focused on environmental concerns, changes and challenges, i.e. so-called 'environmental scenarios', is necessary if global environmental changes are to be more effectively appreciated and addressed through sustained and collaborative action. On the basis of a comparison of previous approaches to global environmental scenarios and a review of existing scenario typologies, we propose a new scenario typology to help guide scenario-based interventions. This typology makes explicit the types of and/or the approaches to knowledge ('the epistemologies') which underpin a scenario approach. Drawing on previous environmental scenario projects, we distinguish and describe two main types in this new typology: 'problem-focused' and 'actor-centric'. This leads in turn to our suggestion for a third type, which we call 'RIMA'—'reflexive interventionist or multi-agent based'. This approach to scenarios emphasizes the importance of the involvement of different epistemologies in a scenario-based process of action learning in the public interest. We suggest that, by combining the epistemologies apparent in the previous two types, this approach can create a more effective bridge between longer-term thinking and more immediate actions. Our description is aimed at scenario practitioners in general, as well as those who work with (environmental) scenarios that address global challenges.

  3. Investigating Future Climate Scenarios

    ERIC Educational Resources Information Center

    Dempsey, Chris; Bodzin, Alec; Anastasio, David; Sahagian, Dork; Cirucci, Lori

    2012-01-01

    One of the most alarming impacts of projected climate change is a significant rise in sea level. Sea level has varied by hundreds of meters over geologic time, yet these changes have generally been slow paced, allowing ecosystems to adjust to changing land surface and marine habitats. Since the Industrial Revolution, anthropogenic emissions have…

  4. EXAMPLE EXPOSURE SCENARIOS ASSESSMENT TOOL

    EPA Science Inventory

    Exposure scenarios are a tool to help the assessor develop estimates of exposure, dose, and risk. An exposure scenario generally includes facts, data, assumptions, inferences, and sometimes professional judgment about how the exposure takes place. The human physiological and beh...

  5. Biomass Scenario Model Scenario Library: Definitions, Construction, and Description

    SciTech Connect

    Inman, D.; Vimmerstedt, L.; Bush, B.; Peterson, S.

    2014-04-01

    Understanding the development of the biofuels industry in the United States is important to policymakers and industry. The Biomass Scenario Model (BSM) is a system dynamics model of the biomass-to-biofuels system that can be used to explore policy effects on biofuels development. Because of the complexity of the model, as well as the wide range of possible future conditions that affect biofuels industry development, we have not developed a single reference case but instead developed a set of specific scenarios that provide various contexts for our analyses. The purpose of this report is to describe the scenarios that comprise the BSM scenario library. At present, we have the following policy-focused scenarios in our library: minimal policies, ethanol-focused policies, equal access to policies, output-focused policies, technological diversity focused, and the point-of-production- focused. This report describes each scenario, its policy settings, and general insights gained through use of the scenarios in analytic studies.

  6. Designing a Methodology for Future Air Travel Scenarios

    NASA Technical Reports Server (NTRS)

    Wuebbles, Donald J.; Baughcum, Steven L.; Gerstle, John H.; Edmonds, Jae; Kinnison, Douglas E.; Krull, Nick; Metwally, Munir; Mortlock, Alan; Prather, Michael J.

    1992-01-01

    The growing demand on air travel throughout the world has prompted several proposals for the development of commercial aircraft capable of transporting a large number of passengers at supersonic speeds. Emissions from a projected fleet of such aircraft, referred to as high-speed civil transports (HSCT's), are being studied because of their possible effects on the chemistry and physics of the global atmosphere, in particular, on stratospheric ozone. At the same time, there is growing concern about the effects on ozone from the emissions of current (primarily subsonic) aircraft emissions. Evaluating the potential atmospheric impact of aircraft emissions from HSCT's requires a scientifically sound understanding of where the aircraft fly and under what conditions the aircraft effluents are injected into the atmosphere. A preliminary set of emissions scenarios are presented. These scenarios will be used to understand the sensitivity of environment effects to a range of fleet operations, flight conditions, and aircraft specifications. The baseline specifications for the scenarios are provided: the criteria to be used for developing the scenarios are defined, the required data base for initiating the development of the scenarios is established, and the state of the art for those scenarios that have already been developed is discussed. An important aspect of the assessment will be the evaluation of realistic projections of emissions as a function of both geographical distribution and altitude from an economically viable commercial HSCT fleet. With an assumed introduction date of around the year 2005, it is anticipated that there will be no HSCT aircraft in the global fleet at that time. However, projections show that, by 2015, the HSCT fleet could reach significant size. We assume these projections of HSCT and subsonic fleets for about 2015 can the be used as input to global atmospheric chemistry models to evaluate the impact of the HSCT fleets, relative to an all

  7. Viral hepatitis: Indian scenario.

    PubMed

    Satsangi, Sandeep; Chawla, Yogesh K

    2016-07-01

    Viral hepatitis is a cause for major health care burden in India and is now equated as a threat comparable to the "big three" communicable diseases - HIV/AIDS, malaria and tuberculosis. Hepatitis A virus and Hepatitis E virus are predominantly enterically transmitted pathogens and are responsible to cause both sporadic infections and epidemics of acute viral hepatitis. Hepatitis B virus and Hepatitis C virus are predominantly spread via parenteral route and are notorious to cause chronic hepatitis which can lead to grave complications including cirrhosis of liver and hepatocellular carcinoma. Around 400 million people all over the world suffer from chronic hepatitis and the Asia-Pacific region constitutes the epicentre of this epidemic. The present article would aim to cover the basic virologic aspects of these viruses and highlight the present scenario of viral hepatitis in India. PMID:27546957

  8. Climate scenarios for California

    USGS Publications Warehouse

    Cayan, Daniel R.; Maurer, Ed; Dettinger, Mike; Tyree, Mary; Hayhoe, Katharine; Bonfils, Celine; Duffy, Phil; Santer, Ben

    2006-01-01

    In all of the simulations, most precipitation continues to occur in winter, with virtually all derived from North Pacific winter storms. Relatively little change in overall precipitation is projected. Climate warming has a profound influence in diminishing snow accumulations, because there is more rain and less snow, and earlier snowmelt. These snow losses increase as the warming increases, so that they are most severe under climate changes projected by the more sensitive model with the higher GHG emissions.

  9. Uncertainty in Integrated Assessment Scenarios

    SciTech Connect

    Mort Webster

    2005-10-17

    trends from a model for uncertainty projections. The probability distributions of these critical model drivers, and the resulting uncertainty in projections from a range of models, can provide the basis of future emission scenario set designs.

  10. ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan

    PubMed Central

    Iizumi, Toshichika; Semenov, Mikhail A.; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2012-01-01

    We developed a dataset of local-scale daily climate change scenarios for Japan (called ELPIS-JP) using the stochastic weather generators (WGs) LARS-WG and, in part, WXGEN. The ELPIS-JP dataset is based on the observed (or estimated) daily weather data for seven climatic variables (daily mean, maximum and minimum temperatures; precipitation; solar radiation; relative humidity; and wind speed) at 938 sites in Japan and climate projections from the multi-model ensemble of global climate models (GCMs) used in the coupled model intercomparison project (CMIP3) and multi-model ensemble of regional climate models form the Japanese downscaling project (called S-5-3). The capability of the WGs to reproduce the statistical features of the observed data for the period 1981–2000 is assessed using several statistical tests and quantile–quantile plots. Overall performance of the WGs was good. The ELPIS-JP dataset consists of two types of daily data: (i) the transient scenarios throughout the twenty-first century using projections from 10 CMIP3 GCMs under three emission scenarios (A1B, A2 and B1) and (ii) the time-slice scenarios for the period 2081–2100 using projections from three S-5-3 regional climate models. The ELPIS-JP dataset is designed to be used in conjunction with process-based impact models (e.g. crop models) for assessment, not only the impacts of mean climate change but also the impacts of changes in climate variability, wet/dry spells and extreme events, as well as the uncertainty of future impacts associated with climate models and emission scenarios. The ELPIS-JP offers an excellent platform for probabilistic assessment of climate change impacts and potential adaptation at a local scale in Japan. PMID:22291226

  11. ELPIS-JP: a dataset of local-scale daily climate change scenarios for Japan.

    PubMed

    Iizumi, Toshichika; Semenov, Mikhail A; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2012-03-13

    We developed a dataset of local-scale daily climate change scenarios for Japan (called ELPIS-JP) using the stochastic weather generators (WGs) LARS-WG and, in part, WXGEN. The ELPIS-JP dataset is based on the observed (or estimated) daily weather data for seven climatic variables (daily mean, maximum and minimum temperatures; precipitation; solar radiation; relative humidity; and wind speed) at 938 sites in Japan and climate projections from the multi-model ensemble of global climate models (GCMs) used in the coupled model intercomparison project (CMIP3) and multi-model ensemble of regional climate models form the Japanese downscaling project (called S-5-3). The capability of the WGs to reproduce the statistical features of the observed data for the period 1981-2000 is assessed using several statistical tests and quantile-quantile plots. Overall performance of the WGs was good. The ELPIS-JP dataset consists of two types of daily data: (i) the transient scenarios throughout the twenty-first century using projections from 10 CMIP3 GCMs under three emission scenarios (A1B, A2 and B1) and (ii) the time-slice scenarios for the period 2081-2100 using projections from three S-5-3 regional climate models. The ELPIS-JP dataset is designed to be used in conjunction with process-based impact models (e.g. crop models) for assessment, not only the impacts of mean climate change but also the impacts of changes in climate variability, wet/dry spells and extreme events, as well as the uncertainty of future impacts associated with climate models and emission scenarios. The ELPIS-JP offers an excellent platform for probabilistic assessment of climate change impacts and potential adaptation at a local scale in Japan. PMID:22291226

  12. A coupled model study on the intensification of the Asian summer monsoon in IPCC SRES Scenarios

    NASA Astrophysics Data System (ADS)

    Wei, Min

    2005-11-01

    The Asian summer monsoon is an important part of the climate system. Investigating the response of the Asian summer monsoon to changing concentrations of greenhouse gases and aerosols will be meaningful to understand and predict climate variability and climate change not only in Asia but also globally. In order to diagnose the impacts of future anthropogenic emissions on monsoon climates, a coupled general circulation model of the atmosphere and the ocean has been used at the Max-Planck-Institute for Meteorology. In addition to carbon dioxide, the major well mixed greenhouse gases such as methane, nitrous oxide, several chlorofluorocarbons, and CFC substitute gases are prescribed as a function of time. The sulfur cycle is simulated interactively, and both the direct aerosol effect and the indirect cloud albedo effect are considered. Furthermore, changes in tropospheric ozone have been pre-calculated with a chemical transport model and prescribed as a function of time and space in the climate simulations. Concentrations of greenhouse gases and anthropogenic emissions of sulfur dioxide are prescribed according to observations (1860-1990) and projected into the future (1990-2100) according to the Scenarios A2 and B2 in Special Report on Emissions Scenarios (SRES, Nakićenović et al., 2000) developed by the Intergovernmental Panel on Climate Change (IPCC). It is found that the Indian summer monsoon is enhanced in the scenarios in terms of both mean precipitation and interannual variability. An increase in precipitation is simulated for northern China but a decrease for the southern part. Furthermore, the simulated future increase in monsoon variability seems to be linked to enhanced ENSO variability towards the end of the scenario integrations.

  13. 2015 Standard Scenarios Annual Report: U.S. Electric Sector Scenario Exploration

    SciTech Connect

    Sullivan, Patrick; Cole, Wesley; Blair, Nate; Lantz, Eric; Krishnan, Venkat; Mai, Trieu; Mulcahy, David; Porro, Gian

    2015-07-16

    This report is one of several products resulting from an initial effort to provide a consistent set of technology cost and performance data and to define a conceptual and consistent scenario framework that can be used in the National Renewable Energy Laboratory’s (NREL’s) future analyses. The long-term objective of this effort is to identify a range of possible futures of the U.S. electricity sector in which to consider specific energy system issues through (1) defining a set of prospective scenarios that bound ranges of key technology, market, and policy assumptions and (2) assessing these scenarios in NREL’s market models to understand the range of resulting outcomes, including energy technology deployment and production, energy prices, and carbon dioxide (CO2) emissions.

  14. Climate mitigation scenarios of drained peat soils

    NASA Astrophysics Data System (ADS)

    Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna

    2014-05-01

    The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC

  15. Future Sulfur Dioxide Emissions

    SciTech Connect

    Smith, Steven J.; Pitcher, Hugh M.; Wigley, Tom M.

    2005-12-01

    The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for IA modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In all cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.

  16. A future without health? Health dimension in global scenario studies.

    PubMed Central

    Martens, Pim; Huynen, Maud

    2003-01-01

    This paper reviews the health dimension and sociocultural, economic, and ecological determinants of health in existing global scenario studies. Not even half of the 31 scenarios reviewed gave a good description of future health developments and the different scenario studies did not handle health in a consistent way. Most of the global driving forces of health are addressed adequately in the selected scenarios, however, and it therefore would have been possible to describe the future developments in health as an outcome of these multiple driving forces. To provide examples on how future health can be incorporated in existing scenarios, we linked the sociocultural, economic, and environmental developments described in three sets of scenarios (special report on emission scenarios (SRES), global environmental outlook-3 (GEO3), and world water scenarios (WWS)) to three potential, but imaginary, health futures ("age of emerging infectious diseases", "age of medical technology", and "age of sustained health"). This paper provides useful insights into how to deal with future health in scenarios and shows that a comprehensive picture of future health evolves when all important driving forces and pressures are taken into account. PMID:14997242

  17. Mission Scenario Development Workbench

    NASA Technical Reports Server (NTRS)

    Kordon, Mark; Baker, John; Gilbert, John; Hanks, David; Mandutianu, Dan; Hooper, David

    2006-01-01

    The Mission Scenario Development Workbench (MSDW) is a multidisciplinary performance analysis software tool for planning and optimizing space missions. It provides a number of new capabilities that are particularly useful for planning the surface activities on other planets. MSDW enables rapid planning of a space mission and supports flight system and scientific-instrumentation trades. It also provides an estimate of the ability of flight, ground, and science systems to meet high-level mission goals and provides means of evaluating expected mission performance at an early stage of planning in the project life cycle. In MSDW, activity plans and equipment-list spreadsheets are integrated with validated parameterized simulation models of spacecraft systems. In contrast to traditional approaches involving worst-case estimates with large margins, the approach embodied in MSDW affords more flexibility and more credible results early in the lifecycle through the use of validated, variable- fidelity models of spacecraft systems. MSDW is expected to help maximize the scientific return on investment for space missions by understanding early the performance required to have a successful mission while reducing the risk of costly design changes made at late stages in the project life cycle.

  18. Impact of uncertainty in economic projections for stabilization scenarios

    NASA Astrophysics Data System (ADS)

    Krakauer, N. Y.

    2008-12-01

    Scenarios for the stabilization of greenhouse gas emissions and/or atmospheric concentrations typically take economic and technological growth, and thus the 'background', no-controls emissions trajectory, as essentially given, most commonly based on one or more of the IPCC SRES scenarios. One limitation of this set of scenarios is that they postulate a rather small range of future economic growth rates, based on extrapolation from recent experience as well as assumed tendencies such as international 'convergence'. Because there is no validated theoretical or empirical method to reliably predict long-term (decade to century) changes in the size and composition of the world economy, the uncertainty in economic path is large and likely understated by any measure derived from the ensemble of SRES scenarios. Considering a wider range of economic trajectories complicates stabilization scenarios. In particular, slow economic growth would imply that future generations will be relatively less able to invest in emissions controls or adapt to detrimental impacts of climate change. I show with a simple integrated assessment model that taking into consideration the possibility of economic slowdown generally heightens the urgency of reducing greenhouse gas emissions now, rather than in future decades, for stabilizing radiative forcing or welfare damage at a given target.

  19. The changing nutrition scenario.

    PubMed

    Gopalan, C

    2013-09-01

    The past seven decades have seen remarkable shifts in the nutritional scenario in India. Even up to the 1950s severe forms of malnutrition such as kwashiorkar and pellagra were endemic. As nutritionists were finding home-grown and common-sense solutions for these widespread problems, the population was burgeoning and food was scarce. The threat of widespread household food insecurity and chronic undernutrition was very real. Then came the Green Revolution. Shortages of food grains disappeared within less than a decade and India became self-sufficient in food grain production. But more insidious problems arising from this revolution were looming, and cropping patterns giving low priority to coarse grains and pulses, and monocropping led to depletion of soil nutrients and 'Green Revolution fatigue'. With improved household food security and better access to health care, clinical manifestations of severe malnutrition virtually disappeared. But the decline in chronic undernutrition and "hidden hunger" from micronutrient deficiencies was slow. On the cusp of the new century, an added factor appeared on the nutritional scene in India. With steady urban migration, upward mobility out of poverty, and an increasingly sedentary lifestyle because of improvements in technology and transport, obesity rates began to increase, resulting in a dual burden. Measured in terms of its performance in meeting its Millennium Development Goals, India has fallen short. Despite its continuing high levels of poverty and illiteracy, India has a huge demographic potential in the form of a young population. This advantage must be leveraged by investing in nutrition education, household access to nutritious diets, sanitary environment and a health-promoting lifestyle. This requires co-operation from all the stakeholders, including governments, non government organizations, scientists and the people at large. PMID:24135189

  20. The changing nutrition scenario

    PubMed Central

    Gopalan, C.

    2013-01-01

    The past seven decades have seen remarkable shifts in the nutritional scenario in India. Even up to the 1950s severe forms of malnutrition such as kwashiorkar and pellagra were endemic. As nutritionists were finding home-grown and common-sense solutions for these widespread problems, the population was burgeoning and food was scarce. The threat of widespread household food insecurity and chronic undernutrition was very real. Then came the Green Revolution. Shortages of food grains disappeared within less than a decade and India became self-sufficient in food grain production. But more insidious problems arising from this revolution were looming, and cropping patterns giving low priority to coarse grains and pulses, and monocropping led to depletion of soil nutrients and ‘Green Revolution fatigue’. With improved household food security and better access to health care, clinical manifestations of severe malnutrition virtually disappeared. But the decline in chronic undernutrition and “hidden hunger” from micronutrient deficiencies was slow. On the cusp of the new century, an added factor appeared on the nutritional scene in India. With steady urban migration, upward mobility out of poverty, and an increasingly sedentary lifestyle because of improvements in technology and transport, obesity rates began to increase, resulting in a dual burden. Measured in terms of its performance in meeting its Millennium Development Goals, India has fallen short. Despite its continuing high levels of poverty and illiteracy, India has a huge demographic potential in the form of a young population. This advantage must be leveraged by investing in nutrition education, household access to nutritious diets, sanitary environment and a health-promoting lifestyle. This requires co-operation from all the stakeholders, including governments, non government organizations, scientists and the people at large. PMID:24135189

  1. MIOSAT Mission Scenario and Design

    NASA Astrophysics Data System (ADS)

    Agostara, C.; Dionisio, C.; Sgroi, G.; di Salvo, A.

    2008-08-01

    MIOSAT ("Mssione Ottica su microSATellite") is a low-cost technological / scientific microsatellite mission for Earth Observation, funded by Italian Space Agency (ASI) and managed by a Group Agreement between Rheinmetall Italia - B.U. Spazio - Contraves as leader and Carlo Gavazzi Space as satellite manufacturer. Several others Italians Companies, SME and Universities are involved in the development team with crucial roles. MIOSAT is a microsatellite weighting around 120 kg and placed in a 525 km altitude sun-synchronuos circular LEO orbit. The microsatellite embarks three innovative optical payloads: Sagnac multi spectral radiometer (IFAC-CNR), Mach Zehender spectrometer (IMM-CNR), high resolution pancromatic camera (Selex Galileo). In addition three technological experiments will be tested in-flight. The first one is an heat pipe based on Marangoni effect with high efficiency. The second is a high accuracy Sun Sensor using COTS components and the last is a GNSS SW receiver that utilizes a Leon2 processor. Finally a new generation of 28% efficiency solar cells will be adopted for the power generation. The platform is highly agile and can tilt along and cross flight direction. The pointing accuracy is in the order of 0,1° for each axe. The pointing determination during images acquisition is <0,02° for the axis normal to the boresight and 0,04° for the boresight. This paper deals with MIOSAT mission scenario and definition, highlighting trade-offs for mission implementation. MIOSAT mission design has been constrained from challenging requirements in terms of satellite mass, mission lifetime, instrument performance, that have implied the utilization of satellite agility capability to improve instruments performance in terms of S/N and resolution. The instruments provide complementary measurements that can be combined in effective ways to exploit new applications in the fields of atmosphere composition analysis, Earth emissions, antropic phenomena, etc. The Mission

  2. Scenario Planning in Higher Education.

    ERIC Educational Resources Information Center

    Rieley, James

    Scenario planning can help institutions change the mental models used in planning to achieve a focus on the long-term future, rather than on the immediate future. While institutional survival depends upon the ability to detect and adapt to critical changes in the environment, all institutions face a wide range of potential future scenarios. By…

  3. Platform Support for Pedagogical Scenarios

    ERIC Educational Resources Information Center

    Peter, Yvan; Vantroys, Thomas

    2005-01-01

    This article deals with providing support for the execution of pedagogical scenarios in Learning Management Systems. It takes an engineering point of view to identifies actors, design and use processes. Next it defines the necessary capabilities of a platform so that actors can manage or use pedagogical scenarios. The second part of the article is…

  4. Futures Scenario in Science Learning

    ERIC Educational Resources Information Center

    Lloyd, David; Vanderhout, Annastasia; Lloyd, Lisa; Atkins, David

    2010-01-01

    In this article we describe our experiences in developing futures scenarios in two science contexts, space science and atmospheric science/climate change. Futures scenario writing can develop scientific literacy by connecting science learning to students' lifeworlds--past, present and future. They also provide a synthesising mechanism for…

  5. Student Rights and Responsibilities Scenarios.

    ERIC Educational Resources Information Center

    Peterson, Ludwig A.; And Others

    To stimulate interest in student's rights and responsibilities, this resource contains incomplete scenarios dealing with the consequences of knowing and not knowing the law, as it is applied to modern practical situations. The scenarios can be used in high school courses such as government, social problems, history, psychology, and business law.…

  6. Glacial CO2 Cycles: A Composite Scenario

    NASA Astrophysics Data System (ADS)

    Broecker, W. S.

    2015-12-01

    There are three main contributors to the glacial drawdown of atmospheric CO2 content: starvation of the supply of carbon to the ocean-atmosphere reservoir, excess CO2 storage in the deep sea, and surface-ocean cooling. In this talk, I explore a scenario in which all three play significant roles. Key to this scenario is the assumption that deep ocean storage is related to the extent of nutrient stratification of the deep Atlantic. The stronger this stratification, the larger the storage of respiration CO2. Further, it is my contention that the link between Milankovitch insolation cycles and climate is reorganizations of the ocean's thermohaline circulation leading to changes in the deep ocean's CO2 storage. If this is the case, the deep Atlantic d13C record kept in benthic foraminifera shells tells us that deep ocean CO2 storage follows Northern Hemisphere summer insolation cycles and thus lacks the downward ramp so prominent in the records of sea level, benthic 18O and CO2. Rather, the ramp is created by the damping of planetary CO2 emissions during glacial time intervals. As it is premature to present a specific scenario, I provide an example as to how these three contributors might be combined. As their magnitudes and shapes remain largely unconstrained, the intent of this exercise is to provoke creative thinking.

  7. Aerosol effect on climate extremes in Europe under different future scenarios

    NASA Astrophysics Data System (ADS)

    Sillmann, J.; Pozzoli, L.; Vignati, E.; Kloster, S.; Feichter, J.

    2013-05-01

    This study investigates changes in extreme temperature and precipitation events under different future scenarios of anthropogenic aerosol emissions (i.e., SO2 and black and organic carbon) simulated with an aerosol-climate model (ECHAM5-HAM) with focus on Europe. The simulations include a maximum feasible aerosol reduction (MFR) scenario and a current legislation emission (CLEmod) scenario where Europe implements the MFR scenario, but the rest of the world follows the current legislation scenario and a greenhouse gas scenario. The strongest changes relative to the year 2000 are projected for the MFR scenario, in which the global aerosol reduction greatly enforces the general warming effect due to greenhouse gases and results in significant increases of temperature and precipitation extremes in Europe. Regional warming effects can also be identified from aerosol reductions under the CLEmodscenario. This becomes most obvious in the increase of the hottest summer daytime temperatures in Northern Europe.

  8. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios

    NASA Astrophysics Data System (ADS)

    Adloff, Fanny; Somot, Samuel; Sevault, Florence; Jordà, Gabriel; Aznar, Roland; Déqué, Michel; Herrmann, Marine; Marcos, Marta; Dubois, Clotilde; Padorno, Elena; Alvarez-Fanjul, Enrique; Gomis, Damià

    2015-11-01

    The Mediterranean climate is expected to become warmer and drier during the twenty-first century. Mediterranean Sea response to climate change could be modulated by the choice of the socio-economic scenario as well as the choice of the boundary conditions mainly the Atlantic hydrography, the river runoff and the atmospheric fluxes. To assess and quantify the sensitivity of the Mediterranean Sea to the twenty-first century climate change, a set of numerical experiments was carried out with the regional ocean model NEMOMED8 set up for the Mediterranean Sea. The model is forced by air-sea fluxes derived from the regional climate model ARPEGE-Climate at a 50-km horizontal resolution. Historical simulations representing the climate of the period 1961-2000 were run to obtain a reference state. From this baseline, various sensitivity experiments were performed for the period 2001-2099, following different socio-economic scenarios based on the Special Report on Emissions Scenarios. For the A2 scenario, the main three boundary forcings (river runoff, near-Atlantic water hydrography and air-sea fluxes) were changed one by one to better identify the role of each forcing in the way the ocean responds to climate change. In two additional simulations (A1B, B1), the scenario is changed, allowing to quantify the socio-economic uncertainty. Our 6-member scenario simulations display a warming and saltening of the Mediterranean. For the 2070-2099 period compared to 1961-1990, the sea surface temperature anomalies range from +1.73 to +2.97 °C and the SSS anomalies spread from +0.48 to +0.89. In most of the cases, we found that the future Mediterranean thermohaline circulation (MTHC) tends to reach a situation similar to the eastern Mediterranean Transient. However, this response is varying depending on the chosen boundary conditions and socio-economic scenarios. Our numerical experiments suggest that the choice of the near-Atlantic surface water evolution, which is very uncertain in

  9. Importance of impacts scenarios for the adaptation of agriculture to climate change

    NASA Astrophysics Data System (ADS)

    Zullo, J.; Macedo, C.; Pinto, H. S.; Assad, E. D.; Koga Vicente, A.

    2012-12-01

    The great possibility that the climate is already changing, and the most drastic way possible, increases the challenge of agricultural engineering, especially in environmentally vulnerable areas and in regions where agriculture has a high economic and social importance. Knowledge of potential impacts that may be caused by changes in water and thermal regimes in coming decades is increasingly strategic, as they allow the development of techniques to adapt agriculture to climate change and therefore minimizes the risk of undesirable impacts, for example, in food and nutritional security. Thus, the main objective of this paper is to describe a way to generate impacts scenarios caused by anomalies of precipitation and temperature in the definition of climate risk zoning of an agricultural crop very important in the tropics, such as the sugar cane, especially in central-southern Brazil, which is one of its main world producers. A key point here is the choice of the climate model to be used, considering that 23 different models were used in the fourth IPCC report published in 2007. The number and range of available models requires the definition of criteria for choosing the most suitable for the preparation of the impacts scenarios. One way proposed and used in this work is based on the definition of two groups of models according to 27 technical attributes of them. The clustering of 23 models in two groups, with a model representing each group (UKMO_HadCM3 and MIROC3.2_medres), assists the generation and comparison of impacts scenarios, making them more representative and useful. Another important aspect in the generation of impacts scenarios is the estimate of the relative importance of the anomalies of precipitation and temperature, which are the most commonly used. To assess the relative importance of the anomalies are generated scenarios considering an anomaly at a time and both together. The impacts scenarios for a high emission of greenhouse gases (A2), from 2010

  10. Alternative scenarios utilizing nonterrestrial resources

    NASA Technical Reports Server (NTRS)

    Eldred, Charles H.; Roberts, Barney B.

    1992-01-01

    A collection of alternative scenarios that are enabled or substantially enhanced by the utilization of nonterrestrial resources is provided. We take a generalized approach to scenario building so that our report will have value in the context of whatever goals are eventually chosen. Some of the topics covered include the following: lunar materials processing; asteroid mining; lunar resources; construction of a large solar power station; solar dynamic power for the space station; reduced gravity; mission characteristics and options; and tourism.

  11. Security message exchange interoperability scenarios

    SciTech Connect

    Tarman, Thomas

    1998-07-01

    This contribution describes three interoperability scenarios for the ATM Security Message Exchange (SME) protocol. These scenarios include network-wide signaling support for the Security Services Information Element, partial signaling support wherethe SSIE is only supported in private or workgroup ATM networks, and the case where the SSIE is nonsupported by any network elements (exceptthosethat implement security services). Explanatory text is proposed for inclusion infection 2.3 of the ATM Security Specification, Version 1.0.

  12. Four climate change scenarios for the Indian summer monsoon by the regional climate model COSMO-CLM

    NASA Astrophysics Data System (ADS)

    Dobler, A.; Ahrens, B.

    2011-12-01

    This paper discusses projections of the Indian summer monsoon (ISM) by the regional climate model COSMO-CLM, highlighting similarities to and differences from its driving model, the global atmosphere-ocean model ECHAM5/MPIOM. The ISM is quantified using the all-Indian monsoon rainfall (AIMR) index and two vertical wind shear indices. To investigate the impacts of greenhouse gas emissions on the ISM, four emission scenarios for the time period 1960-2100 (Special Report on Emissions Scenarios A2, A1B, B1, and commitment) are considered. The COSMO-CLM simulations show significantly weakening ISM trends in all indices for emission scenarios A2, A1B, and B1. Parts of northwestern India are projected to face a decrease in the monsoon rainfall amount of over 70% within this century. For the wind shear indices, the projected decreases are mainly due to changes in the upper troposphere winds. The weakening of the dynamics in the COSMO-CLM is in agreement with the weakening in the driving ECHAM5/MPIOM model. The two models further agree in significantly positive trends of atmospheric water vapor contents and rain day intensities. However, ECHAM5/MPIOM shows no decrease in AIMR. The different AIMR trends in the two models are found to be due to different changes in the residence time of water in the atmosphere: In the COSMO-CLM projections, the residence time is more prolonged than in ECHAM5/MPIOM. This again is the consequence of a decrease in the number of depressions moving toward the northwestern parts of India.

  13. Response of streamflow to projected climate change scenarios in an eastern Himalayan catchment of India

    NASA Astrophysics Data System (ADS)

    Senzeba, K. T.; Rajkumari, S.; Bhadra, A.; Bandyopadhyay, A.

    2016-04-01

    Snowmelt run-off model (SRM) based on degree-day approach has been employed to evaluate the change in snow-cover depletion and corresponding streamflow under different projected climatic scenarios for an eastern Himalayan catchment in India. Nuranang catchment located at Tawang district of Arunachal Pradesh with an area of 52 km2 is selected for the present study with an elevation range of 3143-4946 m above mean sea level. Satellite images from October to June of the selected hydrological year 2006-2007 were procured from National Remote Sensing Centre, Hyderabad. Snow cover mapping is done using NDSI method. Based on long term meteorological data, temperature and precipitation data of selected hydrological year are normalized to represent present climatic condition. The projected temperature and precipitation data are downloaded from NCAR's GIS data portal for different emission scenarios (SRES), viz., A1B, A2, B1; and IPCC commitment (non-SRES) scenario for different future years (2020, 2030, 2040 and 2050). Projected temperature and precipitation data are obtained at desired location by spatially interpolating the gridded data and then by statistical downscaling using linear regression. Snow depletion curves for all projected scenarios are generated for the study area and compared with conventional depletion curve for present climatic condition. Changes in cumulative snowmelt depth for different future years are highest under A1B and lowest under IPCC commitment, whereas A2 and B1 values are in-between A1B and IPCC commitment. Percentage increase in streamflow for different future years follows almost the same trend as change in precipitation from present climate under all projected climatic scenarios. Hence, it was concluded that for small catchments having seasonal snow cover, the total streamflow under projected climatic scenarios in future years will be primarily governed by the change in precipitation and not by change in snowmelt depth. Advancing of

  14. Water Availability in Indus River at the Upper Indus Basin under Different Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Khan, Firdos; Pilz, Jürgen

    2015-04-01

    The last decade of the 20th century and the first decade of the 21st century showed that climate change or global warming is happening and the latter one is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C on May 26, 2010. The changing climate has impact on various areas including agriculture, water, health, among others. There are two main forces which have central role in changing climate: one is natural variability and the other one is human evoked changes, increasing the density of green house gases. The elements in the bunch of Energy-Food-Water are interlinked with one another and among them water plays a crucial role for the existence of the other two parts. This nexus is the central environmental issue around the globe generally, and is of particular importance in the developing countries. The study evaluated the importance and the availability of water in Indus River under different emission scenarios. Four emission scenarios are included, that is, the A2, B2, RCP4.5 and RCP8.5. One way coupling of regional climate models (RCMs) and Hydrological model have been implemented in this study. The PRECIS (Providing Regional Climate for Impact Studies) and CCAM (Conformal-Cubic Atmospheric Model) climate models and UBCWM (University of British Columbia Watershed Model) hydrological model are used for this purpose. It is observed that Indus River contributes 80 % of the hydro-power generation and contributes 44 % to available water annually in Pakistan. It is further investigated whether sufficient water will be available in the Indus River under climate change scenarios. Toward this goal, Tarbela Reservoir is used as a measurement tool using the parameters of the reservoir like maximum operating storage, dead level storage, discharge capacity of tunnels and spillways. The results of this study are extremely important for the economy of Pakistan in various key areas like agriculture, energy, industries and ecosystem

  15. Deforestation scenarios for the Bolivian lowlands.

    PubMed

    Tejada, Graciela; Dalla-Nora, Eloi; Cordoba, Diana; Lafortezza, Raffaele; Ovando, Alex; Assis, Talita; Aguiar, Ana Paula

    2016-01-01

    all Bolivian lowlands reaching 37,944,434 ha and leaves small forest patches in a few PAs. These deforestation scenarios are not meant to predict the future but to show how current and future decisions carried out by the neo-extractivist practices of MAS government could affect deforestation and carbon emission trends. In this perspective, recognizing land use systems as open and dynamic systems is a central challenge in designing efficient land use policies and managing a transition towards sustainable land use. PMID:26604078

  16. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change.

    PubMed

    Gibon, Thomas; Wood, Richard; Arvesen, Anders; Bergesen, Joseph D; Suh, Sangwon; Hertwich, Edgar G

    2015-09-15

    Climate change mitigation demands large-scale technological change on a global level and, if successfully implemented, will significantly affect how products and services are produced and consumed. In order to anticipate the life cycle environmental impacts of products under climate mitigation scenarios, we present the modeling framework of an integrated hybrid life cycle assessment model covering nine world regions. Life cycle assessment databases and multiregional input-output tables are adapted using forecasted changes in technology and resources up to 2050 under a 2 °C scenario. We call the result of this modeling "technology hybridized environmental-economic model with integrated scenarios" (THEMIS). As a case study, we apply THEMIS in an integrated environmental assessment of concentrating solar power. Life-cycle greenhouse gas emissions for this plant range from 33 to 95 g CO2 eq./kWh across different world regions in 2010, falling to 30-87 g CO2 eq./kWh in 2050. Using regional life cycle data yields insightful results. More generally, these results also highlight the need for systematic life cycle frameworks that capture the actual consequences and feedback effects of large-scale policies in the long term. PMID:26308384

  17. Medical Scenarios Relevant to Spaceflight

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Hurs, Victor; Doerr, Harold

    2004-01-01

    The Medical Operational Support Team (MOST) was tasked by the JSC Space Medicine and Life Sciences Directorate (SLSD) to incorporate medical simulation into 1) medical training for astronaut-crew medical officers (CMO) and medical flight control teams and 2) evaluations of procedures and resources required for medical care aboard the International Space Station (ISS). Development of evidence-based medical scenarios that mimic the physiology observed during spaceflight will be needed for the MOST to complete these two tasks. The MOST used a human patient simulator, the ISS-like resources in the Medical Simulation Laboratory (MSL), and evidence from space operations, military operations and medical literature to develop space relevant medical scenarios. These scenarios include conditions concerning airway management, Advanced Cardiac Life Support (ACLS) and mitigating anaphylactic symptoms. The MOST has used these space relevant medical scenarios to develop a preliminary space medical training regimen for NASA flight surgeons, Biomedical Flight Controllers (Biomedical Engineers; BME) and CMO-analogs. This regimen is conducted by the MOST in the MSL. The MOST has the capability to develop evidence-based space-relevant medical scenarios that can help SLSD I) demonstrate the proficiency of medical flight control teams to mitigate space-relevant medical events and 2) validate nextgeneration medical equipment and procedures for space medicine applications.

  18. Will Realistic Fossil Fuel Burning Scenarios Prevent Catastrophic Climate Change?

    NASA Astrophysics Data System (ADS)

    Tans, P. P.; Rutledge, D.

    2012-12-01

    In the IPCC Special Report on Emissions Scenarios the driving forces are almost entirely demographic and socio-economic, with scant attention given to potential resource limitations. In a recent study D. Rutledge (2011) shows that in the case of historical coal production, a stable estimate, typically much lower than early estimates of reserves, of total long term production of a region can be obtained well before peak production is reached based on actual production numbers until that point. The estimates are based on produced quantities only, and appear to contradict the assumption of dominant control by socio-economic factors and improvements in technology. Therefore, a projection of climate forcing based on a emissions scenario close to the lowest of the IPCC scenarios may be more realistic. The longevity of the CO2 enhancement in the atmosphere and oceans is thousands of years. The partitioning of the CO2 enhancement between atmosphere and oceans, and thus climate forcing by CO2, is calculated until the year 2500. The fundamental difficulty of CO2 removal strategies is pointed out. The integral of climate forcing until 2500 under a low emissions scenario is still so large that climate change may become an impediment to human development in addition to higher energy costs. D. Rutledge, International J. Coal Geology 85, 23-33 (2011).

