Sample records for a2 inhibitors quinacrine

  1. Quinacrine induces apoptosis in human leukemia K562 cells via p38 MAPK-elicited BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Changchien, Jung-Jung; Chen, Ying-Jung; Huang, Chia-Hui

    2015-04-01

    Although previous studies have revealed the anti-cancer activity of quinacrine, its effect on leukemia is not clearly resolved. We sought to explore the cytotoxic effect and mechanism of quinacrine action in human leukemia K562 cells. Quinacrine induced K562 cell apoptosis accompanied with ROS generation, mitochondrial depolarization, and down-regulation of BCL2L1 and BCL2. Upon exposure to quinacrine, ROS-mediated p38 MAPK activation and ERK inactivation were observed in K562 cells. Quinacrine-induced cell death and mitochondrial depolarization were suppressed by the p38MAPK inhibitor SB202190 and constitutively active MEK1 over-expression. Activation of p38 MAPK was shown to promote BCL2 degradation. Further, ERK inactivation suppressedmore » c-Jun-mediated transcriptional expression of BCL2L1. Over-expression of BCL2L1 and BCL2 attenuated quinacrine-evoked mitochondrial depolarization and rescued the viability of quinacrine-treated cells. Taken together, our data indicate that quinacrine-induced K562 cell apoptosis is mediated through mitochondrial alterations triggered by p38 MAPK-mediated BCL2 down-regulation and suppression of ERK/c-Jun-mediated BCL2L1 expression. - Highlights: • Quinacrine induces K562 cell apoptosis via down-regulation of BCL2 and BCL2L1. • Quinacrine induces p38 MAPK activation and ERK inactivation in K562 cells. • Quinacrine elicits p38 MAPK-mediated BCL2 down-regulation. • Quinacrine suppresses ERK/c-Jun-mediated BCL2L1 expression.« less

  2. Antagonism of immunostimulatory CpG-oligodeoxynucleotides by quinacrine, chloroquine, and structurally related compounds.

    PubMed

    Macfarlane, D E; Manzel, L

    1998-02-01

    Phosphorothioate oligodeoxynucleotides containing CpG (CpG-ODN) activate immune responses. We report that quinacrine, chloroquine, and structurally related compounds completely inhibit the antiapoptotic effect of CpG-ODN on WEHI 231 murine B lymphoma cells and inhibit CpG-ODN-induced secretion of IL-6 by WEHI 231. They also inhibit IL-6 synthesis and thymidine uptake by human unfractionated PBMC induced by CpG-ODN. The compounds did not inhibit LPS-induced responses. Half-maximal inhibition required 10 nM quinacrine or 100 nM chloroquine. Inhibition was noncompetitive with respect to CpG-ODN. Quinine, quinidine, and primaquine were much less powerful. Quinacrine was effective even when added after the CpG-ODN. Near-toxic concentrations of ammonia plus bafilomycin A1 (used to inhibit vesicular acidification) did not reduce the efficacy of the quinacrine, but the effects of both quinacrine and chloroquine were enhanced by inhibition of the multidrug resistance efflux pump by verapamil. Agents that bind to DNA, including propidium iodide, Hoechst dye 33258, and coralyne chloride did not inhibit CpG-ODN effect, nor did 4-bromophenacyl bromide, an inhibitor of phospholipase A2. Examination of the structure-activity relationship of seventy 4-aminoquinoline and 9-aminoacridine analogues reveals that increased activity was conferred by bulky hydrophobic substituents on positions 2 and 6 of the quinoline nucleus. No correlation was found between published antimalarial activity and ability to block CpG-ODN-induced effects. These results are discussed in the light of the ability of quinacrine and chloroquine to induce remission of rheumatoid arthritis and lupus erythematosus.

  3. Tricyclic antidepressants, quinacrine and a novel, synthetic chimera thereof clear prions by destabilizing detergent-resistant membrane compartments.

    PubMed

    Klingenstein, Ralf; Löber, Stefan; Kujala, Pekka; Godsave, Susan; Leliveld, S Rutger; Gmeiner, Peter; Peters, Peter J; Korth, Carsten

    2006-08-01

    Prion diseases are invariably fatal, neurodegenerative diseases transmitted by an infectious agent, PrPSc, a pathogenic, conformational isoform of the normal prion protein (PrPC). Heterocyclic compounds such as acridine derivatives like quinacrine abolish prion infectivity in a cell culture model of prion disease. Here, we report that these compounds execute their antiprion activity by redistributing cholesterol from the plasma membrane to intracellular compartments, thereby destabilizing membrane domains. Our findings are supported by the fact that structurally unrelated compounds with known cholesterol-redistributing effects - U18666A, amiodarone, and progesterone - also possessed high antiprion potency. We show that tricyclic antidepressants (e.g. desipramine), another class of heterocyclic compounds, displayed structure-dependent antiprion effects and enhanced the antiprion effects of quinacrine, allowing lower doses of both drugs to be used in combination. Treatment of ScN2a cells with quinacrine or desipramine induced different ultrastructural and morphological changes in endosomal compartments. We synthesized a novel drug from quinacrine and desipramine, termed quinpramine, that led to a fivefold increase in antiprion activity compared to quinacrine with an EC50 of 85 nm. Furthermore, simvastatin, an inhibitor of cholesterol biosynthesis, acted synergistically with both heterocyclic compounds to clear PrPSc. Our data suggest that a cocktail of drugs targeting the lipid metabolism that controls PrP conversion may be the most efficient in treating Creutzfeldt-Jakob disease.

  4. A one-year neonatal mouse carcinogenesis study of quinacrine dihydrochloride.

    PubMed

    Cancel, Aida M; Smith, Thomas; Rehkemper, Ursula; Dillberger, John E; Sokal, David; McClain, R Michael

    2006-01-01

    Quinacrine is an acridine derivative under investigation for its use in nonsurgical female sterilization. Safety issues regarding the carcinogenic potential of quinacrine have been raised because it is mutagenic and clastogenic in vitro. The objective of the study was to evaluate the carcinogenic potential of quinacrine dihydrochloride (quinacrine) in neonatal mice treated with single intraperitoneal doses on postpartum days 8 and 15 and observed for 52 weeks. Neonatal Crl: CD-1 mice of each sex were randomly allocated into four treatment groups (0, 10, 50, and 150 mg/kg), dosed twice with quinacrine suspended in carboxymethylcellulose, observed for 52 weeks post dose, and then euthanized, necropsied, and subjected to a full histopathological examination. In male mice, tumor incidence was not significantly increased at any site at any dose level. In female mice, the incidence of benign uterine endometrial stromal polyps was slightly greater at the mid and high dose (> or = 50 mg/kg), as was the incidence of endometrial hyperplasia. The incidence of polyps in these groups was not significantly greater than in controls by pair-wise comparison but was significantly greater (p = .042) by the linear trend test. The authors conclude that quinacrine administered twice to neonatal mice may have enhanced or accelerated the development of endometrial hyperplasia and uterine stromal polyps at higher doses. Because uterine stromal polyps are a commonly observed benign tumor in older mice, the significance of this finding is unclear and will require a weight of evidence evaluation for a conclusion on the carcinogenic potential of quinacrine.

  5. Quinacrine pretreatment reduces microwave-induced neuronal damage by stabilizing the cell membrane

    PubMed Central

    Ding, Xue-feng; Wu, Yan; Qu, Wen-rui; Fan, Ming; Zhao, Yong-qi

    2018-01-01

    Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation. PMID:29623929

  6. Results of quinacrine administration to patients with Creutzfeldt-Jakob disease.

    PubMed

    Nakajima, Masashi; Yamada, Tatsuo; Kusuhara, Tomohiko; Furukawa, Hisako; Takahashi, Mitsuo; Yamauchi, Atsushi; Kataoka, Yasufumi

    2004-01-01

    Several chemicals inhibit the accumulation of abnormal prion proteins in vitro. We administered one, the antimalarial agent quinacrine, to three patients with sporadic Creutzfeldt-Jakob disease (CJD) and to one with iatrogenic CJD. Quinacrine at 300 mg/day was given enterally for 3 months. Within 2 weeks of administration, the arousal level of the patient with akinetic mutism improved. The other 3 patients, insensible before treatment, had integrative responses such as eye contact or voluntary movement in response to verbal and/or visual stimuli restored. Clinical improvement was transient, lasting 1-2 months during treatment. Quinacrine was well tolerated, except for liver dysfunction and yellowish pigmentation. Although its antiprion activity in the human brain has yet to be proved, these modest effects of quinacrine suggest the possibility of using chemical intervention against prion diseases. Copyright 2004 S. Karger AG, Basel

  7. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K{sub M} 1.1more » vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V{sub max}. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V

  8. Reactivity of 9-aminoacridine drug quinacrine with glutathione limits its antiprion activity.

    PubMed

    Šafařík, Martin; Moško, Tibor; Zawada, Zbigniew; Šafaříková, Eva; Dračínský, Martin; Holada, Karel; Šebestík, Jaroslav

    2017-06-01

    Quinacrine-the drug based on 9-aminoacridine-failed in clinical trials for prion diseases, whereas it was active in in vitro studies. We hypothesize that aromatic nucleophilic substitution at C9 could be contributing factor responsible for this failure because of the transfer of acridine moiety from quinacrine to abundant glutathione. Here, we described the semi-large-scale synthesis of the acridinylated glutathione and the consequences of its formation on biological and biophysical activities. The acridinylated glutathione is one order of magnitude weaker prion protein binder than the parent quinacrine. Moreover, according to log D pH 7.4 , the glutathione conjugate is two orders of magnitude more hydrophilic than quinacrine. Its higher hydrophilicity and higher dsDNA binding potency will significantly decrease its bioavailability in membrane-like environment. The glutathione deactivates quinacrine not only directly but also decreases its bioavailability. Furthermore, the conjugate can spontaneously decompose to practically insoluble acridone, which is precipitated out from the living systems. © 2016 John Wiley & Sons A/S.

  9. Quinacrine promotes replication and conformational mutation of chronic wasting disease prions.

    PubMed

    Bian, Jifeng; Kang, Hae-Eun; Telling, Glenn C

    2014-04-22

    Quinacrine's ability to reduce levels of pathogenic prion protein (PrP(Sc)) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrP(Sc) accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrP(Sc) deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrP(Sc) conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds.

  10. A lifetime cancer bioassay of quinacrine administered into the uterine horns of female rats.

    PubMed

    Cancel, Aida M; Dillberger, John E; Kelly, Catherine M; Bolte, Henry F; Creasy, Dianne M; Sokal, David C

    2010-03-01

    This study investigated if quinacrine can induce a tumorigenic response in rats when administered in a manner similar to the intended human use for female non-surgical sterilization. Young sexually mature female rats received two doses of quinacrine (or 1% methylcellulose control) into each uterine horn approximately 21 days apart, and were observed for 23 months after the second dose administration. Dose levels were 0/0, 0/0, 10/10, 70/70, and 70/250-350 mg/kg (first dose/second dose), which represent local doses in the uterus at approximate multiples of 1x, 8x and 40x the human dose (mg quinacrine/g uterine weight) used for female non-surgical sterilization. Rats were observed for viability, clinical signs of toxicity, and changes in body weight and food consumption. At necropsy, selected organs were weighed, macroscopic observations were recorded, and tissues were collected, fixed, processed, and examined for microscopic pathologic findings. Acute quinacrine toxicity was evident during the dosing period but did not affect long-term survival. Non-neoplastic findings were more common in treated animals than controls, providing evidence of the appropriateness of the bioassay. The incidence of uncommon tumors of the reproductive tract was similar to controls at doses of 10/10mg/kg but increased with dose level and was significantly greater than controls at >or=70/70 mg/kg. We conclude that two doses of quinacrine administered approximately 21 days apart into the uterus of young sexually mature rats at a local dose approximately 8 times the human dose used for non-surgical female sterilization increased the lifetime risk of tumor development in the reproductive tract. (c) 2009 Elsevier Inc. All rights reserved.

  11. Quinacrine promotes replication and conformational mutation of chronic wasting disease prions

    PubMed Central

    Bian, Jifeng; Kang, Hae-Eun; Telling, Glenn C.

    2014-01-01

    Quinacrine’s ability to reduce levels of pathogenic prion protein (PrPSc) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrPSc accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrPSc deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrPSc conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds. PMID:24711410

  12. Beyond DNA binding - a review of the potential mechanisms mediating quinacrine's therapeutic activities in parasitic infections, inflammation, and cancers

    PubMed Central

    2011-01-01

    This is an in-depth review of the history of quinacrine as well as its pharmacokinetic properties and established record of safety as an FDA-approved drug. The potential uses of quinacrine as an anti-cancer agent are discussed with particular attention to its actions on nuclear proteins, the arachidonic acid pathway, and multi-drug resistance, as well as its actions on signaling proteins in the cytoplasm. In particular, quinacrine's role on the NF-κB, p53, and AKT pathways are summarized. PMID:21569639

  13. Activity of Picolinic Acid in Combination with the Antiprotozoal Drug Quinacrine against Mycobacterium avium Complex

    PubMed Central

    Shimizu, Toshiaki; Tomioka, Haruaki

    2006-01-01

    We studied the in vitro and in vivo antimicrobial activities of picolinic acid (PA) in combination with the antiprotozoal drug quinacrine against intramacrophage Mycobacterium avium complex (MAC). Quinacrine significantly potentiated the anti-MAC activity of PA, suggesting the usefulness of this combination in the clinical control of MAC infection. PMID:16940126

  14. N-cinnamoylation of antimalarial classics: quinacrine analogues with decreased toxicity and dual-stage activity.

    PubMed

    Gomes, Ana; Pérez, Bianca; Albuquerque, Inês; Machado, Marta; Prudêncio, Miguel; Nogueira, Fátima; Teixeira, Cátia; Gomes, Paula

    2014-02-01

    Plasmodium falciparum, the causative agent of the most lethal form of malaria, is becoming increasingly resistant to most available drugs. A convenient approach to combat parasite resistance is the development of analogues of classical antimalarial agents, appropriately modified in order to restore their relevance in antimalarial chemotherapy. Following this line of thought, the design, synthesis and in vitro evaluation of N-cinnamoylated quinacrine surrogates, 9-(N-cinnamoylaminobutyl)-amino-6-chloro-2-methoxyacridines, is reported. The compounds were found to be highly potent against both blood-stage P.falciparum, chloroquine-sensitive 3D7 (IC50 =17.0-39.0 nM) and chloroquine-resistant W2 and Dd2 strains (IC50 =3.2-41.2 and 27.1-131.0 nM, respectively), and liver-stage P.berghei (IC50 =1.6-4.9 μM) parasites. These findings bring new hope for the possible future "rise of a fallen angel" in antimalarial chemotherapy, with a potential resurgence of quinacrine-related compounds as dual-stage antimalarial leads. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Participation of PLA2 and PLC in DhL-induced activation of Rhinella arenarum oocytes.

    PubMed

    Zapata-Martínez, J; Medina, M F; Gramajo-Bühler, M C; Sánchez-Toranzo, G

    2016-08-01

    Rhinella arenarum oocytes can be artificially activated, a process known as parthenogenesis, by a sesquiterpenic lactone of the guaianolide group, dehydroleucodine (DhL). Transient increases in the concentration of cytosolic Ca2+ are essential to trigger egg activation events. In this sense, the 1-4-5 inositol triphosphate receptors (IP3R) seem to be involved in the Ca2+ transient release induced by DhL in this species. We analyzed the involvement of phosphoinositide metabolism, especially the participation of phospholipase A2 (PLA2) and phospholipase C (PLC) in DhL-induced activation. Different doses of quinacrine, aristolochic acid (ATA) (PLA2 inhibitors) or neomycin, an antibiotic that binds to PIP2, thus preventing its hydrolysis, were used in mature Rhinella arenarum oocytes. In order to assay the participation of PI-PLC and PC- PLC we used U73122, a competitive inhibitor of PI-PLC dependent events and D609, an inhibitor of PC-PLC. We found that PLA2 inhibits quinacrine more effectively than ATA. This difference could be explained by the fact that quinacrine is not a specific inhibitor for PLA2 while ATA is specific for this enzyme. With respect to the participation of PLC, a higher decrease in oocyte activation was detected when cells were exposed to neomycin. Inhibition of PC-PLC with D609 and IP-PLC with U73122 indicated that the last PLC has a significant participation in the effect of DhL-induced activation. Results would indicate that DhL induces activation of in vitro matured oocytes of Rhinella arenarum by activation of IP-PLC, which in turn may induce IP3 formation which produces Ca2+ release.

  16. Inhibitors of second messenger pathways and Ca(2+)-induced exposure of phosphatidylserine in red blood cells of patients with sickle cell disease.

    PubMed

    Gbotosho, O T; Cytlak, U M; Hannemann, A; Rees, D C; Tewari, S; Gibson, J S

    2014-07-01

    The present work investigates the contribution of various second messenger systems to Ca(2+)-induced phosphatidylserine (PS) exposure in red blood cells (RBCs) from sickle cell disease (SCD) patients. The Ca(2+) dependence of PS exposure was confirmed using the Ca(2+) ionophore bromo-A23187 to clamp intracellular Ca(2+) over 4 orders of magnitude in high or low potassium-containing (HK or LK) saline. The percentage of RBCs showing PS exposure was significantly increased in LK over HK saline. This effect was reduced by the Gardos channel inhibitors, clotrimazole and charybdotoxin. Nevertheless, although Ca(2+) loading in the presence of an outwardly directed electrochemical gradient for K(+) stimulated PS exposure, substantial exposure still occurred in HK saline. Under the conditions used inhibitors of other second messenger systems (ABT491, quinacrine, acetylsalicylic acid, 3,4-dichloroisocoumarin, GW4869 and zVAD-fmk) did not inhibit the relationship between [Ca(2+)] and PS exposure. Inhibitors of phospholipase A2, cyclooxygenase, platelet-activating factor, sphingomyelinase and caspases, therefore, were without effect on Ca(2+)-induced PS exposure in RBCs, incubated in either HK or LK saline.

  17. A high-content phenotypic screen reveals the disruptive potency of quinacrine and 3',4'-dichlorobenzamil on the digestive vacuole of Plasmodium falciparum.

    PubMed

    Lee, Yan Quan; Goh, Amanda S P; Ch'ng, Jun Hong; Nosten, François H; Preiser, Peter Rainer; Pervaiz, Shazib; Yadav, Sanjiv Kumar; Tan, Kevin S W

    2014-01-01

    Plasmodium falciparum is the etiological agent of malignant malaria and has been shown to exhibit features resembling programmed cell death. This is triggered upon treatment with low micromolar doses of chloroquine or other lysosomotrophic compounds and is associated with leakage of the digestive vacuole contents. In order to exploit this cell death pathway, we developed a high-content screening method to select compounds that can disrupt the parasite vacuole, as measured by the leakage of intravacuolar Ca(2+). This assay uses the ImageStream 100, an imaging-capable flow cytometer, to assess the distribution of the fluorescent calcium probe Fluo-4. We obtained two hits from a small library of 25 test compounds, quinacrine and 3',4'-dichlorobenzamil. The ability of these compounds to permeabilize the digestive vacuole in laboratory strains and clinical isolates was validated by confocal microscopy. The hits could induce programmed cell death features in both chloroquine-sensitive and -resistant laboratory strains. Quinacrine was effective at inhibiting field isolates in a 48-h reinvasion assay regardless of artemisinin clearance status. We therefore present as proof of concept a phenotypic screening method with the potential to provide mechanistic insights to the activity of antimalarial drugs.

  18. Design, synthesis and characterization of novel quinacrine analogs that preferentially kill cancer over non-cancer cells through the down-regulation of Bcl-2 and up-regulation of Bax and Bad.

    PubMed

    Solomon, V Raja; Almnayan, Danah; Lee, Hoyun

    2017-09-08

    Both quinacrine, which contains a 9-aminoacridine scaffold, and thiazolidin-4-one are promising anticancer leads. In an attempt to develop effective and potentially safe anticancer agents, we synthesized 23 novel hybrid compounds by linking the main structural unit of the 9-aminoacridine ring with the thiazolidin-4-one ring system, followed by examination of their anticancer effects against three human breast tumor cell lines and matching non-cancer cells. Most of the hybrid compounds showed good activities, and many of them possessed the preferential killing property against cancer over non-cancer cells. In particular, 3-[3-(6-chloro-2-methoxy-acridin-9-ylamino)-propyl]-2-(2,6-difluoro-phenyl)-thiazolidin-4-one (11; VR118) effectively killed/inhibited proliferation of cancer cells at IC 50 values in the range of 1.2-2.4 μM. Furthermore, unlike quinacrine or cisplatin, compound 11 showed strong selectivity for cancer cell killing, as it could kill cancer cells 7.6-fold (MDA-MB231 vs MCF10A) to 14.7-fold (MCF7 vs MCF10A) more effectively than matching non-cancer cells. Data from flow cytometry, TUNEL and Western blot assays showed that compound 11 kills cancer cells by apoptosis through the down-regulation of Bcl-2 (but not Bcl-X L ) survival protein and up-regulation of Bad and Bax pro-apoptotic proteins. Thus, compound 11 is a highly promising lead for an effective and potentially anticancer therapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. Evaluation of acridine orange, LysoTracker Red, and quinacrine as fluorescent probes for long-term tracking of acidic vesicles.

    PubMed

    Pierzyńska-Mach, Agnieszka; Janowski, Paweł A; Dobrucki, Jurek W

    2014-08-01

    Acidic vesicles can be imaged and tracked in live cells after staining with several low molecular weight fluorescent probes, or with fluorescently labeled proteins. Three fluorescent dyes, acridine orange, LysoTracker Red DND-99, and quinacrine, were evaluated as acidic vesicle tracers for confocal fluorescence imaging and quantitative analysis. The stability of fluorescent signals, achievable image contrast, and phototoxicity were taken into consideration. The three tested tracers exhibit different advantages and pose different problems in imaging experiments. Acridine orange makes it possible to distinguish acidic vesicles with different internal pH but is fairly phototoxic and can cause spectacular bursts of the dye-loaded vesicles. LysoTracker Red is less phototoxic but its rapid photobleaching limits the range of useful applications considerably. We demonstrate that quinacrine is most suitable for long-term imaging when a high number of frames is required. This capacity made it possible to trace acidic vesicles for several hours, during a process of drug-induced apoptosis. An ability to record the behavior of acidic vesicles over such long periods opens a possibility to study processes like autophagy or long-term effects of drugs on endocytosis and exocytosis. © 2014 International Society for Advancement of Cytometry.

  20. SGLT2 inhibitors.

    PubMed

    Dardi, I; Kouvatsos, T; Jabbour, S A

    2016-02-01

    Diabetes mellitus is a serious health issue and an economic burden, rising in epidemic proportions over the last few decades worldwide. Although several treatment options are available, only half of the global diabetic population achieves the recommended or individualized glycemic targets. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent action. SGLT2 is a transporter found in the proximal renal tubules, responsible for the reabsorption of most of the glucose filtered by the kidney. Inhibition of SGLT2 lowers the blood glucose level by promoting the urinary excretion of excess glucose. Due to their insulin-independent action, SGLT2 inhibitors can be used with any degree of beta-cell dysfunction or insulin resistance, related to a very low risk of hypoglycemia. In addition to improving glycemic control, SGLT2 inhibitors have been associated with a reduction in weight and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus (T2DM). Treatment with SGLT2 inhibitors is usually well tolerated; however, they have been associated with an increased incidence of urinary tract and genital infections, although these infections are usually mild and easy to treat. SGLT2 inhibitors are a promising new option in the armamentarium of drugs for patients with T2DM. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. A comparison of effects of DPP-4 inhibitor and SGLT2 inhibitor on lipid profile in patients with type 2 diabetes.

    PubMed

    Cha, Seon-Ah; Park, Yong-Moon; Yun, Jae-Seung; Lim, Tae-Seok; Song, Ki-Ho; Yoo, Ki-Dong; Ahn, Yu-Bae; Ko, Seung-Hyun

    2017-04-13

    Previous studies suggest that dipeptidyl peptidase-4 (DPP-4) inhibitors and sodium glucose cotransporter 2 (SGLT2) inhibitors have different effects on the lipid profile in patients with type 2 diabetes. We investigated the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile in patients with type 2 diabetes. From January 2013 to December 2015, a total of 228 patients with type 2 diabetes who were receiving a DPP-4 inhibitor or SGLT2 inhibitor as add-on therapy to metformin and/or a sulfonylurea were consecutively enrolled. We compared the effects of DPP-4 inhibitors and SGLT2 inhibitors on the lipid profile at baseline and after 24 weeks of treatment. To compare lipid parameters between the two groups, we used the analysis of covariance (ANCOVA). A total of 184 patients completed follow-up (mean age: 53.1 ± 6.9 years, mean duration of diabetes: 7.1 ± 5.7 years). From baseline to 24 weeks, HDL-cholesterol (HDL-C) levels were increased by 0.5 (95% CI, -0.9 to 2.0) mg/dl with a DPP-4 inhibitor and by 5.1 (95% CI, 3.0 to 7.1) mg/dl with an SGLT2 inhibitor (p = 0.001). LDL-cholesterol (LDL-C) levels were reduced by 8.4 (95% CI, -14.0 to -2.8) mg/dl with a DPP-4 inhibitor, but increased by 1.3 (95% CI, -5.1 to 7.6) mg/dl with an SGLT2 inhibitor (p = 0.046). There was no significant difference in the mean hemoglobin A1c (8.3 ± 1.1 vs. 8.0 ± 0.9%, p = 0.110) and in the change of total cholesterol (TC) (p = 0.836), triglyceride (TG) (p = 0.867), apolipoprotein A (p = 0.726), apolipoprotein B (p = 0.660), and lipoprotein (a) (p = 0.991) between the DPP-4 inhibitor and the SGLT2 inhibitor. The SGLT2 inhibitor was associated with a significant increase in HDL-C and LDL-C after 24 weeks of SGLT2 inhibitor treatment in patients with type 2 diabetes compared with those with DPP-4 inhibitor treatment in this study. This study was conducted by retrospective medical record review.

  2. Inhibition of in vivo histamine metabolism in rats by foodborne and pharmacologic inhibitors of diamine oxidase, histamine N-methyltransferase, and monoamine oxidase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, J.Y.; Taylor, S.L.

    When (/sup 14/C)histamine was administered orally to rats, an average of 80% of the administered radioactivity was recovered in the urine at the end of 24 hr. About 10% of the total dose was excreted via the feces. Analysis of 4-hr urine samples found imidazoleacetic acid to be the predominant metabolite (60.6%), with N tau-methylimidazoleacetic acid (8.6%), N tau-methylhistamine (7.3%), and N-acetylhistamine (4.5%) to be the minor metabolites. Histamine metabolism was inhibited by simultaneous oral administration of aminoguanidine, isoniazid, quinacrine, cadaverine, putrescine, tyramine, and beta-phenylethylamine. The administration of inhibitors resulted in an increased amount of unmetabolized histamine and a decreasedmore » amount of metabolites reaching the urine. Pharmacologic inhibitors were found to be more potent and have a longer duration of action than foodborne ones. The inhibitors could potentiate food poisoning caused by histamine by inhibiting its metabolism.« less

  3. SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy

    PubMed Central

    Kawanami, Daiji; Matoba, Keiichiro; Takeda, Yusuke; Nagai, Yosuke; Akamine, Tomoyo; Yokota, Tamotsu; Sango, Kazunori; Utsunomiya, Kazunori

    2017-01-01

    Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) worldwide. Glycemic and blood pressure (BP) control are important but not sufficient to attenuate the incidence and progression of DN. Sodium–glucose cotransporter (SGLT) 2 inhibitors are a new class of glucose-lowering agent suggested to exert renoprotective effects in glucose lowering-dependent and independent fashions. Experimental studies have shown that SGLT2 inhibitors attenuate DN in animal models of both type 1 diabetes (T1D) and type 2 diabetes (T2D), indicating a potential renoprotective effect beyond glucose reduction. Renoprotection by SGLT2 inhibitors has been demonstrated in T2D patients with a high cardiovascular risk in randomized controlled trials (RCTs). These favorable effects of SGLT2 inhibitors are explained by several potential mechanisms, including the attenuation of glomerular hyperfiltration, inflammation and oxidative stress. In this review article, we discuss the renoprotective effects of SGLT2 inhibitors by integrating experimental findings with the available clinical data. PMID:28524098

  4. SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy.

    PubMed

    Kawanami, Daiji; Matoba, Keiichiro; Takeda, Yusuke; Nagai, Yosuke; Akamine, Tomoyo; Yokota, Tamotsu; Sango, Kazunori; Utsunomiya, Kazunori

    2017-05-18

    Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) worldwide. Glycemic and blood pressure (BP) control are important but not sufficient to attenuate the incidence and progression of DN. Sodium-glucose cotransporter (SGLT) 2 inhibitors are a new class of glucose-lowering agent suggested to exert renoprotective effects in glucose lowering-dependent and independent fashions. Experimental studies have shown that SGLT2 inhibitors attenuate DN in animal models of both type 1 diabetes (T1D) and type 2 diabetes (T2D), indicating a potential renoprotective effect beyond glucose reduction. Renoprotection by SGLT2 inhibitors has been demonstrated in T2D patients with a high cardiovascular risk in randomized controlled trials (RCTs). These favorable effects of SGLT2 inhibitors are explained by several potential mechanisms, including the attenuation of glomerular hyperfiltration, inflammation and oxidative stress. In this review article, we discuss the renoprotective effects of SGLT2 inhibitors by integrating experimental findings with the available clinical data.

  5. [Euglycemic ketoacidosis : a complication of SGLT2 inhibitors].

    PubMed

    Mizuno, Aki; Lolachi, Sanaz; Pernet, Alain

    2017-05-31

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors constitute a new category of oral antidiabetics recently indicated for the treatment of type 2 diabetes. Their mechanism of action (inhibition of renal reabsorption of glucose) and the fact that they do not induce hypoglycemia (as monotherapy) make their clinical use interesting. Various adverse events have however been reported regarding these drugs with the euglycemic ketoacidosis being the most serious. In this article we aim to review the possible mechanism of this side effect and recommendations for use of SGLT2 inhibitors by means of a case report.

  6. Prolonged Preservation of Human Platelets for Combat Casualty Care.

    DTIC Science & Technology

    1994-04-15

    membrane fluidity. 5) Flurbiprofen : Flurbiprofen is an inhibitor of the cyclooxygenase enzyme and thus blocks this arm of the arachidonic acid cascade...were previously demonstrated individually to effectively block agonist stimulated activation. These agents are quinacrine, flurbiprofen and...1 0 02 1 Quinacrine 0 0 25 13 0 67 28 5nM 0 25 38 0 67 56 50nM 0 25 37 0 44 61 .5M 0 6 25 0 38 28 Flurbiprofen 0 0 6 0 0 63 13 10nM 0 6 0 0 56 19 .lM

  7. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors.

    PubMed

    Tang, Chunlei; Zhu, Xiaoyun; Huang, Dandan; Zan, Xin; Yang, Baowei; Li, Ying; Du, Xiaoyong; Qian, Hai; Huang, Wenlong

    2012-06-01

    Sodium-dependent glucose co-transporter 2 (SGLT2) plays a pivotal role in maintaining glucose equilibrium in the human body, emerging as one of the most promising targets for the treatment of diabetes mellitus type 2. Pharmacophore models of SGLT2 inhibitors have been generated with a training set of 25 SGLT2 inhibitors using Discovery Studio V2.1. The best hypothesis (Hypo1(SGLT2)) contains one hydrogen bond donor, five excluded volumes, one ring aromatic and three hydrophobic features, and has a correlation coefficient of 0.955, cost difference of 68.76, RMSD of 0.85. This model was validated by test set, Fischer randomization test and decoy set methods. The specificity of Hypo1(SGLT2) was evaluated. The pharmacophore features of Hypo1(SGLT2) were different from the best pharmacophore model (Hypo1(SGLT1)) of SGLT1 inhibitors we developed. Moreover, Hypo1(SGLT2) could effectively distinguish selective inhibitors of SGLT2 from those of SGLT1. These results indicate that a highly predictive and specific pharmacophore model of SGLT2 inhibitors has been successfully obtained. Then Hypo1(SGLT2) was used as a 3D query to screen databases including NCI and Maybridge for identifying new inhibitors of SGLT2. The hit compounds were subsequently subjected to filtering by Lipinski's rule of five. And several compounds selected from the top ranked hits have been suggested for further experimental assay studies.

  8. 2-Oxoamide inhibitors of cytosolic group IVA phospholipase A2 with reduced lipophilicity.

    PubMed

    Antonopoulou, Georgia; Magrioti, Victoria; Kokotou, Maroula G; Nikolaou, Aikaterini; Barbayianni, Efrosini; Mouchlis, Varnavas D; Dennis, Edward A; Kokotos, George

    2016-10-01

    Cytosolic GIVA phospholipase A2 (GIVA cPLA2) initiates the eicosanoid pathway of inflammation and thus inhibitors of this enzyme constitute novel potential agents for the treatment of inflammatory diseases. Traditionally, GIVA cPLA2 inhibitors have suffered systemically from high lipophilicity. We have developed a variety of long chain 2-oxoamides as inhibitors of GIVA PLA2. Among them, AX048 was found to produce a potent analgesic effect. We have now reduced the lipophilicity of AX048 by replacing the long aliphatic chain with a chain containing an ether linked aromatic ring with in vitro inhibitory activities similar to AX048. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Comparison between SGLT2 inhibitors and DPP4 inhibitors added to insulin therapy in type 2 diabetes: a systematic review with indirect comparison meta-analysis.

    PubMed

    Min, Se Hee; Yoon, Jeong-Hwa; Hahn, Seokyung; Cho, Young Min

    2017-01-01

    Both sodium glucose cotransporter 2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP4) inhibitors can be used to treat patients with type 2 diabetes mellitus (T2DM) that is inadequately controlled with insulin therapy, and yet there has been no direct comparison of these two inhibitors. We searched MEDLINE, EMBASE, LILACS, the Cochrane Central Register of Controlled Trials and ClinicalTrials.gov through June 2015. Randomized controlled trials published in English that compare SGLT2 inhibitor plus insulin (SGLT2i/INS) with placebo plus insulin or DPP4 inhibitor plus insulin (DPP4i/INS) with placebo plus insulin in patients with T2DM were selected. Data on the study characteristics, efficacy and safety outcomes were extracted. We compared the efficacy and safety between SGLT2i/INS and DPP4i/INS indirectly with covariates adjustment. Risk of potential bias was assessed. Fourteen eligible randomized controlled trials comprising 6980 patients were included (five SGLT2 inhibitor studies and nine DPP4 inhibitor studies). Covariate-adjusted indirect comparison using meta-regression analyses revealed that SGLT2i/INS achieved greater reduction in HbA 1c [weighted mean difference (WMD) -0.24%, 95% confidence interval (CI) -0.43 to -0.05%], fasting plasma glucose (WMD -18.0 mg/dL, 95% CI -28.5 to -7.6 mg/dL) and body weight (WMD -2.38 kg, 95% CI -3.18 to -1.58 kg) from baseline than DPP4i/INS without increasing the risk of hypoglycaemia (relative risks 1.19, 95% CI 0.78 to 1.82). Sodium glucose cotransporter 2 inhibitors achieved better glycaemic control and greater weight reduction than DPP4 inhibitors without increasing the risk of hypoglycaemia in patients with T2DM that is inadequately controlled with insulin. There has been no direct comparison of SGLT2 inhibitors and DPP4 inhibitors in patients with T2DM inadequately controlled with insulin therapy. In this study, we performed indirect meta-analysis comparing SGLT2 inhibitors and DPP4 inhibitors added to insulin

  10. SGLT2 Inhibitors May Predispose to Ketoacidosis.

    PubMed

    Taylor, Simeon I; Blau, Jenny E; Rother, Kristina I

    2015-08-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic drugs that increase urinary excretion of glucose, thereby improving glycemic control and promoting weight loss. Since approval of the first-in-class drug in 2013, data have emerged suggesting that these drugs increase the risk of diabetic ketoacidosis. In May 2015, the Food and Drug Administration issued a warning that SGLT2 inhibitors may lead to ketoacidosis. Using PubMed and Google, we conducted Boolean searches including terms related to ketone bodies or ketoacidosis with terms for SGLT2 inhibitors or phlorizin. Priority was assigned to publications that shed light on molecular mechanisms whereby SGLT2 inhibitors could affect ketone body metabolism. SGLT2 inhibitors trigger multiple mechanisms that could predispose to diabetic ketoacidosis. When SGLT2 inhibitors are combined with insulin, it is often necessary to decrease the insulin dose to avoid hypoglycemia. The lower dose of insulin may be insufficient to suppress lipolysis and ketogenesis. Furthermore, SGLT2 is expressed in pancreatic α-cells, and SGLT2 inhibitors promote glucagon secretion. Finally, phlorizin, a nonselective inhibitor of SGLT family transporters decreases urinary excretion of ketone bodies. A decrease in the renal clearance of ketone bodies could also increase the plasma ketone body levels. Based on the physiology of SGLT2 and the pharmacology of SGLT2 inhibitors, there are several biologically plausible mechanisms whereby this class of drugs has the potential to increase the risk of developing diabetic ketoacidosis. Future research should be directed toward identifying which patients are at greatest risk for this side effect and also to optimizing pharmacotherapy to minimize the risk to patients.

  11. Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach.

    PubMed

    Cui, Huaqing; Kamal, Zeeshan; Ai, Teng; Xu, Yanli; More, Swati S; Wilson, Daniel J; Chen, Liqiang

    2014-10-23

    Sirtuin 2 (SIRT2) is one of the sirtuins, a family of NAD(+)-dependent deacetylases that act on a variety of histone and non-histone substrates. Accumulating biological functions and potential therapeutic applications have drawn interest in the discovery and development of SIRT2 inhibitors. Herein we report our discovery of novel SIRT2 inhibitors using a fragment-based approach. Inspired by the purported close binding proximity of suramin and nicotinamide, we prepared two sets of fragments, namely, the naphthylamide sulfonic acids and the naphthalene-benzamides and -nicotinamides. Biochemical evaluation of these two series provided structure-activity relationship (SAR) information, which led to the design of (5-benzamidonaphthalen-1/2-yloxy)nicotinamide derivatives. Among these inhibitors, one compound exhibited high anti-SIRT2 activity (48 nM) and excellent selectivity for SIRT2 over SIRT1 and SIRT3. In vitro, it also increased the acetylation level of α-tubulin, a well-established SIRT2 substrate, in both concentration- and time-dependent manners. Further kinetic studies revealed that this compound behaves as a competitive inhibitor against the peptide substrate and most likely as a noncompetitive inhibitor against NAD(+). Taken together, these results indicate that we have discovered a potent and selective SIRT2 inhibitor whose novel structure merits further exploration.

  12. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipasemore » A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.« less

  13. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner

    PubMed Central

    Lee, Mi Eun; Kim, So Ra; Lee, Seungkoo; Jung, Yu-Jin; Choi, Sun Shim; Kim, Woo Jin

    2012-01-01

    It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1. PMID:22771771

  14. [SGLT2 inhibitors: a new therapeutic class for the treatment of type 2 diabetes mellitus].

    PubMed

    Dagan, Amir; Dagan, Bracha; SegaL, Gad

    2015-03-01

    SGLT2 (Sodium Glucose co-Transporter 2 Inhibitors) inhibitors are a new group of oral medications for the treatment of type 2 diabetes mellitus patients. These medications interfere with the process of glucose reabsorption in the proximal convoluted tubules in the kidneys, therefore increasing both glucose and water diuresis. SGLT2 inhibitors were found to be effective in lowering HbA1c levels in double-blinded studies, both as monotherapy and in combination with other oral hypoglycemic medications of various other mechanisms of action. SGLT2 Inhibitors are not a risk factor for hypoglycemia and are suitable for combination with insulin therapy. Their unique mode of action, relying on glomerular filtration, make these medication unsuitable for usage as treatment for type 2 diabetes patients who are also suffering from moderate to severe renal failure. Their main adverse effects are increased risk for urinary and genital tract infections. The following review describes the relevant pathophysiology addressed by these novel medications, evidence for efficacy and the safety profile of SGLT2 Inhibitors.

  15. SGLT2-inhibitors: a novel class for the treatment of type 2 diabetes introduction of SGLT2-inhibitors in clinical practice.

    PubMed

    Cuypers, J; Mathieu, C; Benhalima, K

    2013-01-01

    Treatment of type 2 diabetes (T2DM) continues to present challenges, with significant proportion of patients failing to achieve and maintain glycemic targets. Despite the availability of many oral antidiabetic agents, therapeutic efficacy is offset by side effects such as weight gain and hypoglycemia. Therefore, the search for novel therapeutic agents with an improved benefit-risk profile continues. Recent research has focused on the kidney as a potential therapeutic target, especially because maximal renal glucose reabsorption is increased in T2DM. Under normal physiological conditions, nearly all filtered glucose is reabsorbed in the proximal tubule of the nephron, principally via the sodium-glucose cotransporter 2 (SGLT2). SGLT2-inhibitors are a new class of oral antidiabetics, which reduce hyperglycemia by increasing urinary glucose excretion independently of insulin secretion or action. Clinical results are promising with significant lowering of HbA1c without increased risk of hypoglycemia, reduction of body weight and reduction of systolic blood pressure. Dapagliflozin is the first highly selective SGLT2-inhibitor approved by the European Medecine Agency. Canagliflozin and empagliflozin are undergoing phase III trials. Actual safety issues are an increased risk for genital- and urinary tract infections and a possible increased risk for bladder and breast cancer. This led to refusal of dapagliflozin by the Food and Drug Administration (FDA). A large randomized control trial is therefore warranted by the FDA. This review provides an overview of the current evidence available so far on the therapeutic potential of the SGLT2-inhibitors for the treatment of T2DM.

  16. SGLT2 inhibitors: are they safe?

    PubMed

    Filippas-Ntekouan, Sebastian; Filippatos, Theodosios D; Elisaf, Moses S

    2018-01-01

    Sodium-glucose linked transporter type 2 (SGLT2) inhibitors are a relatively new class of antidiabetic drugs with positive cardiovascular and kidney effects. The aim of this review is to present the safety issues associated with SGLT2 inhibitors. Urogenital infections are the most frequently encountered adverse events, although tend to be mild to moderate and are easily manageable with standard treatment. Although no increased acute kidney injury risk was evident in the major trials, the mechanism of action of these drugs requires caution when they are administered in patients with extracellular volume depletion or with drugs affecting renal hemodynamics. Canagliflozin raised the risk of amputations and the rate of fractures in the CANVAS trial, although more data are necessary before drawing definite conclusions. The risk of euglycemic diabetic ketoacidosis seems to be minimal when the drugs are prescribed properly. Regarding other adverse events, SGLT2 inhibitors do not increase the risk of hypoglycemia even when co-administered with insulin, but a decrease in the dose of sulphonylureas may be needed. The available data do not point to a causative role of SGLT2 inhibitors on malignancy risk, however, these drugs should be used with caution in patients with known hematuria or history of bladder cancer. SGLT2 inhibitors seem to be safe and effective in the treatment of diabetes but more studies are required to assess their long-term safety.

  17. SGLT2 inhibitors: a promising new therapeutic option for treatment of type 2 diabetes mellitus.

    PubMed

    Misra, Monika

    2013-03-01

    Hyperglycemia is an important pathogenic component in the development of microvascular and macrovascular complications in type 2 diabetes mellitus. Inhibition of renal tubular glucose reabsorption that leads to glycosuria has been proposed as a new mechanism to attain normoglycemia and thus prevent and diminish these complications. Sodium glucose cotransporter 2 (SGLT2) has a key role in reabsorption of glucose in kidney. Competitive inhibitors of SGLT2 have been discovered and a few of them have also been advanced in clinical trials for the treatment of diabetes. To discuss the therapeutic potential of SGLT2 inhibitors currently in clinical development. A number of preclinical and clinical studies of SGLT2 inhibitors have demonstrated a good safety profile and beneficial effects in lowering plasma glucose levels, diminishing glucotoxicity, improving glycemic control and reducing weight in diabetes. Of all the SGLT2 inhibitors, dapagliflozin is a relatively advanced compound with regards to clinical development. SGLT2 inhibitors are emerging as a promising therapeutic option for the treatment of diabetes. Their unique mechanism of action offers them the potential to be used in combination with other oral anti-diabetic drugs as well as with insulin. © 2012 The Author. JPP © 2012 Royal Pharmaceutical Society.

  18. Sodium-Glucose linked transporter 2 (SGLT2) inhibitors--fighting diabetes from a new perspective.

    PubMed

    Angelopoulos, Theodoros P; Doupis, John

    2014-06-01

    Sodium-Glucose linked transporter 2 (SGLT2) inhibitors are a new family of antidiabetic pharmaceutical agents whose action is based on the inhibition of the glucose reabsorption pathway, resulting in glucosuria and a consequent reduction of the blood glucose levels, in patients with type 2 diabetes mellitus. Apart from lowering both fasting and postprandial blood glucose levels, without causing hypoglycemia, SGLT2 inhibitors have also shown a reduction in body weight and the systolic blood pressure. This review paper explores the renal involvement in glucose homeostasis providing also the latest safety and efficacy data for the European Medicines Agency and U.S. Food and Drug Administration approved SGLT2 inhibitors, looking, finally, into the future of this novel antidiabetic category of pharmaceutical agents.

  19. Involvement of thromboxane A2 in the endothelium-dependent contractions induced by myricetin in rat isolated aorta

    PubMed Central

    Jiménez, Rosario; Andriambeloson, Emile; Duarte, Juan; Andriantsitohaina, Ramaroson; Jiménez, José; Pérez-Vizcaino, Francisco; Zarzuelo, Antonio; Tamargo, Juan

    1999-01-01

    The present study was undertaken to analyse the mechanism of the contractile response induced by the bioflavonoid myricetin in isolated rat aortic rings.Myricetin induced endothelium-dependent contractile responses (maximal value=21±2% of the response induced by 80 mM KCl and pD2=5.12±0.03). This effect developed slowly, reached a peak within 6 min and then declined progressively.Myricetin-induced contractions were almost abolished by the phospholipase A2 (PLA2) inhibitor, quinacrine (10 μM), the cyclo-oxygenase inhibitor, indomethacin (10 μM), the thromboxane synthase inhibitor, dazoxiben (100 μM), the putative thromboxane A2 (TXA2)/prostaglandin endoperoxide receptor antagonist, ifetroban (3 μM). These contractions were abolished in Ca2+-free medium but were not affected by the Ca2+ channel blocker verapamil (10 μM).In cultured bovine endothelial cells (BAEC), myricetin (50 μM) produced an increase in cytosolic free calcium ([Ca2+]i) which peaked within 1 min and remained sustained for 6 min, as determined by the fluorescent probe fura 2. This rise in [Ca2+]i was abolished after removal of extracellular Ca2+ in the medium.Myricetin (50 μM) significantly increased TXB2 production both in aortic rings with and without endothelium and in BAEC. These increases were abolished both by Ca2+-free media and by indomethacin.Taken together, these results suggests that myricetin stimulates Ca2+ influx and subsequently triggers the activation of the PLA2 and cyclo-oxygenase pathways releasing TXA2 from the endothelium to contract rat aortic rings. The latter response occurs via the activation of Tp receptors on vascular smooth muscle cells. PMID:10455307

  20. Virtual screening studies to design potent CDK2-cyclin A inhibitors.

    PubMed

    Vadivelan, S; Sinha, Barij Nayan; Irudayam, Sheeba Jem; Jagarlapudi, Sarma A R P

    2007-01-01

    The cell division cycle is controlled by cyclin-dependent kinases (CDK), which consist of a catalytic subunit (CDK1-CDK8) and a regulatory subunit (cyclin A-H). Pharmacophore analysis indicates that the best inhibitor model consists of (1) two hydrogen bond acceptors, (2) one hydrogen bond donor, and (3) one hydrophobic feature. The HypoRefine pharmacophore model gave an enrichment factor of 1.31 and goodness of fit score of 0.76. Docking studies were carried out to explore the structural requirements for the CDK2-cyclin A inhibitors and to construct highly predictive models for the design of new inhibitors. Docking studies demonstrate the important role of hydrogen bond and hydrophobic interactions in determining the inhibitor-receptor binding affinity. The validated pharmacophore model is further used for retrieving the most active hits/lead from a virtual library of molecules. Subsequently, docking studies were performed on the hits, and novel series of potent leads were suggested based on the interaction energy between CDK2-cyclin A and the putative inhibitors.

  1. Discovery of Ecopladib, an indole inhibitor of cytosolic phospholipase A2alpha.

    PubMed

    Lee, Katherine L; Foley, Megan A; Chen, Lihren; Behnke, Mark L; Lovering, Frank E; Kirincich, Steven J; Wang, Weiheng; Shim, Jaechul; Tam, Steve; Shen, Marina W H; Khor, Soopeang; Xu, Xin; Goodwin, Debra G; Ramarao, Manjunath K; Nickerson-Nutter, Cheryl; Donahue, Frances; Ku, M Sherry; Clark, James D; McKew, John C

    2007-03-22

    The synthesis and structure-activity relationship of a series of indole inhibitors of cytosolic phospholipase A2alpha (cPLA2alpha, type IVA phospholipase) are described. Inhibitors of cPLA2alpha are predicted to be efficacious in treating asthma as well as the signs and symptoms of osteoarthritis, rheumatoid arthritis, and pain. The introduction of a benzyl sulfonamide substituent at C2 was found to impart improved potency of these inhibitors, and the SAR of these sulfonamide analogues is disclosed. Compound 123 (Ecopladib) is a sub-micromolar inhibitor of cPLA2alpha in the GLU micelle and rat whole blood assays. Compound 123 displayed oral efficacy in the rat carrageenan air pouch and rat carrageenan-induced paw edema models.

  2. Janus kinase 2 inhibitors in myeloproliferative disorders.

    PubMed

    Lucia, Eugenio; Recchia, Anna Grazia; Gentile, Massimo; Bossio, Sabrina; Vigna, Ernesto; Mazzone, Carla; Madeo, Antonio; Morabito, Lucio; Gigliotti, Vincenzo; De Stefano, Laura; Caruso, Nadia; Servillo, Pasquale; Franzese, Stefania; Bisconte, Maria Grazia; Gentile, Carlo; Morabito, Fortunato

    2011-01-01

    JAK2 is an obligatory kinase for the proliferation and differentiation of erythroid cells and megakaryocytes thus representing a relevant therapeutic target for agents that specifically inhibit its activity particularly in myeloproliferative disorders (MPD) harboring JAK2(V617F) mutations. We discuss the physiopathology of the JAK2 signaling pathway and review clinical trials of JAK2 inhibitors for the treatment of MPD using papers and meeting abstracts published up to September 2010. This review helps in understanding the potential role of JAK2 inhibitors in MPD clinical trials and provides a comprehensive review regarding their efficacy and safety in these disorders. JAK2 inhibitors may prove to be useful only for suppressing disease manifestations. However, unlike drugs such as IFN which are capable of eliminating the malignant clone, JAK2 inhibitors are unable to eradicate the disease. In fact, results to date indicate that although these inhibitors reduce splenomegaly and alleviate constitutional symptoms irrespective of JAK2 mutational status, most have only a modest impact on the JAK2(V617F) allele burden. Considering the relevant risk of serious complications in patients undergoing splenectomy, these drugs could find a suitable indication in patients with myelofibrosis awaiting bone marrow transplantation.

  3. Inhibition of matrix metalloproteinase-2 by PARP inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nicolescu, Adrian C.; Holt, Andrew; Kandasamy, Arulmozhi D.

    2009-10-02

    Matrix metalloproteinase-2 (MMP-2), a ubiquitously expressed zinc-dependent endopeptidase, and poly(ADP-ribosyl) polymerase (PARP), a nuclear enzyme regulating DNA repair, are activated by nitroxidative stress associated with various pathologies. As MMP-2 plays a detrimental role in heart injuries resulting from enhanced nitroxidative stress, where PARP and MMP inhibitors are beneficial, we hypothesized that PARP inhibitors may affect MMP-2 activity. Using substrate degradation assays to determine MMP-2 activity we found that four PARP inhibitors (3-AB, PJ-34, 5-AIQ, and EB-47) inhibited 64 kDa MMP-2 in a concentration-dependent manner. The IC{sub 50} values of PJ-34 and 5-AIQ were in the high micromolar range and comparablemore » to those of known MMP-2 inhibitors doxycycline, minocycline or o-phenanthroline, whereas those for 3-AB and EB-47 were in the millimolar range. Co-incubation of PARP inhibitors with doxycycline showed an additive inhibition of MMP-2 that was significant for 3-AB alone. These data demonstrate that the protective effects of some PARP inhibitors may include inhibition of MMP-2 activity.« less

  4. Cyclooxygenase-2 inhibitors: promise or peril?

    PubMed Central

    Mengle-Gaw, Laurel J; Schwartz, Benjamin D

    2002-01-01

    The discovery of two isoforms of the cyclooxygenase enzyme, COX-1 and COX-2, and the development of COX-2-specific inhibitors as anti-inflammatories and analgesics have offered great promise that the therapeutic benefits of NSAIDs could be optimized through inhibition of COX-2, while minimizing their adverse side effect profile associated with inhibition of COX-1. While COX-2 specific inhibitors have proven to be efficacious in a variety of inflammatory conditions, exposure of large numbers of patients to these drugs in postmarketing studies have uncovered potential safety concerns that raise questions about the benefit/risk ratio of COX-2-specific NSAIDs compared to conventional NSAIDs. This article reviews the efficacy and safety profiles of COX-2-specific inhibitors, comparing them with conventional NSDAIDs. PMID:12467519

  5. CHZ868, a Type II JAK2 Inhibitor, Reverses Type I JAK Inhibitor Persistence and Demonstrates Efficacy in Myeloproliferative Neoplasms

    PubMed Central

    Meyer, Sara C.; Keller, Matthew D.; Chiu, Sophia; Koppikar, Priya; Guryanova, Olga A.; Rapaport, Franck; Xu, Ke; Manova, Katia; Pankov, Dmitry; O’Reilly, Richard J.; Kleppe, Maria; McKenney, Anna Sophia; Shih, Alan H.; Shank, Kaitlyn; Ahn, Jihae; Papalexi, Eftymia; Spitzer, Barbara; Socci, Nick; Viale, Agnes; Mandon, Emeline; Ebel, Nicolas; Andraos, Rita; Rubert, Joëlle; Dammassa, Ernesta; Romanet, Vincent; Dölemeyer, Arno; Zender, Michael; Heinlein, Melanie; Rampal, Rajit; Weinberg, Rona Singer; Hoffman, Ron; Sellers, William R.; Hofmann, Francesco; Murakami, Masato; Baffert, Fabienne; Gaul, Christoph; Radimerski, Thomas; Levine, Ross L.

    2015-01-01

    Summary Although clinically tested JAK inhibitors reduce splenomegaly and systemic symptoms, molecular responses are not observed in most myeloproliferative neoplasms (MPN) patients. We previously demonstrated that MPN cells become persistent to type I JAK inhibitors that bind the active conformation of JAK2. We investigated if CHZ868, a type II JAK inhibitor, would demonstrate activity in JAK inhibitor persistent cells, murine MPN models, and MPN patient samples. JAK2- and MPL-mutant cell lines were sensitive to CHZ868, including type I JAK inhibitor persistent cells. CHZ868 showed significant activity in murine MPN models and induced reductions in mutant allele burden not observed with type I JAK inhibitors. These data demonstrate that type II JAK inhibition is a viable therapeutic approach for MPN patients. PMID:26175413

  6. Molecular design of new aggrecanases-2 inhibitors.

    PubMed

    Shan, Zhi Jie; Zhai, Hong Lin; Huang, Xiao Yan; Li, Li Na; Zhang, Xiao Yun

    2013-10-01

    Aggrecanases-2 is a very important potential drug target for the treatment of osteoarthritis. In this study, a series of known aggrecanases-2 inhibitors was analyzed by the technologies of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking. Two 3D-QSAR models, which based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods, were established. Molecular docking was employed to explore the details of the interaction between inhibitors and aggrecanases-2 protein. According to the analyses for these models, several new potential inhibitors with higher activity predicted were designed, and were supported by the simulation of molecular docking. This work propose the fast and effective approach to design and prediction for new potential inhibitors, and the study of the interaction mechanism provide a better understanding for the inhibitors binding into the target protein, which will be useful for the structure-based drug design and modifications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. [Sodium Glucose Co-transporter Type 2 (SGLT2) Inhibitors in CKD].

    PubMed

    Insalaco, Monica; Zanoli, Luca; Rastelli, Stefania; Lentini, Paolo; Rapisarda, Francesco; Fatuzzo, Pasquale; Castellino, Pietro; Granata, Antonio

    2015-01-01

    Among the new drugs used for the treatment of Diabetes Mellitus type 2, sodium-glucose cotransporter 2 (SGLT2) inhibitors represent a promising therapeutic option. Since their ability to lower glucose is proportional to GFR, their effect is reduced in patients with chronic kidney disease (CKD). The antidiabetic mechanism of these drugs is insulin-independent and, therefore, complimentary to that of others antihyperglicaemic agents. Moreover, SGLT2 inhibitors are able to reduce glomerular hyperfiltration, systemic and intraglomerular pressure and uric acid levels, with consequent beneficial effects on the progression of kidney disease in non diabetic patients as well. Only few studies have been performed to evaluate the effects of SGLT2 inhibitors in patients with CKD. Therefore, safety and efficacy of SGLT2 inhibitors should be better clarified in the setting of CKD. In this paper, we will review the use of SGLT2 inhibitors in diabetic patients, including those with CKD.

  8. Identification of Inhibitors of ABCG2 by a Bioluminescence Imaging-based High-throughput Assay

    PubMed Central

    Zhang, Yimao; Byun, Youngjoo; Ren, Yunzhao R.; Liu, Jun O.; Laterra, John; Pomper, Martin G.

    2009-01-01

    ABCG2 is a member of the ATP-binding cassette (ABC) family of transporters, the overexpression of which is associated with tumor resistance to a variety of chemotherapeutic agents. Accordingly, combining ABCG2 inhibitor(s) with chemotherapy has the potential to improve treatment outcome. To search for clinically useful ABCG2 inhibitors, a bioluminescence imaging (BLI)-based assay was developed to allow high-throughput compound screening. This assay exploits our finding that D-luciferin, the substrate of firefly luciferase (fLuc), is a specific substrate of ABCG2, and ABCG2 inhibitors block the export of D-luciferin and enhance bioluminescence signal by increasing intracellular D-luciferin concentrations. HEK293 cells, engineered to express ABCG2 and fLuc, were used to screen the Hopkins Drug Library that includes drugs approved by the US Food and Drug Administration (FDA) as well as drug candidates that have entered phase II clinical trials. Forty seven compounds demonstrated BLI enhancement, a measure of anti-ABCG2 activity, of five-fold or greater, the majority of which were not previously known as ABCG2 inhibitors. The assay was validated by its identification of known ABCG2 inhibitors and by confirming previously unknown ABCG2 inhibitors using established in vitro assays (e.g. mitoxantrone resensitization and BODIPY-prazosin assays). Glafenine, a potent new inhibitor, also inhibited ABCG2 activity in vivo. The BLI-based assay is an efficient method to identify new inhibitors of ABCG2. As they were derived from an FDA-approved compound library, many of the inhibitors uncovered in this study are ready for clinical testing. PMID:19567678

  9. Sodium-glucose cotransporter 2 (SGLT2) inhibitors and fracture risk in patients with type 2 diabetes mellitus: A meta-analysis.

    PubMed

    Ruanpeng, Darin; Ungprasert, Patompong; Sangtian, Jutarat; Harindhanavudhi, Tasma

    2017-09-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors could potentially alter calcium and phosphate homeostasis and may increase the risk of bone fracture. The current meta-analysis was conducted to investigate the fracture risk among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors. Randomized controlled trials that compared the efficacy of SGLT2 inhibitors to placebo were identified. The risk ratios of fracture among patients who received SGLT2 inhibitors versus placebo were extracted from each study. Pooled risk ratios and 95% confidence intervals were calculated using a random-effect, Mantel-Haenszel analysis. A total of 20 studies with 8286 patients treated with SGLT2 inhibitors were included. The pooled risk ratio of bone fracture in patients receiving SGLT2 inhibitors versus placebo was 0.67 (95% confidence interval, 0.42-1.07). The pooled risk ratio for canagliflozin, dapagliflozin, and empagliflozin was 0.66 (95% confidence interval, 0.37-1.19), 0.84 (95% confidence interval, 0.22-3.18), and 0.57 (95% confidence interval, 0.20-1.59), respectively. Increased risk of bone fracture among patients with type 2 diabetes mellitus treated with SGLT2 inhibitors compared with placebo was not observed in this meta-analysis. However, the results were limited by short duration of treatment/follow-up and low incidence of the event of interest. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors

    PubMed Central

    Cavaiola, Tricia Santos; Pettus, Jeremy

    2018-01-01

    As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME®) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM. PMID:29695924

  11. Cardiovascular effects of sodium glucose cotransporter 2 inhibitors.

    PubMed

    Cavaiola, Tricia Santos; Pettus, Jeremy

    2018-01-01

    As the first cardiovascular (CV) outcome trial of a glucose-lowering agent to demonstrate a reduction in the risk of CV events in patients with type 2 diabetes mellitus (T2DM), the EMPAgliflozin Removal of Excess Glucose: Cardiovascular OUTCOME Event Trial in Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME ® ) trial, which investigated the sodium glucose cotransporter 2 (SGLT2) inhibitor empagliflozin, has generated great interest among health care professionals. CV outcomes data for another SGLT2 inhibitor, canagliflozin, have been published recently in the CANagliflozin CardioVascular Assessment Study (CANVAS) Program, as have CV data from the retrospective real-world study Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors (CVD-REAL), which compared SGLT2 inhibitors with other classes of glucose-lowering drugs. This review discusses the results of these three studies and, with a focus on EMPA-REG OUTCOME, examines the possible mechanisms by which SGLT2 inhibitors may reduce CV risk in patients with T2DM.

  12. SGLT2 Inhibitors and the Diabetic Kidney.

    PubMed

    Fioretto, Paola; Zambon, Alberto; Rossato, Marco; Busetto, Luca; Vettor, Roberto

    2016-08-01

    Diabetic nephropathy (DN) is the most common cause of end-stage renal disease worldwide. Blood glucose and blood pressure control reduce the risk of developing this complication; however, once DN is established, it is only possible to slow progression. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, the most recent glucose-lowering oral agents, may have the potential to exert nephroprotection not only through improving glycemic control but also through glucose-independent effects, such as blood pressure-lowering and direct renal effects. It is important to consider, however, that in patients with impaired renal function, given their mode of action, SGLT2 inhibitors are less effective in lowering blood glucose. In patients with high cardiovascular risk, the SGLT2 inhibitor empagliflozin lowered the rate of cardiovascular events, especially cardiovascular death, and substantially reduced important renal outcomes. Such benefits on DN could derive from effects beyond glycemia. Glomerular hyperfiltration is a potential risk factor for DN. In addition to the activation of the renin-angiotensin-aldosterone system, renal tubular factors, including SGLT2, contribute to glomerular hyperfiltration in diabetes. SGLT2 inhibitors reduce sodium reabsorption in the proximal tubule, causing, through tubuloglomerular feedback, afferent arteriole vasoconstriction and reduction in hyperfiltration. Experimental studies showed that SGLT2 inhibitors reduced hyperfiltration and decreased inflammatory and fibrotic responses of proximal tubular cells. SGLT2 inhibitors reduced glomerular hyperfiltration in patients with type 1 diabetes, and in patients with type 2 diabetes, they caused transient acute reductions in glomerular filtration rate, followed by a progressive recovery and stabilization of renal function. Interestingly, recent studies consistently demonstrated a reduction in albuminuria. Although these data are promising, only dedicated renal outcome trials will clarify whether

  13. Small-Molecule Inhibitors of the MDM2–p53 Protein–Protein Interaction (MDM2 Inhibitors) in Clinical Trials for Cancer Treatment

    PubMed Central

    2015-01-01

    Design of small-molecule inhibitors (MDM2 inhibitors) to block the MDM2–p53 protein–protein interaction has been pursued as a new cancer therapeutic strategy. In recent years, potent, selective, and efficacious MDM2 inhibitors have been successfully obtained and seven such compounds have been advanced into early phase clinical trials for the treatment of human cancers. Here, we review the design, synthesis, properties, preclinical, and clinical studies of these clinical-stage MDM2 inhibitors. PMID:25396320

  14. 1,2-Benzisoselenazol-3(2H)-one Derivatives As a New Class of Bacterial Urease Inhibitors.

    PubMed

    Macegoniuk, Katarzyna; Grela, Ewa; Palus, Jerzy; Rudzińska-Szostak, Ewa; Grabowiecka, Agnieszka; Biernat, Monika; Berlicki, Łukasz

    2016-09-08

    Urease inhibitors are considered promising compounds for the treatment of ureolytic bacterial infections, particularly infections resulting from Helicobacter pylori in the gastric tract. Herein, we present the synthesis and the inhibitory activity of novel and highly effective organoselenium compounds as inhibitors of Sporosarcina pasteurii and Helicobacter pylori ureases. These studied compounds represent a class of competitive reversible urease inhibitors. The most active compound, 2-phenyl-1,2-benzisoselenazol-3(2H)-one (ebselen), displayed Ki values equal to 2.11 and 226 nM against S. pasteurii and H. pylori enzymes, respectively, indicating ebselen as one of the most potent low-molecular-weight inhibitors of bacterial ureases reported to date. Most of these molecules penetrated through the cell membrane of the Gram-negative bacteria Escherichia coli (pGEM::ureOP) in vitro. Furthermore, whole-cell studies on the H. pylori J99 reference strain confirmed the high efficiency of the examined organoselenium compounds as urease inhibitors against pathogenic bacteria.

  15. Protein kinase CK2 inhibitors: a patent review.

    PubMed

    Cozza, Giorgio; Pinna, Lorenzo A; Moro, Stefano

    2012-09-01

    CK2 is a pleiotropic, ubiquitous and constitutively active protein kinase, localized in both cytosolic and nuclear compartments, where it catalyzes the phosphorylation of hundreds of proteins. CK2 is generally described as a tetramer composed of two catalytic (α and/or α') and two regulatory subunits (β), however, the free α/α' subunits are catalytically active by themselves. CK2 plays a key role in several physiological and pathological processes and has been connected to many neoplastic, inflammatory, autoimmune and infectious disorders. In the last 20 years, several inhibitors of CK2 have been discovered though only one of these, CX-4945, has recently entered into Phase II clinical trials as potential anticancer drug. The main objective of the present review is to describe the development of CK2 activity modulators over the years according to the timeline of their patent registration. CK2 was discovered in 1954, but the first patent on CK2 modulators was deposited only 50 years later, in 2004. However, in the last 5 years an increasing number of patents on CK2 inhibitors have been registered, reflecting an increased interest in this kind of drug candidates and their possible therapeutic applications.

  16. The NADPH oxidase inhibitor diphenyleneiodonium is also a potent inhibitor of cholinesterases and the internal Ca2+ pump

    PubMed Central

    Tazzeo, T; Worek, F; Janssen, LJ

    2009-01-01

    Background and purpose: Diphenyleneiodonium (DPI) is often used as an NADPH oxidase inhibitor, but is increasingly being found to have unrelated side effects. We investigated its effects on smooth muscle contractions and the related mechanisms. Experimental approach: We studied isometric contractions in smooth muscle strips from bovine trachea. Cholinesterase activity was measured using a spectrophotometric assay; internal Ca2+ pump activity was assessed by Ca2+ uptake into smooth muscle microsomes. Key results: Contractions to acetylcholine were markedly enhanced by DPI (10−4 M), whereas those to carbachol (CCh) were not, suggesting a possible inhibition of cholinesterase. DPI markedly suppressed contractions evoked by CCh, KCl and 5-HT, and also unmasked phasic activity in otherwise sustained responses. Direct biochemical assays confirmed that DPI was a potent inhibitor of acetylcholinesterase and butyrylcholinesterase (IC50∼8 × 10−6 M and 6 × 10−7 M, respectively), following a readily reversible, mixed non-competitive type of inhibition. The inhibitory effects of DPI on CCh contractions were not mimicked by another NADPH oxidase inhibitor (apocynin), nor the Src inhibitors PP1 or PP2, ruling out an action through the NADPH oxidase signalling pathway. Several features of the DPI-mediated suppression of agonist-evoked responses (i.e. suppression of peak magnitudes and unmasking of phasic activity) are similar to those of cyclopiazonic acid, an inhibitor of the internal Ca2+ pump. Direct measurement of microsomal Ca2+ uptake revealed that DPI modestly inhibits the internal Ca2+ pump. Conclusions and implications: DPI inhibits cholinesterase activity and the internal Ca2+ pump in tracheal smooth muscle. PMID:19788497

  17. Design of SGLT2 Inhibitors for the Treatment of Type 2 Diabetes: A History Driven by Biology to Chemistry.

    PubMed

    Cai, Wenqing; Jiang, Linlin; Xie, Yafei; Liu, Yuqiang; Liu, Wei; Zhao, Guilong

    2015-01-01

    A brief history of the design of sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors is reviewed. The design of O-glucoside SGLT2 inhibitors by structural modification of phlorizin, a naturally occurring O-glucoside, in the early stage was a process mainly driven by biology with anticipation of improving SGLT2/SGLT1 selectivity and increasing metabolic stability. Discovery of dapagliflozin, a pioneering C-glucoside SGLT2 inhibitor developed by Bristol-Myers Squibb, represents an important milestone in this history. In the second stage, the design of C-glycoside SGLT2 inhibitors by modifications of the aglycone and glucose moiety of dapagliflozin, an original structural template for almost all C-glycoside SGLT2 inhibitors, was mainly driven by synthetic organic chemistry due to the challenge of designing dapagliflozin derivatives that are patentable, biologically active and synthetically accessible. Structure-activity relationships (SAR) of the SGLT2 inhibitors are also discussed.

  18. A Review on the Relationship between SGLT2 Inhibitors and Cancer

    PubMed Central

    Lin, Hao-Wen; Tseng, Chin-Hsiao

    2014-01-01

    Risk of increasing breast and bladder cancer remains a safety issue of SGLT2 (sodium glucose cotransporter type 2) inhibitors, a novel class of antidiabetic agent. We reviewed related papers published before January 29, 2014, through Pubmed search. Dapagliflozin and canagliflozin are the first two approved SGLT2 inhibitors for diabetes therapy. Although preclinical animal toxicology did not suggest a cancer risk of dapagliflozin and overall tumor did not increase, excess numbers of female breast cancer and male bladder cancer were noted in preclinical trials (without statistical significance). This concern of cancer risk hindered its approval by the US FDA in January, 2012. New clinical data suggested that the imbalance of bladder and breast cancer might be due to early diagnosis rather than a real increase of cancer incidence. No increased risk of overall bladder or breast cancer was noted for canagliflozin. Therefore, the imbalance observed with dapagliflozin treatment should not be considered as a class effect of SGLT2 inhibitors and the relationship with cancer for each specific SGLT2 inhibitor should be examined individually. Relationship between SGLT2 inhibition and cancer formation is still inconclusive and studies with larger sample size, longer exposure duration, and different ethnicities are warranted. PMID:25254045

  19. SGLT2 inhibitors: molecular design and potential differences in effect.

    PubMed

    Isaji, Masayuki

    2011-03-01

    The physiological and pathological handling of glucose via sodium-glucose cotransporter-2 (SGLT2) in the kidneys has been evolving, and SGLT2 inhibitors have been focused upon as a novel drug for treating diabetes. SGLT2 inhibitors enhance renal glucose excretion by inhibiting renal glucose reabsorption. Consequently, SGLT2 inhibitors reduce plasma glucose insulin independently and improve insulin resistance in diabetes. To date, various SGLT2 inhibitors have been developed and evaluated in clinical studies. The potency and positioning of SGLT2 inhibitors as an antidiabetic drug are dependent on their characteristic profile, which induces selectivity, efficacy, pharmacokinetics, and safety. This profile decides which SGLT2 inhibitors can be expected for application of the theoretical concept of reducing renal glucose reabsorption for the treatment of diabetes. I review the structure and advancing profile of various SGLT2 inhibitors, comparing their similarities and differences, and discuss the expected SGLT2 inhibitors for an emerging category of antidiabetic drugs.

  20. A Potent and Highly Efficacious Bcl-2/Bcl-xL Inhibitor

    PubMed Central

    McEachern, Donna; Yang, Chao-Yie; Meagher, Jennifer; Stuckey, Jeanne; Wang, Shaomeng

    2013-01-01

    Our previously reported Bcl-2/Bcl-xL inhibitor, 4, effectively inhibited tumor growth but failed to achieve complete regression in vivo. We have now performed extensive modifications on its pyrrole core structure, which has culminated in the discovery of 32 (BM-1074). Compound 32 binds to Bcl-2 and Bcl-xL proteins with Ki values of < 1 nM and inhibits cancer cell growth with IC50 values of 1-2 nM in four small-cell lung cancer cell lines sensitive to potent and specific Bcl-2/Bcl-xL inhibitors. Compound 32 is capable of achieving rapid, complete and durable tumor regression in vivo at a well-tolerated dose-schedule. Compound 32 is the most potent and efficacious Bcl-2/Bcl-xL inhibitor reported to date. PMID:23448298

  1. Protein Phosphatase-1 Inhibitor-2 Is a Novel Memory Suppressor.

    PubMed

    Yang, Hongtian; Hou, Hailong; Pahng, Amanda; Gu, Hua; Nairn, Angus C; Tang, Ya-Ping; Colombo, Paul J; Xia, Houhui

    2015-11-11

    Reversible phosphorylation, a fundamental regulatory mechanism required for many biological processes including memory formation, is coordinated by the opposing actions of protein kinases and phosphatases. Type I protein phosphatase (PP1), in particular, has been shown to constrain learning and memory formation. However, how PP1 might be regulated in memory is still not clear. Our previous work has elucidated that PP1 inhibitor-2 (I-2) is an endogenous regulator of PP1 in hippocampal and cortical neurons (Hou et al., 2013). Contrary to expectation, our studies of contextual fear conditioning and novel object recognition in I-2 heterozygous mice suggest that I-2 is a memory suppressor. In addition, lentiviral knock-down of I-2 in the rat dorsal hippocampus facilitated memory for tasks dependent on the hippocampus. Our data indicate that I-2 suppresses memory formation, probably via negatively regulating the phosphorylation of cAMP/calcium response element-binding protein (CREB) at serine 133 and CREB-mediated gene expression in dorsal hippocampus. Surprisingly, the data from both biochemical and behavioral studies suggest that I-2, despite its assumed action as a PP1 inhibitor, is a positive regulator of PP1 function in memory formation. We found that inhibitor-2 acts as a memory suppressor through its positive functional influence on type I protein phosphatase (PP1), likely resulting in negative regulation of cAMP/calcium response element-binding protein (CREB) and CREB-activated gene expression. Our studies thus provide an interesting example of a molecule with an in vivo function that is opposite to its in vitro function. PP1 plays critical roles in many essential physiological functions such as cell mitosis and glucose metabolism in addition to its known role in memory formation. PP1 pharmacological inhibitors would thus not be able to serve as good therapeutic reagents because of its many targets. However, identification of PP1 inhibitor-2 as a critical

  2. Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy

    PubMed Central

    Koppikar, Priya; Bhagwat, Neha; Kilpivaara, Outi; Manshouri, Taghi; Adli, Mazhar; Hricik, Todd; Liu, Fan; Saunders, Lindsay M.; Mullally, Ann; Abdel-Wahab, Omar; Leung, Laura; Weinstein, Abby; Marubayashi, Sachie; Goel, Aviva; Gönen, Mithat; Estrov, Zeev; Ebert, Benjamin L.; Chiosis, Gabriela; Nimer, Stephen D.; Bernstein, Bradley E.; Verstovsek, Srdan; Levine, Ross L.

    2012-01-01

    The identification of somatic activating mutations in JAK21–4 and in the thrombopoietin receptor (MPL)5 in the majority of myeloproliferative neoplasm (MPN) patients led to the clinical development of JAK2 kinase inhibitors6,7. JAK2 inhibitor therapy improves MPN-associated splenomegaly and systemic symptoms, but does not significantly reduce or eliminate the MPN clone in most MPN patients. We therefore sought to characterize mechanisms by which MPN cells persist despite chronic JAK2 inhibition. Here we show that JAK2 inhibitor persistence is associated with reactivation of JAK-STAT signaling and with heterodimerization between activated JAK2 and JAK1/TYK2, consistent with activation of JAK2 in trans by other JAK kinases. Further, this phenomenon is reversible, such that JAK2 inhibitor withdrawal is associated with resensitization to JAK2 kinase inhibitors and with reversible changes in JAK2 expression. We saw increased JAK2 heterodimerization and sustained JAK2 activation in cell lines, murine models, and patients treated with JAK2 inhibitors. RNA interference and pharmacologic studies demonstrate that JAK2 inhibitor persistent cells remain dependent on JAK2 protein expression. Consequently, therapies that result in JAK2 degradation retain efficacy in persistent cells and may provide additional benefit to patients with JAK2-dependent malignancies treated with JAK2 inhibitors. PMID:22820254

  3. A computational analysis of the binding model of MDM2 with inhibitors

    NASA Astrophysics Data System (ADS)

    Hu, Guodong; Wang, Dunyou; Liu, Xinguo; Zhang, Qinggang

    2010-08-01

    It is a new and promising strategy for anticancer drug design to block the MDM2-p53 interaction using a non-peptide small-molecule inhibitor. We carry out molecular dynamics simulations to study the binding of a set of six non-peptide small-molecule inhibitors with the MDM2. The relative binding free energies calculated using molecular mechanics Poisson-Boltzmann surface area method produce a good correlation with experimentally determined results. The study shows that the van der Waals energies are the largest component of the binding free energy for each complex, which indicates that the affinities of these inhibitors for MDM2 are dominated by shape complementarity. The A-ligands and the B-ligands are the same except for the conformation of 2,2-dimethylbutane group. The quantum mechanics and the binding free energies calculation also show the B-ligands are the more possible conformation of ligands. Detailed binding free energies between inhibitors and individual protein residues are calculated to provide insights into the inhibitor-protein binding model through interpretation of the structural and energetic results from the simulations. The study shows that G1, G2 and G3 group mimic the Phe19, Trp23 and Leu26 residues in p53 and their interactions with MDM2, but the binding model of G4 group differs from the original design strategy to mimic Leu22 residue in p53.

  4. [Mechanisms and efficacy of SGLT2 inhibitors].

    PubMed

    Shiba, Teruo

    2015-03-01

    SGLT2 is a low affinity, high capacity glucose co-transporter, almost exclusively expressed in the kidney cortex. Inhibition of SGLT2 has been shown to increase the daily 50g or more urinary glucose excretion, as compared to placebo, leading to a reduction in blood glucose levels and indicated only for the treatment of type 2 diabetes. In Japan 6 species of SGLT2 inhibitors have already been sold and reported to results in a decrease of FPG by 14.4 to 45.8 (mg/dL), in a reduction of HbA1c by 0.35 to 1.24% and in loss of body weight by 1.29 to 2.50(kg). There is less effect of the SGLT2 inhibitor in diabetic subjects with renal impairment and the reduction in HbA1c and FPG will be approximately half of the average in those with 30 ≤ eGFR ≤ 59. The position of SGLT2 inhibitors would be considered as the drug administered in combination or add-on therapy when the young obese type 2 diabetics without renal impairment has not yet reached to the glycemic target with other drugs although in AACE consensus statement of 2013, it has been shelved for inexperienced use with respect to the positioning of the SGLT2 inhibitors.

  5. SGLT2 inhibitors to control glycemia in type 2 diabetes mellitus: a new approach to an old problem.

    PubMed

    Jabbour, Serge A

    2014-01-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a new class of antidiabetic agents with a novel insulin-independent mechanism of action. The SGLT2 is a transporter found in the proximal tubule of the kidney and is responsible for approximately 90% of renal glucose reabsorption. The SGLT2 inhibitors reduce reabsorption of glucose in the kidney, resulting in glucose excretion in the urine (50-90 g of ~180 g filtered by the kidneys daily), which in turn lowers plasma glucose levels in people with diabetes. The insulin-independent mechanism of action of SGLT2 inhibitors dictates that they are associated with a very low risk of hypoglycemia and can be used in patients with any degree of β-cell function or insulin sensitivity. Clinical trials have shown that SGLT2 inhibitors are effective at reducing blood glucose levels, body weight, and blood pressure when used as monotherapy or in combination with other antidiabetic agents in patients with type 2 diabetes mellitus. Treatment with SGLT2 inhibitors is generally well tolerated, although these agents have been associated with an increased incidence of genital infections. The SGLT2 inhibitors have become a valuable addition to the armory of drugs used to treat patients with type 2 diabetes mellitus, and several agents within the class are currently under investigation in phase III clinical trials.

  6. Complex structure of a bacterial class 2 histone deacetylase homologue with a trifluoromethylketone inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Tine Kragh; Hildmann, Christian; Riester, Daniel

    2007-04-01

    The crystal structure of HDAH FB188 in complex with a trifluoromethylketone at 2.2 Å resolution is reported and compared to a previously determined inhibitor complex. Histone deacetylases (HDACs) have emerged as attractive targets in anticancer drug development. To date, a number of HDAC inhibitors have been developed and most of them are hydroxamic acid derivatives, typified by suberoylanilide hydroxamic acid (SAHA). Not surprisingly, structural information that can greatly enhance the design of novel HDAC inhibitors is so far only available for hydroxamic acids in complex with HDAC or HDAC-like enzymes. Here, the first structure of an enzyme complex with amore » nonhydroxamate HDAC inhibitor is presented. The structure of the trifluoromethyl ketone inhibitor 9,9,9-trifluoro-8-oxo-N-phenylnonanamide in complex with bacterial FB188 HDAH (histone deacetylase-like amidohydrolase from Bordetella/Alcaligenes strain FB188) has been determined. HDAH reveals high sequential and functional homology to human class 2 HDACs and a high structural homology to human class 1 HDACs. Comparison with the structure of HDAH in complex with SAHA reveals that the two inhibitors superimpose well. However, significant differences in binding to the active site of HDAH were observed. In the presented structure the O atom of the trifluoromethyl ketone moiety is within binding distance of the Zn atom of the enzyme and the F atoms participate in interactions with the enzyme, thereby involving more amino acids in enzyme–inhibitor binding.« less

  7. Acute Kidney Injury in Patients on SGLT2 Inhibitors: A Propensity-Matched Analysis.

    PubMed

    Nadkarni, Girish N; Ferrandino, Rocco; Chang, Alexander; Surapaneni, Aditya; Chauhan, Kinsuk; Poojary, Priti; Saha, Aparna; Ferket, Bart; Grams, Morgan E; Coca, Steven G

    2017-11-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitors are new medications that improve cardiovascular and renal outcomes in patients with type 2 diabetes (T2D). However, the Food and Drug Administration has issued alerts regarding increased acute kidney injury (AKI) risk with canagliflozin and dapagliflozin. We aimed to assess the real-world risk of AKI in new SGLT2 inhibitor users in two large health care utilization cohorts of patients with T2D. We used longitudinal data from the Mount Sinai chronic kidney disease registry and the Geisinger Health System cohort. We selected SGLT inhibitor users and nonusers (patients with T2D without SGLT2 inhibitor prescription). We determined AKI by the KDIGO (Kidney Disease: Improving Global Outcomes) definition (AKI KDIGO ). We performed 1:1 nearest-neighbor propensity matching and calculated unadjusted hazard ratios (HRs) and adjusted HRs (aHRs; accounting for covariates poorly balanced) for AKI in primary and sensitivity analyses. We identified 377 SGLT2 inhibitor users and 377 nonusers in the Mount Sinai cohort, of whom 3.8 and 9.7%, respectively, had an AKI KDIGO event over a median follow-up time of 14 months. The unadjusted hazards of AKI KDIGO were 60% lower in users (HR 0.4 [95% CI 0.2-0.7]; P = 0.01), which was unchanged (aHR 0.4 [95% CI 0.2-0.7]; P = 0.004) postadjustment. Similarly, we identified 1,207 SGLT2 inhibitor users and 1,207 nonusers in the Geisinger cohort, of whom 2.2 and 4.6% had an AKI KDIGO event. AKI KDIGO unadjusted hazards were lower in users (HR 0.5 [95% CI 0.3-0.8]; P < 0.01) with modest attenuation postadjustment for covariates (aHR 0.6 [95% CI 0.4-1.1]; P = 0.09). These estimates did not qualitatively change across several sensitivity analyses. Our findings do not suggest an increased risk of AKI associated with SGLT2 inhibitor use in patients with T2D in two large health systems. © 2017 by the American Diabetes Association.

  8. Surmounting the resistance against EGFR inhibitors through the development of thieno[2,3-d]pyrimidine-based dual EGFR/HER2 inhibitors.

    PubMed

    Milik, Sandra N; Abdel-Aziz, Amal Kamal; Lasheen, Deena S; Serya, Rabah A T; Minucci, Saverio; Abouzid, Khaled A M

    2018-06-06

    In light of the emergence of resistance against the currently available EGFR inhibitors, our study focuses on tackling this problem through the development of dual EGFR/HER2 inhibitors with improved enzymatic affinities. Guided by the binding mode of the marketed dual EGFR/HER2 inhibitor, Lapatinib, we proposed the design of dual EGFR/HER2 inhibitors based on the 6-phenylthieno[2,3-d]pyrimidine as a core scaffold and hinge binder. After two cycles of screening aiming to identify the optimum aniline headgroup and solubilizing group, we eventually identified 27b as a dual EGFR/HER2 inhibitor with IC 50 values of 91.7 nM and 1.2 μM, respectively. Notably, 27b dramatically reduced the viability of various patient-derived cancer cells preferentially overexpressing EGFR/HER2 (A431, MDA-MBA-361 and SKBr3 with IC 50 values of 1.45, 3.5 and 4.83 μM, respectively). Additionally, 27b efficiently thwarted the proliferation of lapatinib-resistant human non-small lung carcinoma (NCI-H1975) cells, harboring T790 M mutation, with IC 50 of 4.2 μM. Consistently, 27b significantly blocked EGF-induced EGFR activation and inactivated its downstream AKT/mTOR/S6 signalling pathway triggering apoptotic cell death in NCI-H1975 cells. The present study presents a promising candidate for further design and development of novel EGFR/HER2 inhibitors capable of overcoming EGFR TKIs resistance. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents.

    PubMed

    Washburn, William N

    2012-05-01

    Maintenance of glucose homeostasis in healthy individuals involves SGLT2 (sodium glucose co-transporter 2)-mediated recovery of glucose from the glomerular filtrate which otherwise would be excreted in urine. Clinical studies indicate that SGLT2 inhibitors provide an insulin-independent means to reduce the hyperglycemia that is the hallmark of type 2 diabetes mellitus (T2DM) with minimal risk of hypoglycemia. The pharmacophore common to the SGLT2 inhibitors currently in development is a diarylmethane C-glucoside which is discussed in this review. The focus is how this pharmacophore was further modified as inferred from the patents publishing from 2009 to 2011. The emphasis is on the strategy that each group employed to circumvent the constraints imposed by prior art and how the resulting SGLT2 potency and selectivity versus SGLT1 compared with that of the lead clinical compound dapagliflozin. SGLT2 inhibitors offer a new fundamentally different approach for treatment of diabetes. To date, the clinical results suggest that for non-renally impaired patients this class of inhibitors could be safely used at any stage of T2DM either alone or in combination with other marketed antidiabetic medications.

  10. Discovery of a series of dihydroquinoxalin-2(1H)-ones as selective BET inhibitors from a dual PLK1-BRD4 inhibitor.

    PubMed

    Hu, Jianping; Wang, Yingqing; Li, Yanlian; Xu, Lin; Cao, Danyan; Song, ShanShan; Damaneh, Mohammadali Soleimani; Wang, Xin; Meng, Tao; Chen, Yue-Lei; Shen, Jingkang; Miao, Zehong; Xiong, Bing

    2017-09-08

    Recent years have seen much effort to discover new chemotypes of BRD4 inhibitors. Interestingly, some kinase inhibitors have been demonstrated to be potent bromodomain inhibitors, especially the PLK1 inhibitor BI-2536 and the JAK2 inhibitor TG101209, which can bind to BRD4 with IC 50 values of 0.025 μM and 0.13 μM, respectively. Although the concept of dual inhibition is intriguing, selective BRD4 inhibitors are preferred as they may diminish off-target effects and provide more flexibility in anticancer drug combination therapy. Inspired by BI-2536, we designed and prepared a series of dihydroquinoxalin-2(1H)-one derivatives as selective bromodomain inhibitors. We found compound 54 had slightly higher activity than (+)-JQ1 in the fluorescence anisotropy assay and potent antiproliferative cellular activity in the MM.1S cell line. We have successfully solved the cocrystal structure of 52 in complex with BRD4-BD1, providing a solid structural basis for the binding mode of compounds of this series. Compound 54 exhibited high selectivity over most non-BET subfamily members and did not show bioactivity towards the PLK1 kinase at 10 or 1 μM. From in vivo studies, compound 54 demonstrated a good PK profile, and the results from in vivo pharmacological studies clearly showed the efficacy of 54 in the mouse MM.1S xenograft model. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. SGLT-2 Inhibitors: Is There a Role in Type 1 Diabetes Mellitus Management?

