Science.gov

Sample records for a2 lp-pla2 activity

  1. Discovery of Potent and Orally Active Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Inhibitors as a Potential Therapy for Diabetic Macular Edema.

    PubMed

    Chen, Xinde; Wang, Kai; Xu, Wenwei; Ma, Quanxin; Chen, Minli; Du, Lili; Mo, Mingguang; Wang, Yiping; Shen, Jianhua

    2016-03-24

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is considered to be a promising therapeutic target for several inflammation-associated diseases. Herein, we describe the discovery of a series of pyrimidone derivatives as Lp-PLA2 inhibitors. Systematic structural modifications led to the identification of several pyrimidone compounds with promising in vitro inhibitory potency and pharmacokinetic properties. Compound 14c, selected for in vivo evaluation, demonstrated decent pharmacokinetic profiles and robust inhibitory potency against Lp-PLA2 in Sprague-Dawley (SD) rats. Furthermore, 14c significantly inhibited retinal thickening in STZ-induced diabetic SD rats as a model of diabetic macular edema (DME) after oral dosing for 4 weeks. Taken together, these results suggested that 14c can serve as a valuable lead in the search for new Lp-PLA2 inhibitors for prevention and/or treatment of DME. PMID:26927682

  2. Lipoprotein-associated phospholipase A2 (Lp-PLA2) as a therapeutic target to prevent retinal vasopermeability during diabetes

    PubMed Central

    Canning, Paul; Kenny, Bridget-Ann; Prise, Vivien; Glenn, Josephine; Sarker, Mosharraf H.; Hudson, Natalie; Brandt, Martin; Lopez, Francisco J.; Gale, David; Luthert, Philip J.; Adamson, Peter; Turowski, Patric; Stitt, Alan W.

    2016-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood–retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents. PMID:27298369

  3. Lipoprotein-associated phospholipase A2 (Lp-PLA2) as a therapeutic target to prevent retinal vasopermeability during diabetes.

    PubMed

    Canning, Paul; Kenny, Bridget-Ann; Prise, Vivien; Glenn, Josephine; Sarker, Mosharraf H; Hudson, Natalie; Brandt, Martin; Lopez, Francisco J; Gale, David; Luthert, Philip J; Adamson, Peter; Turowski, Patric; Stitt, Alan W

    2016-06-28

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) hydrolyses oxidized low-density lipoproteins into proinflammatory products, which can have detrimental effects on vascular function. As a specific inhibitor of Lp-PLA2, darapladib has been shown to be protective against atherogenesis and vascular leakage in diabetic and hypercholesterolemic animal models. This study has investigated whether Lp-PLA2 and its major enzymatic product, lysophosphatidylcholine (LPC), are involved in blood-retinal barrier (BRB) damage during diabetic retinopathy. We assessed BRB protection in diabetic rats through use of species-specific analogs of darapladib. Systemic Lp-PLA2 inhibition using SB-435495 at 10 mg/kg (i.p.) effectively suppressed BRB breakdown in streptozotocin-diabetic Brown Norway rats. This inhibitory effect was comparable to intravitreal VEGF neutralization, and the protection against BRB dysfunction was additive when both targets were inhibited simultaneously. Mechanistic studies in primary brain and retinal microvascular endothelial cells, as well as occluded rat pial microvessels, showed that luminal but not abluminal LPC potently induced permeability, and that this required signaling by the VEGF receptor 2 (VEGFR2). Taken together, this study demonstrates that Lp-PLA2 inhibition can effectively prevent diabetes-mediated BRB dysfunction and that LPC impacts on the retinal vascular endothelium to induce vasopermeability via VEGFR2. Thus, Lp-PLA2 may be a useful therapeutic target for patients with diabetic macular edema (DME), perhaps in combination with currently administered anti-VEGF agents. PMID:27298369

  4. Replacing with whole grains and legumes reduces Lp-PLA2 activities in plasma and PBMCs in patients with prediabetes or T2D1

    PubMed Central

    Kim, Minjoo; Jeung, Se Ri; Jeong, Tae-Sook; Lee, Sang-Hyun; Lee, Jong Ho

    2014-01-01

    To determine dietary effects on circulating lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and enzyme activity in peripheral blood mononuclear cells (PBMCs), 99 patients with impaired fasting glucose, impaired glucose tolerance, or newly-diagnosed T2D were randomly assigned to either a control group (usual diet with refined rice) or the whole grain and legume group. Substitution of whole grains and legumes for refined rice was associated with the replacement of 7% of energy from carbohydrates with energy from protein (about 4%) and fat. After 12 weeks, the whole grain and legume group showed a significant decrease in fasting glucose, insulin, homeostasis model assessment-insulin resistance, hemoglobin A1c, malondialdehyde, plasma Lp-PLA2 activity, and oxidized LDL (ox-LDL), and an increase in LDL particle size. The changes (Δs) in these variables in the whole grain and legume group were significantly different from those in controls after adjustment for the baseline levels. When all subjects were considered, Δ plasma Lp-PLA2 positively correlated with Δ glucose, Δ PBMC Lp-PLA2, Δ ox-LDL, and Δ urinary 8-epi-prostaglandin F2α after being adjusted for confounding factors. The Δ PBMC Lp-PLA2 correlated positively with Δ glucose and Δ ox-LDL, and negatively with Δ LDL particle size and baseline PBMC Lp-PLA2. The substitution of whole grains and legumes for refined rice resulted in a reduction in Lp-PLA2 activities in plasma and PBMCs partly through improved glycemic control, increased consumption of protein relative to carbohydrate, and reduced lipid peroxides. PMID:24904022

  5. Prehypertension-Associated Elevation in Circulating Lysophosphatidlycholines, Lp-PLA2 Activity, and Oxidative Stress

    PubMed Central

    Kim, Minjoo; Jung, Saem; Kim, Su Yeon; Lee, Sang-Hyun; Lee, Jong Ho

    2014-01-01

    Prehypertension is a risk factor for atherosclerosis. We investigated alterations in plasma metabolites that are associated with prehypertension. A group of 53 individuals was identified who remained within the range of prehypertension during repeated measurements in a 3-year period. This group was compared with the control group of 53 normotensive subjects who were matched for age and gender. Metabolomic profiles were analyzed with UPLC-LTQ-Orbitrap mass spectrometry. The prehypertensive group showed higher levels of lysophosphatidylcholines (lysoPCs) containing C14:0, C16:1, C16:0, C18:2, C18:1, C18:0, C20:5, C20:4, C20:3, and C22:6, higher circulating Lp-PLA2 activity, oxidized LDL (ox-LDL), interleukin 6 (IL-6), urinary 8-epi-PGF2α, and higher brachial-ankle pulse wave velocity (ba-PWV), before and after adjusting for BMI, WHR, smoking, alcohol consumption, serum lipid profiles, glucose, and insulin. LysoPC (16:0) was the most important plasma metabolite for evaluating the difference between control and prehypertensive groups, with a variable important in the projection (VIP) value of 17.173, and it showed a positive and independent association with DBP and SBP. In the prehypertensive group, the levels of lysoPC (16:0) positively and significantly correlated with ox-LDL, Lp-PLA2 activity, 8-epi-PGF2α, ba-PWV, and IL-6 before and after adjusting for confounding variables. Prehypertension-associated elevations in lysoPCs, Lp-PLA2 activity, ox-LDL, urinary 8-epi-PGF2α, IL-6, and ba-PWV could indicate increased oxidative stress from Lp-PLA2-catalyzed PC hydrolysis during increased LDL oxidation, thereby enhancing proinflammation and arterial stiffness. PMID:24800806

  6. Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA2) Discovered through X-ray Fragment Screening.

    PubMed

    Woolford, Alison J-A; Pero, Joseph E; Aravapalli, Sridhar; Berdini, Valerio; Coyle, Joseph E; Day, Philip J; Dodson, Andrew M; Grondin, Pascal; Holding, Finn P; Lee, Lydia Y W; Li, Peng; Manas, Eric S; Marino, Joseph; Martin, Agnes C L; McCleland, Brent W; McMenamin, Rachel L; Murray, Christopher W; Neipp, Christopher E; Page, Lee W; Patel, Vipulkumar K; Potvain, Florent; Rich, Sharna; Rivero, Ralph A; Smith, Kirsten; Somers, Donald O; Trottet, Lionel; Velagaleti, Ranganadh; Williams, Glyn; Xie, Ren

    2016-06-01

    Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues. PMID:27167608

  7. Blood pressure-lowering effect of Korean red ginseng associated with decreased circulating Lp-PLA2 activity and lysophosphatidylcholines and increased dihydrobiopterin level in prehypertensive subjects.

    PubMed

    Cha, Tae Woong; Kim, Minjoo; Kim, Minkyung; Chae, Jey Sook; Lee, Jong Ho

    2016-06-01

    We evaluated the effects of red ginseng consumption on blood pressure (BP) and the fasting plasma metabolome. This randomized, double-blind, placebo-controlled study included nonobese, nondiabetic, prehypertensive subjects consuming 10 capsules daily containing 5 g red ginseng (n=31) or placebo (n=31). Fasting plasma metabolome profiles were obtained using ultra performance liquid chromatography-linear trap quadrupole Orbitrap MS. After 12 weeks, participants consuming red ginseng showed reductions of 6.5 and 5.0 mm Hg in systolic and diastolic BP, respectively. Compared with controls, those consuming red ginseng showed greater reductions in changed values of systolic BP, diastolic BP and lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, after adjusting for baseline values. In addition, the red ginseng group showed a greater increase in dihydrobiopterin levels and greater decrease in palmitic amide and lysophosphatidylcholines (lysoPCs). The change in diastolic BP positively correlated with changes in lysoPCs and Lp-PLA2 activity. The BP-lowering effect of red ginseng is associated with decreased Lp-PLA2 and lysoPCs and increased dihydrobiopterin levels in prehypertensive subjects (ClinicalTrials.gov: NCT02326766). PMID:26843120

  8. [Lp-PLA2, a biomarker of vascular inflammation and vulnerability of atherosclerosis plaques].

    PubMed

    Bonnefont-Rousselot, D

    2016-05-01

    A chronic inflammation is involved in various stages of development of the atherosclerotic plaques. Among the emerging biomarkers of atherogenesis, the lipoprotein-associated phospholipase A2 (Lp-PLA2), formerly known as PAF-acetylhydrolase (McIntyre et al., 2009), hydrolyses the oxidized short chain phospholipids of low-density lipoproteins (LDL), thereby releasing pro-inflammatory mediators (lysophospholipids and oxidized fatty acids). Lp-PLA2, produced by monocytes/macrophages and T-lymphocytes, and mainly associated with LDL (Gazi et al., 2005), is predominantly expressed in the necrotic center of the atherosclerotic plaques and in the macrophage-rich areas (Kolodgie et al., 2006). It would have a predictive role of cardiovascular (CV) events in relation to the vulnerability of atherosclerotic plaques. Determination of Lp-PLA2 has been proposed in the assessment of the CV risk, to ensure a better stratification of populations at intermediate risk for targeted therapy (Davidson et al., 2008). Its proatherogenic role suggested that inhibition of its activity could ensure a better vascular protection in combination with cholesterol-lowering agents. Nevertheless, Lp-PLA2 is not yet a fully validated marker for use in daily clinical practice, especially since the studies using an inhibitor of Lp-PLA2 (darapladib) (STABILITY Investigators et al., 2014; O'Donoghue et al., 2014) did not show any reduction in coronary events. Lp-PLA2 could have a site-specific role in plaque inflammation and development (Fenning et al., 2015). High Lp-PLA2 activity could reflect a response to pro-inflammatory stress characteristic of atherosclerosis (Marathe et al., 2014). This presentation aims at clarifying the involvement of Lp-PLA2 in the pathophysiology of atherosclerosis, and at assessing its interest both as a biomarker for the onset of CV events and as a therapeutic target. PMID:26499399

  9. Short-term fenofibrate treatment reduces elevated plasma Lp-PLA2 mass and sVCAM-1 levels in a subcohort of hypertriglyceridemic GOLDN participants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High levels of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) are associated with inflammation, atherosclerosis, and coronary heart disease events. In addition, Lp-PLA(2) has been linked to classical markers of endothelial activation, including soluble vascular cell adhesion molecule-1 (sVCAM...

  10. The elevation of apoB in hypercholesterolemic patients is primarily attributed to the relative increase of apoB/Lp-PLA2

    PubMed Central

    Tellis, Constantinos C.; Moutzouri, Eliza; Elisaf, Moses; Wolfert, Robert L.; Tselepis, Alexandros D.

    2013-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a risk factor of cardiovascular disease. Plasma Lp-PLA2 is mainly associated with apolipoprotein (apo)B-containing lipoproteins, primarily with low density lipoproteins (LDLs). Importantly, only a proportion of circulating lipoproteins contain Lp-PLA2. We determined the plasma levels of Lp-PLA2-bound apoB (apoB/Lp-PLA2) in patients with primary hypercholesterolemia. The effect of simvastatin therapy was also addressed. The plasma apoB/Lp-PLA2 concentration in 50 normolipidemic controls and 53 patients with primary hypercholesterolemia at baseline and at 3 months posttreatment with simvastatin (40 mg/day) was determined by an enzyme-linked immunosorbent assay. The concentration of the apoB-containing lipoproteins that do not bind Lp-PLA2 [apoB/Lp-PLA2(−)] was calculated by subtracting the apoB/Lp-PLA2 from total apoB. The apoB/Lp-PLA2 levels were 3.6-fold higher, while apoB/Lp-PLA2(−) were 1.3-fold higher in patients compared with controls. After 3 months of simvastatin treatment apoB/Lp-PLA2 and apoB/Lp-PLA2(−) levels were reduced by 52% and 33%, respectively. The elevation in apoB-containing lipoproteins in hypercholesterolemic patients is mainly attributed to the relative increase in the proatherogenic apoB/Lp-PLA2, while simvastatin reduces these particles to a higher extent compared with apoB/Lp-PLA2(−). Considering that Lp-PLA2 is proatherogenic, the predominance of apoB/Lp-PLA2 particles in hypercholesterolemic patients may contribute to their higher atherogenicity and incidence of cardiovascular disease. PMID:24092915

  11. Lp-PLA2 Inhibitors for the Reduction of Cardiovascular Events.

    PubMed

    Steen, Dylan L; O'Donoghue, Michelle L

    2013-12-01

    Evidence suggests that inflammation plays a central role in the pathogenesis of atherosclerosis (Libby, Nature 420:868-874, 2002). Inflammation is a physiologic process with highly regulated and often redundant mechanisms to balance pro-inflammatory and anti-inflammatory responses. The complexity of these networks has made it challenging to identify those specific pathways or key enzymes that contribute directly to atherogenesis and could act as a valuable therapeutic target. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 family of enzymes and is believed to contribute to atherosclerotic plaque progression and instability by promoting inflammation. A large number of epidemiologic studies have demonstrated that elevated levels of Lp-PLA2 are associated with an increased risk of cardiovascular events across diverse patient populations, independent of established risk factors including low-density lipoprotein cholesterol. Further, a growing number of preclinical and genetic studies support a causal role for Lp-PLA2 in atherosclerosis. The development of a novel therapeutic agent that directly inhibits the Lp-PLA2 enzyme has provided a unique opportunity to directly test the hypothesis that inhibition of this inflammatory enzyme will translate into improved clinical outcomes. In this article, we will review the evidence to support the notion that Lp-PLA2 is causally implicated in the pathobiology of atherogenesis and discuss the potential utility of inhibiting this enzyme as a therapeutic target. PMID:25135391

  12. Translational studies of lipoprotein-associated phospholipase A2 in inflammation and atherosclerosis

    PubMed Central

    Ferguson, Jane F; Hinkle, Christine C; Mehta, Nehal N; Bagheri, Roshanak; DerOhannessian, Stephanie L; Shah, Rhia; Mucksavage, Megan I; Bradfield, Jonathan P; Hakonarson, Hakon; Wang, Xuexia; Master, Stephen R; Rader, Daniel J; Li, Mingyao; Reilly, Muredach P

    2012-01-01

    Objectives To examine the role of lipoprotein-associated phospholipase A2 (Lp-PLA2/PLA2G7) in human inflammation and coronary atherosclerosis. Background Lp-PLA2 has emerged as a potential therapeutic target in coronary heart disease (CHD). Data supporting Lp-PLA2 are indirect and confounded by species differences; whether Lp-PLA2 is causal in CHD remains in question. Methods We examined inflammatory regulation of Lp-PLA2 during experimental endotoxemia in human, probed the source of Lp-PLA2 in human leukocytes under inflammatory conditions, and assessed the relationship of variation in PLA2G7, the gene encoding Lp-PLA2, with coronary artery calcification (CAC). Results In contrast to circulating TNFα and CRP, blood and monocyte Lp-PLA2 mRNA decreased transiently, and plasma Lp-PLA2 mass declined modestly during endotoxemia. In vitro, Lp-PLA2 expression increased dramatically during human monocyte to macrophage differentiation and further in inflammatory macrophages and foam like-cells. Despite only a marginal association of SNPs in PLA2G7 with Lp-PLA2 activity or mass, numerous PLA2G7 SNPs were associated with CAC. In contrast, several SNPs in CRP were significantly associated with plasma CRP levels but had no relation with CAC. Conclusions Circulating Lp-PLA2 did not increase during acute phase response in human, while inflammatory macrophages and foam cells, but not circulating monocytes, are major leukocyte sources of Lp-PLA2. Common genetic variation in PLA2G7 is associated with sub-clinical coronary atherosclerosis. These data link Lp-PLA2 to atherosclerosis in human while highlighting the challenge in using circulating Lp-PLA2 as a biomarker of Lp-PLA2 actions in the vasculature. PMID:22340269

  13. Structural basis of specific interactions of Lp-PLA2 with HDL revealed by hydrogen deuterium exchange mass spectrometry[S

    PubMed Central

    Cao, Jian; Hsu, Yuan-Hao; Li, Sheng; Woods, Virgil L.; Dennis, Edward A.

    2013-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2), specifically Group VIIA PLA2, is a member of the phospholipase A2 superfamily and is found mainly associated with LDL and HDL in human plasma. Lp-PLA2 is considered as a risk factor, a potential biomarker, a target for therapy in the treatment of cardiovascular disease, and evidence suggests that the level of Lp-PLA2 in plasma is associated with the risk of future cardiovascular and stroke events. The differential location of the enzyme in LDL/HDL lipoproteins has been suggested to affect Lp-PLA2 function and/or its physiological role and an abnormal distribution of the enzyme may correlate with diseases. Although a mutagenesis study suggested that a surface helix (residues 362–369) mediates the association between Lp-PLA2 and HDL, the molecular details and mechanism of association has remained unknown. We have now employed hydrogen deuterium exchange mass spectrometry to characterize the interaction between recombinant human Lp-PLA2 and human HDL. We have found that specific residues 113–120, 192–204, and 360–368 likely mediate HDL binding. In a previous study, we showed that residues 113–120 are important for Lp-PLA2-liposome interactions. We now find that residues 192–204 show a decreased deuteration level when Lp-PLA2 is exposed to apoA-I, but not apoA-II, the most abundant apoproteins in HDL, and additionally, residues 360–368 are only affected by HDL.The results suggest that apoA-I and phospholipid membranes play crucial roles in Lp-PLA2 localization to HDL. PMID:23089916

  14. Lp-PLA2 silencing protects against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages.

    PubMed

    Zheng, HuaDong; Cui, DaJiang; Quan, XiaoJuan; Yang, WeiLin; Li, YingNa; Zhang, Lin; Liu, EnQi

    2016-09-01

    Atherosclerosis is a disease of the large- and medium-size arteries that is characterized by the formation of atherosclerotic plaques, in which foam cells are the characteristic pathological cells. However, the key underlying pathomechanisms are still not fully elucidated. In this study, we investigated the role of lipoprotein-associated phospholipase A2 (Lp-PLA2) in ox-LDL-induced oxidative stress and cell apoptosis, and further, elucidated the potential machanisms in human THP1 macrophages. Flow cytometry and western blot analyses showed that both cell apoptosis and Lp-PLA2 expression were dose-dependently elevated after ox-LDL treatment for 24 h and also time-dependently increased after 50 mg/L ox-LDL incubation in THP1 macrophages. In addition, Lp-PLA2 silencing decreased ox-LDL-induced Lp-PLA2 and CD36 expression in THP1 macrophages. We also found that the levels of oil red O-staining, triglyceride (TG) and total cholesterol (TC) were significantly upregulated in ox-LDL-treated THP1 cells, but inhibited by Lp-PLA2 silencing. Furthermore, ox-LDL treatment resulted in significant increases of ROS and MDA but a marked decrease of SOD, effects that were reversed by Lp-PLA2 silencing in THP1 cells. Lp-PLA2 silencing reduced ox-LDL-induced cell apoptosis and caspase-3 expression in THP1 cells. Moreover, Lp-PLA2 siRNA transfection dramatically lowered the elevated levels of p-Akt and p-mTOR proteins in ox-LDL-treated THP1 cells. Both PI3K inhibitor LY294002 and mTOR inhibitor rapamycin decreased the augmented caspase-3 expression and TC content induced by ox-LDL, respectively. Taken together, these results revealed that Lp-PLA2 silencing protected against ox-LDL-induced oxidative stress and cell apoptosis via Akt/mTOR signaling pathway in human THP1 macrophages. PMID:27392709

  15. Lipoprotein-Associated Phospholipase A2 Activity Predicts Progression of Subclinical Coronary Atherosclerosis

    PubMed Central

    Kinney, Gregory L.; Snell-Bergeon, Janet K.; Maahs, David M.; Eckel, Robert H.; Ehrlich, James; Rewers, Marian

    2011-01-01

    Abstract Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a lipoprotein-associated enzyme that cleaves oxidized phosphatidylcholines, generating pro-atherosclerotic lysophosphatidylcholine and oxidized free fatty acids. Lp-PLA2 is independently associated with cardiovascular disease (CVD) in a variety of populations. Coronary calcium is a measure of subclinical CVD, and progression of coronary calcification predicts future CVD events. In type 1 diabetes there is an increase in coronary calcium and CVD despite a favorable lipid profile. Levels of Lp-PLA2 in type 1 diabetes are not known, nor is the relationship between Lp-PLA2 and progression of coronary calcification. Methods The Coronary Artery Calcification in Type 1 Diabetes study measured coronary calcium by electron-beam computed tomography twice over a 2.6 ± 0.3-year interval. Lp-PLA2 mass and activity were measured at baseline (n = 1,097 subjects, 506 with and 591 without type 1 diabetes). Results In type 1 diabetes Lp-PLA2 mass was marginally higher (285 ± 79 vs. 278 ± 78 ng/mL, P = 0.1), and Lp-PLA2 activity was significantly lower (137 ± 30 vs. 146 ± 36 nmol/min/mL, P < 0.0001) than in those without diabetes. There was a greater proportion of those with progression of coronary calcification in type 1 diabetes compared with those without diabetes (24% vs. 10%, P < 0.0001). Lp-PLA2 activity was independently associated with progression of coronary calcification in multivariate analysis (4th quartile verses bottom three quartiles, odds ratio = 1.77 [1.08–2.91], P = 0.02). LpPLA2 mass was not significantly associated with progression of coronary calcification in this cohort (P = 0.09). Conclusions Lp-PLA2 activity predicts progression of subclinical atherosclerosis in individuals with and without type 1 diabetes. PMID:21291330

  16. Lipoprotein-associated phospholipase A2 prognostic role in atherosclerotic complications.

    PubMed

    Maiolino, Giuseppe; Bisogni, Valeria; Rossitto, Giacomo; Rossi, Gian Paolo

    2015-10-26

    Atherosclerosis manifests itself clinically at advanced stages when plaques undergo hemorrhage and/or rupture with superimposed thrombosis, thus abruptly stopping blood supply. Identification of markers of plaque destabilization at a pre-clinical stage is, therefore, a major goal of cardiovascular research. Promising results along this line were provided by studies investigating the lipoprotein-associated phospholipase A2 (Lp-PLA2), a member of phospholipase A2 proteins family that plays a key role in the metabolism of pro-inflammatory phospholipids, as oxidized low-density lipoproteins, and in the generation of pro-atherogenic metabolites, including lysophosphatidylcholine and oxidized free fatty acids. We herein review the experimental and clinical studies supporting use of Lp-PLA2 activity for predicting cardiovascular events. To his end we considered not only Lp-PLA2 activity and mass, but also Lp-PLA2 gene variations and their association with incident coronary artery disease, stroke, and cardiovascular mortality. Based on these evidences the major scientific societies have included in their guidelines the measurement of Lp-PLA2 activity among the biomarkers that are useful in risk stratification of adult asymptomatic patients at intermediate cardiovascular risk. The results of two recently published major clinical trials with the Lp-PLA2 inhibitor darapladib, which seem to challenge the pathogenic role of Lp-PLA2, will also be discussed. PMID:26516415

  17. Lipoprotein-associated phospholipase A2 prognostic role in atherosclerotic complications

    PubMed Central

    Maiolino, Giuseppe; Bisogni, Valeria; Rossitto, Giacomo; Rossi, Gian Paolo

    2015-01-01

    Atherosclerosis manifests itself clinically at advanced stages when plaques undergo hemorrhage and/or rupture with superimposed thrombosis, thus abruptly stopping blood supply. Identification of markers of plaque destabilization at a pre-clinical stage is, therefore, a major goal of cardiovascular research. Promising results along this line were provided by studies investigating the lipoprotein-associated phospholipase A2 (Lp-PLA2), a member of phospholipase A2 proteins family that plays a key role in the metabolism of pro-inflammatory phospholipids, as oxidized low-density lipoproteins, and in the generation of pro-atherogenic metabolites, including lysophosphatidylcholine and oxidized free fatty acids. We herein review the experimental and clinical studies supporting use of Lp-PLA2 activity for predicting cardiovascular events. To his end we considered not only Lp-PLA2 activity and mass, but also Lp-PLA2 gene variations and their association with incident coronary artery disease, stroke, and cardiovascular mortality. Based on these evidences the major scientific societies have included in their guidelines the measurement of Lp-PLA2 activity among the biomarkers that are useful in risk stratification of adult asymptomatic patients at intermediate cardiovascular risk. The results of two recently published major clinical trials with the Lp-PLA2 inhibitor darapladib, which seem to challenge the pathogenic role of Lp-PLA2, will also be discussed. PMID:26516415

  18. Higher Levels of Lipoprotein Associated Phospholipase A2 is associated with Increased Prevalence of Cognitive Impairment: the APAC Study

    PubMed Central

    Jiang, Ruixuan; Chen, Shengyun; Shen, Yuan; Wu, Jianwei; Chen, Shuohua; Wang, Anxin; Wu, Shouling; Zhao, Xingquan

    2016-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a unique circulating phospholipase with inflammatory and oxidative activities and the limited data regarding the relationship between Lp-PLA2 and cognitive impairment are conflicted. We conducted a cross-sectional study including 1,374 Chinese adults recruited from 2010 to 2011, aiming to evaluate the relationship between Lp-PLA2 levels and the prevalence of cognitive impairment in a Chinese community-based population. Participants underwent standardized evaluation. Serum Lp-PLA2 mass was measured by ELISA. Cognition status was evaluated via the Mini-Mental Status Exam (MMSE) and cognitive impairment was identified as MMSE <24. Multivariable logistic regression models were used to assess the associations of Lp-PLA2 mass with cognitive impairment. Lp-PLA2 mass was significantly associated with the prevalence of cognitive impairment after adjusting for other potential confounding factors (compared with the first quartile, adjusted ORs of the second, third, and fourth quartile were 2.058 (95% CI, 0.876–4.835), 2.834 (95% CI, 1.255–6.398), and 4.882 (95% CI, 2.212–10.777), p < 0.0001). In conclusion, elevated level of Lp-PLA2 mass was independently associated with the prevalence of cognitive impairment in Chinese adults. PMID:27609335

  19. Higher Levels of Lipoprotein Associated Phospholipase A2 is associated with Increased Prevalence of Cognitive Impairment: the APAC Study.

    PubMed

    Jiang, Ruixuan; Chen, Shengyun; Shen, Yuan; Wu, Jianwei; Chen, Shuohua; Wang, Anxin; Wu, Shouling; Zhao, Xingquan

    2016-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a unique circulating phospholipase with inflammatory and oxidative activities and the limited data regarding the relationship between Lp-PLA2 and cognitive impairment are conflicted. We conducted a cross-sectional study including 1,374 Chinese adults recruited from 2010 to 2011, aiming to evaluate the relationship between Lp-PLA2 levels and the prevalence of cognitive impairment in a Chinese community-based population. Participants underwent standardized evaluation. Serum Lp-PLA2 mass was measured by ELISA. Cognition status was evaluated via the Mini-Mental Status Exam (MMSE) and cognitive impairment was identified as MMSE <24. Multivariable logistic regression models were used to assess the associations of Lp-PLA2 mass with cognitive impairment. Lp-PLA2 mass was significantly associated with the prevalence of cognitive impairment after adjusting for other potential confounding factors (compared with the first quartile, adjusted ORs of the second, third, and fourth quartile were 2.058 (95% CI, 0.876-4.835), 2.834 (95% CI, 1.255-6.398), and 4.882 (95% CI, 2.212-10.777), p < 0.0001). In conclusion, elevated level of Lp-PLA2 mass was independently associated with the prevalence of cognitive impairment in Chinese adults. PMID:27609335

  20. Lipoprotein-Associated Phospholipase A2 Activity Predicts Cardiovascular Events in High Risk Coronary Artery Disease Patients

    PubMed Central

    Cesari, Maurizio; Frigo, Anna Chiara; Wolfert, Robert L.; Barisa, Marlena; Pagliani, Leopoldo; Rossitto, Giacomo; Seccia, Teresa Maria; Zanchetta, Mario; Rossi, Gian Paolo

    2012-01-01

    Objective Lipoprotein-associated phospholipase A2 (Lp-PLA2) is deemed to play a role in atherosclerosis and plaque destabilization as demonstrated in animal models and in prospective clinical studies. However, most of the literature is either focused on high-risk, apparently healthy patients, or is based on cross sectional studies. Therefore, we tested the hypothesis that serum Lp-PLA2 mass and activity are useful for predicting cardiovascular (CV) events over the coronary atherosclerotic burden and conventional risk factors in high-risk coronary artery disease patients. Methods and Results In a prospective cohort study of 712 Caucasian patients, who underwent coronary angiography and measurement of both Lp-PLA2 mass and activity at baseline, we determined incident CV events at follow-up after splitting the patients into a high and a low Lp-PLA2 mass and activity groups based on ROC analysis and Youden index. Kaplan-Meier and propensity score matching analysis were used to compare CV event-free survival between groups. Follow-up data were obtained in 75% of the cohort after a median of 7.2 years (range 1–12.7 years) during which 129 (25.5%) CV events were observed. The high Lp-PLA2 activity patients showed worse CV event-free survival (66.7% vs. 79.5%, p = 0.023) and acute coronary syndrome-free survival (75.4% vs. 85.6%, p = 0.04) than those in low Lp-PLA2 group. Conclusions A high Lp-PLA2 activity implies a worse CV prognosis at long term follow up in high-risk Caucasian patients referred for coronary angiography. PMID:23118945

  1. Effect of Pitavastatin Treatment on ApoB-48 and Lp-PLA2 in Patients with Metabolic Syndrome: Substudy of PROspective Comparative Clinical Study Evaluating the Efficacy and Safety of PITavastatin in Patients with Metabolic Syndrome

    PubMed Central

    Lee, Hyo-Sun; Jung, Chang Hee; Kim, Sung Rae; Jang, Hak Chul

    2016-01-01

    Background Apolipoprotein (Apo) B-48 is an intestinally derived lipoprotein that is expected to be a marker for cardiovascular disease (CVD). Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a vascular-specific inflammatory marker and important risk predictor of CVD. The aim of this study was to explore the effect of pitavastatin treatment and life style modification (LSM) on ApoB-48 and Lp-PLA2 levels in metabolic syndrome (MS) patients at relatively low risk for CVD, as a sub-analysis of a previous multi-center prospective study. Methods We enrolled 75 patients with MS from the PROPIT study and randomized them into two treatment groups: 2 mg pitavastatin daily+intensive LSM or intensive LSM only. We measured the change of lipid profiles, ApoB-48 and Lp-PLA2 for 48 weeks. Results Total cholesterol, low density lipoprotein cholesterol, non-high density lipoprotein cholesterol, and ApoB-100/A1 ratio were significantly improved in the pitavastatin+LSM group compared to the LSM only group (P≤0.001). Pitavastatin+LSM did not change the level of ApoB-48 in subjects overall, but the level of ApoB-48 was significantly lower in the higher mean baseline value group of ApoB-48. The change in Lp-PLA2 was not significant after intervention in either group after treatment with pitavastatin for 1 year. Conclusion Pitavastatin treatment and LSM significantly improved lipid profiles, ApoB-100/A1 ratio, and reduced ApoB-48 levels in the higher mean baseline value group of ApoB-48, but did not significantly alter the Lp-PLA2 levels. PMID:26754586

  2. Darapladib, a Lipoprotein-Associated Phospholipase A2 Inhibitor, Reduces Rho Kinase Activity in Atherosclerosis

    PubMed Central

    Xu, Dong-Ling; Liu, Xiao-Bo; Bi, Shao-jie; Zhao, Tong; Sui, Shu-Jian; Ji, Xiao-Ping

    2016-01-01

    Purpose Increased lipoprotein-associated phospholipase A2 (Lp-PLA2) activity and Rho kinase activity may be associated with atherosclerosis. The principal aim of this study was to examine whether darapladib (a selective Lp-PLA2 inhibitor) could reduce the elevated Lp-PLA2 and Rho kinase activity in atherosclerosis. Materials and Methods Studies were performed in male Sprague-Dawley rats. The atherosclerosis rats were prepared by feeding them with a high-cholesterol diet for 10 weeks. Low-dose darapladib (25 mg·kg-1·d-1) and high-dose darapladib (50 mg·kg-1·d-1) interventions were then administered over the course of 2 weeks. Results The serum levels of triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), high-sensitivity C-reactive protein (hs-CRP), and Lp-PLA2, significantly increased in atherosclerosis model groups, as did Rho kinase activity and cardiomyocyte apoptosis (p<0.05 vs. sham group), whereas nitric oxide (NO) production was reduced. Levels of TC, LDL-C, CRP, Lp-PLA2, and Rho kinase activity were respectively reduced in darapladib groups, whereas NO production was enhanced. When compared to the low-dose darapladib group, the reduction of the levels of TC, LDL-C, CRP, and Lp-PLA2 was more prominent in the high-dose darapladib group (p<0.05), and the increase of NO production was more prominent (p<0.05). Cardiomyocyte apoptosis of the high-dose darapladib group was also significantly reduced compared to the low-dose darapladib group (p<0.05). However, there was no significant difference in Rho kinase activity between the low-dose darapladib group and the high-dose darapladib group (p>0.05). Conclusion Darapladib, a Lp-PLA2 inhibitor, leads to cardiovascular protection that might be mediated by its inhibition of both Rho kinase and Lp-PLA2 in atherosclerosis. PMID:26847282

  3. Admission Lipoprotein-Associated Phospholipase A2 Activity Is Not Associated with Long-Term Clinical Outcomes after ST-Segment Elevation Myocardial Infarction

    PubMed Central

    Woudstra, Pier; Damman, Peter; Kuijt, Wichert J.; Kikkert, Wouter J.; Grundeken, Maik J.; van Brussel, Peter M.; Stroobants, An K.; van Straalen, Jan P.; Fischer, Johan C.; Koch, Karel T.; Henriques, José P. S.; Piek, Jan J.; Tijssen, Jan G. P.; de Winter, Robbert J.

    2014-01-01

    Background Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity is a biomarker predicting cardiovascular diseases in a real-world. However, the prognostic value in patients undergoing primary percutaneous coronary intervention (pPCI) for ST-segment elevation myocardial infarction (STEMI) on long-term clinical outcomes is unknown. Methods Lp-PLA2 activity was measured in samples obtained prior to pPCI from consecutive STEMI patients in a high-volume intervention center from 2005 until 2007. Five years all-cause mortality was estimated with the Kaplan-Meier method and compared among tertiles of Lp-PLA2 activity during complete follow-up and with a landmark at 30 days. In a subpopulation clinical endpoints were assessed at three years. The prognostic value of Lp-PLA2, in addition to the Thrombolysis In Myocardial Infarction or multimarker risk score, was assessed in multivariable Cox regression. Results The cohort (n = 987) was divided into tertiles (low <144, intermediate 144–179, and high >179 nmol/min/mL). Among the tertiles differences in baseline characteristics associated with long-term mortality were observed. However, no significant differences in five years mortality in association with Lp-PLA2 activity levels were found; intermediate versus low Lp-PLA2 (HR 0.97; CI 95% 0.68–1.40; p = 0.88) or high versus low Lp-PLA2 (HR 0.75; CI 95% 0.51–1.11; p = 0.15). Both in a landmark analysis and after adjustments for the established risk scores and selection of cases with biomarkers obtained, non-significant differences among the tertiles were observed. In the subpopulation no significant differences in clinical endpoints were observed among the tertiles. Conclusion Lp-PLA2 activity levels at admission prior to pPCI in STEMI patients are not associated with the incidence of short and/or long-term clinical endpoints. Lp-PLA2 as an independent and clinically useful biomarker in the risk stratification of STEMI patients still remains to be proven

  4. Lipoprotein-associated phospholipase A2: a new biomarker for cardiovascular risk assessment and potential therapeutic target.

    PubMed

    Carlquist, John F; Muhlestein, Joseph B; Anderson, Jeffrey L

    2007-09-01

    Lipoprotein-associated phospholipase (Lp-PL)A2 is a recently described and potentially useful plasma biomarker associated with cardiovascular disease. The enzyme, originally named platelet-activating factor acetylhydrolase (PAF-AH), has two prominent biological activities. First, it inactivates the prominent proinflammatory mediator PAF-AH. Second, Lp-PLA2 hydrolyzes oxidatively modified polyunsaturated fatty acids producing lysophosphatidylcholine (LysoPC) and oxidized nonesterified fatty acids (OxNEFA). OxNEFA have potent monocyte chemotactic activity and LysoPC upregulates inflammatory mediators, including cytokines, adhesion molecules and the chemotactic mediator MCP-1. Whereas the first activity may be considered antiatherogenic, the prevailing consensus is that Lp-PLA2 is positively associated with coronary disease. Initial evidence for this came largely from the West of Scotland Coronary Prevention Study Group (WOSCOPS) in which Lp-PLA2 was compared among 580 cases and 1160 age-matched controls. In addition, the quantitative contribution of Lp-PLA2 to risk assessment was assessed in a substudy of the Atherosclerosis Risk in Communities (ARIC) study. Although positively correlated with disease, the addition of Lp-PLA2 did not appreciably enhance risk prediction beyond the model employing traditional risk factors. Thus, population screening for subclinical disease using Lp-PLA2 does not appear to be warranted. Presently, the most useful application of Lp-PLA2 testing is to adjust individual risk assessment for those patients found to be at borderline risk using traditional models. In this regard, the marker appears to be particularly useful for gauging risk among patients with metabolic syndrome or diabetes. There is observational evidence that Lp-PLA2 may be a useful guide for therapeutic efficacy, but prospective evaluation will be required. Considering the large number of biomarkers currently under evaluation, it is probable that useful additions to

  5. Lipoprotein-associated phospholipase A2 and carotid intima-media thickness in individuals classified as low-risk according to Framingham

    PubMed Central

    Rhodes, Philip G.; VanReenen, Jessica; Kaminsky, Leonard A.

    2014-01-01

    Background The Framingham risk score (FRS) has long been used as a global tool to estimate coronary heart disease (CHD) risk, but data has shown that subclinical CHD may exist in those classified as low risk by FRS, and as a result, there is potential for misclassification. Lipoprotein-associated phospholipase A2 (Lp-PLA2) and carotid intima-media thickness (CIMT) are two emerging risk markers that are predictive of future CHD events. Purpose To examine Lp-PLA2 and CIMT values in low risk individuals, and to explore the relationship between Lp-PLA2 and CIMT. Methods A total of 229 men and women (age =53±7 years) underwent body composition analysis, objective physical activity measurement, fasting blood draw to determine standard lipid values and Lp-PLA2 mass, and CIMT measurement through ultrasound. Results For all subjects, mean CIMT was 0.61±0.1 mm, mean Lp-PLA2 mass was 197±45 ng/dL. A total of 19.5% and 34.6% of women and 4.6% and 73.8% of men were considered at elevated risk for CHD by CIMT (>75th percentile for age) and Lp-PLA2 mass (>200 ng/dL) standards, respectively. Both CIMT and Lp-PLA2 mass were significant independent predictors of each other, whereas traditional risk markers (lipids, glucose) were not. Conclusions Results suggest that in those classified as low risk by FRS, evidence of increased CHD risk may exist through the use of newer risk markers like CIMT and Lp-PLA2. These emerging markers may aid in the earlier detection and intervention of subclinical CHD. PMID:25610806

  6. Modulation of oxidative stress, inflammation, and atherosclerosis by lipoprotein-associated phospholipase A2

    PubMed Central

    Rosenson, Robert S.; Stafforini, Diana M.