  19. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  20. Type Ia Supernova Models and Progenitor Scenarios

    NASA Astrophysics Data System (ADS)

    Nomoto, Ken'ichi; Kamiya, Yasuomi; Nakasato, Naohito

    2013-01-01

    We review some recent developments in theoretical studies on the connection between the progenitor systems of Type Ia supernovae (SNe Ia) and the explosion mechanisms. (1) DD-subCh: In the merging of double C+O white dwarfs (DD scenario), if the carbon detonation is induced near the white dwarf (WD) surface in the early dynamical phase, it could result in the (effectively) sub-Chandrasekhar mass explosion. (2) DD-Ch: If no surface C-detonation is ignited, the WD could grow until the Chandrasekhar mass is reached, but the outcome depends on whether the quiescent carbon shell burning is ignited and burns C+O into O+Ne+Mg. (3) SD-subCh: In the single degenerate (SD) scenario, if the He shell-flashes grow strong to induce a He detonation, it leads to the sub-Chandra explosion. (4) SD-Ch: If the He-shell flashes are not strong enough, they still produce interesting amounts of Si and S near the surface of the C+O WD before the explosion. In the Chandra mass explosion, the central density is high enough to produce electron capture elements, e.g., stable 58Ni. Observations of the emission lines of Ni in the nebular spectra provides useful diagnostics of the sub-Chandra vs. Chandra issue. The recent observations of relatively low velocity carbon near the surface of SNe Ia provide also an interesting constraint on the explosion models.

  1. Overview of a new scenario framework for climate change research

    NASA Astrophysics Data System (ADS)

    Ebi, K. L.

    2013-12-01

    The scientific community is developing new integrated global, regional, and sectoral scenarios to facilitate interdisciplinary research and assessment to explore the range of possible future climates and related physical changes; the risks these could pose to human and natural systems, particularly how these changes could interact with social, economic, and environmental development pathways; the degree to which mitigation and adaptation policies can avoid and reduce the risks; the costs and benefits of various policy mixes; residual impacts under alternative pathways; and the relationship with sustainable development. Developing new scenarios for use in impacts, adaptation, and mitigation research requires more than emissions of greenhouse gases and resulting climate change. Scenarios also require assumptions about socioeconomic development, including a narrative, and qualitative and quantitative assumptions about development patterns. An insight recently gained is that the magnitude and extent of greenhouse gas emissions is relatively independent of demographic and socioeconomic development; that is, multiple demographic and socioeconomic development pathways can lead to any particular emission scenario. A relatively wealthy world with high population density could have low greenhouse gas emissions because of policies that encourage energy efficiency and sufficient low emission technology. The opposite also is plausible. Therefore, demographic and socioeconomic development pathways can be described separately from the Representative Concentration Pathways and then combined using a matrix architecture into a broader range of scenarios than was possible with the SRES. Shared Socioeconomic Pathways (SSPs) define the state of human and natural societies at a macro scale. To encompass a wide range of possible development pathways, five SSPs are defined along two axes describing worlds with increasing socioeconomic challenges to mitigation (y-axis) and adaptation (x

  2. The USGS Earthquake Scenario Project

    NASA Astrophysics Data System (ADS)

    Wald, D. J.; Petersen, M. D.; Wald, L. A.; Frankel, A. D.; Quitoriano, V. R.; Lin, K.; Luco, N.; Mathias, S.; Bausch, D.

    2009-12-01

    The U.S. Geological Survey’s (USGS) Earthquake Hazards Program (EHP) is producing a comprehensive suite of earthquake scenarios for planning, mitigation, loss estimation, and scientific investigations. The Earthquake Scenario Project (ESP), though lacking clairvoyance, is a forward-looking project, estimating earthquake hazard and loss outcomes as they may occur one day. For each scenario event, fundamental input includes i) the magnitude and specified fault mechanism and dimensions, ii) regional Vs30 shear velocity values for site amplification, and iii) event metadata. A grid of standard ShakeMap ground motion parameters (PGA, PGV, and three spectral response periods) is then produced using the well-defined, regionally-specific approach developed by the USGS National Seismic Hazard Mapping Project (NHSMP), including recent advances in empirical ground motion predictions (e.g., the NGA relations). The framework also allows for numerical (3D) ground motion computations for specific, detailed scenario analyses. Unlike NSHMP ground motions, for ESP scenarios, local rock and soil site conditions and commensurate shaking amplifications are applied based on detailed Vs30 maps where available or based on topographic slope as a proxy. The scenario event set is comprised primarily by selection from the NSHMP events, though custom events are also allowed based on coordination of the ESP team with regional coordinators, seismic hazard experts, seismic network operators, and response coordinators. The event set will be harmonized with existing and future scenario earthquake events produced regionally or by other researchers. The event list includes approximate 200 earthquakes in CA, 100 in NV, dozens in each of NM, UT, WY, and a smaller number in other regions. Systematic output will include all standard ShakeMap products, including HAZUS input, GIS, KML, and XML files used for visualization, loss estimation, ShakeCast, PAGER, and for other systems. All products will be

  3. Global Food Demand Scenarios for the 21st Century

    PubMed Central

    Biewald, Anne; Weindl, Isabelle; Popp, Alexander; Lotze-Campen, Hermann

    2015-01-01

    Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries. PMID:26536124

  4. Global Food Demand Scenarios for the 21st Century.

    PubMed

    Bodirsky, Benjamin Leon; Rolinski, Susanne; Biewald, Anne; Weindl, Isabelle; Popp, Alexander; Lotze-Campen, Hermann

    2015-01-01

    Long-term food demand scenarios are an important tool for studying global food security and for analysing the environmental impacts of agriculture. We provide a simple and transparent method to create scenarios for future plant-based and animal-based calorie demand, using time-dependent regression models between calorie demand and income. The scenarios can be customized to a specific storyline by using different input data for gross domestic product (GDP) and population projections and by assuming different functional forms of the regressions. Our results confirm that total calorie demand increases with income, but we also found a non-income related positive time-trend. The share of animal-based calories is estimated to rise strongly with income for low-income groups. For high income groups, two ambiguous relations between income and the share of animal-based products are consistent with historical data: First, a positive relation with a strong negative time-trend and second a negative relation with a slight negative time-trend. The fits of our regressions are highly significant and our results compare well to other food demand estimates. The method is exemplarily used to construct four food demand scenarios until the year 2100 based on the storylines of the IPCC Special Report on Emissions Scenarios (SRES). We find in all scenarios a strong increase of global food demand until 2050 with an increasing share of animal-based products, especially in developing countries. PMID:26536124

  5. Ultra-Perfect Sorting Scenarios

    NASA Astrophysics Data System (ADS)

    Ouangraoua, Aïda; Bergeron, Anne; Swenson, Krister M.

    Perfection has been used as a criteria to select rearrangement scenarios since 2004. However, there is a fundamental bias towards extant species in the original definition: ancestral species are not bound to perfection. Here we develop a new theory of perfection that takes an egalitarian view of species, and apply it to the complex evolution of mammal chromosome X.

  6. Future Scenarios and Environmental Education

    ERIC Educational Resources Information Center

    Kopnina, Helen

    2014-01-01

    This article explores a number of questions about visions of the future and their implications for environmental education (EE). If the future were known, what kind of actions would be needed to maintain the positive aspects and reverse the negative ones? How could these actions be translated into the aims of EE? Three future scenarios are…

  7. Space resources. Volume 1: Scenarios

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    A number of possible future paths for space exploration and development are presented. The topics covered include the following: (1) the baseline program; (2) alternative scenarios utilizing nonterrestrial resources; (3) impacts of sociopolitical conditions; (4) common technologies; and issues for further study.

  8. Designing Scenarios for Human Action.

    ERIC Educational Resources Information Center

    Carroll, John M.

    1994-01-01

    An approach to the design of computer systems and applications in which scenarios of human-system interaction are a central working design representation are described and illustrated by examples from the design of a multimedia information system. (Contains 21 references.) (KRN)

  9. Scenario Writing: A Therapeutic Application.

    ERIC Educational Resources Information Center

    Haddock, Billy D.

    1989-01-01

    Introduces scenario writing as useful therapeutic technique. Presents case study of woman in midst of divorce and custody fight to illustrate context in which technique was applied. Suggests additional applications. Concludes that good response is more likely for clients who possess good writing skills although other clients may use their own…

  10. Influence of future anthropogenic emissions on climate, natural emissions, and air quality

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Streets, David G.

    2009-04-01

    This study examines the effects of future anthropogenic emissions on climate, and the resulting feedback to natural emissions and air quality. Speciated sector- and region-specific 2030 emission factors were developed to produce gas and particle emission inventories that followed Special Report on Emission Scenarios (SRES) A1B and B1 emission trajectories. Current and future climate model simulations were run, in which anthropogenic emission changes affected climate, which fed back to natural emissions from lightning (NO, NO2, HONO, HNO3, N2O, H2O2, HO2, CO), soils (dust, bacteria, NO, N2O, H2, CH4, H2S, DMS, OCS, CS2), the ocean (bacteria, sea spray, DMS, N2O, H2, CH4), vegetation (pollen, spores, isoprene, monoterpenes, methanol, other VOCs), and photosynthesis/respiration. New methods were derived to calculate lightning flash rates as a function of size-resolved collisions and other physical principles and pollen, spore, and bacteria emissions. Although the B1 scenario was "cleaner" than the A1B scenario, global warming increased more in the B1 scenario because much A1B warming was masked by additional reflective aerosol particles. Thus neither scenario is entirely beneficial from a climate and health perspective, and the best control measure is to reduce warming gases and warming/cooling particles together. Lightning emissions declined by ˜3% in the B1 scenario and ˜12% in the A1B scenario as the number of ice crystals, thus charge-separating bounceoffs, decreased. Net primary production increased by ˜2% in both scenarios. Emissions of isoprene and monoterpenes increased by ˜1% in the A1B scenario and 4-5% in the B1 scenario. Near-surface ozone increased by ˜14% in the A1B scenario and ˜4% in the B1 scenario, reducing ambient isoprene in the latter case. Gases from soils increased in both scenarios due to higher temperatures. Near-surface PM2.5 mass increased by ˜2% in the A1B scenario and decreased by ˜2% in the B1 scenario. The resulting 1.4% higher

  11. Past, Present, and Future Anthropogenic Emissions over Asia: a Regional Air Quality Modeling Perspective

    NASA Astrophysics Data System (ADS)

    Woo, Jung-Hun; Jung, Bujeon; Choi, Ki-Chul; Seo, Ji-Hyun; Kim, Tae Hyung; Park, Rokjin J.; Youn, Daeok; Jeong, Jaein; Moon, Byung-Kwon; Yeh, Sang-Wook

    2010-05-01

    Climate change will also affect future regional air quality which has potential human health, ecosystem, and economic implications. To analyze the impacts of climate change on Asian air quality, the NIER (National Institute of Environmental Research, Korea) integrated modeling framework was developed based on global-to-regional climate and atmospheric chemistry models. In this study, we developed emission inventories for the modeling framework for 1980~2100 with an emphasis on Asia emissions. Two emission processing systems which have functions of emission projection, spatial/temporal allocation, and chemical speciation have been also developed in support of atmospheric chemistry models including GEOS-Chem and Models-3/CMAQ. Asia-based emission estimates, projection factors, temporal allocation parameters were combined to improve regional modeling capability of past, present and future air quality over Asia. The global CO emissions show a 23% decrease from the years 1980 to 2000. For the future CO (from year 2000 to 2100), the A2 scenario shows a 95% increase due to the B40 (Residential-Biofuel) sector of Western Africa, Eastern Africa and East Asia and the F51 (Transport Road-Fossil fuel) sector of Middle East, USA and South Asia. The B1 scenario, however, shows a 79% decrease of emissions due to B40 and F51 sectors of East Asia, South Asia and USA for the same period. In many cases, Asian emissions play important roles for global emission increase or decrease depending on the IPCC scenarios considered. The regional ozone forming potential will be changed due to different VOC/NOx emission ratio changes in the future. More similarities and differences of Asian emission characteristics, in comparison with its global counterpart, are investigated.

  12. Exploring NASA Human Spaceflight and Pioneering Scenarios

    NASA Technical Reports Server (NTRS)

    Zapata, Edgar; Wilhite, Alan

    2015-01-01

    The life cycle cost analysis of space exploration scenarios is explored via a merger of (1) scenario planning, separating context and (2) modeling and analysis of specific content. Numerous scenarios are presented, leading to cross-cutting recommendations addressing life cycle costs, productivity, and approaches applicable to any scenarios. Approaches address technical and non-technical factors.

  13. Health in the New Scenarios for Climate Change Research

    PubMed Central

    Ebi, Kristie L.

    2013-01-01

    The climate change research community is developing a toolkit for creating new scenarios to explore and evaluate the extensive uncertainties associated with future climate change and development pathways. Components of the toolkit include pathways for greenhouse gas emissions over this century and their associated magnitude and pattern of climate change; descriptions of a range of possible socioeconomic development pathways, including qualitative narratives and quantitative elements; and climate change policies to achieve specific levels of radiative forcing and levels of adaptive capacity. These components are combined within a matrix architecture to create a scenario. Five reference socioeconomic development pathways have been described along axes describing increasing socioeconomic and environmental challenges to adaptation and to mitigation. This paper extends these global pathways to describe their possible consequences for public health and health care, and considers the additional elements that could be added to increase the relevance of the new scenarios to address a wider range of policy relevant questions than previously possible. PMID:24452253

  14. Integrated climate/land use/hydrological change scenarios for assessing threats to ecosystem services on California rangelands

    NASA Astrophysics Data System (ADS)

    Byrd, K. B.; Flint, L. E.; Casey, C. F.; Alvarez, P.; Sleeter, B. M.; Sohl, T.

    2013-12-01

    In California there are over 18 million acres of rangelands in the Central Valley and the interior Coast Range, most of which are privately owned and managed for livestock production. Ranches provide extensive wildlife habitat and generate multiple ecosystem services that carry considerable market and non-market values. These rangelands are under pressure from urbanization and conversion to intensive agriculture, as well as from climate change that can alter the flow of these services. To understand the coupled and isolated impacts of land use and climate change on rangeland ecosystem services, we developed six spatially explicit (250 m) coupled climate/land use/hydrological change scenarios for the Central Valley and oak woodland regions of California consistent with three IPCC emission scenarios - A2, A1B and B1. Three land use land cover (LULC) change scenarios were each integrated with two downscaled global climate models (GCMs) (a warm, wet future and a hot, dry future) and related hydrologic data. We used these scenarios to quantify wildlife habitat, water supply (recharge potential and streamflow) and carbon sequestration on rangelands and to conduct an economic analysis associated with changes in these benefits. The USGS FOREcasting SCEnarios of land-use change model (FORE-SCE), which runs dynamically with downscaled GCM outputs, was used to generate maps of yearly LULC change for each scenario from 2006 to 2100. We used the USGS Basin Characterization Model (BCM), a regional water balance model, to generate change in runoff, recharge, and stream discharge based on land use change and climate change. Metrics derived from model outputs were generated at the landscape scale and for six case-study watersheds. At the landscape scale, over a quarter of the million acres set aside for conservation in the B1 scenario would otherwise be converted to agriculture in the A2 scenario, where temperatures increase by up to 4.5 °C compared to 1.3 °C in the B1 scenario

  15. Polyethylene recycling: Waste policy scenario analysis for the EU-27.

    PubMed

    Andreoni, Valeria; Saveyn, Hans G M; Eder, Peter

    2015-08-01

    This paper quantifies the main impacts that the adoption of the best recycling practices together with a reduction in the consumption of single-use plastic bags and the adoption of a kerbside collection system could have on the 27 Member States of the EU. The main consequences in terms of employment, waste management costs, emissions and energy use have been quantified for two scenarios of polyethylene (PE) waste production and recycling. That is to say, a "business as usual scenario", where the 2012 performances of PE waste production and recycling are extrapolated to 2020, is compared to a "best practice scenario", where the best available recycling practices are modelled together with the possible adoption of the amended Packaging and Packaging Waste Directive related to the consumption of single-use plastic bags and the implementation of a kerbside collection system. The main results show that socio-economic and environmental benefits can be generated across the EU by the implementation of the best practice scenario. In particular, estimations show a possible reduction of 4.4 million tonnes of non-recycled PE waste, together with a reduction of around €90 million in waste management costs in 2020 for the best practice scenario versus the business as usual scenario. An additional 35,622 jobs are also expected to be created. In environmental terms, the quantity of CO2 equivalent emissions could be reduced by around 1.46 million tonnes and the net energy requirements are expected to increase by 16.5 million GJ as a consequence of the reduction in the energy produced from waste. The main analysis provided in this paper, together with the data and the model presented, can be useful to identify the possible costs and benefits that the implementation of PE waste policies and Directives could generate for the EU. PMID:25976302

  16. A Native American exposure scenario.

    PubMed

    Harris, S G; Harper, B L

    1997-12-01

    EPA's Risk Assessment Guidance for Superfund (RAGS) and later documents provide guidance for estimating exposures received from suburban and agricultural activity patterns and lifestyles. However, these methods are not suitable for typical tribal communities whose members pursue, at least in part, traditional lifestyles. These lifestyles are derived from a long association with all of the resources in a particular region. We interviewed 35 members of a Columbia River Basin tribe to develop a lifestyle-based subsistence exposure scenario that represents a midrange exposure that a traditional tribal member would receive. This scenario provides a way to partially satisfy Executive Order 12,898 on environmental justice, which requires a specific evaluation of impacts from federal actions to peoples with subsistence diets. Because a subsistence diet is only a portion of what is important to a traditional lifestyle, we also used information obtained from the interviews to identify parameters for evaluating impacts to environmental and sociocultural quality of life. PMID:9463932

  17. Chlorofluorocarbon production scenarios: possible changes to stratospheric ozone

    SciTech Connect

    Wuebbles, D.J.; Tarp, R.L.; Nold, A.; Wood, W.P.

    1981-01-01

    As one aspect of the regulatory process, the Environmental Protection Agency has derived a series of scenarios for future atmospheric emission rates of the chlorofluorocarbons CFCl/sub 3/ (also referred to as F-11), CF/sub 2/Cl/sub 2/ (F-12), CCl/sub 2/FCClF/sub 2/(F-113), CClF/sub 2/CClF/sub 2/(F-114), and CClF/sub 2/CF/sub 3/ (F-115). These scenarios are based on potential industrial production and commercial applications, and the eventual release of these chemicals into the atmosphere. In this study, the potential effect on stratospheric ozone resulting from future chlorofluorocarbon emissions as suggested by these scenarios is examined. Assessments are based upon model calculations using the one-dimensional coupled transport and chemical kinetics model of the troposphere and stratosphere developed at Lawrence Livermore National Laboratory. The change in total ozone column calculated for the seven scenarios as a function of time is given. (JGB)

  18. Temperature increase of 21st century mitigation scenarios

    SciTech Connect

    Van Vuuren, Detlef; Meinshausen, Malte; Plattner, Gian-Kasper; Joos, Fortunat; Strassmann, Kuno M.; Smith, Steven J.; Wigley, T. M.; Raper, S.; Riahi, Keywan; De La Chesnaye, Francisco; Den Elzen, Michel; Fujino, Junicho; Kejun, Jiang; Nakicenovic, Nebojsa; Paltsev, S.; Reilly, J. M.

    2008-10-06

    Estimates on 21st century global mean surface temperature increase have generally been based on scenarios that do not include climate policies. Newly developed multi-gas mitigation scenarios now allow the assessment of possible impacts of climate policies on projected warming ranges. By combing emission pathway results from multiple energy-economic models, we show that these mitigation scenarios result in a range of 21st century temperature increase of 0.5 to 4.2°C over 1990 levels as compared to 1.3-7.3 °C for the no-policy cases. About half the range is due to differences in the assumed stringency of the global climate policy and half is due to uncertainty in our understanding of the climate system, specifically, the carbon cycle and climate sensitivity. A minimum warming of about 0.5-2.7°C (avg. 1.3oC) remains for even the most stringent stabilization scenarios analyzed here - highlighting the need for both emission mitigation and adaptation policies.

  19. Integrated Analysis of Market Transformation Scenarios with HyTrans

    SciTech Connect

    Greene, David L; Leiby, Paul Newsome; Bowman, David Charles

    2007-06-01

    This report presents alternative visions of the transition of light-duty vehicle transportation in the United States from petroleum to hydrogen power. It is a supporting document to the U.S. Department of Energy's Summary Report, "Analysis of the Transition to a Hydrogen Economy and the Potential Hydrogen Infrastructure Requirements" (U.S. DOE, 2007). Three alternative early transition scenarios were analyzed using a market simulation model called HyTrans. The HyTrans model simultaneously represents the behavior of fuel suppliers, vehicle manufacturers and consumers, explicitly recognizing the importance of fuel availability and the diversity of vehicle choices to consumers, and dependence of fuel supply on the existence of market demand. Competitive market outcomes are simulated by means of non-linear optimization of social surplus through the year 2050. The three scenarios specify different rates and geographical distributions of market penetration for hydrogen fuel cell vehicles from 2012 through 2025. Scenario 1 leads to 2 million vehicles on U.S. roads by 2025, while Scenarios 2 and 3 result in 5 million and 10 million FCVs in use by 2025, respectively. The HyTrans model "costs out" the transition scenarios and alternative policies for achieving them. It then tests whether the scenarios, together with the achievement of the DOE's technology goals for fuel cell vehicles and hydrogen infrastructure technologies could lead to a sustainable transition to hydrogen powered transportation. Given the achievement of DOE's ambitious technology goals, all three scenarios appear to lead to a sustainable transition to hydrogen. In the absence of early transition deployment effort, no transition is likely to begin before 2045. The cumulative costs of the transition scenarios to the government range from $8 billion to $45 billion, depending on the scenario, the policies adopted and the degree of cost-sharing with industry. In the absence of carbon constraining policies, the

  20. Uncertainty of simulated groundwater levels arising from stochastic transient climate change scenarios

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Blenkinsop, Stephen; Burton, Aidan; Fowler, Hayley; Dassargues, Alain

    2010-05-01

    The evaluation of climate change impact on groundwater reserves represents a difficult task because both hydrological and climatic processes are complex and difficult to model. In this study, we present an innovative methodology that combines the use of integrated surface - subsurface hydrological models with advanced stochastic transient climate change scenarios. This methodology is applied to the Geer basin (480 km²) in Belgium, which is intensively exploited to supply the city of Liège (Belgium) with drinking water. The physically-based, spatially-distributed, surface-subsurface flow model has been developed with the finite element model HydroGeoSphere . The simultaneous solution of surface and subsurface flow equations in HydroGeoSphere, as well as the internal calculation of the actual evapotranspiration as a function of the soil moisture at each node of the evaporative zone, enables a better representation of interconnected processes in all domains of the catchment (fully saturated zone, partially saturated zone, surface). Additionally, the use of both surface and subsurface observed data to calibrate the model better constrains the calibration of the different water balance terms. Crucially, in the context of climate change impacts on groundwater resources, the evaluation of groundwater recharge is improved. . This surface-subsurface flow model is combined with advanced climate change scenarios for the Geer basin. Climate change simulations were obtained from six regional climate model (RCM) scenarios assuming the SRES A2 greenhouse gases emission (medium-high) scenario. These RCM scenarios were statistically downscaled using a transient stochastic weather generator technique, combining 'RainSim' and the 'CRU weather generator' for temperature and evapotranspiration time series. This downscaling technique exhibits three advantages compared with the 'delta change' method usually used in groundwater impact studies. (1) Corrections to climate model output are

  1. Scenario Planning for Coastal Adaptation

    NASA Astrophysics Data System (ADS)

    Parris, A.; Obeysekera, J.; Knuuti, K.; Moss, R. H.; Horton, R. M.; Weiss, J. L.

    2012-12-01

    Sea level rise (SLR) is a persistent environmental change observed globally for more than a century, and its expected continuation poses significant challenges to the United States (US). We summarize a process associated with the United States National Climate Assessment for identifying four scenarios of global mean sea level rise (SLR). The main finding is that global mean sea level is expected to rise no less than 0.2 meters and no more than 2.0 meters by the end of the century. Recent publications suggest that a 4 C world would result in global mean SLR towards the upper end of that range. Aside from this process, there is currently no coordinated, interagency effort in the US to identify agreed upon global mean sea level rise projections for the purpose of coastal planning, policy, and management. This is an important gap because identifying global mean SLR estimates is a critical step in assessing coastal impacts and vulnerabilities. At present, coastal managers are left to identify global SLR estimates through their own interpretation of the scientific literature or the advice of experts on an ad-hoc basis. Yet, relative SLR at over one hundred tide gages (~80%) along the US coast reflect the global trend (1.7 - 3.2 mm/yr). No widely accepted method is currently available for producing probabilistic projections of SLR at actionable scales (i.e., regional to local). The desire to have a most probable or likely outcome can lead to paralysis or inaction for coastal decision-making. Given the range of uncertainty in future global SLR, scenario planning offers an opportunity to overcome decision-making paralysis and initiate actions now that may reduce future impacts and vulnerabilities. Scenarios do not predict future changes, but describe future potential conditions in a manner that supports decision-making under uncertainty. Using multiple scenarios, none more likely than the other, encourages experts and decision makers to rehearse multiple, plausible futures

  2. Designing Asteroid Impact Scenario Trajectories

    NASA Astrophysics Data System (ADS)

    Chodas, Paul

    2016-05-01

    In order to study some of the technical and geopolitical issues of dealing with an asteroid on impact trajectory, a number of hypothetical impact scenarios have been presented over the last ten years or so. These have been used, for example, at several of the Planetary Defense Conferences (PDCs), as well as in tabletop exercises with the Federal Emergency Management Agency (FEMA), along with other government agencies. The exercise at the 2015 PDC involved most of the attendees, consisted of seven distinct steps (“injects”), and with all the presentations and discussions, took up nearly 10 hours of conference time. The trajectory for the PDC15 scenario was entirely realistic, and was posted ahead of the meeting. It was made available in the NEO Program’s Horizons ephemeris service so that users could , for example, design their own deflection missions. The simulated asteroid and trajectory had to meet numerous very exacting requirements: becoming observable on the very first day of the conference, yet remaining very difficult to observe for the following 7 years, and far enough away from Earth that it was out of reach of radar until just before impact. It had to be undetectable in the past, and yet provide multiple perihelion opportunities for deflection in the future. It had to impact in a very specific region of the Earth, a specific number of years after discovery. When observations of the asteroid are simulated to generate an uncertainty region, that entire region must impact the Earth along an axis that cuts across specific regions of the Earth, the “risk corridor”. This is important because asteroid deflections generally move an asteroid impact point along this corridor. One scenario had a requirement that the asteroid pass through a keyhole several years before impact. The PDC15 scenario had an additional constraint that multiple simulated kinetic impactor missions altered the trajectory at a deflection point midway between discovery and impact

  3. On the hadronic cascade scenario for extreme BL Lacs

    NASA Astrophysics Data System (ADS)

    Tavecchio, Fabrizio

    2014-03-01

    The peculiar high-energy emission spectrum of the so-called extreme BL Lacs (EHBL) challenges the standard emission models of blazars. Among the possible solutions, the so-called hadronic cascade scenario assumes that the observed high-energy radiation is produced in the intergalactic space through photo-hadronic reactions by ultra-high energy cosmic rays (UHECR) with energies up to 1019-20 eV beamed by the blazar jet. Under the assumption - implicit in this model - that the intrinsic high-energy synchrotron self-Compton emission of the blazar does not substantially contribute to the observed γ-ray spectrum, we derive constraints to the basic physical quantities of the jet and we compare them with the requirements of the hadronic cascade scenario. We found that, for a plausible range of relativistic jet Doppler factors (δ = 10-50), the maximum achievable energy of the accelerated protons can exceed 2 × 1019 eV with jet powers of the order of ≈1044 erg s-1, parameters compatible with the requests of the hadronic scenario even if EHBL are embedded in magnetic fields of cosmic filaments. We also discuss the consequences of our results for the possibility that local EHBL contribute to the observed UHECR.

  4. Safety evaluation of MHTGR licensing basis accident scenarios

    SciTech Connect

    Kroeger, P.G.

    1989-04-01

    The safety potential of the Modular High-Temperature Gas Reactor (MHTGR) was evaluated, based on the Preliminary Safety Information Document (PSID), as submitted by the US Department of Energy to the US Nuclear Regulatory Commission. The relevant reactor safety codes were extended for this purpose and applied to this new reactor concept, searching primarily for potential accident scenarios that might lead to fuel failures due to excessive core temperatures and/or to vessel damage, due to excessive vessel temperatures. The design basis accident scenario leading to the highest vessel temperatures is the depressurized core heatup scenario without any forced cooling and with decay heat rejection to the passive Reactor Cavity Cooling System (RCCS). This scenario was evaluated, including numerous parametric variations of input parameters, like material properties and decay heat. It was found that significant safety margins exist, but that high confidence levels in the core effective thermal conductivity, the reactor vessel and RCCS thermal emissivities and the decay heat function are required to maintain this safety margin. Severe accident extensions of this depressurized core heatup scenario included the cases of complete RCCS failure, cases of massive air ingress, core heatup without scram and cases of degraded RCCS performance due to absorbing gases in the reactor cavity. Except for no-scram scenarios extending beyond 100 hr, the fuel never reached the limiting temperature of 1600/degree/C, below which measurable fuel failures are not expected. In some of the scenarios, excessive vessel and concrete temperatures could lead to investment losses but are not expected to lead to any source term beyond that from the circulating inventory. 19 refs., 56 figs., 11 tabs.

  5. Modelling regional climate change and urban planning scenarios and their impacts on the urban environment in two cities with WRF-ACASA

    NASA Astrophysics Data System (ADS)

    Falk, M.; Pyles, R. D.; Marras, S.; Spano, D.; Paw U, K. T.

    2011-12-01

    The number of urban metabolism studies has increased in recent years, due to the important impact that energy, water and carbon exchange over urban areas have on climate change. Urban modeling is therefore crucial in the future design and management of cities. This study presents the ACASA model coupled to the Weather Research and Forecasting (WRF-ARW) mesoscale model to simulate urban fluxes at a horizontal resolution of 200 meters for urban areas of roughly 100 km^2. As part of the European Project "BRIDGE", these regional simulations were used in combination with remotely sensed data to provide constraints on the land surface types and the exchange of carbon and energy fluxes from urban centers. Surface-atmosphere exchanges of mass and energy were simulated using the Advanced Canopy Atmosphere Soil Algorithm (ACASA). ACASA is a multi-layer high-order closure model, recently modified to work over natural, agricultural as well as urban environments. In particular, improvements were made to account for the anthropogenic contribution to heat and carbon production. For two cities four climate change and four urban planning scenarios were simulated: The climate change scenarios include a base scenario (Sc0: 2008 Commit in IPCC), a medium emission scenario (Sc1: IPCC A2), a worst case emission scenario (Sce2: IPCC A1F1) and finally a best case emission scenario (Sce3: IPCC B1). The urban planning scenarios include different development scenarios such as smart growth. The two cities are a high latitude city, Helsinki (Finland) and an historic city, Florence (Italy). Helsinki is characterized by recent, rapid urbanization that requires a substantial amount of energy for heating, while Florence is representative of cities in lower latitudes, with substantial cultural heritage and a comparatively constant architectural footprint over time. In general, simulated fluxes matched the point observations well and showed consistent improvement in the energy partitioning over

  6. Europa Explorer Operational Scenarios Development

    NASA Technical Reports Server (NTRS)

    Lock, Robert E.; Pappalardo, Robert T.; Clark, Karla B.

    2008-01-01

    In 2007, NASA conducted four advanced mission concept studies for outer planets targets: Europa, Ganymede, Titan and Enceladus. The studies were conducted in close cooperation with the planetary science community. Of the four, the Europa Explorer Concept Study focused on refining mission options, science trades and implementation details for a potential flagship mission to Europa in the 2015 timeframe. A science definition team (SDT) was appointed by NASA to guide the study. A JPL-led engineering team worked closely with the science team to address 3 major focus areas: 1) credible cost estimates, 2) rationale and logical discussion of radiation risk and mitigation approaches, and 3) better definition and exploration of science operational scenario trade space. This paper will address the methods and results of the collaborative process used to develop Europa Explorer operations scenarios. Working in concert with the SDT, and in parallel with the SDT's development of a science value matrix, key mission capabilities and constraints were challenged by the science and engineering members of the team. Science goals were advanced and options were considered for observation scenarios. Data collection and return strategies were tested via simulation, and mission performance was estimated and balanced with flight and ground system resources and science priorities. The key to this successful collaboration was a concurrent development environment in which all stakeholders could rapidly assess the feasibility of strategies for their success in the full system context. Issues of science and instrument compatibility, system constraints, and mission opportunities were treated analytically and objectively leading to complementary strategies for observation and data return. Current plans are that this approach, as part of the system engineering process, will continue as the Europa Explorer Concept Study moves toward becoming a development project.

  7. Spent fuel receipt scenarios study

    SciTech Connect

    Ballou, L.B.; Montan, D.N.; Revelli, M.A.

    1990-09-01

    This study reports on the results of an assignment from the DOE Office of Civilian Radioactive Waste Management to evaluate of the effects of different scenarios for receipt of spent fuel on the potential performance of the waste packages in the proposed Yucca Mountain high-level waste repository. The initial evaluations were performed and an interim letter report was prepared during the fall of 1988. Subsequently, the scope of work was expanded and additional analyses were conducted in 1989. This report combines the results of the two phases of the activity. This study is a part of a broader effort to investigate the options available to the DOE and the nuclear utilities for selection of spent fuel for acceptance into the Federal Waste Management System for disposal. Each major element of the system has evaluated the effects of various options on its own operations, with the objective of providing the basis for performing system-wide trade-offs and determining an optimum acceptance scenario. Therefore, this study considers different scenarios for receipt of spent fuel by the repository only from the narrow perspective of their effect on the very-near-field temperatures in the repository following permanent closure. This report is organized into three main sections. The balance of this section is devoted to a statement of the study objective, a summary of the assumptions. The second section of the report contains a discussion of the major elements of the study. The third section summarizes the results of the study and draws some conclusions from them. The appendices include copies of the waste acceptance schedule and the existing and projected spent fuel inventory that were used in the study. 10 refs., 27 figs.

  8. The Role of Perpetrator Motivation in Two Crime Scenarios

    ERIC Educational Resources Information Center

    Sizemore, O. J.

    2013-01-01

    Undergraduate volunteers (n = 134) were randomly assigned in a 2 x 2 design that manipulated type of crime (rape vs. robbery) and perpetrator motivation (anger vs. desire). After reading one of the crime scenarios, participants responded to a series of attitude items regarding responsibility for the crime, assigned blame to agents mentioned in the…

  9. Program Simulates Spacecraft Communication Scenarios

    NASA Technical Reports Server (NTRS)

    Land, Kenneth P.; Best, Robert E.; Steel, Douglas J.; Gadd, William C.

    1994-01-01

    Dynamic Environment Communications Alalysis Testbed (DECAT) computer program is modular simulation program. Computes effects of motion, antenna radiation patterns, noise, interference, and other phenomena. Flexibility enables users to analyze many communications scenarios quickly and easily, eliminating need for users to create specific computer programs. Users create simulations involving any number of vehicles, receivers, transmitters, and antennas via graphical user interface (GUI). DECAT GUI implemented by use of software tool called "Transportable Applications Environment Plus" (TAE Plus). Written in C language. Graphical user interface requires TAE Plus, Version 5.1 package available from COSMIC (GSC-13463).

  10. The minimal scenario of leptogenesis

    NASA Astrophysics Data System (ADS)

    Blanchet, Steve; Di Bari, Pasquale

    2012-12-01

    We review the main features and results of thermal leptogenesis within the type I seesaw mechanism, the minimal extension of the Standard Model explaining neutrino masses and mixing. After presenting the simplest approach, the vanilla scenario, we discuss various important developments of recent years, such as the inclusion of lepton and heavy neutrino flavour effects, a description beyond a hierarchical heavy neutrino mass spectrum and an improved kinetic description within the density matrix and the closed-time-path formalisms. We also discuss how leptogenesis can ultimately represent an important phenomenological tool to test the seesaw mechanism and the underlying model of new physics.

  11. CLIMATE CHANGE AND ISOPRENE EMISSIONS FROM VEGETATION

    EPA Science Inventory

    A global model was developed for estimating spatial and temporal patterns in the emission of isoprene from vegetation under the current climate and used to estimate emissions under doubled-CO2 climate scenarios. urrent emissions were estimated on the basis of vegetation type, fol...

  12. Scenarios for coastal vulnerability assessment

    USGS Publications Warehouse

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Hay, John; Wong, Poh Poh; Nurse, Leonard

    2011-01-01

    Coastal vulnerability assessments tend to focus mainly on climate change and especially on sea-level rise. Assessment of the influence of nonclimatic environmental change or socioeconomic change is less well developed and these drivers are often completely ignored. Given that the most profound coastal changes of the twentieth century due to nonclimate drivers are likely to continue through the twenty-first century, this is a major omission. It may result in not only overstating the importance of climate change but also overlooking significant interactions of climate change and other drivers. To support the development of policies relating to climate change and coastal management, integrated assessments of climatic change in coastal areas are required, including the effects of all the relevant drivers. This chapter explores the development of scenarios (or "plausible futures") of relevant climate and nonclimate drivers that can be used for coastal analysis, with an emphasis on the nonclimate drivers. It shows the importance of analyzing the impacts of climate change and sea-level rise in a broader context of coastal change and all its drivers. This will improve the analysis of impacts, key vulnerabilities, and adaptation needs and, hence, inform climate and coastal policy. Stakeholder engagement is important in the development of scenarios, and the underlying assumptions need to be explicit, transparent, and open to scientific debate concerning their uncertainties/realism and likelihood.

  13. Scenario Development for the Southwestern United States

    NASA Astrophysics Data System (ADS)

    Mahmoud, M.; Gupta, H.; Stewart, S.; Liu, Y.; Hartmann, H.; Wagener, T.

    2006-12-01

    The primary goal of employing a scenario development approach for the U.S. southwest is to inform regional policy by examining future possibilities related to regional vegetation change, water-leasing, and riparian restoration. This approach is necessary due to a lack of existing explicit water resources application of scenarios to the entire southwest region. A formal approach for scenario development is adopted and applied towards water resources issues within the arid and semi-arid regions of the U.S. southwest following five progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. In the scenario definition phase, the inputs of scientists, modelers, and stakeholders were collected in order to define and construct relevant scenarios to the southwest and its water sustainability needs. From stakeholder-driven scenario workshops and breakout sessions, the three main axes of principal change were identified to be climate change, population development patterns, and quality of information monitoring technology. Based on the extreme and varying conditions of these three main axes, eight scenario narratives were drafted to describe the state of each scenario's respective future and the events which led to it. Events and situations are described within each scenario narrative with respect to key variables; variables that are both important to regional water resources (as distinguished by scientists and modelers), and are good tracking and monitoring indicators of change. The current phase consists of scenario construction, where the drafted scenarios are re-presented to regional scientists and modelers to verify that proper key variables are included (or excluded) from the eight narratives. The next step is to construct the data sets necessary to implement the eight scenarios on the respective computational models of modelers investigating vegetation change, water-leasing, and riparian

  14. DEVELOPMENT OF IMPACT ORIENTED CLIMATE SCENARIOS

    EPA Science Inventory

    Appropriate scenarios of future climate must be developed prior to any assessment of the impacts of climate change. he information needed by impact assessors was examined in consultation with those having experience in scenario use. ost assessors require regional scenarios with a...