    PubMed

    Ahmed-Sarwar, Nabila; Nagel, Angela K; Leistman, Samantha; Heacock, Kevin

    2017-09-01

    The purpose of this review is to identify and evaluate disease management of patients with type 1 diabetes mellitus (T1DM) who were treated with a sodium-glucose cotransporter 2 (SGLT-2) inhibitor as an adjunct to insulin therapy. A PubMed (1969 to March 2017) and Ovid (1946 to March 2017) search was performed for articles published utilizing the following MESH terms: canagliflozin, empagliflozin, dapagliflozin, type 1 diabetes mellitus, insulin dependent diabetes, insulin, sodium-glucose transporter 2. There were no limitations placed on publication type. All English-language articles were evaluated for association of SGLT-2 inhibitors and type 1 diabetes. Further studies were identified by review of pertinent manuscript bibliographies. All 3 SGLT-2 inhibitors, when combined with insulin, resulted in an overall reduction of hemoglobin A1C (up to 0.49%), lower total daily insulin doses, and a reduction in weight (up to 2.7 kg). The combination therapy of insulin and SGLT-2 inhibitors also resulted in a lower incidence of hypoglycemia. Study duration varied from 2 to 18 weeks. A review of the identified literature indicated that there is a potential role for the combination of SGLT-2 inhibitors with insulin in T1DM for improving glycemic control without increasing the risk of hypoglycemia. The short duration and small sample sizes limit the ability to fully evaluate the incidences of diabetic ketoacidosis and urogenital infections. The risks associated with this combination of medications require further evaluation.

  12. Chemoproteomics-Aided Medicinal Chemistry for the Discovery of EPHA2 Inhibitors.

    PubMed

    Heinzlmeir, Stephanie; Lohse, Jonas; Treiber, Tobias; Kudlinzki, Denis; Linhard, Verena; Gande, Santosh Lakshmi; Sreeramulu, Sridhar; Saxena, Krishna; Liu, Xiaofeng; Wilhelm, Mathias; Schwalbe, Harald; Kuster, Bernhard; Médard, Guillaume

    2017-06-21

    The receptor tyrosine kinase EPHA2 has gained attention as a therapeutic drug target for cancer and infectious diseases. However, EPHA2 research and EPHA2-based therapies have been hampered by the lack of selective small-molecule inhibitors. Herein we report the synthesis and evaluation of dedicated EPHA2 inhibitors based on the clinical BCR-ABL/SRC inhibitor dasatinib as a lead structure. We designed hybrid structures of dasatinib and the previously known EPHA2 binders CHEMBL249097, PD-173955, and a known EPHB4 inhibitor in order to exploit both the ATP pocket entrance as well as the ribose pocket as binding epitopes in the kinase EPHA2. Medicinal chemistry and inhibitor design were guided by a chemical proteomics approach, allowing early selectivity profiling of the newly synthesized inhibitor candidates. Concomitant protein crystallography of 17 inhibitor co-crystals delivered detailed insight into the atomic interactions that underlie the structure-affinity relationship. Finally, the anti-proliferative effect of the inhibitor candidates was confirmed in the glioblastoma cell line SF-268. In this work, we thus discovered a novel EPHA2 inhibitor candidate that features an improved selectivity profile while maintaining potency against EPHA2 and anticancer activity in SF-268 cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Inhibitory spectrum of alpha 2-plasmin inhibitor.

    PubMed Central

    Saito, H; Goldsmith, G H; Moroi, M; Aoki, N

    1979-01-01

    alpha 2-Plasmin inhibitor (alpha 2PI) has been recently characterized as a fast-reacting inhibitor of plasmin in human plasma and appears to play an important role in the regulation of fibrinolysis in vivo. We have studied the effect of purified alpha 2PI upon various proteases participating in human blood coagulation and kinin generation. At physiological concentration (50 microgram/ml), alpha 2PI inhibited the clot-promoting and prekallikrein-activating activity of Hageman factor fragments, the amidolytic, kininogenase, and clot-promoting activities of plasma kallikrein, and the clot-promoting properties of activated plasma thromboplastin antecedent (PTA, Factor XIa) and thrombin. alpha 2PI had minimal inhibitory effect on surface-bound activated PTA and activated Stuart factor (Factor Xa). alpha 2PI did not inhibit the activity of activated Christmas factor (Factor IXa) or urinary kallikrein. Heparin (1.5-2.0 units/ml) did not enhance the inhibitory function of alpha 2PI. These results suggest that, like other plasma protease inhibitors, alpha 2PI possesses a broad in vitro spectrum of inhibitory properties. PMID:156364

  14. Cancerous inhibitor of protein phosphatase 2A determines bortezomib-induced apoptosis in leukemia cells

    PubMed Central

    Liu, Chun-Yu; Shiau, Chung-Wai; Kuo, Hsin-Yu; Huang, Hsiang-Po; Chen, Ming-Huang; Tzeng, Cheng-Hwai; Chen, Kuen-Feng

    2013-01-01

    The multiple cellular targets affected by proteasome inhibition implicate a potential role for bortezomib, a first-in-class proteasome inhibitor, in enhancing antitumor activities in hematologic malignancies. Here, we examined the antitumor activity and drug targets of bortezomib in leukemia cells. Human leukemia cell lines were used for in vitro studies. Drug efficacy was evaluated by apoptosis assays and associated molecular events assessed by Western Blot. Gene silencing was performed by small interference RNA. Drug was tested in vivo in xenograft models of human leukemia cell lines and in primary leukemia cells. Clinical samples were assessed by immunohistochemical staining. Bortezomib differentially induced apoptosis in leukemia cells that was independent of its proteasome inhibition. Cancerous inhibitor of protein phosphatase 2A, a cellular inhibitor of protein phosphatase 2A, mediated the apoptotic effect of bortezomib. Bortezomib increased protein phosphatase 2A activity in sensitive leukemia cells (HL-60 and KG-1), but not in resistant cells (MOLT-3 and K562). Bortezomib’s downregulation of cancerous inhibitor of protein phosphatase 2A and phospho-Akt correlated with its drug sensitivity. Furthermore, cancerous inhibitor of protein phosphatase 2A negatively regulated protein phosphatase 2A activity. Ectopic expression of CIP2A up-regulated phospho-Akt and protected HL-60 cells from bortezomib-induced apoptosis, whereas silencing CIP2A overcame the resistance to bortezomib-induced apoptosis in MOLT3 and K562 cells. Importantly, bortezomib exerted in vivo antitumor activity in HL-60 xenografted tumors and induced cell death in some primary leukemic cells. Cancerous inhibitor of protein phosphatase 2A was expressed in leukemic blasts from bone marrow samples. Cancerous inhibitor of protein phosphatase 2A plays a major role in mediating bortezomib-induced apoptosis in leukemia cells. PMID:22983581

  15. Design of Broad-Spectrum Inhibitors of Influenza A Virus M2 Proton Channels: A Molecular Modeling Approach.

    PubMed

    Klimochkin, Yuri N; Shiryaev, Vadim A; Petrov, Pavel V; Radchenko, Eugene V; Palyulin, Vladimir A; Zefirov, Nikolay S

    2016-01-01

    The influenza A virus M2 proton channel plays a critical role in its life cycle. However, known M2 inhibitors have lost their clinical efficacy due to the spread of resistant mutant channels. Thus, the search for broad-spectrum M2 channel inhibitors is of great importance. The goal of the present work was to develop a general approach supporting the design of ligands interacting with multiple labile targets and to propose on its basis the potential broad-spectrum inhibitors of the M2 proton channel. The dynamic dimer-of-dimers structures of the three primary M2 target variants, wild-type, S31N and V27A, were modeled by molecular dynamics and thoroughly analyzed in order to define the inhibitor binding sites. The potential inhibitor structures were identified by molecular docking and their binding was verified by molecular dynamics simulation. The binding sites of the M2 proton channel inhibitors were analyzed, a number of potential broad-spectrum inhibitors were identified and the binding modes and probable mechanisms of action of one promising compound were clarified. Using the molecular dynamics and molecular docking techniques, we have refined the dynamic dimer-ofdimers structures of the WT, S31N and V27A variants of the M2 proton channel of the influenza A virus, analyzed the inhibitor binding sites, identified a number of potential broad-spectrum inhibitor structures targeting them, and clarified the binding modes and probable mechanisms of action of one promising compound. The proposed approach is also suitable for the design of ligands interacting with other multiple labile targets.

  16. 2- and 3-substituted imidazo[1,2-a]pyrazines as inhibitors of bacterial type IV secretion

    PubMed Central

    Sayer, James R.; Walldén, Karin; Pesnot, Thomas; Campbell, Frederick; Gane, Paul J.; Simone, Michela; Koss, Hans; Buelens, Floris; Boyle, Timothy P.; Selwood, David L.; Waksman, Gabriel; Tabor, Alethea B.

    2014-01-01

    A novel series of 8-amino imidazo[1,2-a]pyrazine derivatives has been developed as inhibitors of the VirB11 ATPase HP0525, a key component of the bacterial type IV secretion system. A flexible synthetic route to both 2- and 3-aryl substituted regioisomers has been developed. The resulting series of imidazo[1,2-a]pyrazines has been used to probe the structure–activity relationships of these inhibitors, which show potential as antibacterial agents. PMID:25438770

  17. Gastrointestinal toxicity among patients taking selective COX-2 inhibitors or conventional NSAIDs, alone or combined with proton pump inhibitors: a case-control study.

    PubMed

    Bakhriansyah, Mohammad; Souverein, Patrick C; de Boer, Anthonius; Klungel, Olaf H

    2017-10-01

    To assess the risk of gastrointestinal perforation, ulcers, or bleeding (PUB) associated with the use of conventional nonsteroidal anti-inflammatory drugs (NSAIDs) with proton pump inhibitors (PPIs) and selective COX-2 inhibitors, with or without PPIs compared with conventional NSAIDs. A case-control study was performed within conventional NSAIDs and/or selective COX-2 inhibitors users identified from the Dutch PHARMO Record Linkage System in the period 1998-2012. Cases were patients aged ≥18 years with a first hospital admission for PUB. For each case, up to four controls were matched for age and sex at the date a case was hospitalized (index date). Logistic regression analysis was used to calculate odds ratios (ORs). At the index date, 2634 cases and 5074 controls were current users of conventional NSAIDs or selective COX-2 inhibitors. Compared with conventional NSAIDs, selective COX-2 inhibitors with PPIs had the lowest risk of PUB (adjusted OR 0.51, 95% confidence interval [CI]: 0.35-0.73) followed by selective COX-2 inhibitors (adjusted OR 0.66, 95%CI: 0.48-0.89) and conventional NSAIDs with PPIs (adjusted OR 0.79, 95%CI: 0.68-0.92). Compared with conventional NSAIDs, the risk of PUB was lower for those aged ≥75 years taking conventional NSAIDs with PPIs compared with younger patients (adjusted interaction OR 0.79, 95%CI: 0.64-0.99). However, those aged ≥75 years taking selective COX-2 inhibitors, the risk was higher compared with younger patients (adjusted interaction OR 1.22, 95%CI: 1.01-1.47). Selective COX-2 inhibitors with PPIs, selective COX-2 inhibitors, and conventional NSAIDs with PPIs were associated with lower risks of PUB compared with conventional NSAIDs. These effects were modified by age. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.

  18. Celecoxib: a potent cyclooxygenase-2 inhibitor in cancer prevention.

    PubMed

    Kismet, Kemal; Akay, M Turan; Abbasoglu, Osman; Ercan, Aygün

    2004-01-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) are the most widely used therapeutic agents in the treatment of pain, inflammation and fever. They may also have a role in the management of cancer prevention, Alzheimer's disease and prophylaxis against cardiovascular disease. These drugs act primarily by inhibiting cyclooxygenase enzyme, which has two isoforms, cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). Selective COX-2 inhibitors provide potent anti-inflammatory and analgesic effects without the side effects of gastric and renal toxicity and inhibition of platelet function. Celecoxib is a potent COX-2 inhibitor being developed for the treatment of rheumatoid arthritis and osteoarthritis. Chemoprevention is the use of pharmacological or natural agents to prevent, suppress, interrupt or reverse the process of carcinogenesis. For this purpose, celecoxib is being used for different cancer types. The effects of NSAIDs on tumor growth remain unclear, but are most likely to be multifocal. In this article, we reviewed COX-2 selectivity, the pharmacological properties of celecoxib, the use of celecoxib for cancer prevention and the mechanisms of chemoprevention.

  19. Impact of sodium–glucose cotransporter 2 inhibitors on blood pressure

    PubMed Central

    Reed, James W

    2016-01-01

    SGLT2 inhibitors are glucose-lowering agents used to treat type 2 diabetes mellitus (T2DM). These agents target the kidney to promote urinary glucose excretion, resulting in improved blood glucose control. SGLT2-inhibitor therapy is also associated with weight loss and blood pressure (BP) lowering. Hypertension is a common comorbidity in patients with T2DM, and is associated with excess morbidity and mortality. This review summarizes data on the effect of SGLT2 inhibitors marketed in the US (namely canagliflozin, dapagliflozin, or empagliflozin) on BP in patients with T2DM. Boolean searches were conducted that included terms related to BP or hypertension with terms for SGLT2 inhibitors, canagliflozin, dapagliflozin, or empagliflozin using PubMed, Google, and Google Scholar. Data from numerous randomized controlled trials of SGLT2 inhibitors in patients with T2DM demonstrated clinically relevant reductions in both systolic and diastolic BP, assessed via seated office measurements and 24-hour ambulatory BP monitoring. Observed BP lowering was not associated with compensatory increases in heart rate. Circadian BP rhythm was also maintained. The mechanism of SGLT2 inhibitor-associated BP reduction is not fully understood, but is assumed to be related to osmotic diuresis and natriuresis. Other factors that may also contribute to BP reduction include SGLT2 inhibitor-associated decreases in body weight and reduced arterial stiffness. Local inhibition of the renin–angiotensin–aldosterone system secondary to increased delivery of sodium to the juxtaglomerular apparatus during SGLT2 inhibition has also been postulated. Although SGLT2 inhibitors are not indicated as BP-lowering agents, the modest decreases in systolic and diastolic BP observed with SGLT2 inhibitors may provide an extra clinical advantage for the majority of patients with T2DM, in addition to improving blood glucose control. PMID:27822054

  20. Benzothiophene inhibitors of MK2. Part 2: Improvements in kinase selectivity and cell potency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, David R.; Meyers, Marvin J.; Kurumbail, Ravi G.

    2010-10-01

    Optimization of kinase selectivity for a set of benzothiophene MK2 inhibitors provided analogs with potencies of less than 500 nM in a cell based assay. The selectivity of the inhibitors can be rationalized by examination of X-ray crystal structures of inhibitors bound to MK2.

  1. The renal effects of SGLT2 inhibitors and a mini-review of the literature.

    PubMed

    Andrianesis, Vasileios; Glykofridi, Spyridoula; Doupis, John

    2016-12-01

    Sodium-glucose linked transporter 2 (SGLT2) inhibitors are a new and promising class of antidiabetic agents which target renal tubular glucose reabsorption. Their action is based on the blockage of SGLT2 sodium-glucose cotransporters that are located at the luminal membrane of tubular cells of the proximal convoluted tubule, inducing glucosuria. It has been proven that they significantly reduce glycated hemoglobin (HbA1c), along with fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus (T2DM). The glucosuria-induced caloric loss as well as the osmotic diuresis significantly decrease body weight and blood pressure, respectively. Given that SGLT2 inhibitors do not interfere with insulin action and secretion, their efficacy is sustained despite the progressive β-cell failure in T2DM. They are well tolerated, with a low risk of hypoglycemia. Their most frequent adverse events are minor: genital and urinal tract infections. Recently, it was demonstrated that empagliflozin presents a significant cardioprotective effect. Although the SGLT2 inhibitors' efficacy is affected by renal function, new data have been presented that some SGLT2 inhibitors, even in mild and moderate renal impairment, induce significant HbA1c reduction. Moreover, recent data indicate that SGLT2 inhibition has a beneficial renoprotective effect. The role of this review paper is to explore the current evidence on the renal effects of SGLT2 inhibitors.

  2. O-desmethylquinine as a cyclooxygenase-2 (COX-2) inhibitors using AutoDock Vina

    NASA Astrophysics Data System (ADS)

    Damayanti, Sophi; Mahardhika, Andhika Bintang; Ibrahim, Slamet; Chong, Wei Lim; Lee, Vannajan Sanghiran; Tjahjono, Daryono Hadi

    2014-10-01

    Computational approach was employed to evaluate the biological activity of novel cyclooxygenase-2 COX-2 inhibitor, O-desmethylquinine, in comparison to quinine as common inhibitor which can also be used an agent of antipyretic, antimalaria, analgesic and antiinflamation. The molecular models of the compound were constructed and optimized with the density function theory with at the B3LYP/6-31G (d,p) level using Gaussian 09 program. Molecular docking studies of the compounds were done to obtain the COX-2 complex structures and their binding energies were analyzed using the AutoDock Vina. The results of docking of the two ligands were comparable and cannot be differentiated from the energy scoring function with AutoDock Vina.

  3. Pyrrolo[2,3-d]pyrimidines active as Btk inhibitors.

    PubMed

    Musumeci, Francesca; Sanna, Monica; Greco, Chiara; Giacchello, Ilaria; Fallacara, Anna Lucia; Amato, Rosario; Schenone, Silvia

    2017-12-01

    Btk is a tyrosine kinase dysregulated in several B-cell malignancies and autoimmune diseases, and this has given rise to a search for Btk inhibitors. Nevertheless, only one Btk inhibitor, ibrutinib, has been approved to date, although other compounds are currently being evaluated in clinical trials or in preclinal stages. Area covered: This review, after a brief introduction on Btk and its inhibitors already in clinical trials, focusses on pyrrolo[2,3-d]pyrimidine derivatives patented in the last five years as Btk inhibitors. Indeed, the pyrrolo[2,3-d]pyrimidine scaffold, being a deaza-isostere of adenine, the nitrogenous base of ATP, is an actively pursued target for Btk inhibitors. The patent literature since 2012 have been extensively investigated, pointing out the general features of the patented compounds and, when it is possible, their mechanism of action. Expert opinion: The recently patented pyrrolo[2,3-d]pyrimidines, acting as reversible or irreversible inhibitors, showed a very interesting in vitro activity. For this reason, the development of compounds endowed with this scaffold could afford a significant impact in the search for drug candidates for the treatment of immune diseases or B-cell malignancies.

  4. Leucine-rich repeat kinase 2 inhibitors: a review of recent patents (2011 - 2013).

    PubMed

    Kethiri, Raghava R; Bakthavatchalam, Rajagopal

    2014-07-01

    Leucine-rich repeat kinase 2 (LRRK2) is a large (2527 residues) complex multi-domain protein that has GTPase and kinase domains. Autosomal dominant missense mutations in LRRK2 have been found in individuals with Parkinson's disease (PD) and are considered responsible for 1% of all cases of PD. Among the mutations confirmed to contribute to PD pathogenicity, G2019S is the most common cause of PD and it increases the kinase activity of LRRK2 by around threefold. LRRK2 has received considerable attention as a therapeutic target for PD, and LRRK2 inhibitors may help prevent and/or treat the disease. LRRK2 inhibitors are being investigated by various industrial and academic institutions. The present review covers patents literature on small-molecule LRRK2 inhibitors patented between 2011 and 2013. Currently, wild-type and mutant LRRK2 are being examined as therapeutic targets for PD. In testimony to the significance of these novel targets, over 20 patent applications related to LRRK2 have been filed in the last 3 years. Several distinct chemotypes have been reported to be LRRK2 inhibitors with very good potency. These compounds are being used to elucidate the physiological and pathophysiological functions of LRRK2, and some may even emerge as therapeutics for PD.

  5. Theoretical study on the interaction of pyrrolopyrimidine derivatives as LIMK2 inhibitors: insight into structure-based inhibitor design.

    PubMed

    Shen, Mingyun; Zhou, Shunye; Li, Youyong; Li, Dan; Hou, Tingjun

    2013-10-01

    LIM kinases (LIMKs), downstream of Rho-associated protein kinases (ROCKs) and p21-activated protein kinases (PAKs), are shown to be promising targets for the treatment of cancers. In this study, the inhibition mechanism of 41 pyrrolopyrimidine derivatives as LIMK2 inhibitors was explored through a series of theoretical approaches. First, a model of LIMK2 was generated through molecular homology modeling, and the studied inhibitors were docked into the binding active site of LIMK2 by the docking protocol, taking into consideration the flexibility of the protein. The binding poses predicted by molecular docking for 17 selected inhibitors with different bioactivities complexed with LIMK2 underwent molecular dynamics (MD) simulations, and the binding free energies for the complexes were predicted by using the molecular mechanics/generalized born surface area (MM/GBSA) method. The predicted binding free energies correlated well with the experimental bioactivities (r(2) = 0.63 or 0.62). Next, the free energy decomposition analysis was utilized to highlight the following key structural features related to biological activity: (1) the important H-bond between Ile408 and pyrrolopyrimidine, (2) the H-bonds between the inhibitors and Asp469 and Gly471 which maintain the stability of the DFG-out conformation, and (3) the hydrophobic interactions between the inhibitors and several key residues (Leu337, Phe342, Ala345, Val358, Lys360, Leu389, Ile408, Leu458 and Leu472). Finally, a variety of LIMK2 inhibitors with a pyrrolopyrimidine scaffold were designed, some of which showed improved potency according to the predictions. Our studies suggest that the use of molecular docking with MD simulations and free energy calculations could be a powerful tool for understanding the binding mechanism of LIMK2 inhibitors and for the design of more potent LIMK2 inhibitors.

  6. POTENTIAL PLACE OF SGLT2 INHIBITORS IN TREATMENT PARADIGMS FOR TYPE 2 DIABETES MELLITUS.

    PubMed

    Handelsman, Yehuda

    2015-09-01

    Following the first Food and Drug Administration (FDA) approval in 2013, sodium glucose cotransporter 2 (SGLT2) inhibitors have generated much interest among physicians treating patients with type 2 diabetes mellitus (T2DM). Here, the role in treatment with this drug class is considered in the context of T2DM treatment paradigms. The clinical trials for the SGLT2 inhibitors are examined with a focus on canagliflozin, dapagliflozin, and empagliflozin. Evidence from clinical trials in patients with T2DM supports the use of SGLT2 inhibitors either as monotherapy or in addition to other glucose-lowering treatments as adjuncts to diet and exercise, and we have gained significant clinical experience in a relatively short time. The drugs appear to be useful in a variety of T2DM populations, contingent primarily on renal function. Most obviously, SGLT2 inhibitors appear to be well suited for patients with potential for hypoglycemia or weight gain. In clinical trials, patients treated with SGLT2 inhibitors have experienced moderate weight loss and a low risk of hypoglycemic events except when used in combination with an insulin secretagogue. In addition, SGLT2 inhibitors have been shown to reduce blood pressure, so they may be beneficial in patients with T2DM complicated by hypertension. SGLT2 inhibitors were incorporated into the 2015 American Diabetes Association (ADA)/European Association for the Study of Diabetes (EASD) position statement on the management of hyperglycemia and received an even more prominent position in the American Association of Clinical Endocrinologists (AACE)/American College of Endocrinology (ACE) comprehensive diabetes management guidelines and algorithm.

  7. Evaluating SGLT2 inhibitors for type 2 diabetes: pharmacokinetic and toxicological considerations.

    PubMed

    Scheen, André J

    2014-05-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2), which increase urinary glucose excretion independently of insulin, are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). An extensive literature search was performed to analyze the pharmacokinetic characteristics, toxicological issues and safety concerns of SGLT2 inhibitors in humans. This review focuses on three compounds (dapagliflozin, canagliflozin, empagliflozin) with results obtained in healthy volunteers (including drug-drug interactions), patients with T2DM (single dose and multiple doses) and special populations (those with renal or hepatic impairment). The three pharmacological agents share an excellent oral bioavailability, long half-life allowing once-daily administration, low accumulation index and renal clearance, the absence of active metabolites and a limited propensity to drug-drug interactions. No clinically relevant changes in pharmacokinetic parameters were observed in T2DM patients or in patients with mild/moderate renal or hepatic impairment. Adverse events are a slightly increased incidence of mycotic genital and rare benign urinary infections. SGLT2 inhibitors have the potential to reduce several cardiovascular risk factors, and cardiovascular outcome trials are currently ongoing. The best positioning of SGLT2 inhibitors in the armamentarium for treating T2DM is still a matter of debate.

  8. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes.

    PubMed

    Nauck, Michael A

    2014-01-01

    The importance of the kidney's role in glucose homeostasis has gained wider understanding in recent years. Consequently, the development of a new pharmacological class of anti-diabetes agents targeting the kidney has provided new treatment options for the management of type 2 diabetes mellitus (T2DM). Sodium glucose co-transporter type 2 (SGLT2) inhibitors, such as dapagliflozin, canagliflozin, and empagliflozin, decrease renal glucose reabsorption, which results in enhanced urinary glucose excretion and subsequent reductions in plasma glucose and glycosylated hemoglobin concentrations. Modest reductions in body weight and blood pressure have also been observed following treatment with SGLT2 inhibitors. SGLT2 inhibitors appear to be generally well tolerated, and have been used safely when given as monotherapy or in combination with other oral anti-diabetes agents and insulin. The risk of hypoglycemia is low with SGLT2 inhibitors. Typical adverse events appear to be related to the presence of glucose in the urine, namely genital mycotic infection and lower urinary tract infection, and are more often observed in women than in men. Data from long-term safety studies with SGLT2 inhibitors and from head-to-head SGLT2 inhibitor comparator studies are needed to fully determine their benefit-risk profile, and to identify any differences between individual agents. However, given current safety and efficacy data, SGLT2 inhibitors may present an attractive option for T2DM patients who are failing with metformin monotherapy, especially if weight is part of the underlying treatment consideration.

  9. Fatal hyperkalemia related to combined therapy with a COX-2 inhibitor, ACE inhibitor and potassium rich diet.

    PubMed

    Hay, Emile; Derazon, Hashmonai; Bukish, Natalia; Katz, Leonid; Kruglyakov, Igor; Armoni, Michael

    2002-05-01

    We describe the case of a 77-year old mildly hypertensive woman with no underlying renal disease who was admitted to the Emergency Department (ED) in a comatose state with fever. The patient had been on low dose enalapril and a potassium rich diet. Five days before admission, rofecoxib, a new selective COX-2 inhibitor nonsteroidal anti-inflammatory drug (NSAID), was added for leg pain. She was found to have severe hyperkalemia and died 90 min after her arrival. We cannot absolutely determine whether the COX-2 inhibitor was the dominant contributor to the development of hyperkalemia or the combination itself, with an intercurrent infection and some degree of dehydration. Physicians should be aware of this possible complication and only prescribe NSAIDs, including the new COX-2 drugs, to the elderly under close monitoring of kidney function and electrolyte tests.

  10. 2-Aminobenzimidazoles as potent Aurora kinase inhibitors.

    PubMed

    Zhong, Min; Bui, Minna; Shen, Wang; Baskaran, Subramanian; Allen, Darin A; Elling, Robert A; Flanagan, W Michael; Fung, Amy D; Hanan, Emily J; Harris, Shannon O; Heumann, Stacey A; Hoch, Ute; Ivy, Sheryl N; Jacobs, Jeffrey W; Lam, Stuart; Lee, Heman; McDowell, Robert S; Oslob, Johan D; Purkey, Hans E; Romanowski, Michael J; Silverman, Jeffrey A; Tangonan, Bradley T; Taverna, Pietro; Yang, Wenjin; Yoburn, Josh C; Yu, Chul H; Zimmerman, Kristin M; O'Brien, Tom; Lew, Willard

    2009-09-01

    This Letter describes the discovery and key structure-activity relationship (SAR) of a series of 2-aminobenzimidazoles as potent Aurora kinase inhibitors. 2-Aminobenzimidazole serves as a bioisostere of the biaryl urea residue of SNS-314 (1c), which is a potent Aurora kinase inhibitor and entered clinical testing in patients with solid tumors. Compared to SNS-314, this series of compounds offers better aqueous solubility while retaining comparable in vitro potency in biochemical and cell-based assays; in particular, 6m has also demonstrated a comparable mouse iv PK profile to SNS-314.

  11. SGLT2 inhibitors in the management of type 2 diabetes.

    PubMed

    Monica Reddy, R P; Inzucchi, Silvio E

    2016-08-01

    The glucose-lowering pharmacopeia continues to grow for patients with type 2 diabetes. The latest drug category, the SGLT2 inhibitors reduce glycated hemoglobin concentrations by increasing urinary excretion of glucose. They are used mainly in combination with metformin and other antihyperglycemic agents, including insulin. Their glucose-lowering potency is modest. Advantages include lack of hypoglycemia as a side effect, and mild reduction in blood pressure and body weight. Side effects include increased urinary frequency, owing to their mild diuretic action, symptoms of hypovolemia, genitourinary infections. There are also recent reports of rare cases of diabetic ketoacidosis occurring in insulin-treated patients. Recently, a large cardiovascular outcome trial reported that a specific SGLT2 inhibitor, empagliflozin, led to a reduction in the primary endpoint of major cardiovascular events. This effect was mainly the result of a surprising 38 % reduction in cardiovascular death, and the drug was also associated with nearly as large a reduction in heart failure hospitalization. These findings were notable because most drugs used in type 2 diabetes have not been shown to improve cardiovascular outcomes. Accordingly, there is growing interest in empagliflozin and the entire SGLT2 inhibitor class as drugs that could potentially change the manner in which we approach the management of hyperglycemia in patients with type 2 diabetes.

  12. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metalloprotease inhibitor.

    PubMed

    Witters, Lois; Scherle, Peggy; Friedman, Steven; Fridman, Jordan; Caulder, Eian; Newton, Robert; Lipton, Allan

    2008-09-01

    The ErbB family of receptors is overexpressed in numerous human tumors. Overexpression correlates with poor prognosis and resistance to therapy. Use of ErbB-specific antibodies to the receptors (Herceptin or Erbitux) or ErbB-specific small-molecule inhibitors of the receptor tyrosine kinase activity (Iressa or Tarceva) has shown clinical efficacy in several solid tumors. An alternative method of affecting ErbB-initiated tumor growth and survival is to block sheddase activity. Sheddase activity is responsible for cleavage of multiple ErbB ligands and receptors, a necessary step in availability of the soluble, active form of the ligand and a constitutively activated ligand-independent receptor. This sheddase activity is attributed to the ADAM (a disintegrin and metalloprotease) family of proteins. ADAM 10 is the main sheddase of epidermal growth factor (EGF) and HER-2/neu cleavage, whereas ADAM17 is required for cleavage of additional EGF receptor (EGFR) ligands (transforming growth factor-alpha, amphiregulin, heregulin, heparin binding EGF-like ligand). This study has shown that addition of INCB3619, a potent inhibitor of ADAM10 and ADAM17, reduces in vitro HER-2/neu and amphiregulin shedding, confirming that it interferes with both HER-2/neu and EGFR ligand cleavage. Combining INCB3619 with a lapatinib-like dual inhibitor of EGFR and HER-2/neu kinases resulted in synergistic growth inhibition in MCF-7 and HER-2/neu-transfected MCF-7 human breast cancer cells. Combining the INCB7839 second-generation sheddase inhibitor with lapatinib prevented the growth of HER-2/neu-positive BT474-SC1 human breast cancer xenografts in vivo. These results suggest that there may be an additional clinical benefit of combining agents that target the ErbB pathways at multiple points.

  13. Modeling of substrate and inhibitor binding to phospholipase A2.

    PubMed

    Sessions, R B; Dauber-Osguthorpe, P; Campbell, M M; Osguthorpe, D J

    1992-09-01

    Molecular graphics and molecular mechanics techniques have been used to study the mode of ligand binding and mechanism of action of the enzyme phospholipase A2. A substrate-enzyme complex was constructed based on the crystal structure of the apoenzyme. The complex was minimized to relieve initial strain, and the structural and energetic features of the resultant complex analyzed in detail, at the molecular and residue level. The minimized complex was then used as a basis for examining the action of the enzyme on modified substrates, binding of inhibitors to the enzyme, and possible reaction intermediate complexes. The model is compatible with the suggested mechanism of hydrolysis and with experimental data about stereoselectivity, efficiency of hydrolysis of modified substrates, and inhibitor potency. In conclusion, the model can be used as a tool in evaluating new ligands as possible substrates and in the rational design of inhibitors, for the therapeutic treatment of diseases such as rheumatoid arthritis, atherosclerosis, and asthma.

  14. SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease.

    PubMed

    Zou, Honghong; Zhou, Baoqin; Xu, Gaosi

    2017-05-16

    Diabetic kidney disease (DKD) is the most common cause of end stage renal disease. The comprehensive management of DKD depends on combined target-therapies for hyperglycemia, hypertension, albuminuria, and hyperlipaemia, etc. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, the most recently developed oral hypoglycemic agents acted on renal proximal tubules, suppress glucose reabsorption and increase urinary glucose excretion. Besides improvements in glycemic control, they presented excellent performances in direct renoprotective effects and the cardiovascular (CV) safety by decreasing albuminuria and the independent CV risk factors such as body weight and blood pressure, etc. Simultaneous use of SGLT-2 inhibitors and renin-angiotensin-aldosterone system (RAAS) blockers are novel strategies to slow the progression of DKD via reducing inflammatory and fibrotic markers induced by hyperglycaemia more than either drug alone. The available population and animal based studies have described SGLT2 inhibitors plus RAAS blockers. The present review was to systematically review the potential renal benefits of SGLT2 inhibitors combined with dipeptidyl peptidase-4 inhibitors, glucagon-like peptide-1 receptor agonists, mineralocorticoid receptor antagonists, and especially the angiotensin-converting enzyme inhibitors/angiotensin receptor blockers.

  15. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes

    PubMed Central

    Nauck, Michael A

    2014-01-01

    The importance of the kidney’s role in glucose homeostasis has gained wider understanding in recent years. Consequently, the development of a new pharmacological class of anti-diabetes agents targeting the kidney has provided new treatment options for the management of type 2 diabetes mellitus (T2DM). Sodium glucose co-transporter type 2 (SGLT2) inhibitors, such as dapagliflozin, canagliflozin, and empagliflozin, decrease renal glucose reabsorption, which results in enhanced urinary glucose excretion and subsequent reductions in plasma glucose and glycosylated hemoglobin concentrations. Modest reductions in body weight and blood pressure have also been observed following treatment with SGLT2 inhibitors. SGLT2 inhibitors appear to be generally well tolerated, and have been used safely when given as monotherapy or in combination with other oral anti-diabetes agents and insulin. The risk of hypoglycemia is low with SGLT2 inhibitors. Typical adverse events appear to be related to the presence of glucose in the urine, namely genital mycotic infection and lower urinary tract infection, and are more often observed in women than in men. Data from long-term safety studies with SGLT2 inhibitors and from head-to-head SGLT2 inhibitor comparator studies are needed to fully determine their benefit–risk profile, and to identify any differences between individual agents. However, given current safety and efficacy data, SGLT2 inhibitors may present an attractive option for T2DM patients who are failing with metformin monotherapy, especially if weight is part of the underlying treatment consideration. PMID:25246775

  16. Activation loop targeting strategy for design of receptor-interacting protein kinase 2 (RIPK2) inhibitors.

    PubMed

    Suebsuwong, Chalada; Pinkas, Daniel M; Ray, Soumya S; Bufton, Joshua C; Dai, Bing; Bullock, Alex N; Degterev, Alexei; Cuny, Gregory D

    2018-02-15

    Development of selective kinase inhibitors remains a challenge due to considerable amino acid sequence similarity among family members particularly in the ATP binding site. Targeting the activation loop might offer improved inhibitor selectivity since this region of kinases is less conserved. However, the strategy presents difficulties due to activation loop flexibility. Herein, we report the design of receptor-interacting protein kinase 2 (RIPK2) inhibitors based on pan-kinase inhibitor regorafenib that aim to engage basic activation loop residues Lys169 or Arg171. We report development of CSR35 that displayed >10-fold selective inhibition of RIPK2 versus VEGFR2, the target of regorafenib. A co-crystal structure of CSR35 with RIPK2 revealed a resolved activation loop with an ionic interaction between the carboxylic acid installed in the inhibitor and the side-chain of Lys169. Our data provides principle feasibility of developing activation loop targeting type II inhibitors as a complementary strategy for achieving improved selectivity. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. The kidney as a new target for antidiabetic drugs: SGLT2 inhibitors.

    PubMed

    Cangoz, S; Chang, Y-Y; Chempakaseril, S J; Guduru, R C; Huynh, L M; John, J S; John, S T; Joseph, M E; Judge, R; Kimmey, R; Kudratov, K; Lee, P J; Madhani, I C; Shim, P J; Singh, S; Singh, S; Ruchalski, C; Raffa, R B

    2013-10-01

    A novel class of antidiabetic drugs - SGLT2 (Na(+) /glucose cotransporter type 2) inhibitors - target renal reabsorption of glucose and promote normal glucose levels, independent of insulin production or its action at receptors. We review this new mechanistic approach and the reported efficacy and safety of clinical testing of lead compounds. Information was obtained from various bibliographic sources, including PubMed and others, on the basic science and the clinical trials of SGLT2 inhibitors. The information was then summarized and evaluated from the perspective of contribution to a fuller understanding of the potential and current status of the lead clinical candidates. Diabetes mellitus is a spectrum of disorders that involves inadequate insulin function resulting in adverse health sequelae due to acute and chronic hyperglycaemia. Current antidiabetic pharmacotherapy primarily addresses either insulin production at the pancreatic β-cells or insulin action at insulin receptors. These drugs have less than full clinical effectiveness and sometimes therapy-limiting adverse effects. The third major component of glucose balance, namely elimination, has not been a significant therapeutic target to date. SGLT2 inhibitors are a novel approach. A sufficient number of clinical trials have been conducted on sufficiently chemically diverse SGLT2 inhibitors to reasonably conclude that they have efficacy (HbA1c reductions of 0·4-1%), and thus far, the majority of adverse effects have been mild and transitory or treatable, with the caveat of possible association with increased risk of breast cancer in women and bladder cancer in men. © 2013 John Wiley & Sons Ltd.

  18. RVX-297- a novel BD2 selective inhibitor of BET bromodomains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kharenko, Olesya A., E-mail: olesya@zenithepigenetics.com; Gesner, Emily M.; Patel, Reena G.

    Bromodomains are epigenetic readers that specifically bind to the acetyl lysine residues of histones and transcription factors. Small molecule BET bromodomain inhibitors can disrupt this interaction which leads to potential modulation of several disease states. Here we describe the binding properties of a novel BET inhibitor RVX-297 that is structurally related to the clinical compound RVX-208, currently undergoing phase III clinical trials for the treatment of cardiovascular diseases, but is distinctly different in its biological and pharmacokinetic profiles. We report that RVX-297 preferentially binds to the BD2 domains of the BET bromodomain and Extra Terminal (BET) family of protein. Wemore » demonstrate the differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography, and describe the structural differences driving the BD2 selective binding of RVX-297. The isothermal titration calorimetry (ITC) data illustrate the related differential thermodynamics of binding of RVX-297 to single as well as dual BET bromodomains. - Highlights: • A novel inhibitor of BET bromodomains, RVX-297 is described. • The differential binding modes of RVX-297 in BD1 and BD2 domains of BRD4 and BRD2 using X-ray crystallography are described. • RVX-297 preferentially binds to the BD2 domains of the BET bromodomains. • The structural and thermodynamic properties of the BD2 selective binding of RVX-297 are characterized.« less

  19. Elevated serum magnesium associated with SGLT2 inhibitor use in type 2 diabetes patients: a meta-analysis of randomised controlled trials.

    PubMed

    Tang, Huilin; Zhang, Xi; Zhang, Jingjing; Li, Yufeng; Del Gobbo, Liana C; Zhai, Suodi; Song, Yiqing

    2016-12-01

    By analysing available evidence from randomised controlled trials (RCTs), we aimed to examine whether and to what extent sodium-glucose cotransporter 2 (SGLT2) inhibitors affect serum electrolyte levels in type 2 diabetes patients. We searched PubMed, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL) and ClinicalTrials.gov up to 24 May 2016 for published RCTs of SGLT2 inhibitors that reported changes in serum electrolyte levels. Weighted mean differences (WMD) between each SGLT2 inhibitor and placebo were calculated using a random-effects model. Dose-dependent relationships for each SGLT2 inhibitor were evaluated using meta-regression analysis. Eighteen eligible RCTs, including 15,309 patients and four SGLT2 inhibitors (canagliflozin, dapagliflozin, empagliflozin and ipragliflozin) were evaluated. In patients without chronic kidney disease, each SGLT2 inhibitor significantly increased serum magnesium levels compared with placebo (canagliflozin: WMD 0.06 mmol/l for 100 mg and 0.09 mmol/l for 300 mg; dapagliflozin: WMD 0.1 mmol/l for 10 mg; empagliflozin: WMD 0.04 mmol/l for 10 mg and 0.07 mmol/l for 25 mg; and ipragliflozin: WMD 0.05 mmol/l for 50 mg). Canagliflozin increased serum magnesium in a linear dose-dependent manner (p = 0.10). Serum phosphate was significantly increased by dapagliflozin. Serum sodium appeared to significantly differ by SGLT2 inhibitor type. No significant changes in serum calcium and potassium were observed. Findings were robust after including trials involving patients with chronic kidney disease. SGLT2 inhibitors marginally increased serum magnesium levels in type 2 diabetes patients indicating a drug class effect. Further investigations are required to examine the clinical significance of elevated magnesium levels in individuals with type 2 diabetes.

  20. SGLT2 inhibitors: their potential reduction in blood pressure.

    PubMed

    Maliha, George; Townsend, Raymond R

    2015-01-01

    The sodium glucose co-transporter 2 (SGLT2) inhibitors represent a promising treatment option for diabetes and its common comorbidity, hypertension. Emerging data suggests that the SGLT2 inhibitors provide a meaningful reduction in blood pressure, although the precise mechanism of the blood pressure drop remains incompletely elucidated. Based on current data, the blood pressure reduction is partially due to a combination of diuresis, nephron remodeling, reduction in arterial stiffness, and weight loss. While current trials are underway focusing on cardiovascular endpoints, the SGLT2 inhibitors present a novel treatment modality for diabetes and its associated hypertension as well as an opportunity to elucidate the pathophysiology of hypertension in diabetes. Copyright © 2015 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  1. Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond.

    PubMed

    Göring, Stefan; Taymans, Jean-Marc; Baekelandt, Veerle; Schmidt, Boris

    2014-10-01

    The most prevalent leucine-rich repeat kinase 2 (LRRK2) mutation G2019S is associated with Parkinson's disease (PD). It enhances kinase activity and has been identified in both familial and sporadic cases. Kinase activity was reported to be required for LRRK2 mutants to exert their toxic effects. Hence LRRK2 kinase inhibition may be a promising therapeutic target for PD. Here we report on the discovery and characterization of indolinone based LRRK2 inhibitors. Indolinone 15b, the most potent and selective inhibitor of the present series, is characterized by an IC50 of 15nM against wild-type LRRK2 and 10nM against the LRRK2 G2019S mutant, respectively. Compound 15b was further evaluated in a kinase panel including 46 human protein kinases and in a zebrafish embryo phenotype assay, which enabled toxicity determination in whole organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Targeting SHP2 for EGFR inhibitor resistant non-small cell lung carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Jie; Zeng, Li-Fan; Shen, Weihua

    Highlights: •SHP2 is required for EGFR inhibitor resistant NSCLC H1975 cell proliferation. •SHP2 inhibitor blocks EGF-stimulated ERK1/2 activation and proliferation. •SHP2 inhibitor exhibits marked anti-tumor activity in H1975 xenograft mice. •SHP2 inhibitor synergizes with PI3K inhibitor in suppressing cell growth. •Targeting SHP2 represents a novel strategy for EGFR inhibitor resistant NSCLCs. -- Abstract: Targeted therapy with inhibitors of epidermal growth factor receptor (EGFR) has produced a noticeable benefit to non-small cell lung cancer (NSCLC) patients whose tumors carry activating mutations (e.g. L858R) in EGFR. Unfortunately, these patients develop drug resistance after treatment, due to acquired secondary gatekeeper mutations in EGFRmore » (e.g. T790M). Given the critical role of SHP2 in growth factor receptor signaling, we sought to determine whether targeting SHP2 could have therapeutic value for EGFR inhibitor resistant NSCLC. We show that SHP2 is required for EGF-stimulated ERK1/2 phosphorylation and proliferation in EGFR inhibitor resistant NSCLC cell line H1975, which harbors the EGFR T790M/L858R double-mutant. We demonstrate that treatment of H1975 cells with II-B08, a specific SHP2 inhibitor, phenocopies the observed growth inhibition and reduced ERK1/2 activation seen in cells treated with SHP2 siRNA. Importantly, we also find that II-B08 exhibits marked anti-tumor activity in H1975 xenograft mice. Finally, we observe that combined inhibition of SHP2 and PI3K impairs both the ERK1/2 and PI3K/AKT signaling axes and produces significantly greater effects on repressing H1975 cell growth than inhibition of either protein individually. Collectively, these results suggest that targeting SHP2 may represent an effective strategy for treatment of EGFR inhibitor resistant NSCLCs.« less

  3. VMAT2 Inhibitors for Tardive Dyskinesia-Practice Implications.

    PubMed

    Peckham, Alyssa M; Nicewonder, Jessica A

    2018-01-01

    Tardive dyskinesia is a potentially irreversible, debilitating, hyperkinetic movement disorder that can result from dopamine receptor antagonists. Prompt recognition and resolution of symptoms are instrumental in preventing disease irreversibility, though current treatment options have fallen short of robust, effective, and long-term symptom control. In April 2017, the Food and Drug Administration (FDA) approved 2 new vesicular monoamine transporter 2 (VMAT2) inhibitors, deutetrabenazine and valbenazine, for chorea related to Huntington's disease and tardive dyskinesia, respectively. These agents were pharmacologically modified from tetrabenazine, a VMAT2 inhibitor used off-label in the treatment of tardive dyskinesia. Despite FDA-labeled indications of deutetrabenazine and valbenazine, each agent was explored as a treatment option for those with tardive dyskinesia. In this study, the pharmacologic modifications of the 2 new VMAT2 inhibitors are described, with detailed explanation as to how these may impact clinical practice. The associated case series, observational studies, and clinical trials exploring their use in the treatment of tardive dyskinesia are reported with expert opinion on practice implication.

  4. Development of a potent 2-oxoamide inhibitor of secreted phospholipase A2 guided by molecular docking calculations and molecular dynamics simulations

    PubMed Central

    Vasilakaki, Sofia; Barbayianni, Efrosini; Leonis, Georgios; Papadopoulos, Manthos G.; Mavromoustakos, Thomas; Gelb, Michael H.; Kokotos, George

    2016-01-01

    Inhibition of group IIA secreted phospholipase A2 (GIIA sPLA2) has been an important objective for medicinal chemists. We have previously shown that inhibitors incorporating the 2-oxoamide functionality may inhibit human and mouse GIIA sPLA2s. Herein, the development of new potent inhibitors by molecular docking calculations using the structure of the known inhibitor 7 as scaffold, are described. Synthesis and biological evaluation of the new compounds revealed that the long chain 2-oxoamide based on (S)-valine GK241 led to improved activity (IC50 = 143 nM and 68 nM against human and mouse GIIA sPLA2, respectively). In addition, molecular dynamics simulations were employed to shed light on GK241 potent and selective inhibitory activity. PMID:26970660

  5. Achieving neuroprotection with LRRK2 kinase inhibitors in Parkinson disease.

    PubMed

    West, Andrew B

    2017-12-01

    In the translation of discoveries from the laboratory to the clinic, the track record in developing disease-modifying therapies in neurodegenerative disease is poor. A carefully designed development pipeline built from discoveries in both pre-clinical models and patient populations is necessary to optimize the chances for success. Genetic variation in the leucine-rich repeat kinase two gene (LRRK2) is linked to Parkinson disease (PD) susceptibility. Pathogenic mutations, particularly those in the LRRK2 GTPase (Roc) and COR domains, increase LRRK2 kinase activities in cells and tissues. In some PD models, small molecule LRRK2 kinase inhibitors that block these activities also provide neuroprotection. Herein, the genetic and biochemical evidence that supports the involvement of LRRK2 kinase activity in PD susceptibility is reviewed. Issues related to the definition of a therapeutic window for LRRK2 inhibition and the safety of chronic dosing are discussed. Finally, recommendations are given for a biomarker-guided initial entry of LRRK2 kinase inhibitors in PD patients. Four key areas must be considered for achieving neuroprotection with LRRK2 kinase inhibitors in PD: 1) identification of patient populations most likely to benefit from LRRK2 kinase inhibitors, 2) prioritization of superior LRRK2 small molecule inhibitors based on open disclosures of drug performance, 3) incorporation of biomarkers and empirical measures of LRRK2 kinase inhibition in clinical trials, and 4) utilization of appropriate efficacy measures guided in part by rigorous pre-clinical modeling. Meticulous and rational development decisions can potentially prevent incredibly costly errors and provide the best chances for LRRK2 inhibitors to slow the progression of PD. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  6. SGLT2 Inhibitors: Benefit/Risk Balance.

    PubMed

    Scheen, André J

    2016-10-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycemia by increasing urinary glucose excretion. They have been evaluated in patients with type 2 diabetes treated with diet/exercise, metformin, dual oral therapy or insulin. Three agents are available in Europe and the USA (canagliflozin, dapagliflozin, empagliflozin) and others are commercialized in Japan or in clinical development. SGLT2 inhibitors reduce glycated hemoglobin, with a minimal risk of hypoglycemia. They exert favorable effects beyond glucose control with consistent body weight, blood pressure, and serum uric acid reductions. Empagliflozin showed remarkable reductions in cardiovascular/all-cause mortality and in hospitalization for heart failure in patients with previous cardiovascular disease. Positive renal outcomes were also shown with empagliflozin. Mostly reported adverse events are genital mycotic infections, while urinary tract infections and events linked to volume depletion are rather rare. Concern about a risk of ketoacidosis and bone fractures has been recently raised, which deserves caution and further evaluation.

  7. Demonstration of 2-hydroxybenzoylglycine as a drug binding inhibitor in newborn infants.

    PubMed Central

    Suh, B; Wadsworth, S J; Lichtenwalner, D M

    1987-01-01

    Newborn infants have drug binding defects that share similarities to those of uremic subjects. Since 2-hydroxybenzoylglycine has been chemically defined to be a major drug binding inhibitor in uremia, a search for the presence of a similar compound in the sera of newborn infants was made. An organic substance that has the characteristics of 2-hydroxybenzoylglycine as supported by the retardation factor values on thin-layer chromatograms, retention times of high performance liquid chromatograms, fluorescence emission spectra, and mass spectrum has been demonstrated to be present in the majority of the neonatal sera studied. A strong positive correlation between the levels of the binding inhibitor and the extent of binding defects for nafcillin has been observed. The substance could effectively reduce the total bilirubin concentration when added to the cord sera specimens. It is concluded that 2-hydroxybenzoylglycine plays an important role in drug binding defects observed in the newborn, and the inhibitor may also play a part in the precipitation of bilirubin-induced neurotoxicity in neonates when the substance is abnormally elevated. Images PMID:3654972

  8. Computer-aided identification of potential TYK2 inhibitors from drug database

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Li, Jianzong; Huang, Zhixin; Wang, Haiyang; Luo, Hao; Wang, Xin; Zhou, Nan; Wu, Chuanfang; Bao, Jinku

    2016-10-01

    TYK2 is a member of JAKs family protein tyrosine kinase activated in response to various cytokines. It plays a crucial role in transducing signals downstream of various cytokine receptors, which are involved in proinflammatory responses associated with immunological diseases. Thus, the study of selective TYK2 inhibitors is one of the most popular fields in anti-inflammation drug development. Herein, we adopted molecular docking, molecular dynamics simulation and MM-PBSA binding free energy calculation to screen potential TYK2-selective inhibitors from ZINC Drug Database. Finally, three small molecule drugs ZINC12503271 (Gemifloxacin), ZINC05844792 (Nebivolol) and ZINC00537805 (Glyburide) were selected as potential TYK2-selective inhibitors. Compared to known inhibitor 2,6-dichloro-N-{2-[(cyclopropylcarbonyl)amino]pyridin-4-yl}benzamide, these three candidates had better Grid score and Amber score from molecular docking and preferable results from binding free energy calculation as well. What's more, the ATP-binding site and A-loop motif had been identified to play key roles in TYK2-targeted inhibitor discovery. It is expected that our study will pave the way for the design of potent TYK2 inhibitors of new drugs to treat a wide variety of immunological diseases such as inflammatory diseases, multiple sclerosis, psoriasis inflammatory bowel disease (IBD) and so on.

  9. Sodium glucose co-transporter 2 (SGLT2) inhibitors: new among antidiabetic drugs.

    PubMed

    Opie, L H

    2014-08-01

    Type 2 diabetes is characterized by decreased insulin secretion and sensitivity. The available oral anti-diabetic drugs act on many different molecular sites. The most used of oral anti-diabetic agents is metformin that activates glucose transport vesicles to the cell surface. Others are: the sulphonylureas; agents acting on the incretin system; GLP-1 agonists; dipetidylpeptidase-4 inhibitors; meglinitide analogues; and the thiazolidinediones. Despite these many drugs acting by different mechanisms, glycaemic control often remains elusive. None of these drugs have a primary renal mechanism of action on the kidneys, where almost all glucose excreted is normally reabsorbed. That is where the inhibitors of glucose reuptake (sodium-glucose cotransporter 2, SGLT2) have a unique site of action. Promotion of urinary loss of glucose by SGLT2 inhibitors embodies a new principle of control in type 2 diabetes that has several advantages with some urogenital side-effects, both of which are evaluated in this review. Specific approvals include use as monotherapy, when diet and exercise alone do not provide adequate glycaemic control in patients for whom the use of metformin is considered inappropriate due to intolerance or contraindications, or as add-on therapy with other anti-hyperglycaemic medicinal products including insulin, when these together with diet and exercise, do not provide adequate glycemic control. The basic mechanisms are improved β-cell function and insulin sensitivity. When compared with sulphonylureas or other oral antidiabetic agents, SGLT2 inhibitors provide greater HbA1c reduction. Urogenital side-effects related to the enhanced glycosuria can be troublesome, yet seldom lead to discontinuation. On this background, studies are analysed that compare SGLT2 inhibitors with other oral antidiabetic agents. Their unique mode of action, unloading the excess glycaemic load, contrasts with other oral agents that all act to counter the effects of diabetic

  10. 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors.

    PubMed

    Ai, Teng; Wilson, Daniel J; More, Swati S; Xie, Jiashu; Chen, Liqiang

    2016-04-14

    Derived from our previously reported human sirtuin 2 (SIRT2) inhibitors that were based on a 5-aminonaphthalen-1-yloxy nicotinamide core structure, 5-((3-amidobenzyl)oxy)nicotinamides offered excellent activity against SIRT2 and high isozyme selectivity over SIRT1 and SIRT3. Selected compounds also exhibited generally favorable in vitro absorption, distribution, metabolism, and excretion properties. Kinetic studies revealed that a representative SIRT2 inhibitor acted competitively against both NAD(+) and the peptide substrate, an inhibitory modality that was supported by our computational study. More importantly, two selected compounds exhibited significant protection against α-synuclein aggregation-induced cytotoxicity in SH-SY5Y cells. Therefore, 5-((3-amidobenzyl)oxy)nicotinamides represent a new class of SIRT2 inhibitors that are attractive candidates for further lead optimization in our continued effort to explore selective inhibition of SIRT2 as a potential therapy for Parkinson's disease.

  11. A Phosphoproteomic Comparison of B-RAFV600E and MKK1/2 Inhibitors in Melanoma Cells.

    PubMed

    Stuart, Scott A; Houel, Stephane; Lee, Thomas; Wang, Nan; Old, William M; Ahn, Natalie G

    2015-06-01

    Inhibitors of oncogenic B-RAF(V600E) and MKK1/2 have yielded remarkable responses in B-RAF(V600E)-positive melanoma patients. However, the efficacy of these inhibitors is limited by the inevitable onset of resistance. Despite the fact that these inhibitors target the same pathway, combination treatment with B-RAF(V600E) and MKK1/2 inhibitors has been shown to improve both response rates and progression-free survival in B-RAF(V600E) melanoma patients. To provide insight into the molecular nature of the combinatorial response, we used quantitative mass spectrometry to characterize the inhibitor-dependent phosphoproteome of human melanoma cells treated with the B-RAF(V600E) inhibitor PLX4032 (vemurafenib) or the MKK1/2 inhibitor AZD6244 (selumetinib). In three replicate experiments, we quantified changes at a total of 23,986 phosphosites on 4784 proteins. This included 1317 phosphosites that reproducibly decreased in response to at least one inhibitor. Phosphosites that responded to both inhibitors grouped into networks that included the nuclear pore complex, growth factor signaling, and transcriptional regulators. Although the majority of phosphosites were responsive to both inhibitors, we identified 16 sites that decreased only in response to PLX4032, suggesting rare instances where oncogenic B-RAF signaling occurs in an MKK1/2-independent manner. Only two phosphosites were identified that appeared to be uniquely responsive to AZD6244. When cells were treated with the combination of AZD6244 and PLX4032 at subsaturating concentrations (30 nm), responses at nearly all phosphosites were additive. We conclude that AZD6244 does not substantially widen the range of phosphosites inhibited by PLX4032 and that the benefit of the drug combination is best explained by their additive effects on suppressing ERK1/2 signaling. Comparison of our results to another recent ERK1/2 phosphoproteomics study revealed a surprising degree of variability in the sensitivity of phosphosites to

  12. SGLT2 inhibitors with cardiovascular benefits: Transforming clinical care in Type 2 diabetes mellitus.

    PubMed

    d'Emden, Michael; Amerena, John; Deed, Gary; Pollock, Carol; Cooper, Mark E

    2018-02-01

    Cardiovascular risk reduction in individuals with Type 2 diabetes mellitus (T2DM) is a key part of clinical management. Sodium-glucose co-transporter (SGLT2) inhibitors improve glycaemic control, reduce body weight and decrease blood pressure. In addition, the SGLT2 inhibitors empagliflozin and canagliflozin reduced the risk of composite cardiovascular events in high-risk individuals with T2DM in the EMPA-REG OUTCOME trial and the CANVAS Program, respectively. Empagliflozin also reduced cardiovascular deaths and improved renal outcomes. This class of agents should be considered in people with established cardiovascular disease, usually in combination with other glucose lowering medications, when satisfactory glycaemic control has not been achieved. The dose of insulin or sulfonylureas may need to be lowered when used with SGLT2 inhibitors, to reduce the risk of hypoglycaemia. Genitourinary infections can occur with SGLT2 inhibitors in a small proportion of people. In people with osteoporosis or prior amputation, it may be prudent to use empagliflozin rather than canagliflozin, based on the increased risk for bone fractures and amputations observed with canagliflozin in the CANVAS Program. SGLT2 inhibitors have the potential to transform the clinical care of persons with T2DM by not only improving glycaemic control but also reducing blood pressure, body weight and diabetes-related end-organ complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Synthetic and natural inhibitors of phospholipases A2: their importance for understanding and treatment of neurological disorders.

    PubMed

    Ong, Wei-Yi; Farooqui, Tahira; Kokotos, George; Farooqui, Akhlaq A

    2015-06-17

    Phospholipases A2 (PLA2) are a diverse group of enzymes that hydrolyze membrane phospholipids into arachidonic acid and lysophospholipids. Arachidonic acid is metabolized to eicosanoids (prostaglandins, leukotrienes, thromboxanes), and lysophospholipids are converted to platelet-activating factors. These lipid mediators play critical roles in the initiation, maintenance, and modulation of neuroinflammation and oxidative stress. Neurological disorders including excitotoxicity; traumatic nerve and brain injury; cerebral ischemia; Alzheimer's disease; Parkinson's disease; multiple sclerosis; experimental allergic encephalitis; pain; depression; bipolar disorder; schizophrenia; and autism are characterized by oxidative stress, inflammatory reactions, alterations in phospholipid metabolism, accumulation of lipid peroxides, and increased activities of brain phospholipase A2 isoforms. Several old and new synthetic inhibitors of PLA2, including fatty acid trifluoromethyl ketones; methyl arachidonyl fluorophosphonate; bromoenol lactone; indole-based inhibitors; pyrrolidine-based inhibitors; amide inhibitors, 2-oxoamides; 1,3-disubstituted propan-2-ones and polyfluoroalkyl ketones as well as phytochemical based PLA2 inhibitors including curcumin, Ginkgo biloba and Centella asiatica extracts have been discovered and used for the treatment of neurological disorders in cell culture and animal model systems. The purpose of this review is to summarize information on selective and potent synthetic inhibitors of PLA2 as well as several PLA2 inhibitors from plants, for treatment of oxidative stress and neuroinflammation associated with the pathogenesis of neurological disorders.

  14. Are SGLT2 inhibitors reasonable antihypertensive drugs and renoprotective?

    PubMed

    Lovshin, J A; Gilbert, R E

    2015-06-01

    By eliminating glucose in the urine, the sodium-glucose-linked cotransporter-2 (SGLT2) inhibitors act as osmotic diuretics to lower blood pressure in addition to reducing plasma glucose and assisting with weight loss. While not approved as antihypertensive agents, the ability of this new class of antihyperglycemic agents to lower blood pressure is not insubstantial, and while not used primarily for this indication, they may assist diabetic individuals in attaining currently recommended blood pressure targets. In addition to lowering systemic pressure, preclinical and exploratory human studies suggest that SGLT2 inhibitors may also lower intraglomerular pressure, potentially reducing the rate of GFR decline in patients with diabetic nephropathy. However, given the lack of clinically meaningful endpoint data, the use of SGLT2 inhibitors, primarily, as either antihypertensive or renoprotective agents would, at present, be premature. Fortunately, further insight will be garnered from large, randomized controlled trials that will assess the effects of various SGLT2 inhibitors on cardiovascular and renal outcomes.

  15. Inhibition of Growth by Combined Treatment with Inhibitors of Lactate Dehydrogenase and either Phenformin or Inhibitors of 6-Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3.

    PubMed

    Lea, Michael A; Guzman, Yolanda; Desbordes, Charles

    2016-04-01

    Enhanced glycolysis in cancer cells presents a target for chemotherapy. Previous studies have indicated that proliferation of cancer cells can be inhibited by treatment with phenformin and with an inhibitor of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB) namely 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO). In the present work, the action of two inhibitors that are effective at lower concentrations than 3PO, namely 1-(3-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PQP) and 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) were investigated. The inhibitors of lactate dehydrogenase (LDHA) studied in order of half-maximal inhibitory concentrations were methyl 1-hydroxy-6-phenyl-4-(trifluoromethyl)-1H-indole-2-carboxylate (NHI-2) < isosafrole < oxamate. In colonic and bladder cancer cells, additive growth inhibitory effects were seen with the LDHA inhibitors, of which NHI-2 was effective at the lowest concentrations. Growth inhibition was generally greater with PFK15 than with PQP. The increased acidification of the culture medium and glucose uptake caused by phenformin was blocked by combined treatment with PFKFB3 or LDHA inhibitors. The results suggest that combined treatment with phenformin and inhibitors of glycolysis can cause additive inhibition of cell proliferation and may mitigate lactic acidosis caused by phenformin when used as a single agent. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  16. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective.

    PubMed

    Madaan, Tushar; Akhtar, Mohd; Najmi, Abul Kalam

    2016-10-10

    Diabetes mellitus is a disease that affects millions of people worldwide and its prevalence is estimated to rise in the future. Billions of dollars are spent each year around the world in health expenditure related to diabetes. There are several anti-diabetic drugs in the market for the treatment of non-insulin dependent diabetes mellitus. In this article, we will be talking about a relatively new class of anti-diabetic drugs called sodium glucose co-transporter 2 (SGLT2) inhibitors. This class of drugs has a unique mechanism of action focusing on inhibition of glucose reabsorption that separates it from other classes. This article covers the mechanism of glucose reabsorption in the kidneys, the mechanism of action of SGLT2 inhibitors, several SGLT2 inhibitors currently available in the market as well as those in various phases of development, their individual pharmacokinetics as well as the discussion about the future role of SGLT2 inhibitors, not only for the treatment of diabetes, but also for various other diseases like obesity, hepatic steatosis, and cardiovascular disorders. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The renal effects of SGLT2 inhibitors and a mini-review of the literature

    PubMed Central

    Andrianesis, Vasileios; Glykofridi, Spyridoula; Doupis, John

    2016-01-01

    Sodium-glucose linked transporter 2 (SGLT2) inhibitors are a new and promising class of antidiabetic agents which target renal tubular glucose reabsorption. Their action is based on the blockage of SGLT2 sodium-glucose cotransporters that are located at the luminal membrane of tubular cells of the proximal convoluted tubule, inducing glucosuria. It has been proven that they significantly reduce glycated hemoglobin (HbA1c), along with fasting and postprandial plasma glucose in patients with type 2 diabetes mellitus (T2DM). The glucosuria-induced caloric loss as well as the osmotic diuresis significantly decrease body weight and blood pressure, respectively. Given that SGLT2 inhibitors do not interfere with insulin action and secretion, their efficacy is sustained despite the progressive β-cell failure in T2DM. They are well tolerated, with a low risk of hypoglycemia. Their most frequent adverse events are minor: genital and urinal tract infections. Recently, it was demonstrated that empagliflozin presents a significant cardioprotective effect. Although the SGLT2 inhibitors’ efficacy is affected by renal function, new data have been presented that some SGLT2 inhibitors, even in mild and moderate renal impairment, induce significant HbA1c reduction. Moreover, recent data indicate that SGLT2 inhibition has a beneficial renoprotective effect. The role of this review paper is to explore the current evidence on the renal effects of SGLT2 inhibitors. PMID:28203358

  18. Isolation and biochemical characterization of a γ-type phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum.

    PubMed

    Gimenes, Sarah Natalie Cirilo; Ferreira, Francis Barbosa; Silveira, Ana Carolina Portella; Rodrigues, Renata Santos; Yoneyama, Kelly Aparecida Geraldo; Izabel Dos Santos, Juliana; Fontes, Marcos Roberto de Mattos; de Campos Brites, Vera Lúcia; Santos, André Luiz Quagliatto; Borges, Márcia Helena; Lopes, Daiana Silva; Rodrigues, Veridiana M

    2014-04-01

    In the present work, we describe the isolation and partial structural and biochemical characterization of the first phospholipase A2 inhibitor (γPLI) from Crotalus durissus collilineatus (Cdc) snake serum. Initially, the Cdc serum was subjected to a Q-Sepharose ion exchange column, producing six peaks at 280 nm absorbance (Q1-Q6). Subsequently, Q4 fraction was submitted to affinity chromatography with immobilized PLA2 BnSP-7, a step that resulted in two fractions (NHS-1 and NHS-2). The latter contained the inhibitor, denominated γCdcPLI. The molecular mass of γCdcPLI, determined by Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF), was 22,340 Da. Partial sequences obtained by Edman degradation and by mass spectrometry (MALDI-TOF/TOF), showed similarity, as expected, to other related inhibitors. Circular dichroism (CD) analysis showed the presence of approximately 22% alpha helices and 29% beta sheets in the protein secondary structure. Additionally, CD studies also indicated no significant changes in the secondary structure of γCdcPLI when it is complexed to BpPLA2-TXI. On the other hand, dynamic light scattering (DLS) assays showed a temperature-dependent oligomerization behavior for this inhibitor. Biochemical analyses showed γCdcPLI was able to inhibit the enzymatic, cytotoxic and myotoxic activities of PLA2s. Structural and functional studies performed on this inhibitor may elucidate the action mechanisms of PLA2 inhibitors. In addition, we hope this study may contribute to investigating the potential use of these inhibitors for the treatment of snakebite or inflammatory diseases in which PLA2s may be involved. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Cost effectiveness of dipeptidyl peptidase-4 inhibitors for type 2 diabetes.

    PubMed

    Geng, Jinsong; Yu, Hao; Mao, Yiwei; Zhang, Peng; Chen, Yingyao

    2015-06-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are a new class of antidiabetic drugs used for treating type 2 diabetes mellitus. While many studies have reported on the cost-effectiveness of DPP-4 inhibitors for treating type 2 diabetes, a systematic review of economic evaluations of DPP-4 inhibitors is currently lacking. The aim of this systematic review was to assess the cost effectiveness of DPP-4 inhibitors for patients with type 2 diabetes. MEDLINE, EMBASE, National Health Service Economic Evaluation Database (NHS EED), Web of Science, EconLit databases, and the Cochrane Library were searched in November 2013. Studies assessing the cost effectiveness of DPP-4 inhibitors for type 2 diabetes were eligible for analysis. DPP-4 inhibitor monotherapy or combinations with other antidiabetic agents were included in the review. The DPP-4 inhibitors were all marketed drugs. Two reviewers independently reviewed titles, abstracts, and articles sequentially to select studies for data abstraction based on the inclusion and exclusion criteria. Disagreements were resolved by consensus. The quality of included studies was assessed according to the 24-item checklist of the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) statement. The costs reported by the included studies were converted to US dollars via purchasing power parities (PPP) in the year 2013 using the CCEMG-EPPI-Center Cost Converter. A total of 11 published studies were selected for inclusion; all were cost-utility analyses. Nine studies were conducted from a payer perspective and one used a societal perspective; however, the perspective of the other study was unclear. Four studies were of good quality, six were of moderate quality, and one was of low quality. Of the seven studies comparing DPP-4 inhibitors plus metformin with sulfonylureas plus metformin, six concluded that DPP-4 inhibitors were cost effective in patients with type 2 diabetes who were no longer adequately controlled by metformin

  20. Experimental Chemotherapy: A Rapid and Simple Screening Method for Drug Binding to DNA

    DTIC Science & Technology

    1980-06-01

    Acriflavine Hydroxystilbamidine Berberine Miracil D Berenil Pentamidine Chloroquine Propamidine Congocidine Quinine Ethidium Bromide Quinacrine...actino- mycin D (AD), Acridine Orange (AO), berberine (BB), side chain of and stoichiometric inter- quinacrine and chloroquine (SC), quinine (Qi

  1. Targeting S-adenosylmethionine biosynthesis with a novel allosteric inhibitor of Mat2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinlan, Casey L.; Kaiser, Stephen E.; Bolaños, Ben

    S-Adenosyl-L-methionine (SAM) is an enzyme cofactor used in methyl transfer reactions and polyamine biosynthesis. The biosynthesis of SAM from ATP and L-methionine is performed by the methionine adenosyltransferase enzyme family (Mat; EC 2.5.1.6). Human methionine adenosyltransferase 2A (Mat2A), the extrahepatic isoform, is often deregulated in cancer. We identified a Mat2A inhibitor, PF-9366, that binds an allosteric site on Mat2A that overlaps with the binding site for the Mat2A regulator, Mat2B. Studies exploiting PF-9366 suggested a general mode of Mat2A allosteric regulation. Allosteric binding of PF-9366 or Mat2B altered the Mat2A active site, resulting in increased substrate affinity and decreased enzymemore » turnover. These data support a model whereby Mat2B functions as an inhibitor of Mat2A activity when methionine or SAM levels are high, yet functions as an activator of Mat2A when methionine or SAM levels are low. The ramification of Mat2A activity modulation in cancer cells is also described.« less

  2. SGLT-2 inhibitors and the risk of lower-limb amputation: Is this a class effect?

    PubMed

    Khouri, Charles; Cracowski, Jean-Luc; Roustit, Matthieu

    2018-06-01

    Inhibitors of the sodium-glucose co-transporter-2 (SGLT-2) are a novel class of glucose-lowering agents that show promising results. However, the use of canagliflozin has been associated with an increased risk of lower-limb amputation. Whether this risk concerns other SGLT-2 inhibitors is unclear, and our objective was to address this issue. We performed a disproportionality analysis using the WHO global database of individual case safety reports (VigiBase). Among the 8 293 886 reports available between January 2013 and December 2017, we identified 79 reports of lower-limb amputation that were associated with SGLT-2 inhibitors. Among all blood glucose lowering drugs, the proportional reporting ratio (PRR) was increased only for SGLT-2 inhibitors (5.55 [4.23, 7.29]). While we observed an expected signal for canagliflozin (7.09 [5.25, 9.57]), the PRR was also high for empagliflozin (4.96 [2.89, 8.50]) and, for toe amputations only, for dapagliflozin (2.62 [1.33, 5.14]). In conclusion, our results reveal a positive disproportionality signal for canagliflozin, and also for empagliflozin, and, for toe amputations only, for dapagliflozin. However, our analysis relies on a limited number of cases and is exposed to the biases inherent to pharmacovigilance studies. Further prospective data are therefore needed to better characterize the risk of amputations with different SGLT-2 inhibitors. © 2018 John Wiley & Sons Ltd.

  3. Discovery of a Potential HER2 Inhibitor from Natural Products for the Treatment of HER2-Positive Breast Cancer

    PubMed Central

    Li, Jianzong; Wang, Haiyang; Li, Junjie; Bao, Jinku; Wu, Chuanfang

    2016-01-01

    Breast cancer is one of the most lethal types of cancer in women worldwide due to the late stage detection and resistance to traditional chemotherapy. The human epidermal growth factor receptor 2 (HER2) is considered as a validated target in breast cancer therapy. Even though a substantial effort has been made to develop HER2 inhibitors, only lapatinib has been approved by the U.S. Food and Drug Administration (FDA). Side effects were observed in a majority of the patients within one year of treatment initiation. Here, we took advantage of bioinformatics tools to identify novel effective HER2 inhibitors. The structure-based virtual screening combined with ADMET (absorption, distribution, metabolism, excretion and toxicity) prediction was explored. In total, 11,247 natural compounds were screened. The top hits were evaluated by an in vitro HER2 kinase inhibition assay. The cell proliferation inhibition effect of identified inhibitors was evaluated in HER2-overexpressing SKBR3 and BT474 cell lines. We found that ZINC15122021 showed favorable ADMET properties and attained high binding affinity against HER2. Moreover, ZINC15122021 showed high kinase inhibition activity against HER2 and presented outstanding cell proliferation inhibition activity against both SKBR3 and BT474 cell lines. Results reveal that ZINC15122021 can be a potential HER2 inhibitor. PMID:27376283

  4. Mediation by prostaglandins of the stimulatory effect of substance P on cyclic AMP production in dog iris sphincter smooth muscle.

    PubMed

    Marathe, G K; Yousufzai, S Y; Abdel-Latif, A A

    1996-10-25

    The purpose of the present study was to examine the mechanism of the stimulatory effect of substance P (SP) on cyclic AMP (cAMP) accumulation in dog iris sphincter. We found that: (1) SP increased cAMP accumulation in a time- and concentration-dependent manner, the T1/2 and EC50 values being 1.2 min and 44 nM, respectively. SP has no effect on inositol trisphosphate and muscle contraction in this tissue. (2) SP-stimulated cAMP formation was inhibited by quinacrine, a non-specific phospholipase A2 inhibitor (IC50 = 9.5 microM), and by indomethacin (Indo), a cyclooxygenase inhibitor (IC50 = 3.5 nM), in a concentration-dependent manner, suggesting that SP induces cAMP accumulation via an Indo-sensitive pathway. (3) SP-induced arachidonic acid release and SP-induced prostaglandin E2 (PGE2) release were inhibited concentration dependently by quinacrine and Indo, with IC50 values of 11 microM and 0.8 nM, respectively. (4) PGE2 (1 microM) increased cAMP formation in the sphincter muscle by 94%, and, furthermore, the PG, but not SP, stimulated the activity of adenylyl cyclase in membrane fractions isolated from this tissue. (5) Indo (1 microM) blocked the relaxing effect of SP (1 microM) in iris sphincter precontracted with carbachol (1 microM). (6) The inhibitory effect of Indo on SP-induced cAMP accumulation was species specific. Increases in cAMP represent a mechanism by which extracellular SP can regulate smooth muscle function. Thus, we conclude from these studies that in dog iris sphincter SP-induced cAMP accumulation is mediated through PGs, and that in this cholinergically innervated muscle SP via cAMP could function, in part, to modulate the physiological responses to muscarinic receptor stimulation.

  5. 2-Heteroarylidene-1-indanone derivatives as inhibitors of monoamine oxidase.

    PubMed

    Nel, Magdalena S; Petzer, Anél; Petzer, Jacobus P; Legoabe, Lesetja J

    2016-12-01

    In the present study a series of fifteen 2-heteroarylidene-1-indanone derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. These compounds are structurally related to series of heterocyclic chalcone derivatives which have previously been shown to act as MAO-B specific inhibitors. The results document that the 2-heteroarylidene-1-indanones are in vitro inhibitors of MAO-B, displaying IC 50 values of 0.0044-1.53μM. Although with lower potencies, the derivatives also inhibit the MAO-A isoform with IC 50 values as low as 0.061μM. An analysis of the structure-activity relationships for MAO-B inhibition indicates that substitution with the methoxy group on the A-ring leads to a significant enhancement in MAO-B inhibition compared to the unsubstituted homologues while the effect of the heteroaromatic substituent on activity, in decreasing order is: 5-bromo-2-furan>5-methyl-2-furan>2-pyridine≈2-thiophene>cyclohexyl>3-pyridine≈2-furan. It may therefore be concluded that 2-heteroarylidene-1-indanone derivatives are promising leads for the design of MAO inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ipragliflozin and other sodium-glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data.

    PubMed

    Kurosaki, Eiji; Ogasawara, Hideaki

    2013-07-01

    Sodium-glucose cotransporter-2 (SGLT2) is expressed in the proximal tubules of the kidneys and plays a key role in renal glucose reabsorption. A novel class of antidiabetic medications, SGLT2-selective inhibitors attempt to improve glycemic control in diabetics by preventing glucose from being reabsorbed through SGLT2 and re-entering circulation. Ipragliflozin is an SGLT2 inhibitor in Phase 3 clinical development for the treatment of type 2 diabetes mellitus (T2DM). In this review, we summarize recent animal and human studies on ipragliflozin and other SGLT2 inhibitors including dapagliflozin, canagliflozin, empagliflozin, tofogliflozin, and luseogliflozin. These agents all show potent and selective SGLT2 inhibition in vitro and reduce blood glucose levels and HbA1c in both diabetic animal models and patients with T2DM. SGLT2 inhibitors offer several advantages over other classes of hypoglycemic agents. Due to their insulin-independent mode of action, SGLT2 inhibitors provide steady glucose control without major risk for hypoglycemia and may also reverse β-cell dysfunction and insulin resistance. Other favorable effects of SGLT2 inhibitors include a reduction in both body weight and blood pressure. SGLT2 inhibitors are safe and well tolerated and can easily be combined with other classes of antidiabetic medications to achieve tighter glycemic control. The long-term safety and efficacy of these agents are under evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold.

    PubMed

    Jansen, Koen; Heirbaut, Leen; Cheng, Jonathan D; Joossens, Jurgen; Ryabtsova, Oxana; Cos, Paul; Maes, Louis; Lambeir, Anne-Marie; De Meester, Ingrid; Augustyns, Koen; Van der Veken, Pieter

    2013-05-09

    Fibroblast activation protein (FAP) is a serine protease that is generally accepted to play an important role in tumor growth and other diseases involving tissue remodeling. Currently there are no FAP inhibitors with reported selectivity toward both the closely related dipeptidyl peptidases (DPPs) and prolyl oligopeptidase (PREP). We present the discovery of a new class of FAP inhibitors with a N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine) scaffold. We have explored the effects of substituting the quinoline ring and varying the position of its sp(2) hybridized nitrogen atom. The most promising inhibitors combined low nanomolar FAP inhibition and high selectivity indices (>10(3)) with respect to both the DPPs and PREP. Preliminary experiments on a representative inhibitor demonstrate that plasma stability, kinetic solubility, and log D of this class of compounds can be expected to be satisfactory.

  8. p53-Mdm2 interaction inhibitors as novel nongenotoxic anticancer agents.

    PubMed

    Nayak, Surendra Kumar; Khatik, Gopal L; Narang, Rakesh; Monga, Vikramdeep; Chopra, Harish Kumar

    2017-06-23

    Cancer is a major global health problem with high mortality rate. Most of clinically used anticancer agents induce apoptosis through genotoxic stress at various stages of cell cycle and activation of p53. Acting as a tumor suppressor p53 plays a vital role in preventing tumor development. Tumor suppressor function of p53 is effectively antagonized by its direct interaction with murine double minute 2 (Mdm2) proteins via multiple mechanisms. Thus, p53-Mdm2 interaction has been found to be an important target for the development of novel anticancer agents. Currently, nutlin, spirooxindole, isoquilinone and piperidinone analogues inhibiting p53-Mdm2 interaction are found to be promising in the treatment of cancer. The current review focused to scrutinize the structural aspects of p53-Mdm2 interaction inhibitors. The present study provides a detailed collection of published information on different classes of inhibitors of p53-Mdm2 interaction as potential anticancer agents. The review highlighted the structural aspects of various reported p53-Mdm2 inhibitor for optimization. In the last few years, different classes of inhibitors of p53-Mdm2 have been designed and developed, and seven such compounds are being evaluated in clinical trials as new anticancer drugs. Further, to explore the role of p53 protein as a potential target for anticancer drug development, in this review, the mechanism of Mdm2 mediated inactivation of p53 and recent developments on p53-Mdm2 interactions inhibitors are discussed. Agents designed to block the p53-Mdm2 interaction may have a therapeutic potential for treatment of a subset of human cancers retaining wild-type p53. We review herein the recent advances in the design and development of potent small molecules as p53-Mdm2 inhibitors. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Crystal structure of checkpoint kinase 2 in complex with NSC 109555, a potent and selective inhibitor

    PubMed Central

    Lountos, George T; Tropea, Joseph E; Zhang, Di; Jobson, Andrew G; Pommier, Yves; Shoemaker, Robert H; Waugh, David S

    2009-01-01

    Checkpoint kinase 2 (Chk2), a ser/thr kinase involved in the ATM-Chk2 checkpoint pathway, is activated by genomic instability and DNA damage and results in either arrest of the cell cycle to allow DNA repair to occur or apoptosis if the DNA damage is severe. Drugs that specifically target Chk2 could be beneficial when administered in combination with current DNA-damaging agents used in cancer therapy. Recently, a novel inhibitor of Chk2, NSC 109555, was identified that exhibited high potency (IC50 = 240 nM) and selectivity. This compound represents a new chemotype and lead for the development of novel Chk2 inhibitors that could be used as therapeutic agents for the treatment of cancer. To facilitate the discovery of new analogs of NSC 109555 with even greater potency and selectivity, we have solved the crystal structure of this inhibitor in complex with the catalytic domain of Chk2. The structure confirms that the compound is an ATP-competitive inhibitor, as the electron density clearly reveals that it occupies the ATP-binding pocket. However, the mode of inhibition differs from that of the previously studied structure of Chk2 in complex with debromohymenialdisine, a compound that inhibits both Chk1 and Chk2. A unique hydrophobic pocket in Chk2, located very close to the bound inhibitor, presents an opportunity for the rational design of compounds with higher binding affinity and greater selectivity. PMID:19177354

  10. Effects of SGLT2 inhibitors on weight loss in patients with type 2 diabetes mellitus.

    PubMed

    Ribola, F A; Cançado, F B; Schoueri, J H M; De Toni, V F; Medeiros, V H R; Feder, D

    2017-01-01

    SGLT2 (sodium-glucose cotransporter type 2) inhibitors are a new class of drugs which reversibly block the glucose reabsorption that occurs in the kidneys. Since their mechanisms of action do not rely on insulin secretion, they constitute a complementary alternative to the classic treatment of type 2 diabetes mellitus. A glycemic level reduction in patients who used SGLT2 inhibitors due to the reversible block of their transporters could be observed. Associated with this, there was a reduction in body weight and blood pressure (BP) caused by osmotic diuresis. Few adverse effects and low drug interaction combined with antihyperglycemic effects are some of the benefits of these inhibitors widely discussed in clinical trials. Patients with history of urogenital infections or those on diuretics must be carefully evaluated before the administration of these drugs. While a promising class of drugs indicated as a treatment for patients with type 2 diabetes mellitus, SGLT2 inhibitors should not be prescribed for individuals with severe renal or hepatic impairment. Therefore, as there are only a few situations in which they should not be indicated, the efficacy, safety and tolerability of these inhibitors allow them to be used in a wide range of patients. Nevertheless, further researches are required so that the possible long-term risks can be studied and the benefits associated with their use can be more objectively elucidated.

  11. GNE-886: A Potent and Selective Inhibitor of the Cat Eye Syndrome Chromosome Region Candidate 2 Bromodomain (CECR2).

    PubMed

    Crawford, Terry D; Audia, James E; Bellon, Steve; Burdick, Daniel J; Bommi-Reddy, Archana; Côté, Alexandre; Cummings, Richard T; Duplessis, Martin; Flynn, E Megan; Hewitt, Michael; Huang, Hon-Ren; Jayaram, Hariharan; Jiang, Ying; Joshi, Shivangi; Kiefer, James R; Murray, Jeremy; Nasveschuk, Christopher G; Neiss, Arianne; Pardo, Eneida; Romero, F Anthony; Sandy, Peter; Sims, Robert J; Tang, Yong; Taylor, Alexander M; Tsui, Vickie; Wang, Jian; Wang, Shumei; Wang, Yongyun; Xu, Zhaowu; Zawadzke, Laura; Zhu, Xiaoqin; Albrecht, Brian K; Magnuson, Steven R; Cochran, Andrea G

    2017-07-13

    The biological function of bromodomains, epigenetic readers of acetylated lysine residues, remains largely unknown. Herein we report our efforts to discover a potent and selective inhibitor of the bromodomain of cat eye syndrome chromosome region candidate 2 (CECR2). Screening of our internal medicinal chemistry collection led to the identification of a pyrrolopyridone chemical lead, and subsequent structure-based drug design led to a potent and selective CECR2 bromodomain inhibitor (GNE-886) suitable for use as an in vitro tool compound.

  12. Hexylitaconic acid: a new inhibitor of p53-HDM2 interaction isolated from a marine-derived fungus, Arthrinium sp.

    PubMed

    Tsukamoto, Sachiko; Yoshida, Takushi; Hosono, Hidetaka; Ohta, Tomihisa; Yokosawa, Hideyoshi

    2006-01-01

    A new inhibitor of p53-HDM2 interaction was isolated from a culture of marine-derived fungus, Arthrinium sp. The structure was identified to be (-)-hexylitaconic acid (1) by spectroscopic analysis. The inhibition of p53-HDM2 binding was tested by the ELISA method, and 1 inhibited the binding with an IC(50) value of 50 microg/mL. Although a number of synthetic inhibitors of p53-HDM2 interaction have been reported so far, 1 is the second inhibitor isolated from natural resources.

  13. Potential use of COX-2–aromatase inhibitor combinations in breast cancer

    PubMed Central

    Bundred, N J; Barnes, N L P

    2005-01-01

    Cyclooxygenase-2 (COX-2) is overexpressed in several epithelial tumours, including breast cancer. Cyclooxygenase-2-positive tumours tend to be larger, higher grade, node-positive and HER-2/neu-positive. High COX-2 expression is associated with poor prognosis. Cyclooxygenase-2 inhibition reduces the incidence of tumours in animal models, inhibits the development of invasive cancer in colorectal cancer and reduces the frequency of polyps in familial adenomatous polyposis (FAP). These effects may be as a result of increased apoptosis, reduced angiogenesis and/or proliferation. Studies of COX-2 inhibitors in breast cancer are underway both alone and in combination with other agents. There is evidence to suggest that combining COX-2 inhibitors with aromatase inhibitors, growth factor receptor blockers, or chemo- or radiotherapy may be particularly effective. Preliminary results from combination therapy with celecoxib and exemestane in postmenopausal women with advanced breast cancer showed that the combination increased the time to recurrence. Up to 80% of ductal carcinomas in situ (DCISs) express COX-2, therefore COX-2 inhibition may be of particular use in this situation. Cyclooxygenase-2 expression correlates strongly with expression of HER-2/neu. As aromatase inhibitors appear particularly effective in patients with HER-2/neu-positive tumours, the combination of aromatase inhibitors and COX-2 inhibitors may be particularly useful in both DCIS and invasive cancer. PMID:16100520

  14. Virtual screening and optimization of Type II inhibitors of JAK2 from a natural product library.

    PubMed

    Ma, Dik-Lung; Chan, Daniel Shiu-Hin; Wei, Guo; Zhong, Hai-Jing; Yang, Hui; Leung, Lai To; Gullen, Elizabeth A; Chiu, Pauline; Cheng, Yung-Chi; Leung, Chung-Hang

    2014-11-21

    Amentoflavone has been identified as a JAK2 inhibitor by structure-based virtual screening of a natural product library. In silico optimization using the DOLPHIN model yielded analogues with enhanced potency against JAK2 activity and HCV activity in cellulo. Molecular modeling and kinetic experiments suggested that the analogues may function as Type II inhibitors of JAK2.

