Science.gov

Sample records for a2 inhibitors quinacrine

  1. Combined efficacy of cediranib and quinacrine in glioma is enhanced by hypoxia and causally linked to autophagic vacuole accumulation.

    PubMed

    Lobo, Merryl R; Wang, Xiaoyan; Gillespie, G Yancey; Woltjer, Randall L; Pike, Martin M

    2014-01-01

    We have previously reported that the in vivo anti-glioma efficacy of the anti-angiogenic receptor tyrosine kinase inhibitor cediranib is substantially enhanced via combination with the late-stage autophagy inhibitor quinacrine. The current study investigates the role of hypoxia and autophagy in combined cediranib/quinacrine efficacy. EF5 immunostaining revealed a prevalence of hypoxia in mouse intracranial 4C8 glioma, consistent with high-grade glioma. MTS cell viability assays using 4C8 glioma cells revealed that hypoxia potentiated the efficacy of combined cediranib/quinacrine: cell viability reductions induced by 1 µM cediranib +2.5 µM quinacrine were 78±7% (hypoxia) vs. 31±3% (normoxia), p<0.05. Apoptosis was markedly increased for cediranib/quinacrine/hypoxia versus all other groups. Autophagic vacuole biomarker LC3-II increased robustly in response to cediranib, quinacrine, or hypoxia. Combined cediranib/quinacrine increased LC3-II further, with the largest increases occurring with combined cediranib/quinacrine/hypoxia. Early stage autophagy inhibitor 3-MA prevented LC3-II accumulation with combined cediranib/quinacrine/hypoxia and substantially attenuated the associated reduction in cell viability. Combined efficacy of cediranib with bafilomycin A1, another late-stage autophagy inhibitor, was additive but lacked substantial potentiation by hypoxia. Substantially lower LC3-II accumulation was observed with bafilomycin A1 in comparison to quinacrine. Cediranib and quinacrine each strongly inhibited Akt phosphoryation, while bafilomycin A1 had no effect. Our results provide compelling evidence that autophagic vacuole accumulation plays a causal role in the anti-glioma cytotoxic efficacy of combined cediranib/quinacrine. Such accumulation is likely related to stimulation of autophagosome induction by hypoxia, which is prevalent in the glioma tumor microenvironment, as well as Akt signaling inhibition from both cediranib and quinacrine. Quinacrine's unique

  2. Risks and rewards: family planners weigh quinacrine.

    PubMed

    Diconsiglio, J M

    1994-01-01

    A new female sterilization method, the insertion of quinacrine hydrochloride pellets into the uterus, has created controversy, because of the potential for coercive use. Supporters of quinacrine believe that its ease of insertion and effectiveness make its use ideal for protecting women from unwanted pregnancy. The UN reports that 23% of reproductive age women worldwide have chosen sterilization. Quinacrine was developed during the 1970s by a Chilean gynecologist. Jaime Zipper first used quinacrine as a sterilizing agent in the 1970s in liquid form. The drug was used originally for malaria treatment. Quinacrine is attractive due to its low cost (a dollar for two insertions), the ease of insertion, and the few side effects (minor cramping and fever). The methods appears to be 95-97% effective. Field trials are being conducted in 11 countries. Current clinical trials, undertaken by the Vietnamese Ministry of Health and published in Lancet, reveal that only 818 pregnancies occurred among 32,000 women using quinacrine. No deaths and only eight serious complications occurred compared to 30 deaths and 1800 serious complications from surgical sterilization. Opponents contend that the research methodology is questionable, because there was insufficient follow-up. Results are based on subsets and extrapolation to the entire study population. Critics desire more research on the potential for coercive use. The president of the Boston Women's Book Collective considers that more retrospective research is needed before confirmation of its safety. Another perspective is that the relative risk of having a baby in a rural developing country is much higher than the quinacrine risk. This position is argued by Marie Stopes International. The president of the Center for Research on Population and Security (Dr. Mumford) agrees that many people are being denied a life-saving method, and the process of review, because of the controversy, does nothing for the many women dying each year in

  3. Quinacrine acceptance spreads at NAVSFWI meet.

    PubMed

    Aggarwal, A

    1996-10-30

    The 3rd World Congress and 11th Indian Conference on Family Welfare and Voluntary Sterilization and Family Welfare of India (NAVSFWI) was held at Hotel Clarks Shiraj, Agra, during September 20-22, 1996. At the conference, R.V. Bhatt, the newly elected president of NAVSFWI, expressed a need to look for alternative methods of female sterilization, such as quinacrine, because of the risks involved with surgical approaches. Dr. Bhatt added that quinacrine use as an alternative to surgical sterilization is safe, cheap, effective, and worthy of further trials, especially in rural areas, where surgery is not readily available. Dr. Elton Kessel, Secretary General of the International Federation for Family Health, stresses that no country has reduced population growth below 1% without the widespread use of both sterilization and abortion, together with other contraceptive methods. Quinacrine sterilization could satisfy much of the considerable unmet need for sterilization in India. PMID:12179205

  4. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    SciTech Connect

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui; Cheng, Tian-Lu; Lin, Shinne-Ren; Chang, Long-Sen

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressed c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.

  5. Quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapeutic agents.

    PubMed

    Wang, Wenge; Gallant, Jean-Nicolas; Katz, Sharyn I; Dolloff, Nathan G; Smith, Charles D; Abdulghani, Junaid; Allen, Joshua E; Dicker, David T; Hong, Bo; Navaraj, Arunasalam; El-Deiry, Wafik S

    2011-08-01

    Quinacrine has been widely explored in treatment of malaria, giardiasis, and rheumatic diseases. We find that quinacrine stabilizes p53 and induces p53-dependent and independent cell death. Treatment by quinacrine alone at concentrations of 10-20 mM for 1-2 d cannot kill hepatocellular carcinoma cells, such as HepG2, Hep3B, Huh7, which are also resistant to TRAIL. However, quinacrine renders these cells sensitive to treatment by TRAIL. Co-treatment of these cells with quinacrine and TRAIL induces overwhelming cell death within 3-4 h. Levels of DR5, a pro-apoptotic death receptor of TRAIL, are increased upon treatment with quinacrine, while levels of Mcl-1, an anti-apoptotic member of the Bcl-2 family, are decreased. While the synergistic effect of quinacrine with TRAIL appears to be in part independent of p53, knockdown of p53 in HepG2 cells by siRNA results in more cell death after treatment by quinacrine and TRAIL. The mechanism by which quinacrine sensitizes hepatocellular carcinoma cells to TRAIL and chemotherapies, and the potential for clinical application currently are being further explored. Lastly, quinacrine synergizes with chemotherapeutics, such as adriamycin, 5-FU, etoposide, CPT11, sorafenib, and gemcitabine, in killing hepatocellular carcinoma cells in vitro and the drug enhances the activity of sorafenib to delay tumor growth in vivo. PMID:21725212

  6. Mechanisms of quinacrine binding and fluorescence in nuclei and chromosomes.

    PubMed

    Sumner, A T

    1986-01-01

    The mechanisms has been investigated whereby quinacrine binds to the DNA of nuclei and chromosomes in cytological preparations fixed in methanol-acetic acid. A variety of evidence is consistent with the idea that the quinacrine binds by intercalation. This is supported by a high value for the affinity of quinacrine for DNA, together with a saturation value of 0.2 quinacrine molecules/nucleotide; binding in the presence of strong salt solutions; and inhibition of fluorescence and banding by denaturation or depurination of DNA. At high quinacrine concentrations, weak binding of quinacrine to nuclei and chromosomes also occurs, but this is not relevant to the production of strong fluorescence or Q-banding patterns. A number of factors were tested which might have affected quinacrine fluorescence and banding. These included: pH; blocking protein amino groups by acetylation or benzoylation; introduction of hydrophobic groups by benzoylation; and dephosphorylation. All these treatments were without effect. However, comparison of the quinacrine fluorescence of human and onion nuclei, which differ substantially in the base composition of their DNA, shows that quinacrine fluorescence can be enhanced in cytological preparations by AT-rich DNA. PMID:3721920

  7. Autophagic flux inhibition and lysosomogenesis ensuing cellular capture and retention of the cationic drug quinacrine in murine models

    PubMed Central

    Parks, Alexandre; Charest-Morin, Xavier; Boivin-Welch, Michael; Bouthillier, Johanne

    2015-01-01

    The proton pump vacuolar (V)-ATPase is the driving force that mediates the concentration of cationic drugs (weak bases) in the late endosome-lysosome continuum; secondary cell reactions include the protracted transformation of enlarged vacuoles into autophagosomes. We used the inherently fluorescent tertiary amine quinacrine in murine models to further assess the accumulation and signaling associated with cation trapping. Primary fibroblasts concentrate quinacrine ∼5,000-fold from their culture medium (KM 9.8 µM; transport studies). The drug is present in perinuclear granules that are mostly positive for Rab7 and LAMP1 (microscopy). Both drug uptake and retention are extensively inhibited by treatments with the V-ATPase inhibitor bafilomycin A1. The H+ ionophore monensin also prevented quinacrine concentration by fibroblasts. However, inhibition of plasma membrane transporters or of the autophagic process with spautin-1 did not alter quinacrine transport parameters. Ancillary experiments did not support that low micromolar concentrations of quinacrine are substrates for organic cation transporters-1 to -3 or P-glycoprotein. The secondary autophagy induced by quinacrine in cells may derive from the accumulation of incompetent autophagolysosomes, as judged from the accumulation of p62/SQSTM1 and LC3 II (immunoblots). Accordingly, protracted lysosomogenesis is evidenced by increased expression of LAMP1 and LAMP2 in quinacrine-treated fibroblasts (48 h, immunoblots), a response that follows the nuclear translocation of the lysosomal genesis transcription factor TFEB and upregulation of LAMP1 and −2 mRNAs (24 h). Quinacrine administration to live mice evidenced variable distribution to various organs and heterogeneous accumulation within the lung (stereo-microscopy, extraction). Dose-dependent in vivo autophagic and lysosomal accumulation was observed in the lung (immunoblots). No evidence has been found for transport or extrusion mechanisms modulating the cellular

  8. Autophagic flux inhibition and lysosomogenesis ensuing cellular capture and retention of the cationic drug quinacrine in murine models.

    PubMed

    Parks, Alexandre; Charest-Morin, Xavier; Boivin-Welch, Michael; Bouthillier, Johanne; Marceau, Francois

    2015-01-01

    The proton pump vacuolar (V)-ATPase is the driving force that mediates the concentration of cationic drugs (weak bases) in the late endosome-lysosome continuum; secondary cell reactions include the protracted transformation of enlarged vacuoles into autophagosomes. We used the inherently fluorescent tertiary amine quinacrine in murine models to further assess the accumulation and signaling associated with cation trapping. Primary fibroblasts concentrate quinacrine ∼5,000-fold from their culture medium (KM 9.8 µM; transport studies). The drug is present in perinuclear granules that are mostly positive for Rab7 and LAMP1 (microscopy). Both drug uptake and retention are extensively inhibited by treatments with the V-ATPase inhibitor bafilomycin A1. The H(+) ionophore monensin also prevented quinacrine concentration by fibroblasts. However, inhibition of plasma membrane transporters or of the autophagic process with spautin-1 did not alter quinacrine transport parameters. Ancillary experiments did not support that low micromolar concentrations of quinacrine are substrates for organic cation transporters-1 to -3 or P-glycoprotein. The secondary autophagy induced by quinacrine in cells may derive from the accumulation of incompetent autophagolysosomes, as judged from the accumulation of p62/SQSTM1 and LC3 II (immunoblots). Accordingly, protracted lysosomogenesis is evidenced by increased expression of LAMP1 and LAMP2 in quinacrine-treated fibroblasts (48 h, immunoblots), a response that follows the nuclear translocation of the lysosomal genesis transcription factor TFEB and upregulation of LAMP1 and -2 mRNAs (24 h). Quinacrine administration to live mice evidenced variable distribution to various organs and heterogeneous accumulation within the lung (stereo-microscopy, extraction). Dose-dependent in vivo autophagic and lysosomal accumulation was observed in the lung (immunoblots). No evidence has been found for transport or extrusion mechanisms modulating the cellular

  9. Combined quinacrine and chlorpromazine therapy in fatal familial insomnia.

    PubMed

    Benito-León, Julián

    2004-01-01

    Prion diseases are invariably fatal. Recently, quinacrine and chlorpromazine have been suggested as immediate candidates for the treatment of Creutzfeldt-Jakob disease and other prion diseases. The objective of this paper was to report on 2 fatal familial insomnia patients whose overall condition worsened despite quinacrine and chlorpromazine treatment.

  10. Light-evoked arachidonic acid release in the retina: illuminance/duration dependence and the effects of quinacrine, mellitin and lithium. Light-evoked arachidonic acid release.

    PubMed

    Jung, H; Remé, C

    1994-03-01

    Arachidonic acid (AA) is the precursor molecule of a variety of cellular lipid mediators that interact with retinal physiology. In this study, we investigated the time- and illuminance-dependence of the release of AA in the rat retina in vitro in control and lithium-pretreated rats. We also studied the effects of the specific phospholipase A2 (PLA2) inhibitor quinacrine and the specific PLA2 stimulator mellitin on the release of AA. Isolated rat retinas were labelled with 3H-AA for 90 min in vitro in darkness and the incorporation of AA into retinal phospholipids was monitored by thin-layer chromatography. The release of 3H-AA in the incubation medium was determined under different illuminance and timing conditions, with the addition of quinacrine and mellitin, and after pretreatment of the animals with lithium. Light exposure of the prelabelled isolated retinas evoked up to a two-fold increase in AA release compared with retinas incubated for the same time in darkness. The AA release was dependent on illuminance time (10,000 1x white fluorescent light for 0.25, 2, 5 and 10 min) and illuminance level (0, 100, 1000, 5000, and 10,000 1x for 10 min). Complete rhodopsin bleaching occurred after 2 min at 10,000 1x. Quinacrine significantly suppressed the light-elicited AA release whereas mellitin increased the release of AA in dark-adapted and light-exposed retinas. Lithium pretreatment, which is known to potentiate light-evoked rod outer segment disruptions, significantly augmented the light-evoked AA release. Our results confirm a light-stimulated release of AA in the retina.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs

    SciTech Connect

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.; Marceau, François

    2013-07-15

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K{sub M} 1.1 vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V{sub max}. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V-ATPase-mediated ion

  12. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs.

    PubMed

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J G; Marceau, François

    2013-07-15

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent KM 1.1 vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥2.5 μM, ≥2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake Vmax. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes).

  13. Fluorescence-determined preferential binding of quinacrine to DNA.

    PubMed Central

    Baldini, G; Doglia, S; Dolci, S; Sassi, G

    1981-01-01

    Quinacrine complexes with native DNA (Calf thymus, Micrococcus lysodeikticus, Escherichia coli, Bacillus subtilis, and Colstridium perfringens) and synthetic polynucleotides (poly(dA) . poly(dT), poly[d(A-T)] . poly[d(A-T)], poly(dG) . poly(dC) and poly[d(G-C)] . poly[d(G-C)]) has been investigated in solution at 0.1 M NaCl, 0.05 M Tris HCl, 0.001 M EDTA, pH 7.5, at 20 degrees C. Fluorescence excitation spectra of complexes with dye concentration D = 5-30 microM and DNA phosphate concentration P = 400 microM have been examined from 300 to 500 nm, while collecting the emission above 520 nm. The amounts of free and bound quinacrine in the dye-DNA complexes have been determined by means of equilibrium dialysis experiments. Different affinities have been found for the various DNAs and their values have been examined with a model that assumes that the binding constants associated with alternating purine and pyrimidine sequences are larger than those relative to nonalternating ones. Among the alternating nearest neighbor base sequences, the Pyr(3'-5')Pur sequences, i.e., C-G, T-G, C-A and T-A seem to bind quinacrine stronger than the remaining sequences. In particular the three sites, where a G . C base pair is involved, are found to display higher affinities. Good agreement is found with recent calculations on the energetics of intercalation sites in DNA. The analysis of the equilibrium shows also that the strength of the excitation spectrum of bound dye depends strongly upon the ratio of bound quinacrine to DNA. This effect can be attributed to dye-dye energy transfer along DNA. PMID:7326321

  14. Quinacrine pellet nonsurgical female sterilization in Wonosobo, Indonesia.

    PubMed

    Suhadi, A; Soejoenoes, A

    1997-05-01

    A female sterilization regimen involving transcervical insertion of pellets containing 252 mg of quinacrine and 55.5 mg of ibuprofen in the proliferative phase of 2 consecutive menstrual cycles was found to be safe, acceptable, and effective. Subjects included 200 healthy volunteers (mean age, 33.2 years) who presented to a family planning clinic in Central Java Province, Indonesia, seeking sterilization. The insertion procedure (Kimia Farma) is similar to that for the Copper-T IUD. Only 3 women declined the second insertion. One month after insertion, side effects included lower abdominal pain (58.0%), fever (13.5%), and leukorrhea; however, these rates decreased to 0.5%, 2.0%, and 2.0%, respectively, 1 year after the second insertion and to 0.5%, 0.0%, and 1.6%, respectively, after 2 years. During the 2-year study period, 4 women became pregnant 4, 5, 14, and 18 months after the second insertion. The cumulative pregnancy rate was 1.0% 0-12 months after insertion and 2.0% in the second year. One of these women selected pregnancy termination; no malformations were noted in the 3 infants delivered. Quinacrine sterilization has the potential to meet the unmet need for female sterilization in developing countries without access to trained personnel and sophisticated surgical equipment.

  15. The application of rational design on phospholipase A(2) inhibitors.

    PubMed

    Mouchlis, V D; Barbayianni, E; Mavromoustakos, T M; Kokotos, G

    2011-01-01

    The phospholipase A(2) (PLA(2)) superfamily consists of different groups of enzymes which are characterized by their ability to catalyze the hydrolysis of the sn-2 ester bond in a variety of phospholipid molecules. The products of PLA(2s) activity play divergent roles in a variety of physiological processes. There are four main types of PLA(2s): the secreted PLA(2s) (sPLA(2s)), the cytosolic PLA(2s) (cPLA(2s)), the calcium-independent PLA(2s) (iPLA(2)) and the lipoprotein-associated PLA(2s) (LpPLA(2s)). Various potent and selective PLA2 inhibitors have been reported up to date and have provided outstanding support in understanding the mechanism of action and elucidating the function of these enzymes. The current review focuses on the implementation of rational design through computer-aided drug design (CADD) on the discovery and development of new PLA(2) inhibitors. PMID:21568891

  16. Membrane and inhibitor interactions of intracellular phospholipases A2.

    PubMed

    Mouchlis, Varnavas D; Dennis, Edward A

    2016-05-01

    Studying phospholipases A2 (PLA2s) is a challenging task since they act on membrane-like aggregated substrates and not on monomeric phospholipids. Multidisciplinary approaches that include hydrogen/deuterium exchange mass spectrometry (DXMS) and computational techniques have been employed with great success in order to address important questions about the mode of interactions of PLA2 enzymes with membranes, phospholipid substrates and inhibitors. Understanding the interactions of PLA2s is crucial since these enzymes are the upstream regulators of the eicosanoid pathway liberating free arachidonic acid (AA) and other polyunsaturated fatty acids (PUFA). The liberation of AA by PLA2 enzymes sets off a cascade of molecular events that involves downstream regulators such as cyclooxygenase (COX) and lipoxygenase (LOX) metabolites leading to inflammation. Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) work by inhibiting COX, while Zileuton inhibits LOX and both rely on PLA2 enzymes to provide them with AA. That means PLA2 enzymes can potentially also be targeted to diminish inflammation at an earlier point in the process. In this review we describe extensive efforts reported in the past to define the interactions of PLA2 enzymes with membranes, substrate phospholipids and inhibitors using DXMS, molecular docking, and molecular dynamics (MD) simulations. PMID:26774606

  17. Quinacrine promotes autophagic cell death and chemosensitivity in ovarian cancer and attenuates tumor growth

    PubMed Central

    Mondal, Susmita; Wen, Xuyang; He, Xiaoping; Dowdy, Sean; Shridhar, Viji

    2015-01-01

    A promising new strategy for cancer therapy is to target the autophagic pathway. In the current study, we demonstrate that the antimalarial drug Quinacrine (QC) reduces cell viability and promotes chemotherapy-induced cell death in an autophagy-dependent manner more extensively in chemoresistant cells compared to their isogenic chemosensitive control cells as quantified by the Chou-Talalay methodology. Our preliminary data, in vitro and in vivo, indicate that QC induces autophagy by downregulating p62/SQSTM1 to sensitize chemoresistant cells to autophagic- and caspase-mediated cell death in a p53-independent manner. QC promotes autophagosome accumulation and enhances autophagic flux by clearance of p62 in chemoresistant ovarain cancer (OvCa) cell lines to a greater extent compared to their chemosensitive controls. Notably, p62 levels were elevated in chemoresistant OvCa cell lines and knockdown of p62 in these cells resulted in a greater response to QC treatment. Bafilomycin A, an autophagy inhibitor, restored p62 levels and reversed QC-mediated cell death and thus chemosensitization. Importantly, our in vivo data shows that QC alone and in combination with carboplatin suppresses tumor growth and ascites in the highly chemoresistant HeyA8MDR OvCa model compared to carboplatin treatment alone. Collectively, our preclinical data suggest that QC in combination with carboplatin can be an effective treatment for patients with chemoresistant OvCa. PMID:26497553

  18. Antihelminthic potential of quinacrine and oxyclozanide against gill parasite Microcotyle sebastis in black rockfish Sebastes schlegeli.

    PubMed

    Kang, Yue Jai; Wakabayashi, Chizuha; Kim, Ki Hong

    2016-05-26

    The aim of this study was to assess the treatment potential of quinacrine and oxyclozanide against Microcotyle sebastis (Monogenea: Polyopisthocotylea) infection in cultured black rockfish Sebastes schlegeli. The oral administration of quinacrine led to a reduction in the mean abundance of M. sebastis infection in all quinacrine-treated groups, and the groups of fish administered quinacrine at 50, 100, and 200 mg kg(-1) for 3 consecutive days showed a parasite mean abundance that was 50 to 30% lower compared to that of the control group, suggesting that quinacrine has a therapeutic potential against M. sebastis. Although oxyclozanide showed a very high in vitro killing activity, in oral administration experiments, only the groups of fish administered 200 mg kg(-1) showed less than 50% mean abundance of M. sebastis compared to the control groups, suggesting that the absorption efficiency of orally administered oxyclozanide might be low in black rockfish and/or that M. sebastis might be less sensitive to orally ingested oxyclozanide. As praziquantel has been the sole therapeutic against M. sebastis infection in Korea for a long time, a broadening of available control measures is advisable in order to reduce the possible emergence of praziquantel-resistant M. sebastis. In our study, although quinacrine and oxyclozanide showed a therapeutic potential against M. sebastis, the treatment efficacy was not high enough to replace praziquantel. Thus, after investigations on the pathological effects and pharmacodynamics, use of quinacrine or oxyclozanide in combination with praziquantel may be considered as a way to prevent praziquantel resistance in M. sebastis.

  19. Antihelminthic potential of quinacrine and oxyclozanide against gill parasite Microcotyle sebastis in black rockfish Sebastes schlegeli.

    PubMed

    Kang, Yue Jai; Wakabayashi, Chizuha; Kim, Ki Hong

    2016-05-26

    The aim of this study was to assess the treatment potential of quinacrine and oxyclozanide against Microcotyle sebastis (Monogenea: Polyopisthocotylea) infection in cultured black rockfish Sebastes schlegeli. The oral administration of quinacrine led to a reduction in the mean abundance of M. sebastis infection in all quinacrine-treated groups, and the groups of fish administered quinacrine at 50, 100, and 200 mg kg(-1) for 3 consecutive days showed a parasite mean abundance that was 50 to 30% lower compared to that of the control group, suggesting that quinacrine has a therapeutic potential against M. sebastis. Although oxyclozanide showed a very high in vitro killing activity, in oral administration experiments, only the groups of fish administered 200 mg kg(-1) showed less than 50% mean abundance of M. sebastis compared to the control groups, suggesting that the absorption efficiency of orally administered oxyclozanide might be low in black rockfish and/or that M. sebastis might be less sensitive to orally ingested oxyclozanide. As praziquantel has been the sole therapeutic against M. sebastis infection in Korea for a long time, a broadening of available control measures is advisable in order to reduce the possible emergence of praziquantel-resistant M. sebastis. In our study, although quinacrine and oxyclozanide showed a therapeutic potential against M. sebastis, the treatment efficacy was not high enough to replace praziquantel. Thus, after investigations on the pathological effects and pharmacodynamics, use of quinacrine or oxyclozanide in combination with praziquantel may be considered as a way to prevent praziquantel resistance in M. sebastis. PMID:27225210

  20. Quinacrine promotes replication and conformational mutation of chronic wasting disease prions.

    PubMed

    Bian, Jifeng; Kang, Hae-Eun; Telling, Glenn C

    2014-04-22

    Quinacrine's ability to reduce levels of pathogenic prion protein (PrP(Sc)) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrP(Sc) accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrP(Sc) deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrP(Sc) conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds.

  1. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers

    PubMed Central

    2011-01-01

    This is an in-depth review of the history of quinacrine as well as its pharmacokinetic properties and established record of safety as an FDA-approved drug. The potential uses of quinacrine as an anti-cancer agent are discussed with particular attention to its actions on nuclear proteins, the arachidonic acid pathway, and multi-drug resistance, as well as its actions on signaling proteins in the cytoplasm. In particular, quinacrine's role on the NF-κB, p53, and AKT pathways are summarized. PMID:21569639

  2. Highly Specific and Broadly Potent Inhibitors of Mammalian Secreted Phospholipases A2

    PubMed Central

    Oslund, Rob C.; Cermak, Nathan; Gelb, Michael H.

    2010-01-01

    We report a series of inhibitors of secreted phospholipases A2 (sPLA2s) based on substituted indoles, 6,7-benzoindoles, and indolizines derived from LY315920, a well-known indole-based sPLA2 inhibitor. Using the human group X sPLA2 crystal structure, we prepared a highly potent and selective indole-based inhibitor of this enzyme. Also, we report human and mouse group IIA and IIE specific inhibitors and a substituted 6,7-benzoindole that inhibits nearly all human and mouse sPLA2s in the low nanomolar range. PMID:18605714

  3. Quinacrine inhibits Candida albicans growth and filamentation at neutral pH.

    PubMed

    Kulkarny, Vibhati V; Chavez-Dozal, Alba; Rane, Hallie S; Jahng, Maximillian; Bernardo, Stella M; Parra, Karlett J; Lee, Samuel A

    2014-12-01

    Candida albicans is a common cause of catheter-related bloodstream infections (CR-BSI), in part due to its strong propensity to form biofilms. Drug repurposing is an approach that might identify agents that are able to overcome antifungal drug resistance within biofilms. Quinacrine (QNC) is clinically active against the eukaryotic protozoan parasites Plasmodium and Giardia. We sought to investigate the antifungal activity of QNC against C. albicans biofilms. C. albicans biofilms were incubated with QNC at serially increasing concentrations (4 to 2,048 μg/ml) and assessed using a 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay in a static microplate model. Combinations of QNC and standard antifungals were assayed using biofilm checkerboard analyses. To define a mechanism of action, QNC was assessed for the inhibition of filamentation, effects on endocytosis, and pH-dependent activity. High-dose QNC was effective for the prevention and treatment of C. albicans biofilms in vitro. QNC with fluconazole had no interaction, while the combination of QNC and either caspofungin or amphotericin B demonstrated synergy. QNC was most active against planktonic growth at alkaline pH. QNC dramatically inhibited filamentation. QNC accumulated within vacuoles as expected and caused defects in endocytosis. A tetracycline-regulated VMA3 mutant lacking vacuolar ATPase (V-ATPase) function demonstrated increased susceptibility to QNC. These experiments indicate that QNC is active against C. albicans growth in a pH-dependent manner. Although QNC activity is not biofilm specific, QNC is effective in the prevention and treatment of biofilms. QNC antibiofilm activity likely occurs via several independent mechanisms: vacuolar alkalinization, inhibition of endocytosis, and impaired filamentation. Further investigation of QNC for the treatment and prevention of biofilm-related Candida CR-BSI is warranted. PMID:25288082

  4. Purification and inhibitory profile of phospholipase A2 inhibitors from Australian elapid sera.

    PubMed

    Hains, P G; Broady, K W

    2000-02-15

    Although the resistance of snakes to their own venom is well known, until now no investigators have examined the serum of Australian snakes. Here we describe the identification and purification of a range of phospholipase A(2) (PLA(2)) inhibitors from the serum of Australian elapids. All PLA(2) inhibitors were composed of two protein chains, an alpha-chain and a beta-chain. The alpha-chains were approx. 22.5 kDa in size and variably glycosylated, whereas the beta-chains were approx. 19.8 kDa in size and not glycosylated. Identification of isoforms of the two subunit chains was significant because three of the six sera examined were from single snake specimens. In addition, the glycosylation patterns of the alpha-chains were thoroughly investigated in these unpooled sera. The functional and structural properties of the purified inhibitors were studied. Uniquely, a snake PLA(2) inhibitor was found to inhibit human type II PLA(2) enzyme, which has implications for the treatment of the many diseases in which PLA(2) enzymes have been implicated. Further, we demonstrate that the inhibitor forms a non-covalent association with a purified PLA(2) enzyme. Finally, the purified PLA(2) inhibitor was shown to protect in vivo against the lethal affects of a homologous PLA(2) enzyme, suggesting a role for PLA(2) inhibitors in the treatment of snake bite victims. PMID:10657250

  5. Pattern formation in a (2 + 1)-species activator-inhibitor-immobilizer system

    NASA Astrophysics Data System (ADS)

    Pearson, John E.

    1992-09-01

    The necessary and sufficient conditions for a Turing instability in a (2 + 1)-component reaction-diffusion system are derived. The 2-component subsystem consists of an arbitrary activator-inhibitor system in which the activator and the inhibitor diffuse at identical rates. The activator reacts with an immobile substrate to form an immobile complex which does not diffuse. It is found that the critical wavenumber and the location of the instability in parameter space are independent of the initial substrate concentration. As a special case, the (2 + 1)-variable activator-inhibitor-immobilizer system can be reduced to an activator-inhibitor system in which the activator diffuses more slowly than the inhibitor. This occurs when the time scales in the system satisfy certain constraints. The general results are applied to a (2 + 1)-variable model of the chlorite-iodide-starch reaction recently proposed by Epstein and Lengyel to explain the experimental observation of Turing patterns in a related system. I find an intrinsic wavelength which is within a factor of two of the experimentally observed wavelength, but the necessary conditions for the (2 + 1)-variable system to reduce to a two-variable activator-inhibitor system with rescaled diffusion coefficients are not satisfied.

  6. Snake venom phospholipase A2 inhibitors: medicinal chemistry and therapeutic potential.

    PubMed

    Marcussi, Silvana; Sant'Ana, Carolina D; Oliveira, Clayton Z; Rueda, Aristides Quintero; Menaldo, Danilo L; Beleboni, Rene O; Stabeli, Rodrigo G; Giglio, José R; Fontes, Marcos R M; Soares, Andreimar M

    2007-01-01

    Phospholipases A2 (PLA2s) are commonly found in snake venoms from Viperidae, Hydrophidae and Elaphidae families and have been extensively studied due to their pharmacological and physiopathological effects in living organisms. This article reports a review on natural and artificial inhibitors of enzymatic, toxic and pharmacological effects induced by snake venom PLA2s. These inhibitors act on PLA2s through different mechanisms, most of them still not completely understood, including binding to specific domains, denaturation, modification of specific amino acid residues and others. Several substances have been evaluated regarding their effects against snake venoms and isolated toxins, including plant extracts and compounds from marine animals, mammals and snakes serum plasma, in addition to poly or monoclonal antibodies and several synthetic molecules. Research involving these inhibitors may be useful to understand the mechanism of action of PLA2s and their role in envenomations caused by snake bite. Furthermore, the biotechnological potential of PLA2 inhibitors may provide therapeutic molecular models with antiophidian activity to supplement the conventional serum therapy against these multifunctional enzymes. PMID:17456038

  7. A competitive hexapeptide inhibitor of annexin A2 prevents hypoxia-induced angiogenic events.

    PubMed

    Valapala, Mallika; Thamake, Sanjay I; Vishwanatha, Jamboor K

    2011-05-01

    Extracellular proteolysis is an indispensable requirement for the formation of new blood vessels during neovascularization and is implicated in the generation of several angiogenic regulatory molecules. Anti-proteolytic agents have become attractive therapeutic strategies in diseases associated with excessive neovascularization. Annexin A2 (AnxA2) is an endothelial cell-surface receptor for the generation of active proteolytic factors, such as plasmin. Here, we show that AnxA2 is abundantly expressed in the neovascular tufts in a murine model of neovascularization. Exposure to hypoxic conditions results in elevation of AnxA2 and tissue plasminogen activator (tPA) in human retinal microvascular endothelial cells (RMVECs). We show that the hexapeptide competitive inhibitor LCKLSL, which targets the N-terminal tPA-binding site of AnxA2, binds efficiently to cell-surface AnxA2 compared with binding of the control peptide LGKLSL. Treatment with the competitive peptide inhibits the generation of plasmin and suppresses the VEGF-induced activity of tPA under hypoxic conditions. Application of the competitive peptide in two in vivo models of angiogenesis demonstrated suppression of the angiogenic responses, which was also associated with significant changes in the vascular sprouting. These results suggest that AnxA2-mediated plasmin generation is an important event in angiogenesis and is inhibited by a specific competitive peptide that inhibits the binding of tPA to AnxA2.

  8. ABT-888 and quinacrine induced apoptosis in metastatic breast cancer stem cells by inhibiting base excision repair via adenomatous polyposis coli.

    PubMed

    Siddharth, Sumit; Nayak, Deepika; Nayak, Anmada; Das, Sarita; Kundu, Chanakya Nath

    2016-09-01

    PARP inhibitors in combination with other agents are in clinical trial against cancer, but its effect on cancer stem cells (CSCs) is limited. CSCs are responsible for drug resistance, metastasis and cancer relapse due to high DNA repair capacity. Here, we present preclinical effects of Quinacrine (QC) with ABT-888, a PARP inhibitor, on highly metastatic breast cancer stem cells (mBCSCs). An increased level of Adenomatous polyposis coli (APC) was noted after treatment with ABT-888 in QC pre-treated mBCSCs cells. Increased APC physically interacts with PARP-1 and inhibits PARylation causing the non assembly of base excision repair (BER) multiprotein complex, resulting in an irreparable DNA damage and subsequent apoptosis. Knockdown of APC in mBCSCs inhibited DNA damage, increased BER and PARylation, reduces apoptosis while the over-expression of APC in BT20 (APC low expressing) cells reversed the effect. Thus, combination of QC and ABT-888 decreased mBCSCs growth by activating APC and inhibiting BER within the cells. PMID:27334689

  9. Pharmacophore-based discovery of a novel cytosolic phospholipase A2α inhibitor

    PubMed Central

    Noha, Stefan M.; Jazzar, Bianca; Kuehnl, Susanne; Rollinger, Judith M.; Stuppner, Hermann; Schaible, Anja M.; Werz, Oliver; Wolber, Gerhard; Schuster, Daniela

    2012-01-01

    The release of arachidonic acid, a precursor in the production of prostaglandins and leukotrienes, is achieved by activity of the cytosolic phospholipase A2α (cPLA2α). Signaling mediated by this class of bioactive lipids, which are collectively referred to as eicosanoids, has numerous effects in physiological and pathological processes. Herein, we report the development of a ligand-based pharmacophore model and pharmacophore-based virtual screening of the National Cancer Institute (NCI) database, leading to the identification of 4-(hexadecyloxy)-3-(2-(hydroxyimino)-3-oxobutanamido)benzoic acid (NSC 119957) as cPLA2α inhibitor in cell-free and cell-based in vitro assays. PMID:22192589

  10. [Manoalide: a new phospholipase A2 inhibitor of marine origin with potential immunoregulatory effect].

    PubMed

    Mayer, A M

    1989-01-01

    Manoalide, a non-steroidal sesterterpenoid isolated from a marine sponge, is a potent analgesic and antiinflammatory compound. Manoalide inhibits phospholipase A2 from extracellular sources (snake venoms, bee, etc.), the release of arachidonic acid from rabbit polymorphonuclear leukocytes as well as calcium mobilization. This suggests that the anti-inflamatory effect might be caused by the regulation of eicosanoid biosynthesis. The macrophage plays a major role in the immune response and the inflammatory process, it has the capacity to synthesize and secrete arachidonic acid oxygenation products derived from both cyclooxygenase and lipoxygenase catalyzed pathways, and has been used extensively to study the effect of inhibitors of phospholipases, cyclooxygenase and lipoxygenase enzymes. Our results demonstrate that Manoalide modified the release of arachidonic acid and its further metabolism into prostaglandins and leukotrienes in mouse cultured peritoneal macrophages stimulated by phorbol myristate acetate, calcium ionophore A23187 and zymosan. Since eicosanoids have been shown to cause pain, we studied the possibility that the analgesic effect of Manoalide might be correlated with a decrease of eicosanoid release in vivo. The fact that Manoalide reduced both zymosan-induced peritoneal writhing in the mouse and the synthesis of both 6-keto-prostaglandin F1 alfa and leukotriene C4 suggests that the analgesic effect of Manoalide is at least in part linked to the inhibition of eicosanoid production in vivo. Since it has been shown that eicosanoids have immunoregulatory functions, a future possibility is that a phospholipase A2 inhibitor such as Manoalide may prove useful to investigate the biological role of eicosanoid metabolites on the immune function.

  11. Hydrogen peroxide induces a greater contraction in mesenteric arteries of spontaneously hypertensive rats through thromboxane A(2) production.

    PubMed

    Gao, Y J; Lee, R M

    2001-12-01

    1. Hydrogen peroxide (H(2)O(2)) caused a transient contraction in endothelium-intact (E+) and -denuded (E-) mesenteric arteries (MA) from 8 - 10-month-old spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY) in a concentration-dependent manner (10(-5) M to 10(-3) M). 2. The contraction to H(2)O(2) in MA (E+ or E-) was greater in SHR than in WKY. Removal of endothelium potentiated the contraction to H(2)O(2) in WKY but not in SHR. Tachyphylaxis to H(2)O(2) was less prominent in SHR than in WKY. 3. The contraction of aorta to H(2)O(2) (5 x 10(-4) M), expressed as a percentage of 80 mM KCl-induced contraction, was approximately half of that found in the MA. A greater contraction was found in E+ but not E- SHR aortic rings. 4. The contraction of MA to H(2)O(2) (5 x 10(-4) M) was greatly inhibited by SQ 29548 and ICI 192605 (thromboxane A(2) (TXA(2))/prostaglandin H(2) receptor antagonists), quinacrine (a phospholipase A(2) (PLA(2)) inhibitor), indomethacin and diclofenac (cyclooxygenase (COX) inhibitors), and furegrelate (a TXA(2) synthase inhibitor). 5. Production of thromboxane B(2) induced by H(2)O(2) (5 x 10(-4) M) was greater in SHR MA than in WKY, and was inhibited by quinacrine, indomethacin and diclofenac, and furegrelate, but not by SQ 29584 and ICI 192605. 6. These results suggested (1) that SHR MA exhibits a higher contraction involving an increased smooth muscle reactivity and less tachyphylaxis to H(2)O(2) than WKY; (2) that a greater production of TXA(2) through activation of PLA(2)-COX-TXA(2) synthase pathway appeared to be responsible for the enhanced contraction in SHR MA. The enhanced vascular response to H(2)O(2) may be related to hypertension in SHR.

  12. Effects of a phospholipase A/sub 2/ inhibitor on uptake and toxicity of liposomes containing plant phosphatidylinositol

    SciTech Connect

    Jett, M.; Alving, C.R.

    1986-05-01

    Plant phosphatidylinositol (PI) has been shown by us to have a direct cytotoxic effect on cultured tumor cells but not on normal cells. Synthetic PI containing /sup 14/C-linoleic acid in the sn-2 position, also showed the same pattern of selective cytotoxicity. When the metabolic fate of synthetic PI was examined with tumor cells, the radioactivity which no longer occurred as PI, was found as either products of phospholipase A/sub 2/ (93%, free fatty acids and phosphatidylcholine) or phospholipase C (7%, diglycerides). Uptake of liposomal PI was directly correlated with cytotoxicity. They tested a variety of inhibitors to see the effect on uptake and/or cytotoxicity of plant PI. General metabolic inhibitors such as metrizamide or sodium azide did not alter cellular uptake of the plant PI liposomes. Inhibitors of lipoxygenase formation, such as indomethacin, also did not alter the uptake or cytotoxicity induced by plant PI. Quinacrine, an inhibitor of phospholipase A/sub 2/, decreased the uptake of the PI containing liposomes to 50% of that seen in the presence or absence of any other inhibitor. Although quinacrine is itself toxic to cells, at low concentrations of quinacrine, plant PI did not show the same degree of cytotoxicity as in the absence of quinacrine. These data are compatible with the hypothesis that plant PI exerts cytotoxicity by serving as a substrate for phospholipase A/sub 2/.

  13. Preclinical evaluation of an inhibitor of cytosolic phospholipase A2α for the treatment of asthma.

    PubMed

    Hewson, Christopher A; Patel, Sheena; Calzetta, Luigino; Campwala, Hinnah; Havard, Suzanne; Luscombe, Emma; Clarke, Philip A; Peachell, Peter T; Matera, Maria G; Cazzola, Mario; Page, Clive; Abraham, William M; Williams, Cara M; Clark, James D; Liu, Wai L; Clarke, Nicholas P; Yeadon, Michael

    2012-03-01

    Asthma is a chronic inflammatory lung disease with considerable unmet medical needs for new and effective therapies. Cytosolic phospholipase A(2)α (cPLA(2)α) is the rate-limiting enzyme that is ultimately responsible for the production of eicosanoids implicated in the pathogenesis of asthma. We investigated a novel cPLA(2)α inhibitor, PF-5212372, to establish the potential of this drug as a treatment for asthma. PF-5212372 was a potent inhibitor of cPLA(2)α (7 nM) and was able to inhibit prostaglandin (PG)D(2) and cysteinyl leukotriene release from anti-IgE-stimulated human lung mast cells (0.29 and 0.45 nM, respectively). In a mixed human lung cell population, PF-5212372 was able to inhibit ionomycin-stimulated release of leukotriene B(4), thromboxane A(2), and PGD(2) (2.6, 2.6, and 4.0 nM, respectively) but was significantly less effective against PGE(2) release (>301 nM; p < 0.05). In an in vitro cell retention assay, PF-5212372 retained its potency up to 24 h after being washed off. In a sheep model of allergic inflammation, inhalation of PF-5212372 significantly inhibited late-phase bronchoconstriction (78% inhibition; p < 0.001) and airway hyper-responsiveness (94% inhibition; p < 0.001), and isolated sheep lung mast cell assays confirmed species translation via effective inhibition of PGD(2) release (0.78 nM). Finally, PF-5212372 was assessed for its ability to inhibit the contraction of human bronchi induced by AMP. PF5212372 significantly inhibited AMP-induced contraction of human bronchi (81% inhibition; p < 0.001); this finding, together with the ability of this drug to be effective in a wide range of preclinical asthma models, suggests that inhibition of cPLA(2)α with PF-5212372 may represent a new therapeutic option for the treatment of asthma.

  14. Effects of mexiletine, a CYP1A2 inhibitor, on tizanidine pharmacokinetics and pharmacodynamics.

    PubMed

    Momo, Kenji; Homma, Masato; Osaka, Yoshiko; Inomata, Shin-ichi; Tanaka, Makoto; Kohda, Yukinao

    2010-03-01

    The aim of this study was to determine whether mexiletine, a CYP1A2 inhibitor, altered the pharmacokinetics and pharmacodynamics of tizanidine. The pharmacokinetics of tizanidine were examined in an open-label study in 12 healthy participants after a single dose of tizanidine (2 mg) with and without mexiletine coadministration (50 mg, 3 times as a pretreatment for a day and 2 times on the study day). Compared with tizanidine alone, mexiletine coadministration increased the peak plasma concentration (1.8 +/- 0.8 vs 5.3 +/- 1.8 ng/mL), area under the curve (4.5 +/- 2.2 vs 15.4 +/- 6.5 ng x h/mL), and the half-life (1.3 +/- 0.2 vs 1.8 +/- 0.7 h) of tizanidine, respectively (P < .05). Reduction in systolic blood pressure (-10 +/- 8 vs -24 +/- 7 mm Hg) and diastolic blood pressure (-10 +/- 7 vs -18 +/- 8 mm Hg) after tizanidine administration was also significantly enhanced by coadministration of mexiletine (P < .01). Of the 15 patients treated with tizanidine and mexiletine, 4 suffered tizanidine-induced adverse effects such as drowsiness and dry mouth in the retrospective survey. Present results suggested that coadministration of mexiletine increased blood tizanidine concentrations and enhanced tizanidine pharmacodynamics in terms of reduction in blood pressure and adverse symptoms.

  15. Bromophenacyl bromide, a phospholipase A2 inhibitor attenuates chemically induced gastroduodenal ulcers in rats

    PubMed Central

    Tariq, Mohammad; Elfaki, Ibrahim; Khan, Haseeb Ahmad; Arshaduddin, Mohammad; Sobki, Samia; Moutaery, Meshal Al

    2006-01-01

    AIM: To study the effect of bromophenacyl bromide (BPB), a phospholipase A2 inhibitor on gastric secretion and to protect chemically induced gastric and duodenal ulcers in rats. METHODS: Acid secretion studies were undertaken in pylorus-ligated rats with BPB treatment (0, 5, 15 and 45 mg/kg). Gastric and duodenal lesions in the rats were induced by ethanol and cysteamine respectively. The levels of gastric wall mucus, nonprotein sulfhydryls (NP-SH) and myeloperoxidase (MPO) were also measured in the glandular stomach of rats following ethanol induced gastric lesions. RESULTS: BPB produced a dose-dependent inhibition of gastric acid secretion and acidity in rats. Pretreatment with BPB significantly attenuated the formation of ethanol induced gastric lesion. BPB also protected intestinal mucosa against cysteamine-induced duodenal ulcers. The antiulcer activity of BPB was associated with significant inhibition of ethanol-induced depletion of gastric wall mucus, NP-SH and MPO. These findings pointed towards the mediation of sulfhydryls in BPB induced gastrointestinal cytoprotection. CONCLUSION: BPB possesses significant antiulcer and cytoprotective activity against experimentally induced gastroduodenal lesions. PMID:17007045

  16. Inhibitors

    MedlinePlus

    ... Community Counts Blood Safety Inhibitors Articles & Key Findings Free Materials Videos Starting the Conversation Playing it Safe A Look at Hemophilia Joint Range of Motion My Story Links to Other Websites ...

  17. Secretory phospholipase A2 inhibitor PX-18 preserves microvascular reactivity after cerebral ischemia in piglets.

    PubMed

    Domoki, Ferenc; Zimmermann, Alíz; Lenti, Laura; Tóth-Szuki, Valéria; Pardeike, Jana; Müller, Rainer H; Bari, Ferenc

    2009-09-01

    Cerebral ischemia/reperfusion (I/R) results in cellular energy failure and dysfunction of the neurovascular unit that contribute to subsequent neuronal cell death in the neonate. PX-18 is a putative neuroprotective inhibitor of secretory phospholipase A(2) (sPLA(2)) but its in vivo testing has been limited by its poor solubility. Our purpose was to assess whether PX-18 preserved neuronal-vascular reactivity to I/R-sensitive endothelium-dependent (hypercapnia, bradykinin) and/or neuron-dependent (N-methyl-D-aspartate; NMDA) stimuli. To make the drug available for in vivo studies, PX-18 was formulated as a 3% nanosuspension applying high pressure homogenization. Newborn piglets (1-day old, n=40) were anesthetized and ventilated, and cerebrovascular reactivity to the above stimuli was determined by measuring changes in pial arteriolar diameters using the closed cranial window/intravital videomicroscopy technique. Intravenous infusion of PX-18 nanosuspension (6 mg/kg, 20 min) did not affect baseline arteriolar diameters, or hypercapnia-, bradykinin-, or NMDA-induced pial arteriolar vasodilation under normoxic conditions. Global cerebral ischemia (10 min) followed by 1 h of reperfusion significantly attenuated hypercapnia-, bradykinin-, and NMDA-induced vasodilation in untreated or vehicle-treated controls. However, PX-18 resulted in nearly full preservation of cerebrovascular reactivity to all these stimuli. In conclusion, inhibition of sPLA(2) by PX-18 improves neurovascular function both at the neuronal and the microvascular level following I/R. This effect of PX-18 likely contributes to its neuroprotective effect. PMID:19555699

  18. Screening of the Pan-African Natural Product Library Identifies Ixoratannin A-2 and Boldine as Novel HIV-1 Inhibitors

    PubMed Central

    Tietjen, Ian; Ntie-Kang, Fidele; Mwimanzi, Philip; Onguéné, Pascal Amoa; Scull, Margaret A.; Idowu, Thomas Oyebode; Ogundaini, Abiodun Oguntuga; Meva’a, Luc Mbaze; Abegaz, Berhanu M.; Rice, Charles M.; Andrae-Marobela, Kerstin; Brockman, Mark A.; Brumme, Zabrina L.; Fedida, David

    2015-01-01

    The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world. PMID:25830320

  19. Screening of the Pan-African natural product library identifies ixoratannin A-2 and boldine as novel HIV-1 inhibitors.

    PubMed

    Tietjen, Ian; Ntie-Kang, Fidele; Mwimanzi, Philip; Onguéné, Pascal Amoa; Scull, Margaret A; Idowu, Thomas Oyebode; Ogundaini, Abiodun Oguntuga; Meva'a, Luc Mbaze; Abegaz, Berhanu M; Rice, Charles M; Andrae-Marobela, Kerstin; Brockman, Mark A; Brumme, Zabrina L; Fedida, David

    2015-01-01

    The continued burden of HIV in resource-limited regions such as parts of sub-Saharan Africa, combined with adverse effects and potential risks of resistance to existing antiretroviral therapies, emphasize the need to identify new HIV inhibitors. Here we performed a virtual screen of molecules from the pan-African Natural Product Library, the largest collection of medicinal plant-derived pure compounds on the African continent. We identified eight molecules with structural similarity to reported interactors of Vpu, an HIV-1 accessory protein with reported ion channel activity. Using in vitro HIV-1 replication assays with a CD4+ T cell line and peripheral blood mononuclear cells, we confirmed antiviral activity and minimal cytotoxicity for two compounds, ixoratannin A-2 and boldine. Notably, ixoratannin A-2 retained inhibitory activity against recombinant HIV-1 strains encoding patient-derived mutations that confer resistance to protease, non-nucleoside reverse transcriptase, or integrase inhibitors. Moreover, ixoratannin A-2 was less effective at inhibiting replication of HIV-1 lacking Vpu, supporting this protein as a possible direct or indirect target. In contrast, boldine was less effective against a protease inhibitor-resistant HIV-1 strain. Both ixoratannin A-2 and boldine also inhibited in vitro replication of hepatitis C virus (HCV). However, BIT-225, a previously-reported Vpu inhibitor, demonstrated antiviral activity but also cytotoxicity in HIV-1 and HCV replication assays. Our work identifies pure compounds derived from African plants with potential novel activities against viruses that disproportionately afflict resource-limited regions of the world.

  20. [Female non-surgical sterilization: use of endo-uterine quinacrine and betamethasone pellets. Review of the subject: experimental bases--pharmacology--toxicology--efficacy].

    PubMed

    Zipper, J; Rivera, M; Dabancens, A

    1993-10-01

    Quinacrine produces obstruction of the region of the uterine tube by its fibroblastic granulomatous action. Factors such as the Zn++ and Cu++ content of tubal tissue, as well as the use of anti-prostaglandins, potentialise this action. Two groups of patients were evaluated in this study: Group A--95 women. 180 mg of quinacrine +0.6 mg of betamethasone were inserted into the uterine cavity, on the basis of two insertions separated by a one month interval. Two pregnancies were found by the end of the 2nd year, the percentage failure rate being 2.2 and the Pearl index 0.58. Group B--129 women. 216 mg of quinacrine +1.2 mg of betamethasone were inserted into the uterine cavity, on the basis of two insertions separated by a one month interval. Two pregnancies were found by the end of the 1st year, the percentage failure rate being 0.59 and the Pearl index 0.54. Iatrogenic adverse reactions associated with quinacrine only were not seen in either of these two study groups. None of the pregnancies was ectopic.

  1. Up-regulation of the expressions of phospholipase A2 inhibitors in the liver of a venomous snake by its own venom phospholipase A2.

    PubMed

    Kinkawa, Kohshi; Shirai, Ryoichi; Watanabe, Shin; Toriba, Michihisa; Hayashi, Kyozo; Ikeda, Kiyoshi; Inoue, Seiji

    2010-05-01

    Venomous snakes such as Gloydius brevicaudus have three distinct types of phospholipase A(2) inhibitors (PLIalpha, PLIbeta, and PLIgamma) in their blood so as to protect themselves from their own venom phospholipases A(2) (PLA(2)s). Expressions of these PLIs in G. brevicaudus liver were found to be enhanced by the intramuscular injection of its own venom. The enhancement of gene expressions of PLIalpha and PLIbeta in the liver was also found to be induced by acidic PLA(2) contained in this venom. Furthermore, these effects of acidic PLA(2) on gene expression of PLIs were shown to be unrelated to its enzymatic activity. These results suggest that these venomous snakes have developed the self-protective system against their own venom, by which the venom components up-regulate the expression of anti-venom proteins in their liver.

  2. Phospholipase A2 and 3H-hemicholinium-3 binding sites in rat brain: A potential second-messenger role for fatty acids in the regulation of high-affinity choline uptake

    SciTech Connect

    Saltarelli, M.D.; Yamada, K.; Coyle, J.T. )

    1990-01-01

    The involvement of phospholipase A2 (PLA2) and fatty acid release in the regulation of sodium-dependent high-affinity choline uptake in rat brain was assessed in vitro through the use of the specific binding of 3H-hemicholinium-3 (3H-HCh-3). Addition of arachidonic acid and other unsaturated fatty acids to rat striatal membranes in vitro resulted in a dose-dependent, temperature-independent activation of 3H-HCh-3 binding. Scatchard analysis revealed that these changes in binding result from a 2-fold increase in the affinity and capacity of 3H-HCh-3 binding. Saturated fatty acids, lysophospholipids, and phospholipids did not affect specific 3H-HCh-3 binding. Addition of defatted BSA to membranes, which had been treated previously with arachidonic acid, completely reversed the increase in specific 3H-HCh-3 binding. However, several inhibitors of fatty acid metabolism, including nordihydroguaiaretic acid, indomethacin, catalase, and superoxide dismutase, did not alter arachidonic acid-induced changes in 3H-HCh-3 binding, suggesting that unsaturated fatty acids, and not their metabolites, are directly responsible for the observed activation of specific 3H-HCh-3 binding. Additionally, unsaturated fatty acids dose-dependently inhibited high-affinity 3H-choline uptake in rat striatal synaptosomes, apparently due to the disruption of synaptosomal integrity. The phospholipase A2 inhibitors quinacrine hydrochloride, trifluoperazine, and 4-bromophenacylbromide dose-dependently inhibited potassium depolarization-induced activation of specific 3H-HCh-3 binding in slices of rat brain in vitro. Similarly, both quinacrine and trifluoperazine inhibited the metabolism of phospholipids and the release of fatty acids evoked by either elevated KCl or calcium ionophore A23187.

  3. The phospholipase A2 inhibitor methyl indoxam suppresses diet-induced obesity and glucose intolerance in mice

    PubMed Central

    Hui, DY; Cope, MJ; Labonté, ED; Chang, H-T; Shao, J; Goka, E; Abousalham, A; Charmot, D; Buysse, J

    2009-01-01

    Background and purpose: Previous results have shown that mice lacking in the group 1B phospholipase A2 (Pla2g1b) are resistant to obesity and diabetes induced by feeding a diabetogenic high-fat/high-carbohydrate diet. This study examined the potential of using the Pla2g1b inhibitor methyl indoxam as therapy to suppress diet-induced obesity and diabetes. Experimental approach: Male C57BL/6 mice were fed the diabetogenic diet with or without methyl indoxam supplementation. Body weight gain, fasting plasma glucose levels, glucose tolerance and postprandial lysophospholipid absorption were compared. Key results: Wild-type C57BL/6 mice fed the diabetogenic diet without Pla2g1b inhibitor showed 31 and 69% body weight gain after 4 and 10 weeks respectively. These animals also showed elevated plasma glucose levels and were glucose intolerant. In contrast, C57BL/6 mice fed the diabetogenic diet with 90 mg·kg−1 of methyl indoxam gained only 5% body weight after 10 weeks. These animals were also euglycaemic and displayed normal glucose excursion rates in glucose tolerance test. Methyl indoxam suppression of diet-induced body weight gain and glucose intolerance was correlated with the inhibition of Pla2g1b-mediated postprandial lysophospholipid absorption. Conclusions and implications: These results show that oral supplementation of a diabetogenic diet with the Pla2g1b inhibitor methyl indoxam effectively suppresses diet-induced obesity and diabetes in mice. This suggests that Pla2g1b inhibition may be a potentially effective oral therapeutic option for treatment of obesity and diabetes. PMID:19563529

  4. Quinacrine-induced occlusive fibrosis in the human fallopian tube is due to a unique inflammatory response and modification of repair mechanisms.

    PubMed

    Growe, Roger G; Luster, Michael I; Fail, Patricia A; Lippes, Jack

    2013-04-01

    Quinacrine has been widely used in treatment of parasitic diseases such as malaria and giardiasis, and in the treatment of autoimmune diseases. Quinacrine has also been used as an effective substitute for surgical contraception by causing occlusion of the fallopian tube. This minimally invasive treatment protocol involves intrauterine insertion of the drug in the form of pellets and has been studied in humans in a number of countries, including the United States. Despite its development in the 1970s, the cellular and molecular events induced by quinacrine in the human fallopian tube have not been described. Here we describe a plausible mechanism for quinacrine action in the fallopian tube. This is manifested as an acute pro-inflammatory response in the uterus and fallopian tube, characterized by loss of epithelial cell adhesion. This response relies on properties of gated channels found on the surface of epithelial cells in the reproductive tract. While the uterus returns to normal, the inflammatory response affects the uterotubal junction and transmural segment of the human fallopian tube, and initiates formation of mature collagen in the lumen of the fallopian tube, resulting in its permanent occlusion. The response within the fallopian tube appears similar to the protective mechanisms that have evolved in women to minimize the likelihood of systemic infection from Neisseria gonorrhoeae, and to some extent from Chlamydia trachomatis. This review could assist in development of experimental models used in investigating the mechanisms of fibrotic responses in humans as well as development of techniques for permanent non-surgical female contraception. PMID:23453701

  5. Novel phospholipase A2 inhibitors from python serum are potent peptide antibiotics.

    PubMed

    Samy, Ramar Perumal; Thwin, Maung Maung; Stiles, Brad G; Satyanarayana-Jois, Seetharama; Chinnathambi, Arunachalam; Zayed, M E; Alharbi, Sulaiman Ali; Siveen, Kodappully Sivaraman; Sikka, Sakshi; Kumar, Alan Prem; Sethi, Gautam; Lim, Lina Hsiu Kim

    2015-04-01

    Antimicrobial peptides (AMPs) play a vital role in defense against resistant bacteria. In this study, eight different AMPs synthesized from Python reticulatus serum protein were tested for bactericidal activity against various Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Burkholderia pseudomallei (KHW and TES strains), and Proteus vulgaris) using a disc-diffusion method (20 μg/disc). Among the tested peptides, phospholipase A2 inhibitory peptide (PIP)-18[59-76], β-Asp65-PIP[59-67], D-Ala66-PNT.II, and D60,65E-PIP[59-67] displayed the most potent bactericidal activity against all tested pathogens in a dose-dependent manner (100-6.8 μg/ml), with a remarkable activity noted against S. aureus at 6.8 μg/ml dose within 6 h of incubation. Determination of minimum inhibitory concentrations (MICs) by a micro-broth dilution method at 100-3.125 μg/ml revealed that PIP-18[59-76], β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides exerted a potent inhibitory effect against S. aureus and B. pseudomallei (KHW) (MICs 3.125 μg/ml), while a much less inhibitory potency (MICs 12.5 μg/ml) was noted for β-Asp65-PIP[59-67] and D-Ala66-PNT.II peptides against B. pseudomallei (TES). Higher doses of peptides had no effect on the other two strains (i.e., Klebsiella pneumoniae and Streptococcus pneumoniae). Overall, PIP-18[59-76] possessed higher antimicrobial activity than that of chloramphenicol (CHL), ceftazidime (CF) and streptomycin (ST) (30 μg/disc). When the two most active peptides, PIP-18[59-76] and β-Asp65-PIP[59-67], were applied topically at a 150 mg/kg dose for testing wound healing activity in a mouse model of S. aureus infection, the former accelerates faster wound healing than the latter peptide at 14 days post-treatment. The western blot data suggest that the topical application of peptides (PIP-18[59-67] and β-Asp65-PIP[59-67]) modulates NF-kB mediated wound repair in mice with relatively little haemolytic (100-1.56 μg/ml) and cytotoxic (1000

  6. Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells

    PubMed Central

    Fenard, David; Lambeau, Gérard; Valentin, Emmanuel; Lefebvre, Jean-Claude; Lazdunski, Michel; Doglio, Alain

    1999-01-01

    Mammalian and venom secreted phospholipases A2 (sPLA2s) have been associated with a variety of biological effects. Here we show that several sPLA2s protect human primary blood leukocytes from the replication of various macrophage and T cell–tropic HIV-1 strains. Inhibition by sPLA2s results neither from a virucidal effect nor from a cytotoxic effect on host cells, but it involves a more specific mechanism. sPLA2s have no effect on virus binding to cells nor on syncytia formation, but they prevent the intracellular release of the viral capsid protein, suggesting that sPLA2s block viral entry into cells before virion uncoating and independently of the coreceptor usage. Various inhibitors and catalytic products of sPLA2 have no effect on HIV-1 infection, suggesting that sPLA2 catalytic activity is not involved in the antiviral effect. Instead, the antiviral activity appears to involve a specific interaction of sPLA2s to host cells. Indeed, of 11 sPLA2s from venom and mammalian tissues assayed, 4 venom sPLA2s were found to be very potent HIV-1 inhibitors (ID50 < 1 nM) and also to bind specifically to host cells with high affinities (K0.5 < 1 nM). Although mammalian pancreatic group IB and inflammatory-type group IIA sPLA2s were inactive against HIV-1 replication, our results could be of physiological interest, as novel sPLA2s are being characterized in humans. PMID:10487775

  7. Thiomethylstilbenes as inhibitors of CYP1A1, CYP1A2 and CYP1B1 activities.

    PubMed

    Mikstacka, Renata; Baer-Dubowska, Wanda; Wieczorek, Marcin; Sobiak, Stanislaw

    2008-06-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural stilbene derivative occurring in grapes, peanuts and red wine. Its chemopreventive action has been established in studies on animal models. Recently, numerous classes of compounds with stilbene backbone have been investigated for their biological activity concerning cancer prevention; e. g. resveratrol methyl ethers appeared to be specific and potent inhibitors of cytochromes P450 (CYP) family 1 involved in the activation of procarcinogens. Since the replacement of the 4'-hydroxyl with a thiomethyl group is supposed to reduce toxicity of stilbene derivatives, the purpose of this study was the synthesis and evaluation of a series of 4-thiomethyl-trans-stilbene derivatives differing in a number and position of additional methoxy groups. Their inhibitory potency toward human recombinant CYPs: CYP1A1, CYP1A2 and CYP1B1 have been studied and compared with the effect of resveratrol and its analogues. Among compounds tested, 2-methoxy-4'-thiomethyl-trans-stilbene and 3-methoxy-4'-thiomethyl-trans-stilbene demonstrated the most potent and selective inhibitory effect on CYP1A1 and CYP1B1 activities. The results of our study indicate that modification of stilbene derivatives with thiomethyl group may influence the selectivity and inhibitory potency of these compounds toward P450 isozymes. Thus, it should be considered in developing new chemopreventive agents based on their mechanism of action.