  15. Viability of the Matter Bounce Scenario

    NASA Astrophysics Data System (ADS)

    de Haro, Jaume; Amorós, Jaume

    2015-04-01

    It is shown that teleparallel F(T) theories of gravity combined with Loop Quantum Cosmology support a Matter Bounce Scenario which is an alternative to the inflation scenario in the Big Bang paradigm. It is checked that these bouncing models provide theoretical data that fits well with the current observational data, allowing the viability of the Matter Bounce Scenario.

  16. Scenario Writing: A Vision of the Future.

    ERIC Educational Resources Information Center

    Shewach, Dawn L.

    1991-01-01

    The Scenario Writing component of the Future Problem Solving Program calls for students to write a short-short story exploring variables in the future. This article describes the scenario writing process, presents samples of award-winning scenarios, and offers tips for student-authors and for coaches. (JDD)

  17. Development and Change through Scenario Planning

    ERIC Educational Resources Information Center

    Chermack, Thomas J.; Walton, John S.

    2004-01-01

    This paper examines the role of scenario planning as a development and change intervention. To do so, this article provides an overview of scenario planning and an overview of development and change in organizations. The article then builds on the philosophical orientations of development and change through scenario planning introducing the…

  18. Hyperspectral Anomaly Detection in Urban Scenarios

    NASA Astrophysics Data System (ADS)

    Rejas Ayuga, J. G.; Martínez Marín, R.; Marchamalo Sacristán, M.; Bonatti, J.; Ojeda, J. C.

    2016-06-01

    We have studied the spectral features of reflectance and emissivity in the pattern recognition of urban materials in several single hyperspectral scenes through a comparative analysis of anomaly detection methods and their relationship with city surfaces with the aim to improve information extraction processes. Spectral ranges of the visible-near infrared (VNIR), shortwave infrared (SWIR) and thermal infrared (TIR) from hyperspectral data cubes of AHS sensor and HyMAP and MASTER of two cities, Alcalá de Henares (Spain) and San José (Costa Rica) respectively, have been used. In this research it is assumed no prior knowledge of the targets, thus, the pixels are automatically separated according to their spectral information, significantly differentiated with respect to a background, either globally for the full scene, or locally by image segmentation. Several experiments on urban scenarios and semi-urban have been designed, analyzing the behaviour of the standard RX anomaly detector and different methods based on subspace, image projection and segmentation-based anomaly detection methods. A new technique for anomaly detection in hyperspectral data called DATB (Detector of Anomalies from Thermal Background) based on dimensionality reduction by projecting targets with unknown spectral signatures to a background calculated from thermal spectrum wavelengths is presented. First results and their consequences in non-supervised classification and extraction information processes are discussed.

  19. The Effect of Emissions Trading And Carbon Sequestration on The Cost Of CO2 Emissions Mitigation

    SciTech Connect

    Mahasenan, Natesan; Scott, Michael J.; Smith, Steven J.

    2002-08-05

    The deployment of carbon capture and sequestration (CC&S) technologies is greatly affected by the marginal cost of controlling carbon emissions (also the value of carbon, when emissions permits are traded). Emissions limits that are more stringent in the near term imply higher near-term carbon values and therefore encourage the local development and deployment of CC&S technologies. In addition, trade in emissions obligations lowers the cost of meeting any regional or global emissions limit and so affects the rate of penetration of CC&S technologies. We examine the effects of the availability of sequestration opportunities and emissions trading (either within select regions or globally) on the cost of emissions mitigation and compliance with different emissions reduction targets for the IPCC SRES scenarios. For each base scenario and emissions target, we examine the issues outlined above and present quantitative estimates for the impacts of trade and the availability of sequestration opportunities in meeting emissions limitation obligations.

  20. Cancer care scenario in Bangladesh

    PubMed Central

    Uddin, A. F. M. Kamal; Khan, Zohora Jameela; Islam, Johirul; Mahmud, AM

    2013-01-01

    Bangladesh is a developing country that is facing many challenges, especially in the health sector. Cancer management is a priority due to the current trend of increased incidence in this region. In this article, the current scenario of cancer in Bangladesh and its management with brief history is outlined. The combined effort of government and private sector is highlighted with the gradual progress in cancer management. Recent introduction of the state-of-the-art facilities and the training facilities for human resource development are also outlined. The existing challenges and cooperation from local NGOs and other overseas sources are also highlighted to provide an insight regarding possible ways to tackle these challenges to ensure a better future. PMID:24455570

  1. SAPPHIRE: scenarios, architecture, and process.

    PubMed

    Kay, S; Redman, R; McWilliams, A; Bradley, P; Daniels, A

    1994-06-01

    General Medical Practice (GMP) information systems within the UK are becoming more sophisticated and more complex and are widely available from numerous suppliers. Although such systems are viewed as being important, they are problematic in terms of interpreting and assessing their usefulness, and their impact upon work and the organisation (G. Walsham, Interpreting Information Systems in Organizations (Wiley, Chichester, 1993)). In particular, it is difficult for any who have an interest in these systems to apply existing technical specifications to a specific situation, and to match individual requirements with the supplier's products. The research project SAPPHIRE seeks to inform the decision making of stakeholders, e.g. GPs, facilitators and suppliers, with respect to procurement, update, design and supply of GMP systems by developing the means of evaluating such systems, and by facilitating an accreditation process through that evaluation. This extended paper introduces the multi-faceted approach, scenarios, architecture and process of SAPPHIRE. PMID:7956163

  2. Industrial research for transmutation scenarios

    NASA Astrophysics Data System (ADS)

    Camarcat, Noel; Garzenne, Claude; Le Mer, Joël; Leroyer, Hadrien; Desroches, Estelle; Delbecq, Jean-Michel

    2011-04-01

    This article presents the results of research scenarios for americium transmutation in a 22nd century French nuclear fleet, using sodium fast breeder reactors. We benchmark the americium transmutation benefits and drawbacks with a reference case consisting of a hypothetical 60 GWe fleet of pure plutonium breeders. The fluxes in the various parts of the cycle (reactors, fabrication plants, reprocessing plants and underground disposals) are calculated using EDF's suite of codes, comparable in capabilities to those of other research facilities. We study underground thermal heat load reduction due to americium partitioning and repository area minimization. We endeavor to estimate the increased technical complexity of surface facilities to handle the americium fluxes in special fuel fabrication plants, americium fast burners, special reprocessing shops, handling equipments and transport casks between those facilities.

  3. The ShakeOut Scenario

    USGS Publications Warehouse

    Jones, Lucile M.; Bernknopf, Richard; Cox, Dale; Goltz, James; Hudnut, Kenneth; Mileti, Dennis; Perry, Suzanne; Ponti, Daniel; Porter, Keith; Reichle, Michael; Seligson, Hope; Shoaf, Kimberley; Treiman, Jerry; Wein, Anne

    2008-01-01

    This is the initial publication of the results of a cooperative project to examine the implications of a major earthquake in southern California. The study comprised eight counties: Imperial, Kern, Los Angeles, Orange, Riverside, San Bernardino, San Diego, and Ventura. Its results will be used as the basis of an emergency response and preparedness exercise, the Great Southern California ShakeOut, and for this purpose we defined our earthquake as occurring at 10:00 a.m. on November 13, 2008. As members of the southern California community use the ShakeOut Scenario to plan and execute the exercise, we anticipate discussion and feedback. This community input will be used to refine our assessment and will lead to a formal publication in early 2009. Our goal in the ShakeOut Scenario is to identify the physical, social and economic consequences of a major earthquake in southern California and in so doing, enable the users of our results to identify what they can change now?before the earthquake?to avoid catastrophic impact after the inevitable earthquake occurs. To do so, we had to determine the physical damages (casualties and losses) caused by the earthquake and the impact of those damages on the region?s social and economic systems. To do this, we needed to know about the earthquake ground shaking and fault rupture. So we first constructed an earthquake, taking all available earthquake research information, from trenching and exposed evidence of prehistoric earthquakes, to analysis of instrumental recordings of large earthquakes and the latest theory in earthquake source physics. We modeled a magnitude (M) 7.8 earthquake on the southern San Andreas Fault, a plausible event on the fault most likely to produce a major earthquake. This information was then fed forward into the rest of the ShakeOut Scenario. The damage impacts of the scenario earthquake were estimated using both HAZUS-MH and expert opinion through 13 special studies and 6 expert panels, and fall into four

  4. Radiation Detection Computational Benchmark Scenarios

    SciTech Connect

    Shaver, Mark W.; Casella, Andrew M.; Wittman, Richard S.; McDonald, Ben S.

    2013-09-24

    Modeling forms an important component of radiation detection development, allowing for testing of new detector designs, evaluation of existing equipment against a wide variety of potential threat sources, and assessing operation performance of radiation detection systems. This can, however, result in large and complex scenarios which are time consuming to model. A variety of approaches to radiation transport modeling exist with complementary strengths and weaknesses for different problems. This variety of approaches, and the development of promising new tools (such as ORNL’s ADVANTG) which combine benefits of multiple approaches, illustrates the need for a means of evaluating or comparing different techniques for radiation detection problems. This report presents a set of 9 benchmark problems for comparing different types of radiation transport calculations, identifying appropriate tools for classes of problems, and testing and guiding the development of new methods. The benchmarks were drawn primarily from existing or previous calculations with a preference for scenarios which include experimental data, or otherwise have results with a high level of confidence, are non-sensitive, and represent problem sets of interest to NA-22. From a technical perspective, the benchmarks were chosen to span a range of difficulty and to include gamma transport, neutron transport, or both and represent different important physical processes and a range of sensitivity to angular or energy fidelity. Following benchmark identification, existing information about geometry, measurements, and previous calculations were assembled. Monte Carlo results (MCNP decks) were reviewed or created and re-run in order to attain accurate computational times and to verify agreement with experimental data, when present. Benchmark information was then conveyed to ORNL in order to guide testing and development of hybrid calculations. The results of those ADVANTG calculations were then sent to PNNL for

  5. Analysis of five simulated straw harvest scenarios

    SciTech Connect

    Sokhansanj, Shahabaddine; Turhollow Jr, Anthony F; Stephen, Jamie; Stumborg, Mark; Fenton, James; Mani, Sudhagar

    2008-01-01

    Almost 36 million tonnes (t) of cereal grains are harvested annually on more than 16 million hectares (ha) in Canada. The net straw production varies year by year depending upon weather patterns, crop fertility, soil conservation measures, harvest method, and plant variety. The net yield of straw, after discounting for soil conservation, averages approximately 2.5 dry (d)t ha-1. Efficient equipment is needed to collect and package the material as a feedstock for industrial applications. This paper investigates the costs, energy input, and emissions from power equipment used for harvesting straw. Five scenarios were investigated: (1) large square bales, (2) round bales, (3) large compacted stacks (loafs), (4) dried chops, and (5) wet chops. The baled or loafed biomass is stacked next to the farm. Dry chop is collected in a large pile and wet chop is ensiled. The baling and stacking cost was $21.47 dt-1 (dry tonne), with little difference between round and large square baling. Loafing was the cheapest option at $17.08 dt-1. Dry chop and piling was $23.90 dt-1 and wet chop followed by ensiling was $59.75 dt-1. A significant portion of the wet chop cost was in ensiling. Energy input and emissions were proportional to the costs for each system, except for loafing, which required more energy input than the baling systems. As a fraction of the energy content of biomass (roughly 16 GJ dt-1), the energy input ranged from 1.2% for baling to 3.2% for ensiling. Emissions from the power equipment ranged from 20.3 kg CO2e dt-1 to more than 40 kg CO2e dt-1. A sensitivity analysis on the effect of yield on collection costs showed that a 33% increase in yield reduced the cost by 20%. Similarly a sensitivity analysis on weather conditions showed that a 10oC cooler climate extended the harvest period by 5-10 days whereas a 10oC warmer climate shortened the harvest period by 2-3 days.

  6. Projecting U.S. climate forcing and criteria pollutant emissions through 2050

    EPA Science Inventory

    Presentation highlighting a method for translating emission scenarios to model-ready emission inventories. The presentation highlights new features for spatially allocating emissions to counties and grid cells and identifies areas of potential improvement, such as updating tempor...

  7. A probabilistic approach to emissions from transportation sector in the coming decades

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Bond, T. C.; Streets, D. G.

    2010-12-01

    Future emission estimates are necessary for understanding climate change, designing national and international strategies for air quality control and evaluating mitigation policies. Emission inventories are uncertain and future projections even more so. Most current emission projection models are deterministic; in other words, there is only single answer for each scenario. As a result, uncertainties have not been included in the estimation of climate forcing or other environmental effects, but it is important to quantify the uncertainty inherent in emission projections. We explore uncertainties of emission projections from transportation sector in the coming decades by sensitivity analysis and Monte Carlo simulations. These projections are based on a technology driven model: the Speciated Pollutants Emission Wizard (SPEW)-Trend, which responds to socioeconomic conditions in different economic and mitigation scenarios. The model contains detail about technology stock, including consumption growth rates, retirement rates, timing of emission standards, deterioration rates and transition rates from normal vehicles to vehicles with extremely high emission factors (termed “superemitters”). However, understanding of these parameters, as well as relationships with socioeconomic conditions, is uncertain. We project emissions from transportation sectors under four different IPCC scenarios (A1B, A2, B1, and B2). Due to the later implementation of advanced emission standards, Africa has the highest annual growth rate (1.2-3.1%) from 2010 to 2050. Superemitters begin producing more than 50% of global emissions around year 2020. We estimate uncertainties from the relationships between technological change and socioeconomic conditions and examine their impact on future emissions. Sensitivities to parameters governing retirement rates are highest, causing changes in global emissions from-26% to +55% on average from 2010 to 2050. We perform Monte Carlo simulations to examine

  8. Carbon footprint of four different wastewater treatment scenarios

    NASA Astrophysics Data System (ADS)

    Diafarou, Moumouni; Mariska, Ronteltap, ,, Dr.; Damir, Brdjanovic, ,, Prof.

    2014-05-01

    Since the era of industrialization, concentrations of greenhouse gases (GHGs) have tremendously increased in the atmosphere, as a result of the extensive use of fossil fuels, deforestation, improper waste management, transport, and other economic activities (Boer, 2008).This has led to a great accumulation of greenhouse gases, forming a blanket around the Earth which contributes in the so-called "Global Warming". Over the last decades, wastewater treatment has developed strongly and has become a very important asset in mitigating the impact of domestic and industrial effluents on the environment. There are many different forms of wastewater treatment, and one of the most effective treatment technology in terms COD, N and P removal, activated sludge is often criticized for its high energy use. Some other treatment concepts have a more "green" image, but it is not clear whether this image is justified based on their greenhouse gas emission. This study focuses on the estimation of GHG emissions of four different wastewater treatment configurations, both conventional and innovative systems namely: (1) Harnaschpolder, (2) Sneek, (3) EIER-Ouaga and (4) Siddhipur. This analysis is based on COD mass balance, the Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines for estimating CO2 and CH4, and literature review. Furthermore, the energy requirements for each of the systems were estimated based on energy survey. The study showed that an estimated daily average of 87 g of CO2 equivalent, ranging between 38 to 192 g, was derived to be the per capita CO2 emission for the four different wastewater treatment scenarios. Despite the fact that no electrical energy is used in the treatment process, the GHG emission from EIER Ouaga anaerobic pond systems is found to be the highest compared to the three other scenarios analysed. It was estimated 80% higher than the most favourable scenario (Sneek). Moreover, the results indicate that the GHGs emitted from these WWTPs are

  9. Future Scenarios for Fission Based Reactors

    NASA Astrophysics Data System (ADS)

    David, S.

    2005-04-01

    The coming century will see the exhaustion of standard fossil fuels, coal, gas and oil, which today represent 75% of the world energy production. Moreover, their use will have caused large-scale emission of greenhouse gases (GEG), and induced global climate change. This problem is exacerbated by a growing world energy demand. In this context, nuclear power is the only GEG-free energy source available today capable of responding significantly to this demand. Some scenarios consider a nuclear energy production of around 5 Gtoe in 2050, wich would represent a 20% share of the world energy supply. Present reactors generate energy from the fission of U-235 and require around 200 tons of natural Uranium to produce 1GWe.y of energy, equivalent to the fission of one ton of fissile material. In a scenario of a significant increase in nuclear energy generation, these standard reactors will consume the whole of the world's estimated Uranium reserves in a few decades. However, natural Uranium or Thorium ore, wich are not themselves fissile, can produce a fissile material after a neutron capture ( 239Pu and 233U respectively). In a breeder reactor, the mass of fissile material remains constant, and the fertile ore is the only material to be consumed. In this case, only 1 ton of natural ore is needed to produce 1GWe.y. Thus, the breeding concept allows optimal use of fertile ore and development of sustainable nuclear energy production for several thousand years into the future. Different sustainable nuclear reactor concepts are studied in the international forum "generation IV". Different types of coolant (Na, Pb and He) are studied for fast breeder reactors based on the Uranium cycle. The thermal Thorium cycle requires the use of a liquid fuel, which can be reprocessed online in order to extract the neutron poisons. This paper presents these different sustainable reactors, based on the Uranium or Thorium fuel cycles and will compare the different options in term of fissile

  10. Slow processes in startup scenarios of long-pulse gyrotrons

    SciTech Connect

    Nusinovich, G. S.; Sinitsyn, O. V.; Antonsen, T. M. Jr.; Vlasov, A. N.; Cauffman, S. R.; Felch, K. L.

    2006-08-15

    A gyrotron startup scenario describes the variation of gyrotron parameters during onset of a pulse. This typically includes variations in beam parameters during the voltage rise, in the course of which the operating mode is excited and then driven to high efficiency operation while suppressing other parasitic modes. For long-pulse gyrotrons, however, additional processes with longer time constants should also be considered as part of the startup scenario. Such slow processes include ion neutralization of the beam space charge, thermal expansion of cavity walls caused by their ohmic heating, and reduction of the beam current due to emission cooling of the cathode. In the present paper, we analyze the importance of these effects on the stability and efficiency of gyrotron operation.

  11. Web Based Tool for Mission Operations Scenarios

    NASA Technical Reports Server (NTRS)

    Boyles, Carole A.; Bindschadler, Duane L.

    2008-01-01

    A conventional practice for spaceflight projects is to document scenarios in a monolithic Operations Concept document. Such documents can be hundreds of pages long and may require laborious updates. Software development practice utilizes scenarios in the form of smaller, individual use cases, which are often structured and managed using UML. We have developed a process and a web-based scenario tool that utilizes a similar philosophy of smaller, more compact scenarios (but avoids the formality of UML). The need for a scenario process and tool became apparent during the authors' work on a large astrophysics mission. It was noted that every phase of the Mission (e.g., formulation, design, verification and validation, and operations) looked back to scenarios to assess completeness of requirements and design. It was also noted that terminology needed to be clarified and structured to assure communication across all levels of the project. Attempts to manage, communicate, and evolve scenarios at all levels of a project using conventional tools (e.g., Excel) and methods (Scenario Working Group meetings) were not effective given limitations on budget and staffing. The objective of this paper is to document the scenario process and tool created to offer projects a low-cost capability to create, communicate, manage, and evolve scenarios throughout project development. The process and tool have the further benefit of allowing the association of requirements with particular scenarios, establishing and viewing relationships between higher- and lower-level scenarios, and the ability to place all scenarios in a shared context. The resulting structured set of scenarios is widely visible (using a web browser), easily updated, and can be searched according to various criteria including the level (e.g., Project, System, and Team) and Mission Phase. Scenarios are maintained in a web-accessible environment that provides a structured set of scenario fields and allows for maximum

  12. Innovations in science and scenarios for assessment

    SciTech Connect

    Kunkel, Kenneth E.; Moss, Richard; Parris, Adam

    2015-08-29

    Scenarios for the Third National Climate Assessment (NCA3) were produced for physical climate and sea level rise with substantial input from disciplinary and regional experts. These scenarios underwent extensive review and were published as NOAA Technical Reports. For land use/cover and socioeconomic conditions, scenarios already developed by other agencies were specified for use in the NCA3. Efforts to enhance participatory scenario planning as an assessment activity were pursued, but with limited success. Issues and challenges included the timing of availability of scenarios, the need for guidance in use of scenarios, the need for approaches to nest information within multiple scales and sectors, engagement and collaboration of end users in scenario development, and development of integrated scenarios. Future assessments would benefit from an earlier start to scenarios development, the provision of training in addition to guidance documents, new and flexible approaches for nesting information, ongoing engagement and advice from both scientific and end user communities, and the development of consistent and integrated scenarios.

  13. Anthropogenic mercury emission inventory with emission factors and total emission in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hun; Park, Jung-Min; Lee, Sang-Bo; Pudasainee, Deepak; Seo, Yong-Chil

    2010-07-01

    Mercury emissions concentrations, emission factors, and the total national emission from major anthropogenic sources in Korea for the year 2007 were estimated. Uncontrolled and controlled mercury emission factors and the total emission from each source types are presented. The annual national mercury emission from major anthropogenic sources for the year 2007, on average was 12.8 ton which ranged from 6.5 to 20.2 ton. Averaged emissions of elemental, oxidized, and particulate mercury were estimated at 8.25 ton, 3.69 ton, and 0.87 ton, respectively. Due to the removal of a major portion of particulate and oxidized mercury species, elemental mercury was dominant in stack emission. About 54.8% of mercury emission was contributed by industrial sources, 45.0% by stationary combustion sources and 0.02% by mobile sources. Thermal power plants, oil refineries, cement kilns and incinerators (municipal, industrial, medical, sewage sludge) were the major mercury emitters, contributing about 26%, 25%, 21% and 20%, respectively to the total mercury emission. Other sources (crematory, pulp and paper manufacturing, nonferrous metals manufacturing, glass manufacturing) contributed about 8% of the total emission. Priority should be given in controlling mercury emissions from coal-fired power plants, oil refineries, cement kilns and waste incinerators. More measurements including natural and re-emission sources are to be carried out in the future in order to have a clear scenario of mercury emission from the country and to apply effective control measures.

  14. Land-use impacts on water resources and protected areas: applications of state-and-transition simulation modeling of future scenarios

    NASA Astrophysics Data System (ADS)

    Wilson, T. S.; Sleeter, B. M.; Sherba, J.; Cameron, D.

    2014-12-01

    Human land use will increasingly contribute to habitat losses and water shortages in California, given future population projections and associated demand for agricultural land. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within the Mediterranean California ecoregion. Historical land use change estimates were derived from the Farmland Mapping and Monitoring Program (FMMP) dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources (CDWR). Six future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) A2 and B1 scenarios. Resulting spatial land-use scenario outputs were combined based on scenario agreement and a land conversion threat index developed to evaluate vulnerability of existing protected areas. Modeled scenario output of county-level agricultural water use data were also summarized, enabling examination of alternative water use futures. We present results of two separate applications of STSM of land-use change, demonstrating the utility of STSM in analyzing land-use related impacts on water resources as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, land-use change impacts will help to better inform resource management and mitigation strategies.

  15. Land-use impacts on water resources and protected areas: applications of state-and-transition simulation modeling of future scenarios

    USGS Publications Warehouse

    Wilson, Tamara; Sleeter, Benjamin M.; Sherba, Jason T; Dick Cameron

    2015-01-01

    Human land use will increasingly contribute to habitat loss and water shortages in California, given future population projections and associated land-use demand. Understanding how land-use change may impact future water use and where existing protected areas may be threatened by land-use conversion will be important if effective, sustainable management approaches are to be implemented. We used a state-and-transition simulation modeling (STSM) framework to simulate spatially-explicit (1 km2) historical (1992-2010) and future (2011-2060) land-use change for 52 California counties within Mediterranean California ecoregions. Historical land use and land cover (LULC) change estimates were derived from the Farmland Mapping and Monitoring Program dataset and attributed with county-level agricultural water-use data from the California Department of Water Resources. Five future alternative land-use scenarios were developed and modeled using the historical land-use change estimates and land-use projections based on the Intergovernmental Panel on Climate Change's Special Report on Emission Scenarios A2 and B1 scenarios. Spatial land-use transition outputs across scenarios were combined to reveal scenario agreement and a land conversion threat index was developed to evaluate vulnerability of existing protected areas to proximal land conversion. By 2060, highest LULC conversion threats were projected to impact nearly 10,500 km2 of land area within 10 km of a protected area boundary and over 18,000 km2 of land area within essential habitat connectivity areas. Agricultural water use declined across all scenarios perpetuating historical drought-related land use from 2008-2010 and trends of annual cropland conversion into perennial woody crops. STSM is useful in analyzing land-use related impacts on water resource use as well as potential threats to existing protected land. Exploring a range of alternative, yet plausible, LULC change impacts will help to better inform resource

  16. Transportation accident scenarios for commercial spent fuel

    SciTech Connect

    Wilmot, E L

    1981-02-01

    A spectrum of high severity, low probability, transportation accident scenarios involving commercial spent fuel is presented together with mechanisms, pathways and quantities of material that might be released from spent fuel to the environment. These scenarios are based on conclusions from a workshop, conducted in May 1980 to discuss transportation accident scenarios, in which a group of experts reviewed and critiqued available literature relating to spent fuel behavior and cask response in accidents.

  17. From Scenarios to Test Implementations Via Promela

    NASA Astrophysics Data System (ADS)

    Ulrich, Andreas; Alikacem, El-Hachemi; Hallal, Hesham H.; Boroday, Sergiy

    We report on a tool for generating executable concurrent tests from scenarios specified as message sequence charts. The proposed approach features three steps: 1) Deriving a MSC test implementation from a MSC scenario, 2) Mapping the test implementation into a Promela model, 3) Generating executable test scripts in Java. The generation of an intermediate Promela model allows for model-checking to inspect the test implementation for properties like soundness, fault detection power as well as for consistency checking between different test scenarios. Moreover decoupling the executable test scripts from the scenario specification makes it possible to use different backend code generators to support other scripting languages when needed.

  18. Indian methane and nitrous oxide emissions and mitigation flexibility

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Shukla, P. R.; Kapshe, Manmohan; Menon, Deepa

    Methane (CH 4) and nitrous oxide (N 2O) contributed 27% and 7%, respectively, to India's CO 2 equivalent greenhouse gas (GHG) emissions in 2000, the remaining being the carbon dioxide (CO 2) emissions. Presently, agriculture and livestock related emissions contribute above 65% of Indian CH 4 emissions and above 90% of N 2O emissions. Since these activities are widely dispersed, with a considerable portion being sub-sustenance activities, emission mitigation requires considerable efforts. We use geographical information system (GIS) interfaced Asia-Pacific Integrated Model (AIM/Enduse), which employs technology share projections, for estimating future CH 4 and N 2O emissions. The future emissions and mitigation flexibility are analyzed for a reference scenario and two mitigation scenarios (medium and strong). Future CH 4 emissions in 2030 are projected to reach 24.4 Tg (reference scenario), 21.3 Tg (medium mitigation scenario) and 17.6 Tg (strong mitigation scenario). Future CH 4 emission scenarios indicate rising shares of municipal solid waste (MSW) and coal bed methane, where mitigation technologies have good penetration potential. Improved cattle feed and digesters, and better rice paddy cultivation practices that are adopted for higher yields and improved irrigation coverage also offer CH 4 mitigation as ancillary benefits. Future N 2O emissions in 2030 are projected to reach 0.81 Tg (reference scenario), 0.69 Tg (medium mitigation scenario) and 0.6 Tg (strong mitigation scenario). Better utilization of nitrogen fertilizer and increased use of organic fertilizers, partly produced from MSW, offer interesting mitigation opportunities for N 2O emissions. Some of these technology initiatives are already visible in India at different stages of development and appropriate policy thrust may strengthen them in future.

  19. Global emission projections for the transportation sector using dynamic technology modeling

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2013-09-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to

  20. Global emission projections for the transportation sector using dynamic technology modeling

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2013-12-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable details on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC scenarios (A1B, A2, B1, and B2). We project that global fossil-fuel use (oil and coal) in the transportation sector will be in the range of 3.0-4.0 Gt across the four scenarios in the year 2030. Corresponding global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM). At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two largest contributors to

  1. Global emission projections for the transportation sector using dynamic technology modeling

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Streets, D. G.; Lu, Z.; Bond, T. C.; Zhang, Y.

    2014-06-01

    In this study, global emissions of gases and particles from the transportation sector are projected from the year 2010 to 2050. The Speciated Pollutant Emission Wizard (SPEW)-Trend model, a dynamic model that links the emitter population to its emission characteristics, is used to project emissions from on-road vehicles and non-road engines. Unlike previous models of global emission estimates, SPEW-Trend incorporates considerable detail on the technology stock and builds explicit relationships between socioeconomic drivers and technological changes, such that the vehicle fleet and the vehicle technology shares change dynamically in response to economic development. Emissions from shipping, aviation, and rail are estimated based on other studies so that the final results encompass the entire transportation sector. The emission projections are driven by four commonly-used IPCC (Intergovernmental Panel on Climate Change) scenarios (A1B, A2, B1, and B2). With global fossil-fuel use (oil and coal) in the transportation sector in the range of 128-171 EJ across the four scenarios, global emissions are projected to be 101-138 Tg of carbon monoxide (CO), 44-54 Tg of nitrogen oxides (NOx), 14-18 Tg of non-methane total hydrocarbons (THC), and 3.6-4.4 Tg of particulate matter (PM) in the year 2030. At the global level, a common feature of the emission scenarios is a projected decline in emissions during the first one or two decades (2010-2030), because the effects of stringent emission standards offset the growth in fuel use. Emissions increase slightly in some scenarios after 2030, because of the fast growth of on-road vehicles with lax or no emission standards in Africa and increasing emissions from non-road gasoline engines and shipping. On-road vehicles and non-road engines contribute the most to global CO and THC emissions, while on-road vehicles and shipping contribute the most to NOx and PM emissions. At the regional level, Latin America and East Asia are the two

  2. A Global Water Resources Assessment under RCP, SSP, and CMIP5 Scenarios

    NASA Astrophysics Data System (ADS)

    Hanasaki, N.; Fujimori, S.

    2012-12-01

    A number of reports have been published on climate change impact assessment on global water resources, but earlier studies need to be updated and refined due to three reasons. First, most of earlier studies were based on an old set of IPCC scenarios consists of SRES (green house gas (GHG) emission and socio-economic scenarios) and CMIP3 (climate scenarios consistent with SRES). A new set of IPCC scenarios is being released (Moss et al., 2008) that consists of RCP (GHG emission scenario), SSP (socio-economic scenario), and CMIP5 (climate scenarios consistent with RCP). In order to take the latest achievements in climate modeling, impact assessments should be based on the new scenario. Second, most of earlier studies focused more on the change in water availability (e.g. runoff and discharge), less for change in water use (agricultural, industrial, domestic water use). Because SSP consists of five scenarios delineating substantially different world, water use scenarios should be developed with care reflecting the difference among them. Third, most of earlier studies assessed water availability and use at annual time resolution. This may overlook seasonal and inter-annual shortage of water due to variability in water availability and use. Here we present a novel assessment on global water resources using a global water resources model called H08 (Hanasaki et al., 2008a,b; 2010). H08 simulates natural water cycle and major human activities, such as water withdrawals and reservoir operation. It estimates water availability and use at daily time interval, which enables to take sub-annual water shortage into account. We first developed water use scenarios for agricultural (irrigation), industrial, and domestic water withdrawal that are consistent with five SSP scenarios. Next, we set up a matrix of scenario combination of RCP, SSP, and CMIP5 for insightful global water resources assessment. Finally we conducted H08 simulation using these scenarios and assessed water

  3. China's sustainable energy future: Scenarios of energy and carbonemissions (Summary)

    SciTech Connect

    Zhou, Dadi; Levine, Mark; Dai, Yande; Yu, Cong; Guo, Yuan; Sinton, Jonathan E.; Lewis, Joanna I.; Zhu, Yuezhong

    2004-03-10

    China has ambitious goals for economic development, and mustfind ways to power the achievement of those goals that are bothenvironmentally and socially sustainable. Integration into the globaleconomy presents opportunities for technological improvement and accessto energy resources. China also has options for innovative policies andmeasures that could significantly alter the way energy is acquired andused. These opportunities andoptions, along with long-term social,demographic, and economic trends, will shape China s future energysystem, and consequently its contribution to emissions of greenhousegases, particularly carbon dioxide (CO2). In this study, entitled China sSustainable Energy Future: Scenarios of Energy and Carbon Emissions, theEnergy Research Institute (ERI), an independent analytic organizationunder China's Na tional Development and Reform Commission (NDRC), soughtto explore in detail how China could achieve the goals of the TenthFive-Year Plan and its longer term aims through a sustainable developmentstrategy. China's ability to forge a sustainable energy path has globalconsequences. China's annual emissions of greenhouse gases comprisenearly half of those from developing countries, and 12 percent of globalemissions. Most of China's greenhouse gas emissions are in the form ofCO2, 87 percent of which came from energy use in 2000. In that year,China's carbon emissions from energy use and cement production were 760million metric tons (Mt-C), second only to the 1,500 Mt-C emitted by theUS (CDIAC, 2003). As China's energy consumption continues to increase,greenhouse gas emissions are expected to inevitably increase into thefuture. However, the rate at which energy consumption and emissions willincrease can vary significantly depending on whether sustainabledevelopment is recognized as an important policy goal. If the ChineseGovernment chooses to adopt measures to enhance energy efficiency andimprove the overall structure of energy supply, it is possible

  4. Molecular Diagnostic Analysis of Outbreak Scenarios

    ERIC Educational Resources Information Center

    Morsink, M. C.; Dekter, H. E.; Dirks-Mulder, A.; van Leeuwen, W. B.

    2012-01-01

    In the current laboratory assignment, technical aspects of the polymerase chain reaction (PCR) are integrated in the context of six different bacterial outbreak scenarios. The "Enterobacterial Repetitive Intergenic Consensus Sequence" (ERIC) PCR was used to analyze different outbreak scenarios. First, groups of 2-4 students determined optimal…

  5. Evaluation Framework for Dependable Mobile Learning Scenarios

    ERIC Educational Resources Information Center

    Bensassi, Manel; Laroussi, Mona

    2014-01-01

    The goal of the dependability analysis is to predict inconsistencies and to reveal ambiguities and incompleteness in the designed learning scenario. Evaluation, in traditional learning design, is generally planned after the execution of the scenario. In mobile learning, this stage becomes too difficult and expensive to apply due to the complexity…

  6. Architectures for Developing Multiuser, Immersive Learning Scenarios

    ERIC Educational Resources Information Center

    Nadolski, Rob J.; Hummel, Hans G. K.; Slootmaker, Aad; van der Vegt, Wim

    2012-01-01

    Multiuser immersive learning scenarios hold strong potential for lifelong learning as they can support the acquisition of higher order skills in an effective, efficient, and attractive way. Existing virtual worlds, game development platforms, and game engines only partly cater for the proliferation of such learning scenarios as they are often…

  7. EDITORIAL: Where next with global environmental scenarios? Where next with global environmental scenarios?

    NASA Astrophysics Data System (ADS)

    O'Neill, Brian; Pulver, Simone; Van Deveer, Stacy; Garb, Yaakov

    2008-12-01

    Scenarios have become a standard tool in the portfolio of techniques that scientists and policy-makers use to envision and plan for the future. Defined as plausible, challenging and relevant stories about how the future might unfold that integrate quantitative models with qualitative assessments of social and political trends, scenarios are a central component in assessment processes for a range of global issues, including climate change, biodiversity, agriculture, and energy. Yet, despite their prevalence, systematic analysis of scenarios is in its beginning stages. Fundamental questions remain about both the epistemology and scientific credibility of scenarios and their roles in policymaking and social change. Answers to these questions have the potential to determine the future of scenario analyses. Is scenario analysis moving in the direction of earth system governance informed by global scenarios generated through increasingly complex and comprehensive models integrating socio-economic and earth systems? Or will global environmental scenario analyses lose favour compared to more focused, policy-driven, regionally specific modelling? These questions come at an important time for the climate change issue, given that the scenario community, catalyzed by the Intergovernmental Panel on Climate Change (IPCC), is currently preparing to embark on a new round of scenario development processes aimed at coordinating research and assessment, and informing policy, over the next five to ten years. These and related questions about where next to go with global environmental scenarios animated a workshop held at Brown University (Note1) that brought together leading practitioners and scholars of global environmental change scenarios from research, policy-making, advocacy, and business settings. The workshop aimed to provide an overview of current practices/best practices in scenario production and scenario use across a range of global environmental change arenas. Participants

  8. High water-stressed population estimated by world water resources assessment including human activities under SRES scenarios

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Shen, Y.; Kanae, S.; Oki, T.

    2009-04-01

    In an argument of the reduction and the adaptation for the climate change, the evaluation of the influence by the climate change is important. When we argue in adaptation plan from a damage scale and balance with the cost, it is particularly important. Parry et al (2001) evaluated the risks in shortage of water, malaria, food, the risk of the coast flood by temperature function and clarified the level of critical climate change. According to their evaluation, the population to be affected by the shortage of water suddenly increases in the range where temperature increases from 1.5 to 2.0 degree in 2080s. They showed how much we need to reduce emissions in order to draw-down significantly the number at risk. This evaluation of critical climate change threats and targets of water shortage did not include the water withdrawal divided by water availability. Shen et al (2008a) estimated the water withdrawal of projection of future world water resources according to socio-economic driving factors predicted for scenarios A1b, A2, B1, and B2 of the Special Report on Emission Scenarios (SRES). However, these results were in function of not temperature but time. The assessment of the highly water-stressed population considered the socioeconomic development is necessary for a function of the temperature. Because of it is easy to understand to need to reduce emission. We present a multi-GCM analysis of the global and regional populations lived in highly water-stressed basin for a function of the temperature using the socioeconomic data and the outputs of GCMs. In scenario A2, the population increases gradually with warming. On the other hand, the future projection population in scenario A1b and B1 increase gradually until the temperature anomaly exceeds around from +1 to +1.5 degree. After that the population is almost constant. From Shen et al (2008b), we evaluated the HWSP and its ratio in the world with temperature function for scenarios A1B, A2, and B1 by the index of W

  9. Writing clinical scenarios for clinical science questions.

    PubMed

    Smith, Phil Em; Mucklow, John C

    2016-04-01

    Written knowledge assessments for physicians in training typically involve multiple-choice questions that use a clinical scenario in a single-best-answer format. The Royal College of Physicians Part 1 MRCP(UK) examination includes basic sciences themes that are challenging to assess through a clinical scenario. A realistic clinical setting based on everyday clinical practice and integral to the question is the clearest demonstration that the knowledge being assessed is clinically relevant. However, without special attention to detail, the scenario in a clinical science question can appear redundant or artificial. Reading unnecessary material frustrates candidates and threatens the reputation of the assessment. In this paper we discuss why a clinical scenario is important for basic science questions and offer advice on setting realistic and plausible clinical scenarios for such questions. PMID:27037383

  10. Global emission projections of particulate matter (PM): I. Exhaust emissions from on-road vehicles

    NASA Astrophysics Data System (ADS)

    Yan, Fang; Winijkul, Ekbordin; Jung, Soonkyu; Bond, Tami C.; Streets, David G.