  15. 2-Arylbenzo[b]furan derivatives as potent human lipoxygenase inhibitors.

    PubMed

    Lang, Li; Dong, Ningning; Wu, Deyan; Yao, Xue; Lu, Weiqiang; Zhang, Chen; Ouyang, Ping; Zhu, Jin; Tang, Yun; Wang, Wei; Li, Jian; Huang, Jin

    2016-01-01

    Human lipoxygenases (LOXs) have been emerging as effective therapeutic targets for inflammatory diseases. In this study, we found that four natural 2-arylbenzo[b]furan derivatives isolated from Artocarpus heterophyllus exhibited potent inhibitory activities against human LOXs, including moracin C (1), artoindonesianin B-1 (2), moracin D (3), moracin M (4). In our in vitro experiments, compound 1 was identified as the most potent LOX inhibitor and the moderate subtype selective inhibitor of 12-LOX. Compounds 1 and 2 act as competitive inhibitors of LOXs. Moreover, 1 significantly inhibits LTB4 production and chemotactic capacity of neutrophils, and is capable of protecting vascular barrier from plasma leakage in vivo. In addition, the preliminary structure-activity relationship analysis was performed based on the above four naturally occurring (1-4) and six additional synthetic 2-arylbenzo[b]furan derivatives. Taken together, these 2-arylbenzo[b]furan derivatives, as LOXs inhibitors, could represent valuable leads for the future development of therapeutic agents for inflammatory diseases.

  16. 2-acetylphenol analogs as potent reversible monoamine oxidase inhibitors.

    PubMed

    Legoabe, Lesetja J; Petzer, Anél; Petzer, Jacobus P

    2015-01-01

    Based on a previous report that substituted 2-acetylphenols may be promising leads for the design of novel monoamine oxidase (MAO) inhibitors, a series of C5-substituted 2-acetylphenol analogs (15) and related compounds (two) were synthesized and evaluated as inhibitors of human MAO-A and MAO-B. Generally, the study compounds exhibited inhibitory activities against both MAO-A and MAO-B, with selectivity for the B isoform. Among the compounds evaluated, seven compounds exhibited IC50 values <0.01 µM for MAO-B inhibition, with the most selective compound being 17,000-fold selective for MAO-B over the MAO-A isoform. Analyses of the structure-activity relationships for MAO inhibition show that substitution on the C5 position of the 2-acetylphenol moiety is a requirement for MAO-B inhibition, and the benzyloxy substituent is particularly favorable in this regard. This study concludes that C5-substituted 2-acetylphenol analogs are potent and selective MAO-B inhibitors, appropriate for the design of therapies for neurodegenerative disorders such as Parkinson's disease.

  17. The role of chemoprevention by selective cyclooxygenase-2 inhibitors in colorectal cancer patients - a population-based study

    PubMed Central

    2012-01-01

    Background There are limited population-based studies focusing on the chemopreventive effects of selective cyclooxygenase-2 (COX-2) inhibitors against colorectal cancer. The purpose of this study is to assess the trends and dose–response effects of various medication possession ratios (MPR) of selective COX-2 inhibitor used for chemoprevention of colorectal cancer. Methods A population-based case–control study was conducted using the Taiwan Health Insurance Research Database (NHIRD). The study comprised 21,460 colorectal cancer patients and 79,331 controls. The conditional logistic regression was applied to estimate the odds ratios (ORs) for COX-2 inhibitors used for several durations (5 years, 3 years, 1 year, 6 months and 3 months) prior to the index date. Results In patients receiving selective COX-2 inhibitors, the OR was 0.51 (95% CI=0.29~0.90, p=0.021) for an estimated 5-year period in developing colorectal cancer. ORs showing significant protection effects were found in 10% of MPRs for 5-year, 3-year, and 1-year usage. Risk reduction against colorectal cancer by selective COX-2 inhibitors was observed as early as 6 months after usage. Conclusion Our results indicate that selective COX-2 inhibitors may reduce the development of colorectal cancer by at least 10% based on the MPRs evaluated. Given the limited number of clinical reports from general populations, our results add to the knowledge of chemopreventive effects of selective COX-2 inhibitors against cancer in individuals at no increased risk of colorectal cancer. PMID:23217168

  18. SGLT2 inhibitor/DPP-4 inhibitor combination therapy - complementary mechanisms of action for management of type 2 diabetes mellitus.

    PubMed

    Dey, Jayant

    2017-05-01

    Type 2 diabetes mellitus is a progressive disease with multiple underlying pathophysiologic defects. Monotherapy alone cannot maintain glycemic control and leads to treatment failure. Ideally, a combination of glucose-lowering agents should have complementary mechanisms of action that address multiple pathophysiologic pathways, can be used at all stages of the disease, and be generally well tolerated with no increased risk of hypoglycemia, cardiovascular events, or weight gain. The combination should also provide conveniences for patients, such as oral dosing, single-pill formulations, and once-daily administration, potentially translating to improved adherence. Two classes of glucose-lowering agents that meet these criteria are the sodium glucose cotransporter-2 (SGLT2) inhibitors and dipeptidyl peptidase-4 (DPP-4) inhibitors. This article reviews the rationale for combination therapy with these agents, and evidence from clinical trials with empagliflozin and linagliptin or dapagliflozin and saxagliptin in the management of type 2 diabetes mellitus. Both combinations have been approved as single-pill formulations.

  19. SGLT2 Inhibitor-associated Diabetic Ketoacidosis: Clinical Review and Recommendations for Prevention and Diagnosis.

    PubMed

    Goldenberg, Ronald M; Berard, Lori D; Cheng, Alice Y Y; Gilbert, Jeremy D; Verma, Subodh; Woo, Vincent C; Yale, Jean-François

    2016-12-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are the newest class of antihyperglycemic agents available on the market. Regulator warnings and concerns regarding the risk of developing diabetic ketoacidosis (DKA), however, have dampened enthusiasm for the class despite the combined glycemic, blood pressure, and occasional weight benefits of SGLT2 inhibitors. With the goal of improving patient safety, a cross-Canada expert panel and writing group were convened to review the evidence to-date on reported SGLT2 inhibitor-related DKA incidents and to offer recommendations for preventing and recognizing patients with SGLT2 inhibitor-associated DKA. Reports covering DKA events in subjects taking SGLT2 inhibitors that were published in PubMed, presented at professional conferences, or in the public domain from January 2013 to mid-August 2016 were reviewed by the group independently and collectively. Practical recommendations for diagnosis and prevention were established by the panel. DKA is rarely associated with SGLT2 inhibitor therapy. Patients with SGLT2 inhibitor-associated DKA may be euglycemic (plasma glucose level <14 mmol/L). DKA is more likely in patients with insulin-deficient diabetes, including those with type 2 diabetes, and is typically precipitated by insulin omission or dose reduction, severe acute illness, dehydration, extensive exercise, surgery, low-carbohydrate diets, or excessive alcohol intake. SGLT2 inhibitor-associated DKA may be prevented by withholding SGLT2 inhibitors when precipitants develop, avoiding insulin omission or inappropriate insulin dose reduction, and by following sick day protocols as recommended. Preventive strategies should help avoid SGLT2 inhibitor-associated DKA. All SGLT2 inhibitor-treated patients presenting with signs or symptoms of DKA should be suspected to have DKA and be investigated for DKA, especially euglycemic patients. If DKA is diagnosed, SGLT2 inhibitor treatment should be stopped, and the DKA should be

  20. Isolation and Characterization of a High Affinity Peptide Inhibitor of ClC-2 Chloride Channels*

    PubMed Central

    Thompson, Christopher H.; Olivetti, Pedro R.; Fuller, Matthew D.; Freeman, Cody S.; McMaster, Denis; French, Robert J.; Pohl, Jan; Kubanek, Julia; McCarty, Nael A.

    2009-01-01

    The ClC protein family includes voltage-gated chloride channels and chloride/proton exchangers. In eukaryotes, ClC proteins regulate membrane potential of excitable cells, contribute to epithelial transport, and aid in lysosomal acidification. Although structure/function studies of ClC proteins have been aided greatly by the available crystal structures of a bacterial ClC chloride/proton exchanger, the availability of useful pharmacological tools, such as peptide toxin inhibitors, has lagged far behind that of their cation channel counterparts. Here we report the isolation, from Leiurus quinquestriatus hebraeus venom, of a peptide toxin inhibitor of the ClC-2 chloride channel. This toxin, GaTx2, inhibits ClC-2 channels with a voltage-dependent apparent KD of ∼20 pm, making it the highest affinity inhibitor of any chloride channel. GaTx2 slows ClC-2 activation by increasing the latency to first opening by nearly 8-fold but is unable to inhibit open channels, suggesting that this toxin inhibits channel activation gating. Finally, GaTx2 specifically inhibits ClC-2 channels, showing no inhibitory effect on a battery of other major classes of chloride channels and voltage-gated potassium channels. GaTx2 is the first peptide toxin inhibitor of any ClC protein. The high affinity and specificity displayed by this toxin will make it a very powerful pharmacological tool to probe ClC-2 structure/function. PMID:19574231

  1. Structure-Guided Discovery of Novel, Potent, and Orally Bioavailable Inhibitors of Lipoprotein-Associated Phospholipase A2.

    PubMed

    Liu, Qiufeng; Huang, Fubao; Yuan, Xiaojing; Wang, Kai; Zou, Yi; Shen, Jianhua; Xu, Yechun

    2017-12-28

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a promising therapeutic target for atherosclerosis, Alzheimer's disease, and diabetic macular edema. Here we report the identification of novel sulfonamide scaffold Lp-PLA2 inhibitors derived from a relatively weak fragment. Similarity searching on this fragment followed by molecular docking leads to the discovery of a micromolar inhibitor with a 300-fold potency improvement. Subsequently, by the application of a structure-guided design strategy, a successful hit-to-lead optimization was achieved and a number of Lp-PLA2 inhibitors with single-digit nanomolar potency were obtained. After preliminary evaluation of the properties of drug-likeness in vitro and in vivo, compound 37 stands out from this congeneric series of inhibitors for good inhibitory activity and favorable oral bioavailability in male Sprague-Dawley rats, providing a quality candidate for further development. The present study thus clearly demonstrates the power and advantage of integrally employing fragment screening, crystal structures determination, virtual screening, and medicinal chemistry in an efficient lead discovery project, providing a good example for structure-based drug design.

  2. Plasminogen activator inhibitor-2 in patients with monocytic leukemia.

    PubMed

    Scherrer, A; Kruithof, E K; Grob, J P

    1991-06-01

    Plasma and tumor cells from 103 patients with leukemia or lymphoma at initial presentation were investigated for the presence of plasminogen activator inhibitor-2 (PAI-2) antigen, a potent inhibitor of urokinase. PAI-2 was detected in plasma and leukemic cells of the 21 patients with leukemia having a monocytic component [acute myelomonocytic (M4), acute monoblastic (M5), and chronic myelomonocytic leukemias], and in the three patients with acute undifferentiated myeloblastic leukemia (M0). In contrast, this serine protease inhibitor was undetectable in 79 patients with other subtypes of acute myeloid leukemia or other hematological malignancies. Serial serum PAI-2 determinations in 16 patients with acute leukemia at presentation, during therapy, remission, and relapse revealed that in the five patients with M4-M5, elevated PAI-2 levels rapidly normalized under therapy and during remission, but increased again in the patients with a relapse associated with an M4-M5 phenotype. Thus, PAI-2 seems to be a marker highly specific for the active stages of monocytic leukemia, i.e. presentation and relapse. The presence of PAI-2 in the plasma and cells of patients with M0 may give a clue to a monocytic origin of these cells.

  3. 2D-QSAR and 3D-QSAR Analyses for EGFR Inhibitors

    PubMed Central

    Zhao, Manman; Zheng, Linfeng; Qiu, Chun

    2017-01-01

    Epidermal growth factor receptor (EGFR) is an important target for cancer therapy. In this study, EGFR inhibitors were investigated to build a two-dimensional quantitative structure-activity relationship (2D-QSAR) model and a three-dimensional quantitative structure-activity relationship (3D-QSAR) model. In the 2D-QSAR model, the support vector machine (SVM) classifier combined with the feature selection method was applied to predict whether a compound was an EGFR inhibitor. As a result, the prediction accuracy of the 2D-QSAR model was 98.99% by using tenfold cross-validation test and 97.67% by using independent set test. Then, in the 3D-QSAR model, the model with q2 = 0.565 (cross-validated correlation coefficient) and r2 = 0.888 (non-cross-validated correlation coefficient) was built to predict the activity of EGFR inhibitors. The mean absolute error (MAE) of the training set and test set was 0.308 log units and 0.526 log units, respectively. In addition, molecular docking was also employed to investigate the interaction between EGFR inhibitors and EGFR. PMID:28630865

  4. The Inhibitor Ko143 Is Not Specific for ABCG2.

    PubMed

    Weidner, Lora D; Zoghbi, Sami S; Lu, Shuiyu; Shukla, Suneet; Ambudkar, Suresh V; Pike, Victor W; Mulder, Jan; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D

    2015-09-01

    Imaging ATP-binding cassette (ABC) transporter activity in vivo with positron emission tomography requires both a substrate and a transporter inhibitor. However, for ABCG2, there is no inhibitor proven to be specific to that transporter alone at the blood-brain barrier. Ko143 [[(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1',2':1,6]pyrido[3,4- b]indole-3-propanoic acid 1,1-dimethylethyl ester], a nontoxic analog of fungal toxin fumitremorgin C, is a potent inhibitor of ABCG2, although its specificity in mouse and human systems is unclear. This study examined the selectivity of Ko143 using human embryonic kidney cell lines transfected with ABCG2, ABCB1, or ABCC1 in several in vitro assays. The stability of Ko143 in rat plasma was measured using high performance liquid chromatography. Our results show that, in addition to being a potent inhibitor of ABCG2, at higher concentrations (≥1 μM) Ko143 also has an effect on the transport activity of both ABCB1 and ABCC1. Furthermore, Ko143 was found to be unstable in rat plasma. These findings indicate that Ko143 lacks specificity for ABCG2 and this should be taken into consideration when using Ko143 for both in vitro and in vivo experiments. U.S. Government work not protected by U.S. copyright.

  5. Angiotensin-Converting Enzyme Inhibitor Use and Major Cardiovascular Outcomes in Type 2 Diabetes Mellitus Treated With the Dipeptidyl Peptidase 4 Inhibitor Alogliptin.

    PubMed

    White, William B; Wilson, Craig A; Bakris, George L; Bergenstal, Richard M; Cannon, Christopher P; Cushman, William C; Heller, Simon K; Mehta, Cyrus R; Nissen, Steven E; Zannad, Faiez; Kupfer, Stuart

    2016-09-01

    Activation of the sympathetic nervous system when there is dipeptidyl peptidase 4 inhibition in the presence of high-dose angiotensin-converting enzyme (ACE) inhibition has led to concerns of potential increases in cardiovascular events when the 2 classes of drugs are coadministered. We evaluated cardiovascular outcomes from the EXAMINE (Examination of Cardiovascular Outcomes With Alogliptin versus Standard of Care) trial according to ACE inhibitor use. Patients with type 2 diabetes mellitus and a recent acute coronary syndrome were randomly assigned to receive the dipeptidyl peptidase 4 inhibitor alogliptin or placebo added to existing antihyperglycemic and cardiovascular prophylactic therapies. Risks of adjudicated cardiovascular death, nonfatal myocardial infarction and stroke, and hospitalized heart failure were analyzed using a Cox proportional hazards model in patients according to ACE inhibitor use and dose. There were 3323 (62%) EXAMINE patients treated with an ACE inhibitor (1681 on alogliptin and 1642 on placebo). The composite rates of cardiovascular death, nonfatal myocardial infarction, and nonfatal stroke were comparable for alogliptin and placebo with ACE inhibitor (11.4% versus 11.8%; hazard ratio, 0.97; 95% confidence interval, 0.79-1.19; P=0.76) and without ACE inhibitor use (11.2% versus 11.9%; hazard ratio, 0.94; 95% confidence interval, 0.73-1.21; P=0.62). Composite rates for cardiovascular death and heart failure in patients on ACE inhibitor occurred in 6.8% of patients on alogliptin versus 7.2% on placebo (hazard ratio, 0.93; 95% confidence interval, 0.72-1.2; P=0.57). There were no differences for these end points nor for blood pressure or heart rate in patients on higher doses of ACE inhibitor. Cardiovascular outcomes were similar for alogliptin and placebo in patients with type 2 diabetes mellitus and coronary disease treated with ACE inhibitors. © 2016 American Heart Association, Inc.

  6. Glucose dynamics and mechanistic implications of SGLT2 inhibitors in animals and humans.

    PubMed

    List, James F; Whaley, Jean M

    2011-03-01

    Glucose is freely filtered in the glomeruli before being almost entirely reabsorbed into circulation from the proximal renal tubules. The sodium-glucose cotransporter 2 (SGLT2), present in the S1 segment of the proximal tubule, is responsible for the majority of glucose reabsorption. SGLT2 inhibitors reduce glucose reabsorption and increase urinary glucose excretion. In animal models and humans with type 2 diabetes, this effect is associated with reduced fasting and postprandial blood glucose levels, and reduced hemoglobin A1c. Animal studies suggest that reduction of hyperglycemia with SGLT2 inhibitors may also improve insulin sensitivity and preserve β-cell function. Urinary excretion of excess calories with SGLT2 inhibitors is also associated with reduction in body weight. Modest reductions in blood pressure have been noted with SGLT2 inhibitors, consistent with a mild diuretic action. Some C-glucoside SGLT2 inhibitors, such as dapagliflozin, have pharmacokinetic properties that make them amenable to once-daily dosing.

  7. Benefits of SGLT2 Inhibitors beyond glycemic control - A focus on metabolic, cardiovascular, and renal outcomes.

    PubMed

    Minze, Molly G; Will, Kayley; Terrell, Brian T; Black, Robin L; Irons, Brian K

    2017-08-16

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new pharmacotherapeutic class for the treatment of type 2 diabetes mellitus (T2DM). To evaluate beneficial effects of the SGLT2 inhibitors on metabolic, cardiovascular, and renal outcomes. A Pub-Med search (1966 to July 2017) was performed of published English articles using keywords sodium-glucose co-transporter 2 inhibitors, canagliflozin, dapagliflozin, and empagliflozin. A review of literature citations provided further references. The search identified 17clinical trials and 2 meta-analysis with outcomes of weight loss and blood pressure reduction with dapagliflozin, canagliflozin, or empagliflozin. Three randomized trials focused on either empagliflozin or canagliflozin and reduction of cardiovascular disease and progression of renal disease. SGLT2 inhibitors have a beneficial profile in the treatment of T2DM. They have evidence of reducing weight between 2.9 kilograms when used as monotherapy to 4.7 kilograms when used in combination with metformin, and reduce systolic blood pressure between 3 to 5 mmHg and reduce diastolic blood pressure approximately 2 mmHg. To date, reduction of cardiovascular events was seen specifically with empagliflozin in patients with T2DM and a history of cardiovascular disease. In the same population, empagliflozin was associated with slowing the progression of kidney disease. Moreover, patients with increased risk of cardiovascular disease treated with canagliflozin has decreased risk of death from cardiovascular causes, nonfatal MI, or nonfatal stroke. Data regarding these outcomes with dapagliflozin are underway. SGLT2 inhibitors demonstrate some positive metabolic effects. In addition, empagliflozin specifically has demonstrated reduction in cardiovascular events and delay in the progression of kidney disease in patients with T2DM and a history of cardiovascular disease. Further data is needed to assess if this is a class effect. Copyright© Bentham Science Publishers

  8. PI3K Inhibitors Synergize with FGFR Inhibitors to Enhance Antitumor Responses in FGFR2mutant Endometrial Cancers.

    PubMed

    Packer, Leisl M; Geng, Xinyan; Bonazzi, Vanessa F; Ju, Robert J; Mahon, Clare E; Cummings, Margaret C; Stephenson, Sally-Anne; Pollock, Pamela M

    2017-04-01

    Improved therapeutic approaches are needed for the treatment of recurrent and metastatic endometrial cancer. Endometrial cancers display hyperactivation of the MAPK and PI3K pathways, the result of somatic aberrations in genes such as FGFR2, KRAS, PTEN, PIK3CA , and PIK3R1 The FGFR2 and PI3K pathways, have emerged as potential therapeutic targets in endometrial cancer. Activation of the PI3K pathway is seen in more than 90% of FGFR2 mutant endometrial cancers. This study aimed to examine the efficacy of the pan-FGFR inhibitor BGJ398 with pan-PI3K inhibitors (GDC-0941, BKM120) and the p110α-selective inhibitor BYL719. We assessed synergy in three FGFR2 mutant endometrial cancer cell lines (AN3CA, JHUEM2, and MFE296), and the combination of BGJ398 and GDC-0941 or BYL719 showed strong synergy. A significant increase in cell death and decrease in long-term survival was seen when PI3K inhibitors were combined with BGJ398. Importantly, these effects were seen at low concentrations correlating to only partial inhibition of AKT. The combination of BGJ398 and GDC-0941 showed tumor regressions in vivo , whereas each drug alone only showed moderate tumor growth inhibition. BYL719 alone resulted in increased tumor growth of AN3CA xenografts but in combination with BGJ398 resulted in tumor regression in both AN3CA- and JHUEM2-derived xenografts. These data provide evidence that subtherapeutic doses of PI3K inhibitors enhance the efficacy of anti-FGFR therapies, and a combination therapy may represent a superior therapeutic treatment in patients with FGFR2 mutant endometrial cancer. Mol Cancer Ther; 16(4); 637-48. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Role of phospholipase A2 (PLA2) inhibitors in attenuating apoptosis of the corneal epithelial cells and mitigation of Acanthamoeba keratitis

    PubMed Central

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2013-01-01

    The aim of this study is to determine if the mannose-induced protein (MIP-133) from Acanthamoeba castellanii trophozoites induces apoptosis of corneal epithelial cells through a cytosolic phospholipase A2α (cPLA2α)-mediated pathway. The efficacy of cPLA2α inhibitors to provide protection against Acanthamoeba keratitis was examined in vivo. Chinese hamster corneal epithelial (HCORN) cells were incubated with or without MIP-133. MIP-133 induces significant increase in cPLA2α and macrophage inflammatory protein-2 (MIP-2/CXCL2) levels from corneal cells. Moreover, cPLA2α inhibitors, MAFP (Methyl-arachidonyl fluorophosphonate) and AACOCF3 (Arachidonyl trifluoromethyl ketone), significantly reduce cPLA2α and CXCL2 from these cells (P< 0.05). Additionally, cPLA2α inhibitors significantly inhibit MIP-133-induced apoptosis in HCORN cells (P< 0.05). Subconjunctival injection of purified MIP-133 in Chinese hamster eyes induced cytopathic effects resulting in corneal ulceration. Animals infected with A. castellanii-laden contact lenses and treated with AACOCF3 and CAY10650, showed significantly less severe keratitis as compared with control animals. Collectively, the results indicate that cPLA2α is involved in MIP-133 induced apoptosis of corneal epithelial cells, polymorphonuclear neutrophil infiltration, and production of CXCL2. Moreover, cPLA2α inhibitors can be used as a therapeutic target in Acanthamoeba keratitis. PMID:23792108

  10. Analysis of interleukin (IL)-1 beta and transforming growth factor (TGF)-beta-induced signal transduction pathways in IL-2 and TGF-beta secretion and proliferation in the thymoma cell line EL4.NOB-1.

    PubMed

    Siese, A; Jaros, P P; Willig, A

    1999-02-01

    In the present study we investigated the interleukin (IL)-1beta and transforming growth factor-beta1 (TGF-beta1)-mediated proliferation, and production of IL-2 and TGF-beta, in the murine T-cell line, EL4.NOB-1. This cell line is resistant to TGF-beta concerning growth arrest but not autoinduction or suppression of IL-1-induced IL-2 production. When cocultured with IL-1beta, TGF-beta showed growth-promoting activity that could be antagonized by adding the phosphatidyl choline-dependent phospholipase C (PC-PLC) inhibitor, D609. Using specific enzyme inhibitors of protein kinases (PK) C and A, mitogen-activated protein kinase (MAPK), phospholipase A2 (PLA2), phosphatidylinositol-dependent (PI)-PLC and PC-PLC, we showed that IL-1beta-induced IL-2 synthesis was dependent on all investigated kinases and phospholipases, except PC-PLC. TGF-beta1 was able to inhibit IL-2 synthesis by the activation of PKA and MAPK. The same kinases are involved in TGF-beta autoinduction that is accompanied by a secretion of the active but not the latent growth factor and is antagonized by IL-1beta. Addition of the PI-PLC inhibitor, ET 18OCH3, or the PLA2 inhibitor (quinacrine) alone, resulted in secretion of latent TGF-beta and, in the case of ET 18OCH3, active TGF-beta. These data implicate a role for PI-PLC and PLA2 in the control of latency and secretion. Analysis of specific tyrosine activity and c-Fos expression showed synergistic but no antagonistic effects. These events are therefore not involved in IL- and TGF-beta-regulated IL-2 and TGF-beta production, but might participate in IL-1/TGF-beta-induced growth promotion.

  11. [Specific inhibitors of cyclooxygenase-2 (COX-2): current knowledge and perspectives].

    PubMed

    Rioda, W T; Nervetti, A

    2001-01-01

    The Authors summarize the current knowledge on a new class of nonsteroidal anti-inflammatory drugs (NSAIDs), the coxib (celecoxib and rofecoxib), in the treatment of rheumatic diseases. Celecoxib and rofecoxib are selective cyclooxygenase-2 (COX-2) inhibitors which possess the same anti-inflammatory and analgesic activities, but a better gastric tolerability compared to the non-selective COX-1 and COX-2 inhibitors. The Authors also report other possible therapeutic effects of these NSADIs as evidenced by the more recent data of the literature. Celecoxib seems to reduce the incidence of new polyps in patients with familial adenomatous polyposis. It has been suggested the use of celecoxib as a protective drug against the development of colorectal cancer. Other (neoplastic) or pre-neoplastic conditions, such as bladder dysplasia, Barret esophagus, attinic keratosis and Alzheimer's disease seem to have benefit from this class of drugs.

  12. Montelukast is a potent and durable inhibitor of multidrug resistance protein 2 (MRP2)-mediated efflux of taxol and saquinavir

    PubMed Central

    Roy, Upal; Chakravarty, Geetika; Honer Zu Bentrup, Kerstin; Mondal, Debasis

    2009-01-01

    The ATP binding cassette (ABC)-transporters are energy dependent efflux pumps which regulate the pharmacokinetics of both anti-cancer chemotherapeutic agents, e.g. taxol, and of HIV-1 protease inhibitors (HPIs), e.g. saquinavir. Increased expression of several ABC-transporters, especially P-gp and MRP2, are observed in multidrug resistant (MDR) tumor cells and on HIV-1 infected lymphocytes. In addition, due to their apical expression on vascular endothelial barriers, both P-gp and MRP2 are of crucial importance towards dictating drug access into sequestered tissues. However, although a number of P-gp inhibitors are currently in clinical trials, possible inhibitors of MRP2 are not being thoroughly investigated. The experimental leukotriene receptor antagonist (LTRA), MK-571 is known to be a potent inhibitor of MRP transporters. Using the MRP2 over-expressing cell line, MDCKII-MRP2, we evaluated whether the clinically approved LTRAs, e.g. montelukast (Singulair™) and zafirlukast (Accolate™), can similarly suppress MRP2-mediated efflux. We compared the efficacy of increasing concentrations (20-100 μM) of MK-571, montelukast, and zafirlukast, in suppressing the efflux of calcein-AM, a fluorescent MRP substrate, and the radiolabeled [3H-] drugs, taxol and saquinavir. Montelukast was the most potent inhibitor (p<0.01) of MRP2-mediated efflux of all three substrates. Montelukast also increased (p<0.01) the duration of intracellular retention of both taxol and saquinavir. More than 50% of the drugs were retained in cells even after 90 mins post removal of montelukast from the medium. Our findings implicate that montelukast, a relatively safe anti-asthmatic agent, may be used as an adjunct therapy to suppress the efflux of taxol and saquinavir from MRP2 overexpressing cells. PMID:19952419

  13. Pharmacodynamics, efficacy and safety of sodium-glucose co-transporter type 2 (SGLT2) inhibitors for the treatment of type 2 diabetes mellitus.

    PubMed

    Scheen, André J

    2015-01-01

    Inhibitors of sodium-glucose co-transporter type 2 (SGLT2) are proposed as a novel approach for the management of type 2 diabetes mellitus (T2DM). Several compounds are already available in many countries (dapagliflozin, canagliflozin, empagliflozin and ipragliflozin) and some others are in a late phase of development. The available SGLT2 inhibitors share similar pharmacokinetic characteristics, with a rapid oral absorption, a long elimination half-life allowing once-daily administration, an extensive hepatic metabolism mainly via glucuronidation to inactive metabolites, the absence of clinically relevant drug-drug interactions and a low renal elimination as parent drug. SGLT2 co-transporters are responsible for reabsorption of most (90 %) of the glucose filtered by the kidneys. The pharmacological inhibition of SGLT2 co-transporters reduces hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. The amount of glucose excreted in the urine depends on both the level of hyperglycaemia and the glomerular filtration rate. Results of numerous placebo-controlled randomised clinical trials of 12-104 weeks duration have shown significant reductions in glycated haemoglobin (HbA1c), resulting in a significant increase in the proportion of patients reaching HbA1c targets, and a significant lowering of fasting plasma glucose when SGLT2 inhibitors were administered as monotherapy or in addition to other glucose-lowering therapies including insulin in patients with T2DM. In head-to-head trials of up to 2 years, SGLT2 inhibitors exerted similar glucose-lowering activity to metformin, sulphonylureas or sitagliptin. The durability of the glucose-lowering effect of SGLT2 inhibitors appears to be better; however, this remains to be more extensively investigated. The risk of hypoglycaemia was much lower with SGLT2 inhibitors than with sulphonylureas and was similarly low as that reported with metformin, pioglitazone or sitagliptin

  14. Use of a Cyclooxygenase-2 Inhibitor Does Not Inhibit Platelet Activation or Growth Factor Release From Platelet-Rich Plasma.

    PubMed

    Ludwig, Hilary C; Birdwhistell, Kate E; Brainard, Benjamin M; Franklin, Samuel P

    2017-12-01

    It remains unestablished whether use of cyclooxygenase (COX)-2 inhibitors impairs platelet activation and anabolic growth factor release from platelets in platelet-rich plasma (PRP). The purpose of this study was to assess the effects of a COX-2 inhibitor on platelet activation and anabolic growth factor release from canine PRP when using a clinically applicable PRP activator and to determine whether a 3-day washout would be sufficient to abrogate any COX-2 inhibitor-related impairment on platelet function. Controlled laboratory study. Ten healthy dogs underwent blood collection and PRP preparation. Dogs were then administered a COX-2 inhibitor for 7 days, after which PRP preparation was repeated. The COX-2 inhibitor was continued for 4 more days and PRP preparation performed a third time, 3 days after discontinuation of the COX-2 inhibitor. Immediately after PRP preparation, the PRP was divided into 4 aliquots: 2 unactivated and 2 activated using human γ-thrombin (HGT). One activated and 1 unactivated sample were assessed using flow cytometry for platelet expression of CD62P and platelet-bound fibrinogen using the canine activated platelet-1 (CAP1) antibody. The 2 remaining samples were centrifuged and the supernatant assayed for transforming growth factor-β1 (TGF-β1), platelet-derived growth factor-BB (PDGF-BB), and thromboxane B2 (TXB2) concentrations. Differences in platelet activation and TGF-β1, PDGF-BB, and TXB2 concentrations over the 3 study weeks were evaluated using a 1-way repeated-measures ANOVA, and comparisons between activated and unactivated samples within a study week were assessed with paired t tests. There were no statistically significant ( P > .05) effects of the COX-2 inhibitor on percentage of platelets positive for CD62P or CAP1 or on concentrations of TGF-β1, PDGF-BB, or TXB2. All unactivated samples had low levels of activation or growth factor concentrations and significantly ( P < .05) greater activation and growth factor

  15. Renoprotective Effects of SGLT2 Inhibitors: Beyond Glucose Reabsorption Inhibition.

    PubMed

    Tsimihodimos, V; Filippatos, T D; Filippas-Ntekouan, S; Elisaf, M

    2017-01-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors are a new class of antidiabetic drugs that inhibit glucose and sodium reabsorption at proximal tubules. These drugs may exhibit renoprotective properties, since they prevent the deterioration of the glomerular filtration rate and reduce the degree of albuminuria in patients with diabetes-associated kidney disease. In this review we consider the pathophysiologic mechanisms that have been recently implicated in the renoprotective properties of SGLT2 inhibitors. The beneficial effects of SGLT2 inhibitors on the conventional risk factors for kidney disease (such as blood pressure, hyperglycaemia, body weight and serum uric acid levels) may explain, at least in part, the observed renal-protecting properties of these compounds. However, it has been hypothesized that the most important mechanisms for this phenomenon include the reduction in the intraglomerular pressure, the changes in the local and systemic degree of activation of the renin-aldosterone-angiotensin system and a shift in renal fuel consumption towards more efficient energy substrates such as ketone bodies. The beneficial effects of SGLT2 inhibitors on various aspects of renal function make them an attractive choice in patients with (and possibly without) diabetes-associated renal impairment. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL‐2 inhibitor, in patients with non‐Hodgkin lymphoma

    PubMed Central

    Agarwal, Suresh K.; Danilov, Alexey V.; Hu, Beibei; Puvvada, Soham; Gutierrez, Martin; Chien, David; Lewis, Lionel D.; Wong, Shekman L.

    2017-01-01

    Aims To examine the effect of a strong cytochrome P450 (CYP) 3A inhibitor, ketoconazole, on the pharmacokinetics, safety and tolerability of venetoclax. Methods Twelve patients with non‐Hodgkin lymphoma (NHL) were enrolled in this Phase 1, open‐label, fixed‐sequence study. Patients received a single 50 mg dose of venetoclax orally on Day 1 and Day 8, and a 400 mg once daily dose of ketoconazole on Days 5–11. Blood samples were collected predose and up to 96 h after each venetoclax dose on Day 1 and Day 8. Results Eleven patients had evaluable pharmacokinetic data and were therefore included in the statistical analyses. Compared to administration of a single 50 mg dose of venetoclax alone, ketoconazole increased the venetoclax mean maximum observed plasma concentration (C max) and area under the plasma concentration–time curve from time 0 to infinity (AUC∞) by 2.3‐fold (90% confidence interval [CI]: 2.0–2.7) and 6.4‐fold (90% CI: 4.5–9.2; range: 2‐ to 12‐fold), respectively. Conclusions Coadministration of venetoclax with multiple doses of ketoconazole resulted in a significant increase of venetoclax exposures, strongly suggesting that CYP3A plays a major role in elimination of venetoclax in patients. These results suggest the need to avoid concomitant use with strong and moderate inhibitors or inducers of CYP3A during the venetoclax ramp‐up phase in chronic lymphocytic leukaemia (CLL) patients. For patients who have completed the ramp‐up phase, a modification in venetoclax dose for use with strong and moderate inhibitors or inducers of CYP3A is recommended. PMID:27859472

  17. Effect of ketoconazole, a strong CYP3A inhibitor, on the pharmacokinetics of venetoclax, a BCL-2 inhibitor, in patients with non-Hodgkin lymphoma.

    PubMed

    Agarwal, Suresh K; Salem, Ahmed Hamed; Danilov, Alexey V; Hu, Beibei; Puvvada, Soham; Gutierrez, Martin; Chien, David; Lewis, Lionel D; Wong, Shekman L

    2017-04-01

    To examine the effect of a strong cytochrome P450 (CYP) 3A inhibitor, ketoconazole, on the pharmacokinetics, safety and tolerability of venetoclax. Twelve patients with non-Hodgkin lymphoma (NHL) were enrolled in this Phase 1, open-label, fixed-sequence study. Patients received a single 50 mg dose of venetoclax orally on Day 1 and Day 8, and a 400 mg once daily dose of ketoconazole on Days 5-11. Blood samples were collected predose and up to 96 h after each venetoclax dose on Day 1 and Day 8. Eleven patients had evaluable pharmacokinetic data and were therefore included in the statistical analyses. Compared to administration of a single 50 mg dose of venetoclax alone, ketoconazole increased the venetoclax mean maximum observed plasma concentration (C max ) and area under the plasma concentration-time curve from time 0 to infinity (AUC ∞ ) by 2.3-fold (90% confidence interval [CI]: 2.0-2.7) and 6.4-fold (90% CI: 4.5-9.2; range: 2- to 12-fold), respectively. Coadministration of venetoclax with multiple doses of ketoconazole resulted in a significant increase of venetoclax exposures, strongly suggesting that CYP3A plays a major role in elimination of venetoclax in patients. These results suggest the need to avoid concomitant use with strong and moderate inhibitors or inducers of CYP3A during the venetoclax ramp-up phase in chronic lymphocytic leukaemia (CLL) patients. For patients who have completed the ramp-up phase, a modification in venetoclax dose for use with strong and moderate inhibitors or inducers of CYP3A is recommended. © 2016 The British Pharmacological Society.

  18. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation.

    PubMed

    Liu, Yan; Wang, Yubin; Zhu, Guoqi; Sun, Jiandong; Bi, Xiaoning; Baudry, Michel

    2016-06-01

    While calpain-1 activation is required for LTP induction by theta burst stimulation (TBS), calpain-2 activation limits its magnitude during the consolidation period. A selective calpain-2 inhibitor applied either before or shortly after TBS enhanced the degree of potentiation. In the present study, we tested whether the selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I), could enhance learning and memory in wild-type (WT) and calpain-1 knock-out (C1KO) mice. We first showed that C2I could reestablish TBS-LTP in hippocampal slices from C1KO mice, and this effect was blocked by PD98059, an inhibitor of ERK. TBS resulted in PTEN degradation in hippocampal slices from both WT and C1KO mice, and C2I treatment blocked this effect in both mouse genotypes. Systemic injection of C2I 30 min before training in the fear-conditioning paradigm resulted in a biphasic dose-response curve, with low doses enhancing and high doses inhibiting freezing behavior. The difference between the doses needed to enhance and inhibit learning matches the difference in concentrations producing inhibition of calpain-2 and calpain-1. A low dose of C2I also restored normal learning in a novel object recognition task in C1KO mice. Levels of SCOP, a ERK phosphatase known to be cleaved by calpain-1, were decreased in dorsal hippocampus early but not late following training in WT mice; C2I treatment did not affect the early decrease in SCOP levels but prevented its recovery at the later time-point and prolonged ERK activation. The results indicate that calpain-2 activation limits the extent of learning, an effect possibly due to temporal limitation of ERK activation, as a result of SCOP synthesis induced by calpain-2-mediated PTEN degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The cardiovascular safety trials of DPP-4 inhibitors, GLP-1 agonists, and SGLT2 inhibitors.

    PubMed

    Secrest, Matthew H; Udell, Jacob A; Filion, Kristian B

    2017-04-01

    In this paper, we review the results of large, double-blind, placebo-controlled randomized trials mandated by the US Food and Drug Administration to examine the cardiovascular safety of newly-approved antihyperglycemic agents in patients with type 2 diabetes. The cardiovascular effects of dipeptidyl peptidase-4 (DPP-4) inhibitors remain controversial: while these drugs did not reduce or increase the risk of primary, pre-specified composite cardiovascular outcomes, one DPP-4 inhibitor (saxagliptin) increased the risk of hospitalization for heart failure in the overall population; another (alogliptin) demonstrated inconsistent effects on heart failure hospitalization across subgroups of patients, and a third (sitagliptin) demonstrated no effect on heart failure. Evidence for cardiovascular benefits of glucagon-like peptide-1 (GLP-1) agonists has been similarly heterogeneous, with liraglutide and semaglutide reducing the risk of composite cardiovascular outcomes, but lixisenatide having no reduction or increase in cardiovascular risk. The effect of GLP-1 agonists on retinopathy remains a potential concern. In the only completed trial to date to assess a sodium-glucose cotransporter-2 (SGLT2) inhibitor, empagliflozin reduced the risk of composite cardiovascular endpoints, predominantly through its impact on cardiovascular mortality and heart failure hospitalization. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Preferential Cyclooxygenase 2 Inhibitors as a Nonhormonal Method of Emergency Contraception: A Look at the Evidence.

    PubMed

    Weiss, Erich A; Gandhi, Mona

    2016-04-01

    To review the literature surrounding the use of preferential cyclooxygenase 2 (COX-2) inhibitors as an alternative form of emergency contraception. MEDLINE (1950 to February 2014) was searched using the key words cyclooxygenase or COX-2 combined with contraception, emergency contraception, or ovulation. Results were limited to randomized control trials, controlled clinical trials, and clinical trials. Human trials that measured the effects of COX inhibition on female reproductive potential were included for review. The effects of the COX-2 inhibitors rofecoxib, celecoxib, and meloxicam were evaluated in 6 trials. Each of which was small in scope, enrolled women of variable fertility status, used different dosing regimens, included multiple end points, and had variable results. Insufficient evidence exists to fully support the use of preferential COX-2 inhibitors as a form of emergency contraception. Although all trials resulted in a decrease in ovulatory cycles, outcomes varied between dosing strategies and agents used. A lack of homogeneity in these studies makes comparisons difficult. However, success of meloxicam in multiple trials warrants further study. Larger human trials are necessary before the clinical utility of this method of emergency contraception can be fully appreciated. © The Author(s) 2014.

  1. Development of Antioxidant COX-2 Inhibitors as Radioprotective Agents for Radiation Therapy—A Hypothesis-Driven Review

    PubMed Central

    Laube, Markus; Kniess, Torsten; Pietzsch, Jens

    2016-01-01

    Radiation therapy (RT) evolved to be a primary treatment modality for cancer patients. Unfortunately, the cure or relief of symptoms is still accompanied by radiation-induced side effects with severe acute and late pathophysiological consequences. Inhibitors of cyclooxygenase-2 (COX-2) are potentially useful in this regard because radioprotection of normal tissue and/or radiosensitizing effects on tumor tissue have been described for several compounds of this structurally diverse class. This review aims to substantiate the hypothesis that antioxidant COX-2 inhibitors are promising radioprotectants because of intercepting radiation-induced oxidative stress and inflammation in normal tissue, especially the vascular system. For this, literature reporting on COX inhibitors exerting radioprotective and/or radiosensitizing action as well as on antioxidant COX inhibitors will be reviewed comprehensively with the aim to find cross-points of both and, by that, stimulate further research in the field of radioprotective agents. PMID:27104573

  2. Structural Characterization of Proline-rich Tyrosine Kinase 2 (PYK2) Reveals a Unique (DFG-out) Conformation and Enables Inhibitor Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seungil; Mistry, Anil; Chang, Jeanne S.

    Proline-rich tyrosine kinase 2 (PYK2) is a cytoplasmic, non-receptor tyrosine kinase implicated in multiple signaling pathways. It is a negative regulator of osteogenesis and considered a viable drug target for osteoporosis treatment. The high-resolution structures of the human PYK2 kinase domain with different inhibitor complexes establish the conventional bilobal kinase architecture and show the conformational variability of the DFG loop. The basis for the lack of selectivity for the classical kinase inhibitor, PF-431396, within the FAK family is explained by our structural analyses. Importantly, the novel DFG-out conformation with two diarylurea inhibitors (BIRB796, PF-4618433) reveals a distinct subclass of non-receptormore » tyrosine kinases identifiable by the gatekeeper Met-502 and the unique hinge loop conformation of Leu-504. This is the first example of a leucine residue in the hinge loop that blocks the ATP binding site in the DFG-out conformation. Our structural, biophysical, and pharmacological studies suggest that the unique features of the DFG motif, including Leu-504 hinge-loop variability, can be exploited for the development of selective protein kinase inhibitors.« less

  3. Cyclooxygenase-2 inhibitors for non-small-cell lung cancer: A phase II trial and literature review.

    PubMed

    Yokouchi, Hiroshi; Kanazawa, Kenya; Ishida, Takashi; Oizumi, Satoshi; Shinagawa, Naofumi; Sukoh, Noriaki; Harada, Masao; Ogura, Shigeaki; Munakata, Mitsuru; Dosaka-Akita, Hirotoshi; Isobe, Hiroshi; Nishimura, Masaharu

    2014-09-01

    Several preclinical and clinical studies have demonstrated that cyclooxygenase-2 (COX-2) inhibitors are efficient for the treatment of non-small-cell lung cancer (NSCLC). However, two recent phase III clinical trials using COX-2 inhibitors in combination with platinum-based chemotherapy failed to demonstrate a survival benefit. Thus, validation and discussion regarding the usefulness of COX-2 inhibitors for patients with NSCLC are required. We conducted a prospective trial using COX-2 inhibitors for the treatment of 50 NSCLC patients accrued between April, 2005 and July, 2006. Patients with untreated advanced NSCLC received oral meloxicam (150 mg daily), carboplatin (area under the curve = 5 mg/ml × min on day 1) and docetaxel (60 mg/m 2 on day 1) every 3 weeks. The primary endpoint was response rate. The response and disease control rates were 36.0 and 76.0%, respectively. The time-to-progression (TTP) and overall survival (OS) were 5.7 months [95% confidence interval (CI): 4.6-6.7] and 13.7 months (95% CI: 11.4-15.9), respectively. The 1-year survival ratio was 56.0%. Grade 3 neuropathy was observed in only 1 patient. We performed tumor immunohistochemistry for COX-2 and p27 and investigated the correlation between their expression and clinical outcome. COX-2 expression in the tumor tended to correlate with a higher response rate (50.0% in the high- and 18.2% in the low-COX-2 group; P=0.092). Based on our results and previous reports, various trial designs, such as the prospective use of COX-2 inhibitors only for patients with COX-2-positive NSCLC, including the exploratory analysis of biomarkers associated with the COX-2 pathway, may be worth further consideration.

  4. Discovery of novel quinazoline-2,4(1H,3H)-dione derivatives as potent PARP-2 selective inhibitors.

    PubMed

    Zhao, Hailong; Ji, Ming; Cui, Guonan; Zhou, Jie; Lai, Fangfang; Chen, Xiaoguang; Xu, Bailing

    2017-08-01

    The PARP-2 selective inhibitor is important for clarifying specific roles of PARP-2 in the pathophysiological process and developing desired drugs with reduced off-target side effects. In this work, a series of novel quinazoline-2,4(1H,3H)-dione derivatives was designed and synthesized to explore isoform selective PARP inhibitors. As a result, compound 11a (PARP-1 IC 50 =467nM, PARP-2 IC 50 =11.5nM, selectivity PARP-1/PARP-2=40.6) was disclosed as the most selective PARP-2 inhibitor with high potency to date. The binding features of compound 11a within PARP-1 and PARP-2 were investigated respectively to provide useful insights for the further construction of new isoform selective inhibitors of PARP-1 and PARP-2 by using CDOCKER program. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Development of Matrix Metalloproteinase-2 Inhibitors for Cardioprotection

    PubMed Central

    Bencsik, Péter; Kupai, Krisztina; Görbe, Anikó; Kenyeres, Éva; Varga, Zoltán V.; Pálóczi, János; Gáspár, Renáta; Kovács, László; Weber, Lutz; Takács, Ferenc; Hajdú, István; Fabó, Gabriella; Cseh, Sándor; Barna, László; Csont, Tamás; Csonka, Csaba; Dormán, György; Ferdinandy, Péter

    2018-01-01

    The objective of our present study is to develop novel inhibitors for MMP-2 for acute cardioprotection. In a series of pilot studies, novel substituted carboxylic acid derivatives were synthesized based on imidazole and thiazole scaffolds and then tested in a screeening cascade for MMP inhibition. We found that the MMP-inhibiting effects of imidazole and thiazole carboxylic acid-based compounds are superior in efficacy in comparison to the conventional hydroxamic acid derivatives of the same molecules. Based on these results, a 568-membered focused library of imidazole and thiazole compounds was generated in silico and then the library members were docked to the 3D model of MMP-2 followed by an in vitro medium throughput screening (MTS) based on a fluorescent assay employing MMP-2 catalytic domain. Altogether 45 compounds showed a docking score of >70, from which 30 compounds were successfully synthesized. Based on the MMP-2 inhibitory tests using gelatin zymography, 7 compounds were then selected and tested in neonatal rat cardiac myocytes subjected to simulated I/R injury. Six compounds showed significant cardio-cytoprotecion and the most effective compound (MMPI-1154) significantly decreased infarct size when applied at 1 μM in an ex vivo model for acute myocardial infarction. This is the first demonstration that imidazole and thiazole carboxylic acid-based compounds are more efficacious MMP-2 inhibitor than their hydroxamic acid derivatives. MMPI-1154 is a promising novel cardio-cytoprotective imidazole-carboxylic acid MMP-2 inhibitor lead candidate for the treatment of acute myocardial infarction. PMID:29674965

  6. Role of protein kinase C alpha in endothelin-1 stimulation of cytosolic phospholipase A2 and arachidonic acid release in cultured cat iris sphincter smooth muscle cells.

    PubMed

    Husain, S; Abdel-Latif, A A

    1998-05-20

    We have investigated the role and mechanism of protein kinase C (PKC) isoforms in endothelin-1 (ET-1)-induced arachidonic acid (AA) release in cat iris sphincter smooth muscle (CISM) cells. ET-1 increased AA release in a concentration (EC50=8 nM) and time-dependent (t1/2=1.2 min) manner. Cytosolic phospholipase A2 (cPLA2), but not phospholipase C (PLC), is involved in the liberation of AA in the stimulated cells. This conclusion is supported by the findings that ET-1-induced AA release is inhibited by AACOCF3, quinacrine and manoalide, PLA2 inhibitors, but not by U-73122, a PLC inhibitor, or by RHC-80267, a diacylglycerol lipase inhibitor. A role for PKC in ET-1-induced AA release is supported by the findings that the phorbol ester, PDBu, increased AA release by 96%, that prolonged treatment of the cells with PDBu resulted in the selective down regulation of PKCalpha and the complete inhibition of ET-1-induced AA release, and that pretreatment of the cells with staurosporine or RO 31-8220, PKC inhibitors, blocked the ET-1-induced AA release. Gö-6976, a compound that inhibits PKCalpha and beta specifically, blocked ET-1-induced AA release in a concentration-dependent manner with an IC50 value of 8 nM. Thymeatoxin (0.1 microM), a specific activator of PKCalpha, beta, and gamma induced a 150% increase in AA release. Treatment of the cells with ET-1 caused significant translocation of PKCalpha, but not PKCbeta, from cytosol to the particulate fraction. These results suggest that PKCalpha plays a critical role in ET-1-induced AA release in these cells. Immunochemical analysis revealed the presence of cPLA2, p42mapk and p44mapk in the CISM cells. The data presented are consistent with a role for PKCalpha, but not for p42/p44 mitogen-activated protein kinase (MAPK), in cPLA2 activation and AA release in ET-1-stimulated CISM cells since: (i) the PKC inhibitor, RO 31-8220, inhibited ET-1-induced AA release, cPLA2 phosphorylation and cPLA2 activity, but had no inhibitory

  7. Hinnuliquinone, a C2-symmetric dimeric non-peptide fungal metabolite inhibitor of HIV-1 protease.

    PubMed

    Singh, Sheo B; Ondeyka, John G; Tsipouras, Nasios; Ruby, Carolyn; Sardana, Vinod; Schulman, Marvin; Sanchez, Manuel; Pelaez, Fernando; Stahlhut, Mark W; Munshi, Sanjeev; Olsen, David B; Lingham, Russell B

    2004-11-05

    HIV-1 protease is one of several key enzymes required for the replication and maturation of HIV-1 virus. An almost two-decade research effort by academic and pharmaceutical institutions resulted in the successful commercialization of seven drugs that are potent inhibitors of HIV-1 protease activity and which, if used correctly, are highly effective in managing viral load. However, identification of clinical viral isolates that are resistant to these drugs indicates that this is a significant problem and that new classes of inhibitors are continually needed. Screening of microbial extracts followed by bioassay-guided isolation led to the discovery of a natural hinnuliquinone, a C(2)-symmetric bis-indolyl quinone natural product that inhibited the wild-type and a clinically resistant (A44) strain of HIV-1 protease with K(i) values of 0.97 and 1.25microM, respectively. Crystallographic analysis of the inhibitor-bound HIV-1 protease helped explain the importance of the C(2)-symmetry of hinnuliquinone for activity. Details of the isolation, biological activity, and crystallographic analysis of the inhibitor-bound protease are herein described.

  8. Treatment of Tardive Dyskinesia: A General Overview with Focus on the Vesicular Monoamine Transporter 2 Inhibitors.

    PubMed

    Niemann, Nicki; Jankovic, Joseph

    2018-04-01

    Tardive dyskinesia (TD) encompasses the spectrum of iatrogenic hyperkinetic movement disorders following exposure to dopamine receptor-blocking agents (DRBAs). Despite the advent of atypical or second- and third-generation antipsychotics with a presumably lower risk of complications, TD remains a persistent and challenging problem. Prevention is the first step in mitigating the risk of TD, but early recognition, gradual withdrawal of offending medications, and appropriate treatment are also critical. As TD is often a persistent and troublesome disorder, specific antidyskinetic therapies are often needed for symptomatic relief. The vesicular monoamine transporter 2 (VMAT2) inhibitors, which include tetrabenazine, deutetrabenazine, and valbenazine, are considered the treatment of choice for most patients with TD. Deutetrabenazine-a deuterated version of tetrabenazine-and valbenazine, the purified parent product of one of the main tetrabenazine metabolites, are novel VMAT2 inhibitors and the only drugs to receive approval from the US FDA for the treatment of TD. VMAT2 inhibitors deplete presynaptic dopamine and reduce involuntary movements in many hyperkinetic movement disorders, particularly TD, Huntington disease, and Tourette syndrome. The active metabolites of the VMAT2 inhibitors have high affinity for VMAT2 and minimal off-target binding. Compared with tetrabenazine, deutetrabenazine and valbenazine have pharmacokinetic advantages that translate into less frequent dosing and better tolerability. However, no head-to-head studies have compared the various VMAT2 inhibitors. One of the major advantages of VMAT2 inhibitors over DRBAs, which are still being used by some clinicians in the treatment of some hyperkinetic disorders, including TD, is that they are not associated with the development of TD. We also briefly discuss other treatment options for TD, including amantadine, clonazepam, Gingko biloba, zolpidem, botulinum toxin, and deep brain stimulation. Treatment

  9. Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits.

    PubMed

    Reddy, Tamatam Chandramohan; Aparoy, Polamarasetty; Babu, Neela Kishore; Kumar, Kotha Anil; Kalangi, Suresh Kumar; Reddanna, Pallu

    2010-10-01

    Triphala is an Ayurvedic herbal formulation consisting of equal parts of three myrobalans: Terminalia chebula, Terminalia bellerica and Emblica officinalis. We recently reported that chebulagic acid (CA) isolated from Terminalia chebula is a potent COX-2/5-LOX dual inhibitor. In this study, compounds isolated from Terminalia bellerica were tested for inhibition against COX and 5-LOX. One of the fractionated compounds showed potent inhibition against COX enzymes with no inhibition against 5-LOX. It was identified as gallic acid (GA) by LC-MS, NMR and IR analyses. We report here the inhibitory effects of GA, with an IC(50) value of 74 nM against COX-2 and 1500 nM for COX-1, showing ≈20 fold preference towards COX-2. Further docking studies revealed that GA binds in the active site of COX-2 at the non-steroidal anti-inflammatory drug (NSAID) binding site. The carboxylate moiety of GA interacts with Arg120 and Glu524. Based on substrate dependent kinetics, GA was found to be a competitive inhibitor of both COX-1 and COX-2, with more affinity towards COX-2. Taken together, our studies indicate that GA is a selective inhibitor of COX-2. Being a small natural product with selective and reversible inhibition of COX-2, GA would form a lead molecule for developing potent anti-inflammatory drug candidates.

  10. Effects of Incretin-Based Therapies and SGLT2 Inhibitors on Skeletal Health.

    PubMed

    Egger, Andrea; Kraenzlin, Marius E; Meier, Christian

    2016-12-01

    Anti-diabetic drugs are widely used and are essential for adequate glycemic control in patients with type 2 diabetes. Recently, marketed anti-diabetic drugs include incretin-based therapies (GLP-1 receptor agonists and DPP-4 inhibitors) and sodium-glucose co-transporter 2 (SGLT2) inhibitors. In contrast to well-known detrimental effects of thiazolidinediones on bone metabolism and fracture risk, clinical data on the safety of incretin-based therapies is limited. Based on meta-analyses of trials investigating the glycemic-lowering effect of GLP-1 receptor agonists and DPP4 inhibitors, it seems that incretin-based therapies are not associated with an increase in fracture risk. Sodium-glucose co-transporter 2 inhibitors may alter calcium and phosphate homeostasis as a result of secondary hyperparathyroidism induced by increased phosphate reabsorption. Although these changes may suggest detrimental effects of SGLT-2 inhibitors on skeletal integrity, treatment-related direct effects on bone metabolism seem unlikely. Observed changes in BMD, however, seem to result from increased bone turnover in the early phase of drug-induced weight loss. Fracture risk, which is observed in older patients with impaired renal function and elevated cardiovascular disease risk treated with SGLT2 inhibitors, seems to be independent of direct effects on bone but more likely to be associated with falls and changes in hydration status secondary to osmotic diuresis.

  11. Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor.

    PubMed

    Whittaker, Steven R; Barlow, Clare; Martin, Mathew P; Mancusi, Caterina; Wagner, Steve; Self, Annette; Barrie, Elaine; Te Poele, Robert; Sharp, Swee; Brown, Nathan; Wilson, Stuart; Jackson, Wayne; Fischer, Peter M; Clarke, Paul A; Walton, Michael I; McDonald, Edward; Blagg, Julian; Noble, Martin; Garrett, Michelle D; Workman, Paul

    2018-03-01

    Deregulation of the cyclin-dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimized from the purine template of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell lines. X-ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) phosphorylation, reduced phosphorylation of RNA polymerase II, and induction of cell cycle arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to other small-molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 treatment and this associates with synergistic antiproliferative activity after combined treatment with CCT068127 and ABT263, a BCL2 family inhibitor. These findings support the rational combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of human cancer. © 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

  12. Sodium-glucose co-transporter type 2 inhibitors reduce evening home blood pressure in type 2 diabetes with nephropathy.

    PubMed

    Takenaka, Tsuneo; Kishimoto, Miyako; Ohta, Mari; Tomonaga, Osamu; Suzuki, Hiromichi

    2017-05-01

    The effects of sodium-glucose co-transporter type 2 inhibitors on home blood pressure were examined in type 2 diabetes with nephropathy. The patients with diabetic nephropathy were screened from medical records in our hospitals. Among them, 52 patients who measured home blood pressure and started to take sodium-glucose co-transporter type 2 inhibitors were selected. Clinical parameters including estimated glomerular filtration rate, albuminuria and home blood pressure for 6 months were analysed. Sodium-glucose co-transporter type 2 inhibitors (luseogliflozin 5 mg/day or canagliflozin 100 mg/day) reduced body weight, HbA1c, albuminuria, estimated glomerular filtration rate and office blood pressure. Although sodium-glucose co-transporter type 2 inhibitors did not alter morning blood pressure, it reduced evening systolic blood pressure. Regression analyses revealed that decreases in evening blood pressure predicted decrements in albuminuria. The present data suggest that sodium-glucose co-transporter type 2 inhibitors suppress sodium overload during daytime to reduce evening blood pressure and albuminuria.

  13. Pharmacokinetics, Pharmacodynamics and Clinical Use of SGLT2 Inhibitors in Patients with Type 2 Diabetes Mellitus and Chronic Kidney Disease.

    PubMed

    Scheen, André J

    2015-07-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) are proposed as a novel approach for the management of type 2 diabetes mellitus. SGLT2 cotransporters are responsible for reabsorption of 90 % of the glucose filtered by the kidney. The glucuretic effect resulting from SGLT2 inhibition contributes to reduce hyperglycaemia and also assists weight loss and blood pressure reduction. Several SGLT2 inhibitors are already available in many countries (dapagliflozin, canagliflozin, empagliflozin) and in Japan (ipragliflozin, tofogliflozin). These SGLT2 inhibitors share similar pharmacokinetic characteristics with a rapid oral absorption, a long elimination half-life allowing once-daily administration, an extensive hepatic metabolism mainly via glucuronidation to inactive metabolites and a low renal elimination as a parent drug. Pharmacokinetic parameters are slightly altered in the case of chronic kidney disease (CKD). While no dose adjustment is required in the case of mild CKD, SGLT2 inhibitors may not be used or only at a lower daily dose in patients with moderate CKD. Furthermore, the pharmacodynamic response to SGLT2 inhibitors as assessed by urinary glucose excretion declines with increasing severity of renal impairment as assessed by a reduction in the estimated glomerular filtration rate. Nevertheless, the glucose-lowering efficacy and safety of SGLT2 inhibitors are almost comparable in patients with mild CKD as in patients with normal kidney function. In patients with moderate CKD, the efficacy tends to be dampened and safety concerns may occur. In patients with severe CKD, the use of SGLT2 inhibitors is contraindicated. Thus, prescribing information should be consulted regarding dosage adjustments or restrictions in the case of renal dysfunction for each SGLT2 inhibitor. The clinical impact of SGLT2 inhibitors on renal function and their potential to influence the course of diabetic nephropathy deserve attention because of preliminary favourable results

  14. DPP-4 inhibitor therapy and bone fractures in people with Type 2 diabetes - A systematic review and meta-analysis.

    PubMed

    Mamza, Jil; Marlin, Carol; Wang, Cai; Chokkalingam, Kamal; Idris, Iskandar

    2016-06-01

    Fracture risk is higher in older adults with Type 2 diabetes mellitus (T2DM). Oral glucose-lowering medications have different effects on bone metabolism. The purpose of this study is to appraise the evidence from literature and determine the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor on the risk of developing bone fractures. Using Boolean search terms, the search strategy combined synonyms of 'fracture' and 'DPP-4 inhibitor'. Comprehensive electronic databases which include EMBASE, MEDLINE, the EMA and the WHO ICTRP databases were searched for randomised controlled trial (RCT) studies which compared a DPP-4 inhibitor with an active comparator or placebo amongst patients with T2DM. Meta-analysis was performed to compare DPP-4 inhibitor with either an active comparator or a placebo. The outcome measure was the presence or absence of fracture. The search yielded 5061 records relating to fractures and DPP-4 inhibitor, from which 51 eligible RCTs were selected for meta-analysis (N=36,402). Thirty-seven (37) studies compared DPP-4 inhibitor with placebo (n=23,974), while fourteen (14) studies (n=12,428) compared DPP-4 inhibitor with an active comparator. The mean age of patients was 57.5±5.4years, the average glycated haemoglobin (HbA1c) was 8.2%, while the average BMI was 30±2kg/m(2). Overall, there was no significant association of fracture events with the use of DPP-4 inhibitor when compared with placebo (OR; 0.82, 95% CI 0.57-1.16, P=0.9) or when DPP-4 inhibitor was compared against an active comparator (OR; 1.59, 95% CI 0.91-2.80, P=0.9). This study offers a larger, up-to-date review of the subject. The meta-analysis showed that there was no significant association between DPP-4 inhibitor use and the incidence of fractures. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Prostaglandins induce vasodilatation of the microvasculature during muscle contraction and induce vasodilatation independent of adenosine

    PubMed Central

    Murrant, Coral L; Dodd, Jason D; Foster, Andrew J; Inch, Kristin A; Muckle, Fiona R; Ruiz, Della A; Simpson, Jeremy A; Scholl, Jordan H P

    2014-01-01

    Blood flow data from contracting muscle in humans indicates that adenosine (ADO) stimulates the production of nitric oxide (NO) and vasodilating prostaglandins (PG) to produce arteriolar vasodilatation in a redundant fashion such that when one is inhibited the other can compensate. We sought to determine whether these redundant mechanisms are employed at the microvascular level. First, we determined whether PGs were involved in active hyperaemia at the microvascular level. We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of 2A arterioles (maximum diameter 40 μm, third arteriolar level up from the capillaries) at a site of overlap with the stimulated muscle fibres before and after 2 min of contraction [stimulus frequencies: 4, 20 and 60 Hz at 15 contractions per minute (CPM) or contraction frequencies of 6, 15 or 60 CPM at 20 Hz; 250 ms train duration]. Muscle fibres were stimulated in the absence and presence of the phospholipase A2 inhibitor quinacrine. Further, we applied a range of concentrations of ADO (10−7–10−5 m) extraluminally, (to mimic muscle contraction) in the absence and presence of l-NAME (NO synthase inhibitor), indomethacin (INDO, cyclooxygenase inhibitor) and l-NAME + INDO and observed the response of 2A arterioles. We repeated the latter experiment on a different level of the cremaster microvasculature (1A arterioles) and on the microvasculature of a different skeletal muscle (gluteus maximus, 2A arterioles). We observed that quinacrine inhibited vasodilatation during muscle contraction at intermediate and high contraction frequencies (15 and 60 CPM). l-NAME, INDO and l-NAME + INDO were not effective at inhibiting vasodilatation induced by any concentration of ADO tested in 2A and 1A arterioles in the cremaster muscle or 2A arterioles in the gluteus maximus muscle. Our data show that PGs are involved in the vasodilatation of the microvasculature

  16. Prostaglandins induce vasodilatation of the microvasculature during muscle contraction and induce vasodilatation independent of adenosine.

    PubMed

    Murrant, Coral L; Dodd, Jason D; Foster, Andrew J; Inch, Kristin A; Muckle, Fiona R; Ruiz, Della A; Simpson, Jeremy A; Scholl, Jordan H P

    2014-03-15

    Blood flow data from contracting muscle in humans indicates that adenosine (ADO) stimulates the production of nitric oxide (NO) and vasodilating prostaglandins (PG) to produce arteriolar vasodilatation in a redundant fashion such that when one is inhibited the other can compensate. We sought to determine whether these redundant mechanisms are employed at the microvascular level. First, we determined whether PGs were involved in active hyperaemia at the microvascular level. We stimulated four to five skeletal muscle fibres in the anaesthetized hamster cremaster preparation in situ and measured the change in diameter of 2A arterioles (maximum diameter 40 μm, third arteriolar level up from the capillaries) at a site of overlap with the stimulated muscle fibres before and after 2 min of contraction [stimulus frequencies: 4, 20 and 60 Hz at 15 contractions per minute (CPM) or contraction frequencies of 6, 15 or 60 CPM at 20 Hz; 250 ms train duration]. Muscle fibres were stimulated in the absence and presence of the phospholipase A2 inhibitor quinacrine. Further, we applied a range of concentrations of ADO (10(-7)-10(-5) M) extraluminally, (to mimic muscle contraction) in the absence and presence of L-NAME (NO synthase inhibitor), indomethacin (INDO, cyclooxygenase inhibitor) and L-NAME + INDO and observed the response of 2A arterioles. We repeated the latter experiment on a different level of the cremaster microvasculature (1A arterioles) and on the microvasculature of a different skeletal muscle (gluteus maximus, 2A arterioles). We observed that quinacrine inhibited vasodilatation during muscle contraction at intermediate and high contraction frequencies (15 and 60 CPM). L-NAME, INDO and L-NAME + INDO were not effective at inhibiting vasodilatation induced by any concentration of ADO tested in 2A and 1A arterioles in the cremaster muscle or 2A arterioles in the gluteus maximus muscle. Our data show that PGs are involved in the vasodilatation of the microvasculature in

  17. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system.

    PubMed

    Schernthaner, Guntram; Mogensen, Carl Erik; Schernthaner, Gerit-Holger

    2014-09-01

    Diabetic nephropathy (DN) affects an estimated 20%-40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. © The Author(s) 2014.

  18. The effects of GLP-1 analogues, DPP-4 inhibitors and SGLT2 inhibitors on the renal system

    PubMed Central

    Mogensen, Carl Erik; Schernthaner, Gerit-Holger

    2014-01-01

    Diabetic nephropathy (DN) affects an estimated 20%–40% of patients with type 2 diabetes mellitus (T2DM). Key modifiable risk factors for DN are albuminuria, anaemia, dyslipidaemia, hyperglycaemia and hypertension, together with lifestyle factors, such as smoking and obesity. Early detection and treatment of these risk factors can prevent DN or slow its progression, and may even induce remission in some patients. DN is generally preceded by albuminuria, which frequently remains elevated despite treatment in patients with T2DM. Optimal treatment and prevention of DN may require an early, intensive, multifactorial approach, tailored to simultaneously target all modifiable risk factors. Regular monitoring of renal function, including urinary albumin excretion, creatinine clearance and glomerular filtration rate, is critical for following any disease progression and making treatment adjustments. Dipeptidyl peptidase (DPP)-4 inhibitors and sodium-glucose cotransporter 2 (SGLT2) inhibitors lower blood glucose levels without additional risk of hypoglycaemia, and may also reduce albuminuria. Further investigation of the potential renal benefits of DPP-4 and SGLT2 inhibitors is underway. PMID:25116004

  19. CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms

    PubMed Central

    Tyner, Jeffrey W.; Bumm, Thomas G.; Deininger, Jutta; Wood, Lisa; Aichberger, Karl J.; Loriaux, Marc M.; Druker, Brian J.; Burns, Christopher J.; Fantino, Emmanuelle

    2010-01-01

    Activating alleles of Janus kinase 2 (JAK2) such as JAK2V617F are central to the pathogenesis of myeloproliferative neoplasms (MPN), suggesting that small molecule inhibitors targeting JAK2 may be therapeutically useful. We have identified an aminopyrimidine derivative (CYT387), which inhibits JAK1, JAK2, and tyrosine kinase 2 (TYK2) at low nanomolar concentrations, with few additional targets. Between 0.5 and 1.5μM CYT387 caused growth suppression and apoptosis in JAK2-dependent hematopoietic cell lines, while nonhematopoietic cell lines were unaffected. In a murine MPN model, CYT387 normalized white cell counts, hematocrit, spleen size, and restored physiologic levels of inflammatory cytokines. Despite the hematologic responses and reduction of the JAK2V617F allele burden, JAK2V617F cells persisted and MPN recurred upon cessation of treatment, suggesting that JAK2 inhibitors may be unable to eliminate JAK2V617F cells, consistent with preliminary results from clinical trials of JAK2 inhibitors in myelofibrosis. While the clinical benefit of JAK2 inhibitors may be substantial, not the least due to reduction of inflammatory cytokines and symptomatic improvement, our data add to increasing evidence that kinase inhibitor monotherapy of malignant disease is not curative, suggesting a need for drug combinations to optimally target the malignant cells. PMID:20385788

  20. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors in type 2 diabetes: a meta-analysis of randomized controlled trials for 1 to 2years.

    PubMed

    Liu, Xiang-Yang; Zhang, Ning; Chen, Rui; Zhao, Jia-Guo; Yu, Pei

    2015-01-01

    To evaluate the mid long-term efficacy and safety of sodium-glucose cotransporter 2 (SGLT2) inhibitors in adults with type 2 diabetes mellitus (T2DM). Three databases including Pubmed, Embase, and Cochrane Library were searched for randomized controlled trials (RCTs) of SGLT2 inhibitors that lasted for at least 52weeks. Two reviewers retrieved the literature and evaluated study quality using the Modified Jadad Score Scale. The outcome measures were pooled using random or fixed effects models. Fourteen articles of 13 RCTs were included in this meta-analysis. Compared to a placebo, the SGLT2 inhibitors significantly reduced glycated hemoglobin (HbA1c) [for 1year result, weighted mean differences (WMDs): -0.491%; 95% confidence intervals (CIs): -0.573 to -0.410; I(2)=39.9%, for 2years result, WMD: -0.503%; 95% CI: -0.742 to -0.265; I(2)=70.7%], fasting plasma glucose (FPG) (for 1year result, WMD: -0.809; 95% CI: -0.858 to -0.761; I(2)=56.4%; for 2years result, WMD: -0.764; 95% CI: -1.026 to -0.501; I(2)=39.4%), body weight (BW) (for 1year result, WMD: -2.477; 95% CI: -2.568 to -2.385; I(2)=0.0%; for 2years result, WMD: -2.990; 95% CI: -3.642 to -2.337; I(2)=0.0%), systolic blood pressure (SBP) (for 1year result, WMD: -2.874; 95% CI: -4.528 to -1.220; I(2)=98.1%; for 2years result, WMD: -7.500; 95% CI: -7.698 to -7.302) and diastolic blood pressure (DBP) (for 1year result, WMD: -1.950; 95% CI: -2.890 to -1.010; I(2)=98.0%; for 2years result, WMD: -2.197; 95% CI: -3.112 to -1.283). Compared to oral antidiabetic drugs (OADs), the SGLT2 inhibitors also reduced HbA1c, FPG, BW, SBP and DBP significantly. Compared to a placebo, the SGLT2 inhibitors increase the risk of hypoglycemia [odds ratios (ORs): 1.214; 95% CI: 1.036 to 1.423; I(2)=47.7%], urinary infection (OR: 1.477; 95% CI: 1.172 to 1.861; I(2)=46.6%) and genital tract infections (OR: 4.196; 95% CI: 2.332 to 7.549; I(2)=52.7%). Compared to OADs, SGLT2 inhibitors showed a remarkable reduction of hypoglycemia incidence

  1. Atomic analysis of protein-protein interfaces with known inhibitors: the 2P2I database.

    PubMed

    Bourgeas, Raphaël; Basse, Marie-Jeanne; Morelli, Xavier; Roche, Philippe

    2010-03-09

    In the last decade, the inhibition of protein-protein interactions (PPIs) has emerged from both academic and private research as a new way to modulate the activity of proteins. Inhibitors of these original interactions are certainly the next generation of highly innovative drugs that will reach the market in the next decade. However, in silico design of such compounds still remains challenging. Here we describe this particular PPI chemical space through the presentation of 2P2I(DB), a hand-curated database dedicated to the structure of PPIs with known inhibitors. We have analyzed protein/protein and protein/inhibitor interfaces in terms of geometrical parameters, atom and residue properties, buried accessible surface area and other biophysical parameters. The interfaces found in 2P2I(DB) were then compared to those of representative datasets of heterodimeric complexes. We propose a new classification of PPIs with known inhibitors into two classes depending on the number of segments present at the interface and corresponding to either a single secondary structure element or to a more globular interacting domain. 2P2I(DB) complexes share global shape properties with standard transient heterodimer complexes, but their accessible surface areas are significantly smaller. No major conformational changes are seen between the different states of the proteins. The interfaces are more hydrophobic than general PPI's interfaces, with less charged residues and more non-polar atoms. Finally, fifty percent of the complexes in the 2P2I(DB) dataset possess more hydrogen bonds than typical protein-protein complexes. Potential areas of study for the future are proposed, which include a new classification system consisting of specific families and the identification of PPI targets with high druggability potential based on key descriptors of the interaction. 2P2I database stores structural information about PPIs with known inhibitors and provides a useful tool for biologists to assess

  2. Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease.

    PubMed

    Schüller, Andreas; Yin, Zheng; Brian Chia, C S; Doan, Danny N P; Kim, Hyeong-Kyu; Shang, Luqing; Loh, Teck Peng; Hill, Jeffery; Vasudevan, Subhash G

    2011-10-01

    A series of tripeptide aldehyde inhibitors were synthesized and their inhibitory effect against dengue virus type 2 (DENV2) and West Nile virus (WNV) NS3 protease was evaluated side by side with the aim to discover potent flaviviral protease inhibitors and to examine differences in specificity of the two proteases. The synthesized inhibitors feature a varied N-terminal cap group and side chain modifications of a P2-lysine residue. In general a much stronger inhibitory effect of the tripeptide inhibitors was observed toward WNV protease. The inhibitory concentrations against DENV2 protease were in the micromolar range while they were submicromolar against WNV. The data suggest that a P2-arginine shifts the specificity toward DENV2 protease while WNV protease favors a lysine in the P2 position. Peptides with an extended P2-lysine failed to inhibit DENV2 protease suggesting a size-constrained S2 pocket. Our results generally encourage the investigation of di- and tripeptide aldehydes as inhibitors of DENV and WNV protease. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Discovery of Potent and Specific Dihydroisoxazole Inhibitors of Human Transglutaminase 2

    PubMed Central

    2015-01-01

    Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme that catalyzes the posttranslational modification of glutamine residues on protein or peptide substrates. A growing body of literature has implicated aberrantly regulated activity of TG2 in the pathogenesis of various human inflammatory, fibrotic, and other diseases. Taken together with the fact that TG2 knockout mice are developmentally and reproductively normal, there is growing interest in the potential use of TG2 inhibitors in the treatment of these conditions. Targeted-covalent inhibitors based on the weakly electrophilic 3-bromo-4,5-dihydroisoxazole (DHI) scaffold have been widely used to study TG2 biology and are well tolerated in vivo, but these compounds have only modest potency, and their selectivity toward other transglutaminase homologues is largely unknown. In the present work, we first profiled the selectivity of existing inhibitors against the most pertinent TG isoforms (TG1, TG3, and FXIIIa). Significant cross-reactivity of these small molecules with TG1 was observed. Structure–activity and −selectivity analyses led to the identification of modifications that improved potency and isoform selectivity. Preliminary pharmacokinetic analysis of the most promising analogues was also undertaken. Our new data provides a clear basis for the rational selection of dihydroisoxazole inhibitors as tools for in vivo biological investigation. PMID:25333388

  4. The Role of the Kidney and SGLT2 Inhibitors in Type 2 Diabetes.

    PubMed

    Katz, Pamela M; Leiter, Lawrence A

    2015-12-01

    Effective glycemic control reduces the risk for diabetes-related complications. However, the majority of patients with type 2 diabetes still do not achieve glycemic targets. Beyond metformin therapy, current practice guidelines for the management of type 2 diabetes recommend individualized treatment based on patient and agent characteristics. The sodium glucose cotransporter type 2 (SGLT2) inhibitors represent a novel treatment strategy, independent of impaired beta-cell function and insulin resistance. SGLT2 inhibitors decrease renal glucose reabsorption, thereby increasing urinary glucose excretion with subsequent reduction in plasma glucose levels and glycosylated hemoglobin concentrations. Current evidence suggests that they are effective as monotherapy or as add-ons to metformin either alone, or in combination with other oral glucose-lowering agents or insulin. They are generally well tolerated, though rates of lower urinary tract and genital mycotic infections are slightly increased. The advantages of this class include modest reductions in body weight and blood pressure, and low risk for hypoglycemia. Long-term safety data and results of ongoing cardiovascular outcome studies are awaited so we can fully understand the role that SGLT2 inhibitors will play in the comprehensive management of type 2 diabetes. Copyright © 2015 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  5. SGLT2 inhibitors in the pipeline for the treatment of diabetes mellitus in Japan.

    PubMed

    Ito, Hiroyuki; Shinozaki, Masahiro; Nishio, Shinya; Abe, Mariko

    2016-10-01

    Sodium glucose cotransporter 2 (SGLT2) inhibitors have been available for the treatment of type 2 diabetes (T2DM) in Japan since April 2014. The prescription rate in Japan is low in comparison to Western countries. We summarize the results obtained from the phase 3 clinical trials and clinical studies involving Japanese T2DM patients. We also discuss the current situation and the future prospects of SGLT2 inhibitors in Japan. Unexpected adverse events, such as cerebral infarction and diabetic ketoacidosis have been reported from clinics shortly after the initiation of SGLT2 inhibitor treatment. However, the reductions in blood glucose levels and body weight have been demonstrated in phase 3 trials using 6 types of SGLT2 inhibitors, while observational studies of Japanese T2DM patients, which were performed in the clinical setting, showed that the incidence of adverse drug reactions, such as severe hypoglycemia, was low. SGLT2 inhibitors are also considered to be effective for treating Japanese patients with T2DM. When prescribing SGLT2 inhibitors, it is necessary to ensure that they are used appropriately because the Japanese T2DM patient population has a high proportion of elderly individuals and a high incidence of cerebrovascular disease.

  6. Involvement of PLA2, COX and LOX in Rhinella arenarum oocyte maturation.

    PubMed

    Ortiz, Maria Eugenia; Bühler, Marta Inés; Zelarayán, Liliana Isabel

    2014-11-01

    In Rhinella arenarum, progesterone is the physiological nuclear maturation inducer that interacts with the oocyte surface and starts a cascade of events that leads to germinal vesicle breakdown (GVBD). Polyunsaturated fatty acids and their metabolites produced through cyclooxygenase (COX) and lipoxygenase (LOX) pathways play an important role in reproductive processes. In amphibians, to date, the role of arachidonic acid (AA) metabolites in progesterone (P4)-induced oocyte maturation has not been clarified. In this work we studied the participation of three enzymes involved in AA metabolism - phospholipase A2 (PLA2), COX and LOX in Rhinella arenarum oocyte maturation. PLA2 activation induced maturation in Rhinella arenarum oocytes in a dose-dependent manner. Oocytes when treated with 0.08 μM melittin showed the highest response (78 ± 6% GVBD). In follicles, PLA2 activation did not significantly induce maturation at the assayed doses (12 ± 3% GVBD). PLA2 inhibition with quinacrine prevented melittin-induced GVBD in a dose-dependent manner, however PLA2 inactivation did not affect P4-induced maturation. This finding suggests that PLA2 is not the only phospholipase involved in P4-induced maturation in this species. P4-induced oocyte maturation was inhibited by the COX inhibitors indomethacin and rofecoxib (65 ± 3% and 63 ± 3% GVBD, respectively), although COX activity was never blocked by their addition. Follicles showed a similar response following the addition of these inhibitors. Participation of LOX metabolites in maturation seems to be correlated with seasonal variation in ovarian response to P4. During the February to June period (low P4 response), LOX inhibition by nordihydroguaiaretic acid or lysine clonixinate increased maturation by up to 70%. In contrast, during the July to January period (high P4 response), LOX inhibition had no effect on hormone-induced maturation.

  7. Inhibition of bacterial multidrug resistance by celecoxib, a cyclooxygenase-2 inhibitor.

    PubMed

    Kalle, Arunasree M; Rizvi, Arshad

    2011-01-01

    Multidrug resistance (MDR) is a major problem in the treatment of infectious diseases and cancer. Accumulating evidence suggests that the cyclooxygenase-2 (COX-2)-specific inhibitor celecoxib would not only inhibit COX-2 but also help in the reversal of drug resistance in cancers by inhibiting the MDR1 efflux pump. Here, we demonstrate that celecoxib increases the sensitivity of bacteria to the antibiotics ampicillin, kanamycin, chloramphenicol, and ciprofloxacin by accumulating the drugs inside the cell, thus reversing MDR in bacteria.

  8. Prospect of JAK2 inhibitor therapy in myeloproliferative neoplasms

    PubMed Central

    Atallah, Ehab; Verstovsek, Srdan

    2016-01-01

    The discovery of the Janus kinase (JAK)2 V617F mutation in patients with myeloproliferative neoplasms was a major milestone in understanding the biology of those disorders. Several groups simultaneously reported on the high incidence of this mutation in patients with myeloproliferative neoplasms: almost all patients with polycythemia vera harbor the mutation and about 50% of patients with essential thrombocythemia and primary myelofibrosis have the mutation, making the development of JAK2 tyrosine kinase inhibitors an attractive therapeutic goal. In addition, inhibition of JAK2 kinase may have a therapeutic role in other hematologic malignancies, such as chronic myeloid leukemia or lymphoma. A number of molecules that inhibit JAK2 kinase have been described in the literature, and several are being evaluated in a clinical setting. Here, we summarize current clinical experience with JAK2 inhibitors. PMID:19445582

  9. Paroxetine Is a Direct Inhibitor of G Protein-Coupled Receptor Kinase 2 and Increases Myocardial Contractility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Homan, Kristoff T.; Chen, Jun

    2012-08-10

    G protein-coupled receptor kinase 2 (GRK2) is a well-established therapeutic target for the treatment of heart failure. In this paper we identify the selective serotonin reuptake inhibitor (SSRI) paroxetine as a selective inhibitor of GRK2 activity both in vitro and in living cells. In the crystal structure of the GRK2·paroxetine–Gβγ complex, paroxetine binds in the active site of GRK2 and stabilizes the kinase domain in a novel conformation in which a unique regulatory loop forms part of the ligand binding site. Isolated cardiomyocytes show increased isoproterenol-induced shortening and contraction amplitude in the presence of paroxetine, and pretreatment of mice withmore » paroxetine before isoproterenol significantly increases left ventricular inotropic reserve in vivo with no significant effect on heart rate. Neither is observed in the presence of the SSRI fluoxetine. Our structural and functional results validate a widely available drug as a selective chemical probe for GRK2 and represent a starting point for the rational design of more potent and specific GRK2 inhibitors.« less

  10. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors.

    PubMed

    Oliva, Raymond V; Bakris, George L

    2014-05-01

    Management of hypertension in diabetes is critical for reduction of cardiovascular mortality and morbidity. While blood pressure (BP) control has improved over the past two decades, the control rate is still well below 50% in the general population of patients with type 2 diabetes mellitus (T2DM). A new class of oral glucose-lowering agents has recently been approved; the sodium-glucose co-transporter 2 (SGLT2) inhibitors, which act by eliminating large amounts of glucose in the urine. Two agents, dapagliflozin and canagliflozin, are currently approved in the United States and Europe, and empagliflozin and ipragliflozin have reported Phase 3 trials. In addition to glucose lowering, SGLT2 inhibitors are associated with weight loss and act as osmotic diuretics, resulting in a lowering of BP. While not approved for BP-lowering, they may potentially aid BP goal achievement in people within 7-10 mm Hg of goal. It should be noted that the currently approved agents have side effects that include an increased incidence of genital infections, predominantly in women. The approved SGLT2 inhibitors have limited use based on kidney function and should be used only in those with an estimated glomerular filtration rate (eGFR) > 60 mL/min/1.73 m2 for dapagliflozin and ≥45 mL/min/1.73 m2 for canagliflozin. Cardiovascular outcome trials are ongoing with these agents and will be completed within the next 4-5 years. Copyright © 2014 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  11. Synthesis of 5-(ethylsulfonyl)-2-methoxyaniline: An important pharmacological fragment of VEGFR2 and other inhibitors

    PubMed Central

    Murár, Miroslav; Addová, Gabriela

    2013-01-01

    Summary Background: 5-(Ethylsulfonyl)-2-methoxyaniline (5) is part of the structure in 131 compounds possessing different biological activities. In most cases, they have antitumor properties (112 compounds). Other compounds are described as cardiovascular agents, ion-channel blockers, nervous-system blockers, anti-inflammatory agents, or antidiabetic, antiosteoporotic and hypolipemic species. Compound 5 is a precursor of different protein-kinase inhibitors or enzyme modulators (EGFR, PDGFR, ckit, CDK 2 and 4, MMPs 2, 3, 9 and 13, etc.). The structure of 5 represents a fragment for several powerful inhibitors of VEGFR2, a key angiogenic receptor. Antiangiogenic inhibitors slow down or stop new blood-vessel formation from pre-existing vasculature. Some antiangiogenic drugs inhibiting the VEGFR2 receptor are successfully used in clinics for the treatment of several types of tumours in synergy with chemotherapy (e.g., Nexavar® from Bayer, Sutent® from Pfizer and Votrient® from GlaxoSmithKline, approved by the FDA in 2005, 2006 and 2009, respectively). The structure of 5 is an important pharmacophoric fragment of potent VEGFR2 inhibitors (e.g., AAZ from PDB complex 1Y6A, enzymatic IC50 = 22 nM). Up to now, 25 VEGFR2 inhibitors possessing a fragment of 5 can be found in the literature. Despite the high significance of 5-(ethylsulfonyl)-2-methoxyaniline (5) its preparation has not yet been described. Results: Here we have developed a convenient synthesis of important polyheterosubstituted aniline 5 starting from commercially available 4-methoxybenzene-1-sulfonyl chloride (1) in four steps and 59% overall yield. The target 5-(ethylsulfonyl)-2-methoxyaniline (5) and its synthetic intermediates 2–4 together with a new compound 5-(ethylsulfonyl)-2-methoxy-1,3-dinitrobenzene (4a) have been precisely physicochemically characterised. PMID:23399884

  12. Indomethacin but not a selective cyclooxygenase-2 inhibitor inhibits esophageal adenocarcinogenesis in rats

    PubMed Central

    Esquivias, Paula; Morandeira, Antonio; Escartín, Alfredo; Cebrián, Carmelo; Santander, Sonia; Esteva, Francisco; García-González, María Asunción; Ortego, Javier; Lanas, Angel; Piazuelo, Elena

    2012-01-01

    AIM: To evaluate the effects of indomethacin [dual cyclooxygenase (COX)-1/COX-2 inhibitor] and 3-(3,4-difluorophenyl)-4-(4-(methylsulfonyl) phenyl)-2-(5H)-furanone (MF-tricyclic) (COX-2 selective inhibitor) in a rat experimental model of Barrett’s esophagus and esophageal adenocarcinoma. METHODS: A total of 112 surviving post-surgery rats were randomly divided into three groups: the control group (n = 48), which did not receive any treatment; the indomethacin group (n = 32), which were given 2 mg/kg per day of the COX-1/COX-2 inhibitor; and the MF-tricyclic group (n = 32), which received 10 mg/kg per day of the selective COX-2 inhibitor. Randomly selected rats were killed either 8 wk or 16 wk after surgery. The timing of the deaths was in accordance with a previous study performed in our group. Only rats that were killed at the times designated by the protocol were included in the study. We then assessed the histology and prostaglandin E2 (PGE2) expression levels in the rat esophagi. An additional group of eight animals that did not undergo esophagojejunostomy were included in order to obtain normal esophageal tissue as a control. RESULTS: Compared to a control group with no treatment (vehicle-treated rats), indomethacin treatment was associated with decreases in ulcerated esophageal mucosa (16% vs 35% and 14% vs 17%, 2 mo and 4 mo after surgery, respectively; P = 0.021), length of intestinal metaplasia in continuity with anastomosis (2 ± 1.17 mm vs 2.29 ± 0.75 mm and 1.25 ± 0.42 mm vs 3.5 ± 1.54 mm, 2 mo and 4 mo after surgery, respectively; P = 0.007), presence of intestinal metaplasia beyond anastomosis (20% vs 71.4% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P = 0.009), severity of dysplasia (0% vs 71.4% and 20% vs 85.7% high-grade dysplasia, 2 mo and 4 mo after surgery, respectively; P = 0.002), and adenocarcinoma incidence (0% vs 57.1% and 0% vs 60%, 2 mo and 4 mo after surgery, respectively; P < 0.0001). Treatment with the selective COX

  13. New tools for carbohydrate sulphation analysis: Heparan Sulphate 2- O -sulphotransferase (HS2ST) is a target for small molecule protein kinase inhibitors.