  8. Studies of synthetic chalcone derivatives as potential inhibitors of secretory phospholipase A2, cyclooxygenases, lipoxygenase and pro-inflammatory cytokines

    PubMed Central

    Jantan, Ibrahim; Bukhari, Syed Nasir Abbas; Adekoya, Olayiwola A; Sylte, Ingebrigt

    2014-01-01

    Arachidonic acid metabolism leads to the generation of key lipid mediators which play a fundamental role during inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as a synergistic anti-inflammatory effect with enhanced spectrum of activity. A series of 1,3-diphenyl-2-propen-1-one derivatives were investigated for anti-inflammatory related activities involving inhibition of secretory phospholipase A2, cyclooxygenases, soybean lipoxygenase, and lipopolysaccharides-induced secretion of interleukin-6 and tumor necrosis factor-alpha in mouse RAW264.7 macrophages. The results from the above mentioned assays exhibited that the synthesized compounds were effective inhibitors of pro-inflammatory enzymes and cytokines. The results also revealed that the chalcone derivatives with 4-methlyamino ethanol substitution seem to be significant for inhibition of enzymes and cytokines. Molecular docking experiments were carried out to elucidate the molecular aspects of the observed inhibitory activities of the investigated compounds. Present findings increase the possibility that these chalcone derivatives might serve as a beneficial starting point for the design and development of improved anti-inflammatory agents. PMID:25258510

  9. Inhibition of PAF synthesis by stimulated human polymorphonuclear leucocytes with cloricromene, an inhibitor of phospholipase A2 activation.

    PubMed Central

    Ribaldi, E.; Mezzasoma, A. M.; Francescangeli, E.; Prosdocimi, M.; Nenci, G. G.; Goracci, G.; Gresele, P.

    1996-01-01

    1. A phospholipase A2 (PLA2) represents the key enzyme in the remodelling pathway of platelet-activating factor (PAF) synthesis in human polymorphonuclear (PMN) leucocytes. 2. PLA2 activation is also the rate-limiting step for the release of the arachidonic acid utilized for the synthesis of leukotrienes in stimulated leucocytes; however, it is unknown whether the PLA2s involved in the two biosynthetic pathways are identical. 3. Cloricromene (8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxy- carbonylmethoxy coumarin) is an antithrombotic coumarin derivative which inhibits platelet and leucocyte function and suppresses arachidonic acid liberation by interfering with PLA2 activation. 4. The aim of the present study was to assess whether chloricromene inhibits PAF synthesis by stimulated human polymorphonuclear leucocytes (PMNs). 5. Cloricromene (50-500 microM) inhibited in a concentration-dependent manner the release of PAF, as measured by h.p.l.c. bioassay, from A23187-stimulated PMNs. Significant inhibition (45%) of PAF-release was obtained with 50 microM cloricromene and the IC50 was 85 microM. Mepacrine (500 microM), a non-specific PLA2 inhibitor, strikingly reduced PAF release. 6. The incorporation of [3H]-acetate into [3H]-PAF induced by serum-treated zymosan in human PMNs was also inhibited concentration-dependently by cloricromene, with an IC50 of 105 microM. Mepacrine also suppressed [3H]-acetate incorporation into [3H]-PAF. 7. Cloricromene did not affect the activities of the enzymes involved in PAF-synthesis acetyltransferase or phosphocholine transferase. 8. Our data demonstrate that cloricromene, an inhibitor of PLA2-activation in human leucocytes, reduces the synthesis of PAF by stimulated PMNs. This finding has a twofold implication: the PLA2s (or the mechanisms that regulate their activation) involved in PAF synthesis and arachidonate release in human leucocytes are either identical or else indistinguishable by their sensitivity to cloricromene

  10. Ozagrel hydrochloride, a selective thromboxane A2 synthase inhibitor, alleviates liver injury induced by acetaminophen overdose in mice

    PubMed Central

    2013-01-01

    Background Overdosed acetaminophen (paracetamol, N-acetyl-p-aminophenol; APAP) causes severe liver injury. We examined the effects of ozagrel, a selective thromboxane A2 (TXA2) synthase inhibitor, on liver injury induced by APAP overdose in mice. Methods Hepatotoxicity was induced to ICR male mice by an intraperitoneal injection with APAP (330 mg/kg). The effects of ozagrel (200 mg/kg) treatment 30 min after the APAP injection were evaluated with mortality, serum alanine aminotransferase (ALT) levels and hepatic changes, including histopathology, DNA fragmentation, mRNA expression and total glutathione contents. The impact of ozagrel (0.001-1 mg/mL) on cytochrome P450 2E1 (CYP2E1) activity in mouse hepatic microsome was examined. RLC-16 cells, a rat hepatocytes cell line, were exposed to 0.25 mM N-acetyl-p-benzoquinone imine (NAPQI), a hepatotoxic metabolite of APAP. In this model, the cytoprotective effects of ozagrel (1–100 muM) were evaluated by the WST-1 cell viability assay. Results Ozagel treatment significantly attenuated higher mortality, elevated serum alanine aminotransferase levels, excessive hepatic centrilobular necrosis, hemorrhaging and DNA fragmentation, as well as increase in plasma 2,3-dinor thromboxane B2 levels induced by APAP injection. Ozagrel also inhibited the hepatic expression of cell death-related mRNAs induced by APAP, such as jun oncogene, FBJ osteosarcoma oncogene (fos) and C/EBP homologous protein (chop), but did not suppress B-cell lymphoma 2-like protein11 (bim) expression and hepatic total glutathione depletion. These results show ozagrel can inhibit not all hepatic changes but can reduce the hepatic necrosis. Ozagrel had little impact on CYP2E1 activity involving the NAPQI production. In addition, ozagrel significantly attenuated cell injury induced by NAPQI in RLC-16. Conclusions We demonstrate that the TXA2 synthase inhibitor, ozagrel, dramatically alleviates liver injury induced by APAP in mice, and suggest that it is a

  11. HtrA2/Omi Terminates Cytomegalovirus Infection and Is Controlled by the Viral Mitochondrial Inhibitor of Apoptosis (vMIA)

    PubMed Central

    McCormick, A. Louise; Roback, Linda; Mocarski, Edward S.

    2008-01-01

    Viruses encode suppressors of cell death to block intrinsic and extrinsic host-initiated death pathways that reduce viral yield as well as control the termination of infection. Cytomegalovirus (CMV) infection terminates by a caspase-independent cell fragmentation process after an extended period of continuous virus production. The viral mitochondria-localized inhibitor of apoptosis (vMIA; a product of the UL37x1 gene) controls this fragmentation process. UL37x1 mutant virus-infected cells fragment three to four days earlier than cells infected with wt virus. Here, we demonstrate that infected cell death is dependent on serine proteases. We identify mitochondrial serine protease HtrA2/Omi as the initiator of this caspase-independent death pathway. Infected fibroblasts develop susceptibility to death as levels of mitochondria-resident HtrA2/Omi protease increase. Cell death is suppressed by the serine protease inhibitor TLCK as well as by the HtrA2-specific inhibitor UCF-101. Experimental overexpression of HtrA2/Omi, but not a catalytic site mutant of the enzyme, sensitizes infected cells to death that can be blocked by vMIA or protease inhibitors. Uninfected cells are completely resistant to HtrA2/Omi induced death. Thus, in addition to suppression of apoptosis and autophagy, vMIA naturally controls a novel serine protease-dependent CMV-infected cell-specific programmed cell death (cmvPCD) pathway that terminates the CMV replication cycle. PMID:18769594

  12. Orthogonal optimization of prokaryotic expression of a natural snake venom phospholipase A2 inhibitor from Sinonatrix annularis.

    PubMed

    Le, Zhen; Li, XingZhang; Yuan, Peng; Liu, Pi; Huang, Chunhong

    2015-12-15

    Phospholipase A2 (PLA2) is a calcium-dependent enzyme that is involved in inflammatory processes such as the liberation of free arachidonic acid from the membrane pool for the biosynthesis of eicosanoids. Snake venom are known containing PLA2s (svPLA2s) which exhibit a wide variety of pharmacological effects including neurotoxicity, cardiotoxicity, myotoxicity and hemorrhage. Therefore, inhibition of svPLA2 would be advantageous to successful envenomation treatment. A gamma type PLI (PLA2 inhibitor) has been extracted from the serum of Sinonatrix annularis, a non-venomous snake indigenous to China. This showed strong inhibition of Deinagkistrrodon acutus PLA2, however, the PLIγ level in the serum and snake resource are not sufficiently sustainable for further research. To overcome these limitations, we constructed a His6-PLIγ pET28 fusion expression vector and transformed Escherichia coli BL21. To improve the expression of PLIγ, an orthogonal experiment [L16(4)(5)] was performed to optimize induction parameters. The optimized condition was determined to be: induction by 0.4 mM isopropyl-β-D-thiogalactoside (IPTG) for 6 h to the recombinant BL21 after its OD600 was 0.8, with continuous shaking cultivation at 190 rpm and 35 °C. Under these conditions, the amount of expressed protein could reach 57 mg/L. The His6-PLIγ was purified by nickel affinity chromatography and renatured by On-column refolding. The resulting PLIγ showed a good inhibitory effect of enzymatic activities to venom PLA2 isolated from D. acutus. Moreover, the PLIγ had a wide anti-hemorrhage activities to D. acutus, Naja atra and Agkistrodon halys venom. PMID:26546697

  13. Orthogonal optimization of prokaryotic expression of a natural snake venom phospholipase A2 inhibitor from Sinonatrix annularis.

    PubMed

    Le, Zhen; Li, XingZhang; Yuan, Peng; Liu, Pi; Huang, Chunhong

    2015-12-15

    Phospholipase A2 (PLA2) is a calcium-dependent enzyme that is involved in inflammatory processes such as the liberation of free arachidonic acid from the membrane pool for the biosynthesis of eicosanoids. Snake venom are known containing PLA2s (svPLA2s) which exhibit a wide variety of pharmacological effects including neurotoxicity, cardiotoxicity, myotoxicity and hemorrhage. Therefore, inhibition of svPLA2 would be advantageous to successful envenomation treatment. A gamma type PLI (PLA2 inhibitor) has been extracted from the serum of Sinonatrix annularis, a non-venomous snake indigenous to China. This showed strong inhibition of Deinagkistrrodon acutus PLA2, however, the PLIγ level in the serum and snake resource are not sufficiently sustainable for further research. To overcome these limitations, we constructed a His6-PLIγ pET28 fusion expression vector and transformed Escherichia coli BL21. To improve the expression of PLIγ, an orthogonal experiment [L16(4)(5)] was performed to optimize induction parameters. The optimized condition was determined to be: induction by 0.4 mM isopropyl-β-D-thiogalactoside (IPTG) for 6 h to the recombinant BL21 after its OD600 was 0.8, with continuous shaking cultivation at 190 rpm and 35 °C. Under these conditions, the amount of expressed protein could reach 57 mg/L. The His6-PLIγ was purified by nickel affinity chromatography and renatured by On-column refolding. The resulting PLIγ showed a good inhibitory effect of enzymatic activities to venom PLA2 isolated from D. acutus. Moreover, the PLIγ had a wide anti-hemorrhage activities to D. acutus, Naja atra and Agkistrodon halys venom.

  14. A novel fluorescence-based assay for measuring A2E removal from human retinal pigment epithelial cells to screen for age-related macular degeneration inhibitors.

    PubMed

    Jin, Hong Lan; Lee, Sung-Chan; Kwon, Yong Sam; Choung, Se-Young; Jeong, Kwang Won

    2016-01-01

    Age-related macular degeneration (AMD) is a common retinal disease that leads to irreversible central vision loss in the elderly population. Recent studies have identified many factors related to the development of dry AMD, such as aging, cigarette smoking, genetic predispositions, and oxidative stress, eventually inducing the accumulation of lipofuscin, which is one of the most critical risk factors. One of the major lipofuscins in retinal pigment epithelial (RPE) cells is N-retinylidene-N-retinylethanolamine (also known as A2E), a pyridinium bis-retinoid. Currently there is a lack of effective therapy to prevent or restore vision loss caused by dry AMD. Recent studies have shown that 430 nm blue light induces the oxidation of A2E and the activation of caspase-3 to subsequently cause the death of RPE cells, suggesting that removal of A2E from retinal pigment cells might be critical for preventing AMD. Here, we developed a fluorescence-labeled A2E analog (A2E-BDP) that functions similar to A2E in RPE cells, but is more sensitive to detection than A2E. A2E-BDP-based tracing of intracellular A2E will be helpful, not only for studying the accumulation and removal of A2E in human RPE cells but also for identifying possible inhibitors of AMD. PMID:26604166

  15. Synthesis and Biological Evaluation of 1-(2-Aminophenyl)-3-arylurea Derivatives as Potential EphA2 and HDAC Dual Inhibitors.

    PubMed

    Zhu, Yong; Ran, Ting; Chen, Xin; Niu, Jiaqi; Zhao, Shuang; Lu, Tao; Tang, Weifang

    2016-01-01

    A series of 1-(2-aminophenyl)-3-arylurea novel derivatives were synthesized and evaluated against Ephrin type-A receptor 2 (EphA2) and histone deacetylases (HDACs) kinase. Most of the compounds exhibited inhibitory activity against EphA2 and HDAC. The antiproliferative activities were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (thiazolyl blue, tetrazolium blue) against the human cancer cell lines HCT116, K562 and MCF7. Compounds 5a and b showed the most potent inhibitory activity against EphA2 and HDAC. However, compound 5b exhibited higher potency against HCT116 (IC50=5.29 µM) and MCF7 (IC50=7.42 µM). 1-(2-Aminophenyl)-3-arylurea analogues may serve as new EphA2-HDAC dual inhibitors. PMID:27477652

  16. Design, synthesis and SAR exploration of tri-substituted 1,2,4-triazoles as inhibitors of the annexin A2-S100A10 protein interaction.

    PubMed

    Reddy, Tummala R K; Li, Chan; Guo, Xiaoxia; Fischer, Peter M; Dekker, Lodewijk V

    2014-10-01

    Recent target validation studies have shown that inhibition of the protein interaction between annexin A2 and the S100A10 protein may have potential therapeutic benefits in cancer. Virtual screening identified certain 3,4,5-trisubstituted 4H-1,2,4-triazoles as moderately potent inhibitors of this interaction. A series of analogues were synthesized based on the 1,2,4-triazole scaffold and were evaluated for inhibition of the annexin A2-S100A10 protein interaction in competitive binding assays. 2-[(5-{[(4,6-Dimethylpyrimidin-2-yl)sulfanyl]methyl}-4-(furan-2-ylmethyl)-4H-1,2,4-triazol-3-yl)sulfanyl]-N-[4-(propan-2-yl)phenyl]acetamide (36) showed improved potency and was shown to disrupt the native complex between annexin A2 and S100A10.

  17. Two phospholipase A2 inhibitors from the plasma of Cerrophidion (Bothrops) godmani which selectively inhibit two different group-II phospholipase A2 myotoxins from its own venom: isolation, molecular cloning and biological properties.

    PubMed Central

    Lizano, S; Angulo, Y; Lomonte, B; Fox, J W; Lambeau, G; Lazdunski, M; Gutiérrez, J M

    2000-01-01

    Myotoxic phospholipases A(2) (PLA(2)s; group II) account for most of the muscle-tissue damage that results from envenomation by viperid snakes. In the venom of the Godman's viper (Cerrophidion godmani, formerly Bothrops godmani), an enzymically active PLA(2) (myotoxin I) and an inactive, Lys-49 variant (myotoxin II) induce extensive muscle damage and oedema. In this study, two distinct myotoxin inhibitor proteins of C. godmani, CgMIP-I and CgMIP-II, were purified directly from blood plasma by selective binding to affinity columns containing either myotoxin I or myotoxin II, respectively. Both proteins are glycosylated, acidic (pI=4) and composed of 20-25-kDa subunits that form oligomers of 110 kDa (CgMIP-I) or 180 kDa (CgMIP-II). In inhibition studies, CgMIP-I specifically neutralized the PLA(2) and the myotoxic, oedema-forming and cytolytic activities of myotoxins I, whereas CgMIP-II selectively inhibited the toxic properties of myotoxin II. N-terminal amino acid sequence analysis and sequencing of cDNAs encoding the two inhibitors revealed that CgMIP-I is similar to gamma-type inhibitors, which share a pattern of cysteine residues present in the Ly-6 superfamily of proteins, whereas CgMIP-II shares sequence identity with alpha-type inhibitors that contain carbohydrate-recognition-like domains, also found in C-type lectins and mammalian PLA(2) receptors. N-terminal sequencing of myotoxin I revealed a different primary structure from myotoxin II [De Sousa, Morhy, Arni, Ward, Díaz and Gutiérrez (1998) Biochim. Biophys. Acta 1384, 204-208], which provides insight into the nature of such pharmacological specificity. PMID:10698689

  18. Bromoenol Lactone, an Inhibitor of Calcium-Independent Phospholipase A2, Suppresses Carrageenan-Induced Prostaglandin Production and Hyperalgesia in Rat Hind Paw

    PubMed Central

    Tsuchida, Keiichiro; Ibuki, Takae; Matsumura, Kiyoshi

    2015-01-01

    Prostaglandin (PG) E2 and PGI2 are essential to hyperalgesia in inflammatory tissues. These prostaglandins are produced from arachidonic acid, which is cleaved from membrane phospholipids by the action of phospholipase A2 (PLA2). Which isozyme of PLA2 is responsible for the cleavage of arachidonic acid and the production of prostaglandins essential to inflammation-induced hyperalgesia is not clear. In this study, we examined the effects of two PLA2 isozyme-specific inhibitors on carrageenan-induced production of PGE2 and PGI2 in rat hind paw and behavioral nociceptive response to radiant heat. Local administration of bromoenol lactone (BEL), an inhibitor of calcium-independent PLA2 (iPLA2), significantly reduced carrageenan-induced elevation of prostaglandins in the inflamed foot pad 3 h after injection. It also ameliorated the hyperalgesic response between 1 h and 3 h after carrageenan injection. On the other hand, AACOCF3, an inhibitor of cytosolic PLA2, suppressed neither prostaglandin production nor the hyperalgesic response. BEL did not suppress the mRNA levels of iPLA2β, iPLA2γ, cyclooxygenase-2, microsomal prostaglandin E synthase, prostaglandin I synthase, or proinflammatory cytokines in the inflamed foot pad, indicating that BEL did not suppress inflammation itself. These results suggest that iPLA2 is involved in the production of prostaglandins and hyperalgesia at the inflammatory loci. PMID:26063975

  19. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation

    PubMed Central

    Lewin, Matthew; Samuel, Stephen; Merkel, Janie; Bickler, Philip

    2016-01-01

    Snakebite remains a neglected medical problem of the developing world with up to 125,000 deaths each year despite more than a century of calls to improve snakebite prevention and care. An estimated 75% of fatalities from snakebite occur outside the hospital setting. Because phospholipase A2 (PLA2) activity is an important component of venom toxicity, we sought candidate PLA2 inhibitors by directly testing drugs. Surprisingly, varespladib and its orally bioavailable prodrug, methyl-varespladib showed high-level secretory PLA2 (sPLA2) inhibition at nanomolar and picomolar concentrations against 28 medically important snake venoms from six continents. In vivo proof-of-concept studies with varespladib had striking survival benefit against lethal doses of Micrurus fulvius and Vipera berus venom, and suppressed venom-induced sPLA2 activity in rats challenged with 100% lethal doses of M. fulvius venom. Rapid development and deployment of a broad-spectrum PLA2 inhibitor alone or in combination with other small molecule inhibitors of snake toxins (e.g., metalloproteases) could fill the critical therapeutic gap spanning pre-referral and hospital setting. Lower barriers for clinical testing of safety tested, repurposed small molecule therapeutics are a potentially economical and effective path forward to fill the pre-referral gap in the setting of snakebite. PMID:27571102

  20. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation.

    PubMed

    Lewin, Matthew; Samuel, Stephen; Merkel, Janie; Bickler, Philip

    2016-01-01

    Snakebite remains a neglected medical problem of the developing world with up to 125,000 deaths each year despite more than a century of calls to improve snakebite prevention and care. An estimated 75% of fatalities from snakebite occur outside the hospital setting. Because phospholipase A2 (PLA2) activity is an important component of venom toxicity, we sought candidate PLA2 inhibitors by directly testing drugs. Surprisingly, varespladib and its orally bioavailable prodrug, methyl-varespladib showed high-level secretory PLA2 (sPLA2) inhibition at nanomolar and picomolar concentrations against 28 medically important snake venoms from six continents. In vivo proof-of-concept studies with varespladib had striking survival benefit against lethal doses of Micrurus fulvius and Vipera berus venom, and suppressed venom-induced sPLA2 activity in rats challenged with 100% lethal doses of M. fulvius venom. Rapid development and deployment of a broad-spectrum PLA2 inhibitor alone or in combination with other small molecule inhibitors of snake toxins (e.g., metalloproteases) could fill the critical therapeutic gap spanning pre-referral and hospital setting. Lower barriers for clinical testing of safety tested, repurposed small molecule therapeutics are a potentially economical and effective path forward to fill the pre-referral gap in the setting of snakebite. PMID:27571102

  1. Induction of oral tremor in mice by the acetylcholinesterase inhibitor galantamine: Reversal with adenosine A2A antagonism.

    PubMed

    Podurgiel, Samantha J; Spencer, Tiahna; Kovner, Rotem; Baqi, Younis; Müller, Christa E; Correa, Merce; Salamone, John D

    2016-01-01

    Tremulous jaw movements (TJMs) have become a commonly used rat model of Parkinsonian tremor. TJMs can be induced by a number of neurochemical conditions that parallel those seen in human Parkinsonism, including DA depletion, DA antagonism, and cholinomimetic administration, and can be reduced by various antiparkinsonian agents. TJMs typically occur in bursts with the peak frequency in the range of 3-7.5 Hz, which is similar to the Parkinsonian tremor frequency range. While the vast majority of this work has been done using rats, current efforts have focused on extending the TJM model to mice. The aim of the present studies was to establish a mouse model of Parkinsonian resting tremor using the anticholinesterase galantamine, and to investigate the effects of adenosine A2A antagonism on galantamine-induced TJMs. Galantamine significantly induced TJMs in a dose-dependent manner (0.5, 1.0, 1.5, 2.0, 2.5 mg/kg IP). The TJMs tended to occur in bursts in the 3-7.5 Hz frequency range, with a peak frequency of approximately 6 Hz. Systemic administration of the adenosine A2A antagonist MSX-3 (2.5, 5.0, 10.0 mg/kg) significantly attenuated galantamine-induced TJMs. Co-administration of MSX-3 also altered the local frequency of galantamine-induced TJMs, decreasing the peak frequency from approximately 6 Hz to 5 Hz, though the vast majority of TJMs remained in the frequency range characteristic of Parkinsonian resting tremor. These results indicate that adenosine A2A antagonism is capable of reducing anticholinesterase-induced TJMs in mice. Extending the TJM model to mice gives researchers an additional avenue for investigating drug-induced Parkinsonism and tremorogenesis, and could be a useful addition to the study of motor abnormalities observed in mouse genetic models of Parkinsonism. PMID:26459156

  2. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis.

    PubMed

    Yang, Qi-Heng; Church-Hajduk, Robin; Ren, Jinyu; Newton, Michelle L; Du, Chunying

    2003-06-15

    Omi/HtrA2 is a mitochondrial serine protease that is released into the cytosol during apoptosis to antagonize inhibitors of apoptosis (IAPs) and contribute to caspase-independent cell death. Here, we demonstrate that Omi/HtrA2 directly cleaves various IAPs in vitro, and the cleavage efficiency is determined by its IAP-binding motif, AVPS. Cleavage of IAPs such as c-IAP1 substantially reduces its ability to inhibit and ubiquitylate caspases. In contrast to the stoichiometric anti-IAP activity by Smac/DIABLO, Omi/HtrA2 cleavage of c-IAP1 is catalytic and irreversible, thereby more efficiently inactivating IAPs and promoting caspase activity. Elimination of endogenous Omi by RNA interference abolishes c-IAP1 cleavage and desensitizes cells to apoptosis induced by TRAIL. In addition, overexpression of cleavage-site mutant c-IAP1 makes cells more resistant to TRAIL-induced caspase activation. This IAP cleavage by Omi is independent of caspase. Taken together, these results indicate that unlike Smac/DIABLO, Omi/HtrA2's catalytic cleavage of IAPs is a key mechanism for it to irreversibly inactivate IAPs and promote apoptosis.

  3. Combination treatment with hepatitis C virus protease and NS5A inhibitors is effective against recombinant genotype 1a, 2a, and 3a viruses.

    PubMed

    Gottwein, Judith M; Jensen, Sanne B; Li, Yi-Ping; Ghanem, Lubna; Scheel, Troels K H; Serre, Stéphanie B N; Mikkelsen, Lotte; Bukh, Jens

    2013-03-01

    With the development of directly acting antivirals, hepatitis C virus (HCV) therapy entered a new era. However, rapid selection of resistance mutations necessitates combination therapy. To study combination therapy in infectious culture systems, we aimed at developing HCV semi-full-length (semi-FL) recombinants relying only on the JFH1 NS3 helicase, NS5B, and the 3' untranslated region. With identified adaptive mutations, semi-FL recombinants of genotypes(isolates) 1a(TN) and 3a(S52) produced supernatant infectivity titers of ~4 log(10) focus-forming units/ml in Huh7.5 cells. Genotype 1a(TN) adaptive mutations allowed generation of 1a(H77) semi-FL virus. Concentration-response profiles revealed the higher efficacy of the NS3 protease inhibitor asunaprevir (BMS-650032) and the NS5A inhibitor daclatasvir (BMS-790052) against 1a(TN and H77) than 3a(S52) viruses. Asunaprevir had intermediate efficacy against previously developed 2a recombinants J6/JFH1 and J6cc. Daclatasvir had intermediate efficacy against J6/JFH1, while low sensitivity was confirmed against J6cc. Using a cross-titration scheme, infected cultures were treated until viral escape or on-treatment virologic suppression occurred. Compared to single-drug treatment, combination treatment with relatively low concentrations of asunaprevir and daclatasvir suppressed infection with all five recombinants. Escaped viruses primarily had substitutions at amino acids in the NS3 protease and NS5A domain I reported to be genotype 1 resistance mutations. Inhibitors showed synergism at drug concentrations reported in vivo. In summary, semi-FL HCV recombinants, including the most advanced reported genotype 3a infectious culture system, permitted genotype-specific analysis of combination treatment in the context of the complete viral life cycle. Despite differential sensitivity to lead compound NS3 protease and NS5A inhibitors, genotype 1a, 2a, and 3a viruses were suppressed by combination treatment with relatively low

  4. THAP5 is a human cardiac-specific inhibitor of cell cycle that is cleaved by the proapoptotic Omi/HtrA2 protease during cell death.

    PubMed

    Balakrishnan, Meenakshi P; Cilenti, Lucia; Mashak, Zineb; Popat, Paiyal; Alnemri, Emad S; Zervos, Antonis S

    2009-08-01

    Omi/HtrA2 is a mitochondrial serine protease that has a dual function: while confined in the mitochondria, it promotes cell survival, but when released into the cytoplasm, it participates in caspase-dependent as well as caspase-independent cell death. To investigate the mechanism of Omi/HtrA2's function, we set out to isolate and characterize novel substrates for this protease. We have identified Thanatos-associated protein 5 (THAP5) as a specific interactor and substrate of Omi/HtrA2 in cells undergoing apoptosis. This protein is an uncharacterized member of the THAP family of proteins. THAP5 has a unique pattern of expression and is found predominantly in the human heart, although a very low expression is also seen in the human brain and muscle. THAP5 protein is localized in the nucleus and, when ectopically expressed, induces cell cycle arrest. During apoptosis, THAP5 protein is degraded, and this process can be blocked using a specific Omi/HtrA2 inhibitor, leading to reduced cell death. In patients with coronary artery disease, THAP5 protein levels substantially decrease in the myocardial infarction area, suggesting a potential role of this protein in human heart disease. This work identifies human THAP5 as a cardiac-specific nuclear protein that controls cell cycle progression. Furthermore, during apoptosis, THAP5 is cleaved and removed by the proapoptotic Omi/HtrA2 protease. Taken together, we provide evidence to support that THAP5 and its regulation by Omi/HtrA2 provide a new link between cell cycle control and apoptosis in cardiomyocytes. PMID:19502560

  5. ASB14780, an Orally Active Inhibitor of Group IVA Phospholipase A2, Is a Pharmacotherapeutic Candidate for Nonalcoholic Fatty Liver Disease.

    PubMed

    Kanai, Shiho; Ishihara, Keiichi; Kawashita, Eri; Tomoo, Toshiyuki; Nagahira, Kazuhiro; Hayashi, Yasuhiro; Akiba, Satoshi

    2016-03-01

    We have previously shown that high-fat cholesterol diet (HFCD)-induced fatty liver and carbon tetrachloride (CCl4)-induced hepatic fibrosis are reduced in mice deficient in group IVA phospholipase A2 (IVA-PLA2), which plays a role in inflammation. We herein demonstrate the beneficial effects of ASB14780 (3-[1-(4-phenoxyphenyl)-3-(2-phenylethyl)-1H-indol-5-yl]propanoic acid 2-amino-2-(hydroxymethyl)propane-1,3-diol salt), an orally active IVA-PLA2 inhibitor, on the development of fatty liver and hepatic fibrosis in mice. The daily coadministration of ASB14780 markedly ameliorated liver injury and hepatic fibrosis following 6 weeks of treatment with CCl4. ASB14780 markedly attenuated the CCl4-induced expression of smooth muscle α-actin (α-SMA) protein and the mRNA expression of collagen 1a2, α-SMA, and transforming growth factor-β1 in the liver, and inhibited the expression of monocyte/macrophage markers, CD11b and monocyte chemotactic protein-1, while preventing the recruitment of monocytes/macrophages to the liver. Importantly, ASB14780 also reduced the development of fibrosis even in matured hepatic fibrosis. Additionally, ASB14780 also reduced HFCD-induced lipid deposition not only in the liver, but also in already established fatty liver. Furthermore, treatment with ASB14780 suppressed the HFCD-induced expression of lipogenic mRNAs. The present findings suggest that an IVA-PLA2 inhibitor, such as ASB14780, could be useful for the treatment of nonalcoholic fatty liver diseases, including fatty liver and hepatic fibrosis.

  6. A beta-lactam inhibitor of cytosolic phospholipase A2 which acts in a competitive, reversible manner at the lipid/water interface.

    PubMed

    Burke, J R; Gregor, K R; Padmanabha, R; Banville, J; Witmer, M R; Davern, L B; Manly, S P; Tramposch, K M

    1998-06-01

    Cytosolic phospholipase A2 (cPLA2) catalyzes the selective release of arachidonic acid from the sn-2 position of phospholipids and is believed to play a key cellular role in the generation of arachidonic acid. When assaying the human recombinant cPLA2 using membranes isolated from [3H]arachidonate-labeled U937 cells as substrate, 3,3-Dimethyl-6-(3-lauroylureido)-7-oxo-4-thia-1-azabicyclo[3,2,0] heptane-2-carboxylic acid (1) was found to inhibit the enzyme in a dose-dependent manner (IC50 = 72 microM). This beta-lactam did not inhibit other phospholipases, including the human nonpancreatic secreted phospholipase A2. The inhibition of cPLA2 was found not to be time-dependent. This, along with the observation that the degradation of the inhibitor was not catalyzed by the enzyme, demonstrates that the inhibition does not result from the formation of an acyl-enzyme intermediate with the active site serine residue. Moreover, the ring-opened form of 1 is also able to inhibit cPLA2 with near-equal potency. To further characterize the mechanism of inhibition, an assay in which the enzyme is bound to vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphomethanol containing 6-10 mole percent of 1-palmitoyl-2-[1-14C]-arachidonoyl-sn-glycero-3-phosphocholine was employed. With this substrate system, the dose-dependent inhibition was defined by kinetic equations describing competitive inhibition at the lipid/water interface. The apparent dissociation constant for the inhibitor bound to the enzyme at the interface (KI*app) was determined to be 0.5 +/- 0.1 mole% versus an apparent dissociation constant for the arachidonate-containing phospholipid of 0.4 +/- 0.1 mole%. Thus, 1 represents a novel structural class of inhibitors of cPLA2 which partitions into the phospholipid bilayer and competes with the phospholipid substrate for the active site.

  7. The Effects of Quinacrine, Proglumide, and Pentoxifylline on Seizure Activity, Cognitive Deficit, and Oxidative Stress in Rat Lithium-Pilocarpine Model of Status Epilepticus

    PubMed Central

    Abu-Taweel, Gasem M.; Aboshaiqah, Ahmad E.; Ajarem, Jamaan S.

    2014-01-01

    The present data indicate that status epilepticus (SE) induced in adult rats is associated with cognitive dysfunctions and cerebral oxidative stress (OS). This has been demonstrated using lithium-pilocarpine (Li-Pc) model of SE. OS occurring in hippocampus and striatum of mature brain following SE is apparently due to both the increased free radicals production and the limited antioxidant defense. Pronounced alterations were noticed in the enzymatic, glutathione-S transferase (GST), catalase (CAT), and superoxide dismutase (SOD), as well as in the nonenzymatic; thiobarbituric acid (TBARS) and reduced glutathione (GST), indices of OS in the hippocampus and striatum of SE induced animals. Quinacrine (Qcn), proglumide (Pgm), and pentoxifylline (Ptx) administered to animals before inducing SE, were significantly effective in ameliorating the seizure activities, cognitive dysfunctions, and cerebral OS. The findings suggest that all the drugs were effective in the order of Ptx < Pgm < Qcn indicating that these drugs are potentially antiepileptic as well as antioxidant; however, further studies are needed to establish this fact. It can be assumed that these antiepileptic substances with antioxidant properties combined with conventional therapies might provide a beneficial effect in treatment of epilepsy through ameliorating the cerebral OS. PMID:25478062

  8. Hsp90 Inhibitors Are Efficacious against Kaposi Sarcoma by Enhancing the Degradation of the Essential Viral Gene LANA, of the Viral Co-Receptor EphA2 as well as Other Client Proteins

    PubMed Central

    Chen, Wuguo; Sin, Sang-Hoon; Wen, Kwun Wah; Damania, Blossom; Dittmer, Dirk P.

    2012-01-01

    Heat-shock protein 90 (Hsp90) inhibitors exhibit activity against human cancers. We evaluated a series of new, oral bioavailable, chemically diverse Hsp90 inhibitors (PU-H71, AUY922, BIIB021, NVP-BEP800) against Kaposi sarcoma (KS). All Hsp90 inhibitors exhibited nanomolar EC50 in culture and AUY922 reduced tumor burden in a xenograft model of KS. KS is associated with KS-associated herpesvirus (KSHV). We identified the viral latency associated nuclear antigen (LANA) as a novel client protein of Hsp90 and demonstrate that the Hsp90 inhibitors diminish the level of LANA through proteasomal degradation. These Hsp90 inhibitors also downregulated EphA2 and ephrin-B2 protein levels. LANA is essential for viral maintenance and EphA2 has recently been shown to facilitate KSHV infection; which in turn feeds latent persistence. Further, both molecules are required for KS tumor formation and both were downregulated in response to Hsp90 inhibitors. This provides a rationale for clinical testing of Hsp90 inhibitors in KSHV-associated cancers and in the eradication of latent KSHV reservoirs. PMID:23209418

  9. Discovery and characterization of a novel non-competitive inhibitor of the divalent metal transporter DMT1/SLC11A2.

    PubMed

    Montalbetti, Nicolas; Simonin, Alexandre; Simonin, Céline; Awale, Mahendra; Reymond, Jean-Louis; Hediger, Matthias A

    2015-08-01

    Divalent metal transporter-1 (SLC11A2/DMT1) uses the H(+) electrochemical gradient as the driving force to transport divalent metal ions such as Fe(2+), Mn(2+) and others metals into mammalian cells. DMT1 is ubiquitously expressed, most notably in proximal duodenum, immature erythroid cells, brain and kidney. This transporter mediates H(+)-coupled transport of ferrous iron across the apical membrane of enterocytes. In addition, in cells such as to erythroid precursors, following transferrin receptor (TfR) mediated endocytosis; it mediates H(+)-coupled exit of ferrous iron from endocytic vesicles into the cytosol. Dysfunction of human DMT1 is associated with several pathologies such as iron deficiency anemia hemochromatosis, Parkinson's disease and Alzheimer's disease, as well as colorectal cancer and esophageal adenocarcinoma, making DMT1 an attractive target for drug discovery. In the present study, we performed a ligand-based virtual screening of the Princeton database (700,000 commercially available compounds) to search for pharmacophore shape analogs of recently reported DMT1 inhibitors. We discovered a new compound, named pyrimidinone 8, which mediates a reversible linear non-competitive inhibition of human DMT1 (hDMT1) transport activity with a Ki of ∼20μM. This compound does not affect hDMT1 cell surface expression and shows no dependence on extracellular pH. To our knowledge, this is the first experimental evidence that hDMT1 can be allosterically modulated by pharmacological agents. Pyrimidinone 8 represents a novel versatile tool compound and it may serve as a lead structure for the development of therapeutic compounds for pre-clinical assessment.

  10. A novel protein from the serum of Python sebae, structurally homologous with type-γ phospholipase A(2) inhibitor, displays antitumour activity.

    PubMed

    Donnini, Sandra; Finetti, Federica; Francese, Simona; Boscaro, Francesca; Dani, Francesca R; Maset, Fabio; Frasson, Roberta; Palmieri, Michele; Pazzagli, Mario; De Filippis, Vincenzo; Garaci, Enrico; Ziche, Marina

    2011-12-01

    Cytotoxic and antitumour factors have been documented in the venom of snakes, although little information is available on the identification of cytotoxic products in snake serum. In the present study, we purified and characterized a new cytotoxic factor from serum of the non-venomous African rock python (Python sebae), endowed with antitumour activity. PSS (P. sebae serum) exerted a cytotoxic activity and reduced dose-dependently the viability of several different tumour cell lines. In a model of human squamous cell carcinoma xenograft (A431), subcutaneous injection of PSS in proximity of the tumour mass reduced the tumour volume by 20%. Fractionation of PSS by ion-exchange chromatography yielded an active protein fraction, F5, which significantly reduced tumour cell viability in vitro and, strikingly, tumour growth in vivo. F5 is composed of P1 (peak 1) and P2 subunits interacting in a 1:1 stoichiometric ratio to form a heterotetramer in equilibrium with a hexameric form, which retained biological activity only when assembled. The two peptides share sequence similarity with PIP {PLI-γ [type-γ PLA(2) (phospholipase A(2)) inhibitor] from Python reticulatus}, existing as a homohexamer. More importantly, although PIP inhibits the hydrolytic activity of PLA(2), the anti-PLA(2) function of F5 is negligible. Using high-resolution MS, we covered 87 and 97% of the sequences of P1 and P2 respectively. In conclusion, in the present study we have identified and thoroughly characterized a novel protein displaying high sequence similarity to PLI-γ and possessing remarkable cytotoxic and antitumour effects that can be exploited for potential pharmacological applications.

  11. Identification of T. gondii Myosin Light Chain-1 as a Direct Target of TachypleginA-2, a Small-Molecule Inhibitor of Parasite Motility and Invasion

    PubMed Central

    Leung, Jacqueline M.; Tran, Fanny; Pathak, Ravindra B.; Poupart, Séverine; Heaslip, Aoife T.; Ballif, Bryan A.; Westwood, Nicholas J.; Ward, Gary E.

    2014-01-01

    Motility of the protozoan parasite Toxoplasma gondii plays an important role in the parasite’s life cycle and virulence within animal and human hosts. Motility is driven by a myosin motor complex that is highly conserved across the Phylum Apicomplexa. Two key components of this complex are the class XIV unconventional myosin, TgMyoA, and its associated light chain, TgMLC1. We previously showed that treatment of parasites with a small-molecule inhibitor of T. gondii invasion and motility, tachypleginA, induces an electrophoretic mobility shift of TgMLC1 that is associated with decreased myosin motor activity. However, the direct target(s) of tachypleginA and the molecular basis of the compound-induced TgMLC1 modification were unknown. We show here by “click” chemistry labelling that TgMLC1 is a direct and covalent target of an alkyne-derivatized analogue of tachypleginA. We also show that this analogue can covalently bind to model thiol substrates. The electrophoretic mobility shift induced by another structural analogue, tachypleginA-2, was associated with the formation of a 225.118 Da adduct on S57 and/or C58, and treatment with deuterated tachypleginA-2 confirmed that the adduct was derived from the compound itself. Recombinant TgMLC1 containing a C58S mutation (but not S57A) was refractory to click labelling and no longer exhibited a mobility shift in response to compound treatment, identifying C58 as the site of compound binding on TgMLC1. Finally, a knock-in parasite line expressing the C58S mutation showed decreased sensitivity to compound treatment in a quantitative 3D motility assay. These data strongly support a model in which tachypleginA and its analogues inhibit the motility of T. gondii by binding directly and covalently to C58 of TgMLC1, thereby causing a decrease in the activity of the parasite’s myosin motor. PMID:24892871

  12. Design, synthesis and SAR exploration of tri-substituted 1,2,4-triazoles as inhibitors of the annexin A2–S100A10 protein interaction

    PubMed Central

    Reddy, Tummala R.K.; Li, Chan; Guo, Xiaoxia; Fischer, Peter M.; Dekker, Lodewijk V.

    2014-01-01

    Recent target validation studies have shown that inhibition of the protein interaction between annexin A2 and the S100A10 protein may have potential therapeutic benefits in cancer. Virtual screening identified certain 3,4,5-trisubstituted 4H-1,2,4-triazoles as moderately potent inhibitors of this interaction. A series of analogues were synthesized based on the 1,2,4-triazole scaffold and were evaluated for inhibition of the annexin A2–S100A10 protein interaction in competitive binding assays. 2-[(5-{[(4,6-Dimethylpyrimidin-2-yl)sulfanyl]methyl}-4-(furan-2-ylmethyl)-4H-1,2,4-triazol-3-yl)sulfanyl]-N-[4-(propan-2-yl)phenyl]acetamide (36) showed improved potency and was shown to disrupt the native complex between annexin A2 and S100A10. PMID:25172147

  13. [In vivo evaluation of the metabolic ratio of CYP2C9 and CYP1A2 drug markers after administration of afobazole in comparison to standard inducers and inhibitors of cytochromes].

    PubMed

    Novitskaia, Ia G; Gribakina, O G; Kolyvanov, G B; Zherdev, V P; Smirnov, V V; Seredenin, S B

    2013-01-01

    The effect of subchronic peroral administration in effective doses of afobazole (5 mg/kg), and cytochrome P450 inductors (rifampicin, 13.4 mg/kg; phenytoin, 10.4 mg/kg) and inhibitors (fluconazole, 35.7 mg/kg; ciprofloxacin, 44.0 mg/kg) on the metabolic ratio (MR) of drugs-markers of CYP2C9 and CYP1A2 activity was studied in rats. Afobazole did not change the MR of compounds metabolized by the P450 isoforms studied. After peroral administration of standard P450 inductors and inhibitors, statistically significant bidirectional effects were identified, which demonstrated the expedience of administering a complex of selected compounds, markers, and CYP2C9 and CYP1A2 activity modificators for comparative evaluation of the effects of new drugs in rats. It is recommended to evaluate the activity of CYP1A2 by determining the MR for one of two caffeine metabolites, paraxanthine or theobromine, and the activity of CYP2C9 by determining the MR of metabolite Exp-3174 to losartan.

  14. Three-dimensional pharmacophore design and biochemical screening identifies substituted 1,2,4-triazoles as inhibitors of the annexin A2-S100A10 protein interaction.

    PubMed

    Reddy, Tummala R K; Li, Chan; Fischer, Peter M; Dekker, Lodewijk V

    2012-08-01

    Protein interactions are increasingly appreciated as targets in small-molecule drug discovery. The interaction between the adapter protein S100A10 and its binding partner annexin A2 is a potentially important drug target. To obtain small-molecule starting points for inhibitors of this interaction, a three-dimensional pharmacophore model was constructed from the X-ray crystal structure of the complex between S100A10 and annexin A2. The pharmacophore model represents the favourable hydrophobic and hydrogen bond interactions between the two partners, as well as spatial and receptor site constraints (excluded volume spheres). Using this pharmacophore model, UNITY flex searches were carried out on a 3D library of 0.7 million commercially available compounds. This resulted in 568 hit compounds. Subsequently, GOLD docking studies were performed on these hits, and a set of 190 compounds were purchased and tested biochemically for inhibition of the protein interaction. Three compounds of similar chemical structure were identified as genuine inhibitors of the binding of annexin A2 to S100A10. The binding modes predicted by GOLD were in good agreement with their UNITY-generated conformations. We synthesised a series of analogues revealing areas critical for binding. Thus computational predictions and biochemical screening can be used successfully to derive novel chemical classes of protein-protein interaction blockers.

  15. Purification and characterization of a platelet aggregation inhibitor acidic phospholipase A2 from Indian saw-scaled viper (Echis carinatus) venom.

    PubMed

    Kemparaju, K; Krishnakanth, T P; Veerabasappa Gowda, T

    1999-12-01

    An acidic phospholipase A2 (EC-I-PLA2) has been purified from the Indian saw-scaled viper (Echis carinatus) venom through a combination of column chromatography and electrophoresis. EC-I-PLA2 has a molecular weight of 16000 by SDS-PAGE. It was focussed between pH 4.2 and 4.8 by isoelectro focussing. EC-I-PLA2 was non-lethal to mice and devoid of neurotoxicity, myotoxicity, anticoagulant activity and cytotoxicity. It induced mild oedema in the foot pads of mice. The purified PLA2 inhibited ADP, collagen and epinephrine induced human platelet aggregation and the inhibition was both dose and time dependent. PMID:10519645

  16. Proteasome inhibitors.

    PubMed

    Teicher, Beverly A; Tomaszewski, Joseph E

    2015-07-01

    Proteasome inhibitors have a 20 year history in cancer therapy. The first proteasome inhibitor, bortezomib (Velcade, PS-341), a break-through multiple myeloma treatment, moved rapidly through development from bench in 1994 to first approval in 2003. Bortezomib is a reversible boronic acid inhibitor of the chymotrypsin-like activity of the proteasome. Next generation proteasome inhibitors include carfilzomib and oprozomib which are irreversible epoxyketone proteasome inhibitors; and ixazomib and delanzomib which are reversible boronic acid proteasome inhibitors. Two proteasome inhibitors, bortezomib and carfilzomib are FDA approved drugs and ixazomib and oprozomib are in late stage clinical trials. All of the agents are potent cytotoxics. The disease focus for all the proteasome inhibitors is multiple myeloma. This focus arose from clinical observations made in bortezomib early clinical trials. Later preclinical studies confirmed that multiple myeloma cells were indeed more sensitive to proteasome inhibitors than other tumor cell types. The discovery and development of the proteasome inhibitor class of anticancer agents has progressed through a classic route of serendipity and scientific investigation. These agents are continuing to have a major impact in their treatment of hematologic malignancies and are beginning to be explored as potential treatment agent for non-cancer indications. PMID:25935605

  17. Platelet Inhibitors.

    PubMed

    Shifrin, Megan M; Widmar, S Brian

    2016-03-01

    Antithrombotic medications have become standard of care for management of acute coronary syndrome. Platelet adhesion, activation, and aggregation are essential components of platelet function; platelet-inhibiting medications interfere with these components and reduce incidence of thrombosis. Active bleeding is a contraindication for administration of platelet inhibitors. There is currently no reversal agent for platelet inhibitors, although platelet transfusion may be used to correct active bleeding after administration of platelet inhibitors. PMID:26897422

  18. Corrosion inhibitor

    SciTech Connect

    Wisotsky, M.J.; Metro, S.J.

    1989-10-31

    A corrosion inhibitor for use in synthetic ester lubricating oils is disclosed. It comprises an effective amount of: at least one aromatic amide; and at least one hydroxy substituted aromatic compound. The corrosion inhibitor thus formed is particularly useful in synthetic ester turbo lubricating oils.

  19. Efficacious and orally bioavailable thrombin inhibitors based on a 2,5-thienylamidine at the P1 position: discovery of N-carboxymethyl-d-diphenylalanyl-l-prolyl[(5-amidino-2-thienyl)methyl]amide.

    PubMed

    Lee, Koo; Park, Cheol Won; Jung, Won-Hyuk; Park, Hee Dong; Lee, Sun Hwa; Chung, Kyung Ha; Park, Su Kyung; Kwon, O Hwan; Kang, Myunggyun; Park, Doo-Hee; Lee, Sang Koo; Kim, Eunice E; Yoon, Suk Kyoon; Kim, Aeri

    2003-08-14

    Thrombin, a crucial enzyme in the blood coagulation, has been a target for antithrombotic therapy. Orally active thrombin inhibitors would provide effective and safe prophylaxis for venous and arterial thrombosis. We conducted optimization of a highly efficacious benzamidine-based thrombin inhibitor LB30812 (3, K(i) = 3 pM) to improve oral bioavailability. Of a variety of arylamidines investigated at the P1 position, 2,5-thienylamidine effectively replaced the benzamidine without compromising the thrombin inhibitory potency and oral absorption. The sulfamide and sulfonamide derivatization at the N-terminal position in general afforded highly potent thrombin inhibitors but with moderate oral absorption, while the well-absorbable N-carbamate derivatives exhibited limited metabolic stability in S9 fractions. The present work culminated in the discovery of the N-carboxymethyl- and 2,5-thienylamidine-containing compound 22 that exhibits the most favorable profiles of anticoagulant and antithrombotic activities as well as oral bioavilability (K(i) = 15 pM; F = 43%, 42%, and 15% in rats, dogs, and monkeys, respectively). This compound on a gravimetric basis was shown to be more effective than a low molecular weight heparin, enoxaparin, in the venous thrombosis models of rat and rabbit. Compound 22 (LB30870) was therefore selected for further preclinical and clinical development. PMID:12904065

  20. Characterization of meFucoidan as a selective inhibitor for secretory phospholipase A2-IIA and the phosphorylation of meFucoidan-binding proteins by A-kinase in vitro.

    PubMed

    Maruyama, Hiroko; Suzuki, Kanzo; Miyai, Sayaka; Ohtsuki, Kenzo

    2008-04-01

    The direct interaction of Mekabu fucoidan (meFucoidan) with four functional basic proteins (sPLA2-IIA, bFGF, histone H2B and HBV core protein) and three synthetic FGF-BP peptides (sp5, GE13 and RS6) was characterized in vitro. It was found that (i) meFucoidan inhibited dose-dependently the activity of sPLA2-IIA, but not pPLA2, through its direct binding to the enzyme; (ii) sPLA2-IIA activity was sensitive to meFucoidan rather than heparin, but significantly stimulated by sulfatide; (iii) the A-kinase-mediated phosphorylation of these basic proteins, except sPLA2-IIA, and synthetic peptides, containing potent phosphorylation sites for A-kinase, was inhibited dose-dependently by meFucoidan; and (iv) two consensus meFucoidan-binding motifs (B-B-B-B-X and B-X-B-B-X; B, basic amino acid) in these basic proteins and synthetic peptides could be overlapping to the potent phosphorylation site (B-B-X-S/T) for the kinase in vitro. These results presented here suggest that meFucoidan functions as a selective inhibitor for sPLA2-IIA and the A-kinase-mediated phosphorylation of cellular meFucoidan-binding functional basic proteins in vitro. PMID:18379068

  1. HDAC Inhibitors.

    PubMed

    Olzscha, Heidi; Bekheet, Mina E; Sheikh, Semira; La Thangue, Nicholas B

    2016-01-01

    Lysine acetylation in proteins is one of the most abundant posttranslational modifications in eukaryotic cells. The dynamic homeostasis of lysine acetylation and deacetylation is dictated by the action of histone acetyltransferases (HAT) and histone deacetylases (HDAC). Important substrates for HATs and HDACs are histones, where lysine acetylation generally leads to an open and transcriptionally active chromatin conformation. Histone deacetylation forces the compaction of the chromatin with subsequent inhibition of transcription and reduced gene expression. Unbalanced HAT and HDAC activity, and therefore aberrant histone acetylation, has been shown to be involved in tumorigenesis and progression of malignancy in different types of cancer. Therefore, the development of HDAC inhibitors (HDIs) as therapeutic agents against cancer is of great interest. However, treatment with HDIs can also affect the acetylation status of many other non-histone proteins which play a role in different pathways including angiogenesis, cell cycle progression, autophagy and apoptosis. These effects have led HDIs to become anticancer agents, which can initiate apoptosis in tumor cells. Hematological malignancies in particular are responsive to HDIs, and four HDIs have already been approved as anticancer agents. There is a strong interest in finding adequate biomarkers to predict the response to HDI treatment. This chapter provides information on how to assess HDAC activity in vitro and determine the potency of HDIs on different HDACs. It also gives information on how to analyze cellular markers following HDI treatment and to analyze tissue biopsies from HDI-treated patients. Finally, a protocol is provided on how to detect HDI sensitivity determinants in human cells, based on a pRetroSuper shRNA screen upon HDI treatment. PMID:27246222

  2. Proton pump inhibitors

    MedlinePlus

    Proton pump inhibitors (PPIs) are medicines that work by reducing the amount of stomach acid made by ... Proton pump inhibitors are used to: Relieve symptoms of acid reflux, or gastroesophageal reflux disease (GERD). This ...

  3. Virtual Screening for Potential Inhibitors of NS3 Protein of Zika Virus

    PubMed Central

    Sahoo, Maheswata; Jena, Lingaraja; Daf, Sangeeta

    2016-01-01

    Zika virus (ZIKV) is a mosquito borne pathogen, belongs to Flaviviridae family having a positive-sense single-stranded RNA genome, currently known for causing large epidemics in Brazil. Its infection can cause microcephaly, a serious birth defect during pregnancy. The recent outbreak of ZIKV in February 2016 in Brazil realized it as a major health risk, demands an enhanced surveillance and a need to develop novel drugs against ZIKV. Amodiaquine, prochlorperazine, quinacrine, and berberine are few promising drugs approved by Food and Drug Administration against dengue virus which also belong to Flaviviridae family. In this study, we performed molecular docking analysis of these drugs against nonstructural 3 (NS3) protein of ZIKV. The protease activity of NS3 is necessary for viral replication and its prohibition could be considered as a strategy for treatment of ZIKV infection. Amongst these four drugs, berberine has shown highest binding affinity of –5.8 kcal/mol and it is binding around the active site region of the receptor. Based on the properties of berberine, more similar compounds were retrieved from ZINC database and a structure-based virtual screening was carried out by AutoDock Vina in PyRx 0.8. Best 10 novel drug-like compounds were identified and amongst them ZINC53047591 (2-(benzylsulfanyl)-3-cyclohexyl-3H-spiro[benzo[h]quinazoline-5,1'-cyclopentan]-4(6H)-one) was found to interact with NS3 protein with binding energy of –7.1 kcal/mol and formed H-bonds with Ser135 and Asn152 amino acid residues. Observations made in this study may extend an assuring platform for developing anti-viral competitive inhibitors against ZIKV infection. PMID:27729840

  4. Novel corrosion inhibitor technology

    SciTech Connect

    Van de Ven, P.; Fritz, P.; Pellet, R.

    1999-11-01

    A novel, patented corrosion inhibitor technology has been identified for use in heat transfer applications such as automotive and heavy-duty coolant. The new technology is based on a low-toxic, virtually depletion-free carboxylic acid corrosion inhibitor package that performs equally well in mono ethylene glycol and in less toxic propylene glycol coolants. An aqueous inhibitor concentrate is available to provide corrosion protection where freezing protection is not an issue. In the present paper, this inhibitor package is evaluated in the different base fluids: mono ethylene glycol, mono propylene glycol and water. Results are obtained in both standardized and specific corrosion tests as well as in selected field trials. These results indicate that the inhibitor package remains effective and retains the benefits previously identified in automotive engine coolant applications: excellent corrosion protection under localized conditions, general corrosion conditions as well as at high temperature.

  5. Pathway modulators and inhibitors.

    PubMed

    Smith, John A

    2009-07-01

    Inhibitors of specific cellular pathways are useful for investigating the roles of proteins of unknown function, and for selectively inhibiting a protein in complex pathways to uncover its relationships to other proteins in this and other interacting pathways. This appendix provides links to Web sites that describe cellular processes and pathways along with the various classes of inhibitors, numerous references, downloadable diagrams, and technical tips.

  6. Update on TNF Inhibitors.

    PubMed

    Kerdel, Francisco A

    2016-06-01

    The introduction of tumor necrosis factor (TNF)-α inhibitors dramatically improved the management of psoriasis. Some newer or investigational biologics with different mechanisms of action have demonstrated noninferiority or superiority to etanercept, the first self-injectable anti-TNF-α agent to become available in the United States. Nonetheless, TNF-α inhibitors are likely to remain a mainstay of therapy for many years.

  7. Synthetic inhibitors of elastase.

    PubMed

    Edwards, P D; Bernstein, P R

    1994-03-01

    For more than two decades investigators around the world, in both academic and industrial institutions, have been developing inhibitors of human neutrophil elastase. A number of very elegant and insightful strategies have been reported. In the case of reversible peptidic inhibitors, this has resulted in the identification of some extremely potent compounds with dissociation constants in the 10(-11) M range. This is quite an accomplishment considering that these low molecular-weight inhibitors are only tri- and tetrapeptides. In the case of the heterocyclic-based inhibitors, the challenge of balancing the heterocycle's inherent reactivity and aqueous stability with the stability of the enzyme-inhibitor adduct has been meet by either using a latent, reactive functionality which is only activated within the enzyme, or by incorporating features which selectively obstruct deacylation but have little effect on the enzyme acylation step. The underlying goal of this research has been the identification of agents to treat diseases associated with HNE. Several animal models have been developed for evaluating the in vivo activity of elastase inhibitors, and compounds have been shown to be effective in all of these models by the intravenous, intratrachael or oral routes of administration. However, only a very small percentage of compounds have possessed all the necessary properties, including lack of toxicity, for progression into the clinic. The peptidyl TFMK ICI 200,880 (25-12) has many of the desired characteristics of a drug to treat the diseases associated with HNE: chemical stability, in vitro and in vivo activity, a long duration of action, and adequate metabolic stability. Currently ICI 200,880 is the only low molecular-weight HNE inhibitor known to be undergoing clinical trials, and may be the compound which finally demonstrates the clinical utility of a synthetic HNE inhibitor. PMID:8189835

  8. Small-molecule caspase inhibitors

    NASA Astrophysics Data System (ADS)

    Zhenodarova, S. M.

    2010-02-01

    The review considers low-molecular weight inhibitors of caspases, cysteine proteases being key contributors to apoptosis (programmed cell death). The inhibitors with aspartic acid residues or various heterocyclic systems (both synthetic and natural) are covered. Their possible mechanisms of action are discussed. Data on inhibitor structure-activity relationship studies are systematically surveyed. The interactions of the non-peptide fragments of an inhibitor with the enzymes are examined. Examples of the use of some inhibitors for apoptosis suppression are provided.

  9. Natural inhibitors of thrombin.

    PubMed

    Huntington, James A

    2014-04-01

    The serine protease thrombin is the effector enzyme of blood coagulation. It has many activities critical for the formation of stable clots, including cleavage of fibrinogen to fibrin, activation of platelets and conversion of procofactors to active cofactors. Thrombin carries-out its multiple functions by utilising three special features: a deep active site cleft and two anion binding exosites (exosite I and II). Similarly, thrombin inhibitors have evolved to exploit the unique features of thrombin to achieve rapid and specific inactivation of thrombin. Exogenous thrombin inhibitors come from several different protein families and are generally found in the saliva of haematophagous animals (blood suckers) as part of an anticoagulant cocktail that allows them to feed. Crystal structures of several of these inhibitors reveal how peptides and proteins can be targeted to thrombin in different and interesting ways. Thrombin activity must also be regulated by endogenous inhibitors so that thrombi do not occlude blood flow and cause thrombosis. A single protein family, the serpins, provides all four of the endogenous thrombin inhibitors found in man. The crystal structures of these serpins bound to thrombin have been solved, revealing a similar exosite-dependence on complex formation. In addition to forming the recognition complex, serpins destroy the structure of thrombin, allowing them to be released from cofactors and substrates for clearance. This review examines how the special features of thrombin have been exploited by evolution to achieve inhibition of the ultimate coagulation protease.