    2011-09-01

    We present global emission projections of primary particulate matter (PM) from exhaust of on-road vehicles under four commonly-used global fuel use scenarios from 2010 to 2050. The projections are based on a dynamic model of vehicle population linked to emission characteristics, SPEW-Trend. Unlike previous models of global emissions, this model incorporates more details on the technology stock, including the vehicle type and age, and the number of emitters with very high emissions ("superemitters"). However, our estimates of vehicle growth are driven by changes in predicted fuel consumption from macroeconomic scenarios, ensuring that PM projections are consistent with these scenarios. Total emissions are then obtained by integrating emissions of heterogeneous vehicle groups of all ages and types. Changes in types of vehicles in use are governed by retirement rates, timing of emission standards and the rate at which superemitters develop from normal vehicles. Retirement rates are modeled as a function of vehicle age and income level with a relationship based on empirical data, capturing the fact that people with lower income tend to keep vehicles longer. Adoption dates of emission standards are either estimated from planned implementation or from income levels. We project that global PM emissions range from 1100 Gg to 1360 Gg in 2030, depending on the scenario. An emission decrease is estimated until 2035 because emission standards are implemented and older engines built to lower standards are phased out. From 2010 to 2050, fuel consumption increases in all regions except North America, Europe and Pacific, according to all scenarios. Global emission intensities decrease continuously under all scenarios for the first 30 years due to the introduction of more advanced and cleaner emission standards. This leads to decreasing emissions from most regions. Emissions are expected to increase significantly in only Africa (1.2-3.1% per year). Because we have tied emission

  11. The Impact of New Estimates of Mixing Ratio and Flux-based Halogen Scenarios on Ozone Evolution

    NASA Technical Reports Server (NTRS)

    Oman, Luke D.; Douglass, Anne R.; Liang, Qing; Strahan, Susan E.

    2014-01-01

    The evolution of ozone in the 21st century has been shown to be mainly impacted by the halogen emissions scenario and predicted changes in the circulation of the stratosphere. New estimates of mixing ratio and flux-based emission scenarios have been produced from the SPARC Lifetime Assessment 2013. Simulations using the Goddard Earth Observing System Chemistry-Climate Model (GEOSCCM) are conducted using this new A1 2014 halogen scenario and compared to ones using the A1 2010 scenario. This updated version of GEOSCCM includes a realistic representation of the Quasi-Biennial Oscillation and improvements related to the break up of the Antarctic polar vortex. We will present results of the ozone evolution over the recent past and 21st century to the A1 2010, A1 2014 mixing ratio, and an A1 2014 flux-based halogen scenario. Implications of the uncertainties in these estimates as well as those from possible circulation changes will be discussed.

  12. Adaption strategies to the effect of climate change on a coastal area in Northwest Germany with different land management scenarios

    NASA Astrophysics Data System (ADS)

    Graeff, Thomas; Krause, Stefan; Maier, Martin; Oswald, Sascha

    2015-04-01

    used as a third landuse scenario. A hydrological model that couples surface water and groundwater interactions is used. Several climate scenarios based on the IPCC emission scenarios are applied (A1B, A2 and B1 are used to cover an increase of future temperature between 1 and 3.5 K) in combination with three different heights of sea water level increase. Furthermore, the effectivity of the scenarios in respect to ecosystem services and economic efficiency are calculated. The business as usual scenario is able to guaranty the current farming strategy by coastal defences and prevention of inundation, but the cost intensive pumping rates increase. Areas with subsurface preferential pathways for groundwater to the land surface have the potential to be affected by salinization of groundwater, soil and drainages, without coastal defences to be able to prevent that. The large polder systems are able to buffer the increasing precipitation volumes to the price of losing 20 percent of the agriculture area and locally the creation of a completely different landscape. The polders are used effectively to store freshwater in summer periods and can actually also be used to prevent salinization. The stakeholder scenario with small distributed polders have a comparable effect with the benefit of preserving the original landscape and higher acceptance by the local residents, but with higher cost for more elaborate water resources management and maintenance.

  13. Air Quality Improvements of Increased Integration of Renewables: Solar Photovoltaics Penetration Scenarios

    NASA Astrophysics Data System (ADS)

    Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.

    2011-12-01

    Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV

  14. Alternative scenarios to meet the demands of sustainable waste management.

    PubMed

    Bovea, M D; Powell, J C

    2006-04-01

    This paper analyses different alternatives for solid waste management that can be implemented to enable the targets required by the European Landfill and Packaging and Packaging Waste Directives to be achieved in the Valencian Community, on the east coast of Spain. The methodology applied to evaluate the environmental performance of each alternative is Life Cycle Assessment (LCA). The analysis has been performed at two levels; first, the emissions accounted for in the inventory stage have been arranged into impact categories to obtain an indicator for each category; and secondly, the weighting of environmental data to a single unit has been applied. Despite quantitative differences between the results obtained with four alternative impact assessment methods, the same preference ranking has been established: scenarios with energy recovery (1v and 2v) achieve major improvements compared to baseline, with scenario 1v being better than 2v for all impact assessment methods except for the EPS'00 method, which obtains better results for scenario 2v. Sensitivity analysis has been used to test some of the assumptions used in the initial life cycle inventory model but none have a significant effect on the overall results. As a result, the best alternative to the existing waste management system can be identified. PMID:16202507

  15. Hydropower and water supply: competing water uses under a future drier climate modeling scenarios for the Tagus River basin, Portugal

    NASA Astrophysics Data System (ADS)

    Alexandre Diogo, Paulo; Nunes, João Pedro; Carmona Rodrigues, António; João Cruz, Maria; Grosso, Nuno

    2014-05-01

    Climate change in the Mediterranean region is expected to affect existing water resources, both in quantity and quality, as decreased mean annual precipitation and more frequent extreme precipitation events are likely to occur. Also, energy needs tend to increase, together with growing awareness that fossil fuels emissions are determinately responsible for global temperature rise, enhancing renewable energy use and reinforcing the importance of hydropower. When considered together, these facts represent a relevant threat to multipurpose reservoir operations. Great Lisbon main water supply (for c.a. 3 million people), managed by EPAL, is located in Castelo de Bode Reservoir, in the Tagus River affluent designated as Zêzere River. Castelo de Bode is a multipurpose infrastructure as it is also part of the hydropower network system of EDP, the main power company in Portugal. Facing the risk of potential climate change impacts on water resources availability, and as part of a wider project promoted by EPAL (designated as ADAPTACLIMA), climate change impacts on the Zêzere watershed where evaluated based on climate change scenarios for the XXI century. A sequential modeling approach was used and included downscaling climate data methodologies, hydrological modeling, volume reservoir simulations and water quality modeling. The hydrological model SWAT was used to predict the impacts of the A2 and B2 scenarios in 2010-2100, combined with changes in socio-economic drivers such as land use and water demands. Reservoir storage simulations where performed according to hydrological modeling results, water supply needs and dam operational requirements, such as minimum and maximum operational pool levels and turbine capacity. The Ce-Qual-W2 water quality model was used to assess water quality impacts. According to climate scenarios A2 and B2, rainfall decreases between 10 and 18% are expected by 2100, leading to drier climatic conditions and increased frequency and magnitude of

  16. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States: Comparison of Two Scenarios

    PubMed Central

    Lane, Diana R.; Ready, Richard C.; Buddemeier, Robert W.; Martinich, Jeremy A.; Shouse, Kate Cardamone; Wobus, Cameron W.

    2013-01-01

    The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output) to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a “business as usual” (BAU) greenhouse gas (GHG) emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers' recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated “avoided loss” from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100. PMID:24391717

  17. Quantifying and valuing potential climate change impacts on coral reefs in the United States: comparison of two scenarios.

    PubMed

    Lane, Diana R; Ready, Richard C; Buddemeier, Robert W; Martinich, Jeremy A; Shouse, Kate Cardamone; Wobus, Cameron W

    2013-01-01

    The biological and economic values of coral reefs are highly vulnerable to increasing atmospheric and ocean carbon dioxide concentrations. We applied the COMBO simulation model (COral Mortality and Bleaching Output) to three major U.S. locations for shallow water reefs: South Florida, Puerto Rico, and Hawaii. We compared estimates of future coral cover from 2000 to 2100 for a "business as usual" (BAU) greenhouse gas (GHG) emissions scenario with a GHG mitigation policy scenario involving full international participation in reducing GHG emissions. We also calculated the economic value of changes in coral cover using a benefit transfer approach based on published studies of consumers' recreational values for snorkeling and diving on coral reefs as well as existence values for coral reefs. Our results suggest that a reduced emissions scenario would provide a large benefit to shallow water reefs in Hawaii by delaying or avoiding potential future bleaching events. For Hawaii, reducing emissions is projected to result in an estimated "avoided loss" from 2000 to 2100 of approximately $10.6 billion in recreational use values compared to a BAU scenario. However, reducing emissions is projected to provide only a minor economic benefit in Puerto Rico and South Florida, where sea-surface temperatures are already close to bleaching thresholds and coral cover is projected to drop well below 5% cover under both scenarios by 2050, and below 1% cover under both scenarios by 2100. PMID:24391717

  18. Unidentified Infrared Emission Features

    NASA Astrophysics Data System (ADS)

    Joblin, Christine

    2015-03-01

    When referring to unidentified infrared emission features, one has in mind the series of aromatic IR bands (AIBs) between 3.3 and 15 μm that are observed in emission in many environments where UV photons irradiate interstellar matter. These bands are now used by astronomers to classify objects and characterize local physical conditions. However, a deep analysis cannot proceed without understanding the properties of the band carriers. Large polycyclic aromatic hydrocarbon molecules are attractive candidates but interstellar species are still poorly characterized. Various studies emphasize the need for tackling the link between molecular aromatic species, aliphatic material and very small carbonaceous grains. Other unidentified emission features such as the 6.9, 21 and 30 μm bands could be involved in the evolutionary scenario.

  19. Representative concentration pathways and mitigation scenarios for nitrous oxide

    NASA Astrophysics Data System (ADS)

    Davidson, Eric A.

    2012-06-01

    The challenges of mitigating nitrous oxide (N2O) emissions are substantially different from those for carbon dioxide (CO2) and methane (CH4), because nitrogen (N) is essential for food production, and over 80% of anthropogenic N2O emissions are from the agricultural sector. Here I use a model of emission factors of N2O to demonstrate the magnitude of improvements in agriculture and industrial sectors and changes in dietary habits that would be necessary to match the four representative concentration pathways (RCPs) now being considered in the fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC). Stabilizing atmospheric N2O by 2050, consistent with the most aggressive of the RCP mitigation scenarios, would require about 50% reductions in emission factors in all sectors and about a 50% reduction in mean per capita meat consumption in the developed world. Technologies exist to achieve such improved efficiencies, but overcoming social, economic, and political impediments for their adoption and for changes in dietary habits will present large challenges.

  20. Modelling Sustainable Development Scenarios of Croatian Power System

    NASA Astrophysics Data System (ADS)

    Pašičko, Robert; Stanić, Zoran; Debrecin, Nenad

    2010-05-01

    The main objective of power system sustainable development is to provide the security of electricity supply required to underpin economic growth and increase the quality of living while minimizing adverse environmental impacts. New challenges such as deregulation, liberalization of energy markets, increased competition on energy markets, growing demands on security of supply, price insecurities and demand to cut CO2 emissions, are calling for better understanding of electrical systems modelling. Existing models are not sufficient anymore and planners will need to think differently in order to face these challenges. Such a model, on the basis on performed simulations, should enable planner to distinguish between different options and to analyze sustainability of these options. PLEXOS is an electricity market simulation model, used for modeling electrical system in Croatia since 2005. Within this paper, generation expansion scenarios until 2020 developed for Croatian Energy Strategy and modeled in PLEXOS. Development of sustainable Croatian energy scenario was analyzed in the paper - impacts of CO2 emission price and wind generation. Energy Strategy sets goal for 1200 MW from wind power plants in 2020. In order to fully understand its impacts, intermittent nature of electricity generation from wind power plant was modeled. We conclude that electrical system modelling using everyday growing models has proved to be inevitable for sustainable electrical system planning in complex environment in which power plants operate today.

  1. Heat waves and heat days in an arid city in the northwest of México: current trends and in climate change scenarios.

    PubMed

    Cueto, Rafael O García; Martínez, Adalberto Tejeda; Ostos, Ernesto Jáuregui

    2010-07-01

    The aim of this work is to study heat waves (HWs) in Mexicali, Mexico, because numerous deaths have been reported in this city, caused by heatstroke. This research acquires relevancy because several studies have projected that the health impacts of HWs could increase under various climate change scenarios, especially in countries with low adaptive capacity, as is our case. This paper has three objectives: first, to analyze the observed change in the summer (1 June to 15 September) daily maximum temperature during the period from 1951 to 2006; secondly, to characterize the annual and monthly evolution of frequency, duration and intensity of HWs; and finally, to generate scenarios of heat days (HDs) by means of a statistical downscaling model, in combination with a global climate model (HadCM3), for the 2020 s, 2050 s, and 2080 s. The results show summer maximum temperatures featured warming and cooling periods from 1951 until the mid-1980s and, later, a rising tendency, which prevailed until 2006. The duration and intensity of HWs have increased for all summer months, which is an indicator of the severity of the problem; in fact, there are 2.3 times more HWs now than in the decade of the 1970s. The most appropriate distribution for modeling the occurrence of HDs was the Weibull, with the maximum temperature as co-variable. For the 2020 s, 2050 s, and 2080 s, HDs under a medium-high emissions scenario (A2) could increase relative to 1961-1990, by 2.1, 3.6, and 5.1 times, respectively, whereas under a medium-low emissions scenario (B2), HDs could increase by 2.4, 3.4, and 4.0, for the same projections of time. PMID:20012753

  2. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  3. Patterns of wildfires and emissions under future climate conditions across the conterminous United States

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Zhu, Z.; Finney, M.; Riley, K. L.; Jolly, W. M.; Keane, R. E.; Reinhardt, E.

    2013-12-01

    Climate change is expected to result in increased wildfire occurrence and greenhouse gas emissions in the conterminous United States. To better understand potential changes and their impacts, we asked: How might such expected changes vary over space and time in the conterminous United States, and across different climate-change scenarios? We quantified baseline patterns of burned area and emissions using burn scars from 2001-2008. Then, we developed a simulation model to assess the influence of climate change on patterns of wildfire ignitions, spread, and emissions. The simulation model was calibrated using historic fire, weather, and climate data and then used to generate projections under the A1B, A2, and B1 climate-change scenarios. We defined typical fire years and extreme fire years as the 50th and 95th percentile of decadal area burned or emissions. Then, we evaluated simulated changes in burned area and emissions among the 2001-2010 and 2041-2050 decades. Across the conterminous United States, our simulations results showed that during a typical fire year, area burned increased 25-52% from 15,700 km2 and emissions increased 20-48% from a baseline level of 56.0 TgCO2-eq. Extreme fire years in the 2041-2050 decade were more extreme than in the baseline period, and area burned increased 65-85% from 31,700 km2 and emissions increased 49-142% from 92.7 TgCO2-eq. Projected changes in fire occurrence and emissions were minimal for the Great Plains, but substantial for the West and certain ecoregions in the East. These results suggest that future wildfire activities could play a larger role in terms of socioeconomic risks and the health and productivity of ecosystems, and that efforts designed to reduce greenhouse gas emissions will compete with potential carbon losses due to climate-driven increases in wildfire occurrence.

  4. Scripting Scenarios for the Human Patient Simulator

    NASA Technical Reports Server (NTRS)

    Bacal, Kira; Miller, Robert; Doerr, Harold

    2004-01-01

    The Human Patient Simulator (HPS) is particularly useful in providing scenario-based learning which can be tailored to fit specific scenarios and which can be modified in realtime to enhance the teaching environment. Scripting these scenarios so as to maximize learning requires certain skills, in order to ensure that a change in student performance, understanding, critical thinking, and/or communication skills results. Methods: A "good" scenario can be defined in terms of applicability, learning opportunities, student interest, and clearly associated metrics. Obstacles to such a scenario include a lack of understanding of the applicable environment by the scenario author(s), a desire (common among novices) to cover too many topics, failure to define learning objectives, mutually exclusive or confusing learning objectives, unskilled instructors, poor preparation , disorganized approach, or an inappropriate teaching philosophy (such as "trial by fire" or education through humiliation). Results: Descriptions of several successful teaching programs, used in the military, civilian, and NASA medical environments , will be provided, along with sample scenarios. Discussion: Simulator-based lessons have proven to be a time- and cost-efficient manner by which to educate medical personnel. Particularly when training for medical care in austere environments (pre-hospital, aeromedical transport, International Space Station, military operations), the HPS can enhance the learning experience.

  5. Investigating the evolution of Shared Socioeconomic Pathways with a large number of scenarios

    NASA Astrophysics Data System (ADS)

    Schweizer, V. J.; Guivarch, C.; Rozenberg, J.

    2013-12-01

    The new scenario framework for climate change research includes alternative possible trends for socioeconomic development called Shared Socioeconomic Pathways (SSPs). The SSPs bear some similarities to other scenarios used for global change research, but they also have important differences. Like the IPCC Special Report on Emissions Scenarios or the Millennium Ecosystem Assessment, SSPs are defined by a scenario logic consisting of two axes. However, these axes define SSPs with respect to their location in an outcome space for challenges to mitigation and to adaptation rather than by their drivers. Open questions for the SSPs include what their drivers are and how the time dimension could be interpreted with the outcomes space. We present a new analytical approach for addressing both questions by studying large numbers of scenarios produced by an integrated assessment model, IMACLIM-R. We systematically generated 432 scenarios and used the SSP framework to classify them by typology. We then analyzed them dynamically, tracing their evolution through the SSP challenges space at annual time steps over the period 2010-2090. Through this approach, we found that many scenarios do not remain fixed to a particular SSP domain; they drift from one domain to another. In papers describing the framework for new scenarios, SSPs are envisioned as hypothetical (counter-factual) reference scenarios that remain fixed in one domain over some time period of interest. However, we conclude that it may be important to also research scenarios that shift across SSP domains. This is relevant for another open question, which is what scenarios are important to explore given their consequences. Through a data mining technique, we uncovered prominent drivers for scenarios that shift across SSP domains. Scenarios with different challenges for adaptation and mitigation (that is, mitigation and adaptation challenges that are not co-varying) were found to be the least stable, and the following

  6. Interactive specification acquisition via scenarios: A proposal

    NASA Technical Reports Server (NTRS)

    Hall, Robert J.

    1992-01-01

    Some reactive systems are most naturally specified by giving large collections of behavior scenarios. These collections not only specify the behavior of the system, but also provide good test suites for validating the implemented system. Due to the complexity of the systems and the number of scenarios, however, it appears that automated assistance is necessary to make this software development process workable. Interactive Specification Acquisition Tool (ISAT) is a proposed interactive system for supporting the acquisition and maintenance of a formal system specification from scenarios, as well as automatic synthesis of control code and automated test generation. This paper discusses the background, motivation, proposed functions, and implementation status of ISAT.

  7. Health burdens of surface ozone in the UK for a range of future scenarios.

    PubMed

    Heal, Mathew R; Heaviside, Clare; Doherty, Ruth M; Vieno, Massimo; Stevenson, David S; Vardoulakis, Sotiris

    2013-11-01

    Exposure to surface ozone (O3), which is influenced by emissions of precursor chemical species, meteorology and population distribution, is associated with excess mortality and respiratory morbidity. In this study, the EMEP-WRF atmospheric chemistry transport model was used to simulate surface O3 concentrations at 5km horizontal resolution over the British Isles for a baseline year of 2003, for three anthropogenic emissions scenarios for 2030, and for a +5°C increase in air temperature on the 2003 baseline. Deaths brought forward and hospitalisation burdens for 12 UK regions were calculated from population-weighted daily maximum 8-hour O3. The magnitude of changes in annual mean surface O3 over the UK for +5°C temperature (+1.0 to +1.5ppbv, depending on region) was comparable to those due to inter-annual meteorological variability (-1.5 to +1.5ppbv) but considerably less than changes due to precursor emissions changes by 2030 (-3.0 to +3.5ppbv, depending on scenario and region). Including population changes in 2030, both the 'current legislation' and 'maximum feasible reduction' scenarios yield greater O3-attributable health burdens than the 'high' emission scenario: +28%, +22%, and +16%, respectively, above 2003 baseline deaths brought forward (11,500) and respiratory hospital admissions (30,700), using O3 exposure over the full year and no threshold for health effects. The health burdens are greatest under the 'current legislation' scenario because O3 concentrations increase as a result of both increases in background O3 concentration and decreases in UK NOx emissions. For the +5°C scenario, and no threshold (and not including population increases), total UK health burden increases by 500 premature deaths (4%) relative to the 2003 baseline. If a 35ppbv threshold for O3 effects is assumed, health burdens are more sensitive to the current legislation and +5°C scenarios, although total health burdens are roughly an order of magnitude lower. In all scenarios, the

  8. Persistent growth of CO2 emissions and implications for reaching climate targets

    NASA Astrophysics Data System (ADS)

    Friedlingstein, P.; Andrew, R. M.; Rogelj, J.; Peters, G. P.; Canadell, J. G.; Knutti, R.; Luderer, G.; Raupach, M. R.; Schaeffer, M.; van Vuuren, D. P.; Le Quéré, C.

    2014-10-01

    Efforts to limit climate change below a given temperature level require that global emissions of CO2 cumulated over time remain below a limited quota. This quota varies depending on the temperature level, the desired probability of staying below this level and the contributions of other gases. In spite of this restriction, global emissions of CO2 from fossil fuel combustion and cement production have continued to grow by 2.5% per year on average over the past decade. Two thirds of the CO2 emission quota consistent with a 2 °C temperature limit has already been used, and the total quota will likely be exhausted in a further 30 years at the 2014 emissions rates. We show that CO2 emissions track the high end of the latest generation of emissions scenarios, due to lower than anticipated carbon intensity improvements of emerging economies and higher global gross domestic product growth. In the absence of more stringent mitigation, these trends are set to continue and further reduce the remaining quota until the onset of a potential new climate agreement in 2020. Breaking current emission trends in the short term is key to retaining credible climate targets within a rapidly diminishing emission quota.

  9. NOx emissions in China: historical trends and future perspectives

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, S. X.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.

    2013-06-01

    Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4, 34.0, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64 and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector and more than half is distributed equally between industry and transportation sectors. Selective Catalytic Reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020, and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to

  10. NOx emissions in China: historical trends and future perspectives

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Wang, S. X.; Liu, H.; Xu, J. Y.; Fu, K.; Klimont, Z.; Hao, J. M.; He, K. B.; Cofala, J.; Amann, M.

    2013-10-01

    Nitrogen oxides (NOx) are key pollutants for the improvement of ambient air quality. Within this study we estimated the historical NOx emissions in China for the period 1995-2010, and calculated future NOx emissions every five years until 2030 under six emission scenarios. Driven by the fast growth of energy consumption, we estimate the NOx emissions in China increased rapidly from 11.0 Mt in 1995 to 26.1 Mt in 2010. Power plants, industry and transportation were major sources of NOx emissions, accounting for 28.4%, 34.0%, and 25.4% of the total NOx emissions in 2010, respectively. Two energy scenarios, a business as usual scenario (BAU) and an alternative policy scenario (PC), were developed to project future energy consumption. In 2030, total energy consumption is projected to increase by 64% and 27% from 2010 level respectively. Three sets of end-of-pipe pollution control measures, including baseline, progressive, and stringent control case, were developed for each energy scenario, thereby constituting six emission scenarios. By 2030, the total NOx emissions are projected to increase (compared to 2010) by 36% in the baseline while policy cases result in reduction up to 61% in the most ambitious case with stringent control measures. More than a third of the reduction achieved by 2030 between least and most ambitious scenario comes from power sector, and more than half is distributed equally between industry and transportation sectors. Selective catalytic reduction dominates the NOx emission reductions in power plants, while life style changes, control measures for industrial boilers and cement production are major contributors to reductions in industry. Timely enforcement of legislation on heavy-duty vehicles would contribute significantly to NOx emission reductions. About 30% of the NOx emission reduction in 2020 and 40% of the NOx emission reduction in 2030 could be treated as the ancillary benefit of energy conservation. Sensitivity analysis was conducted to

  11. [Study on strategies of pollution prevention in coastal city of Zhejiang Province based on scenario analysis].

    PubMed

    Tian, Jin-Ping; Chen, Lü-Jun; Du, Peng-Fei; Qian, Yi

    2013-01-01

    Scenario analysis was used to study the environmental burden in a coastal city of Zhejiang province under different patterns of economic development. The aim of this research is to propose advices on decision making by illustrating how to make emissions reduced by transforming the pattern of economic development in a developed coastal area, which had acquired the level of 70 000 yuan GDP per cap. At first, 18 heavy pollution industries were screened out, by referencing total emissions of chemical oxygen demand, ammonia-nitrogen, sulfur dioxide, and nitrogen oxide. Then, a model of scenario analysis and the back-up calculation program were designed to study the sustainable development of the heavy pollution industries. With 2008 and 2015 as the reference year and the target year respectively, emissions of four pollutants mentioned above in the 18 heavy pollution industries in the city were analyzed under six scenarios. The total emissions of 4 pollutants should be reduced to an expectant degree, which is set as the constraint prerequisite of the scenario analysis. At last, some suggestions for decision-making are put forward, which include maintaining a moderate increase rate of GDP around 7%, strengthening the adjustment of economic structure, controlling the increasing rate of industrial added value of the industries with heavy pollution, optimizing the structure of industries with heavy pollution, decreasing the intensity of waste emission by implementing cleaner production to reduce emission produce at the source, and strengthening regulations on the operation of waste treatment plants to further promote the efficiency of waste treatment. Only by implementing such measures mentioned above, can the total emissions of chemical oxygen demand, ammonia-nitrogen, sulfur dioxide, and nitrogen oxide of the 18 industries with heavy pollution in the city be reduced by a 10%, 10%, 5%, and 15% respectively based on the reference year. PMID:23487960

  12. Simulating post-wildfire forest trajectories under alternative climate and management scenarios

    NASA Astrophysics Data System (ADS)

    Azpeleta, Alicia; Fule, Peter; Shive, Kristen; Sieg, Carolyn; Sanchez-Meador, Andrew; Strom, Barbara

    2013-04-01

    To assess post-fire vegetation recovery under the influence of climate change, we applied the Climate-Forest Vegetation Simulator (Climate-FVS), a new version of a widely used forest management model, to compare alternative climate and management scenarios in a severely burned multi-species forest of Arizona, U.S.A. The incorporation of seven combinations of General Circulation Models (GCM) and emissions scenarios altered long-term (100 years) projections of future forest condition compared to a No Climate Change (NCC) scenario, which forecast a gradual increase to high levels of forest density and carbon storage. In contrast, emissions scenarios that included continued high greenhouse gas releases led to near-complete deforestation by 2111. GCM-emissions scenario combinations that were less severe reduced forest structure and carbon storage relative to NCC. Fuel reduction treatments that had been applied prior to the severe wildfire did have persistent effects, especially under NCC, but were overwhelmed by increasingly severe climate change. We tested six management strategies aimed at sustaining future forests: prescribed burning at 5, 10, or 20-year intervals, thinning 40% or 60% of stand basal area, and no-treatment. Severe climate change led to deforestation under all management regimes, but important differences emerged under the moderate scenarios: treatments that included regular prescribed burning fostered low density, wildfire-resistant forests composed of the naturally dominant species, ponderosa pine. Non-fire treatments under moderate climate change were forecast to become dense and susceptible to severe wildfire, with a shift to dominance by sprouting species. Current U.S.A. management requires modeling of future scenarios but does not mandate consideration of climate change effects. However, this study showed substantial differences in model outputs depending on climate and management actions. Managers should incorporate climate change into the

  13. Strategies for cost-effective carbon reductions: A sensitivity analysis of alternative scenarios

    SciTech Connect

    Gumerman, Etan; Koomey, Jonathan G.; Brown, Marilyn

    2001-07-11

    Analyses of alternative futures often present results for a limited set of scenarios, with little if any sensitivity analysis to identify the factors affecting the scenario results. This approach creates an artificial impression of certainty associated with the scenarios considered, and inhibits understanding of the underlying forces. This paper summarizes the economic and carbon savings sensitivity analysis completed for the Scenarios for a Clean Energy Future study (IWG, 2000). Its 19 sensitivity cases provide insight into the costs and carbon-reduction impacts of a carbon permit trading system, demand-side efficiency programs, and supply-side policies. Impacts under different natural gas and oil price trajectories are also examined. The results provide compelling evidence that policy opportunities exist to reduce carbon emissions and save society money.

  14. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    PubMed

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs. PMID:26429363

  15. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  16. Combination of Face Regions in Forensic Scenarios.

    PubMed

    Tome, Pedro; Fierrez, Julian; Vera-Rodriguez, Ruben; Ortega-Garcia, Javier

    2015-07-01

    This article presents an experimental analysis of the combination of different regions of the human face on various forensic scenarios to generate scientific knowledge useful for the forensic experts. Three scenarios of interest at different distances are considered comparing mugshot and CCTV face images using MORPH and SC face databases. One of the main findings is that inner facial regions combine better in mugshot and close CCTV scenarios and outer facial regions combine better in far CCTV scenarios. This means, that depending of the acquisition distance, the discriminative power of the facial regions change, having in some cases better performance than the full face. This effect can be exploited by considering the fusion of facial regions which results in a very significant improvement of the discriminative performance compared to just using the full face. PMID:26189995

  17. TEMPERATURE SCENARIO DEVELOPMENT USING REGRESSION METHODS

    EPA Science Inventory

    A method of developing scenarios of future temperature conditions resulting from climatic change is presented. he method is straightforward and can be used to provide information about daily temperature variations and diurnal ranges, monthly average high, and low temperatures, an...

  18. FUTURE SCENARIOS OF CHANGE IN WILDLIFE HABITAT

    EPA Science Inventory

    Studies in Pennsylvania, Iowa, California, and Oregon show varying losses of terrestrial wildlife habitat in scenarios based on different assumptions about future human land use patterns. Retrospective estimates of losses of habitat since Euro-American settlement in several stud...

  19. Comparative study of climate-change scenarios on groundwater recharge, southwestern Mississippi and southeastern Louisiana, USA

    NASA Astrophysics Data System (ADS)

    Beigi, Ehsan; Tsai, Frank T.-C.

    2015-02-01

    A geographic information system (GIS)-based water-budget framework has been developed to study the climate-change impact on regional groundwater recharge, and it was applied to the Southern Hills aquifer system of southwestern Mississippi and southeastern Louisiana, USA. The framework links historical climate variables and future emission scenarios of climate models to a hydrologic model, HELP3, to quantify spatiotemporal potential recharge variations from 1950 to 2099. The framework includes parallel programming to divide a large amount of HELP3 simulations among multiple cores of a supercomputer, to expedite computation. The results show that a wide range of projected potential recharge for the Southern Hills aquifer system resulted from the divergent projections of precipitation, temperature and solar radiation using three scenarios (B1, A2 and A1FI) of the National Center for Atmospheric Research's Parallel Climate Model 1 (PCM) and the National Oceanic and Atmospheric Administration Geophysical Fluid Dynamics Lab's (GFDL) model. The PCM model projects recharge change ranging from -33.7 to +19.1 % for the 21st century. The GFDL model projects less recharge than the PCM, with recharge change ranging from -58.1 to +7.1 %. Potential recharge is likely to increase in 2010-2039, but likely to decrease in 2070-2099. Projected recharge is more sensitive to the changes in the projected precipitation than the projected solar radiation and temperature. Uncertainty analysis confirms that the uncertainty in projected precipitation yields more changes in the potential recharge than in the projected temperature for the study area.

  20. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario

    2016-01-01

    Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970-1989) and future (2080-2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural

  1. Subsistence Exposure Scenarios for Tribal Applications

    PubMed Central

    Harper, Barbara; Harding, Anna; Harris, Stuart; Berger, Patricia

    2014-01-01

    The article provides an overview of methods that can be used to develop exposure scenarios for unique tribal natural resource usage patterns. Exposure scenarios are used to evaluate the degree of environmental contact experienced by people with different patterns of lifestyle activities, such as residence, recreation, or work. in 1994, U.S. President Bill Clinton's Executive Order 12898 recognized that disproportionately high exposures could be incurred by people with traditional subsistence lifestyles because of their more intensive contact with natural resources. Since then, we have developed several tribal exposure scenarios that reflect tribal-specific traditional lifeways. These scenarios are not necessarily intended to capture contemporary resource patterns, but to describe how the resources were used before contamination or degradation, and will be used once again in fully traditional ways after cleanup and restoration. The direct exposure factors for inhalation and soil ingestion rates are the same in each tribal scenario, but the diets are unique to each tribe and its local ecology, natural foods, and traditional practices. Scenarios, in part or in whole, also have other applications, such as developing environmental standards, evaluating disproportionate exposures, developing sampling plans, planning for climate change, or evaluating service flows as part of natural resource damage assessments. PMID:25197207

  2. Ground surface temperature scenarios in complex high-mountain topography based on regional climate model results

    NASA Astrophysics Data System (ADS)

    Salzmann, Nadine; NöTzli, Jeannette; Hauck, Christian; Gruber, Stephan; Hoelzle, Martin; Haeberli, Wilfried

    2007-06-01

    Climate change can have severe impacts on the high-mountain cryosphere, such as instabilities in rock walls induced by thawing permafrost. Relating climate change scenarios produced from global climate models (GCMs) and regional climate models (RCMs) to complex high-mountain environments is a challenging task. The qualitative and quantitative impact of changes in climatic conditions on local to microscale ground surface temperature (GST) and the ground thermal regime is not readily apparent. This study assesses a possible range of changes in the GST (ΔGST) in complex mountain topography. To account for uncertainties associated with RCM output, a set of 12 different scenario climate time series (including 10 RCM-based and 2 incremental scenarios) was applied to the topography and energy balance (TEBAL) model to simulate average ΔGST for 36 different topographic situations. Variability of the simulated ΔGST is related primarily to the emission scenarios, the RCM, and the approach used to apply RCM results to the impact model. In terms of topography, significant influence on GST simulation was shown by aspect because it modifies the received amount of solar radiation at the surface. North faces showed higher sensitivity to the applied climate scenarios, while uncertainties are higher for south faces. On the basis of the results of this study, use of RCM-based scenarios is recommended for mountain permafrost impact studies, as opposed to incremental scenarios.

  3. Bridging Scales: Developing a Framework to Build a City-Scale Environmental Scenario for Japanese Municipalities

    NASA Astrophysics Data System (ADS)

    Hashimoto, S.; Fujita, T.; Nakayama, T.; Xu, K.

    2007-12-01

    There is an ongoing project on establishing environmental scenarios in Japan to evaluate middle to long-term environmental policy and technology options toward low carbon society. In this project, the time horizon of the scenarios is set for 2050 on the ground that a large part of social infrastructure in Japan is likely to be renovated by that time, and cities are supposed to play important roles in building low carbon society in Japan. This belief is held because cities or local governments could implement various policies and programs, such as land use planning and promotion of new technologies with low GHG emissions, which produce an effect in an ununiform manner, taking local socio-economic conditions into account, while higher governments, either national or prefectural, could impose environmental tax on electricity and gas to alleviate ongoing GHG emissions, which uniformly covers their jurisdictions. In order for local governments to devise and implement concrete administrative actions equipped with rational policies and technologies, referring the environmental scenarios developed for the entire nation, we need to localize the national scenarios, both in terms of spatial and temporal extent, so that they could better reflect local socio-economic and institutional conditions. In localizing the national scenarios, the participation of stakeholders is significant because they play major roles in shaping future society. Stakeholder participation in the localization process would bring both creative and realistic inputs on how future unfolds on a city scale. In this research, 1) we reviewed recent efforts on international and domestic scenario development to set a practical time horizon for a city-scale environmental scenario, which would lead to concrete environmental policies and programs, 2) designed a participatory scenario development/localization process, drawing on the framework of the 'Story-and-Simulation' or SAS approach, which Alcamo(2001) proposed

  4. Impacts and responses to sea-level rise: a global analysis of the SRES scenarios over the twenty-first century.

    PubMed

    Nicholls, Robert J; Tol, Richard S J

    2006-04-15

    Taking the Special Report on Emission Scenarios (SRES) climate and socio-economic scenarios (A1FI, A2, B1 and B2 'future worlds'), the potential impacts of sea-level rise through the twenty-first century are explored using complementary impact and economic analysis methods at the global scale. These methods have never been explored together previously. In all scenarios, the exposure and hence the impact potential due to increased flooding by sea-level rise increases significantly compared to the base year (1990). While mitigation reduces impacts, due to the lagged response of sea-level rise to atmospheric temperature rise, impacts cannot be avoided during the twenty-first century by this response alone. Cost-benefit analyses suggest that widespread protection will be an economically rational response to land loss due to sea-level rise in the four SRES futures that are considered. The most vulnerable future worlds to sea-level rise appear to be the A2 and B2 scenarios, which primarily reflects differences in the socio-economic situation (coastal population, Gross Domestic Product (GDP) and GDP/capita), rather than the magnitude of sea-level rise. Small islands and deltaic settings stand out as being more vulnerable as shown in many earlier analyses. Collectively, these results suggest that human societies will have more choice in how they respond to sea-level rise than is often assumed. However, this conclusion needs to be tempered by recognition that we still do not understand these choices and significant impacts remain possible. Future worlds which experience larger rises in sea-level than considered here (above 35 cm), more extreme events, a reactive rather than proactive approach to adaptation, and where GDP growth is slower or more unequal than in the SRES futures remain a concern. There is considerable scope for further research to better understand these diverse issues. PMID:16537156

  5. Future anthropogenic pollutant emissions in a Mediterranean port city with emphasis on the maritime sector emissions - Study of the impact on the city air quality

    NASA Astrophysics Data System (ADS)

    Liora, Natalia; Poupkou, Anastasia; Markakis, Konstantinos; Giannaros, Theodoros; Karagiannidis, Athanasios; Melas, Dimitrios

    2013-04-01

    The aim of this study is the estimation of the future emissions in the area of the large urban center of Thessaloniki (Greece) with emphasis on the emissions originated from the maritime sector within the port area of the city which are presented in detail. In addition, the contribution of the future anthropogenic emissions to atmospheric pollution levels in Thessaloniki focusing on PM levels is studied. A 2km spatial resolution anthropogenic gaseous and particulate matter emission inventory has been compiled for the port city of Thessaloniki for the year 2010 with the anthropogenic emission model MOSESS, developed by Laboratory of Atmospheric Physics of the Aristotle University of Thessaloniki. MOSESS was used for the estimation of emissions from several emission sources (road transport, central heating, industries, maritime sector etc) while the natural emission model NEMO was implemented for the calculation of dust, sea salt and biogenic emissions. Maritime emissions originated from the various processes inside the area of the port (harbor operations such as stockpiles, loading/unloading operations, machineries etc) as well as from the maritime transport sector including passenger ships, cargo shipping, inland waterways vessels (e.g. pleasure crafts) and fish catching ships. Ship emissions were estimated for the three operation modes; cruising, maneuvering and hotelling. For the calculation of maritime emissions, the activity data used were provided by local and national authorities (e.g.Thessaloniki Port Authority S.A.). Pollutant anthropogenic emissions were projected to the year 2020. The emissions from all the anthropogenic sources except for the maritime sector were projected using factors provided by the GAINS model. Future emissions from the maritime activities were estimated on the basis of the future activity data provided by the Port Authority and of the legislation for shipping in the future. Future maritime emissions are determined by the vessels

  6. Scenario analysis and path selection of low-carbon transformation in China based on a modified IPAT model.

    PubMed

    Chen, Liang; Yang, Zhifeng; Chen, Bin

    2013-01-01

    This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40-45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China's low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922

  7. Scenario Analysis and Path Selection of Low-Carbon Transformation in China Based on a Modified IPAT Model

    PubMed Central

    Chen, Liang; Yang, Zhifeng; Chen, Bin

    2013-01-01

    This paper presents a forecast and analysis of population, economic development, energy consumption and CO2 emissions variation in China in the short- and long-term steps before 2020 with 2007 as the base year. The widely applied IPAT model, which is the basis for calculations, projections, and scenarios of greenhouse gases (GHGs) reformulated as the Kaya equation, is extended to analyze and predict the relations between human activities and the environment. Four scenarios of CO2 emissions are used including business as usual (BAU), energy efficiency improvement scenario (EEI), low carbon scenario (LC) and enhanced low carbon scenario (ELC). The results show that carbon intensity will be reduced by 40–45% as scheduled and economic growth rate will be 6% in China under LC scenario by 2020. The LC scenario, as the most appropriate and the most feasible scheme for China’s low-carbon development in the future, can maximize the harmonious development of economy, society, energy and environmental systems. Assuming China's development follows the LC scenario, the paper further gives four paths of low-carbon transformation in China: technological innovation, industrial structure optimization, energy structure optimization and policy guidance. PMID:24204922

  8. Global crop yield reductions due to surface ozone exposure: 2. Year 2030 potential crop production losses and economic damage under two scenarios of O 3 pollution

    NASA Astrophysics Data System (ADS)

    Avnery, Shiri; Mauzerall, Denise L.; Liu, Junfeng; Horowitz, Larry W.