    2012-01-01

    Lipoprotein-associated phospholipase A2 (Lp-PLA2), also known as platelet-activating factor acetylhydrolase (PAF-AH), is a unique member of the phospholipase A2 superfamily. This enzyme is characterized by its ability to specifically hydrolyze PAF as well as glycerophospholipids containing short, truncated, and/or oxidized fatty acyl groups at the sn-2 position of the glycerol backbone. In humans, Lp-PLA2 circulates in active form as a complex with low- and high-density lipoproteins. Clinical studies have reported that plasma Lp-PLA2 activity and mass are strongly associated with atherogenic lipids and vascular risk. These observations led to the hypothesis that Lp-PLA2 activity and/or mass levels could be used as biomarkers of cardiovascular disease and that inhibition of the activity could offer an attractive therapeutic strategy. Darapladib, a compound that inhibits Lp-PLA2 activity, is anti-atherogenic in mice and other animals, and it decreases atherosclerotic plaque expansion in humans. However, disagreement continues to exist regarding the validity of Lp-PLA2 as an independent marker of atherosclerosis and a scientifically justified target for intervention. Circulating Lp-PLA2 mass and activity are associated with vascular risk, but the strength of the association is reduced after adjustment for basal concentrations of the lipoprotein carriers with which the enzyme associates. Genetic studies in humans harboring an inactivating mutation at this locus indicate that loss of Lp-PLA2 function is a risk factor for inflammatory and vascular conditions in Japanese cohorts. Consistently, overexpression of Lp-PLA2 has anti-inflammatory and anti-atherogenic properties in animal models. This thematic review critically discusses results from laboratory and animal studies, analyzes genetic evidence, reviews clinical work demonstrating associations between Lp-PLA2 and vascular disease, and summarizes results from animal and human clinical trials in which administration of

  7. Comparison of Lipoprotein-Associated Phospholipase A2 and High Sensitive C-Reactive Protein as Determinants of Metabolic Syndrome in Subjects without Coronary Heart Disease: In Search of the Best Predictor

    PubMed Central

    Acevedo, Mónica; Kramer, Verónica; Adasme, Marcela; Briones, Luisa

    2015-01-01

    High sensitivity C-reactive protein (hsCRP) is a marker of metabolic syndrome (MS) and cardiovascular (CV) disease. Lipoprotein-associated phospholipase A2 (Lp-PLA2) also predicts CV disease. There are no reports comparing these markers as predictors of MS. Methods. Cross-sectional study comparing Lp-PLA2 and hsCRP as predictors of MS in asymptomatic subjects was carried out; 152 subjects without known atherosclerosis participated. Data were collected on demographics, cardiovascular risk factors, anthropometric and biochemical measurements, and hsCRP and Lp-PLA2 activity levels. A logistic regression analysis was performed with each biomarker and receiver operating characteristic (ROC) curves were constructed for MS. Results. Mean age was 46 ± 11 years, and 38% of the subjects had MS. Mean Lp-PLA2 activity was 185 ± 48 nmol/mL/min, and mean hsCRP was 2.1 ± 2.2 mg/L. Subjects with MS had significantly higher levels of Lp-PLA2 (P = 0.03) and hsCRP (P < 0.0001) than those without MS. ROC curves showed that both markers predicted MS. Conclusion. Lp-PLA2 and hsCRP are elevated in subjects with MS. Both biomarkers were independent and significant predictors for MS, emphasizing the role of inflammation in MS. Further research is necessary to determine if inflammation predicts a higher risk for CV events in MS subjects. PMID:26089902

  8. Comparison of Lipoprotein-Associated Phospholipase A2 and High Sensitive C-Reactive Protein as Determinants of Metabolic Syndrome in Subjects without Coronary Heart Disease: In Search of the Best Predictor.

    PubMed

    Acevedo, Mónica; Varleta, Paola; Kramer, Verónica; Valentino, Giovanna; Quiroga, Teresa; Prieto, Carolina; Parada, Jacqueline; Adasme, Marcela; Briones, Luisa; Navarrete, Carlos

    2015-01-01

    High sensitivity C-reactive protein (hsCRP) is a marker of metabolic syndrome (MS) and cardiovascular (CV) disease. Lipoprotein-associated phospholipase A2 (Lp-PLA2) also predicts CV disease. There are no reports comparing these markers as predictors of MS. Methods. Cross-sectional study comparing Lp-PLA2 and hsCRP as predictors of MS in asymptomatic subjects was carried out; 152 subjects without known atherosclerosis participated. Data were collected on demographics, cardiovascular risk factors, anthropometric and biochemical measurements, and hsCRP and Lp-PLA2 activity levels. A logistic regression analysis was performed with each biomarker and receiver operating characteristic (ROC) curves were constructed for MS. Results. Mean age was 46 ± 11 years, and 38% of the subjects had MS. Mean Lp-PLA2 activity was 185 ± 48 nmol/mL/min, and mean hsCRP was 2.1 ± 2.2 mg/L. Subjects with MS had significantly higher levels of Lp-PLA2 (P = 0.03) and hsCRP (P < 0.0001) than those without MS. ROC curves showed that both markers predicted MS. Conclusion. Lp-PLA2 and hsCRP are elevated in subjects with MS. Both biomarkers were independent and significant predictors for MS, emphasizing the role of inflammation in MS. Further research is necessary to determine if inflammation predicts a higher risk for CV events in MS subjects. PMID:26089902

  9. Inhibition of lipoprotein-associated phospholipase A2 reduces complex coronary atherosclerotic plaque development

    PubMed Central

    Wilensky, Robert L; Shi, Yi; Mohler, Emile R; Hamamdzic, Damir; Burgert, Mark E; Li, Jun; Postle, Anthony; Fenning, Robert S; Bollinger, James G; Hoffman, Bryan E; Pelchovitz, Daniel J; Yang, Jisheng; Mirabile, Rosanna C; Webb, Christine L; Zhang, LeFeng; Zhang, Ping; Gelb, Michael H; Walker, Max C; Zalewski, Andrew; Macphee, Colin H

    2010-01-01

    Increased lipoprotein-associated phospholipase A2 (Lp-PLA2) activity is associated with increased risk of cardiac events, but it is not known whether Lp-PLA2 is a causative agent. Here we show that selective inhibition of Lp-PLA2 with darapladib reduced development of advanced coronary atherosclerosis in diabetic and hypercholesterolemic swine. Darapladib markedly inhibited plasma and lesion Lp-PLA2 activity and reduced lesion lysophosphatidylcholine content. Analysis of coronary gene expression showed that darapladib exerted a general anti-inflammatory action, substantially reducing the expression of 24 genes associated with macrophage and T lymphocyte functioning. Darapladib treatment resulted in a considerable decrease in plaque area and, notably, a markedly reduced necrotic core area and reduced medial destruction, resulting in fewer lesions with an unstable phenotype. These data show that selective inhibition of Lp-PLA2 inhibits progression to advanced coronary atherosclerotic lesions and confirms a crucial role of vascular inflammation independent from hypercholesterolemia in the development of lesions implicated in the pathogenesis of myocardial infarction and stroke. PMID:18806801

  10. Deciphering the Causal Role of sPLA2s and Lp-PLA2 in Coronary Heart Disease.

    PubMed

    Talmud, Philippa J; Holmes, Michael V

    2015-11-01

    Over the last 10 to 15 years, animal and human observational studies have identified elevated levels of both proinflammatory secretory phospholipase A2-IIA and lipoprotein-associated phospholipase A2 as potential risk factors for coronary heart disease. However, Mendelian randomization, a genetic tool to test causality of a biomarker, and phase III randomized controlled trials of inhibitors of theses enzymes (varespladib and darapladib) converged to indicate that elevated levels are unlikely to be themselves causal of coronary heart disease and that inhibition had little or no clinical utility. The concordance of findings from Mendelian randomization and clinical trials suggests that for these 2 drugs, and for other novel biomarkers in future, validation of potential therapeutic targets by genetic studies (such as Mendelian randomization) before embarking on costly phase III randomized controlled trials could increase efficiency and offset the high risk of drug development, thereby facilitating discovery of new therapeutics and mitigating against the exuberant costs of drug development. PMID:26338298

  11. Lipoprotein-associated phospholipase A2: a novel marker of cardiovascular risk and potential therapeutic target.

    PubMed

    Macphee, Colin; Benson, G Martin; Shi, Yi; Zalewski, Andrew

    2005-06-01

    Although the clinical benefit of statins is well established, these agents reduce the risk of cardiovascular events by only 20 - 40%, and the residual risk for high-risk patients is considerable. The recognition of atherosclerosis as an inflammatory disease has opened the door to numerous complementary therapeutic approaches to further reduce risk and the overall burden of cardiovascular disease. Lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) is a novel inflammatory marker of cardiovascular risk that is being evaluated as a potential therapeutic target. The biological function of this enzyme in atherosclerosis has been controversial but recent evidence supports its pro-atherogenic role. The enzyme is predominantly bound to low-density lipoprotein cholesterol particles in humans, and its activity produces bioactive lipid mediators that promote inflammatory processes present at every stage of atherogenesis, from atheroma initiation to plaque destabilisation and rupture. Initial clinical studies suggest that the inhibitors of Lp-PLA(2) can block enzyme activity in plasma and within atherosclerotic plaques. However, more studies are needed to determine the potential clinical benefits of inhibiting Lp-PLA(2). PMID:16004595

  12. Discovery of a Novel Series of Imidazo[1,2-a]pyrimidine Derivatives as Potent and Orally Bioavailable Lipoprotein-Associated Phospholipase A2 Inhibitors.

    PubMed

    Chen, Xinde; Xu, Wenwei; Wang, Kai; Mo, Mingguang; Zhang, Wei; Du, Lili; Yuan, Xiaojing; Xu, Yechun; Wang, Yiping; Shen, Jianhua

    2015-11-12

    Inhibition of lipoprotein-associated phospholipase A2 (Lp-PLA2) has been suggested to be a promising therapeutic strategy for several inflammation-associated diseases, including atherosclerosis, Alzheimer's disease, and diabetic macular edema. Herein, we report the discovery of a novel series of Lp-PLA2 inhibitors constructed on an imidazo[1,2-a]pyrimidine scaffold through a conformational restriction strategy. Structure-activity relationship (SAR) analysis resulted in the identification of several compounds with high potency in vitro and good metabolic stability in liver S9 fractions. Compounds 7c and 14b selected for further exploration in vivo demonstrated excellent pharmacokinetic profiles and exhibited significant inhibitory efficacy in SD rats upon oral dosing. PMID:26479945

  13. Plasma Lipoprotein-Associated Phospholipase A2 Levels Correlated with the Cardio-Ankle Vascular Index in Long-Term Type 2 Diabetes Mellitus Patients

    PubMed Central

    Kotani, Kazuhiko

    2016-01-01

    The circulating levels of lipoprotein-associated phospholipase A2 (Lp-PLA2) can be a simple, but practical and useful marker of cardiovascular disease (CVD). As limited studies are available in patients with diabetes mellitus (DM), further studies are needed to establish the clinical application of Lp-PLA2 in DM practice. The present study investigated the correlation between Lp-PLA2 and the cardio-ankle vascular index (CAVI), a recent marker of arterial stiffness, in DM patients according to their diabetes duration. Clinical data, including the plasma Lp-PLA2 mass and CAVI values, were collected from CVD-free type 2 DM female patients (n = 65, mean age 62 years, mean hemoglobin A1c 7.0%). The Lp-PLA2 level of patients with a diabetes duration of <10 years (n = 40:20.2 IU/mL) was not significantly different from that of patients with a diabetes duration of ≥10 years (n = 25:20.5 IU/mL), while the CAVI level was significantly higher in patients with ≥10 years (9.0) than in those with <10 years (8.1; p < 0.05). A stepwise multiple regression analysis found a positive correlation between the Lp-PLA2 and CAVI levels (β = 0.43, p < 0.01) in patients with a diabetes duration of ≥10 years. This correlation between Lp-PLA2 and CVAI suggests the possible use of Lp-PLA2 in DM patients with long-term disease. Further studies on Lp-PLA2 are warranted in DM practice in relation to the disease duration. PMID:27128909

  14. Lipoprotein-Associated Phospholipase A2 and High-Sensitivity C-Reactive Protein Improve the Stratification of Ischemic Stroke Risk in the Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Nambi, Vijay; Hoogeveen, Ron C.; Chambless, Lloyd; Hu, Yijuan; Bang, Heejung; Coresh, Josef; Ni, Hanyu; Boerwinkle, Eric; Mosley, Thomas; Sharrett, Richey; Folsom, Aaron R.; Ballantyne, Christie M.

    2009-01-01

    Background and Purpose Inflammation plays a critical role in the development of vascular disease, and increased levels of the inflammatory biomarkers, lipoprotein-associated phospholipase A2 (Lp-PLA2), and high-sensitivity C-reactive protein (hs-CRP) have been shown to be associated with an increased risk for ischemic stroke. Methods In a prospective case– cohort (n=949) study in 12 762 apparently healthy, middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study, we first examined whether Lp-PLA2 and hs-CRP levels improved the area under the receiver operator characteristic curve (AUC) for 5-year ischemic stroke risk. We then examined how Lp-PLA2 and hs-CRP levels altered classification of individuals into low-, intermediate-, or high-risk categories compared with traditional risk factors. Results In a model using traditional risk factors alone, the AUC adjusted for optimism was 0.732, whereas adding hs-CRP improved the AUC to 0.743, and adding Lp-PLA2 significantly improved the AUC to 0.752. Addition of hs-CRP and Lp-PLA2 together in the model improved the AUC to 0.761, and the addition of the interaction between Lp-PLA2 and hs-CRP further significantly improved the AUC to 0.774. With the use of traditional risk factors to assess 5-year risk for ischemic stroke, 86% of participants were categorized as low risk (<2%); 11%, intermediate risk (2% to 5%); and 3%, high risk (>5%). The addition of hs-CRP, Lp-PLA2, and their interaction to the model reclassified 4%, 39%, and 34% of the low-, intermediate- and high-risk categories, respectively. Conclusion Lp-PLA2 and hs-CRP may be useful in individuals classified as intermediate risk for ischemic stroke by traditional risk factors. PMID:19095974

  15. Single and Multiple Dose Pharmacokinetics, Pharmacodynamics and Safety of the Novel Lipoprotein-Associated Phospholipase A2 Enzyme Inhibitor Darapladib in Healthy Chinese Subjects: An Open Label Phase-1 Clinical Trial

    PubMed Central

    Hu, Chaoying; Tompson, Debra; Magee, Mindy; Chen, Qian; Liu, Yan Mei; Zhu, Wenjing; Zhao, Hongxin; Gross, Annette S.; Liu, Yun

    2015-01-01

    Background and Objectives Darapladib is a lipoprotein-associated phospholipase A2 (Lp-PLA2) inhibitor. This study evaluated the pharmacokinetics, pharmacodynamics and safety of darapladib in healthy Chinese subjects. Methods Twenty-four subjects received darapladib 160 mg orally, approximately 1 hour after a standard breakfast, as a single dose and once daily for 28 days. Non-compartmental methods were used to determine the single and multiple dose pharmacokinetics of darapladib and its metabolite SB-553253. Repeat dose Lp-PLA2 activity and safety were evaluated. Results Systemic exposure (AUC(0-T), Cmax geometric mean (CVb%)) of darapladib was higher after multiple-dosing (519 ng.h/mL (33.3%), 34.4 ng/mL (49.9%)) compared to single-dose administration (153 ng.h/mL (69.0%), 17.9 ng/mL (55.2%). The steady-state accumulation ratio was less than unity (Rs = 0.80), indicating time-dependent pharmacokinetics of darapladib. Darapladib steady-state was reached by Day 14 of once daily dosing. Systemic exposure to SB-553253 was lower than darapladib with median (SB-553253: darapladib) ratios for AUC(0-τ) of 0.0786 for single dose and 0.0532 for multiple dose administration. On Day 28, pre-dose and maximum inhibition of Lp-PLA2 activity was approximately 70% and 75% relative to the baseline value, respectively and was dependent of darapladib concentration. The most common adverse events (≥ 21% subjects) were abnormal faeces, abnormal urine odour, diarrhoea and nasopharyngitis. Conclusion Darapladib 160 mg single and repeat doses were profiled in healthy Chinese subjects. Single dose systemic exposure to darapladib in healthy Chinese subjects was consistent with that observed previously in Western subjects whereas steady-state systemic exposure was approximately 65% higher in Chinese than Western subjects. The Lp-PLA2 activity and adverse event profile were similar in healthy Chinese and previous reports in Western subjects. Ethnic-specific dose adjustment of darapladib is

  16. Is Lipoprotein-Associated Phospholipase A2 a Link between Inflammation and Subclinical Atherosclerosis in Rheumatoid Arthritis?

    PubMed Central

    Södergren, Anna; Karp, Kjell; Bengtsson, Christine; Möller, Bozena; Rantapää-Dahlqvist, Solbritt; Wållberg-Jonsson, Solveig

    2015-01-01

    Objective. Lipoprotein-associated phospholipase A2 (Lp-PLA2), a marker of vascular inflammation, is associated with cardiovascular disease. This prospective study of an inception cohort aimed to investigate whether the level of Lp-PLA2 is associated with subclinical atherosclerosis in patients with rheumatoid arthritis (RA). Methods. Patients from northern Sweden diagnosed with early RA were consecutively recruited into an ongoing prospective study. From these, all patients ≤60 years (n = 71) were included for measurements of subclinical atherosclerosis at inclusion (T0) and five years later (T5). Forty age- and sex-matched controls were included. The patients were clinically assessed, SCORE, Reynolds Risk Score, and Larsen score were calculated, and blood samples were drawn from all individuals at T0 and T5. Results. There was no significant difference in the level of Lp-PLA2 between patients with RA and controls (p > 0.05). In simple linear regression models among patients with RA, Lp-PLA2 at T0 was significantly associated with intima media thickness (IMT) at T0 and T5, flow mediated dilation (FMD) at T0 and T5, ever smoking, male sex, HDL-cholesterol (inversely), non-HDL-cholesterol, SCORE, Reynolds Risk Score, and Larsen score (p < 0.05). Conclusion. In this cohort of patients with early RA, the concentration of Lp-PLA2 was associated with both subclinical atherosclerosis and disease severity. PMID:26504820

  17. Ambient Air Pollution and Lipoprotein-Associated Phospholipase A2 in Survivors of Myocardial Infarction

    PubMed Central

    Hampel, Regina; Baumgärtner, Zita; Rückerl, Regina; Greven, Sonja; Koenig, Wolfgang; Peters, Annette; Schneider, Alexandra

    2011-01-01

    Background: Increasing evidence suggests a proatherogenic role for lipoprotein-associated phospholipase A2 (Lp-PLA2). A meta-analysis of published cohorts has shown that Lp-PLA2 is an independent predictor of coronary heart disease events and stroke. Objective: In this study, we investigated whether the association between air pollution and cardiovascular disease might be partly explained by increased Lp-PLA2 mass in response to exposure. Methods: A prospective longitudinal study of 200 patients who had had a myocardial infarction was performed in Augsburg, Germany. Up to six repeated clinical examinations were scheduled every 4–6 weeks between May 2003 and March 2004. Supplementary to the multicenter AIRGENE protocol, we assessed repeated plasma Lp-PLA2 concentrations. Air pollution data from a fixed monitoring site representing urban background concentrations were collected. We measured hourly means of particle mass [particulate matter (PM) < 10 µm (PM10) and PM < 2.5 µm (PM2.5) in aerodynamic diameter] and particle number concentrations (PNCs), as well as the gaseous air pollutants carbon monoxide (CO), sulfur dioxide (SO2), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2). Data were analyzed using mixed models with random patient effects. Results: Lp-PLA2 showed a positive association with PM10, PM2.5, and PNCs, as well as with CO, NO2, NO, and SO2 4–5 days before blood withdrawal (lag 4–5). A positive association with O3 was much more immediate (lag 0). However, inverse associations with some pollutants were evident at shorter time lags. Conclusion: These preliminary findings should be replicated in other study populations because they suggest that the accumulation of acute and subacute effects or the chronic exposure to ambient particulate and gaseous air pollution may result in the promotion of atherosclerosis, mediated, at least in part, by increased levels of Lp-PLA2. PMID:21356620

  18. Biosynthesis of oxidized lipid mediators via lipoprotein-associated phospholipase A2 hydrolysis of extracellular cardiolipin induces endothelial toxicity.

    PubMed

    Buland, Justin R; Wasserloos, Karla J; Tyurin, Vladimir A; Tyurina, Yulia Y; Amoscato, Andrew A; Mallampalli, Rama K; Chen, Bill B; Zhao, Jing; Zhao, Yutong; Ofori-Acquah, Solomon; Kagan, Valerian E; Pitt, Bruce R

    2016-08-01

    We (66) have previously described an NSAID-insensitive intramitochondrial biosynthetic pathway involving oxidation of the polyunsaturated mitochondrial phospholipid, cardiolipin (CL), followed by hydrolysis [by calcium-independent mitochondrial calcium-independent phospholipase A2-γ (iPLA2γ)] of oxidized CL (CLox), leading to the formation of lysoCL and oxygenated octadecadienoic metabolites. We now describe a model system utilizing oxidative lipidomics/mass spectrometry and bioassays on cultured bovine pulmonary artery endothelial cells (BPAECs) to assess the impact of CLox that we show, in vivo, can be released to the extracellular space and may be hydrolyzed by lipoprotein-associated PLA2 (Lp-PLA2). Chemically oxidized liposomes containing bovine heart CL produced multiple oxygenated species. Addition of Lp-PLA2 hydrolyzed CLox and produced (oxygenated) monolysoCL and dilysoCL and oxidized octadecadienoic metabolites including 9- and 13-hydroxyoctadecadienoic (HODE) acids. CLox caused BPAEC necrosis that was exacerbated by Lp-PLA2 Lower doses of nonlethal CLox increased permeability of BPAEC monolayers. This effect was exacerbated by Lp-PLA2 and partially mimicked by authentic monolysoCL or 9- or 13-HODE. Control mice plasma contained virtually no detectable CLox; in contrast, 4 h after Pseudomonas aeruginosa (P. aeruginosa) infection, 34 ± 8 mol% (n = 6; P < 0.02) of circulating CL was oxidized. In addition, molar percentage of monolysoCL increased twofold after P. aeruginosa in a subgroup analyzed for these changes. Collectively, these studies suggest an important role for 1) oxidation of CL in proinflammatory environments and 2) possible hydrolysis of CLox in extracellular spaces producing lysoCL and oxidized octadecadienoic acid metabolites that may lead to impairment of pulmonary endothelial barrier function and necrosis. PMID:27233995

  19. Association between Ala379Val polymorphism of lipoprotein-associated phospholipase A2 and migraine without aura in Iranian population

    PubMed Central

    Haghdoost, Faraidoon; Gharzi, Mahsa; Faez, Farough; Hosseinzadeh, Elinaz; Tajaddini, Mohamadhasan; Rafiei, Laleh; Asgari, Fatemeh; Banihashemi, Mahboobeh; Masjedi, Samaneh Sadat; Zandifar, Alireza; Haghjooy-Javanmard, Shaghayegh

    2016-01-01

    Background: Migraine is a common neurovascular disorder with multifactorial and polygenic inheritance. The aim of this study was to investigate the association of a migraine without aura and Ala379Val polymorphism of lipoprotein-associated phospholipase A2 (Lp-PLA2) gene in the Iranian population. Methods: In this study, 103 migraine patients and 100 healthy controls were enrolled. DNA samples were extracted and the Ala379Val polymorphism of Lp-PLA2 gene was investigated. To assess severity of a headache, patients filled out the headache impact test (HIT-6) and migraine severity (MIGSEV) questionnaires. Results: Allele V had significantly lower frequency in the case group than control subjects [P = 0.001, odds ratio (OR) = 0.25, confidence interval (CI): 0.15-0.40]. The frequency of migraine patients that were a carrier of V allele (V/V and A/V) was statistically significant lower than the control group (P = 0.003, OR = 2.39, CI: 1.35-4.23). There was no significant difference of alleles frequency between three grades of MIGSEV (P = 0.316). Furthermore, total HIT-6 score was not significantly different between different genotypes (P = 0.466). Conclusion: Our results showed that Ala379Val gene polymorphism of LP-PLA2 is associated with lower risk of migraine but not with severity of headaches in an Iranian population. PMID:27326362

  20. Specificity of Lipoprotein-Associated Phospholipase A2 Towards Oxidized Phosphatidylserines: LC-ESI-MS Characterization of Products and Computer Modeling of Interactions

    PubMed Central

    Tyurin, Vladimir A.; Yanamala, Naveena; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Macphee, Colin H.; Kagan, Valerian E.

    2013-01-01

    Ca2+ independent lipoprotein associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 superfamily with a distinguishing characteristic of high specificity for oxidatively modified sn-2 fatty acid residues in phospholipids which has been especially well characterized for peroxidized species of phosphatidylcholines (PC). The ability of Lp-PLA2 to hydrolyze peroxidized species of phosphatidylserine (PS) – acting as a recognition signal for clearance of apoptotic cells by professional phagocytes - as well as the products of the reaction have not been investigated. We performed LC-MS-ESI-based structural characterization of oxygenated/hydrolyzed molecular species of PS - containing linoleic acid in either sn-2 position (C18:0/C18:2) or in both sn-1 and sn-2 positions (C18:2/C18:2) - formed in cytochrome c/ H2O2 driven enzymatic oxidation reaction. Cytochrome c has been chosen as a catalyst of peroxidation reactions due to its likely involvement in PS oxidation in apoptotic cells. We found that Lp-PLA2 catalyzed the hydrolysis of both non-truncated and truncated (oxidatively fragmented) species of oxidized PS species albeit with different efficiencies and performed detailed characterization of the major reaction products – oxygenated derivatives of linoleic acid as well as non-oxygenated and oxygenated species of lyso-PS. Among linoleic acid products, derivatives oxygenated at the C9 position, including 9-hydroxyoctadecadienoic acid (9-HODE) – a potent ligand of G protein-coupled receptor G2A - were the most abundant. Computer modeling of interactions of Lp-PLA2 with different PS oxidized species indicated that they are able to bind in proximity (<5Å) to Ser273 and His351 of the catalytic triad. For 9-hydroxy- and 9-hydroperoxy- derivatives of oxidized PS, the sn-2 ester bond was positioned within the very close proximity (<3Å) from the Ser273 residue - a nucleophile directly attacking the sn-2 bond – thus favoring the hydrolysis reaction. We

  1. Acute impact of apheresis on oxidized phospholipids in patients with familial hypercholesterolemia1

    PubMed Central

    Arai, Kiyohito; Orsoni, Alexina; Mallat, Ziad; Tedgui, Alain; Witztum, Joseph L.; Bruckert, Eric; Tselepis, Alexandros D.; Chapman, M. John; Tsimikas, Sotirios

    2012-01-01

    We measured oxidized phospholipids (OxPL), lipoprotein (a) [Lp(a)], and lipoprotein-associated phospholipase A2 (Lp-PLA2) pre- and postapheresis in 18 patients with familial hypercholesterolemia (FH) and with low(∼10 mg/dl; range 10–11 mg/dl), intermediate (∼50 mg/dl; range 30–61 mg/dl), or high (>100 mg/dl; range 78–128 mg/dl) Lp(a) levels. By using enzymatic and immunoassays, the content of OxPL and Lp-PLA2 mass and activity were quantitated in lipoprotein density fractions plated in microtiter wells, as well as directly on apoB-100, Lp(a), and apoA-I immunocaptured within each fraction (i.e., OxPL/apoB and Lp-PLA2/apoB). In whole fractions, OxPL was primarily detected in the Lp(a)-containing fractions, whereas Lp-PLA2 was primarily detected in the small, dense LDL and light Lp(a) range. In lipoprotein capture assays, OxPL/apoB and OxPL/apo(a) increased proportionally with increasing Lp(a) levels. Lp-PLA2/apoB and Lp-PLA2/apoA-I levels were highest in the low Lp(a) group but decreased proportionally with increasing Lp(a) levels. Lp-PLA2/apo(a) was lowest in patients with low Lp(a) levels and increased proportionally with increasing Lp(a) levels. Apheresis significantly reduced levels of OxPL and Lp-PLA2 on apoB and Lp(a) (50–75%), particularly in patients with intermediate and high Lp(a) levels. In contrast, apheresis increased Lp-PLA2-specific activity (activity/mass ratio) in buoyant LDL fractions. The impact of apheresis on Lp(a), OxPL, and Lp-PLA2 provides insights into its therapeutic benefits beyond lowering apoB-containing lipoproteins. PMID:22628616

  2. Effects of Pu-erh tea aqueous extract (PTAE) on blood lipid metabolism enzymes.

    PubMed

    Zeng, Liang; Yan, Jingna; Luo, Liyong; Zhang, Dongying

    2015-06-01

    Disorders of blood lipid metabolism are the primary risk factors for many diseases. Recently, the effect of Pu-erh tea on blood lipid metabolism has received increasing attention. However, the mechanism underlying its ability to regulate blood lipid metabolism is unclear. We set out to study this through assessing the effects of Pu-erh tea aqueous extract (PTAE) on the central enzymes of blood lipid metabolism, including lipoprotein-associated phospholipase A2 (Lp-PLA2), lecithin: cholesterol acyltransferase (LCAT), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) and pancreatic lipase (PL). We find that the Lp-PLA2, HMRG and PL activities are inhibited by PTAE in a dose-dependent manner and that the LCAT activity tends to increase with increasing PTAE concentrations. Lineweaver-Burk plot analyses reveal that PTAE acts as a competitive inhibitor for HMGR and PL and as a noncompetitive inhibitor for Lp-PLA2. Moreover, we determine that its active ingredients include catechins, gallic acid, caffeine, free amino acids, and soluble sugar. However, the effect of each ingredient and whether any of them have synergistic effects are still unknown. The results suggest that Pu-erh tea has a potent ability to regulate blood lipid metabolism and knowledge of the mechanisms provides insights into its potential therapeutic application as an alternative hypolipidemic drug. PMID:26018873

  3. Phospholipase A2 activity during cold acclimation of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipase A2 (EC 3.1.1.4; PLA2) activity in wheat (Triticum aestivum L.) crown tissue from plants undergoing cold acclimation and/or chilling stress was investigated in a moderately cold tolerant winter wheat, a spring wheat, and a poorly cold tolerant winter wheat. Activity levels were inv...

  4. Parkinson's disease and CYP1A2 activity

    PubMed Central

    Forsyth, J T; Grünewald, R A; Rostami-Hodjegan, A; Lennard, M S; Sagar, H J; Tucker, G T

    2000-01-01

    Aims MPTP, a neurotoxin which induces parkinsonism is partially metabolized by the enzyme CYP1A2. Smoking appears to protect against Parkinson's disease (PD) and cigarette smoke induces CYP1A2 activity. Thus, we investigated the hypothesis that idiopathic PD is associated with lower CYP1A2 activity using caffeine as a probe compound. Methods CYP1A2 activity was assessed using saliva paraxanthine (PX) to caffeine (CA) ratios. Caffeine half-life was also estimated from salivary concentrations of caffeine at 2 and 5 h post dose. 117 treated and 40 untreated patients with PD and 105 healthy control subjects were studied. Results PX/CA ratios were 0.57, 0.93 and 0.77 in treated patients, untreated patients and healthy control subjects, respectively, with no significant differences between study groups (95% CI: treated patients vs controls −0.24, 0.57; untreated patients vs controls −0.75, 0.35). However, patients with PD (treated or untreated) had caffeine half-lives shorter than that in controls (treated patients: 262 min, untreated patients: 244 min, controls: 345 min; 95% CI: controls vs treated patients 23, 143 (P = 0.003); controls vs untreated patients 19, 184 (P = 0.011)). Amongst the patients with PD, caffeine half-life was also inversely related to the age of onset of disease (P = 0.012); gender and concomitant drugs did not influence this significantly. Conclusions Based on PX/CA ratio, there was no evidence of decreased CYP1A2 activity in patients compared with control subjects. The observed decrease in the elimination half-life of caffeine in PD may be caused by increased CYP2E1 activity, an enzyme that also contributes to the metabolism of caffeine. The latter warrants further investigation. PMID:11012552

  5. Activation of human inflammatory cells by secreted phospholipases A2.

    PubMed

    Triggiani, Massimo; Granata, Francescopaolo; Frattini, Annunziata; Marone, Gianni

    2006-11-01

    Secreted phospholipases A(2) (sPLA(2)s) are enzymes detected in serum and biological fluids of patients with various inflammatory, autoimmune and allergic disorders. Different isoforms of sPLA(2)s are expressed and released by human inflammatory cells, such as neutrophils, eosinophils, T cells, monocytes, macrophages and mast cells. sPLA(2)s generate arachidonic acid and lysophospholipids thus contributing to the production of bioactive lipid mediators in inflammatory cells. However, sPLA(2)s also activate human inflammatory cells by mechanisms unrelated to their enzymatic activity. Several human and non-human sPLA(2)s induce degranulation of mast cells, neutrophils and eosinophils and activate exocytosis in macrophages. In addition some, but not all, sPLA(2) isoforms promote cytokine and chemokine production from macrophages, neutrophils, eosinophils, monocytes and endothelial cells. These effects are primarily mediated by binding of sPLA(2)s to specific membrane targets (heparan sulfate proteoglycans, M-type, N-type or mannose receptors) expressed on effector cells. Thus, sPLA(2)s may play an important role in the initiation and amplification of inflammatory reactions by at least two mechanisms: production of lipid mediators and direct activation of inflammatory cells. Selective inhibitors of sPLA(2)-enzymatic activity and specific antagonists of sPLA(2) receptors are current being tested for pharmacological treatment of inflammatory and autoimmune diseases. PMID:16952481

  6. Modulation of phospholipase A2 activity in human fibroblasts.

    PubMed Central

    Solito, E.; Parente, L.

    1989-01-01

    1. Human embryonic skin fibroblasts (HSF) incubated overnight with either human recombinant interleukin-1 alpha (rIL-1 alpha) or interleukin-1 beta (rIL-1 beta) released large amounts of prostaglandin E2 (PGE2). 2. rIL-1 beta, bradykinin (Bk) and arachidonic acid (AA) significantly stimulated PGE2 release from HSF incubated overnight in the presence of either interleukin. 3. Hydrocortisone inhibited the PGE2 release induced by rIL-1 beta and Bk, but not by AA. 4. The steroid inhibitory effect was reversed by actinomycin D as well as by an anti-lipocortin monoclonal antibody. 5. The results suggest that in HSF, rIL-1 beta is able to stimulate both cyclo-oxygenase and phospholipase A2 (PLA2) activity. 6. The stimulation of PLA2 activity by rIL-1 beta is inhibited by hydrocortisone, probably via induction of lipocortin-like proteins. PMID:2785834

  7. Phospholipase A2 regulates eicosanoid class switching during inflammasome activation.

    PubMed

    Norris, Paul C; Gosselin, David; Reichart, Donna; Glass, Christopher K; Dennis, Edward A

    2014-09-01

    Initiation and resolution of inflammation are considered to be tightly connected processes. Lipoxins (LX) are proresolution lipid mediators that inhibit phlogistic neutrophil recruitment and promote wound-healing macrophage recruitment in humans via potent and specific signaling through the LXA4 receptor (ALX). One model of lipoxin biosynthesis involves sequential metabolism of arachidonic acid by two cell types expressing a combined transcellular metabolon. It is currently unclear how lipoxins are efficiently formed from precursors or if they are directly generated after receptor-mediated inflammatory commitment. Here, we provide evidence for a pathway by which lipoxins are generated in macrophages as a consequence of sequential activation of toll-like receptor 4 (TLR4), a receptor for endotoxin, and P2X7, a purinergic receptor for extracellular ATP. Initial activation of TLR4 results in accumulation of the cyclooxygenase-2-derived lipoxin precursor 15-hydroxyeicosatetraenoic acid (15-HETE) in esterified form within membrane phospholipids, which can be enhanced by aspirin (ASA) treatment. Subsequent activation of P2X7 results in efficient hydrolysis of 15-HETE from membrane phospholipids by group IVA cytosolic phospholipase A2, and its conversion to bioactive lipoxins by 5-lipoxygenase. Our results demonstrate how a single immune cell can store a proresolving lipid precursor and then release it for bioactive maturation and secretion, conceptually similar to the production and inflammasome-dependent maturation of the proinflammatory IL-1 family cytokines. These findings provide evidence for receptor-specific and combinatorial control of pro- and anti-inflammatory eicosanoid biosynthesis, and potential avenues to modulate inflammatory indices without inhibiting downstream eicosanoid pathways. PMID:25139986

  8. Phospholipase A2 and Phospholipase B Activities in Fungi

    PubMed Central

    Köhler, Gerwald A.; Brenot, Audrey; Haas-Stapleton, Eric; Agabian, Nina; Deva, Rupal; Nigam, Santosh

    2007-01-01

    As saprophytes or disease causing microorganisms, fungi acquire nutrients from dead organic material or living host organisms. Lipids as structural components of cell membranes and storage compartments play an important role as energy-rich food source. In recent years, it also has become clear that lipids have a wide range of bioactive properties including signal transduction and cell to cell communication. Thus, it is not surprising that fungi possess a broad range of hydrolytic enzymes that attack neutral lipids and phospholipids. Especially during infection of a mammalian host, phospholipase A2 (PLA2) enzymes released by fungi could play important roles not only for nutrient acquisition and tissue invasion, but for intricate modulation of the host’s immune response. Sequencing of fungal genomes has revealed a wide range of genes encoding PLA2 activities in fungi. We are just beginning to become aware of the significance these enzymes could have for the fungal cells and their interaction with the host. PMID:17081801

  9. Phospholipase A2 activating protein and idiopathic inflammatory bowel disease.

    PubMed Central

    Peterson, J W; Dickey, W D; Saini, S S; Gourley, W; Klimpel, G R; Chopra, A K

    1996-01-01

    BACKGROUND: Crohn's disease and ulcerative colitis are idiopathic inflammatory bowel diseases (IBD) involving synthesis of eicosanoids from arachidonic acid (AA), which is released from membrane phospholipids by phospholipase A2 (PLA2). A potentially important regulator of the production of these mediators is a protein activator of PLA2, referred to as PLA2 activating protein (PLAP). AIMS: The purpose of this investigation was to discover if PLAP values might be increased in the inflamed intestinal tissue of patients with IBD and in intestinal tissue of mice with colitis. PATIENTS: Biopsy specimens were taken from patients with ulcerative colitis and Crohn's disease undergoing diagnostic colonoscopy, and normal colonic mucosa was obtained from patients without IBD after surgical resection. METHODS: Immunocytochemistry with affinity purified antibodies to PLAP synthetic peptides was used to locate PLAP antigen in sections of intestinal biopsy specimens from IBD patients compared with that of normal intestinal tissue. Northern blot analysis with a murine [32P] labelled plap cDNA probe was performed on RNA extracted from the colons of mice fed dextran sulphate sodium (DSS) and cultured HT-29 cells exposed to lipopolysaccharide (LPS). RESULTS: PLAP antigen was localised predominantly within monocytes and granulocytes in intestinal tissue sections from IBD patients, and additional deposition of extracellular PLAP antigen was associated with blood vessels and oedema fluid in the inflamed tissues. In contrast, tissue sections from normal human intestine were devoid of PLAP reactive antigen, except for some weak cytoplasmic reaction of luminal intestinal epithelial cells. Similarly, colonic tissue from DSS treated mice contained an increased amount of PLAP antigen compared with controls. The stroma of the lamina propria of the colonic mucosa from the DSS treated mice reacted intensely with antibodies to PLAP synthetic peptides, while no reaction was observed with control

  10. Periodontal microbiota and phospholipases: The Oral Infections and Vascular Disease Epidemiology Study (INVEST)

    PubMed Central

    Boillot, Adrien; Demmer, Ryan T.; Mallat, Ziad; Sacco, Ralph L.; Jacobs, David R.; Benessiano, Joelle; Tedgui, Alain; Rundek, Tatjana; Papapanou, Panos N.; Desvarieux, Moïse

    2016-01-01

    Objective Periodontal infections have been linked to cardiovascular disease, including atherosclerosis, and systemic inflammation has been proposed as a possible mediator. Secretory phospholipase A2 (s-PLA2) and Lipoprotein-associated PLA2 (Lp-PLA2) are inflammatory enzymes associated with athero-sclerosis. No data are available on the association between oral microbiota and PLA2s. We studied whether a relationship exists between periodontal microbiota and the activities of these enzymes. Methods The Oral Infection and Vascular Disease Epidemiology Study (INVEST) collected subgingival biofilms and serum samples from 593 dentate men and women (age 68.7 ± 8.6 years). 4561 biofilm samples were collected in the two most posterior teeth of each quadrant (average 7/participant) for quantitative assessment of 11 bacterial species using DNA–DNA checkerboard hybridization. Mean concentration of s-PLA2 and activities of s-PLA2 and Lp-PLA2 were regressed on tertiles of etiologic dominance (ED). ED is defined as the level of presumed periodontopathic species/combined level of all eleven species measured, and represents the relative abundance of periodontopathic organisms. Analyses were adjusted for age, sex, race/ethnicity, education, smoking, BMI, diabetes, LDL cholesterol and HDL cholesterol, and systolic blood pressure. Results Higher levels of s-PLA2 activity were observed across increasing tertiles of etiologic dominance (0.66 ± 0.04 nmol ml−1 min−1, 0.73 ± 0.04 nmol ml−1 min−1, 0.89 ± 0.04 nmol ml−1 min−1; p < 0.001), with also a trend of association between Lp-PLA2 activity and ED (p = 0.07), while s-PLA2 concentration was unrelated to ED. Conclusion Increasingly greater s-PLA2 activity at higher tertiles of etiologic dominance may provide a mechanistic explanatory link of the relationship between periodontal microbiota and vascular diseases. Additional studies investigating the role of s-PLA2 are needed. PMID:26282947

  11. LARGE PARTICLES IN ACTIVE ASTEROID P/2010 A2

    SciTech Connect

    Jewitt, David; Ishiguro, Masateru; Agarwal, Jessica

    2013-02-10

    The previously unknown asteroid P/2010 A2 rose to prominence in 2010 by forming a transient, comet-like tail consisting of ejected dust. The observed dust production was interpreted as the result of either a hypervelocity impact with a smaller body or a rotational disruption. We have re-observed this object, finding that large particles remain a full orbital period after the initial outburst. In the intervening years, particles smaller than {approx}3 mm in radius have been dispersed by radiation pressure, leaving only larger particles in the trail. Since the total mass is dominated by the largest particles, the radiation pressure filtering allows us to obtain a more reliable estimate of the debris mass than was previously possible. We find that the mass contained in the debris is {approx}5 Multiplication-Sign 10{sup 8} kg (assumed density 3000 kg m{sup -3}), the ratio of the total debris mass to the nucleus mass is {approx}0.1, and that events like P/2010 A2 contribute <3% to the Zodiacal dust production rate. Physical properties of the nucleus and debris are also determined.