    PubMed

    Byrne, Dominic P; Li, Yong; Ramakrishnan, Krithika; Barsukov, Igor L; Yates, Edwin A; Eyers, Claire E; Papy-Garcia, Dulcé; Chantepie, Sandrine; Pagadala, Vijayakanth; Lu, Jian; Wells, Carrow; Drewry, David H; Zuercher, William J; Berry, Neil G; Fernig, David G; Eyers, Patrick A

    2018-06-22

    Sulphation of carbohydrate residues occurs on a variety of glycans destined for secretion, and this modification is essential for efficient matrix-based signal transduction. Heparan sulphate (HS) glycosaminoglycans control physiological functions ranging from blood coagulation to cell proliferation. HS biosynthesis involves membrane-bound Golgi sulphotransferases, including heparan sulphate 2- O -sulphotransferase (HS2ST), which transfers sulphate from the co-factor PAPS (3'-phosphoadenosine 5'-phosphosulphate) to the 2- O  position of a-L-iduronate in the maturing polysaccharide chain. The current lack of simple non-radioactive enzyme assays that can be used to quantify the levels of carbohydrate sulphation hampers kinetic analysis of this process and the discovery of HS2ST inhibitors.  In this paper, we describe a new procedure for thermal shift analysis of purified HS2ST. Using this approach, we quantify HS2ST-catalyzed oligosaccharide sulphation using a novel synthetic fluorescent substrate and screen the Published Kinase Inhibitor Set (PKIS), to evaluate compounds that inhibit catalysis. We report the susceptibility of HS2ST to a variety of cell permeable compounds in vitro , including polyanionic polar molecules, the protein kinase inhibitor rottlerin and oxindole-based RAF kinase inhibitors. In a related study, published back-to-back with this article, we demonstrate that Tyrosyl Protein Sulpho Tranferases (TPSTs) are also inhibited by a variety of protein kinase inhibitors. We propose that appropriately validated small molecule compounds could become new tools for rapid inhibition of glycan (and protein) sulphation in cells, and that protein kinase inhibitors might be repurposed or redesigned for the specific inhibition of HS2ST. ©2018 The Author(s).

  14. Anti-Angiogenic Therapy: Strategies to Develop Potent VEGFR-2 Tyrosine Kinase Inhibitors and Future Prospect.

    PubMed

    Shi, Leilei; Zhou, Jianfeng; Wu, Jifeng; Shen, Yuemao; Li, Xun

    2016-01-01

    Tumor angiogenesis has always been a major gap for effective cancer therapy. Interruption of aberrant angiogenesis by specific inhibitors targeting receptor tyrosine kinases (RTKs) has been of great interests to medicinal chemists. Among the factors that are involved in tumor angiogenesis, vascular endothelial growth factor receptor-2 (VEGFR-2) is validated as the most closely related factor which can drive angiogenesis through binding with its natural ligand VEGF. The well-validated VEGF-driven VEGFR-2 signaling pathway can stimulate many endothelial responses, including increasing vessel permeability and enhancing endothelial cell proliferation, migration and differentiation. Consequently, circumventing angiogenesis by VEGFR-2 inhibitors represents a promising strategy for counteracting various VEGFR-2-mediated disorders as well as drug resistance. Over the past decades, a considerable number of novel small molecular VEGFR-2 inhibitors have been exploited with diverse chemical scaffolds. Especially, recent frequently launched inhibitors have declared their research values and therapeutic potentials in oncology. Still, the antiangiogenesis based treatment remains an ongoing challenge. In this review, a comprehensive retrospective of newly emerged VEGFR-2 inhibitors have been summarized, with the emphasis on the structure-activity relationship (SAR) investigation, and also binding patterns of representative inhibitors with biotargets. On the basis of all of this information, varied strategies for developing potent VEGFR-2 inhibitors and the future prospect of the clinical application of antiangiogenic inhibitors are discussed hereby.

  15. Evaluation of six proton pump inhibitors as inhibitors of various human cytochromes P450: focus on cytochrome P450 2C19.

    PubMed

    Zvyaga, Tatyana; Chang, Shu-Ying; Chen, Cliff; Yang, Zheng; Vuppugalla, Ragini; Hurley, Jeremy; Thorndike, Denise; Wagner, Andrew; Chimalakonda, Anjaneya; Rodrigues, A David

    2012-09-01

    Six proton pump inhibitors (PPIs), omeprazole, lansoprazole, esomeprazole, dexlansoprazole, pantoprazole, and rabeprazole, were shown to be weak inhibitors of cytochromes P450 (CYP3A4, -2B6, -2D6, -2C9, -2C8, and -1A2) in human liver microsomes. In most cases, IC₅₀ values were greater than 40 μM, except for dexlansoprazole and lansoprazole with CYP1A2 (IC₅₀ = ∼8 μM) and esomeprazole with CYP2C8 (IC₅₀ = 31 μM). With the exception of CYP2C19 inhibition by omeprazole and esomeprazole (IC₅₀ ratio, 2.5 to 5.9), there was no evidence for a marked time-dependent shift in IC₅₀ (IC₅₀ ratio, ≤ 2) after a 30-min preincubation with NADPH. In the absence of preincubation, lansoprazole (IC₅₀ = 0.73 μM) and esomeprazole (IC₅₀ = 3.7 μM) were the most potent CYP2C19 inhibitors, followed by dexlansoprazole and omeprazole (IC₅₀ = ∼7.0 μM). Rabeprazole and pantoprazole (IC₅₀ = ≥ 25 μM) were the weakest. A similar ranking was obtained with recombinant CYP2C19. Despite the IC₅₀ ranking, after consideration of plasma levels (static and dynamic), protein binding, and metabolism-dependent inhibition, it is concluded that omeprazole and esomeprazole are the most potent CYP2C19 inhibitors. This was confirmed after the incubation of the individual PPIs with human primary hepatocytes (in the presence of human serum) and by monitoring their impact on diazepam N-demethylase activity at a low concentration of diazepam (2 μM). Data described herein are consistent with reports that PPIs are mostly weak inhibitors of cytochromes P450 in vivo. However, two members of the PPI class (esomeprazole and omeprazole) are more likely to serve as clinically relevant inhibitors of CYP2C19.

  16. A small molecule inhibitor of mutant IDH2 rescues cardiomyopathy in a D-2-hydroxyglutaric aciduria type II mouse model.

    PubMed

    Wang, Fang; Travins, Jeremy; Lin, Zhizhong; Si, Yaguang; Chen, Yue; Powe, Josh; Murray, Stuart; Zhu, Dongwei; Artin, Erin; Gross, Stefan; Santiago, Stephanie; Steadman, Mya; Kernytsky, Andrew; Straley, Kimberly; Lu, Chenming; Pop, Ana; Struys, Eduard A; Jansen, Erwin E W; Salomons, Gajja S; David, Muriel D; Quivoron, Cyril; Penard-Lacronique, Virginie; Regan, Karen S; Liu, Wei; Dang, Lenny; Yang, Hua; Silverman, Lee; Agresta, Samuel; Dorsch, Marion; Biller, Scott; Yen, Katharine; Cang, Yong; Su, Shin-San Michael; Jin, Shengfang

    2016-11-01

    D-2-hydroxyglutaric aciduria (D2HGA) type II is a rare neurometabolic disorder caused by germline gain-of-function mutations in isocitrate dehydrogenase 2 (IDH2), resulting in accumulation of D-2-hydroxyglutarate (D2HG). Patients exhibit a wide spectrum of symptoms including cardiomyopathy, epilepsy, developmental delay and limited life span. Currently, there are no effective therapeutic interventions. We generated a D2HGA type II mouse model by introducing the Idh2R140Q mutation at the native chromosomal locus. Idh2R140Q mice displayed significantly elevated 2HG levels and recapitulated multiple defects seen in patients. AGI-026, a potent, selective inhibitor of the human IDH2R140Q-mutant enzyme, suppressed 2HG production, rescued cardiomyopathy, and provided a survival benefit in Idh2R140Q mice; treatment withdrawal resulted in deterioration of cardiac function. We observed differential expression of multiple genes and metabolites that are associated with cardiomyopathy, which were largely reversed by AGI-026. These findings demonstrate the potential therapeutic benefit of an IDH2R140Q inhibitor in patients with D2HGA type II.

  17. Impacts of sodium-glucose co-transporter type 2 inhibitors on central blood pressure.

    PubMed

    Takenaka, Tsuneo; Ohno, Yoichi; Suzuki, Hiromichi

    2018-03-01

    To assess the effects of sodium-glucose co-transporter type 2 inhibitors on central blood pressure, an important determinant of cardiovascular events. Canagliflozin, Empagliflozin or Luseogliflozin was given for 102 type 2 diabetic patients with hypertension and nephropathy. Central blood pressure was evaluated by radial tonometry. Clinical parameters were followed for 6 months. Three differing sodium-glucose co-transporter type 2 inhibitors similarly reduced brachial and central blood pressures, casual blood sugar, haemoglobin A1c, estimated glomerular filtration rate and albuminuria without significant changes in pulse rate and lipid profiles. Central systolic blood pressure was associated with the decreases in albuminuria by sodium-glucose co-transporter type 2 inhibitors. Comparable influences of various sodium-glucose co-transporter type 2 inhibitors on central blood pressure suggest class effects.

  18. A corrosion control concept by scale engineering: a novel green inhibitor applied for high temperature and pressure aqueous supercritical CO2 systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiabin, Han; Carey, James W; Zhang, Jinsuo

    2011-01-27

    Traditional corrosion inhibitors are bio-toxic chemicals with organic components that bond to the fresh metal surface and thus isolate them from corrosive environments. The shortcoming of these inhibitors is that they are less effective in high-temperature and high-pressure environments, and where corrosion scale is formed or particulates are deposited. In this paper, we describe a novel green inorganic inhibitor made of environmentally friendly and cost-effective geo-material that was developed for high-temperature and high-pressure environments, particularly under scale-forming conditions. It inhibits corrosion by enhancing the protectiveness of corrosion scale. In contrast to traditional corrosion inhibitors which are efficient for bare surfacemore » corrosion but not effective with scale, the novel inhibitor has no effect on bare surface corrosion but greatly improves corrosion inhibition under scale-formation conditions. This is because a homogeneous scale doped with inhibitor component forms. This enhanced corrosion scale demonstrated excellent protection against corrosion. In high-pressure CO{sub 2} systems (pCO{sub 2}=10 Mpa, T=50 C and [NaCl]=1 wt%) without inhibitor, the bare-surface corrosion rate decreases from ca. 10 mm/y to 0.3 mm/year due to formation of scale. Application of a six hundred ppm solution ofthe new inorganic inhibitor reduced the corrosion rate to 0.01 mm/year, an additional factor of 30. The current inhibitor product was designed for application to CO{sub 2} systems that form corrosion scale, including but not limited to oil and gas wells, offshore production of oil and gas, CO{sub 2} sequestration and enhanced geothermal production involving CO{sub 2}.« less

  19. Body Weight Gain and Hyperphagia After Administration of SGLT-2 Inhibitor: A Case Report

    PubMed Central

    Hamamoto, Hiromi; Noda, Mitsuhiko

    2015-01-01

    Patient: Male, 44 Final Diagnosis: Type 2 diabetes Symptoms: Hunger • increased appetite Medication: GLP-1 receptor agonist • SGLT-2 inhibitor Clinical Procedure: — Specialty: Internal Medicine/Diabetology Objective: Unusual or unexpected effect of treatment Background: A detailed description is given of a case we encountered in which unexpectedly marked weight gain occurred following a treatment switch from a GLP-1 receptor agonist to an SGLT-2 inhibitor. Case Report: The patient, a 44-year-old man with type 2 diabetes mellitus, had gained about 10 kg in weight in the previous year. Therefore, metformin was replaced with liraglutide to obtain reduction of body weight. Although the patient lost about 8 kg (7%), during the 18-month period on the medication, the weight loss stabilized; therefore, the treatment was again switched to tofogliflozin to obtain further reduction of body weight. However, the patient reported increasing hunger and an exaggerated appetite from week 3 onward after the start of tofogliflozin, and gained about 9 kg in weight within 2 weeks, associated with a tendency towards increased HbA1c; therefore, tofogliflozin was discontinued. Immediate reinstitution of liraglutide resulted in reduction of the increased appetite, weight, and HbA1c level. Conclusions: Caution should be exercised against hyperphagia and weight gain due to hunger that may occur following discontinuation of a GLP-1 receptor agonist and/or initiation of an SGLT-2 inhibitor. PMID:26638727

  20. Insights into the binding of PARP inhibitors to the catalytic domain of human tankyrase-2

    DOE PAGES

    Qiu, Wei; Lam, Robert; Voytyuk, Oleksandr; ...

    2014-07-31

    The poly(ADP-ribose) polymerase (PARP) family represents a new class of therapeutic targets with diverse potential disease indications. PARP1 and PARP2 inhibitors have been developed for breast and ovarian tumors manifesting double-stranded DNA-repair defects, whereas tankyrase 1 and 2 (TNKS1 and TNKS2, also known as PARP5a and PARP5b, respectively) inhibitors have been developed for tumors with elevated β-catenin activity. As the clinical relevance of PARP inhibitors continues to be actively explored, there is heightened interest in the design of selective inhibitors based on the detailed structural features of how small-molecule inhibitors bind to each of the PARP family members. Here, themore » high-resolution crystal structures of the human TNKS2 PARP domain in complex with 16 various PARP inhibitors are reported, including the compounds BSI-201, AZD-2281 and ABT-888, which are currently in Phase 2 or 3 clinical trials. These structures provide insight into the inhibitor-binding modes for the tankyrase PARP domain and valuable information to guide the rational design of future tankyrase-specific inhibitors.« less

  1. A salicylic acid-based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2)

    PubMed Central

    Zhang, Xian; He, Yantao; Liu, Sijiu; Yu, Zhihong; Jiang, Zhong-Xing; Yang, Zhenyun; Dong, Yuanshu; Nabinger, Sarah C.; Wu, Li; Gunawan, Andrea M.; Wang, Lina; Chan, Rebecca J.; Zhang, Zhong-Yin

    2010-01-01

    The Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) plays a pivotal role in growth factor and cytokine signaling. Gain-of-function SHP2 mutations are associated with Noonan syndrome, various kinds of leukemias and solid tumors. Thus there is considerable interest in SHP2 as a potential target for anti-cancer and anti-leukemia therapy. We report a salicylic acid-based combinatorial library approach aimed to bind both active site and unique nearby sub-pockets for enhanced affinity and selectivity. Screening of the library led to the identification of a SHP2 inhibitor II-B08 (compound 9) with highly efficacious cellular activity. Compound 9 blocks growth factor stimulated ERK1/2 activation and hematopoietic progenitor proliferation, providing supporting evidence that chemical inhibition of SHP2 may be therapeutically useful for anti-cancer and anti-leukemia treatment. X-ray crystallographic analysis of the structure of SHP2 in complex with 9 reveals molecular determinants that can be exploited for the acquisition of more potent and selective SHP2 inhibitors. PMID:20170098

  2. 2-Guanidino-quinazolines as a novel class of translation inhibitors.

    PubMed

    Komarova Andreyanova, E S; Osterman, I A; Pletnev, P I; Ivanenkov, Y A; Majouga, A G; Bogdanov, A A; Sergiev, P V

    2017-02-01

    A variety of structurally unrelated organic compounds has been reported to have antibacterial activity. Among these, certain small-molecule translation inhibitors have attracted a great deal of attention, due to their relatively high selectivity against prokaryotes, and an appropriate therapeutic index with minor "off target" effects. However, ribosomes are being considered as poorly druggable biological targets, thereby making some routine computational-based approaches to rational drug design and its development rather ineffective. Taking this into account, diversity-oriented biological screening can reasonably be considered as the most advantageous strategy. Thus, using a high-throughput screening (HTS) platform, we applied a unique biological assay for in vitro evaluation of thousands of organic molecules, especially targeted against bacterial ribosomes and translation. As a result, we have identified a series of structurally diverse small-molecule compounds that induce a reporter strain sensitive to translation and DNA biosynthesis inhibitors. In a cell free system, several molecules were found to strongly inhibit protein biosynthesis. Among them, compounds bearing a 2-guanidino-quinazoline core demonstrated the most promising antibacterial activity. With regard to the preliminary structure-activity relationship (SAR) study, we revealed that relatively small substituents at positions 4, 6 and 8 of the quinazoline ring significantly enhance the target activity whereas modification of the guanidine group leads to decrease or loss of antibacterial potency. This novel class of translation inhibitors can properly be regarded as a promising starting point for the development of novel antibacterial therapeutic or screening tools. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  3. [Acidosis without marked hyperglycemia : Euglycemic diabetic ketoacidosis associated with SGLT2-Inhibitors].

    PubMed

    Valek, R; Von der Mark, J

    2017-03-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are new antidiabetic drugs that regulate blood glucose levels by increasing urinary glucose excretion. In May 2015, the U.S. Food and Drug Administration (FDA) issued a warning that SGLT2 inhibitors may lead to ketoacidosis. In this report, we describe a case of life-threatening euglycemic ketoacidosis associated with SGLT2 inhibition and evaluate possible mechanisms and triggers.

  4. Identification and mechanism of action analysis of the new PARP-1 inhibitor 2″-hydroxygenkwanol A.

    PubMed

    Dal Piaz, Fabrizio; Ferro, Piera; Vassallo, Antonio; Vasaturo, Michele; Forte, Giovanni; Chini, Maria Giovanna; Bifulco, Giuseppe; Tosco, Alessandra; De Tommasi, Nunziatina

    2015-09-01

    Poly(ADP-ribose) polymerase 1 (PARP-1) activity has been implicated in the pathogenesis of numerous diseases as cancer, inflammation, diabetes and neurodegenerative disorders, therefore the research for new PARP-1 inhibitors is still an active area. To identify new potential PARP-1 inhibitors, we performed a screening of a small-molecule library consisting of polyphenols isolated from plants used in the traditional medicine, by Surface Plasmon Resonance (SPR). Biochemical and cellular assays were performed to confirm SPR results and select the promising candidate(s). Finally, limited proteolysis and ligand docking analyses allowed defining the protein region involved in the interaction with the putative inhibitor(s). The dimeric spiro-flavonoid 2″-hydroxygenkwanol A, member of a relatively recently discovered class of flavonoids containing a spirane C-atom, has been identified as possible PARP-1 inhibitor. This compound showed a high affinity for the polymerase (KD: 0.32±0.05μM); moreover PARP-1 activity in the presence of 2″-hydroxygenkwanol A was significantly affected both when using the recombinant protein and when measuring the cellular effects. Finally, our study suggests this compound to efficiently interact with the protein catalytic domain, into the nicotine binding pocket. 2″-hydroxygenkwanol A efficiently binds and inhibits PARP-1 at submicromolar concentrations, thus representing a promising lead for the design of a new class of PARP-1 modulators, useful as therapeutic agents and/or biochemical tools. Our study has identified an additional class of plant molecules, the spiro-biflavonoids, with known beneficial pharmacological properties but with an unknown mechanism of action, as a possible novel class of PARP-1 activity inhibitors. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Molecular Mechanism of Selectivity among G Protein-Coupled Receptor Kinase 2 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Yeow, Raymond Y.; Schoenau, Christian

    2012-07-11

    G protein-coupled receptors (GPCRs) are key regulators of cell physiology and control processes ranging from glucose homeostasis to contractility of the heart. A major mechanism for the desensitization of activated GPCRs is their phosphorylation by GPCR kinases (GRKs). Overexpression of GRK2 is strongly linked to heart failure, and GRK2 has long been considered a pharmaceutical target for the treatment of cardiovascular disease. Several lead compounds developed by Takeda Pharmaceuticals show high selectivity for GRK2 and therapeutic potential for the treatment of heart failure. To understand how these drugs achieve their selectivity, we determined crystal structures of the bovine GRK2-G{beta}{gamma} complexmore » in the presence of two of these inhibitors. Comparison with the apoGRK2-G{beta}{gamma} structure demonstrates that the compounds bind in the kinase active site in a manner similar to that of the AGC kinase inhibitor balanol. Both balanol and the Takeda compounds induce a slight closure of the kinase domain, the degree of which correlates with the potencies of the inhibitors. Based on our crystal structures and homology modeling, we identified five amino acids surrounding the inhibitor binding site that we hypothesized could contribute to inhibitor selectivity. However, our results indicate that these residues are not major determinants of selectivity among GRK subfamilies. Rather, selectivity is achieved by the stabilization of a unique inactive conformation of the GRK2 kinase domain.« less

  6. Role of SGLT2 Inhibitors in Patients with Diabetes Mellitus and Heart Failure.

    PubMed

    Verbrugge, Frederik H

    2017-08-01

    This review aims to summarize the evidence on cardiovascular risks and benefits of glucose-lowering drugs in diabetic patients, with a particular focus on the role of sodium-glucose transporter-2 (SGLT-2) inhibitors and their promising potential as a heart failure treatment. The SGLT-2 inhibitor empagliflozin has emerged as the first glucose-lowering drug to lower cardiovascular mortality in diabetes with an unprecedented 38% relative risk reduction. In addition, empagliflozin significantly reduced the rate of heart failure admissions with 35% when compared to placebo in diabetic patients with established atherosclerosis. SGLT-2 inhibitors should be considered as a first-line drug to achieve glycemic control in diabetic patients at high risk for cardiovascular diseases and heart failure in particular. As SGLT-2 inhibitors target different pathophysiological pathways in heart failure, they might even be considered in the broader population without diabetes, but this remains the topic of further study.

  7. Novel 2H-chromen-2-one derivatives of resveratrol: Design, synthesis, modeling and use as human monoamine oxidase inhibitors.

    PubMed

    Ruan, Ban-Feng; Cheng, Hui-Jie; Ren, Jing; Li, Hong-Lin; Guo, Lu-Lu; Zhang, Xing-Xing; Liao, Chenzhong

    2015-10-20

    Using a fragment-based drug design strategy, two biomedical interesting fragments, resveratrol and coumarin were linked to design a series of novel human monoamine oxidase (hMAO) inhibitors with a scaffold of 3-((E)-3-(2-((E)-styryl)phenyl)acryloyl)-2H-chromen-2-one, which demonstrated a very interesting selectivity profile against hMAO-A and hMAO-B: some compounds with this scaffold are selective hMAO-A inhibitors, whereas some are selective hMAO-B inhibitors. The small changes in the substituents of the coumarin moiety led to this interesting selectivity profile. The most potent selective hMAO-B inhibitor D7 has a selectivity ratio of 20.93, with an IC₅₀ value of 2.78 μM, similar or better than selegiline (IC₅₀ = 2.89 μM), a selective hMAO-B inhibitor currently in the market for the treatment of Parkinson's disease. Our modeling study indicates that Tyr 326 of hMAO-B (or corresponded Ile 335 of hMAO-A) may be the determinant for the specificity of these compounds. The selectivity profile of compounds reported herein suggests that we can further develop both selective hMAO-A and hMAO-B inhibitors based on this novel scaffold. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. The EED protein-protein interaction inhibitor A-395 inactivates the PRC2 complex.

    PubMed

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L; Jakob, Clarissa G; Zhu, Haizhong; Comess, Kenneth M; Shaw, Bailin; The, Juliana; Lima-Fernandes, Evelyne; Szewczyk, Magdalena M; Cheng, Dong; Klinge, Kelly L; Li, Huan-Qiu; Pliushchev, Marina; Algire, Mikkel A; Maag, David; Guo, Jun; Dietrich, Justin; Panchal, Sanjay C; Petros, Andrew M; Sweis, Ramzi F; Torrent, Maricel; Bigelow, Lance J; Senisterra, Guillermo; Li, Fengling; Kennedy, Steven; Wu, Qin; Osterling, Donald J; Lindley, David J; Gao, Wenqing; Galasinski, Scott; Barsyte-Lovejoy, Dalia; Vedadi, Masoud; Buchanan, Fritz G; Arrowsmith, Cheryl H; Chiang, Gary G; Sun, Chaohong; Pappano, William N

    2017-04-01

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed in vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein-protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.

  9. The EED protein–protein interaction inhibitor A-395 inactivates the PRC2 complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yupeng; Selvaraju, Sujatha; Curtin, Michael L.

    Polycomb repressive complex 2 (PRC2) is a regulator of epigenetic states required for development and homeostasis. PRC2 trimethylates histone H3 at lysine 27 (H3K27me3), which leads to gene silencing, and is dysregulated in many cancers. The embryonic ectoderm development (EED) protein is an essential subunit of PRC2 that has both a scaffolding function and an H3K27me3-binding function. Here we report the identification of A-395, a potent antagonist of the H3K27me3 binding functions of EED. Structural studies demonstrate that A-395 binds to EED in the H3K27me3-binding pocket, thereby preventing allosteric activation of the catalytic activity of PRC2. Phenotypic effects observed inmore » vitro and in vivo are similar to those of known PRC2 enzymatic inhibitors; however, A-395 retains potent activity against cell lines resistant to the catalytic inhibitors. A-395 represents a first-in-class antagonist of PRC2 protein–protein interactions (PPI) for use as a chemical probe to investigate the roles of EED-containing protein complexes.« less

  10. Discovery and Biological Evaluation of a Series of Pyrrolo[2,3-b]pyrazines as Novel FGFR Inhibitors.

    PubMed

    Zhang, Yan; Liu, Hongchun; Zhang, Zhen; Wang, Ruifeng; Liu, Tongchao; Wang, Chaoyun; Ma, Yuchi; Ai, Jing; Zhao, Dongmei; Shen, Jingkang; Xiong, Bing

    2017-04-05

    Abnormality of fibroblast growth factor receptor (FGFR)-mediated signaling pathways were frequently found in various human malignancies, making FGFRs hot targets for cancer treatment. To address the consistent need for a new chemotype of FGFR inhibitors, here, we started with a hit structure identified from our internal hepatocyte growth factor receptor (also called c-Met) inhibitor project, and conducted a chemical optimization. After exploring three parts of the hit compound, we finally discovered a new series of pyrrolo[2,3- b ]pyrazine FGFR inhibitors, which contain a novel scaffold and unique molecular shape. We believe that our findings can help others to further develop selective FGFR inhibitors.

  11. BaxΔ2 sensitizes colorectal cancer cells to proteasome inhibitor-induced cell death

    PubMed Central

    Mañas, Adriana; Chen, Wenjing; Nelson, Adam; Yao, Qi; Xiang, Jialing

    2018-01-01

    Proteasome inhibitors, such as bortezomib and carfilzomib, are FDA approved for the treatment of hemopoietic cancers, but recent studies have shown their great potential for treatment of solid tumors. BaxΔ2, a unique proapoptotic Bax isoform, promotes non-mitochondrial cell death and sensitizes cancer cells to chemotherapy. However, endogenous BaxΔ2 proteins are unstable and susceptible to proteasomal degradation. Here, we screened a panel of proteasome inhibitors in colorectal cancer cells with different Bax statuses. We found that all proteasome inhibitors tested were able to block BaxΔ2 degradation without affecting the level of Baxα or Bcl-2 proteins. Among the inhibitors tested, only bortezomib and carfilzomib were able to induce differential cell death corresponding to the distinct Bax statuses. BaxΔ2-positive cells had a significantly higher level of cell death at low nanomolar concentrations than Baxα-positive or Bax-negative cells. Furthermore, bortezomib-induced cell death in BaxΔ2-positive cells was predominantly dependent on the caspase 8/3 pathway, consistent with our previous studies. These results imply that BaxΔ2 can selectively sensitize cancer cells to proteasome inhibitors, enhancing their potential to treat colon cancer and other solid tumors. PMID:29291406

  12. The kidney and type 2 diabetes mellitus: therapeutic implications of SGLT2 inhibitors.

    PubMed

    Weir, Matthew R

    2016-01-01

    Understanding the role of the kidneys in type 2 diabetes mellitus (T2DM) has taken on an increased importance in recent years with the arrival of sodium-glucose co-transporter 2 (SGLT2) inhibitors - antihyperglycemic agents (AHAs) that specifically target the kidneys. This review includes an update on the physiology of the kidneys, their role in the pathophysiology of T2DM, and the mechanisms implicated in the development and progression of diabetic kidney disease, such as glomerular hyperfiltration and inflammation. It also discusses renal issues that could influence the choice of AHA for patients with T2DM, including special populations such as patients with concomitant chronic kidney disease. The most recent data published on the clinical efficacy and safety of the SGLT2 inhibitors canagliflozin, dapagliflozin, and empagliflozin and their effects on renal function are presented, showing how the renally mediated mechanisms of action of these agents translate into clinical benefits, including the potential for renoprotection. The observed positive effects of these agents on measures such as glucose control, estimated glomerular filtration rate, albumin-to-creatinine ratio, blood pressure, and body weight in patients both with and without impaired renal function suggest that SGLT2 inhibitors represent an important extension to the diabetes treatment armamentarium.

  13. Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance?

    PubMed

    Choy, Hak; Milas, Luka

    2003-10-01

    Results of preclinical studies suggesting that the efficacy of molecular therapies is enhanced when they are combined with radiation have generated a surge of clinical trials combining these modalities. We reviewed the literature to identify the rationale and experimental foundation supporting the use of cyclooxygenase-2 (COX-2) inhibitors with standard radiotherapy regimens in current clinical trials. Radiation affects the ability of cells to divide and proliferate and induces the expression of genes involved in signaling pathways that promote cell survival or trigger cell death. Future advances in radiotherapy will hinge on understanding mechanisms by which radiation-induced transcription of genes governs cell death and survival, the selective control of this process, and the optimal approaches to combining this knowledge with existing therapeutic modalities. COX-2 is expressed in all stages of cancer, and in several cancers its overexpression is associated with poor prognosis. Evidence from clinical and preclinical studies indicates that COX-2-derived prostaglandins participate in carcinogenesis, inflammation, immune response suppression, apoptosis inhibition, angiogenesis, and tumor cell invasion and metastasis. Clinical trial results have demonstrated that selective inhibition of COX-2 can alter the development and the progression of cancer. In animal models, selective inhibition of COX-2 activity is associated with the enhanced radiation sensitivity of tumors without appreciably increasing the effects of radiation on normal tissue, and preclinical evidence suggests that the principal mechanism of radiation potentiation through selective COX-2 inhibition is the direct increase in cellular radiation sensitivity and the direct inhibition of tumor neovascularization. Results of current early-phase studies of non-small-cell lung, esophageal, cervical, and brain cancers will determine whether therapies that combine COX-2 inhibitors and radiation will enter

  14. Characterization and comparison of SGLT2 inhibitors: Part 3. Effects on diabetic complications in type 2 diabetic mice.

    PubMed

    Tahara, Atsuo; Takasu, Toshiyuki; Yokono, Masanori; Imamura, Masakazu; Kurosaki, Eiji

    2017-08-15

    In this study, we investigated and compared the effects of all six sodium-glucose cotransporter (SGLT) 2 inhibitors commercially available in Japan on diabetes-related diseases and complications in type 2 diabetic mice. Following 4-week repeated administration to diabetic mice, all SGLT2 inhibitors showed significant improvement in diabetes-related diseases and complications, including obesity; abnormal lipid metabolism; steatohepatitis; inflammation; endothelial dysfunction; and nephropathy. While all SGLT2 inhibitors exerted comparable effects in reducing hyperglycemia, improvement of these diabetes-related diseases and complications was more potent with the two long-acting drugs (ipragliflozin and dapagliflozin) than with the four intermediate-acting four drugs (tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin), albeit without statistical significance. These findings demonstrate that SGLT2 inhibitors alleviate various diabetic pathological conditions in type 2 diabetic mice, and suggest that SGLT2 inhibitors, particularly long-acting drugs, might be useful not only for hyperglycemia but also in diabetes-related diseases and complications, including nephropathy in type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis.

    PubMed

    Koppikar, Priya; Abdel-Wahab, Omar; Hedvat, Cyrus; Marubayashi, Sachie; Patel, Jay; Goel, Aviva; Kucine, Nicole; Gardner, Jeffrey R; Combs, Andrew P; Vaddi, Kris; Haley, Patrick J; Burn, Timothy C; Rupar, Mark; Bromberg, Jacqueline F; Heaney, Mark L; de Stanchina, Elisa; Fridman, Jordan S; Levine, Ross L

    2010-04-08

    The discovery of JAK2 and MPL mutations in patients with myeloproliferative neoplasms (MPNs) provided important insight into the genetic basis of these disorders and led to the development of JAK2 kinase inhibitors for MPN therapy. Although recent studies have shown that JAK2 kinase inhibitors demonstrate efficacy in a JAK2V617F murine bone marrow transplantation model, the effects of JAK2 inhibitors on MPLW515L-mediated myeloproliferation have not been investigated. In this report, we describe the in vitro and in vivo effects of INCB16562, a small-molecule JAK2 inhibitor. INCB16562 inhibited proliferation and signaling in cell lines transformed by JAK2 and MPL mutations. Compared with vehicle treatment, INCB16562 treatment improved survival, normalized white blood cell counts and platelet counts, and markedly reduced extramedullary hematopoeisis and bone marrow fibrosis. We observed inhibition of STAT3 and STAT5 phosphorylation in vivo consistent with potent inhibition of JAK-STAT signaling. These data suggest JAK2 inhibitor therapy may be of value in the treatment of JAK2V617F-negative MPNs. However, we did not observe a decrease in the size of the malignant clone in the bone marrow of treated mice at the end of therapy, which suggests that JAK2 inhibitor therapy, by itself, was not curative in this MPN model.

  16. Efficacy of the JAK2 inhibitor INCB16562 in a murine model of MPLW515L-induced thrombocytosis and myelofibrosis

    PubMed Central

    Koppikar, Priya; Abdel-Wahab, Omar; Hedvat, Cyrus; Marubayashi, Sachie; Patel, Jay; Goel, Aviva; Kucine, Nicole; Gardner, Jeffrey R.; Combs, Andrew P.; Vaddi, Kris; Haley, Patrick J.; Burn, Timothy C.; Rupar, Mark; Bromberg, Jacqueline F.; Heaney, Mark L.; de Stanchina, Elisa; Fridman, Jordan S.

    2010-01-01

    The discovery of JAK2 and MPL mutations in patients with myeloproliferative neoplasms (MPNs) provided important insight into the genetic basis of these disorders and led to the development of JAK2 kinase inhibitors for MPN therapy. Although recent studies have shown that JAK2 kinase inhibitors demonstrate efficacy in a JAK2V617F murine bone marrow transplantation model, the effects of JAK2 inhibitors on MPLW515L-mediated myeloproliferation have not been investigated. In this report, we describe the in vitro and in vivo effects of INCB16562, a small-molecule JAK2 inhibitor. INCB16562 inhibited proliferation and signaling in cell lines transformed by JAK2 and MPL mutations. Compared with vehicle treatment, INCB16562 treatment improved survival, normalized white blood cell counts and platelet counts, and markedly reduced extramedullary hematopoeisis and bone marrow fibrosis. We observed inhibition of STAT3 and STAT5 phosphorylation in vivo consistent with potent inhibition of JAK-STAT signaling. These data suggest JAK2 inhibitor therapy may be of value in the treatment of JAK2V617F-negative MPNs. However, we did not observe a decrease in the size of the malignant clone in the bone marrow of treated mice at the end of therapy, which suggests that JAK2 inhibitor therapy, by itself, was not curative in this MPN model. PMID:20154217

  17. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors.

    PubMed

    Liu, Tong-Chao; Peng, Xia; Ma, Yu-Chi; Ji, Yin-Chun; Chen, Dan-Qi; Zheng, Ming-Yue; Zhao, Dong-Mei; Cheng, Mao-Sheng; Geng, Mei-Yu; Shen, Jing-Kang; Ai, Jing; Xiong, Bing

    2016-05-01

    Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs.

  18. Discovery of a new series of imidazo[1,2-a]pyridine compounds as selective c-Met inhibitors

    PubMed Central

    Liu, Tong-chao; Peng, Xia; Ma, Yu-chi; Ji, Yin-chun; Chen, Dan-qi; Zheng, Ming-yue; Zhao, Dong-mei; Cheng, Mao-sheng; Geng, Mei-yu; Shen, Jing-kang; Ai, Jing; Xiong, Bing

    2016-01-01

    Aim: Aberrant c-Met activation plays a critical role in cancer formation, progression and dissemination, as well as in development of resistance to anticancer drugs. Therefore, c-Met has emerged as an attractive target for cancer therapy. The aim of this study was to develop new c-Met inhibitors and elaborate the structure-activity relationships of identified inhibitors. Methods: Based on the predicted binding modes of Compounds 5 and 14 in docking studies, a new series of c-Met inhibitor-harboring 3-((1H-pyrrolo[3,2-c]pyridin-1-yl)sulfonyl)imidazo[1,2-a]pyridine scaffolds was discovered. Potent inhibitors were identified through extensive optimizations combined with enzymatic and cellular assays. A promising compound was further investigated in regard to its selectivity, its effects on c-Met signaling, cell proliferation and cell scattering in vitro. Results: The most potent Compound 31 inhibited c-Met kinase activity with an IC50 value of 12.8 nmol/L, which was >78-fold higher than those of a panel of 16 different tyrosine kinases. Compound 31 (8, 40, 200 nmol/L) dose-dependently inhibited the phosphorylation of c-Met and its key downstream Akt and ERK signaling cascades in c-Met aberrant human EBC-1 cancer cells. In 12 human cancer cell lines harboring different background levels of c-Met expression/activation, Compound 31 potently inhibited c-Met-driven cell proliferation. Furthermore, Compound 31 dose-dependently impaired c-Met-mediated cell scattering of MDCK cells. Conclusion: This series of c-Met inhibitors is a promising lead for development of novel anticancer drugs. PMID:27041462

  19. Analysis of the efficacy of SGLT2 inhibitors using semi-mechanistic model

    PubMed Central

    Demin, Oleg; Yakovleva, Tatiana; Kolobkov, Dmitry; Demin, Oleg

    2014-01-01

    The Renal sodium-dependent glucose co-transporter 2 (SGLT2) is one of the most promising targets for the treatment of type 2 diabetes. Two SGLT2 inhibitors, dapagliflozin, and canagliflozin, have already been approved for use in USA and Europe; several additional compounds are also being developed for this purpose. Based on the in vitro IC50 values and plasma concentration of dapagliflozin measured in clinical trials, the marketed dosage of the drug was expected to almost completely inhibit SGLT2 function and reduce glucose reabsorption by 90%. However, the administration of dapagliflozin resulted in only 30–50% inhibition of reabsorption. This study was aimed at investigating the mechanism underlying the discrepancy between the expected and observed levels of glucose reabsorption. To this end, systems pharmacology models were developed to analyze the time profile of dapagliflozin, canagliflozin, ipragliflozin, empagliflozin, and tofogliflozin in the plasma and urine; their filtration and active secretion from the blood to the renal proximal tubules; reverse reabsorption; urinary excretion; and their inhibitory effect on SGLT2. The model shows that concentration levels of tofogliflozin, ipragliflozin, and empagliflozin are higher than levels of other inhibitors following administration of marketed SGLT2 inhibitors at labeled doses and non-marketed SGLT2 inhibitors at maximal doses (approved for phase 2/3 studies). All the compounds exhibited almost 100% inhibition of SGLT2. Based on the results of our model, two explanations for the observed low efficacy of SGLT2 inhibitors were supported: (1) the site of action of SGLT2 inhibitors is not in the lumen of the kidney's proximal tubules, but elsewhere (e.g., the kidneys proximal tubule cells); and (2) there are other transporters that could facilitate glucose reabsorption under the conditions of SGLT2 inhibition (e.g., other transporters of SGLT family). PMID:25352807

  20. Inhibition of untransformed prostaglandin H(2) production and stretch-induced contraction of rabbit pulmonary arteries by indoxam, a selective secretory phospholipase A(2) inhibitor.

    PubMed

    Tanabe, Yoshiyuki; Saito, Maki; Morikawa, Yuki; Kamataki, Akihisa; Sawai, Takashi; Hirose, Masamichi; Nakayama, Koichi

    2011-01-01

    Involvement of secretory phospholipase A(2) (sPLA(2)) in the stretch-induced production of untransformed prostaglandin H(2) (PGH(2)) in the endothelium of rabbit pulmonary arteries was investigated. The stretch-induced contraction was significantly inhibited by indoxam, a selective inhibitor for sPLA(2), and NS-398, a selective inhibitor for cyclooxygenase-2 (COX-2). Indoxam inhibited the RGD-sensitive-integrin-independent production of untransformed PGH(2), but did not affect the RGD-sensitive-integrin-dependent production of thromboxane A(2) (TXA(2)). These results suggest that the stretch-induced contraction and untransformed PGH(2) production was mediated by sPLA(2)-COX-2 pathway, making it a new possible target for pharmacological intervention of pulmonary artery contractility.

  1. Recent Developments of C-Aryl Glucoside SGLT2 Inhibitors.

    PubMed

    Zhang, Yang; Liu, Zhao-Peng

    2016-01-01

    Sodium-glucose cotransporter 2 (SGLT2) is almost exclusively expressed in the proximal renal tubules. It is responsible for about 90% of the glucose reabsorption from tubular fluid. Selective inhibition of SGLT2 is expected to favor in the normalization of plasma glucose levels in T2DM patients through the prevention of renal glucose reabsorption and the promotion of glucose excretion from urine. Selective SGLT2 inhibitors have the merits to minimize the gastrointestinal side effects associated with SGLT1 inhibition, and selective SGLT2 inhibition may have a low risk of hypoglycemia. Since the C-aryl glucosides are metabolically more stable than the O-glucosides, numerous efforts have been made in the development of potent and selective C-aryl glucoside SGLT2 inhibitors, and a number of them are now used as anti-diabetes drugs in clinic or at various stages of clinical developments. Based on their structural features, in this review, these SGLT2 inhibitors are classified as three types: the phenyl/arylmethylphenyl C-glucosides, with an emphasis on the modifications on the proximal and/or the distal phenyl ring, and the spacer; the heteroarylmethylphenyl Cglucosides, with a replacement of the distal phenyl ring by a heterocycle like pyridazine, pyrimidine, thiophene and benzothiophene, thiazole, 1,3,4-thiadiazole, and triazolopyridinone; and the glucose-modified Caryl glucosides, including the glucose C-1 derived O-spiroketals, C-4 gem-difluoro analogues, C-5 and C-6 modified derivatives, dioxa-bicyclo[3.2.1]octane bridged ketals, the thioglucosides, and carbasugars. The structure-activity relationships (SARs) of each type along with their inhibitory potency against human SGLT2 and selectivity over human SGLT1 are discussed.

  2. 2'-Deoxy-2'-methylenecytidine and 2'-deoxy-2',2'-difluorocytidine 5'-diphosphates: potent mechanism-based inhibitors of ribonucleotide reductase.

    PubMed

    Baker, C H; Banzon, J; Bollinger, J M; Stubbe, J; Samano, V; Robins, M J; Lippert, B; Jarvi, E; Resvick, R

    1991-06-01

    It has been found that 2'-deoxy-2'-methyleneuridine (MdUrd), 2'-deoxy-2'-methylenecytidine (MdCyd), and 2'-deoxy-2',2'-difluorocytidine (dFdCyd) 5'-diphosphates (MdUDP (1) MdCDP (2) and dFdCDP (3), respectively) function as irreversible inactivators of the Escherichia coli ribonucleoside diphosphate reductase (RDPR). 2 is a much more potent inhibitor than its uridine analogue 1. It is proposed that 2 undergoes abstraction of H3' to give an allylic radical that captures a hydrogen atom and decomposes to an active alkylating furanone species. RDPR also accepts 3 as an alternative substrate analogue and presumably executes an initial abstraction of H3' to initiate formation of a suicide species. Both 2 and 3 give inactivation results that differ from those of previously studied inhibitors. The potent anticancer activities of MdCyd and dFdCyd indicate a significant chemotherapeutic potential. The analogous RDPR of mammalian cells should be regarded as a likely target and/or activating enzyme for these novel mechanism-based inactivators.

  3. Structural insights into binding of small molecule inhibitors to Enhancer of Zeste Homolog 2

    NASA Astrophysics Data System (ADS)

    Kalinić, Marko; Zloh, Mire; Erić, Slavica

    2014-11-01

    Enhancer of Zeste Homolog 2 (EZH2) is a SET domain protein lysine methyltransferase (PKMT) which has recently emerged as a chemically tractable and therapeutically promising epigenetic target, evidenced by the discovery and characterization of potent and highly selective EZH2 inhibitors. However, no experimental structures of the inhibitors co-crystallized to EZH2 have been resolved, and the structural basis for their activity and selectivity remains unknown. Considering the need to minimize cross-reactivity between prospective PKMT inhibitors, much can be learned from understanding the molecular basis for selective inhibition of EZH2. Thus, to elucidate the binding of small-molecule inhibitors to EZH2, we have developed a model of its fully-formed cofactor binding site and used it to carry out molecular dynamics simulations of protein-ligand complexes, followed by molecular mechanics/generalized born surface area calculations. The obtained results are in good agreement with biochemical inhibition data and reflect the structure-activity relationships of known ligands. Our findings suggest that the variable and flexible post-SET domain plays an important role in inhibitor binding, allowing possibly distinct binding modes of inhibitors with only small variations in their structure. Insights from this study present a good basis for design of novel and optimization of existing compounds targeting the cofactor binding site of EZH2.

  4. Structure of the Protease Domain of Memapsin 2 (β-Secretase) Complexed with Inhibitor

    NASA Astrophysics Data System (ADS)

    Hong, Lin; Koelsch, Gerald; Lin, Xinli; Wu, Shili; Terzyan, Simon; Ghosh, Arun K.; Zhang, Xuenjun C.; Tang, Jordan

    2000-10-01

    Memapsin 2 (β-secretase) is a membrane-associated aspartic protease involved in the production of β-amyloid peptide in Alzheimer's disease and is a major target for drug design. We determined the crystal structure of the protease domain of human memapsin 2 complexed to an eight-residue inhibitor at 1.9 angstrom resolution. The active site of memapsin 2 is more open and less hydrophobic than that of other human aspartic proteases. The subsite locations from S4 to S2' are well defined. A kink of the inhibitor chain at P2' and the change of chain direction of P3' and P4' may be mimicked to provide inhibitor selectivity.

  5. Berberine as a natural source inhibitor for mild steel in 1 M H 2SO 4

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Peng; Liang, Qiang; Hou, Baorong

    2005-12-01

    Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H 2SO 4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berberine is an excellent corrosion inhibitor for mild steel immersed in 1 M H 2SO 4. Potentiodynamic curves suggested that berberine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 × 10 -4 M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H 2SO 4 containing berberine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study.

  6. Hepatitis C Virus NS3/4A Protease Inhibitors Incorporating Flexible P2 Quinoxalines Target Drug Resistant Viral Variants.

    PubMed

    Matthew, Ashley N; Zephyr, Jacqueto; Hill, Caitlin J; Jahangir, Muhammad; Newton, Alicia; Petropoulos, Christos J; Huang, Wei; Kurt-Yilmaz, Nese; Schiffer, Celia A; Ali, Akbar

    2017-07-13

    A substrate envelope-guided design strategy is reported for improving the resistance profile of HCV NS3/4A protease inhibitors. Analogues of 5172-mcP1P3 were designed by incorporating diverse quinoxalines at the P2 position that predominantly interact with the invariant catalytic triad of the protease. Exploration of structure-activity relationships showed that inhibitors with small hydrophobic substituents at the 3-position of P2 quinoxaline maintain better potency against drug resistant variants, likely due to reduced interactions with residues in the S2 subsite. In contrast, inhibitors with larger groups at this position were highly susceptible to mutations at Arg155, Ala156, and Asp168. Excitingly, several inhibitors exhibited exceptional potency profiles with EC 50 values ≤5 nM against major drug resistant HCV variants. These findings support that inhibitors designed to interact with evolutionarily constrained regions of the protease, while avoiding interactions with residues not essential for substrate recognition, are less likely to be susceptible to drug resistance.

  7. Activating PTEN by COX-2 inhibitors antagonizes radiation-induced AKT activation contributing to radiosensitization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Zhen; Department of Oral & Maxillofacial Surgery, Peking University School and Hospital of Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing 100081; Gan, Ye-Hua, E-mail: kqyehuagan@bjmu.edu.cn

    2015-05-01

    Radiotherapy is still one of the most effective nonsurgical treatments for many tumors. However, radioresistance remains a major impediment to radiotherapy. Although COX-2 inhibitors can induce radiosensitization, the underlying mechanism is not fully understood. In this study, we showed that COX-2 selective inhibitor celecoxib enhanced the radiation-induced inhibition of cell proliferation and apoptosis in HeLa and SACC-83 cells. Treatment with celecoxib alone dephosphorylated phosphatase and tensin homolog deleted on chromosome ten (PTEN), promoted PTEN membrane translocation or activation, and correspondingly dephosphorylated or inactivated protein kinase B (AKT). By contrast, treatment with radiation alone increased PTEN phosphorylation, inhibited PTEN membrane translocationmore » and correspondingly activated AKT in the two cell lines. However, treatment with celecoxib or another COX-2 selective inhibitor (valdecoxib) completely blocked radiation-induced increase of PTEN phosphorylation, rescued radiation-induced decrease in PTEN membrane translocation, and correspondingly inactivated AKT. Moreover, celecoxib could also upregulate PTEN protein expression by downregulating Sp1 expression, thereby leading to the activation of PTEN transcription. Our results suggested that COX-2 inhibitors could enhance radiosensitization at least partially by activating PTEN to antagonize radiation-induced AKT activation. - Highlights: • COX-2 inhibitor, celecoxib, could enhance radiosensitization. • Radiation induced PTEN inactivation (phosphorylation) and AKT activation. • COX-2 inhibitor induced PTEN expression and activation, and inactivated AKT. • COX-2 inhibitor enhanced radiosensitization through activating PTEN.« less

  8. Combinatorial Strategies and High Throughput Screening in Drug Discovery Targeted to the Channel of Botulinum Neurotoxin

    DTIC Science & Technology

    2006-09-01

    block the HC channel. memantine NH2 amantadine H2N quinacrine NH O N lidocaine NH O N QX-222 S N Cl chlorpromazine N NCl O HN N Our objective was to...M2 protein2 and its derivative, memantine , which blocks the NMDA receptor channel3, and is approved by the FDA for the treatment of dementia...intracellular processing of BoNTs by collapsing the pH gradient across endosomes6,7. Chlorpromazine, quinacrine and memantine , in addition, cross the blood

  9. DPP-4 Inhibitor Treatment in Chinese Type 2 Diabetes Patients: A Meta-Analysis.

    PubMed

    Cai, Xiaoling; Gao, Xueying; Yang, Wenjia; Chen, Yifei; Zhou, Lingli; Zhang, Simin; Han, Xueyao; Ji, Linong

    2016-12-01

    The aim of this meta-analysis was to assess the comprehensive clinical efficacy of dipeptidyl peptidase-IV (DPP-4) inhibitors in Chinese type 2 diabetes patients and to evaluate whether there is a different response to treatment with different kinds of DPP-4 inhibitors in those patients. Databases were systematically searched, and qualifying clinical studies of Chinese type 2 diabetes patients were included. A total of 30 studies were included. Treatment with saxagliptin resulted in a significantly greater change from baseline in HbA 1c levels (weighted mean difference [WMD], -1.28%; 95% CI, -1.37% to -1.19%); treatment with sitagliptin led to a significantly greater change from baseline (WMD, -1.17%; 95% CI, -1.46% to -0.89%); treatment with vildagliptin was associated with a significantly greater change in HbA 1c levels (WMD, -0.77%; 95% CI, -0.88% to -0.65%); treatment with linagliptin led to a significantly greater change (WMD, -0.84%; 95% CI, -0.92% to -0.75%); and treatment with alogliptin also led to a significantly greater change (WMD, -0.91%; 95% CI, -1.48% to -0.33%). In terms of body weight, treatment with saxagliptin was associated with no significant decreases in Chinese type 2 diabetes mellitus (T2DM) patients (WMD, -0.17 kg, 95% CI, -4.26 to 3.92 kg). Treatment with sitagliptin and linagliptin was also associated with no significant changes in body weight (WMD, 0.16 and 0.11 kg, respectively, P > 0.05). In Chinese type 2 diabetes patients, the efficacy of glucose control in all five kinds of DPP-4 inhibitor treatments was well confirmed, and no significant change in body weight was found.

  10. Diabetes and kidney disease: the role of sodium-glucose cotransporter-2 (SGLT-2) and SGLT-2 inhibitors in modifying disease outcomes.

    PubMed

    Mende, Christian W

    2017-03-01

    Patients with type 2 diabetes (T2D) often have coexisting chronic kidney disease (CKD). However, healthy renal function is crucial in maintaining glucose homeostasis, assuring that almost all of the filtered glucose is reabsorbed by the sodium glucose cotransporters (SGLTs) SGLT-1 and SGLT-2. In diabetes, an increased amount of glucose is filtered by the kidneys and SGLT-2 is upregulated, leading to increased glucose absorption and worsening hyperglycemia. Prolonged hyperglycemia contributes to the development of CKD by inducing metabolic and hemodynamic changes in the kidneys. Due to the importance of SGLT-2 in regulating glucose levels, investigation into SGLT-2 inhibitors was initiated as a glucose-dependent mechanism to control hyperglycemia, and there are three agents currently approved for use in the United States: dapagliflozin, canagliflozin, and empagliflozin. SGLT-2 inhibitors have been shown to reduce glycated hemoglobin (A1C), weight, and blood pressure, which not only affects glycemic control, but may also help slow the progression of renal disease by impacting the underlying mechanisms of kidney injury. In addition, SGLT-2 inhibitors have shown reductions in albuminuria, uric acid, and an increase in magnesium. Caution is advised when prescribing SGLT-2 inhibitors to patients with moderately impaired renal function and those at risk for volume depletion and hypotension. Published data on slowing of the development, as well as progression of CKD, is a hopeful indicator for the possible renal protection potential of this drug class. This narrative review provides an in-depth discussion of the interplay between diabetes, SGLT-2 inhibitors, and factors that affect kidney function.

  11. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts.

    PubMed

    Lee, Tsung-Ming; Chang, Nen-Chung; Lin, Shinn-Zong

    2017-03-01

    During myocardial infarction, infiltrated macrophages have pivotal roles in cardiac remodeling and delayed M1 toward M2 macrophage phenotype transition is considered one of the major factors for adverse ventricular remodeling. We investigated whether dapagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, attenuates cardiac fibrosis via regulating macrophage phenotype by a reactive oxygen and nitrogen species (RONS)/STAT3-dependent pathway in postinfarcted rats. Normoglycemic male Wistar rats were subjected to coronary ligation and then randomized to either saline, dapagliflozin (a specific SGLT2 inhibitor), phlorizin (a nonspecific SGLT1/2 inhibitor), dapagliflozin + S3I-201 (a STAT3 inhibitor), or phlorizin + S3I-201 for 4 weeks. There were similar infarct sizes among the infarcted groups at the acute and chronic stages of infarction. At day 3 after infarction, post-infarction was associated with increased levels of superoxide and nitrotyrosine, which can be inhibited by administering either dapagliflozin or phlorizin. SGLT2 inhibitors significantly increased STAT3 activity, STAT3 nuclear translocation, myocardial IL-10 levels and the percentage of M2 macrophage infiltration. At day 28 after infarction, SGLT2 inhibitors were associated with attenuated myofibroblast infiltration and cardiac fibrosis. Although phlorizin decreased myofibroblast infiltration, the effect of dapagliflozin on attenuated myofibroblast infiltration was significantly higher than phlorizin. The effects of SGLT2 inhibitors on cardiac fibrosis were nullified by adding S3I-201. Furthermore, the effects of dapagliflozin on STAT3 activity and myocardial IL-10 levels can be reversed by 3-morpholinosydnonimine, a peroxynitrite generator. Taken together, these observations provide a novel mechanism of SGLT2 inhibitors-mediated M2 polarization through a RONS-dependent STAT3-mediated pathway and selective SGLT2 inhibitors are more effective in attenuating myofibroblast infiltration during

  12. Sodium-Glucose Cotransporter 2 (SGLT2) Inhibitors from Natural Products: Discovery of Next-Generation Antihyperglycemic Agents.

    PubMed

    Choi, Chang-Ik

    2016-08-27

    Diabetes mellitus is a chronic condition associated with the metabolic impairment of insulin actions, leading to the development of life-threatening complications. Although many kinds of oral antihyperglycemic agents with different therapeutic mechanisms have been marketed, their undesirable adverse effects, such as hypoglycemia, weight gain, and hepato-renal toxicity, have increased demand for the discovery of novel, safer antidiabetic drugs. Since the important roles of the sodium-glucose cotransporter 2 (SGLT2) for glucose homeostasis in the kidney were recently elucidated, pharmacological inhibition of SGLT2 has been considered a promising therapeutic target for the treatment of type 2 diabetes. Since the discovery of the first natural SGLT2 inhibitor, phlorizin, several synthetic glucoside analogs have been developed and introduced into the market. Furthermore, many efforts to find new active constituents with SGLT2 inhibition from natural products are still ongoing. This review introduces the history of research on the development of early-generation SGLT2 inhibitors, and recent progress on the discovery of novel candidates for SGLT2 inhibitor from several natural products that are widely used in traditional herbal medicine.

  13. Investigation of binding features: effects on the interaction between CYP2A6 and inhibitors.

    PubMed

    Ai, Chunzhi; Li, Yan; Wang, Yonghua; Li, Wei; Dong, Peipei; Ge, Guangbo; Yang, Ling

    2010-07-15

    A computational investigation has been carried out on CYP2A6 and its naphthalene inhibitors to explore the crucial molecular features contributing to binding specificity. The molecular bioactive orientations were obtained by docking (FlexX) these compounds into the active site of the enzyme. And the density functional theory method was further used to optimize the molecular structures with the subsequent analysis of molecular lipophilic potential (MLP) and molecular electrostatic potential (MEP). The minimal MLPs, minimal MEPs, and the band gap energies (the energy difference between the highest occupied molecular orbital and lowest unoccupied molecular orbital) showed high correlations with the inhibition activities (pIC(50)s), illustrating their significant roles in driving the inhibitor to adopt an appropriate bioactive conformation oriented in the active site of CYP2A6 enzyme. The differences in MLPs, MEPs, and the orbital energies have been identified as key features in determining the binding specificity of this series of compounds to CYP2A6 and the consequent inhibitory effects. In addition, the combinational use of the docking, MLP and MEP analysis is also demonstrated as a good attempt to gain an insight into the interaction between CYP2A6 and its inhibitors. Copyright 2010 Wiley Periodicals, Inc.

  14. IDH1/2 Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors.

    PubMed

    Molenaar, Remco J; Radivoyevitch, Tomas; Nagata, Yasunobu; Khurshed, Mohammed; Przychodzen, Bartolomiej; Makishima, Hideki; Xu, Mingjiang; Bleeker, Fonnet E; Wilmink, Johanna W; Carraway, Hetty E; Mukherjee, Sudipto; Sekeres, Mikkael A; van Noorden, Cornelis J F; Maciejewski, Jaroslaw P

    2018-04-01

    Purpose: Somatic mutations in IDH1/2 occur in approximately 20% of patients with myeloid neoplasms, including acute myeloid leukemia (AML). IDH1/2 MUT enzymes produce D -2-hydroxyglutarate ( D 2HG), which associates with increased DNA damage and improved responses to chemo/radiotherapy and PARP inhibitors in solid tumor cells. Whether this also holds true for IDH1/2 MUT AML is not known. Experimental Design: Well-characterized primary IDH1 MUT , IDH2 MUT , and IDH1/2 WT AML cells were analyzed for DNA damage and responses to daunorubicin, ionizing radiation, and PARP inhibitors. Results: IDH1/2 MUT caused increased DNA damage and sensitization to daunorubicin, irradiation, and the PARP inhibitors olaparib and talazoparib in AML cells. IDH1/2 MUT inhibitors protected against these treatments. Combined treatment with a PARP inhibitor and daunorubicin had an additive effect on the killing of IDH1/2 MUT AML cells. We provide evidence that the therapy sensitivity of IDH1/2 MUT cells was caused by D 2HG-mediated downregulation of expression of the DNA damage response gene ATM and not by altered redox responses due to metabolic alterations in IDH1/2 MUT cells. Conclusions: IDH1/2 MUT AML cells are sensitive to PARP inhibitors as monotherapy but especially when combined with a DNA-damaging agent, such as daunorubicin, whereas concomitant administration of IDH1/2 MUT inhibitors during cytotoxic therapy decrease the efficacy of both agents in IDH1/2 MUT AML. These results advocate in favor of clinical trials of PARP inhibitors either or not in combination with daunorubicin in IDH1/2 MUT AML. Clin Cancer Res; 24(7); 1705-15. ©2018 AACR . ©2018 American Association for Cancer Research.

  15. Rho kinase inhibitors: a patent review (2012 - 2013).

    PubMed

    Feng, Yangbo; LoGrasso, Philip V

    2014-03-01

    The Rho kinase/ROCK is critical in vital signal transduction pathways central to many essential cellular activities. Since ROCK possess multiple substrates, modulation of ROCK activity is useful for treatment of many diseases. Significant progress has been made in the development of ROCK inhibitors over the past two years (Jan 2012 to Aug 2013). Patent search in this review was based on FPO IP Research and Communities and Espacenet Patent Search. In this review, patent applications will be classified into four groups for discussions. The grouping is mainly based on structures or scaffolds (groups 1 and 2) and biological functions of ROCK inhibitors (groups 3 and 4). These four groups are i) ROCK inhibitors based on classical structural elements for ROCK inhibition; ii) ROCK inhibitors based on new scaffolds; iii) bis-functional ROCK inhibitors; and iv) novel applications of ROCK inhibitors. Although currently only one ROCK inhibitor (fasudil) is used as a drug, more drugs based on ROCK inhibition are expected to be advanced into market in the near future. Several directions should be considered for future development of ROCK inhibitors, such as soft ROCK inhibitors, bis-functional ROCK inhibitors, ROCK2 isoform-selective inhibitors, and ROCK inhibitors as antiproliferation agents.

  16. Targeting Mitogen-activated Protein Kinase-activated Protein Kinase 2 (MAPKAPK2, MK2): Medicinal Chemistry Efforts to Lead Small Molecule Inhibitors to Clinical Trials

    PubMed Central

    Fiore, Mario; Forli, Stefano; Manetti, Fabrizio

    2015-01-01

    The p38/MAPK-activated kinase 2 (MK2) pathway is involved in a series of pathological conditions (inflammation diseases and metastasis) and in the resistance mechanism to antitumor agents. None of the p38 inhibitors entered advanced clinical trials because of their unwanted systemic side effects. For this reason, MK2 was identified as an alternative target to block the pathway, but avoiding the side effects of p38 inhibition. However, ATP-competitive MK2 inhibitors suffered from low solubility, poor cell permeability, and scarce kinase selectivity. Fortunately, non-ATP-competitive inhibitors of MK2 have been already discovered that allowed circumventing the selectivity issue. These compounds showed the additional advantage to be effective at lower concentrations in comparison to the ATP-competitive inhibitors. Therefore, although the significant difficulties encountered during the development of these inhibitors, MK2 is still considered as an attractive target to treat inflammation and related diseases, to prevent tumor metastasis, and to increase tumor sensitivity to chemotherapeutics. PMID:26502061

  17. Inhibitors of tripeptidyl peptidase II. 2. Generation of the first novel lead inhibitor of cholecystokinin-8-inactivating peptidase: a strategy for the design of peptidase inhibitors.

    PubMed

    Ganellin, C R; Bishop, P B; Bambal, R B; Chan, S M; Law, J K; Marabout, B; Luthra, P M; Moore, A N; Peschard, O; Bourgeat, P; Rose, C; Vargas, F; Schwartz, J C

    2000-02-24

    The cholecystokinin-8 (CCK-8)-inactivating peptidase is a serine peptidase which has been shown to be a membrane-bound isoform of tripeptidyl peptidase II (EC 3.4.14.10). It cleaves the neurotransmitter CCK-8 sulfate at the Met-Gly bond to give Asp-Tyr(SO(3)H)-Met-OH + Gly-Trp-Met-Asp-Phe-NH(2). In seeking a reversible inhibitor of this peptidase, the enzymatic binding subsites were characterized using a fluorimetric assay based on the hydrolysis of the artificial substrate Ala-Ala-Phe-amidomethylcoumarin. A series of di- and tripeptides having various alkyl or aryl side chains was studied to determine the accessible volume for binding and to probe the potential for hydrophobic interactions. From this initial study the tripeptides Ile-Pro-Ile-OH (K(i) = 1 microM) and Ala-Pro-Ala-OH (K(i) = 3 microM) and dipeptide amide Val-Nvl-NHBu (K(i) = 3 microM) emerged as leads. Comparison of these structures led to the synthesis of Val-Pro-NHBu (K(i) = 0.57 microM) which served for later optimization in the design of butabindide, a potent reversible competitive and selective inhibitor of the CCK-8-inactivating peptidase. The strategy for this work is explicitly described since it illustrates a possible general approach for peptidase inhibitor design.

  18. Targeting Type 2 Diabetes with C-Glucosyl Dihydrochalcones as Selective Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: Synthesis and Biological Evaluation.

    PubMed

    Jesus, Ana R; Vila-Viçosa, Diogo; Machuqueiro, Miguel; Marques, Ana P; Dore, Timothy M; Rauter, Amélia P

    2017-01-26

    Inhibiting glucose reabsorption by sodium glucose co-transporter proteins (SGLTs) in the kidneys is a relatively new strategy for treating type 2 diabetes. Selective inhibition of SGLT2 over SGLT1 is critical for minimizing adverse side effects associated with SGLT1 inhibition. A library of C-glucosyl dihydrochalcones and their dihydrochalcone and chalcone precursors was synthesized and tested as SGLT1/SGLT2 inhibitors using a cell-based fluorescence assay of glucose uptake. The most potent inhibitors of SGLT2 (IC 50 = 9-23 nM) were considerably weaker inhibitors of SGLT1 (IC 50 = 10-19 μM). They showed no effect on the sodium independent GLUT family of glucose transporters, and the most potent ones were not acutely toxic to cultured cells. The interaction of a C-glucosyl dihydrochalcone with a POPC membrane was modeled computationally, providing evidence that it is not a pan-assay interference compound. These results point toward the discovery of structures that are potent and highly selective inhibitors of SGLT2.

  19. 1,2,6-Thiadiazinones as Novel Narrow Spectrum Calcium/Calmodulin-Dependent Protein Kinase Kinase 2 (CaMKK2) Inhibitors.

    PubMed

    Asquith, Christopher R M; Godoi, Paulo H; Couñago, Rafael M; Laitinen, Tuomo; Scott, John W; Langendorf, Christopher G; Oakhill, Jonathan S; Drewry, David H; Zuercher, William J; Koutentis, Panayiotis A; Willson, Timothy M; Kalogirou, Andreas S

    2018-05-19

    We demonstrate for the first time that 4 H -1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4 H -1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.

  20. Lack of evidence for a harmful effect of sodium-glucose co-transporter 2 (SGLT2) inhibitors on fracture risk among type 2 diabetes patients: a network and cumulative meta-analysis of randomized controlled trials.

    PubMed

    Tang, H L; Li, D D; Zhang, J J; Hsu, Y H; Wang, T S; Zhai, S D; Song, Y Q

    2016-12-01

    To evaluate the comparative effects of sodium-glucose co-transporter 2 (SGLT2) inhibitors on risk of bone fracture in patients with type 2 diabetes mellitus (T2DM). PubMed, EMBASE, CENTRAL and ClinicalTrials.gov were systematically searched from inception to 27 January 2016 to identify randomized controlled trials (RCTs) reporting the outcome of fracture in patients with T2DM treated with SGLT2 inhibitors. Pairwise and network meta-analyses, as well as a cumulative meta-analysis, were performed to calculate odds ratios (ORs) and 95% confidence intervals (CIs). A total of 38 eligible RCTs (10 canagliflozin, 15 dapagliflozin and 13 empagliflozin) involving 30 384 patients, with follow-ups ranging from 24 to 160 weeks, were included. The fracture event rates were 1.59% in the SGLT2 inhibitor groups and 1.56% in the control groups. The incidence of fracture events was similar among these three SGLT2 inhibitor groups. Compared with placebo, canagliflozin (OR 1.15; 95% CI 0.71-1.88), dapagliflozin (OR 0.68; 95% CI 0.37-1.25) and empagliflozin (OR 0.93; 95% CI 0.74-1.18) were not significantly associated with an increased risk of fracture. Our cumulative meta-analysis indicated the robustness of the null findings with regard to SGLT2 inhibitors. Our meta-analysis based on available RCT data does not support the harmful effect of SGLT2 inhibitors on fractures, although future safety monitoring from RCTs and real-world data with detailed information on bone health is warranted. © 2016 John Wiley & Sons Ltd.

  1. 2,2'-Dihydroxychalcone, a glutathione transferase inhibitor, sensitises human colon adenocarcinoma cells to chlorambucil and melphalan, but not to actinomycin D.

    PubMed

    Goh, Kenneth; Chen, Yufan; Zheng, Lin; Ong, Laichun; Jin, Yi; Chow, Pierce; Zhang, Kai

    2008-01-01

    2,2'-Dihydroxychalcone (2,2'DHC) is a potent inhibitor of glutathione S-transferases (GSTs). Pre-treatment of human colon cancer cells by a non-toxic concentration of this GST inhibitor significantly sensitised cancer cells to chlorambucil and melphalan, which are substrates of glutathione (GSH) conjugation. However, sensitisation to actinomycin D, which has not been shown to be detoxified by GSH-related mechanisms, was not observed. These results further confirm the contribution of GSH-related mechanisms to drug resistance by increased detoxification of drugs. 2,2'DHC inhibited GST activity and the transport of GSH conjugates by cancer cells. Its combined effects on GST and glutathione conjugate export (GS-X) pump may provide more potent sensitisation of cancer cells to chemotherapeutic drugs.

  2. Update on SGLT2 Inhibitors-New Data Released at the American Diabetes Association.

    PubMed

    Lee, Sara

    2017-09-01

    Sodium-glucose cotransporter 2 (SGLT2) inhibitors are one of the newer classes of antiglycemic agents approved for the management of patients with type 2 diabetes mellitus. Due to their unique mechanism of action, SGLT2 inhibitors have shown to be beneficial beyond glucose control. The improvement in cardiovascular (CV) outcomes was first observed in the landmark EMPA-REG OUTCOMES study. Following these results, numerous CV outcome trials were designed to identify whether the beneficial CV and renal effects observed with empagliflozin are unique or a drug class effect. The benefit of SGLT2 inhibition was confirmed by the CANagliflozin cardioVascular Assessment Study (CANVAS) Program, presented at the American Diabetes Association 77th Scientific Sessions. With over 10,000 patients, the CANVAS Program integrated data from two large CV outcome studies. Canagliflozin achieved a 14% reduction in the composite endpoint of CV mortality, nonfatal myocardial infarction (MI), or nonfatal stroke, and a 33% reduction in the risk of hospitalization for heart failure (HF) compared with placebo. Potential renal protective effects were also observed with canagliflozin; however, an increased risk of amputation with canagliflozin was seen in both CANVAS studies. The class effect of SGLT2 inhibitors was also confirmed in new analyses of the The Comparative Effectiveness of Cardiovascular Outcomes (CVD-REAL) study, which aimed to evaluate SGLT2 inhibitors (dapagliflozin, canagliflozin, and empagliflozin) in broader patient populations with type 2 diabetes mellitus. In patients who were new to SGLT2 inhibitors, significant reductions in rates of CV death and hospitalization for HF were observed compared with any other glucose-lowering agents. SGLT2 inhibitors were also associated with lower rates in hospitalization for HF in patients with and without CV disease. In addition, substudies of the EMPA-REG OUTCOME trial further provided insight on the efficacy of empagliflozin across

  3. JAK2 inhibition sensitizes resistant EGFR-mutant lung adenocarcinoma to tyrosine kinase inhibitors

    PubMed Central

    Gao, Sizhi P.; Chang, Qing; Mao, Ninghui; Daly, Laura A.; Vogel, Robert; Chan, Tyler; Liu, Shu Hui; Bournazou, Eirini; Schori, Erez; Zhang, Haiying; Brewer, Monica Red; Pao, William; Morris, Luc; Ladanyi, Marc; Arcila, Maria; Manova-Todorova, Katia; de Stanchina, Elisa; Norton, Larry; Levine, Ross L.; Altan-Bonnet, Gregoire; Solit, David; Zinda, Michael; Huszar, Dennis; Lyden, David; Bromberg, Jacqueline F.

    2016-01-01

    Lung adenocarcinomas with mutant epidermal growth factor receptor (EGFR) respond to EGFR-targeted tyrosine kinase inhibitors (TKIs), but resistance invariably occurs. We found that the Janus kinase (JAK)/signal transduction and activator of transcription 3 (STAT3) signaling pathway was aberrantly increased in TKI-resistant EGFR-mutant non–small cell lung cancer (NSCLC) cells. JAK2 inhibition restored sensitivity to the EGFR inhibitor erlotinib in TKI-resistant cell lines and xenograft models of EGFR-mutant TKI-resistant lung cancer. JAK2 inhibition uncoupled EGFR from its negative regulator, suppressor of cytokine signaling 5 (SOCS5), consequently increasing EGFR abundance and restoring the tumor cells’ dependence on EGFR signaling. Furthermore, JAK2 inhibition led to heterodimerization of mutant and wild-type EGFR subunits, the activity of which was then blocked by TKIs. Our results reveal a mechanism whereby JAK2 inhibition overcomes acquired resistance to EGFR inhibitors and support the use of combination therapy with JAK and EGFR inhibitors for the treatment of EGFR-dependent NSCLC. PMID:27025877

  4. Structural investigation of HIV-1 nonnucleoside reverse transcriptase inhibitors: 2-Aryl-substituted benzimidazoles

    NASA Astrophysics Data System (ADS)

    Ziółkowska, Natasza E.; Michejda, Christopher J.; Bujacz, Grzegorz D.

    2009-11-01

    Acquired immunodeficiency syndrome (AIDS) caused by the human immunodeficiency virus (HIV) is one of the most destructive epidemics in history. Inhibitors of HIV enzymes are the main targets to develop drugs against that disease. Nonnucleoside reverse transcriptase inhibitors of HIV-1 (NNRTIs) are potentially effective and nontoxic. Structural studies provide information necessary to design more active compounds. The crystal structures of four NNRTI derivatives of 2-aryl-substituted N-benzyl-benzimidazole are presented here. Analysis of the geometrical parameters shows that the structures of the investigated inhibitors are rigid. The important geometrical parameter is the dihedral angle between the planes of the π-electron systems of the benzymidazole and benzyl moieties. The values of these dihedral angles are in a narrow range for all investigated inhibitors. There is no significant difference between the structure of the free inhibitor and the inhibitor in the complex with RT HIV-1. X-ray structures of the investigated inhibitors are a good basis for modeling enzyme-inhibitor interactions in rational drug design.

  5. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2.

    PubMed

    Wang, Hong; Brautigan, David L

    2002-12-20

    Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.

  6. Detection of platelet sensitivity to inhibitors of COX-1, P2Y1, and P2Y12 using a whole blood microfluidic flow assay

    PubMed Central

    Li, Ruizhi; Diamond, Scott L.

    2014-01-01

    BACKGROUND Microfluidic devices recreate the hemodynamic conditions of thrombosis. METHODS Whole blood inhibited with PPACK was treated ex vivo with inhibitors and perfused over collagen for 300 s (wall shear rate = 200 s−1) using a microfluidic flow assay. Platelet accumulation was measured in the presence of COX-1 inhibitor (aspirin, ASA), P2Y1 inhibitor (MRS 2179), P2Y12 inhibitor (2MeSAMP) or combined P2Y1 and P2Y12 inhibitors. RESULTS High dose ASA (500 μM), 2MeSAMP (100 μM), MRS 2179 (10 μM),or combined 2MeSAMP and MRS 2179 decreased total platelet accumulation by 27.5%, 75.6%, 77.7%, and 87.9% (p < 0.01), respectively. ASA reduced secondary aggregation rate between 150 and 300 s without effect on primary deposition rate on collagen from 60 to 150 s. In contrast, 2MeSAMP and MRS 2179 acted earlier and reduced primary deposition to collagen between 60 and 105 s and secondary aggregation between 105 and 300 s. RCOX and RP2Y (defined as a ratio of secondary aggregation rate to primary deposition rate) demonstrated 9 of 10 subjects had RCOX < 1 or RP2Y < 1 following ASA or 2MeSAMP addition, while 6 of 10 subjects had RP2Y < 1 following MRS 2179 addition. Combined MRS 2179 and 2MeSAMP inhibited primary platelet deposition rate and platelet secondary aggregation beyond that of each individual inhibitor. Receiver-Operator Characteristic area under the curve (AUC) indicated the robustness of RCOX and RP2Y to detect inhibition of secondary platelet aggregation by ASA, 2MeSAMP, and MRS 2179 (AUC of 0.874 0.966, and 0.889, respectively). CONCLUSIONS Microfluidic devices can detect platelet sensitivity to antiplatelet agents. The R-value can serve as a self-normalized metric of platelet function for a single blood sample. PMID:24365044

  7. A combination of 2D similarity search, pharmacophore, and molecular docking techniques for the identification of vascular endothelial growth factor receptor-2 inhibitors.

    PubMed

    Ai, Guanhua; Tian, Caiping; Deng, Dawei; Fida, Guissi; Chen, Haiyan; Ma, Yuxiang; Ding, Li; Gu, Yueqing

    2015-04-01

    The human vascular endothelial growth factor receptor-2 (VEGFR-2) has been an attractive target for the inhibition of angiogenesis. In the current study, we used a hybrid protocol of virtual screening methods to retrieve new VEGFR-2 inhibitors from the Zinc-Specs Database (441 574 compounds). The hybrid protocol included the initial screening of candidates by comparing the 2D similarity to five reported top active inhibitors of 13 VEGFR-2 X-ray crystallography structures, followed by the pharmacophore modeling of virtual screening on the basis of receptor-ligand interactions and further narrowing by LibDOCK to obtain the final hits. Two compounds (AN-919/41439526 and AK-968/40939851) with a high libscore were selected as the final hits for a subsequent cell cytotoxicity study. The two compounds screened exerted significant inhibitory effects on the proliferation of cancer cells (U87 and MCF-7). The results indicated that the hybrid procedure is an effective approach for screening specific receptor inhibitors.

  8. Head-to-head comparison of H2-receptor antagonists and proton pump inhibitors in the treatment of erosive esophagitis: A meta-analysis

    PubMed Central

    Wang, Wei-Hong; Huang, Jia-Qing; Zheng, Ge-Fan; Xia, Harry Hua-Xiang; Wong, Wai-Man; Lam, Shiu-Kum; Wong, Benjamin Chun-Yu

    2005-01-01

    AIM: To systematically evaluate the efficacy of H2-receptor antagonists (H2RAs) and proton pump inhibitors in healing erosive esophagitis (EE). METHODS: A meta-analysis was performed. A literature search was conducted in PubMed, Medline, Embase, and Cochrane databases to include randomized controlled head-to-head comparative trials evaluating the efficacy of H2RAs or proton pump inhibitors in healing EE. Relative risk (RR) and 95% confidence interval (CI) were calculated under a random-effects model. RESULTS: RRs of cumulative healing rates for each comparison at 8 wk were: high dose vs standard dose H2RAs, 1.17 (95%CI, 1.02-1.33); standard dose proton pump inhibitors vs standard dose H2RAs, 1.59 (95%CI, 1.44-1.75); standard dose other proton pump inhibitors vs standard dose omeprazole, 1.06 (95%CI, 0.98-1.06). Proton pump inhibitors produced consistently greater healing rates than H2RAs of all doses across all grades of esophagitis, including patients refractory to H2RAs. Healing rates achieved with standard dose omeprazole were similar to those with other proton pump inhibitors in all grades of esophagitis. CONCLUSION: H2RAs are less effective for treating patients with erosive esophagitis, especially in those with severe forms of esophagitis. Standard dose proton pump inhibitors are significantly more effective than H2RAs in healing esophagitis of all grades. Proton pump inhibitors given at the recommended dose are equally effective for healing esophagitis. PMID:15996033

  9. Synthesis and Characterization of Novel Acyl-Glycine Inhibitors of GlyT2.

    PubMed

    Mostyn, Shannon N; Carland, Jane E; Shimmon, Susan; Ryan, Renae M; Rawling, Tristan; Vandenberg, Robert J

    2017-09-20

    It has been demonstrated previously that the endogenous compound N-arachidonyl-glycine inhibits the glycine transporter GlyT2, stimulates glycinergic neurotransmission, and provides analgesia in animal models of neuropathic and inflammatory pain. However, it is a relatively weak inhibitor with an IC 50 of 9 μM and is subject to oxidation via cyclooxygenase, limiting its therapeutic value. In this paper we describe the synthesis and testing of a novel series of monounsaturated C18 and C16 acyl-glycine molecules as inhibitors of the glycine transporter GlyT2. We demonstrate that they are up to 28 fold more potent that N-arachidonyl-glycine with no activity at the closely related GlyT1 transporter at concentrations up to 30 μM. This novel class of compounds show considerable promise as a first generation of GlyT2 transport inhibitors.

  10. Towards selective phosphodiesterase 2A (PDE2A) inhibitors: a patent review (2010 - present).

    PubMed

    Trabanco, Andrés A; Buijnsters, Peter; Rombouts, Frederik J R

    2016-08-01

    The cyclic nucleotides cAMP and cGMP are ubiquitous intracellular second messengers regulating a large variety of biological processes. The intracellular concentration of these biologically relevant molecules is modulated by the activity of phosphodiesterases (PDEs), a class of enzymes that is grouped in 11 families. The expression of PDEs is tissue- and cell-specific allowing spatiotemporal integration of multiple signaling cascades. PDE2A is a dual substrate enzyme and is expressed in both the periphery and in the central nervous system, however its expression is highest in the brain, where it is mainly localized in the cortex, hippocampus, and striatum. This suggests that this enzyme may regulate intraneuronal cGMP and cAMP levels in brain areas involved in emotion, perception, concentration, learning and memory. This review covers the patent applications published between January 2010 and February 2016 on phosphodiesterase 2A inhibitors. Recent publications in the literature and in filed patent applications demonstrate the interest of pharmaceutical companies for PDE2A. This has increased the insights of its possible therapeutic role but the few clinical trials were terminated. Based on the ongoing interest in the field it is likely that new clinical trials can be expected and will unravel the therapeutic potential of PDE2A inhibition.

  11. 2-Fluoro-L-Fucose Is a Metabolically Incorporated Inhibitor of Plant Cell Wall Polysaccharide Fucosylation

    PubMed Central

    Wallace, Ian S.

    2015-01-01

    The monosaccharide L-fucose (L-Fuc) is a common component of plant cell wall polysaccharides and other plant glycans, including the hemicellulose xyloglucan, pectic rhamnogalacturonan-I (RG-I) and rhamnogalacturonan-II (RG-II), arabinogalactan proteins, and N-linked glycans. Mutations compromising the biosynthesis of many plant cell wall polysaccharides are lethal, and as a result, small molecule inhibitors of plant cell wall polysaccharide biosynthesis have been developed because these molecules can be applied at defined concentrations and developmental stages. In this study, we characterize novel small molecule inhibitors of plant fucosylation. 2-fluoro-L-fucose (2F-Fuc) analogs caused severe growth phenotypes when applied to Arabidopsis seedlings, including reduced root growth and altered root morphology. These phenotypic defects were dependent upon the L-Fuc salvage pathway enzyme L-Fucose Kinase/ GDP-L-Fucose Pyrophosphorylase (FKGP), suggesting that 2F-Fuc is metabolically converted to the sugar nucleotide GDP-2F-Fuc, which serves as the active inhibitory molecule. The L-Fuc content of cell wall matrix polysaccharides was reduced in plants treated with 2F-Fuc, suggesting that this molecule inhibits the incorporation of L-Fuc into these polysaccharides. Additionally, phenotypic defects induced by 2F-Fuc treatment could be partially relieved by the exogenous application of boric acid, suggesting that 2F-Fuc inhibits RG-II biosynthesis. Overall, the results presented here suggest that 2F-Fuc is a metabolically incorporated inhibitor of plant cellular fucosylation events, and potentially suggest that other 2-fluorinated monosaccharides could serve as useful chemical probes for the inhibition of cell wall polysaccharide biosynthesis. PMID:26414071

  12. Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors.

    PubMed

    Goel, Parul; Jumpertz, Thorsten; Tichá, Anežka; Ogorek, Isabella; Mikles, David C; Hubalek, Martin; Pietrzik, Claus U; Strisovsky, Kvido; Schmidt, Boris; Weggen, Sascha

    2018-05-01

    Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styryl substituted benzoxazinones might comprise novel rhomboid inhibitors. Protease in vitro assays confirmed activity of 2-styryl substituted benzoxazinones against GlpG but not against the soluble serine protease α-chymotrypsin. Furthermore, mass spectrometry analysis demonstrated covalent modification of the catalytic residue Ser201, corroborating the predicted mechanism of inhibition and the formation of an acyl enzyme intermediate. In conclusion, 2-styryl substituted benzoxazinones are a novel rhomboid inhibitor scaffold with ample opportunity for optimization. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Molecular dynamics simulations studies and free energy analysis on inhibitors of MDM2-p53 interaction.

    PubMed

    Niu, Rui-Juan; Zheng, Qing-Chuan; Zhang, Ji-Long; Zhang, Hong-Xing

    2013-11-01

    The oncoprotein MDM2 (murine double minute 2) negatively regulates the activity and stability of tumor suppressor p53. Inactivation of the MDM2-p53 interaction by potent inhibitors offers new possibilities for anticancer therapy. Molecular dynamics (MD) simulations were performed on three inhibitors-MDM2 complexes to investigate the stability and structural transitions. Simulations show that the backbone of MDM2 maintains stable during the whole time. However, slightly structural changes of inhibitors and MDM2 are observed. Furthermore, the molecular mechanics generalized Born surface area (MM-GBSA) approach was introduced to analyze the interactions between inhibitors and MDM2. The results show that binding of inhibitor pDIQ to MDM2 is significantly stronger than that of pMI and pDI to MDM2. The side chains of residues have more contribution than backbone of residues in energy decomposition. The structure-affinity analyses show that L54, I61, M62, Y67, Q72, H73 and V93 produce important interaction energy with inhibitors. The residue W/Y22' is also very important to the interaction between the inhibitors and MDM2. The three-dimensional structures at different times indicate that the mobility of Y100 influences on the binding of inhibitors to MDM2, and its change has important role in conformations of inhibitors and MDM2. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. DPP-4 inhibitors improve liver dysfunction in type 2 diabetes mellitus.