    2011-04-01

    We examine the potential global risk of increasing surface ozone (O 3) exposure to three key staple crops (soybean, maize, and wheat) in the near future (year 2030) according to two trajectories of O 3 pollution: the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (IPCC SRES) A2 and B1 storylines, which represent upper- and lower-boundary projections, respectively, of most O 3 precursor emissions in 2030. We use simulated hourly O 3 concentrations from the Model for Ozone and Related Chemical Tracers version 2.4 (MOZART-2), satellite-derived datasets of agricultural production, and field-based concentration:response relationships to calculate crop yield reductions resulting from O 3 exposure. We then calculate the associated crop production losses and their economic value. We compare our results to the estimated impact of O 3 on global agriculture in the year 2000, which we assessed in our companion paper [Avnery et al., 2011]. In the A2 scenario we find global year 2030 yield loss of wheat due to O 3 exposure ranges from 5.4 to 26% (a further reduction in yield of +1.5-10% from year 2000 values), 15-19% for soybean (reduction of +0.9-11%), and 4.4-8.7% for maize (reduction of +2.1-3.2%) depending on the metric used, with total global agricultural losses worth 17-35 billion USD 2000 annually (an increase of +6-17 billion in losses from 2000). Under the B1 scenario, we project less severe but still substantial reductions in yields in 2030: 4.0-17% for wheat (a further decrease in yield of +0.1-1.8% from 2000), 9.5-15% for soybean (decrease of +0.7-1.0%), and 2.5-6.0% for maize (decrease of + 0.3-0.5%), with total losses worth 12-21 billion annually (an increase of +1-3 billion in losses from 2000). Because our analysis uses crop data from the year 2000, which likely underestimates agricultural production in 2030 due to the need to feed a population increasing from approximately 6 to 8 billion people between 2000 and 2030, our

  9. Scenarios over the past 3 decades: air quality impact of European legislation

    NASA Astrophysics Data System (ADS)

    Crippa, M.; Janssens-Maenhout, G. G. A.; Guizzardi, D.; Schaaf, E.; Muntean, M.; Dentener, F. J.; Sindelarova, K.; Granier, C.

    2014-12-01

    The impacts of air pollution span from local to global, affecting human health, climate, visibility and ecosystems. Several actions at national, regional and global scale have been adopted to reduce pollutant emission levels. In our work we make use of the EDGAR_ v4.3 emission database to compare today's pollutant levels with ex-post scenarios developed to assess the impact and effectiveness of legislation over the last 3 decades on air quality and climate. Differently from most of literature works addressing future air quality, here we focus on historical global anthropogenic emissions (years 1970-2010) of several gaseous and particulate air pollutants (SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC) and past emission scenarios to demonstrate the role that policy has played in improving air quality. Three scenarios have been developed and compared to today's situation (year 2010), assuming the lack of abatement measures, the complete stagnation of technology (no reduction measures applied and constant emission factors from 1970), and a constant fuel mixture (with a more prominent role for coal in the 1970s). Special focus is dedicated to the power generation sector, manufacturing industry and road transport activities since these were mostly influenced by official regulations in the EU. Global SO2 emissions from transport dropped down by 8.5 times due to the deployment of low S content fuels; NOx and CO emissions are indeed a function of combustion efficiency and therefore decreased with the introduction of new technologies, while NH3 emitted by road transport increased in Europe by 18% due to the introduction of catalyzers. Finally, particulate matter emissions are mainly abated by the installation of End-of-Pipe measures (e.g. filters) especially in the energy and transport sectors.

  10. Water use implications of biofuel scenarios

    NASA Astrophysics Data System (ADS)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  11. Development of nonproliferation and assessment scenarios.

    SciTech Connect

    Finley, Melissa; Barnett, Natalie Beth

    2005-10-01

    The overall objective of the Nonproliferation and Assessments Scenario Development project is to create and analyze potential and plausible scenarios that would lead to an adversary's ability to acquire and use a biological weapon. The initial three months of funding was intended to be used to develop a scenario to demonstrate the efficacy of this analysis methodology; however, it was determined that a substantial amount of preliminary data collection would be needed before a proof of concept scenario could be developed. We have dedicated substantial effort to determine the acquisition pathways for Foot and Mouth Disease Virus, and similar processes will be applied to all pathogens of interest. We have developed a biosecurity assessments database to capture information on adversary skill locales, available skill sets in specific regions, pathogen sources and regulations involved in pathogen acquisition from legitimate facilities. FY06 funding, once released, will be dedicated to data collection on acquisition, production and dissemination requirements on a pathogen basis. Once pathogen data has been collected, scenarios will be developed and scored.

  12. Scenarios of Future Socio-Economics, Energy, Land Use, and Radiative Forcing

    SciTech Connect

    Eom, Jiyong; Moss, Richard H.; Edmonds, James A.; Calvin, Katherine V.; Clarke, Leon E.; Dooley, James J.; Kim, Son H.; Kopp, Roberrt; Kyle, G. Page; Luckow, Patrick W.; Patel, Pralit L.; Thomson, Allison M.; Wise, Marshall A.; Zhou, Yuyu

    2013-04-13

    This chapter explores uncertainty in future scenarios of energy, land use, emissions and radiative forcing that span the range in the literature for radiative forcing, but also consider uncertainty in two other dimensions, challenges to mitigation and challenges to adaptation. We develop a set of six scenarios that we explore in detail including the underlying the context in which they are set, assumptions that drive the scenarios, the Global Change Assessment Model (GCAM), used to produce quantified implications for those assumptions, and results for the global energy and land-use systems as well as emissions, concentrations and radiative forcing. We also describe the history of scenario development and the present state of development of this branch of climate change research. We discuss the implications of alternative social, economic, demographic, and technology development possibilities, as well as potential stabilization regimes for the supply of and demand for energy, the choice of energy technologies, and prices of energy and agricultural commodities. Land use and land cover will also be discussed with the emphasis on the interaction between the demand for bioenergy and crops, crop yields, crop prices, and policy settings to limit greenhouse gas emissions.

  13. Creating a Scenario Suitable for Multiple Caregivers

    NASA Technical Reports Server (NTRS)

    Doerr, Harold; Bacal, Kira; Hurst, Victor

    2004-01-01

    The HPS can be utilized for the training of a wide variety of caregivers, ranging from physicians to laypeople. Methods: A single scenario was developed and adapted for a number of clinical scenarios and operational environments, ranging from in-flight to the immediate postflight timeline. In this way, different caregivers, from astronauts to search and rescue forces to specialty-boarded physicians, could make use of a single clinical situation. Five crew medical officer analogs and sixty anesthesia residents, serving as flight surgeon analogs, and, were briefed on space medicine and physiology, then were exposed to the scenario and asked to manage the patient as if they were part of the in-flight or recovery team. Results: Basic themes, such as crisis resource management, were standard across the student audiences. Discussion: A single clinical script can easily be adapted for multiple uses.

  14. Generating Scenarios When Data Are Missing

    NASA Technical Reports Server (NTRS)

    Mackey, Ryan

    2007-01-01

    The Hypothetical Scenario Generator (HSG) is being developed in conjunction with other components of artificial-intelligence systems for automated diagnosis and prognosis of faults in spacecraft, aircraft, and other complex engineering systems. The HSG accepts, as input, possibly incomplete data on the current state of a system (see figure). The HSG models a potential fault scenario as an ordered disjunctive tree of conjunctive consequences, wherein the ordering is based upon the likelihood that a particular conjunctive path will be taken for the given set of inputs. The computation of likelihood is based partly on a numerical ranking of the degree of completeness of data with respect to satisfaction of the antecedent conditions of prognostic rules. The results from the HSG are then used by a model-based artificial- intelligence subsystem to predict realistic scenarios and states.

  15. Plant distributions in the southwestern United States; a scenario assessment of the modern-day and future distribution ranges of 166 Species

    USGS Publications Warehouse

    Thomas, Kathryn A.; Guertin, Patricia P.; Gass, Leila

    2012-01-01

    The authors developed spatial models of the predicted modern-day suitable habitat (SH) of 166 dominant and indicator plant species of the southwestern United States (herein referred to as the Southwest) and then conducted a coarse assessment of potential future changes in the distribution of their suitable habitat under three climate-change scenarios for two time periods. We used Maxent-based spatial modeling to predict the modern-day and future scenarios of SH for each species in an over 342-million-acre area encompassing all or parts of six states in the Southwest--Arizona, California, Colorado, Nevada, New Mexico, and Utah. Modern-day SH models were predicted by our using 26 annual and monthly average temperature and precipitation variables, averaged for the years 1971-2000. Future SH models were predicted for each species by our using six climate models based on application of the average of 16 General Circulation Models to Intergovernmental Panel on Climate Change emission scenarios B1, A1B, and A2 for two time periods, 2040 to 2069 and 2070 and 2100, referred to respectively as the 2050 and 2100 time periods. The assessment examined each species' vulnerability to loss of modern-day SH under future climate scenarios, potential to gain SH under future climate scenarios, and each species' estimated risk as a function of both vulnerability and potential gains. All 166 species were predicted to lose modern-day SH in the future climate change scenarios. In the 2050 time period, nearly 30 percent of the species lost 75 percent or more of their modern-day suitable habitat, 21 species gained more new SH than their modern-day SH, and 30 species gained less new SH than 25 percent of their modern-day SH. In the 2100 time period, nearly half of the species lost 75 percent or more of their modern-day SH, 28 species gained more new SH than their modern-day SH, and 34 gained less new SH than 25 percent of their modern-day SH. Using nine risk categories we found only two

  16. Forecasting carbon dioxide emissions.

    PubMed

    Zhao, Xiaobing; Du, Ding

    2015-09-01

    This study extends the literature on forecasting carbon dioxide (CO2) emissions by applying the reduced-form econometrics approach of Schmalensee et al. (1998) to a more recent sample period, the post-1997 period. Using the post-1997 period is motivated by the observation that the strengthening pace of global climate policy may have been accelerated since 1997. Based on our parameter estimates, we project 25% reduction in CO2 emissions by 2050 according to an economic and population growth scenario that is more consistent with recent global trends. Our forecasts are conservative due to that we do not have sufficient data to fully take into account recent developments in the global economy. PMID:26081307

  17. Scenarios of energy demand and efficiency potential for Bulgaria

    SciTech Connect

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  18. Potential acidification impacts on zooplankton in CCS leakage scenarios.

    PubMed

    Halsband, Claudia; Kurihara, Haruko

    2013-08-30

    Carbon capture and storage (CCS) technologies involve localized acidification of significant volumes of seawater, inhabited mainly by planktonic species. Knowledge on potential impacts of these techniques on the survival and physiology of zooplankton, and subsequent consequences for ecosystem health in targeted areas, is scarce. The recent literature has a focus on anthropogenic greenhouse gas emissions into the atmosphere, leading to enhanced absorption of CO2 by the oceans and a lowered seawater pH, termed ocean acidification. These studies explore the effects of changes in seawater chemistry, as predicted by climate models for the end of this century, on marine biota. Early studies have used unrealistically severe CO2/pH values in this context, but are relevant for CCS leakage scenarios. Little studied meso- and bathypelagic species of the deep sea may be especially vulnerable, as well as vertically migrating zooplankton, which require significant residence times at great depths as part of their life cycle. PMID:23632089

  19. Scenario analysis of energy-based low-carbon development in China.

    PubMed

    Zhou, Yun; Hao, Fanghua; Meng, Wei; Fu, Jiafeng

    2014-08-01

    China's increasing energy consumption and coal-dominant energy structure have contributed not only to severe environmental pollution, but also to global climate change. This article begins with a brief review of China's primary energy use and associated environmental problems and health risks. To analyze the potential of China's transition to low-carbon development, three scenarios are constructed to simulate energy demand and CO₂ emission trends in China up to 2050 by using the Long-range Energy Alternatives Planning System (LEAP) model. Simulation results show that with the assumption of an average annual Gross Domestic Product (GDP) growth rate of 6.45%, total primary energy demand is expected to increase by 63.4%, 48.8% and 12.2% under the Business as Usual (BaU), Carbon Reduction (CR) and Integrated Low Carbon Economy (ILCE) scenarios in 2050 from the 2009 levels. Total energy-related CO₂ emissions will increase from 6.7 billiontons in 2009 to 9.5, 11, 11.6 and 11.2 billiontons; 8.2, 9.2, 9.6 and 9 billiontons; 7.1, 7.4, 7.2 and 6.4 billiontons in 2020, 2030, 2040 and 2050 under the BaU, CR and ILCE scenarios, respectively. Total CO₂ emission will drop by 19.6% and 42.9% under the CR and ILCE scenarios in 2050, compared with the BaU scenario. To realize a substantial cut in energy consumption and carbon emissions, China needs to make a long-term low-carbon development strategy targeting further improvement of energy efficiency, optimization of energy structure, deployment of clean coal technology and use of market-based economic instruments like energy/carbon taxation. PMID:25108719

  20. The Impacts of a 2-Degree Rise in Global Temperatures upon Gas-Phase Air Pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Watson, Laura; Josse, Béatrice; Marecal, Virginie; Lacressonnière, Gwendoline; Vautard, Robert; Gauss, Michael; Engardt, Magnuz; Nyiri, Agnes; Siour, Guillaume

    2014-05-01

    then used as a reference for an analysis of future climate scenarios upon European air quality. The future scenarios included two types of emission data for the year 2050: one set of emission data corresponding to a current legislation scenario and another corresponding to a scenario with a maximum feasible reduction in emissions. The future scenarios were run for the time period that corresponds to a 2-degree increase in global temperatures; a time period that varies depending on which global climate model is used. In order to calculate the effect of climate change on emission reduction scenarios, the "climate penalty", the future simulations were compared to a simulation using the same future emissions but with current (2005) climate. Results show that climate change will have consequential impacts with regards to the production and geographical distribution of ozone and nitrogen oxides.

  1. Low carbon and clean energy scenarios for India: Analysis of targets approach

    SciTech Connect

    Shukla, Priyadarshi R.; Chaturvedi, Vaibhav

    2012-12-01

    Low carbon energy technologies are gaining increasing importance in India for reducing emissions as well as diversifying its energy supply mix. The present paper presents and analyses a targeted approach for pushing solar, wind and nuclear technologies in the Indian energy market. Targets for these technologies have been constructed on the basis of Indian government documents, policy announcements and expert opinion. Different targets have been set for the reference scenario and the carbon price scenario. In the reference scenario it is found that in the long run all solar, wind and nuclear will achieve their targets without any subsidy push. In the short run however, nuclear and solar energy require significant subsidy push. Nuclear energy requires a much higher subsidy allocation as compared to solar because the targets assumed are also higher for nuclear energy. Under a carbon price scenario, the carbon price drives the penetration of these technologies significantly. Still subsidy is required especially in the short run when the carbon price is low. It is also found that pushing solar, wind and nuclear technologies might lead to decrease in share of CCS under the price scenario and biomass under both BAU and price scenario, which implies that one set of low carbon technologies is substituted by other set of low carbon technologies. Thus the objective of emission mitigation might not be achieved due to this substitution. Moreover sensitivity on nuclear energy cost was done to represent risk mitigation for this technology and it was found that higher cost can significantly decrease the share of this technology under both the BAU and carbon price scenario.

  2. Temperature humidity index scenarios in the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Segnalini, M.; Bernabucci, U.; Vitali, A.; Nardone, A.; Lacetera, N.

    2013-05-01

    The study was undertaken to describe the temperature humidity index (THI) dynamics over the Mediterranean basin for the period 1971-2050. The THI combines temperature and humidity into a single value, and has been widely used to predict the effects of environmental warmth in farm animals. The analysis was based on daily outputs of the temperature and relative humidity from the Max Planck Institute data using the Intergovernmental Panel on Climate Change Special Report Emission Scenario A1B. Data revealed a gradual increase of both annual and seasonal THI during the period under investigation and a strong heterogeneity of the Mediterranean area. In particular, the analysis indicated that Spain, southern France and Italy should be expected to undergo the highest THI increase, which in the last decade under study (2041-2050) will range between 3 and 4 units. However, only during summer months the area presents characteristics indicating risk of thermal (heat) stress for farm animals. In this regard, scenario maps relative to the summer season suggested an enlargement of the areas in the basin where summer THI values will likely cause thermal discomfort in farm animals. In conclusion, the study indicated that the Mediterranean basin is likely to undergo THI changes, which may aggravate the consequences of hot weather on animal welfare, performances, health and survival and may help farmers, nutritionists, veterinarians, and policy-makers to develop appropriate adaptation strategies to limit consequences of climate change for the livestock sector in the Mediterranean countries.

  3. Temperature humidity index scenarios in the Mediterranean basin.

    PubMed

    Segnalini, M; Bernabucci, U; Vitali, A; Nardone, A; Lacetera, N

    2013-05-01

    The study was undertaken to describe the temperature humidity index (THI) dynamics over the Mediterranean basin for the period 1971-2050. The THI combines temperature and humidity into a single value, and has been widely used to predict the effects of environmental warmth in farm animals. The analysis was based on daily outputs of the temperature and relative humidity from the Max Planck Institute data using the Intergovernmental Panel on Climate Change Special Report Emission Scenario A1B. Data revealed a gradual increase of both annual and seasonal THI during the period under investigation and a strong heterogeneity of the Mediterranean area. In particular, the analysis indicated that Spain, southern France and Italy should be expected to undergo the highest THI increase, which in the last decade under study (2041-2050) will range between 3 and 4 units. However, only during summer months the area presents characteristics indicating risk of thermal (heat) stress for farm animals. In this regard, scenario maps relative to the summer season suggested an enlargement of the areas in the basin where summer THI values will likely cause thermal discomfort in farm animals. In conclusion, the study indicated that the Mediterranean basin is likely to undergo THI changes, which may aggravate the consequences of hot weather on animal welfare, performances, health and survival and may help farmers, nutritionists, veterinarians, and policy-makers to develop appropriate adaptation strategies to limit consequences of climate change for the livestock sector in the Mediterranean countries. PMID:22850789

  4. Persisting cold extremes under 21st-century warming scenarios

    SciTech Connect

    Kodra, Evan A; Steinhaeuser, Karsten J K; Ganguly, Auroop R

    2011-01-01

    Analyses of climate model simulations and observations reveal that extreme cold events are likely to persist across each land-continent even under 21st-century warming scenarios. The grid-based intensity, duration and frequency of cold extreme events are calculated annually through three indices: the coldest annual consecutive three-day average of daily maximum temperature, the annual maximum of consecutive frost days, and the total number of frost days. Nine global climate models forced with a moderate greenhouse-gas emissions scenario compares the indices over 2091 2100 versus 1991 2000. The credibility of model-simulated cold extremes is evaluated through both bias scores relative to reanalysis data in the past and multi-model agreement in the future. The number of times the value of each annual index in 2091 2100 exceeds the decadal average of the corresponding index in 1991 2000 is counted. The results indicate that intensity and duration of grid-based cold extremes, when viewed as a global total, will often be as severe as current typical conditions in many regions, but the corresponding frequency does not show this persistence. While the models agree on the projected persistence of cold extremes in terms of global counts, regionally, inter-model variability and disparity in model performance tends to dominate. Our findings suggest that, despite a general warming trend, regional preparedness for extreme cold events cannot be compromised even towards the end of the century.

  5. Applications of Microthrusters for Satellite Missions and Formation Flights Scenarios

    NASA Astrophysics Data System (ADS)

    Dittus, H.; van Zoest, T.

    2011-11-01

    Low thrust engines (e.g. ion thrusters, arcjet engines, magneto-plasmadynamic systems) with high specific impulses became important tools for recent space missions (SMART 1, Hayabusa 1 …). Although in particular ion thrusters demonstrated high reliability and long term stability, their performance is not sufficient for satellite systems requiring drag-free, high precision attitude and orbit control. An increasing number of missions for geodetic purposes or astronomic science goals as well as formation flight scenarios with precise distance control between single satellites require much better propulsion systems enabling thrust control down to the sub-μN level. Micropropulsion systems must be able (i) to compensate disturbing forces preventing the spacecraft from flying on an ideal geodetic orbit and (ii) to balance tidal forces and spacecraft dynamics in formation flight scenarios. Recent developments (e.g. Field Emission Electric Propulsion—FEEP) are promising but so far not sufficient approaches, wherefore laser induced ablative thrusters are completely new concepts still under study.

  6. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  7. Maximising the Effectiveness of a Scenario Planning Process: Tips for Scenario Planners in Higher Education

    ERIC Educational Resources Information Center

    Sayers, Nicola

    2011-01-01

    Scenario planning is a tool which can help organisations and people to think about, and plan for, the long-term future. In basic terms, it involves creating a number of in-depth scenarios (stories), each of which tells of a different possible future for an organisation or issue, and considering how each different future might influence…

  8. High resolution scenarios of land-use and land-cover change for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Sleeter, B. M.; Sohl, T. L.; Bouchard, M. A.; Reker, R. R.; Sayler, K.; Sleeter, R.; Soulard, C. E.; Wilson, T. S.

    2012-12-01

    We describe a series of high resolution maps of past and projected changes in land use and land cover (LULC) for the conterminous United States for the period 1992 to 2100. Four scenarios from the Intergovernmental Panel on Climate Change's (IPCC) Special Report on Emission Scenarios (SRES) were used to create annual maps showing spatially explicit change in 15 LULC classes at a spatial resolution of 250 meters. A modular land-use modeling approach was utilized with distinct demand and spatial allocation components. To quantify demand for future LULC change (i.e. the quantity of changes in land use and land cover classes), a scenario downscaling model was developed to extend global scenarios from the IPCC to hierarchically nested ecoregions of the U.S. The Forecasting Scenarios (FORE-SCE) land use model was then employed to allocate scenario demand on the landscape. Both models were parameterized at the ecoregion scale and relied extensively on land use histories and expert knowledge. Results reveal large differences across IPCC-SRES scenarios. Scenarios prioritizing economic development over environmental protection result in the highest rates of LULC change, particularly in regions with extensive forest management, large urban areas, and/or large investments in agricultural land. Scenarios where environmental protection is emphasized result in slower rates of change and less intensity in regional land use patterns.

  9. Optimizing Decision Preparedness by Adapting Scenario Complexity and Automating Scenario Generation

    NASA Technical Reports Server (NTRS)

    Dunne, Rob; Schatz, Sae; Flore, Stephen M.; Nicholson, Denise

    2011-01-01

    Klein's recognition-primed decision (RPD) framework proposes that experts make decisions by recognizing similarities between current decision situations and previous decision experiences. Unfortunately, military personnel arQ often presented with situations that they have not experienced before. Scenario-based training (S8T) can help mitigate this gap. However, SBT remains a challenging and inefficient training approach. To address these limitations, the authors present an innovative formulation of scenario complexity that contributes to the larger research goal of developing an automated scenario generation system. This system will enable trainees to effectively advance through a variety of increasingly complex decision situations and experiences. By adapting scenario complexities and automating generation, trainees will be provided with a greater variety of appropriately calibrated training events, thus broadening their repositories of experience. Preliminary results from empirical testing (N=24) of the proof-of-concept formula are presented, and future avenues of scenario complexity research are also discussed.

  10. Analysis of the change in temperature trends in Subansiri River basin for RCP scenarios using CMIP5 datasets

    NASA Astrophysics Data System (ADS)

    Shivam; Goyal, Manish Kumar; Sarma, Arup Kumar

    2016-06-01

    This study focuses on changes in the maximum and minimum temperature over the Subansiri River basin for different climate change scenarios. For the study, dataset from Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) (i.e., coupled model intercomparison project phase five (CMIP5) dataset with representative concentration pathway (RCP) scenarios) were utilized. Long-term (2011-2100) maximum temperature (T max) and minimum temperature (Tmin) time series were generated using the statistical downscaling technique for low emission scenario (RCP2.6), moderate emission scenario (RCP6.0), and extreme emission scenario (RCP8.5). Trends and change of magnitude in T max, T min, and diurnal temperature range (DTR) were analyzed for different interdecadal time scales (2011-2100, 2011-2040, 2041-2070, 2070-2100) using Mann-Kendall non-parametric test and Sen's slope estimator, respectively. The temperature data series for the observed duration (1981-2000) has been found to show increasing trends in T max and T min at both annual and monthly scale. Trend analysis of downscaled temperature for the period 2011-2100 shows increase in annual maximum temperature and annual minimum temperature for all the selected RCP scenarios; however, on the monthly scale, T max and T min have been seen to have decreasing trends in some months.

  11. The new ENSEMBLES E1 mitigation scenario for future climate simulations

    NASA Astrophysics Data System (ADS)

    Royer, J.-F.; Lowe, J.; Johns, T.; van Vuuren, D.; Stehfest, E.; Denoblet-Ducoudré, N.; Boucher, O.; Rognerud, B.; Huebener, H.

    2009-04-01

    Climate simulations with state-of-the-art earth-system models are required to study the potential impacts of climate change, and possible solutions for avoiding, or reducing, some of its undesirable consequences. Though several emission scenarios have been applied for the IPCC AR4 assessments, the differences in the SRES scenarios result mainly from varying degrees of globalization, the role of environmental and social policy, economic and population growth and the rate of technology development. It seems then necessary to consider also more stringent mitigation pathways which aim eventually to implement a climate mitigation policy. In particular it appears particularly useful to implement and analyse climate scenarios for stabilising the additional anthropogenic radiative forcing to that equivalent to a carbon dioxide concentration at around 450 ppm during the 22nd Century for attempting to match the European Union target of keeping global anthropogenic warming below 2°C above pre-industrial levels. A new set of climate simulations over the 21st century with improved earth-system models has thus been designed by the European modelling groups participating to the European FP6 project ENSEMBLES, as a contribution to the second phase ("Stream 2") of the project. The set-up of the new simulations, though basically similar to that used in the CMIP3 simulations for the IPCC AR4, has been improved by taking into account land-use changes. The simulations cover the recent historical period (1860-2000) and are extended over the the 21st century by two scenarios based on the A1B development path. The A1B scenario has been chosen as the baseline scenario for the ENSEMBLES stream 2 simulations because the strong increase in emissions is consistent with real emissions growth, and in order provide overlap with earlier climate modelling work. Besides the standard A1B SRES scenario, a new stabilisation scenario has been developed so as to limit the long-term radiative forcing to

  12. Trends in future N₂O emissions due to land use change.

    PubMed

    Nol, Linda; Verburg, Peter H; Moors, Eddy J

    2012-02-01

    Better insight in the possible range of future N₂O emissions can help to construct mitigation and adaptation strategies and to adapt land use planning and management to climate objectives. The Dutch fen meadow landscape is a hotspot of N₂O emission due to high nitrogen inputs combined with moist peat soils due to land use change. Socio-economic developments in the area are expected to have major impacts on N₂O emission. The goals of this study are to estimate changes in N₂O emissions for the period 2006-2040 under three different scenarios for the Dutch fen meadow landscape (rural production, rural fragmentation, and rural multifunctionality) and to quantify the share of different emission sources. Three scenarios were constructed and quantified based on the Story-And-Simulation approach. The rural production and the rural fragmentation scenarios are characterized by globalization and a market-oriented economy; in the rural production scenario dairy farming has a strong competitive position in the study region, while under the rural fragmentation scenario agriculture is declining. Under the rural multifunctionality scenario, the global context is characterized by regionalization and stronger regulation toward environmental issues. The N₂O emission decreased between 2006 and 2040 under all scenarios. Under the rural production scenario, the N₂O emission decreased by 7%. Due to measures to limit peat mineralization and policies to reduce agricultural emissions, the rural multifunctionality scenario showed the largest decrease in N₂O emissions (44%). Under the rural fragmentation scenario, in which the dairy farming sector is diminished, the emission decreased by 33%. Compared to other uncertainties involved in N₂O emission estimates, the uncertainty due to possible future land use change is relatively large and assuming a constant emission with time is therefore not appropriate. PMID:21940095

  13. Scenario-Based E-Learning Design

    ERIC Educational Resources Information Center

    Iverson, Kathleen; Colkey, Deborah

    2004-01-01

    As it was initially implemented, e-learning did little other than supply facts and information, offering limited opportunity for interactivity and problem-solving. Designers need to find ways to address past limitations and bring the engagement of classroom training to the web. One method that merits attention is scenario-based learning. The…

  14. Probabilistic Simulation of Territorial Seismic Scenarios

    SciTech Connect

    Baratta, Alessandro; Corbi, Ileana

    2008-07-08

    The paper is focused on a stochastic process for the prevision of seismic scenarios on the territory and developed by means of some basic assumptions in the procedure and by elaborating the fundamental parameters recorded during some ground motions occurred in a seismic area.

  15. Using Scenarios and Simulations to Plan Colleges

    ERIC Educational Resources Information Center

    McIntyre, Chuck

    2004-01-01

    Using a case study, this article describes a method by which higher education institutions construct and use multiple future scenarios and simulations to plan strategically: to create visions of their futures, chart broad directions (mission and goals), and select learning and delivery strategies so as to achieve those broad directions. The…

  16. Use of simplifier scenarios for CRM training

    NASA Technical Reports Server (NTRS)

    Weatherly, D.

    1984-01-01

    Cockpit resource management (CRM) at Metro Airlines is discussed. The process by which the program of CRM training was initiated is mentioned. Management aspects of various flying scenarios are considered. The transfer of training from the classroom to the field is assessed.

  17. Wiki Based Collaborative Learning in Interuniversity Scenarios

    ERIC Educational Resources Information Center

    Katzlinger, Elisabeth; Herzog, Michael A.

    2014-01-01

    In business education advanced collaboration skills and media literacy are important for surviving in a globalized business where virtual communication between enterprises is part of the day-by-day business. To transform these global working situations into higher education, a learning scenario between two universities in Germany and Austria was…

  18. Future Scenarios for Mobile Science Learning

    ERIC Educational Resources Information Center

    Burden, Kevin; Kearney, Matthew

    2016-01-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These "futures" are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of…

  19. Risk Appraisal in Scripted Acquaintance Rape Scenarios.

    ERIC Educational Resources Information Center

    Wright, Doris J.

    Cognitive appraisals are believed to influence how women judge or appraise risk in acquaintance interactions which lead to sexual assault. Ways in which men and women judge the presence of risk factors in scripted acquaintance rape scenarios, and whether alcohol was a significant factor in assessing risk, are examined in this paper. Participants…

  20. Linguistic evaluation of terrorist scenarios: example application.

    SciTech Connect

    Darby, John L.

    2007-03-01

    In 2005, a group of international decision makers developed a manual process for evaluating terrorist scenarios. That process has been implemented in the approximate reasoning Java software tool, LinguisticBelief, released in FY2007. One purpose of this report is to show the flexibility of the LinguisticBelief tool to automate a custom model developed by others. LinguisticBelief evaluates combinations of linguistic variables using an approximate reasoning rule base. Each variable is comprised of fuzzy sets, and a rule base describes the reasoning on combinations of variables fuzzy sets. Uncertainty is considered and propagated through the rule base using the belief/plausibility measure. This report documents the evaluation and rank-ordering of several example terrorist scenarios for the existing process implemented in our software. LinguisticBelief captures and propagates uncertainty and allows easy development of an expanded, more detailed evaluation, neither of which is feasible using a manual evaluation process. In conclusion, the Linguistic-Belief tool is able to (1) automate an expert-generated reasoning process for the evaluation of the risk of terrorist scenarios, including uncertainty, and (2) quickly evaluate and rank-order scenarios of concern using that process.

  1. Ethics Scenarios: A Critical Theory Symposium.

    ERIC Educational Resources Information Center

    Anderson, Jane; And Others

    This symposium chaired by John C. Belland addressed the ethical position of educational communications and technology in society. Presenters created ethics scenarios and applied critical theory to provide insight. Intended to stimulate questions, the approach was philosophical, literary, and sociopolitical, and reflected Derrida, Foucault, and…

  2. Flooding Capability for River-based Scenarios

    SciTech Connect

    Smith, Curtis L.; Prescott, Steven; Ryan, Emerald; Calhoun, Donna; Sampath, Ramprasad; Anderson, S. Danielle; Casteneda, Cody

    2015-10-01

    This report describes the initial investigation into modeling and simulation tools for application of riverine flooding representation as part of the Risk-Informed Safety Margin Characterization (RISMC) Pathway external hazards evaluations. The report provides examples of different flooding conditions and scenarios that could impact river and watershed systems. Both 2D and 3D modeling approaches are described.

  3. Biomass round bales infield aggregation logistic scenarios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass bales often need to be aggregated (collected into groups and transported) to a field-edge stack for temporary storage for feedlots or processing facilities. Aggregating the bales with the least total distance involved is a goal of producers and bale handlers. Several logistics scenarios for ...

  4. School Improvement Strategies That Work: Some Scenarios.

    ERIC Educational Resources Information Center

    Huberman, A. Michael

    1983-01-01

    School improvement strategies are presented in four scenarios: (1) high outcomes from enforced, stabilized use; (2) moderate to high outcomes from high mastery and low settledness; (3) moderate to low outcomes from program blunting or downsizing; and (4) failing, low levels of outcome from indifference and discouragement. (MD)

  5. Iterative Mechanism Solutions with Scenario and ADAMS

    NASA Technical Reports Server (NTRS)

    Rhoades, Daren

    2006-01-01

    This slide presentation reviews the use of iterative solutions using Scenario for Motion (UG NX 2 Motion) to assist in designing the Mars Science Laboratory (MSL). The MSL will have very unique design requirements, and in order to meet these requirements the system must have the ability to design for static stability, simulate mechanism kinematics, simulate dynamic behaviour and be capable of reconfiguration, and iterations as designed. The legacy process used on the Mars Exploration rovers worked, but it was cumbersome using multiple tools, limited configuration control, with manual process and communication, and multiple steps. The aim is to develop a mechanism that would reduce turn around time, and make more reiterations possible, to improve the quality and quantity of data, and to enhance configuration control. Currently for NX Scenario for Motion uses are in the articulation studies, the simulations of traverse motions,and subsystem simulations. The design of the Rover landing model requires accurate results, flexible elements, such as beams, and the use of the full ADAMS solver has been used. In order to achieve this, when required, there has been a direct translation from Scenario to ADAMS, with additional data in ascii format. The process that has been designed to move from Scenario to ADAMS is reviewed.

  6. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios

    SciTech Connect

    Gernaat, David; Calvin, Katherine V.; Lucas, Paul; Luderer, Gunnar; Otto, Sander; Rao, Shilpa; Strefler, Jessica; Van Vuuren, Detlef

    2015-07-01

    The combined 2010 emissions of methane (CH4), nitrous oxide (N2O) and the fluorinated gasses (F-gas) account for about 20-30% of total emissions and about 30% of radiative forcing. At the moment, most studies looking at reaching ambitious climate targets project the emission of carbon dioxide (CO2) to be reduced to zero (or less) by the end of the century. As for non-CO2 gases, the mitigation potential seem to be more constrained, we find that by the end of the century in the current deep mitigation scenarios non-CO2 emissions could form the lion’s share of remaining greenhouse gas emissions. In order to support effective climate policy strategies, in this paper we provide a more in-depth look at the role of non-CO2¬ emission sources (CH4, N2O and F-gases) in achieving deep mitigation targets (radiative forcing target of 2.8 W/m2 in 2100). Specifically, we look at the sectorial mitigation potential and the remaining non-CO2 emissions. By including a set of different models, we provide some insights into the associated uncertainty. Most of the remaining methane emissions in 2100 in the climate mitigation scenario come from the livestock sector. Strong reductions are seen in the energy supply sector across all models. For N2O, less reduction potential is seen compared to methane and the sectoral differences are larger between the models. The paper shows that the assumptions on remaining non-CO2 emissions are critical for the feasibility of reaching ambitious climate targets and the associated costs.