  10. SGLT2 inhibitors.

    PubMed

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. PMID:26362302

  11. Cholinesterase inhibitors from botanicals

    PubMed Central

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P.; Ahmed, K. K. Mueen

    2013-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  12. Cholinesterase inhibitors from botanicals.

    PubMed

    Ahmed, Faiyaz; Ghalib, Raza Murad; Sasikala, P; Ahmed, K K Mueen

    2013-07-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease, wherein a progressive loss of cholinergic synapses occurs in hippocampus and neocortex. Decreased concentration of the neurotransmitter, acetylcholine (ACh), appears to be critical element in the development of dementia, and the most appropriate therapeutic approach to treat AD and other form of dementia is to restore acetylcholine levels by inhibiting both major form of cholinesterase: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Consequently, researches have focused their attention towards finding cholinesterase inhibitors from natural products. A large number of such inhibitors have been isolated from medicinal plants. This review presents a comprehensive account of the advances in field of cholinesterase inhibitor phytoconstituents. The structures of some important phytoconstituents (collected through www.Chemspider.com) are also presented and the scope for future research is discussed. PMID:24347920

  13. Phosphodiesterase-5 inhibitors.

    PubMed

    Cockrill, Barbara A; Waxman, Aaron B

    2013-01-01

    Nitric oxide (NO) signaling plays a key role in modulating vascular tone and remodeling in the pulmonary circulation. The guanylate cyclase/cyclic guanylate monophosphate-signaling pathway primarily mediates nitric oxide signaling. This pathway is critical in normal regulation of the pulmonary vasculature, and is an important target for therapy in patients with pulmonary hypertension. In the pulmonary vasculature, degradation of cGMP is primarily regulated by PDE-5, and inhibition of this enzyme has important effects on pulmonary vasculature smooth muscle tone. Large randomized placebo-controlled trials of PDE-5 inhibitors demonstrated improved exercise capacity, hemodynamics and quality of life in adult patients with PAH. This chapter will discuss the mechanisms of NO signaling in the vasculature, characteristics of the PDE5-inhibitors approved for treatment of PH, and review available data on the use of phosphodiesterase inhibitors in PH. PMID:24092343

  14. Cardiovascular effects of selective cyclooxygenase-2 inhibitors.

    PubMed

    Krum, Henry; Liew, Danny; Aw, Juan; Haas, Steven

    2004-03-01

    Selective cyclooxygenase-2 inhibitors represent a significant advance in the management of inflammatory disorders. They have similar efficacy to nonselective 'conventional' nonsteroidal anti-inflammatory drugs, but a superior gastrointestinal safety profile. However, a significant caveat is the perceived potential of cyclooxygenase-2 inhibitors to cause adverse cardiovascular effects, an issue first raised by the Vioxx Gastrointestinal Outcomes Research (VIGOR) study of rofecoxib (Vioxx, Merck & Co. Inc.). Mechanisms by which cyclooxygenase-2 inhibitors may increase cardiovascular risk are selective inhibition of prostaglandin I2 over thromboxane A2 within the eicosanoid pathway, which promotes thrombosis, and inhibition of prostaglandins E2 and I2 within the kidney, which leads to sodium and water retention and blood pressure elevation. In spite of this, the cardiovascular findings from VIGOR are not firmly supported by observations from large cohort studies and other clinical trials of selective cyclooxygenase-2 inhibitors, including the Celecoxib Long-term Arthritis Safety Study. The two main theories that explain the VIGOR findings are that the comparator used (naproxen; Naprosyn, Roche) is cardioprotective and that very high doses of rofecoxib were used, but at present neither is backed by firm evidence. Indeed, there is now early evidence that selective cyclooxygenase-2 inhibition with celecoxib may even protect against the progression of cardiovascular disease, on the basis that cyclooxygenase-2 mediates key processes in atherothrombosis. Currently, it is not clear what the net cardiovascular effects of cyclooxygenase-2 inhibitors are. The data are inconsistent and at best, speculative. It may be also that celecoxib and rofecoxib differ in their cardiovascular effects. Clarification of these issues is of vital importance given the vast number of patients presently taking both types of cyclooxygenase-2 inhibitors. Therefore, what is clear in this situation is

  15. Pectin methylesterase inhibitor.

    PubMed

    Giovane, A; Servillo, L; Balestrieri, C; Raiola, A; D'Avino, R; Tamburrini, M; Ciardiello, M A; Camardella, L

    2004-02-12

    Pectin methylesterase (PME) is the first enzyme acting on pectin, a major component of plant cell wall. PME action produces pectin with different structural and functional properties, having an important role in plant physiology. Regulation of plant PME activity is obtained by the differential expression of several isoforms in different tissues and developmental stages and by subtle modifications of cell wall local pH. Inhibitory activities from various plant sources have also been reported. A proteinaceous inhibitor of PME (PMEI) has been purified from kiwi fruit. The kiwi PMEI is active against plant PMEs, forming a 1:1 non-covalent complex. The polypeptide chain comprises 152 amino acid residues and contains five Cys residues, four of which are connected by disulfide bridges, first to second and third to fourth. The sequence shows significant similarity with the N-terminal pro-peptides of plant PME, and with plant invertase inhibitors. In particular, the four Cys residues involved in disulfide bridges are conserved. On the basis of amino acid sequence similarity and Cys residues conservation, a large protein family including PMEI, invertase inhibitors and related proteins of unknown function has been identified. The presence of at least two sequences in the Arabidopsis genome having high similarity with kiwi PMEI suggests the ubiquitous presence of this inhibitor. PMEI has an interest in food industry as inhibitor of endogenous PME, responsible for phase separation and cloud loss in fruit juice manufacturing. Affinity chromatography on resin-bound PMEI can also be used to concentrate and detect residual PME activity in fruit and vegetable products.

  16. Acyclic peptide inhibitors of amylases.

    PubMed

    Pohl, Nicola

    2005-12-01

    In this issue of Chemistry and Biology, a library screening approach reveals a linear octapeptide inhibitor of alpha-amylases reached by de novo design . The selected molecule shares characteristics with naturally occurring protein inhibitors -- a result that suggests general rules for the design of peptide-based amylase inhibitors may be achievable.

  17. [JAK2 inhibitors].

    PubMed

    Hernández Boluda, Juan Carlos; Gómez, Montse; Pérez, Ariadna

    2016-07-15

    Pharmacological inhibition of the kinase activity of JAK proteins can interfere with the signaling of immunomodulatory cytokines and block the constitutive activation of the JAK-STAT pathway that characterizes certain malignancies, including chronic myeloproliferative neoplasms. JAK inhibitors may, therefore, be useful to treat malignancies as well as inflammatory or immune disorders. Currently, the most significant advances have been made in the treatment of myelofibrosis, where these drugs may lead to a remarkable improvement in the control of hyperproliferative manifestations. However, available data suggest that this treatment is not curative of myelofibrosis. In general, JAK2 inhibition induces cytopaenias, with this being considered a class side-effect. By contrast, the extrahaematologic toxicity profile varies significantly among the different JAK inhibitors. At present, there are several clinical trials evaluating the combination of ruxolitinib with other drugs, in order to improve its therapeutic activity as well as reducing haematologic toxicity. PMID:27033437

  18. Coagulation inhibitors in inflammation.

    PubMed

    Esmon, C T

    2005-04-01

    Coagulation is triggered by inflammatory mediators in a number of ways. However, to prevent unwanted clot formation, several natural anticoagulant mechanisms exist, such as the antithrombin-heparin mechanism, the tissue factor pathway inhibitor mechanism and the protein C anticoagulant pathway. This review examines the ways in which these pathways are down-regulated by inflammation, thus limiting clot formation and decreasing the natural anti-inflammatory mechanisms that these pathways possess. PMID:15787615

  19. Neutrophil Elastase Inhibitors

    PubMed Central

    Groutas, William C.; Dou, Dengfeng; Alliston, Kevin R.

    2011-01-01

    Introduction Chronic obstructive pulmonary disease (COPD) constitutes a worldwide health problem. There is currently an urgent and unmet need for the development of small molecule therapeutics capable of blocking and/or reversing the progression of the disorder. Recent studies have greatly illuminated our understanding of the multiple pathogenic processes associated with COPD. Of paramount importance is the key role played by proteases, oxidative stress, apoptosis, and inflammation. Insights gained from these studies have made possible the exploration of new therapeutic approaches. Areas covered An overview of major developments in COPD research with emphasis on low molecular weight neutrophil elastase inhibitors is described in this review. Expert opinion Great strides have been made toward our understanding of the biochemical and cellular events associated with COPD. However, our knowledge regarding the inter-relationships among the multiple pathogenic mechanisms and their mediators involved is till limited. The problem is further compounded by the unavailability of suitable validated biomarkers for assessing the efficacy of potential therapeutic interventions. The complexity of COPD suggests that effective therapeutic interventions may require the administration of more than one agent such as, for instance, an HNE or MMP-12 inhibitor with an anti-inflammatory agent such as a phosphodiesterase-4 inhibitor, or a dual function agent capable of disrupting the cycle of proteolysis, apoptosis, inflammation and oxidative stress PMID:21235378

  20. Regulation of collagenase inhibitor production in chondrosarcoma chondrocytes

    SciTech Connect

    Harper, J.; Harper, E.

    1987-05-01

    Swarm rat chondrosarcoma chondrocytes produce an inhibitor of collagenase. This inhibitor is similar to those isolated from normal cartilage tissues. These cells will synthesize proteins in the absence of serum. Since serum contains inhibitors of collagenase, it is necessary to culture cells without serum in order to obtain accurate measurements of enzyme and inhibitor levels. They examined the effect of insulin on inhibitor secretion by cultures of Swarm rat chondrosarcoma chondrocytes. They observed a 2.5 to 3.5 fold stimulation of inhibitory activity in the presence of as little as 10 ng/ml insulin as compared to controls in serum free Dulbecco's modified Eagle's medium supplemented with 4.5 g/l glucose. The units of inhibitor were determined over a 7 day culture period. Medium was harvested daily and assayed for collagenase activity and for inhibition of a known collagenase from rabbit skin or human skin, using the /sup 14/C-glycine peptide release assay. The amount of inhibitor obtained from days 2 through 7 were: 1.4 unit (control), 3.8 units (10 ng/ml insulin), 5.2 units (1 ..mu..g/ml insulin). The addition of 1 mM dibutyryl cyclic AMP to these chondrocytes in the presence of 1 ..mu..g/ml insulin caused a decrease in the level of inhibitor, suggesting that a dephosphorylation event may be necessary for this stimulation by insulin to occur.

  1. Protein farnesyltransferase inhibitors.

    PubMed

    Ayral-Kaloustian, Semiramis; Salaski, Edward J

    2002-05-01

    Specific mutations in the ras gene impair the guanosine triphophatase (GTPase) activity of Ras proteins, which play a fundamental role in the signaling cascade, leading to uninterrupted growth signals and to the transformation of normal cells into malignant phenotypes. It has been shown that normal cells transfected with mutant ras gene become cancerous and that unfarnesylated, cytosolic mutant Ras protein does not anchor onto cell membranes and cannot induce this transformation. Posttranslational modification and plasma membrane association of mutant Ras is necessary for this transforming activity. Since its identification, the enzyme protein farnesyltransferase (FTase) that catalyzes the first and essential step of the three Ras-processing steps has emerged as the most promising target for therapeutic intervention. FTase has been implicated as a potential target in inhibiting the prenylation of a variety of proteins, thus in controlling varied disease states (e.g. cancer, neurofibromatosis, restenosis, viral hepatitis, bone resorption, parasitic infections, corneal inflammations, and diabetes) associated with prenyl modifications of Ras and other proteins. Furthermore, it has been suggested that FTase inhibitors indirectly help in inhibiting tumors via suppression of angiogenesis and induction of apoptosis. Major milestones have been achieved with small-molecule FTase inhibitors that show efficacy without toxicity in vitro, as well as in mouse models bearing ras-dependent tumors. With the determination of the crystal structure of mammalian FTase, existent leads have been fine-tuned and new potent molecules of diverse structural classes have been designed. A few of these molecules are currently in the clinic, with at least three drug candidates in Phase II studies and one in Phase III. This article will review the progress that has been reported with FTase inhibitors in drug discovery and in the clinic. PMID:12733981

  2. Synthesis of Lysine Methyltransferase Inhibitors

    NASA Astrophysics Data System (ADS)

    Ye, Tao; Hui, Chunngai

    2015-07-01

    Lysine methyltransferase which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting Lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery.

  3. High performance oilfield scale inhibitors

    SciTech Connect

    Duccini, Y.; Dufour, A.; Hann, W.M.; Sanders, T.W.; Weinstein, B.

    1997-08-01

    Sea water often reacts with the formation water in offshore fields to produce barium, calcium and strontium sulfate deposits that hinder oil production. Newer fields often have more difficult to control scale problems than older ones, and current technology scale inhibitors are not able to control the deposits as well as needed. In addition, ever more stringent regulations designed to minimize the impact of inhibitors on the environment are being enacted. Three new inhibitors are presented that overcome many of the problems of older technology scale inhibitors.

  4. Osteocompatibility of Biofilm Inhibitors

    PubMed Central

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  5. Osteocompatibility of biofilm inhibitors.

    PubMed

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  6. Assessment of Synthetic Matrix Metalloproteinase Inhibitors by Fluorogenic Substrate Assay.

    PubMed

    Lively, Ty J; Bosco, Dale B; Khamis, Zahraa I; Sang, Qing-Xiang Amy

    2016-01-01

    Matrix metalloproteinases (MMPs) are a family of metzincin enzymes that act as the principal regulators and remodelers of the extracellular matrix (ECM). While MMPs are involved in many normal biological processes, unregulated MMP activity has been linked to many detrimental diseases, including cancer, neurodegenerative diseases, stroke, and cardiovascular disease. Developed as tools to investigate MMP function and as potential new therapeutics, matrix metalloproteinase inhibitors (MMPIs) have been designed, synthesized, and tested to regulate MMP activity. This chapter focuses on the use of enzyme kinetics to characterize inhibitors of MMPs. MMP activity is measured via fluorescence spectroscopy using a fluorogenic substrate that contains a 7-methoxycoumarin-4-acetic acid N-succinimidyl ester (Mca) fluorophore and a 2,4-dinitrophenyl (Dpa) quencher separated by a scissile bond. MMP inhibitor (MMPI) potency can be determined from the reduction in fluorescent intensity when compared to the absence of the inhibitor. This chapter describes a technique to characterize a variety of MMPs through enzyme inhibition assays.

  7. Biological abatement of cellulase inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bio-abatement uses a fungus to metabolize and remove fermentation inhibitors. To determine whether bio-abatement could alleviate enzyme inhibitor effects observed in biomass liquors after pretreatment, corn stover at 10% (w/v) solids was pretreated with either dilute acid or liquid hot water. The ...

  8. Anthranilamide inhibitors of factor Xa.

    PubMed

    Mendel, David; Marquart, Angela L; Joseph, Sajan; Waid, Philip; Yee, Ying K; Tebbe, Anne Louise; Ratz, Andrew M; Herron, David K; Goodson, Theodore; Masters, John J; Franciskovich, Jeffry B; Tinsley, Jennifer M; Wiley, Michael R; Weir, Leonard C; Kyle, Jeffrey A; Klimkowski, Valentine J; Smith, Gerald F; Towner, Richard D; Froelich, Larry L; Buben, John; Craft, Trelia J

    2007-09-01

    SAR about the B-ring of a series of N(2)-aroyl anthranilamide factor Xa (fXa) inhibitors is described. B-ring o-aminoalkylether and B-ring p-amine probes of the S1' and S4 sites, respectively, afforded picomolar fXa inhibitors that performed well in in vitro anticoagulation assays.

  9. Proteinaceous alpha-amylase inhibitors.

    PubMed

    Svensson, Birte; Fukuda, Kenji; Nielsen, Peter K; Bønsager, Birgit C

    2004-02-12

    Proteins that inhibit alpha-amylases have been isolated from plants and microorganisms. These inhibitors can have natural roles in the control of endogenous alpha-amylase activity or in defence against pathogens and pests; certain inhibitors are reported to be antinutritional factors. The alpha-amylase inhibitors belong to seven different protein structural families, most of which also contain evolutionary related proteins without inhibitory activity. Two families include bifunctional inhibitors acting both on alpha-amylases and proteases. High-resolution structures are available of target alpha-amylases in complex with inhibitors from five families. These structures indicate major diversity but also some similarity in the structural basis of alpha-amylase inhibition. Mutational analysis of the mechanism of inhibition was performed in a few cases and various protein engineering and biotechnological approaches have been outlined for exploitation of the inhibitory function. PMID:14871655

  10. Authentic HIV-1 integrase inhibitors

    PubMed Central

    Liao, Chenzhong; Marchand, Christophe; Burke, Terrence R; Pommier, Yves; Nicklaus, Marc C

    2010-01-01

    HIV-1 integrase (IN) is indispensable for HIV-1 replication and has become a validated target for developing anti-AIDS agents. In two decades of development of IN inhibition-based anti-HIV therapeutics, a significant number of compounds were identified as IN inhibitors, but only some of them showed antiviral activity. This article reviews a number of patented HIV-1 IN inhibitors, especially those that possess high selectivity for the strand transfer reaction. These compounds generally have a polar coplanar moiety, which is assumed to chelate two magnesium ions in the binding site. Resistance to those compounds, when given to patients, can develop as a result of IN mutations. We refer to those compounds as authentic IN inhibitors. Continued drug development has so far delivered one authentic IN inhibitor to the market (raltegravir in 2007). Current and future attention will be focused on the development of novel authentic IN inhibitors with the goal of overcoming viral resistance. PMID:21426159

  11. Oxidized mucus proteinase inhibitor: a fairly potent neutrophil elastase inhibitor.

    PubMed Central

    Boudier, C; Bieth, J G

    1994-01-01

    N-chlorosuccinimide oxidizes one of the methionine residues of mucus proteinase inhibitor with a second-order rate constant of 1.5 M-1.s-1. Cyanogen bromide cleavage and NH2-terminal sequencing show that the modified residue is methionine-73, the P'1 component of the inhibitor's active centre. Oxidation of the inhibitor decreases its neutrophil elastase inhibitory capacity but does not fully abolish it. The kinetic parameters describing the elastase-oxidized inhibitor interaction are: association rate constant kass. = 2.6 x 10(5) M-1.s-1, dissociation rate constant kdiss. = 2.9 x 10(-3) s-1 and equilibrium dissociation constant Ki = 1.1 x 10(-8) M. Comparison with the native inhibitor indicates that oxidation decreases kass. by a factor of 18.8 and increases kdiss. by a factor of 6.4, and therefore leads to a 120-fold increase in Ki. Yet, the oxidized inhibitor may still act as a potent elastase inhibitor in the upper respiratory tract where its concentration is 500-fold higher than Ki, i.e. where the elastase inhibition is pseudo-irreversible. Experiments in vitro with fibrous human lung elastin, the most important natural substrate of elastase, support this view: 1.35 microM elastase is fully inhibited by 5-6 microM oxidized inhibitor whether the enzyme-inhibitor complex is formed in the presence or absence of elastin and whether elastase is pre-adsorbed on elastin or not. PMID:7945266

  12. Lack of protective effect of thromboxane synthetase inhibitor (CGS-13080) on single dose radiated canine intestine

    SciTech Connect

    Barter, J.F.; Marlow, D.; Kamath, R.K.; Harbert, J.; Torrisi, J.R.; Barnes, W.A.; Potkul, R.K.; Newsome, J.T.; Delgado, G. )

    1991-03-01

    The effect of a thromboxane A2 synthetase inhibitor (CGS-13080) on canine intestine was studied using a single dose of radiation, and radioactive microspheres were used to determine resultant blood flow. Thromboxane A2 causes vasospasm and platelet aggregation and may play a dominant role in radiation injury. However, there was no effect on the intestinal blood flow diminution occurring after radiation in this laboratory model using this thromboxane A2 synthetase inhibitor.

  13. Optogenetic Inhibitor of the Transcription Factor CREB.

    PubMed

    Ali, Ahmed M; Reis, Jakeb M; Xia, Yan; Rashid, Asim J; Mercaldo, Valentina; Walters, Brandon J; Brechun, Katherine E; Borisenko, Vitali; Josselyn, Sheena A; Karanicolas, John; Woolley, G Andrew

    2015-11-19

    Current approaches for optogenetic control of transcription do not mimic the activity of endogenous transcription factors, which act at numerous sites in the genome in a complex interplay with other factors. Optogenetic control of dominant negative versions of endogenous transcription factors provides a mechanism for mimicking the natural regulation of gene expression. Here we describe opto-DN-CREB, a blue-light-controlled inhibitor of the transcription factor CREB created by fusing the dominant negative inhibitor A-CREB to photoactive yellow protein (PYP). A light-driven conformational change in PYP prevents coiled-coil formation between A-CREB and CREB, thereby activating CREB. Optogenetic control of CREB function was characterized in vitro, in HEK293T cells, and in neurons where blue light enabled control of expression of the CREB targets NR4A2 and c-Fos. Dominant negative inhibitors exist for numerous transcription factors; linking these to optogenetic domains offers a general approach for spatiotemporal control of native transcriptional events. PMID:26590638

  14. Characterization of two Acanthoscelides obtectus alpha-amylases and their inactivation by wheat inhibitors.

    PubMed

    Franco, Octávio L; Melo, Francislete R; Mendes, Paulo A; Paes, Norma S; Yokoyama, Massaru; Coutinho, Marise V; Bloch, Carlos; Grossi-de-Sá, Maria F

    2005-03-01

    Wheat alpha-amylase inhibitors represent an important tool in engineering crop plants against bean bruchids. Because Acanthoscelides obtectus is a devastating storage bean insect-pest, we attempted to purify and characterize its gut alpha-amylases, to study their interaction with active proteinaceous inhibitors. Two digestives alpha-amylases (AoA1 and AoA2) were purified from gut larvae, showing molecular masses of 30 and 45 kDa for each one, respectively. The stoichiometry interaction between these alpha-amylases with two wheat inhibitors (0.19 and 0.53) showed a binding complex of 1:1 enzyme:inhibitor. In vivo activities of these inhibitors against A. obtectus were also evaluated using a rich ammonium sulfate inhibitor fraction (F(20)(-)(40)) and purified inhibitors after reversed phase high-performance liquid chromatography columns. Incorporation of three different inhibitor concentrations (0.25, 0.5, and 1.0% w/w) into artificial seeds showed that addition of the purified 0.19 inhibitor at the highest concentration (1.0%) reduced the larval weight by 80%. Similar data were observed when 0.53 inhibitor was incorporated at 0.5%. When the concentration of purified 0.53 was enhanced to 1.0%, no larvae or adult emergence were observed. Our data suggest that these alpha-amylase inhibitors present great potential for use in Phaseolus genetic improvement programs.

  15. Flavivirus Entry Inhibitors.

    PubMed

    Wang, Qing-Yin; Shi, Pei-Yong

    2015-09-11

    Many flaviviruses are significant human pathogens that are transmitted by mosquitoes and ticks. Although effective vaccines are available for yellow fever virus, Japanese encephalitic virus, and tick-borne encephalitis virus, these and other flaviviruses still cause thousands of human deaths and millions of illnesses each year. No clinically approved antiviral therapy is available for flavivirus treatment. To meet this unmet medical need, industry and academia have taken multiple approaches to develop antiflavivirus therapy, among which targeting viral entry has been actively pursued in the past decade. Here we review the current knowledge of flavivirus entry and its use for small molecule drug discovery. Inhibitors of two major steps of flaviviral entry have been reported: (i) molecules that block virus-receptor interaction; (ii) compounds that prevent conformational change of viral envelope protein during virus-host membrane fusion. We also discuss the advantages and disadvantages of targeting viral entry for treatment of flavivirus infection as compared to targeting viral replication proteins. PMID:27617926

  16. Small molecules inhibitors of plasminogen activator inhibitor-1 - an overview.

    PubMed

    Rouch, Anne; Vanucci-Bacqué, Corinne; Bedos-Belval, Florence; Baltas, Michel

    2015-03-01

    PAI-1, a glycoprotein from the serpin family and the main inhibitor of tPA and uPA, plays an essential role in the regulation of intra and extravascular fibrinolysis by inhibiting the formation of plasmin from plasminogen. PAI-1 is also involved in pathological processes such as thromboembolic diseases, atherosclerosis, fibrosis and cancer. The inhibition of PAI-1 activity by small organic molecules has been observed in vitro and with some in vivo models. Based on these findings, PAI-1 appears as a potential therapeutic target for several pathological conditions. Over the past decades, many efforts have therefore been devoted to developing PAI-1 inhibitors. This article provides an overview of the publishing activity on small organic molecules used as PAI-1 inhibitors. The chemical synthesis of the most potent inhibitors as well as their biological and biochemical evaluations is also presented.

  17. Synthetic conversion of ACAT inhibitor to acetylcholinesterase inhibitor.

    PubMed

    Obata, R; Sunazuka, T; Otoguro, K; Tomoda, H; Harigaya, Y; Omura, S

    2000-06-19

    Natural product acyl-CoA:cholesterol acyltransferase (ACAT) inhibitor pyripyropene A was synthetically converted to acetylcholinesterase (AChE) inhibitor via heterolitic cleavage of the 2-pyrone ring, followed by gamma-acylation/cyclization with several aroyl chlorides. The 4-pyridyl analogue selectively showed AChE inhibitory activity (IC50 7.9 microM) and no ACAT inhibitory activity IC50 = >1000 microM. PMID:10890154

  18. Glycosylasparaginase inhibition studies: competitive inhibitors, transition state mimics, noncompetitive inhibitors.

    PubMed

    Risley, J M; Huang, D H; Kaylor, J J; Malik, J J; Xia, Y Q

    2001-01-01

    Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond between asparagine and N-acetylglucosamine in the catabolism of N-linked glycoproteins. Previously only three competitive inhibitors, one noncompetitive inhibitor, and one irreversible inhibitor of glycosylasparaginase activity had been reported. Using human glycosylasparaginase from human amniotic fluid, L-aspartic acid and four of its analogues, where the alpha-amino group was substituted with a chloro, bromo, methyl or hydrogen, were competitive inhibitors having Ki values between 0.6-7.7 mM. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction. A proposed phosphono transition state mimic and a sulfo transition state mimic were competitive inhibitors with Ki values 0.9 mM and 1.4 mM, respectively. These results support a mechanism for the enzyme-catalyzed reaction involving formation of a tetrahedral high-energy intermediate. Three analogues of the natural substrate were noncompetitive inhibitors with Ki values between 0.56-0.75 mM, indicating the presence of a second binding site that may recognize (substituted)acetamido groups.

  19. Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes.

    PubMed

    Zapata-Martínez, J; Medina, M F; Gramajo-Bühler, M C; Sánchez-Toranzo, G

    2016-08-01

    Rhinella arenarum oocytes can be artificially activated, a process known as parthenogenesis, by a sesquiterpenic lactone of the guaianolide group, dehydroleucodine (DhL). Transient increases in the concentration of cytosolic Ca2+ are essential to trigger egg activation events. In this sense, the 1-4-5 inositol triphosphate receptors (IP3R) seem to be involved in the Ca2+ transient release induced by DhL in this species. We analyzed the involvement of phosphoinositide metabolism, especially the participation of phospholipase A2 (PLA2) and phospholipase C (PLC) in DhL-induced activation. Different doses of quinacrine, aristolochic acid (ATA) (PLA2 inhibitors) or neomycin, an antibiotic that binds to PIP2, thus preventing its hydrolysis, were used in mature Rhinella arenarum oocytes. In order to assay the participation of PI-PLC and PC- PLC we used U73122, a competitive inhibitor of PI-PLC dependent events and D609, an inhibitor of PC-PLC. We found that PLA2 inhibits quinacrine more effectively than ATA. This difference could be explained by the fact that quinacrine is not a specific inhibitor for PLA2 while ATA is specific for this enzyme. With respect to the participation of PLC, a higher decrease in oocyte activation was detected when cells were exposed to neomycin. Inhibition of PC-PLC with D609 and IP-PLC with U73122 indicated that the last PLC has a significant participation in the effect of DhL-induced activation. Results would indicate that DhL induces activation of in vitro matured oocytes of Rhinella arenarum by activation of IP-PLC, which in turn may induce IP3 formation which produces Ca2+ release.

  20. Selective Inhibitors of Protein Methyltransferases

    PubMed Central

    2015-01-01

    Mounting evidence suggests that protein methyltransferases (PMTs), which catalyze methylation of histone and nonhistone proteins, play a crucial role in diverse biological processes and human diseases. In particular, PMTs have been recognized as major players in regulating gene expression and chromatin state. PMTs are divided into two categories: protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs). There has been a steadily growing interest in these enzymes as potential therapeutic targets and therefore discovery of PMT inhibitors has also been pursued increasingly over the past decade. Here, we present a perspective on selective, small-molecule inhibitors of PMTs with an emphasis on their discovery, characterization, and applicability as chemical tools for deciphering the target PMTs’ physiological functions and involvement in human diseases. We highlight the current state of PMT inhibitors and discuss future directions and opportunities for PMT inhibitor discovery. PMID:25406853

  1. Synthesis of lysine methyltransferase inhibitors

    PubMed Central

    Hui, Chunngai; Ye, Tao

    2015-01-01

    Lysine methyltransferase which catalyze methylation of histone and non-histone proteins, play a crucial role in diverse biological processes and has emerged as a promising target for the development of various human diseases, including cancer, inflammation, and psychiatric disorders. However, inhibiting lysine methyltransferases selectively has presented many challenges to medicinal chemists. During the past decade, lysine methyltransferase inhibitors covering many different structural classes have been designed and developed. In this review, we describe the development of selective, small-molecule inhibitors of lysine methyltransferases with an emphasis on their discovery and chemical synthesis. We highlight the current state of lysine methyltransferase inhibitors and discuss future directions and opportunities for lysine methyltransferase inhibitor discovery. PMID:26258118

  2. [Pharmacology of bone resorption inhibitor].

    PubMed

    Menuki, Kunitaka; Sakai, Akinori

    2015-10-01

    Currently, bone resorption inhibitor is mainly used for osteoporosis. A number of these agents have been developed. These pharmacological action are various. Bisphosphonate inhibit functions of the osteoclasts by inducing apoptosis. On the one hand, RANK-ligand inhibitor and selective estrogen receptor modulator inhibit formation of osteoclasts. It is important to understand these pharmacological action for the selection of the appropriate medicine. PMID:26529923

  3. Peptidomimetic inhibitors of HIV protease.

    PubMed

    Randolph, John T; DeGoey, David A

    2004-01-01

    There are currently (July, 2002) six protease inhibitors approved for the treatment of HIV infection, each of which can be classified as peptidomimetic in structure. These agents, when used in combination with other antiretroviral agents, produce a sustained decrease in viral load, often to levels below the limits of quantifiable detection, and a significant reconstitution of the immune system. Therapeutic regimens containing one or more HIV protease inhibitors thus provide a highly effective method for disease management. The important role of protease inhibitors in HIV therapy, combined with numerous challenges remaining in HIV treatment, have resulted in a continued effort both to optimize regimens using the existing agents and to identify new protease inhibitors that may provide unique properties. This review will provide an overview of the discovery and clinical trials of the currently approved HIV protease inhibitors, followed by an examination of important aspects of therapy, such as pharmacokinetic enhancement, resistance and side effects. A description of new peptidomimetic compounds currently being investigated in the clinic and in preclinical discovery will follow. PMID:15193140

  4. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted. PMID:27048482

  5. Evolutionary families of peptidase inhibitors.

    PubMed Central

    Rawlings, Neil D; Tolle, Dominic P; Barrett, Alan J

    2004-01-01

    The proteins that inhibit peptidases are of great importance in medicine and biotechnology, but there has never been a comprehensive system of classification for them. Some of the terminology currently in use is potentially confusing. In the hope of facilitating the exchange, storage and retrieval of information about this important group of proteins, we now describe a system wherein the inhibitor units of the peptidase inhibitors are assigned to 48 families on the basis of similarities detectable at the level of amino acid sequence. Then, on the basis of three-dimensional structures, 31 of the families are assigned to 26 clans. A simple system of nomenclature is introduced for reference to each clan, family and inhibitor. We briefly discuss the specificities and mechanisms of the interactions of the inhibitors in the various families with their target enzymes. The system of families and clans of inhibitors described has been implemented in the MEROPS peptidase database (http://merops.sanger.ac.uk/), and this will provide a mechanism for updating it as new information becomes available. PMID:14705960

  6. Microbial inhibitors of cysteine proteases.

    PubMed

    Kędzior, Mateusz; Seredyński, Rafał; Gutowicz, Jan

    2016-08-01

    Cysteine proteases are one of the major classes of proteolytic enzymes involved in a number of physiological and pathological processes in plants, animals and microorganisms. When their synthesis, activity and localization in mammalian cells are altered, they may contribute to the development of many diseases, including rheumatoid arthritis, osteoporosis and cancer. Therefore, cysteine proteases have become promising drug targets for the medical treatment of these disorders. Inhibitors of cysteine proteases are also produced by almost every group of living organisms, being responsible for the control of intracellular proteolytic activity. Microorganisms synthesize cysteine protease inhibitors not only to regulate the activity of endogenous, often virulent enzymes, but also to hinder the host's proteolytic defense system and evade its immune responses against infections. Present work describes known to date microbial inhibitors of cysteine proteases in terms of their structure, enzyme binding mechanism, specificity and pathophysiological roles. The overview of both proteinaceous and small-molecule inhibitors produced by all groups of microorganisms (bacteria, archaea, fungi, protists) and viruses is provided. Subsequently, possible applications of microbial inhibitors in science, medicine and biotechnology are also highlighted.

  7. Inactivation of factor XIa in human plasma assessed by measuring factor XIa-protease inhibitor complexes: major role for C1-inhibitor.

    PubMed

    Wuillemin, W A; Minnema, M; Meijers, J C; Roem, D; Eerenberg, A J; Nuijens, J H; ten Cate, H; Hack, C E

    1995-03-15

    From experiments with purified proteins, it has been concluded that factor XIa (FXIa) is inhibited in plasma mainly by alpha 1-antitrypsin (a1AT), followed by antithrombin III (ATIII), C1-inhibitor (C1Inh), and alpha 2-antiplasmin (a2AP). However, the validity of this concept has never been studied in plasma. We established the relative contribution of different inhibitors to the inactivation of FXIa in human plasma, using enzyme-linked immunosorbent assays (ELISAs) for the quantification of complexes of FXIa with a1AT, C1Inh, a2AP, and ATIII. We found that 47% of FXIa added to plasma formed complexes with C1Inh, 24.5% with a2AP, 23.5% with a1AT, and 5% with ATIII. The distribution of FXIa between these inhibitors in plasma was independent of whether FXIa was added to plasma, or was activated endogenously by kaolin, celite, or glass. However, in the presence of heparin (1 or 50 U/mL), C1Inh appeared to be the major inhibitor of FXIa, followed by ATIII. Furthermore, at lower temperatures, less FXIa-C1Inh and FXIa-a1AT complexes but more FXIa-a2AP complexes were formed. These data demonstrate that the contribution of the different inhibitors to inactivation of FXIa in plasma may vary, but C1Inh is the principal inhibitor under most conditions.

  8. Positron emitter labeled enzyme inhibitors

    SciTech Connect

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.; Langstrom, B.

    1990-04-03

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  9. Electrochemical studies of corrosion inhibitors

    NASA Technical Reports Server (NTRS)

    Danford, M. D.

    1990-01-01

    The effect of single salts, as well as multicomponent mixtures, on corrosion inhibition was studied for type 1010 steel; for 5052, 1100, and 2219-T87 aluminum alloys; and for copper. Molybdate-containing inhibitors exhibit an immediate, positive effect for steel corrosion, but an incubation period may be required for aluminum before the effect of a given inhibitor can be determined. The absence of oxygen was found to provide a positive effect (smaller corrosion rate) for steel and copper, but a negative effect for aluminum. This is attributed to the two possible mechanisms by which aluminum can oxidize. Corrosion inhibition is generally similar for oxygen-rich and oxygen-free environments. The results show that the electrochemical method is an effective means of screening inhibitors for the corrosion of single metals, with caution to be exercised in the case of aluminum.

  10. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, J.S.; MacGregor, R.R.; Wolf, A.P.

    1987-05-22

    This invention involved a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide in activators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography. 2 figs.

  11. Positron emitter labeled enzyme inhibitors

    DOEpatents

    Fowler, Joanna S.; MacGregor, Robert R.; Wolf, Alfred P.; Langstrom, Bengt

    1990-01-01

    This invention involves a new strategy for imaging and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography.

  12. Corrosion inhibitors from expired drugs.

    PubMed

    Vaszilcsin, Nicolae; Ordodi, Valentin; Borza, Alexandra

    2012-07-15

    This paper presents a method of expired or unused drugs valorization as corrosion inhibitors for metals in various media. Cyclic voltammograms were drawn on platinum in order to assess the stability of pharmaceutically active substances from drugs at the metal-corrosive environment interface. Tafel slope method was used to determine corrosion rates of steel in the absence and presence of inhibitors. Expired Carbamazepine and Paracetamol tablets were used to obtain corrosion inhibitors. For the former, the corrosion inhibition of carbon steel in 0.1 mol L(-1) sulfuric acid solution was about 90%, whereas for the latter, the corrosion inhibition efficiency of the same material in the 0.25 mol L(-1) acetic acid-0.25 mol L(-1) sodium acetate buffer solution was about 85%.

  13. An environmentally friendly scale inhibitor

    SciTech Connect

    Dobbs, J.B.; Brown, J.M.

    1999-11-01

    This paper describes a method of inhibiting the formation of scales such as barium and strontium sulfate in low pH aqueous systems, and calcium carbonate in systems containing high concentrations of dissolved iron. The solution, chemically, involves treating the aqueous system with an inhibitor designed to replace organic-phosphonates. Typical low pH aqueous systems where the inhibitor is particularly useful are oilfield produced-water, resin bed water softeners that form scale during low pH, acid regeneration operations. Downhole applications are recommended where high concentrations of dissolved iron are present in the produced water. This new approach to inhibition replaces typical organic phosphonates and polymers with a non-toxic, biodegradable scale inhibitor that performs in harsh environments.

  14. Diverse inhibitors of aflatoxin biosynthesis.

    PubMed

    Holmes, Robert A; Boston, Rebecca S; Payne, Gary A

    2008-03-01

    Pre-harvest and post-harvest contamination of maize, peanuts, cotton, and tree nuts by members of the genus Aspergillus and subsequent contamination with the mycotoxin aflatoxin pose a widespread food safety problem for which effective and inexpensive control strategies are lacking. Since the discovery of aflatoxin as a potently carcinogenic food contaminant, extensive research has been focused on identifying compounds that inhibit its biosynthesis. Numerous diverse compounds and extracts containing activity inhibitory to aflatoxin biosynthesis have been reported. Only recently, however, have tools been available to investigate the molecular mechanisms by which these inhibitors affect aflatoxin biosynthesis. Many inhibitors are plant-derived and a few may be amenable to pathway engineering for tissue-specific expression in susceptible host plants as a defense against aflatoxin contamination. Other compounds show promise as protectants during crop storage. Finally, inhibitors with different modes of action could be used in comparative transcriptional and metabolomic profiling experiments to identify regulatory networks controlling aflatoxin biosynthesis.

  15. Nonnucleoside inhibitors of adenosine kinase.

    PubMed

    Gomtsyan, Arthur; Lee, Chih-Hung

    2004-01-01

    Adenosine (ADO) is an endogenous inhibitory neuromodulator that increases nociceptive thresholds in response to tissue trauma and inflammation. Adenosine kinase (AK) is a key intracellular enzyme regulating intra- and extracellular concentrations of ADO. AK inhibition selectively amplifies extracellular ADO levels at cell and tissue sites where accelerated release of ADO occurs. AK inhibitors have been shown to provide effective antinociceptive, antiinflammatory and anticonvulsant activity in animal models, thus suggesting their potential therapeutic utility for pain, inflammation, epilepsy and possibly other central and peripheral nervous system diseases associated with cellular trauma and inflammation. This beneficial outcome may potentially lack nonspecific effects associated with the systemic administration of ADO receptor agonists. Until recently all of the reported AK inhibitors contained adenosine-like structural motif. The present review will discuss design, synthesis and analgesic and antiinflammatory properties of the novel nonnucleoside AK inhibitors that do not have close structural resemblance with the natural substrate ADO. Two classes of the nonnucleoside AK inhibitors are built on pyridopyrimidine and alkynylpyrimidine cores.

  16. C1-inhibitor and transplantation.

    PubMed

    Kirschfink, Michael

    2002-09-01

    Excessive activation of the protein cascade systems has been associated with post-transplantation inflammatory disorders. There is increasing evidence that complement not only significantly contributes to ischemia/reperfusion injury upon cold storage of the organ but also, although to a different degree, to allograft rejection. Complement activation is most fulminant in hyperacute rejection but seems also to contribute to acute transplant rejection. Therapeutic substitution of appropriate regulators, therefore, appears to be a reasonable approach to reduce undesirable inflammatory reactions in the grafted organ. C1-inhibitor, a multifunctional regulator of the various kinin-generating cascade systems (for review see: E. Hack, chapter in this issue), is frequently reduced in patients suffering from severe inflammatory disorders. Studies applying pathophysiologically relevant animal models of allo- and xenotransplantation as well as promising first clinical results from successful allotransplantation now provide evidence that C1-inhibitor may also serve as an effective means to protect the grafted organ against inflammatory tissue injury. In xenotransplantation, complement inhibition by specific regulators such as C1-inhibitor may help to overcome hyperacute graft rejection. After a brief introduction on the significance of complement to allo- and xenotransplantation the following review will focus on the impact of C1-inhibitor treatment on transplantation-associated inflammatory disorders, where complement contributes to the pathogenesis.

  17. Bivalent Inhibitors of Protein Kinases

    PubMed Central

    Gower, Carrie M.; Chang, Matthew E. K.; Maly, Dustin J.

    2015-01-01

    Protein kinases are key players in a large number of cellular signaling pathways. Dysregulated kinase activity has been implicated in a number of diseases, and members of this enzyme family are of therapeutic interest. However, due to the fact that most inhibitors interact with the highly conserved ATP-binding sites of kinases, it is a significant challenge to develop pharmacological agents that target only one of the greater than 500 kinases present in humans. A potential solution to this problem is the development of bisubstrate and bivalent kinase inhibitors, in which an active site-directed moiety is tethered to another ligand that targets a location outside of the ATP-binding cleft. Because kinase signaling specificity is modulated by regions outside of the ATP-binding site, strategies that exploit these interactions have the potential to provide reagents with high target selectivity. This review highlights examples of kinase interaction sites that can potentially be exploited by bisubstrate and bivalent inhibitors. Furthermore, an overview of efforts to target these interactions with bisubstrate and bivalent inhibitors is provided. Finally, several examples of the successful application of these reagents in a cellular setting are described. PMID:24564382

  18. PDE-5 inhibitors: clinical points.

    PubMed

    Doumas, Michael; Lazaridis, Antonios; Katsiki, Niki; Athyros, Vasilios

    2015-01-01

    Erectile dysfunction is usually of vascular origin and is frequently encountered in men with cardiovascular disease. The introduction of phosphodiesterase-5 inhibitors has revolutionized the management of patients with erectile dysfunction. Currently available phosphodiesterase-5 inhibitors have distinct pharmacokinetic and pharmacodynamic properties, thus permitting for tailoring sexual therapy according to patient characteristics and needs. Phosphodiesterase-5 inhibitors possess vasorelaxing properties and exert systemic hemodynamic effects, which need to be taken into account when other cardiovascular drugs are co-administered. Special caution is needed with alpha-blockers, while the co-administration with nitrates is contra-indicated due to the risk of life-threatening hypotension. This review presents the advent of sexual therapy, describes the mechanism of action and the specific characteristics of commercially available phosphodiesterase-5 inhibitors, summarizes the efficacy and safety of these drugs with special emphasis on the cardiovascular system, and discusses the clinical criteria used for the selection of each drug for the individual patient. PMID:25392015

  19. Acetylcholinesterase Inhibitors: Pharmacology and Toxicology

    PubMed Central

    Čolović, Mirjana B; Krstić, Danijela Z; Lazarević-Pašti, Tamara D; Bondžić, Aleksandra M; Vasić, Vesna M

    2013-01-01

    Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer’s disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases. PMID:24179466

  20. Biocatalysts with enhanced inhibitor tolerance

    DOEpatents

    Yang, Shihui; Linger, Jeffrey; Franden, Mary Ann; Pienkos, Philip T.; Zhang, Min

    2015-12-08

    Disclosed herein are biocatalysts for the production of biofuels, including microorganisms that contain genetic modifications conferring tolerance to growth and fermentation inhibitors found in many cellulosic feedstocks. Methods of converting cellulose-containing materials to fuels and chemicals, as well as methods of fermenting sugars to fuels and chemicals, using these biocatalysts are also disclosed.

  1. Isolation and partial identification of eight endogenous G1 inhibitors of JB-1 ascites tumor cell proliferation.

    PubMed

    Barfod, N M

    1982-06-01

    Eight endogenous G1 inhibitors of the proliferation of JB-1 ascites tumor cells have been isolated and characterized. The activity of the inhibitors has been analyzed on synchronized JB-1 (murine plasmacytoma) and L1A2 (murine sarcoma) cells in vitro using flow cytometry. The purified inhibitors have been tested for in vivo activity on partially synchronized JB-1 and L1A2 ascites tumors in situ. Four of the inhibitors exhibited a high degree of cell specificity (chalone-like inhibitors) and were chemically related, whereas the other four showed no cell specificity. In most extractions, the amount of cell-specific activity is more than 50% of the total G1-inhibitory activity. Most of the inhibitors are low-molecular-weight peptides and glycopeptides.

  2. Proton pump inhibitor-induced hypomagnesemic hypoparathyroidism.

    PubMed

    Swaminathan, Krishnan

    2015-01-01

    Proton pump inhibitors are the one of the most widely used drugs in the world. Hypomagnesemic hypoparathyroidism has been reported with different proton pump inhibitors with prolonged oral use. We report the first reported case of possible such effect with intravenous preparation of proton pump inhibitor. This case report raises awareness among physicians worldwide of this often unknown association, as life-threatening cardiac and neuromuscular complications can arise with unrecognized hypocalcemia and hypomagnesemia with proton pump inhibitors.

  3. KID, a Kinase Inhibitor Database project.

    PubMed

    Collin, O; Meijer, L

    1999-01-01

    The Kinase Inhibitor Database is a small specialized database dedicated to the gathering of information on protein kinase inhibitors. The database is accessible through the World Wide Web system and gives access to structural and bibliographic information on protein kinase inhibitors. The data in the database will be collected and submitted by researchers working in the kinase inhibitor field. The submitted data will be checked by the curator of the database before entry.

  4. Crystal structures of HIV-1 nonnucleoside reverse transcriptase inhibitors: N-benzyl-4-methyl-benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-07-01

    HIV-1 nonnucleoside reverse transcriptase inhibitors are potentially specific and effective drugs in AIDS therapy. The presence of two aromatic systems with an angled orientation in the molecule of the inhibitor is crucial for interactions with HIV-1 RT. The inhibitor drives like a wedge into the cluster of aromatic residues of RT HIV-1 and restrains the enzyme in a conformation that blocks the chemical step of nucleotide incorporation. Structural studies provide useful information for designing new, more active inhibitors. The crystal structures of four NNRTIs are presented here. The investigated compounds are derivatives of N-benzyl-4-methyl-benzimidazole with various aliphatic and aromatic substituents at carbon 2 positions and a 2,6-dihalogeno-substituted N-benzyl moiety. Structural data reported here show that the conformation of the investigated compounds is relatively rigid. Such feature is important for the nonnucleoside inhibitor binding to HIV-1 reverse transcriptase.

  5. The Identification and Characterization of Human AP Endonuclease-1 Inhibitors

    PubMed Central

    Srinivasan, Ajay; Wang, Lirong; Cline, Cari J.; Xie, Zhaojun; Sobol, Robert W.; Xie, Xiang-Qun; Gold, Barry

    2012-01-01

    The repair of abasic sites that arise in DNA from hydrolytic depurination/depyrimidination of the nitrogenous bases from the sugar-phosphate backbone and the action of DNA glycosylases on deaminated, oxidized and alkylated bases is critical to cell survival. Apurinic/Apyrimidinic Endonuclease-1/Redox Effector Factor-1 (APE-1; aka, APE1/Ref-1) is responsible for the initial removal of abasic lesions as part of the base excision repair pathway. Deletion of APE-1 activity is embryonic lethal in animals and is lethal in cells. Potential inhibitors of the repair function of APE-1 were identified based upon molecular modeling of the crystal structure of the APE-1 protein. We describe the characterization of several unique nM inhibitors using two complementary biochemical screens. The most active molecules all contain a 2-methyl-4-amino-6,7-dioxolo-quinoline structure that is predicted from the modeling to anchor the compounds in the endonuclease site of the protein. The mechanism of action of the selected compounds was probed by fluorescence and competition studies, which indicate, in a specific case, direct interaction between the inhibitor and the active site of the protein. It is demonstrated that the inhibitors induce time-dependent increases in the accumulation of abasic sites in cells at levels that correlate with their potency to inhibit APE-1 endonuclease excision. The inhibitor molecules also potentiate by 5-fold the toxicity of a DNA methylating agent that creates abasic sites. The molecules represent a new class of APE-1 inhibitors that can be used to probe the biology of this critical enzyme and to sensitize resistant tumor cells to the cytotoxicity of clinically used DNA damaging anticancer drugs. PMID:22788932

  6. Salicylanilide inhibitors of Toxoplasma gondii.

    PubMed

    Fomovska, Alina; Wood, Richard D; Mui, Ernest; Dubey, Jitenter P; Ferreira, Leandra R; Hickman, Mark R; Lee, Patricia J; Leed, Susan E; Auschwitz, Jennifer M; Welsh, William J; Sommerville, Caroline; Woods, Stuart; Roberts, Craig; McLeod, Rima

    2012-10-11

    Toxoplasma gondii (T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed. The current study focused on the discovery of such medicines by exploring a family of potential inhibitors whose antiapicomplexan activity has not been previously reported. Initial screening efforts revealed that niclosamide, a drug approved for anthelmintic use, possessed promising activity in vitro against T. gondii. This observation inspired the evaluation of the activity of a series of salicylanilides and derivatives. Several inhibitors with activities in the nanomolar range with no appreciable in vitro toxicity to human cells were identified. An initial structure-activity relationship was explored. Four compounds were selected for evaluation in an in vivo model of infection, and two derivatives with potentially enhanced pharmacological parameters demonstrated the best activity profiles.

  7. Salicylanilide Inhibitors of Toxoplasma gondii

    PubMed Central

    Fomovska, Alina; Wood, Richard D.; Mui, Ernest; Dubey, Jitenter P.; Ferriera, Leandra R.; Hickman, Mark R.; Lee, Patricia J.; Leed, Susan E.; Auschwitz, Jennifer M.; Welsh, William J.; Sommerville, Caroline; Woods, Stuart; Roberts, Craig; McLeod, Rima

    2012-01-01

    Toxoplasma gondii(T. gondii) is an apicomplexan parasite that can cause eye disease, brain disease, and death, especially in congenitally infected and immune-compromised people. Novel medicines effective against both active and latent forms of the parasite are greatly needed. The current study focused on the discovery of such medicines by exploring a family of potential inhibitors whose anti-apicomplexan activity has not been previously reported. Initial screening efforts revealed that niclosamide, a drug approved for anthelmintic use, possessed promising activity in vitro against T. gondii. This observation inspired the evaluation of the activity of a series of salicylanilides and derivatives. Several inhibitors with activities in the nanomolar range with no appreciable in vitro toxicity to human cells were identified. An initial structure-activity relationship was explored. Four compounds were selected for evaluation in an in vivo model of infection, and two derivatives with potentially enhanced pharmacological parameters demonstrated the best activity profiles. PMID:22970937

  8. Macrocyclic compounds as corrosion inhibitors

    SciTech Connect

    Quraishi, M.A.; Rawat, J.; Ajmal, M.

    1998-12-01

    The influence of three macrocyclic compounds on corrosion of mild steel (MS) in hydrochloric acid (HCl) was investigated using weight loss, potentiodynamic polarization, alternating current (AC) impedance, and hydrogen permeation techniques. All the investigated compounds showed significant efficiencies and reduced permeation of hydrogen through MS in HCl. Inhibition efficiency (IE) varied with the nature and concentrations of the inhibitors, temperature, and concentrations of the acid solutions. The addition of iodide ions (I{sup {minus}}) increased IE of all the tested compounds as a result of the synergistic effect. Potentiodynamic polarization results revealed that macrocyclic compounds acted as mixed inhibitors in 1 M HCl to 5 M HCl. Adsorption on the metal surface obeyed Temkin`s adsorption isotherm. Auger electron spectroscopy (AES) of the polished MS surface, exposed with tetraphenyldithia-octaazacyclotetradeca-hexaene (PTAT) proved adsorption of this compound on the surface through nitrogen and sulfur atoms.

  9. [Proteasome inhibitors in cancer therapy].

    PubMed

    Romaniuk, Wioletta; Ołdziej, Agnieszka Ewa; Zińczuk, Justyna; Kłoczko, Janusz

    2015-01-01

    Proteasomes are multisubunit enzyme complexes. They contain three enzymatic active sites which are termed chymotrypsin-like, trypsin-like, and caspase-like. The elementary function of the proteasomes is degradation of damaged proteins. Proteasome inhibition leads to accumulation of damaged protein, which leads to caspase activation and cell death. This relationship is used in cancer therapy. Bortezomib is the first proteasome inhibitor approved by the US Food and Drug Administration for the treatment of relapsed/refractory multiple myeloma. Carfilzomib belongs to the second generation of drugs, which was approved by the US FDA in 2012. Currently in the study phase there are four new inhibitors: ixazomib (MLN9780/MLN2238), delanzomib (CEP-18770), oprozomib (ONX0912/PR-047) and marizomib (NPI-0052). PMID:27259216

  10. Aromatase Inhibitors and Other Compounds for Lowering Breast Cancer Risk

    MedlinePlus

    ... References Aromatase inhibitors and other compounds for lowering breast cancer risk Aromatase inhibitors (drugs that lower estrogen levels) ... day. Can aromatase inhibitors lower the risk of breast cancer? Aromatase inhibitors are used mainly to treat hormone ...

  11. Conformation-specific inhibitors of Raf kinases.

    PubMed

    Wang, Xiaolun; Schleicher, Kristin

    2013-01-01

    Since the discovery linking B-Raf mutations to human tumors in 2002, significant advances in the development of Raf inhibitors have been made, leading to the recent approval of two Raf inhibitor drugs. This chapter includes a brief introduction to B-Raf as a validated target and focuses on the three different binding modes observed with Raf small-molecule inhibitors. These various binding modes lock the Raf kinase in different conformations that impact the toxicity profiles of the inhibitors. Possible solutions to mitigate the side effects caused by inhibitor-induced dimerization are also discussed.

  12. Thioredoxin Reductase and its Inhibitors

    PubMed Central

    Saccoccia, Fulvio; Angelucci, Francesco; Boumis, Giovanna; Carotti, Daniela; Desiato, Gianni; Miele, Adriana E; Bellelli, Andrea

    2014-01-01

    Thioredoxin plays a crucial role in a wide number of physiological processes, which span from reduction of nucleotides to deoxyriboucleotides to the detoxification from xenobiotics, oxidants and radicals. The redox function of Thioredoxin is critically dependent on the enzyme Thioredoxin NADPH Reductase (TrxR). In view of its indirect involvement in the above mentioned physio/pathological processes, inhibition of TrxR is an important clinical goal. As a general rule, the affinities and mechanisms of binding of TrxR inhibitors to the target enzyme are known with scarce precision and conflicting results abound in the literature. A relevant analysis of published results as well as the experimental procedures is therefore needed, also in view of the critical interest of TrxR inhibitors. We review the inhibitors of TrxR and related flavoreductases and the classical treatment of reversible, competitive, non competitive and uncompetitive inhibition with respect to TrxR, and in some cases we are able to reconcile contradictory results generated by oversimplified data analysis. PMID:24875642

  13. Carbonic anhydrase inhibitors drug design.

    PubMed

    McKenna, Robert; Supuran, Claudiu T

    2014-01-01

    Inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) has pharmacologic applications in the field of antiglaucoma, anticonvulsant, antiobesity, and anticancer agents but is also emerging for designing anti-infectives (antifungal and antibacterial agents) with a novel mechanism of action. As a consequence, the drug design of CA inhibitors (CAIs) is a very dynamic field. Sulfonamides and their isosteres (sulfamates/sulfamides) constitute the main class of CAIs which bind to the metal ion in the enzyme active site. Recently the dithiocarbamates, possessing a similar mechanism of action, were reported as a new class of inhibitors. Other families of CAIs possess a distinct mechanism of action: phenols, polyamines, some carboxylates, and sulfocoumarins anchor to the zinc-coordinated water molecule. Coumarins and five/six-membered lactones are prodrug inhibitors, binding in hydrolyzed form at the entrance of the active site cavity. Novel drug design strategies have been reported principally based on the tail approach for obtaining all these types of CAIs, which exploit more external binding regions within the enzyme active site (in addition to coordination to the metal ion), leading thus to isoform-selective compounds. Sugar-based tails as well as click chemistry were the most fruitful developments of the tail approach. Promising compounds that inhibit CAs from bacterial and fungal pathogens, of the dithiocarbamate, phenol and carboxylate types have also been reported. PMID:24146385

  14. ANTIDEPRESSANT ACTIONS OF HDAC INHIBITORS

    PubMed Central

    Covington, Herbert E.; Maze, Ian; LaPlant, Quincey C.; Vialou, Vincent F.; Yoshinori, Ohnishi N.; Berton, Olivier; Fass, Dan M.; Renthal, William; Rush, Augustus J.; Wu, Emma Y.; Ghose, Subroto; Krishnan, Vaishnav; Russo, Scott J.; Tamminga, Carol; Haggarty, Stephen J.; Nestler, Eric J.

    2009-01-01

    Persistent symptoms of depression suggest the involvement of stable molecular adaptations in brain, which may be reflected at the level of chromatin remodeling. We find that chronic social defeat stress in mice causes a transient decrease, followed by a persistent increase, in levels of acetylated histone H3 in the nucleus accumbens, an important limbic brain region. This persistent increase in H3 acetylation is associated with decreased levels of histone deacetylase 2 (HDAC2) in the nucleus accumbens. Similar effects were observed in the nucleus accumbens of depressed humans studied postmortem. These changes in H3 acetylation and HDAC2 expression mediate long-lasting positive neuronal adaptations, since infusion of HDAC inhibitors into the nucleus accumbens, which increases histone acetylation, exerts robust antidepressant-like effects in the social defeat paradigm and other behavioral assays. HDAC inhibitor (MS-275) infusion also reverses the effects of chronic defeat stress on global patterns of gene expression in the nucleus accumbens, as determined by microarray analysis, with striking similarities to the effects of the standard antidepressant, fluoxetine. Stress-regulated genes whose expression is normalized selectively by MS-275 may provide promising targets for the future development of novel antidepressant treatments. Together, these findings provide new insight into the underlying molecular mechanisms of depression and antidepressant action, and support the antidepressant potential of HDAC inhibitors and perhaps other agents that act at the level of chromatin structure. PMID:19759294

  15. Investigating the selectivity of metalloenzyme inhibitors.

    PubMed

    Day, Joshua A; Cohen, Seth M

    2013-10-24

    The inhibitory activity of a broad group of known metalloenzyme inhibitors against a panel of metalloenzymes was evaluated. Clinically approved inhibitors were selected as well as several other reported metalloprotein inhibitors in order to represent a broad range of metal binding groups (MBGs), including hydroxamic acid, carboxylate, hydroxypyridinonate, thiol, and N-hydroxyurea functional groups. A panel of metalloenzymes, including carbonic anhydrase (hCAII), several matrix metalloproteinases (MMPs), angiotensin converting enzyme (ACE), histone deacetylase (HDAC-2), and tyrosinase (TY), was selected based on their clinical importance for a range of pathologies. In addition, each inhibitor was evaluated for its ability to remove Fe(3+) from holo-transferrin to gauge the ability of the inhibitors to access Fe(3+) from a primary transport protein. The results show that the metalloenzyme inhibitors are quite selective for their intended targets, suggesting that despite their ability to bind metal ions, metalloprotein inhibitors are not prone to widespread off-target enzyme inhibition activity.

  16. The burden of inhibitors in haemophilia patients.

    PubMed

    Walsh, Christopher E; Jiménez-Yuste, Víctor; Auerswald, Guenter; Grancha, Salvador

    2016-08-31

    The burden of disease in haemophilia patients has wide ranging implications for the family and to society. There is evidence that having a current inhibitor increases the risk of morbidity and mortality. Morbidity is increased by the inability to treat adequately and its consequent disabilities, which then equates to a poor quality of life compared with non-inhibitor patients. The societal cost of care, or `burden of inhibitors', increases with the ongoing presence of an inhibitor. Therefore, it is clear that successful eradication of inhibitors by immune tolerance induction (ITI) is the single most important milestone one can achieve in an inhibitor patient. The type of factor VIII (FVIII) product used in ITI regimens varies worldwide. Despite ongoing debate, there is in vitro and retrospective clinical evidence to support the use of plasma-derived VWF-containing FVIII concentrates in ITI regimens in order to achieve early and high inhibitor eradication success rates. PMID:27528280

  17. Investigating the Selectivity of Metalloenzyme Inhibitors

    PubMed Central

    Day, Joshua A.; Cohen, Seth M.