    PubMed

    Kanazawa, Ippei; Tanaka, Ken-ichiro; Sugimoto, Toshitsugu

    2014-09-17

    Dipeptidyl peptidase-4 (DPP-4) inhibitors might have pleiotropic effects because receptors for incretin exist in various tissues, including liver. We examined whether DPP-4 inhibitors affect liver function in patients with type 2 diabetes. A retrospective review of 459 patients with type 2 diabetes who were prescribed DPP-4 inhibitors was performed. After exclusion of patients with hepatitis B or C, steroid use, and other diseases that might affect liver function and diabetes status, 224 patients were included in the analysis. Forty-four patients (19.6%) with liver injury defined by aspartate transaminase (AST) or alanine transaminase (ALT) over the normal level of 40 U/L. In the patients with liver injury, AST and ALT were significantly decreased after 6 months from the first date of DPP-4 prescription, with mean changes of -6.2 U/L [95% confidence interval (CI) -10.9 to -1.4, p=0.012] and of -11.9 U/L (95%CI -19.5 to -4.2, p=0.003), respectively. Percent changes in AST were significantly and negatively correlated with baseline AST and ALT (r=-0.27, p<0.001 and r=-0.23, p=0.002, respectively), and percent changes in ALT were also negatively correlated with them (r=-0.23, p=0.001 and r=-0.27, p<0.001, respectively). DPP-4 inhibitors improved liver dysfunction in patients with type 2 diabetes.

  15. Molecular cloning and structural modelling of gamma-phospholipase A2 inhibitors from Bothrops atrox and Micrurus lemniscatus snakes.

    PubMed

    Picelli, Carina G; Borges, Rafael J; Fernandes, Carlos A H; Matioli, Fabio M; Fernandes, Carla F C; Sobrinho, Juliana C; Holanda, Rudson J; Ozaki, Luiz S; Kayano, Anderson M; Calderon, Leonardo A; Fontes, Marcos R M; Stábeli, Rodrigo G; Soares, Andreimar M

    2017-10-01

    Phospholipases A 2 inhibitors (PLIs) produced by venomous and non-venomous snakes play essential role in this resistance. These endogenous inhibitors may be classified by their fold in PLIα, PLIβ and PLIγ. Phospholipases A 2 (PLA 2 s) develop myonecrosis in snake envenomation, a consequence that is not efficiently neutralized by antivenom treatment. This work aimed to identify and characterize two PLIs from Amazonian snake species, Bothrops atrox and Micrurus lemniscatus. Liver tissues RNA of specimens from each species were isolated and amplified by RT-PCR using PCR primers based on known PLIγ gene sequences, followed by cloning and sequencing of amplified fragments. Sequence similarity studies showed elevated identity with inhibitor PLIγ gene sequences from other snake species. Molecular models of translated inhibitors' gene sequences resemble canonical three finger fold from PLIγ and support the hypothesis that the decapeptide (residues 107-116) may be responsible for PLA 2 inhibition. Structural studies and action mechanism of these PLIs may provide necessary information to evaluate their potential as antivenom or as complement of the current ophidian accident treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. TS-071 is a novel, potent and selective renal sodium-glucose cotransporter 2 (SGLT2) inhibitor with anti-hyperglycaemic activity.

    PubMed

    Yamamoto, K; Uchida, S; Kitano, K; Fukuhara, N; Okumura-Kitajima, L; Gunji, E; Kozakai, A; Tomoike, H; Kojima, N; Asami, J; Toyoda, H; Arai, M; Takahashi, T; Takahashi, K

    2011-09-01

    The renal sodium-glucose cotransporter 2 (SGLT2) plays an important role in the reuptake of filtered glucose in the proximal tubule and therefore may be an attractive target for the treatment of diabetes mellitus. This study characterizes the pharmacological profile of TS-071 ((1S)-1,5-anhydro-1-[5-(4-ethoxybenzyl)-2-methoxy-4-methylphenyl]-1-thio-D-glucitol hydrate), a novel SGLT2 inhibitor in vitro and in vivo. Inhibition of glucose uptake by TS-071 was studied in CHO-K1 cells stably expressing either human SGLT1 or SGLT2. Single oral dosing studies were performed in rats, mice and dogs to assess the abilities of TS-071 to increase urinary glucose excretion and to lower plasma glucose levels. TS-071 inhibited SGLT2 activity in a concentration-dependent manner and was a potent and highly selective inhibitor of SGLT2. Orally administered TS-071 increased urinary glucose excretion in Zucker fatty rats and beagle dogs at doses of 0.3 and 0.03 mg·kg(-1) respectively. TS-071 improved glucose tolerance in Zucker fatty rats without stimulating insulin secretion and reduced hyperglycaemia in streptozotocin (STZ)-induced diabetic rats and db/db mice at a dose of 0.3 mg·kg(-1). These data indicate that TS-071 is a potent and selective SGLT2 inhibitor that improves glucose levels in rodent models of type 1 and 2 diabetes and may be useful for the treatment for diabetes mellitus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  17. Microenvironment-Mediated Mechanisms of Resistance to HER2 Inhibitors Differ between HER2+ Breast Cancer Subtypes.

    PubMed

    Watson, Spencer S; Dane, Mark; Chin, Koei; Tatarova, Zuzana; Liu, Moqing; Liby, Tiera; Thompson, Wallace; Smith, Rebecca; Nederlof, Michel; Bucher, Elmar; Kilburn, David; Whitman, Matthew; Sudar, Damir; Mills, Gordon B; Heiser, Laura M; Jonas, Oliver; Gray, Joe W; Korkola, James E

    2018-03-28

    Extrinsic signals are implicated in breast cancer resistance to HER2-targeted tyrosine kinase inhibitors (TKIs). To examine how microenvironmental signals influence resistance, we monitored TKI-treated breast cancer cell lines grown on microenvironment microarrays composed of printed extracellular matrix proteins supplemented with soluble proteins. We tested ∼2,500 combinations of 56 soluble and 46 matrix microenvironmental proteins on basal-like HER2+ (HER2E) or luminal-like HER2+ (L-HER2+) cells treated with the TKIs lapatinib or neratinib. In HER2E cells, hepatocyte growth factor, a ligand for MET, induced resistance that could be reversed with crizotinib, an inhibitor of MET. In L-HER2+ cells, neuregulin1-β1 (NRG1β), a ligand for HER3, induced resistance that could be reversed with pertuzumab, an inhibitor of HER2-HER3 heterodimerization. The subtype-specific responses were also observed in 3D cultures and murine xenografts. These results, along with bioinformatic pathway analysis and siRNA knockdown experiments, suggest different mechanisms of resistance specific to each HER2+ subtype: MET signaling for HER2E and HER2-HER3 heterodimerization for L-HER2+ cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Effects of antidiabetic drugs on the incidence of macrovascular complications and mortality in type 2 diabetes mellitus: a new perspective on sodium-glucose co-transporter 2 inhibitors.

    PubMed

    Rahelić, Dario; Javor, Eugen; Lucijanić, Tomo; Skelin, Marko

    2017-02-01

    Elevated hemoglobin A 1c (HbA 1c ) values correlate with microvascular and macrovascular complications. Thus, patients with type 2 diabetes mellitus (T2DM) are at an increased risk of developing macrovascular events. Treatment of T2DM should be based on a multifactorial approach because of its evidence regarding reduction of macrovascular complications and mortality in T2DM. It is well known that intensive glucose control reduces the risk of microvascular complications in T2DM, but the effects of antidiabetic drugs on macrovascular complications and mortality in T2DM are less clear. The results of recent trials have demonstrated clear evidence that empagliflozin and liraglutide reduce cardiovascular (CV) and all-cause mortality in T2DM, an effect that is absent in other members of antidiabetic drugs. Empagliflozin is a member of a novel class of antidiabetic drugs, the sodium-glucose co-transporter 2 (SGLT2) inhibitors. Two ongoing randomized clinical trials involving other SGLT2 inhibitors, canagliflozin and dapagliflozin, will provide additional evidence of the beneficial effects of SGLT2 inhibitors in T2DM population. The aim of this paper is to systematically present the latest evidence regarding the usage of antidiabetic drugs, and the reduction of macrovascular complications and mortality. A special emphasis is put on the novel class of antidiabetic drugs, of SGLT2 inhibitors. Key messages Macrovascular complications and mortality are best clinical trial endpoints for evaluating the efficacy of antidiabetic drugs. The first antidiabetic drug that demonstrated a reduction in mortality in the treatment of type 2 diabetes mellitus (T2DM) was empagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor. SGLT2 inhibitors are novel class of antidiabetic drugs that play a promising role in the treatment of T2DM.

  19. A fragment-based approach leading to the discovery of a novel binding site and the selective CK2 inhibitor CAM4066.

    PubMed

    De Fusco, Claudia; Brear, Paul; Iegre, Jessica; Georgiou, Kathy Hadje; Sore, Hannah F; Hyvönen, Marko; Spring, David R

    2017-07-01

    Recently we reported the discovery of a potent and selective CK2α inhibitor CAM4066. This compound inhibits CK2 activity by exploiting a pocket located outside the ATP binding site (αD pocket). Here we describe in detail the journey that led to the discovery of CAM4066 using the challenging fragment linking strategy. Specifically, we aimed to develop inhibitors by linking a high-affinity fragment anchored in the αD site to a weakly binding warhead fragment occupying the ATP site. Moreover, we describe the remarkable impact that molecular modelling had on the development of this novel chemical tool. The work described herein shows potential for the development of a novel class of CK2 inhibitors. Copyright © 2017. Published by Elsevier Ltd.

  20. Annexin A2 antibodies but not inhibitors of the annexin A2 heterotetramer impair productive HIV-1 infection of macrophages in vitro.

    PubMed

    Woodham, Andrew W; Sanna, Adriana M; Taylor, Julia R; Skeate, Joseph G; Da Silva, Diane M; Dekker, Lodewijk V; Kast, W Martin

    2016-11-18

    During sexual transmission of human immunodeficiency virus (HIV), macrophages are initial targets for HIV infection. Secretory leukocyte protease inhibitor (SLPI) has been shown to protect against HIV infection of macrophages through interactions with annexin A2 (A2), which is found on the macrophage cell surface as a heterotetramer (A2t) consisting of A2 and S100A10. Therefore, we investigated potential protein-protein interactions between A2 and HIV-1 gp120 through a series of co-immunoprecipitation assays and a single molecule pulldown (SiMPull) technique. Additionally, inhibitors of A2t (A2ti) that target the interaction between A2 and S100A10 were tested for their ability to impair productive HIV-1 infection of macrophages. Our data suggest that interactions between HIV-1 gp120 and A2 exist, though this interaction may be indirect. Furthermore, an anti-A2 antibody impaired HIV-1 particle production in macrophages in vitro, whereas A2ti did not indicating that annexin A2 may promote HIV-1 infection of macrophages in its monomeric rather than tetrameric form.

  1. Fragment-Based Discovery of a Potent, Orally Bioavailable Inhibitor That Modulates the Phosphorylation and Catalytic Activity of ERK1/2.

    PubMed

    Heightman, Tom D; Berdini, Valerio; Braithwaite, Hannah; Buck, Ildiko M; Cassidy, Megan; Castro, Juan; Courtin, Aurélie; Day, James E H; East, Charlotte; Fazal, Lynsey; Graham, Brent; Griffiths-Jones, Charlotte M; Lyons, John F; Martins, Vanessa; Muench, Sandra; Munck, Joanne M; Norton, David; O'Reilly, Marc; Palmer, Nick; Pathuri, Puja; Reader, Michael; Rees, David C; Rich, Sharna J; Richardson, Caroline; Saini, Harpreet; Thompson, Neil T; Wallis, Nicola G; Walton, Hugh; Wilsher, Nicola E; Woolford, Alison J-A; Cooke, Michael; Cousin, David; Onions, Stuart; Shannon, Jonathan; Watts, John; Murray, Christopher W

    2018-05-31

    Aberrant activation of the MAPK pathway drives cell proliferation in multiple cancers. Inhibitors of BRAF and MEK kinases are approved for the treatment of BRAF mutant melanoma, but resistance frequently emerges, often mediated by increased signaling through ERK1/2. Here, we describe the fragment-based generation of ERK1/2 inhibitors that block catalytic phosphorylation of downstream substrates such as RSK but also modulate phosphorylation of ERK1/2 by MEK without directly inhibiting MEK. X-ray crystallographic and biophysical fragment screening followed by structure-guided optimization and growth from the hinge into a pocket proximal to the C-α helix afforded highly potent ERK1/2 inhibitors with excellent kinome selectivity. In BRAF mutant cells, the lead compound suppresses pRSK and pERK levels and inhibits proliferation at low nanomolar concentrations. The lead exhibits tumor regression upon oral dosing in BRAF mutant xenograft models, providing a promising basis for further optimization toward clinical pERK1/2 modulating ERK1/2 inhibitors.

  2. The potential of SGLT2 inhibitors in phase II clinical development for treating type 2 diabetes.

    PubMed

    Pafili, K; Maltezos, E; Papanas, N

    2016-10-01

    There is now an abundance of anti-diabetic agents. However, only few patients achieve glycemic targets. Moreover, current glucose-lowering agents mainly depend upon insulin secretion or function. Sodium glucose co-transporter type 2 (SGLT2) inhibitors present a novel glucose-lowering therapy, inducing glycosuria in an insulin-independent fashion. In this review, the authors discuss the key efficacy and safety data from phase II clinical trials in type 2 diabetes mellitus (T2DM) of the main SGLT2 inhibitors approved or currently in development, and provide a rationale for their use in T2DM. Despite the very promising characteristics of this new therapeutic class, a number of issues await consideration. One important question is what to expect from head-to-head comparison data. We also need to know if dual inhibition of SGLT1/SGLT2 is more efficacious in reducing HbA1c and how this therapy affects metabolic and cardiovascular parameters. Additionally, several SGLT2 agents that have not yet come to market have hitherto been evaluated in Asian populations, whereas approved SGLT2 inhibitors have been frequently studied in other populations, including Caucasian subjects. Thus, we need more information on the potential role of ethnicity on their efficacy and safety.

  3. G-Protein-Coupled Receptor Kinase 2 (GRK2) Inhibitors: Current Trends and Future Perspectives.

    PubMed

    Guccione, Manuela; Ettari, Roberta; Taliani, Sabrina; Da Settimo, Federico; Zappalà, Maria; Grasso, Silvana

    2016-10-27

    G-protein-coupled receptor kinase 2 (GRK2) is a G-protein-coupled receptor kinase that is ubiquitously expressed in many tissues and regulates various intracellular mechanisms. The up- or down-regulation of GRK2 correlates with several pathological disorders. GRK2 plays an important role in the maintenance of heart structure and function; thus, this kinase is involved in many cardiovascular diseases. GRK2 up-regulation can worsen cardiac ischemia; furthermore, increased kinase levels occur during the early stages of heart failure and in hypertensive subjects. GRK2 up-regulation can lead to changes in the insulin signaling cascade, which can translate to insulin resistance. Increased GRK2 levels also correlate with the degree of cognitive impairment that is typically observed in Alzheimer's disease. This article reviews the most potent and selective GRK2 inhibitors that have been developed. We focus on their mechanism of action, inhibition profile, and structure-activity relationships to provide insight into the further development of GRK2 inhibitors as drug candidates.

  4. Allosteric Inhibition of SHP2: Identification of a Potent, Selective, and Orally Efficacious Phosphatase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia Fortanet, Jorge; Chen, Christine Hiu-Tung; Chen, Ying-Nan P.

    SHP2 is a nonreceptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell growth and differentiation via the MAPK signaling pathway. SHP2 also purportedly plays an important role in the programmed cell death pathway (PD-1/PD-L1). Because it is an oncoprotein associated with multiple cancer-related diseases, as well as a potential immunomodulator, controlling SHP2 activity is of significant therapeutic interest. Recently in our laboratories, a small molecule inhibitor of SHP2 was identified as an allosteric modulator that stabilizes the autoinhibited conformation of SHP2. A high throughput screen was performed to identify progressable chemical matter, and X-ray crystallography revealedmore » the location of binding in a previously undisclosed allosteric binding pocket. Structure-based drug design was employed to optimize for SHP2 inhibition, and several new protein–ligand interactions were characterized. These studies culminated in the discovery of 6-(4-amino-4-methylpiperidin-1-yl)-3-(2,3-dichlorophenyl)pyrazin-2-amine (SHP099, 1), a potent, selective, orally bioavailable, and efficacious SHP2 inhibitor.« less

  5. Multicomplex-based pharmacophore-guided 3D-QSAR studies of N-substituted 2'-(aminoaryl)benzothiazoles as Aurora-A inhibitors.

    PubMed

    He, Gu; Qiu, Minghua; Li, Rui; Ouyang, Liang; Wu, Fengbo; Song, Xiangrong; Cheng, Li; Xiang, Mingli; Yu, Luoting

    2012-06-01

    Aurora-A has been known as one of the most important targets for cancer therapy, and some Aurora-A inhibitors have entered clinical trails. In this study, combination of the ligand-based and structure-based methods is used to clarify the essential quantitative structure-activity relationship of known Aurora-A inhibitors, and multicomplex-based pharmacophore-guided method has been suggested to generate a comprehensive pharmacophore of Aurora-A kinase based on a collection of crystal structures of Aurora-A-inhibitor complex. This model has been successfully used to identify the bioactive conformation and align 37 structurally diverse N-substituted 2'-(aminoaryl)benzothiazoles derivatives. The quantitative structure-activity relationship analyses have been performed on these Aurora-A inhibitors based on multicomplex-based pharmacophore-guided alignment. These results may provide important information for further design and virtual screening of novel Aurora-A inhibitors. © 2012 John Wiley & Sons A/S.

  6. A Kinase Inhibitor Screen Reveals Protein Kinase C-dependent Endocytic Recycling of ErbB2 in Breast Cancer Cells*

    PubMed Central

    Bailey, Tameka A.; Luan, Haitao; Tom, Eric; Bielecki, Timothy Alan; Mohapatra, Bhopal; Ahmad, Gulzar; George, Manju; Kelly, David L.; Natarajan, Amarnath; Raja, Srikumar M.; Band, Vimla; Band, Hamid

    2014-01-01

    ErbB2 overexpression drives oncogenesis in 20–30% cases of breast cancer. Oncogenic potential of ErbB2 is linked to inefficient endocytic traffic into lysosomes and preferential recycling. However, regulation of ErbB2 recycling is incompletely understood. We used a high-content immunofluorescence imaging-based kinase inhibitor screen on SKBR-3 breast cancer cells to identify kinases whose inhibition alters the clearance of cell surface ErbB2 induced by Hsp90 inhibitor 17-AAG. Less ErbB2 clearance was observed with broad-spectrum PKC inhibitor Ro 31-8220. A similar effect was observed with Go 6976, a selective inhibitor of classical Ca2+-dependent PKCs (α, β1, βII, and γ). PKC activation by PMA promoted surface ErbB2 clearance but without degradation, and ErbB2 was observed to move into a juxtanuclear compartment where it colocalized with PKC-α and PKC-δ together with the endocytic recycling regulator Arf6. PKC-α knockdown impaired the juxtanuclear localization of ErbB2. ErbB2 transit to the recycling compartment was also impaired upon PKC-δ knockdown. PMA-induced Erk phosphorylation was reduced by ErbB2 inhibitor lapatinib, as well as by knockdown of PKC-δ but not that of PKC-α. Our results suggest that activation of PKC-α and -δ mediates a novel positive feedback loop by promoting ErbB2 entry into the endocytic recycling compartment, consistent with reported positive roles for these PKCs in ErbB2-mediated tumorigenesis. As the endocytic recycling compartment/pericentrion has emerged as a PKC-dependent signaling hub for G-protein-coupled receptors, our findings raise the possibility that oncogenesis by ErbB2 involves previously unexplored PKC-dependent endosomal signaling. PMID:25225290

  7. Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects.

    PubMed

    Kaplan, Abdullah; Abidi, Emna; El-Yazbi, Ahmed; Eid, Ali; Booz, George W; Zouein, Fouad A

    2018-05-01

    Diabetes is a global epidemic and a leading cause of death with more than 422 million patients worldwide out of whom around 392 million alone suffer from type 2 diabetes (T2D). Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are novel and effective drugs in managing glycemia of T2D patients. These inhibitors gained recent clinical and basic research attention due to their clinically observed cardiovascular protective effects. Although interest in the study of various SGLT isoforms and the effect of their inhibition on cardiovascular function extends over the past 20 years, an explanation of the effects observed clinically based on available experimental data is not forthcoming. The remarkable reduction in cardiovascular (CV) mortality (38%), major CV events (14%), hospitalization for heart failure (35%), and death from any cause (32%) observed over a period of 2.6 years in patients with T2D and high CV risk in the EMPA-REG OUTCOME trial involving the SGLT2 inhibitor empagliflozin (Empa) have raised the possibility that potential novel, more specific mechanisms of SGLT2 inhibition synergize with the known modest systemic improvements, such as glycemic, body weight, diuresis, and blood pressure control. Multiple studies investigated the direct impact of SGLT2i on the cardiovascular system with limited findings and the pathophysiological role of SGLTs in the heart. The direct impact of SGLT2i on cardiac homeostasis remains controversial, especially that SGLT1 isoform is the only form expressed in the capillaries and myocardium of human and rodent hearts. The direct impact of SGLT2i on the cardiovascular system along with potential lines of future research is summarized in this review.

  8. Trichocystatin-2 (TC-2): an endogenous inhibitor of cysteine proteinases in Trichomonas vaginalis is associated with TvCP39.

    PubMed

    Puente-Rivera, Jonathan; Ramón-Luing, Lucero de los Ángeles; Figueroa-Angulo, Elisa Elvira; Ortega-López, Jaime; Arroyo, Rossana

    2014-09-01

    The causal agent of trichomoniasis is a parasitic protist, Trichomonas vaginalis, which is rich in proteolytic activity, primarily carried out by cysteine proteases (CPs). Some CPs are known virulence factors. T. vaginalis also possesses three genes encoding endogenous cystatin-like CP inhibitors. The aim of this study was to identify and characterize one of these CP inhibitors. Using two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS), a cystatin-like peptidase inhibitor dubbed Trichocystatin-2 (TC-2) was identified in the T. vaginalis active degradome in association with TvCP39, a 39kDa CP involved in cytotoxicity. To characterize the TC-2 inhibitor, we cloned and expressed the tvicp-2 gene, purified the recombinant protein (TC-2r), and produced a specific polyclonal antibody (α-TC-2r). This antibody recognized a 10kDa protein band by western blotting. An indirect immunofluorescence assay (IFA) and cell fractionation assays using the α-TC-2r antibody showed that TC-2 was localized in the cytoplasm and lysosomes and that it colocalized with TvCP39. TC-2r showed inhibitory activity against papain, cathepsin-L, and TvCP39 in trichomonad extracts and live parasites but not legumain-like CPs. Live trichomonads treated with TC-2r showed reduced trichomonal cytotoxicity to HeLa cell monolayers in a TC-2r-concentration-dependent manner. In this study, we identified and characterized an endogenous cystatin-like inhibitor in T. vaginalis, TC-2, which is associated with TvCP39 and appears to regulate the cellular damage caused by T. vaginalis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Class specific peptide inhibitors for secretory phospholipases A2.

    PubMed

    Mahalka, Ajay K; Kinnunen, Paavo K J

    2013-06-28

    Phospholipases A2 (PLA2) catalyze the hydrolytic cleavage of free fatty acids from the sn-2 OH-moiety of glycerophospholipids. These enzymes have a number of functions, from digestion to signaling and toxicity of several venoms. They have also been implicated in inflammation and are connected to diverse diseases, such as cancer, ischemia, atherosclerosis, and schizophrenia. Accordingly, there is a keen interest to develop selective inhibitors for therapeutic use. We recently proposed a novel mechanism for the control of PLA2 activity with highly active protofibrils of PLA2 existing transiently before conversion to inactive amyloid fibrils [19]. In keeping with the above mechanism several algorithms identified (85)KMYFNLI(91) and (17)AALSYGFYG(25) in bee venom (bv) and human lacrimal fluid (Lf) PLA2, respectively, as a regions potentially forming amyloid type aggregates. Interestingly, in keeping with the proposed role of these sequences in the control of the activity of these enzymes, preincubation of 2nM bvPLA2 with (85)KMYFNLI(91) caused complete inhibition of PLA2 activity while the scrambled control peptide YNFLIMK had no effect. Approximately 36% attenuation of the hydrolytic activity of LfPLA2 present in human lacrimal fluid was observed in the presence of 80nM (17)AALSYGFYG(25). Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Surface plasmon resonance studies and biochemical evaluation of a potent peptide inhibitor against cyclooxygenase-2 as an anti-inflammatory agent.

    PubMed

    Somvanshi, Rishi K; Kumar, Ashwini; Kant, Shashi; Gupta, Deepti; Singh, S Bhaskar; Das, Utpal; Srinivasan, Alagiri; Singh, Tej P; Dey, Sharmistha

    2007-09-14

    Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation [D.L. Dewitt, W.L. Smith, Primary structure of prostaglandin G/H synthase from sheep vesicular gland determined from the complementary DNA sequence, Proc. Natl. Acad. Sci. USA 85 (1988) 1412-1416, 1]. It exists mainly in two isoforms COX-1 and COX-2 [A. Raz, A. Wyche, N. Siegel, P. Needleman, Regulation of fibroblast cyclooxygenase synthesis by interleukin-1, J. Biol. Chem. 263 (1988) 3022-3028, 2]. The conventional non-steroidal anti-inflammatory drugs (NSAIDs) have adverse gastrointestinal side-effects, because they inhibit both isoforms [T.D. Warner, F. Guiliano, I. Vojnovic, A. Bukasa, J.A. Mitchell, J.P. Vane, Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis, Proc. Natl. Acad. Sci. USA 96 (1999) 7563-7568, 3; L.J. Marnett, A.S. Kalgutkar, Cyclooxygenase 2 inhibitors: discovery, selectivity and the future, Trends Pharmacol. Sci. 20 (1999) 465-469, 4; J.R. Vane, NSAIDs, Cox-2 inhibitors, and the gut, Lancet 346 (1995) 1105-1106, 5]. Therefore drugs which selectively inhibit COX-2, known as coxibs were developed. Recent reports on the harmful cardiovascular and renovascular side-effects of the anti-inflammatory drugs have led to the quest for a novel class of COX-2 selective inhibitors. Keeping this in mind, we have used the X-ray crystal structures of the complexes of the COX-1 and COX-2 with the known inhibitors for a rational, structure based approach to design a small peptide, which is potent inhibitor for COX-2. The peptides have been checked experimentally by in-vitro kinetic studies using surface plasmon resonance (SPR) and other biochemical methods. We have identified a tripeptide inhibitor which is a potential lead for a new class of COX-2 inhibitor. The dissociation constant (K(D)) determined for COX-2

  11. Drug-drug interactions with sodium-glucose cotransporters type 2 (SGLT2) inhibitors, new oral glucose-lowering agents for the management of type 2 diabetes mellitus.

    PubMed

    Scheen, André J

    2014-04-01

    Inhibitors of sodium-glucose cotransporters type 2 (SGLT2) reduce hyperglycaemia by decreasing renal glucose threshold and thereby increasing urinary glucose excretion. They are proposed as a novel approach for the management of type 2 diabetes mellitus. They have proven their efficacy in reducing glycated haemoglobin, without inducing hypoglycaemia, as monotherapy or in combination with various other glucose-lowering agents, with the add-on value of promoting some weight loss and lowering arterial blood pressure. As they may be used concomitantly with many other drugs, we review the potential drug-drug interactions (DDIs) regarding the three leaders in the class (dapagliglozin, canagliflozin and empagliflozin). Most of the available studies were performed in healthy volunteers and have assessed the pharmacokinetic interferences with a single administration of the SGLT2 inhibitor. The exposure [assessed by peak plasma concentrations (Cmax) and area under the concentration-time curve (AUC)] to each SGLT2 inhibitor tested was not significantly influenced by the concomitant administration of other glucose-lowering agents or cardiovascular agents commonly used in patients with type 2 diabetes. Reciprocally, these medications did not influence the pharmacokinetic parameters of dapagliflozin, canagliflozin or empagliflozin. Some modest changes were not considered as clinically relevant. However, drugs that could specifically interfere with the metabolic pathways of SGLT2 inhibitors [rifampicin, inhibitors or inducers of uridine diphosphate-glucuronosyltransferase (UGT)] may result in significant changes in the exposure of SGLT2 inhibitors, as shown for dapagliflozin and canagliflozin. Potential DDIs in patients with type 2 diabetes receiving chronic treatment with an SGLT2 inhibitor deserve further attention, especially in individuals treated with several medications or in more fragile patients with hepatic and/or renal impairment.

  12. Effect of SMURF2 Targeting on Susceptibility to MEK Inhibitors in Melanoma

    PubMed Central

    2013-01-01

    Background The mitogen-activated protein–kinase pathway consisting of the kinases RAF, MEK, and ERK is central to cell proliferation and survival and is deregulated in more than 90% of melanomas. MEK inhibitors are currently trialled in the clinic, but despite efficient target inhibition, cytostatic rather than cytotoxic activity limits their efficacy. Methods We assessed the cytotoxicity to MEK inhibitors (PD184352 and selumetinib) in melanoma cells by toluidine-blue staining, caspase 3 cleavage, and melanoma-sphere growth. Western blotting and quantitative real-time polymerase chain reaction were applied to determine SMAD-specific E3 ubiquitin protein ligase 2 (SMURF2), PAX3, and MITF expression. Human melanoma samples (n = 77) from various stages were analyzed for SMURF2 and PAX3 expression. RNA interference was performed to target SMURF2 during MEK inhibition in vivo in melanoma xenografts in mice and zebrafish. All statistical tests were two-sided. Results Activation of transforming growth factor β (TGF-β) signalling sensitized melanoma cells to the cytotoxic effects of MEK inhibition. Melanoma cells resistant to the cytotoxic effects of MEK inhibitors counteracted TGF-β signalling through overexpression of the E3 ubiquitin ligase SMURF2, which resulted in increased expression of the transcription factors PAX3 and MITF. High MITF expression protected melanoma cells against MEK inhibitor cytotoxicity. Depleting SMURF2 reduced MITF expression and substantially lowered the threshold for MEK inhibitor–induced apoptosis. Moreover, SMURF2 depletion sensitized melanoma cells to the cytotoxic effects of selumetinib, leading to cell death at concentrations approximately 100-fold lower than the concentration required to induce cell death in SMURF2-expressing cells. Mice treated with selumetinib alone at a dosage of 10mg/kg body weight once daily produced no response, but in combination with SMURF2 depletion, selumetinib suppressed tumor growth by 97.9% (95

  13. Incidence and Clinical Features of Early Stent Thrombosis in the Era of New P2y12 Inhibitors (PLATIS-2)

    PubMed Central

    Asher, Elad; Abu-Much, Arsalan; Goldenberg, Ilan; Segev, Amit; Sabbag, Avi; Mazin, Israel; Shlezinger, Meital; Atar, Shaul; Zahger, Doron; Polak, Arthur; Beigel, Roy; Matetzky, Shlomi

    2016-01-01

    Early stent thrombosis (EST) (≤ 30 days after stent implantation) is a relatively rare but deleterious complication of percutaneous coronary intervention (PCI). Administration of newer P2Y12 inhibitors (prasugrel and ticagrelor) combined with aspirin has been shown to reduce the incidence of sub-acute and late stent thrombosis, compared with clopidogrel. We investigated the “real life” incidence of EST in patients from a large acute coronary syndrome (ACS) national registry, where newer P2Y12 inhibitors are widely used. Patients were derived from the ACS Israeli Survey (ACSIS), conducted during 2006, 2008, 2010 and 2013. Major adverse cardiac events (MACE) at 30days were defined as all-cause death, recurrent ACS, EST and stroke.Of the 4717 ACS patients who underwent PCI and stenting, 83% received clopidogrel and 17% newer P2Y12 inhibitors. The rate of EST was similar in both groups (1.7% in the newer P2Y12 inhibitor group vs. 1.4% in the clopidogrel-treated patients, p = 0.42). Results were consistent after multivariate analysis (adjusted HR = 1.06 [p = 0.89]). MACE occurred in 6.4% in the newer P2Y12 inhibitor group compared with 9.2% in the clopidogrel group (P<0.01). However, multivariate logistic regression modeling showed that treatment with newer P2Y12 inhibitors was not significantly associated with the secondary endpoint of MACE when compared with clopidogrel therapy [OR = 1.26 95%CI (0.93–1.73), P = 0.136]. The incidence of "real life" EST at 1month is relatively low, and appears to be similar in patients who receive newer P2Y12 inhibitors as well as in those who receive clopidogrel. PMID:27310147

  14. Incidence and Clinical Features of Early Stent Thrombosis in the Era of New P2y12 Inhibitors (PLATIS-2).

    PubMed

    Asher, Elad; Abu-Much, Arsalan; Goldenberg, Ilan; Segev, Amit; Sabbag, Avi; Mazin, Israel; Shlezinger, Meital; Atar, Shaul; Zahger, Doron; Polak, Arthur; Beigel, Roy; Matetzky, Shlomi

    2016-01-01

    Early stent thrombosis (EST) (≤ 30 days after stent implantation) is a relatively rare but deleterious complication of percutaneous coronary intervention (PCI). Administration of newer P2Y12 inhibitors (prasugrel and ticagrelor) combined with aspirin has been shown to reduce the incidence of sub-acute and late stent thrombosis, compared with clopidogrel. We investigated the "real life" incidence of EST in patients from a large acute coronary syndrome (ACS) national registry, where newer P2Y12 inhibitors are widely used. Patients were derived from the ACS Israeli Survey (ACSIS), conducted during 2006, 2008, 2010 and 2013. Major adverse cardiac events (MACE) at 30days were defined as all-cause death, recurrent ACS, EST and stroke.Of the 4717 ACS patients who underwent PCI and stenting, 83% received clopidogrel and 17% newer P2Y12 inhibitors. The rate of EST was similar in both groups (1.7% in the newer P2Y12 inhibitor group vs. 1.4% in the clopidogrel-treated patients, p = 0.42). Results were consistent after multivariate analysis (adjusted HR = 1.06 [p = 0.89]). MACE occurred in 6.4% in the newer P2Y12 inhibitor group compared with 9.2% in the clopidogrel group (P<0.01). However, multivariate logistic regression modeling showed that treatment with newer P2Y12 inhibitors was not significantly associated with the secondary endpoint of MACE when compared with clopidogrel therapy [OR = 1.26 95%CI (0.93-1.73), P = 0.136]. The incidence of "real life" EST at 1month is relatively low, and appears to be similar in patients who receive newer P2Y12 inhibitors as well as in those who receive clopidogrel.

  15. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin.

    PubMed

    Kreidler, Anna-Maria; Benz, Roland; Barth, Holger

    2017-03-01

    The pathogenic bacteria Clostridium botulinum and Bacillus anthracis produce the binary protein toxins C2 and lethal toxin (LT), respectively. These toxins consist of a binding/transport (B 7 ) component that delivers the separate enzyme (A) component into the cytosol of target cells where it modifies its specific substrate and causes cell death. The B 7 components of C2 toxin and LT, C2IIa and PA 63 , respectively, are ring-shaped heptamers that bind to their cellular receptors and form complexes with their A components C2I and lethal factor (LF), respectively. After receptor-mediated endocytosis of the toxin complexes, C2IIa and PA 63 insert into the membranes of acidified endosomes and form trans-membrane pores through which C2I and LF translocate across endosomal membranes into the cytosol. C2IIa and PA 63 also form channels in planar bilayer membranes, and we used this approach earlier to identify chloroquine as a potent blocker of C2IIa and PA 63 pores. Here, a series of chloroquine derivatives was investigated to identify more efficient toxin inhibitors with less toxic side effects. Chloroquine, primaquine, quinacrine, and fluphenazine blocked C2IIa and PA 63 pores in planar lipid bilayers and in membranes of living epithelial cells and macrophages, thereby preventing the pH-dependent membrane transport of the A components into the cytosol and protecting cells from intoxication with C2 toxin and LT. These potent inhibitors of toxin entry underline the central role of the translocation pores for cellular uptake of binary bacterial toxins and as relevant drug targets, and might be lead compounds for novel pharmacological strategies against severe enteric diseases and anthrax.

  16. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus.

    PubMed

    Hsia, Daniel S; Grove, Owen; Cefalu, William T

    2017-02-01

    Sodium-glucose co-transporter-2 (SGLT2) inhibitors are the newest class of oral antihyperglycemic agents that have been approved for the treatment of diabetes mellitus. Over the past year, there have been significant developments in both the safety and efficacy of this class of medications that are presented in this review. Apart from data on the glucose-lowering effect of SGLT2 inhibitors, other metabolic benefits have been demonstrated for this class of medications. Moreover, there have been three Food and Drug Administration Drug Safety Communications issued in 2015 that have led to additional drug labeling. The basic mechanism of action, indications, glucose-lowering benefits, other metabolic benefits, and adverse side-effects of SGLT2 inhibitors are presented in this review. SGLT2 inhibitors are medications that have a unique mechanism of action and that lower glucose independent of insulin. Given the recent findings on efficacy and benefits, these agents are rapidly establishing their role in the treatment of diabetes. Especially in patients with type 2 diabetes not willing or not ready to start insulin, SGLT2 inhibitors may be another option in those patients requiring additional glucose lowering and in those with acceptable risk factor profiles. Although there appears to be some positive benefits in cardiovascular endpoints, more research on the long-term outcomes in people taking SGLT2 inhibitors is warranted.

  17. Combination of PIM and JAK2 inhibitors synergistically suppresses cell proliferation and overcomes drug resistance of myeloproliferative neoplasms

    PubMed Central

    Greco, Rita; Li, Zhifang; Sun, Fangxian; Barberis, Claude; Tabart, Michel; Patel, Vinod; Schio, Laurent; Hurley, Raelene; Chen, Bo; Cheng, Hong; Lengauer, Christoph; Pollard, Jack; Watters, James; Garcia-Echeverria, Carlos; Wiederschain, Dmitri; Adrian, Francisco; Zhang, JingXin

    2014-01-01

    Inhibitors of JAK2 kinase are emerging as an important treatment modality for myeloproliferative neoplasms (MPN). However, similar to other kinase inhibitors, resistance to JAK2 inhibitors may eventually emerge through a variety of mechanisms. Effective drug combination is one way to enhance therapeutic efficacy and combat resistance against JAK2 inhibitors. To identify potential combination partners for JAK2 compounds in MPN cell lines, we performed pooled shRNA screen targeting 5,000 genes in the presence or absence of JAK2 blockade. One of the top hits identified was MYC, an oncogenic transcription factor that is difficult to inhibit directly, but could be targeted by modulation of upstream regulatory elements such as kinases. We demonstrate herein that PIM kinase inhibitors efficiently suppress MYC protein levels in MPN cell lines. Overexpression of MYC restores the viability of PIM inhibitor-treated cells, revealing causal relationship between MYC down-regulation and cell growth inhibition by PIM compounds. Combination of various PIM inhibitors with a JAK2 inhibitor results in significant synergistic growth inhibition of multiple MPN cancer cell lines and induction of apoptosis. Mechanistic studies revealed strong downregulation of phosphorylated forms of S6 and 4EBP1 by JAK2/PIM inhibitor combination treatment. Finally, such combination was effective in eradicating in vitro JAK2 inhibitor-resistant MPN clones, where MYC is consistently up-regulated. These findings demonstrate that simultaneous suppression of JAK2 and PIM kinase activity by small molecule inhibitors is more effective than either agent alone in suppressing MPN cell growth. Our data suggest that JAK2 and PIM combination might warrant further investigation for the treatment of JAK2-driven hematologic malignancies. PMID:24830942

  18. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer.

    PubMed

    Berger, Stephanie; Procko, Erik; Margineantu, Daciana; Lee, Erinna F; Shen, Betty W; Zelter, Alex; Silva, Daniel-Adriano; Chawla, Kusum; Herold, Marco J; Garnier, Jean-Marc; Johnson, Richard; MacCoss, Michael J; Lessene, Guillaume; Davis, Trisha N; Stayton, Patrick S; Stoddard, Barry L; Fairlie, W Douglas; Hockenbery, David M; Baker, David

    2016-11-02

    Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes.

  19. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Pacitti, Michael F.; Gilroy, Kevin S.; Ruggiero, John C.; Griffin, Jonathan D.; Butera, Joseph J.; Notarfrancesco, Joseph M.; Tran, Shawn; Stoddart, John W.

    2015-02-01

    The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol

  20. Efficacy and Safety of SGLT2 Inhibitors in Patients with Type 1 Diabetes: A Meta-analysis of Randomized Controlled Trials.

    PubMed

    Yang, Yingying; Pan, Hui; Wang, Bo; Chen, Shi; Zhu, Huijuan

    2017-04-10

    Objective To assess the efficiency and safety of a novel sodium-glucose co-transporter 2 (SGLT2) inhibitor-SGLT2 inhibitors, in combination with insulin for type 1 diabetes mellitus (T1DM). Methods We searched Medline, Embase, and the Cochrane Collaboration Library to identify the eligible studies published between January 2010 and July 2016 without restriction of language. The Food and Drug Administration (FDA) data and ClinicalTrials (http://www.clinicaltrials.gov) were also searched. The included studies met the following criteria: randomized controlled trials; T1DM patients aged between 18 and 65 years old; patients were treated with insulin plus SGLT2 inhibitors for more than 2 weeks; patients' glycosylated hemoglobin (HbA1c) levels were between 7% and 12%. The SGLT2 inhibitors group was treated with SGLT2 inhibitors plus insulin, and the placebo group received placebo plus insulin treatment. The outcomes should include one of the following items: fasting blood glucose, HbA1c, glycosuria, or adverse effects. Data were analyzed by two physicians independently. The risk of bias was evaluated by using the Cochrane Collaboration's Risk of Bias tool and heterogeneity among studies was assessed using Chi-square test. Random effect model was used to analyze the treatment effects with Revman 5.3.Results Three trials including 178 patients were enrolled. As compared to the placebo group, SGLT2 inhibitor absolutely decreased fasting blood glucose [mean differences (MD) -2.47 mmol/L, 95% confidence interval (CI) -3.65 to -1.28, P<0.001] and insulin dosage (standardized MD -0.75 U, 95%CI -1.17 to -0.33, P<0.001). SGLT2 inhibitors could also increase the excretion of urine glucose (MD 131.09 g/24 h, 95%CI 91.79 to 170.39, P<0.001). There were no significant differences in the incidences of hyperglycemia [odds ratio (OR) 1.82, 95%CI 0.63 to 5.29, P=0.27], urinary tract infection (OR 0.95, 95%CI 0.19 to 4.85, P=0.95), genital tract infection (OR 0.27, 95%CI 0.01 to 7.19, P=0

  1. The Amelioration of Myelofibrosis with Thrombocytopenia by a JAK1/2 Inhibitor, Ruxolitinib, in a Post-polycythemia Vera Myelofibrosis Patient with a JAK2 Exon 12 Mutation.

    PubMed

    Ikeda, Kazuhiko; Ueda, Koki; Sano, Takahiro; Ogawa, Kazuei; Ikezoe, Takayuki; Hashimoto, Yuko; Morishita, Soji; Komatsu, Norio; Ohto, Hitoshi; Takeishi, Yasuchika

    2017-01-01

    Less than 5% of patients with polycythemia vera (PV) show JAK2 exon 12 mutations. Although PV patients with JAK2 exon 12 mutations are known to develop post-PV myelofibrosis (MF) as well as PV with JAK2V617F, the role of JAK inhibitors in post-PV MF patients with JAK2 exon 12 mutations remains unknown. We describe how treatment with a JAK1/2 inhibitor, ruxolitinib, led to the rapid amelioration of marrow fibrosis, erythrocytosis and thrombocytopenia in a 77-year-old man with post-PV MF who carried a JAK2 exon 12 mutation (JAK2H538QK539L). This case suggests that ruxolitinib is a treatment option for post-PV MF in patients with thrombocytopenia or JAK2 exon 12 mutations.

  2. Functional analysis of a missense mutation in the serine protease inhibitor SPINT2 associated with congenital sodium diarrhea.

    PubMed

    Faller, Nicolas; Gautschi, Ivan; Schild, Laurent

    2014-01-01

    Membrane-bound serine proteases play important roles in different biological processes. Their regulation by endogenous inhibitors is poorly understood. A Y163C mutation in the SPINT2 gene encoding the serine protease inhibitor Hepatocyte Growth Factor Inhibitor HAI-2 is associated with a congenital sodium diarrhea. The functional consequences of this mutation on HAI-2 activity and its physiological targets are unknown. We established a cellular assay in Xenopus laevis oocytes to study functional interactions between HAI-2 and candidate membrane-bound serine proteases expressed in the gastro-intestinal tract. We found that the wild-type form of HAI-2 is a potent inhibitor of nine gastro-intestinal serine proteases. The Y163C mutation in the second Kunitz domain of HAI-2 resulted in a complete loss of inhibitory activity on two intestinal proteases, prostasin and tmprss13. The effect of the mutation of the homologous Y68C in the first Kunitz domain of HAI-2 is consistent with a differential contribution of the two Kunitz domains of HAI-2 in the inhibition of serine proteases. By contrast to the Tyr to Cys, the Tyr to Ser substitution did not change the inhibitory potency of HAI-2, indicating that the thiol-group of the cysteine rather than the Tyr deletion is responsible for the HAI-2 loss of function. Our functional assay allowed us to identify membrane-bound serine proteases as cellular target for inhibition by HAI-2 wild type and mutants, and to better define the role of the Tyr in the second Kunitz domain in the inhibitory activity of HAI-2.

  3. A Novel High-Throughput 3D Screening System for EMT Inhibitors: A Pilot Screening Discovered the EMT Inhibitory Activity of CDK2 Inhibitor SU9516.

    PubMed

    Arai, Kazuya; Eguchi, Takanori; Rahman, M Mamunur; Sakamoto, Ruriko; Masuda, Norio; Nakatsura, Tetsuya; Calderwood, Stuart K; Kozaki, Ken-Ichi; Itoh, Manabu

    2016-01-01

    Epithelial-mesenchymal transition (EMT) is a crucial pathological event in cancer, particularly in tumor cell budding and metastasis. Therefore, control of EMT can represent a novel therapeutic strategy in cancer. Here, we introduce an innovative three-dimensional (3D) high-throughput screening (HTS) system that leads to an identification of EMT inhibitors. For the establishment of the novel 3D-HTS system, we chose NanoCulture Plates (NCP) that provided a gel-free micro-patterned scaffold for cells and were independent of other spheroid formation systems using soft-agar. In the NCP-based 3D cell culture system, A549 lung cancer cells migrated, gathered, and then formed multiple spheroids within 7 days. Live cell imaging experiments showed that an established EMT-inducer TGF-β promoted peripheral cells around the core of spheroids to acquire mesenchymal spindle shapes, loss of intercellular adhesion, and migration from the spheroids. Along with such morphological change, EMT-related gene expression signatures were altered, particularly alteration of mRNA levels of ECAD/CDH1, NCAD/CDH2, VIM and ZEB1/TCF8. These EMT-related phenotypic changes were blocked by SB431542, a TGF-βreceptor I (TGFβR1) inhibitor. Inside of the spheroids were highly hypoxic; in contrast, spheroid-derived peripheral migrating cells were normoxic, revealed by visualization and quantification using Hypoxia Probe. Thus, TGF-β-triggered EMT caused spheroid hypoplasia and loss of hypoxia. Spheroid EMT inhibitory (SEMTIN) activity of SB431542 was calculated from fluorescence intensities of the Hypoxia Probe, and then was utilized in a drug screening of EMT-inhibitory small molecule compounds. In a pilot screening, 9 of 1,330 compounds were above the thresholds of the SEMTIN activity and cell viability. Finally, two compounds SB-525334 and SU9516 showed SEMTIN activities in a dose dependent manner. SB-525334 was a known TGFβR1 inhibitor. SU9516 was a cyclin-dependent kinase 2 (CDK2) inhibitor

  4. Area-Selective Atomic Layer Deposition of SiO2 Using Acetylacetone as a Chemoselective Inhibitor in an ABC-Type Cycle

    PubMed Central

    2017-01-01

    Area-selective atomic layer deposition (ALD) is rapidly gaining interest because of its potential application in self-aligned fabrication schemes for next-generation nanoelectronics. Here, we introduce an approach for area-selective ALD that relies on the use of chemoselective inhibitor molecules in a three-step (ABC-type) ALD cycle. A process for area-selective ALD of SiO2 was developed comprising acetylacetone inhibitor (step A), bis(diethylamino)silane precursor (step B), and O2 plasma reactant (step C) pulses. Our results show that this process allows for selective deposition of SiO2 on GeO2, SiNx, SiO2, and WO3, in the presence of Al2O3, TiO2, and HfO2 surfaces. In situ Fourier transform infrared spectroscopy experiments and density functional theory calculations underline that the selectivity of the approach stems from the chemoselective adsorption of the inhibitor. The selectivity between different oxide starting surfaces and the compatibility with plasma-assisted or ozone-based ALD are distinct features of this approach. Furthermore, the approach offers the opportunity of tuning the substrate-selectivity by proper selection of inhibitor molecules. PMID:28850774

  5. Design checkpoint kinase 2 inhibitors by pharmacophore modeling and virtual screening techniques.

    PubMed

    Wang, Yen-Ling; Lin, Chun-Yuan; Shih, Kuei-Chung; Huang, Jui-Wen; Tang, Chuan-Yi

    2013-12-01

    Damage to DNA is caused by ionizing radiation, genotoxic chemicals or collapsed replication forks. When DNA is damaged or cells fail to respond, a mutation that is associated with breast or ovarian cancer may occur. Mammalian cells control and stabilize the genome using a cell cycle checkpoint to prevent damage to DNA or to repair damaged DNA. Checkpoint kinase 2 (Chk2) is one of the important kinases, which strongly affects DNA-damage and plays an important role in the response to the breakage of DNA double-strands and related lesions. Therefore, this study concerns Chk2. Its purpose is to find potential inhibitors using the pharmacophore hypotheses (PhModels) and virtual screening techniques. PhModels can identify inhibitors with high biological activities and virtual screening techniques are used to screen the database of the National Cancer Institute (NCI) to retrieve compounds that exhibit all of the pharmacophoric features of potential inhibitors with high interaction energy. Ten PhModels were generated using the HypoGen best algorithm. The established PhModel, Hypo01, was evaluated by performing a cost function analysis of its correlation coefficient (r), root mean square deviation (RMSD), cost difference, and configuration cost, with the values 0.955, 1.28, 192.51, and 16.07, respectively. The result of Fischer's cross-validation test for the Hypo01 model yielded a 95% confidence level, and the correlation coefficient of the testing set (rtest) had a best value of 0.81. The potential inhibitors were then chosen from the NCI database by Hypo01 model screening and molecular docking using the cdocker docking program. Finally, the selected compounds exhibited the identified pharmacophoric features and had a high interaction energy between the ligand and the receptor. Eighty-three potential inhibitors for Chk2 are retrieved for further study. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Small molecule kinase inhibitors for LRRK2 and their application to Parkinson's disease models.

    PubMed

    Kramer, Thomas; Lo Monte, Fabio; Göring, Stefan; Okala Amombo, Ghislaine Marlyse; Schmidt, Boris

    2012-03-21

    Parkinson's disease (PD) is the second most common neurodegenerative disorder. Several single gene mutations have been linked to this disease. Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) indicate LRRK2 as promising therapeutic target for the treatment of PD. LRRK2 mutations were observed in sporadic as well as familial PD patients and have been investigated intensively. LRRK2 is a large and complex protein, with multiple enzymatic and protein-interaction domains, each of which is effected by mutations. The most common mutation in PD patients is G2019S. Several LRRK2 inhibitors have been reported already, although the crystal structure of LRRK2 has not yet been determined. This review provides a summary of known LRRK2 inhibitors and will discuss recent in vitro and in vivo results of these inhibitors.

  7. The COX-2 inhibitor meloxicam prevents pregnancy when administered as an emergency contraceptive to nonhuman primates.

    PubMed

    McCann, Nicole C; Lynch, Terrie J; Kim, Soon Ok; Duffy, Diane M

    2013-12-01

    Cyclooxygenase-2 (COX-2) inhibitors reduce prostaglandin synthesis and disrupt essential reproductive processes. Ultrasound studies in women demonstrated that oral COX-2 inhibitors can delay or prevent follicle collapse associated with ovulation. The goal of this study was to determine if oral administration of a COX-2 inhibitor can inhibit reproductive function with sufficient efficacy to prevent pregnancy in primates. The COX-2 inhibitor meloxicam (or vehicle) was administered orally to proven fertile female cynomolgus macaques using one emergency contraceptive model and three monthly contraceptive models. In the emergency contraceptive model, females were bred with a proven fertile male once 2±1 days before ovulation, returned to the females' home cage, and then received 5 days of meloxicam treatment. In the monthly contraceptive models, females were co-caged for breeding with a proven fertile male for a total of 5 days beginning 2±1 days before ovulation. Animals received meloxicam treatment (1) cycle days 5-22, or (2) every day, or (3) each day of the 5-day breeding period. Female were then assessed for pregnancy. The pregnancy rate with meloxicam administration using the emergency contraception model was 6.5%, significantly lower than the pregnancy rate of 33.3% when vehicle without meloxicam was administered. Pregnancy rates with the three monthly contraceptive models (75%-100%) were not consistent with preventing pregnancy. Oral COX-2 inhibitor administration can prevent pregnancy after a single instance of breeding in primates. While meloxicam may be ineffective for regular contraception, pharmacological inhibition of COX-2 may be an effective method of emergency contraception for women. COX-2 inhibitors can interfere with ovulation, but the contraceptive efficacy of drugs of this class has not been directly tested. This study, conducted in nonhuman primates, is the first to suggest that a COX-2 inhibitor may be effective as an emergency contraceptive.

  8. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  9. Neratinib, A Novel HER2-Targeted Tyrosine Kinase Inhibitor.

    PubMed

    Tiwari, Shruti Rakesh; Mishra, Prasun; Abraham, Jame

    2016-10-01

    HER2 gene amplification and receptor overexpression is identified in 20% to 25% of human breast cancers. Use of targeted therapy for HER2-amplified breast cancer has led to improvements in disease-free and overall survival in this subset of patients. Neratinib is an oral pan HER inhibitor, that irreversibly inhibits the tyrosine kinase activity of epidermal growth factor receptor (EGFR or HER1), HER2, and HER4, which leads to reduced phosphorylation and activation of downstream signaling pathways. Neratinib is currently being tested in a number of clinical trials for its safety and efficacy in lung cancer, and colorectal, bladder, and breast cancers. In this review we discuss the available phase I, II, and III data for use of neratinib in the metastatic, adjuvant, neoadjuvant, and extended adjuvant settings along with the ongoing clinical trials of neratinib in breast cancer. We also elaborate on the side effect profile of this relatively new drug and provide guidelines for its use in clinical practice. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Body Weight Gain and Hyperphagia After Administration of SGLT-2 Inhibitor: A Case Report.

    PubMed

    Hamamoto, Hiromi; Noda, Mitsuhiko

    2015-12-07

    A detailed description is given of a case we encountered in which unexpectedly marked weight gain occurred following a treatment switch from a GLP-1 receptor agonist to an SGLT-2 inhibitor The patient, a 44-year-old man with type 2 diabetes mellitus, had gained about 10 kg in weight in the previous year. Therefore, metformin was replaced with liraglutide to obtain reduction of body weight. Although the patient lost about 8 kg (7%), during the 18-month period on the medication, the weight loss stabilized; therefore, the treatment was again switched to tofogliflozin to obtain further reduction of body weight. However, the patient reported increasing hunger and an exaggerated appetite from week 3 onward after the start of tofogliflozin, and gained about 9 kg in weight within 2 weeks, associated with a tendency towards increased HbA1c; therefore, tofogliflozin was discontinued. Immediate reinstitution of liraglutide resulted in reduction of the increased appetite, weight, and HbA1c level. Caution should be exercised against hyperphagia and weight gain due to hunger that may occur following discontinuation of a GLP-1 receptor agonist and/or initiation of an SGLT-2 inhibitor.

  11. Molecular structures of cdc2-like kinases in complex with a new inhibitor chemotype

    PubMed Central

    Helmer, Renate; Loaëc, Nadège; Preu, Lutz; Ott, Ingo; Knapp, Stefan; Meijer, Laurent

    2018-01-01

    Cdc2-like kinases (CLKs) represent a family of serine-threonine kinases involved in the regulation of splicing by phosphorylation of SR-proteins and other splicing factors. Although compounds acting against CLKs have been described, only a few show selectivity against dual-specificity tyrosine phosphorylation regulated-kinases (DYRKs). We here report a novel CLK inhibitor family based on a 6,7-dihydropyrrolo[3,4-g]indol-8(1H)-one core scaffold. Within the series, 3-(3-chlorophenyl)-6,7-dihydropyrrolo[3,4-g]indol-8(1H)-one (KuWal151) was identified as inhibitor of CLK1, CLK2 and CLK4 with a high selectivity margin towards DYRK kinases. The compound displayed a potent antiproliferative activity in an array of cultured cancer cell lines. The X-ray structure analyses of three members of the new compound class co-crystallized with CLK proteins corroborated a molecular binding mode predicted by docking studies. PMID:29723265

  12. NADPH oxidase inhibitor, diphenyleneiodonium prevents necroptosis in HK-2 cells.

    PubMed

    Dong, Wei; Li, Zhilian; Chen, Yuanhan; Zhang, Li; Ye, Zhiming; Liang, Huaban; Li, Ruizhao; Xu, Lixia; Zhang, Bin; Liu, Shuangxin; Wang, Weidong; Li, Chunling; Luo, Jialun; Shi, Wei; Liang, Xinling

    2017-09-01

    The aim of the present study was to investigate the protective effect of the NADPH oxidase inhibitor, diphenyleneiodonium (DPI) against necroptosis in renal tubular epithelial cells. A necroptosis model of HK-2 cells was established using tumor necrosis factor-α, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone and antimycin A (collectively termed TZA), as in our previous research. The necroptosis inhibitor, necrostatin-1 (Nec-1) or the NADPH oxidase inhibitor, DPI were administered to the necroptosis model. Production of reactive oxygen species (ROS) was detected by dichlorodihydrofluorescein diacetate in the different groups, and the manner of cell death was identified by flow cytometry. Western blot analysis was used to determine the levels of phosphorylation of receptor-interacting protein kinase 3 (RIP-3) and mixed lineage kinase domain-like (MLKL), which are essential to necroptosis. The results revealed that TZA increased the percentages of propidium iodide-positive HK-2 cells from 1.22±0.69 to 8.98±0.73% (P<0.001), and augmented the phosphorylation of RIP-3 and MLKL. ROS levels were increased in the TZA group compared with the control group (27.74±1.60×10 4 vs. 18.51±1.10×10 4 , respectively; P<0.001), and could be inhibited by Nec-1 (TZA + Nec-1 group, 22.90±2.22×10 4 vs. TZA group, 27.74±1.60×10 4 ; P=0.01). DPI decreased ROS production (TZA + DPI group, 22.13±1.86×10 4 vs. TZA group, 27.74±1.60×10 4 ; P<0.001) and also reduced the proportions of necrosis in the necroptosis model (TZA + DPI group, 4.40±1.51% vs. TZA group, 8.98±0.73%; P<0.001). Phosphorylated RIP-3 and MLKL were also decreased by DPI treatment. The results indicate that ROS production increases in HK-2 cells undergoing necroptosis, and that the NADPH oxidase inhibitor, DPI may protect HK-2 cells from necroptosis via inhibition of ROS production.

  13. Comparison of nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 (COX-2) inhibitors use in Australia and Nova Scotia (Canada)

    PubMed Central

    Barozzi, Nadia; Sketris, Ingrid; Cooke, Charmaine; Tett, Susan

    2009-01-01

    AIMS Cyclooxygenase-2 (COX-2) inhibitors were marketed aggressively and their rapid uptake caused safety concerns and budgetary challenges in Canada and Australia. The objectives of this study were to compare and contrast COX-2 inhibitors and nonselective nonsteroidal anti-inflammatory drug (ns-NSAID) use in Nova Scotia (Canada) and Australia and to identify lessons learned from the two jurisdictions. METHODS Ns-NSAID and COX-2 inhibitor Australian prescription data (concession beneficiaries) were downloaded from the Medicare Australia website (2001–2006). Similar Pharmacare data were obtained for Nova Scotia (seniors and those receiving Community services). Defined daily doses per 1000 beneficiaries day−1 were calculated. COX-2 inhibitors/all NSAIDs ratios were calculated for Australia and Nova Scotia. Ns-NSAIDs were divided into low, moderate and high risk for gastrointestinal side-effects and the proportions of use in each group were determined. Which drugs accounted for 90% of use was also calculated. RESULTS Overall NSAID use was different in Australia and Nova Scotia. However, ns-NSAID use was similar. COX-2 inhibitor dispensing was higher in Australia. The percentage of COX-2 inhibitor prescriptions over the total NSAID use was different in the two countries. High-risk NSAID use was much higher in Australia. Low-risk NSAID prescribing increased in Nova Scotia over time. The low-risk/high-risk ratio was constant throughout over the period in Australia and increased in Nova Scotia. CONCLUSIONS There are significant differences in Australia and Nova Scotia in use of NSAIDs, mainly due to COX-2 prescribing. Nova Scotia has a higher proportion of low-risk NSAID use. Interventions to provide physicians with information on relative benefits and risks of prescribing specific NSAIDs are needed, including determining their impact. PMID:19660008

  14. Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE{sub 2} induced pain model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Sumanta Kumar; Inceoglu, Bora; Yang, Jun

    Epoxyeicosatrienoic acids (EETs) are potent endogenous analgesic metabolites produced from arachidonic acid by cytochrome P450s (P450s). Metabolism of EETs by soluble epoxide hydrolase (sEH) reduces their activity, while their stabilization by sEH inhibition decreases both inflammatory and neuropathic pain. Here, we tested the complementary hypothesis that increasing the level of EETs through induction of P450s by omeprazole (OME), can influence pain related signaling by itself, and potentiate the anti-hyperalgesic effect of sEH inhibitor. Rats were treated with OME (100 mg/kg/day, p.o., 7 days), sEH inhibitor TPPU (3 mg/kg/day, p.o.) and OME (100 mg/kg/day, p.o., 7 days) + TPPU (3 mg/kg/day,more » p.o., last 3 days of OME dose) dissolved in vehicle PEG400, and their effect on hyperalgesia (increased sensitivity to pain) induced by PGE{sub 2} was monitored. While OME treatment by itself exhibited variable effects on PGE{sub 2} induced hyperalgesia, it strongly potentiated the effect of TPPU in the same assay. The significant decrease in pain with OME + TPPU treatment correlated with the increased levels of EETs in plasma and increased activities of P450 1A1 and P450 1A2 in liver microsomes. The results show that reducing catabolism of EETs with a sEH inhibitor yielded a stronger analgesic effect than increasing generation of EETs by OME, and combination of both yielded the strongest pain reducing effect under the condition of this study. - Highlights: • The soluble epoxide hydrolase (sEH) inhibitor TPPU is anti-hyperalgesic. • Omeprazole potentiates the anti-hyperalgesic actions of TPPU. • This potentiation is associated with increased P450 activity. • The potentiation is associated with an increase in fatty acid epoxide/diol ratio. • Joint use of sEH inhibitors and P450 inducers could result in drug–drug interactions.« less

  15. Antitumor activity of pan-HER inhibitors in HER2-positive gastric cancer.

    PubMed

    Yoshioka, Takahiro; Shien, Kazuhiko; Namba, Kei; Torigoe, Hidejiro; Sato, Hiroki; Tomida, Shuta; Yamamoto, Hiromasa; Asano, Hiroaki; Soh, Junichi; Tsukuda, Kazunori; Nagasaka, Takeshi; Fujiwara, Toshiyoshi; Toyooka, Shinichi

    2018-04-01

    Molecularly targeted therapy has enabled outstanding advances in cancer treatment. Whereas various anti-human epidermal growth factor receptor 2 (HER2) drugs have been developed, trastuzumab is still the only anti-HER2 drug presently available for gastric cancer. In this study, we propose novel treatment options for patients with HER2-positive gastric cancer. First, we determined the molecular profiles of 12 gastric cancer cell lines, and examined the antitumor effect of the pan-HER inhibitors afatinib and neratinib in those cell lines. Additionally, we analyzed HER2 alteration in 123 primary gastric cancers resected from Japanese patients to clarify possible candidates with the potential to respond to these drugs. In the drug sensitivity analysis, both afatinib and neratinib produced an antitumor effect in most of the HER2-amplified cell lines. However, some cells were not sensitive to the drugs. When the molecular profiles of the cells were compared based on the drug sensitivities, we found that cancer cells with lower mRNA expression levels of IGFBP7, a tumor suppressor gene that inhibits the activation of insulin-like growth factor-1 receptor (IGF-1R), were less sensitive to pan-HER inhibitors. A combination therapy consisting of pan-HER inhibitors and an IGF-1R inhibitor, picropodophyllin, showed a notable synergistic effect. Among 123 clinical samples, we found 19 cases of HER2 amplification and three cases of oncogenic mutations. In conclusion, afatinib and neratinib are promising therapeutic options for the treatment of HER2-amplified gastric cancer. In addition to HER2 amplification, IGFBP7 might be a biomarker of sensitivity to these drugs, and IGF-1R-targeting therapy can overcome drug insensitiveness in HER2-amplified gastric cancer. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  16. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant tomore » the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.« less

  17. Pharmacology of a selective cyclooxygenase-2 inhibitor, HN-56249: a novel compound exhibiting a marked preference for the human enzyme in intact cells.

    PubMed

    Berg, J; Fellier, H; Christoph, T; Kremminger, P; Hartmann, M; Blaschke, H; Rovensky, F; Towart, R; Stimmeder, D

    2000-04-01

    HN-56249 (3-(2,4-dichlorothiophenoxy)-4-methylsulfonylamino-benzenesu lfonamide), a highly selective cyclooxygenase (COX)-2 inhibitor, is the prototype of a novel series of COX inhibitors comprising bicyclic arylethersulfonamides; of this series HN-56249 is the most potent and selective human COX-2 inhibitor. HN-56249 inhibited platelet aggregation as a measure of COX-1 activity only moderately (IC50 26.5+/-1.7 microM). In LPS-stimulated monocytic cells the release of prostaglandin (PG) F1alpha as a measure of COX-2 was markedly inhibited (IC50 0.027+/-0.001 microM). Thus, HN-56249 showed an approximately 1000-fold selectivity for COX-2 in intact cells. In whole blood assays HN-56249 showed a potent inhibitory activity for COX-2 (IC50 0.78+/-0.37 microM) only. COX-1 was only weakly inhibited (IC50 867+/-181 microM). Hence, HN-56249 exhibited a greater than 1000-fold selectivity for whole blood COX-2. HN-56249 surpassed the COX-2 selectivities of the COX-2 selective inhibitors 3-cyclohexyloxy-4-methylsulfonylamino-nitrobenzene (NS-398) and 6-(2,4-difluorophenoxy)-5-methyl-sulfonylamino-1-indanone (flosulide) in the intact cell assays by eight- and threefold, respectively, and in the whole blood assays by approximately 40-fold. Following i.v. administration HN-56249 inhibited carrageenan-induced rat paw oedema only moderately (ID50 26.2+/-5.7 mg/kg, mean +/- SEM), approximately tenfold less potent than indomethacin (ID50 2.1+/-0.2 mg/kg, mean +/- SEM). After oral administration HN-56249 reversed thermal hyperalgesia in the carrageenan-induced rat paw oedema test, however, some 30-fold less potently than diclofenac. Comparing the inhibitory potency of HN-56249 against human COX-2 with that against murine COX-2 in intact cells revealed a 300-fold selectivity for the human enzyme. Similar effects were observed with other COX-2-selective arylethersulfonamides. In contrast, non-COX-2-selective arylethersulfonamides, including a highly selective COX-1 inhibitor, inhibited

  18. Euglycemic Diabetic Ketoacidosis with Elevated Acetone in a Patient Taking a Sodium-Glucose Cotransporter-2 (SGLT2) Inhibitor.

    PubMed

    Andrews, Tory J; Cox, Robert D; Parker, Christina; Kolb, James

    2017-02-01

    Sodium-glucose cotransporter-2 (SGLT2) inhibitor medications are a class of antihyperglycemic agents that increase urinary glucose excretion by interfering with the reabsorption of glucose in the proximal renal tubules. In May of 2015, the U.S. Food and Drug Administration released a warning concerning a potential increased risk of ketoacidosis and ketosis in patients taking these medications. We present a case of a 57-year-old woman with type 2 diabetes mellitus taking a combination of canagliflozin and metformin who presented with progressive altered mental status over the previous 2 days. Her work-up demonstrated a metabolic acidosis with an anion gap of 38 and a venous serum pH of 7.08. The serum glucose was 168 mg/dL. The urinalysis showed glucose > 500 mg/dL and ketones of 80 mg/dL. Further evaluation demonstrated an elevated serum osmolality of 319 mOsm/kg and an acetone concentration of 93 mg/dL. She was treated with intravenous insulin and fluids, and the metabolic abnormalities and her altered mental status resolved within 36 h. This was the first episode of diabetic ketoacidosis (DKA) for this patient. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Diabetic patients on SGLT2 inhibitor medications are at risk for ketoacidosis. Due to the renal glucose-wasting properties of these drugs, they may present with ketoacidosis with only mild elevations in serum glucose, potentially complicating the diagnosis. Acetone is one of the three main ketone bodies formed during DKA and it may be present at considerable concentrations, contributing to the serum osmolality. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effects of Sodium Glucose Cotransporter-2 Inhibitors on Serum Uric Acid in Type 2 Diabetes Mellitus.

    PubMed

    Ahmadieh, Hala; Azar, Sami

    2017-09-01

    Hyperuricemia has been linked to metabolic syndrome, cardiovascular disease, and chronic kidney disease. Hyperuricemia and type 2 diabetes mellitus were inter-related, type 2 diabetes mellitus was more at risk of having a higher serum uric acid level, and also individuals with higher serum uric acid had higher risk of developing type 2 diabetes in the future. Insulin resistance seems to play an important role in the causal relationship between metabolic syndrome, type 2 diabetes, and hyperuricemia. Oral diabetic drugs that would have additional beneficial effects on reducing serum uric acid levels are of importance. Selective SGLT2 inhibitors were extensively studied in type 2 diabetes mellitus and were found to have improvement of glycemic control, in addition to their proven metabolic effects on weight and blood pressure. Additional beneficial effect of SGLT2 inhibitors on serum uric acid level reduction is investigated. Recently, data have been accumulating showing that they have additional beneficial effects on serum uric acid reduction. As for the postulated mechanism, serum uric acid decreased in SGLT2 inhibitor users as a result of the increase in the urinary excretion rate of uric acid, due to the inhibition of uric acid reabsorption mediated by the effect of the drug on the GLUT9 isoform 2, located at the collecting duct of the renal tubule.

  20. Metabolic and hemodynamic effects of sodium-dependent glucose cotransporter 2 inhibitors on cardio-renal protection in the treatment of patients with type 2 diabetes mellitus.

    PubMed

    Kashiwagi, Atsunori; Maegawa, Hiroshi

    2017-07-01

    The specific sodium-glucose cotransporter 2 inhibitors (SGLT2 inhibitors) inhibit glucose reabsorption in proximal renal tubular cells, and both fasting and postprandial glucose significantly decrease because of urinary glucose loss. As a result, pancreatic β-cell function and peripheral insulin action significantly improve with relief from glucose toxicity. Furthermore, whole-body energy metabolism changes to relative glucose deficiency and triggers increased lipolysis in fat cells, and fatty acid oxidation and then ketone body production in the liver during treatment with SGLT2 inhibitors. In addition, SGLT2 inhibitors have profound hemodynamic effects including diuresis, dehydration, weight loss and lowering blood pressure. The most recent findings on SGLT2 inhibitors come from results of the Empagliflozin, Cardiovascular Outcomes and Mortality in Type 2 Diabetes trial. SGLT2 inhibitors exert extremely unique and cardio-renal protection through metabolic and hemodynamic effects, with long-term durability on the reduction of blood glucose, bodyweight and blood pressure. Although a site of action of SGLT2 inhibitors is highly specific to inhibit renal glucose reabsorption, whole-body energy metabolism, and hemodynamic and renal functions are profoundly modulated during the treatment of SGLT2 inhibitors. Previous studies suggest multifactorial clinical benefits and safety concerns of SGLT2 inhibitors. Although ambivalent clinical results of this drug are still under active discussion, the present review summarizes promising recent evidence on the cardio-renal and metabolic benefits of SGLT2 inhibitors in the treatment of type 2 diabetes. © 2017 The Authors. Journal of Diabetes Investigation published by Asian Association for the Study of Diabetes (AASD) and John Wiley & Sons Australia, Ltd.

  1. Rational discovery of dengue type 2 non-competitive inhibitors.

    PubMed

    Heh, Choon H; Othman, Rozana; Buckle, Michael J C; Sharifuddin, Yusrizam; Yusof, Rohana; Rahman, Noorsaadah A

    2013-07-01

    Various works have been carried out in developing therapeutics against dengue. However, to date, no effective vaccine or anti-dengue agent has yet been discovered. The development of protease inhibitors is considered as a promising option, but most previous works have involved competitive inhibition. In this study, we focused on rational discovery of potential anti-dengue agents based on non-competitive inhibition of DEN-2 NS2B/NS3 protease. A homology model of the DEN-2 NS2B/NS3 protease (using West Nile Virus NS2B/NS3 protease complex, 2FP7, as the template) was used as the target, and pinostrobin, a flavanone, was used as the standard ligand. Virtual screening was performed involving a total of 13 341 small compounds, with the backbone structures of chalcone, flavanone, and flavone, available in the ZINC database. Ranking of the resulting compounds yielded compounds with higher binding affinities compared with the standard ligand. Inhibition assay of the selected top-ranking compounds against DEN-2 NS2B/NS3 proteolytic activity resulted in significantly better inhibition compared with the standard and correlated well with in silico results. In conclusion, via this rational discovery technique, better inhibitors were identified. This method can be used in further work to discover lead compounds for anti-dengue agents. © 2013 John Wiley & Sons A/S.

  2. Autophagy Induced by CX-4945, a Casein Kinase 2 Inhibitor, Enhances Apoptosis in Pancreatic Cancer Cell Lines.

    PubMed

    Hwang, Dae Wook; So, Kwang Sup; Kim, Song Cheol; Park, Kwang-Min; Lee, Young-Joo; Kim, Sun-Whe; Choi, Chang-Min; Rho, Jin Kyung; Choi, Yun Jung; Lee, Jae Cheol

    2017-04-01

    Pancreatic cancer is the most lethal malignancy with only a few effective chemotherapeutic drugs. Because the inhibition of casein kinase 2 (CK2) has been reported as a novel therapeutic strategy for many cancers, we investigated the effects of CK2 inhibitors in pancreatic cancer cell lines. The BxPC3, 8902, MIA PaCa-2 human pancreatic cancer cell lines, and CX-4945, a novel CK2 inhibitor, were used. Autophagy was analyzed by acridine orange staining, fluorescence microscope detection of punctuate patterns of GFP-tagged LC3 and immunoblotting for LC3. Cell survival, cell cycle, and apoptosis analysis was performed. CX-4945 induced significant inhibition of proliferation and triggered autophagy in pancreatic cancer cells. This suppression of proliferation was caused by the direct inhibition of CK2α, which was required for autophagy and apoptosis in pancreatic cancer cells. CX-4945 suppressed cell cycle progression in G2/M and induced apoptosis. The inhibition of CX-4945-induced autophagy was rescued by 3-methyladenine or small interfering RNA against Atg7, which attenuated apoptosis in pancreatic cancer cells. CX-4945, a potent and selective inhibitor of CK2, effectively induces autophagy and apoptosis in pancreatic cancer cells, indicating that the induction of autophagy by CX-4945 may have an important role in the treatment of pancreatic cancer.

  3. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors activate the aryl hydrocarbon receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moyer, Benjamin J.

    Indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in the immune system by regulating tryptophan levels and T cell differentiation. Several tumor types overexpress IDO1 to avoid immune surveillance making IDO1 of interest as a target for therapeutic intervention. As a result, several IDO1 inhibitors are currently being tested in clinical trials for cancer treatment as well as several other diseases. Many of the IDO1 inhibitors in clinical trials naturally bear structural similarities to the IDO1 substrate tryptophan, as such, they fulfill many of the structural and functional criteria as potential AHR ligands. Using mouse and human cell-based luciferase genemore » reporter assays, qPCR confirmation experiments, and CYP1A1 enzyme activity assays, we report that some of the promising clinical IDO1 inhibitors also act as agonists for the aryl hydrocarbon receptor (AHR), best known for its roles in xenobiotic metabolism and as another key regulator of the immune response. The dual role as IDO antagonist and AHR agonist for many of these IDO target drugs should be considered for full interrogation of their biological mechanisms and clinical outcomes. - Highlights: • Indoleamine-2,3-dioxygenase 1 (IDO1) inhibitors are in cancer clinical trials. • Some IDO1 inhibitors also potently activate AHR signaling. • The dual role of the IDO1 inhibitors may explain some past paradoxical findings. • AHR induction studies must be included in assessing clinical suitability.« less

  4. Discovery of AZD2716: A Novel Secreted Phospholipase A2 (sPLA2) Inhibitor for the Treatment of Coronary Artery Disease

    PubMed Central

    2016-01-01

    Expedited structure-based optimization of the initial fragment hit 1 led to the design of (R)-7 (AZD2716) a novel, potent secreted phospholipase A2 (sPLA2) inhibitor with excellent preclinical pharmacokinetic properties across species, clear in vivo efficacy, and minimized safety risk. Based on accumulated profiling data, (R)-7 was selected as a clinical candidate for the treatment of coronary artery disease. PMID:27774123

  5. Discovery of benzofuran-3(2H)-one derivatives as novel DRAK2 inhibitors that protect islet β-cells from apoptosis.

    PubMed

    Wang, Sheng; Xu, Lei; Lu, Yu-Ting; Liu, Yu-Fei; Han, Bing; Liu, Ting; Tang, Jie; Li, Jia; Wu, Jiangping; Li, Jing-Ya; Yu, Li-Fang; Yang, Fan

    2017-04-21

    Death-associated protein kinase-related apoptosis-inducing kinase-2 (DRAK2) is a serine/threonine kinase that plays a key role in a wide variety of cell death signaling pathways. Inhibition of DRAK2 was found to efficiently protect islet β-cells from apoptosis and hence DRAK2 inhibitors represent a promising therapeutic strategy for the treatment of diabetes. Only very few chemical entities targeting DRAK2 are currently known. We carried out a high throughput screening and identified compound 4 as a moderate DRAK2 inhibitor with an IC 50 value of 3.15 μM. Subsequent SAR studies of hit compound 4 led to the development of novel benzofuran-3(2H)-one series of DRAK2 inhibitors with improved potency and favorable selectivity profiles against 26 selected kinases. Importantly, most potent compounds 40 (IC 50  = 0.33 μM) and 41 (IC 50  = 0.25 μM) were found to protect islet β-cells from apoptosis in dose-dependent manners. These data support the notion that small molecule inhibitors of DRAK2 represents a promising strategy for the treatment of diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. A selective plasmin inhibitor, trans-aminomethylcyclohexanecarbonyl-L-(O-picolyl)tyrosine-octylamide (YO-2), induces thymocyte apoptosis.

    PubMed

    Lee, Eibai; Enomoto, Riyo; Takemura, Kazu; Tsuda, Yuko; Okada, Yoshio

    2002-04-01

    The treatment of rat thymocytes with YO-2, a novel inhibitor of plasmin, resulted in an increase in DNA fragmentation. DNA fragmentation was also induced by another YO compounds such as YO-0, -3, -4 and -5. These YO compounds are the inhibitor of plasmin activity. On the other hand, YO-1, -6 and -8 that hardly inhibit plasmin activity had no effect on DNA fragmentation. Analysis of fragmented DNA from thymocytes treated with YO-2 by agarose gel electrophoresis revealed that the compound caused internucleosomal DNA fragmentation. In addition, judging from a laser scanning microscopy, annexin V-positive and propidium iodide-negative cells were increased by the treatment of the cells with the compound. Moreover, chromatin condensation was observed in thymocytes treated with the compound. These results demonstrated that YO-2 induces thymocyte apoptosis. There seemed to be some correlation between the apoptosis induced by YO compounds and their plasmin inhibitory effect. However, because the other protease inhibitors including pepstatin A, leupeptin, AEBSF, DFP and E-64-d did not affect DNA fragmentation, YO compounds are likely to have unique mechanism on plasmin or to show the effect on the other plasmin-like proteases. The plasmin inhibitory activity may have an important role in YO-2-induced apoptosis. Furthermore, the stimulations of caspase-8, -9 and -3-like activities were observed in thymocytes treated with YO-2. These results suggest that YO-2 induces thymocyte apoptosis via activation of caspase cascade.

  7. Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer

    PubMed Central

    Berger, Stephanie; Procko, Erik; Margineantu, Daciana; Lee, Erinna F; Shen, Betty W; Zelter, Alex; Silva, Daniel-Adriano; Chawla, Kusum; Herold, Marco J; Garnier, Jean-Marc; Johnson, Richard; MacCoss, Michael J; Lessene, Guillaume; Davis, Trisha N; Stayton, Patrick S; Stoddard, Barry L; Fairlie, W Douglas; Hockenbery, David M; Baker, David

    2016-01-01

    Many cancers overexpress one or more of the six human pro-survival BCL2 family proteins to evade apoptosis. To determine which BCL2 protein or proteins block apoptosis in different cancers, we computationally designed three-helix bundle protein inhibitors specific for each BCL2 pro-survival protein. Following in vitro optimization, each inhibitor binds its target with high picomolar to low nanomolar affinity and at least 300-fold specificity. Expression of the designed inhibitors in human cancer cell lines revealed unique dependencies on BCL2 proteins for survival which could not be inferred from other BCL2 profiling methods. Our results show that designed inhibitors can be generated for each member of a closely-knit protein family to probe the importance of specific protein-protein interactions in complex biological processes. DOI: http://dx.doi.org/10.7554/eLife.20352.001 PMID:27805565

  8. Label-free LC-MS analysis of HER2+ breast cancer cell line response to HER2 inhibitor treatment.

    PubMed

    Di Luca, Alessio; Henry, Michael; Meleady, Paula; O'Connor, Robert

    2015-08-04

    Human epidermal growth-factor receptor (HER)-2 is overexpressed in 25 % of breast-cancers and is associated with an aggressive form of the disease with significantly shortened disease free and overall survival. In recent years, the use of HER2-targeted therapies, monoclonal-antibodies and small molecule tyrosine-kinase inhibitors has significantly improved the clinical outcome for HER2-positive breast-cancer patients. However, only a fraction of HER2-amplified patients will respond to therapy and the use of these treatments is often limited by tumour drug insensitivity or resistance and drug toxicities. Currently there is no way to identify likely responders or rational combinations with the potential to improve HER2-focussed treatment outcome. In order to further understand the molecular mechanisms of treatment-response with HER2-inhibitors, we used a highly-optimised and reproducible quantitative label-free LC-MS strategy to characterize the proteomes of HER2-overexpressing breast-cancer cell-lines (SKBR3, BT474 and HCC1954) in response to drug-treatment with HER2-inhibitors (lapatinib, neratinib or afatinib). Following 12 ours treatment with different HER2-inhibitors in the BT474 cell-line; compared to the untreated cells, 16 proteins changed significantly in abundance following lapatinib treatment (1 μM), 21 proteins changed significantly following neratinib treatment (150 nM) and 38 proteins changed significantly following afatinib treatment (150 nM). Whereas following 24 hours treatment with neratinib (200 nM) 46 proteins changed significantly in abundance in the HCC1954 cell-line and 23 proteins in the SKBR3 cell-line compared to the untreated cells. Analysing the data we found that, proteins like trifunctional-enzyme subunit-alpha, mitochondrial; heterogeneous nuclear ribonucleoprotein-R and lamina-associated polypeptide 2, isoform alpha were up-regulated whereas heat shock cognate 71 kDa protein was down-regulated in 3 or more comparisons. This proteomic

  9. Inhibitor of G protein-coupled receptor kinase 2 normalizes vascular endothelial function in type 2 diabetic mice by improving β-arrestin 2 translocation and ameliorating Akt/eNOS signal dysfunction.

    PubMed

    Taguchi, Kumiko; Matsumoto, Takayuki; Kamata, Katsuo; Kobayashi, Tsuneo

    2012-07-01

    In type 2 diabetes, although Akt/endothelial NO synthase (eNOS) activation is known to be negatively regulated by G protein-coupled receptor kinase 2 (GRK2), it is unclear whether the GRK2 inhibitor would have therapeutic effects. Here we examined the hypotensive effect of the GRK2 inhibitor and its efficacy agonist both vascular (aortic) endothelial dysfunction (focusing especially on the Akt/eNOS pathway) and glucose intolerance in two type 2 diabetic models (ob/ob mice and nicotinamide+streptozotocin-induced diabetic mice). Mice were treated with a single injection of the GRK2 inhibitor or vehicle, and the therapeutic effects were compared by examining vascular function and by Western blotting. The GRK2 inhibitor lowered blood pressure in both diabetic models but not in their age-matched controls. The GRK2 inhibitor significantly improved clonidine-induced relaxation only in diabetic (ob/ob and DM) mice, with accompanying attenuations of GRK2 activity and translocation to the plasma membrane. These protective effects of the GRK2 inhibitor may be attributable to the augmented Akt/eNOS pathway activation (as evidenced by increases in Akt phosphorylation at Ser(473) and at Thr(308), and eNOS phosphorylation at Ser(1177)) and to the prevention of the GRK2 translocation and promotion of β-arrestin 2 translocation to the membrane under clonidine stimulation. Moreover, the GRK2 inhibitor significantly improved the glucose intolerance seen in the ob/ob mice. Our work provides the first evidence that in diabetes, the GRK2 inhibitor ameliorates vascular endothelial dysfunction via the Akt/eNOS pathway by inhibiting GRK2 activity and enhancing β-arrestin 2 translocation under clonidine stimulation, thereby contributing to a blood pressure-lowering effect. We propose that the GRK2 inhibitor may be a promising therapeutic agent for cardiovascular complications in type 2 diabetes.

  10. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells

    PubMed Central

    Zhong, Hai-Jing; Dong, Zhen-Zhen; Vellaisamy, Kasipandi; Lu, Jin-Jian; Chen, Xiu-Ping; Chiu, Pauline; Kwong, Daniel W. J.; Han, Quan-Bin; Ma, Dik-Lung

    2017-01-01

    The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent. PMID:28570563

  11. Ketosis and diabetic ketoacidosis in response to SGLT2 inhibitors: Basic mechanisms and therapeutic perspectives.

    PubMed

    Qiu, Hongyu; Novikov, Aleksandra; Vallon, Volker

    2017-07-01

    Inhibitors of the sodium-glucose cotransporter SGLT2 are a new class of antihyperglycemic drugs that have been approved for the treatment of type 2 diabetes mellitus (T2DM). These drugs inhibit glucose reabsorption in the proximal tubules of the kidney thereby enhancing glucosuria and lowering blood glucose levels. Additional consequences and benefits include a reduction in body weight, uric acid levels, and blood pressure. Moreover, SGLT2 inhibition can have protective effects on the kidney and cardiovascular system in patients with T2DM and high cardiovascular risk. However, a potential side effect that has been reported with SGLT2 inhibitors in patients with T2DM and particularly during off-label use in patients with type 1 diabetes is diabetic ketoacidosis. The US Food and Drug Administration recently warned that SGLT2 inhibitors may result in euglycemic ketoacidosis. Here, we review the basic metabolism of ketone bodies, the triggers of diabetic ketoacidosis, and potential mechanisms by which SGLT2 inhibitors may facilitate the development of ketosis or ketoacidosis. This provides the rationale for measures to lower the risk. We discuss the role of the kidney and potential links to renal gluconeogenesis and uric acid handling. Moreover, we outline potential beneficial effects of modestly elevated ketone body levels on organ function that may have therapeutic relevance for the observed beneficial effects of SGLT2 inhibitors on the kidney and cardiovascular system. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Acute renal failure with sodium-glucose-cotransporter-2 inhibitors: Analysis of the FDA adverse event report system database.