  12. Large Particles in Active Asteroid P/2010 A2

    NASA Astrophysics Data System (ADS)

    Jewitt, David; Ishiguro, Masateru; Agarwal, Jessica

    2013-02-01

    The previously unknown asteroid P/2010 A2 rose to prominence in 2010 by forming a transient, comet-like tail consisting of ejected dust. The observed dust production was interpreted as the result of either a hypervelocity impact with a smaller body or a rotational disruption. We have re-observed this object, finding that large particles remain a full orbital period after the initial outburst. In the intervening years, particles smaller than ~3 mm in radius have been dispersed by radiation pressure, leaving only larger particles in the trail. Since the total mass is dominated by the largest particles, the radiation pressure filtering allows us to obtain a more reliable estimate of the debris mass than was previously possible. We find that the mass contained in the debris is ~5 × 108 kg (assumed density 3000 kg m-3), the ratio of the total debris mass to the nucleus mass is ~0.1, and that events like P/2010 A2 contribute <3% to the Zodiacal dust production rate. Physical properties of the nucleus and debris are also determined. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  13. Phospholipase A2 Activity Triggers the Wound-Activated Chemical Defense in the Diatom Thalassiosira rotula

    PubMed Central

    Pohnert, Georg

    2002-01-01

    The activation of oxylipin-based chemical defense in the diatom Thalassiosira rotula is initiated by phospholipases that act immediately after cell damage. This lipase activity is responsible for the preferential release of free mono- and polyunsaturated fatty acids. Among these, eicosatetraenoic- and eicosapentaenoic acid are further converted by lipoxygenases to reactive defensive metabolites such as the antiproliferative α,β,γ,δ-unsaturated aldehydes 2,4-decadienal and 2,4,7-decatrienal. We show that mainly saturated free fatty acids are present in the intact diatom T. rotula, whereas the amount of free polyunsaturated eicosanoids is drastically increased in the first minutes after wounding. Using fluorescent probes, the main enzyme activity responsible for initiation of the aldehyde-generating lipase/lipoxygenase/hydroperoxide lyase cascade was characterized as a phospholipase A2. All enzymes involved in this specific defensive reaction are active in seawater over several minutes. Thus, the mechanism allows the unicellular algae to overcome restrictions arising out of potential dilution of defensive metabolites. Only upon predation are high local concentrations of aldehydes formed in the vicinity of the herbivores, whereas in times of low stress, cellular resources can be invested in the formation of eicosanoid-rich phospholipids. In contrast to higher plants, which use lipases acting on galactolipids to release C18 fatty acids for production of leaf-volatile aldehydes, diatoms rely on phospholipids and the transformation of C20 fatty acids to form 2,4-decadienal and 2,4,7-decatrienal as an activated defense. PMID:12011342

  14. Phospholipase A2 activity in Epstein-Barr virus-transformed lymphoblast cells from schizophrenic patients.

    PubMed

    Bennett, E R; Yedgar, S; Lerer, B; Ebstein, R P

    1991-06-01

    We examined the activity of phospholipase A2 in Epstein-Barr virus-transformed lymphoblast cell lines established from ten schizophrenic patients and ten controls. A novel method for determination of enzyme activity in whole cells was employed, by measuring the hydrolysis of a fluorescent analogue of phosphatidylcholine. No significant difference in phospholipase A2 activity was found between the groups. These results suggest that the previously reported changes in phospholipase A2 activity in plasma and in fresh peripheral cells are indicative of environmental influences and not of "trait" characteristics intrinsic to schizophrenia. PMID:1651772

  15. A2B adenosine receptor activity is reduced in neutrophils from patients with systemic sclerosis

    PubMed Central

    Bazzichi, Laura; Trincavelli, Letizia; Rossi, Alessandra; De Feo, Francesca; Lucacchini, Antonio; Bombardieri, Stefano; Martini, Claudia

    2005-01-01

    We conducted the present study to investigate protein expression and functioning of A2A and A2B adenosine receptors (ARs) in neutrophils of patients affected by systemic sclerosis (SSc). The presence of A2A and A2B ARs was assessed by immunoblotting using specific antibodies. Equilibrium A2A and A2B ARs binding parameters were evaluated by radioligand binding assay. Functional studies were conducted to investigate coupling of the A2B AR to the adenylyl cyclase pathway. This is the first report of the use of Western blot analysis to confirm the presence of A2A and A2B ARs in human neutrophils. No significant changes in A2A AR binding parameters or expression levels were detected between SSc patients and healthy control individuals. A significant decrease (65%) in the maximum density of A2B AR binding sites occurred in SSc neutrophils, whereas no changes in the affinity constant values were found. Moreover, a decrease in A2B AR mediated adenylyl cyclase activity was observed in patients with SSc. Our findings demonstrate the occurrence of selective alterations in A2B AR density and signalling in SSc. PMID:15743465

  16. EphA2 Receptor Activation by Monomeric Ephrin-A1 on Supported Membranes

    PubMed Central

    Xu, Qian; Lin, Wan-Chen; Petit, Rebecca S.; Groves, Jay T.

    2011-01-01

    The receptor tyrosine kinase EphA2 interacts with its glycosylphosphatidylinositol (GPI)-linked ephrin-A1 ligand in a juxtacrine configuration. The soluble ephrin-A1 protein, without its GPI membrane linker, fails to activate EphA2. However, preclustered ephrin-A1 protein is active in solution and has been frequently used to trigger the EphA2 receptor. Although this approach has yielded insights into EphA2 signaling, preclustered ligands bypass natural receptor clustering processes and thus mask any role of clustering as a signal regulatory mechanism. Here, we present EphA2-expressing cells with a fusion protein of monomeric ephrin-A1 (mEA1) and enhanced monomeric yellow fluorescent protein that is linked to a supported lipid bilayer via a nickel-decahistidine anchor. The mEA1 is homogeneously dispersed, laterally mobile, and monomeric as measured by fluorescence imaging, correlation spectroscopy, and photon counting histogram analysis, respectively. Ephrin-A1 presented in this manner activates EphA2 on the surface of MDA-MB-231 human breast cancer cells, as measured by EphA2 phosphorylation and degradation. Spatial mutation experiments in which nanopatterns on the underlying substrate restrict mEA1 movement in the supported lipid bilayer reveal spatio-mechanical regulation of this signaling pathway, consistent with recently reported observations using a synthetically cross-linked ephrin-A1 dimer. PMID:22261062

  17. CYP1A2, GSTM1, and GSTT1 polymorphisms and diet effects on CYP1A2 activity in a crossover feeding trial*

    PubMed Central

    Peterson, Sabrina; Schwarz, Yvonne; Li, Shuying S.; Li, Lin; King, Irena B.; Chen, Chu; Eaton, David L.; Potter, John D.; Lampe, Johanna W.

    2009-01-01

    Cytochrome P-450 1A2 (CYP1A2) is a biotransformation enzyme that activates several procarcinogens. CYP1A2 is induced by cruciferous and inhibited by apiaceous vegetable intake. Using a randomized, cross-over feeding trial in humans, we investigated dose effects of cruciferous vegetables and effects of any interaction between cruciferous and apiaceous vegetables on CYP1A2 activity. We also investigated whether response varied by CYP1A2*1F, GSTM1, and GSTT1 genotypes (glutathione S-transferases that metabolize crucifer constituents) and whether CYP1A2 activity rebounds after apiaceous vegetables are removed from the diet. Participants (N = 73), recruited based on genotypes, consumed four diets for two weeks each: low-phytochemical diet (basal), basal plus single dose of cruciferous (1C), basal plus double dose of cruciferous (2C), and basal plus single dose of cruciferous and apiaceous vegetables (1C+A). CYP1A2 activity was determined by urine caffeine tests administered at baseline and the end of each feeding period. Compared with basal diet, the 1C diet increased CYP1A2 activity (P < 0.0001) and the 2C diet resulted in further increases (P < 0.0001) with men experiencing greater dose-response than women. The 1C+A diet decreased CYP1A2 activity compared to the 1C and 2C diets (P < 0.0001 for both). Although there was no overall effect of CYP1A2*1F or GSTM1-null/GSTT1-null genotypes or genotype-by-diet interactions, there were significant diet response differences within each genotype. Additionally, CYP1A2 activity recovered modestly one day after the removal of apiaceous vegetables. These results suggest complex interactions among dietary patterns, genetic variation, and modulation of biotransformation that may not be apparent in observational studies. PMID:19843669

  18. Disulfide Bond Oxidoreductase DsbA2 of Legionella pneumophila Exhibits Protein Disulfide Isomerase Activity

    PubMed Central

    Kpadeh, Zegbeh Z.; Jameson-Lee, Max; Yeh, Anthony J.; Chertihin, Olga; Shumilin, Igor A.; Dey, Rafik; Day, Shandra R.

    2013-01-01

    The extracytoplasmic assembly of the Dot/Icm type IVb secretion system (T4SS) of Legionella pneumophila is dependent on correct disulfide bond (DSB) formation catalyzed by a novel and essential disulfide bond oxidoreductase DsbA2 and not by DsbA1, a second nonessential DSB oxidoreductase. DsbA2, which is widely distributed in the microbial world, is phylogenetically distinct from the canonical DsbA oxidase and the DsbC protein disulfide isomerase (PDI)/reductase of Escherichia coli. Here we show that the extended N-terminal amino acid sequence of DsbA2 (relative to DsbA proteins) contains a highly conserved 27-amino-acid dimerization domain enabling the protein to form a homodimer. Complementation tests with E. coli mutants established that L. pneumophila dsbA1, but not the dsbA2 strain, restored motility to a dsbA mutant. In a protein-folding PDI detector assay, the dsbA2 strain, but not the dsbA1 strain, complemented a dsbC mutant of E. coli. Deletion of the dimerization domain sequences from DsbA2 produced the monomer (DsbA2N), which no longer exhibited PDI activity but complemented the E. coli dsbA mutant. PDI activity was demonstrated in vitro for DsbA2 but not DsbA1 in a nitrocefin-based mutant TEM β-lactamase folding assay. In an insulin reduction assay, DsbA2N activity was intermediate between those of DsbA2 and DsbA1. In L. pneumophila, DsbA2 was maintained as a mixture of thiol and disulfide forms, while in E. coli, DsbA2 was present as the reduced thiol. Our studies suggest that DsbA2 is a naturally occurring bifunctional disulfide bond oxidoreductase that may be uniquely suited to the majority of intracellular bacterial pathogens expressing T4SSs as well as in many slow-growing soil and aquatic bacteria. PMID:23435972

  19. Cytochrome P450 1A2 (CYP1A2) activity and risk factors for breast cancer: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Hammond, Geoffrey L; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Breast cancer risk may be determined by various genetic, metabolic, and lifestyle factors that alter sex hormone metabolism. Cytochrome P450 1A2 (CYP1A2) is responsible for the metabolism of estrogens and many exogenous compounds, including caffeine. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity and known or suspected risk factors for breast cancer. Blood levels of sex hormones, lipids, and growth factors were measured. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Stepwise and maximum R regression analyses were used to identify covariates related to CYP1A2 activity after adjustment for ethnicity. Results In both menopausal groups CYP1A2 activity was positively related to smoking and levels of sex hormone binding globulin. In premenopausal women, CYP1A2 activity was also positively related to insulin levels, caffeine intake, age, and plasma triglyceride levels, and negatively related with total cholesterol levels and body mass index. In postmenopausal women CYP1A2 activity was positively associated with insulin-like growth factor-1, and negatively associated with plasma triglyceride, high-density lipoprotein cholesterol, and age at menarche. Conclusion These results suggest that CYP1A2 activity is correlated with hormones, blood lipids, and lifestyle factors associated with breast cancer risk, although some of the observed associations were contrary to hypothesized directions and suggest that increased CYP1A2 function may be associated with increased risk for breast cancer. PMID:15217502

  20. PCB Exposure and in Vivo CYP1A2 Activity among Native Americans

    PubMed Central

    Fitzgerald, Edward F.; Hwang, Syni-An; Lambert, George; Gomez, Marta; Tarbell, Alice

    2005-01-01

    Cytochrome P-450 1A2 (CYP1A2) is an enzyme involved in the metabolic activation of some carcinogens and is believed to be induced by xenobiotics. Very few studies, however, have investigated the association between environmental exposures and in vivo CYP1A2 activity in humans. To address this issue, a study was conducted of CYP1A2 activity among Native Americans exposed to polychlorinated biphenyls (PCBs) from the consumption of fish from the St. Lawrence River. At the Mohawk Nation at Akwesasne (in New York and in Ontario and Quebec, Canada), 103 adults were interviewed, and they donated blood for serum PCB analysis and underwent the caffeine breath test (CBT), a safe and noninvasive procedure that uses caffeine as a probe for CYP1A2 activity in vivo. The results supported the findings of other studies that CBT values are higher among smokers and men and lower among women who use oral contraceptives. Despite a relatively low average total PCB body burden in this population, the sum of serum levels for nine mono- or di-ortho-substituted PCB congeners showed positive associations with CBT values (p = 0.052 wet weight and p = 0.029 lipid adjusted), as did toxic equivalent quantities (TEQs; p = 0.091 for wet weight and 0.048 for lipid adjusted). Regarding individual congeners, serum levels of PCB-153, PCB-170, and PCB-180 were significantly correlated with CBT values. The results support the notion that CYP1A2 activity may be a marker of an early biological effect of exposure to PCBs in humans and that the CBT may be a useful tool to monitor such effects. PMID:15743714

  1. Spinal adenosine A2a receptor activation elicits long-lasting phrenic motor facilitation.

    PubMed

    Golder, Francis J; Ranganathan, Lavanya; Satriotomo, Irawan; Hoffman, Michael; Lovett-Barr, Mary Rachael; Watters, Jyoti J; Baker-Herman, Tracy L; Mitchell, Gordon S

    2008-02-27

    Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine kinases, the Trk receptors. Thus, we hypothesized that A2a receptor agonists would elicit phrenic long-term facilitation by mimicking the effects of BDNF on TrkB receptors. Here we demonstrate that spinal A2a receptor agonists transactivate TrkB receptors in the rat cervical spinal cord near phrenic motoneurons, thus inducing long-lasting (hours) phrenic motor facilitation. A2a receptor activation increased phosphorylation and new synthesis of an immature TrkB protein, induced TrkB signaling through Akt, and strengthened synaptic pathways to phrenic motoneurons. RNA interference targeting TrkB mRNA demonstrated that new TrkB protein synthesis is necessary for A2a-induced phrenic motor facilitation. A2a receptor activation also increased breathing in unanesthetized rats, and improved breathing in rats with cervical spinal injuries. Thus, small, highly permeable drugs (such as adenosine receptor agonists) that transactivate TrkB receptors may provide an effective therapeutic strategy in the treatment of patients with ventilatory control disorders, such as obstructive sleep apnea, or respiratory insufficiency after spinal injury or during neurodegenerative diseases. PMID:18305238

  2. Clostridium perfringens alpha-N-acetylgalactosaminidase blood group A2-degrading activity.

    PubMed

    Hsieh, Hsin-Yeh; Smith, Daniel

    2003-04-01

    Enzymic modification of type A(2) erythrocyte membranes with Clostridium perfringens alpha-N-acetylgalactosaminidase was investigated. An ELISA demonstrated hydrolysis of type A(2) epitopes under conditions of red-blood-cell collection and storage. The enzyme hydrolysed the terminal N-acetyl-alpha-D-galactosamine from the blood type A(2) antigen, producing H antigen, blood group O, which is universally compatible in the ABO system. The enzyme was active in common red-cell preservative solutions at pH 6.4-7.0, at 4 degrees C, at ionic strengths found in stored red cell units and in the presence of type A plasma. These data imply that the C. perfringens alpha-N-acetylgalactosaminidase might be added directly to packed A(2) red-blood-cell units for enzymic conversion to blood type O. Further studies are warranted. PMID:12630904

  3. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection.

    PubMed

    Ye, Libin; Van Eps, Ned; Zimmer, Marco; Ernst, Oliver P; Prosser, R Scott

    2016-05-12

    Conformational selection and induced fit are two prevailing mechanisms to explain the molecular basis for ligand-based activation of receptors. G-protein-coupled receptors are the largest class of cell surface receptors and are important drug targets. A molecular understanding of their activation mechanism is critical for drug discovery and design. However, direct evidence that addresses how agonist binding leads to the formation of an active receptor state is scarce. Here we use (19)F nuclear magnetic resonance to quantify the conformational landscape occupied by the adenosine A2A receptor (A2AR), a prototypical class A G-protein-coupled receptor. We find an ensemble of four states in equilibrium: (1) two inactive states in millisecond exchange, consistent with a formed (state S1) and a broken (state S2) salt bridge (known as 'ionic lock') between transmembrane helices 3 and 6; and (2) two active states, S3 and S3', as identified by binding of a G-protein-derived peptide. In contrast to a recent study of the β2-adrenergic receptor, the present approach allowed identification of a second active state for A2AR. Addition of inverse agonist (ZM241385) increases the population of the inactive states, while full agonists (UK432097 or NECA) stabilize the active state, S3', in a manner consistent with conformational selection. In contrast, partial agonist (LUF5834) and an allosteric modulator (HMA) exclusively increase the population of the S3 state. Thus, partial agonism is achieved here by conformational selection of a distinct active state which we predict will have compromised coupling to the G protein. Direct observation of the conformational equilibria of ligand-dependent G-protein-coupled receptor and deduction of the underlying mechanisms of receptor activation will have wide-reaching implications for our understanding of the function of G-protein-coupled receptor in health and disease. PMID:27144352

  4. Cytochrome P450 1A2 (CYP1A2) activity, mammographic density, and oxidative stress: a cross-sectional study

    PubMed Central

    Hong, Chi-Chen; Tang, Bing-Kou; Rao, Venketeshwer; Agarwal, Sanjiv; Martin, Lisa; Tritchler, David; Yaffe, Martin; Boyd, Norman F

    2004-01-01

    Introduction Mammographically dense breast tissue is a strong predictor of breast cancer risk, and is influenced by both mitogens and mutagens. One enzyme that is able to affect both the mitogenic and mutagenic characteristics of estrogens is cytochrome P450 1A2 (CYP1A2), which is principally responsible for the metabolism of 17β-estradiol. Methods In a cross-sectional study of 146 premenopausal and 149 postmenopausal women, we examined the relationships between CYP1A2 activity, malondialdehyde (MDA) levels, and mammographic density. In vivo CYP1A2 activity was assessed by measuring caffeine metabolites in urine. Levels of serum and urinary MDA, and MDA–deoxyguanosine adducts in DNA were measured. Mammograms were digitized and measured using a computer-assisted method. Results CYP1A2 activity in postmenopausal women, but not in premenopausal women, was positively associated with mammographic density, suggesting that increased CYP1A2 activity after the menopause is a risk factor for breast cancer. In premenopausal women, but not in postmenopausal women, CYP1A2 activity was positively associated with serum and urinary MDA levels; there was also some evidence that CYP1A2 activity was more positively associated with percentage breast density when MDA levels were high, and more negatively associated with percentage breast density when MDA levels were low. Conclusion These findings provide further evidence that variation in the activity level of enzymes involved in estrogen metabolism is related to levels of mammographic density and potentially to breast cancer risk. PMID:15217501

  5. Characterization of serum phospholipase a(2) activity in three diverse species of west african crocodiles.

    PubMed

    Merchant, Mark; Juneau, Kate; Gemillion, Jared; Falconi, Rodolfo; Doucet, Aaron; Shirley, Matthew H

    2011-01-01

    Secretory phospholipase A(2), an enzyme that exhibits substantial immunological activity, was measured in the serum of three species of diverse West African crocodiles. Incubation of different volumes of crocodile serum with bacteria labeled with a fluorescent fatty acid in the sn-2 position of membrane lipids resulted in a volume-dependent liberation of fluorescent probe. Serum from the Nile crocodile (Crocodylus niloticus) exhibited slightly higher activity than that of the slender-snouted crocodile (Mecistops cataphractus) and the African dwarf crocodile (Osteolaemus tetraspis). Product formation was inhibited by BPB, a specific PLA(2) inhibitor, confirming that the activity was a direct result of the presence of serum PLA(2). Kinetic analysis showed that C. niloticus serum produced product more rapidly than M. cataphractus or O. tetraspis. Serum from all three species exhibited temperature-dependent PLA(2) activities but with slightly different thermal profiles. All three crocodilian species showed high levels of activity against eight different species of bacteria. PMID:22110960

  6. Adenosine A2A Receptor Activation Prevents Wear Particle-Induced Osteolysis

    PubMed Central

    Mediero, Aránzazu; Frenkel, Sally R.; Wilder, Tuere; He, Wenjie; Mazumder, Amitabha; Cronstein, Bruce N.

    2012-01-01

    Prosthesis loosening, associated with wear-particle–induced inflammation and osteoclast-mediated bone destruction, is a common cause for joint implant failure, leading to revision surgery. Adenosine A2A receptors (A2AR) mediate potent anti-inflammatory effects in many tissues and prevent osteoclast differentiation. We tested the hypothesis that an A2AR agonist could reduce osteoclast-mediated bone resorption in a murine calvaria model of wear-particle–induced bone resorption. C57Bl/6 and A2A knockout (A2ARKO) mice received ultrahigh-molecular weight polyethylene particles (UHMWPE) and were treated daily with either saline or the A2AR agonist CGS21680. After 2 weeks, micro-computed tomography of calvaria demonstrated that CGS21680 reduced particle-induced bone pitting and porosity in a dose-dependent manner, increasing cortical bone and bone volume compared to control mice. Histological examination demonstrated diminished inflammation after treatment with CGS21680. In A2AKO mice, CGS21680 did not affect osteoclast-mediated bone resorption or inflammation. Levels of bone-resorption markers receptor activator of nuclear factor-kB (RANK), RANK ligand (RANKL), cathepsin K, CD163, and osteopontin were reduced following CGS21680 treatment, together with a reduction in osteoclasts. Secretion of interleukin 1β (IL-1β) and TNFα was significantly decreased, whereas IL-10 was markedly increased in bone by CGS21680. These results in mice suggest that site-specific delivery of an adenosine A2AR agonist could enhance implant survival, delaying or eliminating the need for revision arthroplastic surgery. PMID:22623741

  7. Endometrial phospholipase A2 activity during the oestrous cycle and early pregnancy in mares.

    PubMed

    Ababneh, M M; Troedsson, M H T

    2013-02-01

    The aim of this study was to determine phospholipase A2 (PLA2) kinetics and activity in the mare's endometrium during the oestrous cycle and early pregnancy. Phospholipase A2 is responsible for the liberation of arachidonic acid from phospholipids, which is the first limiting step in prostaglandins synthesis. Phospholipase A2 activity was measured using an assay based on the liberation of oleic acid from 1-palmitoyl-2-[(14) C] oleoyl phosphatidylcholine. The enzyme was shown to be calcium dependent, to have an optimum pH of 8 and an apparent Michaelis constant of 127 μM. Enzyme activity was low in the endometrium of early luteal phase tissue but increased significantly (p < 0.001) during the late luteal phase (5.39 ± 0.16; 3.48 ± 0.33, 6.85 ± 0.59, and 9.96 ± 1.23 nmol oleic acid released/mg protein at oestrus, and Days 3, 8 and 14 after ovulation, respectively). The mean PLA2 activity in endometrial tissue from pregnant mares (4.23 ± 0.74) was significantly lower (p < 0.01) than from cyclic animals during late dioestrus (9.96 ± 1.23). The results indicate that PLA2 activity in equine endometrium changes with the stage of the oestrous cycle and thus may be influenced by systemic hormone concentrations. The inhibitory effects of conceptus products on secretion of prostaglandin during early pregnancy were associated with a competitive inhibitor that decreased endometrial PLA2 activity. PMID:22486770

  8. Inflammatory Lung Injury After Cardiopulmonary Bypass is Attenuated by Adenosine A2A Receptor Activation

    PubMed Central

    Lisle, Turner C; Gazoni, Leo M; Fernandez, Lucas G; Sharma, Ashish K; Bellizzi, Andrew M; Schifflett, Grant D; Laubach, Victor E; Kron, Irving L

    2008-01-01

    Objectives Cardiopulmonary bypass has been shown to exert an inflammatory response within the lung, often resulting in postoperative pulmonary dysfunction. Several studies have shown that adenosine A2A receptor (A2AR) activation attenuates lung ischemia-reperfusion injury, however the effect of A2AR activation on cardiopulmonary bypass-induced lung injury has not been studied. We hypothesized that specific A2AR activation by ATL313 would attenuate inflammatory lung injury following cardiopulmonary bypass. Methods Adult male Sprague-Dawley rats were randomly divided into three groups: 1) SHAM group (underwent cannulation+heparinization only); 2) CONTROL group (underwent 90-minutes of normothermic cardiopulmonary bypass with normal whole-blood priming solution; 3) ATL group (underwent 90-minutes of normothermic cardiopulmonary bypass with ATL313 added to the normal priming solution). Results There was significantly less pulmonary edema and lung injury in the ATL group compared to the CONTROL group. The ATL group had significant reductions in bronchoalveolar lavage interleukin-1, interleukin-6, interferon-γ and myeloperoxidase levels compared to the CONTROL group. Similarly, lung tissue interleukin-6, tumor necrosis factor-α, and interferon-γ were significantly decreased in the ATL group compared to the CONTROL group. There was no significant difference between the SHAM and ATL groups in the amount of pulmonary edema, lung injury, or levels of pro-inflammatory cytokines. Conclusions The addition of a potent A2AR agonist to the normal priming solution prior to the initiation of CPB significantly protects the lung from the inflammatory effects of CPB and reduces the amount of lung injury. A2AR agonists could represent a new therapeutic strategy for reducing the potentially devastating consequences of the inflammatory response associated with CPB. Ultra-mini Abstract Pharmacologic activation of the adenosine A2A receptor during cardiopulmonary bypass resulted in

  9. Serum amyloid A protein enhances the activity of secretory non-pancreatic phospholipase A2.

    PubMed Central

    Pruzanski, W; de Beer, F C; de Beer, M C; Stefanski, E; Vadas, P

    1995-01-01

    The acute-phase proteins serum amyloid A protein (SAA) and secretory phospholipase A2 (sPLA2) are simultaneously expressed during inflammatory conditions. SAA associates with high-density lipoprotein (HDL) altering its physicochemical composition. We found that purified acute-phase SAA, but not the constitutive form, markedly enhances the lipolytic activity of sPLA2 in a dose-related manner with phosphatidylcholine/lysophosphatidylcholine or phosphatidylethanolamine/lysophosphatidylethanolamine liposomal substrates. Normal HDL was found to reduce activity of sPLA2 in a dose-dependent manner, but when acute-phase HDL containing 27% SAA was tested, it enhanced sPLA2 activity. Immunopurified monospecific antibodies against SAA completely abolished the enhancing activity of SAA and acute-phase HDL. Given the central role of HDL in lipoprotein metabolism, the interaction between HDL, SAA and sPLA2 may account for changes detected in lipoprotein metabolism during the acute phase. PMID:7542869

  10. Milleporin-1, a new phospholipase A2 active protein from the fire coral Millepora platyphylla nematocysts.

    PubMed

    Radwan, Faisal F Y; Aboul-Dahab, Hosney M

    2004-12-01

    Stings of fire corals, potent hydroids common in the Red Sea, are known to cause severe pain and they develop burns and itching that lasts few hours after contact. Nematocyst venom of Millepora platyphylla (Mp-TX) was isolated according to a recent method developed in our laboratory to conduct a previous investigation on the nematocyst toxicity of Millepora dichotoma and M. platyphylla. In this study, Mp-TX was fractionated by using both gel filtration and ion exchange chromatography. Simultaneous biological and biochemical assays were performed to monitor the hemolytic (using washed human red blood cells, RBCs) and phospholipase A2 (using radiolabeled sn-2 C14-arachidonyl phosphatidylcholine as a substrate) active venom fractions. The magnitude of both hemolysis and phospholipase A2 activity was found in a fraction rich of proteins of molecular masses approximately 30,000-34,000 Daltons. The former fraction was purified by ion exchange chromatography, and a major bioactive protein factor (approx. 32,500 Daltons , here named milleporin-1) was recovered. Milleporin-1 enzymatic activity showed a significant contribution to the overall hemolysis of human RBCs. This activity, however, could not be completely inhibited using phospholipid substrates. Melliporin-1 fraction retained about 30% hemolysis, until totally rendered inactive when boiled for 3 min. The overall mechanism of action of milleporin-1 to impact the cellular membrane was discussed; however, it is pending more biochemical and pharmacological future studies. PMID:15683837

  11. Dimerization and activation of porcine pancreatic phospholipase A2 via substrate level acylation of lysine 56.

    PubMed

    Tomasselli, A G; Hui, J; Fisher, J; Zürcher-Neely, H; Reardon, I M; Oriaku, E; Kézdy, F J; Heinrikson, R L

    1989-06-15

    The porcine pancreatic phospholipase A2-catalyzed hydrolysis of the water-soluble chromogenic substrate 4-nitro-3-octanoyloxybenzoate shows an initial latency phase similar to the one observed in the hydrolysis of aggregated phospholipids by the same enzyme. We report here that during the latency phase the enzyme undergoes a slow, autocatalytic, substrate-level acylation whereby in a few of the catalytic events the scissile octanoyl group of the substrate, normally transferred to water, is transferred to the epsilon-amino group of lysine 56. The N epsilon 56-octanoylphospholipase shows a strong tendency to dimerize in solution and thus may be separated from the monomeric native enzyme by gel filtration. Octanoylation of Lys-56 activates the enzyme some 180-fold toward 4-nitro-3-octanoyloxybenzoate and more than 100-fold toward monolayers of 1,2-didecanoyl-sn-glycero-3-phosphocholine. Acylation also attends the enzymatic hydrolysis of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine with the incorporation of 1 eq of palmitate. Kinetic analysis of the early phase of reaction with 4-nitro-3-octanoyloxybenzoate shows that in this initial step the rate of activation is first order with respect to enzyme and substrate. A much more rapid, autocatalytic activation occurs in the later phases of the reaction where the activation of the enzyme is catalyzed by the activated enzyme itself. These findings with porcine pancreatic phospholipase A2, together with those relative to a snake venom enzyme monomer (Cho, W., Tomasselli, A. G., Heinrikson, R. L., and Kézdy, F. J. (1988) J. Biol. Chem. 263, 11237-11241), strongly support the proposal that interfacial activation of monomeric phospholipases is due to substrate-level autoacylation resulting in fully potentiated dimeric enzymes. PMID:2498336

  12. Krabbe disease: psychosine-mediated activation of phospholipase A2 in oligodendrocyte cell death.

    PubMed

    Giri, S; Khan, M; Rattan, R; Singh, I; Singh, A K

    2006-07-01

    Globoid cell leukodystrophy (Krabbe disease) is an inherited neurological disorder caused by the pathogenomic accumulation of psychosine (galactosylsphingosine), a substrate for the deficient enzyme galactocerebroside beta-galactosidase. This study underscores the mechanism of action of psychosine in the regulation of oligodendrocyte cell death via the generation of lysophosphatidylcholine (LPC) and arachidonic acid (AA) by the activation of secretory phospholipase A2 (sPLA2). There was a significant increase in the level of LPC, indicating a phospholipase A2 (PLA2)-dependent pathobiology, in the brains of Krabbe disease patients and those of twitcher mice, an animal model of Krabbe disease. In vitro studies of the treatment of primary oligodendrocytes and the oligodendrocyte MO3.13 cell line with psychosine also showed the generation of LPC and the release of AA in a dose- and time-dependent manner, indicating psychosine-induced activation of PLA2. Studies with various pharmacological inhibitors of cytosolic phospholipase A2 and sPLA2 and psychosine-mediated induction of sPLA2 enzymatic activity in media supernatant suggest that psychosine-induced release of AA and generation of LPC is mainly contributed by sPLA2. An inhibitor of sPLA2, 7,7-dimethyl eicosadienoic acid, completely attenuated the psychosine-mediated accumulation of LPC levels, release of AA, and generation of reactive oxygen species, and blocked oligodendroyte cell death, as evident from cell survival, DNA fragmentation, and caspase 3 activity assays. This study documents for the first time that psychosine-induced cell death is mediated via the sPLA2 signaling pathway and that inhibitors of sPLA2 may hold a therapeutic potential for protection against oligodendrocyte cell death and resulting demyelination in Krabbe disease. PMID:16645197

  13. Preladenant, a selective A(2A) receptor antagonist, is active in primate models of movement disorders.

    PubMed

    Hodgson, Robert A; Bedard, Paul J; Varty, Geoffrey B; Kazdoba, Tatiana M; Di Paolo, Therese; Grzelak, Michael E; Pond, Annamarie J; Hadjtahar, Abdallah; Belanger, Nancy; Gregoire, Laurent; Dare, Aurelie; Neustadt, Bernard R; Stamford, Andrew W; Hunter, John C

    2010-10-01

    Parkinson's Disease (PD) and Extrapyramidal Syndrome (EPS) are movement disorders that result from degeneration of the dopaminergic input to the striatum and chronic inhibition of striatal dopamine D(2) receptors by antipsychotics, respectively. Adenosine A(2A) receptors are selectively localized in the basal ganglia, primarily in the striatopallidal ("indirect") pathway, where they appear to operate in concert with D(2) receptors and have been suggested to drive striatopallidal output balance. In cases of dopaminergic hypofunction, A(2A) receptor activation contributes to the overdrive of the indirect pathway. A(2A) receptor antagonists, therefore, have the potential to restore this inhibitor imbalance. Consequently, A(2A) receptor antagonists have therapeutic potential in diseases of dopaminergic hypofunction such as PD and EPS. Targeting the A(2A) receptor may also be a way to avoid the issues associated with direct dopamine agonists. Recently, preladenant was identified as a potent and highly selective A(2A) receptor antagonist, and has produced a significant improvement in motor function in rodent models of PD. Here we investigate the effects of preladenant in two primate movement disorder models. In MPTP-treated cynomolgus monkeys, preladenant (1 or 3 mg/kg; PO) improved motor ability and did not evoke any dopaminergic-mediated dyskinetic or motor complications. In Cebus apella monkeys with a history of chronic haloperidol treatment, preladenant (0.3-3.0 mg/kg; PO) delayed the onset of EPS symptoms evoked by an acute haloperidol challenge. Collectively, these data support the use of preladenant for the treatment of PD and antipsychotic-induced movement disorders. PMID:20655910

  14. Angiogenin stimulates endothelial cell prostacyclin secretion by activation of phospholipase A2.

    PubMed Central

    Bicknell, R; Vallee, B L

    1989-01-01

    Angiogenin stimulates capillary and umbilical vein endothelial cell prostacyclin secretion but not that of prostaglandins of the E series. The response was quantitated by radioimmunoassay and by [3H]arachidonate labeling followed by analysis of the secreted prostaglandins. The stimulated secretion lasts for several minutes and is optimal at 2-4 min. The dose-response (peak at 1-10 ng/ml) is similar to that previously observed for activation of endothelial cell phospholipase C. Stimulated secretion was blocked by pretreatment with the inhibitors of prostacyclin synthesis, indomethacin and tranylcypromine, and also the specific inhibitor of phospholipase A2, quinacrine, as well as pertussis toxin and the diglyceryl and monoglyceryl lipase inhibitor RHC 80267. Stimulated secretion was also abolished in cells that were either pretreated for 48 hr with phorbol ester to down-regulate protein kinase C or incubated with the protein kinase inhibitor H7. Hydrolysis of phosphatidylinositol by phospholipase A2 appears to be the source of angiogenin-mobilized arachidonate; angiogenin-induced hydrolysis of phosphatidylcholine was not detected. Activation of phospholipase A2 occurs in the absence of an angiogenin-induced calcium flux. The results are discussed in terms of mechanisms of agonist-induced intracellular arachidonate mobilization and relevance to angiogenesis. PMID:2646638

  15. Phospholipase A2 activation by hydrogen peroxide during in vitro capacitation of buffalo spermatozoa.

    PubMed

    Shit, Sanjoy; Atreja, S K

    2004-05-01

    Progressively motile, washed buffalo spermatozoa (50 x 10(6) cells in 0.5 ml) were in vitro capacitated in HEPES containing Bovine Gamete Medium 3 (BGM3) in presence of heparin (10 microg/ml), and different concentrations of hydrogen peroxide (10 to 100 microM). Spermatozoa (60%) were capacitated in presence of heparin compared to 56% in presence of 25 microM H2O2 (optimally found suitable for capacitation). The extent of capacitation was measured in terms of acrosome reaction (AR) induced by lysophosphatidyl choline (100 microg/ml). The acrosome reacted cells were counted after triple staining. Catalase (100 microg/ml) significantly reduced the sperm capacitation to 16-18% when added with H2O2, or alone in the capacitation medium. Phospholipase A2 activity of spermatozoa increased linearly up to 50 microM H2O2 concentration included in the assay system. Moreover, significant increase in phospholipase A2 activity was observed after capacitation by both, the heparin and 25 microM H2O2. The activity was always higher in acrosome reacted cells. PMID:15233473

  16. Human group II 14 kDa phospholipase A2 activates human platelets.

    PubMed Central

    Polgár, J; Kramer, R M; Um, S L; Jakubowski, J A; Clemetson, K J

    1997-01-01

    Recombinant human group II phospholipase A2 (sPLA2) added to human platelets in the low microg/ml range induced platelet activation, as demonstrated by measurement of platelet aggregation, thromboxane A2 generation and influx of intracellular free Ca2+ concentration and by detection of time-dependent tyrosine phosphorylation of platelet proteins. The presence of Ca2+ at low millimolar concentrations is a prerequisite for the activation of platelets by sPLA2. Mg2+ cannot replace Ca2+. Mg2+, given in addition to the necessary Ca2+, inhibits sPLA2-induced platelet activation. Pre-exposure to sPLA2 completely blocked the aggregating effect of a second dose of sPLA2. Albumin or indomethacin inhibited sPLA2-induced aggregation, similarly to the inhibition of arachidonic acid-induced aggregation. Platelets pre-treated with heparitinase or phosphatidylinositol-specific phospholipase C lost their ability to aggregate in response to sPLA2, although they still responded to other agonists. This suggests that a glycophosphatidylinositol-anchored platelet-membrane heparan sulphate proteoglycan is the binding site for sPLA2 on platelets. Previous reports have stated that sPLA2 is unable to activate platelets. The inhibitory effect of albumin and Mg2+, frequently used in aggregation studies, and the fact that isolated platelets lose their responsiveness to sPLA2 relatively quickly, may explain why the platelet-activating effects of sPLA2 have not been reported earlier. PMID:9355761

  17. Sequence specific inhibition of human type II phospholipase A2 enzyme activity by phosphorothioate oligonucleotides.

    PubMed Central

    Bennett, C F; Chiang, M Y; Wilson-Lingardo, L; Wyatt, J R

    1994-01-01

    Phosphorothioate oligonucleotides were identified which directly inhibited human type II phospholipase A2 (PLA2) enzyme activity in a sequence specific manner. The minimum pharmacophore common to all oligonucleotides which inhibited PLA2 enzyme activity consisted of two sets of three or more consecutive guanosine residues in a row. These oligonucleotides appear to form G quartets resulting in the formation of oligonucleotide aggregates. Additionally, a phosphorothioate backbone was required to be effective inhibitors of type II PLA2. The activity of one oligodeoxynucleotide, IP 3196 (5'-GGGTGGGTATAGAAGGGCTCC-3') has been characterized in more detail. IP 3196 inhibited PLA2 enzyme activity when the substrate was presented in the form of a phospholipid bilayer but not when presented in the form of a mixed micelle with anionic detergents. Human type II PLA2 was 50-fold more sensitive to inhibition by IP 3196 than venom and pancreatic type I enzymes. These data demonstrate that phosphorothioate oligonucleotides can specifically inhibit human type II PLA2 enzyme activity in a sequence specific manner. PMID:8065936

  18. Amyloid-Type Fiber Formation in Control of Enzyme Action: Interfacial Activation of Phospholipase A2

    PubMed Central

    Code, Christian; Domanov, Yegor; Jutila, Arimatti; Kinnunen, Paavo K. J.

    2008-01-01

    The lag-burst behavior in the action of phospholipase A2 (PLA2) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was investigated at temperatures slightly offset from the main phase transition temperature Tm of this lipid, thus slowing down the kinetics of the activation process. Distinct stages leading to maximal activity were resolved using a combination of fluorescence parameters, including Förster resonance energy transfer between donor- and acceptor-labeled enzyme, fluorescence anisotropy, and lifetime, as well as thioflavin T fluorescence enhancement. We showed that the interfacial activation of PLA2, evident after the preceding lag phase, coincides with the formation of oligomers staining with thioflavin T and subsequently with Congo red. Based on previous studies and our findings here, we propose a novel mechanism for the control of PLA2, involving amyloid protofibrils with highly augmented enzymatic activity. Subsequently, these protofibrils form “mature” fibrils, devoid of activity. Accordingly, the process of amyloid formation is used as an on-off switch to obtain a transient burst in enzymatic catalysis. PMID:18339749

  19. Active site mutants of human secreted Group IIA Phospholipase A2 lacking hydrolytic activity retain their bactericidal effect.