  7. Low Energy, Low Emissions: Sulfur Dioxide; Nitrogen Oxides, and Carbon Dioxide in Western Europe.

    ERIC Educational Resources Information Center

    Alcamo, Joseph; De Vries, Bert

    1992-01-01

    Links proposed low-energy scenarios for different Western European countries with the amount of pollutants that may result from these scenarios. Sulfur dioxide, nitrogen oxide, and carbon dioxide emissions are calculated for the 10 countries for which low-energy scenarios are available, resulting in reductions of 54%, 37%, and 40%, respectively.…

  8. Implications of diesel emissions control failures to emission factors and road transport NOx evolution

    NASA Astrophysics Data System (ADS)

    Ntziachristos, Leonidas; Papadimitriou, Giannis; Ligterink, Norbert; Hausberger, Stefan

    2016-09-01

    Diesel NOx emissions have been at the forefront of research and regulation scrutiny as a result of failures of late vehicle technologies to deliver on-road emissions reductions. The current study aims at identifying the actual emissions levels of late light duty vehicle technologies, including Euro 5 and Euro 6 ones. Mean NOx emission factor levels used in the most popular EU vehicle emission models (COPERT, HBEFA and VERSIT+) are compared with latest emission information collected in the laboratory over real-world driving cycles and on the road using portable emissions measurement systems (PEMS). The comparison shows that Euro 5 passenger car (PC) emission factors well reflect on road levels and that recently revealed emissions control failures do not call for any significant corrections. However Euro 5 light commercial vehicles (LCVs) and Euro 6 PCs in the 2014-2016 period exhibit on road emission levels twice as high as used in current models. Moreover, measured levels vary a lot for Euro 6 vehicles. Scenarios for future evolution of Euro 6 emission factors, reflecting different degree of effectiveness of emissions control regulations, show that total NOx emissions from diesel Euro 6 PC and LCV may correspond from 49% up to 83% of total road transport emissions in 2050. Unless upcoming and long term regulations make sure that light duty diesel NOx emissions are effectively addressed, this will have significant implications in meeting future air quality and national emissions ceilings targets.

  9. Climate Stabilization at 2oC and "Net Zero" Emissions

    NASA Astrophysics Data System (ADS)

    Sokolov, A. P.; Paltsev, S.; Chen, H.; Haigh, M.; Prinn, R. G.

    2015-12-01

    The goal to stabilize global average surface temperature at 2oC above pre-industrial level has been extensively discussed in climate negotiations. A number of recent publications state that achieving this goal will require net anthropogenic carbon emissions (which may include a carbon sink by carbon capture and sequestration and reforestation) to be reduced to zero between years 2050 and 2100. In this study we explore possible emission scenarios under which surface warming will not exceed 2oC, by means of emission driven climate simulations with an Earth System Model of intermediate complexity linked to an Economic Projection and Policy Analysis Model. We carried out a number of simulations from 1861 to 2500 for different values of parameters defining the strength of the climate system response to radiative forcing and the strength of the carbon cycle and under different anthropogenic emission scenarios. Results of our simulations suggest that anthropogenic emissions do not have to be zero by 2050 or 2100 because of carbon sinks in oceans and terrestrial ecosystems. Anthropogenic CO2 emissions falling from today's 36 GtCO2/year to 11-25 GtCO2/year by 2050 and then to 4.5-12 GtCO2/year by 2100 is consistent with a 2°C target for the range of climate sensitivity similar to the IPCC likely range. Long-term changes in the surface temperature depend on the emissions profiles after 2100. For post-2100 carbon emissions decreasing at a rate of about 0.2% per year, natural ecosystems will be able to absorb enough carbon, that together with decreases in emissions of other GHGs, can prevent surface temperature from rising. Technology mixes and costs to achieve the 2°C target are highly dependent on the assumptions about the future costs of low-carbon and zero-carbon technologies. In all scenarios, the energy system required substantial transformations in a relatively short time. Under current assumptions about the cost trajectories for the needed technologies, the 2

  10. Life cycle inventory for municipal solid waste management. Part 2: MSW management scenarios and modeling.

    PubMed

    Wilson, E J

    2002-02-01

    Evaluating the environmental performance of municipal solid waste management options is a complex task. Part 1 of this study presents the municipal solid waste management program of the Pamplona Region in Spain and explores the operational, economic, and environmental factors of the program. In Part 2, alternative waste management scenarios that include the selective collection of organic material and composting are illustrated. The use of a Life Cycle Inventory model for waste management allows for the comparison of the environmental burdens of the different scenarios. This use of a Life Cycle Inventory model for solid waste management lets program managers and decision makers include energy use, final solid waste, and Greenhouse gas emissions in the decision making process. Additionally, the different management scenarios are evaluated on their ability to fulfil Pamplona regional objectives and meet European Packaging and Landfill Directive targets. PMID:12020093

  11. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01

    -style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  12. Accounting for radiative forcing from albedo change in future global land-use scenarios

    SciTech Connect

    Jones, Andrew D.; Calvin, Katherine V.; Collins, William D.; Edmonds, James A.

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  13. Energy Structure and Energy Security under Climate Mitigation Scenarios in China

    PubMed Central

    Matsumoto, Ken’ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094

  14. Energy Structure and Energy Security under Climate Mitigation Scenarios in China.

    PubMed

    Matsumoto, Ken'ichi

    2015-01-01

    This study investigates how energy structure and energy security in China will change in the future under climate mitigation policy scenarios using Representative Concentration Pathways in a computable general equilibrium model. The findings suggest that to reduce greenhouse gas emissions, China needs to shift its energy structure from fossil fuel dominance to renewables and nuclear. The lower the allowable emissions, the larger the shifts required. Among fossil fuels, coal use particularly must significantly decrease. Such structural shifts will improve energy self-sufficiency, thus enhancing energy security. Under the policy scenarios, energy-source diversity as measured by the Herfindahl Index improves until 2050, after which diversity declines because of high dependence on a specific energy source (nuclear and biomass). Overall, however, it is revealed that energy security improves along with progress in climate mitigation. These improvements will also contribute to the economy by reducing energy procurement risks. PMID:26660094

  15. Predicted Megafire Locations under Future Climate Scenarios in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Lorentz, K. A.; Drury, S.; Raffuse, S. M.; Larkin, N. K.

    2014-12-01

    Over the past several years, large high-intensity wildfires, or "megafires," have set records for the greatest burn area and most costly fires in several U.S. states. Megafires can release many tons of fine particles and other pollutants that are hazardous to human health over a short period of time. Under future climate scenarios, megafires may increase in some regions. The danger of smoke exposure from megafires in the future depends on several spatial factors, including the likelihood of megafire occurrence, emission rates, air transport patterns, and population density. We combined climatological transport modeling, smoke emission rates, and population density to determine the areas within the U.S. where a megafire would result in the greatest human exposure to smoke. Coupled with a synthesis of recent studies on the likelihood of megafire occurrence under future climate scenarios, these results provide a view of future smoke management and emergency response needs.

  16. Future trends of global atmospheric antimony emissions from anthropogenic activities until 2050

    NASA Astrophysics Data System (ADS)

    Zhou, Junrui; Tian, Hezhong; Zhu, Chuanyong; Hao, Jiming; Gao, Jiajia; Wang, Yong; Xue, Yifeng; Hua, Shenbin; Wang, Kun

    2015-11-01

    This paper presents the scenario forecast of global atmospheric antimony (Sb) emissions from anthropogenic activities till 2050. The projection scenarios are built based on the comprehensive global antimony emission inventory for the period 1995-2010 which is reported in our previous study. Three scenarios are set up to investigate the future changes of global antimony emissions as well as their source and region contribution characteristics. Trends of activity levels specified as 5 primary source categories are projected by combining the historical trend extrapolation with EIA International energy outlook 2013, while the source-specific dynamic emission factors are determined by applying transformed normal distribution functions. If no major changes in the efficiency of emission control are introduced and keep current air quality legislations (Current Legislation scenario), global antimony emissions will increase by a factor of 2 between 2010 and 2050. The largest increase in Sb emissions is projected from Asia due to large volume of nonferrous metals production and waste incineration. In case of enforcing the pollutant emission standards (Strengthened Control scenario), global antimony emissions in 2050 will stabilize with that of 2010. Moreover, we can anticipate further declines in Sb emissions for all continents with the best emission control performances (Maximum Feasible Technological Reduction scenario). Future antimony emissions from the top 10 largest emitting countries have also been calculated and source category contributions of increasing emissions of these countries present significant diversity. Furthermore, global emission projections in 2050 are distributed within a 1° × 1°latitude/longitude grid. East Asia, Western Europe and North America present remarkable differences in emission intensity under the three scenarios, which implies that source-and-country specific control measures are necessary to be implemented for abating Sb emissions from

  17. Seed Photon Fields of Blazars in the Internal Shock Scenario

    NASA Astrophysics Data System (ADS)

    Joshi, M.; Marscher, A. P.; Böttcher, M.

    2014-04-01

    We extend our approach of modeling spectral energy distribution (SED) and light curves of blazars to include external Compton (EC) emission due to inverse Compton scattering of an external anisotropic target radiation field. We describe the time-dependent impact of such seed photon fields on the evolution of multifrequency emission and spectral variability of blazars using a multi-zone time-dependent leptonic jet model, with radiation feedback, in the internal shock model scenario. We calculate accurate EC-scattered high-energy (HE) spectra produced by relativistic electrons throughout the Thomson and Klein-Nishina regimes. We explore the effects of varying the contribution of (1) a thermal Shakura-Sunyaev accretion disk, (2) a spherically symmetric shell of broad-line clouds, the broad-line region (BLR), and (3) a hot infrared emitting dusty torus (DT), on the resultant seed photon fields. We let the system evolve to beyond the BLR and within the DT and study the manifestation of the varying target photon fields on the simulated SED and light curves of a typical blazar. The calculations of broadband spectra include effects of γ-γ absorption as γ-rays propagate through the photon pool present inside the jet due to synchrotron and inverse Compton processes, but neglect γ-γ absorption by the BLR and DT photon fields outside the jet. Thus, our account of γ-γ absorption is a lower limit to this effect. Here, we focus on studying the impact of parameters relevant for EC processes on HE emission of blazars.

  18. A hadronic scenario for HESS J1818-154

    NASA Astrophysics Data System (ADS)

    Castelletti, G.; Supan, L.; Dubner, G.; Joshi, B. C.; Surnis, M. P.

    2013-09-01

    Aims: G15.4+0.1 is a faint supernova remnant (SNR) that has recently been associated with the γ-ray source HESS J1818-154. We investigate a hadronic scenario for the production of the γ-ray emission. Methods: Molecular 13CO (J = 1-0) taken from the Galactic Ring Survey (GRS) and neutral hydrogen (HI) data from the Southern Galactic Plane Survey (SGPS) have been used in combination with new 1420 MHz radio continuum observations carried out with the Giant Metrewave Radio Telescope (GMRT). Results: From the new observations and analysis of archival data we provided for the first time a reliable estimate for the distance to the SNR G15.4+0.1 and discovered molecular clouds located at the same distance. On the basis of HI absorption features, we estimate the distance to G15.4+0.1 in 4.8 ± 1.0 kpc. The 13CO observations clearly show a molecular cloud about 5' in size with two bright clumps, labeled A and B, clump A positionally associated with the location of HESS J1818-154 and clump B in coincidence with the brightest northern border of the radio SNR shell. The HI absorption and the 13CO emission study indicates a possible interaction between the molecular material and the remnant. We estimate the masses and densities of the molecular gas as (1.2 ± 0.5) × 103 M⊙ and (1.5 ± 0.4) × 103 cm-3 for clump A and (3.0 ± 0.7)× 103 M⊙ and (1.1 ± 0.3) × 103 cm-3 for clump B. Calculations show that the average density of the molecular clump A is sufficient to produce the detected γ-ray flux, thus favoring a hadronic origin for the high-energy emission.

  19. Seed photon fields of blazars in the internal shock scenario

    SciTech Connect

    Joshi, M.; Marscher, A. P.; Böttcher, M.

    2014-04-20

    We extend our approach of modeling spectral energy distribution (SED) and light curves of blazars to include external Compton (EC) emission due to inverse Compton scattering of an external anisotropic target radiation field. We describe the time-dependent impact of such seed photon fields on the evolution of multifrequency emission and spectral variability of blazars using a multi-zone time-dependent leptonic jet model, with radiation feedback, in the internal shock model scenario. We calculate accurate EC-scattered high-energy (HE) spectra produced by relativistic electrons throughout the Thomson and Klein-Nishina regimes. We explore the effects of varying the contribution of (1) a thermal Shakura-Sunyaev accretion disk, (2) a spherically symmetric shell of broad-line clouds, the broad-line region (BLR), and (3) a hot infrared emitting dusty torus (DT), on the resultant seed photon fields. We let the system evolve to beyond the BLR and within the DT and study the manifestation of the varying target photon fields on the simulated SED and light curves of a typical blazar. The calculations of broadband spectra include effects of γ-γ absorption as γ-rays propagate through the photon pool present inside the jet due to synchrotron and inverse Compton processes, but neglect γ-γ absorption by the BLR and DT photon fields outside the jet. Thus, our account of γ-γ absorption is a lower limit to this effect. Here, we focus on studying the impact of parameters relevant for EC processes on HE emission of blazars.

  20. A new scenario framework for Climate Change Research: Scenario matrix architecture

    SciTech Connect

    Van Vuuren, Detlef; Kriegler, Elmar; O'Neill, Brian; Ebi, Kristie L.; Riahi, Keywan; Carter, Tim; Edmonds, James A.; Hallegatte, Stephane; Kram, Tom; Mathur, Ritu; Winkler, Harald

    2014-02-01

    In this paper, we present the scenario matrix architecture as part of the new scenario framework for climate change research. The matrix architecture focuses on a key question of current climate research, namely the identification of trade-offs and synergies (in terms of risks, costs and other consequences) of different adaptation and mitigation strategies. The framework has two main axes: 1) the level of forcing (as represented by the RCPs) and 2) different socio-economic reference pathways. The matrix can be used as a tool to guide new scenario development and analytical analysis. It can also be used as a heuristic tool for classifying new and existing scenarios for assessment. Key elements of the architecture, in particular the shared socio-economic reference pathways and the shared policy assumptions, are elaborated in other papers in this special issue.

  1. Sampling and counting genome rearrangement scenarios

    PubMed Central

    2015-01-01

    Background Even for moderate size inputs, there are a tremendous number of optimal rearrangement scenarios, regardless what the model is and which specific question is to be answered. Therefore giving one optimal solution might be misleading and cannot be used for statistical inferring. Statistically well funded methods are necessary to sample uniformly from the solution space and then a small number of samples are sufficient for statistical inferring. Contribution In this paper, we give a mini-review about the state-of-the-art of sampling and counting rearrangement scenarios, focusing on the reversal, DCJ and SCJ models. Above that, we also give a Gibbs sampler for sampling most parsimonious labeling of evolutionary trees under the SCJ model. The method has been implemented and tested on real life data. The software package together with example data can be downloaded from http://www.renyi.hu/~miklosi/SCJ-Gibbs/ PMID:26452124

  2. Occupational health scenario of Indian informal sector

    PubMed Central

    NAG, Anjali; VYAS, Heer; NAG, Pranab

    2016-01-01

    Workers in the Indian informal sector are engaged with different occupations. These occupations involve varied work related hazards. These occupational hazards are a consequent risk to health. The study aimed to determine occupational health scenario in the Indian Informal sector. One thousand eleven hundred twenty two workers from five different occupations namely weaving (handloom and power loom), construction, transportation, tobacco processing and fish processing were assessed by interviewer administered health questionnaire. Workers suffered from musculo-skeletal complaints, respiratory health hazards, eye problems and skin related complaints. There was a high prevalence of self-reported occupational health problems in the selected sectors. The study finds that workers have occupational exposures to multiple hazards. The absence of protective guards aggrevate their health condition. The study attempts to draws an immediate attention on the existing health scenario of the Indian Informal sector. PMID:26903262

  3. River multimodal scenario for rehabilitation robotics.

    PubMed

    Munih, Marko; Novak, Domen; Milavec, Maja; Ziherl, Jaka; Olenšek, Andrej; Mihelj, Matjaž

    2011-01-01

    This paper presents the novel "River" multimodal rehabilitation robotics scenario that includes video, audio and haptic modalities. Elements contributing to intrinsic motivation are carefully joined in the three modalities to increase motivation of the user. The user first needs to perform a motor action, then receives a cognitive challenge that is solved with adequate motor activity. Audio includes environmental sounds, music and spoken instructions or encouraging statements. Sounds and music were classified according to the arousal-valence space. The haptic modality can provide catching, grasping, tunnel or adaptive assistance, all depending on the user's needs. The scenario was evaluated in 16 stroke users, who responded to it favourably according to the Intrinsic Motivation Inventory questionnaire. Additionally, the river multimodal environment seems to elicit higher motivation than a simpler apple pick-and-place multimodal task. PMID:22275619

  4. Scenario Crisis Cases in Distance Learning Sessions

    NASA Astrophysics Data System (ADS)

    Antunes, A.

    2013-04-01

    We discuss early results using student-lead role-play of crises and disaster scenarios to encourage engagement in distance learning sessions. The disadvantage of distance learning via web interface—the lack of face-to-face and the ease with which a student can remain quiet—is balanced by the wealth of Internet-accessible media reports of past mission disasters. Capitol College minimizes the lecture component to simply frame each session's open-ended crisis in our Mission Operations engineering course. The students are presented with a historical ‘disaster’ but not its resolution; they present their course of action, then the lecturer steps in to debrief. With a wealth of past cases available on the web, use of scenarios rather than lectures shows early signs of being viable model for encouraging discussion and interaction within distance learning for a variety of course topics.

  5. Occupational health scenario of Indian informal sector.

    PubMed

    Nag, Anjali; Vyas, Heer; Nag, Pranab

    2016-08-01

    Workers in the Indian informal sector are engaged with different occupations. These occupations involve varied work related hazards. These occupational hazards are a consequent risk to health. The study aimed to determine occupational health scenario in the Indian Informal sector. One thousand eleven hundred twenty two workers from five different occupations namely weaving (handloom and power loom), construction, transportation, tobacco processing and fish processing were assessed by interviewer administered health questionnaire. Workers suffered from musculo-skeletal complaints, respiratory health hazards, eye problems and skin related complaints. There was a high prevalence of self-reported occupational health problems in the selected sectors. The study finds that workers have occupational exposures to multiple hazards. The absence of protective guards aggrevate their health condition. The study attempts to draws an immediate attention on the existing health scenario of the Indian Informal sector. PMID:26903262

  6. The hexagon hypothesis: Six disruptive scenarios.

    PubMed

    Burtles, Jim

    2015-01-01

    This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity. PMID:26420396

  7. Selecting reasonable future land use scenarios

    SciTech Connect

    Allred, W.E.; Smith, R.W.

    1995-12-31

    This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example. The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.

  8. Thermodynamical interpretation of gravity in braneworld scenarios

    SciTech Connect

    Sheykhi, Ahmad

    2009-05-15

    We study the thermodynamical properties of the apparent horizon in the various braneworld scenarios. First, we show that the Friedmann equations can be written directly in the form of the first law of thermodynamics, dE = T{sub h}dS{sub h}+WdV, at apparent horizon on the brane, regardless of whether there is the intrinsic curvature term on the brane or a Gauss-Bonnet term in the bulk. This procedure leads to extract an entropy expression in terms of horizon geometry associated with the apparent horizon. Then, we examine the time evolution of the total entropy, including the derived entropy of the apparent horizon and the entropy of the matter fields inside the apparent horizon. We find that the derived entropy of the apparent horizon on the brane satisfies the generalized second law of thermodynamics in braneworld scenarios. These results further support the idea that gravitation on a macroscopic scale is a manifestation of thermodynamics.

  9. Rolling in the modulated reheating scenario

    SciTech Connect

    Kobayashi, Naoya; Kobayashi, Takeshi; Erickcek, Adrienne L. E-mail: takeshi@cita.utoronto.ca

    2014-01-01

    In the modulated reheating scenario, the field that drives inflation has a spatially varying decay rate, and the resulting inhomogeneous reheating process generates adiabatic perturbations. We examine the statistical properties of the density perturbations generated in this scenario. Unlike earlier analyses, we include the dynamics of the field that determines the inflaton decay rate. We show that the dynamics of this modulus field can significantly alter the amplitude of the power spectrum and the bispectrum, even if the modulus field has a simple potential and its effective mass is smaller than the Hubble rate. In some cases, the evolution of the modulus amplifies the non-Gaussianity of the perturbations to levels that are excluded by recent observations of the cosmic microwave background. Therefore, a proper treatment of the modulus dynamics is required to accurately calculate the statistical properties of the perturbations generated by modulated reheating.

  10. Electroweak Gauge-Higgs Unification Scenario

    SciTech Connect

    Hosotani, Yutaka

    2008-11-23

    In the gauge-Higgs unification scenario 4D Higgs fields are unified with gauge fields in higher dimensions. The electroweak model is constructed in the Randall-Sundrum warped space. The electroweak symmetry is dynamically broken by the Hosotani mechanism due to the top quark contribution. The Higgs mass is predicted to be around 50 GeV with the vanishing ZZH and WWH couplings so that the LEP2 bound for the Higgs mass is evaded.

  11. Probabilistic Climate Scenario Information for Risk Assessment

    NASA Astrophysics Data System (ADS)

    Dairaku, K.; Ueno, G.; Takayabu, I.

    2014-12-01

    Climate information and services for Impacts, Adaptation and Vulnerability (IAV) Assessments are of great concern. In order to develop probabilistic regional climate information that represents the uncertainty in climate scenario experiments in Japan, we compared the physics ensemble experiments using the 60km global atmospheric model of the Meteorological Research Institute (MRI-AGCM) with multi-model ensemble experiments with global atmospheric-ocean coupled models (CMIP3) of SRES A1b scenario experiments. The MRI-AGCM shows relatively good skills particularly in tropics for temperature and geopotential height. Variability in surface air temperature of physical ensemble experiments with MRI-AGCM was within the range of one standard deviation of the CMIP3 model in the Asia region. On the other hand, the variability of precipitation was relatively well represented compared with the variation of the CMIP3 models. Models which show the similar reproducibility in the present climate shows different future climate change. We couldn't find clear relationships between present climate and future climate change in temperature and precipitation. We develop a new method to produce probabilistic information of climate change scenarios by weighting model ensemble experiments based on a regression model (Krishnamurti et al., Science, 1999). The method can be easily applicable to other regions and other physical quantities, and also to downscale to finer-scale dependent on availability of observation dataset. The prototype of probabilistic information in Japan represents the quantified structural uncertainties of multi-model ensemble experiments of climate change scenarios. Acknowledgments: This study was supported by the SOUSEI Program, funded by Ministry of Education, Culture, Sports, Science and Technology, Government of Japan.

  12. A tilted cold dark matter cosmological scenario

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Gnedin, Nickolay Y.; Kofman, Lev A.; Ostriker, Jeremiah P.

    1992-01-01

    A new cosmological scenario based on CDM but with a power spectrum index of about 0.7-0.8 is suggested. This model is predicted by various inflationary models with no fine tuning. This tilted CDM model, if normalized to COBE, alleviates many problems of the standard CDM model related to both small-scale and large-scale power. A physical bias of galaxies over dark matter of about two is required to fit spatial observations.

  13. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    NASA Astrophysics Data System (ADS)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  14. Scenarios of 21st-century trans-Arctic shipping for climate studies

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Davis, S. J.; Zender, C. S.; Smith, L. C.

    2013-12-01

    Receding Arctic sea ice coupled with increased resource demand in east Asia have recast the Arctic as an international trade space facilitating export of petroleum and minerals and offering potential alternative pathways for global maritime trade. Several studies have examined the future impact of increased vessel traffic in the Arctic on emissions of greenhouse gases and black carbon (BC); however, the net impact of these emissions on climate forcing in the region is not well understood. Here we present several scenarios of 21st-century trans-Arctic shipping for climate studies. Vessel transits between 5 east Asian ports (Tianjin, Shanghai, Hong Kong, Tokyo/Yokohama, Busan) and 2 European ports (Rotterdam, Hamburg) are estimated from 2010-2050 according to projected sea ice concentration and thickness, trends in cargo export volumes, and vessel ice class and cargo capacity. Sea ice data are represented by a 7-model ensemble mean from CMIP5 under two forcing scenarios (RCP 4.5/8.5). Emissions presented (CO2, CH4, N2O, NOx, SOx, BC) are obtained by convolving projected transits with trends in emissions factors. Results illustrate a range of emissions inventories for the Arctic owing to differences in vessel accessibility, trade volume, routes, and fuel mixtures.

  15. Clinical Scenarios for Discordant Anti-Xa.

    PubMed

    Vera-Aguilera, Jesus; Yousef, Hindi; Beltran-Melgarejo, Diego; Teng, Teng Hugh; Jan, Ramos; Mok, Mary; Vera-Aguilera, Carlos; Moreno-Aguilera, Eduardo

    2016-01-01

    Anti-Xa test measures the activity of heparin against the activity of activated coagulation factor X; significant variability of anti-Xa levels in common clinical scenarios has been observed. Objective. To review the most common clinical settings in which anti-Xa results can be bias. Evidence Review. Guidelines and current literature search: we used PubMed, Medline, Embase, and MEDION, from 2000 to October 2013. Results. Anti-Xa test is widely used; however the assay underestimates heparin concentration in the presence of significant AT deficiency, pregnancy, end stage renal disease, and postthrombolysis and in patients with hyperbilirubinemia; limited published data evaluating the safety and effectiveness of anti-Xa assays for managing UH therapy is available. Conclusions and Relevance. To our knowledge this is the first paper that summarizes the most common causes in which this assay can be affected, several "day to day" clinical scenarios can modify the outcomes, and we concur that these rarely recognized scenarios can be affected by negative outcomes in the daily practice. PMID:27293440

  16. Clinical Scenarios for Discordant Anti-Xa

    PubMed Central

    Vera-Aguilera, Jesus; Yousef, Hindi; Beltran-Melgarejo, Diego; Teng, Teng Hugh; Jan, Ramos; Mok, Mary; Vera-Aguilera, Carlos; Moreno-Aguilera, Eduardo

    2016-01-01

    Anti-Xa test measures the activity of heparin against the activity of activated coagulation factor X; significant variability of anti-Xa levels in common clinical scenarios has been observed. Objective. To review the most common clinical settings in which anti-Xa results can be bias. Evidence Review. Guidelines and current literature search: we used PubMed, Medline, Embase, and MEDION, from 2000 to October 2013. Results. Anti-Xa test is widely used; however the assay underestimates heparin concentration in the presence of significant AT deficiency, pregnancy, end stage renal disease, and postthrombolysis and in patients with hyperbilirubinemia; limited published data evaluating the safety and effectiveness of anti-Xa assays for managing UH therapy is available. Conclusions and Relevance. To our knowledge this is the first paper that summarizes the most common causes in which this assay can be affected, several “day to day” clinical scenarios can modify the outcomes, and we concur that these rarely recognized scenarios can be affected by negative outcomes in the daily practice. PMID:27293440

  17. CP violation in heavy MSSM Higgs scenarios

    DOE PAGESBeta

    Carena, M.; Ellis, J.; Lee, J. S.; Pilaftsis, A.; Wagner, C. E. M.

    2016-02-18

    We introduce and explore new heavy Higgs scenarios in the Minimal Supersymmetric Standard Model (MSSM) with explicit CP violation, which have important phenomenological implications that may be testable at the LHC. For soft supersymmetry-breaking scales MS above a few TeV and a charged Higgs boson mass MH+ above a few hundred GeV, new physics effects including those from explicit CP violation decouple from the light Higgs boson sector. However, such effects can significantly alter the phenomenology of the heavy Higgs bosons while still being consistent with constraints from low-energy observables, for instance electric dipole moments. To consider scenarios with amore » charged Higgs boson much heavier than the Standard Model (SM) particles but much lighter than the supersymmetric particles, we revisit previous calculations of the MSSM Higgs sector. We compute the Higgs boson masses in the presence of CP violating phases, implementing improved matching and renormalization-group (RG) effects, as well as two-loop RG effects from the effective two-Higgs Doublet Model (2HDM) scale MH± to the scale MS. Here, we illustrate the possibility of non-decoupling CP-violating effects in the heavy Higgs sector using new benchmark scenarios named.« less

  18. Vietnam's Forest Transition in Retrospect: Demonstrating Weaknesses in Business-as-Usual Scenarios for REDD+

    NASA Astrophysics Data System (ADS)

    Ankersen, Jeppe; Grogan, Kenneth; Mertz, Ole; Fensholt, Rasmus; Castella, Jean-Christophe; Lestrelin, Guillaume; Nguyen, Dinh Tien; Danielsen, Finn; Brofeldt, Søren; Rasmussen, Kjeld

    2015-05-01

    One of the prerequisites of the REDD+ mechanism is to effectively predict business-as-usual (BAU) scenarios for change in forest cover. This would enable estimation of how much carbon emission a project could potentially prevent and thus how much carbon credit should be rewarded. However, different factors like forest degradation and the lack of linearity in forest cover transitions challenge the accuracy of such scenarios. Here we predict and validate such BAU scenarios retrospectively based on forest cover changes at village and district level in North Central Vietnam. With the government's efforts to increase the forest cover, land use policies led to gradual abandonment of shifting cultivation since the 1990s. We analyzed Landsat images from 1973, 1989, 1998, 2000, and 2011 and found that the policies in the areas studied did lead to increased forest cover after a long period of decline, but that this increase could mainly be attributed to an increase in open forest and shrub areas. We compared Landsat classifications with participatory maps of land cover/use in 1998 and 2012 that indicated more forest degradation than was captured by the Landsat analysis. The BAU scenarios were heavily dependent on which years were chosen for the reference period. This suggests that hypothetical REDD+ activities in the past, when based on the remote sensing data available at that time, would have been unable to correctly estimate changes in carbon stocks and thus produce relevant BAU scenarios.

  19. Vietnam's forest transition in retrospect: demonstrating weaknesses in business-as-usual scenarios for REDD.

    PubMed

    Ankersen, Jeppe; Grogan, Kenneth; Mertz, Ole; Fensholt, Rasmus; Castella, Jean-Christophe; Lestrelin, Guillaume; Nguyen, Dinh Tien; Danielsen, Finn; Brofeldt, Søren; Rasmussen, Kjeld

    2015-05-01

    One of the prerequisites of the REDD+ mechanism is to effectively predict business-as-usual (BAU) scenarios for change in forest cover. This would enable estimation of how much carbon emission a project could potentially prevent and thus how much carbon credit should be rewarded. However, different factors like forest degradation and the lack of linearity in forest cover transitions challenge the accuracy of such scenarios. Here we predict and validate such BAU scenarios retrospectively based on forest cover changes at village and district level in North Central Vietnam. With the government's efforts to increase the forest cover, land use policies led to gradual abandonment of shifting cultivation since the 1990s. We analyzed Landsat images from 1973, 1989, 1998, 2000, and 2011 and found that the policies in the areas studied did lead to increased forest cover after a long period of decline, but that this increase could mainly be attributed to an increase in open forest and shrub areas. We compared Landsat classifications with participatory maps of land cover/use in 1998 and 2012 that indicated more forest degradation than was captured by the Landsat analysis. The BAU scenarios were heavily dependent on which years were chosen for the reference period. This suggests that hypothetical REDD+ activities in the past, when based on the remote sensing data available at that time, would have been unable to correctly estimate changes in carbon stocks and thus produce relevant BAU scenarios. PMID:25588807

  20. Effects of climate change adaptation scenarios on perceived spatio-temporal characteristics of drought events

    NASA Astrophysics Data System (ADS)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-04-01

    Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This study addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century under different emissions scenarios? (3) How would perceived drought characteristics evolve under theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-year multilevel and multiscale drought reanalysis over France (Vidal et al., 2010). Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index (SPI) and the Standardized Soil Wetness Index (SSWI), respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century under all considered emissions scenarios, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals. The two scenarios differ by the way the transient adaptation is performed for a given date in the future, with reference to the normals over either the previous 30-year window ("retrospective

  1. Simulation of selected ground-water pumping scenarios at Fort Stewart and Hunter Army Airfield, Georgia

    USGS Publications Warehouse

    Cherry, Gregory S.

    2006-01-01

    A regional MODFLOW ground-water flow model of parts of coastal Georgia, Florida, and South Carolina was used to evaluate the effects of current and hypothetical groundwater withdrawal, and the relative effects of pumping in specific areas on ground-water flow in the Upper Floridan aquifer near Fort Stewart and Hunter Army Airfield (HAAF), coastal Georgia. Simulation results for four steady-state pumping scenarios were compared to each other and to a Base Case condition. The Base Case represents year 2000 pumping rates throughout the model area, with the exception that permitted annual average pumping rates for the year 2005 were used for 26 production wells at Fort Stewart and HAAF. The four pumping scenarios focused on pumping increases at HAAF resulting from projected future demands and additional personnel stationed at the facility and on reductions in pumping at Fort Stewart. Scenarios A and B simulate 1- and 2-million-gallon-perday (Mgal/d) increases, respectively, at HAAF. Simulated water-level change maps for these scenarios indicate an area of influence that extends into parts of Bryan, Bulloch, Chatham, Effingham, and Liberty Counties, Ga., and Beaufort and Jasper Counties, S.C., with maximum drawdowns from 0.5 to 4 feet (ft) for scenario A and 1 to 8 ft for Scenario B. For scenarios C and D, increases in pumping at HAAF were offset by decreases in pumping at Fort Stewart. Scenario C represents a 1-Mgal/d increase at HAAF and a 1-Mgal/d decrease at Fort Stewart; simulated water-level changes range from 0.4 to -4 ft. Scenario D represents a 2-Mgal/d increase at HAAF and 2-Mgal/d decrease at Fort Stewart; simulated water-level changes range from 0.04 to -8 ft. The simulated water-level changes indicate an area of influence that extends into parts of Bryan, Bulloch, Chatham, Effingham, Liberty, and McIntosh Counties, Ga., and Jasper and Beaufort Counties, S.C. In general, decreasing pumping at Fort Stewart by an equivalent amount to pumping increases at HAAF

  2. Dust Plume Modeling at Fort Bliss: Full Training Scenario

    SciTech Connect

    Chapman, Elaine G.; Rishel, Jeremy P.; Rutz, Frederick C.; Seiple, Timothy E.; Newsom, Rob K.; Allwine, K Jerry

    2006-09-26

    The potential for air quality impacts from heavy mechanized vehicles operating in the training ranges and on the unpaved main supply routes at Fort Bliss is being investigated. The investigation uses the atmospheric modeling system DUSTRAN to simulate fugitive dust emission and dispersion from typical activities occurring on the installation. This report conveys the results of DUSTRAN simulations conducted using a “Full Training” scenario developed by Fort Bliss personnel. he Full Training scenario includes simultaneous off-road activities of two full Heavy Brigade Combat Teams (HCBTs) and one HCBT battalion on three training ranges. Simulations were conducted for the six-day period, April 25-30, 2005, using previously archived meteorological records. Simulation results are presented in the form of 24-hour average PM10 plots and peak 1-hour PM10 concentration plots, where the concentrations represent contributions resulting from the specified military vehicular activities, not total ambient PM10 concentrations. Results indicate that the highest PM10 contribution concentrations occurred on April 30 when winds were light and variable. Under such conditions, lofted particulates generated by vehicular movement stay in the area of generation and are not readily dispersed. The effect of training duration was investigated by comparing simulations with vehicular activity extending over a ten hour period (0700 to 1700 MST) with simulations where vehicular activity was compressed into a one hour period (0700 to 0800 MST). Compressing all vehicular activity into one hour led to higher peak one-hour and 24-hour average concentration contributions, often substantially higher.

  3. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols

    NASA Astrophysics Data System (ADS)

    Backes, Anna M.; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-02-01

    In central Europe, ammonium sulphate and ammonium nitrate make up a large fraction of fine particles which pose a threat to human health. Most studies on air pollution through particulate matter investigate the influence of emission reductions of sulphur- and nitrogen oxides on aerosol concentration. Here, we focus on the influence of ammonia (NH3) emissions. Emission scenarios have been created on the basis of the improved ammonia emission parameterization implemented in the SMOKE for Europe and CMAQ model systems described in part I of this study. This includes emissions based on future European legislation (the National Emission Ceilings) as well as a dynamic evaluation of the influence of different agricultural sectors (e.g. animal husbandry) on particle formation. The study compares the concentrations of NH3, NH4+, NO3 -, sulphur compounds and the total concentration of particles in winter and summer for a political-, technical- and behavioural scenario. It was found that a reduction of ammonia emissions by 50% lead to a 24% reduction of the total PM2.5 concentrations in northwest Europe. The observed reduction was mainly driven by reduced formation of ammonium nitrate. Moreover, emission reductions during winter had a larger impact than during the rest of the year. This leads to the conclusion that a reduction of the ammonia emissions from the agricultural sector related to animal husbandry could be more efficient than the reduction from other sectors due to its larger share in winter ammonia emissions.

  4. Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina.