    2013-01-01

    The inhibitory activity of a broad group of known metalloenzyme inhibitors against a panel of metalloenzymes was evaluated. Clinically approved inhibitors were selected as well as several other reported metalloprotein inhibitors, in order to represent a broad range of metal binding groups (MBGs), including hydroxamic acid, carboxylate, hydroxypyridinonate, thiol, and N-hydroxyurea functional groups. A panel of metalloenzymes, including carbonic anhydrase (hCAII), several matrix metalloproteinases (MMPs), angiotensin converting enzyme (ACE), histone deacetylase (HDAC-2), and tyrosinase (TY) was selected based on their clinical importance for a range of pathologies. In addition, each inhibitor was evaluated for its ability to remove Fe3+ from holo-transferrin to gauge the ability of the inhibitors to access Fe3+ from a primary transport protein. The results show that the metalloenzyme inhibitors are quite selective for their intended targets, suggesting that despite their ability to bind metal ions, metalloprotein inhibitors are not prone to widespread off-target enzyme inhibition activity. PMID:24074025

  18. Effect of inhibitors of arachidonic acid metabolism on alpha-aminoisobutyric acid transport in human lymphocytes.

    PubMed

    Udey, M C; Parker, C W

    1982-02-01

    The role of arachidonic acid metabolism (or metabolites) in the modulation of alpha-aminoisobutyric acid transport in resting and concanavalin A-stimulated human peripheral blood lymphocytes was evaluated using previously characterized inhibitors of arachidonic acid metabolism. Nordihydroguairetic acid (a nonselective antioxidant), 5,8,11,14-eicosatetraynoic acid (an inhibitor of lipoxygenase and cyclooxygenase activities), indomethacin and acetylsalicylic acid (selective cyclooxygenase inhibitors), and 1-benzylimidazole, Ro-22-3581 and Ro-22-3582 (thromboxane synthetase inhibitors) proved to be potent inhibitors of amino acid transport activity in normal resting and lectin-activated lymphocytes at concentrations known to decrease thromboxane A2 production. The rank order of effectiveness of these various inhibitors compared favorably with their relative potencies as inhibitors of thromboxane B2 synthesis under the same conditions, as determined by radioimmunoassay. Inhibitory effects noted were not due to overt cytotoxicity and seemed to involve changes primarily in the Vmax and not the Km of the transport process. Drug-induced alterations in the magnitude of concanavalin A binding were not observed. These results suggest that the activity of amino acid transport systems can be influenced by certain arachidonic acid metabolites, probably thromboxanes, in both stimulated and unstimulated lymphocytes. In addition, these findings may provide a partial explanation for the observation that inhibitors of thromboxane formation prevent lymphocyte mitogenesis.

  19. Non-ATP competitive protein kinase inhibitors.

    PubMed

    Garuti, L; Roberti, M; Bottegoni, G

    2010-01-01

    Protein kinases represent an attractive target in oncology drug discovery. Most of kinase inhibitors are ATP-competitive and are called type I inhibitors. The ATP-binding pocket is highly conserved among members of the kinase family and it is difficult to find selective agents. Moreover, the ATP-competitive inhibitors must compete with high intracellular ATP levels leading to a discrepancy between IC50s measured by biochemical versus cellular assays. The non-ATP competitive inhibitors, called type II and type III inhibitors, offer the possibility to overcome these problems. These inhibitors act by inducing a conformational shift in the target enzyme such that the kinase is no longer able to function. In the DFG-out form, the phenylalanine side chain moves to a new position. This movement creates a hydrophobic pocket available for occupation by the inhibitor. Some common features are present in these inhibitors. They contain a heterocyclic system that forms one or two hydrogen bonds with the kinase hinge residue. They also contain a hydrophobic moiety that occupies the pocket formed by the shift of phenylalanine from the DFG motif. Moreover, all the inhibitors bear a hydrogen bond donor-acceptor pair, usually urea or amide, that links the hinge-binding portion to the hydrophobic moiety and interacts with the allosteric site. Examples of non ATP-competitive inhibitors are available for various kinases. In this review small molecules capable of inducing the DFG-out conformation are reported, especially focusing on structural feature, SAR and biological properties.

  20. Monoamine Oxidase Inhibitors: Clinical Review

    PubMed Central

    Remick, Ronald A.; Froese, Colleen

    1990-01-01

    Monoamine oxidase inhibitors (MAOIs) are effective antidepressant agents. They are increasingly and effectively used in a number of other psychiatric and non-psychiatric medical syndromes. Their potential for serious toxicity (i.e., hypertensive reaction) is far less than original reports suggest, and newer reversible substrate-specific MAOIs may offer even less toxicity. The author reviews the pharmacology, mechanism of action, clinical indications, and dosing strategies of MAOIs. The common MAOI side-effects (hypotension, weight gain, sexual dysfunction, insomnia, daytime sedation, myoclonus, and hypertensive episodes) are described and management techniques suggested. Recent clinical developments involving MAOIs are outlined. PMID:21233984

  1. Techniques for Screening Translation Inhibitors

    PubMed Central

    Osterman, Ilya A.; Bogdanov, Alexey A.; Dontsova, Olga A.; Sergiev, Petr V.

    2016-01-01

    The machinery of translation is one of the most common targets of antibiotics. The development and screening of new antibiotics usually proceeds by testing antimicrobial activity followed by laborious studies of the mechanism of action. High-throughput methods for new antibiotic screening based on antimicrobial activity have become routine; however, identification of molecular targets is usually a challenge. Therefore, it is highly beneficial to combine primary screening with the identification of the mechanism of action. In this review, we describe a collection of methods for screening translation inhibitors, with a special emphasis on methods which can be performed in a high-throughput manner. PMID:27348012

  2. Oligopeptide cyclophilin inhibitors: a reassessment.

    PubMed

    Schumann, Michael; Jahreis, Günther; Kahlert, Viktoria; Lücke, Christian; Fischer, Gunter

    2011-11-01

    Potent cyclophilin A (CypA) inhibitors such as non-immunosuppressive cyclosporin A (CsA) derivatives have been already used in clinical trials in patients with viral infections. CypA is a peptidyl prolyl cis/trans isomerase (PPIase) that catalyzes slow prolyl bond cis/trans interconversions of the backbone of substrate peptides and proteins. In this study we investigate whether the notoriously low affinity inhibitory interaction of linear proline-containing peptides with the active site of CypA can be increased through a combination of a high cis/trans ratio and a negatively charged C-terminus as has been recently reported for Trp-Gly-Pro. Surprisingly, isothermal titration calorimetry did not reveal formation of an inhibitory CypA/Trp-Gly-Pro complex previously described within a complex stability range similar to CsA, a nanomolar CypA inhibitor. Moreover, despite of cis content of 41% at pH 7.5 Trp-Gly-Pro cannot inhibit CypA-catalyzed standard substrate isomerization up to high micromolar concentrations. However, in the context of the CsA framework a net charge of -7 clustered at the amino acid side chain of position 1 resulted in slightly improved CypA inhibition.

  3. Carborane-based carbonic anhydrase inhibitors.

    PubMed

    Brynda, Jiří; Mader, Pavel; Šícha, Václav; Fábry, Milan; Poncová, Kristýna; Bakardiev, Mario; Grüner, Bohumír; Cígler, Petr; Řezáčová, Pavlína

    2013-12-16

    CA inhibitors: Human carbonic anhydrases (CAs) are diagnostic and therapeutic targets. Various carborane cages are shown to act as active-site-directed inhibitors, and substitution with a sulfamide group and other substituents leads to compounds with high selectivity towards the cancer-specific isozyme IX. Crystal structures of the carboranes in the active site provide information that can be applied to the structure-based design of specific inhibitors. PMID:24307504

  4. Discovery of novel new Delhi metallo-β-lactamases-1 inhibitors by multistep virtual screening.

    PubMed

    Wang, Xuequan; Lu, Meiling; Shi, Yang; Ou, Yu; Cheng, Xiaodong

    2015-01-01

    The emergence of NDM-1 containing multi-antibiotic resistant "Superbugs" necessitates the needs of developing of novel NDM-1inhibitors. In this study, we report the discovery of novel NDM-1 inhibitors by multi-step virtual screening. From a 2,800,000 virtual drug-like compound library selected from the ZINC database, we generated a focused NDM-1 inhibitor library containing 298 compounds of which 44 chemical compounds were purchased and evaluated experimentally for their ability to inhibit NDM-1 in vitro. Three novel NDM-1 inhibitors with micromolar IC50 values were validated. The most potent inhibitor, VNI-41, inhibited NDM-1 with an IC50 of 29.6 ± 1.3 μM. Molecular dynamic simulation revealed that VNI-41 interacted extensively with the active site. In particular, the sulfonamide group of VNI-41 interacts directly with the metal ion Zn1 that is critical for the catalysis. These results demonstrate the feasibility of applying virtual screening methodologies in identifying novel inhibitors for NDM-1, a metallo-β-lactamase with a malleable active site and provide a mechanism base for rational design of NDM-1 inhibitors using sulfonamide as a functional scaffold. PMID:25734558

  5. Discovery of Novel New Delhi Metallo-β-Lactamases-1 Inhibitors by Multistep Virtual Screening

    PubMed Central

    Wang, Xuequan; Lu, Meiling; Shi, Yang; Ou, Yu; Cheng, Xiaodong

    2015-01-01

    The emergence of NDM-1 containing multi-antibiotic resistant "Superbugs" necessitates the needs of developing of novel NDM-1inhibitors. In this study, we report the discovery of novel NDM-1 inhibitors by multi-step virtual screening. From a 2,800,000 virtual drug-like compound library selected from the ZINC database, we generated a focused NDM-1 inhibitor library containing 298 compounds of which 44 chemical compounds were purchased and evaluated experimentally for their ability to inhibit NDM-1 in vitro. Three novel NDM-1 inhibitors with micromolar IC50 values were validated. The most potent inhibitor, VNI-41, inhibited NDM-1 with an IC50 of 29.6 ± 1.3 μM. Molecular dynamic simulation revealed that VNI-41 interacted extensively with the active site. In particular, the sulfonamide group of VNI-41 interacts directly with the metal ion Zn1 that is critical for the catalysis. These results demonstrate the feasibility of applying virtual screening methodologies in identifying novel inhibitors for NDM-1, a metallo-β-lactamase with a malleable active site and provide a mechanism base for rational design of NDM-1 inhibitors using sulfonamide as a functional scaffold. PMID:25734558

  6. Structure-activity relationships of substituted oxyoxalamides as inhibitors of the human soluble epoxide hydrolase.

    PubMed

    Kim, In-Hae; Lee, In-Hee; Nishiwaki, Hisashi; Hammock, Bruce D; Nishi, Kosuke

    2014-02-01

    We explored both structure-activity relationships among substituted oxyoxalamides used as the primary pharmacophore of inhibitors of the human sEH and as a secondary pharmacophore to improve water solubility of inhibitors. When the oxyoxalamide function was modified with a variety of alkyls or substituted alkyls, compound 6 with a 2-adamantyl group and a benzyl group was found to be a potent sEH inhibitor, suggesting that the substituted oxyoxalamide function is a promising primary pharmacophore for the human sEH, and compound 6 can be a novel lead structure for the development of further improved oxyoxalamide or other related derivatives. In addition, introduction of substituted oxyoxalamide to inhibitors with an amide or urea primary pharmacophore produced significant improvements in inhibition potency and water solubility. In particular, the N,N,O-trimethyloxyoxalamide group in amide or urea inhibitors (26 and 31) was most effective among those tested for both inhibition and solubility. The results indicate that substituted oxyoxalamide function incorporated into amide or urea inhibitors is a useful secondary pharmacophore, and the resulting structures will be an important basis for the development of bioavailable sEH inhibitors.

  7. Ethynylflavones, Highly Potent, and Selective Inhibitors of Cytochrome P450 1A1

    PubMed Central

    2015-01-01

    The flavone backbone is a well-known pharmacophore present in a number of substrates and inhibitors of various P450 enzymes. In order to find highly potent and novel P450 family I enzyme inhibitors, an acetylene group was incorporated into six different positions of flavone. The introduction of an acetylene group at certain locations of the flavone backbone lead to time-dependent inhibitors of P450 1A1. 3′-Ethynylflavone, 4′-ethynylflavone, 6-ethynylflavone, and 7-ethynylflavone (KI values of 0.035–0.056 μM) show strong time-dependent inhibition of P450 1A1, while 5-ethynylflavone (KI value of 0.51 μM) is a moderate time-dependent inhibitor of this enzyme. Meanwhile, 4′-ethynylflavone and 6-ethynylflavone are highly selective inhibitors toward this enzyme. Especially, 6-ethynylflavone possesses a Ki value of 0.035 μM for P450 1A1 177- and 15-fold lower than those for P450s 1A2 and 1B1, respectively. The docking postures observed in the computational simulations show that the orientation of the acetylene group determines its capability to react with P450s 1A1 and 1A2. Meanwhile, conformational analysis indicates that the shape of an inhibitor determines its inhibitory selectivity toward these enzymes. PMID:25033111

  8. Matrilin-1 Is an Inhibitor of Neovascularization*

    PubMed Central

    Foradori, Matthew J.; Chen, Qian; Fernandez, Cecilia A.; Harper, Jay; Li, Xin; Tsang, Paul C. W.; Langer, Robert; Moses, Marsha A.

    2014-01-01

    In the course of conducting a series of studies whose goal was to discover novel endogenous angiogenesis inhibitors, we have purified matrilin-1 (MATN-1) and have demonstrated, for the first time, that it inhibits neovascularization both in vitro and in vivo. Proteins were extracted from cartilage using a 2 m NaCl, 0.01 m HEPES buffer at 4 °C, followed by concentration of the extract. The concentrate was fractionated by size exclusion chromatography, and fractions were then screened for their ability to inhibit capillary endothelial cell (EC) proliferation in vitro. Fractions containing EC inhibitory activity were pooled and further purified by cation exchange chromatography. The resulting fractions from this step were then screened to isolate the antiangiogenic activity in vitro. This activity was identified by tandem mass spectrometry as being MATN-1. Human MATN-1 was cloned and expressed in Pichia pastoris and purified to homogeneity. Purified recombinant MATN-1, along with purified native protein, was shown to inhibit angiogenesis in vivo using the chick chorioallantoic membrane assay by the inhibition of capillary EC proliferation and migration. Finally, using a MATN-1-deficient mouse, we showed that angiogenesis during fracture healing was significantly higher in MATN-1−/− mice compared with the wild type mice as demonstrated by in vivo imaging and by elevated expression of angiogenesis markers including PECAM1, VEGFR, and VE-cadherin. PMID:24692560

  9. KH-30 Parafin Inhibitor Treatment

    SciTech Connect

    Rochelle, J.

    2001-09-30

    United Energy Corporation (UNRG) and the U.S. Department of Energy personnel tested KH-30 at the Rocky Mountain Oilfield Testing Center (RMOTC) outside Casper, Wyoming on two separate occasions. KH-30 is a non-toxic, non-hazardous product, which combines the functions of a solvent dispersant, crystal modifier and inhibitor into a single solution. The first test was held in March of 2001, wherein five wells were treated with a mixture of KH-30 and brine water, heated to 180 degrees F. No increase in production was attained in these tests. In June, 2001, three shallow, low pressure RMOTC wells with 30 years of production were treated with a mixture of 40% KH-30 and 60% diesel. Increases were seen in three wells. The wells then returned to their original rates.

  10. Natural Products as Aromatase Inhibitors

    PubMed Central

    Balunas, Marcy J.; Su, Bin; Brueggemeier, Robert W.; Kinghorn, A. Douglas

    2010-01-01

    With the clinical success of several synthetic aromatase inhibitors (AIs) in the treatment of postmenopausal estrogen receptor-positive breast cancer, researchers have also been investigating also the potential of natural products as AIs. Natural products from terrestrial and marine organisms provide a chemically diverse array of compounds not always available through current synthetic chemistry techniques. Natural products that have been used traditionally for nutritional or medicinal purposes (e.g., botanical dietary supplements) may also afford AIs with reduced side effects. A thorough review of the literature regarding natural product extracts and secondary metabolites of plant, microbial, and marine origin that have been shown to exhibit aromatase inhibitory activity is presented herein. PMID:18690828

  11. Tyrosine Kinase Inhibitors and Pregnancy

    PubMed Central

    Abruzzese, Elisabetta; Trawinska, Malgorzata Monika; Perrotti, Alessio Pio; De Fabritiis, Paolo

    2014-01-01

    The management of patients with chronic myeloid leukemia (CML) during pregnancy has become recently a matter of continuous debate. The introduction of the Tyrosine Kinase Inhibitors (TKIs) in clinical practice has dramatically changed the prognosis of CML patients; in fact, patients diagnosed in chronic phase can reasonably expect many years of excellent disease control and good quality of life, as well as a normal life expectancy, including the necessity to address issues relating to fertility and pregnancy. Physicians are frequently being asked for advice regarding the need for, and/or the appropriateness of, stopping treatment in order to conceive. In this report, we will review the data published in terms of fertility, conception, pregnancy, pregnancy outcome and illness control for TKI treated CML patients, as well as how to manage a planned and/or unplanned pregnancy. PMID:24804001

  12. Glycine Transporters and Their Inhibitors

    NASA Astrophysics Data System (ADS)

    Gilfillan, Robert; Kerr, Jennifer; Walker, Glenn; Wishart, Grant

    Glycine plays a ubiquitous role in many biological processes. In the central nervous system it serves as an important neurotransmitter acting as an agonist at strychnine-sensitive glycine receptors and as an essential co-agonist with glutamate at the NMDA receptor complex. Control of glycine concentrations in the vicinity of these receptors is mediated by the specific glycine transporters, GlyT1 and GlyT2. Inhibition of these transporters has been postulated to be of potential benefit in several therapeutic indications including schizophrenia and pain. In this review we discuss our current knowledge of glycine transporters and focus on recent advances in the medicinal chemistry of GlyT1 and GlyT2 inhibitors.

  13. Enzyme-Inhibitor Association Thermodynamics

    PubMed Central

    Resat, Haluk; Marrone, Tami J.; McCammon, J. Andrew

    1997-01-01

    Studying the thermodynamics of biochemical association reactions at the microscopic level requires efficient sampling of the configurations of the reactants and solvent as a function of the reaction pathways. In most cases, the associating ligand and receptor have complementary interlocking shapes. Upon association, loosely connected or disconnected solvent cavities at and around the binding site are formed. Disconnected solvent regions lead to severe statistical sampling problems when simulations are performed with explicit solvent. It was recently proposed that, when such limitations are encountered, they might be overcome by the use of the grand canonical ensemble. Here we investigate one such case and report the association free energy profile (potential of mean force) between trypsin and benzamidine along a chosen reaction coordinate as calculated using the grand canonical Monte Carlo method. The free energy profile is also calculated for a continuum solvent model using the Poisson equation, and the results are compared to the explicit water simulations. The comparison shows that the continuum solvent approach is surprisingly successful in reproducing the explicit solvent simulation results. The Monte Carlo results are analyzed in detail with respect to solvation structure. In the binding site channel there are waters bridging the carbonyl oxygen groups of Asp189 with the NH2 groups of benzamidine, which are displaced upon inhibitor binding. A similar solvent-bridging configuration has been seen in the crystal structure of trypsin complexed with bovine pancreatic trypsin inhibitor. The predicted locations of other internal waters are in very good agreement with the positions found in the crystal structures, which supports the accuracy of the simulations. ImagesFIGURE 5 PMID:9017183

  14. Pyridopyrimidine analogues as novel adenosine kinase inhibitors.

    PubMed

    Zheng, G Z; Lee, C; Pratt, J K; Perner, R J; Jiang, M Q; Gomtsyan, A; Matulenko, M A; Mao, Y; Koenig, J R; Kim, K H; Muchmore, S; Yu, H; Kohlhaas, K; Alexander, K M; McGaraughty, S; Chu, K L; Wismer, C T; Mikusa, J; Jarvis, M F; Marsh, K; Kowaluk, E A; Bhagwat, S S; Stewart, A O

    2001-08-20

    A novel series of pyridopyrimidine analogues 9 was identified as potent adenosine kinase inhibitors based on the SAR and computational studies. Substitution of the C7 position of the pyridopyrimidino core with C2' substituted pyridino moiety increased the in vivo potency and enhanced oral bioavailability of these adenosine kinase inhibitors.

  15. Rust inhibitor and oil composition containing same

    SciTech Connect

    Bialy, J.J.; Cullen, W.P.; Dorn, P.; Nebzydoski, J.W.; Sung, R.L.

    1981-04-21

    A rust inhibitor comprising the reaction product of a hydrocarbylsuccinic anhydride in which the hydrocarbyl radical has from about 6 to 30 carbon atoms and an aminotriazole is provided. The rust inhibitor is effective in motor fuel and lubricating oil compositions.

  16. Intellectual property issues of immune checkpoint inhibitors

    PubMed Central

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors. PMID:26466763

  17. Intellectual property issues of immune checkpoint inhibitors.

    PubMed

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors.

  18. Computer simulation of inhibitor application -- A review

    SciTech Connect

    Banerjee, G.; Vasanth, K.L.

    1997-12-01

    The rapid development of powerful software as well as hardware in computer technology has changed the traditional approach to all areas of science and technology. In the field of corrosion inhibitors, computers are used to model, simulate, analyze and monitor inhibitor applications in both laboratory and industrial environments. This paper will present an up-to-date critical review of such simulation studies.

  19. Intellectual property issues of immune checkpoint inhibitors.

    PubMed

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors. PMID:26466763

  20. Aminofurazans as potent inhibitors of AKT kinase

    SciTech Connect

    Rouse, Meagan B.; Seefeld, Mark A.; Leber, Jack D.; McNulty, Kenneth C.; Sun, Lihui; Miller, William H.; Zhang, ShuYun; Minthorn, Elisabeth A.; Concha, Nestor O.; Choudhry, Anthony E.; Schaber, Michael D.; Heerding, Dirk A.

    2009-06-24

    AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.

  1. Trypsin inhibitors of buffalo seminal plasma.

    PubMed

    Ahmed, N; Ramesh, V

    1992-03-01

    Two trypsin inhibitors from acid-treated buffalo seminal plasma were purified by gel filtration and affinity chromatography. These acid-stable trypsin inhibitors having charge heterogeneity were homogeneous with respect to size as revealed by gel filtration and SDS-PAGE. Gel filtration data suggest molecular weight value of 9,900 Da for inhibitor I and 10,900 Da for inhibitor II. Molecular weight estimated by SDS-PAGE was found to be 10,600 Da and 11,200 Da for inhibitors I and II, respectively. The hydrodynamic properties such as Stokes radii (1.58 nm and 1.62 nm); intrinsic viscosity (2.5725 ml/g and 2.5025 ml/g) and diffusion coefficient (13.499 x 10(-11) m2/sec. and 13.166X10(-11) m2/sec) respectively for inhibitor I and II were determined by analytical gel filtration. These inhibitors were fairly thermostable and could not be stained by PAS reagent. Both the inhibitors were found to inhibit buffalo acrosin but not bovine chymotrypsin.

  2. MAO inhibitors: risks, benefits, and lore.

    PubMed

    Wimbiscus, Molly; Kostenko, Olga; Malone, Donald

    2010-12-01

    Monoamine oxidase (MAO) inhibitors were the first antidepressants introduced, but their use has dwindled because of their reported side effects, their food and drug interactions, and the introduction of other classes of agents. However, interest in MAO inhibitors is reviving. Here, we discuss their use, risks, and benefits in clinical medicine.

  3. Exploring the scaffold universe of kinase inhibitors.

    PubMed

    Hu, Ye; Bajorath, Jürgen

    2015-01-01

    The scaffold concept was applied to systematically determine, analyze, and compare core structures of kinase inhibitors. From publicly available inhibitors of the human kinome, scaffolds and cyclic skeletons were systematically extracted and organized taking activity data, structural relationships, and retrosynthetic criteria into account. Scaffold coverage varied greatly across the kinome, and many scaffolds representing compounds with different activity profiles were identified. The majority of kinase inhibitor scaffolds were involved in well-defined yet distinct structural relationships, which had different consequences on compound activity. Scaffolds exclusively representing highly potent compounds were identified as well as structurally analogous scaffolds with very different degrees of promiscuity. Scaffold relationships presented herein suggest a variety of hypotheses for inhibitor design. Our detailed organization of the kinase inhibitor scaffold universe with respect to different activity and structural criteria, all scaffolds, and the original compound data assembled for our analysis are made freely available.

  4. A Spider-Derived Kunitz-Type Serine Protease Inhibitor That Acts as a Plasmin Inhibitor and an Elastase Inhibitor

    PubMed Central

    Wan, Hu; Lee, Kwang Sik; Kim, Bo Yeon; Zou, Feng Ming; Yoon, Hyung Joo; Je, Yeon Ho; Li, Jianhong; Jin, Byung Rae

    2013-01-01

    Kunitz-type serine protease inhibitors are involved in various physiological processes, such as ion channel blocking, blood coagulation, fibrinolysis, and inflammation. While spider-derived Kunitz-type proteins show activity in trypsin or chymotrypsin inhibition and K+ channel blocking, no additional role for these proteins has been elucidated. In this study, we identified the first spider (Araneus ventricosus) Kunitz-type serine protease inhibitor (AvKTI) that acts as a plasmin inhibitor and an elastase inhibitor. AvKTI possesses a Kunitz domain consisting of a 57-amino-acid mature peptide that displays features consistent with Kunitz-type inhibitors, including six conserved cysteine residues and a P1 lysine residue. Recombinant AvKTI, expressed in baculovirus-infected insect cells, showed a dual inhibitory activity against trypsin (Ki 7.34 nM) and chymotrypsin (Ki 37.75 nM), defining a role for AvKTI as a spider-derived Kunitz-type serine protease inhibitor. Additionally, AvKTI showed no detectable inhibitory effects on factor Xa, thrombin, or tissue plasminogen activator; however, AvKTI inhibited plasmin (Ki 4.89 nM) and neutrophil elastase (Ki 169.07 nM), indicating that it acts as an antifibrinolytic factor and an antielastolytic factor. These findings constitute molecular evidence that AvKTI acts as a plasmin inhibitor and an elastase inhibitor and also provide a novel view of the functions of a spider-derived Kunitz-type serine protease inhibitor. PMID:23308198

  5. Development of Radamide Analogs as Grp94 Inhibitors

    PubMed Central

    Muth, Aaron; Crowley, Vincent; Khandelwal, Anuj; Mishra, Sanket; Zhao, Jinbo; Hall, Jessica; Blagg, Brian S. J.

    2014-01-01

    Hsp90 isoform-selective inhibition is highly desired as it can potentially avoid the toxic side-effects of pan-inhibition. The current study developed selective inhibitors of one such isoform, Grp94, predicated on the chimeric and pan-Hsp90 inhibitor, radamide (RDA). Replacement of the quinone moiety of RDA with a phenyl ring (2) was found to be better suited for Grp94 inhibition as it can fully interact with a unique hydrophobic pocket present in Grp94. An extensive SAR for this scaffold showed that substitutions at the 2- and 4-positions (8 and 27, respectively) manifested excellent Grp94 affinity and selectivity. Introduction of heteroatoms into the ring also proved beneficial, with a 2-pyridine derivative (38) exhibiting the highest Grp94 affinity (Kd = 820 nM). Subsequent cell-based assays showed that these Grp94 inhibitors inhibit migration of the metastatic breast cancer cell line, MDA-MB-231, as well as exhibit an anti-proliferative affect against the multiple myeloma cell line, RPMI 8226. PMID:25027801

  6. Designing Inhibitors of Anthrax Toxin

    PubMed Central

    Nestorovich, Ekaterina M.; Bezrukov, Sergey M.

    2014-01-01

    Introduction Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates, and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded “for the development of multiscale models for complex chemical systems” once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial and error approach to a minimum. The “rational drug design” term is rather comprehensive as it includes all contemporary methods of drug discovery where serendipity and screening are substituted by the information-guided search for new and existing compounds. Successful implementation of these innovative drug discovery approaches is inevitably preceded by learning the physics, chemistry, and physiology of functioning of biological structures under normal and pathological conditions. Areas covered This article provides an overview of the recent rational drug design approaches to discover inhibitors of anthrax toxin. Some of the examples include small-molecule and peptide-based post-exposure therapeutic agents as well as several polyvalent compounds. The review also directs the reader to the vast literature on the recognized advances and future possibilities in the field. Expert opinion Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (PA-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, in our view, the situation is still insecure. The FDA’s animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Besides, unlike PA, which is known to be unstable, LF remains active in cells and in animal tissues for days. Therefore, the effectiveness of the post-exposure treatment of the individuals

  7. High-affinity Cyclic Peptide Matriptase Inhibitors*

    PubMed Central

    Quimbar, Pedro; Malik, Uru; Sommerhoff, Christian P.; Kaas, Quentin; Chan, Lai Y.; Huang, Yen-Hua; Grundhuber, Maresa; Dunse, Kerry; Craik, David J.; Anderson, Marilyn A.; Daly, Norelle L.

    2013-01-01

    The type II transmembrane serine protease matriptase is a key activator of multiple signaling pathways associated with cell proliferation and modification of the extracellular matrix. Deregulated matriptase activity correlates with a number of diseases, including cancer and hence highly selective matriptase inhibitors may have therapeutic potential. The plant-derived cyclic peptide, sunflower trypsin inhibitor-1 (SFTI-1), is a promising drug scaffold with potent matriptase inhibitory activity. In the current study we have analyzed the structure-activity relationships of SFTI-1 and Momordica cochinchinensis trypsin inhibitor-II (MCoTI-II), a structurally divergent trypsin inhibitor from Momordica cochinchinensis that also contains a cyclic backbone. We show that MCoTI-II is a significantly more potent matriptase inhibitor than SFTI-1 and that all alanine mutants of both peptides, generated using positional scanning mutagenesis, have decreased trypsin affinity, whereas several mutations either maintain or result in enhanced matriptase inhibitory activity. These intriguing results were used to design one of the most potent matriptase inhibitors known to date with a 290 pm equilibrium dissociation constant, and provide the first indication on how to modulate affinity for matriptase over trypsin in cyclic peptides. This information might be useful for the design of more selective and therapeutically relevant inhibitors of matriptase. PMID:23548907

  8. Leflunomide, a Reversible Monoamine Oxidase Inhibitor.

    PubMed

    Petzer, Jacobus P; Petzer, Anél

    2016-01-01

    A screening study aimed at identifying inhibitors of the enzyme, monoamine oxidase (MAO), among clinically used drugs have indicated that the antirheumatic drug, leflunomide, is an inhibitor of both MAO isoforms. Leflunomide inhibits human MAO-A and MAO-B and exhibits IC50 values of 19.1 μM and 13.7 μM, respectively. The corresponding Ki values are 17.7 μM (MAO-A) and 10.1 μM (MAO-B). Dialyses of mixtures of the MAO enzymes and leflunomide show that inhibition of the MAOs by leflunomide is reversible. The principal metabolite of leflunomide, teriflunomide (A77 1726), in contrast is not an MAO inhibitor. This study concludes that, although leflunomide is only moderately potent as an MAO inhibitor, isoxazole derivatives may represent a general class of MAO inhibitors and this heterocycle may find application in MAO inhibitor design. In this respect, MAO inhibitors are used in the clinic for the treatment of depressive illness and Parkinson's disease, and are under investigation as therapy for certain types of cancer, Alzheimer's disease and age-related impairment of cardiac function. PMID:26299850

  9. SGLT2 Inhibitors May Predispose to Ketoacidosis

    PubMed Central

    Blau, Jenny E.; Rother, Kristina I.

    2015-01-01

    Context: Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Evidence Acquisition: Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. Evidence Synthesis: SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Conclusions: Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients. PMID:26086329

  10. Thrombin-activatable fibrinolysis inhibitor.

    PubMed

    Marx, Pauline F

    2004-09-01

    The coagulation system is a potent mechanism that prevents blood loss after vascular injury. It consists of a number of linked enzymatic reactions resulting in thrombin generation. Thrombin converts soluble fibrinogen into a fibrin clot. The clot is subsequently removed by the fibrinolytic system upon wound healing. Thrombin-activatable fibrinolysis inhibitor (TAFI), which is identical to the previously identified proteins procarboxypeptidase B, R, and U, forms a link between blood coagulation and fibrinolysis. TAFI circulates as an inactive proenzyme in the bloodstream, and becomes activated during blood clotting. The active form, TAFIa, inhibits fibrinolysis by cleaving off C-terminal lysine residues from partially degraded fibrin that stimulates the tissue-type plasminogen activator-mediated conversion of plasminogen to plasmin. Consequently, removal of these lysines leads to less plasmin formation and subsequently to protection of the fibrin clot from break down. Moreover, TAFI may also play a role in other processes such as, inflammation and tissue repair. In this review, recent developments in TAFI research are discussed. PMID:15379716

  11. HIV Protease Inhibitors and Obesity

    PubMed Central

    Anuurad, Erdembileg; Bremer, Andrew; Berglund, Lars

    2011-01-01

    Purpose of review To review the current scientific literature and recent clinical trials on HIV protease inhibitors (PIs) and their potential role in the pathogenesis of lipodystrophy and metabolic disorders. Recent findings HIV PI treatment may affect the normal stimulatory effect of insulin on glucose and fat storage. Further, chronic inflammation from HIV infection and PI treatment trigger cellular homeostatic stress responses with adverse effects on intermediary metabolism. The physiologic outcome is such that total adipocyte storage capacity is decreased, and the remaining adipocytes resist further fat storage. This process leads to a pathologic cycle of lipodystrophy and lipotoxicity, a pro-atherogenic lipid profile, and a clinical phenotype of increased central body fat distribution similar to the metabolic syndrome. Summary PIs are a key component of antiretroviral therapy and have dramatically improved the life expectancy of HIV-infected individuals. However, they are also associated with abnormalities in glucose/lipid metabolism and body fat distribution. Further studies are needed to better define the pathogenesis of PI-associated metabolic and body fat changes and their potential treatment. PMID:20717021

  12. MMP Inhibitors: Past, present and future.

    PubMed

    Cathcart, Jillian M; Cao, Jian

    2015-01-01

      Development of inhibitors of matrix metalloproteinases (MMPs) has been fraught with challenges. Early compounds largely failed due to poor selectivity and bioavailability. Dose-limiting side effects, off-target interactions, and improperly designed clinical trials significantly impeded clinical success. As information becomes available and technology evolves, tools to combat these obstacles have been developed. Improved methods for high throughput screening and drug design have led to identification of compounds exhibiting high potency, binding affinity, and favorable pharmacokinetic profiles. Current research into MMP inhibitors employs innovative approaches for drug delivery methods and allosteric inhibitors. Such innovation is key for development of clinically successful compounds.

  13. An updated review of tyrosinase inhibitors.

    PubMed

    Chang, Te-Sheng

    2009-06-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  14. An Updated Review of Tyrosinase Inhibitors

    PubMed Central

    Chang, Te-Sheng

    2009-01-01

    Tyrosinase is a multifunctional, glycosylated, and copper-containing oxidase, which catalyzes the first two steps in mammalian melanogenesis and is responsible for enzymatic browning reactions in damaged fruits during post-harvest handling and processing. Neither hyperpigmentation in human skin nor enzymatic browning in fruits are desirable. These phenomena have encouraged researchers to seek new potent tyrosinase inhibitors for use in foods and cosmetics. This article surveys tyrosinase inhibitors newly discovered from natural and synthetic sources. The inhibitory strength is compared with that of a standard inhibitor, kojic acid, and their inhibitory mechanisms are discussed. PMID:19582213

  15. Structural investigation of inhibitor designs targeting 3-dehydroquinate dehydratase from the shikimate pathway of Mycobacterium tuberculosis

    SciTech Connect

    Dias, Marcio V.B.; Snee, William C.; Bromfield, Karen M.; Payne, Richard J.; Palaninathan, Satheesh K.; Ciulli, Alessio; Howard, Nigel I.; Abell, Chris; Sacchettini, James C.; Blundell, Tom L.

    2011-09-06

    The shikimate pathway is essential in Mycobacterium tuberculosis and its absence from humans makes the enzymes of this pathway potential drug targets. In the present paper, we provide structural insights into ligand and inhibitor binding to 3-dehydroquinate dehydratase (dehydroquinase) from M. tuberculosis (MtDHQase), the third enzyme of the shikimate pathway. The enzyme has been crystallized in complex with its reaction product, 3-dehydroshikimate, and with six different competitive inhibitors. The inhibitor 2,3-anhydroquinate mimics the flattened enol/enolate reaction intermediate and serves as an anchor molecule for four of the inhibitors investigated. MtDHQase also forms a complex with citrazinic acid, a planar analogue of the reaction product. The structure of MtDHQase in complex with a 2,3-anhydroquinate moiety attached to a biaryl group shows that this group extends to an active-site subpocket inducing significant structural rearrangement. The flexible extensions of inhibitors designed to form {pi}-stacking interactions with the catalytic Tyr{sup 24} have been investigated. The high-resolution crystal structures of the MtDHQase complexes provide structural evidence for the role of the loop residues 19-24 in MtDHQase ligand binding and catalytic mechanism and provide a rationale for the design and efficacy of inhibitors.

  16. 4-Quinolone-3-carboxylic acids as cell-permeable inhibitors of protein tyrosine phosphatase 1B.

    PubMed

    Zhi, Ying; Gao, Li-Xin; Jin, Yi; Tang, Chun-Lan; Li, Jing-Ya; Li, Jia; Long, Ya-Qiu

    2014-07-15

    Protein tyrosine phosphatase 1B is a negative regulator in the insulin and leptin signaling pathways, and has emerged as an attractive target for the treatment of type 2 diabetes and obesity. However, the essential pharmacophore of charged phosphotyrosine or its mimetic confer low selectivity and poor cell permeability. Starting from our previously reported aryl diketoacid-based PTP1B inhibitors, a drug-like scaffold of 4-quinolone-3-carboxylic acid was introduced for the first time as a novel surrogate of phosphotyrosine. An optimal combination of hydrophobic groups installed at C-6, N-1 and C-3 positions of the quinolone motif afforded potent PTP1B inhibitors with low micromolar IC50 values. These 4-quinolone-3-carboxylate based PTP1B inhibitors displayed a 2-10 fold selectivity over a panel of PTP's. Furthermore, the bidentate inhibitors of 4-quinolone-3-carboxylic acids conjugated with aryl diketoacid or salicylic acid were cell permeable and enhanced insulin signaling in CHO/hIR cells. The kinetic studies and molecular modeling suggest that the 4-quinolone-3-carboxylates act as competitive inhibitors by binding to the PTP1B active site in the WPD loop closed conformation. Taken together, our study shows that the 4-quinolone-3-carboxylic acid derivatives exhibit improved pharmacological properties over previously described PTB1B inhibitors and warrant further preclinical studies.

  17. Absolute configuration of acremoxanthone C, a potent calmodulin inhibitor from Purpureocillium lilacinum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioassay-guided fractionation of an extract prepared from the culture medium and mycelium of Purpureocillium lilacinum allowed the isolation of two calmodulin (CaM) inhibitors, namely, acremoxanthone C (1) and acremonidin A (2). The absolute configuration of 1 was established as 2R, 3R, 1'S, 11'S, ...

  18. Musical Hallucinations Treated with Acetylcholinesterase Inhibitors

    PubMed Central

    Blom, Jan Dirk; Coebergh, Jan Adriaan F.; Lauw, René; Sommer, Iris E. C.

    2015-01-01

    Musical hallucinations are relatively rare auditory percepts which, due to their intrusive nature and the accompanying fear of impending mental decline, tend to cause significant distress and impairment. Although their etiology and pathophysiology appear to be heterogeneous and no evidence-based treatment methods are available, case reports indicate that acetylcholinesterase inhibitors may yield positive results in patients with comorbid hearing loss. We present two female patients (aged 76 and 78 years) both of whom suffered from hearing impairment and practically incessant musical hallucinations. Both patients were successfully treated with the acetylcholinesterase inhibitor rivastigmine. Based on these two case descriptions and an overview of studies describing the use of acetylcholinesterase inhibitors in similar patients, we discuss possible mechanisms and propose further research on the use of acetylcholinesterase inhibitors for musical hallucinations experienced in concordance with hearing loss. PMID:25904872

  19. A tyrosinase inhibitor from Aspergillus niger.

    PubMed

    Vasantha, K Y; Murugesh, C S; Sattur, A P

    2014-10-01

    Tyrosinase, in the presence of oxygen, is the main culprit in post harvest browning of food products, resulting in the drop in its commercial value. In an effort to seek natural tyrosinase inhibitors for food applications, a screening programme was undertaken. Of the 26 fungal cultures isolated from soil samples of Agumbe forest, India, one isolate S16, identified as Aspergillus niger, gave an inhibition of 84 % against the enzyme. The inhibitor was isolated by following an enzyme inhibition assay guided purification protocol. The structure of the inhibitor was elucidated and found to be kojic acid. The IC50 of the Competitive inhibitor was found to be 8.8 μg with a Ki of 0.085 mM.

  20. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    PubMed

    Pohanka, Miroslav

    2014-06-02

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system.

  1. Ocular Toxicity of Tyrosine Kinase Inhibitors

    PubMed Central

    Davis, Mary Elizabeth

    2016-01-01

    Purpose/Objectives To review common tyrosine kinase inhibitors, as well as their ocular side effects and management. Data Sources A comprehensive literature search was conducted using cINahl®, Pubmed, and cochrane databases for articles published since 2004 with the following search terms: ocular toxicities, tyrosine kinase inhibitors, ophthalmology, adverse events, eye, and vision. Data Synthesis Tyrosine kinase inhibitors can cause significant eye toxicity. Conclusions Given the prevalence of new tyrosine kinase inhibitor therapies and the complexity of possible pathogenesis of ocular pathology, oncology nurses can appreciate the occurrence of ocular toxicities and the role of nursing in the management of these problems. Implications for Nursing Knowledge of the risk factors and etiology of ocular toxicity of targeted cancer therapies can guide nursing assessment, enhance patient education, and improve care management. Including a review of eye symptoms and vision issues in nursing assessment can enhance early detection and treatment of ocular toxicity. PMID:26906134

  2. Small-Molecule Inhibitors of Urea Transporters

    PubMed Central

    Verkman, Alan S.; Esteva-Font, Cristina; Cil, Onur; Anderson, Marc O.; Li, Fei; Li, Min; Lei, Tianluo; Ren, Huiwen; Yang, Baoxue

    2015-01-01

    Urea transporter (UT) proteins, which include isoforms of UT-A in kidney tubule epithelia and UT-B in vasa recta endothelia and erythrocytes, facilitate urinary concentrating function. Inhibitors of urea transporter function have potential clinical applications as sodium-sparing diuretics, or ‘urearetics,’ in edema from different etiologies, such as congestive heart failure and cirrhosis, as well as in syndrome of inappropriate antidiuretic hormone (SIADH). High-throughput screening of drug-like small molecules has identified UT-A and UT-B inhibitors with nanomolar potency. Inhibitors have been identified with different UT-A versus UT-B selectivity profiles and putative binding sites on UT proteins. Studies in rodent models support the utility of UT inhibitors in reducing urinary concentration, though testing in clinically relevant animal models of edema has not yet been done. PMID:25298345

  3. Small-molecule inhibitors of myosin proteins

    PubMed Central

    Bond, Lisa M; Tumbarello, David A; Kendrick-Jones, John; Buss, Folma

    2014-01-01

    Advances in screening and computational methods have enhanced recent efforts to discover/design small-molecule protein inhibitors. One attractive target for inhibition is the myosin family of motor proteins. Myosins function in a wide variety of cellular processes, from intracellular trafficking to cell motility, and are implicated in several human diseases (e.g., cancer, hypertrophic cardiomyopathy, deafness and many neurological disorders). Potent and selective myosin inhibitors are, therefore, not only a tool for understanding myosin function, but are also a resource for developing treatments for diseases involving myosin dysfunction or overactivity. This review will provide a brief overview of the characteristics and scientific/therapeutic applications of the presently identified small-molecule myosin inhibitors before discussing the future of myosin inhibitor and activator design. PMID:23256812

  4. Polyaspartate scale inhibitors -- Biodegradable alternatives to polyacrylates

    SciTech Connect

    Ross, R.J.; Low, K.C.; Shannon, J.E.

    1997-04-01

    Polyaspartates are highly biodegradable alternatives to polyacrylate-based scale inhibitors. This article presents laboratory testing data on polyaspartate inhibitors of calcium and barium mineral scales. The optimum molecular weight (Mw) for polyaspartate inhibitors of calcium carbonate, calcium sulfate, and barium sulfate mineral scales was determined to be between 1,000 Mw and 4,000 Mw. For inhibition of calcium carbonate and barium sulfate, polyaspartates in the range of 3,000 Mw to 4,000 Mw were most effective. For calcium sulfate inhibition, the optimum Mw lies in the 1,000 Mw to 2,000 Mw range. Biodegradability data (OECD 301B Ready Biodegradability) on polyaspartates of a variety of Mw is also presented, which demonstrates the high biodegradability of this class of mineral scale inhibitors.

  5. Drug design from the cryptic inhibitor envelope

    PubMed Central

    Lee, Chul-Jin; Liang, Xiaofei; Wu, Qinglin; Najeeb, Javaria; Zhao, Jinshi; Gopalaswamy, Ramesh; Titecat, Marie; Sebbane, Florent; Lemaitre, Nadine; Toone, Eric J.; Zhou, Pei

    2016-01-01

    Conformational dynamics plays an important role in enzyme catalysis, allosteric regulation of protein functions and assembly of macromolecular complexes. Despite these well-established roles, such information has yet to be exploited for drug design. Here we show by nuclear magnetic resonance spectroscopy that inhibitors of LpxC—an essential enzyme of the lipid A biosynthetic pathway in Gram-negative bacteria and a validated novel antibiotic target—access alternative, minor population states in solution in addition to the ligand conformation observed in crystal structures. These conformations collectively delineate an inhibitor envelope that is invisible to crystallography, but is dynamically accessible by small molecules in solution. Drug design exploiting such a hidden inhibitor envelope has led to the development of potent antibiotics with inhibition constants in the single-digit picomolar range. The principle of the cryptic inhibitor envelope approach may be broadly applicable to other lead optimization campaigns to yield improved therapeutics. PMID:26912110

  6. Inhibitors of Acetylcholinesterase and Butyrylcholinesterase Meet Immunity

    PubMed Central

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer’s disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a “cholinergic anti-inflammatory pathway” which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  7. Selective Phosphodiesterase 4B Inhibitors: A Review

    PubMed Central

    Azam, Mohammed Afzal; Tripuraneni, Naga Srinivas

    2014-01-01

    Abstract Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B. PMID:25853062

  8. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity.

    PubMed

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) inhibitors are widely used for the symptomatic treatment of Alzheimer's disease and other dementias. More recent use is for myasthenia gravis. Many of these inhibitors interact with the second known cholinesterase, butyrylcholinesterase (BChE). Further, evidence shows that acetylcholine plays a role in suppression of cytokine release through a "cholinergic anti-inflammatory pathway" which raises questions about the role of these inhibitors in the immune system. This review covers research and discussion of the role of the inhibitors in modulating the immune response using as examples the commonly available drugs, donepezil, galantamine, huperzine, neostigmine and pyridostigmine. Major attention is given to the cholinergic anti-inflammatory pathway, a well-described link between the central nervous system and terminal effector cells in the immune system. PMID:24893223

  9. Update on TNF Inhibitors in Dermatology.

    PubMed

    Sobell, Jeffrey M

    2016-06-01

    Emerging data describe new potential indications for tumor necrosis factor (TNF) inhibitors in dermatology, including pediatric psoriasis and hidradenitis suppurativa. New biosimilar TNF agents are in late stages of development and may be available in the United States in the near future. Biosimilar agents are similar but not identical to available TNF inhibitors, and approval requires extensive analytic, toxicity, pharmacokinetic, pharmacodynamic, and clinical testing. Semin Cutan Med Surg 35(supp6):S104-S106. PMID:27537073

  10. Heterocyclics as corrosion inhibitors for acid media

    SciTech Connect

    Ajmal, M.; Khan, M.A.W.; Ahmad, S.; Quraishi, M.A.

    1996-12-01

    The available literature on the use of heterocyclic compounds as corrosion inhibitors in acid media has been reviewed. It has been noted that the workers in this field have either used sulfur or nitrogen containing heterocyclic compounds for studying inhibition action. The authors have synthesized compounds containing sulfur and nitrogen both in the same ring and studied their inhibition action in acid media. These compounds were found to be better inhibitors than those containing either atoms alone.

  11. 2,4-Diaminopyrimidine MK2 inhibitors. Part I: Observation of an unexpected inhibitor binding mode

    SciTech Connect

    Argiriadi, Maria A.; Ericsson, Anna M.; Harris, Christopher M.; Banach, David L.; Borhani, David W.; Calderwood, David J.; Demers, Megan D.; DiMauro, Jennifer; Dixon, Richard W.; Hardman, Jennifer; Kwak, Silvia; Li, Biqin; Mankovich, John A.; Marcotte, Douglas; Mullen, Kelly D.; Ni, Baofu; Pietras, M.; Sadhukhan, Ramkrishna; Sousa, Silvino; Tomlinson, Medha J.; Wang, L.; Xiang, T.; Talanian, R.V.

    2010-09-17

    MK2 is a Ser/Thr kinase of significant interest as an anti-inflammatory drug discovery target. Here we describe the development of in vitro tools for the identification and characterization of MK2 inhibitors, including validation of inhibitor interactions with the crystallography construct and determination of the unique binding mode of 2,4-diaminopyrimidine inhibitors in the MK2 active site.

  12. Interspecific Differences between D. pulex and D. magna in Tolerance to Cyanobacteria with Protease Inhibitors

    PubMed Central

    Kuster, Christian J.; Von Elert, Eric

    2013-01-01

    It is known that cyanobacteria negatively affect herbivores due to their production of toxins such as protease inhibitors. In the present study we investigated potential interspecific differences between two major herbivores, Daphnia magna and Daphnia pulex, in terms of their tolerance to cyanobacteria with protease inhibitors. Seven clones each of D. magna and of D. pulex were isolated from different habitats in Europe and North America. To test for interspecific differences in the daphnids’ tolerance to cyanobacteria, their somatic and population growth rates were determined for each D. magna and D. pulex clone after exposure to varying concentrations of two Microcystis aeruginosa strains. The M. aeruginosa strains NIVA and PCC− contained either chymotrypsin or trypsin inhibitors, but no microcystins. Mean somatic and population growth rates on a diet with 20% NIVA were significantly more reduced in D. pulex than in D. magna. On a diet with 10% PCC−, the population growth of D. pulex was significantly more reduced than that of D. magna. This indicates that D. magna is more tolerant to cyanobacteria with protease inhibitors than D. pulex. The reduction of growth rates was possibly caused by an interference of cyanobacterial inhibitors with proteases in the gut of Daphnia, as many other conceivable factors, which might have been able to explain the reduced growth, could be excluded as causal factors. Protease assays revealed that the sensitivities of chymotrypsins and trypsins to cyanobacterial protease inhibitors did not differ between D. magna and D. pulex. However, D. magna exhibited a 2.3-fold higher specific chymotrypsin activity than D. pulex, which explains the observed higher tolerance to cyanobacterial protease inhibitors of D. magna. The present study suggests that D. magna may control the development of cyanobacterial blooms more efficiently than D. pulex due to differences in their tolerance to cyanobacteria with protease inhibitors. PMID:23650523

  13. Aromatase inhibitors in the treatment of endometriosis

    PubMed Central

    Męczekalski, Błażej

    2016-01-01

    Endometriosis is a chronic inflammatory condition in which foci of endometrial tissue grow outside of the uterine cavity. Endometriosis was estimated to affect 176 million women of childbearing potential all over the world in 2010. The presence of extrauterine endometrial tissue is associated with pain and infertility. Typical symptoms of endometriosis include dysmenorrhoea, dyspareunia, heavy menstrual periods (menorrhagia), pelvic pain that is not related to menstrual cycles, dysuria, and chronic fatigue. Medical treatments for endometriosis include combined oral contraceptive pills, danazol, gestrinone, medroxyprogesterone acetate, and gonadotropin-releasing hormone agonists (aGnRHs). A new class of medications called aromatase inhibitors has been identified in recent years as potential therapeutic agents for endometriosis. This article provides general information about aromatase inhibitors, their use in gynaecology, and their adverse effects. In particular, the paper discusses the use of aromatase inhibitors in the treatment of endometriosis in postmenopausal women. Unlike oral contraceptives, gestagens, aGnRHs, and danazol, which suppress ovarian oestrogen synthesis, aromatase inhibitors inhibit mainly extra-ovarian synthesis of oestrogens. Therefore, the use of aromatase inhibitors seems to be particularly relevant in older patients, as most of the body's oestrogen is produced outside the ovaries after menopause. The paper discusses also the use of aromatase inhibitors in the treatment of pain associated with endometriosis and infertility caused by endometriosis. PMID:27095958

  14. CHK1 Inhibitors in Combination Chemotherapy

    PubMed Central

    Dent, Paul; Tang, Yong; Yacoub, Adly; Dai, Yun; Fisher, Paul B.; Grant, Steven

    2011-01-01

    Cellular sensing of DNA damage, along with concomitant cell cycle arrest, is mediated by a great many proteins and enzymes. One focus of pharmaceutical development has been the inhibition of DNA damage signaling, and checkpoint kinases (Chks) in particular, as a means to sensitize proliferating tumor cells to chemotherapies that damage DNA. 7-Hydroxystaurosporine, or UCN-01, is a clinically relevant and well-studied kinase activity inhibitor that exerts chemosensitizing effects by inhibition of Chk1, and a multitude of Chk1 inhibitors have entered development. Clinical development of UCN-01 has overcome many initial obstacles, but the drug has nevertheless failed to show a high level of clinical activity when combined with chemotherapeutic agents. One very likely reason for the lack of clinical efficacy of Chk1 inhibitors may be that the inhibition of Chk1 causes the compensatory activation of ATM and ERK1/2 pathways. Indeed, inhibition of many enzyme activities, not necessarily components of cell cycle regulation, may block Chk1 inhibitor–induced ERK1/2 activation and enhance the toxicity of Chk1 inhibitors. This review examines the rationally hypothesized actions of Chk1 inhibitors as cell cycle modulatory drugs as well as the impact of Chk1 inhibition upon other cell survival signaling pathways. An understanding of Chk1 inhibition in multiple signaling contexts will be essential to the therapeutic development of Chk1 inhibitors. PMID:21540473

  15. Novel inhibitors of advanced glycation endproducts.

    PubMed

    Rahbar, Samuel; Figarola, James L

    2003-11-01

    A number of natural or synthetic compounds as AGE inhibitors have been proposed, discovered or currently being advanced by others and us. We have identified two new classes of aromatic compounds; aryl- (and heterocyclic) ureido and aryl (and heterocyclic) carboxamido phenoxyisobutyric acids, and benzoic acid derivatives and related compounds, as potential inhibitors of glycation and AGE formation. Some of these novel compounds also showed "AGE-breaking" activities in vitro. Current evidence is that chelation of transition metals and/or trapping or indirect inhibition of formation of reactive carbonyl compounds are involved in the mechanisms of action of these novel AGE inhibitors and breakers. Here, we review the inhibitors of glycation and AGE-breakers published to date and present the results of our in vitro and in vivo investigations on a number of these novel AGE inhibitors. These AGE-inhibitors and AGE-breakers may find therapeutic use in the treatment of diseases that AGE formation and accumulation may be responsible for their pathogenesis such as diabetes, Alzheimer's, rheumatoid arthritis, and atherosclerosis. PMID:14568010

  16. Aromatase inhibitors in the treatment of endometriosis.

    PubMed

    Słopień, Radosław; Męczekalski, Błażej

    2016-03-01

    Endometriosis is a chronic inflammatory condition in which foci of endometrial tissue grow outside of the uterine cavity. Endometriosis was estimated to affect 176 million women of childbearing potential all over the world in 2010. The presence of extrauterine endometrial tissue is associated with pain and infertility. Typical symptoms of endometriosis include dysmenorrhoea, dyspareunia, heavy menstrual periods (menorrhagia), pelvic pain that is not related to menstrual cycles, dysuria, and chronic fatigue. Medical treatments for endometriosis include combined oral contraceptive pills, danazol, gestrinone, medroxyprogesterone acetate, and gonadotropin-releasing hormone agonists (aGnRHs). A new class of medications called aromatase inhibitors has been identified in recent years as potential therapeutic agents for endometriosis. This article provides general information about aromatase inhibitors, their use in gynaecology, and their adverse effects. In particular, the paper discusses the use of aromatase inhibitors in the treatment of endometriosis in postmenopausal women. Unlike oral contraceptives, gestagens, aGnRHs, and danazol, which suppress ovarian oestrogen synthesis, aromatase inhibitors inhibit mainly extra-ovarian synthesis of oestrogens. Therefore, the use of aromatase inhibitors seems to be particularly relevant in older patients, as most of the body's oestrogen is produced outside the ovaries after menopause. The paper discusses also the use of aromatase inhibitors in the treatment of pain associated with endometriosis and infertility caused by endometriosis. PMID:27095958

  17. Discovery of Novel Haloalkane Dehalogenase Inhibitors

    PubMed Central

    Buryska, Tomas; Daniel, Lukas; Kunka, Antonin; Brezovsky, Jan; Damborsky, Jiri

    2016-01-01

    Haloalkane dehalogenases (HLDs) have recently been discovered in a number of bacteria, including symbionts and pathogens of both plants and humans. However, the biological roles of HLDs in these organisms are unclear. The development of efficient HLD inhibitors serving as molecular probes to explore their function would represent an important step toward a better understanding of these interesting enzymes. Here we report the identification of inhibitors for this enzyme family using two different approaches. The first builds on the structures of the enzymes' known substrates and led to the discovery of less potent nonspecific HLD inhibitors. The second approach involved the virtual screening of 150,000 potential inhibitors against the crystal structure of an HLD from the human pathogen Mycobacterium tuberculosis H37Rv. The best inhibitor exhibited high specificity for the target structure, with an inhibition constant of 3 μM and a molecular architecture that clearly differs from those of all known HLD substrates. The new inhibitors will be used to study the natural functions of HLDs in bacteria, to probe their mechanisms, and to achieve their stabilization. PMID:26773086

  18. Discovering Anti-platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies

    PubMed Central

    Lombardi, Federica; Golla, Kalyan; Fitzpatrick, Darren J.; Casey, Fergal P.; Moran, Niamh; Shields, Denis C.

    2015-01-01

    Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators); inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling. PMID:25875950

  19. Corrosion inhibitors for solar heating and cooling systems

    NASA Technical Reports Server (NTRS)

    Humphries, T. S.

    1978-01-01

    Inhibitors which appeared promising in previous tests and additional inhibitors including several proprietary products were evaluated. Evaluation of the inhibitors was based on corrosion protection afforded an aluminum-mild steel-copper-stainless steel assembly in a hot corrosive water. Of the inhibitors tested two were found to be effective and show promise for protecting multimetallic solar heating systems.

  20. Potent pyrrolidine- and piperidine-based BACE-1 inhibitors

    SciTech Connect

    Iserloh, U.; Wu, Y.; Cumming, J.N.; Pan, J.; Wang, L.Y.; Stamford, A.W.; Kennedy, M.E.; Kuvelkar, R.; Chen, X.; Parker, E.M.; Strickland, C.; Voigt, J.

    2008-08-18

    Based on lead compound 1 identified from the patent literature, we developed novel patentable BACE-1 inhibitors by introducing a cyclic amine scaffold. Extensive SAR studies on both pyrrolidines and piperidines ultimately led to inhibitor 2f, one of the most potent inhibitors synthesized to date. The discovery and development of novel BACE-1 inhibitors incorporating a cyclic amine scaffold is described.

  1. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  2. Selective serotonin reuptake inhibitor exposure.

    PubMed

    Fitzgerald, Kevin T; Bronstein, Alvin C

    2013-02-01

    Many antidepressants inhibit serotonin or norepinephrine reuptake or both to achieve their clinical effect. The selective serotonin reuptake inhibitor class of antidepressants (SSRIs) includes citalopram, escitalopram (active enantiomer of citalopram), fluoxetine, fluvoxamine, paroxetine, and sertraline. The SSRIs are as effective as tricyclic antidepressants in treatment of major depression with less significant side effects. As a result, they have become the largest class of medications prescribed to humans for depression. They are also used to treat obsessive-compulsive disorder, panic disorders, alcoholism, obesity, migraines, and chronic pain. An SSRI (fluoxetine) has been approved for veterinary use in treatment of canine separation anxiety. SSRIs act specifically on synaptic serotonin concentrations by blocking its reuptake in the presynapse and increasing levels in the presynaptic membrane. Clinical signs of SSRI overdose result from excessive amounts of serotonin in the central nervous system. These signs include nausea, vomiting, mydriasis, hypersalivation, and hyperthermia. Clinical signs are dose dependent and higher dosages may result in the serotonin syndrome that manifests itself as ataxia, tremors, muscle rigidity, hyperthermia, diarrhea, and seizures. Current studies reveal no increase in appearance of any specific clinical signs of serotonin toxicity with regard to any SSRI medication. In people, citalopram has been reported to have an increased risk of electrocardiographic abnormalities. Diagnosis of SSRI poisoning is based on history, clinical signs, and response to therapy. No single clinical test is currently available to confirm SSRI toxicosis. The goals of treatment in this intoxication are to support the animal, prevent further absorption of the drug, support the central nervous system, control hyperthermia, and halt any seizure activity. The relative safety of the SSRIs in overdose despite the occurrence of serotonin syndrome makes them

  3. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    SciTech Connect

    Jin, Hyeon-Ok; Hong, Sung-Eun; Kim, Chang Soon; Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora; Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun; Park, In-Chul; Lee, Jin Kyung

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  4. Three Decades of β-Lactamase Inhibitors

    PubMed Central

    Drawz, Sarah M.; Bonomo, Robert A.

    2010-01-01

    Summary: Since the introduction of penicillin, β-lactam antibiotics have been the antimicrobial agents of choice. Unfortunately, the efficacy of these life-saving antibiotics is significantly threatened by bacterial β-lactamases. β-Lactamases are now responsible for resistance to penicillins, extended-spectrum cephalosporins, monobactams, and carbapenems. In order to overcome β-lactamase-mediated resistance, β-lactamase inhibitors (clavulanate, sulbactam, and tazobactam) were introduced into clinical practice. These inhibitors greatly enhance the efficacy of their partner β-lactams (amoxicillin, ampicillin, piperacillin, and ticarcillin) in the treatment of serious Enterobacteriaceae and penicillin-resistant staphylococcal infections. However, selective pressure from excess antibiotic use accelerated the emergence of resistance to β-lactam-β-lactamase inhibitor combinations. Furthermore, the prevalence of clinically relevant β-lactamases from other classes that are resistant to inhibition is rapidly increasing. There is an urgent need for effective inhibitors that can restore the activity of β-lactams. Here, we review the catalytic mechanisms of each β-lactamase class. We then discuss approaches for circumventing β-lactamase-mediated resistance, including properties and characteristics of mechanism-based inactivators. We next highlight the mechanisms of action and salient clinical and microbiological features of β-lactamase inhibitors. We also emphasize their therapeutic applications. We close by focusing on novel compounds and the chemical features of these agents that may contribute to a “second generation” of inhibitors. The goal for the next 3 decades will be to design inhibitors that will be effective for more than a single class of β-lactamases. PMID:20065329

  5. Secretion of high-mannose-type alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein by primary cultures of rat hepatocytes in the presence of the mannosidase I inhibitor 1-deoxymannojirimycin.