    PubMed

    Chioato, Lucimara; Aragão, Elisangela Aparecida; Ferreira, Tatiana Lopes; Ward, Richard J

    2012-01-01

    The Human Secreted Group IIA Phospholipase A(2) (hsPLA2GIIA) presents potent bactericidal activity, and is considered to contribute to the acute-phase immune response. Hydrolysis of inner membrane phospholipids is suggested to underlie the bactericidal activity, and we have evaluated this proposal by comparing catalytic activity with bactericidal and liposome membrane damaging effects of the G30S, H48Q and D49K hsPLA2GIIA mutants. All mutants showed severely impaired hydrolytic activities against mixed DOPC:DOPG liposome membranes, however the bactericidal effect against Micrococcus luteus was less affected, with 50% killing at concentrations of 1, 3, 7 and 9 μg/mL for the wild-type, D49K, H48Q and G30S mutants respectively. Furthermore, all proteins showed Ca(2+)-independent damaging activity against liposome membranes demonstrating that in addition to the hydrolysis-dependent membrane damage, the hsPLA2GIIA presents a mechanism for permeabilization of phospholipid bilayers that is independent of catalytic activity, which may play a role in the bactericidal function of the protein. PMID:21986368

  20. Efficient soluble expression of active recombinant human cyclin A2 mediated by E. coli molecular chaperones.

    PubMed

    Grigoroudis, Asterios I; McInnes, Campbell; Premnath, Padmavathy Nandha; Kontopidis, George

    2015-09-01

    Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes. The studies involve implementation of a His-tagged heterologous expression system under conditions of auto-induction and mediated by molecular chaperone-expressing plasmids. A high yield of human cyclin A2 was obtained in natively folded and soluble form, through co-expression with groups of molecular chaperones from E. coli in various combinations. A one-step affinity chromatography method was utilized to purify the fusion protein products to homogeneity, and the biological activity confirmed through ligand-binding affinity to inhibitory peptides, representing alternatives for the key determinants of the CDK2 substrate recruitment site on the cyclin regulatory subunit. As a whole, obtaining the active cyclin A without the CDK partner (referred to as monomeric in this work) in a straightforward and facile manner will obviate protein--production issues with the CDK2/cyclin A complex and enable drug discovery efforts for non-ATP competitive CDK inhibition through the cyclin groove. PMID:25956535

  1. A 2-Tesla active shield magnet for whole body imaging and spectroscopy

    SciTech Connect

    Davies, F.J.; Elliott, R.T.; Hawksworth, D.G. )

    1991-03-01

    This paper reports on the development and testing of a 2T superconducting Active Shield magnet, with a 0.99m diameter warm bore for whole-body Magnetic Resonance Imaging (MRI) and spectroscopy. The magnet and cryostat were designed to meet the same performance standards as existing MRI magnets, but with the volume of the stray field region reduced to less than 4% of that for an unshielded magnet. The 0.5 mT stray field contour is within 5m axially and 3m radially of the magnet center. The system weight is only 14 tonnes.

  2. Interaction of surfactant protein A with peroxiredoxin 6 regulates phospholipase A2 activity.

    PubMed

    Wu, Yong-Zheng; Manevich, Yefim; Baldwin, James L; Dodia, Chandra; Yu, Kevin; Feinstein, Sheldon I; Fisher, Aron B

    2006-03-17

    Peroxiredoxin 6 (Prdx6) is a "moonlighting" protein with both GSH peroxidase and phospholipase A(2) (PLA(2)) activities. This protein is responsible for degradation of internalized dipalmitoylphosphatidylcholine, the major phospholipid component of lung surfactant. The PLA(2) activity is inhibited by surfactant protein A (SP-A). We postulate that SP-A regulates the PLA(2) activity of Prdx6 through direct protein-protein interaction. Recombinant human Prdx6 and SP-A isolated from human alveolar proteinosis fluid were studied. Measurement of kinetic constants at pH 4.0 (maximal PLA(2) activity) showed K(m)0.35 mm and V(max) 138 nmol/min/mg of protein. SP-A inhibited PLA(2) activity non-competitively with K(i) 10 mug/ml and was Ca(2+) -independent. Activity at pH 7.4 was approximately 50% less, and inhibition by SP-A was partially dependent on Ca(2+). Interaction of SP-A and Prdx6 at pH 7.4 was shown by Prdx6-mediated inhibition of SP-A binding to agarose beads, a pull-down assay using His-tagged Prdx6 and Ni(2) -chelating beads, co-immunoprecipitation from lung epithelial cells and from a binary mixture of the two proteins, binding after treatment with a trifunctional cross-linker, and size-exclusion chromatography. Analysis by static light scattering and surface plasmon resonance showed calcium-independent SP-A binding to Prdx6 at pH 4.0 and partial Ca(2+) dependence of binding at pH 7.4. These results indicate a direct interaction between SP-A and Prdx6, which provides a mechanism for regulation of the PLA(2) activity of Prdx6 by SP-A. PMID:16330552

  3. Cognitive Stimulation Modulates Platelet Total Phospholipases A2 Activity in Subjects with Mild Cognitive Impairment

    PubMed Central

    Balietti, Marta; Giuli, Cinzia; Fattoretti, Patrizia; Fabbietti, Paolo; Postacchini, Demetrio; Conti, Fiorenzo

    2016-01-01

    We evaluated the effect of cognitive stimulation (CS) on platelet total phospholipases A2 activity (tPLA2A) in patients with mild cognitive impairment (MCI_P). At baseline, tPLA2A negatively correlated with Mini-Mental State Examination score (MMSE_s): patients with MMSE_s <26 (Subgroup 1) had significantly higher activity than those with MMSE_s ≥26 (Subgroup 2), who had values similar to the healthy elderly. Regarding CS effect, Subgroup 1 had a significant tPLA2A reduction, whereas Subgroup 2 did not significantly changes after training. Our results showed for the first time that tPLA2A correlates with the cognitive conditions of MCI_P, and that CS acts selectively on subjects with a dysregulated tPLA2A. PMID:26836161

  4. Gβ1γ2 activates phospholipase A2-dependent Golgi membrane tubule formation

    PubMed Central

    Bechler, Marie E.; Brown, William J.

    2014-01-01

    Heterotrimeric G proteins transduce the ligand binding of transmembrane G protein coupled receptors into a variety of intracellular signaling pathways. Recently, heterotrimeric Gβγ subunit signaling at the Golgi complex has been shown to regulate the formation of vesicular transport carriers that deliver cargo from the Golgi to the plasma membrane. In addition to vesicles, membrane tubules have also been shown to mediate export from the Golgi complex, which requires the activity of cytoplasmic phospholipase A2 (PLA2) enzyme activity. Through the use of an in vitro reconstitution assay with isolated Golgi complexes, we provide evidence that Gβ1γ2 signaling also stimulates Golgi membrane tubule formation. In addition, we show that an inhibitor of Gβγ activation of PLA2 enzymes inhibits in vitro Golgi membrane tubule formation. Additionally, purified Gβγ protein stimulates membrane tubules in the presence of low (sub-threshold) cytosol concentrations. Importantly, this Gβγ stimulation of Golgi membrane tubule formation was inhibited by treatment with the PLA2 antagonist ONO-RS-082. These studies indicate that Gβ1γ2 signaling activates PLA2 enzymes required for Golgi membrane tubule formation, thus establishing a new layer of regulation for this process. PMID:25019068

  5. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities[S

    PubMed Central

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-01-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase®, guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  6. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities.

    PubMed

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-08-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase(®), guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  7. Monitoring Phospholipase A2 Activity with Gd-encapsulated Phospholipid Liposomes

    PubMed Central

    Cheng, Zhiliang; Tsourkas, Andrew

    2014-01-01

    To date, numerous analytical methods have been developed to monitor phospholipase A2 (PLA2) activity. However, many of these methods require the use of unnatural PLA2 substrates that may alter enzyme kinetics, and probes that cannot be extended to applications in more complex environments. It would be desirable to develop a versatile assay that monitors PLA2 activity based on interactions with natural phospholipids in complex biological samples. Here, we developed an activatable T1 magnetic resonance (MR) imaging contrast agent to monitor PLA2 activity. Specifically, the clinically approved gadolinium (Gd)-based MR contrast agent, gadoteridol, was encapsulated within nanometer-sized phospholipid liposomes. The encapsulated Gd exhibited a low T1-weighted signal, due to low membrane permeability. However, when the phospholipids within the liposomal membrane were hydrolyzed by PLA2, encapsulated Gd was released into bulk solution, resulting in a measureable change in the T1-relaxation time. These activatable MR contrast agents can potentially be used as nanosensors for monitoring of PLA2 activity in biological samples with minimal sample preparation. PMID:25376186

  8. Modulation of the Activity of Secretory Phospholipase A2 by Antimicrobial Peptides

    PubMed Central

    Zhao, Hongxia; Kinnunen, Paavo K. J.

    2003-01-01

    The antimicrobial peptides magainin 2, indolicidin, and temporins B and L were found to modulate the hydrolytic activity of secretory phospholipase A2 (sPLA2) from bee venom and in human lacrimal fluid. More specifically, hydrolysis of phosphatidylcholine (PC) liposomes by bee venom sPLA2 at 10 μM Ca2+ was attenuated by these peptides while augmented product formation was observed in the presence of 5 mM Ca2+. The activity of sPLA2 towards anionic liposomes was significantly enhanced by the antimicrobial peptides at low [Ca2+] and was further enhanced in the presence of 5 mM Ca2+. Similarly, with 5 mM Ca2+ the hydrolysis of anionic liposomes was enhanced significantly by human lacrimal fluid sPLA2, while that of PC liposomes was attenuated. These results indicate that concerted action of antimicrobial peptides and sPLA2 could improve the efficiency of the innate response to infections. Interestingly, inclusion of a cationic gemini surfactant in the vesicles showed an essentially similar pattern on sPLA2 activity, suggesting that the modulation of the enzyme activity by the antimicrobial peptides may involve also charge properties of the substrate surface. PMID:12604528

  9. Molecular Details of Membrane Fluidity Changes during Apoptosis and Relationship to Phospholipase A2 Activity

    PubMed Central

    Gibbons, Elizabeth; Pickett, Katalyn R.; Streeter, Michael C.; Warcup, Ashley O.; Nelson, Jennifer; Judd, Allan M.; Bell, John D.

    2012-01-01

    Summary Secretory phospholipase A2 exhibits much greater activity toward apoptotic versus healthy cells. Various plasma membrane changes responsible for this phenomenon have been proposed, including biophysical alterations described as “membrane fluidity” and “order.” Understanding of these membrane perturbations was refined by applying studies with model membranes to fluorescence measurements during thapsigargin-induced apoptosis of S49 cells using probes specific for the plasma membrane: Patman and trimethylammonium-diphenylhexatriene. Alterations in emission properties of these probes corresponded with enhanced susceptibility of the cells to hydrolysis by secretory phospholipase A2. By applying a quantitative model, additional information was extracted from the kinetics of Patman equilibration with the membrane. Taken together, these data suggested that the phospholipids of apoptotic membranes display greater spacing between adjacent headgroups, reduced interactions between neighboring lipid tails, and increased penetration of water among the heads. The phase transition of artificial bilayers was used to calibrate quantitatively the relationship between probe fluorescence and the energy of interlipid interactions. This analysis was applied to results from apoptotic cells to estimate the frequency with which phospholipids protrude sufficiently at the membrane surface to enter the enzyme’s active site. The data suggested that this frequency increases 50–100-fold as membranes become susceptible to hydrolysis during apoptosis. PMID:22967861

  10. Autoproteolytic Activation of a Symbiosis-regulated Truffle Phospholipase A2.

    PubMed

    Cavazzini, Davide; Meschi, Francesca; Corsini, Romina; Bolchi, Angelo; Rossi, Gian Luigi; Einsle, Oliver; Ottonello, Simone

    2013-01-18

    Fungal phospholipases are members of the fungal/bacterial group XIV secreted phospholipases A(2) (sPLA(2)s). TbSP1, the sPLA(2) primarily addressed in this study, is up-regulated by nutrient deprivation and is preferentially expressed in the symbiotic stage of the ectomycorrhizal fungus Tuber borchii. A peculiar feature of this phospholipase and of its ortholog from the black truffle Tuber melanosporum is the presence of a 54-amino acid sequence of unknown functional significance, interposed between the signal peptide and the start of the conserved catalytic core of the enzyme. X-ray diffraction analysis of a recombinant TbSP1 form corresponding to the secreted protein previously identified in T. borchii mycelia revealed a structure comprising the five α-helices that form the phospholipase catalytic module but lacking the N-terminal 54 amino acids. This finding led to a series of functional studies that showed that TbSP1, as well as its T. melanosporum ortholog, is a self-processing pro-phospholipase A(2), whose phospholipase activity increases up to 80-fold following autoproteolytic removal of the N-terminal peptide. Proteolytic cleavage occurs within a serine-rich, intrinsically flexible region of TbSP1, does not involve the phospholipase active site, and proceeds via an intermolecular mechanism. Autoproteolytic activation, which also takes place at the surface of nutrient-starved, sPLA(2) overexpressing hyphae, may strengthen and further control the effects of phospholipase up-regulation in response to nutrient deprivation, also in the context of symbiosis establishment and mycorrhiza formation. PMID:23192346

  11. Autoproteolytic Activation of a Symbiosis-regulated Truffle Phospholipase A2*

    PubMed Central

    Cavazzini, Davide; Meschi, Francesca; Corsini, Romina; Bolchi, Angelo; Rossi, Gian Luigi; Einsle, Oliver; Ottonello, Simone

    2013-01-01

    Fungal phospholipases are members of the fungal/bacterial group XIV secreted phospholipases A2 (sPLA2s). TbSP1, the sPLA2 primarily addressed in this study, is up-regulated by nutrient deprivation and is preferentially expressed in the symbiotic stage of the ectomycorrhizal fungus Tuber borchii. A peculiar feature of this phospholipase and of its ortholog from the black truffle Tuber melanosporum is the presence of a 54-amino acid sequence of unknown functional significance, interposed between the signal peptide and the start of the conserved catalytic core of the enzyme. X-ray diffraction analysis of a recombinant TbSP1 form corresponding to the secreted protein previously identified in T. borchii mycelia revealed a structure comprising the five α-helices that form the phospholipase catalytic module but lacking the N-terminal 54 amino acids. This finding led to a series of functional studies that showed that TbSP1, as well as its T. melanosporum ortholog, is a self-processing pro-phospholipase A2, whose phospholipase activity increases up to 80-fold following autoproteolytic removal of the N-terminal peptide. Proteolytic cleavage occurs within a serine-rich, intrinsically flexible region of TbSP1, does not involve the phospholipase active site, and proceeds via an intermolecular mechanism. Autoproteolytic activation, which also takes place at the surface of nutrient-starved, sPLA2 overexpressing hyphae, may strengthen and further control the effects of phospholipase up-regulation in response to nutrient deprivation, also in the context of symbiosis establishment and mycorrhiza formation. PMID:23192346

  12. Platelet phospholipase A(2) activity in Alzheimer's disease and mild cognitive impairment.

    PubMed

    Gattaz, W F; Forlenza, O V; Talib, L L; Barbosa, N R; Bottino, C M C

    2004-05-01

    Phospholipase A(2) (PLA(2)) controls the metabolism of phospholipids in cell membranes. In the brain, PLA(2) influences the processing of the amyloid precursor protein (APP) and thus the production of the amyloid-beta peptides (Abeta), which are the major components of the senile plaques in Alzheimer's disease (AD). Reduced PLA(2) activity has been reported in brain and in platelets of AD patients. In the present study we investigated PLA(2) activity in platelets from 21 AD patients as compared to 17 healthy elderly controls and 11 individuals with mild cognitive impairment (MCI). Subjects were cognitively assessed by the Mini-Mental State Examination (MMSE) and the CAMDEX schedule. Platelet PLA(2) activity was determined by radio-enzymatic assay, which mainly detected a calcium-independent form of the enzyme present also in the brain (iPLA(2)). PLA(2) activity was significantly lower in AD than in controls (p < 0.001). Mean PLA(2) activity in MCI individuals was between the values of AD patients and controls, with a subgroup showing PLA as low as the lowest AD patients, but the differences from MCI were not significant from AD and control groups. Lower PLA(2) activity was significantly correlated with a worse cognitive performance both at the MMSE (p = 0.001) and the cognitive sub-scale of the CAMDEX inventory (p = 0.002). Our data replicate previous findings of reduced platelet PLA(2) activity in AD. Both reduced PLA(2) activity and the correlation with impaired cognition were also reported in brain tissue of AD patients, suggesting thus that the present determinations in platelets may be related to a reduction in the brain. In the brain the inhibition of PLA(2) inhibits the physiological secretion of the APP, a mechanism that increases Abeta formation. Further longitudinal studies should investigate whether those MCI individuals with the lowest PLA(2) values in platelets would be at a higher risk to develop AD during a longitudinal follow up. PMID:15088152

  13. Heparin-enhanced plasma phospholipase A2 activity and prostacyclin synthesis in patients undergoing cardiac surgery.

    PubMed Central

    Nakamura, H; Kim, D K; Philbin, D M; Peterson, M B; Debros, F; Koski, G; Bonventre, J V

    1995-01-01

    Although eicosanoid production contributes to physiological and pathophysiological consequences of cardiopulmonary bypass (CPB), the mechanisms accounting for the enhanced eicosanoid production have not been defined. Plasma phospholipase A2 (PLA2) activity, 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), and thromboxane B2 (TXB2) levels were measured at various times during cardiac surgery. Plasma PLA2 activity increased after systemic heparinization, before CPB. This was highly correlated with concurrent increases in plasma 6-keto-PGF1 alpha, TXB2 concentrations did not increase with heparin administration but did increase significantly after initiation of CPB. High plasma PLA2 activity, 6-keto-PGF1 alpha, and TXB2 concentrations were measured throughout the CPB period. Protamine, administered to neutralize the heparin, caused an acute reduction of both plasma PLA2 activity and plasma 6-keto-PGF1 alpha, but no change in plasma TXB2 concentrations. Thus the ratio of TXB2 to 6-keto-PGF1 alpha increased significantly after protamine administration. Enhanced plasma PLA2 activity was also measured in patients with lower doses of heparin used clinically for nonsurgical applications. Human plasma PLA2 was identified as group II PLA2 by its sensitivity to deoxycholate and dithiothreitol, its substrate specificity, and its elution characteristics on heparin affinity chromatography. Heparin addition to PMNs in vitro resulted in dose-dependent increases in cellular PLA2 activity and release of PLA2. The PLA2 released from the PMN had characteristics similar to those of post-heparin plasma PLA2. In conclusion, plasma PLA2 activity and 6-keto-PGF1 alpha concentrations are markedly enhanced with systemic heparinization. Part of the anticoagulant and vasodilating effects of heparin may be due to increased plasma prostacyclin (PGI2) levels. In addition the pulmonary vasoconstriction sometimes associated with protamine infusion during cardiac surgery might be due to decreased

  14. Interferon-gamma induces the synthesis and activation of cytosolic phospholipase A2.

    PubMed Central

    Wu, T; Levine, S J; Lawrence, M G; Logun, C; Angus, C W; Shelhamer, J H

    1994-01-01

    Both IFN-alpha/beta and IFN-gamma have recently been demonstrated to induce a rapid but transient activation of phospholipase A2 (PLA2) in BALB/c 3T3 fibroblasts and a human neuroblastoma cell line. We report that IFN-gamma induces the synthesis and prolonged activation of cytosolic phospholipase A2 (cPLA2) in a human bronchial epithelial cell line (BEAS 2B). Treatment of the cells with IFN-gamma (300 U/ml) increased the release of [3H]arachidonic acid (AA) from prelabeled cells with a maximal effect at 12 h after stimulation. The increased [3H]AA release was inhibited by the PLA2 inhibitor p-bromophenacyl bromide (10(-5) M). Calcium ionophore A23187 (10(-5) M) further increased the [3H]AA release from the IFN-gamma-treated cells. Subcellular enzyme activity assay revealed that IFN-gamma increased PLA2 activity in both the cytosol and membrane fractions with a translocation of the cPLA2 to cell membranes in a Ca(2+)-free cell lysing buffer. Treatment with IFN-gamma also induced the release of 15-HETE, an arachidonic acid metabolite. Immunoblot showed that IFN-gamma induced the synthesis of cPLA2 protein. Nuclear run-on assay demonstrated that IFN-gamma initiated cPLA2 gene transcription within 15 min, and this effect was sustained at 4 h and returned to near control level at 12 h. The cPLA2 mRNA level was assayed by reverse transcription and PCR. IFN-gamma was found to increase the cPLA2 mRNA after 2-24 h treatment. Furthermore, the IFN-gamma induced cPLA2 mRNA increase was blocked by inhibitors of protein kinase C and calcium/calmodulin-dependent protein kinases, suggesting the involvement of these protein kinases in IFN-gamma-induced gene expression of cPLA2. This study shows that IFN-gamma induces the synthesis and prolonged activation of cPLA2. Images PMID:8113394

  15. Differential activity and structure of highly similar peroxidases. Spectroscopic, crystallographic, and enzymatic analyses of lignifying Arabidopsis thaliana peroxidase A2 and horseradish peroxidase A2.

    PubMed

    Nielsen, K L; Indiani, C; Henriksen, A; Feis, A; Becucci, M; Gajhede, M; Smulevich, G; Welinder, K G

    2001-09-18

    Anionic Arabidopsis thaliana peroxidase ATP A2 was expressed in Escherichia coli and used as a model for the 95% identical commercially available horseradish peroxidase HRP A2. The crystal structure of ATP A2 at 1.45 A resolution at 100 K showed a water molecule only 2.1 A from heme iron [Ostergaard, L., et al. (2000) Plant Mol. Biol. 44, 231-243], whereas spectroscopic studies of HRP A2 in solution at room temperature [Feis, A., et al. (1998) J. Raman Spectrosc. 29, 933-938] showed five-coordinated heme iron, which is common in peroxidases. Presented here, the X-ray crystallographic, single-crystal, and solution resonance Raman studies at room temperature confirmed that the sixth coordination position of heme iron of ATP A2 is essentially vacant. Furthermore, electronic absorption and resonance Raman spectroscopy showed that the heme environments of recombinant ATP A2 and glycosylated plant HRP A2 are indistinguishable at neutral and alkaline pH, from room temperature to 12 K, and are highly flexible compared with other plant peroxidases. Ostergaard et al. (2000) also demonstrated that ATP A2 expression and lignin formation coincide in Arabidopsis tissues, and docking of lignin precursors into the substrate binding site of ATP A2 predicted that coniferyl and p-coumaryl alcohols were good substrates. In contrast, the additional methoxy group of the sinapyl moiety gave rise to steric hindrance, not only in A2 type peroxidases but also in all peroxidases. We confirm these predictions for ATP A2, HRP A2, and HRP C. The specific activity of ATP A2 was lower than that of HRP A2 (pH 4-8), although a steady-state study at pH 5 demonstrated very little difference in their rate constants for reaction with H2O2 (k1 = 1.0 microM(-1) x s(-1). The oxidation of coniferyl alcohol, ferulic, p-coumaric, and sinapic acids by HRP A2, and ATP A2, however, gave modest but significantly different k3 rate constants of 8.7 +/- 0.3, 4.0 +/- 0.2, 0.70 +/- 0.03, and 0.04 +/- 0.2 microM(-1) x

  16. WATER-ICE-DRIVEN ACTIVITY ON MAIN-BELT COMET P/2010 A2 (LINEAR)?

    SciTech Connect

    Moreno, F.; Ortiz, J. L.; Cabrera-Lavers, A.; Augusteijn, T.; Liimets, T.; Lindberg, J. E.; Pursimo, T.; RodrIguez-Gil, P.; Vaduvescu, O.

    2010-08-01

    The dust ejecta of Main-Belt Comet P/2010 A2 (LINEAR) have been observed with several telescopes at the Observatorio del Roque de los Muchachos on La Palma, Spain. Application of an inverse dust tail Monte Carlo method to the images of the dust ejecta from the object indicates that a sustained, likely water-ice-driven, activity over some eight months is the mechanism responsible for the formation of the observed tail. The total amount of the dust released is estimated to be 5 x 10{sup 7} kg, which represents about 0.3% of the nucleus mass. While the event could have been triggered by a collision, this cannot be determined from the currently available data.

  17. Control of phospholipase A2 activities for the treatment of inflammatory conditions.

    PubMed

    Yedgar, Saul; Cohen, Yuval; Shoseyov, David

    2006-11-01

    Phospholipase-A2 (PLA2) enzymes hydrolyze cell membrane phospholipids to produce arachidonic acid (AA) and lyso-phospholipids (LysoPL), playing a key role in the production of inflammatory lipid mediators, mainly eicosanoids. They are therefore considered pro-inflammatory enzymes and their inhibition has long been recognized as a desirable therapeutic target. However, attempts to develop suitable PLA2 inhibitors for the treatment of inflammatory diseases have yet to succeed. This is due to their functional and structural diversity, and their homeostatic and even anti-inflammatory roles in certain circumstances. In the present review we outline the diversity and functions of PLA2 isoforms, and their interplay in the induction and inhibition of inflammatory processes, with emphasis on discussing approaches for therapeutic manipulation of PLA2 activities. PMID:16978919

  18. Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.

    PubMed Central

    Burch, R M; Connor, J R; Axelrod, J

    1988-01-01

    Human recombinant interleukin 1 alpha (IL-1 alpha) and IL-1 beta stimulated prostaglandin E2 synthesis in 3T3 fibroblasts in a time- and concentration-dependent manner. Enhanced prostaglandin E2 synthesis after IL-1 treatment was apparent by 1 hr and continued to increase for at least 2 days. Half-maximal stimulation occurred at 0.5 pM IL-1 alpha or IL-1 beta, and both interleukins were equally effective, with maximal stimulation occurring in response to 5-10 pM IL-1. In contrast to IL-1, bradykinin stimulation of prostaglandin E2 synthesis is rapid; its effect is maximal by 5 min. In cells that had been pretreated with IL-1 for 24 hr, prostaglandin E2 synthesis in response to bradykinin was amplified more than 10-fold. IL-1 also amplified the receptor-mediated formation of prostaglandin E2 by bombesin and thrombin. The lymphokine did not affect bradykinin receptor number or affinity. IL-1 treatment induced phospholipase A2 and cyclooxygenase but not phospholipase C or prostaglandin E isomerase. It also enhanced bradykinin-stimulated GTPase activity, suggesting possible induction of the GTP-binding regulatory protein coupled to the bradykinin receptor. Thus, IL-1 enhanced receptor-mediated release of prostaglandin E2 in response to bradykinin, bombesin, and thrombin by increasing the cellular levels of phospholipase A2, cyclooxygenase, and GTP-binding regulatory protein(s). PMID:2901097

  19. DYNAMICS OF LARGE FRAGMENTS IN THE TAIL OF ACTIVE ASTEROID P/2010 A2

    SciTech Connect

    Agarwal, Jessica; Jewitt, David; Weaver, Harold

    2013-05-20

    We examine the motions of large fragments at the head of the dust tail of the active asteroid P/2010 A2. In previous work, we showed that these fragments were ejected from the primary nucleus in early 2009, either following a hypervelocity impact or by rotationally induced breakup. Here, we follow their positions through a series of Hubble Space Telescope images taken during the first half of 2010. The orbital evolution of each fragment allows us to constrain its velocity relative to the main nucleus after leaving its sphere of gravitational influence. We find that the fragments constituting a prominent X-shaped tail feature were emitted in a direction opposite to the motion of the asteroid and toward the south of its orbital plane. Derived emission velocities of these primary fragments range between 0.02 and 0.3 m s{sup -1}, comparable to the {approx}0.08 m s{sup -1} gravitational escape speed from the nucleus. Their sizes are on the order of decimeters or larger. We obtain the best fits to our data with ejection velocity vectors lying in a plane that includes the nucleus. This may suggest that the cause of the disruption of P/2010 A2 is rotational breakup.

  20. Optogenetic Activation of Adenosine A2A Receptor Signaling in the Dorsomedial Striatopallidal Neurons Suppresses Goal-Directed Behavior.

    PubMed

    Li, Yan; He, Yan; Chen, Mozi; Pu, Zhilan; Chen, Li; Li, Ping; Li, Bo; Li, Haiyan; Huang, Zhi-Li; Li, Zhihui; Chen, Jiang-Fan

    2016-03-01

    The striatum has an essential role in neural control of instrumental behaviors by reinforcement learning. Adenosine A(2A) receptors (A(2A)Rs) are highly enriched in the striatopallidal neurons and are implicated in instrumental behavior control. However, the temporal importance of the A(2A)R signaling in relation to the reward and specific contributions of the striatopallidal A(2A)Rs in the dorsolateral striatum (DLS) and the dorsomedial striatum (DMS) to the control of instrumental learning are not defined. Here, we addressed temporal relationship and sufficiency of transient activation of optoA(2A)R signaling precisely at the time of the reward to the control of instrumental learning, using our newly developed rhodopsin-A2AR chimeras (optoA(2A)R). We demonstrated that transient light activation of optoA(2A)R signaling in the striatopallidal neurons in 'time-locked' manner with the reward delivery (but not random optoA(2A)R activation) was sufficient to change the animal's sensitivity to outcome devaluation without affecting the acquisition or extinction phases of instrumental learning. We further demonstrated that optogenetic activation of striatopallidal A(2A)R signaling in the DMS suppressed goal-directed behaviors, as focally genetic knockdown of striatopallidal A(2A)Rs in the DMS enhanced goal-directed behavior by the devaluation test. By contrast, optogenetic activation or focal AAV-Cre-mediated knockdown of striatopallidal A(2A)R in the DLS had relatively limited effects on instrumental learning. Thus, the striatopallidal A(2A)R signaling in the DMS exerts inhibitory and predominant control of goal-directed behavior by acting precisely at the time of reward, and may represent a therapeutic target to reverse abnormal habit formation that is associated with compulsive obsessive disorder and drug addiction. PMID:26216520

  1. Ex Vivo Effect of Varespladib on Secretory Phospholipase A2 Alveolar Activity in Infants with ARDS

    PubMed Central

    De Luca, Daniele; Minucci, Angelo; Piastra, Marco; Cogo, Paola E.; Vendittelli, Francesca; Marzano, Laura; Gentile, Leonarda; Giardina, Bruno; Conti, Giorgio; Capoluongo, Ettore D.

    2012-01-01

    Background Secretory phospholipase A2 (sPLA2) plays a pivotal role in acute respiratory distress syndrome (ARDS). This enzyme seems an interesting target to reduce surfactant catabolism and lung tissue inflammation. Varespladib is a specifically designed indolic sPLA2 inhibitor, which has shown promising results in animals and adults. No specific data in pediatric ARDS patients are yet available. Methods We studied varespladib in broncho-alveolar lavage (BAL) fluids obtained ex vivo from pediatric ARDS patients. Clinical data and worst gas exchange values during the ARDS course were recorded. Samples were treated with saline or 10–40–100 µM varespladib and incubated at 37°C. Total sPLA2 activity was measured by non-radioactive method. BAL samples were subjected to western blotting to identify the main sPLA isotypes with different sensitivity to varespladib. Results was corrected for lavage dilution using the serum-to-BAL urea ratio and for varespladib absorbance. Results Varespladib reduces sPLA2 activity (p<0.0001) at 10,40 and 100 µM; both sPLA2 activity reduction and its ratio to total proteins significantly raise with increasing varespladib concentrations (p<0.001). IC50 was 80 µM. Western blotting revealed the presence of sPLA2-IIA and –IB isotypes in BAL samples. Significant correlations exist between the sPLA2 activity reduction/proteins ratio and PaO2 (rho = 0.63;p<0.001), PaO2/FiO2 (rho = 0.7; p<0.001), oxygenation (rho = −0.6; p<0.001) and ventilation (rho = −0.4;p = 0.038) indexes. Conclusions Varespladib significantly inhibits sPLA2 in BAL of infants affected by post-neonatal ARDS. Inhibition seems to be inversely related to the severity of gas exchange impairment. PMID:23071714

  2. Cucumarioside A2-2 causes changes in the morphology and proliferative activity in mouse spleen.

    PubMed

    Pislyagin, E A; Manzhulo, I V; Dmitrenok, P S; Aminin, D L

    2016-05-01

    The immunomodulatory effect of triterpene glycoside cucumarioside A2-2 (CA2-2), isolated from the Far Eastern sea cucumber Cucumaria japonica, on the mouse spleen was investigated in comparison with lipopolysaccharide (LPS). It has been shown that the intraperitoneal (i.p.) glycoside administration did not influence on splenic weights, while the statistically significant increase in splenic weight was observed after LPS administration. Changes in the ratio of red to white pulp after CA2-2 or LPS administration were observed. The proportion of splenic white pulp after glycoside or LPS administration increased by up to 34% and 36%, respectively. A detailed study of the distribution of the РСNA (Proliferating Cell Nuclear Antigen) marker showed that the proliferative activity in the white pulp under CA2-2 and LPS influence increased 2.07 and 2.24 times, respectively. The localization of PCNA-positive nuclei in the white pulp region, as well as their dimensional characteristics, suggests that a large proportion of the proliferating cell population consisted of B cells. The mass spectrometry profiles of spleen peptide/protein homogenate were obtained using the MALDI-TOF-MS (Matrix -Assisted Laser Desorption/Ionization Time-Of-Flight Mass Spectrometry) approach. It was found that i.p. stimulation of animals with CA2-2 or LPS leads to marked changes in the intensity of revealed characteristic peaks of peptides/proteins after exposure to immunostimulants. PMID:27079859

  3. Effects of smoke inhalation on surfactant phospholipids and phospholipase A2 activity in the mouse lung.

    PubMed Central

    Oulton, M.; Moores, H. K.; Scott, J. E.; Janigan, D. T.; Hajela, R.

    1991-01-01

    The effects of smoke inhalation on the pulmonary surfactant system were examined in mice exposed for 30 minutes to smoke generated from the burning of polyurethane foam. At 8 or 12 hours after exposure, surfactants were isolated separately from lung lavage (extracellular surfactant) and residual lung tissue (intracellular surfactant) for phospholipid analysis. Calcium-dependent phospholipase A2 (PLA2) was measured on a microsomal fraction prepared from the tissue homogenate. Smoke inhalation produced a twofold increase in extracellular surfactant total phospholipid. While there was no change in the total phospholipid or phosphatidylcholine (PC) content of the intracellular surfactant, smoke inhalation significantly decreased the disaturated species of PC (DSPC). The specific activity of PLA2 was reduced by more than 50% in both groups of exposed mice. Smoke inhalation appears to result in selective depletion of the DSPC of intracellular surfactant and PLA2 involved in its synthesis. This depletion may be compensated for by increased secretion or slower breakdown of the material present in the extracellular compartment. Images Figure 1 PMID:1987765

  4. Increased phospholipase A2 and decreased lysophospholipase activity in the small intestinal mucosa after ischaemia and revascularisation.

    PubMed Central

    Otamiri, T; Franzén, L; Lindmark, D; Tagesson, C

    1987-01-01

    The influence of ischaemia and revascularisation on lipid peroxidation and phospholipid metabolism in the rat small intestinal mucosa was investigated. Two hours of total ischaemia followed by five minutes of revascularisation caused not only accumulation of malondialdehyde in the mucosa, but also increased activity of phospholipase A2, decreased activity of lysophospholipase, and increased ratio between lysophosphatidylcholine and phosphatidylcholine. Pretreatment with the phospholipase A2 inhibitor, quinacrine, prevented the increases in mucosal phospholipase A2 activity and lysophosphatidylcholine/phosphatidylcholine ratio after ischaemia and morphological examinations revealed that the mucosa was then also protected against ischaemic injury. These findings point to the possibility that activation of phospholipase A2 and accumulation of lysophosphoglycerides could be involved in mediating the mucosal injury caused by small intestinal ischaemia. Images Fig. 7 PMID:3428670

  5. Induction of cytosolic phospholipase A2 activity by phosphatidic acid and diglycerides in permeabilized human neutrophils: interrelationship between phospholipases D and A2.

    PubMed Central

    Bauldry, S A; Wooten, R E

    1997-01-01

    Relationships between phospholipases are poorly understood, but phosphatidic acid (PA) and diglycerides (DGs), produced by phospholipase D (PLD) and phosphatidate phosphohydrolase actions, might function as second messengers coupling cell stimulation to cellular responses. This study investigates the role of PLD-mediated PA and DG formation in inducing phospholipase A2 (PLA2) activity in intact human neutrophils (PMNs) and in PMNs permeabilized with Staphylococcus aureus alpha-toxin. PMNs were labelled with [3H]arachidonic acid (AA) to assess AA release and metabolism and diacylglycerol formation, or with [3H]1-O-hexadecyl-2-lyso-glycerophosphatidylcholine for the determination of platelet-activating factor (PAF), PA and alkylacylglycerol production. In intact PMNs primed with tumour necrosis factor alpha before stimulation with N-formyl-Met-Leu-Phe, AA release and metabolism and PAF formation increased in parallel with enhanced PA and DG formation, and inhibition of PA and DG production led to a decrease in both AA release and PAF accumulation. In alpha-toxin-permeabilized PMNs, AA release and PAF production result from the specific activation of cytosolic PLA2 (cPLA2). In this system, PA and DG formation were always present when cPLA2 activation occurred; blocking PA and DG production inhibited AA release and PAF accumulation. Adding either PA or DG back to permeabilized cells (with endogenous PA and DG formation blocked) led to a partial restoration of AA release and PAF formation; a combination of PA and DGs reconstituted full cPLA2 activity. These results strongly suggest that products of PLD participate in activating cPLA2 in PMNs. PMID:9065750

  6. Association between adjunctive metformin therapy in young type 1 diabetes patients with excess body fat and reduction of carotid intima-media thickness.

    PubMed

    Burchardt, Paweł; Zawada, Agnieszka; Kaczmarek, Jolanta; Marcinkaniec, Justyna; Wysocki, Henryk; Wierusz-Wysocka, Bogna; Grzymisławski, Marian; Rzeźniczak, Janusz; Zozulińska-Ziółkiewicz, Dorota; Naskręt, Dariusz

    2016-08-25

    INTRODUCTION    Lipoprotein-associated phospholipase A2 (Lp-PLA2) and cholesteryl ester lipase (CEL) may oxidize low-density lipoproteins (oxLDL). OBJECTIVES    The aim of the study was to determine the influence of metformin on the metabolism of atherogenic lipid fractions in relation to Lp-PLA2 and CEL levels, as well as assess consequent improvement in the intima-media thickness (IMT) of the common carotid artery in young type 1 diabetes patients with excess body fat. PATIENTS AND METHODS    It was an open-label randomized clinical trial that lasted 6 months. It included a total of 84 people with metabolic decompensation (glycated hemoglobin >7.5%, >58.5 mmol/mol) of diabetes. Adjunctive metformin therapy (in addition to insulin) was administered in 42 patients, and the remaining 42 patients received insulin alone. Glycated low-density lipoproteins (LDLs), oxLDL, Lp-PLA2, and CEL were assessed by commercially available enzyme-linked immunosorbent assay kits. Cartoid IMT was measured using the Carotid Analyser for Research tool. Biochemical analyses were performed using routine laboratory techniques. RESULTS    The reduction of mean carotid IMT was observed in young type 1 diabetic adults treated additionally with metformin (0.6 ±0.1 cm vs 0.53 ±0.1 cm; P = 0.002). This effect was probably due to weight reduction (90 ±16 kg vs 87 ±15 kg, P = 0.054) and the decrease in atherogenic glycated LDL levels (1.5 ±0.5 mg/dl vs 1.6 ±1.046 mg/dl, P = 0.006). No such correlations were observed in patients treated with insulin alone. Additionally, in patients receiving metformin, glycated LDL levels were inversely correlated with Lp-PLA2 levels (r = -0.31, P <0.05). CONCLUSIONS    Additional use of metformin in young type 1 diabetic patients with excess body fat leads to a significant reduction of mean IMT in the common carotid artery. Concentrations of CEL and Lp-PLA2 were significantly increased in both study arms despite improved glucose metabolism

  7. Botanical Polyphenols Mitigate Microglial Activation and Microglia-Induced Neurotoxicity: Role of Cytosolic Phospholipase A2.