    PubMed

    Cabré, María Fernanda; Quénol, Hervé; Nuñez, Mario

    2016-09-01

    Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970-1989) and future (2080-2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural

  5. Riparian vegetation structure under desertification scenarios

    NASA Astrophysics Data System (ADS)

    Rosário Fernandes, M.; Segurado, Pedro; Jauch, Eduardo; Ferreira, M. Teresa

    2015-04-01

    Riparian areas are responsible for many ecological and ecosystems services, including the filtering function, that are considered crucial to the preservation of water quality and social benefits. The main goal of this study is to quantify and understand the riparian variability under desertification scenario(s) and identify the optimal riparian indicators for water scarcity and droughts (WS&D), henceforth improving river basin management. This study was performed in the Iberian Tâmega basin, using riparian woody patches, mapped by visual interpretation on Google Earth imagery, along 130 Sampling Units of 250 m long river stretches. Eight riparian structural indicators, related with lateral dimension, weighted area and shape complexity of riparian patches were calculated using Patch Analyst extension for ArcGis 10. A set of 29 hydrological, climatic, and hydrogeomorphological variables were computed, by a water modelling system (MOHID), using monthly meteorological data between 2008 and 2014. Land-use classes were also calculated, in a 250m-buffer surrounding each sampling unit, using a classification based system on Corine Land Cover. Boosted Regression Trees identified Mean-width (MW) as the optimal riparian indicator for water scarcity and drought, followed by the Weighted Class Area (WCA) (classification accuracy =0.79 and 0.69 respectively). Average Flow and Strahler number were consistently selected, by all boosted models, as the most important explanatory variables. However, a combined effect of hidrogeomorphology and land-use can explain the high variability found in the riparian width mainly in Tâmega tributaries. Riparian patches are larger towards Tâmega river mouth although with lower shape complexity, probably related with more continuous and almost monospecific stands. Climatic, hydrological and land use scenarios, singly and combined, were used to quantify the riparian variability responding to these changes, and to assess the loss of riparian

  6. Underground infrastructure damage for a Chicago scenario

    SciTech Connect

    Dey, Thomas N; Bos, Rabdall J

    2011-01-25

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  7. Management strategies in hospitals: scenario planning

    PubMed Central

    Ghanem, Mohamed; Schnoor, Jörg; Heyde, Christoph-Eckhard; Kuwatsch, Sandra; Bohn, Marco; Josten, Christoph

    2015-01-01

    Background: Instead of waiting for challenges to confront hospital management, doctors and managers should act in advance to optimize and sustain value-based health. This work highlights the importance of scenario planning in hospitals, proposes an elaborated definition of the stakeholders of a hospital and defines the influence factors to which hospitals are exposed to. Methodology: Based on literature analysis as well as on personal interviews with stakeholders we propose an elaborated definition of stakeholders and designed a questionnaire that integrated the following influence factors, which have relevant impact on hospital management: political/legal, economic, social, technological and environmental forces. These influence factors are examined to develop the so-called critical uncertainties. Thorough identification of uncertainties was based on a “Stakeholder Feedback”. Results: Two key uncertainties were identified and considered in this study: the development of workload for the medical staff the profit oriented performance of the medical staff. According to the developed scenarios, complementary education of the medical staff as well as of non-medical top executives and managers of hospitals was the recommended core strategy. Complementary scenario-specific strategic options should be considered whenever needed to optimize dealing with a specific future development of the health care environment. Conclusion: Strategic planning in hospitals is essential to ensure sustainable success. It considers multiple situations and integrates internal and external insights and perspectives in addition to identifying weak signals and “blind spots”. This flows into a sound planning for multiple strategic options. It is a state of the art tool that allows dealing with the increasing challenges facing hospital management. PMID:26504735

  8. Estimation of light duty vehicle emissions in Islamabad and climate co-benefits of improved emission standards implementation

    NASA Astrophysics Data System (ADS)

    Shah, Izhar Hussain; Zeeshan, Muhammad

    2016-02-01

    Light Duty Vehicles (LDVs) hold a major share in Islamabad's vehicle fleet and their contribution towards air pollution has not been analyzed previously. Emissions for the base year (2014) and two optimistic 'what-if' scenarios were estimated by using the International Vehicle Emissions (IVE) model. Considering the recent implementation of Euro II as emission standard in Pakistan, scenario 1 assumed entire LDV fleet meeting at least Euro II standards while scenario 2 assumed all LDVs meeting Euro IV standards except motorcycles which would be meeting Euro III emission standards. Higher average age for all vehicles and lower share of Euro compliant vehicles was found in the base case. Low engine stress mode (lower speeds with frequent decelerations) was observed for all vehicles especially on arterials and residential roads. Highest overall emissions (59%) were observed on arterials, followed by residential roads (24%) and highways (17%) with higher emissions observed during morning (8-10 am) and evening (4-6 pm) rush hours. Composite emission factors were also calculated. Results reveal that 1094, 147, 11.1, 0.2 and 0.4 kt of CO2, CO, NOx, SO2 and PM10 respectively were emitted in 2014 by LDVs. Compared with the base year, scenario 1 showed a reduction of 9%, 69%, 73%, 13% and 31%, while scenario 2 exhibited a reduction of 5%, 92%, 90%, 92% and 81% for CO2, CO, NOx, SO2 and PM10 respectively. As compared to the base year, a 20 year CO2-equivalent Global Warming Potential (GWP) reduced by 55% and 64% under scenario 1 and 2 respectively, while a 100 year GWP reduced by 40% and 44% under scenario 1 and 2 respectively. Our results demonstrated significant co-benefits that could be achieved in emission reduction and air quality improvement in the city by vehicle technology implementation.

  9. CFDP Configuration: Enclid and Juice Scenarios

    NASA Astrophysics Data System (ADS)

    Valverde, Alberto; Taylor, Chris; Montesinos, Juan Antonio; Maiorano, Elena; Colombo, Cyril; Erd, Christian; Magistrati, Giorgio

    2014-08-01

    This paper presents the work done within the ESA ESTEC Data Systems Division, targeting the implementation of CFDP in future ESA Science Missions. EUCLID and JUICE currently include CCSDS File Delivery Protocol (CFDP) as baseline for payload data transfer to ground. The two missions have completely different characteristics, although both present quite demanding scenarios. Using the communication link characteristics as an input, some simulations have been performed to optimize the CFDP configuration and get some preliminary figures on the retransmission overhead, payload data bandwidth and number of parallel transactions needed to maintain full bandwidth utilization. The paper provides some guidelines on CFDP configuration and usage that can be useful in future CFDP implementations.

  10. Postulated accident scenarios in weapons disassembly

    SciTech Connect

    Payne, S.S.

    1997-06-01

    A very brief summary of three postulated accident scenarios for weapons disassembly is provided in the paper. The first deals with a tetrahedral configuration of four generic pits; the second, an infinite planar array of generic pits with varying interstitial water density; and the third, a spherical shell with internal mass suspension in water varying the size and mass of the shell. Calculations were performed using the Monte Carlo Neutron Photon transport code MCNP4A. Preliminary calculations pointed to a need for higher resolution of small pit separation regimes and snapshots of hydrodynamic processes of water/plutonium mixtures.

  11. Blood loss estimation in epistaxis scenarios.

    PubMed

    Beer, H L; Duvvi, S; Webb, C J; Tandon, S

    2005-01-01

    Thirty-two members of staff from the Ear, Nose and Throat Department at Warrington General Hospital were asked to estimate blood loss in commonly encountered epistaxis scenarios. Results showed that once the measured volume was above 100 ml, visual estimation became grossly inaccurate. Comparison of medical and non-medical staff showed under-estimation was more marked in the non-medical group. Comparison of doctors versus nurses showed no difference in estimation, and no difference was found between grades of staff. PMID:15807956

  12. Motivating an intergenerational workforce: scenarios for success.

    PubMed

    Wieck, K Lynn

    2007-01-01

    Although much has been written about the challenge of having four generations in the workplace simultaneously, problems of conflict, misunderstanding, and divisiveness continue. This article provides a snapshot of each generation as context. A series of scenarios based on Maslow's Hierarchy of Needs are then presented with insights into how each generation might approach the situation, along with hints for successfully managing toward positive outcomes. The expected outcome is a technique for each generation to look at workplace situations from all perspectives. PMID:18046211

  13. Robustness of braneworld scenarios against tensorial perturbations

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Losano, L.; Menezes, R.; Olmo, Gonzalo J.; Rubiera-Garcia, D.

    2015-11-01

    Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein’s theory regardless of the scalar field and gravitational Lagrangians.

  14. Braneworld Scenarios from Deformed Defect Chains

    NASA Astrophysics Data System (ADS)

    Chinaglia, M.; Bernardini, A. E.; da Rocha, Roldão

    2016-06-01

    Novel braneworld scenarios supported by warp factors driven by a single extra dimension are obtained from deformed one-dimensional lump-like solutions known a priori. Through a novel ansatz, the internal energy structure, the braneworld warp factor, and the quantum mechanical analogue problem, as well as the associated zero mode solutions, are straightforwardly derived by means of an analytical procedure. The results allow one to identify thick brane solutions that support internal structures and that can hold the (3+1)-dimensional gravity.

  15. Simulations of atmospheric methane for Cape Grim, Tasmania, to constrain southeastern Australian methane emissions

    NASA Astrophysics Data System (ADS)

    Loh, Z. M.; Law, R. M.; Haynes, K. D.; Krummel, P. B.; Steele, L. P.; Fraser, P. J.; Chambers, S. D.; Williams, A. G.

    2015-01-01

    This study uses two climate models and six scenarios of prescribed methane emissions to compare modelled and observed atmospheric methane between 1994 and 2007, for Cape Grim, Australia (40.7° S, 144.7° E). The model simulations follow the TransCom-CH4 protocol and use the Australian Community Climate and Earth System Simulator (ACCESS) and the CSIRO Conformal-Cubic Atmospheric Model (CCAM). Radon is also simulated and used to reduce the impact of transport differences between the models and observations. Comparisons are made for air samples that have traversed the Australian continent. All six emission scenarios give modelled concentrations that are broadly consistent with those observed. There are three notable mismatches, however. Firstly, scenarios that incorporate interannually varying biomass burning emissions produce anomalously high methane concentrations at Cape Grim at times of large fire events in southeastern Australia, most likely due to the fire methane emissions being unrealistically input into the lowest model level. Secondly, scenarios with wetland methane emissions in the austral winter overestimate methane concentrations at Cape Grim during wintertime while scenarios without winter wetland emissions perform better. Finally, all scenarios fail to represent a~methane source in austral spring implied by the observations. It is possible that the timing of wetland emissions in the scenarios is incorrect with recent satellite measurements suggesting an austral spring (September-October-November), rather than winter, maximum for wetland emissions.

  16. Continental anthropogenic primary particle number emissions

    NASA Astrophysics Data System (ADS)

    Paasonen, Pauli; Kupiainen, Kaarle; Klimont, Zbigniew; Visschedijk, Antoon; Denier van der Gon, Hugo A. C.; Amann, Markus

    2016-06-01

    Atmospheric aerosol particle number concentrations impact our climate and health in ways different from those of aerosol mass concentrations. However, the global, current and future anthropogenic particle number emissions and their size distributions are so far poorly known. In this article, we present the implementation of particle number emission factors and the related size distributions in the GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model. This implementation allows for global estimates of particle number emissions under different future scenarios, consistent with emissions of other pollutants and greenhouse gases. In addition to determining the general particulate number emissions, we also describe a method to estimate the number size distributions of the emitted black carbon particles. The first results show that the sources dominating the particle number emissions are different to those dominating the mass emissions. The major global number source is road traffic, followed by residential combustion of biofuels and coal (especially in China, India and Africa), coke production (Russia and China), and industrial combustion and processes. The size distributions of emitted particles differ across the world, depending on the main sources: in regions dominated by traffic and industry, the number size distribution of emissions peaks in diameters range from 20 to 50 nm, whereas in regions with intensive biofuel combustion and/or agricultural waste burning, the emissions of particles with diameters around 100 nm are dominant. In the baseline (current legislation) scenario, the particle number emissions in Europe, Northern and Southern Americas, Australia, and China decrease until 2030, whereas especially for India, a strong increase is estimated. The results of this study provide input for modelling of the future changes in aerosol-cloud interactions as well as particle number related adverse health effects, e.g. in response to tightening

  17. SCENARIOS FOR MEETING CALIFORNIA'S 2050 CLIMATE GOALS California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results

    SciTech Connect

    Wei, Max; Greenblatt, Jeffrey; Donovan, Sally; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel

    2014-06-01

    This study provides an updated analysis of long-term energy system scenarios for California consistent with the State meeting its 2050 climate goal, including detailed analysis and assessment of electricity system build-out, operation, and costs across the Western Electricity Coordinating Council (WECC) region. Four key elements are found to be critical for the State to achieve its 2050 goal of 80 percent greenhouse (GHG) reductions from the 1990 level: aggressive energy efficiency; clean electricity; widespread electrification of passenger vehicles, building heating, and industry heating; and large-scale production of low-carbon footprint biofuels to largely replace petroleum-based liquid fuels. The approach taken here is that technically achievable energy efficiency measures are assumed to be achieved by 2050 and aggregated with the other key elements mentioned above to estimate resultant emissions in 2050. The energy and non-energy sectors are each assumed to have the objective of meeting an 80 percent reduction from their respective 1990 GHG levels for the purposes of analysis. A different partitioning of energy and non-energy sector GHG greenhouse reductions is allowed if emission reductions in one sector are more economic or technically achievable than in the other. Similarly, within the energy or non-energy sectors, greater or less than 80 percent reduction from 1990 is allowed for sub-sectors within the energy or non-energy sectors as long as the overall target is achieved. Overall emissions for the key economy-wide scenarios are considered in this report. All scenarios are compliant or nearly compliant with the 2050 goal. This finding suggests that multiple technical pathways exist to achieve the target with aggressive policy support and continued technology development of largely existing technologies.

  18. A ΛCDM bounce scenario

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Wilson-Ewing, Edward

    2015-03-01

    We study a contracting universe composed of cold dark matter and radiation, and with a positive cosmological constant. As is well known from standard cosmological perturbation theory, under the assumption of initial quantum vacuum fluctuations the Fourier modes of the comoving curvature perturbation that exit the (sound) Hubble radius in such a contracting universe at a time of matter-domination will be nearly scale-invariant. Furthermore, the modes that exit the (sound) Hubble radius when the effective equation of state is slightly negative due to the cosmological constant will have a slight red tilt, in agreement with observations. We assume that loop quantum cosmology captures the correct high-curvature dynamics of the space-time, and this ensures that the big-bang singularity is resolved and is replaced by a bounce. We calculate the evolution of the perturbations through the bounce and find that they remain nearly scale-invariant. We also show that the amplitude of the scalar perturbations in this cosmology depends on a combination of the sound speed of cold dark matter, the Hubble rate in the contracting branch at the time of equality of the energy densities of cold dark matter and radiation, and the curvature scale that the loop quantum cosmology bounce occurs at. Importantly, as this scenario predicts a positive running of the scalar index, observations can potentially differentiate between it and inflationary models. Finally, for a small sound speed of cold dark matter, this scenario predicts a small tensor-to-scalar ratio.

  19. Mars Sample Return mission: Two alternate scenarios

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Two scenarios for accomplishing a Mars Sample Return mission are presented herein. Mission A is a low cost, low mass scenario, while Mission B is a high technology, high science alternative. Mission A begins with the launch of one Titan IV rocket with a Centaur G' upper stage. The Centaur performs the trans-Mars injection burn and is then released. The payload consists of two lander packages and the Orbital Transfer Vehicle, which is responsible for supporting the landers during launch and interplanetary cruise. After descending to the surface, the landers deploy small, local rovers to collect samples. Mission B starts with 4 Titan IV launches, used to place the parts of the Planetary Transfer Vehicle (PTV) into orbit. The fourth launch payload is able to move to assemble the entire vehicle by simple docking routines. Once complete, the PTV begins a low thrust trajectory out from low Earth orbit, through interplanetary space, and into low Martian orbit. It deploys a communication satellite into a 1/2 sol orbit and then releases the lander package at 500 km altitude. The lander package contains the lander, the Mars Ascent Vehicle (MAV), two lighter than air rovers (called Aereons), and one conventional land rover. The entire package is contained with a biconic aeroshell. After release from the PTV, the lander package descends to the surface, where all three rovers are released to collect samples and map the terrain.

  20. Biomass Scenario Model Documentation: Data and References

    SciTech Connect

    Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D.

    2013-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documents data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain.

  1. Emergent universe in the braneworld scenario

    NASA Astrophysics Data System (ADS)

    Heydarzade, Y.; Hadi, H.; Darabi, F.; Sheykhi, A.

    2016-06-01

    According to Padmanabhan's proposal, the difference between the surface degrees of freedom and the bulk degrees of freedom in a region of space may result in the acceleration of Universe expansion through the relation Δ V/Δ t = N_sur-N_bulk where N_bulk and N_sur are referred to the degrees of freedom related to the matter and energy content inside the bulk and surface area, respectively (Padmanabhan, arXiv:1206.4916v1, 2012). In this paper, we study the dynamical effect of the extrinsic geometrical embedding of an arbitrary four-dimensional brane in a higher-dimensional bulk space and investigate the corresponding degrees of freedom. Considering the modification of the Friedmann equations arising from a general braneworld scenario, we obtain a correction term in Padmanabhan's relation, denoting the number of degrees of freedom related to the extrinsic geometry of the brane embedded in higher-dimensional spacetime as Δ V /Δ t=N_sur-N_bulk-N_extr where N_extr is for the degree of freedom related to the extrinsic geometry of the brane, while N_sur and N_bulk are defined as before. Finally, we study the validity of the first and second laws of thermodynamics for this general braneworld scenario in the state of thermal equilibrium and in the presence of confined matter fields to the brane with the induced geometric matter fields.

  2. Policy Choice for Urban Low-carbon transportation in Beijing: Scenario Analysis Based on LEAP model

    NASA Astrophysics Data System (ADS)

    Zhang, Yu

    2016-04-01

    Beijing is a fast developing megacity with serious traffic problems, such as high energy consumption, high CO2 emission and traffic congestion. The coming 13th Five-Year Plan for Beijing economic and social development will focus on the low-carbon transportation policy to achieve the urban traffic sustainable development. In order to improve the feasibility of urban low-carbon transportation policies, this paper analyzes the future trends of CO2 emissions from transportation of Beijing. Firstly, five policies scenarios are developed according to the coming Beijing 13th Five-Year Plan, including the "Business As Usual (BAU)", the "Public Transportation Priority(PTP)", the "New Energy Vehicle(NEV)", the "Active Transportation(AT)", the "Private Car Regulation(PCR)" and the "Hybrid Policy(HP)". Then the Long-range Energy Alternatives Planning System(LEAP model) framework is adopted to estimate CO2 emission under given policies scenarios up to year 2020 and analyze the implications. The results demonstrate that the low-carbon transportation policies can reduce CO2 emission effectively. Specifically, the "Hybrid Policy(HP)" has the best performance. In terms of single policy effect, the "Private Car Regulation(PCR)" comes first followed by the "Public Transportation Priority(PTP)".

  3. An Experiment on Graph Analysis Methodologies for Scenarios

    SciTech Connect

    Brothers, Alan J.; Whitney, Paul D.; Wolf, Katherine E.; Kuchar, Olga A.; Chin, George

    2005-09-30

    Visual graph representations are increasingly used to represent, display, and explore scenarios and the structure of organizations. The graph representations of scenarios are readily understood, and commercial software is available to create and manage these representations. The purpose of the research presented in this paper is to explore whether these graph representations support quantitative assessments of the underlying scenarios. The underlying structure of the scenarios is the information that is being targeted in the experiment and the extent to which the scenarios are similar in content. An experiment was designed that incorporated both the contents of the scenarios and analysts’ graph representations of the scenarios. The scenarios’ content was represented graphically by analysts, and both the structure and the semantics of the graph representation were attempted to be used to understand the content. The structure information was not found to be discriminating for the content of the scenarios in this experiment; but, the semantic information was discriminating.

  4. FORMAL SCENARIO DEVELOPMENT FOR ENVIRONMENTAL IMPACT ASSESSMENT STUDIES

    EPA Science Inventory

    Scenario analysis is a process of evaluating possible future events through the consideration of alternative plausible (though not equally likely) outcomes (scenarios). The analysis is designed to enable improved decision-making and assessment through a more rigorous evaluation o...

  5. 40 CFR 68.28 - Alternative release scenario analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... release scenario under § 68.25; and (ii) That will reach an endpoint offsite, unless no such scenario... the endpoints. The owner or operator may use either the methodology provided in the RMP...

  6. 40 CFR 68.28 - Alternative release scenario analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... release scenario under § 68.25; and (ii) That will reach an endpoint offsite, unless no such scenario... the endpoints. The owner or operator may use either the methodology provided in the RMP...

  7. 40 CFR 68.28 - Alternative release scenario analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... release scenario under § 68.25; and (ii) That will reach an endpoint offsite, unless no such scenario... the endpoints. The owner or operator may use either the methodology provided in the RMP...

  8. 40 CFR 68.28 - Alternative release scenario analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... release scenario under § 68.25; and (ii) That will reach an endpoint offsite, unless no such scenario... the endpoints. The owner or operator may use either the methodology provided in the RMP...

  9. Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation

    NASA Astrophysics Data System (ADS)

    Eccel, Emanuele; Rea, Roberto; Caffarra, Amelia; Crisci, Alfonso

    2009-05-01

    In the context of global warming, the general trend towards earlier flowering dates of many temperate tree species is likely to result in an increased risk of damage from exposure to frost. To test this hypothesis, a phenological model of apple flowering was applied to a temperature series from two locations in an important area for apple production in Europe (Trentino, Italy). Two simulated 50-year climatic projections (A2 and B2 of the Intergovernmental Panel on Climate Change - Special Report on Emission Scenarios) from the HadCM3 general circulation model were statistically downscaled to the two sites. Hourly temperature records over a 40-year period were used as the reference for past climate. In the phenological model, the heat requirement (degree hours) for flowering was parameterized using two approaches; static (constant over time) and dynamic (climate dependent). Parameterisation took into account the trees’ adaptation to changing temperatures based on either past instrumental records or the downscaled outputs from the climatic simulations. Flowering dates for the past 40 years and simulated flowering dates for the next 50 years were used in the model. A significant trend towards earlier flowering was clearly detected in the past. This negative trend was also apparent in the simulated data. However, the significance was less apparent when the “dynamic” setting for the degree hours requirement was used in the model. The number of frost episodes and flowering dates, on an annual basis, were graphed to assess the risk of spring frost. Risk analysis confirmed a lower risk of exposure to frost at present than in the past, and probably either constant or a slightly lower risk in future, especially given that physiological processes are expected to acclimate to higher temperatures.

  10. Scenario analysis of hybrid class 3-7 heavy vehicles.

    SciTech Connect

    An, F.; Stodolsky, F.; Vyas, A.; Cuenca, R.; Eberhardt, J. J.

    1999-12-23

    The effects of hybridization on heavy-duty vehicles are not well understood. Heavy vehicles represent a broader range of applications than light-duty vehicles, resulting in a wide variety of chassis and engine combinations, as well as diverse driving conditions. Thus, the strategies, incremental costs, and energy/emission benefits associated with hybridizing heavy vehicles could differ significantly from those for passenger cars. Using a modal energy and emissions model, they quantify the potential energy savings of hybridizing commercial Class 3-7 heavy vehicles, analyze hybrid configuration scenarios, and estimate the associated investment cost and payback time. From the analysis, they conclude that (1) hybridization can significantly reduce energy consumption of Class 3-7 heavy vehicles under urban driving conditions; (2) the grid-independent, conventional vehicle (CV)-like hybrid is more cost-effective than the grid-dependent, electric vehicle (EV)-like hybrid, and the parallel configuration is more cost-effective than the series configuration; (3) for CV-like hybridization, the on-board engine can be significantly downsized, with a gasoline or diesel engine used for SUVs perhaps being a good candidate for an on-board engine; (4) over the long term, the incremental cost of a CV-like, parallel-configured Class 3-4 hybrid heavy vehicle is about %5,800 in the year 2005 and $3,000 in 2020, while for a Class 6-7 truck, it is about $7,100 in 2005 and $3,300 in 2020; and (5) investment payback time, which depends on the specific type and application of the vehicle, averages about 6 years under urban driving conditions in 2005 and 2--3 years in 2020.

  11. A comprehensive assessment of agricultural intensification scenarios for the Dongting Lake basin in south-central China in 2030.

    PubMed

    Yin, Guanyi; Liu, Liming; Chang, Xiao; Sun, Jin

    2016-07-01

    To explore the future of the material demand, pollutant emission, production, and arable land area surrounding the Dongting Lake basin, and to find a potential solution for agricultural development, this study assumes the following four agriculture intensification scenarios: the natural development scenario (ND), the production development scenario (PD), the moderate intensification scenario (MI), and the local resilience scenario (LR). The scenarios focus on different developmental patterns (natural development, short-term production growth, long-term sustainability, or self-sufficiency).The result shows to satisfy the food demand in 2030, and the production of crop and meat will be 26.96, 30.25, 28.05, and 16.27 × 10(6) t in ND, PD, MI, and LR, respectively; more than 1.78 × 10(6) ha of arable land is needed. Compared with the year 2012, the material input and pollutant output will increase by a maximum of 18.32 and 122.31 %, respectively. By classifying the environmental risk into four categories-greenhouse gas emission, air pollution, eutrophication, and ecotoxicity-the composite environmental risk index (CER) is calculated. The CER in PD was the highest, followed by that in ND, LR, and MI. Due to the production allocation within the 35 cities and counties, the spatial distribution of CER is more homogenous in PD and MI than in ND. The analysis of the scenarios reveals that through technological improvement and spatial allocation of agricultural production, scenario MI could be a potential direction for the government to design a sustainable agricultural-environmental system. PMID:27040549

  12. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  13. Application of a scenario-based modeling system to evaluate the air quality impacts of future growth

    NASA Astrophysics Data System (ADS)

    Kahyaoğlu-Koračin, Jülide; Bassett, Scott D.; Mouat, David A.; Gertler, Alan W.

    The structure and design of future urban development can have significant adverse effects on air pollutant emissions as well as other environmental factors. When considering the future impact of growth on mobile source emissions, we generally model the increase in vehicle kilometers traveled (VKT) as a function of population growth. However, diverse and poorly planned urban development (i.e., urban sprawl) can force higher rates of motor vehicle use and in return increase levels of pollutant emissions than alternative land-use scenarios. The objective of this study is to develop and implement an air quality assessment tool that takes into account the influence of alternative growth and development scenarios on air quality. The use of scenario-based techniques in land use planning has been around since the late 1940s and been tested in many different applications to aid in decision-making. In this study, we introduce the development of an advanced interactive scenario-based land use and atmospheric chemistry modeling system coupled with a GIS (Geographical Information System) framework. The modeling system is designed to be modular and includes land use/land cover information, transportation, meteorological, emissions, and photochemical modeling components. The methods and modularity of the developed system allow its application to both broad areas and applications. To investigate the impact of possible land use change and urbanization, we evaluated a set of alternative future patterns of land use developed for a study area in Southwest California. Four land use and two population variants (increases of 500k and 1M) were considered. Overall, a Regional Low-Density Future was seen to have the highest pollutant emissions, largest increase in VKT, and the greatest impact on air quality. On the other hand, a Three-Centers Future appeared to be the most beneficial alternative future land-use scenario in terms of air quality. For all cases, the increase in population was

  14. Multiple Scenarios in Higher Education. AIR 1983 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Heydinger, Richard B.

    A model for generating global scenarios for higher education is presented, and five global scenarios for the future of higher education in the United States are proposed. Multiple scenarios help to set the context in which planning occurs. They are similar to planning assumptions that many institutional research offices prepare as background…

  15. Effects of Scenario Planning on Participant Mental Models

    ERIC Educational Resources Information Center

    Glick, Margaret B.; Chermack, Thomas J.; Luckel, Henry; Gauck, Brian Q.

    2012-01-01

    Purpose: The purpose of this paper is to assess the effects of scenario planning on participant mental model styles. Design/methodology/approach: The scenario planning literature is consistent with claims that scenario planning can change individual mental models. These claims are supported by anecdotal evidence and stories from the practical…

  16. Scenarios for the Future of Teacher Education in Europe.

    ERIC Educational Resources Information Center

    Snoek, Marco; Baldwin, Gavin; Cautreels, Paul; Enemaerke, Torsten; Halstead, Valerie; Hilton, Gillian; Klemp, Torunn; Leriche, Leo; Linde, Goran; Nilsen, Elisabeth; Rehn, Joran; Smet, Ronny; Smith, Kari; Sousa, Jesus Maria; Stomp, Lex; Svensson, Hans; and Svensson, Leif

    2003-01-01

    Presents four scenarios that illustrate possible futures of teacher education in Europe. The scenarios differ in their emphasis on four driving forces: pragmatism, idealism, individualism, and social coherence. Each scenario is described in terms of characteristics of society, education/teacher education, and teacher/teacher educator roles and is…

  17. Using the New Scenarios Framework to Inform Climate Change Adaptation Policy in Finland

    NASA Astrophysics Data System (ADS)

    Carter, T. R.

    2013-12-01

    In 2005, Finland was among the first countries in the world to develop a national climate change adaptation strategy (Marttila et al., 2005). This included a characterization of future changes in climate and socioeconomic conditions using scenarios based on the IPCC Special Report on Emissions Scenarios (SRES - IPCC, 2000). Following a government evaluation of the strategy, completion of a national adaptation research programme, and in light of the recent European Union adaptation strategy, the Finnish strategy is now under revision. As part of this revision process, the New Scenario Framework (Moss et al., 2010) is being used to guide the mapping of future conditions in Finland out to the end of the 21st century. Future Finnish climate is being analysed using the CMIP5 climate model simulations (Taylor et al., 2012), including downscaled information based on regional climate model projections in the EURO-CORDEX project (Vautard et al., 2013). All projections are forced by the Representative Concentration Pathways (RCPs - van Vuuren et al., 2011). Socioeconomic scenarios are also being developed by outlining alternative pathways that reflect national social, economic, environmental and planning goals. These are designed according to the Shared Socioeconomic Pathway (SSP) framework of challenges to adaptation and mitigation (Kriegler et al., 2012). Work is in progress to characterize these pathways, mainly qualitatively, for different sectors in Finland. Preliminary results of the conceptual scenario development phase will be presented in this session. These initial ideas will be exchanged with representatives of ministries, regional government and key stakeholder groups. The eventual form and number of scenarios that appear in the revised strategy will be determined following a formal review of the draft document to be prepared in 2014. Future work could include quantification of scenarios, possibly mapping them onto the specific SSP worlds. This would then provide

  18. Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector

    SciTech Connect

    Bird, Lori; Chapman, Caroline; Logan, Jeff; Sumner, Jenny; Short, Walter

    2010-05-01

    This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

  19. Constraining the shielded wind scenario in PG 2112+059

    NASA Astrophysics Data System (ADS)

    Saez, C.; Brandt, W. N.; Bauer, F. E.; Hamann, F.; Chartas, G.; Gallagher, S. C.

    2016-05-01

    The physical scenario describing the origin of quasar winds remains largely unsettled due to our failure to account for X-ray weak BAL quasars. We approach this problem by studying the relation between the inner part of the outflow which is likely to be shielding the X-ray emission and the UV winds characterized by broad absorption lines (BALs). In particular, we aim to probe the wind-shield connection in the highly X-ray variable BAL quasar PG 2112+059, which has exhibited periods of X-ray weakness and X-ray "normality" in the past. A set of two 20 ks Chandra observations and two contemporaneous {HST} observations, separated by at least eight months, combined with a nearly simultaneous archival Chandra-{HST} observation from 2002, afford us a unique opportunity to study the connection between the shield (which is thought to be responsible for the X-ray absorption) and the ionization state of the wind (observed as UV BAL features; e.g., C IV and O VI lines) over various timescales. In this review, which was based on a presentation in the XMM-Newton 2015 Science Workshop, we provide background relevant to our study and briefly analyze a recent Chandra observation of our new set of multiwavelength observations of PG 2112+059.

  20. Nitrogen-Use Efficiency, Nitrous Oxide Emissions, and Cereal Production in Brazil: Current Trends and Forecasts

    PubMed Central

    Pires, Marcel Viana; da Cunha, Dênis Antônio; de Matos Carlos, Sabrina; Costa, Marcos Heil

    2015-01-01

    The agriculture sector has historically been a major source of greenhouse gas (GHG) emissions into the atmosphere. Although the use of synthetic fertilizers is one of the most common widespread agricultural practices, over-fertilization can lead to negative economic and environmental consequences, such as high production costs, depletion of energy resources, and increased GHG emissions. Here, we provide an analysis to understand the evolution of cereal production and consumption of nitrogen (N) fertilizers in Brazil and to correlate N use efficiency (NUE) with economic and environmental losses as N2O emissions. Our results show that the increased consumption of N fertilizers is associated with a large decrease in NUE in recent years. The CO2 eq. of N2O emissions originating from N fertilization for cereal production were approximately 12 times higher in 2011 than in 1970, indicating that the inefficient use of N fertilizers is directly related to environmental losses. The projected N fertilizer forecasts are 2.09 and 2.37 million ton for 2015 and 2023, respectively. An increase of 0.02% per year in the projected NUE was predicted for the same time period. However, decreases in the projected CO2 eq. emissions for future years were not predicted. In a hypothetical scenario, a 2.39% increase in cereal NUE would lead to $ 21 million savings in N fertilizer costs. Thus, increases in NUE rates would lead not only to agronomic and environmental benefits but also to economic improvement. PMID:26252377

  1. The effects of vehicular exhaust buoyancy during worst case pollution scenarios near roadways

    SciTech Connect

    Held, A.E.; Chang, D.P.Y.; Carroll, J.J.

    1998-12-31

    The California Department of Transportation (CALTRANS) has been using CALINE4, a gaussian finite line-source dispersion model, to estimate air pollutant concentrations near roadways given an estimate of traffic flow rates, vehicular emission factors, roadway geometry, and local meteorology. Modelers have typically used CALINE4 to simulate low wind near parallel thermally stable conditions to estimate a worst case pollution scenario (i.e., highest predicted pollutant concentrations) for a proposed roadway. In October 1995, the University of California, Davis (UCD), in conjunction with the CALTRANS Environmental Program, began a two-year investigation to determine if CALINE4 was adequately predicting CO concentrations during worst case meteorological conditions. Based on physical reasoning and a literature review of several highway dispersion studies conducted in the late 1970`s, it was reasoned that gaussian models may over-predict CO concentrations during worst case scenarios because these models do not adequately parameterize the increased vertical dispersion of pollutants due to vehicular emission buoyancy. To explore the role that exhaust buoyancy plays in roadway pollutant dispersion, a series of experiments were conducted on I-80 (near Sacramento) during winter pre-dawn commute hours. Results of the dispersion studies were inconclusive due to difficulty in capturing sufficiently low wind speed conditions during the sampling effort, however, in a compare-contrast study of field measurements versus CALINE4 predictions it was verified that CALINE4 adequately predicts both the magnitude and qualitative shape of non-worst case pollution scenarios. In addition, based on integrated mass flux from downwind CO concentration and wind profiles it was found that the use of CT-EMFAC, a regional scale emission factor model, overpredicted observed modal emissions by as much as 250 to 480%.

  2. Overview of the Biomass Scenario Model

    SciTech Connect

    Peterson, Steve

    2015-09-01

    This report describes the structure of the October 2012 version of the Biomass Scenario Model (BSM) in considerable detail, oriented towards readers with a background or interest in the underlying modeling structures. Readers seeking a less-detailed summary of the BSM may refer to Peterson (2013). BSM aims to provide a framework for exploring the potential contribution of biofuel technologies to the transportation energy supply for the United States over the next several decades. The model has evolved significantly from the prototype developed as part of the Role of Biomass in America" tm s Energy Future (RBAEF) project. BSM represents the supply chain surrounding conversion pathways for multiple fuel products, including ethanol, butanol, and infrastructure-compatible biofuels such as diesel, jet fuel, and gasoline.

  3. Sarin exposure: a simulation case scenario.

    PubMed

    Eason, Martin P

    2013-01-01

    Given the current geopolitical tensions, the risk of a terrorist attack on the United States is constant and increasing. Chemical terrorism, specifically the use of nerve agents, has occurred in other nations. Because of the ease of manufacture, the ability to conceal them, and the lethality of these agents, they pose a potential threat as a weapon of terror. Nerve agent exposure requires prompt recognition, a series of actions to mitigate further exposure to others, and management of the physiological sequelae of exposure. Many civilian healthcare providers are unprepared to manage injuries from nerve exposure. Failure to recognize the signs of nerve agent exposure will increase mortality and morbidity in victims and place healthcare providers at risk. Simulation is an effective methodology to train healthcare personnel in disaster preparedness. This article presents a simulation scenario that reviews the presentation of nerve agent exposure, its management, and a recipe for performing this simulation in a training exercise. PMID:23263315

  4. Emergence in holographic scenarios for gravity

    NASA Astrophysics Data System (ADS)

    Dieks, Dennis; van Dongen, Jeroen; de Haro, Sebastian

    2015-11-01

    'Holographic' relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard 't Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic 'AdS/CFT' duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton's law of gravitation can be related holographically to the 'thermodynamics of information' on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde's scheme straightforwardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and gravity there as well.

  5. Addressing an Uncertain Future Using Scenario Analysis

    SciTech Connect

    Siddiqui, Afzal S.; Marnay, Chris

    2006-12-15

    The Office of Energy Efficiency and Renewable Energy (EERE) has had a longstanding goal of introducing uncertainty into the analysis it routinely conducts in compliance with the Government Performance and Results Act (GPRA) and for strategic management purposes. The need to introduce some treatment of uncertainty arises both because it would be good general management practice, and because intuitively many of the technologies under development by EERE have a considerable advantage in an uncertain world. For example, an expected kWh output from a wind generator in a future year, which is not exposed to volatile and unpredictable fuel prices, should be truly worth more than an equivalent kWh from an alternative fossil fuel fired technology. Indeed, analysts have attempted to measure this value by comparing the prices observed in fixed-price natural gas contracts compared to ones in which buyers are exposed to market prices (see Bolinger, Wiser, and Golove and (2004)). In addition to the routine reasons for exploring uncertainty given above, the history of energy markets appears to have exhibited infrequent, but troubling, regime shifts, i.e., historic turning points at which the center of gravity or fundamental nature of the system appears to have abruptly shifted. Figure 1 below shows an estimate of how the history of natural gas fired generating costs has evolved over the last three decades. The costs shown incorporate both the well-head gas price and an estimate of how improving generation technology has gradually tended to lower costs. The purpose of this paper is to explore scenario analysis as a method for introducing uncertainty into EERE's forecasting in a manner consistent with the preceding observation. The two questions are how could it be done, and what is its academic basis, if any. Despite the interest in uncertainty methods, applying them poses some major hurdles because of the heavy reliance of EERE on forecasting tools that are deterministic in

  6. Changing scenarios in the projection market

    NASA Astrophysics Data System (ADS)

    Dash, Sweta

    2002-04-01

    The projection market is undergoing many dynamic changes. Front LCD and front-reflective (mainly DLP) technologies compete with each other for most projection applications. The front-projector market is still emerging, with new technologies (such as liquid-crystal-on-silicon, or LCOS), new product categories developing (like scenarios in the projection market by examining the developments over last five years. Also, this paper touches on what to expect in the next five years.

  7. Present and Future Energy Scenario in India

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Bhattacharyya, B.; Gupta, V. K.

    2014-09-01

    India's energy sector is one of the most critical components of an infrastructure that affects India's economic growth and therefore is also one of the largest industries in India. India has the 5th largest electricity generating capacity and is the 6th largest energy consumer amounting for around 3.4 % of global energy consumption. India's energy demand has grown at 3.6 % pa over the past 30 years. The consumption of the energy is directly proportional to the progress of manpower with ever growing population, improvement in the living standard of the humanity and industrialization of the developing countries. Very recently smart grid technology can attribute important role in energy scenario. Smart grid refers to electric power system that enhances grid reliability and efficiency by automatically responding to system disturbances. This paper discusses the new communication infrastructure and scheme designed to integrate data.

  8. Detecting genuine multipartite entanglement in steering scenarios

    NASA Astrophysics Data System (ADS)

    Jebaratnam, C.

    2016-05-01

    Einstein-Podolsky-Rosen (EPR) steering is a form of quantum nonlocality which is intermediate between entanglement and Bell nonlocality. EPR steering is a resource for quantum key distribution that is device independent on only one side in that it certifies bipartite entanglement when one party's device is not characterized while the other party's device is fully characterized. In this work, we introduce two types of genuine tripartite EPR steering, and derive two steering inequalities to detect them. In a semi-device-independent scenario where only the dimensions of two parties are assumed, the correlations which violate one of these inequalities also certify genuine tripartite entanglement. It is known that Alice can demonstrate bipartite EPR steering to Bob if and only if her measurement settings are incompatible. We demonstrate that quantum correlations can also detect tripartite EPR steering from Alice to Bob and Charlie, even if Charlie's measurement settings are compatible.