    PubMed

    Gross, V; Steube, K; Tran-Thi, T A; McDowell, W; Schwarz, R T; Decker, K; Gerok, W; Heinrich, P C

    1985-07-01

    Two different forms of alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein were found in primary cultures of rat hepatocytes. After a 2.5-h labeling period with [35S]methionine the high-mannose-type precursor of alpha 1-proteinase inhibitor (Mr 49000) and alpha 1-acid glycoprotein (Mr 39 000) and the mature-complex-type alpha 1-proteinase inhibitor (Mr 54 000) and alpha 1-acid glycoprotein (Mr 43 000-60 000) could be immunoprecipitated from the cells, but only the complex-type forms of the two glycoproteins were secreted into the hepatocyte media. When hepatocytes were incubated with the mannosidase I inhibitor 1-deoxymannojirimycin at a concentration of 4 mM, the 49 000-Mr form of alpha 1-proteinase inhibitor and the 39 000-Mr form of alpha 1-acid glycoprotein could be detected in the cells as well as in their media. Neither the secretion of alpha 1-proteinase inhibitor nor that of alpha 1-acid glycoprotein was impaired by 1-deoxymannojirimycin. While alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by control cells, were resistant to endoglucosaminidase H, alpha 1-proteinase inhibitor and alpha 1-acid glycoprotein, secreted by hepatocytes treated with 4 mM 1-deoxymannojirimycin, could be deglycosylated by endoglucosaminidase H. When the [3H]mannose-labeled oligosaccharides of alpha 1-proteinase inhibitor, secreted by 1-deoxymannojirimycin-treated hepatocytes, were cleaved off by endoglucosaminidase H and analyzed by Bio-Gel P-4 chromatography, they eluted at the position of Man9GlcNAc, indicating that mannosidase I had been efficiently inhibited. 1-Deoxymannojirimycin did not inhibit the synthesis or the cotranslational N-glycosylation of alpha 1-proteinase inhibitor or alpha 1-acid glycoprotein. PMID:3160588

  6. Versatile templates for the development of novel kinase inhibitors: Discovery of novel CDK inhibitors

    SciTech Connect

    Dwyer, Michael P.; Paruch, Kamil; Alvarez, Carmen; Doll, Ronald J.; Keertikar, Kerry; Duca, Jose; Fischmann, Thierry O.; Hruza, Alan; Madison, Vincent; Lees, Emma; Parry, David; Seghezzi, Wolfgang; Sgambellone, Nicole; Shanahan, Frances; Wiswell, Derek; Guzi, Timothy J.

    2008-06-30

    A series of four bicyclic cores were prepared and evaluated as cyclin-dependent kinase-2 (CDK2) inhibitors. From the in-vitro and cell-based analysis, the pyrazolo[1,5-a]pyrimidine core (represented by 9) emerged as the superior core for further elaboration in the identification of novel CDK2 inhibitors.

  7. Polyphenol oxidase inhibitor(s) from German cockroach (Blattella germanica) extract

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An extract from German cockroach appears effective in inhibiting browning on apples and potatoes. Successful identification of inhibitor(s) of PPO from German cockroach would be useful to the fruit and vegetable segments of the food industry, due to the losses they incur from enzymatic browning. Ide...

  8. Epidemiological aspects of inhibitor development redefine the clinical importance of inhibitors.

    PubMed

    van den Berg, H M

    2014-05-01

    Inhibitor development is a serious complication of treatment with coagulation products. Presently, 25-30% of all newly diagnosed patients with severe haemophilia A are diagnosed with inhibitors. An increasing number of genetic and non-genetic risk factors have been reported to be involved, although the impact of them in understanding the aetiology is still limited. Much attention has been focused on factor VIII products, but more recent studies show very little, if any, difference between class plasma and recombinant factor VIII products. More intensive treatment and higher dosing are probably more important factors. More than 10% of the inhibitors diagnosed in the last decade are of low titre. A first goal should be to understand their importance. It is argued that the impact of different risk factors should be studied in high-titre inhibitors to prevent dilution by non-significant low-titre inhibitors.

  9. Inhibitors Selective for Mycobacterial Versus Human Proteasomes

    SciTech Connect

    Lin, G.; Li, D; Sorio de Carvalho, L; Deng, H; Tao, H; Vogt, G; Wu, K; Schneider, J; Chidawanyika, T; et. al.

    2009-01-01

    Many anti-infectives inhibit the synthesis of bacterial proteins, but none selectively inhibits their degradation. Most anti-infectives kill replicating pathogens, but few preferentially kill pathogens that have been forced into a non-replicating state by conditions in the host. To explore these alternative approaches we sought selective inhibitors of the proteasome of Mycobacterium tuberculosis. Given that the proteasome structure is extensively conserved, it is not surprising that inhibitors of all chemical classes tested have blocked both eukaryotic and prokaryotic proteasomes, and no inhibitor has proved substantially more potent on proteasomes of pathogens than of their hosts. Here we show that certain oxathiazol-2-one compounds kill non-replicating M.?tuberculosis and act as selective suicide-substrate inhibitors of the M.?tuberculosis proteasome by cyclocarbonylating its active site threonine. Major conformational changes protect the inhibitor-enzyme intermediate from hydrolysis, allowing formation of an oxazolidin-2-one and preventing regeneration of active protease. Residues outside the active site whose hydrogen bonds stabilize the critical loop before and after it moves are extensively non-conserved. This may account for the ability of oxathiazol-2-one compounds to inhibit the mycobacterial proteasome potently and irreversibly while largely sparing the human homologue.

  10. Inhibitors in LPE growth of garnets

    NASA Astrophysics Data System (ADS)

    De Roode, W. H.; Robertson, J. M.

    1983-09-01

    The growth rate of LPE growth garnets can be reduced considerably by the addition of small amounts of group II oxides. This effect can be helpful for the controlled growth of very thin garnet films for sub-micron bubbles and optical devices. The largest effect was found with the addition of Mg 2+ and Ca 2+, resulting in a maximum decrease of the growth rate of approximately 70%. A semi-empirical formula was used to describe the growth rate as a function of the dipping temperature. The change in the growth rate on the addition of the inhibitor ion at constant temperature was found to be proportional to ( aMO)/( aMO+2 Ln 2O 3), where M is a group II element, Ln 2O 2 is the sum of the yttrium and RE oxides in the melt, and a is the inhibitor factor. The value of the inhibitor factor depends on both the inhibitor ion as well as the composition of the garnet. The lowering of the growth rate on the addition of an inhibitor ion is explained by the introduction of an extra growth resistance due to the charge compensation mechanism of the divalent ions. The influence of the different charge compensation possibilities in the garnet system is examined and the relative importance of these possibilities for charge compensation is discussed.

  11. Inhibitors of the Metalloproteinase Anthrax Lethal Factor.

    PubMed

    Goldberg, Allison B; Turk, Benjamin E

    2016-01-01

    Bacillus anthracis, a rod shaped, spore forming, gram positive bacteria, is the etiological agent of anthrax. B. anthracis virulence is partly attributable to two secreted bipartite protein toxins, which act inside host cells to disrupt signaling pathways important for host defense against infection. These toxins may also directly contribute to mortality in late stage infection. The zinc-dependent metalloproteinase anthrax lethal factor (LF) is a critical component of one of these protein toxins and a prime target for inhibitor development to produce anthrax therapeutics. Here, we describe recent efforts to identify specific and potent LF inhibitors. Derivatization of peptide substrate analogs bearing zinc-binding groups has produced potent and specific LF inhibitors, and X-ray crystallography of LFinhibitor complexes has provided insight into features required for high affinity binding. Novel inhibitor scaffolds have been identified through several approaches, including fragment-based drug discovery, virtual screening, and highthroughput screening of diverse compound libraries. Lastly, efforts to discover LF inhibitors have led to the development of new screening strategies, such as the use of full-length proteins as substrates, that may prove useful for other proteases as well. Overall, these efforts have led to a collection of chemically and mechanistically diverse molecules capable of inhibiting LF activity in vitro and in cells, as well as in animal models of anthrax infection. PMID:27072692

  12. Inhibitors of human immunodeficiency virus integrase.

    PubMed Central

    Fesen, M R; Kohn, K W; Leteurtre, F; Pommier, Y

    1993-01-01

    In an effort to further extend the number of targets for development of antiretroviral agents, we have used an in vitro integrase assay to investigate a variety of chemicals, including topoisomerase inhibitors, antimalarial agents, DNA binders, naphthoquinones, the flavone quercetin, and caffeic acid phenethyl ester as potential human immunodeficiency virus type 1 integrase inhibitors. Our results show that although several topoisomerase inhibitors--including doxorubicin, mitoxantrone, ellipticines, and quercetin--are potent integrase inhibitors, other topoisomerase inhibitors--such as amsacrine, etoposide, teniposide, and camptothecin--are inactive. Other intercalators, such as chloroquine and the bifunctional intercalator ditercalinium, are also active. However, DNA binding does not correlate closely with integrase inhibition. The intercalator 9-aminoacridine and the polyamine DNA minor-groove binders spermine, spermidine, and distamycin have no effect, whereas the non-DNA binders primaquine, 5,8-dihydroxy-1,4-naphthoquinone, and caffeic acid phenethyl ester inhibit the integrase. Caffeic acid phenethyl ester was the only compound that inhibited the integration step to a substantially greater degree than the initial cleavage step of the enzyme. A model of 5,8-dihydroxy-1,4-naphthoquinone interaction with the zinc finger region of the retroviral integrase protein is proposed. Images Fig. 2 PMID:8460151

  13. Resistance to AHAS inhibitor herbicides: current understanding.

    PubMed

    Yu, Qin; Powles, Stephen B

    2014-09-01

    Acetohydroxyacid synthase (AHAS) inhibitor herbicides currently comprise the largest site-of-action group (with 54 active ingredients across five chemical groups) and have been widely used in world agriculture since they were first introduced in 1982. Resistance evolution in weeds to AHAS inhibitors has been rapid and identified in populations of many weed species. Often, evolved resistance is associated with point mutations in the target AHAS gene; however non-target-site enhanced herbicide metabolism occurs as well. Many AHAS gene resistance mutations can occur and be rapidly enriched owing to a high initial resistance gene frequency, simple and dominant genetic inheritance and lack of major fitness cost of the resistance alleles. Major advances in the elucidation of the crystal structure of the AHAS (Arabidopsis thaliana) catalytic subunit in complex with various AHAS inhibitor herbicides have greatly improved current understanding of the detailed molecular interactions between AHAS, cofactors and herbicides. Compared with target-site resistance, non-target-site resistance to AHAS inhibitor herbicides is less studied and hence less understood. In a few well-studied cases, non-target-site resistance is due to enhanced rates of herbicide metabolism (metabolic resistance), mimicking that occurring in tolerant crop species and often involving cytochrome P450 monooxygenases. However, the specific herbicide-metabolising, resistance-endowing genes are yet to be identified in resistant weed species. The current state of mechanistic understanding of AHAS inhibitor herbicide resistance is reviewed, and outstanding research issues are outlined.

  14. Protease Inhibitors from Plants with Antimicrobial Activity

    PubMed Central

    Kim, Jin-Young; Park, Seong-Cheol; Hwang, Indeok; Cheong, Hyeonsook; Nah, Jae-Woon; Hahm, Kyung-Soo; Park, Yoonkyung

    2009-01-01

    Antimicrobial proteins (peptides) are known to play important roles in the innate host defense mechanisms of most living organisms, including plants, insects, amphibians and mammals. They are also known to possess potent antibiotic activity against bacteria, fungi, and even certain viruses. Recently, the rapid emergence of microbial pathogens that are resistant to currently available antibiotics has triggered considerable interest in the isolation and investigation of the mode of action of antimicrobial proteins (peptides). Plants produce a variety of proteins (peptides) that are involved in the defense against pathogens and invading organisms, including ribosome-inactivating proteins, lectins, protease inhibitors and antifungal peptides (proteins). Specially, the protease inhibitors can inhibit aspartic, serine and cysteine proteinases. Increased levels of trypsin and chymotrypsin inhibitors correlated with the plants resistance to the pathogen. Usually, the purification of antimicrobial proteins (peptides) with protease inhibitor activity was accomplished by salt-extraction, ultrafiltration and C18 reverse phase chromatography, successfully. We discuss the relation between antimicrobial and anti-protease activity in this review. Protease inhibitors from plants potently inhibited the growth of a variety of pathogenic bacterial and fungal strains and are therefore excellent candidates for use as the lead compounds for the development of novel antimicrobial agents. PMID:19582234

  15. Monoamine Reuptake Inhibitors in Parkinson's Disease

    PubMed Central

    Huot, Philippe; Fox, Susan H.; Brotchie, Jonathan M.

    2015-01-01

    The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia. PMID:25810948

  16. Human thromboxane synthase: comparative modeling and docking evaluation with the competitive inhibitors Dazoxiben and Ozagrel.

    PubMed

    Sathler, Plínio Cunha; Santana, Marcos; Lourenço, André Luiz; Rodrigues, Carlos Rangel; Abreu, Paula; Cabral, Lúcio Mendes; Castro, Helena Carla

    2014-08-01

    Thromboxane synthase (TXAS) is a P450 epoxygenase that synthesizes thromboxane A2 (TXA2), a potent mediator of platelet aggregation, vasoconstriction and bronchoconstriction. This enzyme plays an important role in several human diseases, including myocardial infarction, stroke, septic shock, asthma and cancer. Despite of the increasing interest on developing TXAS inhibitors, the structure and activity of TXAS are still not totally elucidated. In this study, we used a comparative molecular modeling approach to construct a reliable model of TXAS and analyze its interactions with Dazoxiben and Ozagrel, two competitive inhibitors. Our results were compatible with experimental published data, showing feasible cation-π interaction between the iron atom of the heme group of TXAS and the basic nitrogen atom of the imidazolyl group of those inhibitors. In the absence of the experimental structure of thromboxane synthase, this freely available model may be useful for designing new antiplatelet drugs for diseases related with TXA2.

  17. SHH inhibitors for the treatment of medulloblastoma.

    PubMed

    Samkari, Ayman; White, Jason; Packer, Roger

    2015-01-01

    Medulloblastoma is the most common malignant brain tumor of childhood. It is currently stratified into four molecular variants through the advances in transcriptional profiling. They include: wingless, sonic hedgehog (SHH), Group III, and Group IV. The SHH group is characterized by constitutive activation of the SHH signaling pathway, and genetically characterized by mutations in patched homolog 1 (PTCH1) or other downstream pathway mutations. SHH inhibitors have become of great clinical interest in treating SHH-driven medulloblastoma. Many inhibitors are currently in different stages of development, some already approved for other SHH-driven cancers, such as basal cell carcinoma. In vitro and in vivo medulloblastoma studies have shown efficacy and these findings have been translated into Phase I and II clinical trials. In this review, we present an overview of SHH medulloblastoma, as well as a discussion of currently available SHH inhibitors, and the challenges associated with their use. PMID:26027634

  18. LDL Cholesterol, Statins And PCSK 9 Inhibitors

    PubMed Central

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  19. LDL cholesterol, statins and PCSK 9 inhibitors.

    PubMed

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20-30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through 'Risk evaluation and Mitigation Strategy (REMS)'. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  20. Calcification inhibitors in human ligamentum flavum.

    PubMed

    Maruta, K; Ichimura, K; Matsui, H; Yamagami, T; Sano, A; Tsuji, H

    1993-01-01

    To examine the presence of substances which inhibit calcification in human ligamentum flavum, the inhibitory effect of an Na2HPO4 extract of the flavum was determined in terms of the in vitro calcium uptake of the ligamentum flavum matrix. Additionally, grafts of extracted and non-extracted dry ligamentum flavum matrices were transplanted into the dorsal muscles of rats, and calcification in the grafts was examined radiologically and histochemically. In order to determine if component cells of human ligamentum flavum produce calcification inhibitors, ligamentum flavum cells were cultured, and the crystal inhibitor activity of the culture medium was measured by a seed test which used hydroxyapatite as the nucleus of precipitation. The calcification reaction system demonstrated that the ligamentum flavum extract contains an inhibitory factor for calcium uptake by the ligamentum flavum matrix. The seed test revealed that human ligamentum flavum cells produce calcification inhibitor activity.

  1. Orally Bioavailable Potent Soluble Epoxide Hydrolase Inhibitors

    PubMed Central

    Hwang, Sung Hee; Tsai, Hsing-Ju; Liu, Jun-Yan; Morisseau, Christophe; Hammock, Bruce D.

    2008-01-01

    A series of N,N′-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane α to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 ± 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models. PMID:17616115

  2. Serotonin norepinephrine reuptake inhibitors: a pharmacological comparison.

    PubMed

    Sansone, Randy A; Sansone, Lori A

    2014-03-01

    The serotonin norepinephrine reuptake inhibitors are a family of antidepressants that inhibit the reuptake of both serotonin and norepinephrine. While these drugs are traditionally considered a group of inter-related antidepressants based upon reuptake inhibition, they generally display different chemical structures as well as different pharmacological properties. In this article, we discuss these and other differences among the serotonin norepinephrine reuptake inhibitors, including the year of approval by the United States Food and Drug Administration, generic availability, approved clinical indications, half-lives, metabolism and excretion, presence or not of active metabolites, dosing schedules, proportionate effects on serotonin and norepinephrine, and the timing of serotonin and norepinephrine reuptake (i.e., sequential or simultaneous). Again, while serotonin norepinephrine reuptake inhibitors are grouped as a family of antidepressants, they exhibit a surprising number of differences- differences that may ultimately relate to clinical nuances in patient care. PMID:24800132

  3. Novel hemagglutinin-based influenza virus inhibitors

    PubMed Central

    Shen, Xintian; Zhang, Xuanxuan

    2013-01-01

    Influenza virus has caused seasonal epidemics and worldwide pandemics, which caused tremendous loss of human lives and socioeconomics. Nowadays, only two classes of anti-influenza drugs, M2 ion channel inhibitors and neuraminidase inhibitors respectively, are used for prophylaxis and treatment of influenza virus infection. Unfortunately, influenza virus strains resistant to one or all of those drugs emerge frequently. Hemagglutinin (HA), the glycoprotein in influenza virus envelope, plays a critical role in viral binding, fusion and entry processes. Therefore, HA is a promising target for developing anti-influenza drugs, which block the initial entry step of viral life cycle. Here we reviewed recent understanding of conformational changes of HA in protein folding and fusion processes, and the discovery of HA-based influenza entry inhibitors, which may provide more choices for preventing and controlling potential pandemics caused by multi-resistant influenza viruses. PMID:23977436

  4. Cyclooxygenase-2 inhibitors: promise or peril?

    PubMed Central

    Mengle-Gaw, Laurel J; Schwartz, Benjamin D

    2002-01-01

    The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519

  5. Transgenic inhibitors of RNA interference in Drosophila.

    PubMed

    Chou, Yu-ting; Tam, Bergin; Linay, Fabien; Lai, Eric C

    2007-01-01

    RNA silencing functions as an adaptive antiviral defense in both plants and animals. In turn, viruses commonly encode suppressors of RNA silencing, which enable them to mount productive infection. These inhibitor proteins may be exploited as reagents with which to probe mechanisms and functions of RNA silencing pathways. In this report, we describe transgenic Drosophila strains that allow inducible expression of the viral RNA silencing inhibitors Flock House virus-B2, Nodamura virus-B2, vaccinia virus-E3L, influenza A virus-NS1 and tombusvirus P19. Some of these, especially the B2 proteins, are effective transgenic inhibitors of double strand RNA-induced gene silencing in flies. On the other hand, none of them is effective against the Drosophila microRNA pathway. Their functional selectivity makes these viral silencing proteins useful reagents with which to study biological functions of the Drosophila RNA interference pathway.

  6. Current and Novel Inhibitors of HIV Protease

    PubMed Central

    Pokorná, Jana; Machala, Ladislav; Řezáčová, Pavlína; Konvalinka, Jan

    2009-01-01

    The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed. PMID:21994591

  7. Identification of potent, selective KDM5 inhibitors.

    PubMed

    Gehling, Victor S; Bellon, Steven F; Harmange, Jean-Christophe; LeBlanc, Yves; Poy, Florence; Odate, Shobu; Buker, Shane; Lan, Fei; Arora, Shilpi; Williamson, Kaylyn E; Sandy, Peter; Cummings, Richard T; Bailey, Christopher M; Bergeron, Louise; Mao, Weifeng; Gustafson, Amy; Liu, Yichin; VanderPorten, Erica; Audia, James E; Trojer, Patrick; Albrecht, Brian K

    2016-09-01

    This communication describes the identification and optimization of a series of pan-KDM5 inhibitors derived from compound 1, a hit initially identified against KDM4C. Compound 1 was optimized to afford compound 20, a 10nM inhibitor of KDM5A. Compound 20 is highly selective for the KDM5 enzymes versus other histone lysine demethylases and demonstrates activity in a cellular assay measuring the increase in global histone 3 lysine 4 tri-methylation (H3K4me3). In addition compound 20 has good ADME properties, excellent mouse PK, and is a suitable starting point for further optimization. PMID:27476424

  8. Presence of aromatase inhibitors in cycads.

    PubMed

    Kowalska, M T; Itzhak, Y; Puett, D

    1995-07-28

    Cycads, the most primitive of the living gymnosperms, have been used and continue to be used for food and medicinal purposes by many cultures, although toxins must be removed before ingestion. In our quest to identify tropical plants that contain inhibitors of the cytochrome P-450 aromatase and thus may be efficacious in treating estrogen-dependent tumors, we have screened extracts from 5 species of cycad folia encompassing 3 genera: Cycas cairnsiana F. Muell., Cycas revoluta Thunb., Cycas rumphii Miq., Dioon spinulosum Dyer and Encephalartos ferox Bertol. All extracts were found to contain inhibitors of the human enzyme.

  9. Inhibition of elastase by a synthetic cotton-bound serine protease inhibitor: in vitro kinetics and inhibitor release.

    PubMed

    Edwards, J V; Bopp, A F; Batiste, S; Ullah, A J; Cohen, I K; Diegelmann, R F; Montante, S J

    1999-01-01

    A cotton-bound serine protease inhibitor of elastase (fiber-inhibitor) has been formulated for in vitro evaluation in chronic wound fluid. As a model to understand the properties of the inhibitor in wound dressings, the kinetic profile and in vitro release of the fiber-inhibitor formulation have been examined. The elastase inhibitor N-Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone was modified onto cotton cellulose fibers and assayed as a colloidal system. Amino acid analysis and reversed phase high performance liquid chromatography were compared as semiquantitative methods to assess elastase inhibitor release from the cotton fibers. The kinetics of inhibition was assessed on treated fibers of synthetic dressings such that a colloidal suspension of the fiber-inhibitor and elastase was employed as an assay. A dose-response relationship was observed in the kinetics of substrate hydrolysis catalyzed by three elastases: porcine pancreatic elastase, which was employed to model this approach; human leukocyte elastase; and elastase in human chronic wound fluid. Both freely dissolved and fiber-bound inhibitors were studied. The initial rates of substrate hydrolysis were inversely linear with freely dissolved inhibitor dose. The apparent first order rate constants, kobs, for the elastase-inhibitor complex were calculated from the kinetic profiles. The kobs for inhibitor bound enzyme varied as a function of inhibitor vs. enzyme concentration and based on the order of mixing of substrate, inhibitor and enzyme in the assay. Enzyme inhibition by the fiber-inhibitor was measured as inhibitor concentration at 50% inhibition (I50). I50 values measured from the colloidal assay with fiber-released inhibitor were within the same range to those for freely dissolved inhibitor. Inhibition of elastase activity in chronic wound fluid was observed with 1-5 mg of fiber-inhibitor formulation. This approach constitutes an in vitro assessment of synthetic serine protease inhibitors on

  10. Cyclic amidine sugars as transition-state analogue inhibitors of glycosidases: potent competitive inhibitors of mannosidases.

    PubMed

    Heck, Marie-Pierre; Vincent, Stéphane P; Murray, Brion W; Bellamy, François; Wong, Chi-Huey; Mioskowski, Charles

    2004-02-25

    A series of monocyclic glycoamidines bearing different exocyclic amine, alcohol, or alkyl functionalities and bicyclic amidines derived from D-glucose and D-mannose were synthesized and tested as inhibitors of various glycosidases. All the prepared compounds demonstrated good to excellent inhibition toward glycosidases. In particular, the biscationic D-mannoamidine 9b bearing an exocyclic ethylamine moiety proved to be a selective competitive inhibitor of alpha- and beta-mannosidases (K(i) = 6 nM) making it the most potent inhibitor of these glycosidases reported to date. A favorable B(2,5) boat conformation might explain the selectivity of mannosidase inhibition compared to other glycosidases.

  11. Effect of Chirality of Small Molecule Organofluorine Inhibitors of Amyloid Self-Assembly on Inhibitor Potency

    PubMed Central

    Sood, Abha; Abid, Mohammed; Hailemichael, Samson; Foster, Michelle; Török, Béla

    2009-01-01

    The effect of enantiomeric trifluromethyl-indolyl-acetic acid ethyl esters on the fibrillogenesis of Alzheimer's amyloid β (Aβ) peptide is described. These compounds have been previously identified as effective inhibitors of the Aβ self-assembly in their racemic form. Thioflavin-T Fluorescence Spectroscopy and Atomic Force Microscopy were applied to assess the potency of the chiral target compounds. Both enantiomers showed significant inhibition in the in vitro assays. The potency of the enantiomeric inhibitors appeared to be very similar to each other suggesting the lack of the stereospecific binding interactions between these small molecule inhibitors and the Aβ peptide. PMID:19880318

  12. Polyphenolic Compounds as Pancreatic Lipase Inhibitors.

    PubMed

    Buchholz, Tina; Melzig, Matthias F

    2015-07-01

    Obesity and its associated diseases such as diabetes mellitus and coronary heart diseases are a major challenge for our society. An important target for the treatment of obesity includes the development of inhibitors of nutrient digestion and absorption. Inhibition of pancreatic lipase and the associated reduction of lipid absorption is an attractive approach for the discovery of potent agents. Currently, the only clinically approved pharmacologic agent as pancreatic lipase inhibitor is Orlistat. However, its usage is compromised by unpleasant gastrointestinal adverse reactions (oily stools, oily spotting, flatulence). The use of botanical materials as a potential source of new drugs is of increasing importance and application. Natural products that are interesting for obesity treatment are generally considered to have less toxic and side effects than totally synthetic drugs. One of the most important sources of potential pancreatic lipase inhibitors represents the class of polyphenols. This article summarizes most studied subclasses of polyphenols including flavonoids, hydroxycinnamic acids, hydroxybenzoic acids and lignans with pancreatic lipase inhibitory effects. A structural comparison of potent inhibitors shows an increased inhibitory effect depending on number and position of phenolic hydroxyl groups, degree of polymerization and elimination of glycosylation during digestion. PMID:26132857

  13. Small Molecule Inhibitor of AICAR Transformylase Homodimerization

    PubMed Central

    Spurr, Ian B.; Birts, Charles N.; Cuda, Francesco; Benkovic, Stephen J; Blaydes, Jeremy P.; Tavassoli, Ali

    2012-01-01

    Aminoimidazole carboxamide ribonucleotide transformylase/inosine monophosphate cyclohydrolase (ATIC) is a bifunctional homodimeric enzyme that catalyses the last two steps of de novo purine biosynthesis. Homodimerization of ATIC, a protein-protein interaction with an interface of over 5000 Å2, is required for its aminoimidazole carboxamide ribonucleotide (AICAR) transformylase activity, with the active sites forming at the interface of the interacting proteins. Here, we report the development of a small-molecule inhibitor of AICAR transformylase that functions by preventing the homodimerization of ATIC. The compound is derived from a previously reported cyclic hexa-peptide inhibitor of AICAR transformylase (with a Ki of 17 μM), identified by high-throughput screening. The active motif of the cyclic peptide is identified as an arginine-tyrosine dipeptide, a capped analogue of which inhibits AICAR transformylase with a Ki of 84 μM. A library of non-natural analogues of this dipeptide was designed, synthesized, and assayed. The most potent compound inhibits AICAR transformylase with a Ki of 685 nM, a 25-fold improvement in activity from the parent cyclic peptide. The potential for this AICAR transformylase inhibitor in cancer therapy is assessed by studying its effect on the proliferation of a model breast cancer cell line. Using a non-radioactive proliferation assay and live cell imaging, a dose-dependent reduction in cell numbers and cell division rates was observed in cells treated with our ATIC dimerization inhibitor. PMID:22764122

  14. Alcalase rapeseed inhibitors: purification and partial characterization.

    PubMed

    Vioque, J; Sánchez-Vioque, R; Clemente, A; Pedroche, J; Mar Yust, M; Millán, F

    2001-01-01

    Extensive rapeseed protein hydrolysate obtained sequentially with Alcalase and Flavourzyme showed inhibitory activity towards Alcalase. Inhibitory activity decreased as the hydrolytic process progressed probably by heat denaturation and/or partial protease degradation. Alcalase rapeseed inhibitors were purified by gel filtration and subsequent ion exchange chromatography. They are composed of peptides of 8.4 and 6.1 kDa linked by interchain disulphide bonds, as observed by reducing SDS-PAGE, with a native molecular weight of 18 kDa. Aminoacid composition of the inhibitors was characterized by the high proportion of methionine (4.2%) and cysteine (4.6%). Alcalase inhibitors were partially resistant to heat treatment; after heating at 70 degrees C for 45 minutes more than 50% of the original inhibitory activity remained in the purified protein but after heating at 90 degrees C for 5 minutes, inhibitory activity decreased very fast to a basal level. The possible relation of these protease inhibitors with the 2S albumin storage proteins is discussed.

  15. Curcumin derivatives as HIV-1 protease inhibitors

    SciTech Connect

    Sui, Z.; Li, J.; Craik, C.S.; Ortiz de Montellano, P.R.

    1993-12-31

    Curcumin, a non-toxic natural compound from Curcuma longa, has been found to be an HIV-1 protease inhibitor. Some of its derivatives were synthesized and their inhibitory activity against the HIV-1 protease was tested. Curcumin analogues containing boron enhanced the inhibitory activity. At least of the the synthesized compounds irreversibly inhibits the HIV-1 protease.

  16. Therapeutic potential of peptide deformylase inhibitors.

    PubMed

    Chen, D; Yuan, Z

    2005-09-01

    Peptide deformylase (PDF) is an attractive target for antibacterial drug discovery. Progress in the biological characterisation of the enzyme, coupled with newly obtained mechanistic and structural insight, enabled the pharmaceutical industry to discover potent PDF inhibitors that can be considered as clinical development candidates for this new class of antibacterial agents. The in vitro and in vivo data for several lead PDF inhibitors suggest that the current PDF inhibitors are most suitable for the treatment of respiratory tract infections and they are not cross-resistant to the current clinically used antibiotics. Two PDF inhibitors, BB-83698 and VIC-104959, have progressed to Phase I clinical trials by intravenous and oral administration, respectively. Both of these compounds show promising in vitro and in vivo efficacy and an excellent safety profile. The pharmacokinetics in humans for both of the compounds suggest the possibility of a twice-daily dosing regimen for clinical use. Thus far, all of the data suggest a promising future for this new class of antibacterial agents.

  17. Cellulose biosynthesis inhibitors - a multifunctional toolbox.

    PubMed

    Tateno, Mizuki; Brabham, Chad; DeBolt, Seth

    2016-01-01

    In the current review, we examine the growing number of existing Cellulose Biosynthesis Inhibitors (CBIs) and based on those that have been studied with live cell imaging we group their mechanism of action. Attention is paid to the use of CBIs as tools to ask fundamental questions about cellulose biosynthesis.

  18. Novel proteinase inhibitor promotes resistance to insects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel Beta vulgaris serine proteinase inhibitor gene (BvSTI) and its protein are identified in response to insect feeding on B. vulgaris seedlings. BvSTI is cloned into an expression vector with constitutive promoter and transformed into Nicotiana benthamiana plants to assess BvSTI’s ability to ...

  19. Resistant mechanisms to BRAF inhibitors in melanoma

    PubMed Central

    Layos, Laura; Bugés, Cristina; de los Llanos Gil, María; Vila, Laia; Martínez-Balibrea, Eva; Martínez-Cardús, Anna

    2016-01-01

    Patients with advanced melanoma have traditionally had very poor prognosis. However, since 2011 better understanding of the biology and epidemiology of this disease has revolutionized its treatment, with newer therapies becoming available. These newer therapies can be classified into immunotherapy and targeted therapy. The immunotherapy arsenal includes inhibitors of CTLA4, PD-1 and PDL-1, while targeted therapy focuses on BRAF and MEK. BRAF inhibitors (vemurafenib, dabrafenib) have shown benefit in terms of overall survival (OS) compared to chemotherapy, and their combination with MEK inhibitors has recently been shown to improve progression-free survival (PFS), compared with monotherapy with BRAF inhibitors. However, almost 20% of patients initially do not respond, due to intrinsic resistance to therapy and, of those who do, most eventually develop mechanisms of acquired resistance, including reactivation of the MAP kinase pathway, persistent activation of receptor tyrosine kinase (RTKS) receptor, activation of phosphatidyinositol-3OH kinase, overexpression of epidermal growth factor receptor (EGFR), and interactions with the tumor microenvironment. Herein we comment in detail on mechanisms of resistance to targeted therapy and discuss the strategies to overcome them. PMID:27429963

  20. FAAH inhibitors in the limelight, but regrettably

    PubMed Central

    Mallet, Christophe; Dubray, Claude; Dualé, Christian

    2016-01-01

    Abstract. This short review focuses on the recent drug development of FAAH inhibitors, as recent serious adverse events have been reported in a phase I study with a compound of this class. The authors overview the potential interest in targeting FAAH inhibition, the current programs, and the available information on the recent dramatic events. PMID:27191771

  1. Cellulose biosynthesis inhibitors - a multifunctional toolbox.

    PubMed

    Tateno, Mizuki; Brabham, Chad; DeBolt, Seth

    2016-01-01

    In the current review, we examine the growing number of existing Cellulose Biosynthesis Inhibitors (CBIs) and based on those that have been studied with live cell imaging we group their mechanism of action. Attention is paid to the use of CBIs as tools to ask fundamental questions about cellulose biosynthesis. PMID:26590309

  2. Novel Cytoprotective Inhibitors for Apoptotic Endonuclease G

    PubMed Central

    Jang, Dae Song; Penthala, Narsimha R.; Apostolov, Eugene O.; Wang, Xiaoying; Crooks, Peter A.

    2015-01-01

    Apoptotic endonuclease G (EndoG) is responsible for DNA fragmentation both during and after cell death. Previous studies demonstrated that genetic inactivation of EndoG is cytoprotective against various pro-apoptotic stimuli; however, specific inhibitors for EndoG are not available. In this study, we have developed a high-throughput screening assay for EndoG and have used it to screen a chemical library. The screening resulted in the identification of two potent EndoG inhibitors, PNR-3-80 and PNR-3-82, which are thiobarbiturate analogs. As determined by their IC50s, the inhibitors are more potent than ZnCl2 or EDTA. They inhibit EndoG at one or two orders of magnitude greater than another apoptotic endonuclease, DNase I, and do not inhibit the other five tested cell death-related enzymes: DNase II, RNase A, proteinase, lactate dehydrogenase, and superoxide dismutase 1. Exposure of natural EndoG-expressing 22Rv1 or EndoG-overexpressing PC3 cells rendered them significantly resistant to Cisplatin and Docetaxel, respectively. These novel EndoG inhibitors have the potential to be utilized for amelioration of cell injuries in which participation of EndoG is essential. PMID:25401220

  3. Tetra- versus Pentavalent Inhibitors of Cholera Toxin**

    PubMed Central

    Fu, Ou; Pukin, Aliaksei V; van Ufford, H C Quarles; Branson, Thomas R; Thies-Weesie, Dominique M E; Turnbull, W Bruce; Visser, Gerben M; Pieters, Roland J

    2015-01-01

    The five B-subunits (CTB5) of the Vibrio cholerae (cholera) toxin can bind to the intestinal cell surface so the entire AB5 toxin can enter the cell. Simultaneous binding can occur on more than one of the monosialotetrahexosylganglioside (GM1) units present on the cell surface. Such simultaneous binding arising from the toxins multivalency is believed to enhance its affinity. Thus, blocking the initial attachment of the toxin to the cell surface using inhibitors with GM1 subunits has the potential to stop the disease. Previously we showed that tetravalent GM1 molecules were sub-nanomolar inhibitors of CTB5. In this study, we synthesized a pentavalent version and compared the binding and potency of penta- and tetravalent cholera toxin inhibitors, based on the same scaffold, for the first time. The pentavalent geometry did not yield major benefits over the tetravalent species, but it was still a strong inhibitor, and no major steric clashes occurred when binding the toxin. Thus, systems which can adopt more geometries, such as those described here, can be equally potent, and this may possibly be due to their ability to form higher-order structures or simply due to more statistical options for binding. PMID:26478842

  4. Haemophilia pseudotumours in patients with inhibitors.

    PubMed

    Caviglia, H; Candela, M; Landro, M E; Douglas Price, A L; Neme, D; Galatro, G A

    2015-09-01

    Development of inhibitors against factor VIII (FVIII) or FIX is the most serious complication of replacement therapy in patients with haemophilia. Haemophilic pseudotumours in a patient with inhibitors can lead to devastating consequences. The aim of this study is to show our experience in the treatment of 10 pseudotumours in 7 patients with inhibitors who were treated by the same multidisciplinary team in the period between January 2000 and March 2013. Seven severe haemophilia A patients were treated at the Haemophilia Foundation in Buenos Aires, Argentina, for 10 pseudotumours. Eight were bone pseudotumours and two soft tissue. All patients underwent imaging studies at baseline to assess the size and content of the lesion. The patients received Buenos Aires protocol as conservative treatment of their pseudotumours for 6 weeks, after which they were evaluated. Only one patient responded to conservative treatment. Surgery was performed on the others six patients, since their pseudotumours did not shrink to less than half their original size. Any bleeding in the musculoskeletal system must be treated promptly in order to prevent pseudotumours. When pseudotumours do appear in inhibitor patients, they can be surgically removed when patients received proper haemostatic coverage, improving the quality of life of these patients.

  5. Synthesis and Assays of Inhibitors of Methyltransferases.

    PubMed

    Cai, X-C; Kapilashrami, K; Luo, M

    2016-01-01

    Epigenetic regulation requires site-specific modification of the genome and is involved in multiple physiological processes and disease etiology. Methyltransferases, which catalyze the transfer of a methyl group from S-adenosyl-l-methionine (SAM) to various substrates, are critical components of the epigenetic machinery. This group of enzymes can methylate diverse substrates including DNA, RNA, proteins, and small-molecule metabolites. Their dysregulation has also been implicated in multiple disease states such as cancer, neurological, and cardiovascular disorders. Developing potent and selective small-molecule inhibitors of methyltransferases is valuable not only for therapeutic intervention but also for investigating the roles of these enzymes in disease progression. In this chapter, we will discuss the strategies of designing and synthesizing methyltransferases inhibitors based on the SAM scaffold. Following the section of inhibitor design, we will briefly review representative assays that are available to evaluate the potency of these inhibitors along with a detailed description of the most commonly used radiometric assay. PMID:27423865

  6. [Cyclooxygenase 2 inhibitors and colorectal cancer].

    PubMed

    Bernardeau-Mozer, Marianne; Chaussade, Stanislas

    2004-05-01

    Cyclooxygenase-2 (Cox2) is an inductible isoenzyme of cyclooxygenase undetectable in normal colonic mucosa and overexpressed in 80% colonic tumor. Several works in vitro and in vivo showed that Cox2 plays a key role in the multistep process of colorectal tumorigenesis such apoptosis inhibition of cellular proliferation and angiogenesis induction. So that Cox2 represent a potential molecular target in colorectal management and specific Cox2 inhibitors may be useful as chemopreventive as well as therapeutic agent in humans. In animals study Cox2 inhibitors was shown to be effective and in humans Cox2 inhibitors are approved by the Food and Drug Administration as an adjunct to endoscopic surveillance and surgery in patients with Familial Adenomatous Polyposis (FAP). The purpose of this article is to review the relationship between Cox2/Cox2 inhibitors and differents signaling pathways of colorectal carcinogenesis and to precise their possible molecular mechanisms of action. This work although review clinicals data of their efficacy as chemopreventive agent as well as therapeutic in the differents group at risk for colorectal cancer. PMID:15239336

  7. Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors.

    PubMed

    Fischer, Matthias; Kuckenberg, Markus; Kastilan, Robin; Muth, Jost; Gebhardt, Christiane

    2015-02-01

    Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, β-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications.

  8. Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors.

    PubMed

    Fischer, Matthias; Kuckenberg, Markus; Kastilan, Robin; Muth, Jost; Gebhardt, Christiane

    2015-02-01

    Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, β-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications. PMID:25260821

  9. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    SciTech Connect

    Igaki, Tatsushi; Suzuki, Yasuyuki; Tokushige, Naoko; Aonuma, Hiroka; Takahashi, Ryosuke . E-mail: ryosuket@kuhp.kyoto-u.ac.jp; Miura, Masayuki . E-mail: miura@mol.f.u-tokyo.ac.jp

    2007-05-18

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution.

  10. DNA Methyltransferases Inhibitors from Natural Sources.

    PubMed

    Zwergel, Clemens; Valente, Sergio; Mai, Antonello

    2016-01-01

    DNA methyltransferases (DNMTs) catalyze the methylation at cytosine-C5 mainly in a CpG dinucleotide context. Although DNA methylation is essential for fundamental processes like embryonic development or differentiation, aberrant expression and/or activities of DNMTs are involved in several pathologies, from neurodegeneration to cancer. DNMTs inhibition can arrest tumor growth, cells invasiveness and induce differentiation, whereas their increased expression is shown in numerous cancer types. Moreover, hypermethylated promoters of tumor suppressor genes lead to their silencing. Hence, the use of specific inhibitors of DNMT might reactivate those genes and stop or even reverse the aberrant cell processes. To date, the only approved DNMTs inhibitors for therapy belong to the nucleoside-based family of drugs, but they display relevant side effects as well as high chemical instability. Thus, there is a keen interest actually exists to develop novel, potent and safe inhibitors possessing a nonnucleoside structure. Increasing literature evidence is highlighting that natural sources could help the researchers to achieve this goal. Indeed, several polyphenols, flavonoids, antraquinones, and others are described able to inhibit DNMTs activity and/or expression, thus decreasing the methylation/silencing of different genes involved in tumorigenesis. These events can lead to re-expression of such genes and to cell death in diverse cancer cell lines. Epigallocatechin-3-gallate (1) and laccaic acid A (11) resulted the most effective DNMT1 inhibitors with submicromolar IC50 values, acting as competitive inhibitors. Compound 1 and 11 both displayed gene demethylation and re-activation in several cancers. However, all of the natural compounds described in this review showed important results, from gene reactivation to cell growth inhibition. Moreover, some of them displayed interesting activity even in rodent cancer models and very recently entered clinical trials. PMID:26303417

  11. Cost of care of haemophilia with inhibitors.

    PubMed

    Di Minno, M N D; Di Minno, G; Di Capua, M; Cerbone, A M; Coppola, A

    2010-01-01

    In Western countries, the treatment of patients with inhibitors is presently the most challenging and serious issue in haemophilia management, direct costs of clotting factor concentrates accounting for >98% of the highest economic burden absorbed for the healthcare of patients in this setting. Being designed to address questions of resource allocation and effectiveness, decision models are the golden standard to reliably assess the overall economic implications of haemophilia with inhibitors in terms of mortality, bleeding-related morbidity, and severity of arthropathy. However, presently, most data analyses stem from retrospective short-term evaluations, that only allow for the analysis of direct health costs. In the setting of chronic diseases, the cost-utility analysis, that takes into account the beneficial effects of a given treatment/healthcare intervention in terms of health-related quality of life, is likely to be the most appropriate approach. To calculate net benefits, the quality adjusted life year, that significantly reflects such health gain, has to be compared with specific economic impacts. Differences in data sources, in medical practice and/or in healthcare systems and costs, imply that most current pharmacoeconomic analyses are confined to a narrow healthcare payer perspective. Long-term/lifetime prospective or observational studies, devoted to a careful definition of when to start a treatment; of regimens (dose and type of product) to employ, and of inhibitor population (children/adults, low-responding/high responding inhibitors) to study, are thus urgently needed to allow for newer insights, based on reliable data sources into resource allocation, effectiveness and cost-utility analysis in the treatment of haemophiliacs with inhibitors.

  12. Peptidyl cyclopropenones: Reversible inhibitors, irreversible inhibitors, or substrates of cysteine proteases?

    PubMed Central

    Cohen, Meital; Bretler, Uriel; Albeck, Amnon

    2013-01-01

    Peptidyl cyclopropenones were previously introduced as selective cysteine protease reversible inhibitors. In the present study we synthesized one such peptidyl cyclopropenone and investigated its interaction with papain, a prototype cysteine protease. A set of kinetics, biochemical, HPLC, MS, and 13C-NMR experiments revealed that the peptidyl cyclopropenone was an irreversible inhibitor of the enzyme, alkylating the catalytic cysteine. In parallel, this cyclopropenone also behaved as an alternative substrate of the enzyme, providing a product that was tentatively suggested to be either a spiroepoxy cyclopropanone or a gamma-lactone. Thus, a single family of compounds exhibits an unusual variety of activities, being reversible inhibitors, irreversible inhibitors and alternative substrates towards enzymes of the same family. PMID:23553793

  13. Therapeutic substitution post-patent expiry: the cases of ACE inhibitors and proton pump inhibitors.

    PubMed

    Vandoros, Sotiris

    2014-05-01

    This paper examines whether there is a switch in total (originator and generic) consumption after generic entry from molecules that face generic competition towards other molecules of the same class, which are still in-patent. Data from six European countries for the time period 1991 to 2006 are used to study the cases of angiotensin-converting enzyme inhibitors and proton pump inhibitors. Empirical evidence shows that patent expiry of captopril and enalapril led to a switch in total (off-patent originator and generic) consumption towards other in-patent angiotensin-converting enzyme inhibitors, whereas patent expiry of omeprazole led to a switch in consumption towards other proton pump inhibitors. This phenomenon makes generic policies ineffective and results in an increase in pharmaceutical expenditure due to the absence of generic alternatives in the market of in-patent molecules.

  14. Neuroprotective Tri- and Tetracyclic BChE Inhibitors Releasing Reversible Inhibitors upon Carbamate Transfer

    PubMed Central

    2012-01-01

    Tri- and tetracyclic nitrogen-bridgehead compounds were designed and synthesized to yield micromolar cholinesterase (ChE) inhibitors. Structure–activity relationships identified potent compounds with butyrylcholinesterase selectivity. These compounds were selected as starting points for the design and synthesis of carbamate-based (pseudo)irreversible inhibitors. Compounds with superior inhibitory activity and selectivity were obtained and kinetically characterized also with regard to the velocity of enzyme carbamoylation. Structural elements were identified and introduced that additionally showed neuroprotective properties on a hippocampal neuronal cell line (HT-22) after glutamate-induced intracellular reactive oxygen species generation. We have identified potent and selective pseudoirreversible butyrylcholinesterase inhibitors that release reversible inhibitors with neuroprotective properties after carbamate transfer to the active site of cholinesterases. PMID:24900407

  15. Dermatologic adverse events to chemotherapeutic agents, Part 2: BRAF inhibitors, MEK inhibitors, and ipilimumab.

    PubMed

    Choi, Jennifer Nam

    2014-03-01

    The advent of novel targeted chemotherapeutic agents and immunotherapies has dramatically changed the arena of cancer treatment in recent years. BRAF inhibitors, MEK inhibitors, and ipilimumab are among the newer chemotherapy drugs that are being used at an increasing rate. Dermatologic adverse events to these medications are common, and it is important for dermatologists and oncologists alike to learn to recognize and treat such side effects in order to maintain both patients' quality of life and their anticancer treatment. This review describes the cutaneous side effects seen with BRAF inhibitors (eg, maculopapular eruption, photosensitivity, squamoproliferative growths, melanocytic proliferations), MEK inhibitors (eg, papulopustular eruption), and ipilimumab (eg, maculopapular eruption, vitiligo), with a mention of vismodegib and anti-PD-1 agents.

  16. Macrophage A2A Adenosine Receptors Are Essential to Protect from Progressive Kidney Injury.

    PubMed

    Truong, Luan D; Trostel, Jessica; McMahan, Rachel; Chen, Jiang-Fan; Garcia, Gabriela E

    2016-10-01

    A2A adenosine receptors (A2ARs) are endogenous inhibitor of inflammation. Macrophages that are key effectors of kidney disease progression express A2ARs. We investigated the role of A2ARs in kidney inflammation in a macrophage-mediated anti-glomerular basement membrane reactive serum-induced immune nephritis in A2AR-deficient mice. Sub-threshold doses of glomerular basement membrane-reactive serum induced more severe and prolonged kidney damage with higher levels of proinflammatory cytokines and greater accumulation of inflammatory cells in A2AR(-/-) mice than wild-type (WT) mice. To investigate the role of macrophage A2AR in progressive kidney injury, glomerulonephritis was induced in CD11b-DTR transgenic mice. Macrophages were selectively depleted in the established phase of the disease and reconstituted with macrophages from WT or A2AR-deficient mice and then treated with an A2AR agonist. In mice receiving WT macrophages and treated with an A2AR agonist, the glomerular cellularity, crescent formation, sclerotic glomeruli, and tubulointerstitial injury were significantly reduced compared with the control group. In contrast, in mice reconstituted with A2AR-deficient macrophages and treated with an A2AR agonist, the kidney injury was more severe with increased deposition of collagen I, III, and IV. These findings suggest that disruption of the protective A2AR amplifies inflammation to accelerate glomerular damage and endogenous macrophage A2ARs are essential to protect from progressive kidney fibrosis.

  17. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors

    PubMed Central

    Tan, Li; Wang, Jun; Tanizaki, Junko; Huang, Zhifeng; Aref, Amir R.; Rusan, Maria; Zhu, Su-Jie; Zhang, Yiyun; Ercan, Dalia; Liao, Rachel G.; Capelletti, Marzia; Zhou, Wenjun; Hur, Wooyoung; Kim, NamDoo; Sim, Taebo; Gaudet, Suzanne; Barbie, David A.; Yeh, Jing-Ruey Joanna; Yun, Cai-Hong; Hammerman, Peter S.; Mohammadi, Moosa; Jänne, Pasi A.; Gray, Nathanael S.

    2014-01-01

    The human FGF receptors (FGFRs) play critical roles in various human cancers, and several FGFR inhibitors are currently under clinical investigation. Resistance usually results from selection for mutant kinases that are impervious to the action of the drug or from up-regulation of compensatory signaling pathways. Preclinical studies have demonstrated that resistance to FGFR inhibitors can be acquired through mutations in the FGFR gatekeeper residue, as clinically observed for FGFR4 in embryonal rhabdomyosarcoma and neuroendocrine breast carcinomas. Here we report on the use of a structure-based drug design to develop two selective, next-generation covalent FGFR inhibitors, the FGFR irreversible inhibitors 2 (FIIN-2) and 3 (FIIN-3). To our knowledge, FIIN-2 and FIIN-3 are the first inhibitors that can potently inhibit the proliferation of cells dependent upon the gatekeeper mutants of FGFR1 or FGFR2, which confer resistance to first-generation clinical FGFR inhibitors such as NVP-BGJ398 and AZD4547. Because of the conformational flexibility of the reactive acrylamide substituent, FIIN-3 has the unprecedented ability to inhibit both the EGF receptor (EGFR) and FGFR covalently by targeting two distinct cysteine residues. We report the cocrystal structure of FGFR4 with FIIN-2, which unexpectedly exhibits a “DFG-out” covalent binding mode. The structural basis for dual FGFR and EGFR targeting by FIIN3 also is illustrated by crystal structures of FIIN-3 bound with FGFR4 V550L and EGFR L858R. These results have important implications for the design of covalent FGFR inhibitors that can overcome clinical resistance and provide the first example, to our knowledge, of a kinase inhibitor that covalently targets cysteines located in different positions within the ATP-binding pocket. PMID:25349422

  18. Ethynyl and Propynylpyrene Inhibitors of Cytochrome P450

    PubMed Central

    Zhu, Naijue; Lightsey, Danielle; Liu, Jiawang; Foroozesh, Maryam; Morgan, Kathleen M.; Stevens, Edwin D.

    2010-01-01

    The single-crystal X-ray structures and in vivo activities of three aryl acetylenic inhibitors of cytochromes P450 1A1, 1A2, 2A6, and 2B1 have been determined and are reported herein. These are 1-ethynylpyrene, 1-propy-nylpyrene, and 4-propynylpyrene. To investigate electronic influences on the mechanism of enzyme inhibition, the experimental electron density distribution of 1-ethynylpy-rene has been determined using low-temperature X-ray diffraction measurements, and the resulting net atomic charges compared with various theoretical calculations. A total of 82,390 reflections were measured with Mo Kα radiation to a (sinθ/λ)max = 0.985 Å−1. Averaging symmetry equivalent reflections yielded 8,889 unique reflections. A least squares refinement procedure was used in which multipole parameters were added to describe the distortions of the atomic electron distributions from spherical symmetry. A map of the model electron density distribution of 1-ethynylpyrene was obtained. Net atomic charges calculated from refined monopole population parameters yielded charges that showed that the terminal acetylenic carbon atom (C18) is more negative than the internal carbon (C17). Net atomic charges calculated by ab initio, density functional theory, and semi-empirical methods are consistent with this trend suggesting that the terminal acetylenic carbon atom is more likely to be the site of oxidation. This is consistent with the inhibition mechanism pathway that results in the formation of a reactive ketene intermediate. This is also consistent with assay results that determined that 1-ethynylpyrene acts as a mechanism-based inhibitor of P450s 1A1 and 1A2 and as a reversible inhibitor of P450 2B1. Crystallographic data: 1-ethynylpyrene, C18H10, P21/c, a = 14.571(2) Å, b = 3.9094(5) Å, c = 20.242(3) Å, β = 105.042(2)°, V = 1,113.5(2) Å3; 1-propynylpyrene, C19H12, P21/n, a = 8.970(2) Å, b = 10.136(1) Å, c = 14.080(3) Å, β = 99.77(2)°, V = 1,261.5(4) Å3; 4

  19. Inhibitor analysis for a solar heating and cooling system

    NASA Technical Reports Server (NTRS)

    Tabony, J. H.

    1977-01-01

    A study of potential corrosion inhibitors for the NASA solar heating and cooling system which uses aluminum solar panels is provided. Research consisted of testing using a dynamic corrosion system, along with an economic analysis of proposed corrosion inhibitors. Very good progress was made in finding a suitable inhibitor for the system.

  20. Controlled-release scale inhibitor for use in fracturing treatments

    SciTech Connect

    Powell, R.J.; Gdanski, R.D.; McCabe, M.A.; Buster, D.C.

    1995-11-01

    This paper describes results of laboratory and field testing of a solid, controlled-release scale inhibitor for use in fracturing treatments. Laboratory testing with a continuous flow apparatus has yielded inhibitor release rates under dynamic conditions. The inhibitor was tested to determine the minimum inhibitor concentration required to inhibit the formation of CaCO{sub 3}, CaSO{sub 4}, and BaSO{sub 4} scales in a brine. A model to predict the long-term release rate of the inhibitor was developed from data collected on the continuous flow apparatus. Data from treated wells will be compared with predictions of the model. Inhibitor release-rate testing in a continuous-flow apparatus shows that a solid, calcium-magnesium polyphosphate inhibitor has a sustained release profile. Release-rate testing shows that the inhibitor can be used up to 175 F. The inhibitor is compatible with both borate and zirconium crosslinked fracturing fluids and foamed fluids. The effective lifetime of the scale treatment can be predicted based on a model developed from laboratory data. The input variables required for the prediction include: temperature, water production, amount of inhibitor, minimum effective concentration of inhibitor for the specific brine. The model can be used to aid in the design of the scale inhibitor treatment.

  1. Deletion Mutations Keep Kinase Inhibitors in the Loop

    PubMed Central

    Freed, Daniel M.; Park, Jin H.; Radhakrishnan, Ravi; Lemmon, Mark A.

    2016-01-01

    Effective clinical application of conformationally selective kinase inhibitors requires tailoring drug choice to the tumor's activating mutation(s). In this issue of Cancer Cell, Foster et al. (2016) describe how activating deletions in BRAF, EGFR, and HER2 cause primary resistance to common inhibitors, suggesting strategies for improved inhibitor selection. PMID:27070691

  2. The effects of eicozanoids and lipoxygenase inhibitors on the lipid metabolism of aortic cells.

    PubMed

    Tertov, V V; Panosyan, A G; Akopov, S E; Orekhov, A N

    1988-01-01

    The influence of stable analogues of prostacyclin (carbacyclin) and thromboxane A2 (U46619), as well as lipoxygenase inhibitors, on the lipid metabolism of cells cultured from atherosclerotic intima of human aorta was analyzed. Carbacyclin and at concentrations of 200 ng/ml during 24 hours of incubation caused a 2-fold decrease in the level of cholesteryl esters and triglycerides in cells obtained from atherosclerotic lesion. Phospholipid and free cholesterol content did not change during the same period. Carbacylin decreased incorporation of [14C]oleate into intracellular neutral lipids. U46619 produced intracellular lipid accumulation. U46619 stimulated uptake [14C]oleate into triglycerides and cholesteryl esters. Two lipoxygenase inhibitors possessed "antiatherosclerotic" activity in primary culture significantly reducing cholesteryl ester content of cells isolated from atherosclerotic lesions. PMID:3150271

  3. Serine protease inhibitors of parasitic helminths.

    PubMed

    Molehin, Adebayo J; Gobert, Geoffrey N; McManus, Donald P

    2012-05-01

    Serine protease inhibitors (serpins) are a superfamily of structurally conserved proteins that inhibit serine proteases and play key physiological roles in numerous biological systems such as blood coagulation, complement activation and inflammation. A number of serpins have now been identified in parasitic helminths with putative involvement in immune regulation and in parasite survival through interference with the host immune response. This review describes the serpins and smapins (small serine protease inhibitors) that have been identified in Ascaris spp., Brugia malayi, Ancylostoma caninum Onchocerca volvulus, Haemonchus contortus, Trichinella spiralis, Trichostrongylus vitrinus, Anisakis simplex, Trichuris suis, Schistosoma spp., Clonorchis sinensis, Paragonimus westermani and Echinococcus spp. and discusses their possible biological functions, including roles in host-parasite interplay and their evolutionary relationships. PMID:22310379

  4. Penicillin inhibitors of purple acid phosphatase.

    PubMed

    Faridoon; Hussein, Waleed M; Ul Islam, Nazar; Guddat, Luke W; Schenk, Gerhard; McGeary, Ross P

    2012-04-01

    Purple acid phosphatases (PAPs) are binuclear metallohydrolases that have a multitude of biological functions and are found in fungi, bacteria, plants and animals. In mammals, PAP activity is linked with bone resorption and over-expression can lead to bone disorders such as osteoporosis. PAP is therefore an attractive target for the development of drugs to treat this disease. A series of penicillin conjugates, in which 6-aminopenicillanic acid was acylated with aromatic acid chlorides, has been prepared and assayed against pig PAP. The binding mode of most of these conjugates is purely competitive, and some members of this class have potencies comparable to the best PAP inhibitors yet reported. The structurally related penicillin G was shown to be neither an inhibitor nor a substrate for pig PAP. Molecular modelling has been used to examine the binding modes of these compounds in the active site of the enzyme and to rationalise their activities.

  5. mTOR inhibitors in cancer therapy

    PubMed Central

    Xie, Jianling; Wang, Xuemin; Proud, Christopher G.

    2016-01-01

    The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology.

  6. Replacing sulfa drugs with novel DHPS inhibitors.

    PubMed

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-07-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target. PMID:23859210

  7. New tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates.

    PubMed

    Kim, Young-Jin; Chung, Joo Eun; Kurisawa, Motoichi; Uyama, Hiroshi; Kobayashi, Shiro

    2004-01-01

    In this study, new tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates, have been developed. Tyrosinase is a copper-containing enzyme that catalyzes the hydroxylation of a monophenol (monophenolase activity) and the oxidation of an o-diphenol (diphenolase activity). In the measurement of tyrosinase inhibition activity, (+)-catechin acted as substrate and cofactor of tyrosinase. On the other hand, the polycondensates inhibited the tyrosine hydroxylation and L-DOPA oxidation by chelation to the active site of tyrosinase. The UV-visible spectrum of a mixture of tyrosinase and the polycondensate exhibited a characteristic shoulder peak ascribed to the chelation of the polycondensate to the active site of tyrosinase. Furthermore, circular dichroism measurement showed a small red shift of the band due to the interaction between tyrosinase and the polycondensate. These data support that the polycondensate acts as an inhibitor of tyrosinase. PMID:15003008

  8. mTOR inhibitors in cancer therapy

    PubMed Central

    Xie, Jianling; Wang, Xuemin; Proud, Christopher G.

    2016-01-01

    The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology. PMID:27635236

  9. Automated colorimetric screen for apyrase inhibitors.

    PubMed

    Windsor, J B; Thomas, C; Hurley, L; Roux, S J; Lloyd, A M

    2002-11-01

    Apyrases are enzymes that efficiently hydrolyze ATP and ADP and may operate both inside and outside the cell. Although apyrases are important to a variety of cellular mechanisms and uses in industry, there are no available apyrase-specific inhibitors. Colorimetric assays based on the Fiske-Subbarow method for measuring inorganic phosphate are able to detect the release of inorganic phosphate from ATP and other nucleotides. We found that this type of assay could be automated and used to screen for apyrase-inhibiting compounds by assaying for a reduction in released phosphate in the presence of potential inhibitors. The automation of this assay allowed for the successful screening of a commercially available compound library. Several low molecular weight compounds were identified that, when used at micromolar concentrations, effectively inhibited apyrase activity.