    PubMed

    Chuang, Dennis Y; Simonyi, Agnes; Cui, Jiankun; Lubahn, Dennis B; Gu, Zezong; Sun, Grace Y

    2016-09-01

    Microglia play a significant role in the generation and propagation of oxidative/nitrosative stress, and are the basis of neuroinflammatory responses in the central nervous system. Upon stimulation by endotoxins such as lipopolysaccharides (LPS), these cells release pro-inflammatory factors which can exert harmful effects on surrounding neurons, leading to secondary neuronal damage and cell death. Our previous studies demonstrated the effects of botanical polyphenols to mitigate inflammatory responses induced by LPS, and highlighted an important role for cytosolic phospholipase A2 (cPLA2) upstream of the pro-inflammatory pathways (Chuang et al. in J Neuroinflammation 12(1):199, 2015. doi: 10.1186/s12974-015-0419-0 ). In this study, we investigate the action of botanical compounds and assess whether suppression of cPLA2 in microglia is involved in the neurotoxic effects on neurons. Differentiated SH-SY5Y neuroblastoma cells were used to test the neurotoxicity of conditioned medium from stimulated microglial cells, and WST-1 assay was used to assess for the cell viability of SH-SY5Y cells. Botanicals such as quercetin and honokiol (but not cyanidin-3-O-glucoside, 3CG) were effective in inhibiting LPS-induced nitric oxide (NO) production and phosphorylation of cPLA2. Conditioned medium from BV-2 cells stimulated with LPS or IFNγ caused neurotoxicity to SH-SY5Y cells. Decrease in cell viability could be ameliorated by pharmacological inhibitors for cPLA2 as well as by down-regulating cPLA2 with siRNA. Botanicals effective in inhibition of LPS-induced NO and cPLA2 phosphorylation were also effective in ameliorating microglial-induced neurotoxicity. Results demonstrated cytotoxic factors from activated microglial cells to cause damaging effects to neurons and potential use of botanical polyphenols to ameliorate the neurotoxic effects. PMID:27339657

  8. Phospholipase A2 activity in platelets. Immuno-purification and localization of the enzyme in rat platelets.

    PubMed

    Aarsman, A J; Leunissen-Bijvelt, J; Van den Koedijk, C D; Neys, F W; Verkleij, A J; Van den Bosch, H

    1989-01-01

    A comparative study on phospholipase A2 activity in platelet lysates from various species was carried out using identical assay conditions with phosphatidylethanolamine as substrate. Platelet phospholipase A2, both when expressed as activity per ml blood and as specific activity in KCl extracts, was low in human, cow, pig and goat. Moderate activities, in increasing order, were found in sheep, horse and rabbit, while rats showed by far the highest activity. In the latter four species total lysate activity was recovered in 1 M KCl extracts, suggesting that the enzyme occurs either in soluble form or as a peripheral membrane-associated protein. Immune cross-reactivity with monoclonal antibodies against rat liver mitochondrial phospholipase A2 was studied in dot-blot and monoclonal antibody-Sepharose binding experiments. Only sheep and rat platelet extracts contained cross-reactive phospholipase(s) A2. Immuno-affinity chromatography of rat platelet extracts indicated virtually complete binding of total phospholipase A2 activity and yielded pure enzyme in a single purification step. Enzyme visualization by immunogold electron microscopy showed a predominant localization in the matrix of alpha-granules. PMID:2519886

  9. A novel mechanism of control of NFκB activation and inflammation involving A2B adenosine receptors

    PubMed Central

    Sun, Ying; Duan, Yuanyuan; Eisenstein, Anna S.; Hu, Wenbao; Quintana, Adrien; Lam, Wai Kwan; Wang, Yan; Wu, Zhenguo; Ravid, Katya; Huang, Pingbo

    2012-01-01

    Summary The nuclear factor kappa B (NFκB) pathway controls a variety of processes, including inflammation, and thus, the regulation of NFκB has been a continued focus of study. Here, we report a newly identified regulation of this pathway, involving direct binding of the transcription factor NFκB1 (the p105 subunit of NFκB) to the C-terminus of the A2B adenosine receptor (A2BAR), independent of ligand activation. Intriguingly, binding of A2BAR to specific sites on p105 prevents polyubiquitylation and degradation of p105 protein. Ectopic expression of the A2BAR increases p105 levels and inhibits NFκB activation, whereas p105 protein levels are reduced in cells from A2BAR-knockout mice. In accordance with the known regulation of expression of anti- and pro-inflammatory cytokines by p105, A2BAR-null mice generate less interleukin (IL)-10, and more IL-12 and tumor necrosis factor (TNF-α). Taken together, our results show that the A2BAR inhibits NFκB activation by physically interacting with p105, thereby blocking its polyubiquitylation and degradation. Our findings unveil a surprising function for the A2BAR, and provide a novel mechanistic insight into the control of the NFκB pathway and inflammation. PMID:22767505

  10. Effect of Extended-Release Niacin on High-Density Lipoprotein (HDL) Functionality, Lipoprotein Metabolism, and Mediators of Vascular Inflammation in Statin-Treated Patients

    PubMed Central

    Yadav, Rahul; Liu, Yifen; Kwok, See; Hama, Salam; France, Michael; Eatough, Ruth; Pemberton, Phil; Schofield, Jonathan; Siahmansur, Tarza J; Malik, Rayaz; Ammori, Basil A; Issa, Basil; Younis, Naveed; Donn, Rachelle; Stevens, Adam; Durrington, Paul; Soran, Handrean

    2015-01-01

    Background The aim of this study was to explore the influence of extended-release niacin/laropiprant (ERN/LRP) versus placebo on high-density lipoprotein (HDL) antioxidant function, cholesterol efflux, apolipoprotein B100 (apoB)-containing lipoproteins, and mediators of vascular inflammation associated with 15% increase in high-density lipoprotein cholesterol (HDL-C). Study patients had persistent dyslipidemia despite receiving high-dose statin treatment. Methods and Results In a randomized double-blind, placebo-controlled, crossover trial, we compared the effect of ERN/LRP with placebo in 27 statin-treated dyslipidemic patients who had not achieved National Cholesterol Education Program-ATP III targets for low-density lipoprotein cholesterol (LDL-C). We measured fasting lipid profile, apolipoproteins, cholesteryl ester transfer protein (CETP) activity, paraoxonase 1 (PON1) activity, small dense LDL apoB (sdLDL-apoB), oxidized LDL (oxLDL), glycated apoB (glyc-apoB), lipoprotein phospholipase A2 (Lp-PLA2), lysophosphatidyl choline (lyso-PC), macrophage chemoattractant protein (MCP1), serum amyloid A (SAA) and myeloperoxidase (MPO). We also examined the capacity of HDL to protect LDL from in vitro oxidation and the percentage cholesterol efflux mediated by apoB depleted serum. ERN/LRP was associated with an 18% increase in HDL-C levels compared to placebo (1.55 versus 1.31 mmol/L, P<0.0001). There were significant reductions in total cholesterol, triglycerides, LDL cholesterol, total serum apoB, lipoprotein (a), CETP activity, oxLDL, Lp-PLA2, lyso-PC, MCP1, and SAA, but no significant changes in glyc-apoB or sdLDL-apoB concentration. There was a modest increase in cholesterol efflux function of HDL (19.5%, P=0.045), but no change in the antioxidant capacity of HDL in vitro or PON1 activity. Conclusions ERN/LRP reduces LDL-associated mediators of vascular inflammation, but has varied effects on HDL functionality and LDL quality, which may counter its HDL

  11. The first report on coagulation and phospholipase A2 activities of Persian Gulf lionfish, Pterois russelli, an Iranian venomous fish.

    PubMed

    Memar, Bahareh; Jamili, Shahla; Shahbazzadeh, Delavar; Bagheri, Kamran Pooshang

    2016-04-01

    Pterois russelli is a venomous fish belonging to scorpionidae family. Regarding to high significance value for tracing potential therapeutic molecules and special agents from venomous marine creatures, the present study was aimed to characterization of the Persian Gulf lionfish venom. Proteolytic, phospholipase, hemolytic, coagulation, edematogenic and dermonecrotic activities were determined for extracted venom. The LD50 of P. russelli venom was determined by intravenous injection in white Balb/c mice. Phospholipase A2 activity was recorded at 20 μg of total venom. Coagulation activity on human plasma was shown by Prothrombin Time (PT) and activated Partial Thromboplastin Time (APTT) assays and coagulation visualized after 7 and 14 s respectively for 60 μg of crude venom. LD50 was calculated as 10.5 mg/kg. SDS-PAGE revealed the presence of major and minor protein bands between 6 and 205 kDa. Different amounts of crude venom ranged from 1.87 to 30 μg showed proteolytic activity on casein. The highest edematic activity was detected at 20 μg. Our findings showed that the edematic activity was dose dependent and persisted for 48 h after injection. The crude venom did not induce dermonecrotic activity on rabbit skin and showed no hemolytic activity on human, mouse and rabbit erythrocytes. This is the first report for phospholipase A2 and coagulation activity in venomous fish and venomous marine animals respectively. Proteolytic activity of P. russelli venom is in accordance with the other genara of scorpionidae family. According to venom activity on intrinsic and extrinsic coagulation pathways, lionfish venom would be contained an interesting pharmaceutical agent. This study is pending to further characterization of phospholipase A2, coagulation, and protease activities and also in vivo activity on animal model of surface and internal bleeding. PMID:26853495

  12. Adenosine is required for sustained inflammasome activation via the A2A receptor and the HIF-1α pathway

    NASA Astrophysics Data System (ADS)

    Ouyang, Xinshou; Ghani, Ayaz; Malik, Ahsan; Wilder, Tuere; Colegio, Oscar Rene; Flavell, Richard Anthony; Cronstein, Bruce Neil; Mehal, Wajahat Zafar

    2013-12-01

    Inflammasome pathways are important in chronic diseases; however, it is not known how the signalling is sustained after initiation. Inflammasome activation is dependent on stimuli such as lipopolysaccharide (LPS) and ATP that provide two distinct signals resulting in rapid production of interleukin (IL)-1β, with the lack of response to repeat stimulation. Here we report that adenosine is a key regulator of inflammasome activity, increasing the duration of the inflammatory response via the A2A receptor. Adenosine does not replace signals provided by stimuli such as LPS or ATP but sustains inflammasome activity via a cAMP/PKA/CREB/HIF-1α pathway. In the setting of the lack of IL-1β responses after previous exposure to LPS, adenosine can supersede this tolerogenic state and drive IL-1β production. These data reveal that inflammasome activity is sustained, after initial activation, by A2A receptor-mediated signalling.

  13. Adenosine A2A receptor activation reduces recurrence and mortality from Clostridium difficile infection in mice following vancomycin treatment

    PubMed Central

    2012-01-01

    Background Activation of the A2A adenosine receptor (A2AAR) decreases production of inflammatory cytokines, prevents C. difficile toxin A-induced enteritis and, in combination with antibiotics, increases survival from sepsis in mice. We investigated whether A2AAR activation improves and A2AAR deletion worsens outcomes in a murine model of C. difficile (strain VPI10463) infection (CDI). Methods C57BL/6 mice were pretreated with an antibiotic cocktail prior to infection and then treated with vancomycin with or without an A2AAR agonist. A2AAR-/- and littermate wild-type (WT) mice were similarly infected, and IFNγ and TNFα were measured at peak of and recovery from infection. Results Infected, untreated mice rapidly lost weight, developed diarrhea, and had mortality rates of 50-60%. Infected mice treated with vancomycin had less weight loss and diarrhea during antibiotic treatment but mortality increased to near 100% after discontinuation of antibiotics. Infected mice treated with both vancomycin and an A2AAR agonist, either ATL370 or ATL1222, had minimal weight loss and better long-term survival than mice treated with vancomycin alone. A2AAR KO mice were more susceptible than WT mice to death from CDI. Increases in cecal IFNγ and blood TNFα were pronounced in the absence of A2AARs. Conclusion In a murine model of CDI, vancomycin treatment resulted in reduced weight loss and diarrhea during acute infection, but high recurrence and late-onset death, with overall mortality being worse than untreated infected controls. The administration of vancomycin plus an A2AAR agonist reduced inflammation and improved survival rates, suggesting a possible benefit of A2AAR agonists in the management of CDI to prevent recurrent disease. PMID:23217055

  14. Evaluation of ADAMTS-13 activity in plasma using recombinant von Willebrand Factor A2 domain polypeptide as substrate.

    PubMed

    Cruz, Miguel A; Whitelock, Jody; Dong, Jing-fei

    2003-12-01

    The metalloprotease ADAMTS-13 cleaves von Willebrand factor (VWF), and is absent or severely reduced in the plasma of patients with thrombotic thrombocytopenia purpura (TTP). Under physiologic flowing conditions, the enzyme cleaves endothelial cell-derived ultra-large VWF multimers at the Y842/M843 peptide bond located in the A2 domain, where many mutations associated with Type 2A VWD cluster. These VWF mutants are more susceptible for cleavage activity, decreasing the large VWF multimers in the plasma. The susceptibility of a recombinant VWF-A2 domain to ADAMTS-13 and the potential application in detecting enzyme activity were investigated. In vitro, fluid phase cleavage of VWF by ADAMTS-13 requires denaturing conditions and prolonged incubation in order to estimate enzyme activity. We have measured ADAMTS-13 activity based on enzyme cleavage of a recombinant VWF-A2 domain under non-denaturing conditions. In our assay, enzyme activity was absent in plasma from congenital and acquired TTP patient, and blocked by each EDTA, monoclonal antibody VP-1 (peptide-specific antibody against residues 828-842 of VWF), and an ADAMTS-13 antibody purified from plasma of an acquired TTP patient. This novel recombinant VWF-A2 protein has potential utility as matrix for a rapid clinical measurement of plasma ADAMTS-13 activity. PMID:14652658

  15. IFN-γ Prevents Adenosine Receptor (A2bR) Upregulation To Sustain the Macrophage Activation Response.

    PubMed

    Cohen, Heather B; Ward, Amanda; Hamidzadeh, Kajal; Ravid, Katya; Mosser, David M

    2015-10-15

    The priming of macrophages with IFN-γ prior to TLR stimulation results in enhanced and prolonged inflammatory cytokine production. In this study, we demonstrate that, following TLR stimulation, macrophages upregulate the adenosine 2b receptor (A2bR) to enhance their sensitivity to immunosuppressive extracellular adenosine. This upregulation of A2bR leads to the induction of macrophages with an immunoregulatory phenotype and the downregulation of inflammation. IFN-γ priming of macrophages selectively prevents the induction of the A2bR in macrophages to mitigate sensitivity to adenosine and to prevent this regulatory transition. IFN-γ-mediated A2bR blockade leads to a prolonged production of TNF-α and IL-12 in response to TLR ligation. The pharmacologic inhibition or the genetic deletion of the A2bR results in a hyperinflammatory response to TLR ligation, similar to IFN-γ treatment of macrophages. Conversely, the overexpression of A2bR on macrophages blunts the IFN-γ effects and promotes the development of immunoregulatory macrophages. Thus, we propose a novel mechanism whereby IFN-γ contributes to host defense by desensitizing macrophages to the immunoregulatory effects of adenosine. This mechanism overcomes the transient nature of TLR activation, and prolongs the antimicrobial state of the classically activated macrophage. This study may offer promising new targets to improve the clinical outcome of inflammatory diseases in which macrophage activation is dysregulated. PMID:26355158

  16. Inhibition of Nicotinic Acetylcholine Receptors, a Novel Facet in the Pleiotropic Activities of Snake Venom Phospholipases A2

    PubMed Central

    Vulfius, Catherine A.; Kasheverov, Igor E.; Starkov, Vladislav G.; Osipov, Alexey V.; Andreeva, Tatyana V.; Filkin, Sergey Yu.; Gorbacheva, Elena V.; Astashev, Maxim E.; Tsetlin, Victor I.; Utkin, Yuri N.

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes. PMID:25522251

  17. Activation of the adenosine A2A receptor attenuates experimental autoimmune encephalomyelitis and is associated with increased intracellular calcium levels.

    PubMed

    Liu, Yumei; Zou, Haifeng; Zhao, Ping; Sun, Bo; Wang, Jinghua; Kong, Qingfei; Mu, Lili; Zhao, Sihan; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Zhao, Jiaying; Yin, Pengqi; Liu, Lei; Zhao, Xiuli; Li, Hulun

    2016-08-25

    Multiple sclerosis (MS) is a common autoimmune disease that inevitably causes inflammatory nerve demyelination. However, an effective approach to prevent its course is still lacking and urgently needed. Recently, the adenosine A2A receptor (A2AR) has emerged as a novel inflammation regulator. Manipulation of A2AR activity may suppress the MS process and protect against nerve damage. To test this hypothesis, we treated murine experimental autoimmune encephalomyelitis (EAE), a model for MS, with the selective A2AR agonist, CGS21680 (CGS). We evaluated the effects of CGS on the pathological features of EAE progression, including CNS cellular infiltration, inflammatory cytokine expression, lymphocyte proliferation, and cell surface markers. Treatment with CGS significantly suppressed specific lymphocyte proliferation, reduced infiltration of CD4(+) T lymphocytes, and attenuated the expression of inflammatory cytokines, which in turn inhibited the EAE progression. For the first time, we demonstrate that CGS can increase the intracellular calcium concentration ([Ca(2+)]i) in murine lymphocytes, which may be the mechanism underlying the suppressive effects of CGS-induced A2AR activation on EAE progression. Our findings strongly suggest that A2AR is a potential therapeutic target for MS and provide insight into the mechanism of action of A2AR agonists, which may offer a therapeutic option for this disease. PMID:27217214

  18. Axonal elongation and dendritic branching is enhanced by adenosine A2A receptors activation in cerebral cortical neurons.

    PubMed

    Ribeiro, Filipa F; Neves-Tomé, Raquel; Assaife-Lopes, Natália; Santos, Telma E; Silva, Rui F M; Brites, Dora; Ribeiro, Joaquim A; Sousa, Mónica M; Sebastião, Ana M

    2016-06-01

    Axon growth and dendrite development are key processes for the establishment of a functional neuronal network. Adenosine, which is released by neurons and glia, is a known modulator of synaptic transmission but its influence over neuronal growth has been much less investigated. We now explored the action of adenosine A2A receptors (A2AR) upon neurite outgrowth, discriminating actions over the axon or dendrites, and the mechanisms involved. Morphometric analysis of primary cultures of cortical neurons from E18 Sprague-Dawley rats demonstrated that an A2AR agonist, CGS 21680, enhances axonal elongation and dendritic branching, being the former prevented by inhibitors of phosphoinositide 3-kinase, mitogen-activated protein kinase and phospholipase C, but not of protein kinase A. By testing the influence of a scavenger of BDNF (brain-derived neurotrophic factor) over the action of the A2AR agonist and the action of a selective A2AR antagonist over the action of BDNF, we could conclude that while the action of A2ARs upon dendritic branching is dependent on the presence of endogenous BDNF, the influence of A2ARs upon axonal elongation is independent of endogenous BDNF. In consonance with the action over axonal elongation, A2AR activation promoted a decrease in microtubule stability and an increase in microtubule growth speed in axonal growth cones. In conclusion, we disclose a facilitatory action of A2ARs upon axonal elongation and microtubule dynamics, providing new insights for A2ARs regulation of neuronal differentiation and axonal regeneration. PMID:26068054

  19. Activation of nuclear receptor NR5A2 increases Glut4 expression and glucose metabolism in muscle cells

    SciTech Connect

    Bolado-Carrancio, A.; Riancho, J.A.; Sainz, J.; Rodríguez-Rey, J.C.

    2014-04-04

    Highlights: • NR5A2 expression in C2C12 is associated with myotube differentiation. • DLPC induces an increase in GLUT4 levels and glucose uptake in C2C12 myotubes. • In high glucose conditions the activation of NR5A2 inhibits fatty acids oxidation. - Abstract: NR5A2 is a nuclear receptor which regulates the expression of genes involved in cholesterol metabolism, pluripotency maintenance and cell differentiation. It has been recently shown that DLPC, a NR5A2 ligand, prevents liver steatosis and improves insulin sensitivity in mouse models of insulin resistance, an effect that has been associated with changes in glucose and fatty acids metabolism in liver. Because skeletal muscle is a major tissue in clearing glucose from blood, we studied the effect of the activation of NR5A2 on muscle metabolism by using cultures of C2C12, a mouse-derived cell line widely used as a model of skeletal muscle. Treatment of C2C12 with DLPC resulted in increased levels of expression of GLUT4 and also of several genes related to glycolysis and glycogen metabolism. These changes were accompanied by an increased glucose uptake. In addition, the activation of NR5A2 produced a reduction in the oxidation of fatty acids, an effect which disappeared in low-glucose conditions. Our results suggest that NR5A2, mostly by enhancing glucose uptake, switches muscle cells into a state of glucose preference. The increased use of glucose by muscle might constitute another mechanism by which NR5A2 improves blood glucose levels and restores insulin sensitivity.

  20. Molecular modeling and snake venom phospholipase A2 inhibition by phenolic compounds: Structure-activity relationship.

    PubMed

    Alam, Md Iqbal; Alam, Mohammed A; Alam, Ozair; Nargotra, Amit; Taneja, Subhash Chandra; Koul, Surrinder

    2016-05-23

    In our earlier study, we have reported that a phenolic compound 2-hydroxy-4-methoxybenzaldehyde from Janakia arayalpatra root extract was active against Viper and Cobra envenomations. Based on the structure of this natural product, libraries of synthetic structurally variant phenolic compounds were studied through molecular docking on the venom protein. To validate the activity of eight selected compounds, we have tested them in in vivo and in vitro models. The compound 21 (2-hydroxy-3-methoxy benzaldehyde), 22 (2-hydroxy-4-methoxybenzaldehyde) and 35 (2-hydroxy-3-methoxybenzylalcohol) were found to be active against venom-induced pathophysiological changes. The compounds 20, 15 and 35 displayed maximum anti-hemorrhagic, anti-lethal and PLA2 inhibitory activity respectively. In terms of SAR, the presence of a formyl group in conjunction with a phenolic group was seen as a significant contributor towards increasing the antivenom activity. The above observations confirmed the anti-venom activity of the phenolic compounds which needs to be further investigated for the development of new anti-snake venom leads. PMID:26986086

  1. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids

    DOE PAGESBeta

    Naranjo, Andrea N.; McNeely, Patrick M.; Katsaras, John; Skaja Robinson, Anne

    2016-05-27

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, ormore » DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. Furthermore, the studies presented in this paper also underline the importance of the protein’s purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner.« less

  2. Impact of purification conditions and history on A2A adenosine receptor activity: The role of CHAPS and lipids.

    PubMed

    Naranjo, Andrea N; McNeely, Patrick M; Katsaras, John; Robinson, Anne Skaja

    2016-08-01

    The adenosine A2A receptor (A2AR) is a much-studied class A G protein-coupled receptor (GPCR). For biophysical studies, A2AR is commonly purified in a detergent mixture of dodecylmaltoside (DDM), 3-(3-cholamidopropyl) dimethylammoniopropane sulfonate (CHAPS), and cholesteryl hemisuccinate (CHS). Here we studied the effects of CHAPS on the ligand binding activity and stability of wild type, full-length human A2AR. We also tested the cholesterol requirement for maintaining the active conformation of the receptor when solubilized in detergent micelles. To this end, the receptor was purified using DDM, DDM/CHAPS, or the short hydrocarbon chain lipid 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC, di-6:0PC). After solubilization in DDM, DDM/CHAPS, or DHPC micelles, although A2AR was found to retain its native-like fold, its binding ability was significantly compromised compared to DDM or DDM/CHAPS with CHS. It therefore appears that although cholesterol is not needed for A2AR to retain a native-like, α-helical conformation, it may be a critical component for high affinity ligand binding. Further, this result suggests that the conformational differences between the active and inactive protein may be so subtle that commonly used spectroscopic methods are unable to differentiate between the two forms, highlighting the need for activity measurements. The studies presented in this paper also underline the importance of the protein's purification history; i.e., detergents that interact with the protein during purification affect the ligand binding properties of the receptor in an irreversible manner. PMID:27241126

  3. Deletion of striatal adenosine A(2A) receptor spares latent inhibition and prepulse inhibition but impairs active avoidance learning.

    PubMed

    Singer, Philipp; Wei, Catherine J; Chen, Jiang-Fan; Boison, Detlev; Yee, Benjamin K

    2013-04-01

    Following early clinical leads, the adenosine A(2A)R receptor (A(2A)R) has continued to attract attention as a potential novel target for treating schizophrenia, especially against the negative and cognitive symptoms of the disease because of A(2A)R's unique modulatory action over glutamatergic in addition to dopaminergic signaling. Through (i) the antagonistic interaction with the dopamine D(2) receptor, and (ii) the regulation of glutamate release and N-methyl-d-aspartate receptor function, striatal A(2A)R is ideally positioned to fine-tune the dopamine-glutamate balance, the disturbance of which is implicated in the pathophysiology of schizophrenia. However, the precise function of striatal A(2A)Rs in the regulation of schizophrenia-relevant behavior is poorly understood. Here, we tested the impact of conditional striatum-specific A(2A)R knockout (st-A(2A)R-KO) on latent inhibition (LI) and prepulse inhibition (PPI) - behavior that is tightly regulated by striatal dopamine and glutamate. These are two common cross-species translational tests for the assessment of selective attention and sensorimotor gating deficits reported in schizophrenia patients; and enhanced performance in these tests is associated with antipsychotic drug action. We found that neither LI nor PPI was significantly affected in st-A(2A)R-KO mice, although a deficit in active avoidance learning was identified in these animals. The latter phenotype, however, was not replicated in another form of aversive conditioning - namely, conditioned taste aversion. Hence, the present study shows that neither learned inattention (as measured by LI) nor sensory gating (as indexed by PPI) requires the integrity of striatal A(2A)Rs - a finding that may undermine the hypothesized importance of A(2A)R in the genesis and/or treatment of schizophrenia. PMID:23276608

  4. Transcriptional activation of the tumor suppressor and differentiation gene S100A2 by a novel p63-binding site.

    PubMed

    Kirschner, Ralf D; Sänger, Katja; Müller, Gerd A; Engeland, Kurt

    2008-05-01

    S100A2 is generally found expressed in the epidermis and was recently shown to play a crucial role in the differentiation of keratinocytes. Also known as CaN19, S100A2 was identified as a potential tumor suppressor. Expression of S100A2 is upregulated by p53. The proteins p63 and p73 are related to p53 and are expressed as several splice variants with partially overlapping tasks but also functions different from p53. It had been shown that p63 proteins with mutations in their DNA-binding domain cause severe phenotypes in man as autosomal dominantly inherited disease including EEC, AEC, SHFM, LMS and ADULT syndromes. Here we show that S100A2 is a transcriptional target of p63/p73 family members, particularly the p63 splice variant TAp63gamma. The regulation is mediated by a novel transcriptional element in the S100A2 promoter which is bound by TAp63gamma but not by p53. Mutant p63 proteins derived from EEC and ADULT syndrome patients cannot activate S100A2 transcription whereas SHFM-related mutants still can stimulate the S100A2 promoter. Consistent with a function in tumor suppression S100A2 expression is stimulated upon DNA damage. After doxorubicin treatment p63gamma proteins are recruited to the S100A2 promoter in vivo. This may indicate a function of the p63-dependent S100A2 regulation in tumor suppression. PMID:18388131

  5. Evaluation of a 2-Year Physical Activity and Healthy Eating Intervention in Middle School Children

    ERIC Educational Resources Information Center

    Haerens, Leen; Deforche, Benedicte; Maes, Lea; Cardon, Greet; Stevens, Veerle; De Bourdeaudhuij, Ilse

    2006-01-01

    The aim of the present study was to evaluate the effects of a middle school physical activity and healthy eating intervention, including an environmental and computer-tailored component, and to investigate the effects of parental involvement. A random sample of 15 schools with seventh and eight graders was randomly assigned to one of three…

  6. A 32-kDa protein associated with phospholipase A2-inhibitory activity from human placenta.

    PubMed

    Hayashi, H; Owada, M K; Sonobe, S; Kakunaga, T; Kawakatsu, H; Yano, J

    1987-11-01

    Two monomeric 32-kDa proteins, termed 32K-I (pI 5.8) and 32K-II (pI 5.1), were isolated from human placenta, which was solubilized by a Ca2+-chelator. Only 32K-I was associated with PLA2-inhibitory activity. CNBr peptide mapping indicated that 32K-I was distinct from 32K-II and two 36-kDa proteins, called calpactin I and II or lipocortin II and I, which have been shown to possess PLA2-inhibitory activity. 32K-I bound to PS in a Ca2+-dependent manner. 32K-I was detected in many tissues except brain, cardiac and skeletal muscle. PMID:3666152

  7. A Role for Phospholipase A2 Activity in Membrane Tubule Formation and TGN Trafficking

    PubMed Central

    Schmidt, John A.; Kalkofen, Danielle N.; Donovan, Kirk W.; Brown, William J.

    2015-01-01

    We have investigated the role of phospholipase A2 (PLA2) enzymes in generating membrane tubules at the trans-Golgi network (TGN). Constitutive TGN membrane tubules and those induced by over-expressing kinase dead protein kinase D were inhibited by the PLA2 inhibitors ONO-RS-082 (ONO) and bromoenol lactone. These antagonists also inhibited secretory delivery of both soluble and transmembrane cargoes. Finally, use of the reversible antagonist ONO and time-lapse imaging revealed for the first time that PLA2 antagonists inhibit the initiation of membrane tubule formation at the TGN. Thus, PLA2 enzymes appear to have an important role in the earliest steps of membrane tubule formation at the TGN, which are utilized for membrane trafficking. PMID:20874826

  8. Alpha-lipoic acid: an inhibitor of secretory phospholipase A2 with anti-inflammatory activity.

    PubMed

    Jameel, Noor Mohamed; Shekhar, Mysore A; Vishwanath, Bannikuppe S

    2006-12-14

    Alpha-lipoic acid (ALA) and its reduced form dihydrolipoic acid (DHLA) are powerful antioxidants both in hydrophilic and lipophylic environments with diverse pharmacological properties including anti-inflammatory activity. The mechanism of anti-inflammatory activity of ALA and DHALA is not known. The present study describes the interaction of ALA and DHALA with pro-inflammatory secretory PLA(2) enzymes from inflammatory fluids and snake venoms. In vitro enzymatic inhibition of sPLA(2) from Vipera russellii, Naja naja and partially purified sPLA(2) enzymes from human ascitic fluid (HAF), human pleural fluid (HPF) and normal human serum (HS) by ALA and DHLA was studied using (14)C-oleate labeled Escherichia coli as the substrate. Biophysical interaction of ALA with sPLA(2) was studied by fluorescent spectral analysis and circular dichroism studies. In vivo anti-inflammatory activity was checked using sPLA(2) induced mouse paw edema model. ALA but not DHLA inhibited purified sPLA(2) enzymes from V. russellii, N. naja and partially purified HAF, HPF and HS in a dose dependent manner. This data indicated that ALA is critical for inhibition. IC(50) value calculated for these enzymes ranges from 0.75 to 3.0 microM. The inhibition is independent of calcium and substrate concentration. Inflammatory sPLA(2) enzymes are more sensitive to inhibition by ALA than snake venom sPLA(2) enzymes. ALA quenched the fluorescence intensity of sPLA(2) enzyme in a dose dependent manner. Apparent shift in the far UV-CD spectra of sPLA(2) with ALA indicated change in its alpha-helical confirmation and these results suggest its direct interaction with the enzyme. ALA inhibits the sPLA(2) induced mouse paw edema in a dose dependent manner and confirms the sPLA(2) inhibitory activity in vivo also. These data suggest that ALA may act as an endogenous regulator of sPLA(2) enzyme activity and suppress inflammatory reactions. PMID:17011589

  9. Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity

    SciTech Connect

    Y Lin; N Yeung; Y Gao; K Miner; L Lei; H Robinson; Y Lu

    2011-12-31

    A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe{sub B}Mb(-His)). A high resolution (1.65 {angstrom}) crystal structure of Cu(II)-CN{sup -}-Fe{sub B}Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe{sub B}Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe{sub B}Mb(-His) and Fe(II)-Fe{sub B}Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPR studies showed that the reduction of NO to N{sub 2}O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe{sub B}Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe{sub B}Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.

  10. Introducing a 2-His-1-Glu Nonheme Iron Center into Myoglobin Confers Nitric Oxide Reductase Activity

    SciTech Connect

    Lin, Y.W.; Robinson, H.; Yeung, N.; Gao, Y.-G.; Miner, K. D.; Lei, L.; Lu, Y.

    2010-07-28

    A conserved 2-His-1-Glu metal center, as found in natural nonheme iron-containing enzymes, was engineered into sperm whale myoglobin by replacing Leu29 and Phe43 with Glu and His, respectively (swMb L29E, F43H, H64, called Fe{sub B}Mb(-His)). A high resolution (1.65 {angstrom}) crystal structure of Cu(II)-CN?-Fe{sub B}Mb(-His) was determined, demonstrating that the unique 2-His-1-Glu metal center was successfully created within swMb. The Fe{sub B}Mb(-His) can bind Cu, Fe, or Zn ions, with both Cu(I)-Fe{sub B}Mb(-His) and Fe(II)-Fe{sub B}Mb(-His) exhibiting nitric oxide reductase (NOR) activities. Cu dependent NOR activity was significantly higher than that of Fe in the same metal binding site. EPR studies showed that the reduction of NO to N{sub 2}O catalyzed by these two enzymes resulted in different intermediates; a five-coordinate heme-NO species was observed for Cu(I)-Fe{sub B}Mb(-His) due to the cleavage of the proximal heme Fe-His bond, while Fe(II)-Fe{sub B}Mb(-His) remained six-coordinate. Therefore, both the metal ligand, Glu29, and the metal itself, Cu or Fe, play crucial roles in NOR activity. This study presents a novel protein model of NOR and provides insights into a newly discovered member of the NOR family, gNOR.

  11. Prevention of adenosine A2A receptor activation diminishes beat-to-beat alternation in human atrial myocytes.

    PubMed

    Molina, Cristina E; Llach, Anna; Herraiz-Martínez, Adela; Tarifa, Carmen; Barriga, Montserrat; Wiegerinck, Rob F; Fernandes, Jacqueline; Cabello, Nuria; Vallmitjana, Alex; Benitéz, Raúl; Montiel, José; Cinca, Juan; Hove-Madsen, Leif

    2016-01-01

    Atrial fibrillation (AF) has been associated with increased spontaneous calcium release from the sarcoplasmic reticulum and linked to increased adenosine A2A receptor (A2AR) expression and activation. Here we tested whether this may favor atrial arrhythmogenesis by promoting beat-to-beat alternation and irregularity. Patch-clamp and confocal calcium imaging was used to measure the beat-to-beat response of the calcium current and transient in human atrial myocytes. Responses were classified as uniform, alternating or irregular and stimulation of Gs-protein coupled receptors decreased the frequency where a uniform response could be maintained from 1.0 ± 0.1 to 0.6 ± 0.1 Hz; p < 0.01 for beta-adrenergic receptors and from 1.4 ± 0.1 to 0.5 ± 0.1 Hz; p < 0.05 for A2ARs. The latter was linked to increased spontaneous calcium release and after-depolarizations. Moreover, A2AR activation increased the fraction of non-uniformly responding cells in HL-1 myocyte cultures from 19 ± 3 to 51 ± 9 %; p < 0.02, and electrical mapping in perfused porcine atria revealed that adenosine induced electrical alternans at longer cycle lengths, doubled the fraction of electrodes showing alternation, and increased the amplitude of alternations. Importantly, protein kinase A inhibition increased the highest frequency where uniform responses could be maintained from 0.84 ± 0.12 to 1.86 ± 0.11 Hz; p < 0.001 and prevention of A2AR-activation with exogenous adenosine deaminase selectively increased the threshold from 0.8 ± 0.1 to 1.2 ± 0.1 Hz; p = 0.001 in myocytes from patients with AF. In conclusion, A2AR-activation promotes beat-to-beat irregularities in the calcium transient in human atrial myocytes, and prevention of A2AR activation may be a novel means to maintain uniform beat-to-beat responses at higher beating frequencies in patients with atrial fibrillation. PMID:26611209

  12. Conjugated polyelectrolyte supported bead based assays for phospholipase A2 activity.

    PubMed

    Chemburu, Sireesha; Ji, Eunkyung; Casana, Yosune; Wu, Yang; Buranda, Tione; Schanze, Kirk S; Lopez, Gabriel P; Whitten, David G

    2008-11-20

    A fluorescence based assay for human serum-derived phospholipase activity has been developed in which cationic conjugated polyelectrolytes are supported on silica microspheres. The polymer-coated beads are overcoated with an anionic phospholipid (1,2-dimyristoyl-sn-glycero-3-[phospho- rac-(1-glycerol)) (DMPG) to provide "lipobeads" that serve as a sensor for PLA2. The lipid serves a dual role as a substrate for PLA2 and an agent to attenuate quenching of the polymer fluorescence by the external electron transfer quencher 9,10-anthraquinone-2,6-disulfonic acid (AQS). In this case quenching of the polymer fluorescence by AQS increases as the PLA2 digests the lipid. The lipid can also be used itself as a quencher and substrate by employing a small amount of energy transfer quencher substituted lipid in the DMPG. In this case the fluorescence of the polymer is quenched when the lipid layer is intact; as the enzyme digests the lipid, the fluorescence of the polymer is restored. The sensing of PLA2 activity has been studied both by monitoring fluorescence changes in a multiwell plate reader and by flow cytometry. The assay exhibits good sensitivity with EC50 values in the nanomolar range. PMID:18808092

  13. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-04-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  14. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-08-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  15. The MATROSHKA experiment: results and comparison from extravehicular activity (MTR-1) and intravehicular activity (MTR-2A/2B) exposure.

    PubMed

    Berger, Thomas; Bilski, Paweł; Hajek, Michael; Puchalska, Monika; Reitz, Günther

    2013-12-01

    Astronauts working and living in space are exposed to considerably higher doses and different qualities of ionizing radiation than people on Earth. The multilateral MATROSHKA (MTR) experiment, coordinated by the German Aerospace Center, represents the most comprehensive effort to date in radiation protection dosimetry in space using an anthropomorphic upper-torso phantom used for radiotherapy treatment planning. The anthropomorphic upper-torso phantom maps the radiation distribution as a simulated human body installed outside (MTR-1) and inside different compartments (MTR-2A: Pirs; MTR-2B: Zvezda) of the Russian Segment of the International Space Station. Thermoluminescence dosimeters arranged in a 2.54 cm orthogonal grid, at the site of vital organs and on the surface of the phantom allow for visualization of the absorbed dose distribution with superior spatial resolution. These results should help improve the estimation of radiation risks for long-term human space exploration and support benchmarking of radiation transport codes. PMID:24252101

  16. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships.

    PubMed

    Jamison, Matthew T; Molinski, Tadeusz F

    2015-03-27

    Investigation of antifungal natural products from the marine sponge Pseudaxinella reticulata from the Bahamas led to the discovery of new crambescin homologues (1, 2) and enantiomers (3, 4) of known natural products. The cyclic-guanidine structures were solved through analysis of 2D NMR, MS-MS, and CD data. The absolute configurations of 1-4 were established as 13R-opposite of known homologues reported from Crambe crambe obtained from the Mediterranean Sea-by comparison of their CD spectra with predicted Cotton effects obtained from DFT calculations. Antifungal activities of 1-4 against the pathogenic strains Candida albicans and Cryptococcus sp. were observed to correlate potency (MIC50 and MIC90) with the length of the alkyl side chain. PMID:25738226

  17. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. PMID:26851736

  18. Phospholipases a2 from Viperidae snakes: Differences in membranotropic activity between enzymatically active toxin and its inactive isoforms.

    PubMed

    Ghazaryan, Narine A; Ghulikyan, Lusine; Kishmiryan, Arsen; Andreeva, Tatyana V; Utkin, Yuri N; Tsetlin, Victor I; Lomonte, Bruno; Ayvazyan, Naira M

    2015-02-01

    We describe the interaction of various phospholipases A2 (PLA2) from snake venoms of the family Viperidae (Macrovipera lebetina obtusa, Vipera ursinii renardi, Bothrops asper) with giant unilamellar vesicles (GUVs) composed of natural brain phospholipids mixture, visualized through fluorescence microscopy. The membrane fluorescent probes 8-anilino-1-naphthalenesulfonicacid (ANS), LAUDRAN and PRODAN were used to assess the state of the membrane and specifically mark the lipid packing and membrane fluidity. Our results have shown that the three PLA2s which contain either of aspartic acid, serine, or lysine residues at position 49 in the catalytic center, have different effects on the vesicles. The PLA2 with aspartic acid at this position causes the oval deformation of the vesicles, while serine and lysine-containing enzymes lead to an appreciable increase of fluorescence intensity in the vesicles membrane, wherein the shape and dimensions of GUVs have not changed, but in this case GUV aggregation occurs. LAURDAN and PRODAN detect the extent of water penetration into the bilayer surface. We calculated generalized polarization function (GP), showing that for all cases (D49 PLA2, S49 PLA2 and K49 PLA2) both LAUDRAN and PRODAN GP values decrease. A higher LAURDAN GP is indicative of low water penetration in the lipid bilayer in case of K49 PLA2 compared with D49 PLA2, whereas the PRODAN mainly gives information when lipid is in liquid crystalline phase. PMID:25450350

  19. Inhibition of the phospholipase A2 activity of peroxiredoxin 6 prevents lung damage with exposure to hyperoxia

    PubMed Central

    Benipal, Bavneet; Feinstein, Sheldon I.; Chatterjee, Shampa; Dodia, Chandra; Fisher, Aron B.

    2015-01-01

    Lung injury associated with hyperoxia reflects in part the secondary effects of pulmonary inflammation and the associated production of reactive oxygen species due to activation of NADPH oxidase, type 2 (NOX2). Activation of NOX2 requires the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6). Therefore, we evaluated whether blocking Prdx6 PLA2 activity using the inhibitor MJ33 would be protective in a mouse model of acute lung injury resulting from hyperoxic exposure. Mice were treated with an intraperitoneal injection of MJ33 (2.5 nmol/g body weight) at the start of exposure (zero time) and at 48 h during continuous exposure to 100% O2 for 80 h. Treatment with MJ33 reduced the number of neutrophils and the protein content in the fluid obtained by bronchoalveolar lavage, inhibited the increase in lipid peroxidation products in lung tissue, decreased the number of apoptotic cells in the lung, and decreased the perivascular edema associated with the 80 h exposure to hyperoxia. Thus, blocking Prdx6 PLA2 activity by MJ33 significantly protected lungs against damage from hyperoxia, presumably by preventing the activation of NOX2 and the amplification of lung injury associated with inflammation. These findings demonstrate that MJ33, a potent inhibitor of Prdx6 PLA2 activity, can protect mouse lungs against the manifestations of acute lung injury due to oxidative stress. PMID:25637741

  20. [Comparative Metagenomics of BIOLAK and A2O Activated Sludge Based on Next-generation Sequencing Technology].

    PubMed

    Tian, Mei; Liu, Han-hu; Shen, Xin

    2016-02-15

    This is the first report of comparative metagenomic analyses of BIOLAK sludge and anaerobic/anoxic/oxic (A2O) sludge. In the BIOLAK and A2O sludge metagenomes, 47 and 51 phyla were identified respectively, more than the numbers of phyla identified in Australia EBPR (enhanced biological phosphorus removal), USA EBPR and Bibby sludge. All phyla found in the BIOLAK sludge were detected in the A2O sludge, but four phyla were exclusively found in the A20 sludge. The proportion of the phylum Ignavibacteriae in the A2O sludge was 2.0440%, which was 3.2 times as much as that in the BIOLAK sludge (0.6376%). Meanwhile, the proportion of the bacterial phylum Gemmatimonadetes in the BIOLAK sludge was 2.4673%, which was >17 times as much as that in the A2O sludge (0.1404%). The proportion of the bacterial phylum Chlamydiae in the BIOLAK metagenome (0.2192%) was >6 times higher than that in the A2O (0.0360%). Furthermore, 167 genera found in the A20 sludge were not detected in the BIOLAK sludge. And 50 genera found in the BIOLAK sludge were not detected in the A20 sludge. From the analyses of both the phylum and genus levels, there were huge differences between the two biological communities of A2O and BIOLAK sludge. However, the proportions of each group of functional genes associated with metabolism of nitrogen, phosphor, sulfur and aromatic compounds in BIOLAK were very similar to those in A2O sludge. Moreover, the rankings of all six KEGG (Kyoto Encyclopedia for Genes and Genomes) categories were identical in the two sludges. In addition, the analyses of functional classification and pathway related nitrogen metabolism showed that the abundant enzymes had identical ranking in the BIOLAK and A2O metagenomes. Therefore, comparative metagenomics of BIOLAK and A2O activated sludge indicated similar function assignments from the two different biological communities. PMID:27363155

  1. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5.