    PubMed

    Perlman, A; Heyman, S N; Matok, I; Stokar, J; Muszkat, M; Szalat, A

    2017-12-01

    Sodium-glucose-cotransporter-2 (SGLT2) inhibitors have recently been approved for the treatment of type II diabetes mellitus (T2DM). It has been proposed that these agents could induce acute renal failure (ARF) under certain conditions. This study aimed to evaluate the association between SGLT2-inhibitors and ARF in the FDA adverse event report system (FAERS) database. We analyzed adverse event cases submitted to FAERS between January 2013 and September 2016. ARF cases were identified using a structured medical query. Medications were identified using both brand and generic names. During the period evaluated, 18,915 reports (out of a total of 3,832,015 registered in FAERS) involved the use of SGLT2-inhibitors. SGLT2-inhibitors were reportedly associated with ARF in 1224 of these cases (6.4%), and were defined as the "primary" or "secondary" cause of the adverse event in 96.8% of these cases. The proportion of reports with ARF among reports with SGLT2 inhibitor was almost three-fold higher compared to reports without these drugs (ROR 2.88, 95% CI 2.71-3.05, p < 0.001). The proportion of ARF reports among cases with SGLT2-inhibitors was significantly greater than the proportion of ARF among cases with T2DM without SGLT2-inhibitors (ROR 1.68, 95% CI 1.57-1.8, p < 0.001). Among the SGLT2-inhibitors, canagliflozin was associated with a higher proportion of reports of renal failure (7.3%), compared to empagliflozin and dapagliflozin (4.7% and 4.8% respectively, p < 0.001). SGLT2-inhibitors are associated with an increase in the proportion of reports of ARF compared to other medications. SGLT2-inhibitor agents may differ from one another in their respective risk for ARF. Copyright © 2017 The Italian Society of Diabetology, the Italian Society for the Study of Atherosclerosis, the Italian Society of Human Nutrition, and the Department of Clinical Medicine and Surgery, Federico II University. Published by Elsevier B.V. All rights reserved.

  13. Virtual screening, SAR, and discovery of 5-(indole-3-yl)-2-[(2-nitrophenyl)amino] [1,3,4]-oxadiazole as a novel Bcl-2 inhibitor.

    PubMed

    Ziedan, Noha I; Hamdy, Rania; Cavaliere, Alessandra; Kourti, Malamati; Prencipe, Filippo; Brancale, Andrea; Jones, Arwyn T; Westwell, Andrew D

    2017-07-01

    A new series of oxadiazoles were designed to act as inhibitors of the anti-apoptotic Bcl-2 protein. Virtual screening led to the discovery of new hits that interact with Bcl-2 at the BH3 binding pocket. Further study of the structure-activity relationship of the most active compound of the first series, compound 1, led to the discovery of a novel oxadiazole analogue, compound 16j, that was a more potent small-molecule inhibitor of Bcl-2. 16j had good in vitro inhibitory activity with submicromolar IC 50 values in a metastatic human breast cancer cell line (MDA-MB-231) and a human cervical cancer cell line (HeLa). The antitumour effect of 16j is concomitant with its ability to bind to Bcl-2 protein as shown by an enzyme-linked immunosorbent assay (IC 50  = 4.27 μm). Compound 16j has a great potential to develop into highly active anticancer agent. © 2017 John Wiley & Sons A/S.

  14. Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy.

    PubMed

    Porpaczy, Edit; Tripolt, Sabrina; Hoelbl-Kovacic, Andrea; Gisslinger, Bettina; Bago-Horvath, Zsuzsanna; Casanova-Hevia, Emilio; Clappier, Emmanuelle; Decker, Thomas; Fajmann, Sabine; Fux, Daniela A; Greiner, Georg; Gueltekin, Sinan; Heller, Gerwin; Herkner, Harald; Hoermann, Gregor; Kiladjian, Jean-Jacques; Kolbe, Thomas; Kornauth, Christoph; Krauth, Maria-Theresa; Kralovics, Robert; Muellauer, Leonhard; Mueller, Mathias; Prchal-Murphy, Michaela; Putz, Eva Maria; Raffoux, Emmanuel; Schiefer, Ana-Iris; Schmetterer, Klaus; Schneckenleithner, Christine; Simonitsch-Klupp, Ingrid; Skrabs, Cathrin; Sperr, Wolfgang R; Staber, Philipp Bernhard; Strobl, Birgit; Valent, Peter; Jaeger, Ulrich; Gisslinger, Heinz; Sexl, Veronika

    2018-06-14

    Inhibition of Janus-kinase 1/2 (JAK1/2) is a mainstay to treat myeloproliferative neoplasms (MPN). Sporadic observations reported the co-incidence of B-cell non-Hodgkin lymphomas during treatment of MPN with JAK1/2 inhibitors. We assessed 626 MPN patients including 69 with myelofibrosis receiving JAK1/2 inhibitors for lymphoma development. B-cell lymphomas evolved in 4/69 patients (5.8%) upon JAK1/2 inhibition compared to 2/557 (0.36%) with conventional treatment (16-fold increased risk). A similar 15-fold increase was observed in an independent cohort of 929 MPN patients. Considering primary myelofibrosis only (N=216), 3 lymphomas were observed in 31 inhibitor-treated patients (9.7%) versus 1/185 controls (0.54%). Lymphomas were of aggressive B-cell type, extra-nodal or leukemic with high MYC expression in the absence of JAK2 V617F or other MPN-associated mutations. Median time from initiation of inhibitor therapy to lymphoma diagnosis was 25 months. Clonal immunoglobulin gene rearrangements were already detected in the bone marrow during myelofibrosis in 16.3% of patients. Lymphomas occurring during JAK1/2 inhibitor treatment were preceded by a pre-existing B-cell clone in all 3 patients tested. Sequencing verified clonal identity in 2 patients. The effects of JAK1/2 inhibition were mirrored in Stat1 -/- mice: 16/24 mice developed a spontaneous myeloid hyperplasia with the concomitant presence of aberrant B-cells. Transplantations of bone marrow from diseased mice unmasked the outgrowth of a malignant B-cell clone evolving into aggressive B-cell leukemia-lymphoma. We conclude that JAK/STAT1 pathway inhibition in myelofibrosis is associated with an elevated frequency of aggressive B-cell lymphomas. Detection of a pre-existing B-cell clone may identify individuals at risk. Copyright © 2018 American Society of Hematology.

  15. Sesquiterpene furan compound CJ-01, a novel chitin synthase 2 inhibitor from Chloranthus japonicus SIEB.

    PubMed

    Yim, Nam Hui; Hwang, Eui Il; Yun, Bong Sik; Park, Ki Duk; Moon, Jae Sun; Lee, Sang Han; Sung, Nack Do; Kim, Sung Uk

    2008-05-01

    A novel sesquiterpene furan compound CJ-01 was isolated from the methanol extract of the whole plant of Chloranthus japonicus SIEB. by monitoring the inhibitory activity of chitin synthase 2 from Saccharomyces cerevisiae. Based on spectroscopic analysis, the structure of compound CJ-01 was determined as 3,4,8a-trimethyl-4a,7,8,8a-tetrahydro-4a-naphto[2,3-b]furan-9-one. The compound inhibited chitin synthase 2 of Saccharomyces cerevisiae in a dose-dependent manner with an IC50 of 39.6 microg/ml, whereas it exhibited no inhibitory activities against chitin synthase 1 and 3 of S. cerevisiae up to 280 microg/ml. CJ-01 has 1.7-fold stronger inhibitory activity than polyoxin D (IC50=70 microg/ml), a well-known chitin synthase inhibitor. These results indicate that the compound is a specific inhibitor of chitin synthase 2 from S. cerevisiae. In addition, CJ-01 showed antifungal activities against various human and phytopathogenic fungi. Therefore, the compound might be an interesting lead to develop effective antifungal agents.

  16. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Design and Synthesis of a Library of Lead-Like 2,4-Bisheterocyclic Substituted Thiophenes as Selective Dyrk/Clk Inhibitors

    PubMed Central

    Schmitt, Christian; Kail, Dagmar; Mariano, Marica; Empting, Martin; Weber, Nadja; Paul, Tamara; Hartmann, Rolf W.; Engel, Matthias

    2014-01-01

    The Dyrk family of protein kinases is implicated in the pathogenesis of several diseases, including cancer and neurodegeneration. Pharmacological inhibitors were mainly described for Dyrk1A so far, but in fewer cases for Dyrk1B, Dyrk2 or other isoforms. Herein, we report the development and optimization of 2,4-bisheterocyclic substituted thiophenes as a novel class of Dyrk inhibitors. The optimized hit compounds displayed favorable pharmacokinetic properties and high ligand efficiencies, and inhibited Dyrk1B in intact cells. In a larger selectivity screen, only Clk1 and Clk4 were identified as additional targets of compound 48, but no other kinases frequently reported as off-targets. Interestingly, Dyrk1A is implicated in the regulation of alternative splicing, a function shared with Clk1/Clk4; thus, some of the dual inhibitors might be useful as efficient splicing modulators. A further compound (29) inhibited Dyrk1A and 1B with an IC50 of 130 nM, showing a moderate selectivity over Dyrk2. Since penetration of the central nervous system (CNS) seems possible based on the physicochemical properties, this compound might serve as a lead for the development of potential therapeutic agents against glioblastoma. Furthermore, an inhibitor selective for Dyrk2 (24) was also identified, which might be are suitable as a pharmacological tool to dissect Dyrk2 isoform–mediated functions. PMID:24676346

  18. Prospective virtual screening for novel p53-MDM2 inhibitors using ultrafast shape recognition

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Ballester, Pedro J.; Kerezsi, Cassidy R.

    2014-02-01

    The p53 protein, known as the guardian of genome, is mutated or deleted in approximately 50 % of human tumors. In the rest of the cancers, p53 is expressed in its wild-type form, but its function is inhibited by direct binding with the murine double minute 2 (MDM2) protein. Therefore, inhibition of the p53-MDM2 interaction, leading to the activation of tumor suppressor p53 protein presents a fundamentally novel therapeutic strategy against several types of cancers. The present study utilized ultrafast shape recognition (USR), a virtual screening technique based on ligand-receptor 3D shape complementarity, to screen DrugBank database for novel p53-MDM2 inhibitors. Specifically, using 3D shape of one of the most potent crystal ligands of MDM2, MI-63, as the query molecule, six compounds were identified as potential p53-MDM2 inhibitors. These six USR hits were then subjected to molecular modeling investigations through flexible receptor docking followed by comparative binding energy analysis. These studies suggested a potential role of the USR-selected molecules as p53-MDM2 inhibitors. This was further supported by experimental tests showing that the treatment of human colon tumor cells with the top USR hit, telmisartan, led to a dose-dependent cell growth inhibition in a p53-dependent manner. It is noteworthy that telmisartan has a long history of safe human use as an approved anti-hypertension drug and thus may present an immediate clinical potential as a cancer therapeutic. Furthermore, it could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against variety of cancers. Importantly, the present study demonstrates that the adopted USR-based virtual screening protocol is a useful tool for hit identification in the domain of small molecule p53-MDM2 inhibitors.

  19. A selective cyclooxygenase-2 inhibitor (Etodolac) prevents spontaneous biliary tumorigenesis in a hamster bilioenterostomy model.

    PubMed

    Kitasato, Amane; Kuroki, Tamotsu; Adachi, Tomohiko; Ono, Shinichiro; Tanaka, Takayuki; Tsuneoka, Noritsugu; Hirabaru, Masataka; Takatsuki, Mitsuhisa; Eguchi, Susumu

    2014-01-01

    Secondary biliary carcinomas are associated with persistent reflux cholangitis after bilioenterostomy. Cyclooxygenase-2 (COX-2) has been a target for cancer prevention. The aim of this study was to evaluate the chemopreventive efficacy of long-term treatment with a selective COX-2 inhibitor medication during the natural course after bilioenterostomy without chemical induction. Syrian golden hamsters which underwent choledochojejunostomy were randomly divided into two groups: the control group (n = 31), which was fed a normal diet, and the etodolac group (n = 33), which was fed 0.01% etodolac (a selective COX-2 inhibitor) mixed in the meal. The hamsters were killed at the postoperative weeks 20-39, 40-59, 60-79, or 80-100. Biliary neoplasms, cholangitis, proliferating cell nuclear antigen labeling index (PCNA-LI) of the biliary epithelium, and prostaglandin E2 (PGE2) production were evaluated. The occurrence rates of biliary neoplasm were 43.8 and 15.2% in the control and etodolac groups, respectively (p < 0.05). The incidence of biliary neoplasm increased as time progressed in the control group, whereas it remained at a low level throughout the experimental period in the etodolac group. PGE2 products tended to be lower in the etodolac group, and PCNA-LI was significantly lower in the etodolac group (p < 0.01). These results suggest that the medication etodolac suppresses cell proliferation of the biliary epithelium, thereby preventing biliary carcinogenesis. Etodolac is expected to prevent secondary biliary carcinogenesis caused by persistent reflux cholangitis after bilioenterostomy. © 2014 S. Karger AG, Basel.

  20. Recovery from Diabetic Macular Edema in a Diabetic Patient After Minimal Dose of a Sodium Glucose Co-Transporter 2 Inhibitor.

    PubMed

    Yoshizumi, Hideyuki; Ejima, Tetsushi; Nagao, Tetsuhiko; Wakisaka, Masanori

    2018-04-19

    BACKGROUND Diabetic macular edema (DME) causes serious visual impairments in diabetic patients. The standard treatments of DME are intra-vitreous injections of corticosteroids or anti-vascular endothelial growth factor antibodies and pan-photocoagulation. These treatments are unsatisfactory in their effects and impose considerable physical and economic burdens on the patients. CASE REPORT A 63-year-old woman was diagnosed as type 2 diabetes with retinopathy 7 years ago. Before the initiation of an SGLT2 inhibitor, the dipeptidyl peptidase-4 inhibitor, sitagliptin (50 mg daily), and metformin (250 mg dai- ly) were used for her glycemic control. The level of her hemoglobin A1c had been controlled around 7%. She began to feel decreased visual acuity and blurred vision of her left eye 8 months before the visit to our clin- ic. She was diagnosed as DME, which turned out to be corticosteroid-resistant. Her visual acuity further de- creased to 20/50. Metformin was changed to ipraglifl (25mg/day). Her left visual acuity started to improve after 4 weeks of treatment with ipragliflozin and improved to 20/22 after 24 weeks. The macular edema did not change until 12 weeks of the treatment, however, it decreased prominently after 16 weeks. CONCLUSIONS In our patient with steroid-resistant DME, her visual symptoms and macular edema recovered after the initiation of an SGLT2 inhibitor. SGLT2 inhibitors might be a potential candidate for the DME treatment.

  1. Recent advances in the study of 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2)Inhibitors.

    PubMed

    Zhou, Chunchun; Ye, Fan; Wu, He; Ye, Hui; Chen, Quanxu

    2017-06-01

    11β-Hydroxysteroid dehydrogenase (11β-HSD), which interconverts hormonally active cortisol and inactive cortisone in multiple human tissues, has two distinct isoforms named 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) and 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2). 11β-HSD2 is an NAD + -dependent oxidase which lowers cortisol by converting it to cortisone while 11β-HSD1 mainly catalyzes the reduction which converts cortisone into cortisol. Selective inhibition of 11β-HSD2 is generally detrimental to health because the accumulation of cortisol can cause metabolic symptoms such as apparent mineralocorticoid excess (AME), fetal developmental defects and lower testosterone levels in males. There has been some advances on the study of 11β-HSD2 inhibitors and we think it necessary to make a summary of the characteristics and inhibiting properties of latest 11β-HSD2 inhibitors. As another review on 11β-HSD2 inhibitors has been issued on 2011 (see review (Ma et al., 2011)), this mini-review concerns advances during the last 5 years. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Crystal structure of the cysteine protease inhibitor 2 from Entamoeba histolytica: Functional convergence of a common protein fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casados-Vázquez, Luz E.; Lara-González, Samuel; Brieb, Luis G.

    Cysteine proteases (CP) are key pathogenesis and virulence determinants of protozoan parasites. Entamoeba histolytica contains at least 50 cysteine proteases; however, only three (EhCP1, EhCP2 and EhCP5) are responsible for approximately 90% of the cysteine protease activity in this parasite. CPs are expressed as inactive zymogens. Because the processed proteases are potentially cytotoxic, protozoan parasites have developed mechanisms to regulate their activity. Inhibitors of cysteine proteases (ICP) of the chagasin-like inhibitor family (MEROPS family I42) were recently identified in bacteria and protozoan parasites. E. histolytica contains two ICP-encoding genes of the chagasin-like inhibitor family. EhICP1 localizes to the cytosol, whereasmore » EhICP2 is targeted to phagosomes. Herein, we report two crystal structures of EhICP2. The overall structure of EhICP2 consists of eight {beta}-strands and closely resembles the immunoglobulin fold. A comparison between the two crystal forms of EhICP2 indicates that the conserved BC, DE and FG loops form a flexible wedge that may block the active site of CPs. The positively charged surface of the wedge-forming loops in EhICP2 contrasts with the neutral surface of the wedge-forming loops in chagasin. We postulate that the flexibility and positive charge observed in the DE and FG loops of EhICP2 may be important to facilitate the initial binding of this inhibitor to the battery of CPs present in E. histolytica.« less

  3. Effects of indomethacin, NS-398 (a selective prostaglandin H synthase-2 inhibitor) and protein synthesis inhibitors on prostaglandin production by the guinea-pig placenta.

    PubMed

    Aitken, H; Poyser, N L

    2001-01-01

    The outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)were similar from the day 22 guinea-pig placenta and sub-placenta in culture, except for PGE2 output from the sub-placenta which was lower. Between days 22 and 29 of pregnancy, the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)during the initial 2 h culture period increased 6.9-, 1.1- and 3.2-fold, respectively, from the placenta, and 2.1-, 1.4- and 2.2-fold, respectively, from the sub-placenta. Therefore, there was a relatively specific increase in PGF(2 alpha)production by the guinea-pig placenta between days 22 and 29 of pregnancy. The output of PGFM from the cultured placenta also increased between days 22 and 29, indicating that the increase in PGF(2 alpha)output was due to increased synthesis rather than to decreased metabolism. By comparing the amounts of prostaglandins produced by tissue homogenates during a 1 h incubation period, it appears that there is approximately a 2-fold increase in the amount of prostaglandin H synthase (PGHS) present in the guinea-pig placenta between days 22 and 29. NS-398 (a specific inhibitor of PGHS-2) and indomethacin (an inhibitor of both PGHS-1 and PGHS-2) both inhibited prostaglandin production by homogenates of day 22 and day 29 placenta. Indomethacin was more effective than NS-398, except for their actions on PGF(2 alpha)production by the day 29 placenta where indomethacin and NS-398 were equiactive. Indomethacin and NS-398 were both very effective at inhibiting the outputs of PGF(2 alpha), PGE2 and 6-keto-PGF(1 alpha)from the day 22 and day 29 placenta and sub-placenta in culture, indicating that prostaglandin production by the guinea-pig placenta and sub-placenta in culture is largely dependent upon the activity of PGHS-2. The high production of PGF(2 alpha)by the day 29 placenta is not dependent on the continual synthesis of fresh protein(s), as inhibitors of protein synthesis did not reduce PGF(2 alpha)output from the day 29 guinea-pig placenta in culture

  4. Design and synthesis of carbazole carboxamides as promising inhibitors of Bruton’s tyrosine kinase (BTK) and Janus kinase 2 (JAK2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qingjie; Batt, Douglas G.; Lippy, Jonathan S.

    Four series of disubstituted carbazole-1-carboxamides were designed and synthesised as inhibitors of Bruton’s tyrosine kinase (BTK). 4,7- and 4,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of BTK, while 3,7- and 3,6-disubstituted carbazole-1-carboxamides were potent and selective inhibitors of Janus kinase 2 (JAK2).

  5. 2-(Hetero(aryl)methylene)hydrazine-1-carbothioamides as potent urease inhibitors.

    PubMed

    Saeed, Aamer; Imran, Aqeel; Channar, Pervaiz A; Shahid, Mohammad; Mahmood, Wajahat; Iqbal, Jamshed

    2015-02-01

    A small series of 2-(hetero(aryl)methylene) hydrazine-1-carbothioamides including two aryl derivatives was synthesized and tested for their inhibitory activity against urease. Compound (E)-2-(Furan-2-ylmethylene) hydrazine-1-carbothioamide (3f), having a furan ring, was the most potent inhibitor of urease with an IC50 value of 0.58 μM. Molecular modeling was carried out through docking the designed compounds into the urease binding site to predict whether these derivatives have analogous binding mode to the urease inhibitors. The study revealed that all of the tested compounds bind with both metal atoms at the active site of the enzyme. The aromatic ring of the compounds forms ionic interactions with the residues, Ala(440), Asp(494), Ala(636), and Met(637). © 2014 John Wiley & Sons A/S.

  6. A RNA Interference Screen Identifies the Protein Phosphatase 2A Subunit PR55γ as a Stress-Sensitive Inhibitor of c-SRC

    PubMed Central

    Eichhorn, Pieter J. A; Creyghton, Menno P; Wilhelmsen, Kevin; van Dam, Hans; Bernards, René

    2007-01-01

    Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ. PMID:18069897

  7. Tissue factor pathway inhibitor-2: a novel gene involved in zebrafish central nervous system development.

    PubMed

    Zhang, Yanli; Wang, Lina; Zhou, Wenhao; Wang, Huijun; Zhang, Jin; Deng, Shanshan; Li, Weihua; Li, Huawei; Mao, Zuohua; Ma, Duan

    2013-09-01

    Tissue factor pathway inhibitor-2 (Tfpi-2) is an important serine protease inhibitor in the extracellular matrix (ECM), but its precise physiological significance remains unknown. This work is part of a series of studies intended to investigate functional roles of Tfpi-2 and explore the underlying molecular mechanisms. First, we cloned and identified zebrafish Tfpi-2 (zTfpi-2) as an evolutionarily conserved protein essential for zebrafish development. We also demonstrated that ztfpi-2 is mainly expressed in the central nervous system (CNS) of zebrafish, and embryonic depletion of ztfpi-2 caused severe CNS defects. In addition, changes of neural markers, including pax2a, egr2b, huC, ngn1, gfap and olig2, confirmed the presence of developmental abnormalities in the relevant regions of ztfpi-2 morphants. Using microarray analysis, we found that members of the Notch pathway, especially her4 and mib, which mediate lateral inhibition in CNS development, were also downregulated. Intriguingly, both her4 and mib were able to partially rescue the ztfpi-2 morphant phenotype. Furthermore, Morpholino knockdown of ztfpi-2 resulted in upregulation of neuronal markers while downregulation of glial markers, providing evidence that the Notch pathway is probably involved in ztfpi-2-mediated CNS development. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. [Testicular hydrocele: therapy with sclerosing solutions].

    PubMed

    Castillo Jimeno, J M; Santiago González de Garibay, A; Marcotegui Ros, F; Yurs Arruga, J I; Sebastián Borruel, J L

    1989-03-01

    Twelve adult patients with acquired hydrocele of the testis were submitted to treatment with aspiration and injection of an acrine derivative (quinacrine) guided by ultrasonography. A 12 month follow up of all patients showed good results were achieved by sclerotherapy with quinacrine.

  9. Design, Synthesis and Biological Evaluation of Novel Peptide-Like Analogues as Selective COX-2 Inhibitors

    PubMed Central

    Ahmaditaba, Mohammad Ali; Houshdar Tehrani, Mohammad Hassan; Zarghi, Afshin; Shahosseini, Sorayya; Daraei, Bahram

    2018-01-01

    A new series of peptide-like derivatives containing different aromatic amino acids and possessing pharmacophores of COX-2 inhibitors as SO2Me or N3 attached to the para position of an end phenyl ring was synthesized for evaluation as selective cyclooxygenase-2 (COX-2) inhibitors. The synthetic reactions were based on the solid phase peptide synthesis method using Wang resin. One of the analogues, i.e., compound 2d, as the representative of these series was recognized as the most effective and the highest selective COX-2 inhibitor with IC50 value of 0.08 μM and COX-2 selectivity index of 351.2, among the other synthesized compounds. Molecular docking study was operated to determine possible binding models of compound 2d to COX-2 enzyme. The study showed that the p-azido-phenyl fragment of 2d occupied inside the secondary COX-2 binding site (Arg513, and His90). The structure-activity relationships acquired disclosed that compound 2d with 4-(azido phenyl) group as pharmacophore and histidine as amino acid gives the essential geometry to provide inhibition of the COX-2 enzyme with high selectivity. Compound 2d can be a good candidate for the development of new hits of COX-2 inhibitors.

  10. MEK1/2 inhibitors reverse acute vascular occlusion in mouse models of sickle cell disease.

    PubMed

    Zhao, Yulin; Schwartz, Evan A; Palmer, Gregory M; Zennadi, Rahima

    2016-03-01

    In sickle cell disease (SCD), treatment of recurrent vasoocclusive episodes, leading to pain crises and organ damage, is still a therapeutic challenge. Vasoocclusion is caused primarily by adherence of homozygous for hemoglobin S (SS) red blood cells (SSRBCs) and leukocytes to the endothelium. We tested the therapeutic benefits of MEK1/2 inhibitors in reversing vasoocclusion in nude and humanized SCD mouse models of acute vasoocclusive episodes using intravital microscopy. Administration of 0.2, 0.3, 1, or 2 mg/kg MEK1/2 inhibitor to TNF-α-pretreated nude mice before human SSRBC infusion inhibited SSRBC adhesion in inflamed vessels, prevented the progression of vasoocclusion, and reduced SSRBC organ sequestration. By use of a more clinically relevant protocol, 0.3 or 1 mg/kg MEK1/2 inhibitor given to TNF-α-pretreated nude mice after human SSRBC infusion and onset of vasoocclusion reversed SSRBC adhesion and vasoocclusion and restored blood flow. In SCD mice, 0.025, 0.05, or 0.1 mg/kg MEK1/2 inhibitor also reversed leukocyte and erythrocyte adhesion after the inflammatory trigger of vasoocclusion and improved microcirculatory blood flow. Cell adhesion was reversed by shedding of endothelial E-selectin, P-selectin, and αvβ3 integrin, and leukocyte CD44 and β2 integrin. Thus, MEK1/2 inhibitors, by targeting the adhesive function of SSRBCs and leukocytes, could represent a valuable therapeutic intervention for acute sickle cell vasoocclusive crises. © FASEB.

  11. Scaffold-based novel SHP2 allosteric inhibitors design using Receptor-Ligand pharmacophore model, virtual screening and molecular dynamics.

    PubMed

    Jin, Wen-Yan; Ma, Ying; Li, Wei-Ya; Li, Hong-Lian; Wang, Run-Ling

    2018-04-01

    SHP2 is a potential target for the development of novel therapies for SHP2-dependent cancers. In our research, with the aid of the 'Receptor-Ligand Pharmacophore' technique, a 3D-QSAR method was carried out to explore structure activity relationship of SHP2 allosteric inhibitors. Structure-based drug design was employed to optimize SHP099, an efficacious, potent, and selective SHP2 allosteric inhibitor. A novel class of selective SHP2 allosteric inhibitors was discovered by using the powerful 'SBP', 'ADMET' and 'CDOCKER' techniques. By means of molecular dynamics simulations, it was observed that these novel inhibitors not only had the same function as SHP099 did in inhibiting SHP2, but also had more favorable conformation for binding to the receptor. Thus, this report may provide a new method in discovering novel and selective SHP2 allosteric inhibitors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A new fluorescent probe for the equilibrative inhibitor-sensitive nucleoside transporter. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA)-chi 2-fluorescein.

    PubMed

    Wiley, J S; Brocklebank, A M; Snook, M B; Jamieson, G P; Sawyer, W H; Craik, J D; Cass, C E; Robins, M J; McAdam, D P; Paterson, A R

    1991-02-01

    The N6-(4-nitrobenzyl) derivative of adenosine is a tight-binding inhibitor of the equilibrative inhibitor-sensitive nucleoside transporter of mammalian cells. A fluorescent ligand for this transporter has been synthesized by allowing an adenosine analogue. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA), to react with fluorescein isothiocyanate. The purified adduct had a SAENTA/fluorescein molar ratio of 0.92:1 calculated from its absorption spectrum. The intensity of fluorescent emission from the SAENTA-chi 2-fluorescein adduct was 30% that of fluorescein isothiocyanate (chi 2 is the number of atoms in the linkage between fluorescein and SAENTA). SAENTA-chi 2-fluorescein inhibited the influx of nucleosides into cultured leukaemic cells with an IC50 (total concentration of inhibitor producing 50% inhibition) of 40 nM. The adduct inhibited the binding of [3H]nitrobenzylthioinosine ([3H]NBMPR) with half-maximal inhibition at 50-100 nM. Mass Law analysis of the competitive-binding data suggested the presence of two classes of sites for [3H]NBMPR binding, only one of which was accessible to SAENTA-chi 2-fluorescein. Flow cytometry was used to analyse equilibrium binding of SAENTA-chi 2-fluorescein to leukaemic cells and a Kd of 6 nM was obtained. SAENTA-chi 2-fluorescein is a high-affinity ligand for the equilibrative inhibitor-sensitive nucleoside transporter which allows rapid assessment of transport capacity by flow cytometry.

  13. SGLT2 inhibitors and renal outcomes in type 2 diabetes with or without renal impairment: A systematic review and meta-analysis.

    PubMed

    Seidu, Samuel; Kunutsor, Setor K; Cos, Xavier; Gillani, Syed; Khunti, Kamlesh

    2018-06-01

    Sodium-glucose co-transporter 2 (SGLT2) inhibitors may have renal protective effects in people with impaired kidney function. We assessed the use of SGLT2 inhibitors in people with type 2 diabetes with or without renal impairment [defined as estimated glomerular filtration rate (eGFR) of ≥30 and <60ml/min/1.73m 2 and/or UACR>300 and ≤5000mg/g] by conducting a systematic review and meta-analysis of available studies. Randomised controlled trials (RCTs) were identified from MEDLINE, EMABASE, Web of Science, the Cochrane Library, and search of bibliographies to March 2017. No relevant observational study was identified. Summary measures were presented as mean differences and narrative synthesis performed for studies that could not be pooled. 42 articles which included 40 RCTs comprising 29,954 patients were included. In populations with renal impairment, SGLT2 inhibition compared with placebo was consistently associated with an initial decrease in eGFR followed by an increase and return to baseline levels. In pooled analysis of 17 studies in populations without renal impairment, there was no significant change in eGFR comparing SGLT2 inhibitors with placebo (mean difference, 0.51ml/min/1.73m 2 ; 95% CI: -0.69, 1.72; p=403). SGLT2 inhibition relative to placebo was associated with preservation in serum creatinine levels or initial increases followed by return to baseline levels in patients with renal impairment, but levels were preserved in patients without renal impairment. In populations with or without renal impairment, SGLT2 inhibitors (particularly canagliflozin and empagliflozin) compared with placebo were associated with decreased urine albumin, improved albuminiuria, slowed progression to macroalbuminuria, and reduced the risk of worsening renal impairment, the initiation of kidney transplant, and death from renal disease. Emerging data suggests that with SGLT2 inhibition, renal function seems to be preserved in people with diabetes with or without renal

  14. Cardioprotective effects of SGLT2 inhibitors are possibly associated with normalization of the circadian rhythm of blood pressure.

    PubMed

    Rahman, Asadur; Hitomi, Hirofumi; Nishiyama, Akira

    2017-06-01

    Improvement in cardiovascular (CV) morbidity and mortality in the EMPA-REG OUTCOME study provides new insight into the therapeutic use of sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors in patients with type 2 diabetes. Although SGLT2 inhibitors have several pleiotropic effects, the underlying mechanism responsible for their cardioprotective effects remains undetermined. In this regard, the absence of a nocturnal fall in blood pressure (BP), that is, non-dipping BP, is a common phenomenon in type 2 diabetes and has a crucial role in the pathogenesis of CV morbidity and mortality. In most clinical trials, SGLT2 inhibitors reduce both systolic BP (~3-5 mm Hg) and diastolic BP (~2 mm Hg) in patients with type 2 diabetes. In addition, recent clinical and animal studies have revealed that SGLT2 inhibitors enable the change in BP circadian rhythm from a non-dipper to a dipper type, which is possibly associated with the improvement in CV outcomes in patients with type 2 diabetes. In this review, recent data on the effect of SGLT2 inhibitors on the circadian rhythm of BP will be summarized. The possible underlying mechanisms responsible for the SGLT2 inhibitor-induced improvement in the circadian rhythm of BP will also be discussed.

  15. Hepatocyte growth factor activator inhibitor type-2 (HAI-2)/SPINT2 contributes to invasive growth of oral squamous cell carcinoma cells.

    PubMed

    Yamamoto, Koji; Kawaguchi, Makiko; Shimomura, Takeshi; Izumi, Aya; Konari, Kazuomi; Honda, Arata; Lin, Chen-Yong; Johnson, Michael D; Yamashita, Yoshihiro; Fukushima, Tsuyoshi; Kataoka, Hiroaki

    2018-02-20

    Hepatocyte growth factor activator inhibitor (HAI)-1/ SPINT1 and HAI-2/ SPINT2 are membrane-anchored protease inhibitors having homologous Kunitz-type inhibitor domains. They regulate membrane-anchored serine proteases, such as matriptase and prostasin. Whereas HAI-1 suppresses the neoplastic progression of keratinocytes to invasive squamous cell carcinoma (SCC) through matriptase inhibition, the role of HAI-2 in keratinocytes is poorly understood. In vitro homozygous knockout of the SPINT2 gene suppressed the proliferation of two oral SCC (OSCC) lines (SAS and HSC3) but not the growth of a non-tumorigenic keratinocyte line (HaCaT). Reversion of HAI-2 abrogated the growth suppression. Matrigel invasion of both OSCC lines was also suppressed by the loss of HAI-2. The levels of prostasin protein were markedly increased in HAI-2-deficient cells, and knockdown of prostasin alleviated the HAI-2 loss-induced suppression of OSCC cell invasion. Therefore, HAI-2 has a pro-invasive role in OSCC cells through suppression of prostasin. In surgically resected OSCC tissues, HAI-2 immunoreactivity increased along with neoplastic progression, showing intense immunoreactivities in invasive OSCC cells. In summary, HAI-2 is required for invasive growth of OSCC cells and may contribute to OSCC progression.

  16. Discovery of a novel class of potent coumarin monoamine oxidase B inhibitors: development and biopharmacological profiling of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate (NW-1772) as a highly potent, selective, reversible, and orally active monoamine oxidase B inhibitor.

    PubMed

    Pisani, Leonardo; Muncipinto, Giovanni; Miscioscia, Teresa Fabiola; Nicolotti, Orazio; Leonetti, Francesco; Catto, Marco; Caccia, Carla; Salvati, Patricia; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passeleu, Celine; Carotti, Angelo

    2009-11-12

    In an effort to discover novel selective monoamine oxidase (MAO) B inhibitors with favorable physicochemical and pharmacokinetic profiles, 7-[(m-halogeno)benzyloxy]coumarins bearing properly selected polar substituents at position 4 were designed, synthesized, and evaluated as MAO inhibitors. Several compounds with MAO-B inhibitory activity in the nanomolar range and excellent MAO-B selectivity (selectivity index SI > 400) were identified. Structure-affinity relationships and docking simulations provided valuable insights into the enzyme-inhibitor binding interactions at position 4, which has been poorly explored. Furthermore, computational and experimental studies led to the identification and biopharmacological characterization of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate 22b (NW-1772) as an in vitro and in vivo potent and selective MAO-B inhibitor, with rapid blood-brain barrier penetration, short-acting and reversible inhibitory activity, slight inhibition of selected cytochrome P450s, and low in vitro toxicity. On the basis of this preliminary preclinical profile, inhibitor 22b might be viewed as a promising clinical candidate for the treatment of neurodegenerative diseases.

  17. Identification of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidinyl] amines and ethers as potent and selective cyclooxygenase-2 inhibitors.

    PubMed

    Swarbrick, Martin E; Beswick, Paul J; Gleave, Robert J; Green, Richard H; Bingham, Sharon; Bountra, Chas; Carter, Malcolm C; Chambers, Laura J; Chessell, Iain P; Clayton, Nick M; Collins, Sue D; Corfield, John A; Hartley, C David; Kleanthous, Savvas; Lambeth, Paul F; Lucas, Fiona S; Mathews, Neil; Naylor, Alan; Page, Lee W; Payne, Jeremy J; Pegg, Neil A; Price, Helen S; Skidmore, John; Stevens, Alexander J; Stocker, Richard; Stratton, Sharon C; Stuart, Alastair J; Wiseman, Joanne O

    2009-08-01

    A novel series of [4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)-2-pyrimidine-based cyclooxygenase-2 (COX-2) inhibitors, which have a different arrangement of substituents compared to the more common 1,2-diarylheterocycle based molecules, have been discovered. For example, 2-(butyloxy)-4-[4-(methylsulfonyl)phenyl]-6-(trifluoromethyl)pyrimidine (47), a member of the 2-pyrimidinyl ether series, has been shown to be a potent and selective inhibitor with a favourable pharmacokinetic profile, high brain penetration and good efficacy in rat models of hypersensitivity.

  18. The carbanion of nitroethane is an inhibitor of, and not a substrate for, flavocytochrome b2 [L-(+)-lactate dehydrogenase

    PubMed Central

    Genet, R; Lederer, F

    1990-01-01

    Although nitroethane does not bind to the active site of flavocytochrome b2, its anion, ethane nitronate, behaves as a competitive inhibitor, with a Ki of 2.2 mM. No electron transfer can be detected between the nitronate and the enzyme, in contrast with the observations of other workers on D-amino acid oxidase. Propionate is a competitive inhibitor, with a Ki of 28 mM. The significance of these results with respect to the proposed carbanion mechanism and the putative existence of a covalent enzyme-substrate intermediate is discussed. PMID:2178603

  19. The oral HDAC inhibitor pracinostat (SB939) is efficacious and synergistic with the JAK2 inhibitor pacritinib (SB1518) in preclinical models of AML

    PubMed Central

    Novotny-Diermayr, V; Hart, S; Goh, K C; Cheong, A; Ong, L-C; Hentze, H; Pasha, M K; Jayaraman, R; Ethirajulu, K; Wood, J M

    2012-01-01

    Acute myeloid leukemia (AML) is currently treated with aggressive chemotherapy that is not well tolerated in many elderly patients, hence the unmet medical need for effective therapies with less toxicity and better tolerability. Inhibitors of FMS-like tyrosine kinase 3 (FLT3), JAK2 and histone deacetylase inhibitors (HDACi) have been tested in clinical studies, but showed only moderate single-agent activity. High efficacy of the HDACi pracinostat treating AML and synergy with the JAK2/FLT3 inhibitor pacritinib is demonstrated. Both compounds inhibit JAK-signal transducer and activator of transcription (STAT) signaling in AML cells with JAK2V617F mutations, but also diminish FLT3 signaling, particularly in FLT3-ITD (internal tandem duplication) cell lines. In vitro, this combination led to decreased cell proliferation and increased apoptosis. The synergy translated in vivo in two different AML models, the SET-2 megakaryoblastic AML mouse model carrying a JAK2V617F mutation, and the MOLM-13 model of FLT3-ITD-driven AML. Pracinostat and pacritinib in combination showed synergy on tumor growth, reduction of metastases and synergistically decreased JAK2 or FLT signaling, depending on the cellular context. In addition, several plasma cytokines/growth factors/chemokines triggered by the tumor growth were normalized, providing a rationale for combination therapy with an HDACi and a JAK2/FLT3 inhibitor for the treatment of AML patients, particularly those with FLT3 or JAK2 mutations. PMID:22829971

  20. The irreversible ERBB1/2/4 inhibitor neratinib interacts with the BCL-2 inhibitor venetoclax to kill mammary cancer cells.

    PubMed

    Booth, Laurence; Roberts, Jane L; Avogadri-Connors, Francesca; Cutler, Richard E; Lalani, Alshad S; Poklepovic, Andrew; Dent, Paul

    2018-03-04

    The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.

  1. Effect of perzinfotel and a proprietary phospholipase A(2) inhibitor on kinetic gait and subjective lameness scores in dogs with sodium urate-induced synovitis.

    PubMed

    Budsberg, Steven C; Torres, Bryan T; Zwijnenberg, Raphael J; Eppler, C Mark; Clark, James D; Cathcart, Curtis J; Reynolds, Lisa R; Al-Nadaf, Sami

    2011-06-01

    To investigate the ability of perzinfotel (an N-methyl-d-aspartate receptor antagonist) and a proprietary phospholipase A(2) (PLA(2)) inhibitor to attenuate lameness in dogs with sodium urate (SU)-induced synovitis. 8 adult dogs. A blinded 4-way crossover study was performed. Dogs received perzinfotel (10 mg/kg), a proprietary PLA(2) inhibitor (10 mg/kg), carprofen (4.4 mg/kg; positive control treatment), or no treatment (negative control treatment). On the fourth day after initiation of treatment, synovitis was induced via intra-articular injection of SU 1 hour before administration of the last treatment dose. Ground reaction forces were measured and clinical lameness evaluations were performed before (baseline [time 0]) and 2, 4, 6, 8, 12, and 25 hours after SU injection. There was a 21-day washout period between subsequent treatments. Data were analyzed via repeated-measures ANOVAs. Peak vertical force (PVF) and vertical impulse (VI) values for negative control and perzinfotel treatments were significantly lower at 2 and 4 hours, compared with baseline values. Values for PVF and VI for the PLA(2) inhibitor and positive control treatments did not differ from baseline values at any time points. Between-treatment comparisons revealed significantly higher PVF and VI values for the positive control treatment than for the negative control and perzinfotel treatments at 2 and 4 hours. Values for VI were higher for PLA(2) inhibitor treatment than for negative control treatment at 2 hours. Perzinfotel did not significantly alter SU-induced lameness. The proprietary PLA(2) inhibitor attenuated lameness but not as completely as did carprofen.

  2. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    PubMed Central

    2015-01-01

    We developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16 and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. A 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors. PMID:25075558

  3. Gliotoxin is a potent NOTCH2 transactivation inhibitor and efficiently induces apoptosis in chronic lymphocytic leukaemia (CLL) cells.

    PubMed

    Hubmann, Rainer; Hilgarth, Martin; Schnabl, Susanne; Ponath, Elena; Reiter, Marlies; Demirtas, Dita; Sieghart, Wolfgang; Valent, Peter; Zielinski, Christoph; Jäger, Ulrich; Shehata, Medhat

    2013-03-01

    Chronic lymphocytic leukaemia (CLL) cells express constitutively activated NOTCH2 in a protein kinase C (PKC)- dependent manner. The transcriptional activity of NOTCH2 correlates not only with the expression of its target gene FCER2 (CD23) but is also functionally linked with CLL cell viability. In the majority of CLL cases, DNA-bound NOTCH2 complexes are less sensitive to the γ-secretase inhibitor (GSI) DAPT. Therefore, we searched for compounds that interfere with NOTCH2 signalling at the transcription factor level. Using electrophoretic mobility shift assays (EMSA), we identified the Aspergillum-derived secondary metabolite gliotoxin as a potent NOTCH2 transactivation inhibitor. Gliotoxin completely blocked the formation of DNA-bound NOTCH2 complexes in CLL cells independent of their sensitivity to DAPT. The inhibition of NOTCH2 signalling by gliotoxin was associated with down regulation of CD23 (FCER) expression and induction of apoptosis. Short time exposure of CLL cells indicated that the early apoptotic effect of gliotoxin is independent of proteasome regulated nuclear factor κB activity, and is associated with up regulation of NOTCH3 and NR4A1 expression. Gliotoxin could overcome the supportive effect of primary bone marrow stromal cells in an ex vivo CLL microenvironment model. In conclusion, we identified gliotoxin as a potent NOTCH2 inhibitor with a promising therapeutic potential in CLL. © 2012 Blackwell Publishing Ltd.

  4. Role of gemfibrozil as an inhibitor of CYP2C8 and membrane transporters.

    PubMed

    Tornio, Aleksi; Neuvonen, Pertti J; Niemi, Mikko; Backman, Janne T

    2017-01-01

    Cytochrome P450 (CYP) 2C8 is a drug metabolizing enzyme of major importance. The lipid-lowering drug gemfibrozil has been identified as a strong inhibitor of CYP2C8 in vivo. This effect is due to mechanism-based inhibition of CYP2C8 by gemfibrozil 1-O-β-glucuronide. In vivo, gemfibrozil is a fairly selective CYP2C8 inhibitor, which lacks significant inhibitory effect on other CYP enzymes. Gemfibrozil can, however, have a smaller but clinically meaningful inhibitory effect on membrane transporters, such as organic anion transporting polypeptide 1B1 and organic anion transporter 3. Areas covered: This review describes the inhibitory effects of gemfibrozil on CYP enzymes and membrane transporters. The clinical drug interactions caused by gemfibrozil and the different mechanisms contributing to the interactions are reviewed in detail. Expert opinion: Gemfibrozil is a useful probe inhibitor of CYP2C8 in vivo, but its effect on membrane transporters has to be taken into account in study design and interpretation. Moreover, gemfibrozil could be used to boost the pharmacokinetics of CYP2C8 substrate drugs. Identification of gemfibrozil 1-O-β-glucuronide as a potent mechanism-based inhibitor of CYP2C8 has led to recognition of glucuronide metabolites as perpetrators of drug-drug interactions. Recently, also acyl glucuronide metabolites of clopidogrel and deleobuvir have been shown to strongly inhibit CYP2C8.

  5. Pre-clinical evaluation of small molecule LOXL2 inhibitors in breast cancer

    PubMed Central

    Chang, Joan; Lucas, Morghan C.; Leonte, Lidia E.; Garcia-Montolio, Marc; Singh, Lukram Babloo; Findlay, Alison D.; Deodhar, Mandar; Foot, Jonathan S.; Jarolimek, Wolfgang; Timpson, Paul; Erler, Janine T.; Cox, Thomas R.

    2017-01-01

    Lysyl Oxidase-like 2 (LOXL2), a member of the lysyl oxidase family of amine oxidases is known to be important in normal tissue development and homeostasis, as well as the onset and progression of solid tumors. Here we tested the anti-tumor properties of two generations of novel small molecule LOXL2 inhibitor in the MDA-MB-231 human model of breast cancer. We confirmed a functional role for LOXL2 activity in the progression of primary breast cancer. Inhibition of LOXL2 activity inhibited the growth of primary tumors and reduced primary tumor angiogenesis. Dual inhibition of LOXL2 and LOX showed a greater effect and also led to a lower overall metastatic burden in the lung and liver. Our data provides the first evidence to support a role for LOXL2 specific small molecule inhibitors as a potential therapy in breast cancer. PMID:28199967

  6. Hit-to-lead optimization and kinase selectivity of imidazo[1,2-a]quinoxalin-4-amine derived JNK1 inhibitors.

    PubMed

    Li, Bei; Cociorva, Oana M; Nomanbhoy, Tyzoon; Weissig, Helge; Li, Qiang; Nakamura, Kai; Liyanage, Marek; Zhang, Melissa C; Shih, Ann Y; Aban, Arwin; Hu, Yi; Cajica, Julia; Pham, Lan; Kozarich, John W; Shreder, Kevin R

    2013-09-15

    As the result of a rhJNK1 HTS, the imidazo[1,2-a]quinoxaline 1 was identified as a 1.6 μM rhJNK1 inhibitor. Optimization of this compound lead to AX13587 (rhJNK1 IC50=160 nM) which was co-crystallized with JNK1 to identify key molecular interactions. Kinase profiling against 125+ kinases revealed AX13587 was an inhibitor of JNK, MAST3, and MAST4 whereas its methylene homolog AX14373 (native JNK1 IC50=47 nM) was a highly specific JNK inhibitor. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Omeprazole increases the efficacy of a soluble epoxide hydrolase inhibitor in a PGE2 induced pain model

    PubMed Central

    Goswami, Sumanta Kumar; Inceoglu, Bora; Yang, Jun; Wan, Debin; Kodani, Sean D.; da Silva, Carlos Antonio Trindade; Morisseau, Christophe; Hammock, Bruce D.

    2015-01-01

    Epoxyeicosatrienoic acids (EETs) are potent endogenous analgesic metabolites produced from arachidonic acid by cytochrome P450s (P450s). Metabolism of EETs by soluble epoxide hydrolase (sEH) reduces their activity, while their stabilization by sEH inhibition decreases both inflammatory and neuropathic pain. Here, we tested the complementary hypothesis that increasing the level of EETs through induction of P450s by omeprazole (OME), can influence pain related signaling by itself, and potentiate the anti-hyperalgesic effect of sEH inhibitor. Rats were treated with OME (100 mg/kg/day, p.o., 7 days), sEH inhibitor TPPU (3 mg/kg/day, p.o.) and OME (100 mg/kg/day, p.o., 7 days) + TPPU (3 mg/kg/day, p.o., last 3 days of OME dose) dissolved in vehicle PEG400, and their effect on hyperalgesia (increased sensitivity to pain) induced by PGE2 was monitored. While OME treatment by itself exhibited variable effects on PGE2 induced hyperalgesia, it strongly potentiated the effect of TPPU in the same assay. The significant decrease in pain with OME + TPPU treatment correlated with the increased levels of EETs in plasma and increased activities of P450 1A1 and P450 1A2 in liver microsomes. The results show that reducing catabolism of EETs with a sEH inhibitor yielded a stronger analgesic effect than increasing generation of EETs by OME, and combination of both yielded the strongest pain reducing effect under the condition of this study. PMID:26522832

  8. Development of Inhibitors Targeting Hypoxia-Inducible Factor 1 and 2 for Cancer Therapy

    PubMed Central

    Yu, Tianchi

    2017-01-01

    Hypoxia is frequently observed in solid tumors and also one of the major obstacles for effective cancer therapies. Cancer cells take advantage of their ability to adapt hypoxia to initiate a special transcriptional program that renders them more aggressive biological behaviors. Hypoxia-inducible factors (HIFs) are the key factors that control hypoxia-inducible pathways by regulating the expression of a vast array of genes involved in cancer progression and treatment resistance. HIFs, mainly HIF-1 and -2, have become potential targets for developing novel cancer therapeutics. This article reviews the updated information in tumor HIF pathways, particularly recent advances in the development of HIF inhibitors. These inhibitors interfere with mRNA expression, protein synthesis, protein degradation and dimerization, DNA binding and transcriptional activity of HIF-1 and -2, or both. Despite efforts in the past two decades, no agents directly inhibiting HIFs have been approved for treating cancer patients. By analyzing results of the published reports, we put the perspectives at the end of the article. The therapeutic efficacy of HIF inhibitors may be improved if more efforts are devoted on developing agents that are able to simultaneously target HIF-1 and -2, increasing the penetrating capacity of HIF inhibitors, and selecting suitable patient subpopulations for clinical trials. PMID:28332352

  9. Dengue Virus NS2B/NS3 Protease Inhibitors Exploiting the Prime Side.

    PubMed

    Lin, Kuan-Hung; Ali, Akbar; Rusere, Linah; Soumana, Djade I; Kurt Yilmaz, Nese; Schiffer, Celia A

    2017-05-15

    The mosquito-transmitted dengue virus (DENV) infects millions of people in tropical and subtropical regions. Maturation of DENV particles requires proper cleavage of the viral polyprotein, including processing of 8 of the 13 substrate cleavage sites by dengue virus NS2B/NS3 protease. With no available direct-acting antiviral targeting DENV, NS2/NS3 protease is a promising target for inhibitor design. Current design efforts focus on the nonprime side of the DENV protease active site, resulting in highly hydrophilic and nonspecific scaffolds. However, the prime side also significantly modulates DENV protease binding affinity, as revealed by engineering the binding loop of aprotinin, a small protein with high affinity for DENV protease. In this study, we designed a series of cyclic peptides interacting with both sides of the active site as inhibitors of dengue virus protease. The design was based on two aprotinin loops and aimed to leverage both key specific interactions of substrate sequences and the entropic advantage driving aprotinin's high affinity. By optimizing the cyclization linker, length, and amino acid sequence, the tightest cyclic peptide achieved a K i value of 2.9 μM against DENV3 wild-type (WT) protease. These inhibitors provide proof of concept that both sides of DENV protease active site can be exploited to potentially achieve specificity and lower hydrophilicity in the design of inhibitors targeting DENV. IMPORTANCE Viruses of the flaviviral family, including DENV and Zika virus transmitted by Aedes aegypti , continue to be a threat to global health by causing major outbreaks in tropical and subtropical regions, with no available direct-acting antivirals for treatment. A better understanding of the molecular requirements for the design of potent and specific inhibitors against flaviviral proteins will contribute to the development of targeted therapies for infections by these viruses. The cyclic peptides reported here as DENV protease inhibitors

  10. Long-term efficacy and safety of sodium-glucose cotransporter-2 inhibitors as add-on to metformin treatment in the management of type 2 diabetes mellitus

    PubMed Central

    Li, Jian; Gong, Yanping; Li, Chunlin; Lu, Yanhui; Liu, Yu; Shao, Yinghong

    2017-01-01

    Abstract Background: Drug intensification is often required for patients with type 2 diabetes mellitus on stable metformin therapy. Among the potential candidates for a combination therapy, sodium-glucose transporter-2 (SGLT2) inhibitors have shown promising outcomes. This meta-analysis was performed to compare the efficacy and safety of SGLT2 inhibitors with non-SGLT2 combinations as add-on treatment to metformin. Methods: Literature search was carried out in multiple electronic databases for the acquisition of relevant randomized controlled trials (RCTs) by following a priori eligibility criteria. After the assessment of quality of the included RCTs, meta-analyses of mean differences or odds ratios (OR) were performed to achieve overall effect sizes of the changes from baseline in selected efficacy and safety endpoints reported in the individual studies. Between-studies heterogeneity was estimated with between-studies statistical heterogeneity (I2) index. Results: Six RCTs fulfilled the eligibility criteria. SGLT2 inhibitors as add-on to metformin treatment reduced % HbA1c significantly more than non-SGLT2 combinations after 52 weeks (P = .002) as well as after 104 weeks (P < .00001). Among other endpoints, SGLT2 inhibitors also reduced fasting plasma glucose levels, body weight, systolic, and diastolic blood pressures after 52 weeks and 104 weeks significantly (P < .00001) more than non-SGLT2 combinations. Incidence of hypoglycemia was significantly lower (P = .02) but incidence of suspected or confirmed genital tract infections was significantly higher (P < .00001) in SGLT2 inhibitors treated in comparison with non-SGLT2 combinations. Conclusion: As add-on to metformin treatment, SGLT2 inhibitors are found significantly more efficacious than non-SGLT2 inhibitor combinations in the management of type 2 diabetes mellitus, although, SGLT2 inhibitor therapy is associated with significantly higher incidence of suspected or confirmed genital tract

  11. A single amino acid substitution makes ERK2 susceptible to pyridinyl imidazole inhibitors of p38 MAP kinase.

    PubMed Central

    Fox, T.; Coll, J. T.; Xie, X.; Ford, P. J.; Germann, U. A.; Porter, M. D.; Pazhanisamy, S.; Fleming, M. A.; Galullo, V.; Su, M. S.; Wilson, K. P.

    1998-01-01

    Mitogen-activated protein (MAP) kinases are serine/threonine kinases that mediate intracellular signal transduction pathways. Pyridinyl imidazole compounds block pro-inflammatory cytokine production and are specific p38 kinase inhibitors. ERK2 is related to p38 in sequence and structure, but is not inhibited by pyridinyl imidazole inhibitors. Crystal structures of two pyridinyl imidazoles complexed with p38 revealed these compounds bind in the ATP site. Mutagenesis data suggested a single residue difference at threonine 106 between p38 and other MAP kinases is sufficient to confer selectivity of pyridinyl imidazoles. We have changed the equivalent residue in human ERK2, Q105, into threonine and alanine, and substituted four additional ATP binding site residues. The single residue change Q105A in ERK2 enhances the binding of SB202190 at least 25,000-fold compared to wild-type ERK2. We report enzymatic analyses of wild-type ERK2 and the mutant proteins, and the crystal structure of a pyridinyl imidazole, SB203580, bound to an ERK2 pentamutant, I103L, Q105T, D106H, E109G. T110A. These ATP binding site substitutions induce low nanomolar sensitivity to pyridinyl imidazoles. Furthermore, we identified 5-iodotubercidin as a potent ERK2 inhibitor, which may help reveal the role of ERK2 in cell proliferation. PMID:9827991

  12. Synthesis and Evaluation of Phenylxanthine Derivatives as Potential Dual A2AR Antagonists/MAO-B Inhibitors for Parkinson's Disease.

    PubMed

    Wang, Xuebao; Han, Chao; Xu, Yong; Wu, Kaiqi; Chen, Shuangya; Hu, Mangsha; Wang, Luyao; Ye, Yun; Ye, Faqing

    2017-06-17

    The aim of this research was to prove the speculation that phenylxanthine (PX) derivatives possess adenosine A2A receptor (A2AR)-blocking properties and to screening and evaluate these PX derivatives as dual A2AR antagonists/MAO-B inhibitors for Parkinson's disease. To explore this hypothesis, two series of PX derivatives were prepared and their antagonism against A2AR and inhibition against MAO-B were determined in vitro. In order to evaluate further the antiparkinsonian properties, pharmacokinetic and haloperidol-induced catalepsy experiments were carried out in vivo. The PX-D and PX-E analogues acted as potent A2AR antagonists with Ki values ranging from 0.27 to 10 μM, and these analogues displayed relatively mild MAO-B inhibition potencies, with inhibitor dissociation constants (Ki values) ranging from 0.25 to 10 μM. Further, the compounds PX-D-P6 and PX-E-P8 displayed efficacious antiparkinsonian properties in haloperidol-induced catalepsy experiments, verifying that these two compounds were potent A2AR antagonists and MAO-B inhibitors. We conclude that PX-D and PX-E analogues are a promising candidate class of dual-acting compounds for treating Parkinson's disease.

  13. C2 Arylated Benzo[b]thiophene Derivatives as Staphylococcus aureus NorA Efflux Pump Inhibitors.

    PubMed

    Liger, François; Bouhours, Pascale; Ganem-Elbaz, Carine; Jolivalt, Claude; Pellet-Rostaing, Stéphane; Popowycz, Florence; Paris, Jean-Marc; Lemaire, Marc

    2016-02-04

    An innovative and straightforward synthesis of second-generation 2-arylbenzo[b]thiophenes as structural analogues of INF55 and the first generation of our laboratory-made molecules was developed. The synthesis of C2-arylated benzo[b]thiophene derivatives was achieved through a method involving direct arylation, followed by simple structural modifications. Among the 34 compounds tested, two of them were potent NorA pump inhibitors, which led to a 16-fold decrease in the ciprofloxacin minimum inhibitory concentration (MIC) against the SA-1199B strain at concentrations of 0.25 and 0.5 μg mL(-1) (1 and 1.5 μm, respectively). This is a promising result relative to that obtained for reserpine (MIC=20 μg mL(-1)), a reference compound amongst NorA pump inhibitors. These molecules thus represent promising candidates to be used in combination with ciprofloxacin against fluoroquinolone-resistant strains. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Structure-Function Correlation of G6, a Novel Small Molecule Inhibitor of Jak2

    PubMed Central

    Majumder, Anurima; Govindasamy, Lakshmanan; Magis, Andrew; Kiss, Róbert; Polgár, Tímea; Baskin, Rebekah; Allan, Robert W.; Agbandje-McKenna, Mavis; Reuther, Gary W.; Keserű, György M.; Bisht, Kirpal S.; Sayeski, Peter P.

    2010-01-01

    Somatic mutations in the Jak2 protein, such as V617F, cause aberrant Jak/STAT signaling and can lead to the development of myeloproliferative neoplasms. This discovery has led to the search for small molecule inhibitors that target Jak2. Using structure-based virtual screening, our group recently identified a novel small molecule inhibitor of Jak2 named G6. Here, we identified a structure-function correlation of this compound. Specifically, five derivative compounds of G6 having structural similarity to the original lead compound were obtained and analyzed for their ability to (i) inhibit Jak2-V617F-mediated cell growth, (ii) inhibit the levels of phospho-Jak2, phospho-STAT3, and phospho-STAT5; (iii) induce apoptosis in human erythroleukemia cells; and (iv) suppress pathologic cell growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Additionally, we computationally examined the interactions of these compounds with the ATP-binding pocket of the Jak2 kinase domain. We found that the stilbenoid core-containing derivatives of G6 significantly inhibited Jak2-V617F-mediated cell proliferation in a time- and dose-dependent manner. They also inhibited phosphorylation of Jak2, STAT3, and STAT5 proteins within cells, resulting in higher levels of apoptosis via the intrinsic apoptotic pathway. Finally, the stilbenoid derivatives inhibited the pathologic growth of Jak2-V617F-expressing human bone marrow cells ex vivo. Collectively, our data demonstrate that G6 has a stilbenoid core that is indispensable for maintaining its Jak2 inhibitory potential. PMID:20667821

  15. Cyclic GMP-mediated memory enhancement in the object recognition test by inhibitors of phosphodiesterase-2 in mice.

    PubMed

    Lueptow, Lindsay M; Zhan, Chang-Guo; O'Donnell, James M

    2016-02-01

    Cyclic nucleotide phosphodiesterase-2 (PDE2) is a potential therapeutic target for the treatment of cognitive dysfunction. Using the object recognition test (ORT), this study assessed the effects of two PDE2 inhibitors, Bay 60-7550 and ND7001, on learning and memory, and examined underlying mechanisms. To assess the role of PDE2 inhibition on phases of memory, Bay 60-7550 (3 mg/kg) was administered: 30 min prior to training; 0, 1, or 3 h after training; or 30 min prior to recall testing. To assess cyclic nucleotide involvement in PDE2 inhibitor-enhanced memory consolidation, either the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg; intraperitoneal (IP)), soluble guanylyl cyclase inhibitor 1H-[-1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ; 20 mg/kg; IP), protein kinase G inhibitor KT5823 (2.5 μg; intracerebroventricular (ICV)), or protein kinase A inhibitor H89 (1 μg; ICV) was administered 30 min prior to the PDE2 inhibitor Bay 60-7550 (3 mg/kg) or ND7001 (3 mg/kg). Changes in the phosphorylation of 3'5'-cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) at Ser-133 and vasodilator-stimulated phosphoprotein (VASP) at Ser-239 were determined to confirm activation of cAMP and 3'5'-cyclic guanosine monophosphate (cGMP) signaling. Bay 60-7550 (3 mg/kg) enhanced memory of mice in the ORT when given 30 min prior to training, immediately after training, or 30 min prior to recall. Inhibitors of the cGMP pathway blocked the memory-enhancing effects of both Bay 60-7550 (3 mg/kg) and ND7001 (3 mg/kg) on early consolidation processes. Bay 60-7550 (3 mg/kg) enhanced phosphorylation of CREB and VASP, both targets of cGMP-dependent protein kinase (PKG). These results confirm a potential of PDE2, or components of its signaling pathway, as a therapeutic target for drug discovery focused on restoring memory function.

  16. Anxiolytic effects of phosphodiesterase-2 inhibitors associated with increased cGMP signaling.

    PubMed

    Masood, Anbrin; Huang, Ying; Hajjhussein, Hassan; Xiao, Lan; Li, Hao; Wang, Wei; Hamza, Adel; Zhan, Chang-Guo; O'Donnell, James M

    2009-11-01

    Phosphodiesterase (PDE)-2 is a component of the nitric-oxide synthase (NOS)/guanylyl cyclase signaling pathway in the brain. Given recent evidence that pharmacologically induced changes in NO-cGMP signaling can affect anxiety-related behaviors, the effects of the PDE2 inhibitors (2-(3,4-dimethoxybenzyl)-7-det-5-methylimidazo-[5,1-f][1,2,4]triazin-4(3H)-one) (Bay 60-7550) and 3-(8-methoxy-1-methyl-2-oxo-7-phenyl-2,3-dihydro-1H-benzo[e][1,4]diazepin-5-yl)benzamide (ND7001), as well as modulators of NO, were assessed on cGMP signaling in neurons and on the behavior of mice in the elevated plus-maze, hole-board, and open-field tests, well established procedures for the evaluation of anxiolytics. Bay 60-7550 (1 microM) and ND7001 (10 microM) increased basal and N-methyl-d-aspartate- or detanonoate-stimulated cGMP in primary cultures of rat cerebral cortical neurons; Bay 60-7550, but not ND7001, also increased cAMP. Increased cGMP signaling, either by administration of the PDE2 inhibitors Bay 60-7550 (0.5, 1, and 3 mg/kg) or ND7001 (1 mg/kg), or the NO donor detanonoate (0.5 mg/kg), antagonized the anxiogenic effects of restraint stress on behavior in the three tests. These drugs also produced anxiolytic effects on behavior in nonstressed mice in the elevated plus-maze and hole-board tests; these effects were antagonized by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (20 mg/kg). By contrast, the NOS inhibitor N(omega)-nitro-l-arginine methyl ester (50 mg/kg), which reduces cGMP signaling, produced anxiogenic effects similar to restraint stress. Overall, the present behavioral and neurochemical data suggest that PDE2 may be a novel pharmacological target for the development of drugs for the treatment of anxiety disorders.

  17. Discovery of a 2,4-Diamino-7-aminoalkoxy-quinazoline as a Potent and Selective Inhibitor of Histone Lysine Methyltransferase G9a†

    PubMed Central

    Liu, Feng; Chen, Xin; Allali-Hassani, Abdellah; Quinn, Amy M.; Wasney, Gregory A.; Dong, Aiping; Barsyte, Dalia; Kozieradzki, Ivona; Senisterra, Guillermo; Chau, Irene; Siarheyeva, Alena; Kireev, Dmitri B.; Jadhav, Ajit; Herold, J. Martin; Frye, Stephen V.; Arrowsmith, Cheryl H.; Brown, Peter J.; Simeonov, Anton; Vedadi, Masoud; Jin, Jian

    2010-01-01

    SAR exploration of the 2,4-diamino-6,7-dimethoxyquinazoline template led to the discovery of 8 (UNC0224) as a potent and selective G9a inhibitor. A high resolution X-ray crystal structure of the G9a-8 complex, the first co-crystal structure of G9a with a small molecule inhibitor, was obtained. The co-crystal structure validated our binding hypothesis and will enable structure-based design of novel inhibitors. 8 is a useful tool for investigating the biology of G9a and its roles in chromatin remodeling. PMID:19891491

  18. Effects of novel nitrification and urease inhibitors (DCD/TZ and 2-NPT) on N2O emissions from surface applied urea: An incubation study

    NASA Astrophysics Data System (ADS)

    Ni, Kang; Kage, Henning; Pacholski, Andreas

    2018-02-01

    A 41-day incubation trial was conducted to test the single and combined effects of the novel urease (N-(2-Nitrophenyl) phosphoric triamide, 2-NPT) and nitrification inhibitors (mixture of dicyandiamide and 1H-1,2,4-triazole, DCD/TZ) on N2O emissions and underlying soil processes from a North German sandy loam soil. The effects of treatment on N2O emission were determined using static closed chamber incubation and detected using a photo-acoustic gas monitor. The emission processes were strongly related to soil mineral N and pH dynamics, obtained from destructive sampling of replicate incubation chambers. The combined use of urease and nitrification inhibitors slightly increased the reduction of N2O compared with single use of the nitrification inhibitor (69% vs. 61%). The small amount of soil used in the incubation and the depletion of labile carbon by air drying and pre-incubation caused very low initial N2O emissions, and glucose addition significantly stimulated N2O emission by supplying labile carbon. The urease inhibitor significantly reduced simultaneously determined qualitative NH3 emissions in either urea alone (90%) or urea plus nitrification inhibitor treatment (82%). These results highlighted the potential of the combined use of urease and nitrification inhibitors with urea application to mitigate soil NH3 and N2O emissions.

  19. Low-dose aspirin, non-steroidal anti-inflammatory drugs, selective COX-2 inhibitors and breast cancer recurrence

    PubMed Central

    Cronin-Fenton, Deirdre P; Heide-Jørgensen, Uffe; Ahern, Thomas P; Lash, Timothy L; Christiansen, Peer; Ejlertsen, Bent; Sørensen, Henrik T

    2017-01-01

    Background Aspirin, non-steroidal anti-inflammatory drugs (NSAIDs), and selective COX-2 inhibitors may improve outcomes in breast cancer patients. We investigated the association of aspirin, NSAIDs, and use of selective COX-2 inhibitors with breast cancer recurrence. Methods We identified incident stage I–III Danish breast cancer patients in the Danish Breast Cancer Cooperative Group registry, who were diagnosed during 1996–2008. Prescriptions for aspirin (>99% low-dose aspirin), NSAIDs, and selective COX-2 inhibitors were ascertained from the National Prescription Registry (NPR). Follow-up began on the date of breast cancer primary surgery and continued until the first of recurrence, death, emigration, or 01/01/2013. We used Cox regression models to compute hazard ratios (HR) and corresponding 95% confidence intervals (95%CI) associating prescriptions with recurrence, adjusting for confounders. Results We identified 34,188 breast cancer patients with 233,130 person-years of follow-up. Median follow-up was 7.1 years; 5,325 patients developed recurrent disease. Use of aspirin, NSAIDs, or selective COX-2 inhibitors was not associated with the rate of recurrence (HRadjusted aspirin=1.0, 95% CI=0.90, 1.1; NSAIDs=0.99, 95% CI=0.92, 1.1; selective COX-2 inhibitors=1.1, 95% CI=0.98, 1.2), relative to non-use. Pre-diagnostic use of the exposure drugs was associated with reduced recurrence rates (HRaspirin=0.92, 95%CI=0.82, 1.0; HRNSAIDs=0.86, 95%CI=0.81, 0.91; HRsCOX-2inhibitors=0.88, 95%CI=0.83, 0.95). Conclusions This prospective cohort study suggests that post-diagnostic prescriptions for aspirin, NSAIDs, and selective COX-2 inhibitors have little or no association with the rate of breast cancer recurrence. Pre-diagnostic use of the drugs was, however, associated with a reduced rate of breast cancer recurrence. PMID:27007644

  20. Prescription channeling of COX-2 inhibitors and traditional nonselective nonsteroidal anti-inflammatory drugs: a population-based case-control study.

    PubMed

    Moride, Yola; Ducruet, Thierry; Boivin, Jean-François; Moore, Nicholas; Perreault, Sylvie; Zhao, Sean

    2005-01-01

    This pharmacoepidemiologic study was conducted to determine whether risk factors for upper gastrointestinal bleeding influenced the prescription of cyclo-oxygenase (COX)-2 inhibitors and traditional nonselective nonsteroidal anti-inflammatory drugs (NSAIDs) at the time when COX-2 inhibitors were first included in the formulary of reimbursed medications. A population-based case-control study was conducted in which the prevalence of risk factors and the medical histories of patients prescribed COX-2 inhibitors and traditional nonselective NSAIDs were compared. The study population consisted of a random sample of members of the Quebec drug plan (age 18 years or older) who received at least one dispensation of celecoxib (n = 42,422; cases), rofecoxib (n = 25,674; cases), or traditional nonselective NSAIDs (n = 12,418; controls) during the year 2000. All study data were obtained from the Quebec health care databases. Adjusting for income level, Chronic Disease Score, prior use of low-dose acetylsalicylic acid, acetaminophen, antidepressants, benzodiazepines, prescriber specialty, and time period, the following factors were significantly associated with the prescription of COX-2 inhibitors: age 75 years or older (odds ratio [OR] 4.22, 95% confidence interval [CI] 3.95-4.51), age 55-74 years (OR 3.23, 95% CI 3.06-3.40), female sex (OR 1.52, 95% CI 1.45-1.58), prior diagnosis of gastropathy (OR 1.21, 95% CI 1.08-1.36) and prior dispensation of gastroprotective agents (OR 1.57, 95% CI 1.47-1.67). Patients who received a traditional nonselective NSAID recently were more likely to switch to a coxib, especially first-time users (OR 2.17, 95% CI 1.93-2.43). Associations were significantly greater for celecoxib than rofecoxib for age, chronic NSAID use, and last NSAID use between 1 and 3 months before the index date. At the time of introduction of COX-2 inhibitors into the formulary, prescription channeling could confound risk comparisons across products.

  1. Recombinant yeast screen for new inhibitors of human acetyl-CoA carboxylase 2 identifies potential drugs to treat obesity

    PubMed Central

    Marjanovic, Jasmina; Chalupska, Dominika; Patenode, Caroline; Coster, Adam; Arnold, Evan; Ye, Alice; Anesi, George; Lu, Ying; Okun, Ilya; Tkachenko, Sergey; Haselkorn, Robert; Gornicki, Piotr

    2010-01-01

    Acetyl-CoA carboxylase (ACC) is a key enzyme of fatty acid metabolism with multiple isozymes often expressed in different eukaryotic cellular compartments. ACC-made malonyl-CoA serves as a precursor for fatty acids; it also regulates fatty acid oxidation and feeding behavior in animals. ACC provides an important target for new drugs to treat human diseases. We have developed an inexpensive nonradioactive high-throughput screening system to identify new ACC inhibitors. The screen uses yeast gene-replacement strains depending for growth on cloned human ACC1 and ACC2. In “proof of concept” experiments, growth of such strains was inhibited by compounds known to target human ACCs. The screen is sensitive and robust. Medium-size chemical libraries yielded new specific inhibitors of human ACC2. The target of the best of these inhibitors was confirmed with in vitro enzymatic assays. This compound is a new drug chemotype inhibiting human ACC2 with 2.8 μM IC50 and having no effect on human ACC1 at 100 μM. PMID:20439761

  2. A PI3K p110α-selective inhibitor enhances the efficacy of anti-HER2/neu antibody therapy against breast cancer in mice.

    PubMed

    Choi, Jae-Hyeog; Kim, Ki Hyang; Roh, Kug-Hwan; Jung, Hana; Lee, Anbok; Lee, Ji-Young; Song, Joo Yeon; Park, Seung Jae; Kim, Ilhwan; Lee, Won-Sik; Seo, Su-Kil; Choi, Il-Whan; Fu, Yang-Xin; Yea, Sung Su; Park, SaeGwang

    2018-01-01

    Combination therapies with phosphoinositide 3-kinase (PI3K) inhibitors and trastuzumab (anti-human epidermal growth factor receptor [HER]2/neu antibody) are effective against HER2+ breast cancer. Isoform-selective PI3K inhibitors elicit anti-tumor immune responses that are distinct from those induced by inhibitors of class I PI3K isoforms (pan-PI3K inhibitors). The present study investigated the therapeutic effect and potential for stimulating anti-tumor immunity of combined therapy with an anti-HER2/neu antibody and pan-PI3K inhibitor (GDC-0941) or a PI3K p110α isoform-selective inhibitor (A66) in mouse models of breast cancer. The anti-neu antibody inhibited tumor growth and enhanced anti-tumor immunity in HER2/neu+ breast cancer TUBO models, whereas GDC-0941 or A66 alone did not. Anti-neu antibody and PI3K inhibitor synergistically promoted anti-tumor immunity by increasing functional T cell production. In the presence of the anti-neu antibody, A66 was more effective than GDC-0941 at increasing the fraction of CD4 + , CD8 + , and IFN-γ + CD8 + T cells in the tumor-infiltrating lymphocyte population. Detection of IFN-γ levels by enzyme-linked immunospot assay showed that the numbers of tumor-specific T cells against neu and non-neu tumor antigens were increased by combined PI3K inhibitor plus anti-neu antibody treatment, with A66 exhibiting more potent effects than GDC-0941. In a TUBO (neu+) and TUBO-P2J (neu-) mixed tumor model representing immunohistochemistry 2+ tumors, A66 suppressed tumor growth and prolonged survival to a greater extent than GDC-0941 when combined with anti-neu antibody. These results demonstrate that a PI3K p110α-isoform-selective inhibitor is an effective adjunct to trastuzumab in the treatment of HER2-positive breast cancer.

  3. Discovery of HDAC Inhibitors That Lack an Active Site Zn(2+)-Binding Functional Group.

    PubMed

    Vickers, Chris J; Olsen, Christian A; Leman, Luke J; Ghadiri, M Reza

    2012-06-14

    Natural and synthetic histone deacetylase (HDAC) inhibitors generally derive their strong binding affinity and high potency from a key functional group that binds to the Zn(2+) ion within the enzyme active site. However, this feature is also thought to carry the potential liability of undesirable off-target interactions with other metalloenzymes. As a step toward mitigating this issue, here, we describe the design, synthesis, and structure-activity characterizations of cyclic α3β-tetrapeptide HDAC inhibitors that lack the presumed indispensable Zn(2+)-binding group. The lead compounds (e.g., 15 and 26) display good potency against class 1 HDACs and are active in tissue culture against various human cancer cell lines. Importantly, enzymological analysis of 26 indicates that the cyclic α3β-tetrapeptide is a fast-on/off competitive inhibitor of HDACs 1-3 with K i values of 49, 33, and 37 nM, respectively. Our proof of principle study supports the idea that novel classes of HDAC inhibitors, which interact at the active-site opening, but not with the active site Zn(2+), can have potential in drug design.

  4. Clinical pharmacology of lumiracoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Rordorf, Christiane M; Choi, Les; Marshall, Paul; Mangold, James B

    2005-01-01

    Lumiracoxib (Prexige) is a selective cyclo-oxygenase (COX)-2 inhibitor developed for the treatment of osteoarthritis, rheumatoid arthritis and acute pain. Lumiracoxib possesses a carboxylic acid group that makes it weakly acidic (acid dissociation constant [pKa] 4.7), distinguishing it from other selective COX-2 inhibitors. Lumiracoxib has good oral bioavailability (74%). It is rapidly absorbed, reaching maximum plasma concentrations 2 hours after dosing, and is highly plasma protein bound. Lumiracoxib has a short elimination half-life from plasma (mean 4 hours) and demonstrates dose-proportional plasma pharmacokinetics with no accumulation during multiple dosing. In patients with rheumatoid arthritis, peak lumiracoxib synovial fluid concentrations occur 3-4 hours later than in plasma and exceed plasma concentrations from 5 hours after dosing to the end of the 24-hour dosing interval. These data suggest that lumiracoxib may be associated with reduced systemic exposure, while still reaching sites where COX-2 inhibition is required for pain relief. Lumiracoxib is metabolised extensively prior to excretion, with only a small amount excreted unchanged in urine or faeces. Lumiracoxib and its metabolites are excreted via renal and faecal routes in approximately equal amounts. The major metabolic pathways identified involve oxidation of the 5-methyl group of lumiracoxib and/or hydroxylation of its dihaloaromatic ring. Major metabolites of lumiracoxib in plasma are the 5-carboxy, 4'-hydroxy and 4'-hydroxy-5-carboxy derivatives, of which only the 4'-hydroxy derivative is active and COX-2 selective. In vitro, the major oxidative pathways are catalysed primarily by cytochrome P450 (CYP) 2C9 with very minor contribution from CYP1A2 and CYP2C19. However, in patients genotyped as poor CYP2C9 metabolisers, exposure to lumiracoxib (area under the plasma concentration-time curve) is not significantly increased compared with control subjects, indicating no requirement for adjustment

  5. A facile method to screen inhibitors of protein-protein interactions including MDM2-p53 displayed on T7 phage.

    PubMed

    Ishi, Kazutomo; Sugawara, Fumio

    2008-05-01

    Protein-protein interactions are essential in many biological processes including cell cycle and apoptosis. It is currently of great medical interest to inhibit specific protein-protein interactions in order to treat a variety of disease states. Here, we describe a facile multiwell plate assay method using T7 phage display to screen for candidate inhibitors of protein-protein interactions. Because T7 phage display is an effective method for detecting protein-protein interactions, we aimed to utilize this technique to screen for small-molecule inhibitors that disrupt these types of interaction. We used the well-characterized interaction between p53 and MDM2 and an inhibitor of this interaction, nutlin 3, as a model system to establish a new screening method. Phage particles displaying p53 interacted with GST-MDM2 immobilized on 96-well plates, and the interaction was inhibited by nutlin 3. Multiwell plate assay was then performed using a natural product library, which identified dehydroaltenusin as a candidate inhibitor of the p53-MDM2 interaction. We discuss the potential applications of this novel T7 phage display methodology, which we propose to call 'reverse phage display'.

  6. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  7. Discovery of Type II Inhibitors of TGFβ-Activated Kinase 1 (TAK1) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 2 (MAP4K2)

    DOE PAGES

    Tan, Li; Nomanbhoy, Tyzoon; Gurbani, Deepak; ...

    2014-07-17

    Here, we developed a pharmacophore model for type II inhibitors that was used to guide the construction of a library of kinase inhibitors. Kinome-wide selectivity profiling of the library resulted in the identification of a series of 4-substituted 1H-pyrrolo[2,3-b]pyridines that exhibited potent inhibitory activity against two mitogen-activated protein kinases (MAPKs), TAK1 (MAP3K7) and MAP4K2, as well as pharmacologically well interrogated kinases such as p38α (MAPK14) and ABL. Further investigation of the structure–activity relationship (SAR) resulted in the identification of potent dual TAK1 and MAP4K2 inhibitors such as 1 (NG25) and 2 as well as MAP4K2 selective inhibitors such as 16more » and 17. Some of these inhibitors possess good pharmacokinetic properties that will enable their use in pharmacological studies in vivo. Lastly, a 2.4 Å cocrystal structure of TAK1 in complex with 1 confirms that the activation loop of TAK1 assumes the DFG-out conformation characteristic of type II inhibitors.« less

  8. Efficacy and tolerability of lumiracoxib, a highly selective cyclo-oxygenase-2 (COX2) inhibitor, in the management of pain and osteoarthritis

    PubMed Central

    Geusens, Piet; Lems, Willem

    2008-01-01

    Lumiracoxib is a COX2 inhibitor that is highly selective, is more effective than placebo on pain in osteoarthritis (OA), with similar analgesic and anti-inflammatory effects as non-selective NSAIDs and the selective COX2 inhibitor celecoxib, has a lower incidence of upper gastrointestinal (GI) side effects in patients not taking aspirin, and a similar incidence of cardiovascular (CV) side effects compared to naproxen or ibuprofen. In the context of earlier guidelines and taking into account the GI and CV safety results of the TARGET study, lumiracoxib had secured European Medicines Agency (EMEA) approval with as indication symptomatic treatment of OA as well as short-term management of acute pain associated with primary dysmenorrhea and following orthopedic or dental surgery. In the complex clinical context of efficiency and safety of selective and non-selective COX inhibitors, its prescription and use should be based on the risk and safety profile of the patient. In addition, there is further need for long-term GI and CV safety studies and general post-marketing safety on its use in daily practice. Meanwhile, at the time of submission of this manuscript, the EMEA has withdrawn lumiracoxib throughout Europe because of the risk of serious side effects affecting the liver. PMID:18728796

  9. Esophageal cancer stem cells are suppressed by tranilast, a TRPV2 channel inhibitor.

    PubMed

    Shiozaki, Atsushi; Kudou, Michihiro; Ichikawa, Daisuke; Fujiwara, Hitoshi; Shimizu, Hiroki; Ishimoto, Takeshi; Arita, Tomohiro; Kosuga, Toshiyuki; Konishi, Hirotaka; Komatsu, Shuhei; Okamoto, Kazuma; Marunaka, Yoshinori; Otsuji, Eigo

    2018-02-01

    Recent evidence suggests that the targeting of membrane proteins specifically activated in cancer stem cells (CSCs) is an important strategy for cancer therapy. The objectives of the present study were to investigate the expression and activity of ion-transport-related molecules in the CSCs of esophageal squamous cell carcinoma. Cells exhibiting strong aldehyde dehydrogenase 1 family member A1 (ALDH1A1) activity were isolated from TE8 cells by fluorescence-activated cell sorting, and CSCs were then generated with the sphere formation assay. The gene expression profiles of CSCs were examined by microarray analysis. Among TE8 cells, ALDH1A1 messenger RNA and protein levels were higher in CSCs than in non-CSCs. The CSCs obtained were resistant to cisplatin and had the ability to redifferentiate. The results of the microarray analysis revealed that the expression of 50 genes encoding plasma membrane proteins was altered in CSCs, whereas that of several genes related to ion channels, including transient receptor potential vanilloid 2 (TRPV2), was upregulated. The TRPV2 inhibitor tranilast was more cytotoxic at a lower concentration in CSCs than in non-CSCs, and effectively decreased the number of tumorspheres. Furthermore, tranilast significantly decreased the cell population that strongly expressed ALDH1A1 among TE8 cells. The results of the present study suggest that TRPV2 is involved in the maintenance of CSCs, and that its specific inhibitor, tranilast, has potential as a targeted therapeutic agent against esophageal squamous cell carcinoma.

  10. Development of a Sensitive Microarray Platform for the Ranking of Galectin Inhibitors: Identification of a Selective Galectin-3 Inhibitor.

    PubMed

    Dion, Johann; Advedissian, Tamara; Storozhylova, Nataliya; Dahbi, Samir; Lambert, Annie; Deshayes, Frédérique; Viguier, Mireille; Tellier, Charles; Poirier, Françoise; Téletchéa, Stéphane; Dussouy, Christophe; Tateno, Hiroaki; Hirabayashi, Jun; Grandjean, Cyrille

    2017-12-14

    Glycan microarrays are useful tools for lectin glycan profiling. The use of a glycan microarray based on evanescent-field fluorescence detection was herein further extended to the screening of lectin inhibitors in competitive experiments. The efficacy of this approach was tested with 2/3'-mono- and 2,3'-diaromatic type II lactosamine derivatives and galectins as targets and was validated by comparison with fluorescence anisotropy proposed as an orthogonal protein interaction measurement technique. We showed that subtle differences in the architecture of the inhibitor could be sensed that pointed out the preference of galectin-3 for 2'-arylamido derivatives over ureas, thioureas, and amines and that of galectin-7 for derivatives bearing an α substituent at the anomeric position of glucosamine. We eventually identified a diaromatic oxazoline as a highly specific inhibitor of galectin-3 versus galectin-1 and galectin-7. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The Highly Selective Caspase-1 Inhibitor VX-765 Provides Additive Protection Against Myocardial Infarction in Rat Hearts When Combined With a Platelet Inhibitor.

    PubMed

    Yang, Xi-Ming; Downey, James M; Cohen, Michael V; Housley, Nicole A; Alvarez, Diego F; Audia, Jonathon P

    2017-11-01

    Use of ischemic postconditioning and other related cardioprotective interventions to treat patients with acute myocardial infarction (AMI) has failed to improve outcomes in clinical trials. Because P2Y 12 inhibitors are themselves postconditioning mimetics, it has been postulated that the loading dose of platelet inhibitors routinely given to patients treated for AMI masks the anti-infarct effect of other intended cardioprotective interventions. To further improve outcomes of patients with AMI, an intervention must be able to provide additive protection in the presence of a P2Y 12 platelet inhibitor. Previous studies reported an anti-infarct effect using a peptide inhibitor of the pro-inflammatory caspase-1 in animal models of AMI. Herein we tested whether a pharmacologic caspase-1 inhibitor can further limit infarct size in open-chest, anesthetized rats treated with a P2Y 12 inhibitor. One hour occlusion of a coronary branch followed by 2 hours of reperfusion was used to simulate clinical AMI and reflow. One group of rats received an intravenous bolus of 16 mg/kg of the highly selective caspase-1 inhibitor VX-765 30 minutes prior to onset of ischemia. A second group received a 60 µg/kg intravenous bolus of the P2Y 12 inhibitor cangrelor 10 minutes prior to reperfusion followed by 6 µg/kg/min continuous infusion. A third group received treatment with both inhibitors as above. Control animals received no treatment. Infarct size was measured by tetrazolium stain and volume of muscle at risk by fluorescent microspheres. In untreated hearts, 73.7% ± 4.1% of the ischemic zone infarcted. Treatment with either cangrelor or VX-765 alone reduced infarct size to 43.8% ± 2.4% and 39.6% ± 3.6% of the ischemic zone, respectively. Combining cangrelor and VX-765 was highly protective, resulting in only 14.0% ± 2.9% infarction. The ability of VX-765 to provide protection beyond that of a platelet inhibitor alone positions it as an attractive candidate therapy to further

  12. Discovering Anti-platelet Drug Combinations with an Integrated Model of Activator-Inhibitor Relationships, Activator-Activator Synergies and Inhibitor-Inhibitor Synergies

    PubMed Central

    Lombardi, Federica; Golla, Kalyan; Fitzpatrick, Darren J.; Casey, Fergal P.; Moran, Niamh; Shields, Denis C.

    2015-01-01

    Identifying effective therapeutic drug combinations that modulate complex signaling pathways in platelets is central to the advancement of effective anti-thrombotic therapies. However, there is no systems model of the platelet that predicts responses to different inhibitor combinations. We developed an approach which goes beyond current inhibitor-inhibitor combination screening to efficiently consider other signaling aspects that may give insights into the behaviour of the platelet as a system. We investigated combinations of platelet inhibitors and activators. We evaluated three distinct strands of information, namely: activator-inhibitor combination screens (testing a panel of inhibitors against a panel of activators); inhibitor-inhibitor synergy screens; and activator-activator synergy screens. We demonstrated how these analyses may be efficiently performed, both experimentally and computationally, to identify particular combinations of most interest. Robust tests of activator-activator synergy and of inhibitor-inhibitor synergy required combinations to show significant excesses over the double doses of each component. Modeling identified multiple effects of an inhibitor of the P2Y12 ADP receptor, and complementarity between inhibitor-inhibitor synergy effects and activator-inhibitor combination effects. This approach accelerates the mapping of combination effects of compounds to develop combinations that may be therapeutically beneficial. We integrated the three information sources into a unified model that predicted the benefits of a triple drug combination targeting ADP, thromboxane and thrombin signaling. PMID:25875950

  13. Effect of chloride channel inhibitors on cytosolic Ca2+ levels and Ca2+-activated K+ (Gardos) channel activity in human red blood cells.