  10. Replacing sulfa drugs with novel DHPS inhibitors.

    PubMed

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-07-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target.

  11. SGLT2 Inhibitors: Benefit/Risk Balance.

    PubMed

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

  12. Proteasome Inhibitors Block Development of Plasmodium spp.

    PubMed Central

    Gantt, Soren M.; Myung, Joon Mo; Briones, Marcelo R. S.; Li, Wei Dong; Corey, E. J.; Omura, Satoshi; Nussenzweig, Victor; Sinnis, Photini

    1998-01-01

    Proteasomes degrade most of the proteins inside eukaryotic cells, including transcription factors and regulators of cell cycle progression. Here we show that nanomolar concentrations of lactacystin, a specific irreversible inhibitor of the 20S proteasome, inhibit development of the exoerythrocytic and erythrocytic stages of the malaria parasite. Although lactacystin-treated Plasmodium berghei sporozoites are still invasive, their development into exoerythrocytic forms (EEF) is inhibited in vitro and in vivo. Erythrocytic schizogony of P. falciparum in vitro is also profoundly inhibited when drug treatment of the synchronized parasites is prior, but not subsequent, to the initiation of DNA synthesis, suggesting that the inhibitory effect of lactacystin is cell cycle specific. Lactacystin reduces P. berghei parasitemia in rats, but the therapeutic index is very low. Along with other studies showing that lactacystin inhibits stage-specific transformation in Trypanosoma and Entamoeba spp., these findings highlight the potential of proteasome inhibitors as drugs for the treatment of diseases caused by protozoan parasites. PMID:9756786

  13. Prospective therapeutic applications of p53 inhibitors

    SciTech Connect

    Gudkov, Andrei V. . E-mail: gudkov@ccf.org; Komarova, Elena A.

    2005-06-10

    p53, in addition to being a key cancer preventive factor, is also a determinant of cancer treatment side effects causing excessive apoptotic death in several normal tissues during cancer therapy. p53 inhibitory strategy has been suggested to protect normal tissues from chemo- and radiotherapy, and to treat other pathologies associated with stress-mediated activation of p53. This strategy was validated by isolation and testing of small molecule p53 inhibitor pifithrin-{alpha} that demonstrated broad tissue protecting capacity. However, in some normal tissues and tumors p53 plays protective role by inducing growth arrest and preventing cells from premature entrance into mitosis and death from mitotic catastrophe. Inhibition of this function of p53 can sensitize tumor cells to chemo- and radiotherapy, thus opening new potential application of p53 inhibitors and justifying the need in pharmacological agents targeting specifically either pro-apoptotic or growth arrest functions of p53.

  14. Protein synthesis inhibitor from potato tuber

    SciTech Connect

    Romaen, R. )

    1989-04-01

    A protein fraction capable of inhibit in vitro protein synthesis was found in potato tubers in fresh and wounded tissue. Inhibitor activity from fresh tissue decays with wounding. Inhibition activity was detected absorbed to ribsomal fraction and cytosol of potato tuber tissue by a partially reconstituted in vitro system from potato tuber and wheat germ. Adsorbed ribosomal fraction was more suitable of purification. This fraction was washed from ribosomes with 0.3M KCl, concentrated with ammonium sulfate precipitation and purified through sephadex G100 and sephadex G-75 columns chromatography. After 61 fold purification adsorbed protein fraction can inhibit germination of maize, wheat and sesame seeds, as well as {sup 3}H-leucine incorporation into protein by imbibed maize embryos. Inhibition activity was lost by temperature, alkali and protease-K hydrolysis. Preliminar analysis could not show presence of reductor sugars. Physiological role of this inhibitor in relation to rest and active tissue remains to be studied.

  15. mTOR inhibitors in cancer therapy.

    PubMed

    Xie, Jianling; Wang, Xuemin; Proud, Christopher G

    2016-01-01

    The mammalian target of rapamycin, mTOR, plays key roles in cell growth and proliferation, acting at the catalytic subunit of two protein kinase complexes: mTOR complexes 1 and 2 (mTORC1/2). mTORC1 signaling is switched on by several oncogenic signaling pathways and is accordingly hyperactive in the majority of cancers. Inhibiting mTORC1 signaling has therefore attracted great attention as an anti-cancer therapy. However, progress in using inhibitors of mTOR signaling as therapeutic agents in oncology has been limited by a number of factors, including the fact that the classic mTOR inhibitor, rapamycin, inhibits only some of the effects of mTOR; the existence of several feedback loops; and the crucial importance of mTOR in normal physiology. PMID:27635236

  16. Replacing sulfa drugs with novel DHPS inhibitors

    PubMed Central

    Hammoudeh, Dalia I; Zhao, Ying; White, Stephen W; Lee, Richard E

    2013-01-01

    More research effort needs to be invested in antimicrobial drug development to address the increasing threat of multidrug-resistant organisms. The enzyme DHPS has been a validated drug target for over 70 years as the target for the highly successful sulfa drugs. The use of sulfa drugs has been compromised by the widespread presence of resistant organisms and the adverse side effects associated with their use. Despite the large amount of structural information available for DHPS, few recent publications address the possibility of using this knowledge for novel drug design. This article reviews the relevant papers and patents that report promising new small-molecule inhibitors of DHPS, and discuss these data in light of new insights into the DHPS catalytic mechanism and recently determined crystal structures of DHPS bound to potent small-molecule inhibitors. This new functional understanding confirms that DHPS deserves further consideration as an antimicrobial drug target. PMID:23859210

  17. Inhibitor prevents corrosion, scale in Chinese waterflood

    SciTech Connect

    Yong, W.; Jianhua, W. )

    1994-03-14

    An imidazoline derivative-based series inhibitor has prevented both corrosion and scale formation in produced-water treatment and water-injection equipment in China National Petroleum Co.'s (CNPC) Shengli oil field. Development of the inhibitor started in 1986, and after successful field trials the chemical is now being extensively applied. To increase oil recovery, water injection is widely used in China's onshore oil fields. Oil production in the Shengli oil field, for example, requires injection of about 4 bbl of water/1 bbl of oil produced. The large volumes of produced formation water contain many substances that can cause serious corrosion and scale. Also, the makeup water from other sources, subsurface or surface, complicates water handling. The paper discusses the following: corrosion and scale, oxygen, carbon dioxide, H[sub 2]S and sulfur reducing bacteria, temperature, inhibition, field tests, applications, and economics.

  18. Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: focus on cytochrome P450 2C19.

    PubMed

    Zvyaga, Tatyana; Chang, Shu-Ying; Chen, Cliff; Yang, Zheng; Vuppugalla, Ragini; Hurley, Jeremy; Thorndike, Denise; Wagner, Andrew; Chimalakonda, Anjaneya; Rodrigues, A David

    2012-09-01

    Six proton pump inhibitors (PPIs), omeprazole, lansoprazole, esomeprazole, dexlansoprazole, pantoprazole, and rabeprazole, were shown to be weak inhibitors of cytochromes P450 (CYP3A4, -2B6, -2D6, -2C9, -2C8, and -1A2) in human liver microsomes. In most cases, IC₅₀ values were greater than 40 μM, except for dexlansoprazole and lansoprazole with CYP1A2 (IC₅₀ = ∼8 μM) and esomeprazole with CYP2C8 (IC₅₀ = 31 μM). With the exception of CYP2C19 inhibition by omeprazole and esomeprazole (IC₅₀ ratio, 2.5 to 5.9), there was no evidence for a marked time-dependent shift in IC₅₀ (IC₅₀ ratio, ≤ 2) after a 30-min preincubation with NADPH. In the absence of preincubation, lansoprazole (IC₅₀ = 0.73 μM) and esomeprazole (IC₅₀ = 3.7 μM) were the most potent CYP2C19 inhibitors, followed by dexlansoprazole and omeprazole (IC₅₀ = ∼7.0 μM). Rabeprazole and pantoprazole (IC₅₀ = ≥ 25 μM) were the weakest. A similar ranking was obtained with recombinant CYP2C19. Despite the IC₅₀ ranking, after consideration of plasma levels (static and dynamic), protein binding, and metabolism-dependent inhibition, it is concluded that omeprazole and esomeprazole are the most potent CYP2C19 inhibitors. This was confirmed after the incubation of the individual PPIs with human primary hepatocytes (in the presence of human serum) and by monitoring their impact on diazepam N-demethylase activity at a low concentration of diazepam (2 μM). Data described herein are consistent with reports that PPIs are mostly weak inhibitors of cytochromes P450 in vivo. However, two members of the PPI class (esomeprazole and omeprazole) are more likely to serve as clinically relevant inhibitors of CYP2C19.

  19. Evaluation of small molecule SecA inhibitors against methicillin-resistant Staphylococcus aureus.

    PubMed

    Jin, Jinshan; Cui, Jianmei; Chaudhary, Arpana Sagwal; Hsieh, Ying-Hsin; Damera, Krishna; Zhang, Hao; Yang, Hsiuchin; Wang, Binghe; Tai, Phang C

    2015-11-01

    Due to the emergence and rapid spread of drug resistance in bacteria, there is an urgent need for the development of novel antimicrobials. SecA, a key component of the general bacterial secretion system required for viability and virulence, is an attractive antimicrobial target. Earlier we reported that systematical dissection of a SecA inhibitor, Rose Bengal (RB), led to the development of novel small molecule SecA inhibitors active against Escherichia coli and Bacillus subtilis. In this study, two potent RB analogs were further evaluated for activities against methicillin-resistant Staphylococcus aureus (MRSA) strains and for their mechanism of actions. These analogs showed inhibition on the ATPase activities of S. aureus SecA1 (SaSecA1) and SecA2 (SaSecA2), and inhibition of SaSecA1-dependent protein-conducting channel. Moreover, these inhibitors reduce the secretion of three toxins from S. aureus and exert potent bacteriostatic effects against three MRSA strains. Our best inhibitor SCA-50 showed potent concentration-dependent bactericidal activity against MRSA Mu50 strain and very importantly, 2-60 fold more potent inhibitory effect on MRSA Mu50 than all the commonly used antibiotics including vancomycin, which is considered the last resort option in treating MRSA-related infections. Protein pull down experiments further confirmed SaSecA1 as a target. Deletion or overexpression of NorA and MepA efflux pumps had minimal effect on the antimicrobial activities against S. aureus, indicating that the effects of SecA inhibitors were not affected by the presence of these efflux pumps. Our studies show that these small molecule analogs target SecA functions, have potent antimicrobial activities, reduce the secretion of toxins, and have the ability to overcome the effect efflux pumps, which are responsible for multi-drug resistance. Thus, targeting SecA is an attractive antimicrobial strategy against MRSA.

  20. A Bacterial Cell Shape-Determining Inhibitor.

    PubMed

    Liu, Yanjie; Frirdich, Emilisa; Taylor, Jennifer A; Chan, Anson C K; Blair, Kris M; Vermeulen, Jenny; Ha, Reuben; Murphy, Michael E P; Salama, Nina R; Gaynor, Erin C; Tanner, Martin E

    2016-04-15

    Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials

  1. Inhibitors of the AAA+ Chaperone p97

    PubMed Central

    Chapman, Eli; Maksim, Nick; de la Cruz, Fabian; La Clair, James J.

    2015-01-01

    It is remarkable that a pathway as ubiquitous as protein quality control can be targeted to treat cancer. Bortezomib, an inhibitor of the proteasome, was first approved by the US Food and Drug Administration (FDA) more than 10 years ago to treat refractory myeloma and later extended to lymphoma. Its use has increased the survival rate of myeloma patients by as much as three years. This success was followed with the recent accelerated approval of the natural product derived proteasome inhibitor carfilzomib (Kyprolis®), which is used to treat patients with bortezomib-resistant multiple myeloma. The success of these two drugs has validated protein quality control as a viable target to fight select cancers, but begs the question why are proteasome inhibitors limited to lymphoma and myeloma? More recently, these limitations have encouraged the search for additional targets within the protein quality control system that might offer heightened cancer cell specificity, enhanced clinical utility, a lower rate of resistance, reduced toxicity, and mitigated side effects. One promising target is p97, an ATPase associated with various cellular activities (AAA+) chaperone. p97 figures prominently in protein quality control as well as serving a variety of other cellular functions associated with cancer. More than a decade ago, it was determined that up-regulation of p97 in many forms of cancer correlates with a poor clinical outcome. Since these initial discoveries, a mechanistic explanation for this observation has been partially illuminated, but details are lacking. Understandably, given this clinical correlation, myriad roles within the cell, and its importance in protein quality control, p97 has emerged as a potential therapeutic target. This review provides an overview of efforts towards the discovery of small molecule inhibitors of p97, offering a synopsis of efforts that parallel the excellent reviews that currently exist on p97 structure, function, and physiology. PMID

  2. Corrosion protection with eco-friendly inhibitors

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad

    2011-12-01

    Corrosion occurs as a result of the interaction of a metal with its environment. The extent of corrosion depends on the type of metal, the existing conditions in the environment and the type of aggressive ions present in the medium. For example, CO3‑2 and NO‑3 produce an insoluble deposit on the surface of iron, resulting in the isolation of metal and consequent decrease of corrosion. On the other hand, halide ions are adsorbed selectively on the metal surface and prevent formation of the oxide phase on the metal surface, resulting in continuous corrosion. Iron, aluminum and their alloys are widely used, both domestically and industrially. Linear alkylbenzene and linear alkylbenzene sulfonate are commonly used as detergents. They have also been found together in waste water. It is claimed that these chemicals act as inhibitors for stainless steel and aluminum. Release of toxic gases as a result of corrosion in pipelines may lead in certain cases to air pollution and possible health hazards. Therefore, there are two ways to look at the relationship between corrosion and pollution: (i) corrosion of metals and alloys due to environmental pollution and (ii) environmental pollution as a result of corrosion protection. This paper encompasses the two scenarios and possible remedies for various cases, using 'green' inhibitors obtained either from plant extracts or from pharmaceutical compounds. In the present study, the effect of piperacillin sodium as a corrosion inhibitor for mild steel was investigated using a weight-loss method as well as a three-electrode dc electrochemical technique. It was found that the corrosion rate decreased as the concentration of the inhibitor increased up to 9×10‑4 M 93% efficiency was exhibited at this concentration.

  3. Monoamine oxidase inhibitors from Gentiana lutea.

    PubMed

    Haraguchi, Hiroyuki; Tanaka, Yasumasa; Kabbash, Amal; Fujioka, Toshihiro; Ishizu, Takashi; Yagi, Akira

    2004-08-01

    Three monoamine oxidase (MAO) inhibitors were isolated from Gentiana lutea. Their structures were elucidated to be 3-3''linked-(2'-hydroxy-4-O-isoprenylchalcone)-(2'''-hydroxy-4''-O-isoprenyldihydrochalcone) (1), 2-methoxy-3-(1,1'-dimethylallyl)-6a,10a-dihydrobenzo(1,2-c)chroman-6-one and 5-hydroxyflavanone. These compounds, and the hydrolysis product of 1, displayed competitive inhibitory properties against MAO-B which was more effective than MAO-A.

  4. Trial Watch: Proteasomal inhibitors for anticancer therapy

    PubMed Central

    Obrist, Florine; Manic, Gwenola; Kroemer, Guido; Vitale, Ilio; Galluzzi, Lorenzo

    2015-01-01

    The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients. PMID:27308423

  5. Quinoxaline derivatives: novel and selective butyrylcholinesterase inhibitors.

    PubMed

    Zeb, Aurang; Hameed, Abdul; Khan, Latifullah; Khan, Imran; Dalvandi, Kourosh; Choudhary, M Iqbal; Basha, Fatima Z

    2014-01-01

    Alzheimer's disease (AD) is a progressive brain disorder which occurs due to lower levels of acetylcholine (ACh) neurotransmitters, and results in a gradual decline in memory and other cognitive processes. Acetycholinesterase (AChE) and butyrylcholinesterase (BChE) are considered to be primary regulators of the ACh levels in the brain. Evidence shows that AChE activity decreases in AD, while activity of BChE does not change or even elevate in advanced AD, which suggests a key involvement of BChE in ACh hydrolysis during AD symptoms. Therefore, inhibiting the activity of BChE may be an effective way to control AD associated disorders. In this regard, a series of quinoxaline derivatives 1-17 was synthesized and biologically evaluated against cholinesterases (AChE and BChE) and as well as against α- chymotrypsin and urease. The compounds 1-17 were found to be selective inhibitors for BChE, as no activity was found against other enzymes. Among the series, compounds 6 (IC50 = 7.7 ± 1.0 µM) and 7 (IC50 = 9.7 ± 0.9 µM) were found to be the most active inhibitors against BChE. Their IC50 values are comparable to the standard, galantamine (IC50 = 6.6 ± 0.38 µM). Their considerable BChE inhibitory activity makes them selective candidates for the development of BChE inhibitors. Structure-activity relationship (SAR) of this new class of selective BChE inhibitors has been discussed.

  6. Serendipity in discovery of proteasome inhibitors.

    PubMed

    Dunn, Derek; Iqbal, Mohamed; Husten, Jean; Ator, Mark A; Chatterjee, Sankar

    2012-05-15

    Among its various catalytic activities, the 'chymotrypsin-like' activity of the proteasome, a large multicatalytic proteinase complex has emerged as the focus of drug discovery efforts in cancer therapy. Herein, a series of first generation (2S, 3R)-2-amino-3-hydroxybutyric acid derived proteasome inhibitors that were discovered serendipitously en route to original goal of generating a series of sterically constrained oxazoline derivatives has been reported. PMID:22503349

  7. Rust Inhibitor And Fungicide For Cooling Systems

    NASA Technical Reports Server (NTRS)

    Adams, James F.; Greer, D. Clay

    1988-01-01

    Mixture of benzotriazole, benzoic acid, and fungicide prevents growth of rust and fungus. Water-based cooling mixture made from readily available materials prevents formation of metallic oxides and growth of fungi in metallic pipes. Coolant remains clear and does not develop thick sludge tending to collect in low points in cooling systems with many commercial rust inhibitors. Coolant compatible with iron, copper, aluminum, and stainless steel. Cannot be used with cadmium or cadmium-plated pipes.

  8. Immune Checkpoint Inhibitors in Older Adults.

    PubMed

    Elias, Rawad; Morales, Joshua; Rehman, Yasser; Khurshid, Humera

    2016-08-01

    Cancer is primarily a disease of older adults. The treatment of advanced stage tumors usually involves the use of systemic agents that may be associated with significant risk of toxicity, especially in older patients. Immune checkpoint inhibitors are newcomers to the oncology world with improved efficacy and better safety profiles when compared to traditional cytotoxic drugs. This makes them an attractive treatment option. While there are no elderly specific trials, this review attempts to look at the current available data from a geriatric oncology perspective. We reviewed data from phase III studies that led to newly approved indications of checkpoint inhibitors in non-small cell lung cancer, melanoma, and renal cell cancer. Data were reviewed with respect to response, survival, and toxicity according to three groups: <65 years, 65-75 years, and >75 years. Current literature does not allow one to draw definitive conclusions regarding the role of immune checkpoint inhibitors in older adults. However, they may offer a potentially less toxic but equally efficacious treatment option for the senior adult oncology patient. PMID:27287329

  9. PTEN inhibitors: an evaluation of current compounds.

    PubMed

    Spinelli, Laura; Lindsay, Yvonne E; Leslie, Nicholas R

    2015-01-01

    Small molecule inhibitors of many classes of enzymes, including phosphatases, have widespread use as experimental tools and as therapeutics. Efforts to develop inhibitors against the lipid phosphatase and tumour suppressor, PTEN, was for some time limited by concerns that their use as therapy could result in increased risk of cancer. However, the accumulation of evidence that short term PTEN inhibition may be valuable in conditions such as nerve injury has raised interest. Here we investigate the inhibition of PTEN by four available PTEN inhibitors, bpV(phen), bpV(pic), VO-OHpic and SF1670 and compared this inhibition with that of only 3 other related enzymes, the tyrosine phosphatase SHP1 and the phosphoinositide phosphatases INPP4A and INPP4B. Even with this very small number of comparators, for all compounds, inhibition of multiple enzymes was observed and with all three vanadate compounds, this was similar or more potent than the inhibition of PTEN. In particular, the bisperoxovanadate compounds were found to inhibit PTEN poorly in the presence of reducing agents including the cellular redox buffer glutathione.

  10. Histone deacetylase inhibitors as cancer therapeutics.

    PubMed

    Clawson, Gary A

    2016-08-01

    Cancer cells contain significant alterations in their epigenomic landscape, which several enzyme families reversibly contribute to. One class of epigenetic modifying enzymes is that of histone deacetylases (HDAC), which are receiving considerable scrutiny clinically as a therapeutic target in many cancers. The underlying rationale is that inhibiting HDACs will reverse dysregulated target gene expression by modulating functional histone (or other) acetylation marks. This perspective will discuss a recent paper by Markozashvili and co-workers which appeared in Gene, which indicates that the mechanisms by which HDAC inhibitors (HDACis) alter the epigenetic landscape include widespread alternative effects beyond simply controlling regional epigenetic marks. HDACs are involved in many processes/diseases, and it is not surprising that HDACis have considerable off-target effects, and thus a major effort is being directed toward identification of inhibitors which are selective for HDAC isoforms often uniquely implicated in various cancers. This Perspective will also discuss some representative work with inhibitors targeting individual HDAC classes or isoforms. At present, it is not really clear that isoform-specific HDACis will avoid non-selective effects on other unrecognized activities of HDACs. PMID:27568481

  11. Functional Stability of Plasminogen Activator Inhibitor-1

    PubMed Central

    Kuru, Pinar; Toksoy Oner, Ebru; Agirbasli, Mehmet

    2014-01-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of plasminogen activators, such as tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), and a major regulator of the fibrinolytic system. PAI-1 plays a pivotal role in acute thrombotic events such as deep vein thrombosis (DVT) and myocardial infarction (MI). The biological effects of PAI-1 extend far beyond thrombosis including its critical role in fibrotic disorders, atherosclerosis, renal and pulmonary fibrosis, type-2 diabetes, and cancer. The conversion of PAI-1 from the active to the latent conformation appears to be unique among serpins in that it occurs spontaneously at a relatively rapid rate. Latency transition is believed to represent a regulatory mechanism, reducing the risk of thrombosis from a prolonged antifibrinolytic action of PAI-1. Thus, relying solely on plasma concentrations of PAI-1 without assessing its function may be misleading in interpreting the role of PAI-1 in many complex diseases. Environmental conditions, interaction with other proteins, mutations, and glycosylation are the main factors that have a significant impact on the stability of the PAI-1 structure. This review provides an overview on the current knowledge on PAI-1 especially importance of PAI-1 level and stability and highlights the potential use of PAI-1 inhibitors for treating cardiovascular disease. PMID:25386620

  12. The hunt for HIV-1 integrase inhibitors.

    PubMed

    Lataillade, Max; Kozal, Michael J

    2006-07-01

    Currently, there are three distinct mechanistic classes of antiretrovirals: inhibitors of the HIV- 1 reverse transcriptase and protease enzymes and inhibitors of HIV entry, including receptor and coreceptor binding and cell fusion. A new drug class that inhibits the HIV-1 integrase enzyme (IN) is in development and may soon be available in the clinic. IN is an attractive drug target because it is essential for a stable and productive HIV-1 infection and there is no mammalian homologue of IN. Inhibitors of integrase enzyme (INI) block the integration of viral double-stranded DNA into the host cell's chromosomal DNA. HIV-1 integration has many potential steps that can be inhibited and several new compounds that target specific integration steps have been identified by drug developers. Recently, two INIs, GS-9137 and MK-0518, demonstrated promising early clinical trial results and have been advanced into later stage trials. In this review, we describe how IN facilitates HIV-1 integration, the needed enzyme cofactors, and the resultant byproducts created during integration. Furthermore, we review the different INIs under development, their mechanism of actions, site of IN inhibition, potency, resistance patterns, and discuss the early clinical trial results.

  13. Histone deacetylase inhibitors as cancer therapeutics

    PubMed Central

    2016-01-01

    Cancer cells contain significant alterations in their epigenomic landscape, which several enzyme families reversibly contribute to. One class of epigenetic modifying enzymes is that of histone deacetylases (HDAC), which are receiving considerable scrutiny clinically as a therapeutic target in many cancers. The underlying rationale is that inhibiting HDACs will reverse dysregulated target gene expression by modulating functional histone (or other) acetylation marks. This perspective will discuss a recent paper by Markozashvili and co-workers which appeared in Gene, which indicates that the mechanisms by which HDAC inhibitors (HDACis) alter the epigenetic landscape include widespread alternative effects beyond simply controlling regional epigenetic marks. HDACs are involved in many processes/diseases, and it is not surprising that HDACis have considerable off-target effects, and thus a major effort is being directed toward identification of inhibitors which are selective for HDAC isoforms often uniquely implicated in various cancers. This Perspective will also discuss some representative work with inhibitors targeting individual HDAC classes or isoforms. At present, it is not really clear that isoform-specific HDACis will avoid non-selective effects on other unrecognized activities of HDACs. PMID:27568481

  14. Selective Water-Soluble Gelatinase Inhibitor Prodrugs

    PubMed Central

    Gooyit, Major; Lee, Mijoon; Schroeder, Valerie A.; Ikejiri, Masahiro; Suckow, Mark A.; Mobashery, Shahriar; Chang, Mayland

    2011-01-01

    SB-3CT (1), a selective and potent thiirane-based gelatinase inhibitor, is effective in animal models of cancer metastasis and stroke; however, it is limited by poor aqueous solubility and extensive metabolism. We addressed these issues by blocking the primary site of metabolism and capitalizing on a prodrug strategy to achieve >5000-fold increased solubility. The amide prodrugs were quantitatively hydrolyzed in human blood to a potent gelatinase inhibitor, ND-322 (3). The arginyl amide prodrug (ND-478, 5d) was metabolically stable in mouse, rat, and human liver microsomes. Both 5d and 3 were non-mutagenic in the Ames II mutagenicity assay. The prodrug 5d showed moderate clearance of 0.0582 L/min/kg, remained mostly in the extracellular fluid compartment (Vd = 0.0978 L/kg), and had a terminal half-life of >4 h. The prodrug 5d had superior pharmacokinetic properties than 3, making the thiirane class of selective gelatinase inhibitors suitable for intravenous administration in treatment of acute gelatinase-dependent diseases. PMID:21866961

  15. Salicylanilide diethyl phosphates as cholinesterases inhibitors.

    PubMed

    Krátký, Martin; Štěpánková, Šárka; Vorčáková, Katarína; Vinšová, Jarmila

    2015-02-01

    Based on the presence of dialkyl phosphate moiety, we evaluated twenty-seven salicylanilide diethyl phosphates (diethyl [2-(phenylcarbamoyl)phenyl] phosphates) for the inhibition of acetylcholinesterase (AChE) from electric eel (Electrophorus electricus L.) and butyrylcholinesterase (BChE) from equine serum. Ellman's spectrophotometric method was used. The inhibitory activity (expressed as IC50 values) was compared with that of the established drugs galantamine and rivastigmine. Salicylanilide diethyl phosphates showed significant activity against both cholinesterases with IC50 values from 0.903 to 86.3 μM. IC50s for BChE were comparatively lower than those obtained for AChE. All of the investigated compounds showed higher inhibition of AChE than rivastigmine, and six of them inhibited BChE more effectively than both rivastigmine and galantamine. In general, derivatives of 4-chlorosalicylic acid showed enhanced activity when compared to derivatives of 5-halogenated salicylic acids, especially against BChE. The most effective inhibitor of AChE was O-{5-chloro-2-[(3-bromophenyl)carbamoyl]phenyl} O,O-diethyl phosphate with IC50 of 35.4 μM, which is also one of the most potent inhibitors of BChE. O-{5-Chloro-2-[(3,4-dichlorophenyl)carbamoyl]phenyl} O,O-diethyl phosphate exhibited in vitro the strongest inhibition of BChE (0.90 μM). Salicylanilide diethyl phosphates act as pseudo-irreversible cholinesterases inhibitors. PMID:25462625

  16. Immune Checkpoint Inhibitors in Older Adults.

    PubMed

    Elias, Rawad; Morales, Joshua; Rehman, Yasser; Khurshid, Humera

    2016-08-01

    Cancer is primarily a disease of older adults. The treatment of advanced stage tumors usually involves the use of systemic agents that may be associated with significant risk of toxicity, especially in older patients. Immune checkpoint inhibitors are newcomers to the oncology world with improved efficacy and better safety profiles when compared to traditional cytotoxic drugs. This makes them an attractive treatment option. While there are no elderly specific trials, this review attempts to look at the current available data from a geriatric oncology perspective. We reviewed data from phase III studies that led to newly approved indications of checkpoint inhibitors in non-small cell lung cancer, melanoma, and renal cell cancer. Data were reviewed with respect to response, survival, and toxicity according to three groups: <65 years, 65-75 years, and >75 years. Current literature does not allow one to draw definitive conclusions regarding the role of immune checkpoint inhibitors in older adults. However, they may offer a potentially less toxic but equally efficacious treatment option for the senior adult oncology patient.

  17. Inhibitory spectrum of alpha 2-plasmin inhibitor.

    PubMed

    Saito, H; Goldsmith, G H; Moroi, M; Aoki, N

    1979-04-01

    alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties.

  18. A subset of high-titer anti-factor VIII A2 domain antibodies is responsive to treatment with factor VIII.

    PubMed

    Eubanks, Joshua; Baldwin, W Hunter; Markovitz, Rebecca; Parker, Ernest T; Cox, Courtney; Kempton, Christine L; Meeks, Shannon L

    2016-04-21

    The primary B-cell epitopes of factor VIII (fVIII) are in the A2 and C2 domains. Within the C2 domain, antibody epitope and kinetics are more important than inhibitor titer in predicting pathogenicity in a murine bleeding model. To investigate this within the A2 domain, the pathogenicity of a diverse panel of antihuman fVIII A2 domain monoclonal antibodies (MAbs) was tested in the murine model. MAbs were injected into hemophilia A mice, followed by injection of human B domain-deleted fVIII. Blood loss after a 4-mm tail snip was measured. The following anti-A2 MAbs were tested: high-titer type 1 inhibitors 4A4, 2-76, and 1D4; 2-54, a high-titer type 2 inhibitor; B94, a type 2 inhibitor; and noninhibitory MAbs GMA-012, 4C7, and B25. All high-titer type 1 MAbs produced blood loss that was significantly greater than control mice, whereas all non-inhibitory MAbs produced blood loss that was similar to control. The type 2 MAbs were not pathogenic despite 2-54 having an inhibitor titer of 34 000 BU/mg immunoglobulin G. In addition, a patient with a high-titer type 2 anti-A2 inhibitor who is responsive to fVIII is reported. The discrepancy between inhibitor titer and bleeding phenotype combined with similar findings in the C2 domain stress the importance of inhibitor properties not detected in the standard Bethesda assay in predicting response to fVIII therapy.

  19. [Clinical survey of tizanidine-induced adverse effects--impact of concomitant drugs providing cytochrome P450 1A2 modification--].

    PubMed

    Momo, Kenji; Homma, Masato; Matsumoto, Sayaka; Sasaki, Tadanori; Kohda, Yukinao

    2013-01-01

    The drug-drug interactions of tizanidine and cytochrome (CYP) P450 1A2 inhibitors, which potentially alter the hepatic metabolism of tizanidine, were investigated by retrospective survey of medical records with regard to prescription. One thousand five hundred sixty-three patients treated with tizanidine at University of Tsukuba Hospital were investigated. Of those, 713 patients (45.6%) were treated with coadministration of tizanidine and CYP1A2 inhibitors (37 drugs). The patients who received a combination of tizanidine and CYP1A2 inhibitors were characterized as elderly, having multiple diseases, and taking a large number of comedications (over 10 drugs) for a long period as compared with the patients who did not receive CYP1A2 inhibitors. Tizanidine-induced adverse effects were examined in 100 patients treated with coadministration of tizanidine and 8 CYP1A2 inhibitors. Adverse effects (e.g., drowsiness: 10 patients; low blood pressure: 9 patients; low heart rate: 9 patients) were observed in 23 patients (23%) 8±10 days after CYP1A2 inhibitors were coadministered. The patients with tizanidine-induced adverse effects were of older age (64.3±9.8 vs. 57.5±18.1 years, p<0.05) and received a higher daily dose of tizanidine (3.00±0.74 vs. 2.56±0.86 mg/day, p<0.05) than the patients without adverse effects. The present results suggest that coadministration of tizanidine and CYP1A2 inhibitors enhances tizanidine-induced adverse effects, especially in elderly patients treated with a higher dose of tizanidine.

  20. Recent advances in designing substrate-competitive protein kinase inhibitors.

    PubMed

    Han, Ki-Cheol; Kim, So Yeon; Yang, Eun Gyeong

    2012-01-01

    Protein kinases play central roles in cellular signaling pathways and their abnormal phosphorylation activity is inseparably linked with various human diseases. Therefore, modulation of kinase activity using potent inhibitors is an attractive strategy for the treatment of human disease. While most protein kinase inhibitors in clinical development are mainly targeted to the highly conserved ATP-binding sites and thus likely promiscuously inhibit multiple kinases including kinases unrelated to diseases, protein substrate-competitive inhibitors are more selective and expected to be promising therapeutic agents. Most substrate-competitive inhibitors mimic peptides derived from substrate proteins, or from inhibitory domains within kinases or inhibitor proteins. In addition, bisubstrate inhibitors are generated by conjugating substrate-competitive peptide inhibitors to ATP-competitive inhibitors to improve affinity and selectivity. Although structural information on protein kinases provides invaluable guidance in designing substrate-competitive inhibitors, other strategies including bioinformatics, computational modeling, and high-throughput screening are often employed for developing specific substrate-competitive kinase inhibitors. This review focuses on recent advances in the design and discovery of substrate-competitive inhibitors of protein kinases.

  1. Cyclin-Dependent Kinase Inhibitors as Anticancer Therapeutics.

    PubMed

    Law, Mary E; Corsino, Patrick E; Narayan, Satya; Law, Brian K

    2015-11-01

    Cyclin-dependent kinases (CDKs) have been considered promising drug targets for a number of years, but most CDK inhibitors have failed rigorous clinical testing. Recent studies demonstrating clear anticancer efficacy and reduced toxicity of CDK4/6 inhibitors such as palbociclib and multi-CDK inhibitors such as dinaciclib have rejuvenated the field. Favorable results with palbociclib and its recent U.S. Food and Drug Administration approval demonstrate that CDK inhibitors with narrow selectivity profiles can have clinical utility for therapy based on individual tumor genetics. A brief overview of results obtained with ATP-competitive inhibitors such as palbociclib and dinaciclib is presented, followed by a compilation of new avenues that have been pursued toward the development of novel, non-ATP-competitive CDK inhibitors. These creative ways to develop CDK inhibitors are presented along with crystal structures of these agents complexed with CDK2 to highlight differences in their binding sites and mechanisms of action. The recent successes of CDK inhibitors in the clinic, combined with the potential for structure-based routes to the development of non-ATP-competitive CDK inhibitors, and evidence that CDK inhibitors may have use in suppressing chromosomal instability and in synthetic lethal drug combinations inspire optimism that CDK inhibitors will become important weapons in the fight against cancer.

  2. Solution structures of stromelysin complexed to thiadiazole inhibitors.

    PubMed Central

    Stockman, B. J.; Waldon, D. J.; Gates, J. A.; Scahill, T. A.; Kloosterman, D. A.; Mizsak, S. A.; Jacobsen, E. J.; Belonga, K. L.; Mitchell, M. A.; Mao, B.; Petke, J. D.; Goodman, L.; Powers, E. A.; Ledbetter, S. R.; Kaytes, P. S.; Vogeli, G.; Marshall, V. P.; Petzold, G. L.; Poorman, R. A.

    1998-01-01

    Unregulated or overexpressed matrix metalloproteinases (MMPs), including stromelysin, collagenase, and gelatinase. have been implicated in several pathological conditions including arthritis and cancer. Small-molecule MMP inhibitors may have therapeutic value in the treatment of these diseases. In this regard, the solution structures of two stromelysin/ inhibitor complexes have been investigated using 1H, 13C, and 15N NMR spectroscopy. Both-inhibitors are members of a novel class of matrix metalloproteinase inhibitor that contain a thiadiazole group and that interact with stromelysin in a manner distinct from other classes of inhibitors. The inhibitors coordinate the catalytic zinc atom through their exocyclic sulfur atom, with the remainder of the ligand extending into the S1-S3 side of the active site. The binding of inhibitor containing a protonated or fluorinated aromatic ring was investigated using 1H and 19F NMR spectroscopy. The fluorinated ring was found to have a reduced ring-flip rate compared to the protonated version. A strong, coplanar interaction between the fluorinated ring of the inhibitor and the aromatic ring of Tyr155 is proposed to account for the reduced ring-flip rate and for the increase in binding affinity observed for the fluorinated inhibitor compared to the protonated inhibitor. Binding interactions observed for the thiadiazole class of ligands have implications for the design of matrix metalloproteinase inhibitors. PMID:9827994

  3. Molecular mechanism of respiratory syncytial virus fusion inhibitors.

    PubMed

    Battles, Michael B; Langedijk, Johannes P; Furmanova-Hollenstein, Polina; Chaiwatpongsakorn, Supranee; Costello, Heather M; Kwanten, Leen; Vranckx, Luc; Vink, Paul; Jaensch, Steffen; Jonckers, Tim H M; Koul, Anil; Arnoult, Eric; Peeples, Mark E; Roymans, Dirk; McLellan, Jason S

    2016-02-01

    Respiratory syncytial virus (RSV) is a leading cause of pneumonia and bronchiolitis in young children and the elderly. Therapeutic small molecules have been developed that bind the RSV F glycoprotein and inhibit membrane fusion, yet their binding sites and molecular mechanisms of action remain largely unknown. Here we show that these inhibitors bind to a three-fold-symmetric pocket within the central cavity of the metastable prefusion conformation of RSV F. Inhibitor binding stabilizes this conformation by tethering two regions that must undergo a structural rearrangement to facilitate membrane fusion. Inhibitor-escape mutations occur in residues that directly contact the inhibitors or are involved in the conformational rearrangements required to accommodate inhibitor binding. Resistant viruses do not propagate as well as wild-type RSV in vitro, indicating a fitness cost for inhibitor escape. Collectively, these findings provide new insight into class I viral fusion proteins and should facilitate development of optimal RSV fusion inhibitors.

  4. Advances in algal drug research with emphasis on enzyme inhibitors.

    PubMed

    Rengasamy, Kannan R R; Kulkarni, Manoj G; Stirk, Wendy A; Van Staden, Johannes

    2014-12-01

    Enzyme inhibitors are now included in all kinds of drugs essential to treat most of the human diseases including communicable, metabolic, cardiovascular, neurological diseases and cancer. Numerous marine algae have been reported to be a potential source of novel enzyme inhibitors with various pharmaceutical values. Thus, the purpose of this review is to brief the enzyme inhibitors from marine algae of therapeutic potential to treat common diseases. As per our knowledge this is the first review for the potential enzyme inhibitors from marine origin. This review contains 86 algal enzyme inhibitors reported during 1989-2013 and commercial enzyme inhibitors available in the market. Compounds in the review are grouped according to the disease conditions in which they are involved; diabetes, obesity, dementia, inflammation, melanogenesis, AIDS, hypertension and other viral diseases. The structure-activity relationship of most of the compounds are also discussed. In addition, the drug likeness properties of algal inhibitors were evaluated using Lipinski's 'Rule of Five'. PMID:25195189

  5. Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection

    NASA Technical Reports Server (NTRS)

    Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.

    2015-01-01

    This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.

  6. Phosphorylation of protein phosphatase inhibitor-1 by protein kinase C.

    PubMed

    Sahin, Bogachan; Shu, Hongjun; Fernandez, Joseph; El-Armouche, Ali; Molkentin, Jeffery D; Nairn, Angus C; Bibb, James A

    2006-08-25

    Inhibitor-1 becomes a potent inhibitor of protein phosphatase 1 when phosphorylated by cAMP-dependent protein kinase at Thr(35). Moreover, Ser(67) of inhibitor-1 serves as a substrate for cyclin-dependent kinase 5 in the brain. Here, we report that dephosphoinhibitor-1 but not phospho-Ser(67) inhibitor-1 was efficiently phosphorylated by protein kinase C at Ser(65) in vitro. In contrast, Ser(67) phosphorylation by cyclin-dependent kinase 5 was unaffected by phospho-Ser(65). Protein kinase C activation in striatal tissue resulted in the concomitant phosphorylation of inhibitor-1 at Ser(65) and Ser(67), but not Ser(65) alone. Selective pharmacological inhibition of protein phosphatase activity suggested that phospho-Ser(65) inhibitor-1 is dephosphorylated by protein phosphatase 1 in the striatum. In vitro studies confirmed these findings and suggested that phospho-Ser(67) protects phospho-Ser(65) inhibitor-1 from dephosphorylation by protein phosphatase 1 in vivo. Activation of group I metabotropic glutamate receptors resulted in the up-regulation of diphospho-Ser(65)/Ser(67) inhibitor-1 in this tissue. In contrast, the activation of N-methyl-d-aspartate-type ionotropic glutamate receptors opposed increases in striatal diphospho-Ser(65)/Ser(67) inhibitor-1 levels. Phosphomimetic mutation of Ser(65) and/or Ser(67) did not convert inhibitor-1 into a protein phosphatase 1 inhibitor. On the other hand, in vitro and in vivo studies suggested that diphospho-Ser(65)/Ser(67) inhibitor-1 is a poor substrate for cAMP-dependent protein kinase. These observations extend earlier studies regarding the function of phospho-Ser(67) and underscore the possibility that phosphorylation in this region of inhibitor-1 by multiple protein kinases may serve as an integrative signaling mechanism that governs the responsiveness of inhibitor-1 to cAMP-dependent protein kinase activation.

  7. Structure-based design of a novel series of azetidine inhibitors of the hepatitis C virus NS3/4A serine protease.

    PubMed

    Parsy, Christophe; Alexandre, François-René; Brandt, Guillaume; Caillet, Catherine; Cappelle, Sylvie; Chaves, Dominique; Convard, Thierry; Derock, Michel; Gloux, Damien; Griffon, Yann; Lallos, Lisa; Leroy, Frédéric; Liuzzi, Michel; Loi, Anna-Giulia; Moulat, Laure; Musiu, Chiara; Rahali, Houcine; Roques, Virginie; Seifer, Maria; Standring, David; Surleraux, Dominique

    2014-09-15

    Structural homology between thrombin inhibitors and the early tetrapeptide HCV protease inhibitor led to the bioisosteric replacement of the P2 proline by a 2,4-disubstituted azetidine within the macrocyclic β-strand mimic. Molecular modeling guided the design of the series. This approach was validated by the excellent activity and selectivity in biochemical and cell based assays of this novel series and confirmed by the co-crystal structure of the inhibitor with the NS3/4A protein (PDB code: 4TYD).

  8. Structure-guided inhibitor design for human FAAH by interspecies active site conversion

    SciTech Connect

    Mileni, Mauro; Johnson, Douglas S.; Wang, Zhigang; Everdeen, Daniel S.; Liimatta, Marya; Pabst, Brandon; Bhattacharya, Keshab; Nugent, Richard A.; Kamtekar, Satwik; Cravatt, Benjamin F.; Ahn, Kay; Stevens, Raymond C.

    2008-11-24

    The integral membrane enzyme fatty acid amide hydrolase (FAAH) hydrolyzes the endocannabinoid anandamide and related amidated signaling lipids. Genetic or pharmacological inactivation of FAAH produces analgesic, anxiolytic, and antiinflammatory phenotypes but not the undesirable side effects of direct cannabinoid receptor agonists, indicating that FAAH may be a promising therapeutic target. Structure-based inhibitor design has, however, been hampered by difficulties in expressing the human FAAH enzyme. Here, we address this problem by interconverting the active sites of rat and human FAAH using site-directed mutagenesis. The resulting humanized rat (h/r) FAAH protein exhibits the inhibitor sensitivity profiles of human FAAH but maintains the high-expression yield of the rat enzyme. We report a 2.75-{angstrom} crystal structure of h/rFAAH complexed with an inhibitor, N-phenyl-4-(quinolin-3-ylmethyl)piperidine-1-carboxamide (PF-750), that shows strong preference for human FAAH. This structure offers compelling insights to explain the species selectivity of FAAH inhibitors, which should guide future drug design programs.

  9. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor

    PubMed Central

    Frost, Charles E; Byon, Wonkyung; Song, Yan; Wang, Jessie; Schuster, Alan E; Boyd, Rebecca A; Zhang, Donglu; Yu, Zhigang; Dias, Clapton; Shenker, Andrew; LaCreta, Frank

    2015-01-01

    Aim Apixaban is an orally active inhibitor of coagulation factor Xa and is eliminated by multiple pathways, including renal and non-renal elimination. Non-renal elimination pathways consist of metabolism by cytochrome P450 (CYP) enzymes, primarily CYP3A4, as well as direct intestinal excretion. Two single sequence studies evaluated the effect of ketoconazole (a strong dual inhibitor of CYP3A4 and P-glycoprotein [P-gp]) and diltiazem (a moderate CYP3A4 inhibitor and a P-gp inhibitor) on apixaban pharmacokinetics in healthy subjects. Method In the ketoconazole study, 18 subjects received apixaban 10 mg on days 1 and 7, and ketoconazole 400 mg once daily on days 4–9. In the diltiazem study, 18 subjects received apixaban 10 mg on days 1 and 11 and diltiazem 360 mg once daily on days 4–13. Results Apixaban maximum plasma concentration and area under the plasma concentration–time curve extrapolated to infinity increased by 62% (90% confidence interval [CI], 47, 78%) and 99% (90% CI, 81, 118%), respectively, with co-administration of ketoconazole, and by 31% (90% CI, 16, 49%) and 40% (90% CI, 23, 59%), respectively, with diltiazem. Conclusion A 2-fold and 1.4-fold increase in apixaban exposure was observed with co-administration of ketoconazole and diltiazem, respectively. PMID:25377242

  10. The serpentine path to a novel mechanism-based inhibitor of acute inflammatory lung injury

    PubMed Central

    2014-01-01

    The Comroe lecture on which this review is based described my research path during the past 45 years, beginning with studies of oxidant stress (hyperoxia) and eventuating in the discovery of a synthetic inhibitor of phospholipase A2 activity (called MJ33) that prevents acute lung injury in mice exposed to lipopolysaccharide. In between were studies of lung ischemia, lung surfactant metabolism, the protein peroxiredoxin 6 and its phospholipase A2 activity, and mechanisms for NADPH oxidase activation. These seemingly unrelated research activities provided the nexus for identification of a novel target and a potentially novel therapeutic agent for prevention or treatment of acute lung injury. PMID:24744383

  11. Studies on bacterial cell wall inhibitors. VI. Screening method for the specific inhibitors of peptidoglycan synthesis.

    PubMed

    Omura, S; Tanaka, H; Oiwa, R; Nagai, T; Koyama, Y; Takahashi, Y

    1979-10-01

    A screening method was established for selecting new specific inhibitors of bacterial cell wall peptidoglycan synthesis. In the primary test, culture broths of soil isolates were selected based on relative microbial activity. A culture, to be retained, must be active against Bacillus subtilis and lack activities against Acholeplasma laidawii. In the secondary test, inhibitors of bacterial cell wall synthesis were identified by their ability to prevent the incorporation of meso-[3H]diaminopimelic acid but not to prevent the incorporation of L-[4C]leucine into the acid-insoluble macromolecular fraction of growing cells of Bacillus sp. ATCC 21206 (Dpm-). As the tertiary test, inhibitors with molecular weights under 1,000 were selected by passage through a Diaflo UM-2 membrane. By this screening procedure, six known antibiotics and one new one were picked out from ten thousand soil isolates. PMID:528376

  12. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies. PMID:21997758

  13. Designing Inhibitors Against Fructose 1,6-bisphosphatase: Exploring Natural Products for Novel Inhibitor Scaffolds

    PubMed Central

    Heng, Sabrina; Harris, Katharine M.; Kantrowitz, Evan R.

    2010-01-01

    Natural products often contain unusual scaffold structures that may be elaborated by combinatorial methods to develop new drug-like molecules. Visual inspection of more than 128 natural products with some type of anti-diabetic activity suggested that a subset might provide novel scaffolds for designing potent inhibitors against fructose 1,6-bisphosphatase (FBPase), an enzyme critical in the control of gluconeogenesis. Using in silico docking methodology, these were evaluated to determine those that exhibited affinity for the AMP binding site. Achyrofuran from the South American plant Achyrocline satureoides, was selected for further investigation. Using the achyrofuran scaffold, inhibitors against FBPase were developed. Compounds 15 and 16 inhibited human liver and pig kidney FBPases at IC50 values comparable to that of AMP, the natural allosteric inhibitor. PMID:20116906

  14. The "SWOT" of BRAF inhibition in melanoma: RAF inhibitors, MEK inhibitors or both?

    PubMed

    Nissan, Moriah H; Solit, David B

    2011-12-01

    Activating mutations in the BRAF gene are among the most prevalent kinase mutations in human cancer. BRAF mutations are most frequent in patients with melanoma where they occur in approximately 50% of patients with advanced disease. Remarkable clinical activity has recently been reported with highly selective RAF inhibitors in melanoma patients whose tumors harbor V600E BRAF mutations. The response rates of RAF inhibitors in patients with BRAF-mutant melanomas far exceed the activity level of any prior therapy studied in this disease. The results suggest that we have entered an era of personalized therapy for patients with metastatic melanoma in which treatment selection will be guided by BRAF mutational status. This review will discuss the strengths, weaknesses, opportunities and threats ("SWOT") of developing RAF and MEK selective inhibitors as anti-cancer therapies, recent insights into the mechanisms of intrinsic and acquired resistance to these agents, and current efforts to develop mechanism-based combination therapies.

  15. Structural analysis of Golgi alpha-mannosidase II inhibitors identified from a focused glycosidase inhibitor screen.

    PubMed

    Kuntz, Douglas A; Tarling, Chris A; Withers, Stephen G; Rose, David R

    2008-09-23

    The N-glycosylation pathway is a target for pharmaceutical intervention in a number of pathological conditions including cancer. Golgi alpha-mannosidase II (GMII) is the final glycoside hydrolase in the pathway and has been the target for a number of synthetic efforts aimed at providing more selective and effective inhibitors. Drosophila GMII (dGMII) has been extensively studied due to the ease of obtaining high resolution structural data, allowing the observation of substrate distortion upon binding and after formation of a trapped covalent reaction intermediate. However, attempts to find new inhibitor leads by high-throughput screening of large commercial libraries or through in silico docking were unsuccessful. In this paper we provide a kinetic and structural analysis of five inhibitors derived from a small glycosidase-focused library. Surprisingly, four of these were known inhibitors of beta-glucosidases. X-ray crystallographic analysis of the dGMII:inhibitor complexes highlights the ability of the zinc-containing GMII active site to deform compounds, even ones designed as conformationally restricted transition-state mimics of beta-glucosidases, into binding entities that have inhibitory activity. Although these deformed conformations do not appear to be on the expected conformational itinerary of the enzyme, and are thus not transition-state mimics of GMII, they allow positioning of the three vicinal hydroxyls of the bound gluco-inhibitors into similar locations to those found with mannose-containing substrates, underlining the importance of these hydrogen bonds for binding. Further, these studies show the utility of targeting the acid-base catalyst using appropriately positioned positively charged nitrogen atoms, as well as the challenges associated with aglycon substitutions.

  16. F8 haplotype and inhibitor risk: results from the Hemophilia Inhibitor Genetics Study (HIGS) Combined Cohort

    PubMed Central

    Schwarz, John; Astermark, Jan; Menius, Erika D.; Carrington, Mary; Donfield, Sharyne M.; Gomperts, Edward D.; Nelson, George W.; Oldenburg, Johannes; Pavlova, Anna; Shapiro, Amy D.; Winkler, Cheryl A.; Berntorp, Erik

    2012-01-01

    Background Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII (FVIII) in hemophilia A. It has been suggested that differences in the distribution of factor VIII gene (F8) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Design and Methods Data from the HIGS Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1+H2) and inhibitor risk among individuals of genetically-determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and HLA were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Results H3 was associated with higher inhibitor risk among those genetically-identified (N=49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products (N=223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Conclusion H3 was not an independent predictor of inhibitor risk. Further, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual. PMID:22958194

  17. Design and synthesis of conformationally restricted inhibitors of active thrombin activatable fibrinolysis inhibitor (TAFIa).

    PubMed

    Brink, Mikael; Dahlén, Anders; Olsson, Thomas; Polla, Magnus; Svensson, Tor

    2014-04-01

    A series of 4,5,6,7-tetrahydro-1H-benzimidazole-5-carboxylic acid and 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine-7-carboxylic acid derivatives designed as inhibitors of TAFIa has been prepared via a common hydrogenation-alkylation sequence starting from the appropriate benzimidazole and imidazopyridine system. We present a successful design strategy using a conformational restriction approach resulting in potent and selective inhibitors of TAFIa. The X-ray structure of compound 5 in complex with a H333Y/H335Q double mutant TAFI indicate that the conformational restriction is responsible for the observed potency increase. PMID:24588961

  18. Protocol for rational design of covalently interacting inhibitors.

    PubMed

    Schmidt, Thomas C; Welker, Armin; Rieger, Max; Sahu, Prabhat K; Sotriffer, Christoph A; Schirmeister, Tanja; Engels, Bernd

    2014-10-20

    The inhibition potencies of covalent inhibitors mainly result from the formation of a covalent bond to the enzyme during the inhibition mechanism. This class of inhibitors has essentially been ignored in previous target-directed drug discovery projects because of concerns about possible side effects. However, their advantages, such as higher binding energies and longer drug-target residence times moved them into the focus of recent investigations. While the rational design of non-covalent inhibitors became standard the corresponding design of covalent inhibitors is still in its early stages. Potent covalent inhibitors can be retrieved from large compound libraries by covalent docking approaches but protocols are missing that can reliably predict the influence of variations in the substitution pattern on the affinity and/or reactivity of a given covalent inhibitor. Hence, the wanted property profile can only be obtained from trial-and-error proceedings. This paper presents an appropriate protocol which is able to predict improved covalent inhibitors. It uses hybrid approaches, which mix quantum mechanical (QM) and molecular mechanical (MM) methods to predict variations in the reactivity of the inhibitor. They are also used to compute the required information about the non-covalent enzyme-inhibitor complex. Docking tools are employed to improve the inhibitor with respect to the non-covalent interactions formed in the binding site. PMID:25251382

  19. Homologous inhibitors from potato tubers of serine endopeptidases and metallocarboxypeptidases.

    PubMed Central

    Hass, C M; Venkatakrishnan, R; Ryan, C A

    1976-01-01

    A potent polypeptide inhibitor of chymotrypsin has been purified from Russett Burbank potatoes. The inhibitor has no effect on bovine carboxypeptidases A or B but exhibits homology with a carboxypeptidase inhibitor that is also present in potato tubers. The chymotrypsin inhibitor has a molecular weight of approximately 5400 as estimated by gel filtration, amino acid analysis, and titration with chymotrypsin. The polypeptide chain consists of 49 amino acid residues, of which six are half-cystine, forming three disulfide bonds. Its size is similar to that of the carboxypeptidase inhibitor, which contains 39 amino acid residues and also has three disulfide bridges. In immunological double diffusion assays, the chymotrypsin inhibitor and the carboxypeptidase inhibitor do not crossreact; however, automatic Edman degradation of reduced and alkylated derivatives of the chymotrypsin inhibitor, yielding a partial sequence of 18 amino acid residues at the NH2-terminus, reveals a similarity in sequence to that of the carboxypeptidase inhibitor. Thus, inhibitors directed toward two distinct classes of proteases, the serine endopeptidases and the metallocarboxypeptidases, appear to have evolved from a common ancestor. Images PMID:1064864

  20. Inhibitor development in non-severe haemophilia across Europe.

    PubMed

    Fischer, Kathelijn; Iorio, Alfonso; Lassila, Riitta; Peyvandi, Flora; Calizzani, Gabriele; Gatt, Alex; Lambert, Thierry; Windyga, Jerzy; Gilman, Estelle A; Hollingsworth, R; Makris, Michael

    2015-10-01

    Evidence about inhibitor formation in non-severe haemophilia and the potential role for clotting factor concentrate type is scant. It was the aim of this study to report inhibitor development in non-severe haemophilia patients enrolled in the European Haemophilia Safety Surveillance (EUHASS) study. Inhibitors are reported quarterly and total treated patients annually. Incidence rates and 95% confidence intervals (95% CI) were calculated according to diagnosis and concentrate used. Between 1-10-2008 and 31-12-2012, 68 centres reported on 7,969 patients with non-severe haemophilia A and 1,863 patients with non-severe haemophilia B. For haemophilia A, 37 inhibitors occurred in 8,622 treatment years, resulting in an inhibitor rate of 0.43/100 treatment years (95% CI 0.30-0.59). Inhibitors occurred at a median age of 35 years, after a median of 38 exposure days (EDs; P25-P75: 20-80); with 72% occurring within the first 50 EDs. In haemophilia B, one inhibitor was detected in 2,149 treatment years, resulting in an inhibitor rate of 0.05/100 years (95% CI 0.001-0.26). This inhibitor developed at the age of six years, after six EDs. The rate of inhibitors appeared similar across recombinant and plasma derived factor VIII (FVIII) concentrates. Rates for individual concentrates could not be calculated at this stage due to low number of events. In conclusion, inhibitors in non-severe haemophilia occur three times more frequently than in previously treated patients with severe haemophilia at a rate of 0.43/100 patient years (haemophilia A) and 0.05/100 years (haemophilia B). Although the majority of inhibitors developed in the first 50 EDs, inhibitor development continued with increasing exposure to FVIII.

  1. Structural determinants of Tau aggregation inhibitor potency.

    PubMed

    Schafer, Kelsey N; Cisek, Katryna; Huseby, Carol J; Chang, Edward; Kuret, Jeff

    2013-11-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers.

  2. Structural Determinants of Tau Aggregation Inhibitor Potency*

    PubMed Central

    Schafer, Kelsey N.; Cisek, Katryna; Huseby, Carol J.; Chang, Edward; Kuret, Jeff

    2013-01-01

    Small-molecule Tau aggregation inhibitors are under investigation as potential therapeutic agents against Alzheimer disease. Many such inhibitors have been identified in vitro, but their potency-driving features, and their molecular targets in the Tau aggregation pathway, have resisted identification. Previously we proposed ligand polarizability, a measure of electron delocalization, as a candidate descriptor of inhibitor potency. Here we tested this hypothesis by correlating the ground state polarizabilities of cyanine, phenothiazine, and arylmethine derivatives calculated using ab initio quantum methods with inhibitory potency values determined in the presence of octadecyl sulfate inducer under reducing conditions. A series of rhodanine analogs was analyzed as well using potency values disclosed in the literature. Results showed that polarizability and inhibitory potency directly correlated within all four series. To identify putative binding targets, representative members of the four chemotypes were added to aggregation reactions, where they were found to stabilize soluble, but SDS-resistant Tau species at the expense of filamentous aggregates. Using SDS resistance as a secondary assay, and a library of Tau deletion and missense mutants as targets, interaction with cyanine was localized to the microtubule binding repeat region. Moreover, the SDS-resistant phenotype was completely dependent on the presence of octadecyl sulfate inducer, but not intact PHF6/PH6* hexapeptide motifs, indicating that cyanine interacted with a species in the aggregation pathway prior to nucleus formation. Together the data suggest that flat, highly polarizable ligands inhibit Tau aggregation by interacting with folded species in the aggregation pathway and driving their assembly into soluble but highly stable Tau oligomers. PMID:24072703

  3. Sifuvirtide, a potent HIV fusion inhibitor peptide

    SciTech Connect

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-08

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC{sub 50}), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC{sub 50}) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1{sub IIIB} were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  4. Tools for Characterizing Bacterial Protein Synthesis Inhibitors

    PubMed Central

    Orelle, Cédric; Carlson, Skylar; Kaushal, Bindiya; Almutairi, Mashal M.; Liu, Haipeng; Ochabowicz, Anna; Quan, Selwyn; Pham, Van Cuong; Squires, Catherine L.; Murphy, Brian T.