    PubMed

    Kalb, Suzanne R; Baudys, Jakub; Smith, Theresa J; Smith, Leonard A; Barr, John R

    2014-04-01

    Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum. PMID:24605815

  2. Effects of caffeine intake on the pharmacokinetics of melatonin, a probe drug for CYP1A2 activity

    PubMed Central

    Härtter, Sebastian; Nordmark, Anna; Rose, Dirk-Matthias; Bertilsson, Leif; Tybring, Gunnel; Laine, Kari

    2003-01-01

    Aims The aim of this study was to assess the influence of concomitant caffeine intake on the pharmacokinetics of oral melatonin, a probe drug for CYP1A2 activity. Methods Twelve healthy subjects, six smokers and six nonsmokers, were given melatonin (6 mg) either alone or in combination with caffeine (3 × 200 mg). Blood samples for the analysis of melatonin or caffeine and paraxanthine were taken from 1 h before until 6 h after intake of melatonin. Subjects were genotyped with respect to the CYP1A2*1F (C734A) polymorphism. Results When caffeine was coadministered the Cmax and AUC of melatonin were increased on average by 142% (P = 0.001, confidence interval on the difference 44, 80%) and 120% (P < 0.001, confidence interval on the difference 63, 178%), respectively. The inhibitory effect of caffeine was more pronounced in nonsmokers and in individuals with the *1F/*1F genotype. Conclusion The results of this study revealed a pronounced effect of caffeine on the bioavailability of orally given melatonin, most probably due to inhibition of CYP1A2 activity. PMID:14616429

  3. Ionic liquid and deep eutectic solvent-activated CelA2 variants generated by directed evolution.

    PubMed

    Lehmann, Christian; Bocola, Marco; Streit, Wolfgang R; Martinez, Ronny; Schwaneberg, Ulrich

    2014-06-01

    Chemoenzymatic cellulose degradation is one of the key steps for the production of biomass-based fuels under mild conditions. An effective cellulose degradation process requires diverse physico-chemical dissolution of the biomass prior to enzymatic degradation. In recent years, "green" solvents, such as ionic liquids and, more recently, deep eutectic liquids, have been proposed as suitable alternatives for biomass dissolution by homogenous catalysis. In this manuscript, a directed evolution campaign of an ionic liquid tolerant β-1,4-endoglucanase (CelA2) was performed in order to increase its performance in the presence of choline chloride/glycerol (ChCl:Gly) or 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), as a first step to identify residues which govern ionic strength resistance and obtaining insights for employing cellulases on the long run in homogenous catalysis of lignocellulose degradation. After mutant library screening, variant M4 (His288Phe, Ser300Arg) was identified, showing a dramatically reduced activity in potassium phosphate buffer and an increased activity in the presence of ChCl:Gly or [BMIM]Cl. Further characterization showed that the CelA2 variant M4 is activated in the presence of these solvents, representing a first report of an engineered enzyme with an ionic strength activity switch. Structural analysis revealed that Arg300 could be a key residue for the ionic strength activation through a salt bridge with the neighboring Asp287. Experimental and computational results suggest that the salt bridge Asp287-Arg300 generates a nearly inactive CelA2 variant and activity is regained when ChCl:Gly or [BMIM]Cl are supplemented (~5-fold increase from 0.64 to 3.37 μM 4-MU/h with the addition ChCl:Gly and ~23-fold increase from 3.84 to 89.21 μM 4-pNP/h with the addition of [BMIM]Cl). Molecular dynamic simulations further suggest that the salt bridge between Asp287 and Arg300 in variant M4 (His288Phe, Ser300Arg) modulates the observed salt

  4. Epidermal-growth-factor receptor and metalloproteinases mediate thromboxane A2-dependent extracellular-signal-regulated kinase activation.

    PubMed Central

    Gallet, Carole; Blaie, Stéphanie; Lévy-Toledano, Sylviane; Habib, Aïda

    2003-01-01

    The signalling pathways that link G-protein-coupled receptors to mitogen-activated protein kinases involve receptor and non-receptor tyrosine kinases and protein kinase C (PKC). We explored the pathways that are implicated in the thromboxane (TX) A(2)-dependent activation of extracellular-signal-regulated protein kinase (ERK) and the role of the two TX receptor (TP) isoforms, TP alpha and TP beta. ERK activation by IBOP, a TX analogue, was dependent on epidermal-growth-factor receptor (EGFR) in TP alpha- or TP beta-transfected cells and in human aortic smooth muscle cells (hASMCs), since AG1478, a selective inhibitor of tyrosine phosphorylation of the EGFR, strongly blocked ERK and EGFR phosphorylation. In addition, EGFR transactivation leading to ERK activation involved matrix metalloproteinases (MMPs), since BB2516, an inhibitor of MMP, decreased ERK and EGFR phosphorylation in TP alpha- or TP beta-transfected cells. Moreover, we showed that both isoforms activate ERK phosphorylation in an Src-kinase-dependent manner, whereas PKC was mainly implicated in ERK activation and EGFR phosphorylation by TP beta. In hASMCs, we showed that ERK activation depended on both pertussis-sensitive and -insensitive G alpha-proteins. We demonstrated further that EGFRs, PKC, Src kinase and MMPs are involved in ERK activation by TX. The results of the present study highlight a role for MMPs and PKC in EGFR transactivation triggered by the TPs and demonstrate this mechanism for the first time in primary cells, i.e. hASMCs. PMID:12534349

  5. Inhibitory activities of the marine streptomycete-derived compound SF2446A2 against Chlamydia trachomatis and Schistosoma mansoni.

    PubMed

    Reimer, Anastasija; Blohm, Ariane; Quack, Thomas; Grevelding, Christoph G; Kozjak-Pavlovic, Vera; Rudel, Thomas; Hentschel, Ute; Abdelmohsen, Usama Ramadan

    2015-11-01

    Infectious diseases caused by chlamydia or schistosomes are a major health problem worldwide, and particularly so in developing countries. The lack of appropriate vaccines renders the search for potent natural products against these disease-causing agents an urgent endeavor. Sponge-associated actinomycetes represent a rich reservoir for natural products. Among them, members of the genus Streptomyces are capable of synthesizing an impressive array of diverse natural products with a wide variety of biological activities. The naphthacene glycoside SF2446A2 was isolated from the calcium alginate beads culture of Streptomyces sp. strain RV15 that had originally been obtained from the Mediterranean sponge Dysidea tupha. Its structure was identified by spectroscopic analysis and MS and comparison with the literature data. SF2446A2 showed inhibitory activity against Chlamydia trachomatis and was able to inhibit the primary infection in a dose-dependent manner, as well as progeny formation. Moreover, it caused disruptive effects on the surface area of Schistosoma mansoni and affected the gonads by impairing oogenesis and spermatogenesis. Our current study demonstrates that sponge-associated actinomycetes are capable of providing compounds with new pharmacological activities and with relevance to drug discovery. PMID:25990954

  6. Effects of the propeptide of group X secreted phospholipase A(2) on substrate specificity and interfacial activity on phospholipid monolayers.

    PubMed

    Point, Vanessa; Bénarouche, Anaïs; Jemel, Ikram; Parsiegla, Goetz; Lambeau, Gérard; Carrière, Frédéric; Cavalier, Jean-François

    2013-01-01

    Group X secreted phospholipase A(2) (GX sPLA(2)) plays important physiological roles in the gastrointestinal tract, in immune and sperm cells and is involved in several types of inflammatory diseases. It is secreted either as a mature enzyme or as a mixture of proenzyme (with a basic 11 amino acid propeptide) and mature enzyme. The role of the propeptide in the repression of sPLA(2) activity has been studied extensively using liposomes and micelles as model interfaces. These substrates are however not always suitable for detecting some fine tuning of lipolytic enzymes. In the present study, the monolayer technique is used to compare PLA(2) activity of recombinant mouse GX sPLA(2) (mGX) and its pro-form (PromGX) on monomolecular films of dilauroyl-phosphatidyl-ethanolamine (DLPE), -choline (DLPC) and -glycerol (DLPG). The PLA(2) activity and substrate specificity of mGX (PE ≈ PG > PC) were found to be surface pressure-dependent. mGX displayed a high activity on DLPE and DLPG but not on DLPC monolayers up to surface pressures corresponding to the lateral pressure of biological membranes (30-35 mN/m). Overall, the propeptide impaired the enzyme activity, particularly on DLPE whatever the surface pressure. However some conditions could be found where the propeptide had little effects on the repression of PLA(2) activity. In particular, both PromGX and mGX had similar activities on DLPG at a surface pressure of 30 mN/m. These findings show that PromGX can be potentially active depending on the presentation of the substrate (i.e., lipid packing) and one cannot exclude such an activity in a physiological context. A structural model of PromGX was built to investigate how the propeptide controls the activity of GX sPLA(2). This model shows that the propeptide is located within the interfacial binding site (i-face) and could disrupt both the interfacial binding of the enzyme and the access to the active site by steric hindrance. PMID:22967966

  7. Flare, Persistently Active Disease, and Serologically Active Clinically Quiescent Disease in Systemic Lupus Erythematosus: A 2-Year Follow-Up Study

    PubMed Central

    Conti, Fabrizio; Ceccarelli, Fulvia; Perricone, Carlo; Miranda, Francesca; Truglia, Simona; Massaro, Laura; Pacucci, Viviana Antonella; Conti, Virginia; Bartosiewicz, Izabella; Spinelli, Francesca Romana; Alessandri, Cristiano; Valesini, Guido

    2012-01-01

    Objective Several indices have been proposed to assess disease activity in patients with Systemic Lupus Erythematosus (SLE). Recent studies have showed a prevalence of flare between 28–35.3%, persistently active disease (PAD) between 46%–52% and serologically active clinically quiescent (SACQ) disease ranging from 6 to 15%. Our goal was to evaluate the flare, PAD and SACQ rate incidence in a cohort of SLE patients over a 2-year follow-up. Methods We evaluated 394 SLE patients. Flare was defined as an increase in SLEDAI-2K score of ≥4 from the previous visit; PAD was defined as a SLEDAI-2K score of ≥4, on >2 consecutive visits; SACQ was defined as at least a 2-year period without clinical activity and with persistent serologic activity. Results Among the 95 patients eligible for the analysis in 2009, 7 (7.3%) had ≥1 flare episode, whereas 9 (9.4%) had PAD. Similarly, among the 118 patients selected for the analysis in 2010, 6 (5%) had ≥1 flare episode, whereas 16 (13.5%) had PAD. Only 1/45 patient (2.2%) showed SACQ during the follow-up. Conclusion We showed a low incidence of flare, PAD and SACQ in Italian SLE patients compared with previous studies which could be partly explained by ethnic differences. PMID:23029327

  8. Dietary effect on mixed function P450 1A2 activity assayed by estimation of caffeine metabolism in man.

    PubMed

    Kall, M A; Clausen, J

    1995-10-01

    Two studies were performed in order to evaluate cytochrome P450 1A2 mediated caffeine metabolism during different nutritional conditions. 1. In the first study, 23 healthy male non-smokers, mean age 25, changed from a customary mixed diet to a standard diet in 6 days. The 6 day's standard diet was based on bread, potatoes, rice and boiled meat. Thus, broccoli, cabbage and other cruciferous vegetables, spinach, leeks, onion, parsley, grapefruit, toasted bread, fried and charcoal grilled food, smoked fish and meat, ham and sausages were avoided. 2. In the second study, 33 healthy non-smoking subjects, 24 men and nine women mean age 25 years, volunteered. The study was designed to compare a customary home dietary period with the 6 day period of low dietary P450 induction and with a 5 day supplementary dietary period, i.e. ingestion of known dietary inducers. None of the women were using oral contraceptives or were pregnant during the experimental period. In the period of diet supplementation, the volunteers received charcoal grilled hamburger as a supplement to the standard low induction diet for lunch for 5 days. The hamburgers were made with 150 g beef (18-20% fat) and were grilled on charcoal for 10 min on each side until they were 'well done'. In the present study P450 1A2 activity was estimated from the caffeine metabolic ratio, the so-called CYP 1A2 index:(AFMU + 1-MX + 1-MU/ 17 -DMU) of the caffeine metabolites formed after oral ingestion of 200 mg caffeine. Urine was collected 4-8 h after caffeine ingestion in study 1 and 5 h after caffeine ingestion in study 2. In study 1 the CYP 1A2 index decreased from 4.28 +/- 0.98 in the customary home dietary period to 3.87 +/- 0.69 in the standard dietary period corresponding to 10.6% (P < 0.06) decrease in the CYP 1A2 index. In study 2 the CYP 1A2 index decreased from 4.47 +/- 1.76 in the customary home dietary period to 3.90 +/- 1.12 in the standard dietary period corresponding to a 14.6% decrease (P < 0.2) in P450 1A

  9. Dimethyl ester of bilirubin exhibits anti-inflammatory activity through inhibition of secretory phospholipase A2, lipoxygenase and cyclooxygenase.

    PubMed

    Joshi, Vikram; Umashankara, M; Ramakrishnan, Chandrasekaran; Nanjaraj Urs, Ankanahalli N; Suvilesh, Kanve Nagaraj; Velmurugan, Devadasan; Rangappa, Kanchugarakoppal S; Vishwanath, Bannikuppe Sannanaik

    2016-05-15

    Overproduction of arachidonic acid (AA) mediated by secretory phospholipase A2 group IIA (sPLA2IIA) is a hallmark of many inflammatory disorders. AA is subsequently converted into pro-inflammatory eicosanoids through 5-lipoxygenase (5-LOX) and cyclooxygenase-1/2 (COX-1/2) activities. Hence, inhibition of sPLA2IIA, 5-LOX and COX-1/2 activities is critical in regulating inflammation. We have previously reported unconjugated bilirubin (UCB), an endogenous antioxidant, as sPLA2IIA inhibitor. However, lipophilic UCB gets conjugated in liver with glucuronic acid into hydrophilic conjugated bilirubin (CB). Since hydrophobicity is pre-requisite for sPLA2IIA inhibition, conjugation reduces the efficacy of UCB. In this regard, UCB was chemically modified and derivatives were evaluated for sPLA2IIA, 5-LOX and COX-1/2 inhibition. Among the derivatives, BD1 (dimethyl ester of bilirubin) exhibited ∼ 3 fold greater inhibitory potency towards sPLA2IIA compared to UCB. Both UCB and BD1 inhibited human 5-LOX and COX-2 activities; however only BD1 inhibited AA induced platelet aggregation. Molecular docking studies demonstrated BD1 as better inhibitor of aforesaid enzymes than UCB and other endogenous antioxidants. These data suggest that BD1 exhibits strong anti-inflammatory activity through inhibition of AA cascade enzymes which is of great therapeutic importance. PMID:27060751

  10. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2.

    PubMed

    Seemann, Petra; Schwappacher, Raphaela; Kjaer, Klaus W; Krakow, Deborah; Lehmann, Katarina; Dawson, Katherine; Stricker, Sigmar; Pohl, Jens; Plöger, Frank; Staub, Eike; Nickel, Joachim; Sebald, Walter; Knaus, Petra; Mundlos, Stefan

    2005-09-01

    Here we describe 2 mutations in growth and differentiation factor 5 (GDF5) that alter receptor-binding affinities. They cause brachydactyly type A2 (L441P) and symphalangism (R438L), conditions previously associated with mutations in the GDF5 receptor bone morphogenetic protein receptor type 1b (BMPR1B) and the BMP antagonist NOGGIN, respectively. We expressed the mutant proteins in limb bud micromass culture and treated ATDC5 and C2C12 cells with recombinant GDF5. Our results indicated that the L441P mutant is almost inactive. The R438L mutant, in contrast, showed increased biological activity when compared with WT GDF5. Biosensor interaction analyses revealed loss of binding to BMPR1A and BMPR1B ectodomains for the L441P mutant, whereas the R438L mutant showed normal binding to BMPR1B but increased binding to BMPR1A, the receptor normally activated by BMP2. The binding to NOGGIN was normal for both mutants. Thus, the brachydactyly type A2 phenotype (L441P) is caused by inhibition of the ligand-receptor interaction, whereas the symphalangism phenotype (R438L) is caused by a loss of receptor-binding specificity, resulting in a gain of function by the acquisition of BMP2-like properties. The presented experiments have identified some of the main determinants of GDF5 receptor-binding specificity in vivo and open new prospects for generating antagonists and superagonists of GDF5. PMID:16127465

  11. Calcium-independent phospholipase A2γ enhances activation of the ATF6 transcription factor during endoplasmic reticulum stress.

    PubMed

    Elimam, Hanan; Papillon, Joan; Takano, Tomoko; Cybulsky, Andrey V

    2015-01-30

    Injury of visceral glomerular epithelial cells (GECs) causes proteinuria in many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated GEC injury. Because iPLA2γ is localized at the endoplasmic reticulum (ER), this study addressed whether the cytoprotective effect of iPLA2γ involves the ER stress unfolded protein response (UPR). In cultured rat GECs, overexpression of the full-length iPLA2γ, but not a mutant iPLA2γ that fails to associate with the ER, augmented tunicamycin-induced activation of activating transcription factor-6 (ATF6) and induction of the ER chaperones, glucose-regulated protein 94 (GRP94) and glucose-regulated protein 78 (GRP78). Augmented responses were inhibited by the iPLA2γ inhibitor, (R)-bromoenol lactone, but not by the cyclooxygenase inhibitor, indomethacin. Tunicamycin-induced cytotoxicity was reduced in GECs expressing iPLA2γ, and the cytoprotection was reversed by dominant-negative ATF6. GECs from iPLA2γ knock-out mice showed blunted ATF6 activation and chaperone up-regulation in response to tunicamycin. Unlike ATF6, the two other UPR pathways, i.e. inositol-requiring enzyme 1α and protein kinase RNA-like ER kinase pathways, were not affected by iPLA2γ. Thus, in GECs, iPLA2γ amplified activation of the ATF6 pathway of the UPR, resulting in up-regulation of ER chaperones and cytoprotection. These effects were dependent on iPLA2γ catalytic activity and association with the ER but not on prostanoids. Modulating iPLA2γ activity may provide opportunities for pharmacological intervention in glomerular diseases associated with ER stress. PMID:25492867

  12. Inhibition of phospholipase A2 (PLA2) activity by nifedipine and nisoldipine is independent of their calcium-channel-blocking activity.

    PubMed

    Chang, J; Blazek, E; Carlson, R P

    1987-09-01

    The effects of several calcium antagonists on phospholipase A2 (PLA2) activity were examined. Nifedipine and nisoldipine inhibited a cell-free preparation of PLA2 in a dose-dependent manner with maximal inhibition of 71-77% observed at 100 microM. More potent or equipotent dihydropyridine calcium antagonists such as nitrendipine and felodipine did not inhibit PLA2 activity. In addition, nondihydropyridine calcium antagonists such as diltiazem, verapamil, and cinnarazine failed to reduce PLA2 activity markedly. Nifedipine and nisoldipine also reduced PLA2 activity in intact mouse peritoneal macrophages where PLA2 activity was monitored by free [14C]arachidonic acid release from [14C]arachidonic acid-prelabeled cells. When levels of PGE2 and LTC4 were measured by radioimmunoassay, it was found that the synthesis of these two metabolites was concomitantly inhibited by nifedipine and nisoldipine. In vivo, nifedipine and nisoldipine inhibited tetradecanoylphorbol acetate (TPA) induced ear edema. UV irradiation of nifedipine and nisoldipine (which destroys the slow calcium-channel-blocking activity of these compounds) did not result in a loss of PLA2 inhibitory activity. In fact, in both instances the UV-irradiated forms of nifedipine and nisoldipine were slightly more potent PLA2 inhibitors than the parent compound alone. We therefore conclude that the ability of nifedipine and nisoldipine to inhibit PLA2 was direct and unrelated to their actions on slow calcium channels. PMID:3115895

  13. Modulated mechanism of phosphatidylserine on the catalytic activity of Naja naja atra phospholipase A2 and Notechis scutatus scutatus notexin.

    PubMed

    Chiou, Yi-Ling; Lin, Shinne-Ren; Hu, Wan-Ping; Chang, Long-Sen

    2014-12-15

    Phosphatidylserine (PS) externalization is a hallmark for apoptotic death of cells. Previous studies showed that Naja naja atra phospholipase A2 (NnaPLA2) and Notechis scutatus scutatus notexin induced apoptosis of human cancer cells. However, NnaPLA2 and notexin did not markedly disrupt the integrity of cellular membrane as evidenced by membrane permeability of propidium iodide. These findings reflected that the ability of NnaPLA2 and notexin to hydrolyze membrane phospholipids may be affected by PS externalization. To address that question, this study investigated the membrane-interacted mode and catalytic activity of NnaPLA2 and notexin toward outer leaflet (phosphatidylcholine/sphingomyelin/cholesterol, PC/SM/Chol) and inner leaflet (phosphatidylserine/phosphatidylethanolamine/cholesterol, PS/PE/Chol) of plasma membrane-mimicking vesicles. PS incorporation promoted enzymatic activity of NnaPLA2 and notexin on PC and PC/SM vesicles, but suppressed NnaPLA2 and notexin activity on PC/SM/Chol and PE/Chol vesicles. PS incorporation increased the membrane fluidity of PC vesicles but reduced membrane fluidity of PC/SM, PC/SM/Chol and PE/Chol vesicles. PS increased the phospholipid order of all the tested vesicles. Moreover, PS incorporation did not greatly alter the binding affinity of notexin and NnaPLA2 with phospholipid vesicles. Acrylamide quenching studies and trinitrophenylation of Lys residues revealed that membrane-bound mode of notexin and NnaPLA2 varied with the targeted membrane compositions. The fine structure of catalytic site in NnaPLA2 and notexin in all the tested vesicles showed different changes. Collectively, the present data suggest that membrane-inserted PS modulates PLA2 interfacial activity via its effects on membrane structure and membrane-bound mode of NnaPLA2 and notexin, and membrane compositions determine the effect of PS on PLA2 activity. PMID:25449100

  14. Compensatory role of inducible annexin A2 for impaired biliary epithelial anion-exchange activity of inflammatory cholangiopathy.

    PubMed

    Kido, Osamu; Fukushima, Koji; Ueno, Yoshiyuki; Inoue, Jun; Jefferson, Douglas M; Shimosegawa, Tooru

    2009-12-01

    The peribiliary inflammation of cholangiopathy affects the physiological properties of biliary epithelial cells (cholangiocyte), including bicarbonate-rich ductular secretion. We revealed the upregulation of annexin A2 (ANXA2) in cholangiocytes in primary biliary cirrhosis (PBC) by a proteomics approach and evaluated its physiological significance. Global protein expression profiles of a normal human cholangiocyte line (H69) in response to interferon-gamma (IFNgamma) were obtained by two-dimensional electrophoresis followed by MALDI-TOF-MS. Histological expression patterns of the identified molecules in PBC liver were confirmed by immunostaining. H69 cells stably transfected with doxycyclin-inducible ANXA2 were subjected to physiological evaluation. Recovery of the intracellular pH after acute alkalinization was measured consecutively by a pH indicator with a specific inhibitor of anion exchanger (AE), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS). Protein kinase-C (PKC) activation was measured by PepTag Assay and immunoblotting. Twenty spots that included ANXA2 were identified as IFNgamma-responsive molecules. Cholangiocytes of PBC liver were decorated by the unique membranous overexpression of ANXA2. Apical ANXA2 of small ducts of PBC was directly correlated with the clinical cholestatic markers and transaminases. Controlled induction of ANXA2 resulted in significant increase of the DIDS-inhibitory fraction of AE activity of H69, which was accompanied by modulation of PKC activity. We, therefore, identified ANXA2 as an IFNgamma-inducible gene in cholangiocytes that could serve as a potential histological marker of inflammatory cholangiopathy, including PBC. We conclude that inducible ANXA2 expression in cholangiocytes may play a compensatory role for the impaired AE activity of cholangiocytes in PBC in terms of bicarbonate-rich ductular secretion and bile formation through modulation of the PKC activity. PMID:19823170

  15. Inhibition of PAF synthesis by stimulated human polymorphonuclear leucocytes with cloricromene, an inhibitor of phospholipase A2 activation.

    PubMed Central

    Ribaldi, E.; Mezzasoma, A. M.; Francescangeli, E.; Prosdocimi, M.; Nenci, G. G.; Goracci, G.; Gresele, P.

    1996-01-01

    1. A phospholipase A2 (PLA2) represents the key enzyme in the remodelling pathway of platelet-activating factor (PAF) synthesis in human polymorphonuclear (PMN) leucocytes. 2. PLA2 activation is also the rate-limiting step for the release of the arachidonic acid utilized for the synthesis of leukotrienes in stimulated leucocytes; however, it is unknown whether the PLA2s involved in the two biosynthetic pathways are identical. 3. Cloricromene (8-monochloro-3-beta-diethylaminoethyl-4-methyl-7-ethoxy- carbonylmethoxy coumarin) is an antithrombotic coumarin derivative which inhibits platelet and leucocyte function and suppresses arachidonic acid liberation by interfering with PLA2 activation. 4. The aim of the present study was to assess whether chloricromene inhibits PAF synthesis by stimulated human polymorphonuclear leucocytes (PMNs). 5. Cloricromene (50-500 microM) inhibited in a concentration-dependent manner the release of PAF, as measured by h.p.l.c. bioassay, from A23187-stimulated PMNs. Significant inhibition (45%) of PAF-release was obtained with 50 microM cloricromene and the IC50 was 85 microM. Mepacrine (500 microM), a non-specific PLA2 inhibitor, strikingly reduced PAF release. 6. The incorporation of [3H]-acetate into [3H]-PAF induced by serum-treated zymosan in human PMNs was also inhibited concentration-dependently by cloricromene, with an IC50 of 105 microM. Mepacrine also suppressed [3H]-acetate incorporation into [3H]-PAF. 7. Cloricromene did not affect the activities of the enzymes involved in PAF-synthesis acetyltransferase or phosphocholine transferase. 8. Our data demonstrate that cloricromene, an inhibitor of PLA2-activation in human leucocytes, reduces the synthesis of PAF by stimulated PMNs. This finding has a twofold implication: the PLA2s (or the mechanisms that regulate their activation) involved in PAF synthesis and arachidonate release in human leucocytes are either identical or else indistinguishable by their sensitivity to cloricromene

  16. Impact of Assay conditions on activity estimate and kinetics comparison of Aspergillus niger PhyA and Escherichia coli AppA2 phytases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was to compare three phytase activity assays and kinetics of Aspergillus niger PhyA and Escherichia coli AppA2 phytases expressed in Pichia pastoris at the observed stomach pH of 3.5. In Experiment 1, equivalent phytase activities in the crude preparations of PhyA and AppA2 were tested ...

  17. Variability of cytochrome P450 1A2 activity over time in young and elderly healthy volunteers

    PubMed Central

    Simon, T; Becquemont, L; Hamon, B; Nouyrigat, E; Chodjania, Y; Poirier, J M; Funck-Brentano, C; Jaillon, P

    2001-01-01

    Aims To assess the age-associated changes over time of plasma paraxanthine/caffeine (PAX/CAF) ratios used as a probe for CYP1A2 activity. Methods Intraindividual and interindividual variabilities in PAX/CAF ratio were compared by phenotyping with caffeine, 16 young and 16 elderly healthy subjects on five occasions. Results PAX/CAF ratio variability was comparable regardless of age (intraindividual CV: 17.6 ± 6% and 16.2 ± 5.9%, interindividual CV: 48.1 ± 2.9% and 42.7 ± 3.6% in young and elderly, respectively). The PAX/CAF ratio was lower in elderly than in young subjects (95% CI for the difference: 0.004, 0.32) but the difference was not significant in nonsmokers compared separately. Conclusions The variability over time of the PAX/CAF ratio is not influenced by age. PMID:11736870

  18. Activation of Cytosolic Phospholipase A2α in Resident Peritoneal Macrophages by Listeria monocytogenes Involves Listeriolysin O and TLR2*

    PubMed Central

    Noor, Shahid; Goldfine, Howard; Tucker, Dawn E.; Suram, Saritha; Lenz, Laurel L.; Akira, Shizuo; Uematsu, Satoshi; Girotti, Milena; Bonventre, Joseph V.; Breuel, Kevin; Williams, David L.; Leslie, Christina C.

    2016-01-01

    Eicosanoid production by macrophages is an early response to microbial infection that promotes acute inflammation. The intracellular pathogen Listeria monocytogenes stimulates arachidonic acid release and eicosanoid production from resident mouse peritoneal macrophages through activation of group IVA cytosolic phospholipase A2 (cPLA2α). The ability of wild type L. monocytogenes (WTLM) to stimulate arachidonic acid release is partially dependent on the virulence factor listeriolysin O; however, WTLM and L. monocytogenes lacking listeriolysin O (ΔhlyLM) induce similar levels of cyclooxygenase 2. Arachidonic acid release requires activation of MAPKs by WTLM and ΔhlyLM. The attenuated release of arachidonic acid that is observed in TLR2−/− and MyD88−/− macrophages infected with WTLM and ΔhlyLM correlates with diminished MAPK activation. WTLM but not ΔhlyLM increases intracellular calcium, which is implicated in regulation of cPLA2α. Prostaglandin E2, prostaglandin I2, and leukotriene C4 are produced by cPLA2α+/+ but not cPLA2α−/− macrophages in response to WTLM and ΔhlyLM. Tumor necrosis factor (TNF)-α production is significantly lower in cPLA2α+/+ than in cPLA2α−/− macrophages infected with WTLM and ΔhlyLM. Treatment of infected cPLA2α+/+ macrophages with the cyclooxygenase inhibitor indomethacin increases TNFα production to the level produced by cPLA2α−/− macrophages implicating prostaglandins in TNFα down-regulation. Therefore activation of cPLA2α in macrophages may impact immune responses to L. monocytogenes. PMID:18083708

  19. Increased phospholipase A2 activity with phosphorylation of peroxiredoxin 6 requires a conformational change in the protein

    PubMed Central

    Rahaman, Hamidur; Zhou, Suiping; Dodia, Chandra; Feinstein, Sheldon I.; Huang, Shaohui; Speicher, David; Fisher, Aron B.

    2012-01-01

    We have shown previously and confirmed in the present study that the phospholipase A2 (PLA2) activity of peroxiredoxin 6 (Prdx6) is markedly increased by phosphorylation. This report evaluated the conformation and thermodynamic stability of Prdx6 protein after phosphorylation to understand the physical basis for increased activity. Phosphorylation resulted in decreased negative far-UV CD, increased ANS binding, and lack of rigid tertiary structure, compatible with a change in conformation to that of a molten globule. The ΔGDo was 3.3 ± 0.3 kcal mol-1 for Prdx6 and 1.7 ± 0.7 kcal mol-1 for pPrdx6 suggesting that phosphorylation destabilizes the protein. Phosphorylation of Prdx6 changed the conformation of the N-terminal domain exposing Trp 33, as determined by tryptophan fluorescence and NaI fluorescence quenching. The kinetics of interaction of proteins with unilamellar liposomes (DPPC/egg PC/cholesterol/PG; 50:25:15:10, mol/mol) was evaluated with tryptophan fluorescence. pPrdx6 bound to liposomes with higher affinity (Kd, 5.6 ± 1.2 μM) in comparison to Prdx6 (Kd, 24.9 ± 4.5 μM). By isothermal titration calorimetry, pPrdx6 bound to liposomes with a large exothermic heat loss (ΔH = -31.49 ± 0.22 kcal mol-1). Correlating our conformation studies with the published crystal structure of oxidized Prdx6 suggests that phosphorylation results in exposure of hydrophobic residues, thereby providing accessibility to the sites for liposome binding. Because binding of the enzyme to the phospholipid substrate interface is a requirement for PLA2 activity, these results indicate that a change in the conformation of Prdx6 upon its phosphorylation is the basis for enhancement of PLA2 enzymatic activity. PMID:22663767

  20. Chromomycins A2 and A3 from marine actinomycetes with TRAIL resistance-overcoming and Wnt signal inhibitory activities.

    PubMed

    Toume, Kazufumi; Tsukahara, Kentaro; Ito, Hanako; Arai, Midori A; Ishibashi, Masami

    2014-06-01

    A biological screening study of an actinomycetes strain assembly was conducted using a cell-based cytotoxicity assay. The CKK1019 strain was isolated from a sea sand sample. Cytotoxicity-guided fractionation of the CKK1019 strain culture broth, which exhibited cytotoxicity, led to the isolation of chromomycins A2 (1) and A3 (2). 1 and 2 showed potent cytotoxicity against the human gastric adenocarcinoma (AGS) cell line (IC50 1; 1.7 and 2; 22.1 nM), as well as strong inhibitory effects against TCF/β-catenin transcription (IC50 1; 1.8 and 2; 15.9 nM). 2 showed the ability to overcome tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) resistance. To the best of our knowledge, the effects of chromomycins A2 (1) and A3 (2) on TRAIL resistance-overcoming activity, and on the Wnt signaling pathway, have not been reported previously. Thus, 1 and 2 warrant potential drug lead studies in relation to TRAIL-resistant and Wnt signal-related diseases and offer potentially useful chemical probes for investigating TRAIL resistance and the Wnt signaling pathway. PMID:24905484

  1. Platelet-activating factor stimulates metabolism of phosphoinositides via phospholipase A2 in primary cultured rat hepatocytes

    SciTech Connect

    Okayasu, T.; Hasegawa, K.; Ishibashi, T.

    1987-07-01

    Addition of platelet-activating factor (PAF) to cells doubly labeled with (/sup 14/C)glycerol plus (/sup 3/H)arachidonic acid resulted in a transient decrease of (/sup 14/C)glycerol-labeled phosphatidylinositol (PI) and a transient increase of (/sup 14/C)glycerol-labeled lysophosphatidylinositol (LPI). (/sup 3/H)Arachidonate-labeled PI, on the other hand, decreased in a time-dependent manner. The radioactivity in phosphatidylethanolamine, phosphatidylcholine, sphingomyelin, and phosphatidylserine did not change significantly. The /sup 3/H//sup 14/C ratio decreased in PI in a time-dependent manner, suggesting the involvement of a phospholipase A2 activity. Although PAF also induced a gradual increase of diacylglycerol (DG), the increase of (/sup 14/C)glycerol-labeled DG paralleled the loss of triacyl (/sup 14/C)glycerol and the /sup 3/H//sup 14/C ratio of DG was 16 times smaller than that of PI. Thus, DG seemed not to be derived from PI. In myo- (/sup 3/H)inositol-prelabeled cells, PAF induced a transient decrease of (/sup 3/H)phosphatidylinositol-4,5-bis-phosphate (TPI) and (/sup 3/H)phosphatidylinositol-4-phosphate (DPI) at 1 min. PAF stimulation of cultured hepatocytes prelabeled with /sup 32/Pi induced a transient decrease of (/sup 32/P)polyphosphoinositides at 20 sec to 1 min. (/sup 32/P)LPI appeared within 10 sec after stimulation and paralleled the loss of (/sup 32/P)PI. (/sup 3/H)Inositol triphosphate, (/sup 3/H)inositol diphosphate, and (/sup 3/H)inositol phosphate, which increased in a time-dependent manner upon stimulation with adrenaline, did not accumulate with the stimulation due to PAF. These observations indicate that PAF causes degradation of inositol phospholipids via phospholipase A2 and induces a subsequent resynthesis of these phospholipids.

  2. Emerging Cardiovascular Disease Biomarkers and Incident Diabetes Mellitus Risk in Statin-Treated Patients With Coronary Artery Disease (from the Treating to New Targets [TNT] Study).

    PubMed

    Arsenault, Benoit J; Kohli, Payal; Lambert, Gilles; DeMicco, David A; Laskey, Rachel; Messig, Michael M; Kastelein, John J P; Waters, David D

    2016-08-15

    Whether biomarkers associated with cardiovascular disease risk also predict incident diabetes mellitus (DM) is unknown. Our objective was to determine if a panel of 18 biomarkers previously associated with risk of cardiovascular disease also predicts incident DM in statin-treated patients with coronary artery disease (CAD). The Treating to New Targets (TNT) study is a randomized trial that compared the efficacy of high (80 mg) versus low (10 mg) dose atorvastatin for the secondary prevention of coronary heart disease events. Fasting plasma levels of standard lipids and of 18 emerging CAD risk biomarkers were obtained after an 8-week run-in period on atorvastatin 10 mg in a random sample of 1,424 TNT patients. After exclusion of patients with DM at baseline (n = 253), 101 patients developed DM during the median follow-up of 4.9 years. Patients with incident DM had lower levels of total and high-molecular weight adiponectin, lipoprotein-associated phospholipase A2 (Lp-PLA2), soluble receptor of advanced glycation end products, and vitamin D compared with patients without incident DM. In contrast, insulin, soluble CD40 ligand, and soluble intercellular adhesion molecule-1 levels were higher in patients with incident DM compared with those without. Plasma levels of C-reactive protein, cystatin C, lipoprotein(a), monocyte chemotactic protein-1, matrix metalloproteinase-9, myeloperoxidase, neopterin, N-terminal fragment of pro-B-type natriuretic peptide, osteopontin, and soluble vascular cell adhesion molecule-1 were comparable in patients with and without incident DM. After multivariate adjustment, total and high-molecular weight adiponectin as well as Lp-PLA2 were negatively associated with incident DM. Results of this study suggest that plasma lipids and some emerging CAD risk biomarkers, such as adiponectin and Lp-PLA2, may be useful for predicting incident DM in statin-treated patients with stable CAD. PMID:27328952

  3. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia

    PubMed Central

    2013-01-01

    Background Brain-derived neurotrophic factor (BDNF) has been shown to control microglial responses in neuropathic pain. Since adenosine A2A receptors (A2ARs) control neuroinflammation, as well as the production and function of BDNF, we tested to see if A2AR controls the microglia-dependent secretion of BDNF and the proliferation of microglial cells, a crucial event in neuroinflammation. Methods Murine N9 microglial cells were challenged with lipopolysaccharide (LPS, 100 ng/mL) in the absence or in the presence of the A2AR antagonist, SCH58261 (50 nM), as well as other modulators of A2AR signaling. The BDNF cellular content and secretion were quantified by Western blotting and ELISA, A2AR density was probed by Western blotting and immunocytochemistry and cell proliferation was assessed by BrdU incorporation. Additionally, the A2AR modulation of LPS-driven cell proliferation was also tested in primary cultures of mouse microglia. Results LPS induced time-dependent changes of the intra- and extracellular levels of BDNF and increased microglial proliferation. The maximal LPS-induced BDNF release was time-coincident with an LPS-induced increase of the A2AR density. Notably, removing endogenous extracellular adenosine or blocking A2AR prevented the LPS-mediated increase of both BDNF secretion and proliferation, as well as exogenous BDNF-induced proliferation. Conclusions We conclude that A2AR activation plays a mandatory role controlling the release of BDNF from activated microglia, as well as the autocrine/paracrine proliferative role of BDNF. PMID:23363775

  4. Activation of adenosine A2A receptor reduces osteoclast formation via PKA- and ERK1/2-mediated suppression of NFκB nuclear translocation

    PubMed Central

    Mediero, Aránzazu; Perez-Aso, Miguel; Cronstein, Bruce N

    2013-01-01

    Background and Purpose We previously reported that adenosine, acting at adenosine A2A receptors (A2AR), inhibits osteoclast (OC) differentiation in vitro (A2AR activation OC formation reduces by half) and in vivo. For a better understanding how adenosine A2AR stimulation regulates OC differentiation, we dissected the signalling pathways involved in A2AR signalling. Experimental Approach OC differentiation was studied as TRAP+ multinucleated cells following M-CSF/RANKL stimulation of either primary murine bone marrow cells or the murine macrophage line, RAW264.7, in presence/absence of the A2AR agonist CGS21680, the A2AR antagonist ZM241385, PKA activators (8-Cl-cAMP 100 nM, 6-Bnz-cAMP) and the PKA inhibitor (PKI). cAMP was quantitated by EIA and PKA activity assays were carried out. Signalling events were studied in PKA knockdown (lentiviral shRNA for PKA) RAW264.7 cells (scrambled shRNA as control). OC marker expression was studied by RT-PCR. Key Results A2AR stimulation increased cAMP and PKA activity which and were reversed by addition of ZM241385. The direct PKA stimuli 8-Cl-cAMP and 6-Bnz-cAMP inhibited OC maturation whereas PKI increased OC differentiation. A2AR stimulation inhibited p50/p105 NFκB nuclear translocation in control but not in PKA KO cells. A2AR stimulation activated ERK1/2 by a PKA-dependent mechanism, an effect reversed by ZM241385, but not p38 and JNK activation. A2AR stimulation inhibited OC expression of differentiation markers by a PKA-mechanism. Conclusions and Implications A2AR activation inhibits OC differentiation and regulates bone turnover via PKA-dependent inhibition of NFκB nuclear translocation, suggesting a mechanism by which adenosine could target bone destruction in inflammatory diseases like Rheumatoid Arthritis. PMID:23647065

  5. Trans-Serosal Leakage of Proinflammatory Mediators during Abdominal Aortic Aneurysm Repair: Role of Phospholipase A2 in Activating Leukocytes

    PubMed Central

    2010-01-01

    Gut barrier failure and the resultant translocation of luminal bacteria and bacterial products into the systemic circulation have been proposed as pathogenic mechanisms of multiorgan dysfunction syndrome (MODS) in open repair of abdominal aortic aneurysm (AAA). Our study aimed to demonstrate the direct release of gut-derived inflammatory mediators via the trans-serosal route in humans. Fifteen patients who underwent elective infrarenal open repair of AAA were randomized into two groups. In Group I patients (n = 10), the small intestine was exteriorized into a bowel bag. In Group II patients (n = 5), the small intestine was packed within the peritoneal cavity using large gauzes. We collected the bowel bag fluid in Group I and the ascites fluid, squeezed out from the gauzes at the end of surgery, in Group II. Leukocytes were collected from patients' blood samples. Incubation with the bowel bag fluid and ascites fluid caused a significant increase in both granulocyte pseudopod formation and CD11b expression compared to that with control fluid (p < 0.01). The addition of phospholipase A2 (PLA2) inhibitor quinacrine abolished leukocyte activation by the bowel bag fluid. Based on these results, we consider that trasns-serosal leakage of gut-derived mediators occurred during the open repair of AAA; further, sPLA2 may be the most potent mediator in the activation of leukocytes among such gut-derived mediators in AAA surgery. PMID:23555400

  6. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage

    PubMed Central

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound “natural Aβ”, sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson’s disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  7. What do infectious diseases physicians do? A 2-week snapshot of inpatient consultative activities across Australia, New Zealand and Singapore.