    PubMed

    Kucherenko, Yuliya V; Wagner-Britz, Lisa; Bernhardt, Ingolf; Lang, Florian

    2013-04-01

    DIDS, NPPB, tannic acid (TA) and AO1 are widely used inhibitors of Cl(-) channels. Some Cl(-) channel inhibitors (NPPB, DIDS, niflumic acid) were shown to affect phosphatidylserine (PS) scrambling and, thus, the life span of human red blood cells (hRBCs). Since a number of publications suggest Ca(2+) dependence of PS scrambling, we explored whether inhibitors of Cl(-) channels (DIDS, NPPB) or of Ca(2+)-activated Cl(-) channels (DIDS, NPPB, TA, AO1) modified intracellular free Ca(2+) concentration ([Ca(2+)]i) and activity of Ca(2+)-activated K(+) (Gardos) channel in hRBCs. According to Fluo-3 fluorescence in flow cytometry, a short treatment (15 min, +37 °C) with Cl(-) channels inhibitors decreased [Ca(2+)]i in the following order: TA > AO1 > DIDS > NPPB. According to forward scatter, the decrease of [Ca(2+)]i was accompanied by a slight but significant increase in cell volume following DIDS, NPPB and AO1 treatments. TA treatment resulted in cell shrinkage. According to whole-cell patch-clamp experiments, TA activated and NPPB and AO1 inhibited Gardos channels. The Cl(-) channel blockers further modified the alterations of [Ca(2+)]i following ATP depletion (glucose deprivation, iodoacetic acid, 6-inosine), oxidative stress (1 mM t-BHP) and treatment with Ca(2+) ionophore ionomycin (1 μM). The ability of the Cl(-) channel inhibitors to modulate PS scrambling did not correlate with their influence on [Ca(2+)]i as TA and AO1 had a particularly strong decreasing effect on [Ca(2+)]i but at the same time enhanced PS exposure. In conclusion, Cl(-) channel inhibitors affect Gardos channels, influence Ca(2+) homeostasis and induce PS exposure of hRBCs by Ca(2+)-independent mechanisms.

  14. The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design

    PubMed Central

    Cozza, Giorgio

    2017-01-01

    Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by “trial and error testing”. In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising. PMID:28230762

  15. A systematic molecular dynamics approach to the study of peptide Keap1-Nrf2 protein-protein interaction inhibitors and its application to p62 peptides.

    PubMed

    Lu, Meng-Chen; Yuan, Zhen-Wei; Jiang, Yong-Lin; Chen, Zhi-Yun; You, Qi-Dong; Jiang, Zheng-Yu

    2016-04-01

    Protein-protein interactions (PPIs) as drug targets have been gaining growing interest, though developing drug-like small molecule PPI inhibitors remains challenging. Peptide PPI inhibitors, which can provide informative data on the PPI interface, are good starting points to develop small molecule modulators. Computational methods combining molecular dynamics simulations and binding energy calculations could give both the structural and the energetic perspective of peptide PPI inhibitors. Herein, we set up a computational workflow to investigate Keap1-Nrf2 peptide PPI inhibitors and predict the activity of novel sequences. Furthermore, we applied this method to investigate p62 peptides as PPI inhibitors of Keap1-Nrf2 and explored the activity change induced by the phosphorylation of serine. Our results showed that because of the unfavorable solvation effects, the binding affinity of the phosphorylated p62 peptide is lower than the Nrf2 ETGE peptide. Our research results not only provide a useful method to investigate the Keap1-Nrf2 peptide inhibitors, but also give a good example to show how to incorporate computational methods into the study of peptide PPI inhibitors. Besides, applying this method to p62 peptides provides a detailed explanation for the expression of cytoprotective Nrf2 targets induced by p62 phosphorylation, which may benefit the further study of the crosstalk between the Keap1-Nrf2 pathway and p62-mediated selective autophagy.

  16. Mechanism of Action of 2-Aminobenzamide HDAC Inhibitors in Reversing Gene Silencing in Friedreich’s Ataxia

    PubMed Central

    Soragni, Elisabetta; Chou, C. James; Rusche, James R.; Gottesfeld, Joel M.

    2015-01-01

    The genetic defect in Friedreich’s ataxia (FRDA) is the hyperexpansion of a GAA•TTC triplet in the first intron of the FXN gene, encoding the essential mitochondrial protein frataxin. Histone post-translational modifications near the expanded repeats are consistent with heterochromatin formation and consequent FXN gene silencing. Using a newly developed human neuronal cell model, derived from patient-induced pluripotent stem cells, we find that 2-aminobenzamide histone deacetylase (HDAC) inhibitors increase FXN mRNA levels and frataxin protein in FRDA neuronal cells. However, only compounds targeting the class I HDACs 1 and 3 are active in increasing FXN mRNA in these cells. Structural analogs of the active HDAC inhibitors that selectively target either HDAC1 or HDAC3 do not show similar increases in FXN mRNA levels. To understand the mechanism of action of these compounds, we probed the kinetic properties of the active and inactive inhibitors, and found that only compounds that target HDACs 1 and 3 exhibited a slow-on/slow-off mechanism of action for the HDAC enzymes. HDAC1- and HDAC3-selective compounds did not show this activity. Using siRNA methods in the FRDA neuronal cells, we show increases in FXN mRNA upon silencing of either HDACs 1 or 3, suggesting the possibility that inhibition of each of these class I HDACs is necessary for activation of FXN mRNA synthesis, as there appears to be redundancy in the silencing mechanism caused by the GAA•TTC repeats. Moreover, inhibitors must have a long residence time on their target enzymes for this activity. By interrogating microarray data from neuronal cells treated with inhibitors of different specificity, we selected two genes encoding histone macroH2A (H2AFY2) and Polycomb group ring finger 2 (PCGF2) that were specifically down-regulated by the inhibitors targeting HDACs1 and 3 versus the more selective inhibitors for further investigation. Both genes are involved in transcriptional repression and we

  17. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer

  18. Inadequate Triglyceride Management Worsens the Durability of Dipeptidyl Peptidase-4 Inhibitor in Subjects with Type 2 Diabetes Mellitus.

    PubMed

    Shimoda, Masashi; Miyoshi-Takai, Maiko; Irie, Shintaro; Tanabe, Akihito; Obata, Atsushi; Okauchi, Seizo; Hirukawa, Hidenori; Kimura, Tomohiko; Kohara, Kenji; Kamei, Shinji; Mune, Tomoatsu; Kaku, Kohei; Kaneto, Hideaki

    2017-01-01

    Dipeptidyl peptidase-4 (DPP-4) inhibitors are often used all over the world and exert various beneficial effects including glucose-lowering effect in many subjects with type 2 diabetes. It is poorly understood, however, which factors are closely related with the durability of glucose-lowering effect by DPP-4 inhibitor. In this study, we examined retrospectively which factors could mainly influence the durability of DPP-4 inhibitor. We enrolled 212 participants with type 2 diabetes to whom DPP-4 inhibitor was administered for over 1 year without an addition or increase of other hypoglycemic agents. Age and baseline HbA1c level were significantly higher in the effective group than those in the ineffective group. The effective group had a tendency of smaller amounts of weight change, average total cholesterol, and average triglyceride compared with the ineffective group. Multiple logistic regression analysis showed that average triglyceride and baseline HbA1c were independent predictors associated with the durability of DPP-4 inhibitor. Moreover, an average triglyceride level contributed to the durability of DPP-4 inhibitor in the obese group (BMI ≥ 25 kg/m 2 ) but not in the nonobese group (BMI < 25 kg/m 2 ). These results suggest the importance of strict triglyceride management to maintain the durability of glucose-lowering effect by DPP-4 inhibitor, especially in obese subjects with type 2 diabetes.

  19. Design and Development of Microsomal Prostaglandin E2 Synthase-1 Inhibitors: Challenges and Future Directions.

    PubMed

    Koeberle, Andreas; Laufer, Stefan A; Werz, Oliver

    2016-07-14

    Microsomal prostaglandin E2 synthase (mPGES)-1 is responsible for the massive prostaglandin E2 (PGE2) formation during inflammation. Increasing evidence reveals mPGES-1 inhibitors as a safe alternative to nonsteroidal anti-inflammatory drugs. The first selective mPGES-1 inhibitors recently entered clinical trials. Major challenges for drug development have been the high plasma protein binding of lead structures, interspecies discrepancies, nuisance inhibition, sophisticated enzyme assays, and limited structural information about the mPGES-1 inhibitor binding site. Since most of these drawbacks could be solved during the past few years, we are standing at the threshold of a new era of mPGES-1-targeting anti-inflammatory drugs. This perspective introduces mPGES-1 as a key player within the network of eicosanoid biosynthesis and summarizes our current understanding of its structure and mechanism. Moreover, we present high-throughput and in silico screening techniques and discuss the structure-activity relationship and pharmacological potential of major mPGES-1 inhibitor classes in light of recent insights from pharmacophore models and cocrystallization studies.

  20. Preclinical efficacy of the MDM2 inhibitor RG7112 in MDM2 amplified and TP53 wild-type glioblastomas

    PubMed Central

    Verreault, Maite; Schmitt, Charlotte; Goldwirt, Lauriane; Pelton, Kristine; Haidar, Samer; Levasseur, Camille; Guehennec, Jeremy; Knoff, David; Labussiere, Marianne; Marie, Yannick; Ligon, Azra H.; Mokhtari, Karima; Hoang-Xuan, Khe; Sanson, Marc; Alexander, Brian M; Wen, Patrick Y.; Delattre, Jean-Yves; Ligon, Keith L.; Idbaih, Ahmed

    2016-01-01

    Rationale p53 pathway alterations are key molecular events in glioblastoma (GBM). MDM2 inhibitors increase expression and stability of p53 and are presumed to be most efficacious in patients with TP53 wild-type and MDM2-amplified cancers. However, this biomarker hypothesis has not been tested in patients or patient-derived models for GBM. Methods We performed a preclinical evaluation of RG7112 MDM2 inhibitor, across a panel of 36 patient-derived GBM cell lines (PDCLs), each genetically characterized according to their P53 pathway status. We then performed a pharmacokinetic (PK) profiling of RG7112 distribution in mice and evaluated the therapeutic activity of RG7112 in orthotopic and subcutaneous GBM models. Results MDM2-amplified PDCLs were 44 times more sensitive than TP53 mutated lines that showed complete resistance at therapeutically attainable concentrations (avg. IC50 of 0.52 μM vs 21.9 μM). MDM4 amplified PDCLs were highly sensitive but showed intermediate response (avg. IC50 of 1.2 μM), whereas response was heterogeneous in TP53 wild-type PDCLs with normal MDM2/4 levels (avg. IC50 of 7.7 μM). In MDM2-amplified lines, RG7112 restored p53 activity inducing robust p21 expression and apoptosis. PK profiling of RG7112-treated PDCL intracranial xenografts demonstrated that the compound significantly crosses the blood-brain and the blood-tumor barriers. Most importantly, treatment of MDM2-amplified/TP53 wild-type PDCL-derived model (subcutaneous and orthotopic) reduced tumor growth, was cytotoxic, and significantly increased survival. Conclusion These data strongly support development of MDM2 inhibitors for clinical testing in MDM2-amplified GBM patients. Moreover, significant efficacy in a subset of non-MDM2 amplified models suggests that additional markers of response to MDM2 inhibitors must be identified. PMID:26482041

  1. Distinct apoptotic blocks mediate resistance to panHER inhibitors in HER2+ breast cancer cells.

    PubMed

    Karakas, Bahriye; Ozmay, Yeliz; Basaga, Huveyda; Gul, Ozgur; Kutuk, Ozgur

    2018-05-04

    Despite the development of novel targeted therapies, de novo or acquired chemoresistance remains a significant factor for treatment failure in breast cancer therapeutics. Neratinib and dacomitinib are irreversible panHER inhibitors, which block their autophosphorylation and downstream signaling. Moreover, neratinib and dacomitinib have been shown to activate cell death in HER2-overexpressing cell lines. Here we showed that increased MCL1 and decreased BIM and PUMA mediated resistance to neratinib in ZR-75-30 and SKBR3 cells while increased BCL-XL and BCL-2 and decreased BIM and PUMA promoted neratinib resistance in BT474 cells. Cells were also cross-resistant to dacomitinib. BH3 profiles of HER2+ breast cancer cells efficiently predicted antiapoptotic protein dependence and development of resistance to panHER inhibitors. Reactivation of ERK1/2 was primarily responsible for acquired resistance in SKBR3 and ZR-75-30 cells. Adding specific ERK1/2 inhibitor SCH772984 to neratinib or dacomitinib led to increased apoptotic response in neratinib-resistant SKBR3 and ZR-75-30 cells, but we did not detect a similar response in neratinib-resistant BT474 cells. Accordingly, suppression of BCL-2/BCL-XL by ABT-737 was required in addition to ERK1/2 inhibition for neratinib- or dacomitinib-induced apoptosis in neratinib-resistant BT474 cells. Our results showed that different mitochondrial apoptotic blocks mediated acquired panHER inhibitor resistance in HER2+ breast cancer cell lines as well as highlighted the potential of BH3 profiling assay in prediction of panHER inhibitor resistance in breast cancer cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. The effect of a single dose of preemptive pregabalin administered with COX-2 inhibitor: a trial in total knee arthroplasty.

    PubMed

    Lee, Jin Kyu; Chung, Kyu-Sung; Choi, Choong Hyeok

    2015-01-01

    We sought to compare a group (Group L) (n=21) of patients that underwent total knee arthroplasty and received a single preoperative dose of pregabalin combined with a COX-2 inhibitor with a control group (Group C) (n=20) that only received a COX-2 inhibitor in terms of (1) acute postoperative pain intensity, (2) analgesic consumption, and (3) functional recovery. Mean cumulative fentanyl consumption during the first 48 hours was lower in Group L than in Group C (P<0.05). The pain scores at rest were lower in Group L at 6 and 12 hours after surgery (P<0.05). No significant intergroup difference was noted in functional recovery. The addition of pregabalin led to an additive reduction in early postoperative pain and analgesic consumption. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Protein phosphatase 2A (PP2A) inhibitor CIP2A indicates resistance to radiotherapy in rectal cancer.

    PubMed

    Birkman, Eva-Maria; Elzagheid, Adam; Jokilehto, Terhi; Avoranta, Tuulia; Korkeila, Eija; Kulmala, Jarmo; Syrjänen, Kari; Westermarck, Jukka; Sundström, Jari

    2018-03-01

    Preoperative (chemo)radiotherapy, (C)RT, is an essential part of the treatment of rectal cancer patients, but tumor response to this therapy among patients is variable. Thus far, there are no clinical biomarkers that could be used to predict response to (C)RT or to stratify patients into different preoperative treatment groups according to their prognosis. Overexpression of cancerous inhibitor of protein phosphatase 2A (CIP2A) has been demonstrated in several cancers and is frequently associated with reduced survival. Recently, high CIP2A expression has also been indicated to contribute to radioresistance in head and neck squamous cell carcinoma, but few studies have examined the connection between CIP2A and radiation response regarding other malignancies. We have evaluated CIP2A protein expression levels in relation to tumor regression after preoperative (C)RT and survival of rectal adenocarcinoma patients. The effects of CIP2A knockdown by siRNA on cell survival were further investigated in colorectal cancer cells exposed to radiation. Patients with low-CIP2A-expressing tumors had more frequently moderate or excellent response to long-course (C)RT than patients with high-CIP2A-expressing tumors. They also had higher 36-month disease-specific survival (DSS) rate in categorical analysis. In the multivariate analysis, low CIP2A expression level remained as an independent predictive factor for increased DSS. Suppression of CIP2A transcription by siRNA was found to sensitize colorectal cancer cells to irradiation and decrease their survival in vitro. In conclusion, these results suggest that by contributing to radiosensitivity of cancer cells, low CIP2A protein expression level associates with a favorable response to long-course (C)RT in rectal cancer patients. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  4. Irreversible 4-Aminopiperidine Transglutaminase 2 Inhibitors for Huntington's Disease.

    PubMed

    Prime, Michael E; Brookfield, Frederick A; Courtney, Stephen M; Gaines, Simon; Marston, Richard W; Ichihara, Osamu; Li, Marie; Vaidya, Darshan; Williams, Helen; Pedret-Dunn, Anna; Reed, Laura; Schaertl, Sabine; Toledo-Sherman, Leticia; Beconi, Maria; Macdonald, Douglas; Muñoz-Sanjuan, Ignacio; Dominguez, Celia; Wityak, John

    2012-09-13

    A new series of potent TG2 inhibitors are reported that employ a 4-aminopiperidine core bearing an acrylamide warhead. We establish the structure-activity relationship of this new series and report on the transglutaminase selectivity and in vitro ADME properties of selected compounds. We demonstrate that the compounds do not conjugate glutathione in an in vitro setting and have superior plasma stability over our previous series.

  5. ING2 (inhibitor of growth protein-2) plays a crucial role in preimplantation development.

    PubMed

    Zhou, Lin; Wang, Pei; Zhang, Juanjuan; Heng, Boon Chin; Tong, Guo Qing

    2016-02-01

    ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.

  6. Discovery and evaluation of inhibitors to the immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (IDO1): Probing the active site-inhibitor interactions.

    PubMed

    Tomek, Petr; Palmer, Brian D; Flanagan, Jack U; Sun, Chuanwen; Raven, Emma L; Ching, Lai-Ming

    2017-01-27

    High expression of the immunosuppressive enzyme, indoleamine 2,3-dioxygenase 1 (IDO1) for a broad range of malignancies is associated with poor patient prognosis, and the enzyme is a validated target for cancer intervention. To identify novel IDO1 inhibitors suitable for drug development, 1597 compounds in the National Cancer Institute Diversity Set III library were tested for inhibitory activity against recombinant human IDO1. We retrieved 35 hits that inhibited IDO1 activity >50% at 20 μM. Five structural filters and the PubChem Bioassay database were used to guide the selection of five inhibitors with IC 50 between 3 and 12 μM for subsequent experimental evaluation. A pyrimidinone scaffold emerged as being the most promising. It showed excellent cell penetration, negligible cytotoxicity and passed four out of the five structural filters applied. To evaluate the importance of Ser167 and Cys129 residues in the IDO1 active site for inhibitor binding, the entire NCI library was subsequently screened against alanine-replacement mutant enzymes of these two residues. The results established that Ser167 but not Cys129 is important for inhibitory activity of a broad range of IDO1 inhibitors. Structure-activity-relationship studies proposed substituents interacting with Ser167 on four investigated IDO1 inhibitors. Three of these four Ser167 interactions associated with an increased IDO1 inhibition and were correctly predicted by molecular docking supporting Ser167 as an important mediator of potency for IDO1 inhibitors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Hemoglobin glycation index as a useful predictor of therapeutic responses to dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes

    PubMed Central

    Chen, Yu-Wei; Wang, Jun-Sing; Sheu, Wayne H-H; Lin, Shih-Yi; Lee, I-Te; Song, Yuh-Min; Fu, Chia-Po; Lee, Chia-Lin

    2017-01-01

    Introduction A high hemoglobin glycation index (HGI) and glycated hemoglobin (HbA1c) level are associated with greater inflammatory status, and dipeptidyl peptidase-4 (DPP-4) inhibitors can suppress inflammation. We aimed to evaluate the relationship between HGI and the therapeutic effect of DPP-4 inhibitors. Methods This retrospective cohort study followed 468 patients with type 2 diabetes receiving DPP-4 inhibitor treatment for 1 year. Estimated HbA1c was calculated using a linear regression equation derived from another 2969 randomly extracted patients with type 2 diabetes based on fasting plasma glucose (FPG) level. The subjects were divided into two groups based on HGI (HGI = observed HbA1c - estimated HbA1c). Mixed model repeated measures were used to compare the treatment efficacy after 1 year in patients with a low (HGI<0, n = 199) and high HGI (HGI≧0, n = 269). Results There were no significant group differences in mean changes of FPG after 1 year (-12.8 and -13.4 mg/dL in the low and high HGI groups, respectively). However, the patients with a high HGI had a significantly greater reduction in HbA1c from baseline compared to those with a low HGI (-1.9 versus -0.3% [-20.8 versus -3.3 mmol/mol]). Improvements in glycemic control were statistically significantly associated with the tested DPP-4 inhibitors in the high HGI group (-2.4, -1.4, -1.2 and -2.2% [-26.2, -15.3, -13.1 and -24.0 mmol/mol] for vildagliptin, linagliptin, saxagliptin and sitagliptin, respectively) but not in the low HGI group. Conclusions The HGI index derived from FPG and HbA1c may be able to identify who will have a better response to DPP-4 inhibitors. PMID:28182722

  8. Homoisoflavonoids Are Potent Glucose Transporter 2 (GLUT2) Inhibitors: A Potential Mechanism for the Glucose-Lowering Properties of Polygonatum odoratum.

    PubMed

    Wang, Huijun; Fowler, Mark I; Messenger, David J; Terry, Leon A; Gu, Xuelan; Zhou, Luxian; Liu, Ruimin; Su, Juan; Shi, Songshan; Ordaz-Ortiz, Jose Juan; Lian, Guoping; Berry, Mark J; Wang, Shunchun

    2018-03-28

    Foods of high carbohydrate content such as sucrose or starch increase postprandial blood glucose concentrations. The glucose absorption system in the intestine comprises two components: sodium-dependent glucose transporter-1 (SGLT1) and glucose transporter 2 (GLUT2). Here five sappanin-type (SAP) homoisoflavonoids were identified as novel potent GLUT2 inhibitors, with three of them isolated from the fibrous roots of Polygonatum odoratum (Mill.) Druce. SAP homoisolflavonoids had a stronger inhibitory effect on 25 mM glucose transport (41.6 ± 2.5, 50.5 ± 7.6, 47.5 ± 1.9, 42.6 ± 2.4, and 45.7 ± 4.1% for EA-1, EA-2, EA-3, MOA, and MOB) than flavonoids (19.3 ± 2.2, 11.5 ± 3.7, 16.4 ± 2.4, 5.3 ± 1.0, 3.7 ± 2.2, and 18.1 ± 2.4% for apigenin, luteolin, quercetin, naringenin, hesperetin, and genistein) and phloretin (28.1 ± 1.6%) at 15 μM. SAP homoisoflavonoids and SGLT1 inhibitors were found to synergistically inhibit the uptake of glucose using an in vitro model comprising Caco-2 cells. This observed new mechanism of the glucose-lowering action of P. odoratum suggests that SAP homoisoflavonoids and their combination with flavonoid monoglucosides show promise as naturally functional ingredients for inclusion in foods and drinks designed to control postprandial glucose levels.

  9. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials.

    PubMed

    Abuissa, Hussam; Jones, Philip G; Marso, Steven P; O'Keefe, James H

    2005-09-06

    We sought to investigate the role of angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) in preventing the new onset of type 2 diabetes mellitus. Diabetes is a public health problem of epidemic proportions and its prevalence is on the rise. The typical American born today has a one in three chance of developing type 2 diabetes. This diagnosis is associated with an adverse cardiovascular prognosis and is considered the risk equivalent of established coronary disease. Even in high-risk individuals, diabetes is a preventable disease. Several studies have shown that ACE inhibitors and ARBs decrease the incidence of new-onset type 2 diabetes. However, the exact role of these agents in diabetes prevention has not yet been fully elucidated. We conducted a meta-analysis of 12 randomized controlled clinical trials of ACE inhibitors or ARBs, identified through a MEDLINE search and a review of reports from scientific meetings, to study the efficacy of these medications in diabetes prevention. This showed that ACE inhibitors and ARBs were associated with reductions in the incidence of newly diagnosed diabetes by 27% and 23%, respectively, and by 25% in the pooled analysis. The use of an ACE inhibitor or ARB should be considered in patients with pre-diabetic conditions such as metabolic syndrome, hypertension, impaired fasting glucose, family history of diabetes, obesity, congestive heart failure, or coronary heart disease.

  10. The Effect of Nizatidine, a MATE2K Selective Inhibitor, on the Pharmacokinetics and Pharmacodynamics of Metformin in Healthy Volunteers

    PubMed Central

    Morrissey, Kari M.; Stocker, Sophie L.; Chen, Eugene C.; Castro, Richard A.; Brett, Claire M.; Giacomini, Kathleen M.

    2015-01-01

    Background and Objectives In the proximal tubule, basic drugs are transported from the renal cells to the tubule lumen through the concerted action of the H+/organic cation antiporters, multidrug and toxin extrusion 1 (MATE1) and 2K (MATE2K). Dual inhibitors of the MATE transporters have been shown to have a clinically relevant effect on the pharmacokinetics of concomitantly administered basic drugs. However, the clinical impact of selective renal organic cation transport inhibition on the pharmacokinetics and pharmacodynamics of basic drugs, such as metformin, is unknown. This study sought to identify a selective MATE2K inhibitor in vitro and to determine its clinical impact on the pharmacokinetics and pharmacodynamics of metformin in healthy subjects. Methods A strategic cell-based screen of 71 U.S. Food and Drug Administration (FDA)-approved medications was conducted to identify selective inhibitors of renal organic cation transporters that are capable of inhibiting at clinically relevant concentrations. From this screen, nizatidine was identified and predicted to be a clinically potent and selective inhibitor of MATE2K-mediated transport. The effect of nizatidine on the pharmacokinetics and pharmacodynamics of metformin was evaluated in 12 healthy volunteers in an open-label, randomized, two-phase crossover drug-drug interaction (DDI) study. Results In healthy volunteers, the MATE2K-selective inhibitor, nizatidine, significantly increased the apparent volume of distribution, half-life and hypoglycemic activity of metformin. However, despite achieving unbound maximum concentrations greater than the in vitro inhibition potency (IC50) of MATE2K-mediated transport, nizatidine did not affect the renal clearance or net secretory clearance of metformin. Conclusion This study demonstrates that a selective inhibition of MATE2K by nizatidine, affected the apparent volume of distribution, tissue levels and peripheral effects of metformin. However, nizatidine did not alter

  11. A highly selective, orally active inhibitor of Janus kinase 2, CEP-33779, ablates disease in two mouse models of rheumatoid arthritis

    PubMed Central

    2011-01-01

    Introduction Janus kinase 2 (JAK2) is involved in the downstream activation of signal transducer and activator of transcription 3 (STAT3) and STAT5 and is responsible for transducing signals for several proinflammatory cytokines involved in the pathogenesis of rheumatoid arthritis (RA), including interleukin (IL)-6, interferon γ (IFNγ) and IL-12. In this paper, we describe the efficacy profile of CEP-33779, a highly selective, orally active, small-molecule inhibitor of JAK2 evaluated in two mouse models of RA. Methods Collagen antibody-induced arthritis (CAIA) and collagen type II (CII)-induced arthritis (CIA) were established before the oral administration of a small-molecule JAK2 inhibitor, CEP-33779, twice daily at 10 mg/kg, 30 mg/kg, 55 mg/kg or 100 mg/kg over a period of 4 to 8 weeks. Results Pharmacodynamic inhibition of JAK2 reduced mean paw edema and clinical scores in both CIA and CAIA models of arthritis. Reduction in paw cytokines (IL-12, IFNγ and tumor necrosis factor α) and serum cytokines (IL-12 and IL-2) correlated with reduced spleen CII-specific T helper 1 cell frequencies as measured by ex vivo IFNγ enzyme-linked immunosorbent spot assay. Both models demonstrated histological evidence of disease amelioration upon treatment (for example, reduced matrix erosion, subchondral osteolysis, pannus formation and synovial inflammation) and reduced paw phosphorylated STAT3 levels. No changes in body weight or serum anti-CII autoantibody titers were observed in either RA model. Conclusions This study demonstrates the utility of using a potent and highly selective, orally bioavailable JAK2 inhibitor for the treatment of RA. Using a selective inhibitor of JAK2 rather than pan-JAK inhibitors avoids the potential complication of immunosuppression while targeting critical signaling pathways involved in autoimmune disease progression. PMID:21510883

  12. hCLCA2 is a p53-inducible inhibitor of breast cancer cell proliferation

    PubMed Central

    Walia, Vijay; Ding, Ming; Kumar, Sumit; Nie, Daotai; Premkumar, Louis; Elble, Randolph C.

    2009-01-01

    hCLCA2 is frequently downregulated in breast cancer and is a candidate tumor suppressor gene. We show here that the hCLCA2 gene is strongly induced by p53 in response to DNA damage. Adenoviral expression of p53 induces hCLCA2 in a variety of breast cell lines. Further, we find that p53 binds to consensus elements in the hCLCA2 promoter and mutation of these sites abolishes p53-responsiveness and induction by DNA damage. Adenoviral transduction of hCLCA2 into immortalized cells induces p53, CDK inhibitors p21 and p27, and cell cycle arrest by 24 hours, and caspase induction and apoptosis by 40 hours post-infection. Transduction of the malignant tumor cell line BT549 on the other hand does not induce p53, p21, or p27 but instead induces apoptosis directly and more rapidly. Knockout and knockdown studies indicate that growth inhibition and apoptosis are signaled via multiple pathways. Conversely, suppression of hCLCA2 by RNA interference enhances proliferation of MCF10A and reduces sensitivity to doxorubicin. Gene expression profiles indicate that hCLCA2 levels are strongly predictive of tumor cell sensitivity to doxorubicin and other chemotherapeutics. Because certain Cl- channels are proposed to promote apoptosis by reducing intracellular pH, we tested whether, and established that, hCLCA2 enhances Cl- current in breast cancer cells and reduces pH to ∼6.7. These results reveal hCLCA2 as a novel p53-inducible growth inhibitor, explain how its downregulation confers a survival advantage to tumor cells, and suggest both prognostic and therapeutic applications. PMID:19654313

  13. Pre-clinical evaluation of AZD-2014, a novel mTORC1/2 dual inhibitor, against renal cell carcinoma.

    PubMed

    Zheng, Bing; Mao, Jia-Hui; Qian, Lin; Zhu, Hua; Gu, Dong-hua; Pan, Xiao-dong; Yi, Fang; Ji, Dong-mei

    2015-02-28

    Here we found that dual mTORC1/2 inhibitor AZD-2014 significantly inhibited RCC cell survival and growth, with higher efficiency than conventional mTORC1 inhibitors rapamycin and RAD001. RCC cell apoptosis was also induced by AZD-2014. AZD-2014 disrupted mTORC1/2 assembly and activation, while downregulating HIF-1α/2α and cyclin D1 expressions in RCC cells. Meanwhile, AZD-2014 activated autophagy, detected by p62 degradation, Beclin-1/ATG-5 upregulation and light LC3B-I/-II conversion. Autophagy inhibition by pharmacologic or siRNA-based means increased AZD-2014 activity in vitro, causing substantial RCC cell apoptosis. In vivo, AZD-2014 was more efficient than RAD001 in inhibiting 786-0 xenografts and downregulating HIF-1α/2α or p-AKT (Ser-473). Finally, AZD-2014's activity in vivo was further enhanced by co-administration of the autophagy inhibitor 3-methyaldenine. We provide evidence for clinical trials of using AZD-2014 in RCC treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Discovery of direct inhibitors of Keap1-Nrf2 protein-protein interaction as potential therapeutic and preventive agents.

    PubMed

    Abed, Dhulfiqar Ali; Goldstein, Melanie; Albanyan, Haifa; Jin, Huijuan; Hu, Longqin

    2015-07-01

    The Keap1-Nrf2-ARE pathway is an important antioxidant defense mechanism that protects cells from oxidative stress and the Keap1-Nrf2 protein-protein interaction (PPI) has become an important drug target to upregulate the expression of ARE-controlled cytoprotective oxidative stress response enzymes in the development of therapeutic and preventive agents for a number of diseases and conditions. However, most known Nrf2 activators/ARE inducers are indirect inhibitors of Keap1-Nrf2 PPI and they are electrophilic species that act by modifying the sulfhydryl groups of Keap1׳s cysteine residues. The electrophilicity of these indirect inhibitors may cause "off-target" side effects by reacting with cysteine residues of other important cellular proteins. Efforts have recently been focused on the development of direct inhibitors of Keap1-Nrf2 PPI. This article reviews these recent research efforts including the development of high throughput screening assays, the discovery of peptide and small molecule direct inhibitors, and the biophysical characterization of the binding of these inhibitors to the target Keap1 Kelch domain protein. These non-covalent direct inhibitors of Keap1-Nrf2 PPI could potentially be developed into effective therapeutic or preventive agents for a variety of diseases and conditions.

  15. SGLT2 inhibitors provide an effective therapeutic option for diabetes complicated with insulin antibodies.

    PubMed

    Hayashi, Akinori; Takano, Koji; Kawai, Sayuki; Shichiri, Masayoshi

    2016-01-01

    Diabetes mellitus complicated with insulin antibodies is rare in clinical practice but usually difficult to control. A high amount of insulin antibodies, especially with low affinity and high binding capacity, leads to unstable glycemic control characterized by hyperglycemia unresponsive to large volume of insulin and unanticipated hypoglycemia. There are several treatment options, such as changing insulin preparation, immunosupression with glucocorticoids, and plasmapheresis, most of which are of limited efficacy. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a novel class of drug which decrease renal glucose reabsorption and lowers plasma glucose level independent of insulin action. We report here a case with diabetes complicated with insulin antibodies who was effectively controlled by an SGLT2 inhibitor. A 47-year-old man with type 2 diabetes treated with insulin had very poor glycemic control characterized by postprandial hyperglycemia unresponsive to insulin therapy and repetitive hypoglycemia due to insulin antibodies. Treatment with ipragliflozin, an SGLT2 inhibitor, improved HbA1c from 8.4% to 6.0% and glycated albumin from 29.4% to 17.9%. Continuous glucose monitoring revealed improvement of glycemic profile (average glucose level from 212 mg/dL to 99 mg/dL and glycemic standard deviation from 92 mg/dL to 14 mg/dL) with disappearance of hypoglycemic events. This treatment further ameliorated the characteristics of insulin antibodies and resulted in reduced insulin requirement. SGLT2 inhibitors may offer an effective treatment option for managing the poor glycemic control in diabetes complicated with insulin antibodies.

  16. PMCA2 silencing potentiates MDA-MB-231 breast cancer cell death initiated with the Bcl-2 inhibitor ABT-263.

    PubMed

    Curry, Merril; Roberts-Thomson, Sarah J; Monteith, Gregory R

    2016-09-30

    PMCA2 overexpression in some breast cancers suggests that this calcium pump isoform may play a role in breast pathophysiology. To investigate PMCA2 as a potential drug target for breast cancer therapy, we assessed the functional consequence of PMCA2 silencing on cell death pathways and calcium signals in the basal-like MDA-MB-231 breast cancer cell line. Silencing PMCA2 expression alone has no effect on MDA-MB-231 cell viability, however, PMCA2 silencing promotes calcium-induced cell death initiated with the calcium ionophore ionomycin. Assessment of cytoplasmic calcium responses generated with various agents including ionomycin demonstrates that in MDA-MB-231 cells, PMCA2 does not play a major role in shaping global calcium signals. We also examined the ability of PMCA2 silencing to modulate caspase-dependent cell death triggered by a Bcl-2 inhibitor that is in clinical development for the treatment of various cancers, ABT-263 (Navitoclax). Despite the lack of effect on global calcium responses, PMCA2 silencing augmented Bcl-2 inhibitor (ABT-263)-mediated MDA-MB-231 breast cancer cell death. These studies provide evidence that PMCA2 inhibitors could sensitize PMCA2-positive breast cancers to cell death initiators that work through mechanisms involving the Bcl-2 survival pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Combined SRC inhibitor saracatinib and anti-ErbB2 antibody H2-18 produces a synergistic antitumor effect on trastuzumab-resistant breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lingfei; Yu, Xiaojie; Dong, Jian

    Despite of the effectiveness of the anti-ErbB2 humanized antibody trastuzumab, trastuzumab resistance emerges as a major and common clinical problem. Thus, circumventing trastuzumab resistance has become an urgent need. Recently, Src inhibitor saracatinib has drawn great attention for its key role in trastuzumab response. As shown in our previous study, H2-18, an anti-ErbB2 antibody, could potently induce programmed cell death (PCD) in trastuzumab-resistant breast cancer cells. Here we combined H2-18 and a Src inhibitor, saracatinib, and studied the antitumor activity of this drug combination in trastuzumab-resistant breast cancer cell lines. The results showed that H2-18 and saracatinib could synergistically inhibitmore » cell proliferation of BT-474, SKBR-3, HCC-1954 and HCC-1419 breast cancer cell lines in vitro. H2-18 plus saracatinib could also inhibit the HCC-1954 tumor growth more effectively in vivo than each drug alone. H2-18 plus saracatinib showed a significantly more potent PCD-inducing activity compared with either H2-18 or saracatinib alone. We conclude that enhanced PCD may contribute to the superior antitumor efficacy of this combination therapy. The combination of H2-18 and SRC inhibitor has the potential to be translated into clinic. - Highlights: • Anti-ErbB2 mAb H2-18 induces PCD in ErbB2-overexpresing breast cancer cells. • H2-18 plus saracatinib induce a greater PCD compared with either drug alone. • H2-18 and saracatinib synergistically inhibit in vitro cell proliferation of breast cancer cells. • H2-18 plus saracatinib exert a greater in vivo antitumor activity than either drug alone.« less

  18. Ensemble-based virtual screening reveals dual-inhibitors for the p53-MDM2/MDMX interactions.

    PubMed

    Barakat, Khaled; Mane, Jonathan; Friesen, Douglas; Tuszynski, Jack

    2010-02-26

    The p53 protein, a guardian of the genome, is inactivated by mutations or deletions in approximately half of human tumors. While in the rest of human tumors, p53 is expressed in wild-type form, yet it is inhibited by over-expression of its cellular regulators MDM2 and MDMX proteins. Although the p53-binding sites within the MDMX and MDM2 proteins are closely related, known MDM2 small-molecule inhibitors have been shown experimentally not to bind to its homolog, MDMX. As a result, the activity of these inhibitors including Nutlin3 is compromised in tumor cells over-expressing MDMX, preventing these compounds from fully activating the p53 protein. Here, we applied the relaxed complex scheme (RCS) to allow for the full receptor flexibility in screening for dual-inhibitors that can mutually antagonize the two p53-regulator proteins. First, we filtered the NCI diversity set, DrugBank compounds and a derivative library for MDM2-inhibitors against 28 dominant MDM2-conformations. Then, we screened the MDM2 top hits against the binding site of p53 within the MDMX target. Results described herein identify a set of compounds that have been computationally predicted to ultimately activate the p53 pathway in tumor cells retaining the wild-type protein. Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.

  19. Sheeppox virus SPPV14 encodes a Bcl-2-like cell death inhibitor that counters a distinct set of mammalian proapoptotic proteins.

    PubMed

    Okamoto, Toru; Campbell, Stephanie; Mehta, Ninad; Thibault, John; Colman, Peter M; Barry, Michele; Huang, David C S; Kvansakul, Marc

    2012-11-01

    Many viruses express inhibitors of programmed cell death (apoptosis), thereby countering host defenses that would otherwise rapidly clear infected cells. To counter this, viruses such as adenoviruses and herpesviruses express recognizable homologs of the mammalian prosurvival protein Bcl-2. In contrast, the majority of poxviruses lack viral Bcl-2 (vBcl-2) homologs that are readily identified by sequence similarities. One such virus, myxoma virus, which is the causative agent of myxomatosis, expresses a virulence factor that is a potent inhibitor of apoptosis. In spite of the scant sequence similarity to Bcl-2, myxoma virus M11L adopts an almost identical 3-dimensional fold. We used M11L as bait in a sequence similarity search for other Bcl-2-like proteins and identified six putative vBcl-2 proteins from poxviruses. Some are potent inhibitors of apoptosis, in particular sheeppox virus SPPV14, which inhibited cell death induced by multiple agents. Importantly, SPPV14 compensated for the loss of antiapoptotic F1L in vaccinia virus and acts to directly counter the cell death mediators Bax and Bak. SPPV14 also engages a unique subset of the death-promoting BH3-only ligands, including Bim, Puma, Bmf, and Hrk. This suggests that SPPV14 may have been selected for specific biological roles as a virulence factor for sheeppox virus.

  20. Changes in signal transducer and activator of transcription 3 (STAT3) dynamics induced by complexation with pharmacological inhibitors of Src homology 2 (SH2) domain dimerization.

    PubMed

    Resetca, Diana; Haftchenary, Sina; Gunning, Patrick T; Wilson, Derek J

    2014-11-21

    The activity of the transcription factor signal transducer and activator of transcription 3 (STAT3) is dysregulated in a number of hematological and solid malignancies. Development of pharmacological STAT3 Src homology 2 (SH2) domain interaction inhibitors holds great promise for cancer therapy, and a novel class of salicylic acid-based STAT3 dimerization inhibitors that includes orally bioavailable drug candidates has been recently developed. The compounds SF-1-066 and BP-1-102 are predicted to bind to the STAT3 SH2 domain. However, given the highly unstructured and dynamic nature of the SH2 domain, experimental confirmation of this prediction was elusive. We have interrogated the protein-ligand interaction of STAT3 with these small molecule inhibitors by means of time-resolved electrospray ionization hydrogen-deuterium exchange mass spectrometry. Analysis of site-specific evolution of deuterium uptake induced by the complexation of STAT3 with SF-1-066 or BP-1-102 under physiological conditions enabled the mapping of the in silico predicted inhibitor binding site to the STAT3 SH2 domain. The binding of both inhibitors to the SH2 domain resulted in significant local decreases in dynamics, consistent with solvent exclusion at the inhibitor binding site and increased rigidity of the inhibitor-complexed SH2 domain. Interestingly, inhibitor binding induced hot spots of allosteric perturbations outside of the SH2 domain, manifesting mainly as increased deuterium uptake, in regions of STAT3 important for DNA binding and nuclear localization. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Harnessing BET Inhibitor Sensitivity Reveals AMIGO2 as a Melanoma Survival Gene.

    PubMed

    Fontanals-Cirera, Barbara; Hasson, Dan; Vardabasso, Chiara; Di Micco, Raffaella; Agrawal, Praveen; Chowdhury, Asif; Gantz, Madeleine; de Pablos-Aragoneses, Ana; Morgenstern, Ari; Wu, Pamela; Filipescu, Dan; Valle-Garcia, David; Darvishian, Farbod; Roe, Jae-Seok; Davies, Michael A; Vakoc, Christopher R; Hernando, Eva; Bernstein, Emily

    2017-11-16

    Bromodomain and extraterminal domain inhibitors (BETi) represent promising therapeutic agents for metastatic melanoma, yet their mechanism of action remains unclear. Here we interrogated the transcriptional effects of BETi and identified AMIGO2, a transmembrane molecule, as a BET target gene essential for melanoma cell survival. AMIGO2 is upregulated in melanoma cells and tissues compared to human melanocytes and nevi, and AMIGO2 silencing in melanoma cells induces G1/S arrest followed by apoptosis. We identified the pseudokinase PTK7 as an AMIGO2 interactor whose function is regulated by AMIGO2. Epigenomic profiling and genome editing revealed that AMIGO2 is regulated by a melanoma-specific BRD2/4-bound promoter and super-enhancer configuration. Upon BETi treatment, BETs are evicted from these regulatory elements, resulting in AMIGO2 silencing and changes in PTK7 proteolytic processing. Collectively, this study uncovers mechanisms underlying the therapeutic effects of BETi in melanoma and reveals the AMIGO2-PTK7 axis as a targetable pathway for metastatic melanoma. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Discovery of potent, reversible MetAP2 inhibitors via fragment based drug discovery and structure based drug design-Part 2.

    PubMed

    McBride, Christopher; Cheruvallath, Zacharia; Komandla, Mallareddy; Tang, Mingnam; Farrell, Pamela; Lawson, J David; Vanderpool, Darin; Wu, Yiqin; Dougan, Douglas R; Plonowski, Artur; Holub, Corine; Larson, Chris

    2016-06-15

    Methionine aminopeptidase-2 (MetAP2) is an enzyme that cleaves an N-terminal methionine residue from a number of newly synthesized proteins. This step is required before they will fold or function correctly. Pre-clinical and clinical studies with a MetAP2 inhibitor suggest that they could be used as a novel treatment for obesity. Herein we describe the discovery of a series of pyrazolo[4,3-b]indoles as reversible MetAP2 inhibitors. A fragment-based drug discovery (FBDD) approach was used, beginning with the screening of fragment libraries to generate hits with high ligand-efficiency (LE). An indazole core was selected for further elaboration, guided by structural information. SAR from the indazole series led to the design of a pyrazolo[4,3-b]indole core and accelerated knowledge-based fragment growth resulted in potent and efficient MetAP2 inhibitors, which have shown robust and sustainable body weight loss in DIO mice when dosed orally. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Kinesin spindle protein (KSP) inhibitors. Part 3: synthesis and evaluation of phenolic 2,4-diaryl-2,5-dihydropyrroles with reduced hERG binding and employment of a phosphate prodrug strategy for aqueous solubility.

    PubMed

    Garbaccio, Robert M; Fraley, Mark E; Tasber, Edward S; Olson, Christy M; Hoffman, William F; Arrington, Kenneth L; Torrent, Maricel; Buser, Carolyn A; Walsh, Eileen S; Hamilton, Kelly; Schaber, Michael D; Fernandes, Christine; Lobell, Robert B; Tao, Weikang; South, Vicki J; Yan, Youwei; Kuo, Lawrence C; Prueksaritanont, Thomayant; Slaughter, Donald E; Shu, Cathy; Heimbrook, David C; Kohl, Nancy E; Huber, Hans E; Hartman, George D

    2006-04-01

    2,4-Diaryl-2,5-dihydropyrroles have been discovered to be novel, potent and water-soluble inhibitors of KSP, an emerging therapeutic target for the treatment of cancer. A potential concern for these basic KSP inhibitors (1 and 2) was hERG binding that can be minimized by incorporation of a potency-enhancing C2 phenol combined with neutral N1 side chains. Aqueous solubility was restored to these, and other, non-basic inhibitors, through a phosphate prodrug strategy.

  4. Structure-activity relationships of rationally designed AMACR 1A inhibitors.

    PubMed

    Yevglevskis, Maksims; Lee, Guat L; Nathubhai, Amit; Petrova, Yoana D; James, Tony D; Threadgill, Michael D; Woodman, Timothy J; Lloyd, Matthew D

    2018-04-30

    α-Methylacyl-CoA racemase (AMACR; P504S) is a promising novel drug target for prostate and other cancers. Assaying enzyme activity is difficult due to the reversibility of the 'racemisation' reaction and the difficulties in the separation of epimeric products; consequently few inhibitors have been described and no structure-activity relationship study has been performed. This paper describes the first structure-activity relationship study, in which a series of 23 known and potential rational AMACR inhibitors were evaluated. AMACR was potently inhibited (IC 50  = 400-750 nM) by ibuprofenoyl-CoA and derivatives. Potency was positively correlated with inhibitor lipophilicity. AMACR was also inhibited by straight-chain and branched-chain acyl-CoA esters, with potency positively correlating with inhibitor lipophilicity. 2-Methyldecanoyl-CoAs were ca. 3-fold more potent inhibitors than decanoyl-CoA, demonstrating the importance of the 2-methyl group for effective inhibition. Elimination substrates and compounds with modified acyl-CoA cores were also investigated, and shown to be potent inhibitors. These results are the first to demonstrate structure-activity relationships of rational AMACR inhibitors and that potency can be predicted by acyl-CoA lipophilicity. The study also demonstrates the utility of the colorimetric assay for thorough inhibitor characterisation. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    PubMed

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  6. Do sodium-glucose co-transporter-2 inhibitors prevent heart failure with a preserved ejection fraction by counterbalancing the effects of leptin? A novel hypothesis.

    PubMed

    Packer, Milton

    2018-06-01

    Sodium-glucose co-transporter-2 (SGLT2) inhibitors reduce the risk of serious heart failure events in patients with type 2 diabetes, but little is known about mechanisms that might mediate this benefit. The most common heart failure phenotype in type 2 diabetes is obesity-related heart failure with a preserved ejection fraction (HFpEF). It has been hypothesized that the synthesis of leptin in this disorder leads to sodium retention and plasma volume expansion as well as to cardiac and renal inflammation and fibrosis. Interestingly, leptin-mediated neurohormonal activation appears to enhance the expression of SGLT2 in the renal tubules, and SGLT2 inhibitors exert natriuretic actions at multiple renal tubular sites in a manner that can oppose the sodium retention produced by leptin. In addition, SGLT2 inhibitors reduce the accumulation and inflammation of perivisceral adipose tissue, thus minimizing the secretion of leptin and its paracrine actions on the heart and kidneys to promote fibrosis. Such fibrosis probably contributes to the impairment of cardiac distensibility and glomerular function that characterizes obesity-related HFpEF. Ongoing clinical trials with SGLT2 inhibitors in heart failure are positioned to confirm or refute the hypothesis that these drugs may favourably influence the course of obesity-related HFpEF by their ability to attenuate the secretion and actions of leptin. © 2018 John Wiley & Sons Ltd.

  7. Discovery and Optimization of Imidazopyridine-Based Inhibitors of Diacylglycerol Acyltransferase 2 (DGAT2).

    PubMed

    Futatsugi, Kentaro; Kung, Daniel W; Orr, Suvi T M; Cabral, Shawn; Hepworth, David; Aspnes, Gary; Bader, Scott; Bian, Jianwei; Boehm, Markus; Carpino, Philip A; Coffey, Steven B; Dowling, Matthew S; Herr, Michael; Jiao, Wenhua; Lavergne, Sophie Y; Li, Qifang; Clark, Ronald W; Erion, Derek M; Kou, Kou; Lee, Kyuha; Pabst, Brandon A; Perez, Sylvie M; Purkal, Julie; Jorgensen, Csilla C; Goosen, Theunis C; Gosset, James R; Niosi, Mark; Pettersen, John C; Pfefferkorn, Jeffrey A; Ahn, Kay; Goodwin, Bryan

    2015-09-24

    The medicinal chemistry and preclinical biology of imidazopyridine-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) is described. A screening hit 1 with low lipophilic efficiency (LipE) was optimized through two key structural modifications: (1) identification of the pyrrolidine amide group for a significant LipE improvement, and (2) insertion of a sp(3)-hybridized carbon center in the core of the molecule for simultaneous improvement of N-glucuronidation metabolic liability and off-target pharmacology. The preclinical candidate 9 (PF-06424439) demonstrated excellent ADMET properties and decreased circulating and hepatic lipids when orally administered to dyslipidemic rodent models.

  8. Design, Synthesis, and Biological Activity of 1,2,3-Triazolobenzodiazepine BET Bromodomain Inhibitors.

    PubMed

    Sharp, Phillip P; Garnier, Jean-Marc; Hatfaludi, Tamas; Xu, Zhen; Segal, David; Jarman, Kate E; Jousset, Hélène; Garnham, Alexandra; Feutrill, John T; Cuzzupe, Anthony; Hall, Peter; Taylor, Scott; Walkley, Carl R; Tyler, Dean; Dawson, Mark A; Czabotar, Peter; Wilks, Andrew F; Glaser, Stefan; Huang, David C S; Burns, Christopher J

    2017-12-14

    A number of diazepines are known to inhibit bromo- and extra-terminal domain (BET) proteins. Their BET inhibitory activity derives from the fusion of an acetyl-lysine mimetic heterocycle onto the diazepine framework. Herein we describe a straightforward, modular synthesis of novel 1,2,3-triazolobenzodiazepines and show that the 1,2,3-triazole acts as an effective acetyl-lysine mimetic heterocycle. Structure-based optimization of this series of compounds led to the development of potent BET bromodomain inhibitors with excellent activity against leukemic cells, concomitant with a reduction in c- MYC expression. These novel benzodiazepines therefore represent a promising class of therapeutic BET inhibitors.

  9. Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene.

    PubMed

    Vishnudasan, Dalia; Tripathi, M N; Rao, Uma; Khurana, Paramjit

    2005-10-01

    Serine proteinase inhibitors (IP's) are proteins found naturally in a wide range of plants with a significant role in the natural defense system of plants against herbivores. The question addressed in the present study involves assessing the ability of the serine proteinase inhibitor in combating nematode infestation. The present study involves engineering a plant serine proteinase inhibitor (pin2) gene into T. durum PDW215 by Agrobacterium-mediated transformation to combat cereal cyst nematode (Heterodera avenae) infestation. Putative T(0) transformants were screened and positive segregating lines analysed further for the study of the stable integration, expression and segregation of the genes. PCR, Southern analysis along with bar gene expression studies corroborate the stable integration pattern of the respective genes. The transformation efficiency is 3%, while the frequency of escapes was 35.71%. chi(2) analysis reveals the stable integration and segregation of the genes in both the T(1) and T(2) progeny lines. The PIN2 systemic expression confers satisfactory nematode resistance. The correlation analysis suggests that at p < 0.05 level of significance the relative proteinase inhibitor (PI) values show a direct positive correlation vis-à-vis plant height, plant seed weight and also the seed number.

  10. Clinical pharmacokinetics and pharmacodynamics of celecoxib: a selective cyclo-oxygenase-2 inhibitor.

    PubMed

    Davies, N M; McLachlan, A J; Day, R O; Williams, K M

    2000-03-01

    Celecoxib, a nonsteroidal anti-inflammatory drug (NSAID), is the first specific inhibitor of cyclo-oxygenase-2 (COX-2) approved to treat patients with rheumatism and osteoarthritis. Preliminary data suggest that celecoxib also has analgesic and anticancer properties. The selective inhibition of COX-2 is thought to lead to a reduction in the unwanted effects of NSAIDs. Upper gastrointestinal complication rates in clinical trials are significantly lower for celecoxib than for traditional nonselective NSAIDs (e.g. naproxen, ibuprofen and diclofenac). The rate of absorption of celexocib is moderate when given orally (peak plasma drug concentration occurs after 2 to 4 hours), although the extent of absorption is not known. Celexocib is extensively protein bound, primarily to plasma albumin, and has an apparent volume of distribution of 455+/-166L in humans. The area under the plasma concentration-time curve (AUC) of celecoxib increases in proportion to increasing oral doses between 100 and 800mg. Celecoxib is eliminated following biotransformation to carboxylic acid and glucuronide metabolites that are excreted in urine and faeces, with little drug (2%) being eliminated unchanged in the urine. Celecoxib is metabolised primarily by the cytochrome P450 (CYP) 2C9 isoenzyme and has an elimination half-life of about 11 hours in healthy individuals. Racial differences in drug disposition and pharmacokinetic changes in the elderly have been reported for celecoxib. Plasma concentrations (AUC) of celecoxib appear to be 43% lower in patients with chronic renal insufficiency [glomerular filtration rate 2.1 to 3.6 L/h (35 to 60 ml/min)] compared with individuals with healthy renal function, with a 47% increase in apparent clearance. Compared with healthy controls, it has been reported that the steady-state AUC is increased by approximately 40% and 180% in patients with mild and moderate hepatic impairment, respectively. Celecoxib does not appear to interact with warfarin

  11. Discovery of Novel 3,3-Disubstituted Piperidines as Orally Bioavailable, Potent, and Efficacious HDM2-p53 Inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogen, Stéphane L.; Pan, Weidong; Gibeau, Craig R.

    2016-03-10

    A new subseries of substituted piperidines as p53-HDM2 inhibitors exemplified by 21 has been developed from the initial lead 1. Research focused on optimization of a crucial HDM2 Trp23–ligand interaction led to the identification of 2-(trifluoromethyl)thiophene as the preferred moiety. Further investigation of the Leu26 pocket resulted in potent, novel substituted piperidine inhibitors of the HDM2-p53 interaction that demonstrated tumor regression in several human cancer xenograft models in mice. The structure of HDM2 in complex with inhibitors 3, 10, and 21 is described.

  12. Synthesis and in vitro Evaluation of 2-heteroarylidene-1-tetralone Derivatives as Monoamine Oxidase Inhibitors.

    PubMed

    Amakali, Klaudia T; Legoabe, Lesetja J; Petzer, Anél; Petzer, Jacobus P

    2018-05-14

    The present study investigates the human monoamine oxidase (MAO) inhibition properties of a series of twelve 2-heteroarylidene-1-tetralone derivatives. Also included are related cyclohexylmethylidene, cyclopentylmethylidene and benzylidene substituted 1-tetralones. These compounds are related to the 2-benzylidene-1-indanone class of compounds which has previously been shown to inhibit the MAOs, with specificity for the MAO-B isoform. The target compounds were synthesised by the Claisen-Schmidt condensation between 7-methoxy-1-tetralone or 1-tetralone, and various aldehydes, under acid (hydrochloric acid) or base (potassium hydroxide) catalysis. The results of the MAO inhibition studies showed that the 2-heteroarylidene-1-tetralone and related derivatives are in most instances more selective inhibitors of the MAO-B isoform compared to MAO-A. (2E)-2-Benzylidene-7-methoxy-3,4-dihydronaphthalen-1(2 H)-one (IC 50 =0.707 μM) was found to be the most potent MAO-B inhibitor, while the most potent MAO-A inhibitor was (2E)-2-[(2-chloropyridin-3-yl)methylidene]-7-methoxy-3,4-dihydronaphthalen-1(2 H)-one (IC 50 =1.37 μM). The effect of the heteroaromatic substituent on MAO-B inhibition activity, in decreasing order was found to be: cyclohexyl, phenyl>thiophene>pyridine, furane, pyrrole, cyclopentyl. This study concludes that, although some 2-heteroarylidene-1-tetralone derivatives are good potency MAO inhibitors, in general their inhibition potencies, particularly for MAO-B, are lower than structurally related chalcones and 1-indanone derivatives that were previously studied. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Neurosteroid-like Inhibitors of N-Methyl-d-aspartate Receptor: Substituted 2-Sulfates and 2-Hemisuccinates of Perhydrophenanthrene.

    PubMed

    Slavikova, Barbora; Chodounska, Hana; Nekardova, Michaela; Vyklicky, Vojtech; Ladislav, Marek; Hubalkova, Pavla; Krausova, Barbora; Vyklicky, Ladislav; Kudova, Eva

    2016-05-26

    N-Methyl-d-aspartate receptors (NMDARs) display a critical role in various diseases of the central nervous system. The activity of NMDARs can be modulated by neurosteroids. Herein, we report a structure-activity relationship study for perhydrophenanthrene analogues possessing a framework that mimics the steroidal ring system. This study comprises the design, synthesis, and assessment of the biological activity of a library of perhydrophenanthrene 2-sulfates and 2-hemisuccinates (1-10). Their ability to modulate NMDAR-induced currents was tested on recombinant GluN1/GluN2B receptors. Our results demonstrate that such structural optimization leads to compounds that are inhibitors of NMDARs. Notably, compound 9 (IC50 = 15.6 μM) was assessed as a more potent inhibitor of NMDAR-induced currents than the known endogenous neurosteroid, pregnanolone sulfate (IC50 = 24.6 μM).

  14. Discovery of Novel Bruton's Tyrosine Kinase (BTK) Inhibitors Bearing a N,9-Diphenyl-9H-purin-2-amine Scaffold.

    PubMed

    Ge, Yang; Jin, Yue; Wang, Changyuan; Zhang, Jianbin; Tang, Zeyao; Peng, Jinyong; Liu, Kexin; Li, Yanxia; Zhou, Youwen; Ma, Xiaodong

    2016-12-08

    Based on the pyrimidine skeleton of EGFR T790M inhibitors, a series of N ,9-diphenyl-9 H -purin-2-amine derivatives were identified as effective BTK inhibitors. Among these compounds, inhibitors 10d , 10i , and 10j , possessing IC 50 values of 0.5, 0.5, and 0.4 nM, displayed anti-BTK kinase activity that was as potent as the reference compounds. In particular, compound 10j suppressed the proliferation of two typical B-cell leukemia cell lines expressing high levels of BTK with concentrations of 7.75 and 12.6 μM. The activity of the subject compound as determined by the CCK-8 method and apoptosis analysis validated that inhibitor 1 0j is slightly more potent than AVL-292 and ibrutinib. The results of these experimental explorations suggested that 10j could serve as a valuable molecule for control of leukemia pending further developments.

  15. Design and Synthesis of 4-Heteroaryl 1,2,3,4-Tetrahydroisoquinolines as Triple Reuptake Inhibitors

    PubMed Central

    2014-01-01

    A series of 4-bicyclic heteroaryl 1,2,3,4-tetrahydroisoquinoline inhibitors of the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) was discovered. The synthesis and structure–activity relationship (SAR) of these triple reuptake inhibitors (TRIs) will be discussed. Compound 10i (AMR-2), a very potent inhibitor of SERT, NET, and DAT, showed efficacy in the rat forced-swim and mouse tail suspension models with minimum effective doses of 0.3 and 1 mg/kg (po), respectively. At efficacious doses in these assays, 10i exhibited substantial occupancy levels at the three transporters in both rat and mouse brain. The study of the metabolism of 10i revealed the formation of a significant active metabolite, compound 13. PMID:25050161

  16. Design and synthesis of 4-heteroaryl 1,2,3,4-tetrahydroisoquinolines as triple reuptake inhibitors.

    PubMed

    Liu, Shuang; Zha, Congxiang; Nacro, Kassoum; Hu, Min; Cui, Wenge; Yang, Yuh-Lin; Bhatt, Ulhas; Sambandam, Aruna; Isherwood, Matthew; Yet, Larry; Herr, Michael T; Ebeltoft, Sarah; Hassler, Carla; Fleming, Linda; Pechulis, Anthony D; Payen-Fornicola, Anne; Holman, Nicholas; Milanowski, Dennis; Cotterill, Ian; Mozhaev, Vadim; Khmelnitsky, Yuri; Guzzo, Peter R; Sargent, Bruce J; Molino, Bruce F; Olson, Richard; King, Dalton; Lelas, Snjezana; Li, Yu-Wen; Johnson, Kim; Molski, Thaddeus; Orie, Anitra; Ng, Alicia; Haskell, Roy; Clarke, Wendy; Bertekap, Robert; O'Connell, Jonathan; Lodge, Nicholas; Sinz, Michael; Adams, Stephen; Zaczek, Robert; Macor, John E

    2014-07-10

    A series of 4-bicyclic heteroaryl 1,2,3,4-tetrahydroisoquinoline inhibitors of the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT) was discovered. The synthesis and structure-activity relationship (SAR) of these triple reuptake inhibitors (TRIs) will be discussed. Compound 10i (AMR-2), a very potent inhibitor of SERT, NET, and DAT, showed efficacy in the rat forced-swim and mouse tail suspension models with minimum effective doses of 0.3 and 1 mg/kg (po), respectively. At efficacious doses in these assays, 10i exhibited substantial occupancy levels at the three transporters in both rat and mouse brain. The study of the metabolism of 10i revealed the formation of a significant active metabolite, compound 13.

  17. Design, Synthesis, Biological Evaluation, and X-ray Studies of HIV-1 Protease Inhibitors with Modified P2′ Ligands of Darunavir

    PubMed Central

    Fyvie, W. Sean; Brindisi, Margherita; Steffey, Melinda; Agniswamy, Johnson; Wang, Yuan-Fang; Aoki, Manabu; Amano, Masayuki; Weber, Irene T.; Mitsuya, Hiroaki

    2018-01-01

    The structure-based design, synthesis, and biological evaluation of a series of nonpeptidic HIV-1 protease inhibitors with rationally designed P2′ ligands are described. The inhibitors are designed to enhance backbone binding interactions, particularly at the S2′ subsite. Synthesis of inhibitors was carried out efficiently. The stereochemistry of alcohol functionalities of the P2′ ligands was set by asymmetric reduction of the corresponding ketone using (R,R)- or (S,S)-Noyori catalysts. A number of inhibitors displayed very potent enzyme inhibitory and antiviral activity. Inhibitors 3g and 3h showed enzyme Ki values of 27.9 and 49.7 pM and antiviral activity of 6.2 and 3.9 nM, respectively. These inhibitors also remained quite potent against darunavir-resistant HIV-1 variants. An X-ray structure of inhibitor 3g in complex with HIV-1 protease revealed key interactions in the S2′ subsite. PMID:29110408

  18. Polyvalent 2D Entry Inhibitors for Pseudorabies and African Swine Fever Virus.

    PubMed

    Ziem, Benjamin; Rahn, Jessica; Donskyi, Ievgen; Silberreis, Kim; Cuellar, Luis; Dernedde, Jens; Keil, Günther; Mettenleiter, Thomas C; Haag, Rainer

    2017-06-01

    African swine fever virus (ASFV) is one of the most dangerous viruses for pigs and is endemic in Africa but recently also spread into the Russian Federation and the Eastern border of the EU. So far there is no vaccine or antiviral drug available to curtail the infection. Thus, control strategies based on novel inhibitors are urgently needed. Another highly relevant virus infection in pigs is Aujeszky's disease caused by the alphaherpesvirus pseudorabies virus (PrV). This article reports the synthesis and biological evaluation of novel extracellular matrix-inspired entry inhibitors based on polyglycerol sulfate-functionalized graphene sheets. The developed 2D architectures bind enveloped viruses during the adhesion process and thereby exhibit strong inhibitory effects, which are equal or better than the common standards enrofloxacin and heparin as demonstrated for ASFV and PrV. Overall, the developed polyvalent 2D entry inhibitors are nontoxic and efficient nanoarchitectures, which interact with various types of enveloped viruses. Therefore they prevent viral adhesion to the host cell and especially target viruses that rely on a heparan sulfate-dependent cell entry mechanism. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Inhibitor development and mortality in non-severe hemophilia A.

    PubMed

    Eckhardt, C L; Loomans, J I; van Velzen, A S; Peters, M; Mauser-Bunschoten, E P; Schwaab, R; Mazzucconi, M G; Tagliaferri, A; Siegmund, B; Reitter-Pfoertner, S E; van der Bom, J G; Fijnvandraat, K

    2015-07-01

    The life expectancy of non-severe hemophilia A (HA) patients equals the life expectancy of the non-hemophilic population. However, data on the effect of inhibitor development on mortality and on hemophilia-related causes of death are scarce. The development of neutralizing factor VIII antibodies in non-severe HA patients may dramatically change their clinical outcome due to severe bleeding complications. We assessed the association between the occurrence of inhibitors and mortality in patients with non-severe HA. In this retrospective cohort study, clinical data and vital status were collected for 2709 non-severe HA patients (107 with inhibitors) who were treated between 1980 and 2011 in 34 European and Australian centers. Mortality rates for patients with and without inhibitors were compared. During 64,200 patient-years of follow-up, 148 patients died (mortality rate, 2.30 per 1000 person-years; 95% confidence interval (CI), 1.96-2.70) at a median age of 64 years (interquartile range [IQR], 49-76). In 62 patients (42%) the cause of death was hemophilia related. Sixteen inhibitor patients died at a median age of 71 years (IQR, 60-81). In ten patients the inhibitor was present at time of death; seven of them died of severe bleeding complications. The all-cause mortality rate in inhibitor patients was > 5 times increased compared with that for those without inhibitors (age-adjusted mortality rate ratio, 5.6). Inhibitor development in non-severe hemophilia is associated with increased mortality. High rates of hemophilia-related mortality in this study indicate that non-severe hemophilia is not mild at all and stress the importance of close follow-up for these patients. © 2015 International Society on Thrombosis and Haemostasis.

  20. Structure–Activity Relationship Studies and in Vivo Activity of Guanidine-Based Sphingosine Kinase Inhibitors: Discovery of SphK1- and SphK2-Selective Inhibitors

    PubMed Central

    Kharel, Yugesh; Raje, Mithun R.; Gao, Ming; Tomsig, Jose L.; Lynch, Kevin R.; Santos, Webster L.

    2015-01-01

    Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that acts as a ligand for five G-protein coupled receptors (S1P1–5) whose downstream effects are implicated in a variety of important pathologies including sickle cell disease, cancer, inflammation, and fibrosis. The synthesis of S1P is catalyzed by sphingosine kinase (SphK) isoforms 1 and 2, and hence, inhibitors of this phosphorylation step are pivotal in understanding the physiological functions of SphKs. To date, SphK1 and 2 inhibitors with the potency, selectivity, and in vivo stability necessary to determine the potential of these kinases as therapeutic targets are lacking. Herein, we report the design, synthesis, and structure–activity relationship studies of guanidine-based SphK inhibitors bearing an oxadiazole ring in the scaffold. Our studies demonstrate that SLP120701, a SphK2-selective inhibitor (Ki = 1 μM), decreases S1P levels in histiocytic lymphoma (U937) cells. Surprisingly, homologation with a single methylene unit between the oxadiazole and heterocyclic ring afforded a SphK1-selective inhibitor in SLP7111228 (Ki = 48 nM), which also decreased S1P levels in cultured U937 cells. In vivo application of both compounds, however, resulted in contrasting effect in circulating levels of S1P. Administration of SLP7111228 depressed blood S1P levels while SLP120701 increased levels of S1P. Taken together, these compounds provide an in vivo chemical toolkit to interrogate the effect of increasing or decreasing S1P levels and whether such a maneuver can have implications in disease states. PMID:25643074

  1. Applying a research ethics committee approach to a medical practice controversy: the case of the selective COX-2 inhibitor rofecoxib

    PubMed Central

    James, M; Cleland, L

    2004-01-01

    The new class of anti-inflammatory drugs, the COX-2 inhibitors, have been commercially successful to the point of market dominance within a short time of their launch. They attract a price premium on the basis that they are associated with fewer adverse gastric events than traditional anti-inflammatory drugs. This marketing continues even though a pivotal safety study with one of the COX-2 inhibitors, rofecoxib, showed a significant increase in myocardial infarction with rofecoxib use compared with a traditional anti-inflammatory drug. This finding has led to a series of publications containing pooled analyses of existing data that both support and refute the possibility of increased cardiovascular risk with COX-2 inhibitors. These medical journal publications have served to obfuscate rather than provide guidance for medical practitioners. Consideration of a research ethics committee approach to this issue suggests that it would deal with the controversy in a straightforward manner—namely, it would simply inform research participants of the trial results with rofecoxib. The certainty of this research ethics committee approach raises the issue of whether it should be applied in normal medical practice outside of the research environment. A consideration of the legal tests for disclosure of information suggests that therapeutic medical practice should mirror that within the research environment, in this case. PMID:15082814

  2. Analgesic effects of the COX-2 inhibitor parecoxib on surgical pain through suppression of spinal ERK signaling.

    PubMed

    Guo, Ya-Jing; Shi, Xu-Dan; Fu, DI; Yang, Yong; Wang, Ya-Ping; Dai, Ru-Ping

    2013-07-01

    Cyclooxygenase (COX)-2 inhibitors are widely used for postoperative pain control in clinical practice. However, it is unknown whether spinal sensitization is involved in the analgesic effects of COX-2 inhibitors on surgical pain. Extracellular signal-regulated kinase (ERK) in the spinal cord is implicated in various types of pain, including surgical pain. The present study investigated the role of spinal ERK signaling in the analgesic effect of the COX-2 inhibitor parecoxib on surgical pain. Surgical pain was produced in rats by surgical incision of the hind paw. Phosphorylated (p)-ERK1/2 expression was determined by immunohistochemistry. Pain hypersensitivity was evaluated by measuring the paw withdrawal threshold using the von Frey test. The selective COX-2 inhibitor parecoxib was delivered 20 min before or 20 min after the incision by intraperitoneal injection. Pretreatment with parecoxib markedly attenuated the pain hypersensitivity induced by incision. However, post-treatment with parecoxib produced minimal analgesic effects. Parecoxib inhibited the increase in spinal p-ERK expression following surgical incision. The present study thus suggests that the COX-2 inhibitor parecoxib exerts its analgesic effect on surgical pain through the inhibition of neuronal ERK activation in the spinal cord. COX-2 inhibitor delivery prior to surgery has more potent analgesic effects, suggesting the advantage of preventive analgesia for post-operative pain control.

  3. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells

    PubMed Central

    Bagley, Mark C.; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E.; Kipling, David; Davis, Terence

    2015-01-01

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells. PMID:26046488

  4. Microwave-Assisted Synthesis of a MK2 Inhibitor by Suzuki-Miyaura Coupling for Study in Werner Syndrome Cells.

    PubMed

    Bagley, Mark C; Baashen, Mohammed; Chuckowree, Irina; Dwyer, Jessica E; Kipling, David; Davis, Terence

    2015-06-03

    Microwave-assisted Suzuki-Miyaura cross-coupling reactions have been employed towards the synthesis of three different MAPKAPK2 (MK2) inhibitors to study accelerated aging in Werner syndrome (WS) cells, including the cross-coupling of a 2-chloroquinoline with a 3-pyridinylboronic acid, the coupling of an aryl bromide with an indolylboronic acid and the reaction of a 3-amino-4-bromopyrazole with 4-carbamoylphenylboronic acid. In all of these processes, the Suzuki-Miyaura reaction was fast and relatively efficient using a palladium catalyst under microwave irradiation. The process was incorporated into a rapid 3-step microwave-assisted method for the synthesis of a MK2 inhibitor involving 3-aminopyrazole formation, pyrazole C-4 bromination using N-bromosuccinimide (NBS), and Suzuki-Miyaura cross-coupling of the pyrazolyl bromide with 4-carbamoylphenylboronic acid to give the target 4-arylpyrazole in 35% overall yield, suitable for study in WS cells.

  5. Sigma-2 ligands and PARP inhibitors synergistically trigger cell death in breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McDonald, Elizabeth S.; Mankoff, Julia; Makvandi, Mehran

    The sigma-2 receptor is overexpressed in proliferating cells compared to quiescent cells and has been used as a target for imaging solid tumors by positron emission tomography. Recent work has suggested that the sigma-2 receptor may also be an effective therapeutic target for cancer therapy. Poly (ADP-ribose) polymerase (PARP) is a family of enzymes involved in DNA damage response. In this study, we looked for potential synergy of cytotoxicity between PARP inhibitors and sigma-2 receptor ligands in breast cancer cell lines. We showed that the PARP inhibitor, YUN3-6, sensitized mouse breast cancer cell line, EMT6, to sigma-2 receptor ligand (SV119,more » WC-26, and RHM-138) induced cell death determined by cell viability assay and colony forming assay. The PARP inhibitor, olaparib, sensitized tumor cells to a different sigma-2 receptor ligand SW43-induced apoptosis and cell death in human triple negative cell line, MDA-MB-231. Olaparib inhibited PARP activity and cell proliferation, and arrested cells in G2/M phase of the cell cycle in MDA-MB-231 cells. Subsequently cells became sensitized to SW43 induced cell death. In conclusion, the combination of sigma-2 receptor ligands and PARP inhibitors appears to hold promise for synergistically triggering cell death in certain types of breast cancer cells and merits further investigation. - Highlights: • PARPi, YUN3-6 and olaparib, and σ2 ligands, SV119 and SW43, were evaluated. • Mouse and human breast cancer cells, EMT6 and MDA-MB-231 respectively, were used. • YUN3-6 and SV119 synergistically triggered cell death in EMT6 cells. • Olaparib and SW43 additively triggered cell death in MDA-MB-231 cells. • Olaparib arrested cells in G2/M in MDA-MB-231 cells.« less

  6. Discovery and Development of Kelch-like ECH-Associated Protein 1. Nuclear Factor Erythroid 2-Related Factor 2 (KEAP1:NRF2) Protein-Protein Interaction Inhibitors: Achievements, Challenges, and Future Directions.

    PubMed

    Jiang, Zheng-Yu; Lu, Meng-Chen; You, Qi-Dong

    2016-12-22

    The transcription factor Nrf2 is the primary regulator of the cellular defense system, and enhancing Nrf2 activity has potential usages in various diseases, especially chronic age-related and inflammatory diseases. Recently, directly targeting Keap1-Nrf2 protein-protein interaction (PPI) has been an emerging strategy to selectively and effectively activate Nrf2. This Perspective summarizes the progress in the discovery and development of Keap1-Nrf2 PPI inhibitors, including the Keap1-Nrf2 regulatory mechanisms, biochemical techniques for inhibitor identification, and approaches for identifying peptide and small-molecule inhibitors, as well as discusses privileged structures and future directions for further development of Keap1-Nrf2 PPI inhibitors.

  7. Fragment-Based Discovery of Pyrimido[1,2-b]indazole PDE10A Inhibitors.

    PubMed

    Chino, Ayaka; Seo, Ryushi; Amano, Yasushi; Namatame, Ichiji; Hamaguchi, Wataru; Honbou, Kazuya; Mihara, Takuma; Yamazaki, Mayako; Tomishima, Masaki; Masuda, Naoyuki

    2018-01-01

    In this study, we report the identification of potent pyrimidoindazoles as phosphodiesterase10A (PDE10A) inhibitors by using the method of fragment-based drug discovery (FBDD). The pyrazolopyridine derivative 2 was found to be a fragment hit compound which could occupy a part of the binding site of PDE10A enzyme by using the method of the X-ray co-crystal structure analysis. On the basis of the crystal structure of compound 2 and PDE10A protein, a number of compounds were synthesized and evaluated, by means of structure-activity relationship (SAR) studies, which culminated in the discovery of a novel pyrimidoindazole derivative 13 having good physicochemical properties.

  8. Inhibitors of GLUT/SLC2A Enhance the Action of BCNU and Temozolomide against High-Grade Gliomas.

    PubMed

    Azzalin, Alberto; Nato, Giulia; Parmigiani, Elena; Garello, Francesca; Buffo, Annalisa; Magrassi, Lorenzo

    2017-04-01

    Glucose transport across glioblastoma membranes plays a crucial role in maintaining the enhanced glycolysis typical of high-grade gliomas and glioblastoma. We tested the ability of two inhibitors of the glucose transporters GLUT/SLC2A superfamily, indinavir (IDV) and ritonavir (RTV), and of one inhibitor of the Na/glucose antiporter type 2 (SGLT2/SLC5A2) superfamily, phlorizin (PHZ), in decreasing glucose consumption and cell proliferation of human and murine glioblastoma cells. We found in vitro that RTV, active on at least three different GLUT/SLC2A transporters, was more effective than IDV, a specific inhibitor of GLUT4/SLC2A4, both in decreasing glucose consumption and lactate production and in inhibiting growth of U87MG and Hu197 human glioblastoma cell lines and primary cultures of human glioblastoma. PHZ was inactive on the same cells. Similar results were obtained when cells were grown in adherence or as 3D multicellular tumor spheroids. RTV treatment but not IDV treatment induced AMP-activated protein kinase (AMPKα) phosphorylation that paralleled the decrease in glycolytic activity and cell growth. IDV, but not RTV, induced an increase in GLUT1/SLC2A1 whose activity could compensate for the inhibition of GLUT4/SLC2A4 by IDV. RTV and IDV pass poorly the blood brain barrier and are unlikely to reach sufficient liquoral concentrations in vivo to inhibit glioblastoma growth as single agents. Isobologram analysis of the association of RTV or IDV and 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or 4-methyl-5-oxo-2,3,4,6,8-pentazabicyclo[4.3.0]nona-2,7,9-triene-9-carboxamide (TMZ) indicated synergy only with RTV on inhibition of glioblastoma cells. Finally, we tested in vivo the combination of RTV and BCNU on established GL261 tumors. This drug combination increased the overall survival and allowed a five-fold reduction in the dose of BCNU. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. COX-2 inhibitor and non-selective NSAID use in those at increased risk of NSAID-related adverse events: a retrospective database study.

    PubMed

    Gadzhanova, Svetla; Ilomäki, Jenni; Roughead, Elizabeth E

    2013-01-01

    Adverse events related to analgesic use represent a challenge for optimizing treatment of pain in older people. The aim of this study was to determine whether non-selective non-steroidal anti-inflammatory drug (NS-NSAID) and cyclo-oxygenase (COX)-2 inhibitor use is appropriately targeted in those with a prior history of gastrointestinal (GI) events, myocardial infarction (MI) or stroke. A retrospective study of pharmacy claims data from the Australian Government Department of Veterans' Affairs was conducted, involving 288,912 veterans aged 55 years and over. Analgesic utilization from 2007 to 2009 was assessed. Three risk cohorts (veterans with prior hospitalization for GI bleed, MI or stroke) and a low-risk cohort were identified. Poisson regression was applied to test for a linear trend over the study period. The prevalence of analgesics dispensed in the overall study population was approximately 34 % between 2007 and 2009. COX-2 inhibitors were more widely dispensed than NS-NSAIDs in all those at risk of NSAID-related adverse events. At the end of 2009, the ratio was 5.1 % to 2.5 % in the GI cohort, 3.6 % to 3.2 % in the MI cohort and 3.6 % to 2.6 % in the stroke cohort. Although COX-2 inhibitors appeared to be preferred over NS-NSAIDs in those with a prior history of GI events, 2.5 % of patients were still using an NS-NSAID at the end of the study period. Consistent with treatment guidelines, in most of these cases, these drugs were co-dispensed with proton pump inhibitors. COX-2 inhibitors were used at slightly higher rates than NS-NSAIDs in those with a prior history of MI or stroke, which is not consistent with guidelines recommending NS-NSAID use.

  10. Sodium-glucose co-transporter-2 inhibitors, the latest residents on the block: Impact on glycaemic control at a general practice level in England.

    PubMed

    Heald, Adrian H; Fryer, Anthony A; Anderson, Simon G; Livingston, Mark; Lunt, Mark; Davies, Mark; Moreno, Gabriela Y C; Gadsby, Roger; Young, Robert J; Stedman, Mike

    2018-03-08

    To determine, using published general practice-level data, how differences in Type 2 diabetes mellitus (T2DM) prescribing patterns relate to glycaemic target achievement levels. Multiple linear regression modelling was used to link practice characteristics and defined daily dose (DDD) of different classes of medication in 2015/2016 and changes between that year and the year 2014/2015 in medication to proportion of patients achieving target glycaemic control (glycated haemoglobin A1c [HbA1c] ≤58 mmol/mol [7.5%]) and proportion of patients at high glycaemic risk (HbA1c >86 mmol/mol [10.0%]) for practices in the National Diabetes Audit with >100 people with T2DM on their register. Overall, HbA1c outcomes were not different between the years studied. Although, in percentage terms, most practices increased their use of sodium-glucose co-transporter-2 (SGLT2) inhibitors (96%), dipeptidyl peptidase-4 (DPP-4) inhibitors (76%) and glucagon-like peptide 1 (GLP-1) analogues (53%), there was wide variation in the use of older and newer therapies. For example, 12% of practices used >200% of the national average for some newer agents. In cross-sectional analysis, greater prescribing of metformin and analogue insulin were associated with a higher proportion of patients achieving HbA1c ≤58 mmol/mol; the use of SGLT2 inhibitors and metformin was associated with a reduced proportion of patients with HbA1c >86 mol/mol; otherwise associations for sulphonylureas, GLP-1 analogues, SGLT2 inhibitors and DPP-4 inhibitors were neutral or negative. In year-on-year analysis there was ongoing deterioration in glycaemic control, which was offset to some extent by increased use of SGLT2 inhibitors and GLP-1 analogues, which were associated with a greater proportion of patients achieving HbA1c levels ≤58 mmol/mol and a smaller proportion of patients with HbA1c levels >86 mmol/mol. SGLT2 inhibitor prescribing was associated with significantly greater improvements than those found

  11. SGLT2 Inhibitors: Glucotoxicity and Tumorigenesis Downstream the Renal Proximal Tubule?

    PubMed

    Bertinat, Romina; Nualart, Francisco; Yáñez, Alejandro J

    2016-08-01

    At present, diabetes mellitus is the main cause of end-stage renal disease. Effective glycaemic management is the most powerful tool to delay the establishment of diabetic complications, such as diabetic kidney disease. Together with reducing blood glucose levels, new anti-diabetic agents are expected not only to control the progression but also to restore known defects of the diabetic kidney. Sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising anti-diabetic agents that reduce hyperglycaemia by impairing glucose reabsorption in proximal tubule of the kidney and increasing glucosuria. SGLT2 inhibitors have shown to reduce glucotoxicity in isolated proximal tubule cells and also to attenuate expression of markers of overall kidney damage in experimental animal models of diabetes, but the actual renoprotective effect for downstream nephron segments is still unknown and deserves further attention. Here, we briefly discuss possible undesired effects of enhanced glucosuria and albuminuria in nephron segments beyond the proximal tubule after SGLT2 inhibitor treatment, offering new lines of research to further understand the renoprotective action of these anti-diabetic agents. Strategies blocking glucose reabsorption by renal proximal tubule epithelial cells (RPTEC) may be protective for RPTEC, but downstream nephron segments will still be exposed to high glucose and albumin levels through the luminal face. The actual effect of constant enhanced glucosuria over distal nephron segments remains to be established. J. Cell. Physiol. 231: 1635-1637, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. Design, Synthesis, and Evaluation of New Tripeptides as COX-2 Inhibitors.

    PubMed

    Vernieri, Ermelinda; Gomez-Monterrey, Isabel; Milite, Ciro; Grieco, Paolo; Musella, Simona; Bertamino, Alessia; Scognamiglio, Ilaria; Alcaro, Stefano; Artese, Anna; Ortuso, Francesco; Novellino, Ettore; Sala, Marina; Campiglia, Pietro

    2013-01-01

    Cyclooxygenase (COX) is a key enzyme in the biosynthetic pathway leading to the formation of prostaglandins, which are mediators of inflammation. It exists mainly in two isoforms COX-1 and COX-2. The conventional nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects because they inhibit both isoforms. Recent data demonstrate that the overexpression of these enzymes, and in particular of cyclooxygenases-2, promotes multiple events involved in tumorigenesis; in addition, numerous studies show that the inhibition of cyclooxygenases-2 can delay or prevent certain forms of cancer. Agents that inhibit COX-2 while sparing COX-1 represent a new attractive therapeutic development and offer a new perspective for a further use of COX-2 inhibitors. The present study extends the evaluation of the COX activity to all 20(3) possible natural tripeptide sequences following a rational approach consisting in molecular modeling, synthesis, and biological tests. Based on data obtained from virtual screening, only those peptides with better profile of affinity have been selected and classified into two groups called S and E. Our results suggest that these novel compounds may have potential as structural templates for the design and subsequent development of the new selective COX-2 inhibitors drugs.

  13. Effects of tyrosine kinase and phosphatase inhibitors on mitosis progression in synchronized tobacco BY-2 cells.

    PubMed

    Sheremet, Ya A; Yemets, A I; Azmi, A; Vissenberg, K; Verbelen, J P; Blume, Ya B

    2012-01-01

    To test whether reversible tubulin phosphorylation plays any role in the process of plant mitosis the effects of inhibitors of tyrosine kinases, herbimycin A, genistein and tyrphostin AG 18, and of an inhibitor of tyrosine phosphatases, sodium orthovanadate, on microtubule organization and mitosis progression in a synchronized BY-2 culture has been investigated. It was found that treatment with inhibitors of tyrosine kinases of BY-2 cells at the G2/M transition did not lead to visible disturbances of mitotic microtubule structures, while it did reduce the frequency of their appearance. We assume that a decreased tyrosine phosphorylation level could alter the microtubule dynamic instability parameters during interphase/prophase transition. All types of tyrosine kinase inhibitors used caused a prophase delay: herbimycin A and genistein for 2 h, and tyrphostin AG18 for 1 h. Thereafter the peak of mitosis was displaced for 1 h by herbimycin A or genistein exposure, but after tyrphostin AG18 treatment the timing of the mitosis-peak was comparable to that in control cells. Enhancement of tyrosine phosphorylation induced by the tyrosine phosphatase inhibitor resulted in the opposite effect on BY-2 mitosis transition. Culture treatment with sodium orthovanadate during 1 h resulted in an accelerated start of the prophase and did not lead to the alteration in time of the mitotic index peak formation, as compared to control cells. We suppose that the reversible tyrosine phosphorylation can be involved in the regulation of interphase to M phase transition possibly through regulation of microtubule dynamics in plant cells.

  14. Suppression of nitrification and N2O emission by karanjin--a nitrification inhibitor prepared from karanja (Pongamia glabra Vent.).

    PubMed

    Majumdar, Deepanjan

    2002-06-01

    A laboratory incubation study was undertaken to study nitirification and N2O emission in an alluvial, sandy loam soil (typic ustochrept), fertilized with urea and urea combined with different levels of two nitrification inhibitors viz. karanjin and dicyandiamide (DCD). Karanjin [a furanoflavonoid, obtained from karanja (Pongamia glabra Vent.) seeds] and DCD were incorporated at the rate of 5%, 10%, 15%, 20% and 25% of applied urea-N (100 mg kg(-1) soil), to the soil (100 g) adjusted to field capacity moisture content. Mean N2O flux was appreciably reduced on addition of the inhibitors with urea. Amounts of nitrified N (i.e. (NO3- + NO2-)-N) in total inorganic N (i.e. (NO3 + NO2- + NH4+)-N) in soil were found to be much lower on the addition of karanjin with urea (2-8%) as compared to urea plus DCD (14-66%) during incubation, indicating that karanjin was much more potent nitrification inhibitor than DCD. Nitrification inhibition was appreciable on the application of different levels of karanjin (62-75%) and DCD (9-42%). Cumulative N2O-N loss was found to be in the range of 0.5-80% of the nitrified N at different stages of incubation. Application of karanjin resulted in higher mitigation of total N2O-N emission (92-96%) when compared with DCD (60-71%).