    2013-01-01

    Many antibiotics inhibit the growth of sensitive bacteria by interfering with ribosome function. However, discovery of new protein synthesis inhibitors is curbed by the lack of facile techniques capable of readily identifying antibiotic target sites and modes of action. Furthermore, the frequent rediscovery of known antibiotic scaffolds, especially in natural product extracts, is time-consuming and expensive and diverts resources that could be used toward the isolation of novel lead molecules. In order to avoid these pitfalls and improve the process of dereplication of chemically complex extracts, we designed a two-pronged approach for the characterization of inhibitors of protein synthesis (ChIPS) that is suitable for the rapid identification of the site and mode of action on the bacterial ribosome. First, we engineered antibiotic-hypersensitive Escherichia coli strains that contain only one rRNA operon. These strains are used for the rapid isolation of resistance mutants in which rRNA mutations identify the site of the antibiotic action. Second, we show that patterns of drug-induced ribosome stalling on mRNA, monitored by primer extension, can be used to elucidate the mode of antibiotic action. These analyses can be performed within a few days and provide a rapid and efficient approach for identifying the site and mode of action of translation inhibitors targeting the bacterial ribosome. Both techniques were validated using a bacterial strain whose culture extract, composed of unknown metabolites, exhibited protein synthesis inhibitory activity; we were able to rapidly detect the presence of the antibiotic chloramphenicol. PMID:24041905

  5. Kynurenine Aminotransferase Isozyme Inhibitors: A Review

    PubMed Central

    Nematollahi, Alireza; Sun, Guanchen; Jayawickrama, Gayan S.; Church, W. Bret

    2016-01-01

    Kynurenine aminotransferase isozymes (KATs 1–4) are members of the pyridoxal-5’-phosphate (PLP)-dependent enzyme family, which catalyse the permanent conversion of l-kynurenine (l-KYN) to kynurenic acid (KYNA), a known neuroactive agent. As KATs are found in the mammalian brain and have key roles in the kynurenine pathway, involved in different categories of central nervous system (CNS) diseases, the KATs are prominent targets in the quest to treat neurodegenerative and cognitive impairment disorders. Recent studies suggest that inhibiting these enzymes would produce effects beneficial to patients with these conditions, as abnormally high levels of KYNA are observed. KAT-1 and KAT-3 share the highest sequence similarity of the isozymes in this family, and their active site pockets are also similar. Importantly, KAT-2 has the major role of kynurenic acid production (70%) in the human brain, and it is considered therefore that suitable inhibition of this isozyme would be most effective in managing major aspects of CNS diseases. Human KAT-2 inhibitors have been developed, but the most potent of them, chosen for further investigations, did not proceed in clinical studies due to the cross toxicity caused by their irreversible interaction with PLP, the required cofactor of the KAT isozymes, and any other PLP-dependent enzymes. As a consequence of the possibility of extensive undesirable adverse effects, it is also important to pursue KAT inhibitors that reversibly inhibit KATs and to include a strategy that seeks compounds likely to achieve substantial interaction with regions of the active site other than the PLP. The main purpose of this treatise is to review the recent developments with the inhibitors of KAT isozymes. This treatise also includes analyses of their crystallographic structures in complex with this enzyme family, which provides further insight for researchers in this and related studies. PMID:27314340

  6. Sifuvirtide, a potent HIV fusion inhibitor peptide.

    PubMed

    Wang, Rui-Rui; Yang, Liu-Meng; Wang, Yun-Hua; Pang, Wei; Tam, Siu-Cheung; Tien, Po; Zheng, Yong-Tang

    2009-05-01

    Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC(50)), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC(50)) were relatively high, rendering it an ideal anti-HIV agent. A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1(IIIB) were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF. In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.

  7. Nanomolar Inhibitors of Trypanosoma brucei RNA Triphosphatase

    PubMed Central

    Smith, Paul; Ho, C. Kiong; Takagi, Yuko; Djaballah, Hakim

    2016-01-01

    ABSTRACT Eukaryal taxa differ with respect to the structure and mechanism of the RNA triphosphatase (RTPase) component of the mRNA capping apparatus. Protozoa, fungi, and certain DNA viruses have a metal-dependent RTPase that belongs to the triphosphate tunnel metalloenzyme (TTM) superfamily. Because the structures, active sites, and chemical mechanisms of the TTM-type RTPases differ from those of mammalian RTPases, the TTM RTPases are potential targets for antiprotozoal, antifungal, and antiviral drug discovery. Here, we employed RNA interference (RNAi) knockdown methods to show that Trypanosoma brucei RTPase Cet1 (TbCet1) is necessary for proliferation of procyclic cells in culture. We then conducted a high-throughput biochemical screen for small-molecule inhibitors of the phosphohydrolase activity of TbCet1. We identified several classes of chemicals—including chlorogenic acids, phenolic glycopyranosides, flavonoids, and other phenolics—that inhibit TbCet1 with nanomolar to low-micromolar 50% inhibitory concentrations (IC50s). We confirmed the activity of these compounds, and tested various analogs thereof, by direct manual assays of TbCet1 phosphohydrolase activity. The most potent nanomolar inhibitors included tetracaffeoylquinic acid, 5-galloylgalloylquinic acid, pentagalloylglucose, rosmarinic acid, and miquelianin. TbCet1 inhibitors were less active (or inactive) against the orthologous TTM-type RTPases of mimivirus, baculovirus, and budding yeast (Saccharomyces cerevisiae). Our results affirm that a TTM RTPase is subject to potent inhibition by small molecules, with the caveat that parallel screens against TTM RTPases from multiple different pathogens may be required to fully probe the chemical space of TTM inhibition. PMID:26908574

  8. Hypomagnesemia associated with a proton pump inhibitor.

    PubMed

    Matsuyama, Jun; Tsuji, Kunihiro; Doyama, Hisashi; Kim, Fae; Takeda, Yasuhito; Kito, Yosuke; Ito, Renma; Nakanishi, Hiroyoshi; Hayashi, Tomoyuki; Waseda, Yohei; Tsuji, Shigetsugu; Takemura, Kenichi; Yamada, Shinya; Okada, Toshihide; Kanaya, Honin

    2012-01-01

    Severe hypomagnesemia is a serious clinical condition. Proton pump inhibitor (PPI) induced hypomagnesemia has been recognized since 2006. In March 2011 the U.S. Food and Drug Administration advised that long-term use of PPI can induce hypomagnesemia. We report the first Japanese case of hypomagnesemia associated with chronic use of PPIs in a 64-year-old man hospitalized for nausea, bilateral ankle arthritis, and tremor of the extremities who had convulsions 3 days after admission. Blood analysis showed severe hypomagnesemia. He had been taking rabeprazole (10 mg/day) for 5 years. After stopping rabeprazole and correcting the electrolytes imbalances, his symptoms improved without recurrence.

  9. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2006-05-30

    Compounds of formula 1: ##STR00001## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0 3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  10. Inhibitors of glycogen synthase 3 kinase

    DOEpatents

    Schultz, Peter; Ring, David B.; Harrison, Stephen D.; Bray, Andrew M.

    2000-01-01

    Compounds of formula 1: ##STR1## wherein R.sub.1 is alkyl, cycloalkyl, aryl, aralkyl, heteroaryl, or heteroaralkyl, substituted with 0-3 substituents selected from lower alkyl, halo, hydroxy, lower alkoxy, amino, lower alkyl-amino, and nitro; R.sub.2 is hydroxy, amino, or lower alkoxy; R.sub.3 is H, lower alkyl, lower acyl, lower alkoxy-acyl, or amnino-acyl; R.sub.4 is H or lower alkyl; and pharmaceutically acceptable salts and esters thereof; are effective inhibitors of GSK3.

  11. A new urease inhibitor from Viola betonicifolia.

    PubMed

    Muhammad, Naveed; Saeed, Muhammad; Khan, Ajmal; Adhikari, Achyut; Wadood, Abdul; Khan, Khalid Mohammed; De Feo, Vincenzo

    2014-10-17

    Urease has attracted much attention, as it is directly involved in the formation of infection stones and contributes to the pathogenesis of urolithiasis, pyelonephritis, ammonia and hepatic encephalopathy, hepatic coma and urinary catheter encrustation. Moreover, urease is the major cause of pathologies induced by H. pylori, such as gastritis and peptic ulcer. In the present work, the new natural compound, 3-methoxydalbergione, was isolated from Viola betonicifolia. A mechanistic study of this compound as a natural urease inhibitor was performed by using enzyme kinetics and docking studies. 3-Methoxydalbergione could be considered as a lead molecule for drugs useful in the urease associated diseases.

  12. Inhibitors of platelet lipoxygenase from Ponkan fruit.

    PubMed

    Nogata, Y; Sekiya, K; Ohta, H; Kusumoto, K; Ishizu, T

    2001-04-01

    An activity-guided separation for inhibitors of rat platelet 12-lipoxygenase led to the isolation of two compounds, 4-O-feruloyl-5-O-caffeoylquinic acid (IC50; 5.5 microM) and methyl 4-O-feruloyl-5-O-caffeoylquinate (IC50; 1.9 microM) from the peel of Ponkan fruit (Citrus reticulata). The complete structure of each phenolic ester was determined by NMR spectroscopy [1H and 13C NMR spectra, 1H-1H correlation spectroscopy (COSY), 1H-detected heteronuclear multiple quantum coherence (HMQC), and heteronuclear multiple bond connectivity (HMBC) spectroscopies] and other spectral methods. PMID:11314960

  13. PDE-10A inhibitors as insulin secretagogues.

    PubMed

    Cantin, Louis-David; Magnuson, Steven; Gunn, David; Barucci, Nicole; Breuhaus, Marina; Bullock, William H; Burke, Jennifer; Claus, Thomas H; Daly, Michelle; Decarr, Lynn; Gore-Willse, Ann; Hoover-Litty, Helana; Kumarasinghe, Ellalahewage S; Li, Yaxin; Liang, Sidney X; Livingston, James N; Lowinger, Timothy; Macdougall, Margit; Ogutu, Herbert O; Olague, Alan; Ott-Morgan, Ronda; Schoenleber, Robert W; Tersteegen, Adrian; Wickens, Philip; Zhang, Zhonghua; Zhu, Jian; Zhu, Lei; Sweet, Laurel J

    2007-05-15

    Modulation of cAMP levels has been linked to insulin secretion in preclinical animal models and in humans. The high expression of PDE-10A in pancreatic islets suggested that inhibition of this enzyme may provide the necessary modulation to elicit increased insulin secretion. Using an HTS approach, we have identified quinoline-based PDE-10A inhibitors as insulin secretagogues in vitro. Optimized compounds were evaluated in vivo where improvements in glucose tolerance and increases in insulin secretion were measured. PMID:17400452

  14. Theoretical study of classical acetylcholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Nascimento, Érica C. M.; Martins, João B. L.; dos Santos, Maria L.; Gargano, R.

    2008-06-01

    Semi-empirical, RHF and DFT calculations were carried out to study well known acetylcholinesterase inhibitors, i.e., tacrine, donepezil, galantamine, physostigmine, and tacrine dimer (bis-tacrine). Electronic and structural parameters were used in order to correlate the acetylcholinesterase inhibition activity with their molecular structure. The optimized geometries of these drugs were analyzed by multivariate PCA statistical method. Frontier orbital energies (HOMO and LUMO), the (HOMO-LUMO) gap and the distance between more acidic hydrogen species were used to determine principal components. The PCA results indicated that these drugs were ordered into three groups according to the first principal component: galantamine/physostigmine, donepezil/tacrine dimer and tacrine.

  15. Radical scavengers as ribonucleotide reductase inhibitors.

    PubMed

    Basu, Arijit; Sinha, Barij Nayan

    2012-01-01

    This paper compiled all the previous reports on radical scavengers, an interesting class of ribonucleotide reductase inhibitors. We have highlighted three key research areas: chemical classification of radical scavengers, structural and functional aspects of the radical site, and progress in drug designing for radical scavengers. Under the chemical classification section, we have recorded the discovery of hydroxyurea followed by discussions on hydroxamic acids, amidoximes, hydroxyguanidines, and phenolic compounds. In the next section, we have compiled the structural information for the radical site obtained from different crystallographic and theoretical studies. Finally, we have included the reported ligand based and structure based drug-designing studies.

  16. Inside HDACs with more selective HDAC inhibitors.

    PubMed

    Roche, Joëlle; Bertrand, Philippe

    2016-10-01

    Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.

  17. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    PubMed Central

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  18. Modified 5-fluorouracil: Uridine phosphorylase inhibitor

    NASA Astrophysics Data System (ADS)

    Lashkov, A. A.; Shchekotikhin, A. A.; Shtil, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.

    2016-09-01

    5-Fluorouracil (5-FU) is a medication widely used in chemotherapy to treat various types of cancer. Being a substrate for the reverse reaction catalyzed by uridine phosphorylase (UPase), 5-FU serves as a promising prototype molecule (molecular scaffold) for the design of a selective UPase inhibitor that enhances the antitumor activity of 5-FU and exhibits intrinsic cytostatic effects on cancer cells. The chemical formula of the new compound, which binds to the uracil-binding site and, in the presence of a phosphate anion, to the phosphate-binding site of UPase, is proposed and investigated by molecular simulation methods.

  19. Qualitative Differences in the N-Acetyl-D-galactosaminyltransferases Produced by Human A1 and A2 Genes

    PubMed Central

    Schachter, H.; Michaels, M. A.; Tilley, Christine A.; Crookston, Marie C.; Crookston, J. H.

    1973-01-01

    This study describes the kinetic properties of N-acetyl-D-galactosaminyltransferase in serum from subjects with blood groups A1 and A2. When the A1 and A2 enzymes were compared, with lacto-N-fucopentaose I and 2′-fucosyllactose as acceptors, the enzymes differed in their cation requirements, pH optima, and Km values. The two acceptors competed for the same transferase. Mixing experiments showed that the lower activity of the A2 enzyme could not be attributed to a modifier or inhibitor in serum. It was concluded that the A1 and A2 enzymes differ qualitatively. PMID:4509655

  20. Structure-based Design of Potent HIV-1 Protease Inhibitors with Modified P1 - Biphenyl Ligands: Synthesis, Biological Evaluation, and Enzyme-inhibitor X-ray Structural studies

    PubMed Central

    Ghosh, Arun K.; Yu, Xufen; Osswald, Heather L.; Agniswamy, Johnson; Wang, Yuan-Fang; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2016-01-01

    We report the design, synthesis, X-ray structural studies, and biological evaluation of a novel series of HIV-1 protease inhibitors. We designed a variety of functionalized biphenyl derivatives to make enhanced van der Waals interactions in the S1 subsite of HIV-1 protease. These biphenyl derivatives were conveniently synthesized using a Suzuki-Miyaura cross-coupling reaction as the key step. We examined the potential of these functionalized biphenyl-derived P1 ligands in combination with 3-(S)-tetrahydrofuranyl urethane and bis-tetrahydrofuranyl urethane as the P2 ligands. Inhibitor 21e, with a 2-methoxy-1, 1’-biphenyl derivative as P1 ligand and bis-THF as the P2 ligand, displayed the most potent enzyme inhibitory and antiviral activity. This inhibitor also exhibited potent activity against a panel of multidrug-resistant HIV-1 variants. A high resolution X-ray crystal structure of related Boc-derivative 17a-bound HIV-1 protease provided important molecular insight into the ligand-binding site interactions of the biphenyl core in the S1 subsite of HIV-1 protease. PMID:26107245

  1. Inactivation of C-1 inhibitor by proteases: demonstration by a monoclonal antibody of a neodeterminant on inactivated, non-complexed C-1 inhibitor.

    PubMed

    Nuijens, J H; Huijbregts, C C; van Mierlo, G M; Hack, C E

    1987-07-01

    Monoclonal antibodies were raised against kallikrein-C-1 inhibitor and factor XIIa-C-1 inhibitor complexes. One of the monoclonal antibodies (KII) appeared to react predominantly with C-1 inhibitor complexes in an ELISA. However, the apparent binding of KII to C-1 inhibitor complexes was probably due to the presence of proteolytically inactivated C-1 inhibitor in the complex mixture used for the coating:KII did not bind either kallikrein-C-1 inhibitor or factor XIIa-C-1 inhibitor complexes generated in plasma by dextran sulphate. SDS-PAGE analysis of C-1 inhibitor incubated with proteases revealed that KII-reactive C-1 inhibitor has a lower molecular weight than native C-1 inhibitor. We propose that the determinant that reacts with KII is exposed after cleavage of C-1 inhibitor in its reactive site. The monoclonal antibody KII will enable us to study the inactivation of C-1 inhibitor in human inflammatory disease.

  2. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    PubMed

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-01

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.

  3. Examination of the change in returning molecular weight obtained during inhibitor squeeze treatments using polyacrylate based inhibitors

    SciTech Connect

    Graham, G.M.; Sorbie, K.S.

    1995-11-01

    Scale inhibitors based on small polyelectrolytes are often employed in oilfield scale prevention treatments. These materials are injected into the near-well formation of producers in a scale inhibitor squeeze treatment. When the well is brought back on production, the objective is for the return concentration level of the inhibitor in the produced brine to be at or above a certain threshold level, C{sub t}. This threshold level is the minimum inhibitor concentration required to prevent the formation of mineral carbonate or sulfate scales in that well. The squeeze lifetime depends strongly on the nature of the interaction between the inhibitor and the formation either through an adsorption or precipitation mechanism. Both adsorption and precipitation processes depend on the molecular weight of the scale inhibitor, as well as on a range of other factors. However, polymeric inhibitor species always display some degree of polydispersity (spread of molecular weight). In this paper, the authors examine the effects of molecular weight on adsorption/desorption phenomena for polyacrylate based inhibitor species. This work shows that, in the inhibitor effluent after a squeeze treatment, the molecular weight of the returning inhibitor may be different from that which was injected. For commercially available polymeric inhibitor species, they demonstrate using core floods that preferential retention of higher molecular weight components occurs and preferential desorption of lower molecular weight components is observed. This leads to a gradation in molecular weight in the return profile, which can lead to increased molecular weight components returning as the inhibitor concentration approaches the threshold level. The significance of this observation to field application of polymeric inhibitor species is discussed.

  4. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma.

    PubMed

    Liu, Rui-Ming; Eldridge, Stephanie; Watanabe, Nobuo; Deshane, Jessy; Kuo, Hui-Chien; Jiang, Chunsun; Wang, Yong; Liu, Gang; Schwiebert, Lisa; Miyata, Toshio; Thannickal, Victor J

    2016-02-15

    Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling. PMID:26702150

  5. Therapeutic potential of an orally effective small molecule inhibitor of plasminogen activator inhibitor for asthma.

    PubMed

    Liu, Rui-Ming; Eldridge, Stephanie; Watanabe, Nobuo; Deshane, Jessy; Kuo, Hui-Chien; Jiang, Chunsun; Wang, Yong; Liu, Gang; Schwiebert, Lisa; Miyata, Toshio; Thannickal, Victor J

    2016-02-15

    Asthma is one of the most common respiratory diseases. Although progress has been made in our understanding of airway pathology and many drugs are available to relieve asthma symptoms, there is no cure for chronic asthma. Plasminogen activator inhibitor 1 (PAI-1), a primary inhibitor of tissue-type and urokinase-type plasminogen activators, has pleiotropic functions besides suppression of fibrinolysis. In this study, we show that administration of TM5275, an orally effective small-molecule PAI-1 inhibitor, 25 days after ovalbumin (OVA) sensitization-challenge, significantly ameliorated airway hyperresponsiveness in an OVA-induced chronic asthma model. Furthermore, we show that TM5275 administration significantly attenuated OVA-induced infiltration of inflammatory cells (neutrophils, eosinophils, and monocytes), the increase in the levels of OVA-specific IgE and Th2 cytokines (IL-4 and IL-5), the production of mucin in the airways, and airway subepithelial fibrosis. Together, the results suggest that the PAI-1 inhibitor TM5275 may have therapeutic potential for asthma through suppressing eosinophilic allergic response and ameliorating airway remodeling.

  6. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors

    PubMed Central

    Nelson, Erik A.; Walker, Sarah R.; Weisberg, Ellen; Bar-Natan, Michal; Barrett, Rosemary; Gashin, Laurie B.; Terrell, Shariya; Klitgaard, Josephine L.; Santo, Loredana; Addorio, Martha R.; Ebert, Benjamin L.; Griffin, James D.

    2011-01-01

    The transcription factor STAT5 is an essential mediator of the pathogenesis of chronic myelogenous leukemia (CML). In CML, the BCR/ABL fusion kinase causes the constitutive activation of STAT5, thereby driving the expression of genes promoting survival. BCR/ABL kinase inhibitors have become the mainstay of therapy for CML, although CML cells can develop resistance through mutations in BCR/ABL. To overcome this problem, we used a cell-based screen to identify drugs that inhibit STAT-dependent gene expression. Using this approach, we identified the psychotropic drug pimozide as a STAT5 inhibitor. Pimozide decreases STAT5 tyrosine phosphorylation, although it does not inhibit BCR/ABL or other tyrosine kinases. Furthermore, pimozide decreases the expression of STAT5 target genes and induces cell cycle arrest and apoptosis in CML cell lines. Pimozide also selectively inhibits colony formation of CD34+ bone marrow cells from CML patients. Importantly, pimozide induces similar effects in the presence of the T315I BCR/ABL mutation that renders the kinase resistant to presently available inhibitors. Simultaneously inhibiting STAT5 with pimozide and the kinase inhibitors imatinib or nilotinib shows enhanced effects in inhibiting STAT5 phosphorylation and in inducing apoptosis. Thus, targeting STAT5 may be an effective strategy for the treatment of CML and other myeloproliferative diseases. PMID:21233313

  7. The role of placental urokinase inhibitor in toxemia of pregnancy.

    PubMed

    Terao, T; Kobayashi, T

    1983-01-01

    The fibrinolysis of the uterus can be reversed during the course of pregnancy. The chief cause of this physiologic change is an increase of urokinase (UK) inhibitor in the placenta. The UK inhibitor also has a pathologic aspect that can influence the course of pregnancy. We have proven that the hypofibrinolysis of toxemic pregnant urine results from increased UK inhibitor. Furthermore, we have shown the existence of UK inhibitor in toxemic pregnant serum and the glomerulus. On the basis of these facts we propose that UK inhibitor leaks into the maternal blood stream from the placenta and inhibits the fibrinolytic activity of UK, forming microthrombuses in the glomerulus. Excess UK inhibitor in the placenta also suppresses the fibrinolytic activity of placental plasminogen activator (PPA). Thus microthrombuses are apt to be formed in both the placenta and glomerulus. Such pathologic inhibition of fibrinolysis strongly influences the course of toxemia. PMID:6360225

  8. Enzyme inhibitors in tuber crops and their thermal stability.

    PubMed

    Prathibha, S; Nambisan, B; Leelamma, S

    1995-10-01

    Tubers of Cassava (Manihot esculenta), yams (Dioscorea esculenta), aroids (Amorphophallus campanulatus, Colocasia esculenta, Xanthosoma sagittfolium) and Coleus (Solenostemon rotundifolius) were screened for inhibitory activities against amylase, trypsin and chymotrypsin. Coleus tuber possessed the highest anti-amylase activity, whereas Colocasia tuber was the most potent source of anti-tryptic and anti-chymotryptic activity. Xanthosoma tubers exhibited amylase inhibitory activity and Amorphophallus tubers antiprotease activity. Dioscorea esculenta had low levels of amylase and chymotrypsin inhibitors, while Cassava tubers were totally free of inhibitors. When tubers were processed by pressure cooking, there was significant reduction/complete elimination in inhibitory activity. Partial retention of inhibition was observed in the case of amylase inhibitor in Dioscorea, chymotrypsin inhibitor in Colocasia and trypsin inhibitor in Colocasia, Coleus and Amorphophallus. In vitro experiments on heat stability of the different inhibitors revealed almost similar pattern of inactivation. PMID:8833431

  9. Hepatitis C Virus NS3 Inhibitors: Current and Future Perspectives

    PubMed Central

    Akimitsu, Nobuyoshi

    2013-01-01

    Currently, hepatitis C virus (HCV) infection is considered a serious health-care problem all over the world. A good number of direct-acting antivirals (DAAs) against HCV infection are in clinical progress including NS3-4A protease inhibitors, RNA-dependent RNA polymerase inhibitors, and NS5A inhibitors as well as host targeted inhibitors. Two NS3-4A protease inhibitors (telaprevir and boceprevir) have been recently approved for the treatment of hepatitis C in combination with standard of care (pegylated interferon plus ribavirin). The new therapy has significantly improved sustained virologic response (SVR); however, the adverse effects associated with this therapy are still the main concern. In addition to the emergence of viral resistance, other targets must be continually developed. One such underdeveloped target is the helicase portion of the HCV NS3 protein. This review article summarizes our current understanding of HCV treatment, particularly with those of NS3 inhibitors. PMID:24282816

  10. GSK-3 Inhibitors: Preclinical and Clinical Focus on CNS

    PubMed Central

    Eldar-Finkelman, Hagit; Martinez, Ana

    2011-01-01

    Inhibiting glycogen synthase kinase-3 (GSK-3) activity via pharmacological intervention has become an important strategy for treating neurodegenerative and psychiatric disorders. The known GSK-3 inhibitors are of diverse chemotypes and mechanisms of action and include compounds isolated from natural sources, cations, synthetic small-molecule ATP-competitive inhibitors, non-ATP-competitive inhibitors, and substrate–competitive inhibitors. Here we describe the variety of GSK-3 inhibitors with a specific emphasis on their biological activities in neurons and neurological disorders. We further highlight our current progress in the development of non-ATP-competitive inhibitors of GSK-3. The available data raise the hope that one or more of these drug design approaches will prove successful at stabilizing or even reversing the aberrant neuropathology and cognitive deficits of certain central nervous system disorders. PMID:22065134

  11. Towards a Green Hydrate Inhibitor: Imaging Antifreeze Proteins on Clathrates

    PubMed Central

    Gordienko, Raimond; Ohno, Hiroshi; Singh, Vinay K.; Jia, Zongchao; Ripmeester, John A.; Walker, Virginia K.

    2010-01-01

    The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs) possess the ability to modify structure II (sII) tetrahydrofuran (THF) hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP). The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors. PMID:20161789

  12. Topical calcineurin inhibitors in systemic lupus erythematosus

    PubMed Central

    Lampropoulos, Christos E; D’Cruz, David P

    2010-01-01

    Cutaneous lupus erythematosus (CLE) encompasses a variety of lesions that may be refractory to systemic or topical agents. Discoid lupus erythematosus (DLE) and subacute cutaneous lupus erythematosus (SCLE) are the most common lesions in clinical practice. The topical calcineurin inhibitors, tacrolimus and pimecrolimus, have been used to treat resistant cutaneous lupus since 2002 and inhibit the proliferation and activation of T-cells and suppress immune-mediated cutaneous inflammation. This article reviews the mechanism of action, efficacy, adverse effects, and the recent concern about their possible carcinogenic effect. Although the total number of patients is small and there is only one relevant randomized controlled study, the data are encouraging. Many patients, previously resistant to systemic agents or topical steroids, improved after four weeks of treatment. DLE and SCLE lesions were less responsive, reflecting the chronicity of the lesions, although more than 50% of patients still showed improvement. Topical calcineurin inhibitors may be a safe and effective alternative to topical steroids for CLE although the only approved indication is for atopic dermatitis. PMID:20421909

  13. SGLT2 Inhibitors: Benefit/Risk Balance.

    PubMed

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation. PMID:27541294

  14. Plasminogen activator inhibitor-1 in aging.

    PubMed

    Yamamoto, Koji; Takeshita, Kyosuke; Saito, Hidehiko

    2014-09-01

    Plasminogen activator inhibitor-1 (PAI-1), a principal inhibitor of fibrinolysis, is induced in thrombotic, fibrotic, and cardiovascular diseases, which in turn primarily afflict the older population. This induction of PAI-1 may play an important role in the pathology of these diseases as PAI-1 can regulate the dissolution of fibrin and also inhibit the degradation of the extracellular matrix by reducing plasmin generation. PAI-1 expression is elevated in aged individuals and is significantly upregulated in a variety of pathologies associated with the process of aging, including myocardial and cerebral infarction, vascular (athero) sclerosis, cardiac and lung fibrosis, metabolic syndromes (e.g., hypertension, hyperlipidemia, and insulin resistance), cancer, and inflammatory/stress responses. Thus, PAI-1 may play a critical role in the development of aging-associated pathological changes. In addition, PAI-1 is recognized as a marker of senescence and a key member of a group of proteins collectively known as the senescence-messaging secretome. In this review, we highlight the role of PAI-1 in the pathophysiology of aging and aging-associated disorders.

  15. Development of sulfonamide AKT PH domain inhibitors

    PubMed Central

    Ahad, Ali Md.; Zuohe, Song; Du-Cuny, Lei; Moses, Sylvestor A.; Zhou, Li Li; Zhang, Shuxing; Powis, Garth; Meuillet, Emmanuelle J.; Mash, Eugene A.

    2011-01-01

    Disruption of the phosphatidylinositol 3-kinase/AKT signaling pathway can lead to apoptosis in cancer cells. Previously we identified a lead sulfonamide that selectively bound to the pleckstrin homology (PH) domain of AKT and induced apoptosis when present at low micromolar concentrations. To examine the effects of structural modification, a set of sulfonamides related to the lead compound was designed, synthesized, and tested for binding to the expressed PH domain of AKT using a surface plasmon resonance-based competitive binding assay. Cellular activity was determined by means of an assay for pAKT production and a cell killing assay using BxPC3 cells. The most active compounds in the set are lipophilic and possess an aliphatic chain of the proper length. Results were interpreted with the aid of computational modeling. This paper represents the first structure-activity relationship (SAR) study of a large family of AKT PH domain inhibitors. Information obtained will be used in the design of the next generation of inhibitors of AKT PH domain function. PMID:21353784

  16. Peptide deformylase inhibitors as potent antimycobacterial agents.

    PubMed

    Teo, Jeanette W P; Thayalan, Pamela; Beer, David; Yap, Amelia S L; Nanjundappa, Mahesh; Ngew, Xinyi; Duraiswamy, Jeyaraj; Liung, Sarah; Dartois, Veronique; Schreiber, Mark; Hasan, Samiul; Cynamon, Michael; Ryder, Neil S; Yang, Xia; Weidmann, Beat; Bracken, Kathryn; Dick, Thomas; Mukherjee, Kakoli

    2006-11-01

    Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent proteins. This is an essential step in bacterial protein synthesis, making PDF an attractive target for antibacterial drug development. Essentiality of the def gene, encoding PDF from Mycobacterium tuberculosis, was demonstrated through genetic knockout experiments with Mycobacterium bovis BCG. PDF from M. tuberculosis strain H37Rv was cloned, expressed, and purified as an N-terminal histidine-tagged recombinant protein in Escherichia coli. A novel class of PDF inhibitors (PDF-I), the N-alkyl urea hydroxamic acids, were synthesized and evaluated for their activities against the M. tuberculosis PDF enzyme as well as their antimycobacterial effects. Several compounds from the new class had 50% inhibitory concentration (IC50) values of <100 nM. Some of the PDF-I displayed antibacterial activity against M. tuberculosis, including MDR strains with MIC90 values of <1 microM. Pharmacokinetic studies of potential leads showed that the compounds were orally bioavailable. Spontaneous resistance towards these inhibitors arose at a frequency of < or =5 x 10(-7) in M. bovis BCG. DNA sequence analysis of several spontaneous PDF-I-resistant mutants revealed that half of the mutants had acquired point mutations in their formyl methyltransferase gene (fmt), which formylated Met-tRNA. The results from this study validate M. tuberculosis PDF as a drug target and suggest that this class of compounds have the potential to be developed as novel antimycobacterial agents.

  17. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, B.A.; Whitlow, E.P.

    1998-09-22

    A method is described for inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425 F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25 C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425 F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer. 5 figs.

  18. Corrosion inhibitor for aqueous ammonia absorption system

    DOEpatents

    Phillips, Benjamin A.; Whitlow, Eugene P.

    1998-09-22

    A method of inhibiting corrosion and the formation of hydrogen and thus improving absorption in an ammonia/water absorption refrigeration, air conditioning or heat pump system by maintaining the hydroxyl ion concentration of the aqueous ammonia working fluid within a selected range under anaerobic conditions at temperatures up to 425.degree. F. This hydroxyl ion concentration is maintained by introducing to the aqueous ammonia working fluid an inhibitor in an amount effective to produce a hydroxyl ion concentration corresponding to a normality of the inhibitor relative to the water content ranging from about 0.015 N to about 0.2 N at 25.degree. C. Also, working fluids for inhibiting the corrosion of carbon steel and resulting hydrogen formation and improving absorption in an ammonia/water absorption system under anaerobic conditions at up to 425.degree. F. The working fluids may be aqueous solutions of ammonia and a strong base or aqueous solutions of ammonia, a strong base, and a specified buffer.

  19. Replication and Inhibitors of Enteroviruses and Parechoviruses.

    PubMed

    van der Linden, Lonneke; Wolthers, Katja C; van Kuppeveld, Frank J M

    2015-08-01

    The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors.

  20. A novel molluscicide, corrosion inhibitor, and dispersant

    SciTech Connect

    Kreuser, R.T.; Vanlaer, A.; Damour, A.

    1997-12-01

    The efficacy of filming amines as corrosion inhibitors and dispersants in steam systems is well-documented. A novel formulation retains these functions of traditional filming amines and adds molluscicide capability for controlling macrofouling in fresh water and sea water. Criteria for this development included low toxicity to mammals and to non-target aquatic species, rapid biodegradation, and multifunctionality. Low mammalian toxicity and lack of other hazards exempt it from reporting requirements under SARA Title 3. Toxicity (LC{sub 50}) levels for rainbow trout and fathead minnow are higher than typical dosage rates. Biodegradation is rapid; half life is 22 hours in river water. By effectively dispersing slimes (along with biofilm, scale, and tubercles), it controls slimes without toxicity to biofilm organisms. As corrosion inhibitor, it reduces the open cell potential of metal surfaces by 50--200 millivolts and retards pitting and crevice corrosion. Its molluscicide activity gradually kills and disperses mussels, clams, and barnacles. The protective film, renewed by dosage for a brief period of time each day, proactively prevents scale and slime deposits and repels settling and adhesion by macrofouling species. Refinement of established technology has produced a multi-functional formulation that is safe to handle and has minimal impact on the environment.

  1. RNA aptamer inhibitors of a restriction endonuclease

    PubMed Central

    Mondragón, Estefanía; Maher, L. James

    2015-01-01

    Restriction endonucleases (REases) recognize and cleave short palindromic DNA sequences, protecting bacterial cells against bacteriophage infection by attacking foreign DNA. We are interested in the potential of folded RNA to mimic DNA, a concept that might be applied to inhibition of DNA-binding proteins. As a model system, we sought RNA aptamers against the REases BamHI, PacI and KpnI using systematic evolution of ligands by exponential enrichment (SELEX). After 20 rounds of selection under different stringent conditions, we identified the 10 most enriched RNA aptamers for each REase. Aptamers were screened for binding and specificity, and assayed for REase inhibition. We obtained eight high-affinity (Kd ∼12-30 nM) selective competitive inhibitors (IC50 ∼20-150 nM) for KpnI. Predicted RNA secondary structures were confirmed by in-line attack assay and a 38-nt derivative of the best anti-KpnI aptamer was sufficient for inhibition. These competitive inhibitors presumably act as KpnI binding site analogs, but lack the primary consensus KpnI cleavage sequence and are not cleaved by KpnI, making their potential mode of DNA mimicry fascinating. Anti-REase RNA aptamers could have value in studies of REase mechanism and may give clues to a code for designing RNAs that competitively inhibit DNA binding proteins including transcription factors. PMID:26184872

  2. HTCC: Broad Range Inhibitor of Coronavirus Entry

    PubMed Central

    Milewska, Aleksandra; Kaminski, Kamil; Ciejka, Justyna; Kosowicz, Katarzyna; Zeglen, Slawomir; Wojarski, Jacek; Nowakowska, Maria; Szczubiałka, Krzysztof; Pyrc, Krzysztof

    2016-01-01

    To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1) circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and its hydrophobically-modified derivative (HM-HTCC) as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses. PMID:27249425

  3. Polyphenol Compound as a Transcription Factor Inhibitor.

    PubMed

    Park, Seyeon

    2015-11-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor-DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein-protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  4. Polyphenol Compound as a Transcription Factor Inhibitor

    PubMed Central

    Park, Seyeon

    2015-01-01

    A target-based approach has been used to develop novel drugs in many therapeutic fields. In the final stage of intracellular signaling, transcription factor–DNA interactions are central to most biological processes and therefore represent a large and important class of targets for human therapeutics. Thus, we focused on the idea that the disruption of protein dimers and cognate DNA complexes could impair the transcriptional activation and cell transformation regulated by these proteins. Historically, natural products have been regarded as providing the primary leading compounds capable of modulating protein–protein or protein-DNA interactions. Although their mechanism of action is not fully defined, polyphenols including flavonoids were found to act mostly as site-directed small molecule inhibitors on signaling. There are many reports in the literature of screening initiatives suggesting improved drugs that can modulate the transcription factor interactions responsible for disease. In this review, we focus on polyphenol compound inhibitors against dimeric forms of transcription factor components of intracellular signaling pathways (for instance, c-jun/c-fos (Activator Protein-1; AP-1), c-myc/max, Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and β-catenin/T cell factor (Tcf)). PMID:26529010

  5. Undecaprenyl diphosphate synthase inhibitors: antibacterial drug leads.

    PubMed

    Sinko, William; Wang, Yang; Zhu, Wei; Zhang, Yonghui; Feixas, Ferran; Cox, Courtney L; Mitchell, Douglas A; Oldfield, Eric; McCammon, J Andrew

    2014-07-10

    There is a significant need for new antibiotics due to the rise in drug resistance. Drugs such as methicillin and vancomycin target bacterial cell wall biosynthesis, but methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE) have now arisen and are of major concern. Inhibitors acting on new targets in cell wall biosynthesis are thus of particular interest since they might also restore sensitivity to existing drugs, and the cis-prenyl transferase undecaprenyl diphosphate synthase (UPPS), essential for lipid I, lipid II, and thus, peptidoglycan biosynthesis, is one such target. We used 12 UPPS crystal structures to validate virtual screening models and then assayed 100 virtual hits (from 450,000 compounds) against UPPS from S. aureus and Escherichia coli. The most promising inhibitors (IC50 ∼2 μM, Ki ∼300 nM) had activity against MRSA, Listeria monocytogenes, Bacillus anthracis, and a vancomycin-resistant Enterococcus sp. with MIC or IC50 values in the 0.25-4 μg/mL range. Moreover, one compound (1), a rhodanine with close structural similarity to the commercial diabetes drug epalrestat, exhibited good activity as well as a fractional inhibitory concentration index (FICI) of 0.1 with methicillin against the community-acquired MRSA USA300 strain, indicating strong synergism. PMID:24827744

  6. Replication and Inhibitors of Enteroviruses and Parechoviruses

    PubMed Central

    van der Linden, Lonneke; Wolthers, Katja C.; van Kuppeveld, Frank J.M.

    2015-01-01

    The Enterovirus (EV) and Parechovirus genera of the picornavirus family include many important human pathogens, including poliovirus, rhinovirus, EV-A71, EV-D68, and human parechoviruses (HPeV). They cause a wide variety of diseases, ranging from a simple common cold to life-threatening diseases such as encephalitis and myocarditis. At the moment, no antiviral therapy is available against these viruses and it is not feasible to develop vaccines against all EVs and HPeVs due to the great number of serotypes. Therefore, a lot of effort is being invested in the development of antiviral drugs. Both viral proteins and host proteins essential for virus replication can be used as targets for virus inhibitors. As such, a good understanding of the complex process of virus replication is pivotal in the design of antiviral strategies goes hand in hand with a good understanding of the complex process of virus replication. In this review, we will give an overview of the current state of knowledge of EV and HPeV replication and how this can be inhibited by small-molecule inhibitors. PMID:26266417

  7. Lonafarnib is a potential inhibitor for neovascularization.

    PubMed

    Sun, Linlin; Xie, Songbo; Peng, Guoyuan; Wang, Jian; Li, Yuanyuan; Qin, Juan; Zhong, Diansheng

    2015-01-01

    Atherosclerosis is a common cardiovascular disease that involves the build-up of plaque on the inner walls of the arteries. Intraplaque neovacularization has been shown to be essential in the pathogenesis of atherosclerosis. Previous studies showed that small-molecule compounds targeting farnesyl transferase have the ability to prevent atherosclerosis in apolipoprotein E-deficient mice, but the underlying mechanism remains to be elucidated. In this study, we found that lonafarnib, a specific inhibitor of farnesyl transferase, elicits inhibitory effect on vascular endothelial capillary assembly in vitro in a dose-dependent manner. In addition, we showed that lonafarnib treatment led to a dose-dependent decrease in scratch wound closure in vitro, whereas it had little effect on endothelial cell proliferation. These data indicate that lonafarnib inhibits neovascularization via directly targeting endothelial cells and disturbing their motility. Moreover, we demonstrated that pharmacological inhibition of farnesyl transferase by lonafarnib significantly impaired centrosome reorientation toward the leading edge of endothelial cells. Mechanistically, we found that the catalytic β subunit of farnesyl transferase associated with a cytoskeletal protein important for the establishment and maintenance of cell polarity. Additionally, we showed that lonafarnib remarkably inhibited the expression of the cytoskeletal protein and interrupted its interaction with farnesyl transferase. Our findings thus offer novel mechanistic insight into the protective effect of farnesyl transferase inhibitors on atherosclerosis and provide encouraging evidence for the potential use of this group of agents in inhibiting plaque neovascularization. PMID:25853815

  8. Epidermal growth factor receptor (EGFR) inhibitor associated skin eruption.

    PubMed

    Seiverling, Elizabeth V; Fernanadez, Emmy M; Adams, David

    2006-04-01

    EGFR Inhibitors are used to treat Non-Small-Cell Lung Cancer (NSCLC) and colorectal cancer (CRC). A common side effect of EGFR Inhibitors is a follicular/pustular skin eruption. We report a case of gefitinib (Iressa) associated skin eruption. The treatment regimen consisted of triamcinolone 0.1% cream twice daily, clindamycin 1% lotion twice daily and sodium sulfacetamide lotion twice daily. The clinical presentation, etiology, and management options of EGFR Inhibitor associated skin eruptions are discussed.

  9. Aromatase inhibitors in men: effects and therapeutic options

    PubMed Central

    2011-01-01

    Aromatase inhibitors effectively delay epiphysial maturation in boys and improve testosterone levels in adult men Therefore, aromatase inhibitors may be used to increase adult height in boys with gonadotropin-independent precocious puberty, idiopathic short stature and constitutional delay of puberty. Long-term efficacy and safety of the use of aromatase inhibitors has not yet been established in males, however, and their routine use is therefore not yet recommended. PMID:21693046

  10. Toxicity issues of organic corrosion inhibitors: Applications of QSAR model

    SciTech Connect

    Singh, W.P.; Bockris, J.O`M.

    1996-12-01

    Less toxic corrosion inhibitors can be designed, if one has a reliable method of estimation of toxicity of these compounds before these are actually synthesized. This paper deals with a review of various methods of estimation of aquatic toxicity of organic compounds and highlights the relationship between the structures of these inhibitors and their aquatic toxicity. Such relationships can form the basis for changing the structure of the existing corrosion inhibitors to make these less toxic.

  11. 42 CFR 5a.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Applicability. 5a.2 Section 5a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS RURAL PHYSICIAN... Public Health Service Act....

  12. 42 CFR 5a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Applicability. 5a.2 Section 5a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS RURAL PHYSICIAN... Public Health Service Act....

  13. Carbonic Anhydrase Inhibitors. Part 541: Metal Complexes of Heterocyclic Sulfonamides: A New Class of Antiglaucoma Agents

    PubMed Central

    Scozzafava, Andrea; Jitianu, Andrei

    1997-01-01

    Metal complexes of heterocyclic sulfonamides possessing carbonic anhydrase (CA) inhibitory properties were recently shown to be useful as intraocular pressure (IOP) lowering agents in experimental animals, and might be developed as a novel class of antiglaucoma drugs. Here we report the synthesis of a heterocyclic sulfonamide CA inhibitor and of the metal complexes containing main group metal ions, such as Be(II), Mg(II), Al(III), Zn(II), Cd(II) and Hg(II) and the new sulfonamide as well as 5-amino-1,3,4-thiadiazole-2-sulfonamide as ligands. The new complexes were characterized by standard physico-chemical procedures, and assayed as inhibitors of three CA isozymes, CA I, II and IV. Some of them (but not the parent sulfonamides) strongly lowered IOP in rabbits when administered as a 2% solution into the eye. PMID:18475811

  14. Synthesis and In Vitro Evaluation of Aspartate Transcarbamoylase Inhibitors

    PubMed Central

    Coudray, Laëtitia; Pennebaker, Anne F.; Montchamp, Jean-Luc

    2009-01-01

    The design, synthesis, and evaluation of a series of novel inhibitors of aspartate transcarbamoylase (ATCase) are reported. Several submicromolar phosphorus-containing inhibitors are described, but all-carboxylate compounds are inactive. Compounds were synthesized to probe the postulated cyclic transition-state of the enzyme-catalyzed reaction. In addition, the associated role of the protonation state at the phosphorus acid moiety was evaluated using phosphinic and carboxylic acids. Although none of the synthesized inhibitors is more potent than N-phosphonacetyl-L-aspartate (PALA), the compounds provide useful mechanistic information, as well as the basis for the design of future inhibitors and/or prodrugs. PMID:19828320

  15. Solderability preservation through the use of organic inhibitors

    SciTech Connect

    Sorensen, N.R.; Hosking, F.M.

    1994-12-01

    Organic inhibitors can be used to prevent corrosion of metals and have application in the electronics industry as solderability preservatives. We have developed a model to describe the action of two inhibitors (benzotriazole and imidazole) during the environmental aging and soldering process. The inhibitors bond with the metal surface and form a barrier that prevents or retards oxidation. At soldering temperatures, the metal-organic complex breaks down leaving an oxide-free metal surface that allows excellent wetting by molten solder. The presence of the inhibitor retards the wetting rate relative to clean copper, but provides a vast improvement relative to oxidized copper.

  16. Discovery of Biarylaminoquinazolines as Novel Tubulin Polymerization Inhibitors

    PubMed Central

    Ferrarese, Alessandro; Brun, Paola; Castagliuolo, Ignazio; Conconi, Maria Teresa; La Regina, Giuseppe; Bai, Ruoli; Silvestri, Romano; Hamel, Ernest; Chilin, Adriana

    2014-01-01

    Cell cycle experiments with our previously reported 4-biphenylaminoquinazoline (1–3) multityrosine kinase inhibitors revealed an activity profile resembling that of known tubulin polymerization inhibitors. Novel 4-biarylaminoquinazoline analogues of compound 2 were synthesized and evaluated as inhibitors of several tyrosine kinases and of tubulin. Although compounds 1–3 acted as dual inhibitors, the heterobiaryl analogues possessed only anti-tubulin properties and targeted the colchicine site. Furthermore, molecular modeling studies allowed the rationalization of the pharmacodynamic properties of the compounds. PMID:24801610

  17. Discovery of a selective irreversible BMX inhibitor for prostate cancer.

    PubMed

    Liu, Feiyang; Zhang, Xin; Weisberg, Ellen; Chen, Sen; Hur, Wooyoung; Wu, Hong; Zhao, Zheng; Wang, Wenchao; Mao, Mao; Cai, Changmeng; Simon, Nicholas I; Sanda, Takaomi; Wang, Jinhua; Look, A Thomas; Griffin, James D; Balk, Steven P; Liu, Qingsong; Gray, Nathanael S

    2013-07-19

    BMX is a member of the TEC family of nonreceptor tyrosine kinases. We have used structure-based drug design in conjunction with kinome profiling to develop a potent, selective, and irreversible BMX kinase inhibitor, BMX-IN-1, which covalently modifies Cys496. BMX-IN-1 inhibits the proliferation of Tel-BMX-transformed Ba/F3 cells at two digit nanomolar concentrations but requires single digit micromolar concentrations to inhibit the proliferation of prostate cancer cell lines. Using a combinatorial kinase inhibitor screening strategy, we discovered that the allosteric Akt inhibitor, MK2206, is able to potentiate BMX inhibitor's antiproliferation efficacy against prostate cancer cells. PMID:23594111

  18. Squash inhibitors: from structural motifs to macrocyclic knottins.

    PubMed

    Chiche, Laurent; Heitz, Annie; Gelly, Jean-Christophe; Gracy, Jérôme; Chau, Pham T T; Ha, Phan T; Hernandez, Jean-François; Le-Nguyen, Dung

    2004-10-01

    In this article, we will first introduce the squash inhibitor, a well established family of highly potent canonical serine proteinase inhibitors isolated from Cucurbitaceae. The squash inhibitors were among the first discovered proteins with the typical knottin fold shared by numerous peptides extracted from plants, animals and fungi. Knottins contain three knotted disulfide bridges, two of them arranged as a Cystine-Stabilized Beta-sheet motif. In contrast to cyclotides for which no natural linear homolog is known, most squash inhibitors are linear. However, Momordica cochinchinensis Trypsin Inhibitor-I and (MCoTI-I and -II), 34-residue squash inhibitors isolated from seeds of a common Cucurbitaceae from Vietnam, were recently shown to be macrocyclic. In these circular squash inhibitors, a short peptide linker connects residues that correspond to the N- and C-termini in homologous linear squash inhibitors. In this review we present the isolation, characterization, chemical synthesis, and activity of these macrocyclic knottins. The solution structure of MCoTI-II will be compared with topologically similar cyclotides, homologous linear squash inhibitors and other knottins, and potential applications of such scaffolds will be discussed. PMID:15551519

  19. Enzymatic synthesis of hyaluronan hybrid urinary trypsin inhibitor.

    PubMed

    Kakizaki, Ikuko; Takahashi, Ryoki; Yanagisawa, Miho; Yoshida, Futaba; Takagaki, Keiichi

    2015-09-01

    Human urinary trypsin inhibitor is a proteoglycan that has a single low-sulfated chondroitin 4-sulfate chain at the seryl residue in position 10 of the core protein as a glycosaminoglycan moiety, and is used as an anti-inflammatory medicine based on the protease inhibitory activity of the core protein. However, the functions of the glycosaminoglycan moiety have not yet been elucidated in detail. In the present study, the glycosaminoglycan chains of a native urinary trypsin inhibitor were remodeled to hyaluronan chains, with no changes to the core protein, using transglycosylation as a reverse reaction of the hydrolysis of bovine testicular hyaluronidase, and the properties of the hybrid urinary trypsin inhibitor were then analyzed. The trypsin inhibitory activitiy of the hyaluronan hybrid urinary trypsin inhibitor was similar to that of the native type; however, its inhibitory effect on the hydrolysis of hyaluronidase were not as strong as that of the native type. This result demonstrated that the native urinary trypsin inhibitor possessed hyaluronidase inhibitory activity on its chondroitin sulfate chain. The hyaluronan hybrid urinary trypsin inhibitors obtained affinity to a hyaluronan-binding protein not exhibited by the native type. The interactions between the hyaluronan hybrid urinary trypsin inhibitors and phosphatidylcholine (abundant in the outer layer of plasma membrane) were stronger than that of the native type. Hyaluronan hybrid urinary trypsin inhibitors may be useful for investigating the functions of the glycosaminoglycan chains of urinary trypsin inhibitors and hyaluronan, and our hybrid synthesizing method may be used widely in research for future medical applications.

  20. Pharmacology and laboratory testing of the oral Xa inhibitors.

    PubMed

    Samama, Meyer Michel; Meddahi, Sadia; Samama, Charles Marc

    2014-09-01

    New oral factor Xa inhibitors are intended to progressively substitute the oral vitamin K antagonists and parenteral indirect inhibitors of factor Xa in the prevention and treatment of venous and arterial thromboembolic episodes. This article focuses on the main clinical studies and on biological measurements of new oral factor Xa inhibitors, and addresses several safety issues. These newer agents do not require any routine laboratory monitoring of blood coagulation; however, biological tests have been developed in order to assess the plasma concentration of these drugs in several clinical settings. This article reviews these 4 oral direct factor Xa inhibitors. PMID:25168939

  1. A series of novel, potent, and selective histone deacetylase inhibitors.

    PubMed

    Jones, Philip; Altamura, Sergio; Chakravarty, Prasun K; Cecchetti, Ottavia; De Francesco, Raffaele; Gallinari, Paola; Ingenito, Raffaele; Meinke, Peter T; Petrocchi, Alessia; Rowley, Michael; Scarpelli, Rita; Serafini, Sergio; Steinkühler, Christian

    2006-12-01

    Histone deacetylase (HDAC) inhibitors offer a promising strategy for cancer therapy and the first generation HDAC inhibitors are currently in clinical trials. A structurally novel series of HDAC inhibitors based on the natural cyclic tetrapeptide Apicidin is described. Selected screening of the sample collection looking for L-2-amino-8-oxodecanoic acid (L-Aoda) derivatives identified a small acyclic lead molecule 1 with the unusual ketone zinc binding group. SAR studies around this lead resulted in optimization to potent, low molecular weight, selective, non-hydroxamic acid HDAC inhibitors, equipotent to current clinical candidates.

  2. Squash inhibitors: from structural motifs to macrocyclic knottins.

    PubMed

    Chiche, Laurent; Heitz, Annie; Gelly, Jean-Christophe; Gracy, Jérôme; Chau, Pham T T; Ha, Phan T; Hernandez, Jean-François; Le-Nguyen, Dung

    2004-10-01

    In this article, we will first introduce the squash inhibitor, a well established family of highly potent canonical serine proteinase inhibitors isolated from Cucurbitaceae. The squash inhibitors were among the first discovered proteins with the typical knottin fold shared by numerous peptides extracted from plants, animals and fungi. Knottins contain three knotted disulfide bridges, two of them arranged as a Cystine-Stabilized Beta-sheet motif. In contrast to cyclotides for which no natural linear homolog is known, most squash inhibitors are linear. However, Momordica cochinchinensis Trypsin Inhibitor-I and (MCoTI-I and -II), 34-residue squash inhibitors isolated from seeds of a common Cucurbitaceae from Vietnam, were recently shown to be macrocyclic. In these circular squash inhibitors, a short peptide linker connects residues that correspond to the N- and C-termini in homologous linear squash inhibitors. In this review we present the isolation, characterization, chemical synthesis, and activity of these macrocyclic knottins. The solution structure of MCoTI-II will be compared with topologically similar cyclotides, homologous linear squash inhibitors and other knottins, and potential applications of such scaffolds will be discussed.

  3. New low toxicity corrosion inhibitors for industrial cleaning operations

    SciTech Connect

    Lindert, A.; Johnston, W.G.

    1999-11-01

    Inhibitors are routinely employed in chemical cleaning solvents used for removing scale from electrical power plants and industrial equipment since these cleaning solvents are corrosive to metal surfaces. This paper discusses the development of three new inhibitors developed for the use in hydrochloric acid, ammoniated EDTA or citric acid chemical cleaning solutions. Synthesis procedures used in the production of Mannich derivatives employed in the inhibitors were optimized for maximum corrosion resistance and reduced toxicity. All auxiliary ingredients used in the formulation of final inhibitor products were chosen to give the lowest possible toxicity of these products.

  4. MEK inhibitors beyond monotherapy: current and future development.

    PubMed

    Templeton, Ian E; Musib, Luna

    2015-08-01

    The development of MEK inhibitors has led to improved progression-free survival in patients with mutant BRAF(V600) cancers when used in combination with BRAF inhibitors. However, resistance to combination therapy remains an issue. This review summarizes our current understanding of the role of MEK in cancer cell proliferation and the mechanisms which lead to resistance in patients. Specific adverse events, which have been linked to the MEK inhibitor class, have been described. Future combinations of MEK inhibitors with other cancer therapy options, currently under investigation in clinical trials, are also discussed.

  5. Characterization of carbonic anhydrase-inhibitor noncovalent complexes

    SciTech Connect

    Cheng, Xueheng; Chen, R.; Bruce, J.E.

    1995-12-31

    Competitive binding of two mixtures of inhibitors to bovine carbonic anhydrase H (BCAII) was studied using electrospray ionization mass spectrometry (ESI-MS). The first mixture contained inhibitors with hydrocarbon/fluorohydrocarbon linker groups and with an 800 fold span of binding constants. The second contained inhibitors with dipeptide extensions synthesized using the solid phase method. Noncovalent enzyme-inhibitor complexes were observed from solutions in 10 mM ammonia acetate having abundances consistent with their relative binding constants measured in solution. The inhibitor with highest affinity was readily identified in an equimolar mixture. The inhibitors with very low affinity were identified to form specific complexes as well. Several control experiments including acidifying the solution or removing the Zn metal from the enzyme resulted in the disappearance of the enzyme-inhibitor complexes, (mass spectrometrically) observed complexation and characterization of biomolecular binding. Good correlation between gas phase inhibitor ion abundances and their binding constants in solution were observed. Structural information and relative binding constants of masses were obtained using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) through multi-stage dissociation experiments. These results support the role of ESI-FTICR-MS in the study of specific noncovalent associations from solution, and show that its unique capabilities can be exploited to extend studies to large mixtures of inhibitors in drug leads discovery.

  6. Behaviour of tetramine inhibitors during pickling of hot rolled steels

    NASA Astrophysics Data System (ADS)

    Cornu, Marie-José; Koltsov, Alexey; Nicolas, Sabrina; Colom, Lydia; Dossot, Manuel

    2014-02-01

    To avoid the dissolution of steel in industrial pickling process, tetramine inhibitors are added to the pickling bath. This study is devoted to the understanding of the action mechanism of these inhibitors in hydrochloric and sulphuric baths on non-alloyed and alloyed steels. Pickling experiments and characterization with XPS, Raman and infrared spectroscopies have shown that inhibitors work only in acid media and leached out from the steel surfaces during the rinsing operation just after pickling. The effectiveness of inhibitors depends on the acid media and the temperature. Experimental data are consistent with a surface mechanism, i.e., the so-called "outer-sphere" adsorption.

  7. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  8. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  9. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  10. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  11. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  12. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Definitions. 242a.2 Section 242a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.2 Definitions. (a) Board or Board...

  13. 32 CFR 168a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Applicability. 168a.2 Section 168a.2 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.2 Applicability. This part applies to the Office...

  14. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Definitions. 242a.2 Section 242a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.2 Definitions. (a) Board or Board...

  15. 32 CFR 242a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Definitions. 242a.2 Section 242a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS PUBLIC MEETING PROCEDURES OF THE BOARD OF REGENTS, UNIFORMED SERVICES UNIVERSITY OF THE HEALTH SCIENCES § 242a.2 Definitions. (a) Board or Board...

  16. 18 CFR 3a.2 - Authority.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Authority. 3a.2 Section 3a.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION General § 3a.2 Authority. Official information...

  17. 18 CFR 3a.2 - Authority.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Authority. 3a.2 Section 3a.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION General § 3a.2 Authority. Official information...

  18. 18 CFR 3a.2 - Authority.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Authority. 3a.2 Section 3a.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION General § 3a.2 Authority. Official information...

  19. 18 CFR 3a.2 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Authority. 3a.2 Section 3a.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION General § 3a.2 Authority. Official information...

  20. 14 CFR 374a.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Applicability. 374a.2 Section 374a.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES § 374a.2 Applicability....

  1. 14 CFR 374a.2 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Applicability. 374a.2 Section 374a.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES § 374a.2 Applicability....

  2. 14 CFR 374a.2 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Applicability. 374a.2 Section 374a.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES § 374a.2 Applicability....

  3. 14 CFR 374a.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Applicability. 374a.2 Section 374a.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES § 374a.2 Applicability....

  4. 14 CFR 374a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Applicability. 374a.2 Section 374a.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES § 374a.2 Applicability....

  5. 32 CFR 352a.2 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Applicability. 352a.2 Section 352a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.2 Applicability. This part applies to...

  6. 32 CFR 352a.2 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Applicability. 352a.2 Section 352a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.2 Applicability. This part applies to...

  7. 32 CFR 352a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Applicability. 352a.2 Section 352a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.2 Applicability. This part applies to...

  8. 32 CFR 352a.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Applicability. 352a.2 Section 352a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.2 Applicability. This part applies to...

  9. 32 CFR 352a.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Applicability. 352a.2 Section 352a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.2 Applicability. This part applies to...

  10. 18 CFR 3a.2 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Authority. 3a.2 Section 3a.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION General § 3a.2 Authority. Official information...

  11. Synthesis and evaluation of M. tuberculosis salicylate synthase (MbtI) inhibitors designed to probe plasticity in the active site.

    PubMed

    Manos-Turvey, Alexandra; Cergol, Katie M; Salam, Noeris K; Bulloch, Esther M M; Chi, Gamma; Pang, Angel; Britton, Warwick J; West, Nicholas P; Baker, Edward N; Lott, J Shaun; Payne, Richard J

    2012-12-14

    Mycobacterium tuberculosis salicylate synthase (MbtI) catalyses the first committed step in the biosynthesis of mycobactin T, an iron-chelating siderophore essential for the virulence and survival of M. tuberculosis. Co-crystal structures of MbtI with members of a first generation inhibitor library revealed large inhibitor-induced rearrangements within the active site of the enzyme. This plasticity of the MbtI active site was probed via the preparation of a library of inhibitors based on a 2,3-dihydroxybenzoate scaffold with a range of substituted phenylacrylate side chains appended to the C3 position. Most compounds exhibited moderate inhibitory activity against the enzyme, with inhibition constants in the micromolar range, while several dimethyl ester variants possessed promising anti-tubercular activity in vitro. PMID:23108268

  12. Fluorometric High-Throughput Screening Assay for Secreted Phospholipases A2 Using Phospholipid Vesicles.

    PubMed

    Ewing, Heather; Fernández-Vega, Virneliz; Spicer, Timothy P; Chase, Peter; Brown, Steven; Scampavia, Louis; Roush, William R; Riley, Sean; Rosen, Hugh; Hodder, Peter; Lambeau, Gerard; Gelb, Michael H

    2016-08-01

    There is interest in developing inhibitors of human group III secreted phospholipase A2 (hGIII-sPLA2) because this enzyme plays a role in mast cell maturation. There are no potent inhibitors for hGIII-sPLA2 reported to date, so we adapted a fluorescence-based enzyme activity monitoring method to a high-throughput screening format. We opted to use an assay based on phospholipid substrate present in phospholipid vesicles since this matrix more closely resembles the natural substrate of hGIII-sPLA2, as opposed to phospholipid/detergent mixed micelles. The substrate is a phospholipid analogue containing BODIPY fluorophores dispersed as a minor component in vesicles of nonfluorescent phospholipids. Action of hGIII-sPLA2 liberates a free fatty acid from the phospholipid, leading to a reduction in quenching of the fluorophore and hence an increase in fluorescence. The assay uses optical detection in a 1536-well plate format with an excitation wavelength far away from the UV range so as to minimize false-positive library hits that result from quenching of the fluorescence. The high-throughput screen was successfully carried out on a library of 370,276 small molecules. Several hits were discovered, and data have been uploaded to PubChem. This study describes the first high-throughput optical screening assay for secreted phospholipase A2 inhibitors based on a phospholipid vesicle substrate. PMID:27146384

  13. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  14. [Prospects for the design of new therapeutically significant protease inhibitors based on knottins and sunflower seed trypsin inhibitor (SFTI 1)].