    PubMed

    Ingram, P R; Cheng, A C; Murray, R J; Blyth, C C; Walls, T; Fisher, D A; Davis, J S

    2014-10-01

    The practice of an infectious diseases (ID) physician is evolving. A contemporary understanding of the frequency and variety of patients and syndromes seen by ID services has implications for training, service development and setting research priorities. We performed a 2-week prospective survey of formal ID physician activities related to direct inpatient care, encompassing 53 hospitals throughout Australia, New Zealand and Singapore, and documented 1722 inpatient interactions. Infections involving the skin and soft tissue, respiratory tract and bone/joints together accounted for 49% of all consultations. Suspected/confirmed pathogens were primarily bacterial (60%), rather than viral (6%), fungal (4%), mycobacterial (2%) or parasitic (1%). Staphylococcus aureus was implicated in 409 (24%) episodes, approximately four times more frequently than the next most common pathogen. The frequency of healthcare-related infections (35%), immunosuppression (21%), diabetes mellitus (19%), prosthesis-related infections (13%), multiresistant pathogens (13%) and non-infectious diagnoses (9%) was high, although consultation characteristics varied between geographical settings and hospital types. Our study highlights the diversity of inpatient-related ID activities and should direct future teaching and research. ID physicians' ability to offer beneficial consultative advice requires broad understanding of, and ability to interact with, a wide range of referring specialities. PMID:24494809

  8. Monoacylated Cellular Prion Proteins Reduce Amyloid-β-Induced Activation of Cytoplasmic Phospholipase A2 and Synapse Damage.

    PubMed

    West, Ewan; Osborne, Craig; Nolan, William; Bate, Clive

    2015-01-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-β (Aβ) and the loss of synapses. Aggregation of the cellular prion protein (PrPC) by Aβ oligomers induced synapse damage in cultured neurons. PrPC is attached to membranes via a glycosylphosphatidylinositol (GPI) anchor, the composition of which affects protein targeting and cell signaling. Monoacylated PrPC incorporated into neurons bound "natural Aβ", sequestering Aβ outside lipid rafts and preventing its accumulation at synapses. The presence of monoacylated PrPC reduced the Aβ-induced activation of cytoplasmic phospholipase A2 (cPLA2) and Aβ-induced synapse damage. This protective effect was stimulus specific, as treated neurons remained sensitive to α-synuclein, a protein associated with synapse damage in Parkinson's disease. In synaptosomes, the aggregation of PrPC by Aβ oligomers triggered the formation of a signaling complex containing the cPLA2.a process, disrupted by monoacylated PrPC. We propose that monoacylated PrPC acts as a molecular sponge, binding Aβ oligomers at the neuronal perikarya without activating cPLA2 or triggering synapse damage. PMID:26043272

  9. Pyrimidinoceptor-mediated activation of phospholipase C and phospholipase A2 in RAW 264.7 macrophages.

    PubMed Central

    Lin, W. W.; Lee, Y. T.

    1996-01-01

    1. As well as the presence of P2Z purinoceptors previously found in macrophages, we identified pyrimidinoceptors in RAW 264.7 cells, which activate phospholipase C (PLC) and phospholipase A2 (PLA2). 2. The relative potency of agonists to stimulate inositol phosphate (IP) formation and arachidonic acid (AA) release was UTP = UDP > > ATP, ATP gamma S, 2MeSATP. For both signalling pathways, the EC50 values for UTP and UDP (3 microM) were significantly lower than that for ATP and all other analogues tested (> 100 microM). 3. UTP and UDP displayed no additivity in terms of IP formation and AA release at maximally effective concentrations. 4. UTP-, but not ATP-, evoked AA release was 60% inhibited by pertussis toxin (PTX), while stimulation of IP formation by both agonists was unaffected. Short-term treatment with phorbol 12-myristate 13-acetate (PMA) led to a dose-dependent inhibition of IP responses to UTP and UDP, but failed to affect the AA responses. Removal of extracellular Ca2+ inhibited the PI response to UTP, but abolished its AA response. 5. ATP-induction of these two transmembrane signal pathways was decreased in high Mg(2+)-containing medium but potentiated by the removal of extracellular Mg2+. 6. Suramin and reactive blue displayed equal potency to inhibit the IP responses of UTP and ATP. 7. Both UTP and UDP (0.1-100 microM) induced a sustained increase in [Ca2+]i which lasted for more than 10 min. 8. Taken together, these results indicate that in mouse RAW 264.7 macrophages, pyrimidinoceptors with specificity for UTP and UDP mediate the activation of PLC and cytosolic (c) PLA2. The activation of PLC is via a PTX-insensitive G protein, whereas that of cPLA2 is via a PTX-sensitive G protein-dependent pathway. The sustained Ca2+ influx caused by UTP contributes to the activation of cPLA2. RAW 264.7 cells also possess P2z purinoceptors which mediate ATP(4-)-induced PLC and PLA2 activation. Images Figure 3 PMID:8886407

  10. Optogenetic activation of intracellular adenosine A2A receptor signaling in the hippocampus is sufficient to trigger CREB phosphorylation and impair memory.

    PubMed

    Li, P; Rial, D; Canas, P M; Yoo, J-H; Li, W; Zhou, X; Wang, Y; van Westen, G J P; Payen, M-P; Augusto, E; Gonçalves, N; Tomé, A R; Li, Z; Wu, Z; Hou, X; Zhou, Y; IJzerman, A P; PIJzerman, Ad; Boyden, E S; Cunha, R A; Qu, J; Chen, J-F

    2015-11-01

    Human and animal studies have converged to suggest that caffeine consumption prevents memory deficits in aging and Alzheimer's disease through the antagonism of adenosine A2A receptors (A2ARs). To test if A2AR activation in the hippocampus is actually sufficient to impair memory function and to begin elucidating the intracellular pathways operated by A2AR, we have developed a chimeric rhodopsin-A2AR protein (optoA2AR), which retains the extracellular and transmembrane domains of rhodopsin (conferring light responsiveness and eliminating adenosine-binding pockets) fused to the intracellular loop of A2AR to confer specific A2AR signaling. The specificity of the optoA2AR signaling was confirmed by light-induced selective enhancement of cAMP and phospho-mitogen-activated protein kinase (p-MAPK) (but not cGMP) levels in human embryonic kidney 293 (HEK293) cells, which was abolished by a point mutation at the C terminal of A2AR. Supporting its physiological relevance, optoA2AR activation and the A2AR agonist CGS21680 produced similar activation of cAMP and p-MAPK signaling in HEK293 cells, of p-MAPK in the nucleus accumbens and of c-Fos/phosphorylated-CREB (p-CREB) in the hippocampus, and similarly enhanced long-term potentiation in the hippocampus. Remarkably, optoA2AR activation triggered a preferential p-CREB signaling in the hippocampus and impaired spatial memory performance, while optoA2AR activation in the nucleus accumbens triggered MAPK signaling and modulated locomotor activity. This shows that the recruitment of intracellular A2AR signaling in the hippocampus is sufficient to trigger memory dysfunction. Furthermore, the demonstration that the biased A2AR signaling and functions depend on intracellular A2AR loops prompts the possibility of targeting the intracellular A2AR-interacting partners to selectively control different neuropsychiatric behaviors. PMID:25687775

  11. Adenosine A(1), A(2a), A(2b), and A(3) receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages.

    PubMed

    Streitová, D; Hofer, M; Holá, J; Vacek, A; Pospísil, M

    2010-01-01

    Expression of mRNA for adenosine receptor subtypes A(1), A(2a), A(2b), and A(3) in normal and lipopolysaccharide (LPS)-activated murine RAW 264.7 macrophages has been investigated using the method of quantitative real-time polymerase chain reaction. The results have shown a very low, unquantifiable expression of adenosine A(1) receptor mRNA in both normal and LPS-activated macrophages. The other three adenosine receptor mRNAs have been found to be expressed at various but always quantifiable levels. Activation of the macrophages by LPS induced upregulation of the expression of adenosine receptor A(2a) and A(2b) mRNA, whereas the expression of adenosine receptor A(3) mRNA was downregulated. Unstimulated macrophages exhibited a high expression of the A(2b) adenosine receptor mRNA. The findings are discussed from the point of view of the antiinflammatory and hematopoiesis-stimulating roles of the adenosine receptor signaling. PMID:19249906

  12. Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity.

    PubMed

    Wang, Huanchen; Nair, Vasudha S; Holland, Ashley A; Capolicchio, Samanta; Jessen, Henning J; Johnson, Michael K; Shears, Stephen B

    2015-10-27

    Iron-sulfur (Fe-S) clusters are widely distributed protein cofactors that are vital to cellular biochemistry and the maintenance of bioenergetic homeostasis, but to our knowledge, they have never been identified in any phosphatase. Here, we describe an iron-sulfur cluster in Asp1, a dual-function kinase/phosphatase that regulates cell morphogenesis in Schizosaccharomyces pombe. Full-length Asp1, and its phosphatase domain (Asp1(371-920)), were each heterologously expressed in Escherichia coli. The phosphatase activity is exquisitely specific: it hydrolyzes the 1-diphosphate from just two members of the inositol pyrophosphate (PP-InsP) signaling family, namely, 1-InsP7 and 1,5-InsP8. We demonstrate that Asp1 does not hydrolyze either InsP6, 2-InsP7, 3-InsP7, 4-InsP7, 5-InsP7, 6-InsP7, or 3,5-InsP8. We also recorded 1-phosphatase activity in a human homologue of Asp1, hPPIP5K1, which was heterologously expressed in Drosophila S3 cells with a biotinylated N-terminal tag, and then isolated from cell lysates with avidin beads. Purified, recombinant Asp1(371-920) contained iron and acid-labile sulfide, but the stoichiometry (0.8 atoms of each per protein molecule) indicates incomplete iron-sulfur cluster assembly. We reconstituted the Fe-S cluster in vitro under anaerobic conditions, which increased the stoichiometry to approximately 2 atoms of iron and acid-labile sulfide per Asp1 molecule. The presence of a [2Fe-2S](2+) cluster in Asp1(371-920) was demonstrated by UV-visible absorption, resonance Raman spectroscopy, and electron paramagnetic resonance spectroscopy. We determined that this [2Fe-2S](2+) cluster is unlikely to participate in redox chemistry, since it rapidly degraded upon reduction by dithionite. Biochemical and mutagenic studies demonstrated that the [2Fe-2S](2+) cluster substantially inhibits the phosphatase activity of Asp1, thereby increasing its net kinase activity. PMID:26422458

  13. NF-κB Is Activated in CD4+ iNKT Cells by Sickle Cell Disease and Mediates Rapid Induction of Adenosine A2A Receptors

    PubMed Central

    Yu, Jennifer C.; Ken, Ruey; Neuberg, Donna; Nathan, David G.; Linden, Joel

    2013-01-01

    Reperfusion injury following tissue ischemia occurs as a consequence of vaso-occlusion that is initiated by activation of invariant natural killer T (iNKT) cells. Sickle cell disease (SDC) results in widely disseminated microvascular ischemia and reperfusion injury as a result of vaso-occlusion by rigid and adhesive sickle red blood cells. In mice, iNKT cell activation requires NF-κB signaling and can be inhibited by the activation of anti-inflammatory adenosine A2A receptors (A2ARs). Human iNKT cells are divided into subsets of CD4+ and CD4- cells. In this study we found that human CD4+ iNKT cells, but not CD4- cells undergo rapid NF-κB activation (phosphorylation of NF-κB on p65) and induction of A2ARs (detected with a monoclonal antibody 7F6-G5-A2) during SCD painful vaso-occlusive crises. These findings indicate that SCD primarily activates the CD4+ subset of iNKT cells. Activation of NF-κB and induction of A2ARs is concordant, i.e. only CD4+ iNKT cells with activated NF-κB expressed high levels of A2ARs. iNKT cells that are not activated during pVOC express low levels of A2AR immunoreactivity. These finding suggest that A2AR transcription may be induced in CD4+ iNKT cells as a result of NF-κB activation in SCD. In order to test this hypothesis further we examined cultured human iNKT cells. In cultured cells, blockade of NF-κB with Bay 11–7082 or IKK inhibitor VII prevented rapid induction of A2AR mRNA and protein upon iNKT activation. In conclusion, NF-κB-mediated induction of A2ARs in iNKT cells may serve as a counter-regulatory mechanism to limit the extent and duration of inflammatory immune responses. As activated iNKT cells express high levels of A2ARs following their activation, they may become highly sensitive to inhibition by A2AR agonists. PMID:24124453

  14. Activation of group IV cytosolic phospholipase A2 in human eosinophils by phosphoinositide 3-kinase through a mitogen-activated protein kinase-independent pathway.

    PubMed

    Myou, Shigeharu; Leff, Alan R; Myo, Saori; Boetticher, Evan; Meliton, Angelo Y; Lambertino, Anissa T; Liu, Jie; Xu, Chang; Munoz, Nilda M; Zhu, Xiangdong

    2003-10-15

    Activation of group IV cytosolic phospholipase A(2) (gIV-PLA(2)) is the essential first step in the synthesis of inflammatory eicosanoids and in integrin-mediated adhesion of leukocytes. Prior investigations have demonstrated that phosphorylation of gIV-PLA(2) results from activation of at least two isoforms of mitogen-activated protein kinase (MAPK). We investigated the potential role of phosphoinositide 3-kinase (PI3K) in the activation of gIV-PLA(2) and the hydrolysis of membrane phosphatidylcholine in fMLP-stimulated human blood eosinophils. Transduction into eosinophils of Deltap85, a dominant negative form of class IA PI3K adaptor subunit, fused to an HIV-TAT protein transduction domain (TAT-Deltap85) concentration dependently inhibited fMLP-stimulated phosphorylation of protein kinase B, a downstream target of PI3K. FMLP caused increased arachidonic acid (AA) release and secretion of leukotriene C(4) (LTC(4)). TAT-Deltap85 and LY294002, a PI3K inhibitor, blocked the phosphorylation of gIV-PLA(2) at Ser(505) caused by fMLP, thus inhibiting gIV-PLA(2) hydrolysis and production of AA and LTC(4) in eosinophils. FMLP also caused extracellular signal-related kinases 1 and 2 and p38 MAPK phosphorylation in eosinophils; however, neither phosphorylation of extracellular signal-related kinases 1 and 2 nor p38 was inhibited by TAT-Deltap85 or LY294002. Inhibition of 1) p70 S6 kinase by rapamycin, 2) protein kinase B by Akt inhibitor, or 3) protein kinase C by Ro-31-8220, the potential downstream targets of PI3K for activation of gIV-PLA(2), had no effect on AA release or LTC(4) secretion caused by fMLP. We find that PI3K is required for gIV-PLA(2) activation and hydrolytic production of AA in activated eosinophils. Our data suggest that this essential PI3K independently activates gIV-PLA(2) through a pathway that does not involve MAPK. PMID:14530366

  15. Platelet microparticles are internalized in neutrophils via the concerted activity of 12-lipoxygenase and secreted phospholipase A2-IIA

    PubMed Central

    Duchez, Anne-Claire; Boudreau, Luc H.; Naika, Gajendra S.; Bollinger, James; Belleannée, Clémence; Cloutier, Nathalie; Laffont, Benoit; Mendoza-Villarroel, Raifish E.; Lévesque, Tania; Rollet-Labelle, Emmanuelle; Rousseau, Matthieu; Allaeys, Isabelle; Tremblay, Jacques J.; Poubelle, Patrice E.; Lambeau, Gérard; Pouliot, Marc; Provost, Patrick; Soulet, Denis; Gelb, Michael H.; Boilard, Eric

    2015-01-01

    Platelets are anucleated blood elements highly potent at generating extracellular vesicles (EVs) called microparticles (MPs). Whereas EVs are accepted as an important means of intercellular communication, the mechanisms underlying platelet MP internalization in recipient cells are poorly understood. Our lipidomic analyses identified 12(S)-hydroxyeicosatetranoic acid [12(S)-HETE] as the predominant eicosanoid generated by MPs. Mechanistically, 12(S)-HETE is produced through the concerted activity of secreted phospholipase A2 IIA (sPLA2-IIA), present in inflammatory fluids, and platelet-type 12-lipoxygenase (12-LO), expressed by platelet MPs. Platelet MPs convey an elaborate set of transcription factors and nucleic acids, and contain mitochondria. We observed that MPs and their cargo are internalized by activated neutrophils in the endomembrane system via 12(S)-HETE. Platelet MPs are found inside neutrophils isolated from the joints of arthritic patients, and are found in neutrophils only in the presence of sPLA2-IIA and 12-LO in an in vivo model of autoimmune inflammatory arthritis. Using a combination of genetically modified mice, we show that the coordinated action of sPLA2-IIA and 12-LO promotes inflammatory arthritis. These findings identify 12(S)-HETE as a trigger of platelet MP internalization by neutrophils, a mechanism highly relevant to inflammatory processes. Because sPLA2-IIA is induced during inflammation, and 12-LO expression is restricted mainly to platelets, these observations demonstrate that platelet MPs promote their internalization in recipient cells through highly regulated mechanisms. PMID:26106157

  16. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice.

    PubMed

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  17. Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates

    PubMed Central

    Mouchlis, Varnavas D.; Bucher, Denis; McCammon, J. Andrew; Dennis, Edward A.

    2015-01-01

    Defining the molecular details and consequences of the association of water-soluble proteins with membranes is fundamental to understanding protein–lipid interactions and membrane functioning. Phospholipase A2 (PLA2) enzymes, which catalyze the hydrolysis of phospholipid substrates that compose the membrane bilayers, provide the ideal system for studying protein–lipid interactions. Our study focuses on understanding the catalytic cycle of two different human PLA2s: the cytosolic Group IVA cPLA2 and calcium-independent Group VIA iPLA2. Computer-aided techniques guided by deuterium exchange mass spectrometry data, were used to create structural complexes of each enzyme with a single phospholipid substrate molecule, whereas the substrate extraction process was studied using steered molecular dynamics simulations. Molecular dynamic simulations of the enzyme–substrate–membrane systems revealed important information about the mechanisms by which these enzymes associate with the membrane and then extract and bind their phospholipid substrate. Our data support the hypothesis that the membrane acts as an allosteric ligand that binds at the allosteric site of the enzyme’s interfacial surface, shifting its conformation from a closed (inactive) state in water to an open (active) state at the membrane interface. PMID:25624474

  18. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice

    PubMed Central

    Ye, Minsook; Chung, Hwan-Suck; Lee, Chanju; Hyun Song, Joo; Shim, Insop; Kim, Youn-Sub; Bae, Hyunsu

    2016-01-01

    α-Synuclein (α-Syn) has a critical role in microglia-mediated neuroinflammation, which leads to the development of Parkinson's disease (PD). Recent studies have shown that bee venom (BV) has beneficial effects on PD symptoms in human patients or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxin-induced PD mice. This study investigated whether treatment with BV-derived phospholipase A2 (bvPLA2) would improve the motor dysfunction and pathological features of PD in human A53T α-Syn mutant transgenic (A53T Tg) mice. The motor dysfunction of A53T Tg mice was assessed using the pole test. The levels of α-Syn, microglia and the M1/M2 phenotype in the spinal cord were evaluated by immunofluorescence. bvPLA2 treatment significantly ameliorated motor dysfunction in A53T Tg mice. In addition, bvPLA2 significantly reduced the expression of α-Syn, the activation and numbers of microglia, and the ratio of M1/M2 in A53T Tg mice. These results suggest that bvPLA2 could be a promising treatment option for PD. PMID:27388550

  19. Hyper- and Hypo- Induction of Cytochrome P450 activities with Aroclor 1254 and 3-Methylcholanthrene in Cyp1a2(−/−) mice

    PubMed Central

    Barker, Melissa L.; Hathaway, Laura B.; Arch, Dorinda D.; Westbroek, Mark L.; Kushner, James P.; Phillips, John D.; Franklin, Michael R.

    2009-01-01

    The response of hepatic mono-oxygenase activities to Aroclor 1254 or 3-methylcholanthrene was investigated in wild-type and Cyp1a2(−/−) mice. Cytochrome P450 concentrations were similar in naïve Cyp1a2(−/−) and wild-type mice. There was no difference between naïve wild-type and Cyp1a2(−/−) animals in 7-ethoxyresorufin and 7-ethoxy-4-trifluoromethylcoumarin dealkylase activities, nor was the induction response after 3-methylcholanthrene any different between the two genotypes. However, both activities were induced to a higher extent in Cyp1a2(−/−) mice after Aroclor 1254. In contrast, 7-pentoxyresorufin dealkylation activity was lower in Cyp1a2(−/−) mice and this differential was maintained during induction by both agents. 7-Methoxy- and 7-benzoxyresorufin dealkylation activities were also lower than wild-type in naïve Cyp1a2(−/−) animals and during 3-methylcholanthrene induction, but showed accelerated induction in Cyp1a2(−/−) mice with Aroclor 1254. Bufuralol 1′- and testosterone 6β-hydroxylation activities, and P450 characteristics were evaluated 48 hours after inducer administration. Bufuralol 1′-hydroxylation, a sexual dimorphic activity (female > male) showed no genotype differences in naïve animals. Activity changes varied across gender and genotype, with 3-methylcholanthrene and Aroclor 1254 inducing in male Cyp1a2(−/−), and Aroclor 1254 inducing in female wild-type. Testosterone 6β-hydroxylation activity was 16% higher in Cyp1a2(−/−) mice and neither 3-methylcholanthrene nor Aroclor 1254 elicited induction. After Aroclor 1254, a 24% increase in P450 concentration with a hypsochromic shift in the ferrous-CO maximum characteristic of CYP1A enzymes occurred in wild-type, compared to no change in either parameter in Cyp1a2(−/−) mice. Induction changes with 3-methylcholanthrene were greater in wild-type mice, a 60% increase in concentration and ~2 nm hypsochromic shift versus a 10% increase and ~1 nm hypsochromic

  20. Guanosine may increase absence epileptic activity by means of A2A adenosine receptors in Wistar Albino Glaxo Rijswijk rats.

    PubMed

    Lakatos, Renáta Krisztina; Dobolyi, Árpád; Todorov, Mihail Ivilinov; Kékesi, Katalin A; Juhász, Gábor; Aleksza, Magdolna; Kovács, Zsolt

    2016-06-01

    The non-adenosine nucleoside guanosine (Guo) was demonstrated to decrease quinolinic acid(QA)-induced seizures, spontaneously emerged absence epileptic seizures and lipopolysaccharide(LPS)-evoked induction of absence epileptic seizures suggesting its antiepileptic potential. It was also described previously that intraperitoneal (i.p.) injection of 20 and 50mg/kg Guo decreased the number of spike-wave discharges (SWDs) in a well investigated model of human absence epilepsy, the Wistar Albino Glaxo Rijswijk (WAG/Rij) rats during 4th (20mg/kg Guo) and 3rd as well as 4th (50mg/kg Guo) measuring hours. Guanosine can potentially decrease SWD number by means of its putative receptors but absence epileptic activity changing effects of Guo by means of increased extracellular adenosine (Ado) cannot be excluded. An increase in the dose of i.p. injected Guo is limited by its low solubility in saline, therefore, we addressed in the present study whether higher doses of Guo, diluted in sodium hydroxide (NaOH) solution, have more potent antiepileptic effect in WAG/Rij rats. We confirmed that i.p. 50mg/kg Guo decreased but, surprisingly, i.p. 100mg/kg Guo enhanced the number of SWDs in WAG/Rij rats. Combined i.p. injection of a non-selective Ado receptor antagonist theophylline (5mg/kg) or a selective Ado A2A receptor (A2AR) antagonist SCH 58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine) (1mg/kg) and a cyclooxygenase 1 and 2/COX-1 and COX-2 inhibitor indomethacin (10mg/kg) with 100mg/kg Guo decreased the SWD number compared to i.p. 100mg/kg Guo alone. The results suggest that i.p. 100mg/kg Guo can increase SWD number by means of the adenosinergic system. PMID:27154620

  1. Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs.

    PubMed

    Andresen, Thomas L; Davidsen, Jesper; Begtrup, Mikael; Mouritsen, Ole G; Jørgensen, Kent

    2004-03-25

    An enzymatically activated liposome-based drug-delivery concept involving masked antitumor ether lipids (AELs) has been investigated. This concept takes advantage of the cytotoxic properties of AEL drugs as well as the membrane permeability enhancing properties of these molecules, which can lead to enhanced drug diffusion into cells. Three prodrugs of AELs (proAELs) have been synthesized and four liposome systems, consisting of these proAELs, were investigated for enzymatic degradation by secretory phospholipase A(2) (sPLA(2)), resulting in the release of AELs. The three synthesized proAELs were (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphocholine (1-O-DPPC), (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol)(350) (1-O-DPPE-PEG(350)), and 1-O-DPPE-PEG(2000) of which 1-O-DPPC was the main liposome component. All three phospholipids were synthesized from the versatile starting material (R)-O-benzyl glycidol. A phosphorylation method, employing methyl dichlorophosphate, was developed and applied in the synthesis of two analogues of (R)-1-O-hexadecyl-2-palmitoyl-sn-glycero-3-phosphoethanolamine poly(ethylene glycol). Differential scanning calorimetry has been used to investigate the phase behavior of the lipid bilayers. A release study, employing calcein encapsulated in non-hydrolyzable 1,2-bis-O-octadecyl-sn-glycero-3-phosphocholine (D-O-SPC) liposomes, showed that proAELs, activated by sPLA(2), perturb membranes because of the detergent-like properties of the released hydrolysis products. A hemolysis investigation was conducted on human red blood cells, and the results demonstrate that proAEL liposomes display a very low hemotoxicity, which has been a major obstacle for using AELs in cancer therapy. The results suggest a possible way of combining a drug-delivery and prodrug concept in a single liposome system. Our investigation of the permeability-enhancing properties of the AEL molecules imply that by encapsulating conventional

  2. Targeting cytosolic phospholipase A2 α in colorectal cancer cells inhibits constitutively activated protein kinase B (AKT) and cell proliferation

    PubMed Central

    Xie, Chanlu; Hua, Sheng; Li, Jianfang; Wang, Tingfeng; Yao, Mu; Vignarajan, Soma; Teng, Ying; Hejazi, Leila; Liu, Bingya; Dong, Qihan

    2014-01-01

    A constitutive activation of protein kinase B (AKT) in a hyper-phosphorylated status at Ser473 is one of the hallmarks of anti-EGFR therapy-resistant colorectal cancer (CRC). The aim of this study was to examine the role of cytosolic phospholipase A2α (cPLA2α) on AKT phosphorylation at Ser473 and cell proliferation in CRC cells with mutation in phosphoinositide 3-kinase (PI3K). AKT phosphorylation at Ser473 was resistant to EGF stimulation in CRC cell lines of DLD-1 (PIK3CAE545K mutation) and HT-29 (PIK3CAP499T mutation). Over-expression of cPLA2α by stable transfection increased basal and EGF-stimulated AKT phosphorylation and proliferation in DLD-1 cells. In contrast, silencing of cPLA2α with siRNA or inhibition with Efipladib decreased basal and EGF-stimulated AKT phosphorylation and proliferation in HT-29. Treating animals transplanted with DLD-1 with Efipladib (10 mg/kg, i.p. daily) over 14 days reduced xenograft growth by >90% with a concomitant decrease in AKT phosphorylation. In human CRC tissue, cPLA2α expression and phosphorylation were increased in 63% (77/120) compared with adjacent normal mucosa determined by immunohistochemistry. We conclude that cPLA2α is required for sustaining AKT phosphorylation at Ser473 and cell proliferation in CRC cells with PI3K mutation, and may serve as a potential therapeutic target for treatment of CRC resistant to anti-EGFR therapy. PMID:25365190

  3. The phzA2-G2 Transcript Exhibits Direct RsmA-Mediated Activation in Pseudomonas aeruginosa M18

    PubMed Central

    Ren, Bin; Shen, Huifeng; Lu, Zhi John; Liu, Haiming; Xu, Yuquan

    2014-01-01

    In bacteria, RNA-binding proteins of the RsmA/CsrA family act as post-transcriptional regulators that modulate translation initiation at target transcripts. The Pseudomonas aeruginosa genome contains two phenazine biosynthetic (phz) gene clusters, phzA1-G1 (phz1) and phzA2-G2 (phz2), each of which is responsible for phenazine-1-carboxylic acid (PCA) biosynthesis. In the present study, we show that RsmA exhibits differential gene regulation on two phz clusters in P. aeruginosa M18 at the post-transcriptional level. Based on the sequence analysis, four GGA motifs, the potential RsmA binding sites, are found on the 5′-untranslated region (UTR) of the phz2 transcript. Studies with a series of lacZ reporter fusions, and gel mobility shift assays suggest that the third GGA motif (S3), located 21 nucleotides upstream of the Shine-Dalgarno (SD) sequence, is involved in direct RsmA-mediated activation of phz2 expression. We therefore propose a novel model in which the binding of RsmA to the target S3 results in the destabilization of the stem-loop structure and the enhancement of ribosome access. This model could be fully supported by RNA structure prediction, free energy calculations, and nucleotide replacement studies. In contrast, various RsmA-mediated translation repression mechanisms have been identified in which RsmA binds near the SD sequence of target transcripts, thereby blocking ribosome access. Similarly, RsmA is shown to negatively regulate phz1 expression. Our new findings suggest that the differential regulation exerted by RsmA on the two phz clusters may confer an advantage to P. aeruginosa over other pseudomonads containing only a single phz cluster in their genomes. PMID:24586939

  4. Structure-activity relationships and mechanism of action of Eph-ephrin antagonists: interaction of cholanic acid with the EphA2 receptor

    PubMed Central

    Tognolini, Massimiliano; Incerti, Matteo; Mohamed, Iftiin Hassan; Giorgio, Carmine; Russo, Simonetta; Bruni, Renato; Lelli, Barbara; Bracci, Luisa; Noberini, Roberta; Pasquale, Elena B.; Barocelli, Elisabetta; Vicini, Paola; Mor, Marco

    2012-01-01

    The Eph–ephrin system, including the EphA2 receptor and the ephrin-A1 ligand, plays a critical role in tumor and vascular functions during carcinogenesis. We previously identified (3α,5β)-3-hydroxycholan-24-oic acid (lithocholic acid) as an Eph-ephrin antagonist able to inhibit EphA2 receptor activation and therefore potentially useful as a novel EphA2 receptor targeting agent. Here, we explore the structure-activity relationships of a focused set of lithocholic acid derivatives, based on molecular modelling investigation and displacement binding assays. Our exploration shows that while the 3-α-hydroxyl group of lithocholic acid has a negligible role in the recognition of the EphA2 receptor, its carboxylate group is critical for disrupting the binding of ephrin-A1 to the EphA2. As a result of our investigation, we identified (5β)-cholan-24-oic acid (cholanic acid) as a novel compound that competitively inhibits EphA2-ephrin-A1 interaction with higher potency than lithocholic acid. Surface plasmon resonance analysis indicates that cholanic acid binds specifically and reversibly to the ligand-binding domain of EphA2, with a steady-state dissociation constant (KD) in the low micromolar range. Furthermore, cholanic acid blocks the phosphorylation of EphA2 and cell retraction and rounding in PC3 prostate cancer cells, two effects that depend on EphA2 activation by the ephrin-A1 ligand. These findings suggest that cholanic acid can be used as a template structure to design effective EphA2 antagonists, with potential impact in the elucidation of the role played by this receptor in pathological conditions. PMID:22529030

  5. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2.

    PubMed

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L Vienna; Coy, David H

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  6. Notch Signaling Activation in Cervical Cancer Cells Induces Cell Growth Arrest with the Involvement of the Nuclear Receptor NR4A2

    PubMed Central

    Sun, Lichun; Liu, Mingqiu; Sun, Guang-Chun; Yang, Xu; Qian, Qingqing; Feng, Shuyu; Mackey, L. Vienna; Coy, David H.

    2016-01-01

    Cervical cancer is a second leading cancer death in women world-wide, with most cases in less developed countries. Notch signaling is highly conserved with its involvement in many cancers. In the present study, we established stable cervical cell lines with Notch activation and inactivation and found that Notch activation played a suppressive role in cervical cancer cells. Meanwhile, the transient overexpression of the active intracellular domain of all four Notch receptors (ICN1, 2, 3, and 4) also induced the suppression of cervical cancer Hela cell growth. ICN1 also induced cell cycle arrest at phase G1. Notch1 signaling activation affected the expression of serial genes, especially the genes associated with cAMP signaling, with an increase of genes like THBS1, VCL, p63, c-Myc and SCG2, a decrease of genes like NR4A2, PCK2 and BCL-2. Particularly, The nuclear receptor NR4A2 was observed to induce cell proliferation via MTT assay and reduce cell apoptosis via FACS assay. Furthermore, NR4A2's activation could reverse ICN1-induced suppression of cell growth while erasing ICN1-induced increase of tumor suppressor p63. These findings support that Notch signaling mediates cervical cancer cell growth suppression with the involvement of nuclear receptor NR4A2. Notably, Notch/NR4A2/p63 signaling cascade possibly is a new signling pathway undisclosed. PMID:27471554

  7. Fractalkine (CX3CL1) enhances hippocampal N-methyl-d-aspartate receptor (NMDAR) function via d-serine and adenosine receptor type A2 (A2AR) activity

    PubMed Central

    2013-01-01

    Background N-Methyl-d-aspartate receptors (NMDARs) play fundamental roles in basic brain functions such as excitatory neurotransmission and learning and memory processes. Their function is largely regulated by factors released by glial cells, including the coagonist d-serine. We investigated whether the activation of microglial CX3CR1 induces the release of factors that modulate NMDAR functions. Methods We recorded the NMDAR component of the field excitatory postsynaptic potentials (NMDA-fEPSPs) elicited in the CA1 stratum radiatum of mouse hippocampal slices by Shaffer collateral stimulation and evaluated d-serine content in the extracellular medium of glial primary cultures by mass spectrometry analysis. Results We demonstrated that CX3CL1 increases NMDA-fEPSPs by a mechanism involving the activity of the adenosine receptor type A2 (A2AR) and the release of the NMDAR coagonist d-serine. Specifically (1) the selective A2AR blocker 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261) and the genetic ablation of A2AR prevent CX3CL1 action while the A2AR agonist 5-(6-amino-2-(phenethylthio)-9H-purin-9-yl)-N-ethyl-3,4-dihydroxytetrahydrofuran-2-carboxamide (VT7) mimics CX3CL1 effect, and (2) the selective blocking of the NMDAR glycine (and d-serine) site by 5,7-dicholorokynurenic acid (DCKA), the enzymatic degradation of d-serine by d-amino acid oxidase (DAAO) and the saturation of the coagonist site by d-serine, all block the CX3CL1 effect. In addition, mass spectrometry analysis demonstrates that stimulation of microglia and astrocytes with CX3CL1 or VT7 increases d-serine release in the extracellular medium. Conclusions CX3CL1 transiently potentiates NMDAR function though mechanisms involving A2AR activity and the release of d-serine. PMID:23981568

  8. Clonal Evolution and Blast Crisis Correlate with Enhanced Proteolytic Activity of Separase in BCR-ABL b3a2 Fusion Type CML under Imatinib Therapy

    PubMed Central

    Haaß, Wiltrud; Kleiner, Helga; Weiß, Christel; Haferlach, Claudia; Schlegelberger, Brigitte; Müller, Martin C.; Hehlmann, Rüdiger; Hofmann, Wolf-Karsten; Fabarius, Alice; Seifarth, Wolfgang

    2015-01-01

    Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors

  9. Echinacea purpurea up-regulates CYP1A2, CYP3A4 and MDR1 gene expression by activation of pregnane X receptor pathway

    PubMed Central

    Awortwe, Charles; Manda, Vamshi K.; Avonto, Cristina; Khan, Shabana I.; Khan, Ikhlas A.; Walker, Larry A.; Bouic, Patrick J.; Rosenkranz, Bernd

    2015-01-01

    This study investigated the mechanism underlying Echinacea-mediated induction of CYP1A2, CYP3A4 and MDR1 in terms of human pregnane X receptor (PXR) activation. Crude extracts and fractions of Echinacea purpurea were tested for PXR activation in HepG2 cells by a reporter gene assay. Quantitative real-time PCR was carried out to determine their effects on CYP1A2 and CYP3A4 mRNA expressions. Capsules and fractions were risk ranked as high, intermediate and remote risk of drug-metabolizing enzymes induction based on EC50 values determined for respective CYPs. Fractions F1, F2 and capsule (2660) strongly activated PXR with 5-, 4- and 3.5-fold increase in activity, respectively. Echinacea preparations potentiated up-regulation of CYP1A2, CYP3A4 and MDR1 via PXR activation. Thus E. purpurea preparations cause herb–drug interaction by up-regulating CYP1A2, CYP3A4 and P-gp via PXR activation. PMID:25377539

  10. Selective activation of adenosine A2A receptors on immune cells by a CD73-dependent prodrug suppresses joint inflammation in experimental rheumatoid arthritis.

    PubMed

    Flögel, Ulrich; Burghoff, Sandra; van Lent, Peter L E M; Temme, Sebastian; Galbarz, Lisa; Ding, Zhaoping; El-Tayeb, Ali; Huels, Sandra; Bönner, Florian; Borg, Nadine; Jacoby, Christoph; Müller, Christa E; van den Berg, Wim B; Schrader, Jürgen

    2012-08-01

    Adenosine A(2A) receptor (A(2A)R) agonists are both highly effective anti-inflammatory agents and potent vasodilators. To separate these two activities, we have synthesized phosphorylated A(2A)R agonists (prodrugs) that require the presence of ecto-5'-nucleotidase (CD73) to become activated. In the model of collagen-induced arthritis, 2-(cyclohexylethylthio)adenosine 5'-monophosphate (chet-AMP), but not 2-(cyclohexylethylthio)adenosine (chet-adenosine), potently reduced inflammation as assessed by fluorine-19 ((19)F) magnetic resonance imaging and by histology. The prodrug effect was blunted by inhibition of CD73 and A(2A)R. The selectivity of drug action is due to profound up-regulation of CD73 and adenosine A(2A)R expression in neutrophils and inflammatory monocytes as found in recovered cells from the synovial fluid of arthritic mice. Plasma chet-adenosine was in the subnanomolar range when chet-AMP was applied, whereas concentrations required for vasodilation were about 100 times higher. Thus, chet-AMP is a potent immunosuppressant with negligible vasodilatory activity. These data suggest that phosphorylated A(2A)R agonists may serve as a promising new group of drugs for targeted immunotherapy of inflammation. PMID:22875828

  11. The interaction between PmHtrA2 and PmIAP and its effect on the activity of Pm caspase.

    PubMed

    Saleeart, Anchulee; Mongkorntanyatip, Karntichar; Sangsuriya, Pakkakul; Senapin, Saengchan; Rattanarojpong, Triwit; Khunrae, Pongsak

    2016-08-01

    Apoptosis is an essential mechanism in multicellular organisms which results in the induction of cell death. Important apoptotic proteins, including high temperature requirement A2 (PmHtrA2; also known as serine protease), inhibitor of apoptosis protein (PmIAP) and Pm caspase, have been previously identified in black tiger shrimp, Penaeus monodon. However, the relevance among these proteins in apoptosis regulation has not been established yet in shrimp. Here, we showed that PmHtrA2 was able to interact with PmIAP and the binding of the two proteins was mediated by the BIR2 domain of PmIAP. In addition, the BIR2 of PmIAP was shown to be able to inhibit Pm caspase activity. The inhibitory effect of the BIR2 domain on Pm caspase was impaired under the presence of the IBM peptide of PmHtrA2, implying a role for PmHtrA2 in apoptosis activation. Our combined results suggested that P. monodon possesses a conserved mechanism by which the caspase-3 activity is modulated by HtrA2 and IAP, as previously seen in insects and mammals. PMID:27328308

  12. Fun with Foodella: A Pilot Study for Determining the Efficacy of a 2nd Grade Nutrition and Physical Activity Curriculum

    ERIC Educational Resources Information Center

    Winter, Elizabeth M.; Stluka, Suzanne; Wells, Karlys; Wey, Howard; Kemmer, Teresa M.

    2012-01-01

    Fun with Foodella is a nutrition and physical activity workbook designed for elementary-aged youth. The objective was to determine if the Fun with Foodella program increased participant preference for fruit, vegetables, low-fat dairy products, and physical activity. Four intervention (53 students) and four control (68 students) schools…

  13. Biological and Biochemical Potential of Sea Snake Venom and Characterization of Phospholipase A2 and Anticoagulation Activity.

    PubMed

    Damotharan, Palani; Veeruraj, Anguchamy; Arumugam, Muthuvel; Balasubramanian, Thangavel

    2016-03-01

    This study is designed to isolate and purify a novel anti-clotting protein component from the venom of Enhydrina schistosa, and explore its biochemical and biological activities. The active protein was purified from the venom of E. schistosa by ion-exchange chromatography using DEAE-cellulose. The venom protein was tested by various parameters such as, proteolytic, haemolytic, phospholipase and anti-coagulant activities. 80 % purity was obtained in the final stage of purification and the purity level of venom was revealed as a single protein band of about 44 kDa in SDS-polyacrylamide electrophoresis under reducing conditions. The results showed that the Potent hemolytic activity was observed against cow, goat, chicken and human (A, B and O positive) erythrocytes. Furthermore, the clotting assays showed that the venom of E. schistosa significantly prolonged in activated partial thromboplastin time, thrombin time, and prothrombin time. Venomous enzymes which hydrolyzed casein and gelatin substrate were found in this venom protein. Gelatinolytic activity was optimal at pH 5-9 and (1)H NMR analysis of purified venom was the base line information for the structural determination. These results suggested that the E. schistosa venom holds good promise for the development of novel lead compounds for pharmacological applications in near future. PMID:26855489

  14. The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing.

    PubMed

    Tian, Mei; Zhao, Fangqing; Shen, Xin; Chu, Kahou; Wang, Jinfeng; Chen, Shuai; Guo, Yan; Liu, Hanhu

    2015-09-01

    The anaerobic/anoxic/oxic (A2O) process is globally one of the widely used biological sewage treatment processes. This is the first report of a metagenomic analysis using Illumina sequencing of full-scale A2O sludge from a municipal sewage treatment plant. With more than 530,000 clean reads from different taxa and metabolic categories, the metagenome results allow us to gain insight into the functioning of the biological community of the A2O sludge. There are 51 phyla and nearly 900 genera identified from the A2O activated sludge ecosystem. Proteobacteria, Bacteroidetes, Nitrospirae and Chloroflexi are predominant phyla in the activated sludge, suggesting that these organisms play key roles in the biodegradation processes in the A2O sewage treatment system. Nitrospira, Thauera, Dechloromonas and Ignavibacterium, which have abilities to metabolize nitrogen and aromatic compounds, are most prevalent genera. The percent of nitrogen and phosphorus metabolism in the A2O sludge is 2.72% and 1.48%, respectively. In the current A2O sludge, the proportion of Candidatus Accumulibacter is 1.37%, which is several times more than that reported in a recent study of A2O sludge. Among the four processes of nitrogen metabolism, denitrification related genes had the highest number of sequences (76.74%), followed by ammonification (15.77%), nitrogen fixation (3.88%) and nitrification (3.61%). In phylum Planctomycetes, four genera (Planctomyces, Pirellula, Gemmata and Singulisphaera) are included in the top 30 abundant genera, suggesting the key role of ANAMMOX in nitrogen metabolism in the A2O sludge. PMID:26354707

  15. A novel fused 1,2,4-triazine aryl derivative as antioxidant and nonselective antagonist of adenosine A(2A) receptors in ethanol-activated liver stellate cells.