  15. SF2312 is a natural phosphonate inhibitor of Enolase

    PubMed Central

    Maxwell, David; Lin, Yu-Hsi; Hammoudi, Naima; Peng, Zhenghong; Pisaneschi, Federica; Link, Todd M.; Lee, Gilbert R.; Sun, Duoli; Prasad, Basvoju A. Bhanu; Di Francesco, Maria Emilia; Czako, Barbara; Asara, John M.; Wang, Y. Alan; Bornmann, William; DePinho, Ronald A.; Muller, Florian L.

    2016-01-01

    Despite being critical for energy generation in most forms of life, few if any microbial antibiotics specifically inhibit glycolysis. To develop a specific inhibitor of the glycolytic enzyme Enolase 2 for the treatment of cancers with deletion of Enolase 1, we modeled the synthetic tool compound inhibitor, Phosphonoacetohydroxamate (PhAH) into the active site of human ENO2. A ring-stabilized analogue of PhAH, with the hydroxamic nitrogen linked to the alpha-carbon by an ethylene bridge, was predicted to increase binding affinity by stabilizing the inhibitor in a bound conformation. Unexpectedly, a structure based search revealed that our hypothesized back-bone-stabilized PhAH bears strong similarity to SF2312, a phosphonate antibiotic of unknown mode of action produced by the actinomycete Micromonospora, which is active under anaerobic conditions. Here, we present multiple lines of evidence, including a novel X-ray structure, that SF2312 is a highly potent, low nM inhibitor of Enolase. PMID:27723749

  16. Combined HQSAR, topomer CoMFA, homology modeling and docking studies on triazole derivatives as SGLT2 inhibitors.

    PubMed

    Yu, Shuling; Yuan, Jintao; Zhang, Yi; Gao, Shufang; Gan, Ying; Han, Meng; Chen, Yuewen; Zhou, Qiaoqiao; Shi, Jiahua

    2017-06-01

    Sodium-glucose cotransporter 2 (SGLT2) is a promising target for diabetes therapy. We aimed to develop computational approaches to identify structural features for more potential SGLT2 inhibitors. In this work, 46 triazole derivatives as SGLT2 inhibitors were studied using a combination of several approaches, including hologram quantitative structure-activity relationships (HQSAR), topomer comparative molecular field analysis (CoMFA), homology modeling, and molecular docking. HQSAR and topomer CoMFA were used to construct models. Molecular docking was conducted to investigate the interaction of triazole derivatives and homology modeling of SGLT2, as well as to validate the results of the HQSAR and topomer CoMFA models. The most effective HQSAR and topomer CoMFA models exhibited noncross-validated correlation coefficients of 0.928 and 0.891 for the training set, respectively. External predictions were made successfully on a test set and then compared with previously reported models. The graphical results of HQSAR and topomer CoMFA were proven to be consistent with the binding mode of the inhibitors and SGLT2 from molecular docking. The models and docking provided important insights into the design of potent inhibitors for SGLT2.

  17. Hierarchical virtual screening of the dual MMP-2/HDAC-6 inhibitors from natural products based on pharmacophore models and molecular docking.

    PubMed

    Wang, Yijun; Yang, Limei; Hou, Jiaying; Zou, Qing; Gao, Qi; Yao, Wenhui; Yao, Qizheng; Zhang, Ji

    2018-02-12

    The dual-target inhibitors tend to improve the response rate in treating tumors, comparing with the single-target inhibitors. Matrix metalloproteinase-2 (MMP-2) and histone deacetylase-6 (HDAC-6) are attractive targets for cancer therapy. In this study, the hierarchical virtual screening of dual MMP-2/HDAC-6 inhibitors from natural products is investigated. The pharmacophore model of MMP-2 inhibitors is built based on ligands, but the pharmacophore model of HDAC-6 inhibitors is built based on the experimental crystal structures of multiple receptor-ligand complexes. The reliability of these two pharmacophore models is validated subsequently. The hierarchical virtual screening, combining these two different pharmacophore models of MMP-2 and HDAC-6 inhibitors with molecular docking, is carried out to identify the dual MMP-2/HDAC-6 inhibitors from a database of natural products. The four potential dual MMP-2/HDAC-6 inhibitors of natural products, STOCK1 N-46177, STOCK1 N-52245, STOCK1 N-55477, and STOCK1 N-69706, are found. The studies of binding modes show that the screened four natural products can simultaneously well bind with the MMP-2 and HDAC-6 active sites by different kinds of interactions, to inhibit the MMP-2 and HDAC-6 activities. In addition, the ADMET properties of screened four natural products are assessed. These found dual MMP-2/HDAC-6 inhibitors of natural products could serve as the lead compounds for designing the new dual MMP-2/HDAC-6 inhibitors having higher biological activities by carrying out structural modifications and optimizations in the future studies.

  18. Cytokinesis defect in BY-2 cells caused by ATP-competitive kinase inhibitors.

    PubMed

    Kozgunova, Elena; Higashiyama, Tetsuya; Kurihara, Daisuke

    2016-10-02

    Cytokinesis is last but not least in cell division as it completes the formation of the two cells. The main role in cell plate orientation and expansion have been assigned to microtubules and kinesin proteins. However, recently we reported severe cytokinesis defect in BY-2 cells not accompanied by changes in microtubules dynamics. Here we also confirmed that distribution of kinesin NACK1 is not the cause of cytokinesis defect. We further explored inhibition of the cell plate expansion by ATP-competitive inhibitors. Two different inhibitors, 5-Iodotubercidin and ML-7 resulted in a very similar phenotype, which indicates that they target same protein cascade. Interestingly, in our previous study we showed that 5-Iodotubercidin treatment affects concentration of actin filaments on the cell plate, while ML-7 is inhibitor of myosin light chain kinase. Although not directly, it indicates importance of actomyosin complex in plant cytokinesis.

  19. Response to Antimalarials in Cutaneous Lupus Erythematosus A Prospective Analysis

    PubMed Central

    Chang, Aileen Y.; Piette, Evan W.; Foering, Kristen P.; Tenhave, Thomas R.; Okawa, Joyce; Werth, Victoria P.

    2012-01-01

    Objective To demonstrate response to antimalarials in patients with cutaneous lupus erythematosus using activity scores from the Cutaneous Lupus Erythematosus Disease Area and Severity Index, a validated outcome measure. Design Prospective, longitudinal cohort study. Setting University cutaneous autoimmune disease clinic. Participants One hundred twenty-eight patients with cutaneous lupus erythematosus who presented from January 2007-July 2010 and had at least 2 visits with activity scores. Main Outcome Measures Response defined by 4-point or 20% decrease in activity score. Response to initiation determined with score before treatment and first visit at least 2 months after treatment. Response to continuation determined with score at first visit and most recent visit on treatment. Results Of 11 patients initiated on hydroxychloroquine, 55% were responders with a decrease in median (interquartile range) activity score from 8.0 (3.5-13) to 3.0 (1.8-7.3) (p=0.03). Of 15 patients who had failed hydroxychloroquine, 67% were responders to initiation of hydroxychloroquine-quinacrine, with a decrease in median (interquartile range) activity score from 6.0 (4.8-8.3) to 3.0 (0.75-5.0) (p=0.004). Nine out of 21 patients (43%) continued on hydroxychloroquine and 9 out of 21 patients (43%) continued on hydroxychloroquine-quinacrine were responders with a decrease in median (interquartile range) activity score from 6.0 (1.5-9.5) to 1.0 (0-4.5) (p=0.009) and 8.5 (4.25-17.5) to 5.0 (0.5-11.5) (p=0.01), respectively. Conclusion The use of quinacrine with hydroxychloroquine is associated with response in patients who fail hydroxychloroquine monotherapy. Further reduction in disease activity can be associated with continuation of antimalarials. PMID:21768444

  20. Naringin is a major and selective clinical inhibitor of organic anion-transporting polypeptide 1A2 (OATP1A2) in grapefruit juice.

    PubMed

    Bailey, D G; Dresser, G K; Leake, B F; Kim, R B

    2007-04-01

    We showed previously that grapefruit and orange juices inhibited human enteric organic anion-transporting polypeptide (OATP)1A2 in vitro and lowered oral fexofenadine bioavailability clinically. Inhibition of OATP1A2 transport by flavonoids in grapefruit (naringin) and orange (hesperidin) was conducted in vitro. Two randomized, crossover, pharmacokinetic studies were performed clinically. In one study, 120 mg of fexofenadine was ingested with 300 ml grapefruit juice, an aqueous solution of naringin at the same juice concentration (1,200 microM), or water. In the other study, fexofenadine was administered with grapefruit juice, with or 2 h before aqueous suspension of the particulate fraction of juice containing known clinical inhibitors of enteric CYP3A4, but relatively low naringin concentration (34 microM), or with water. Naringin and hesperidin's half-maximal inhibitions were 3.6 and 2.7 microM, respectively. Fexofenadine area under the plasma drug concentration-time curves (AUCs) with grapefruit juice and naringin solution were 55% (P<0.001) and 75% (P<0.05) of that with water, respectively. Fexofenadine AUCs with grapefruit juice and particulate fractions were 57% (P<0.001), 96% (not significant (NS)), and 97% (NS) of that with water, respectively. Individuals tested in both studies (n=9 of 12) had highly reproducible fexofenadine AUC with water (r(2)=0.85, P<0.001) and extent of reduction of it with grapefruit juice (r(2)=0.72, P<0.01). Naringin most probably directly inhibited enteric OATP1A2 to decrease oral fexofenadine bioavailability. Inactivation of enteric CYP3A4 was probably not involved. Naringin appears to have sufficient safety, specificity, and sensitivity to be a clinical OATP1A2 inhibitor probe. Inherent OATP1A2 activity may be influenced by genetic factors. This appears to be the first report of a single dietary constituent clinically modulating drug transport.

  1. Suppression of follicular rupture with meloxicam, a cyclooxygenase-2 inhibitor: potential for emergency contraception.

    PubMed

    Jesam, Cristián; Salvatierra, Ana María; Schwartz, Jill L; Croxatto, Horacio B

    2010-02-01

    There is evidence that cyclooxygenase-2 (COX-2) inhibitors can prevent or delay follicular rupture. COX-2 inhibitors, such as meloxicam, may offer advantages over emergency contraception with levonorgestrel, such as extending the therapeutic window for up to 24 h. We assessed the effect of meloxicam administered in the late follicular phase upon ovulation in women. This was a single center, double blind, crossover study designed to assess the effects in 27 eligible women (18-40 years old, surgically sterilized with regular menstrual cycles) of meloxicam, 15 or 30 mg/day, administered orally for five consecutive days during the late follicular phase, starting when the leading follicle reached 18 mm diameter. Volunteers underwent two treatment cycles separated by one resting cycle, with randomization to dose sequence. Main outcomes were follicular rupture; serum LH, progesterone and estradiol (E2) levels; and incidence of adverse events. Twenty-two volunteers completed the study. There were no differences between meloxicam doses in menstrual cycle length. Dysfunctional ovulation was observed in 11/22 (50%) cycles treated with 15 mg/day and 20/22 (90.9%) cycles with 30 mg/day (P = 0.0068). All women had normal luteal phase progesterone levels; mean maximal values +/- SEM were 42 +/- 4.1 and 46.8 +/- 2.6 nmol/l for 15 and 30 mg/day groups, respectively. There were no serious adverse events, and no changes in LH and E2 levels or in cycle length. Meloxicam 30 mg given for five consecutive days in the late follicular phase is safe, effective and may be an alternative form of emergency contraception.

  2. Why Do SGLT2 inhibitors inhibit only 30-50% of renal glucose reabsorption in humans?

    PubMed

    Liu, Jiwen Jim; Lee, TaeWeon; DeFronzo, Ralph A

    2012-09-01

    Sodium glucose cotransporter 2 (SGLT2) inhibition is a novel and promising treatment for diabetes under late-stage clinical development. It generally is accepted that SGLT2 mediates 90% of renal glucose reabsorption. However, SGLT2 inhibitors in clinical development inhibit only 30-50% of the filtered glucose load. Why are they unable to inhibit 90% of glucose reabsorption in humans? We will try to provide an explanation to this puzzle in this perspective analysis of the unique pharmacokinetic and pharmacodynamic profiles of SGLT2 inhibitors in clinical trials and examine possible mechanisms and molecular properties that may be responsible.

  3. Benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives as inhibitors of the corrosion of aluminium in hydrochloric acid.

    PubMed

    Fouda, A S; Gouda, M M; El-Rahman, S I

    2000-05-01

    The effect of benzaldehyde, 2-hydroxybenzoyl hydrazone derivatives on the corrosion of aluminium in hydrochloric acid has been investigated using thermometric and polarization techniques. The inhibitive efficiency ranking of these compounds from both techniques was found to be: 2>3>1>4. The inhibitors acted as mixed-type inhibitors but the cathode is more polarized. The relative inhibitive efficiency of these compounds has been explained on the basis of structure of the inhibitors and their mode of interaction at the surface. Results show that these additives are adsorbed on an aluminium surface according to the Langmuir isotherm. Polarization measurements indicated that the rate of corrosion of aluminium rapidly increases with temperature over the range 30-55 degrees C both in the absence and in the presence of inhibitors. Some thermodynamic data of the adsorption process are calculated and discussed.

  4. Sphingosine kinase inhibitors: a review of patent literature (2006-2015).

    PubMed

    Lynch, Kevin R; Thorpe, S Brandon; Santos, Webster L

    2016-12-01

    Sphingosine kinase (SphK1 & SphK2) is the sole source of the pleiotropic lipid mediator, sphingosine-1-phosphate (S1P). S1P has been implicated in a variety of diseases such as cancer, Alzheimer's disease, sickle cell disease and fibrosis and thus the biosynthetic route to S1P is a logical target for drug discovery. Areas covered: In this review, the authors consider the SphK inhibitor patent literature from 2006-2016 Q1 with the emphasis on composition of matter utility patents. The Espacenet database was queried with the search term 'sphingosine AND kinase' to identify relevant literature. Expert opinion: Early inhibitor discovery focused on SphK1 with a bias towards oncology indications. Structurally, the reported inhibitors occupy the sphingosine 'J-shaped' binding pocket. The lack of cytotoxicity with improved SphK1 inhibitors raises doubt about the enzyme as an oncology target. SphK2 inhibitors are featured in more recent patent applications. Interestingly, both SphK1 and SphK2 inhibition and gene 'knockout' share opposing effects on circulating S1P levels: SphK1 inhibition/gene ablation decreases, while SphK2 inhibition/gene ablation increases, blood S1P. As understanding of S1P's physiological roles increases and more drug-like SphK inhibitors emerge, inhibiting one or both SphK isotypes could provide unique strategies for treating disease.

  5. Cholinesterase Inhibitors for Lewy Body Disorders: A Meta-Analysis

    PubMed Central

    Yasue, Ichiro; Iwata, Nakao

    2016-01-01

    Background: We performed a meta-analysis of cholinesterase inhibitors for patients with Lewy body disorders, such as Parkinson’s disease, Parkinson’s disease dementia, and dementia with Lewy bodies. Methods: The meta-analysis included only randomized controlled trials of cholinesterase inhibitors for Lewy body disorders. Results: Seventeen studies (n = 1798) were assessed. Cholinesterase inhibitors significantly improved cognitive function (standardized mean difference [SMD] = −0.53], behavioral disturbances (SMD = −0.28), activities of daily living (SMD = −0.28), and global function (SMD = −0.52) compared with control treatments. Changes in motor function were not significantly different from control treatments. Furthermore, the cholinesterase inhibitor group had a higher all-cause discontinuation (risk ratio [RR] = 1.48, number needed to harm [NNH] = 14), discontinuation due to adverse events (RR = 1.59, NNH = 20), at least one adverse event (RR = 1.13, NNH = 11), nausea (RR = 2.50, NNH = 13), and tremor (RR = 2.30, NNH = 20). Conclusions: Cholinesterase inhibitors appear beneficial for the treatment of Lewy body disorders without detrimental effects on motor function. However, a careful monitoring of treatment compliance and side effects is required. PMID:26221005

  6. Left ventricular diastolic function in patients with type 2 diabetes treated with a dipeptidyl peptidase-4 inhibitor- a pilot study.

    PubMed

    Nogueira, Katia Camarano; Furtado, Meive; Fukui, Rosa Tsuneshiro; Correia, Marcia Regina Silva; Dos Santos, Rosa Ferreira; Andrade, José Lázaro; Rossi da Silva, Maria Elizabeth

    2014-01-01

    Blood glucose control is fundamental albeit not enough to prevent diabetic macrovascular complications. Dipeptidyl peptidase-4 (DPP-4) inhibitors are effective in improving metabolic parameters in patients with type 2 diabetes mellitus (T2DM) but little is known about its cardiovascular effects. We compared the DPP-4 inhibitor sitagliptin with bedtime NPH insulin (NPH) as add-on therapy in patients with T2DM, aiming to ascertain which drug would have additional cardioprotective effects. Thirty-five T2DM patients inadequately controlled with metformin plus glyburide were randomized to receive sitagliptin (n = 18) or NPH (n = 17) for 24 weeks. Fasting plasma glucose, HbA1c, lipid profile, C-reactive protein, active glucagon-like peptide (aGLP-1) levels, 24-hour ambulatory blood pressure measurement and comprehensive 2-dimensional echocardiogram were determined before and after treatments. Both sitagliptin and NPH therapies decreased HbA1c levels after 24 weeks. Fasting plasma glucose and triglyceride levels decreased in the NPH group whereas only sitagliptin increased aGLP-1 levels. Left ventricular diastolic dysfunction (LVDD) was detected in 58.6% of twenty-nine patients evaluated. Beneficial effects in LVDD were observed in 75% and 11% of patients treated with sitagliptin and NPH, respectively (p = 0.015). Neither therapy changed C-reactive protein or blood pressure. Sitagliptin and bedtime NPH were similarly effective on glucose control. Improvement in LVDD in T2DM patients treated with sitagliptin was suggested, probably related to the increase of aGLP-1 levels. Therefore, DPP-4 inhibitor seems to have cardioprotective effects independent of glucose control and may have a role in the prevention of diabetic cardiomyopathy.

  7. [Effect of preoperative cyclooxygenase-2 inhibitor for postoperative pain in patients after total knee arthroplasty: a meta-analysis].

    PubMed

    Ji, Zhong-wei; Bao, Ni-rong; Zhao, Jian-ning; Ni, Jian-fa

    2015-09-01

    To systematically evaluate the efficacy and safety of preoperative administration of cyclooxygenase-2 (COX-2) inhibitor on pain occurring with total knee arthroplasty (TKA). We electronically searched PubMed, Cochrane Library, EMBASE, CNKI, CBM, Wanfang data from inception to March 15, 2014 and manual searched journal of library collection to identify randomized controlled trials (RCTs) about preoperative administration of COX-2 inhibitor on pain occurring with TKA. The methodological quality of the included RCTs was assessed and the data were extracted according to the Cochrane Handbook 5.1.0. Meta-analysis was performed by using RevMan 5.2 software. A total of 6 RCTs involving 228 patients were included. The results of meta-analyses showed that: (1) Efficacy: The visual analog scale (VAS) of post-operation at 12-hour (WMD = -0.60, 95% CI -0.83 to -0.37, P < 0.000 01) and 24-hour (WMD = -0.74, 95% CI -1.29 to - 0.19, P = 0.008) was decreased when COX-2 inhibitor was used before operation. And compared with control group, experimental group decreased the modified numerical pain rating scale (MNPRS) at 24-hour (WMD = -0.50, 95% CI -0.70 to -0.30, P < 0.000 01), 48-hour (WMD = -0.55,95% CI -0.65 to -0.45,P < 0.000 01) under quiescent conditions, and the same result at 24-hour (WMD = -0.82, 95% CI -1.26 to -0.38, P <0.000 01), 48-hour (WMD = -0.71, 95% CI -0.82 to -0.60, P < 0.000 01) under active conditions. The morphine consumption postoperatively were fewer in experimental group at the first day (WMD = - 1.35, 95% CI -1.92 to -0.79, P < 0.000 01) and the second day (WMD = -1.60, 95% CI -2.68 to -0.52, P = 0.004). (2) Safety: COX-2 inhibitor could lessen the incidence of postoperative pruritus (RR = 0.35, 95% CI 0.15 to 0.84, P = 0.02), but not statistically decrease of nausea and vomiting (RR = 0.83, 95% CI 0.54 to 1.28, P = 0.40) and exhaustion (RR = 0.63, 95% CI 0.05 to 7.67, P = 0.72). The current evidence indicated that preoperative administration of COX-2

  8. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2

    DOE PAGES

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen; ...

    2015-03-30

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex withmore » LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. As a result, these findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.« less

  9. LLY-507, a cell-active, potent, and selective inhibitor of protein-lysine methyltransferase SMYD2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Hannah; Allali-Hassani, Abdellah; Antonysamy, Stephen

    SMYD2 is a lysine methyltransferase that catalyzes the monomethylation of several protein substrates including p53. SMYD2 is overexpressed in a significant percentage of esophageal squamous primary carcinomas, and that overexpression correlates with poor patient survival. However, the mechanism(s) by which SMYD2 promotes oncogenesis is not understood. A small molecule probe for SMYD2 would allow for the pharmacological dissection of this biology. In this report, we disclose LLY-507, a cell-active, potent small molecule inhibitor of SMYD2. LLY-507 is >100-fold selective for SMYD2 over a broad range of methyltransferase and non-methyltransferase targets. A 1.63-Å resolution crystal structure of SMYD2 in complex withmore » LLY-507 shows the inhibitor binding in the substrate peptide binding pocket. LLY-507 is active in cells as measured by reduction of SMYD2-induced monomethylation of p53 Lys(370) at submicromolar concentrations. We used LLY-507 to further test other potential roles of SMYD2. Mass spectrometry-based proteomics showed that cellular global histone methylation levels were not significantly affected by SMYD2 inhibition with LLY-507, and subcellular fractionation studies indicate that SMYD2 is primarily cytoplasmic, suggesting that SMYD2 targets a very small subset of histones at specific chromatin loci and/or non-histone substrates. Breast and liver cancers were identified through in silico data mining as tumor types that display amplification and/or overexpression of SMYD2. LLY-507 inhibited the proliferation of several esophageal, liver, and breast cancer cell lines in a dose-dependent manner. As a result, these findings suggest that LLY-507 serves as a valuable chemical probe to aid in the dissection of SMYD2 function in cancer and other biological processes.« less

  10. Inhibitor Bound Dengue NS2B-NS3pro Reveals Multiple Dynamic Binding Modes.

    PubMed

    Gibbs, Alan C; Steele, Ruth; Liu, Gaohua; Tounge, Brett A; Montelione, Gaetano T

    2018-03-13

    Dengue virus poses a significant global health threat as the source of increasingly deleterious dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. As no specific antiviral treatment exists for dengue infection, considerable effort is being applied to discover therapies and drugs for maintenance and prevention of these afflictions. The virus is primarily transmitted by mosquitoes, and infection occurs following viral endocytosis by host cells. Upon entering the cell, viral RNA is translated into a large multisubunit polyprotein which is post-translationally cleaved into mature, structural and nonstructural (NS) proteins. The viral genome encodes the enzyme to carry out cleavage of the large polyprotein, specifically the NS2B-NS3pro cofactor-protease complex-a target of high interest for drug design. One class of recently discovered NS2B-NS3pro inhibitors is the substrate-based trifluoromethyl ketone containing peptides. These compounds interact covalently with the active site Ser135 via a hemiketal adduct. A detailed picture of the intermolecular protease/inhibitor interactions of the hemiketal adduct is crucial for rational drug design. We demonstrate, through the use of protein- and ligand-detected solution-state 19 F and 1 H NMR methods, an unanticipated multibinding mode behavior of a representative of this class of inhibitors to dengue NS2B-NS3pro. Our results illustrate the highly dynamic nature of both the covalently bound ligand and protease protein structure, and the need to consider these dynamics when designing future inhibitors in this class.

  11. Metabolic changes associated with metformin potentiates Bcl-2 inhibitor, Venetoclax, and CDK9 inhibitor, BAY1143572 and reduces viability of lymphoma cells.

    PubMed

    Chukkapalli, Vineela; Gordon, Leo I; Venugopal, Parameswaran; Borgia, Jeffrey A; Karmali, Reem

    2018-04-20

    Metformin exerts direct anti-tumor effects by activating AMP-activated protein kinase (AMPK), a major sensor of cellular metabolism in cancer cells. This, in turn, inhibits pro-survival mTOR signaling. Metformin has also been shown to disrupt complex 1 of the mitochondrial electron transport chain. Here, we explored the lymphoma specific anti-tumor effects of metformin using Daudi (Burkitt), SUDHL-4 (germinal center diffuse large B-cell lymphoma; GC DLBCL), Jeko-1 (Mantle-cell lymphoma; MCL) and KPUM-UH1 (double hit DLBCL) cell lines. We demonstrated that metformin as a single agent, especially at high concentrations produced significant reductions in viability and proliferation only in Daudi and SUDHL-4 cell lines with associated alterations in mitochondrial oxidative and glycolytic metabolism. As bcl-2 proteins, cyclin dependent kinases (CDK) and phosphoinositol-3- kinase (PI3K) also influence mitochondrial physiology and metabolism with clear relevance to the pathogenesis of lymphoma, we investigated the potentiating effects of metformin when combined with novel agents Venetoclax (bcl-2 inhibitor), BAY-1143572 (CDK9 inhibitor) and Idelalisib (p110δ- PI3K inhibitor). Co-treating KPUM-UH1 and SUDHL-4 cells with 10 mM of metformin resulted in 1.4 fold and 8.8 fold decreases, respectively, in IC-50 values of Venetoclax. By contrast, 3-fold and 10 fold reduction in IC-50 values of BAY-1143572 in Daudi and Jeko-1 cells respectively was seen in the presence of 10 mM of metformin. No change in IC-50 value for Idelalisib was observed across cell lines. These data suggest that although metformin is not a potent single agent, targeting cancer metabolism with similar but more effective drugs in novel combination with either bcl-2 or CDK9 inhibitors warrants further exploration.

  12. C-Aryl glucoside SGLT2 inhibitors containing a biphenyl motif as potential anti-diabetic agents.

    PubMed

    Ding, Yuyang; Mao, Liufeng; Xu, Dengfeng; Xie, Hui; Yang, Ling; Xu, Hongjiang; Geng, Wenjun; Gao, Yong; Xia, Chunguang; Zhang, Xiquan; Meng, Qingyi; Wu, Donghai; Zhao, Junling; Hu, Wenhui

    2015-07-15

    A series of highly active C-aryl glucoside SGLT2 inhibitors containing a biphenyl motif were designed and synthesized for biological evaluation. Among the compounds tested, compound 16l demonstrated high inhibitory activity against SGLT2 (IC50=1.9 nM) with an excellent pharmacokinetic profile. Further study indicated that the in vivo efficacy of compound 16l was comparable to that of dapagliflozin, suggesting that further development would be worthwhile. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. In Silico Discovery of Potential Uridine-Cytidine Kinase 2 Inhibitors from the Rhizome of Alpinia mutica.

    PubMed

    Malami, Ibrahim; Abdul, Ahmad Bustamam; Abdullah, Rasedee; Bt Kassim, Nur Kartinee; Waziri, Peter; Christopher Etti, Imaobong

    2016-04-08

    Uridine-cytidine kinase 2 is implicated in uncontrolled proliferation of abnormal cells and it is a hallmark of cancer, therefore, there is need for effective inhibitors of this key enzyme. In this study, we employed the used of in silico studies to find effective UCK2 inhibitors of natural origin using bioinformatics tools. An in vitro kinase assay was established by measuring the amount of ADP production in the presence of ATP and 5-fluorouridine as a substrate. Molecular docking studies revealed an interesting ligand interaction with the UCK2 protein for both flavokawain B and alpinetin. Both compounds were found to reduce ADP production, possibly by inhibiting UCK2 activity in vitro. In conclusion, we have identified flavokawain B and alpinetin as potential natural UCK2 inhibitors as determined by their interactions with UCK2 protein using in silico molecular docking studies. This can provide information to identify lead candidates for further drug design and development.

  14. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development.

    PubMed

    Cang, Shundong; Iragavarapu, Chaitanya; Savooji, John; Song, Yongping; Liu, Delong

    2015-11-20

    With the advent of new agents targeting CD20, Bruton's tyrosine kinase, and phosphoinositol-3 kinase for chronic lymphoid leukemia (CLL), more treatment options exist than ever before. B-cell lymphoma-2 (BCL-2) plays a major role in cellular apoptosis and is a druggable target. Small molecule inhibitors of BCL-2 are in active clinical studies. ABT-199 (venetoclax, RG7601, GDC-0199) has been granted breakthrough designation by FDA for relapsed or refractory CLL with 17p deletion. In this review, we summarized the latest clinical development of ABT-199/venetoclax and other novel agents targeting the BCL-2 proteins.

  15. Design and synthesis of potent, orally-active DGAT-1 inhibitors containing a dioxino[2,3-d]pyrimidine core.

    PubMed

    Dow, Robert L; Andrews, Melissa; Aspnes, Gary E; Balan, Gayatri; Michael Gibbs, E; Guzman-Perez, Angel; Karki, Kapil; Laperle, Jennifer L; Li, Jian-Cheng; Litchfield, John; Munchhof, Michael J; Perreault, Christian; Patel, Leena

    2011-10-15

    A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Design, synthesis and biological evaluation of novel xanthine oxidase inhibitors bearing a 2-arylbenzo[b]furan scaffold.

    PubMed

    Tang, Hong-Jin; Li, Wei; Zhou, Mei; Peng, Li-Ying; Wang, Jin-Xin; Li, Jia-Huang; Chen, Jun

    2018-05-10

    Xanthine oxidase, which catalyzes the oxidative reaction of hypoxanthine and xanthine into uric acid, is a key enzyme to the pathogenesis of hyperuricemia and gout. In this study, for the purpose of discovering novel xanthine oxidase (XO) inhibitors, a series of 2-arylbenzo[b]furan derivatives (3a-3d, 4a-4o and 6a-6d) were designed and synthesized. All these compounds were evaluated their xanthine oxidase inhibitory and antioxidant activities by using in vitro enzymatic assay and cellular model. The results showed that a majority of the designed compounds exhibited potent xanthine oxidase inhibitory effects and antioxidant activities, and compound 4a emerged as the most potent xanthine oxidase inhibitor (IC 50  = 4.45 μM). Steady-state kinetic measurements of the inhibitor 4a with the bovine milk xanthine oxidase indicated a mixed type inhibition with 3.52 μM K i and 13.14 μM K is , respectively. The structure-activity relationship analyses have also been presented. Compound 4a exhibited the potent hypouricemic effect in the potassium oxonate-induced hyperuricemic mice model. A molecular docking study of compound 4a was performed to gain an insight into its binding mode with xanthine oxidase. These results highlight the identification of a new class of xanthine oxidase inhibitors that have potential to be more efficacious in treatment of gout. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  17. A thermostable trypsin inhibitor with antiproliferative activity from small pinto beans.

    PubMed

    Chan, Yau Sang; Zhang, Yanbo; Sze, Stephen Cho Wing; Ng, Tzi Bun

    2014-08-01

    Small pinto bean is a cultivar of Phaseolus vulgaris. It produces a 16-kDa trypsin inhibitor that could be purified using anion exchange and size chromatography. Q-Sepharose, Mono Q and Superdex 75 columns were employed for the isolation process. Small pinto bean trypsin inhibitor demonstrated moderate pH stability (pH 2-10) and marked heat stability, with its trypsin inhibitory activity largely retained after exposure to 100 °C for half an hour. The activity was abolished in the presence of dithiothreitol, in a dose-dependent manner, implying that disulfide bonds in small pinto bean trypsin inhibitor are crucial for the activity. The trypsin inhibitor showed a blocked N-terminus. The trypsin inhibitor only slightly inhibited the viability of breast cancer MCF7 and hepatoma HepG2 cells at 125 μM.

  18. Leucine-rich repeat kinase 2 inhibitors: a patent review (2014-2016).

    PubMed

    Galatsis, Paul

    2017-06-01

    Leucine-rich repeat kinase 2 (LRRK2) is a member of the Tyrosine Kinase-Like (TKL) branch of the kinome tree and is a multi-domain protein that includes GTPase and kinase activity. While genome-wide association studies (GWAS) has linked LRRK2 with Crohn's disease and leprosy, it has received the greatest attention due to it being implicated as one of the genetic loci associated with autosomal dominant inheritance in Parkinson's disease (PD). Areas covered: In this review, the small molecule patent literature from 2014-2016 with a focus on composition of matter and use patents was surveyed. Scifinder was primarily searched using 'LRRK2' as the query to identify all relevant literature and then triaged for small molecule patents. Expert opinion: The patent landscape around LRRK2 continues to develop. The early patents covered using existing kinase inhibitors for use against LRRK2. This evolved to compounds specifically designed for selectivity against LRRK2, but key exemplified compounds lacked sufficient brain exposure to affect sufficient efficacy. More recent compounds have addressed this deficiency and show greater potential for treating PD. While potency will be necessary to generate medicines with low human daily doses, brain penetration and safety will be the key differentiators for ultimately determining the most effective LRRK2 disease-modifying treatment for PD.

  19. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation

    PubMed Central

    Lewin, Matthew; Samuel, Stephen; Merkel, Janie; Bickler, Philip

    2016-01-01

    Snakebite remains a neglected medical problem of the developing world with up to 125,000 deaths each year despite more than a century of calls to improve snakebite prevention and care. An estimated 75% of fatalities from snakebite occur outside the hospital setting. Because phospholipase A2 (PLA2) activity is an important component of venom toxicity, we sought candidate PLA2 inhibitors by directly testing drugs. Surprisingly, varespladib and its orally bioavailable prodrug, methyl-varespladib showed high-level secretory PLA2 (sPLA2) inhibition at nanomolar and picomolar concentrations against 28 medically important snake venoms from six continents. In vivo proof-of-concept studies with varespladib had striking survival benefit against lethal doses of Micrurus fulvius and Vipera berus venom, and suppressed venom-induced sPLA2 activity in rats challenged with 100% lethal doses of M. fulvius venom. Rapid development and deployment of a broad-spectrum PLA2 inhibitor alone or in combination with other small molecule inhibitors of snake toxins (e.g., metalloproteases) could fill the critical therapeutic gap spanning pre-referral and hospital setting. Lower barriers for clinical testing of safety tested, repurposed small molecule therapeutics are a potentially economical and effective path forward to fill the pre-referral gap in the setting of snakebite. PMID:27571102

  20. Development of a novel non-radioactive cell-based method for the screening of SGLT1 and SGLT2 inhibitors using 1-NBDG.

    PubMed

    Chang, Hung-Chi; Yang, Su-Fu; Huang, Ching-Chun; Lin, Tzung-Sheng; Liang, Pi-Hui; Lin, Chun-Jung; Hsu, Lih-Ching

    2013-08-01

    Sodium-coupled glucose co-transporters SGLT1 and SGLT2 play important roles in intestinal absorption and renal reabsorption of glucose, respectively. Blocking SGLT2 is a novel mechanism for lowering the blood glucose level by inhibiting renal glucose reabsorption and selective SGLT2 inhibitors are under development for treatment of type 2 diabetes. Furthermore, it has been reported that perturbation of SGLT1 is associated with cardiomyopathy and cancer. Therefore, both SGLT1 and SGLT2 are potential therapeutic targets. Here we report the development of a non-radioactive cell-based method for the screening of SGLT inhibitors using COS-7 cells transiently expressing human SGLT1 (hSGLT1), CHO-K1 cells stably expressing human SGLT2 (hSGLT2), and a novel fluorescent d-glucose analogue 1-NBDG as a substrate. Our data indicate that 1-NBDG can be a good replacement for the currently used isotope-labeled SGLT substrate, (14)C-AMG. The Michaelis constant of 1-NBDG transport (0.55 mM) is similar to that of d-glucose (0.51 mM) and AMG (0.40 mM) transport through hSGLT1. The IC50 values of a SGLT inhibitor phlorizin for hSGLT1 obtained using 1-NBDG and (14)C-AMG were identical (0.11 μM) in our cell-based system. The IC50 values of dapagliflozin, a well-known selective SGLT2 inhibitor, for hSGLT2 and hSGLT1 determined using 1-NBDG were 1.86 nM and 880 nM, respectively, which are comparable to the published results obtained using (14)C-AMG. Compared to (14)C-AMG, the use of 1-NBDG is cost-effective, convenient and potentially more sensitive. Taken together, a non-radioactive system using 1-NBDG has been validated as a rapid and reliable method for the screening of SGLT1 and SGLT2 inhibitors.

  1. Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position.

    PubMed

    Felicetti, Tommaso; Cannalire, Rolando; Nizi, Maria Giulia; Tabarrini, Oriana; Massari, Serena; Barreca, Maria Letizia; Manfroni, Giuseppe; Schindler, Bryan D; Cecchetti, Violetta; Kaatz, Glenn W; Sabatini, Stefano

    2018-06-06

    The alarming and rapid spread of antimicrobial resistance among bacteria represents a high risk for global health. Targeting factors involved in resistance to restore the activity of failing antibiotics is a promising strategy to overcome this urgent medical need. Efflux pump inhibitors are able to increase antibiotic concentrations in bacteria, thus they can be considered true antimicrobial resistance breakers. In this work, continuing our studies on inhibitors of the Staphylococcus aureus NorA pump, we designed, synthesized and biologically evaluated novel 2-phenylquinoline derivatives starting from our hits 1 and 2. Two of the synthesized compounds (6 and 7) bearing a C-6 benzyloxy group showed the best NorA inhibition activity, thereby providing an excellent starting point to direct future chemical optimizations. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Recent progresses on AI-2 bacterial quorum sensing inhibitors.

    PubMed

    Zhu, Peng; Li, Minyong

    2012-01-01

    Quorum sensing (QS) is a communication procedure that predominates gene expression in response to cell density and fluctuations in the neighboring environment as a result of discerning molecules termed autoinducers (AIs). It has been embroiled that QS can govern bacterial behaviors such as the secretion of virulence factors, biofilm formation, bioluminescence production, conjugation, sporulation and swarming motility. Autoinducer 2 (AI-2), a QS signaling molecule brought up to be involved in interspecies communication, exists in both gram-negative and -positive bacteria. Therefore, novel approaches to interrupt AI-2 quorum sensing are being recognized as next generation antimicrobials. In the present review article, we summarized recent progresses on AI-2 bacterial quorum sensing inhibitors and discussed their potential as the antibacterial agents.

  3. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model

    PubMed Central

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J.; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy. PMID:25593987

  4. Novel LIMK2 Inhibitor Blocks Panc-1 Tumor Growth in a mouse xenograft model.

    PubMed

    Rak, Roni; Haklai, Roni; Elad-Tzfadia, Galit; Wolfson, Haim J; Carmeli, Shmuel; Kloog, Yoel

    2014-01-01

    LIM kinases (LIMKs) are important cell cytoskeleton regulators that play a prominent role in cancer manifestation and neuronal diseases. The LIMK family consists of two homologues, LIMK1 and LIMK2, which differ from one another in expression profile, intercellular localization, and function. The main substrate of LIMK is cofilin, a member of the actin-depolymerizing factor (ADF) protein family. When phosphorylated by LIMK, cofilin is inactive. LIMKs play a contributory role in several neurodevelopmental disorders and in cancer growth and metastasis. We recently reported the development and validation of a novel LIMK inhibitor, referred to here as T56-LIMKi, using a combination of computational methods and classical biochemistry techniques. Here we report that T56-LIMKi inhibits LIMK2 with high specificity, and shows little or no cross-reactivity with LIMK1. We found that T56-LIMKi decreases phosphorylated cofilin (p-cofilin) levels and thus inhibits growth of several cancerous cell lines, including those of pancreatic cancer, glioma and schwannoma. Because the most promising in-vitro effect of T56-LIMKi was observed in the pancreatic cancer cell line Panc-1, we tested the inhibitor on a nude mouse Panc-1 xenograft model. T56-LIMKi reduced tumor size and p-cofilin levels in the Panc-1 tumors, leading us to propose T56-LIMKi as a candidate drug for cancer therapy.

  5. Nimesulide, a COX-2 inhibitor, does not reduce lesion size or number in a nude mouse model of endometriosis.

    PubMed

    Hull, M L; Prentice, A; Wang, D Y; Butt, R P; Phillips, S C; Smith, S K; Charnock-Jones, D S

    2005-02-01

    Women with endometriosis have elevated levels of cyclooxygenase-2 (COX-2) in peritoneal macrophages and endometriotic tissue. Inhibition of COX-2 has been shown to reduce inflammation, angiogenesis and cellular proliferation. It may also downregulate aromatase activity in ectopic endometrial lesions. Ectopic endometrial establishment and growth are therefore likely to be suppressed in the presence of COX-2 inhibitors. We hypothesized that COX-2 inhibition would reduce the size and number of ectopic human endometrial lesions in a nude mouse model of endometriosis. The selective COX-2 inhibitor, nimesulide, was administered to estrogen-supplemented nude mice implanted with human endometrial tissue. Ten days after implantation, the number and size of ectopic endometrial lesions were evaluated and compared with lesions from a control group. Immunohistochemical assessment of vascular development and macrophage and myofibroblast infiltration in control and treated lesions was performed. There was no difference in the number or size of ectopic endometrial lesions in control and nimesulide-treated nude mice. Nimesulide did not induce a visually identifiable difference in blood vessel development or macrophage or myofibroblast infiltration in nude mouse explants. The hypothesized biological properties of COX-2 inhibition did not influence lesion number or size in the nude mouse model of endometriosis.

  6. Synergistic targeting of malignant pleural mesothelioma cells by MDM2 inhibitors and TRAIL agonists

    PubMed Central

    Urso, Loredana; Biasini, Lorena; Zago, Giulia; Calabrese, Fiorella; Conte, Pier Franco; Ciminale, Vincenzo; Pasello, Giulia

    2017-01-01

    Malignant Pleural Mesothelioma (MPM) is a chemoresistant tumor characterized by low rate of p53 mutation and upregulation of Murine Double Minute 2 (MDM2), suggesting that it may be effectively targeted using MDM2 inhibitors. In the present study, we investigated the anticancer activity of the MDM2 inhibitors Nutlin 3a (in vitro) and RG7112 (in vivo), as single agents or in combination with rhTRAIL. In vitro studies were performed using MPM cell lines derived from epithelioid (ZL55, M14K), biphasic (MSTO211H) and sarcomatoid (ZL34) MPMs. In vivo studies were conducted on a sarcomatoid MPM mouse model. In all the cell lines tested (with the exception of ZL55, which carries a biallelic loss-of-function mutation of p53), Nutlin 3a enhanced p21, MDM2 and DR5 expression, and decreased survivin expression. These changes were associated to cell cycle arrest but not to a significant induction of apoptosis. A synergistic pro-apoptotic effect was obtained through the association of rhTRAIL in all the cell lines harboring functional p53. This synergistic interaction of MDM2 inhibitor and TRAIL agonist was confirmed using a mouse preclinical model. Our results suggest that the combined targeting of MDM2 and TRAIL might provide a novel therapeutic option for treatment of MPM patients, particularly in the case of sarcomatoid MPM with MDM2 overexpression and functional inactivation of wild-type p53. PMID:28562336

  7. Revisiting AI-2 quorum sensing inhibitors: direct comparison of alkyl-DPD analogues and a natural product fimbrolide.

    PubMed

    Lowery, Colin A; Abe, Takumi; Park, Junguk; Eubanks, Lisa M; Sawada, Daisuke; Kaufmann, Gunnar F; Janda, Kim D

    2009-11-04

    Quorum sensing (QS) systems have been discovered in a wide variety of bacteria, and mediate both intra- and interspecies communication. The AI-2-based QS system represents the most studied of these proposed interspecies systems and has been shown to regulate diverse functions such as bioluminescence, expression of virulence factors, and biofilm formation. As such, the development of modulatory compounds, both agonists and antagonists, is of great interest for the study of unknown AI-2-based QS systems and the potential treatment of bacterial infections. The fimbrolide class of natural products has exhibited excellent inhibitory activity against AI-2-based QS and as such may be considered the "gold standard" of AI-2 inhibitors. Thus, we sought to include a fimbrolide as a control compound for our recently developed alkyl-DPD panel of AI-2 modulators. Herein, we present a revised synthesis of a commonly studied fimbrolide as well as a direct comparison between the fimbrolide and alkyl-DPD analogues. We demonstrate that our alkyl-DPD analogues are more potent inhibitors of QS in both Vibrio harveyi and Salmonella typhimurium, the two organisms with defined AI-2 QS systems, and in doing so call into question the widely accepted use of fimbrolide-derived compounds as the "gold standard" of AI-2 inhibition.

  8. A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in type 2 diabetes mellitus.

    PubMed

    Hohendorff, J; Szopa, M; Skupien, J; Kapusta, M; Zapala, B; Platek, T; Mrozinska, S; Parpan, T; Glodzik, W; Ludwig-Galezowska, A; Kiec-Wilk, B; Klupa, T; Malecki, M T

    2017-08-01

    SGLT2 inhibitors are a new class of oral hypoglycemic agents used in type 2 diabetes (T2DM). Their effectiveness in maturity onset diabetes of the young (MODY) is unknown. We aimed to assess the response to a single dose of 10 mg dapagliflozin in patients with Hepatocyte Nuclear Factor 1 Alpha (HNF1A)-MODY, Glucokinase (GCK)-MODY, and type 2 diabetes. We examined 14 HNF1A-MODY, 19 GCK-MODY, and 12 type 2 diabetes patients. All studied individuals received a single morning dose of 10 mg of dapagliflozin added to their current therapy of diabetes. To assess the response to dapagliflozin we analyzed change in urinary glucose to creatinine ratio and serum 1,5-Anhydroglucitol (1,5-AG) level. There were only four patients with positive urine glucose before dapagliflozin administration (one with HNF1A-MODY, two with GCK-MODY, and one with T2DM), whereas after SGLT-2 inhibitor use, glycosuria occurred in all studied participants. Considerable changes in mean glucose to creatinine ratio after dapagliflozin administration were observed in all three groups (20.51 ± 12.08, 23.19 ± 8.10, and 9.84 ± 6.68 mmol/mmol for HNF1A-MODY, GCK-MODY, and T2DM, respectively, p < 0.001 for all comparisons). Post-hoc analysis revealed significant differences in mean glucose to creatinine ratio change between type 2 diabetes and each monogenic diabetes in response to dapagliflozin (p = 0.02, p = 0.003 for HNF1-A and GCK MODY, respectively), but not between the two MODY forms (p = 0.7231). Significant change in serum 1,5-AG was noticed only in T2DM and it was -6.57 ± 7.34 mg/ml (p = 0.04). A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in T2DM. Whether flozins are a valid therapeutic option in these forms of MODY requires long-term clinical studies.

  9. Insights into the structural basis of N2 and O6 substituted guanine derivatives as cyclin-dependent kinase 2 (CDK2) inhibitors: prediction of the binding modes and potency of the inhibitors by docking and ONIOM calculations.

    PubMed

    Alzate-Morales, Jans H; Caballero, Julio; Vergara Jague, Ariela; González Nilo, Fernando D

    2009-04-01

    N2 and O6 substituted guanine derivatives are well-known as potent and selective CDK2 inhibitors. The ability of molecular docking using the program AutoDock3 and the hybrid method ONIOM, to obtain some quantum chemical descriptors with the aim to successfully rank these inhibitors, was assessed. The quantum chemical descriptors were used to explain the affinity, of the series studied, by a model of the CDK2 binding site. The initial structures were obtained from docking studies and the ONIOM method was applied with only a single point energy calculation on the protein-ligand structure. We obtained a good correlation model between the ONIOM derived quantum chemical descriptor "H-bond interaction energy" and the experimental biological activity, with a correlation coefficient value of R = 0.80 for 75 compounds. To the best of our knowledge, this is the first time that both methodologies are used in conjunction in order to obtain a correlation model. The model suggests that electrostatic interactions are the principal driving force in this protein-ligand interaction. Overall, the approach was successful for the cases considered, and it suggests that could be useful for the design of inhibitors in the lead optimization phase of drug discovery.

  10. SGLT2 Inhibitors in Diabetes Mellitus Treatment.

    PubMed

    Rosas-Guzman, Juan; Rosas-Saucedo, Juan; Romero-Garcia, Alma R J

    2017-01-01

    Type 2 Diabetes Mellitus (T2DM) is a chronic illness with high prevalence in Mexico, Latin- America, and the world and is associated to high morbidity, disability, and mortality rate, especially in developing countries. T2DM physiopathology is very complex; insulin resistance in the muscle, liver, and adipose tissue, a reduction in the production of incretins (mainly GLP-1) in the intestine, increased glucagon synthesis, an insufficient response of insulin generation, and increased glucose reabsorption in the kidney lead all together to an hyperglycemic state, which has been closely associated with the development of micro and macrovascular complications. Sodium Glucose Linked Transporter 2 inhibitors (SGLT2i) are the most recent therapeutic class available for treating T2DM. SGLT2i central effect is a glycosuric action, and they can reverse the deleterious effect of tubular reabsorption of glucose in the diabetic patient resulting in greater hyperglycemia. Because their mechanism of action is completely different to current drugs, they can be considered as monotherapy or in combination with any other oral or parenteral medication, including different types of insulin or its analogues. This therapeutic synergy accomplishes a greater percentage of patients achieving glycemic control goals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; Soliman, Aiten M; Al-Mishari, Abdullah A

    2018-12-01

    Targeting EGFR has proven to be beneficial in the treatment of several types of solid tumours. So, a series of novel 2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio)-N-substituted acetamide 5-19 were synthesised from the starting material 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4, to be evaluated as dual EGFR/HER2 inhibitors. The target compounds 5-19, were screened for their cytotoxic activity against A549 lung cancer cell line. The percentage inhibition of EGFR enzyme was measured and compared with erlotinib as the reference drug. Compounds 6, 8, 10, and 16 showed excellent EGFR inhibitory activity and were further selected for screening as dual EGFR/HER2 inhibitors. The four selected compounds showed IC 50 ranging from 0.009 to 0.026 µM for EGFR and 0.021 to 0.069 µM for the HER2 enzyme. Compound 8 was found to be the most potent in this study with IC 50 0.009 and 0.021 µM for EGFR and HER2, respectively.

  12. [Combination therapy of metformin vs dipeptidulpeptidase inhibitors and sulfonylureas in type 2 diabetes: clinical and economic impact].

    PubMed

    Sicras-Mainar, Antoni; Navarro-Artieda, Ruth

    2014-01-01

    Determine the clinical repurcussions of adherence, metabolic control, hypoglycemia and cardiovascular events (CVE) and economics (resources and costs) in the combination therapy of metformin vs DPP-4 (dipeptidyl peptidase-4) inhibitors and sulfonylureas in patients with type 2 diabetes. Materials and methods. Observational-multicenter and retrospective design. We evaluated patients ≥ 30 years of age in treatment with metformin and who started a second oral antidiabetic treatment during 2008-2009. 2 study groups were established: a) metformin + DPP-4 inhibitors, and b) metformin + sulfonylurea. comorbidity, metabolic control (HbA1c <7%), compliance and complications (hypoglycemia, CVE). Follow up was conducted over two years. The cost model differentiated between direct healthcare costs (primary/ specialty care), and indirect costs (labor productivity). logistic regression and ANCOVA models. Results. 1,405 patients were recruited (average age 67.1 years old; 56.2% male). 37.0% started a second treatment with DPP-4 inhibitors, and 63.0% with sulfonylureas. After two years of follow up, patients treated with DPP-4 inhibitors showed greater treatment adherence (70.3% vs. 60.6%; p <0.001); better metabolic control (64.3% vs. 60.6%; p<0.001), and a lower proportion of hypoglycemia (13.9% vs. 40.4%; p <0.001, respectively). The average/unit of adjusted total costs was € 2,341 vs. € 2,512; p = 0.038. CVE and renal failure rates were 3.7% vs. 6.4%; p = 0.027. Vildagliptin was the most used drug among DPP-4 inhibitors. Conclusions. Sulfonylureas were the most used drug for diabetes treatment. Patients treated with DPP-4 inhibitors had higher adherence and control of diabetes, with lower rates of hypoglycemia and CVE, resulting in lower healthcare costs.

  13. New MKLP-2 inhibitors in the paprotrain series: Design, synthesis and biological evaluations.

    PubMed

    Labrière, Christophe; Talapatra, Sandeep K; Thoret, Sylviane; Bougeret, Cécile; Kozielski, Frank; Guillou, Catherine

    2016-02-15

    Members of the kinesin superfamily are involved in key functions during intracellular transport and cell division. Their involvement in cell division makes certain kinesins potential targets for drug development in cancer chemotherapy. The two most advanced kinesin targets are Eg5 and CENP-E with inhibitors in clinical trials. Other mitotic kinesins are also being investigated for their potential as prospective drug targets. One recently identified novel potential cancer therapeutic target is the Mitotic kinesin-like protein 2 (MKLP-2), a member of the kinesin-6 family, which plays an essential role during cytokinesis. Previous studies have shown that inhibition of MKLP-2 leads to binucleated cells due to failure of cytokinesis. We have previously identified compound 1 (paprotrain) as the first selective inhibitor of MKLP-2. Herein we describe the synthesis and biological evaluation of new analogs of 1. Our structure-activity relationship (SAR) study reveals the key chemical elements in the paprotrain family necessary for MKLP-2 inhibition. We have successfully identified one MKLP-2 inhibitor 9a that is more potent than paprotrain. In addition, in vitro analysis of a panel of kinesins revealed that this compound is selective for MKLP-2 compared to other kinesins tested and also does not have an effect on microtubule dynamics. Upon testing in different cancer cell lines, we find that the more potent paprotrain analog is also more active than paprotrain in 10 different cancer cell lines. Increased selectivity and higher potency is therefore a step forward toward establishing MKLP-2 as a potential cancer drug target. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Novel Design Strategy for Checkpoint Kinase 2 Inhibitors Using Pharmacophore Modeling, Combinatorial Fusion, and Virtual Screening

    PubMed Central

    Wang, Yen-Ling

    2014-01-01

    Checkpoint kinase 2 (Chk2) has a great effect on DNA-damage and plays an important role in response to DNA double-strand breaks and related lesions. In this study, we will concentrate on Chk2 and the purpose is to find the potential inhibitors by the pharmacophore hypotheses (PhModels), combinatorial fusion, and virtual screening techniques. Applying combinatorial fusion into PhModels and virtual screening techniques is a novel design strategy for drug design. We used combinatorial fusion to analyze the prediction results and then obtained the best correlation coefficient of the testing set (r test) with the value 0.816 by combining the BesttrainBesttest and FasttrainFasttest prediction results. The potential inhibitors were selected from NCI database by screening according to BesttrainBesttest + FasttrainFasttest prediction results and molecular docking with CDOCKER docking program. Finally, the selected compounds have high interaction energy between a ligand and a receptor. Through these approaches, 23 potential inhibitors for Chk2 are retrieved for further study. PMID:24864236

  15. Probing the molecular mechanism of action of the HIV-1 reverse transcriptase inhibitor 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) using pre-steady-state kinetics.

    PubMed

    Muftuoglu, Yagmur; Sohl, Christal D; Mislak, Andrea C; Mitsuya, Hiroaki; Sarafianos, Stefan G; Anderson, Karen S

    2014-06-01

    The novel antiretroviral 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) is a potent nucleoside HIV-1 reverse transcriptase (RT) inhibitor (NRTI). Unlike other FDA-approved NRTIs, EFdA contains a 3'-hydroxyl. Pre-steady-state kinetics showed RT preferred incorporating EFdA-TP over native dATP. Moreover, RT slowly inserted nucleotides past an EFdA-terminated primer, resulting in delayed chain termination with unaffected fidelity. This is distinct from KP1212, another 3'-hydroxyl-containing RT inhibitor considered to promote viral lethal mutagenesis. New mechanistic features of RT inhibition by EFdA are revealed. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Renal Cell Carcinoma Associated With Xp11.2 Translocation/TFE3 Gene-fusion: A Long Response to mammalian target of rapamycin (mTOR) Inhibitors.

    PubMed

    Rua Fernández, Oliver R; Escala Cornejo, Roberto; Navarro Martín, Miguel; García Muñoz, María; Antunez Plaza, Patricia; García Dominguez, Aracely Rocío; Cruz Hernández, Juan J

    2018-04-24

    To demonstrate that patients with Xp11.2/TFE3 gene-fusion translocation renal cell carcinoma (RCC), despite having an aggressive course in young adults, could have valid treatment options such as mammalian target of rapamycin (mTOR) inhibitors with good outcomes. Furthermore, to explain possible mechanisms of action of mTOR inhibitors in this type of RCC. We report a case of a 44-year-old man who has been treated with everolimus for a Xp11.2 translocation/TFE3 gene-fusion RCC after 2 previous failed treatments with tyrosine kinase inhibitor. During the follow-up, we evaluated type and duration of response with everolimus. The patient obtained a long-lasting response of disease of 25 months with everolimus without any symptom. We believe that mTOR inhibitors could be a good line option treatment to consider for this type of patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Newer treatments of psoriasis regarding IL-23 inhibitors, phosphodiesterase 4 inhibitors, and Janus kinase inhibitors.

    PubMed

    Wcisło-Dziadecka, Dominika; Zbiciak-Nylec, Martyna; Brzezińska-Wcisło, Ligia; Bebenek, Katarzyna; Kaźmierczak, Agata

    2017-11-01

    The rapid progress of genetic engineering furthermore opens up new prospects in the therapy of this difficult-to-treat disease. IL-23 inhibitors, phosphodiesterase 4 (PDE4) inhibitors, and Janus kinase (JAK) inhibitors are currently encouraging further research. Two drugs which are IL-23 inhibitors are now in phase III of clinical trials. The aim of the action of both drugs is selective IL-23 inhibition by targeting the p19 subunit. Guselkumab is a fully human monoclonal antibody. Tildrakizumab is a humanized monoclonal antibody, which also belongs to IgG class and is targeted to subunit p19 of interleukin 23 (IL-23). Phosphodiesterase inhibitors exert an anti-inflammatory action and their most common group is the PDE4 family. PDE4 inhibits cAMP, which reduces the inflammatory response of the pathway of Th helper lymphocytes, Th17, and type 1 interferon which modulates the production of anti-inflammatory cytokines such as IL-10 interleukins. The Janus kinase (JAK) signaling pathway plays an important role in the immunopathogenesis of psoriasis. Tofacitinib suppresses the expression of IL-23, IL-17A, IL-17F, and IL-22 receptors during the stimulation of lymphocytes. Ruxolitinib is a selective inhibitor of JAK1 and JAK2 kinases and the JAK-STAT signaling pathway. This article is a review of the aforementioned drugs as described in the latest available literature. © 2017 Wiley Periodicals, Inc.

  18. Efficacy of novel acridine derivatives in the inhibition of hPrP90-231 prion protein fragment toxicity.

    PubMed

    Villa, Valentina; Tonelli, Michele; Thellung, Stefano; Corsaro, Alessandro; Tasso, Bruno; Novelli, Federica; Canu, Caterina; Pino, Albiana; Chiovitti, Katia; Paludi, Domenico; Russo, Claudio; Sparatore, Anna; Aceto, Antonio; Boido, Vito; Sparatore, Fabio; Florio, Tullio

    2011-05-01

    Quinacrine is one of the few molecules tested to treat patients affected by prion diseases, although the clinical outcome is largely unsatisfactory. To identify novel derivatives with higher neuroprotective activity, we evaluated the effects of a small library of acridine derivatives. The 6-chloro-2-methoxyacridine derivatives bearing on position 9 a quinolizidin-1-ylamino (Q1, Q2) or a quinolizidin-1-ylalkylamino residue (Q3, Q4, Q6, Q7), the thio-bioisoster of Q3 (Q5), the 9-(N-lupinylthiopropyl)amino derivative (Q8) and simple acridines (Q9 and Q10) were considered. We compared the effects of quinacrine and these novel analogues in the inhibition of the cytotoxic activity and protease K (PK) resistance of the human prion protein fragment 90-231 (hPrP90-231). We demonstrate that quinacrine caused a significant reduction of hPrP90-231 toxicity due to its binding to the fragment and the prevention of its conversion in a toxic isoform. All acridine derivatives analyzed showed high affinity binding for hPrP90-231, but only Q3 and Q10, caused a significant reduction of hPrP90-231 cytotoxicity, with higher efficacy than quinacrine. We attempted to correlate the cytoprotective effects of the new compounds with some biochemical parameters (binding affinity to hPrP90-231, intrinsic fluorescence quenching, hydrophobic amino acid exposure), but a direct relationship occurred only with the reduction of PK resistance, likely due to the prevention of the acquisition of the β-sheet-rich toxic conformation. These data represent interesting leads for further modifications of the basic side chain and the substituent pattern of the acridine nucleus to develop novel compounds with improved antiprion activity to be tested in in vivo experimental setting.

  19. The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus.

    PubMed

    Vallon, Volker

    2015-01-01

    The kidneys in normoglycemic humans filter 160-180 g of glucose per day (∼30% of daily calorie intake), which is reabsorbed and returned to the systemic circulation by the proximal tubule. Hyperglycemia increases the filtered and reabsorbed glucose up to two- to three-fold. The sodium glucose cotransporter SGLT2 in the early proximal tubule is the major pathway for renal glucose reabsorption. Inhibition of SGLT2 increases urinary glucose and calorie excretion, thereby reducing plasma glucose levels and body weight. The first SGLT2 inhibitors have been approved as a new class of antidiabetic drugs in type 2 diabetes mellitus, and studies are under way to investigate their use in type 1 diabetes mellitus. These compounds work independent of insulin, improve glycemic control in all stages of diabetes mellitus in the absence of clinically relevant hypoglycemia, and can be combined with other antidiabetic agents. By lowering blood pressure and diabetic glomerular hyperfiltration, SGLT2 inhibitors may induce protective effects on the kidney and cardiovascular system beyond blood glucose control.

  20. Computational Studies of Difference in Binding Modes of Peptide and Non-Peptide Inhibitors to MDM2/MDMX Based on Molecular Dynamics Simulations

    PubMed Central

    Chen, Jianzhong; Zhang, Dinglin; Zhang, Yuxin; Li, Guohui

    2012-01-01

    Inhibition of p53-MDM2/MDMX interaction is considered to be a promising strategy for anticancer drug design to activate wild-type p53 in tumors. We carry out molecular dynamics (MD) simulations to study the binding mechanisms of peptide and non-peptide inhibitors to MDM2/MDMX. The rank of binding free energies calculated by molecular mechanics generalized Born surface area (MM-GBSA) method agrees with one of the experimental values. The results suggest that van der Waals energy drives two kinds of inhibitors to MDM2/MDMX. We also find that the peptide inhibitors can produce more interaction contacts with MDM2/MDMX than the non-peptide inhibitors. Binding mode predictions based on the inhibitor-residue interactions show that the π–π, CH–π and CH–CH interactions dominated by shape complimentarity, govern the binding of the inhibitors in the hydrophobic cleft of MDM2/MDMX. Our studies confirm the residue Tyr99 in MDMX can generate a steric clash with the inhibitors due to energy and structure. This finding may theoretically provide help to develop potent dual-specific or MDMX inhibitors. PMID:22408446

  1. Crystal structure of NTPDase2 in complex with the sulfoanthraquinone inhibitor PSB-071.

    PubMed

    Zebisch, Matthias; Baqi, Younis; Schäfer, Petra; Müller, Christa E; Sträter, Norbert

    2014-03-01

    In many vertebrate tissues CD39-like ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) act in concert with ecto-5'-nucleotidase (e5NT, CD73) to convert extracellular ATP to adenosine. Extracellular ATP is a cytotoxic, pro-inflammatory signalling molecule whereas its product adenosine constitutes a universal and potent immune suppressor. Interference with these ectonucleotidases by use of small molecule inhibitors or inhibitory antibodies appears to be an effective strategy to enhance anti-tumour immunity and suppress neoangiogenesis. Here we present the first crystal structures of an NTPDase catalytic ectodomain in complex with the Reactive Blue 2 (RB2)-derived inhibitor PSB-071. In both of the two crystal forms presented the inhibitor binds as a sandwich of two molecules at the nucleoside binding site. One of the molecules is well defined in its orientation. Specific hydrogen bonds are formed between the sulfonyl group and the nucleoside binding loop. The methylphenyl side chain functionality that improved NTPDase2-specificity is sandwiched between R245 and R394, the latter of which is exclusively found in NTPDase2. The second molecule exhibits great in-plane rotational freedom and could not be modelled in a specific orientation. In addition to this structural insight into NTPDase inhibition, the observation of the putative membrane interaction loop (MIL) in two different conformations related by a 10° rotation identifies the MIL as a dynamic section of NTPDases that is potentially involved in regulation of catalysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans.

    PubMed

    Abdul-Ghani, Muhammad A; DeFronzo, Ralph A; Norton, Luke

    2013-10-01

    Inhibitors of sodium-glucose cotransporter 2 (SGLT2) are a novel class of antidiabetes drugs, and members of this class are under various stages of clinical development for the management of type 2 diabetes mellitus (T2DM). It is widely accepted that SGLT2 is responsible for >80% of the reabsorption of the renal filtered glucose load. However, maximal doses of SGLT2 inhibitors fail to inhibit >50% of the filtered glucose load. Because the clinical efficacy of this group of drugs is entirely dependent on the amount of glucosuria produced, it is important to understand why SGLT2 inhibitors inhibit <50% of the filtered glucose load. In this Perspective, we provide a novel hypothesis that explains this apparent puzzle and discuss some of the clinical implications inherent in this hypothesis.

  3. Promising cardiovascular and blood pressure effects of the SGLT2 inhibitors: a new class of antidiabetic drugs.

    PubMed

    Chrysant, S G

    2017-03-01

    Patients with type 2 diabetes mellitus (T2DM) exhibit an increased risk of cardiovascular (CV) events. Treatment of these patients with traditional as well as newer glucose-lowering drugs has not demonstrated superiority in CV outcomes compared to placebo, despite effective control of diabetes. However, the recently FDA-approved sodium-glucose cotransporter 2 (SGLT2) inhibitors for the treatment of T2DM have demonstrated promising CV-protecting and blood pressure-lowering effects in addition to their effectiveness in glucose lowering, making them a novel class of drugs for the treatment of T2DM. So far, there are three SGLT2 inhibitors approved by the FDA and EMA for the treatment of T2DM: canagliflozin, dapagliflozin and empagliflozin. They exert their antihyperglycemic effect through inhibition of SGLT2 in the kidney and significantly reduce glucose reabsorption from the proximal renal tubule. By blocking glucose reabsorption, they lead to loss of calories, weight, abdominal and total body fat, blood pressure and CV complications. One CV outcomes randomized trial and several short-term studies have shown reductions in CV events and blood pressure in patients with T2DM. It is the hope that large ongoing long-term outcome studies will provide further much-needed information, when they are completed. Copyright 2017 Clarivate Analytics.

  4. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP.

    PubMed

    Iwamoto, Masashi; Watashi, Koichi; Tsukuda, Senko; Aly, Hussein Hassan; Fukasawa, Masayoshi; Fujimoto, Akira; Suzuki, Ryosuke; Aizaki, Hideki; Ito, Takayoshi; Koiwai, Osamu; Kusuhara, Hiroyuki; Wakita, Takaji

    2014-01-17

    Hepatitis B virus (HBV) entry has been analyzed using infection-susceptible cells, including primary human hepatocytes, primary tupaia hepatocytes, and HepaRG cells. Recently, the sodium taurocholate cotransporting polypeptide (NTCP) membrane transporter was reported as an HBV entry receptor. In this study, we established a strain of HepG2 cells engineered to overexpress the human NTCP gene (HepG2-hNTCP-C4 cells). HepG2-hNTCP-C4 cells were shown to be susceptible to infection by blood-borne and cell culture-derived HBV. HBV infection was facilitated by pretreating cells with 3% dimethyl sulfoxide permitting nearly 50% of the cells to be infected with HBV. Knockdown analysis suggested that HBV infection of HepG2-hNTCP-C4 cells was mediated by NTCP. HBV infection was blocked by an anti-HBV surface protein neutralizing antibody, by compounds known to inhibit NTCP transporter activity, and by cyclosporin A and its derivatives. The infection assay suggested that cyclosporin B was a more potent inhibitor of HBV entry than was cyclosporin A. Further chemical screening identified oxysterols, oxidized derivatives of cholesterol, as inhibitors of HBV infection. Thus, the HepG2-hNTCP-C4 cell line established in this study is a useful tool for the identification of inhibitors of HBV infection as well as for the analysis of the molecular mechanisms of HBV infection. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Targeting the sugar metabolism of tumors with a first-in-class 6-phosphofructo-2-kinase (PFKFB4) inhibitor.

    PubMed

    Chesney, Jason; Clark, Jennifer; Lanceta, Lilibeth; Trent, John O; Telang, Sucheta

    2015-07-20

    Human tumors exhibit increased glucose uptake and metabolism as a result of high demand for ATP and anabolic substrates and this metabolotype is a negative prognostic indicator for survival. Recent studies have demonstrated that cancer cells from several tissue origins and genetic backgrounds require the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4 (PFKFB4), a regulatory enzyme that synthesizes an allosteric activator of glycolysis, fructose-2,6-bisphosphate. We report the discovery of a first-in-class PFKFB4 inhibitor, 5-(n-(8-methoxy-4-quinolyl)amino)pentyl nitrate (5MPN), using structure-based virtual computational screening. We find that 5MPN is a selective inhibitor of PFKFB4 that suppresses the glycolysis and proliferation of multiple human cancer cell lines but not non-transformed epithelial cells in vitro. Importantly, 5MPN has high oral bioavailability and per os administration of a non-toxic dose of 5MPN suppresses the glucose metabolism and growth of tumors in mice.

  6. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor.

    PubMed

    Bartesaghi, Alberto; Merk, Alan; Banerjee, Soojay; Matthies, Doreen; Wu, Xiongwu; Milne, Jacqueline L S; Subramaniam, Sriram

    2015-06-05

    Cryo-electron microscopy (cryo-EM) is rapidly emerging as a powerful tool for protein structure determination at high resolution. Here we report the structure of a complex between Escherichia coli β-galactosidase and the cell-permeant inhibitor phenylethyl β-D-thiogalactopyranoside (PETG), determined by cryo-EM at an average resolution of ~2.2 angstroms (Å). Besides the PETG ligand, we identified densities in the map for ~800 water molecules and for magnesium and sodium ions. Although it is likely that continued advances in detector technology may further enhance resolution, our findings demonstrate that preparation of specimens of adequate quality and intrinsic protein flexibility, rather than imaging or image-processing technologies, now represent the major bottlenecks to routinely achieving resolutions close to 2 Å using single-particle cryo-EM. Copyright © 2015, American Association for the Advancement of Science.

  7. Dipeptidyl peptidase-4 inhibitors or sodium glucose co-transporter-2 inhibitors as an add-on to insulin therapy: A comparative review

    PubMed Central

    Singh, Awadhesh Kumar; Singh, Ritu

    2016-01-01

    The gradual decline in β-cell function is inevitable in type 2 diabetes mellitus and therefore, substantial proportions of patients require insulin subsequently, in order to achieve optimal glucose control. While weight gain, hypoglycemia, and fluid retention especially during dose intensification is a known limitation to insulin therapy, these adverse effects also reduce patient satisfaction and treatment adherence. It is also possible that the benefits of intensive control achieved by insulin therapy, perhaps get nullified by the weight gain and hypoglycemia. In addition, improvement in plasma glucose or glycated hemoglobin (HbA1c) itself is associated with weight gain. Notably, studies have already suggested that reduction in body weight by ~3–5%, may allow a significantly better glycemic control. Thus, a class of drugs, which can reduce HbA1c effectively, yet are weight neutral or preferably reduce body weight, could be the most sought out strategy as an add-on therapy to insulin. While sulfonylureas (SUs) are associated with weight gain and hypoglycemia, pioglitazone increases body weight and fluid retention. Moreover, SUs are not recommended once premix or prandial insulin is commenced. The addition of newer agents, such as glucagon-like peptide-1 receptor agonist to insulin certainly appears to be an effective tool in reducing both HbA1c and body weight as is evident across the studies; however, this approach incurs an additional injection as well as cost. Dipeptidyl peptidase-4 inhibitors (DPP-4I) and sodium-glucose co-transporter-2 inhibitors (SGLT-2I) are other exciting options, as an add-on to insulin therapy primarily because these are oral drugs and do not possess any intrinsic potential of hypoglycemia. Furthermore, these are either weight neutral or induce significant weight loss. This review article aims to comparatively analyze the safety and efficacy of DPP-4I and SGLT-2I, as an add-on therapy to insulin. PMID:26904466

  8. Discovery, structure-activity relationship, and pharmacological evaluation of (5-substituted-pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidines as potent dipeptidyl peptidase IV inhibitors.

    PubMed

    Pei, Zhonghua; Li, Xiaofeng; Longenecker, Kenton; von Geldern, Thomas W; Wiedeman, Paul E; Lubben, Thomas H; Zinker, Bradley A; Stewart, Kent; Ballaron, Stephen J; Stashko, Michael A; Mika, Amanda K; Beno, David W A; Long, Michelle; Wells, Heidi; Kempf-Grote, Anita J; Madar, David J; McDermott, Todd S; Bhagavatula, Lakshmi; Fickes, Michael G; Pireh, Daisy; Solomon, Larry R; Lake, Marc R; Edalji, Rohinton; Fry, Elizabeth H; Sham, Hing L; Trevillyan, James M

    2006-06-15

    A series of (5-substituted pyrrolidinyl-2-carbonyl)-2-cyanopyrrolidine (C5-Pro-Pro) analogues was discovered as dipeptidyl peptidase IV (DPPIV) inhibitors as a potential treatment of diabetes and obesity. X-ray crystallography data show that these inhibitors bind to the catalytic site of DPPIV with the cyano group forming a covalent bond with the serine residue of DPPIV. The C5-substituents make various interactions with the enzyme and affect potency, chemical stability, selectivity, and PK properties of the inhibitors. Optimized analogues are extremely potent with subnanomolar K(i)'s, are chemically stable, show very little potency decrease in the presence of plasma, and exhibit more than 1,000-fold selectivity against related peptidases. The best compounds also possess good PK and are efficacious in lowering blood glucose in an oral glucose tolerance test in ZDF rats.

  9. Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity.

    PubMed

    Srivastava, Janmejai K; Pandey, Mitali; Gupta, Sanjay

    2009-11-04

    Inducible cyclooxygenase (COX-2) has been implicated in the process of inflammation and carcinogenesis. Chamomile has long been used in traditional medicine for the treatment of inflammatory diseases. In this study we aimed to investigate whether chamomile interferes with the COX-2 pathway. We used lipopolysaccharide (LPS)-activated RAW 264.7 macrophages as an in vitro model for our studies. Chamomile treatment inhibited the release of LPS-induced prostaglandin E(2) in RAW 264.7 macrophages. This effect was found to be due to inhibition of COX-2 enzyme activity by chamomile. In addition, chamomile caused reduction in LPS-induced COX-2 mRNA and protein expression, without affecting COX-1 expression. The non-steroidal anti-inflammatory drug, sulindac and a specific COX-2 inhibitor, NS398, were shown to act similarly in LPS-activated RAW 264.7 cells. Our data suggest that chamomile works by a mechanism of action similar to that attributed to non-steroidal anti-inflammatory drugs. These findings add a novel aspect to the biological profile of chamomile which might be important for understanding the usefulness of aqueous chamomile extract in the form of tea in preventing inflammation and cancer.

  10. Development of Inhibitors of the PAS-B Domain of the HIF-2α Transcription Factor

    PubMed Central

    Rogers, Jamie L.; Bayeh, Liela; Scheuermann, Thomas H.; Longgood, Jamie; Key, Jason; Naidoo, Jacinth; Melito, Lisa; Shokri, Cameron; Frantz, Doug E.; Bruick, Richard K.; Gardner, Kevin H.; MacMillan, John B.; Tambar, Uttam K.

    2013-01-01

    Hypoxia Inducible Factors (HIFs) are heterodimeric transcription factors induced in a variety of pathophysiological settings, including cancer. We describe the first detailed structure-activity-relationship study of small molecules designed to inhibit HIF-2α–ARNT heterodimerization by binding an internal cavity of the HIF-2α PAS-B domain. Through a series of biophysical characterizations of inhibitor/protein interactions (NMR and X-ray crystallography), we have established the structural requirements for artificial inhibitors of the HIF-2α–ARNT PAS-B interaction. These results may serve as a foundation for discovering therapeutic agents that function by a novel mode of action. PMID:23363003

  11. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA.

    PubMed

    Schaenzer, Adam J; Wlodarchak, Nathan; Drewry, David H; Zuercher, William J; Rose, Warren E; Striker, Rob; Sauer, John-Demian

    2017-10-13

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial P enicillin-binding-protein A nd S erine/ T hreonine kinase- A ssociated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition.

  12. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction.

    PubMed

    Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W; Waddell, M Brett; Guy, R Kiplin; Luthman, Kristina; Grøtli, Morten

    2015-01-01

    The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein-protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay.

  13. Design, Synthesis and Evaluation of 2,5-Diketopiperazines as Inhibitors of the MDM2-p53 Interaction

    PubMed Central

    Pettersson, Mariell; Quant, Maria; Min, Jaeki; Iconaru, Luigi; Kriwacki, Richard W.; Waddell, M. Brett; Guy, R. Kiplin; Luthman, Kristina; Grøtli, Morten

    2015-01-01

    The transcription factor p53 is the main tumour suppressor in cells and many cancer types have p53 mutations resulting in a loss of its function. In tumours that retain wild-type p53 function, p53 activity is down-regulated by MDM2 (human murine double minute 2) via a direct protein—protein interaction. We have designed and synthesised two series of 2,5-diketopiperazines as inhibitors of the MDM2-p53 interaction. The first set was designed to directly mimic the α-helical region of the p53 peptide, containing key residues in the i, i+4 and i+7 positions of a natural α-helix. Conformational analysis indicated that 1,3,6-trisubstituted 2,5-diketopiperazines were able to place substituents in the same spatial orientation as an α-helix template. The key step of the synthesis involved the cyclisation of substituted dipeptides. The other set of tetrasubstituted 2,5-diketopiperazines were designed based on structure-based docking studies and the Ugi multicomponent reaction was used for the synthesis. This latter set comprised the most potent inhibitors which displayed micromolar IC50-values in a biochemical fluorescence polarisation assay. PMID:26427060

  14. Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A).

    PubMed

    Truong, Eric C; Phuan, Puay W; Reggi, Amanda L; Ferrera, Loretta; Galietta, Luis J V; Levy, Sarah E; Moises, Alannah C; Cil, Onur; Diez-Cecilia, Elena; Lee, Sujin; Verkman, Alan S; Anderson, Marc O

    2017-06-08

    Transmembrane protein 16A (TMEM16A), also called anoctamin 1 (ANO1), is a calcium-activated chloride channel expressed widely mammalian cells, including epithelia, vascular smooth muscle tissue, electrically excitable cells, and some tumors. TMEM16A inhibitors have been proposed for treatment of disorders of epithelial fluid and mucus secretion, hypertension, asthma, and possibly cancer. Herein we report, by screening, the discovery of 2-acylaminocycloalkylthiophene-3-carboxylic acid arylamides (AACTs) as inhibitors of TMEM16A and analysis of 48 synthesized analogs (10ab-10bw) of the original AACT compound (10aa). Structure-activity studies indicated the importance of benzene substituted as 2- or 4-methyl, or 4-fluoro, and defined the significance of thiophene substituents and size of the cycloalkylthiophene core. The most potent compound (10bm), which contains an unusual bromodifluoroacetamide at the thiophene 2-position, had IC 50 of ∼30 nM, ∼3.6-fold more potent than the most potent previously reported TMEM16A inhibitor 4 (Ani9), and >10-fold improved metabolic stability. Direct and reversible inhibition of TMEM16A by 10bm was demonstrated by patch-clamp analysis. AACTs may be useful as pharmacological tools to study TMEM16A function and as potential drug development candidates.

  15. Discovery of a Highly Selective JAK2 Inhibitor, BMS-911543, for the Treatment of Myeloproliferative Neoplasms

    PubMed Central

    2015-01-01

    JAK2 kinase inhibitors are a promising new class of agents for the treatment of myeloproliferative neoplasms and have potential for the treatment of other diseases possessing a deregulated JAK2-STAT pathway. X-ray structure and ADME guided refinement of C-4 heterocycles to address metabolic liability present in dialkylthiazole 1 led to the discovery of a clinical candidate, BMS-911543 (11), with excellent kinome selectivity, in vivo PD activity, and safety profile. PMID:26288683

  16. A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA

    PubMed Central

    Schaenzer, Adam J.; Wlodarchak, Nathan; Drewry, David H.; Zuercher, William J.; Rose, Warren E.; Striker, Rob; Sauer, John-Demian

    2017-01-01

    Bacterial signaling systems such as protein kinases and quorum sensing have become increasingly attractive targets for the development of novel antimicrobial agents in a time of rising antibiotic resistance. The family of bacterial Penicillin-binding-protein And Serine/Threonine kinase-Associated (PASTA) kinases is of particular interest due to the role of these kinases in regulating resistance to β-lactam antibiotics. As such, small-molecule kinase inhibitors that target PASTA kinases may prove beneficial as treatments adjunctive to β-lactam therapy. Despite this interest, only limited progress has been made in identifying functional inhibitors of the PASTA kinases that have both activity against the intact microbe and high kinase specificity. Here, we report the results of a small-molecule screen that identified GSK690693, an imidazopyridine aminofurazan-type kinase inhibitor that increases the sensitivity of the intracellular pathogen Listeria monocytogenes to various β-lactams by inhibiting the PASTA kinase PrkA. GSK690693 potently inhibited PrkA kinase activity biochemically and exhibited significant selectivity for PrkA relative to the Staphylococcus aureus PASTA kinase Stk1. Furthermore, other imidazopyridine aminofurazans could effectively inhibit PrkA and potentiate β-lactam antibiotic activity to varying degrees. The presence of the 2-methyl-3-butyn-2-ol (alkynol) moiety was important for both biochemical and antimicrobial activity. Finally, mutagenesis studies demonstrated residues in the back pocket of the active site are important for GSK690693 selectivity. These data suggest that targeted screens can successfully identify PASTA kinase inhibitors with both biochemical and antimicrobial specificity. Moreover, the imidazopyridine aminofurazans represent a family of PASTA kinase inhibitors that have the potential to be optimized for selective PASTA kinase inhibition. PMID:28821610

  17. Cholinesterase Inhibitors and Hospitalization for Bradycardia: A Population-Based Study

    PubMed Central

    Park-Wyllie, Laura Y.; Mamdani, Muhammad M.; Li, Ping; Gill, Sudeep S.; Laupacis, Andreas; Juurlink, David N.

    2009-01-01

    Background Cholinesterase inhibitors are commonly used to treat dementia. These drugs enhance the effects of acetylcholine, and reports suggest they may precipitate bradycardia in some patients. We aimed to examine the association between use of cholinesterase inhibitors and hospitalization for bradycardia. Methods and Findings We examined the health care records of more than 1.4 million older adults using a case-time-control design, allowing each individual to serve as his or her own control. Case patients were residents of Ontario, Canada, aged 67 y or older hospitalized for bradycardia between January 1, 2003 and March 31, 2008. Control patients (3∶1) were not hospitalized for bradycardia, and were matched to the corresponding case on age, sex, and a disease risk index. All patients had received cholinesterase inhibitor therapy in the 9 mo preceding the index hospitalization. We identified 1,009 community-dwelling older persons hospitalized for bradycardia within 9 mo of using a cholinesterase inhibitor. Of these, 161 cases informed the matched analysis of discordant pairs. Of these, 17 (11%) required a pacemaker during hospitalization, and six (4%) died prior to discharge. After adjusting for temporal changes in drug utilization, hospitalization for bradycardia was associated with recent initiation of a cholinesterase inhibitor (adjusted odds ratio [OR] 2.13, 95% confidence interval [CI] 1.29–3.51). The risk was similar among individuals with pre-existing cardiac disease (adjusted OR 2.25, 95% CI 1.18–4.28) and those receiving negative chronotropic drugs (adjusted OR 2.34, 95% CI 1.16–4.71). We found no such association when we replicated the analysis using proton pump inhibitors as a neutral exposure. Despite hospitalization for bradycardia, more than half of the patients (78 of 138 cases [57%]) who survived to discharge subsequently resumed cholinesterase inhibitor therapy. Conclusions Among older patients, initiation of cholinesterase inhibitor

  18. Generation of tricyclic imidazo[1,2-a]pyrazines as novel PI3K inhibitors by application of a conformational restriction strategy.

    PubMed

    Martínez González, Sonia; Rodríguez-Arístegui, Sonsoles; Hernández, Ana Isabel; Varela, Carmen; González Cantalapiedra, Esther; Álvarez, Rosa María; Rodríguez Hergueta, Antonio; Bischoff, James R; Albarrán, María Isabel; Cebriá, Antonio; Cendón, Elena; Cebrián, David; Alfonso, Patricia; Pastor, Joaquín

    2017-06-01

    The involvement of the phosphoinositide 3-kinases (PI3Ks) in several diseases, especially in the oncology area, has singled it as one of the most explored therapeutic targets in the last two decades. Many different inhibitor classes have been developed by the industry and academia with a diverse selectivity profile within the PI3K family. In the present manuscript we report a further exploration of our lead PI3K inhibitor ETP-46321 (Martínez González et al., 2012) 1 by the application of a conformational restriction strategy. For that purpose we have successfully synthesized novel tricyclic imidazo[1,2-a]pyrazine derivatives as PI3K inhibitors. This new class of compounds had enable the exploration of the solvent-accessible region within PI3K and resulted in the identification of molecule 8q with the best selectivity PI3Kα/δ isoform profile in vitro, and promising in vivo PK data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Discovery of a Novel Series of Tankyrase Inhibitors by a Hybridization Approach.

    PubMed

    Anumala, Upendra Rao; Waaler, Jo; Nkizinkiko, Yves; Ignatev, Alexander; Lazarow, Katina; Lindemann, Peter; Olsen, Petter Angell; Murthy, Sudarshan; Obaji, Ezeogo; Majouga, Alexander G; Leonov, Sergey; von Kries, Jens Peter; Lehtiö, Lari; Krauss, Stefan; Nazaré, Marc

    2017-12-28

    A structure-guided hybridization approach using two privileged substructures gave instant access to a new series of tankyrase inhibitors. The identified inhibitor 16 displays high target affinity on tankyrase 1 and 2 with biochemical and cellular IC 50 values of 29 nM, 6.3 nM and 19 nM, respectively, and high selectivity toward other poly (ADP-ribose) polymerase enzymes. The identified inhibitor shows a favorable in vitro ADME profile as well as good oral bioavailability in mice, rats, and dogs. Critical for the approach was the utilization of an appropriate linker between 1,2,4-triazole and benzimidazolone moieties, whereby a cyclobutyl linker displayed superior affinity compared to a cyclohexane and phenyl linker.

  20. Characterization of the Annonaceous acetogenin, annonacinone, a natural product inhibitor of plasminogen activator inhibitor-1

    NASA Astrophysics Data System (ADS)

    Pautus, Stéphane; Alami, Mouad; Adam, Fréderic; Bernadat, Guillaume; Lawrence, Daniel A.; de Carvalho, Allan; Ferry, Gilles; Rupin, Alain; Hamze, Abdallah; Champy, Pierre; Bonneau, Natacha; Gloanec, Philippe; Peglion, Jean-Louis; Brion, Jean-Daniel; Bianchini, Elsa P.; Borgel, Delphine

    2016-11-01

    Plasminogen activator inhibitor-1 (PAI-1) is the main inhibitor of the tissue type and urokinase type plasminogen activators. High levels of PAI-1 are correlated with an increased risk of thrombotic events and several other pathologies. Despite several compounds with in vitro activity being developed, none of them are currently in clinical use. In this study, we evaluated a novel PAI-1 inhibitor, annonacinone, a natural product from the Annonaceous acetogenins group. Annonacinone was identified in a chromogenic screening assay and was more potent than tiplaxtinin. Annonacinone showed high potency ex vivo on thromboelastography and was able to potentiate the thrombolytic effect of tPA in vivo in a murine model. SDS-PAGE showed that annonacinone inhibited formation of PAI-1/tPA complex via enhancement of the substrate pathway. Mutagenesis and molecular dynamics allowed us to identify annonacinone binding site close to helix D and E and β-sheets 2A.