    PubMed

    Kuznetsova, S S; Kolesanova, E F; Talanova, A V; Veselovsky, A V

    2016-05-01

    Plant seed knottins, mainly from the Cucurbitacea family, and sunflower seed trypsin inhibitor (SFTI 1) are the most low-molecular canonical peptide inhibitors of serine proteases. High efficiency of inhibition of various serine proteases, structure rigidity together with the possibility of limited variations of amino acid sequences, high chemical stability, lack of toxic properties, opportunity of production by either chemical synthesis or use of heterologous expression systems make these inhibitors attractive templates for design of new compounds for regulation of therapeutically significant serine protease activities. Hence the design of such compounds represents a prospective research field. The review considers structural characteristics of these inhibitors, their properties, methods of preparation and design of new analogs. Examples of successful employment of natural serine protease inhibitors belonging to knottin family and SFTI 1 as templates for the design of highly specific inhibitors of certain proteases are given. PMID:27562989

  15. Identification of fermentation inhibitors in wood hydrolyzates and removal of inhibitors by ion exchange and liquid-liquid extraction

    NASA Astrophysics Data System (ADS)

    Luo, Caidian

    1998-12-01

    Common methods employed in the ethanol production from biomass consist of chemical or enzymatic degradation of biomass into sugars and then fermentation of sugars into ethanol or other chemicals. However, some degradation products severely inhibit the fermentation processes and substantially reduce the efficiency of ethanol production. How to remove inhibitors from the reaction product mixture and increase the production efficiency are critical in the commercialization of any processes of energy from biomass. The present study has investigated anion exchange and liquid-liquid extraction as potential methods for inhibitor removal. An analytical method has been developed to identify the fermentation inhibitors in a hydrolyzate. The majority of inhibitors present in hybrid poplar hydrolyzate have positively been identified. Ion exchange with weak basic Dowex-MWA-1 resin has been proved to be an effective mean to remove fermentation inhibitors from hybrid poplar hydrolyzate and significantly increase the fermentation productivity. Extraction with n-butanol might be a preferred way to remove inhibitors from wood hydrolyzates and improve the fermentability of sugars in the hydrolyzates. n-Butanol also removes some glucose, mannose and xylose from the hydrolyzate. Inhibitor identification reveals that lignin and sugar degradation compounds including both aromatic and aliphatic aldehydes and carboxylic acids formed in hydrolysis, plus fatty acids and other components from wood extractives are major fermentation inhibitors in Sacchromyces cerevisiae fermentation. There are 35 components identified as fermentation inhibitors. Among them, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid, syringic acid, syringaldehyde, and ferulic acid are among the most abundant aromatic inhibitors in hybrid poplar hydrolyzate. The conversion of aldehyde groups into carboxylic acid groups in the nitric acid catalyzed hydrolysis reduces the toxicity of the hydrolyzate. A wide spectrum of

  16. Expression of Phospholipases A2 in Primary Human Lung Macrophages. Role of Cytosolic Phospholipase A2–α in Arachidonic Acid Release and Platelet Activating Factor Synthesis

    PubMed Central

    Giannattasio, Giorgio; Lai, Ying; Granata, Francescopaolo; Mounier, Carine M.; Nallan, Laxman; Oslund, Rob; Leslie, Christina C.; Marone, Gianni; Lambeau, Gérard; Gelb, Michael H.; Triggiani, Massimo

    2009-01-01

    Summary Macrophages are a major source of lipid mediators in the human lung. Expression and contribution of cytosolic (cPLA2) and secreted phospholipases A2 (sPLA2) to the generation of lipid mediators in human macrophages is unclear. We investigated the expression and role of different PLA2s in the production of lipid mediators in primary human lung macrophages. Macrophages express the alpha, but not the zeta isoform of group IV and group VIA cPLA2 (iPLA2). Two structurally-divergent inhibitors of group IV cPLA2 completely block arachidonic acid release by macrophages in response to non-physiological (Ca2+ ionophores and phorbol esters) and physiological agonists (lipopolysaccharide and Mycobacterium protein derivative). These inhibitors also reduce by 70% the synthesis of platelet-activating factor by activated macrophages. Among the full set of human sPLA2s, macrophages express group IIA, IID, IIE, IIF, V, X and XIIA, but not group IB and III enzymes. Me-Indoxam, a potent and cell impermeable inhibitor of several sPLA2s, has no effect on arachidonate release or platelet-activating factor production. Agonist-induced exocytosis is not influenced by cPLA2 inhibitors at concentrations that block arachidonic acid release. Our results indicate that human macrophages express cPLA2-alpha, iPLA2 and several sPLA2s. Cytosolic PLA2-alpha is the major enzyme responsible for lipid mediator production in human macrophages. PMID:19130898

  17. The presence and inactivation of trypsin inhibitors, tannins, lectins and amylase inhibitors in legume seeds during germination. A review.

    PubMed

    Savelkoul, F H; van der Poel, A F; Tamminga, S

    1992-01-01

    During the germination of legume seeds, enzymes become active in order to degrade starch, storage-protein and proteinaceous antinutritional factors. The degradation of storage-protein is necessary to make peptides and amino acids available in order to stimulate seed growth and early plant growth. Proteinaceous antinutritional factors such as amylase inhibitors, lectins and trypsin inhibitors are present in legume seeds and protect them against predators. However, during germination, they degrade to a lower level by the action of several enzymes. The effect of germination on the content and activity of amylase inhibitors, lectins, tannins and trypsin inhibitors is discussed. PMID:1372122

  18. The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources

    NASA Astrophysics Data System (ADS)

    Park, Youngjin; Kim, Yonggyun; Stanley, David

    The bacterium, Xenorhabdus nematophila, is a virulent insect pathogen. Part of its pathogenicity is due to impairing cellular immunity by blocking biosynthesis of eicosanoids, the major recognized signal transduction system in insect cellular immunity. X. nematophila inhibits the first step in eicosanoid biosynthesis, phospholipase A2 (PLA2). Here we report that the bacterium inhibits PLA2 from two insect immune tissues, hemocytes and fat body, as well as PLA2s selected to represent a wide range of organisms, including prokaryotes, insects, reptiles, and mammals. Our finding on a bacterial inhibitor of PLA2 activity contributes new insight into the chemical ecology of microbe-host interactions, which usually involve actions rather than inhibitors of PLA2s.

  19. para-Substituted 2-phenyl-3,4-dihydroquinazolin-4-ones as potent and selective tankyrase inhibitors.

    PubMed

    Haikarainen, Teemu; Koivunen, Jarkko; Narwal, Mohit; Venkannagari, Harikanth; Obaji, Ezeogo; Joensuu, Päivi; Pihlajaniemi, Taina; Lehtiö, Lari

    2013-12-01

    Human tankyrases are attractive drug targets, especially for the treatment of cancer. We identified a set of highly potent tankyrase inhibitors based on a 2-phenyl-3,4-dihydroquinazolin-4-one scaffold. Substitutions at the para position of the scaffold's phenyl group were evaluated as a strategy to increase potency and improve selectivity. The best compounds displayed single-digit nanomolar potencies, and profiling against several human diphtheria-toxin-like ADP-ribosyltransferases revealed that a subset of these compounds are highly selective tankyrase inhibitors. The compounds also effectively inhibit Wnt signaling in HEK293 cells. The binding mode of all inhibitors was studied by protein X-ray crystallography. This allowed us to establish a structural basis for the development of highly potent and selective tankyrase inhibitors based on the 2-phenyl-3,4-dihydroquinazolin-4-one scaffold and outline a rational approach to the modification of other inhibitor scaffolds that bind to the nicotinamide site of the catalytic domain. PMID:24130191

  20. A fast-acting elastase inhibitor in human monocytes

    PubMed Central

    1985-01-01

    A proteinase inhibitor active against neutrophil and pancreatic elastase was detected in extracts of cultured human monocytes and the human monocyte-like cell line U937. This component forms a covalent complex with the active site of elastase; the complex is stable in boiling sodium dodecyl sulfate solution, and is susceptible to nucleophilic cleavage. The activity of the elastase inhibitor is not detected in extracts of freshly isolated monocytes, but becomes detectable when the monocytes are allowed to mature in culture, with maximum levels occurring at 5-7 d. The monocyte inhibitor is fast- acting; its reaction with 125I-labeled elastase is complete in less than 1 min at 37 degrees C. Analysis by electrophoresis and studies using a heteroantiserum to alpha 1-proteinase inhibitor demonstrated that the elastase inhibitor of monocytes/U937 cells is not identical to alpha 1-proteinase inhibitor, the major elastase inhibitor of blood plasma. The extent of conversion of 125I-elastase to the 125I-elastase- inhibitor complex is proportional to the amount of U937 extract or cultured monocyte extract, indicating that this reaction can serve to quantify the elastase inhibitor. The elastase inhibitor is an abundant component in mature monocytes, with greater than or equal to 1.5 X 10(6) molecules/cell (greater than or equal to 12 micrograms per 10(8) cells, greater than 0.1% of total cell protein). Its mol wt is estimated at 50,000. Thus, the monocyte inhibitor should be classified as a putative regulator of neutrophil (and monocyte) elastase activity at inflammatory sites. This designation is based on the properties of the molecule, including its high concentration in maturing monocytes, its affinity for elastase, and its fast reaction with this enzyme. PMID:3906019

  1. Differential recognition of the serologically defined HLA-A2 antigen by allogeneic cytotoxic T cells. I. Population studies.

    PubMed

    Horai, S; van der Poel, J J; Goulmy, E

    1982-01-01

    Human alloimmune cytotoxic T cells, sensitized selectively against the HLA-A2 antigen, were tested on a panel of selected target cells. Five HLA-A2 positive outlier cells could be identified. These outlier cells were only weakly lysed by HLA-A2 specific CTLs, although they were serologically indistinguishable from the other HLA-A2 positive, strongly lysed target cells. Furthermore, it was found that the outlier cells were poor cold target inhibitors in contrast to the other HLA-A2 positive target cells, which showed adequate inhibition of specific lysis of HLA-A2 positive target cells. Population studies indicate that the frequency of such HLA-A2 outlier cells may be approximately 10%. PMID:6183196

  2. Green corrosion inhibitors: An oil company perspective

    SciTech Connect

    McMahon, A.J.; Harrop, D.

    1995-10-01

    Environmental concerns are increasingly likely to influence the choice of oilfield production and drilling chemicals. The Paris Commission (PARCOM) is currently developing legislation for the North Sea. The regulations which emerge may well restrict the use of many current products. Uncertainty over the eventual details has meant that new product development has been somewhat tentative. Little genuinely new chemistry has been explored to meet the environmental challenge. Polypeptides are one of several new classes which deserve attention. Polyaspartate is the most efficient corrosion inhibitor (ca 80% max) of the polypeptides. Molecular weight (1,000--22,000) does not affect the efficiency but both high [Ca{sup 2+}] and high pH are beneficial. Performance is particularly good in batch treatment tests (> 95% efficiency).

  3. Plasminogen activator inhibitor-1 and diabetic nephropathy.

    PubMed

    Lee, Hi Bahl; Ha, Hunjoo

    2005-10-01

    Diabetic nephropathy is characterized by excessive accumulation of extracellular matrix (ECM) in the kidney. Decreased ECM degradation as well as increased ECM synthesis plays an important role in ECM remodeling that favours tissue fibrosis. Plasminogen activator (PA)/plasmin/PA inhibitor (PAI) system is involved in ECM degradation and PAI-1 plays a critical role in ECM remodeling in the kidney. Normal human kidneys do not express PAI-1 but PAI-1 is overexpressed in pathologic conditions associated with renal fibrosis including diabetic nephropathy. Reactive oxygen species mediate PAI-1 up-regulation in renal cells cultured under high glucose, hypoxia, and TGF-beta1. Recent studies utilizing PAI-1 deficient mice suggest that PAI-1 induce ECM deposition in diabetic kidney through increased ECM synthesis by TGF-beta1 up-regulation as well as through decreased ECM degradation by suppression of plasmin and MMP-2 activity.

  4. Can proton pump inhibitors accentuate skin aging?

    PubMed

    Namazi, Mohammad Reza; Jowkar, Farideh

    2010-02-01

    Skin aging has long been important to human beings and in recent years this field has received tremendous attention by both researchers and the general population. Cutaneous aging includes two distinct phenomena, intrinsic aging and photoaging, and is characterized mainly by the loss of collagen fibers from dermis. Proton pump inhibitors (PPIs) are widely prescribed gastric acid-reducing agents that are usually consumed for long periods in some conditions such as gastroesophageal reflux disease. We suggest that PPIs can accentuate skin aging by two mechanisms. First, through increasing intralysosomal PH, PPIs can suppress transforming growth factor-beta (TGFbeta) processing and consequently decrease its secretion. Second, through inhibiting MNK, a P-type ATPase with steady-state localization at the trans-Golgi network, PPIs can hamper copper transport and consequently curb lysyl oxidase activity. PMID:20470945

  5. Specific cyclooxygenase-2 (COX-2) inhibitors.

    PubMed

    Rubin, B R

    1999-06-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are currently among the most widely prescribed drugs worldwide. Their therapeutic benefits and their side effects in the gastrointestinal tract and kidney, as well as in hemostasis, are of great importance in modern medicine. Within the past decade, new insights into how NSAIDs produce both their therapeutic benefits and their serious side effects have been discovered. It is now known that there are two froms of the cyclooxygenase (COX) enzyme that metabolize arachidonic acid into prostaglandins. Drugs that specifically inhibit the COX-2 enzyme were formulated and put into clinical trials during the past 5 years. These drugs are now available to treat patients in the United States. Specific COX-2 inhibitors offer the benefit of being able to treat the pain and inflammation of arthritis with potentially little risk of serious gastrointestinal injury.

  6. Mushroom tyrosinase inhibitors from Aloe barbadensis Miller.

    PubMed

    Wu, Xiaofang; Yin, Sheng; Zhong, Jiasheng; Ding, Wenjing; Wan, Jinzhi; Xie, Zhiyong

    2012-12-01

    Two new chromones, 5-((S)-2'-oxo-4'-hydroxypentyl)-2-(β-glucopyranosyl-oxy-methyl)chromone (1) and 5-((S)-2'-oxo-4'-hydroxypentyl)-2-methoxychromone (2), together with four known analogues, 8-C-glucosyl-7-O-methyl-(S)-aloesol (3), isoaloeresin D (4), 8-C-glucosyl-(R)-aloesol (5), and aloesin (6) were isolated from the aqueous extract of Aloe barbadensis Miller. Their structures were determined on the basis of spectroscopic evidences (1-D and 2-D NMR, HRMS, UV, and IR data), chemical methods and the literature data. The Mosher's method was applied to establish the absolute configuration of compounds 1 and 2. The inhibitory effects of these chromones on the activity of mushroom tyrosinase were examined, and compound 6 was identified as a noncompetitive tyrosinase inhibitor with an IC(50) value of 108.62μg·mL(-1).

  7. Protection from extinction by a conditioned inhibitor.

    PubMed

    Sołtysik, S; Wolfe, G

    1980-01-01

    The phenomenon of protection from extinction (PFE) of a conditioned stimulus (CS) by a conditioned inhibitor (CI) has not been yet unequivocally demonstrated for the CS-CI compound in which the CS precedes the onset of the CI. Preliminary data from a project addressed to this problem strongly indicate that PFE is a real and robust phenomenon. Moreover, the protection is demonstrated not only for the CS duration overlapping with the CI but also for the early part of the CS which is not prevented by the CI from eliciting a conditioned response. The review of a few theories of conditioning suggests that the phenomenon of PFE is theoretically acceptable and predicted within the framework of any hypothetical mechanism which allows for post-trial "processing" or "consolidation" of information acquired during the trial.

  8. Histone deacetylase inhibitors and cell death

    PubMed Central

    Zhang, Jing; Zhong, Qing

    2014-01-01

    Histone deacetylases (HDACs) are a vast family of enzymes involved in chromatin remodeling and have crucial roles in numerous biological processes, largely through their repressive influence on transcription. In addition to modifying histones, HDACs also target many other non-histone protein substrates to regulate gene expression. Recently, HDACs have gained growing attention as HDAC-inhibiting compounds are being developed as promising cancer therapeutics. Histone deacetylase inhibitors (HDACi) have been shown to induce differentiation, cell cycle arrest, apoptosis, autophagy and necrosis in a variety of transformed cell lines. In this review, we mainly discuss how HDACi may elicit a therapeutic response to human cancers through different cell death pathways, in particular, apoptosis and autophagy. PMID:24898083

  9. Antithrombin, an Important Inhibitor in Blood Clots.

    PubMed

    Zhu, Ying; Cong, Qing-Wei; Liu, Yue; Wan, Chun-Ling; Yu, Tao; He, Guang; He, Lin; Cai, Lei; Chou, Kuo-Chen

    2016-01-01

    Blood coagulation is healthy and lifesaving because it can stop bleeding. It can, however, be a troublemaker as well, causing serious medical problems including heart attack and stroke. Body has complex blood coagulation cascade to modulate the blood clots. In the environment of plasma, the blood coagulation cascade is regulated by antithrombin, which is deemed one of the most important serine protease inhibitors. It inhibits thrombin; it can inhibit factors IXa and Xa as well. Interestingly, its inhibitory ability will be significantly increased with the existence of heparin. In this minireview paper, we are to summarize the structural features of antithrombin, as well as its heparin binding modes and anti-coagulation mechanisms, in hopes that the discussion and analysis presented in this paper can stimulate new strategies to find more effective approaches or compounds to modulate the antithrombin. PMID:26411319

  10. Inherent formulation issues of kinase inhibitors.

    PubMed

    Herbrink, M; Schellens, J H M; Beijnen, J H; Nuijen, B

    2016-10-10

    The small molecular Kinase Inhibitor (smKI) drug class is very promising and rapidly expanding. All of these drugs are administered orally. The clear relationship between structure and function has led to drugs with a general low intrinsic solubility. The majority of the commercial pharmaceutical formulations of the smKIs are physical mixtures that are limited by the low drug solubility of a salt form. This class of drugs is therefore characterized by an impaired and variable bioavailability rendering them costly and their therapies suboptimal. New formulations are sparingly being reported in literature and patents. The presented data suggests that continued research into formulation design can help to develop more efficient and cost-effective smKI formulation. Moreover, it may also be of help in the future design of the formulations of new smKIs.

  11. [PCSK9 inhibitors : Recommendations for patient selection].

    PubMed

    Laufs, U; Custodis, F; Werner, C

    2016-06-01

    The 2 or 4‑week subcutaneous therapy with the recently approved antibodies alirocumab and evolocumab for inhibition of proprotein convertase subtilisin-kexin type 9 (PCSK9) reduces low-density lipoprotein cholesterol (LDL-C) in addition to statins and ezetimibe by 50-60 %. The therapy is well-tolerated. The safety profile in the published studies is comparable to placebo. Outcome data and information on long-term safety and the influence on cardiovascular events are not yet available but the results of several large trials are expected in 2016-2018. At present (spring 2016) PCSK9 inhibitors represent an option for selected patients with a high cardiovascular risk and high LDL-C despite treatment with the maximum tolerated oral lipid-lowering therapy. This group includes selected patients with familial hypercholesterolemia and high-risk individuals with statin-associated muscle symptoms (SAMS). PMID:27207595

  12. Molecular modeling of auxin transport inhibitors

    SciTech Connect

    Gardner, G.; Black-Schaefer, C.; Bures, M.G. )

    1990-05-01

    Molecular modeling techniques have been used to study the chemical and steric properties of auxin transport inhibitors. These bind to a specific site on the plant plasma membrane characterized by its affinity for N-1-naphthylphthalamic acid (NPA). A three-dimensional model was derived from critical features of ligands for the NPA receptor, and a suggested binding conformation is proposed. This model, along with three-dimensional structural searching techniques, was then used to search the Abbott corporate database of chemical structures. Of the 467 compounds that satisfied the search criteria, 77 representative molecules were evaluated for their ability to compete for ({sup 3}H)NPA binding to corn microsomal membranes. Nineteen showed activity that ranged from 16 to 85% of the maximum NPA binding. Four of the most active of these, from chemical classes not included in the original compound set, also inhibited polar auxin transport through corn coleoptile sections.

  13. Novel inhibitors of fatty acid amide hydrolase.

    PubMed

    Sit, S Y; Conway, Charlie; Bertekap, Robert; Xie, Kai; Bourin, Clotilde; Burris, Kevin; Deng, Hongfeng

    2007-06-15

    A class of bisarylimidazole derivatives are identified as potent inhibitors of the enzyme fatty acid amide hydrolase (FAAH). Compound 17 (IC(50)=2 nM) dose-dependently (0.1-10mg/kg, iv) potentiates the effects of exogenous anandamide (1 mg/kg, iv) in a rat thermal escape test (Hargreaves test), and shows robust antinociceptive activity in animal models of persistent (formalin test) and neuropathic (Chung model) pain. Compound 17 (20 mg/kg, iv) demonstrates activity in the formalin test that is comparable to morphine (3mg/kg, iv), and is dose-dependently inhibited by the CB1 antagonist SR141716A. In the Chung model, compound 17 shows antineuropathic effects similar to high-dose (100 mg/kg) gabapentin. FAAH inhibition shows potential utility for the clinical treatment of persistent and neuropathic pain.

  14. Identification of pyrazolopyridazinones as PDEδ inhibitors

    PubMed Central

    Papke, Björn; Murarka, Sandip; Vogel, Holger A; Martín-Gago, Pablo; Kovacevic, Marija; Truxius, Dina C; Fansa, Eyad K; Ismail, Shehab; Zimmermann, Gunther; Heinelt, Kaatje; Schultz-Fademrecht, Carsten; Al Saabi, Alaa; Baumann, Matthias; Nussbaumer, Peter; Wittinghofer, Alfred; Waldmann, Herbert; Bastiaens, Philippe I.H.

    2016-01-01

    The prenyl-binding protein PDEδ is crucial for the plasma membrane localization of prenylated Ras. Recently, we have reported that the small-molecule Deltarasin binds to the prenyl-binding pocket of PDEδ, and impairs Ras enrichment at the plasma membrane, thereby affecting the proliferation of KRas-dependent human pancreatic ductal adenocarcinoma cell lines. Here, using structure-based compound design, we have now identified pyrazolopyridazinones as a novel, unrelated chemotype that binds to the prenyl-binding pocket of PDEδ with high affinity, thereby displacing prenylated Ras proteins in cells. Our results show that the new PDEδ inhibitor, named Deltazinone 1, is highly selective, exhibits less unspecific cytotoxicity than the previously reported Deltarasin and demonstrates a high correlation with the phenotypic effect of PDEδ knockdown in a set of human pancreatic cancer cell lines. PMID:27094677

  15. The TRPM4 channel inhibitor 9-phenanthrol

    PubMed Central

    Guinamard, R; Hof, T; Del Negro, C A

    2014-01-01

    The phenanthrene-derivative 9-phenanthrol is a recently identified inhibitor of the transient receptor potential melastatin (TRPM) 4 channel, a Ca2+-activated non-selective cation channel whose mechanism of action remains to be determined. Subsequent studies performed on other ion channels confirm the specificity of the drug for TRPM4. In addition, 9-phenanthrol modulates a variety of physiological processes through TRPM4 current inhibition and thus exerts beneficial effects in several pathological conditions. 9-Phenanthrol modulates smooth muscle contraction in bladder and cerebral arteries, affects spontaneous activity in neurons and in the heart, and reduces lipopolysaccharide-induced cell death. Among promising potential applications, 9-phenanthrol exerts cardioprotective effects against ischaemia-reperfusion injuries and reduces ischaemic stroke injuries. In addition to reviewing the biophysical effects of 9-phenanthrol, here we present information about its appropriate use in physiological studies and possible clinical applications. PMID:24433510

  16. Inhibitors of Kallikrein in Human Plasma

    PubMed Central

    McConnell, David J.

    1972-01-01

    Human plasma was fractionated by ammonium sulfate precipitation, DEAE-cellulose chromatography, and Sephadex G-200 gel filtration to determine which method would give the greatest number of clearly separable kallikrein inhibitory peaks. With G-200 gel filtration three peaks could be separated which were demonstrated to contain α2-macroglobulin, C1̄ inactivator, and α1-antitrypsin. No other kallikrein inhibitors could be identified. The fractions containing C1̄ inactivator and α2-macroglobulin appeared to be more effective against kallikrein than that containing α1-antitrypsin. A patient with hereditary angioneurotic edema was shown to have an abnormal C1̄ inactivator protein capable of interfering with kallikrein's biologic, but not its esterolytic activity. Heat-treated human plasma, a commonly used source of kininogen for experiments with kallikrein, was shown to have kallikrein inhibitory activity. PMID:4113391

  17. Evolution of resistance to quorum sensing inhibitors

    PubMed Central

    Kalia, Vipin C.; Wood, Thomas K.; Kumar, Prasun

    2013-01-01

    The major cause of mortality and morbidity in human beings is bacterial infection. Bacteria have developed resistance to most of the antibiotics primarily due to large scale and “indiscriminate” usage. The need is to develop novel mechanisms to treat bacterial infections. The expression of pathogenicity during bacterial infections is mediated by a cell density dependent phenomenon known as quorum sensing (QS). A wide array of QS systems (QSS) is operative in expressing the virulent behavior of bacterial pathogens. Each QSS may be mediated largely by a few major signals along with others produced in minuscule quantities. Efforts to target signal molecules and their receptors have proved effective in alleviating the virulent behavior of such pathogenic bacteria. These QS inhibitors (QSIs) have been reported to be effective in influencing the pathogenicity without affecting bacterial growth. However, evidence is accumulating that bacteria may develop resistance to QSIs. The big question is whether QSIs will meet the same fate as antibiotics? PMID:24194099

  18. Development of Inhibitors of Salicylic Acid Signaling.

    PubMed

    Jiang, Kai; Kurimoto, Tetsuya; Seo, Eun-kyung; Miyazaki, Sho; Nakajima, Masatoshi; Nakamura, Hidemitsu; Asami, Tadao

    2015-08-19

    Salicylic acid (SA) plays important roles in the induction of systemic acquired resistance (SAR) in plants. Determining the mechanism of SAR will extend our understanding of plant defenses against pathogens. We recently reported that PAMD is an inhibitor of SA signaling, which suppresses the expression of the pathogenesis-related PR genes and is expected to facilitate the understanding of SA signaling. However, PAMD strongly inhibits plant growth. To minimize the side effects of PAMD, we synthesized a number of PAMD derivatives, and identified compound 4 that strongly suppresses the expression of the PR genes with fewer adverse effects on plant growth than PAMD. We further showed that the adverse effects on plant growth were partially caused the stabilization of DELLA, which is also related to the pathogen responses. These results indicate that compound 4 would facilitate our understanding of SA signaling and its cross talk with other plant hormones.

  19. Structural investigation of protein kinase C inhibitors

    NASA Technical Reports Server (NTRS)

    Barak, D.; Shibata, M.; Rein, R.

    1991-01-01

    The phospholipid and Ca2+ dependent protein kinase (PKC) plays an essential role in a variety of cellular events. Inhibition of PKC was shown to arrest growth in tumor cell cultures making it a target for possible antitumor therapy. Calphostins are potent inhibitors of PKC with high affinity for the enzyme regulatory site. Structural characteristics of calphostins, which confer the inhibitory activity, are investigated by comparing their optimized structures with the existing models for PKC activation. The resulting model of inhibitory activity assumes interaction with two out of the three electrostatic interaction sites postulated for activators. The model shows two sites of hydrophobic interaction and enables the inhibitory activity of gossypol to be accounted for.

  20. The new factor Xa inhibitor: Apixaban

    PubMed Central

    Bhanwra, Sangeeta; Ahluwalia, Kaza

    2014-01-01

    Cardiovascular diseases are still the most important cause of morbidity and mortality worldwide and anti-thrombotic treatment is widely used as a result. The currently used drugs include heparin and its derivatives, vitamin K antagonists, though efficacious, have their own set of limitations like unpredictable pharmacokinetic profile, parenteral route (with heparin and its derivatives only), narrow therapeutic window, and constant laboratory monitoring for their efficacy and safety. This lead to the development of novel factor Xa inhibitors which could be given orally, have predictable dose response relationship and are associated with lesser hemorrhagic complications. They include rivaroxaban, apixaban, and edoxaban among others. Apixaban has currently been approved for use in patients undergoing total knee or hip replacement surgery and to prevent stroke in patients with atrial fibrillation. Many trials are ongoing for apixaban to firmly establish its place in future, among the anti-thrombotic drugs. PMID:24554904

  1. Cyclooxygenase (COX) Inhibitors and the Newborn Kidney

    PubMed Central

    Smith, Francine G.; Wade, Andrew W.; Lewis, Megan L.; Qi, Wei

    2012-01-01

    This review summarizes our current understanding of the role of cyclo-oxygenase inhibitors (COXI) in influencing the structural development as well as the function of the developing kidney. COXI administered either during pregnancy or after birth can influence kidney development including nephronogenesis, and can decrease renal perfusion and ultrafiltration potentially leading to acute kidney injury in the newborn period. To date, which COX isoform (COX-1 or COX-2) plays a more important role in during fetal development and influences kidney function early in life is not known, though evidence points to a predominant role for COX-2. Clinical implications of the use of COXI in pregnancy and in the newborn infant are also evaluated herein, with specific reference to the potential effects of COXI on nephronogenesis as well as newborn kidney function. PMID:24281306

  2. Tumour Angiogenesis and Angiogenic Inhibitors: A Review

    PubMed Central

    Yadav, Lalita; Puri, Naveen; Satpute, Pranali; Sharma, Vandana

    2015-01-01

    Angiogenesis is a complex process depending on the coordination of many regulators and there by activating angiogenic switch. Recent advances in understanding of angiogenic mechanism have lead to the development of several anti-angiogenic and anti-metastatic agents that use the strategy of regulation of angiogenic switch. Antiangiogenic therapy is a form of treatment not cure for cancer and represents a highly effective strategy for destroying tumour because vascular supply is the fundamental requirement for growth of tumour. Because of the quiescent nature of normal adult vasculature, angiogenic inhibitors are expected to confer a degree of specificity when compared to nonspecific modalities of chemo and radiotherapy, so it has the advantage of less toxicities, does not induce drug resistance and deliver a relatively non toxic, long term treatment of tumour. PMID:26266204

  3. Comparative QSAR studies on peptide deformylase inhibitors.

    PubMed

    Lee, Ji Young; Doddareddy, Munikumar Reddy; Cho, Yong Seo; Choo, Hyunah; Koh, Hun Yeong; Kang, Jae-Hoon; No, Kyoung Tai; Pae, Ae Nim

    2007-05-01

    Comparative quantitative structure-activity relationship (QSAR) analyses of peptide deformylase (PDF) inhibitors were performed with a series of previously published (British Biotech Pharmaceuticals, Oxford, UK) reverse hydroxamate derivatives having antibacterial activity against Escherichia coli PDF, using 2D and 3D QSAR methods, comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA), and hologram QSAR (HQSAR). Statistically reliable models with good predictive power were generated from all three methods (CoMFA r (2) = 0.957, q (2) = 0.569; CoMSIA r (2) = 0.924, q (2) = 0.520; HQSAR r (2) = 0.860, q (2) = 0.578). The predictive capability of these models was validated by a set of compounds that were not included in the training set. The models based on CoMFA and CoMSIA gave satisfactory predictive r (2) values of 0.687 and 0.505, respectively. The model derived from the HQSAR method showed a low predictability of 0.178 for the test set. In this study, 3D prediction models showed better predictive power than 2D models for the test set. This might be because 3D information is more important in the case of datasets containing compounds with similar skeletons. Superimposition of CoMFA contour maps in the active site of the PDF crystal structure showed a meaningful correlation between receptor-ligand binding and biological activity. The final QSAR models, along with information gathered from 3D contour and 2D contribution maps, could be useful for the design of novel active inhibitors of PDF. PMID:17333308

  4. From in vitro to in cellulo: structure-activity relationship of (2-nitrophenyl)methanol derivatives as inhibitors of PqsD in Pseudomonas aeruginosa.

    PubMed

    Storz, Michael P; Allegretta, Giuseppe; Kirsch, Benjamin; Empting, Martin; Hartmann, Rolf W

    2014-08-28

    Recent studies have shown that compounds based on a (2-nitrophenyl)methanol scaffold are promising inhibitors of PqsD, a key enzyme of signal molecule biosynthesis in the cell-to-cell communication of Pseudomonas aeruginosa. The most promising molecule displayed anti-biofilm activity and a tight-binding mode of action. Herein, we report on the convenient synthesis and biochemical evaluation of a comprehensive series of (2-nitrophenyl)methanol derivatives. The in vitro potency of these inhibitors against recombinant PqsD as well as the effect of selected compounds on the production of the signal molecules HHQ and PQS in P. aeruginosa were examined. The gathered data allowed the establishment of a structure-activity relationship, which was used to design fluorescent inhibitors, and finally, led to the discovery of (2-nitrophenyl)methanol derivatives with improved in cellulo efficacy providing new perspectives towards the application of PqsD inhibitors as anti-infectives. PMID:24909330

  5. Mechanism of Cytosolic Phospholipase A(2) Activation in Ghrelin Protection of Salivary Gland Acinar Cells against Ethanol Cytotoxicity.

    PubMed

    Slomiany, Bronislaw L; Slomiany, Amalia

    2010-01-01

    Ghrelin, a peptide hormone, newly identified in oral mucosal tissues, has emerged recently as an important mediator of the processes of mucosal defense. Here, we report on the mechanism of ghrelin protection against ethanol cytotoxicity in rat sublingual salivary gland cells. The protective effect of ghrelin was associated with the increase in NO and PGE2, and upregulation in cytosolic phospholipase A(2) (cPLA(2)) activity and arachidonic acid (AA) release. The loss in countering effect of ghrelin occurred with cNOS inhibitor, L-NAME, as well as indomethacin and COX-1 inhibitor, SC-560, while COX-2 inhibitor, NS-398, and iNOS inhibitor, 1400W, had no effect. The effect of L-NAME was reflected in the inhibition of ghrelin-induced cell capacity for NO production, cPLA(2) activation and PGE2 generation, whereas indomethacin caused only the inhibition in PGE2. Moreover, the ghrelin-induced up-regulation in AA release was reflected in the cPLA(2) phosphorylation and S-nitrosylation. Inhibition in ghrelin-induced S-nitrosylation was attained with L-NAME, whereas the ERK inhibitor, PD98059, caused the blockage in cPLA(2) protein phosphorylation as well as S-nitrosylation. Thus, ghrelin protection of salivary gland cells against ethanol involves cNOS-derived NO induction of cPLA(2) activation through S-nitrosylation for the increase in AA release at the site of COX-1 action for PGE2 synthesis.

  6. Molecular Dynamics simulations of Inhibitor of Apoptosis Proteins and identification of potential small molecule inhibitors.

    PubMed

    Jayakumar, Jayanthi; Anishetty, Sharmila

    2014-05-01

    Chemotherapeutic resistance due to over expression of Inhibitor of Apoptosis Proteins (IAPs) XIAP, survivin and livin has been observed in various cancers. In the current study, Molecular Dynamics (MD) simulations were carried out for all three IAPs and a common ligand binding scaffold was identified. Further, a novel sequence based motif specific to these IAPs was designed. SMAC is an endogenous inhibitor of IAPs. Screening of ChemBank for compounds similar to lead SMAC-non-peptidomimetics yielded a cemadotin related compound NCIMech_000654. Cemadotin is a derivative of natural anti-tumor peptide dolastatin-15; hence these compounds were docked against all three IAPs. Based on our analysis, we propose that NCIMech_000654/dolastatin-15/cemadotin derivatives may be investigated for their potential in inhibiting XIAP, survivin and livin.

  7. Chemoproteomic characterization of protein kinase inhibitors using immobilized ATP.

    PubMed

    Duncan, James S; Haystead, Timothy A J; Litchfield, David W

    2012-01-01

    Protein kinase inhibitors have emerged as indispensable tools for the elucidation of the biological functions of specific signal transduction pathways and as promising candidates for molecular-targeted therapy. However, because many protein kinase inhibitors are ATP-competitive inhibitors targeting the catalytic site of specific protein kinases, the large number of protein kinases that are encoded within eukaryotic genomes and the existence of many other cellular proteins that bind ATP result in the prospect of off-target effects for many of these compounds. Many of the potential off-target effects remain unrecognized because protein kinase inhibitors are often developed and tested primarily on the basis of in vitro assays using purified components. To overcome this limitation, we describe a systematic approach to characterize ATP-competitive protein kinase inhibitors employing ATP-sepharose to capture the purine-binding proteome from cell extracts. Protein kinase inhibitors can be used in competition experiments to prevent binding of specific cellular proteins to ATP-sepharose or to elute bound proteins from ATP-sepharose. Collectively, these strategies can enable validation of interactions between a specific protein kinase and an inhibitor in complex mixtures and can yield the identification of inhibitor targets.

  8. Bioabatement with xylanase supplementation to reduce enzymatic hydrolysis inhibitors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bioabatement, using the fungus Coniochaeta ligniaria NRRL30616 can effectively eliminate enzyme inhibitors from pretreated biomass hydrolysis. However, our recent research suggested that bioabatement had no beneficial effect on removing xylo-oligomers which were identified as strong inhibitors to ce...

  9. Small Molecule Inhibitors of Anthrax Lethal Factor Toxin

    PubMed Central

    Williams, John D.; Khan, Atiyya R.; Cardinale, Steven C.; Butler, Michelle M.; Bowlin, Terry L.; Peet, Norton P.

    2014-01-01

    This manuscript describes the preparation of new small molecule inhibitors of Bacillus anthracis lethal factor. Our starting point was the symmetrical, bis-quinolinyl compound 1 (NSC 12155). Optimization of one half of this molecule led to new LF inhibitors that were desymmetrized to afford more drug-like compounds. PMID:24290062

  10. Role of Protease-Inhibitors in Ocular Diseases.

    PubMed

    Pescosolido, Nicola; Barbato, Andrea; Pascarella, Antonia; Giannotti, Rossella; Genzano, Martina; Nebbioso, Marcella

    2014-01-01

    It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models. PMID:25493637

  11. A low molecular weight proteinase inhibitor produced by T lymphocytes.

    PubMed Central

    Ganea, D; Teodorescu, M; Dray, S

    1986-01-01

    A low molecular weight (MW) proteinase inhibitor, between 6500 and 21,500 MW, appeared in the supernatant of rabbit spleen cells cultured at high density for 24 hr. The inhibitor inhibited the enzymatic activity of trypsin for both a high MW natural substrate, fibrinogen, and for a low MW artificial substrate, Chromozym TRY. The low MW proteinase inhibitor is protein in nature and is different, in terms of specificity for enzymes, MW and sensitivity to different physical or chemical treatments, from aprotinin, a low MW proteinase inhibitor (6500 MW) of bovine origin, and from the soybean trypsin inhibitor, a relatively high MW proteinase inhibitor (21,500 MW). The inhibitor was found in the supernatant of purified T cells but not B cells, and its production was increased in the presence of an optimal concentration of Con A. The possibility that this proteinase inhibitor has a role in the regulation of trypsin-like proteinases involved to the immune response remains to be investigated. Images Figure 4 PMID:2417942

  12. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  13. Epidermal growth factor receptor inhibitor therapy for recurrent respiratory papillomatosis

    PubMed Central

    Sidman, James D.

    2013-01-01

    The epidermal growth factor pathway has been implicated in various tumors, including human papillomavirus (HPV) lesions such as recurrent respiratory papillomatosis (RRP). Due to the presence of epidermal growth factor receptors in RRP, epidermal growth factor receptor (EGFR) inhibitors have been utilized as adjuvant therapy. This case series examines the response to EGFR inhibitors in RRP. Four patients with life-threatening RRP were treated with EGFR inhibitors. Operative frequency and anatomical Derkay scores were calculated prior to, and following EGFR inhibitor treatment via retrospective chart review. The anatomical Derkay score decreased for all four patients after initiation of EGFR inhibitor therapy. In one patient, the operative frequency increased after switching to an intravenous inhibitor after loss of control with an oral inhibitor. In the other patients there was a greater than 20% decrease in operative frequency in one and a more than doubling in the time between procedures in two.  This study suggests that EGFR inhibitors are a potential adjuvant therapy in RRP and deserve further study in a larger number of patients. PMID:24795806

  14. Electrochemical corrosion testing: An effective tool for corrosion inhibitor evaluation

    SciTech Connect

    Bartley, L.S.; Van de Ven, P.; Mowlem, J.K.

    1996-10-01

    Corrosivity of an Antifreeze/Coolant can lead to localized attacks which are a major cause for metal failure. To prevent this phenomenon, specific corrosion inhibitors are used to protect the different metals in service. This paper will discuss the electrochemical principles behind corrosion, Realized corrosion and corrosion inhibition. It will also discuss electrochemical techniques which allow for the evaluation of these inhibitors.

  15. Indanones as high-potency reversible inhibitors of monoamine oxidase.

    PubMed

    Mostert, Samantha; Petzer, Anél; Petzer, Jacobus P

    2015-05-01

    Recent reports document that α-tetralone (3,4-dihydro-2H-naphthalen-1-one) is an appropriate scaffold for the design of high-potency monoamine oxidase (MAO) inhibitors. Based on the structural similarity between α-tetralone and 1-indanone, the present study involved synthesis of 34 1-indanone and related indane derivatives as potential inhibitors of recombinant human MAO-A and MAO-B. The results show that C6-substituted indanones are particularly potent and selective MAO-B inhibitors, with IC50 values ranging from 0.001 to 0.030 μM. C5-Substituted indanone and indane derivatives are comparatively weaker MAO-B inhibitors. Although the 1-indanone and indane derivatives are selective inhibitors of the MAO-B isoform, a number of homologues are also potent MAO-A inhibitors, with three homologues possessing IC50 values <0.1 μM. Dialysis of enzyme-inhibitor mixtures further established a selected 1-indanone as a reversible MAO inhibitor with a competitive mode of inhibition. It may be concluded that 1-indanones are promising leads for the design of therapies for neurodegenerative and neuropsychiatric disorders such as Parkinson's disease and depression.

  16. Aminopiperidine-Fused Imidazoles as Dipeptidyl Peptidase-IV Inhibitors

    SciTech Connect

    Edmondson, S.; Mastracchio, A; Cox, J; Eiermann, G; He, H; Lyons, K; Patel, R; Patel, S; Petrov, A; et. al.

    2009-01-01

    A new series of DPP-4 inhibitors derived from piperidine-fused benzimidazoles and imidazopyridines is described. Optimization of this class of DPP-4 inhibitors led to the discovery of imidazopyridine 34. The potency, selectivity, cross-species DMPK profiles, and in vivo efficacy of 34 is reported.

  17. Ureidopenicillins and beta-lactam/beta-lactamase inhibitor combinations.

    PubMed

    Bush, L M; Johnson, C C

    2000-06-01

    Although research and development of new penicillins have declined, penicillins continue to be essential antibiotics for the treatment and prophylaxis of infectious diseases. The most recent additions are the ureidopenicillins and beta-lactam/beta-lactamase inhibitor combinations. This article reviews the spectrum of activity, toxicity, pharmacokinetics, and clinical uses of the ureidopenicillins, and the beta-lactam/beta-lactamase inhibitor combination agents.

  18. A new method for evaluating wax inhibitors and drag reducers

    SciTech Connect

    Hsu, J.J.C.; Brubaker, J.P.

    1995-12-01

    Conventional wax inhibitor evaluation methods such as cold finger and laminar flow loop are not adequate and accurate for evaluating wax inhibitors to be used in a wide operating temperature range and flow regimes such as North Sea subsea transport pipelines. A new method has been developed to simultaneously measure fluid rheology change and wax inhibition and to evaluate wax inhibitors or drag reducers at the field operating conditions. Selection criteria have been defined to search for an effective wax inhibitor. The criteria ensure the chemical selected is the most effective one for the specific oil and flow conditions. The operation cost savings by this accurate method is significant. Nine chemical companies joined the project of finding an wax inhibitor for a North Sea prospect. More than twenty wax inhibitors have been tested and evaluated with this new method for several waxy oil fields. The new method provides data of fluid rheology, war deposition rates and wax inhibition in the operating temperature range, overall average wax inhibition and degree of fluid flow improvement. These data are important to evaluate a wax inhibitor or drag reducer. Most of the wax inhibitors tested have good wax inhibition at high temperatures, but not many chemicals work well at low temperatures. The chemical tested may improved fluid flow behavior at low temperature but not wax deposition. Drag reducers tested did not work well at North Sea seabed temperature.

  19. Designing green corrosion inhibitors using chemical computation methods

    SciTech Connect

    Singhl, W.P.; Lin, G.; Bockris, J.O.M.; Kang, Y.

    1998-12-31

    Green corrosion inhibitors have been designed by understanding the relationships between the structure of organic compounds and toxicity as well as corrosion inhibition efficiency. The estimation of aquatic toxicity as well as corrosion inhibition efficiency are made using QSAR techniques. The predicted structures with reduced toxicity and improved corrosion inhibition efficiency are then tested experimentally for these properties, thus leading to green inhibitors.

  20. Discovery – Targeted Treatments and mTOR Inhibitors

    Cancer.gov

    Thanks to discovering the anticancer effects of mTOR inhibitors, cancer treatment for pNet, a rare type of pancreatic cancer, were revolutionized. Through clinical trials, NCI continues to investigate the life-saving potential of mTOR inhibitors.

  1. Role of Protease-Inhibitors in Ocular Diseases.

    PubMed

    Pescosolido, Nicola; Barbato, Andrea; Pascarella, Antonia; Giannotti, Rossella; Genzano, Martina; Nebbioso, Marcella

    2014-01-01

    It has been demonstrated that the balance between proteases and protease-inhibitors system plays a key role in maintaining cellular and tissue homeostasis. Indeed, its alteration has been involved in many ocular and systemic diseases. In particular, research has focused on keratoconus, corneal wounds and ulcers, keratitis, endophthalmitis, age-related macular degeneration, Sorsby fundus dystrophy, loss of nerve cells and photoreceptors during optic neuritis both in vivo and in vitro models. Protease-inhibitors have been extensively studied, rather than proteases, because they may represent a therapeutic approach for some ocular diseases. The protease-inhibitors mainly involved in the onset of the above-mentioned ocular pathologies are: α2-macroglobulin, α1-proteinase inhibitor (α1-PI), metalloproteinase inhibitor (TIMP), maspin, SERPINA3K, SERPINB13, secretory leukocyte protease inhibitor (SLPI), and calpeptin. This review is focused on the several characteristics of dysregulation of this system and, particularly, on a possible role of proteases and protease-inhibitors in molecular remodeling that may lead to some ocular diseases. Recently, researchers have even hypothesized a possible therapeutic effect of the protease-inhibitors in the treatment of injured eye in animal models.

  2. Urea Transporter Inhibitors: En Route to New Diuretics

    PubMed Central

    Sands, Jeff M.

    2013-01-01

    Summary A selective urea transporter UT-A1 inhibitor would be a novel type of diuretic, likely with less undesirable side-effects than conventional diureticssince it acts on the last portion of the nephron. Esteva-Font et al. (2013) develop suchan inhibitor by using a clever high-throughput screening assay, and document its selectivity. . PMID:24210002

  3. Replacement inhibitors for tank farm cooling coil systems

    SciTech Connect

    Hsu, T.C.

    1995-03-23

    Sodium chromate has been an effective corrosion inhibitor for the cooling coil systems in Savannah River Site (SRS) waste tanks for over 40 years. Due to their age and operating history, cooling coils occasionally fail allowing chromate water to leak into the environment. When the leaks spill 10 lbs. or more of sodium chromate over a 24-hr period, the leak incidents are classified as Unusual Occurrences (UO) per CERCLA (Comprehensive Environmental Response, Compensation and Liability Act). The cost of reporting and cleaning up chromate spills prompted High Level Waste Engineering (HLWE) to initiate a study to investigate alternative tank cooling water inhibitor systems and the associated cost of replacement. Several inhibitor systems were investigated as potential alternatives to sodium chromate. All would have a lesser regulatory impact, if a spill occurred. However, the conversion cost is estimated to be $8.5 million over a period of 8 to 12 months to convert all 5 cooling systems. Although each of the alternative inhibitors examined is effective in preventing corrosion, there is no inhibitor identified that is as effective as chromate. Assuming 3 major leaks a year (the average over the past several years), the cost of maintaining the existing inhibitor was estimated at $0.5 million per year. Since there is no economic or regulatory incentive to replace the sodium chromate with an alternate inhibitor, HLWE recommends that sodium chromate continue to be used as the inhibitor for the waste tank cooling systems.

  4. BRAF inhibitors in colorectal cancer: Toward a differentiation therapy?

    PubMed Central

    Herr, Ricarda; Brummer, Tilman

    2015-01-01

    BRAF inhibitor monotherapy appears to be ineffective in BRAFV600E-positive colorectal cancer (CRC) as a result of inherent EGFR-mediated resistance mechanisms. This concept initiated combinatorial treatment approaches. Nevertheless, BRAF inhibition in isogenic CRC cell lines induced enhanced cell-cell adhesion and differentiation, underlining a potential benefit of BRAF inhibitors in CRC. PMID:27308494

  5. Detecting and treating breast cancer resistance to EGFR inhibitors

    DOEpatents

    Moonlee, Sun-Young; Bissell, Mina J.; Furuta, Saori; Meier, Roland; Kenny, Paraic A.

    2016-04-05

    The application describes therapeutic compositions and methods for treating cancer. For example, therapeutic compositions and methods related to inhibition of FAM83A (family with sequence similarity 83) are provided. The application also describes methods for diagnosing cancer resistance to EGFR inhibitors. For example, a method of diagnosing cancer resistance to EGFR inhibitors by detecting increased FAM83A levels is described.

  6. Fragment-based discovery of JAK-2 inhibitors

    SciTech Connect

    Antonysamy, Stephen; Hirst, Gavin; Park, Frances; Sprengeler, Paul; Stappenbeck, Frank; Steensma, Ruo; Wilson, Mark; Wong, Melissa

    2009-07-22

    Fragment-based hit identification coupled with crystallographically enabled structure-based drug design was used to design potent inhibitors of JAK-2. After two iterations from fragment 1, we were able to increase potency by greater than 500-fold to provide sulfonamide 13, a 78-nM JAK-2 inhibitor.

  7. Discovery, Design, and Optimization of Isoxazole Azepine BET Inhibitors.

    PubMed

    Gehling, Victor S; Hewitt, Michael C; Vaswani, Rishi G; Leblanc, Yves; Côté, Alexandre; Nasveschuk, Christopher G; Taylor, Alexander M; Harmange, Jean-Christophe; Audia, James E; Pardo, Eneida; Joshi, Shivangi; Sandy, Peter; Mertz, Jennifer A; Sims, Robert J; Bergeron, Louise; Bryant, Barbara M; Bellon, Steve; Poy, Florence; Jayaram, Hariharan; Sankaranarayanan, Ravichandran; Yellapantula, Sreegouri; Bangalore Srinivasamurthy, Nandana; Birudukota, Swarnakumari; Albrecht, Brian K

    2013-09-12

    The identification of a novel series of small molecule BET inhibitors is described. Using crystallographic binding modes of an amino-isoxazole fragment and known BET inhibitors, a structure-based drug design effort lead to a novel isoxazole azepine scaffold. This scaffold showed good potency in biochemical and cellular assays and oral activity in an in vivo model of BET inhibition. PMID:24900758

  8. Heart failure: SGLT2 inhibitors and heart failure -- clinical implications.

    PubMed

    Raz, Itamar; Cahn, Avivit

    2016-04-01

    The latest findings from the EMPA-REG OUTCOME trial show a 34% reduction in hospitalization for heart failure or cardiovascular death in patients receiving empagliflozin, a sodium/glucose cotransporter 2 (SGLT2) inhibitor, compared with placebo. These outstanding results call for discussion of the clinical implications, and in-depth studies of the mechanisms of action of SGLT2 inhibitors.

  9. The heat shock protein-90 inhibitor XL888 overcomes BRAF inhibitor resistance mediated through diverse mechanisms

    PubMed Central

    Paraiso, Kim H. T.; Haarberg, H. Eirik; Wood, Elizabeth; Rebecca, Vito W.; Chen, Y. Ann; Xiang, Yun; Ribas, Antoni; Lo, Roger S.; Weber, Jeffrey S.; Sondak, Vernon K.; John, Jobin K.; Sarnaik, Amod A.; Koomen, John M.; Smalley, Keiran S. M.

    2012-01-01

    Purpose The clinical use of BRAF inhibitors is being hampered by the acquisition of drug resistance. This study demonstrates the potential therapeutic utility of the HSP90 inhibitor (XL888) in 6 different models of vemurafenib resistance. Experimental design The ability of XL888 to inhibit growth and to induce apoptosis and tumor regression of vemurafenib-resistant melanoma cell lines was demonstrated in vitro and in vivo. A novel mass spectrometry-based pharmacodynamic assay was developed to measure intratumoral HSP70 levels following HSP90 inhibition in melanoma cell lines, xenografts and melanoma biopsies. Mechanistic studies were performed to determine the mechanism of XL888-induced apoptosis. Results XL888 potently inhibited cell growth, induced apoptosis and prevented the growth of vemurafenib resistant melanoma cell lines in 3D cell culture, long-term colony formation assays and human melanoma mouse xenografts. The reversal of the resistance phenotype was associated with the degradation of PDGFRβ, COT, IGFR1, CRAF, ARAF, S6, cyclin D1 and AKT, which in turn led to the nuclear accumulation of FOXO3a, an increase in BIM expression and the downregulation of Mcl-1. In most resistance models, XL888 treatment increased BIM expression, decreased Mcl-1 expression, and induced apoptosis more effectively than dual MEK/PI3K inhibition. Conclusions HSP90 inhibition may be a highly effective strategy at managing the diverse array of resistance mechanisms being reported to BRAF inhibitors and appears to be more effective at restoring BIM expression and downregulating Mcl-1 expression than combined MEK/PI3K inhibitor therapy. PMID:22351686

  10. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions. PMID:25865133

  11. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions.

  12. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors.

    PubMed

    Cifuentes-Pagano, M Eugenia; Meijles, Daniel N; Pagano, Patrick J

    2015-01-01

    Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow.

  13. Novel Plasminogen Activator Inhibitor-1 Inhibitors Prevent Diabetic Kidney Injury in a Mouse Model

    PubMed Central

    Park, Jong Hee; Lee, Jung Hwa; Lee, Hi Bahl; Miyata, Toshio; Ha, Hunjoo

    2016-01-01

    Diabetic nephropathy is the leading cause of end-stage renal disease worldwide, but no effective therapeutic strategy is available. Because plasminogen activator inhibitor-1 (PAI-1) is increasingly recognized as a key factor in extracellular matrix (ECM) accumulation in diabetic nephropathy, this study examined the renoprotective effects of TM5275 and TM5441, two novel orally active PAI-1 inhibitors that do not trigger bleeding episodes, in streptozotocin (STZ)-induced diabetic mice. TM5275 (50 mg/kg) and TM5441 (10 mg/kg) were administered orally for 16 weeks to STZ-induced diabetic and age-matched control mice. Relative to the control mice, the diabetic mice showed significantly increased (p < 0.05) plasma glucose and creatinine levels, urinary albumin excretion, kidney-to-bodyweight ratios, glomerular volume, and fractional mesangial area. Markers of fibrosis and inflammation along with PAI-1 were also upregulated in the kidney of diabetic mice, and treatment with TM5275 and TM5441 effectively inhibited albuminuria, mesangial expansion, ECM accumulation, and macrophage infiltration in diabetic kidneys. Furthermore, in mouse proximal tubular epithelial (mProx24) cells, both TM5275 and TM5441 effectively inhibited PAI-1-induced mRNA expression of fibrosis and inflammation markers and also reversed PAI-1-induced inhibition of plasmin activity, which confirmed the efficacy of the TM compounds as PAI-1 inhibitors. These data suggest that TM compounds could be used to prevent diabetic kidney injury. PMID:27258009

  14. Carbonic anhydrase inhibitors: glycosylsulfanilamides act as subnanomolar inhibitors of the human secreted isoform VI.

    PubMed

    Winum, Jean-Yves; Montero, Jean-Louis; Vullo, Daniela; Supuran, Claudiu T

    2009-12-01

    A series of sulfonamides incorporating sugar moieties and the sulfanilamide scaffold have been investigated for their interaction with the secretory isoform of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), CA VI. This isoform is secreted in saliva, tears, and milk of mammals - where it plays important physiological roles - even if little is understood at this moment regarding its inhibition, due to the lack of potent and/or selective inhibitors. Here we report a series of low nanomolar and subnanomolar CA VI inhibitors, belonging to the glycosylamine-sulfanilamide class. The glucose, ribose, arabinose, xylose, and fucose derivatives showed excellent CA VI inhibitory activity, with K(i)s in the range of 0.56-5.1 nm, whereas the least active derivatives, incorporating gallactose, mannose, and rhamnose scaffolds showed inhibition constants in the range of 10.1-34.1 nm. Many of these sulfonamides were also selective inhibitors for their interaction with CA VI over the physiologically dominant and ubiquitous isoform CA II, with selectivity ratios of 4.11-35.93 for inhibiting the secreted over the cytosolic isozyme. Because of their high water solubility and high affinity for CA VI over CA II, these compounds are useful tools for better understanding the secreted CA isoform CA VI. PMID:19824891

  15. Nox Inhibitors & Therapies: Rational Design of Peptidic and Small Molecule Inhibitors

    PubMed Central

    Cifuentes-Pagano, M. Eugenia; Meijles, Daniel N.; Pagano, Patrick J.

    2016-01-01

    Oxidative stress-related diseases underlie many if not all of the major leading causes of death in United States and the Western World. Thus, enormous interest from both academia and pharmaceutical industry has been placed on the development of agents which attenuate oxidative stress. With that in mind, great efforts have been placed in the development of inhibitors of NADPH oxidase (Nox), the major enzymatic source of reactive oxygen species and oxidative stress in many cells and tissue. The regulation of a catalytically active Nox enzyme involves numerous protein-protein interactions which, in turn, afford numerous targets for inhibition of its activity. In this review, we will provide an updated overview of the available Nox inhibitors, both peptidic and small molecules, and discuss the body of data related to their possible mechanisms of action and specificity towards each of the various isoforms of Nox. Indeed, there have been some very notable successes. However, despite great commitment by many in the field, the need for efficacious and well-characterized, isoform-specific Nox inhibitors, essential for the treatment of major diseases as well as for delineating the contribution of a given Nox in physiological redox signalling, continues to grow. PMID:26510437

  16. A bumblebee (Bombus ignitus) venom serine protease inhibitor that acts as a microbial serine protease inhibitor.

    PubMed

    Wan, Hu; Kim, Bo Yeon; Lee, Kwang Sik; Yoon, Hyung Joo; Lee, Kyung Yong; Jin, Byung Rae

    2014-01-01

    Serine protease inhibitors from bumblebee venom have been shown to block plasmin activity. In this study, we identified the protein BiVSPI from the venom of Bombus ignitus to be a serine protease inhibitor and an antimicrobial factor. BiVSPI is a 55-amino acid mature peptide with ten conserved cysteine residues and a P1 methionine residue. BiVSPI is expressed in the venom gland and also found in the venom as an 8-kDa peptide. Recombinant BiVSPI that was expressed in baculovirus-infected insect cells exhibited inhibitory activity against chymotrypsin but not trypsin. BiVSPI also inhibited microbial serine proteases, such as subtilisin A (Ki=6.57nM) and proteinase K (Ki=7.11nM). In addition, BiVSPI was shown to bind directly to Bacillus subtilis, Bacillus thuringiensis, and Beauveria bassiana but not to Escherichia coli. Consistent with these results, BiVSPI exhibited antimicrobial activity against Gram-positive bacteria and fungi. These findings provide evidence for a novel serine protease inhibitor in bumblebee venom that has antimicrobial functions.

  17. Suppression of caspase-11 expression by histone deacetylase inhibitors

    SciTech Connect

    Heo, Hyejung; Yoo, Lang; Shin, Ki Soon; Kang, Shin Jung

    2009-01-02

    It has been well documented that histone deacetylase inhibitors suppress inflammatory gene expression. Therefore, we investigated whether histone deacetylase inhibitors modulate the expression of caspase-11 that is known as an inducible caspase regulating both inflammation and apoptosis. In the present study, we show that sodium butyrate and trichostatin A, two structurally unrelated inhibitors of histone deacetylase (HDAC), effectively suppressed the induction of caspase-11 in mouse embryonic fibroblasts stimulated with lipopolysaccharides. Sodium butyrate inhibited the activation of upstream signaling events for the caspase-11 induction such as activation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase, degradation of inhibitor of {kappa}B, and activation of nuclear factor-{kappa}B. These results suggest that the HDAC inhibitor suppressed cytosolic signaling events for the induction of caspase-11 by inhibiting the deacetylation of non-histone proteins.

  18. HDAC inhibitors in experimental liver and kidney fibrosis

    PubMed Central

    2013-01-01

    Histone deacetylase (HDAC) inhibitors have been extensively studied in experimental models of cancer, where their inhibition of deacetylation has been proven to regulate cell survival, proliferation, differentiation and apoptosis. This in turn has led to the use of a variety of HDAC inhibitors in clinical trials. In recent years the applicability of HDAC inhibitors in other areas of disease has been explored, including the treatment of fibrotic disorders. Impaired wound healing involves the continuous deposition and cross-linking of extracellular matrix governed by myofibroblasts leading to diseases such as liver and kidney fibrosis; both diseases have high unmet medical needs which are a burden on health budgets worldwide. We provide an overview of the potential use of HDAC inhibitors against liver and kidney fibrosis using the current understanding of these inhibitors in experimental animal models and in vitro models of fibrosis. PMID:23281659

  19. Quantum chemical assessment of benzimidazole derivatives as corrosion inhibitors

    PubMed Central

    2014-01-01

    Background The majority of well-known inhibitors are organic compounds containing multiple bonds and heteroatoms, such as O, N or S, which allow adsorption onto the metal surface. These compounds can adsorb onto the metal surface and block active surface sites, reducing the rate of corrosion. Results A comparative theoretical study of three benzimidazole isomers, benzimidazole (BI), 2-methylbenzimidazole (2-CH3-BI), and 2-mercaptobenzimidazole (2-SH-BI), as corrosion inhibitors was performed using density functional theory (DFT) with the B3LYP functional basis set. Conclusions Nitro and amino groups were selected for investigation as substituents of the three corrosion inhibitors. Nitration of the corrosion inhibitor molecules led to a decrease in inhibition efficiency, while reduction of the nitro group led to an increase in inhibition efficiency. These aminobenzimidazole isomers represent a significant improvement in the inhibition efficiency of corrosion inhibitor molecules. PMID:24674343

  20. Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings

    NASA Technical Reports Server (NTRS)

    Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina

    2014-01-01

    Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.