  9. Male breast cancer: is the scenario changing

    PubMed Central

    Contractor, Kaiyumars B; Kaur, Kanchan; Rodrigues, Gabriel S; Kulkarni, Dhananjay M; Singhal, Hemant

    2008-01-01

    Background The overall incidence of male breast cancer is around 1% of all breast cancers and is on the rise. In this review we aim to present various aspects of male breast cancer with particular emphasis on incidence, risk factors, patho-physiology, treatment, prognostic factors, and outcome. Methods Information on all aspects of male breast cancer was gathered from available relevant literature on male breast cancer from the MEDLINE database over the past 32 years from 1975 to 2007. Various reported studies were scrutinized for emerging evidence. Incidence data were also obtained from the IARC, Cancer Mondial database. Conclusion There is a scenario of rising incidence, particularly in urban US, Canada and UK. Even though more data on risk factors is emerging about this disease, more multi-institutional efforts to pool data with large randomized trials to show treatment and survival benefits are needed to support the existing vast emerging knowledge about the disease. PMID:18558006

  10. Stochastic Optimization for Nuclear Facility Deployment Scenarios

    NASA Astrophysics Data System (ADS)

    Hays, Ross Daniel

    Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through

  11. A COLLISIONLESS SCENARIO FOR URANUS TILTING

    SciTech Connect

    Boue, Gwenael; Laskar, Jacques

    2010-03-20

    The origin of the high inclination of Uranus' spin-axis (Uranus' obliquity) is one of the great unanswered questions about the solar system. Giant planets are believed to form with nearly zero obliquity, and it has been shown that the present behavior of Uranus' spin is essentially stable. Several attempts were made in order to solve this problem. Here we report numerical simulations showing that Uranus' axis can be tilted during the planetary migration, without the need of a giant impact, provided that the planet had an additional satellite and a temporary large inclination. This might have happened during the giant planet instability phase described in the Nice model. In our scenario, the satellite is ejected after the tilt by a close encounter at the end of the migration. This model can both explain Uranus' large obliquity and bring new constraints on the planet orbital evolution.

  12. Future Scenarios for Mobile Science Learning

    NASA Astrophysics Data System (ADS)

    Burden, Kevin; Kearney, Matthew

    2016-04-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.

  13. ESP 2.0: Improved method for projecting U.S. GHG and air pollution emissions through 2055

    EPA Science Inventory

    The Emission Scenario Projection (ESP) method is used to develop multi-decadal projections of U.S. Greenhouse Gas (GHG) and criteria pollutant emissions. The resulting future-year emissions can then translated into an emissions inventory and applied in climate and air quality mod...

  14. New cosmic accelerating scenario without dark energy

    NASA Astrophysics Data System (ADS)

    Lima, J. A. S.; Basilakos, S.; Costa, F. E. M.

    2012-11-01

    We propose an alternative, nonsingular, cosmic scenario based on gravitationally induced particle production. The model is an attempt to evade the coincidence and cosmological constant problems of the standard model (ΛCDM) and also to connect the early and late time accelerating stages of the Universe. Our space-time emerges from a pure initial de Sitter stage thereby providing a natural solution to the horizon problem. Subsequently, due to an instability provoked by the production of massless particles, the Universe evolves smoothly to the standard radiation dominated era thereby ending the production of radiation as required by the conformal invariance. Next, the radiation becomes subdominant with the Universe entering in the cold dark matter dominated era. Finally, the negative pressure associated with the creation of cold dark matter (CCDM model) particles accelerates the expansion and drives the Universe to a final de Sitter stage. The late time cosmic expansion history of the CCDM model is exactly like in the standard ΛCDM model; however, there is no dark energy. The model evolves between two limiting (early and late time) de Sitter regimes. All the stages are also discussed in terms of a scalar field description. This complete scenario is fully determined by two extreme energy densities, or equivalently, the associated de Sitter Hubble scales connected by ρI/ρf=(HI/Hf)2˜10122, a result that has no correlation with the cosmological constant problem. We also study the linear growth of matter perturbations at the final accelerating stage. It is found that the CCDM growth index can be written as a function of the Λ growth index, γΛ≃6/11. In this framework, we also compare the observed growth rate of clustering with that predicted by the current CCDM model. Performing a χ2 statistical test we show that the CCDM model provides growth rates that match sufficiently well with the observed growth rate of structure.

  15. Lunar transportation scenarios utilising the Space Elevator

    NASA Astrophysics Data System (ADS)

    Engel, Kilian A.

    2005-07-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator-launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required Δv, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.

  16. Lunar transportation scenarios utilising the Space Elevator.

    PubMed

    Engel, Kilian A

    2005-01-01

    The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo. PMID:16010760

  17. Soft Selective Sweeps in Complex Demographic Scenarios

    PubMed Central

    Wilson, Benjamin A.; Petrov, Dmitri A.; Messer, Philipp W.

    2014-01-01

    Adaptation from de novo mutation can produce so-called soft selective sweeps, where adaptive alleles of independent mutational origin sweep through the population at the same time. Population genetic theory predicts that such soft sweeps should be likely if the product of the population size and the mutation rate toward the adaptive allele is sufficiently large, such that multiple adaptive mutations can establish before one has reached fixation; however, it remains unclear how demographic processes affect the probability of observing soft sweeps. Here we extend the theory of soft selective sweeps to realistic demographic scenarios that allow for changes in population size over time. We first show that population bottlenecks can lead to the removal of all but one adaptive lineage from an initially soft selective sweep. The parameter regime under which such “hardening” of soft selective sweeps is likely is determined by a simple heuristic condition. We further develop a generalized analytical framework, based on an extension of the coalescent process, for calculating the probability of soft sweeps under arbitrary demographic scenarios. Two important limits emerge within this analytical framework: In the limit where population-size fluctuations are fast compared to the duration of the sweep, the likelihood of soft sweeps is determined by the harmonic mean of the variance effective population size estimated over the duration of the sweep; in the opposing slow fluctuation limit, the likelihood of soft sweeps is determined by the instantaneous variance effective population size at the onset of the sweep. We show that as a consequence of this finding the probability of observing soft sweeps becomes a function of the strength of selection. Specifically, in species with sharply fluctuating population size, strong selection is more likely to produce soft sweeps than weak selection. Our results highlight the importance of accurate demographic estimates over short

  18. Land-Use Scenarios: National-Scale Housing-Density Scenarios Consistent with Climate Change Storylines (Final Report)

    EPA Science Inventory

    This report describes the scenarios and models used to generate national-scale housing density scenarios for the conterminous US to the year 2100 as part of the Integrated Climate and Land Use Scenarios (ICLUS) project. The report was prepared by the Global Change Research Progra...

  19. Illustrative national scale scenarios of environmental and human health impacts of Carbon Capture and Storage.

    PubMed

    Tzanidakis, Konstantinos; Oxley, Tim; Cockerill, Tim; ApSimon, Helen

    2013-06-01

    Integrated Assessment, and the development of strategies to reduce the impacts of air pollution, has tended to focus only upon the direct emissions from different sources, with the indirect emissions associated with the full life-cycle of a technology often overlooked. Carbon Capture and Storage (CCS) reflects a number of new technologies designed to reduce CO2 emissions, but which may have much broader environmental implications than greenhouse gas emissions. This paper considers a wider range of pollutants from a full life-cycle perspective, illustrating a methodology for assessing environmental impacts using source-apportioned effects based impact factors calculated by the national scale UK Integrated Assessment Model (UKIAM). Contrasting illustrative scenarios for the deployment of CCS towards 2050 are presented which compare the life-cycle effects of air pollutant emissions upon human health and ecosystems of business-as-usual, deployment of CCS and widespread uptake of IGCC for power generation. Together with estimation of the transboundary impacts we discuss the benefits of an effects based approach to such assessments in relation to emissions based techniques. PMID:23603732

  20. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    NASA Astrophysics Data System (ADS)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration

  1. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect

    Hong Jinglan; Li Xiangzhi; Zhaojie Cui

    2010-11-15

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  2. Divergent trajectories of Antarctic surface melt under two twenty-first-century climate scenarios

    NASA Astrophysics Data System (ADS)

    Trusel, Luke D.; Frey, Karen E.; Das, Sarah B.; Karnauskas, Kristopher B.; Kuipers Munneke, Peter; van Meijgaard, Erik; van den Broeke, Michiel R.

    2015-12-01

    Ice shelves modulate Antarctic contributions to sea-level rise and thereby represent a critical, climate-sensitive interface between the Antarctic ice sheet and the global ocean. Following rapid atmospheric warming over the past decades, Antarctic Peninsula ice shelves have progressively retreated, at times catastrophically. This decay supports hypotheses of thermal limits of viability for ice shelves via surface melt forcing. Here we use a polar-adapted regional climate model and satellite observations to quantify the nonlinear relationship between surface melting and summer air temperature. Combining observations and multimodel simulations, we examine melt evolution and intensification before observed ice shelf collapse on the Antarctic Peninsula. We then assess the twenty-first-century evolution of surface melt across Antarctica under intermediate and high emissions climate scenarios. Our projections reveal a scenario-independent doubling of Antarctic-wide melt by 2050. Between 2050 and 2100, however, significant divergence in melt occurs between the two climate scenarios. Under the high emissions pathway by 2100, melt on several ice shelves approaches or surpasses intensities that have historically been associated with ice shelf collapse, at least on the northeast Antarctic Peninsula.

  3. Linearity between temperature peak and bioenergy CO2 emission rates

    NASA Astrophysics Data System (ADS)

    Cherubini, Francesco; Gasser, Thomas; Bright, Ryan M.; Ciais, Philippe; Strømman, Anders H.

    2014-11-01

    Many future energy and emission scenarios envisage an increase of bioenergy in the global primary energy mix. In most climate impact assessment models and policies, bioenergy systems are assumed to be carbon neutral, thus ignoring the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation. Here, we show that the temperature peak caused by CO2 emissions from bioenergy is proportional to the maximum rate at which emissions occur and is almost insensitive to cumulative emissions. Whereas the carbon-climate response (CCR; ref. ) to fossil fuel emissions is approximately constant, the CCR to bioenergy emissions depends on time, biomass turnover times, and emission scenarios. The linearity between temperature peak and bioenergy CO2 emission rates resembles the characteristic of the temperature response to short-lived climate forcers. As for the latter, the timing of CO2 emissions from bioenergy matters. Under the international agreement to limit global warming to 2 °C by 2100, early emissions from bioenergy thus have smaller contributions on the targeted temperature than emissions postponed later into the future, especially when bioenergy is sourced from biomass with medium (50-60 years) or long turnover times (100 years).

  4. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia.

    PubMed

    González, Camila; Paz, Andrea; Ferro, Cristina

    2014-01-01

    Visceral leishmaniasis (VL) is caused by the trypanosomatid parasite Leishmania infantum (=Leishmania chagasi), and is epidemiologically relevant due to its wide geographic distribution, the number of annual cases reported and the increase in its co-infection with HIV. Two vector species have been incriminated in the Americas: Lutzomyia longipalpis and Lutzomyia evansi. In Colombia, L. longipalpis is distributed along the Magdalena River Valley while L. evansi is only found in the northern part of the Country. Regarding the epidemiology of the disease, in Colombia the incidence of VL has decreased over the last few years without any intervention being implemented. Additionally, changes in transmission cycles have been reported with urban transmission occurring in the Caribbean Coast. In Europe and North America climate change seems to be driving a latitudinal shift of leishmaniasis transmission. Here, we explored the spatial distribution of the two known vector species of L. infantum in Colombia and projected its future distribution into climate change scenarios to establish the expansion potential of the disease. An updated database including L. longipalpis and L. evansi collection records from Colombia was compiled. Ecological niche models were performed for each species using the Maxent software and 13 Worldclim bioclimatic coverages. Projections were made for the pessimistic CSIRO A2 scenario, which predicts the higher increase in temperature due to non-emission reduction, and the optimistic Hadley B2 Scenario predicting the minimum increase in temperature. The database contained 23 records for L. evansi and 39 records for L. longipalpis, distributed along the Magdalena River Valley and the Caribbean Coast, where the potential distribution areas of both species were also predicted by Maxent. Climate change projections showed a general overall reduction in the spatial distribution of the two vector species, promoting a shift in altitudinal distribution for L

  5. Water Resources Sustainability in Northwest Mexico: Analysis of Regional Infrastructure Plans under Historical and Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Che, D.; Robles-Morua, A.; Mayer, A. S.; Vivoni, E. R.

    2012-12-01

    The arid state of Sonora, Mexico, has embarked on a large water infrastructure project to provide additional water supply and improved sanitation to the growing capital of Hermosillo. The main component of the Sonora SI project involves an interbasin transfer from rural to urban water users that has generated conflicts over water among different social sectors. Through interactions with regional stakeholders from agricultural and water management agencies, we ascertained the need for a long-term assessment of the water resources of one of the system components, the Sonora River Basin (SRB). A semi-distributed, daily watershed model that includes current and proposed reservoir infrastructure was applied to the SRB. This simulation framework allowed us to explore alternative scenarios of water supply from the SRB to Hermosillo under historical (1980-2010) and future (2031-2040) periods that include the impact of climate change. We compared three precipitation forcing scenarios for the historical period: (1) a network of ground observations from Mexican water agencies; (2) gridded fields from the North America Land Data Assimilation System (NLDAS) at 12 km resolution; and (3) gridded fields from the Weather Research and Forecasting (WRF) model at 10 km resolution. These were compared to daily historical observations at two stream gauging stations and two reservoirs to generate confidence in the simulation tools. We then tested the impact of climate change through the use of the A2 emissions scenario and HadCM3 boundary forcing on the WRF simulations of a future period. Our analysis is focused on the combined impact of existing and proposed reservoir infrastructure at two new sites on the water supply management in the SRB under historical and future climate conditions. We also explore the impact of climate variability and change on the bimodal precipitation pattern from winter frontal storms and the summertime North American monsoon and its consequences on water

  6. Beyond Pattern Scaling: Statistical Emulation and its Implications for ScenarioMIP

    NASA Astrophysics Data System (ADS)

    Challenor, P. G.; Williamson, D.

    2014-12-01

    One of the crucial aspects of climate policy in the near future is the design of mitigation strategies. However, we can only get information from state of the art climate models at a handful of mitigation scenarios (e.g. the SRES and RCP scenarios). In order to compare alternative strategies and their impacts using models, we need to consider the climate effects of the corresponding emission/concentration pathways for which we don't have climate model output. Currently this is mainly done by pattern-scaling - multiplying the mean pattern of climate change by the change in the mean of the variable (e.g. temperature or precipitation) over time. A generalised alternative to pattern scaling is statistical emulation. A statistical emulator is a more sophisticated way of interpolating climates between a limited number of model runs. Although widely used in science for the modelling of computer experiments, the use of statistical emulators in climate science has been limited and mainly used for perturbed physics ensembles. However emulators are perfectly well suited for use with forcing conditions instead of (or as well as) model parameters. Pattern scaling is a special (very simple) case of an emulator. We will show how by parameterising the forcing functions and building emulators we can predict the climate for any reasonable set of forcings (including overshoot scenarios and other 'odd' forcing pathways). We also set out how a ScenarioMIP type experiment would have to be configured to achieve this.

  7. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    USGS Publications Warehouse

    Amy K. Snover; Nathan J. Mantua; Littell, Jeremy; Michael A. Alexander; Michelle M. McClure; Janet Nye

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  8. Atlantic Hurricanes in Future Scenarios and Associated Insurance Losses

    NASA Astrophysics Data System (ADS)

    Kleppek, S.; Wüest, M.; Raible, C. C.; Kitoh, A.; Murakami, H.; Stocker, T. F.; Muccione, V.; Bresch, D. N.

    2009-04-01

    The hurricane season 2005 in the Atlantic was the most intense season since the first records with 28 tropical storms of which 15 reached hurricane character (Trenberth and Shea, 2006). Although this year is considered to be an outlier, a substantial increase of the activity of tropical cyclones (TCs) in the tropical Atlantic over the last decades is documented (Sriver and Huber, 2006; Hoyos et al., 2006; Webster et al. 2005; Emanuel, 2005). The role of the sea surface temperatures in the tropical Atlantic for the tropical storm activity was discussed already in Emanuel (2005) and Hoyos et al. (2006). Future changes of TC activity is currently under debate (e. g. Bengston et al., 2007). We contribute to this by applying our TC detection and tracking method which was developed for ERA-40 data (Kleppek et al., 2008) to time-slice experiments of two models: The ECHAM5 atmospheric model (MPI, Hamburg, Germany) and the 20 km-mesh, high resolution AGCM (MRI, Tsukuba-city, Japan). From each model two climate simulations are available: For the ECHAM5 a control run for the period 1960-90 and a SRES A2 scenario run for the period 2070-2100 and for the Mesh-AGCM a 20 years run with present day conditions and a 20 years run with end-of-21-century A2 conditions. To estimate losses of the ECHAM5- and Mesh-model hurricanes on the US coast, we have developed probabilistic hurricane event sets which are used as input for catXos, the loss model of the Swiss Reinsurance Company. Preliminary results show higher wind speeds of the ECHAM5 scenario run hurricanes than in the control run, but the numbers of the hurricanes of Saffir-Simpson-scale 2 to 4 show no clear difference between the control and scenario run of ECHAM5. Even though the resolution of the simulation is rather high no hurricanes of Saffir-Simpson-scale 5 are detected. The total number of TCs decreases for the scenario run. This applies as much to the TCs over the Atlantic as over the US-coast. References: Bengston L., K

  9. Impact of explosive eruption scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Zuccaro, G.; Cacace, F.; Spence, R. J. S.; Baxter, P. J.

    2008-12-01

    In the paper the first attempt at the definition of a model to assess the impact of a range of different volcanic hazards on the building structures is presented. This theoretical approach has been achieved within the activities of the EXPLORIS Project supported by the EU. A time history for Sub-Plinian I eruptive scenario of the Vesuvius is assumed by taking advantage of interpretation of historical reports of volcanic crises of the past [Carafa, G. 1632. In opusculum de novissima Vesuvij conflagratione, epistola isagogica, 2 a ed. Napoli, Naples; Mascolo, G.B., 1634. De incendio Vesuvii excitato xvij. Kal. Ianuar. anno trigesimo primo sæculi Decimiseptimi libri X. Cum Chronologia superiorum incendiorum; & Ephemeride ultimi. Napoli; Varrone, S., 1634. Vesuviani incendii historiae libri tres. Napoli], numerical simulations [Neri, A., Esposti Ongaro, T., Macedonio, G., Gidaspow, D., 2003. Multiparticle simulation of collapsing volcanic columns and pyroclastic flows. J. Geophys. Res. Lett. 108, 2202. doi:10.1029/2001 JB000508; Macedonio, G., Costa, A., Longo, A., 2005. HAZMAP: a computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31,837-845; Costa, A., Macedonio, G., Folch, A., 2006. A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241,634-647] and experts' elicitations [Aspinall, W.P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader, H.M. Coles, S.G. Connor, C.B. Connor, L.J. (Eds), Statistics in Volcanology. Geological Society of London on behalf of IAVCEI, pp.15-30; Woo, G., 1999. The Mathematics of Natural Catastrophes. Imperial College Press, London] from which the impact on the building structures is derived. This is achieved by an original definition of vulnerability functions for multi-hazard input and a dynamic cumulative damage model. Factors affecting the variability of the final

  10. Magnetic Nozzle and Plasma Detachment Scenario

    NASA Astrophysics Data System (ADS)

    Breizman, Boris

    2007-11-01

    Some plasma propulsion concepts rely on a strong magnetic field to guide the plasma flow through the thruster nozzle. The question then arises of how the magnetically controlled plasma can detach from the spacecraft. This talk presents a magnetohydrodynamic detachment scenario in which the plasma stretches the magnetic field lines to infinity [1]. Such a scenario is of particular interest for high-power thrusters. As plasma flows along the magnetic field lines, the originally sub-Alfv'enic flow becomes super-Alfv'enic: this transition is similar to what occurs in the solar wind [2]. In order to describe the detachment quantitatively, the ideal MHD equations have been solved analytically for a plasma flow in a slowly diverging nozzle. The solution exhibits a well-behaved transition from sub- to super- Alfv'enic flow inside the nozzle and a rarefaction wave at the edge of the outgoing flow. The magnetic field in the detached plume is almost entirely due to the plasma currents. It is shown that efficient detachment is feasible if the nozzle is sufficiently long. In order to extend the detachment model beyond the idealizations of analytical theory, a Lagrangian fluid code has been developed to solve steady-stated MHD equations and to optimize nozzle efficiency by adjusting the magnetic coil configuration. This numerical tool enables broad parameter scan with modest computational requirements (single workstation). The code has been benchmarked against the idealized analytical picture of plasma detachment and then used to investigate more realistic nozzle configurations that are not analytically tractable. Most recently, the code has been used to interpret experimental data from the Detachment Demonstration Experiment (DDEX) [3] facility at NASA Marshall Space Flight Center. In collabotation with: M. Tushentsov, A. Arefiev, R. Bengtson, J.Meyers (University of Texas at Austin), D. Chavers, C. Dobson, J. Jones (Marshall Space Flight Center), B.Schuettpelz, (University of

  11. Transitional dispersive scenarios driven by mesoscale flows on complex terrain under strong dry convective conditions

    NASA Astrophysics Data System (ADS)

    Palau, J. L.; Pérez-Landa, G.; Millán, M. M.

    2009-01-01

    By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO2 emissions from a power plant on complex terrain under strong convective conditions, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain. The results and discussions presented arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under strong dry convective conditions in the Iberian Peninsula. This paper analyses the importance of the identification and physical implications of transitional periods for air quality applications. The indetermination of a transversal plume to the preferred transport direction during these transitional periods implies a small (or null) physical significance of the classical definition of horizontal standard deviation of the concentration distribution.

  12. Concatenated non-stationary dispersive scenarios on complex terrain under summer conditions

    NASA Astrophysics Data System (ADS)

    Palau, J. L.; Pérez-Landa, G.; Millán, M. M.

    2008-06-01

    The results and discussions presented in this paper arise from a statistically representative study of the physical processes associated with the multimodal distribution of pollutants aloft and around a 343-m-tall chimney under summer conditions in the Iberian Peninsula. The indetermination of a transversal plume to the preferred transport direction during transitional periods implies a small (or null) physical significance of the classical definition of horizontal standard deviation of the concentration distribution. By experimentation and modelling, this paper analyses the atmospheric dispersion of the SO2 emissions from a power plant on complex terrain, describing the main dispersion features as an ensemble of "stationary dispersive scenarios" and reformulating some "classical" dispersive concepts to deal with the systematically monitored summer dispersive scenarios in inland Spain.

  13. Emissions Overview

    NASA Technical Reports Server (NTRS)

    Rohde, John

    2001-01-01

    The Emissions Reduction Project is working in close partnership with the U.S. aircraft engine manufacturers and academia to develop technologies to reduce NO, emissions by 70 percent over the LTO cycle from 1996 ICAO standards with no increase in other emission constituents (carbon monoxide, smoke, and unburned hydrocarbons) and with comparable NO, reduction during cruise operations. These technologies cannot impact the overall combustor and fuel delivery system operability, affordability or maintainability. These new combustion concepts and technologies will include lean burning combustors with higher operating gas temperatures and pressures, fuel staging, ceramic matrix composite material liners with reduced cooling air and possibly advanced controls. Improved physics-based analysis tool will be developed and validated and some longer term technologies that are more revolutionary will be assessed. These improved computational codes will provide improved design tools to increase design confidence and cut the development time to achieve major reductions in NO, emissions. Longer term, revolutionary technologies like active combustion controls, combustion from a large array of micro-injectors, electrostatic fuel injectors, fuel additives and others will be investigated and assessed through proof-of-concept testing.

  14. Assessing the environmental costs and benefits of plantations under future carbon pricing scenarios

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.; Barrett, D. J.; Farley, K.; Guenther, A.; Jobbágy, E. G.; Murray, B. C.; McCarl, B. A.; Schlesinger, W. H.

    2004-12-01

    Carbon sequestration programs are gaining attention globally as a means to offset increasing fossil fuel emissions and atmospheric carbon dioxide concentrations. We are examining scenarios of C sequestration in four regions of the world: the U.S., South America, China, and Australia. The analysis uses economic models to predict where the plantations will be grown and then categorizes the other biogeochemical changes that will likely occur. The goals of the project include: 1) Evaluating the assumptions behind C sequestration programs for plantations, including the importance of rotation rates, a full accounting of carbon costs (e.g., planting and site preparation), and how the C would be stored and safeguarded. 2) Examining the scale of the process needed to make a substantial contribution to offset fossil fuel emissions (see below). The scenario we have chosen to evaluate is one that addresses the consequences of storing 1 PgC yr-1 for 50 years. 3) Determining and summarizing the evidence for other biogeochemical changes that will likely occur. Some of the factors to be evaluated include soil acidification, changes in water fluxes and water-table dynamics, nutrient losses, changes in soil fauna and biodiversity, volatile organic carbon emissions, and erosion. 4) A final goal of the project is to make concrete recommendations for where plantations may be the most beneficial in terms of C storage and other environmental benefits, such as the amelioration of salinity and groundwater upwelling in Australia.

  15. The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan.

    PubMed

    Batool, Syeda Adila; Chuadhry, Muhammad Nawaz

    2009-01-01

    The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO2 equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH4) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO2 equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO2 equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO2 equivalents compared to the baseline scenario. PMID:18387288

  16. The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan

    SciTech Connect

    Batool, Syeda Adila Chuadhry, Muhammad Nawaz

    2009-01-15

    The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.

  17. Realistic Ground Motion Scenarios: Methodological Approach

    SciTech Connect

    Nunziata, C.; Peresan, A.; Romanelli, F.; Vaccari, F.; Zuccolo, E.; Panza, G. F.

    2008-07-08

    The definition of realistic seismic input can be obtained from the computation of a wide set of time histories, corresponding to possible seismotectonic scenarios. The propagation of the waves in the bedrock from the source to the local laterally varying structure is computed with the modal summation technique, while in the laterally heterogeneous structure the finite difference method is used. The definition of shear wave velocities within the soil cover is obtained from the non-linear inversion of the dispersion curve of group velocities of Rayleigh waves, artificially or naturally generated. Information about the possible focal mechanisms of the sources can be obtained from historical seismicity, based on earthquake catalogues and inversion of isoseismal maps. In addition, morphostructural zonation and pattern recognition of seismogenic nodes is useful to identify areas prone to strong earthquakes, based on the combined analysis of topographic, tectonic, geological maps and satellite photos. We show that the quantitative knowledge of regional geological structures and the computation of realistic ground motion can be a powerful tool for a preventive definition of the seismic hazard in Italy. Then, the formulation of reliable building codes, based on the evaluation of the main potential earthquakes, will have a great impact on the effective reduction of the seismic vulnerability of Italian urban areas, validating or improving the national building code.

  18. Knowledge sharing in the health scenario

    PubMed Central

    2014-01-01

    The understanding of certain data often requires the collection of similar data from different places to be analysed and interpreted. Interoperability standards and ontologies, are facilitating data interchange around the world. However, beyond the existing networks and advances for data transfer, data sharing protocols to support multilateral agreements are useful to exploit the knowledge of distributed Data Warehouses. The access to a certain data set in a federated Data Warehouse may be constrained by the requirement to deliver another specific data set. When bilateral agreements between two nodes of a network are not enough to solve the constraints for accessing to a certain data set, multilateral agreements for data exchange are needed. We present the implementation of a Multi-Agent System for multilateral exchange agreements of clinical data, and evaluate how those multilateral agreements increase the percentage of data collected by a single node from the total amount of data available in the network. Different strategies to reduce the number of messages needed to achieve an agreement are also considered. The results show that with this collaborative sharing scenario the percentage of data collected dramaticaly improve from bilateral agreements to multilateral ones, up to reach almost all data available in the network. PMID:25471452

  19. Undulator Hall Air Temperature Fault Scenarios

    SciTech Connect

    Sevilla, J.; Welch, J.; /SLAC

    2010-11-17

    Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

  20. UAV team behaviors in operational scenarios

    NASA Astrophysics Data System (ADS)

    Gilmore, John F.; Garbarino, Joseph E.

    2004-09-01

    The Behavior Enhanced Heterogeneous Autonomous Vehicle Environment (BEHAVE) is a distributed system for the command and control of multiple Unmanned Vehicle Systems (UVS) with various sensor payloads (EO, infrared and radar) and mission roles (combat, reconnaissance, penetrator, relay) working in cooperation to fulfill mission goals in light of encountered threats, vehicle damage, and mission redirects. In its current form, BEHAVE provides UVS dynamic route planning/replanning, autonomous vehicle control, platform self-awareness, autonomous threat response, and muti-vehicle cooperation. This paper focuses on BEHAVE's heterogeneous autonomous UVS team cooperation achieved through the transformation of UVS operational doctrine into UVS team behaviors. This level of tactics provides the initial high-level cooperative control guidance and plans for multiple UVSs operating to achieve specific mission goal. BEHAVE's heterogeneous UVS behaviors include inter-vehicle cueing capability on coupled missions based on new threats, targets, and foreshadowing changes in environments, optimizing individual UVS mission roles, enhanced reassignment of mission goals based upon resources consumed and threats encountered, and multi UVS team threat behavior. Threat behaviors include logic incorporated for team scenarios such as drawing out or confusing threats.

  1. The segmented urbilateria: a testable scenario.

    PubMed

    Balavoine, Guillaume; Adoutte, André

    2003-02-01

    The idea that the last common ancestor of bilaterian animals (Urbilateria) was segmented has been raised recently on evidence coming from comparative molecular embryology. Leaving aside the complex debate on the value of genetic evidence, the morphological and developmental evidence in favor of a segmented Urbilateria are discussed in the light of the emerging molecular phylogeny of metazoans. Applying a cladistic character optimization procedure to the question of segmentation is vastly complicated by the problem of defining without ambiguity what segmentation is and to what taxa this definition applies. An ancestral segmentation might have undergone many complex derivations in each different phylum, thus rendering the cladistics approaches problematic. Taking the most general definitions of coelom and segmentation however, some remarkably similar patterns are found across the bilaterian tree in the way segments are formed by the posterior addition of mesodermal segments or somites. Postulating that these striking similarities in mesodermal patterns are ancestral, a scenario for the diversification of bilaterians from a metameric ancestor is presented. Several types of evolutionary mechanisms (specialization, tagmosis, progenesis) operating on a segmented ancestral body plan would explain the rapid emergence of body plans during the Cambrian. We finally propose to test this hypothesis by comparing genes involved in mesodermal segmentation. PMID:21680418

  2. Augmented standard model and the simplest scenario

    NASA Astrophysics Data System (ADS)

    Wu, Tai Tsun; Wu, Sau Lan

    2015-11-01

    The experimental discovery of the Higgs particle in 2012 by the ATLAS Collaboration and the CMS Collaboration at CERN ushers in a new era of particle physics. On the basis of these data, scalar quarks and scalar leptons are added to each generation of quarks and leptons. The resulting augmented standard model has fermion-boson symmetry for each of three generations, but only one Higgs doublet giving masses to all the elementary particles. A specific special case, the simplest scenario, is studied in detail. In this case, there are twenty six quadratic divergences, and all these divergences are cancelled provided that one single relation between the masses is satisfied. This mass relation contains a great deal of information, and in particular determines the masses of all the right-handed scalar quarks and scalar leptons, while gives relations for the masses of the left-handed ones. An alternative procedure is also given with a different starting point and less reliance on the experimental data. The result is of course the same.

  3. Scenario of Architectural Education in India

    NASA Astrophysics Data System (ADS)

    Dua, S.; Chahal, K. S.

    2014-09-01

    The dictionary meaning of education is to develop mentally and morally. A good holistic architectural education, therefore, is a combination of skills, information, as well as values. It is somewhat unique. The evaluation process is continuous in nature and in addition to the traditional means of assessment, the training in architectural education consists of varied interrelated parts-theory, field visit and studio/workshop. To certain extent the subjective nature of the design studio projects provides challenges and opportunities for both students and faculty members, in terms of acquiring necessary skills at the part of the students, and, necessity to update and upgrade continually with the changing pace at the part of the teachers. Technology continues to grow at a rapid pace; equipping the students to meet the complex demands of the profession; the curriculum structure and focus and value system must facilitate the relationship between general education and specialized study. Architects must acquire and understand the required information and find ways to put it in order and apply it to particular settings especially in this era of MNCs and BPOs. The paper discusses the current scenario of architectural education in India and affirms the need for change in this education from generalized study which had been in practice in twentieth century to a more relevant, specialised, and value-based education addressing technical and humanistic challenges more objectively in these vastly changing, socio-economic and political trends at global and regional levels.

  4. Dynamical Scenarios for Chromosome Bi-orientation

    PubMed Central

    Zhang, Tongli; Oliveira, Raquel A.; Schmierer, Bernhard; Novák, Béla

    2013-01-01

    Chromosome bi-orientation at the metaphase spindle is essential for precise segregation of the genetic material. The process is error-prone, and error-correction mechanisms exist to switch misaligned chromosomes to the correct, bi-oriented configuration. Here, we analyze several possible dynamical scenarios to explore how cells might achieve correct bi-orientation in an efficient and robust manner. We first illustrate that tension-mediated feedback between the sister kinetochores can give rise to a bistable switch, which allows robust distinction between a loose attachment with low tension and a strong attachment with high tension. However, this mechanism has difficulties in explaining how bi-orientation is initiated starting from unattached kinetochores. We propose four possible mechanisms to overcome this problem (exploiting molecular noise; allowing an efficient attachment of kinetochores already in the absence of tension; a trial-and-error oscillation; and a stochastic bistable switch), and assess their impact on the bi-orientation process. Based on our results and supported by experimental data, we put forward a trial-and-error oscillation and a stochastic bistable switch as two elegant mechanisms with the potential to promote bi-orientation both efficiently and robustly. PMID:23790367

  5. [Environmental management: critical analysis, scenarios and challenges].

    PubMed

    Porto, Marcelo Firpo de Souza; Schütz, Gabriel Eduardo

    2012-06-01

    This article discusses the limits, alternatives and challenges of environmental management in contemporary globalized capitalist societies. It is based on a critical analysis supported by authors from social sciences, political ecology and public health. To this end, we systematize the meaning of hegemonic environmental management in terms of eco-efficiency and its limits to tackle environmental risks and construct democratic processes and societies. We developed four ideal scenarios involving possible combinations of environmental management and democracy. This model served as a base, together with academic studies and the theoretical and militant experience of the authors, for a reflection on the current characteristics and future trends of environmental management and democracy, with emphasis on the reality of Latin America, specifically Brazil. Lastly, we discuss possibilities for social transformation taking into consideration the contradictions and emancipatory alternatives resulting from confrontations between hegemonic tendencies of the market and counter-hegemonic utopias and social movements. The latter assume principles of environmental justice, economic solidarity, agro-ecology and sustainability as well as the construction of new epistemologies. PMID:22699636

  6. Hospitals in the year 2000: a scenario.

    PubMed

    Foster, J T

    1989-01-01

    Hospitals came into the twentieth century as creations of local, usually altruistic, interests and wrestled with accelerating change throughout the decades. Their success brought third-party financing, employee health plans, and government guarantees for charity care. Success seemed to breed success, and they raced ahead with capital investment in bricks, mortar, and high technology, only to find themselves in increasing trouble as 1990 approached. Writing from the precarious perch of the year 2000, the author views the worsening hospital situation and raises questions about the contradictions of federal interventions, the efforts to create "systems," the plight of small hospitals, and the love-hate role of medical staffs. Offered for consideration is a scenario of a health care crisis in the early 1990s comparable to the savings and loan crisis of 1988. However, this time the federal intervention is not simply in dollars, but, instead, brings on a "health for all" program with national financing and decentralized "district health" management. As in other nations of the world, hospitals become an integral part of the commitment to attack the root causes of ill health. PMID:10296999

  7. Screening closing scenarios for tactical targets

    NASA Astrophysics Data System (ADS)

    Sefcik, Jason A.; Lee, Harry C.; Olson, Teresa L. P.

    2002-07-01

    The first step in an automatic image target acquisition system is determining the location of candidate objects. Screening for targets must also be done within a tactical scenario timeframe. The screening process must only require a portion of the processing workload since other algorithms must execute in the same time frame. The detection of these candidate objects is allocated to two functions within the same algorithm. The first is a pre-screener and other is a clutter rejection component that will categorize the object nomination into target or non-target classes. This paper describes a screener that meets the necessary requirements for tactical operations. It uses the magnitude and direction of the image gradient. Locations are nominated by looking at local neighborhoods in this gradient space. Regions of interest are then selected and various features are extracted. These features are selected both for their information content and their ease of calculation. Using a Bayes approach, target candidates are selected as plausible targets of interest.

  8. Historical change and future scenarios of sea level rise in Macau and adjacent waters

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Huang, Gang; Zhou, Wen; Chen, Wen

    2016-04-01

    Against a background of climate change, Macau is very exposed to sea level rise (SLR) because of its low elevation, small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macau, both historical and, especially, possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macau is now rising at an accelerated rate: 1.35 mm yr-1 over 1925-2010 and jumping to 4.2 mm yr-1 over 1970-2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macau contributes little to local sea level change. In the future, the rate of SLR in Macau will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8-12, 22-51 and 35-118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the +8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario the increase in sea level by 2100 will reach 65-118 cm—double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21st century but begin to diverge thereafter.

  9. US National Climate Assessment (NCA) Scenarios for Assessing Our Climate Future: Issues and Methodological Perspectives Background Whitepaper for Participants

    SciTech Connect

    Moss, Richard H.; Engle, Nathan L.; Hall, John; Jacobs, Kathy; Lempert, Rob; Mearns, L. O.; Melillo, Jerry; Mote, Phil; O'Brien, Sheila; Rosenzweig, C.; Ruane, Alex; Sheppard, Stephen; Vallario, Robert W.; Wiek, Arnim; Wilbanks, Thomas

    2011-10-01

    This whitepaper is intended to provide a starting point for discussion at a workshop for the National Climate Assessment (NCA) that focuses on the use and development of scenarios. The paper will provide background needed by participants in the workshop in order to review options for developing and using scenarios in NCA. The paper briefly defines key terms and establishes a conceptual framework for developing consistent scenarios across different end uses and spatial scales. It reviews uses of scenarios in past U.S. national assessments and identifies potential users of and needs for scenarios for both the report scheduled for release in June 2013 and to support an ongoing distributed assessment process in sectors and regions around the country. Because scenarios prepared for the NCA will need to leverage existing research, the paper takes account of recent scientific advan