    PubMed

    Szuster-Ciesielska, Agnieszka; Sztanke, Krzysztof; Kandefer-Szerszeń, Martyna

    2012-01-01

    It has been detected that hepatic adenosine A(2A) receptors play an active role in the pathogenesis of hepatic fibrosis and suggest a novel therapeutic target in the treatment and prevention of hepatic cirrhosis. In this paper we examined if our new triazine derivative (IMT) can inhibit ethanol-induced activation of HSCs measured as increased α-SMA, collagen synthesis and enhanced oxidative stress in rat liver stellate cells. We also investigated its influence on cytokines (TGF-β, TNF-α) synthesis, MMP-2 and TIMP-1 production and ethanol-induced intracellular signal transduction. Moreover, with using of known adenosine A(2A) receptor agonist (CGS 21680), and antagonist (SCH 58261) we examined if this triazine derivative acts on adenosine receptors. We detected a strong antagonistic action of new triazine derivative (IMT) on ethanol-induced rat liver stellate cells activation, observed as a significant decrease in α-SMA, collagen synthesis, reactive oxygen species production, TGF-β, TNF-α, MMP-2 and TIMP-1 production as well as JNK, p38MAPK, NFκB, IκB, Smad3 phosphorylation. Moreover, IMT strongly inhibited activation of stellate cells by known selective agonist of adenosine A(2A) receptor (CGS 21680). When known A(2A) receptor antagonist (SCH 58261) was used together with IMT this effect was not spectacular. Additionally, only slight enhancement of inhibition was observed when cells were pretreated both IMT with SCH 58261, hence we suppose that IMT acts as nonselective antagonist of A(2A) receptors, and, besides its antioxidant activity, also by this way inhibited ethanol-induced stellate cell activation. PMID:22063920

  16. Solubilisation of a 2,2-diphenyl-1-picrylhydrazyl radical in water by β-cyclodextrin to evaluate the radical-scavenging activity of antioxidants in aqueous media.

    PubMed

    Nakanishi, Ikuo; Ohkubo, Kei; Imai, Kohei; Kamibayashi, Masato; Yoshihashi, Yasuo; Matsumoto, Ken-ichiro; Fukuhara, Kiyoshi; Terada, Katsuhide; Itoh, Shinobu; Ozawa, Toshihiko; Fukuzumi, Shunichi

    2015-05-14

    A 2,2-diphenyl-1-picrylhydrazyl radical (DPPH˙) was successfully solubilised in water by β-cyclodextrin (β-CD). DPPH˙/β-CD thus obtained was demonstrated to be a powerful tool to evaluate the antioxidative activity of water-soluble antioxidants, such as ascorbate and Trolox, in aqueous buffer solutions. PMID:25877460

  17. Limited Effects of a 2-Year School-Based Physical Activity Intervention on Body Composition and Cardiorespiratory Fitness in 7-Year-Old Children

    ERIC Educational Resources Information Center

    Magnusson, Kristjan Thor; Hrafnkelsson, Hannes; Sigurgeirsson, Ingvar; Johannsson, Erlingur; Sveinsson, Thorarinn

    2012-01-01

    The aim of this study was to assess the effects of a 2-year cluster-randomized physical activity and dietary intervention program among 7-year-old (at baseline) elementary school participants on body composition and objectively measured cardiorespiratory fitness. Three pairs of schools were selected and matched, then randomly selected as either an…

  18. POLARIZED RELEASE OF LIPID MEDIATORS DERIVED FROM PHOSPHOLIPASE A2 ACTIVITY IN A HUMAN BRONCHIAL CELL LINE

    EPA Science Inventory

    The release of arachidonic acid (AA) and platelet activating factory (PAF) from airway epithelial cells may be an important mediating factor in lung physiological and inflammatory processes. The type of lung response may be determined by the directional release of AA and PAF. We ...

  19. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  20. Adaptation of a 2D in-gel kinase assay to trace phosphotransferase activities in the human pathogen Leishmania donovani.

    PubMed

    Schmidt-Arras, Dirk; Leclercq, Olivier; Gherardini, Pier Federico; Helmer-Citterich, Manuela; Faigle, Wolfgang; Loew, Damarys; Späth, Gerald F

    2011-08-24

    The protozoan parasite Leishmania donovani undergoes various developmental transitions during its infectious cycle that are triggered by environmental signals encountered inside insect and vertebrate hosts. Intracellular differentiation of the pathogenic amastigote stage is induced by pH and temperature shifts that affect protein kinase activities and downstream protein phosphorylation. Identification of parasite proteins with phosphotransferase activity during intracellular infection may reveal new targets for pharmacological intervention. Here we describe an improved protocol to trace this activity in L. donovani extracts at high resolution combining in-gel kinase assay and two-dimensional gel electrophoresis. This 2D procedure allowed us to identify proteins that are associated with amastigote ATP-binding, ATPase, and phosphotransferase activities. The 2D in-gel kinase assay, in combination with recombinant phospho-protein substrates previously identified by phospho-proteomics analyses, provides a novel tool to establish specific protein kinase-substrate relationships thus improving our understanding of Leishmania signal transduction with relevance for future drug development. PMID:21443974

  1. Mapping the Human Platelet Lipidome Reveals Cytosolic Phospholipase A2 as a Regulator of Mitochondrial Bioenergetics during Activation.

    PubMed

    Slatter, David A; Aldrovandi, Maceler; O'Connor, Anne; Allen, Stuart M; Brasher, Christopher J; Murphy, Robert C; Mecklemann, Sven; Ravi, Saranya; Darley-Usmar, Victor; O'Donnell, Valerie B

    2016-05-10

    Human platelets acutely increase mitochondrial energy generation following stimulation. Herein, a lipidomic circuit was uncovered whereby the substrates for this are exclusively provided by cPLA2, including multiple fatty acids and oxidized species that support energy generation via β-oxidation. This indicates that acute lipid membrane remodeling is required to support energetic demands during platelet activation. Phospholipase activity is linked to energy metabolism, revealing cPLA2 as a central regulator of both lipidomics and energy flux. Using a lipidomic approach (LipidArrays), we also estimated the total number of lipids in resting, thrombin-activated, and aspirinized platelets. Significant diversity between genetically unrelated individuals and a wealth of species was revealed. Resting platelets demonstrated ∼5,600 unique species, with only ∼50% being putatively identified. Thrombin elevated ∼900 lipids >2-fold with 86% newly appearing and 45% inhibited by aspirin supplementation, indicating COX-1 is required for major activation-dependent lipidomic fluxes. Many lipids were structurally identified. With ∼50% of the lipids being absent from databases, a major opportunity for mining lipids relevant to human health and disease is presented. PMID:27133131

  2. Sickle cell vaso-occlusion causes activation of iNKT cells that is decreased by the adenosine A2A receptor agonist regadenoson

    PubMed Central

    Lin, Gene; Okam, Maureen M.; Majerus, Elaine; Keefer, Jeffrey; Onyekwere, Onyinye; Ross, Ainsley; Campigotto, Federico; Neuberg, Donna; Linden, Joel; Nathan, David G.

    2013-01-01

    Adenosine A2A receptor (A2AR) agonists reduce invariant natural killer T (iNKT) cell activation and decrease inflammation in sickle cell disease (SCD) mice. We conducted a phase 1 trial of the A2AR agonist regadenoson in adults with SCD. The target dose was 1.44 μg/kg/h. iNKT cell activation was evaluated using antibodies targeting the p65 subunit of nuclear factor-κB (phospho-NF-κB p65), interferon-γ (IFN-γ), and A2AR. Regadenoson was administered to 27 adults with SCD. We examined 21 patients at steady state and 6 during painful vaso-occlusive crises (pVOC). iNKT cell activation was also measured in 14 African-American controls. During pVOC, the fraction of iNKT cells demonstrating increased phospho-NF-κB p65 and A2AR expression was significantly higher compared with controls (P < .01) and steady-state patients (P < .05). IFN-γ expression was also significantly higher compared with controls (P = .02). After a 24-hour infusion of regadenoson during pVOC, phospho-NF-κB p65 activation in iNKT cells decreased compared to baseline by a median of 48% (P = .03) to levels similar to controls and steady-state SCD. No toxicities were identified. Infusional regadenoson administered to adults with SCD at 1.44 μg/kg/h during pVOC decreases activation of iNKT cells without toxicity. This trial was registered at www.clinicaltrials.gov as #NCT01085201. PMID:23377438

  3. Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists

    PubMed Central

    2014-01-01

    N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362

  4. Activation of A2b adenosine receptor regulates ovarian cancer cell growth: involvement of Bax/Bcl-2 and caspase-3.

    PubMed

    Hajiahmadi, Sima; Panjehpour, Mojtaba; Aghaei, Mahmoud; Shabani, Mahdi

    2015-08-01

    A2b adenosine receptor (A2bAR) acts as a potent regulator of cell growth in various cell lines. The present study was designed to understand the controlling mechanism of A2bAR agonist (NECA)-induced apoptosis in ovarian cancer cells. Real-time PCR and western blotting assays were used to evaluate the gene and protein expression profiles of A2bAR, respectively. MTT assay was used to study the cell proliferation effect of A2bAR agonist (NECA). Detection of apoptosis was conducted using annexin V-FITC/PI staining, caspase-3 activation assay, and the expression of Bax and Bcl-2 proteins analysis. The mitochondrial membrane potential (ΔΨM) was analyzed by employing JC-1 prob. The mRNA and protein expression levels of A2bAR in ovarian cancer cells were detected. NECA significantly reduced cell viability in a dose-dependent manner in OVCAR-3 and Caov-4 cell lines. The growth inhibition effect of NECA was related to the induction of cell apoptosis, which was manifested by annexin V-FITC staining, activation of caspase-3, and loss of mitochondrial membrane potentials (ΔΨm). In addition, downregulation of the regulatory protein Bcl-2 and upregulation of Bax protein by NECA were also observed. These findings demonstrated that NECA induces apoptosis via the mitochondrial signaling pathway. Thus, A2bAR agonists may be a potential agent for induction of apoptosis in ovarian cancer cells. PMID:25877700

  5. Transcription of Oxidative Stress Genes Is Directly Activated by SpxA1 and, to a Lesser Extent, by SpxA2 in Streptococcus mutans

    PubMed Central

    Kajfasz, Jessica K.; Rivera-Ramos, Isamar; Scott-Anne, Kathleen; Gregoire, Stacy; Abranches, Jacqueline

    2015-01-01

    ABSTRACT The SpxA1 and SpxA2 (formerly SpxA and SpxB) transcriptional regulators of Streptococcus mutans are members of a highly conserved family of proteins found in Firmicutes, and they were previously shown to activate oxidative stress responses. In this study, we showed that SpxA1 exerts substantial positive regulatory influence over oxidative stress genes following exposure to H2O2, while SpxA2 appears to have a secondary regulatory role. In vitro transcription (IVT) assays using purified SpxA1 and/or SpxA2 showed that SpxA1 and, less often, SpxA2 directly activate transcription of some of the major oxidative stress genes. Addition of equimolar concentrations of SpxA1 and SpxA2 to the IVT reactions neither enhanced transcription of the tested genes nor disrupted the dominant role of SpxA1. Substitution of a conserved glycine residue (G52) present in both Spx proteins by arginine (SpxG52R) resulted in strains that phenocopied the Δspx strains. Moreover, addition of purified SpxA1G52R completely failed to activate transcription of ahpC, sodA, and tpx, further confirming that the G52 residue is critical for Spx functionality. IMPORTANCE Streptococcus mutans is a pathogen associated with the formation of dental caries in humans. Within the oral cavity, S. mutans routinely encounters oxidative stress. Our previous data revealed that two regulatory proteins, SpxA1 and SpxA2 (formerly SpxA and SpxB), bear high homology to the Spx regulator that has been characterized as a critical activator of oxidative stress genes in Bacillus subtilis. In this report, we prove that Spx proteins of S. mutans directly activate transcription of genes involved in the oxidative stress response, though SpxA1 appears to have a more dominant role than SpxA2. Therefore, the Spx regulators play a critical role in the ability of S. mutans to thrive within the oral cavity. PMID:25897032

  6. Oxidant-mediated activation of cytosolic phospholipase a(2) in pulmonary endothelium: role of protein kinase C alpha and a pertussis toxin-sensitive protein.

    PubMed

    Chakraborti, Sajal; Das, Sudip; Chakraborti, Tapati

    2005-01-01

    The authors have previously demonstrated that the oxidant t-buOOH stimulates phospholipase A(2) (PLA(2)) activity in bovine pulmonary artery endothelial cells (S. Chakraborti et al. American Journal of Physiology, 257, L430-L437, 1989). Herein, the authors sought to investigate the mechanism by which t-buOOH stimulates PLA(2) activity and the role of protein kinase C (PKC) in this scenario. Treatment of bovine pulmonary artery endothelial cells with t-buOOH stimulated an aprotinin-sensitive protease activity, PKC activity, and PLA(2) activity in the cell membrane. Pretreatment with intracellular Ca(2+) chelator (BAPTA-AM), PKCalpha inhibitor (Go6976), cPLA(2) inhibitor (AACOCF(3)), and pertussis toxin prevented t-buOOH-stimulated PLA(2) activity. Immunoblot studies with aprotinin, cPLA(2), PKCalpha, and Gialpha antibodies revealed their presence in the endothelial membrane. Immunoblot studies of the cell membrane isolated from t-buOOH-stimulated cells with cPLA(2) and PKCalpha antibodies elicited an apparent increase in their immunoreactive protein profiles along with an additional 47-kDa immunoreactive fragment in the membrane. t-buOOH caused Gialpha phosphorylation in the membrane and pretreatment with Go6976 prevented the phosphorylation. Overall, these results suggest that t-buOOH stimulates an aprotinin-sensitive protease activity that proteolytically activates PKCalpha and that subsequently phosphorylates a pertussis toxin-sensitive protein, resulting in the stimulation of cPLA(2) activity in the cell membrane. PMID:16291515

  7. Structure-activity studies on a series of a 2-aminopyrimidine-containing histamine H4 receptor ligands.

    PubMed

    Altenbach, Robert J; Adair, Ronald M; Bettencourt, Brian M; Black, Lawrence A; Fix-Stenzel, Shannon R; Gopalakrishnan, Sujatha M; Hsieh, Gin C; Liu, Huaqing; Marsh, Kennan C; McPherson, Michael J; Milicic, Ivan; Miller, Thomas R; Vortherms, Timothy A; Warrior, Usha; Wetter, Jill M; Wishart, Neil; Witte, David G; Honore, Prisca; Esbenshade, Timothy A; Hancock, Arthur A; Brioni, Jorge D; Cowart, Marlon D

    2008-10-23

    A series of 2-aminopyrimidines was synthesized as ligands of the histamine H4 receptor (H4R). Working in part from a pyrimidine hit that was identified in an HTS campaign, SAR studies were carried out to optimize the potency, which led to compound 3, 4- tert-butyl-6-(4-methylpiperazin-1-yl)pyrimidin-2-ylamine. We further studied this compound by systematically modifying the core pyrimidine moiety, the methylpiperazine at position 4, the NH2 at position 2, and positions 5 and 6 of the pyrimidine ring. The pyrimidine 6 position benefited the most from this optimization, especially in analogs in which the 6- tert-butyl was replaced with aromatic and secondary amine moieties. The highlight of the optimization campaign was compound 4, 4-[2-amino-6-(4-methylpiperazin-1-yl)pyrimidin-4-yl]benzonitrile, which was potent in vitro and was active as an anti-inflammatory agent in an animal model and had antinociceptive activity in a pain model, which supports the potential of H 4R antagonists in pain. PMID:18811133

  8. Amplification of neuromuscular transmission by methylprednisolone involves activation of presynaptic facilitatory adenosine A2A receptors and redistribution of synaptic vesicles.

    PubMed

    Oliveira, L; Costa, A C; Noronha-Matos, J B; Silva, I; Cavalcante, W L G; Timóteo, M A; Corrado, A P; Dal Belo, C A; Ambiel, C R; Alves-do-Prado, W; Correia-de-Sá, P

    2015-02-01

    The mechanisms underlying improvement of neuromuscular transmission deficits by glucocorticoids are still a matter of debate despite these compounds have been used for decades in the treatment of autoimmune myasthenic syndromes. Besides their immunosuppressive action, corticosteroids may directly facilitate transmitter release during high-frequency motor nerve activity. This effect coincides with the predominant adenosine A2A receptor tonus, which coordinates the interplay with other receptors (e.g. muscarinic) on motor nerve endings to sustain acetylcholine (ACh) release that is required to overcome tetanic neuromuscular depression in myasthenics. Using myographic recordings, measurements of evoked [(3)H]ACh release and real-time video microscopy with the FM4-64 fluorescent dye, results show that tonic activation of facilitatory A2A receptors by endogenous adenosine accumulated during 50 Hz bursts delivered to the rat phrenic nerve is essential for methylprednisolone (0.3 mM)-induced transmitter release facilitation, because its effect was prevented by the A2A receptor antagonist, ZM 241385 (10 nM). Concurrent activation of the positive feedback loop operated by pirenzepine-sensitive muscarinic M1 autoreceptors may also play a role, whereas the corticosteroid action is restrained by the activation of co-expressed inhibitory M2 and A1 receptors blocked by methoctramine (0.1 μM) and DPCPX (2.5 nM), respectively. Inhibition of FM4-64 loading (endocytosis) by methylprednisolone following a brief tetanic stimulus (50 Hz for 5 s) suggests that it may negatively modulate synaptic vesicle turnover, thus increasing the release probability of newly recycled vesicles. Interestingly, bulk endocytosis was rehabilitated when methylprednisolone was co-applied with ZM241385. Data suggest that amplification of neuromuscular transmission by methylprednisolone may involve activation of presynaptic facilitatory adenosine A2A receptors by endogenous adenosine leading to synaptic

  9. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation

    PubMed Central

    Wen, Jiaming; Grenz, Almut; Zhang, Yujin; Dai, Yingbo; Kellems, Rodney E.; Blackburn, Michael R.; Eltzschig, Holger K.; Xia, Yang

    2011-01-01

    Normal penile erection is under the control of multiple factors and signaling pathways. Although adenosine signaling is implicated in normal and abnormal penile erection, the exact role and the underlying mechanism for adenosine signaling in penile physiology remain elusive. Here we report that shear stress leads to increased adenosine release from endothelial cells. Subsequently, we determined that ecto-5′-nucleotidase (CD73) is a key enzyme required for the production of elevated adenosine from ATP released by shear-stressed endothelial cells. Mechanistically, we demonstrate that shear stress-mediated elevated adenosine functions through the adenosine A2B receptor (A2BR) to activate the PI3K/AKT signaling cascade and subsequent increased endothelial nitric oxide synthase (eNOS) phosphorylation. These in vitro studies led us to discover further that adenosine was induced during sustained penile erection and contributes to PI3K/AKT activation and subsequent eNOS phosphorylation via A2BR signaling in intact animal. Finally, we demonstrate that lowering adenosine in wild-type mice or genetic deletion of A2BR in mutant mice significantly attenuated PI3K/AKT activation, eNOS phosphorylation, and subsequent impaired penile erection featured with the reduction of ratio of maximal intracavernosal pressure to systemic arterial pressure from 0.49 ± 0.03 to 0.41 ± 0.05 and 0.38 ± 0.04, respectively (both P<0.05). Overall, using biochemical, cellular, genetic, and physiological approaches, our findings reveal that adenosine is a novel molecule signaling via A2BR activation, contributing to penile erection via PI3K/AKT-dependent eNOS activation. These studies suggest that this signaling pathway may be a novel therapeutic target for erectile disorders.—Wen, J., Grenz, A., Zhang, Y., Dai, Y., Kellems, R. E., Blackburn, M. R., Eltzschig, H. K., Xia, Y. A2B adenosine receptor contributes to penile erection via PI3K/AKT signaling cascade-mediated eNOS activation. PMID

  10. Multiplexed Dendritic Targeting of α Calcium Calmodulin-dependent Protein Kinase II, Neurogranin, and Activity-regulated Cytoskeleton-associated Protein RNAs by the A2 Pathway

    PubMed Central

    Gao, Yuanzheng; Tatavarty, Vedakumar; Korza, George; Levin, Mikhail K.

    2008-01-01

    In neurons, many different RNAs are targeted to dendrites where local expression of the encoded proteins mediates synaptic plasticity during learning and memory. It is not known whether each RNA follows a separate trafficking pathway or whether multiple RNAs are targeted to dendrites by the same pathway. Here, we show that RNAs encoding α calcium calmodulin-dependent protein kinase II, neurogranin, and activity-regulated cytoskeleton-associated protein are coassembled into the same RNA granules and targeted to dendrites by the same cis/trans-determinants (heterogeneous nuclear ribonucleoprotein [hnRNP] A2 response element and hnRNP A2) that mediate dendritic targeting of myelin basic protein RNA by the A2 pathway in oligodendrocytes. Multiplexed dendritic targeting of different RNAs by the same pathway represents a new organizing principle for coordinating gene expression at the synapse. PMID:18305102

  11. Purification, characterization and bactericidal activities of basic phospholipase A2 from the venom of Agkistrodon halys (Chinese pallas).

    PubMed

    Perumal Samy, R; Gopalakrishnakone, P; Ho, Bow; Chow, Vincent T K

    2008-09-01

    Agkistrodon snake venoms contain a variety of phospholipases (PLA2), some of which are myotoxic. In this study, we used reverse-phase HPLC to purify PLA2 from the venom of Agkistrodon halys. The enzyme named as AgkTx-II, a basic Asp49 PLA2, has a molecular masses of 13,869.05. The amino acid sequence and molecular mass of AgkTx-II was identical to those of an Asp49 basic myotoxic PLA2 previously isolated from this venom. Antibacterial activities were tested by susceptibility and broth-dilution assays. AgkTx-II exerted a potent antibacterial activity against Staphylococcus aureus, Proteus vulgaris, Proteus mirabilis, and Burkholderia pseudomallei. The MIC values of AgkTx-II ranged between 85 and 2.76microM and was most effective against S. aureus, P. vulgaris, P. mirabilis (MIC of 21.25microM) and B. pseudomallei (MIC of 10.25microM). This AgkTx-II rapidly killed S. aureus, P. vulgaris and B. pseudomallei in a dose-dependent manner. The effect of the AgkTx-II on bacterial membranes was evaluated by scanning and transmission electron microscopy. AgkTx-II caused morphological alterations apparent on their cellular surfaces, suggesting a killing mechanism based on membrane permeabilization and damage. Cytotoxicity was measured by XTT tetrazolium (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) and lactate dehydrogenase (LDH) assays using U-937 cells (monocytes). The AgkTx-II did not affect cell viability up to 500microM concentrations but cell death was evident at 1000microM concentration after 24 and 48h. Furthermore, the repeated exposure of AgkTx-II (2-14microM) treated mice showed different tissue alterations, mainly at the brain and kidney; the toxicological potential of AgkTx-II remains to be elucidated. The AgkTx-II exhibits no hemolytic action even at high doses (10-100microM) in human erythrocytes. However, the AgkTx-II is believed to exert its bactericidal effect by permeabilizing the bacterial membrane by forming pores. In addition

  12. Effect of Cytochrome b5 Content on the Activity of Polymorphic CYP1A2, 2B6, and 2E1 in Human Liver Microsomes

    PubMed Central

    Zhang, Haifeng; Gao, Na; Liu, Tingting; Fang, Yan; Qi, Bing; Wen, Qiang; Zhou, Jun; Jia, Linjing; Qiao, Hailing

    2015-01-01

    Human cytochrome b5 (Cyt b5) plays important roles in cytochrome P450 (CYP)-mediated drug metabolism. However, the expression level of Cyt b5 in normal human liver remains largely unknown. The effect of Cyt b5 on overall CYP activity in human liver microsomes (HLM) has rarely been reported and the relationship between Cyt b5 and the activity of polymorphic CYP has not been systematically investigated. In this study, we found that the median value of Cyt b5 protein was 270.01 pmol/mg from 123 HLM samples, and 12- and 19-fold individual variation was observed in Cyt b5 mRNA and protein levels, respectively. Gender and smoking clearly influenced Cyt b5 content. In addition, we found that Cyt b5 protein levels significantly correlated with the overall activity of CYP1A2, 2B6, and 2E1 in HLM. However, when the CYP activities were sorted by single nucleotide polymorphisms (SNP), the effect of Cyt b5 protein on the kinetic parameters varied greatly. There were significant correlations between Cyt b5 content and Vmax and CLint of CYP1A2 wild-types (3860GG, 2159GG, and 5347CC) as well as homozygous mutants (163AA and 3113GG). In contrast to Vmax and CLint, the Km of CYP2B6 516GG and 785AA genotypes was inversely associated with Cyt b5 content. Correlations between Cyt b5 content and Vmax and CLint of CYP2E1 -1293GG, -1293GC, 7632TT, 7632TA, -333TT, and -352AA genotypes were also observed. In conclusion, Cyt b5 expression levels varied considerably in the Chinese cohort from this study. Cyt b5 had significant impact on the overall activity of CYP1A2, 2B6, and 2E1 in HLM and the effects of Cyt b5 protein on polymorphic CYP1A2, 2B6, and 2E1 activity were SNP-dependent. These findings suggest that Cyt b5 plays an important role in CYP-mediated activities in HLM and may possibly be a contributing factor for the individual variation observed in CYP enzyme activities. PMID:26046844

  13. In vitro antiplasmodial activity of phospholipases A2 and a phospholipase homologue isolated from the venom of the snake Bothrops asper.

    PubMed

    Castillo, Juan Carlos Quintana; Vargas, Leidy Johana; Segura, Cesar; Gutiérrez, José María; Pérez, Juan Carlos Alarcón

    2012-12-01

    The antimicrobial and antiparasite activity of phospholipase A(2) (PLA(2)) from snakes and bees has been extensively explored. We studied the antiplasmodial effect of the whole venom of the snake Bothrops asper and of two fractions purified by ion-exchange chromatography: one containing catalytically-active phospholipases A(2) (PLA(2)) (fraction V) and another containing a PLA(2) homologue devoid of enzymatic activity (fraction VI). The antiplasmodial effect was assessed on in vitro cultures of Plasmodium falciparum. The whole venom of B. asper, as well as its fractions V and VI, were active against the parasite at 0.13 ± 0.01 µg/mL, 1.42 ± 0.56 µg/mL and 22.89 ± 1.22 µg/mL, respectively. Differences in the cytotoxic activity on peripheral blood mononuclear cells between the whole venom and fractions V and VI were observed, fraction V showing higher toxicity than total venom and fraction VI. Regarding toxicity in mice, the whole venom showed the highest lethal effect in comparison to fractions V and VI. These results suggest that B. asper PLA(2) and its homologue have antiplasmodial potential. PMID:23242318

  14. Lipid A biosynthesis in Rhizobium leguminosarum: Role of a 2-keto-3-deoxyoctulosonate-activated 4{prime} phosphatase

    SciTech Connect

    Price, N.P.J.; Jeyaretnam, B.; Carlson, R.W.

    1995-08-01

    Lipid A from several strains of the N{sub 2}-fixing bacterium Rhizobium leguminosarum displays significant structural differences from Escherichia coli lipid A, one of which is the complete absence of phosphate groups. However, the first seven enzymes of E. coli lipid A biosynthesis, leading from UDP-GlcNAc to the phosphorylated intermediate, 2-keto-3-deoxyoctulosonate (Kdo{sub 2})-lipid IV{sub A}, are present in R. leguminosarum. We now describe a membrane-bound phosphatase in R. leguminosarum extracts that removes the 4{prime} phosphate of Kdo{sub 2}-lipid IV{sub A}. The 4{prime} phosphatase is selective for substrates containing the Kdo domain. It is present in extracts of R. leguminosarum biovars phaseoli, viciae, and trifolii but is not detectable in E. coli and Rhizobium meliloti. A nodulation-defective strain (24AR) of R. leguminosarum bovar trifolii, known to contain a 4{prime} phosphate residue on its lipid A, also lacks measurable 4{prime} phosphatase activity. the Kdo-dependent 4{prime} phosphatase appears to be a key reaction in a pathway for generating phosphate-deficient lipid A.

  15. Ceria–Zirconia Particles Wrapped in a 2D Carbon Envelope: Improved Low-Temperature Oxygen Transfer and Oxidation Activity

    PubMed Central

    Aneggi, Eleonora; Rico-Perez, Veronica; de Leitenburg, Carla; Maschio, Stefano; Soler, Lluís; Llorca, Jordi; Trovarelli, Alessandro

    2015-01-01

    Engineering the interface between different components of heterogeneous catalysts at nanometer level can radically alter their performances. This is particularly true for ceria-based catalysts where the interactions are critical for obtaining materials with enhanced properties. Here we show that mechanical contact achieved by high-energy milling of CeO2–ZrO2 powders and carbon soot results in the formation of a core of oxide particles wrapped in a thin carbon envelope. This 2D nanoscale carbon arrangement greatly increases the number and quality of contact points between the oxide and carbon. Consequently, the temperatures of activation and transfer of the oxygen in ceria are shifted to exceptionally low temperatures and the soot combustion rate is boosted. The study confirms the importance of the redox behavior of ceria-zirconia particles in the mechanism of soot oxidation and shows that the organization of contact points at the nanoscale can significantly modify the reactivity resulting in unexpected properties and functionalities. PMID:26448053

  16. Predicting caries by measuring its activity using quantitative light-induced fluorescence in vivo: a 2-year caries increment analysis.

    PubMed

    Meller, C; Santamaria, R M; Connert, T; Splieth, C

    2012-01-01

    The aim of this study was to analyse the predictive power of several clinical baseline parameters and the de-/remineralisation properties of in vivo etched sites measured with quantitative light-induced fluorescence (QLF) for subsequent 2-year caries increment. At baseline, in 44 children (8.23 ± 1.5 years) two areas (diameter 2 mm) of the buccal surface of a primary posterior tooth were etched with 36% phosphoric acid gel for 1 and 4 min, respectively. The etched sites were analysed immediately after etching (ΔQ1) and 24 h (ΔQ2) later by QLF. Additionally, caries status (deft/DMFT and initial caries), approximal plaque, bleeding on probing, and the patient's current use of fluorides were recorded. In the 2-year follow-up, 29 children were re-assessed. After clinical examination, the caries increment was calculated (ΔDMFT) and correlated with the baseline clinical variables and the QLF readings. Results showed a significant positive correlation between ΔQ(1 min) and the ΔDMFT (r = 0.44, p = 0.02). The ΔDMFT was significantly correlated with the baseline deft (r = 0.56, p = 0.002), cavitated active caries lesions (r = 0.52, p = 0.003), and filled teeth (r = 0.53, p = 0.003). In a regression analysis the use of fluoridated salt (SC = -0.10) and fluoride gel (SC = -0.14) were negatively associated with ΔDMFT. In conclusion, these findings suggest that the demineralisation properties of the etched sites and the outcome of the 24-hour measurements with QLF are significantly associated with caries increment. Previous caries experience strongly correlated with caries increment in this group of children. PMID:22614242

  17. Vavilosides A1/A2-B1/B2, new furostane glycosides from the bulbs of Allium vavilovii with cytotoxic activity.

    PubMed

    Zolfaghari, Behzad; Sadeghi, Masoud; Troiano, Raffaele; Lanzotti, Virginia

    2013-04-01

    A phytochemical analysis of the bulbs of Allium vavilovii M. Pop. & Vved. was attained for the first time extensively, affording to the isolation of four new furostanol saponins, named vavilosides A1/A2-B1/B2 (1a/b-2a/2b), as two couple of isomers in equilibrium, together with ascalonicoside A1/A2 (3a/3b) and 22-O-methyl ascalonicoside A1/A2 (4a/4b), previously isolated from shallot, Allium ascalonicum. High concentrations of kaempferol, kaempferide, and kaempferol 4(I)-glucoside were also isolated. The chemical structures of the new compounds, established through a combination of extensive nuclear magnetic resonance, mass spectrometry and chemical analyses, were identified as (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside A1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-galactopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside A2), (25R)-furost-5(6)-en-1β,3β,22α,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-D-xylopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside B1), (25R)-furost-5(6)-en-1β,3β,22β,26-tetraol 1-O-α-L-rhamnopyranosyl-(1→2)-O-β-d-xylopyranosyl 26-O-α-L-rhamnopyranoside (vaviloside B2). The isolated saponins showed cytotoxic activity on J-774, murine monocyte/macrophage, and WEHI-164, murine fibrosarcoma, cell lines with the following rank: vaviloside B1/B2>ascalonicoside A1/A2>vaviloside A1/A2. PMID:23415085

  18. MicroRNA-410 acts as oncogene in NSCLC through downregulating SLC34A2 via activating Wnt/β-catenin pathway

    PubMed Central

    Pu, Qiang; Yuan, Yue; Yang, Weihan; Luo, Xinmei; Jiang, Qianqian; Hu, Xueting; Gong, Yi; Tang, Kui; Su, Xiaolan; Liu, Lunxu; Zhu, Wen; Wei, Yuquan

    2016-01-01

    SLC34A2 had been reported to be down-regulated in human NSCLC cells and patient tissues, and played a significant role in lung cancer. However, the mechanism of its unusual expressionin NSCLC has not been fully elucidated. In present study, we identified SLC34A2 was a direct target of miR-410 and could be inhibited by miR-410 transcriptionally and post-transcriptionally. MiR-410 promoted the growth, invasion and migration of NSCLC cells in vitro. An orthotopic xenograft nude mouse model further affirmed that miR-410 promoted NSCLC cell growth and metastasis in vivo. Moreover, restoring SLC34A2 expression effectively reversed the miR-410-mediated promotion of cell growth, invasion and migration in NSCLC cells. In addition, miR-410high /SLC34A2low expression signature frequently existed in NSCLC cells and tumor tissues. MiR-410 significantly increased the expression of DVL2 and β-catenin protein while decreased that of Gsk3β protein of Wnt/β-catenin signaling pathway, while SLC34A2 partly blocked the effects of miR-410 on those protein expressions. Hence, our data for the first time delineated that unusual expression of SLC34A2 was modulated by miR-410, and miR-410 might positivelycontribute to the tumorigenesis and development of NSCLC by down-regulating SLC34A2 and activating Wnt/β-catenin signaling pathway. MiR-410 might be a new potential therapeutic target for NSCLC. PMID:26910912

  19. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.

    PubMed

    Turpeinen, Miia; Hofmann, Ute; Klein, Kathrin; Mürdter, Thomas; Schwab, Matthias; Zanger, Ulrich M

    2009-05-01

    Nabumetone, a widely used nonsteroidal anti-inflammatory drug, requires biotransformation into 6-methoxy-2-naphthylacetic acid (6-MNA), a close structural analog to naproxen, to achieve its analgesic and anti-inflammatory effects. Despite its wide use, the enzymes involved in metabolism have not been identified. In the present study, several in vitro approaches were used to identify the cytochrome P450 (P450) enzyme(s) responsible for 6-MNA formation. In human liver microsomes (HLMs) 6-MNA formation displayed monophasic Michaelis-Menten kinetics with apparent K(m) and V(max) values (mean +/- S.D.) of 75.1 +/- 15.3 microM and 1304 +/- 226 pmol/min/mg protein, respectively, and formation rate of 6-MNA varied approximately 5.5-fold (179-983 pmol/min/mg protein). 6-MNA activity correlated strongly with both CYP1A2-mediated phenacetin O-deethylation activity and CYP1A2 protein content (r = 0.85 and 0.74, respectively; p < 0.0001 for both). Additional correlations were found with model activities of CYP2C19 and CYP3A4. Of 11 cDNA-expressed recombinant P450s used, recombinant CYP1A2 was the major form catalyzing the 6-MNA formation with an apparent K(m) of 45 microM and V(max) of 8.7 pmol/min/pmol P450. Minor fractions were catalyzed by recombinant P450s CYP1A1, CYP2B6, CYP2C19, CYP2D6, and CYP2E1. Experiments with P450-selective chemical inhibitors and monoclonal anti-P450 antibodies showed that furafylline, a mechanism-based inhibitor CYP1A2, and anti-CYP1A2 antibody markedly inhibited 6-MNA formation, whereas inhibitors for other P450s did not show significant inhibitory effects. Taken together, these studies indicate that the formation of the active metabolite of nabumetone, 6-MNA, is predominantly catalyzed by CYP1A2 in HLMs with only minor contribution of other P450s. PMID:19204080

  20. Thrombin produces phosphorylation of cytosolic phospholipase A2 by a mitogen-activated protein kinase kinase-independent mechanism in the human astrocytoma cell line 1321N1.

    PubMed Central

    Hernández, M; Bayón, Y; Sánchez Crespo, M; Nieto, M L

    1997-01-01

    The release of [3H]arachidonic acid was studied in the 1321N1 astrocytoma cell line upon stimulation with thrombin. The effect of thrombin was antagonized by hirudin only when both compounds were added simultaneously, which suggests activation of thrombin receptor. Evidence that the cytosolic phospholipase A2 (cPLA2) takes part in thrombin-induced arachidonate release was provided by the finding that thrombin induced retardation of the mobility of cPLA2 in SDS/polyacrylamide gels, which is a feature of the activation of cPLA2 by mitogen-activated protein (MAP) kinases. Thrombin induced activation of two members of the MAP kinase family whose consensus primary sequence appears in cPLA2, namely p42-MAP kinase and c-Jun kinase. However, the activation of c-Jun kinase preceded the phosphorylation of cPLA2 more clearly than the activation of p42-MAK kinase did. Both cPLA2 and c-Jun kinase activation were not affected by PD-98059, a specific inhibitor of MAP kinase kinases, which indeed completely blocked p42-MAP kinase shift. Heat shock, a well-known activator of c-Jun kinase, also phosphorylated cPLA2 but not p42-MAP kinase. These data indicate the existence in astrocytoma cells of a signalling pathway triggered by thrombin receptor stimulation that activates a kinase cascade acting on the Pro-Leu-Ser-Pro consensus primary sequence, activates cPLA2, and associates the release of arachidonate with nuclear signalling pathways. PMID:9359863

  1. The effects of a 2-year physical education program (SPARK) on physical activity and fitness in elementary school students. Sports, Play and Active Recreation for Kids.

    PubMed Central

    Sallis, J F; McKenzie, T L; Alcaraz, J E; Kolody, B; Faucette, N; Hovell, M F

    1997-01-01

    OBJECTIVES: This study evaluated a health-related physical education program for fourth- and fifth-grade students designed to increase physical activity during physical education classes and outside of school. METHODS: Seven schools were assigned to three conditions in a quasi-experimental design. Health-related physical education was taught by physical education specialists or trained classroom teachers. Students from these classes were compared with those in control classes. Analyses were conducted on 955 students with complete data. RESULTS: Students spent more minutes per week being physically active in specialist-led (40 min) and teacher-led (33 min) physical education classes than in control classes (18 min; P < .001). After 2 years, girls in the specialist-led condition were superior to girls in the control condition on abdominal strength and endurance (P < .001) and cardiorespiratory endurance (P < .001). There were no effects on physical activity outside of school. CONCLUSIONS: A health-related physical education curriculum can provide students with substantially more physical activity during physical education classes. Improved physical education classes can potentially benefit 97% of elementary school students. PMID:9279269

  2. Coffee and tea consumption, genotype-based CYP1A2 and NAT2 activity and colorectal cancer risk-results from the EPIC cohort study.

    PubMed

    Dik, Vincent K; Bueno-de-Mesquita, H B As; Van Oijen, Martijn G H; Siersema, Peter D; Uiterwaal, Cuno S P M; Van Gils, Carla H; Van Duijnhoven, Fränzel J B; Cauchi, Stéphane; Yengo, Loic; Froguel, Philippe; Overvad, Kim; Bech, Bodil H; Tjønneland, Anne; Olsen, Anja; Boutron-Ruault, Marie-Christine; Racine, Antoine; Fagherazzi, Guy; Kühn, Tilman; Campa, Daniele; Boeing, Heiner; Aleksandrova, Krasimira; Trichopoulou, Antonia; Peppa, Eleni; Oikonomou, Eleni; Palli, Domenico; Grioni, Sara; Vineis, Paolo; Tumino, Rosaria; Panico, Salvatore; Peeters, Petra H M; Weiderpass, Elisabete; Engeset, Dagrun; Braaten, Tonje; Dorronsoro, Miren; Chirlaque, María-Dolores; Sánchez, María-José; Barricarte, Aurelio; Zamora-Ros, Raul; Argüelles, Marcial; Jirström, Karin; Wallström, Peter; Nilsson, Lena M; Ljuslinder, Ingrid; Travis, Ruth C; Khaw, Kay-Tee; Wareham, Nick; Freisling, Heinz; Licaj, Idlir; Jenab, Mazda; Gunter, Marc J; Murphy, Neil; Romaguera-Bosch, Dora; Riboli, Elio

    2014-07-15

    Coffee and tea contain numerous antimutagenic and antioxidant components and high levels of caffeine that may protect against colorectal cancer (CRC). We investigated the association between coffee and tea consumption and CRC risk and studied potential effect modification by CYP1A2 and NAT2 genotypes, enzymes involved in the metabolization of caffeine. Data from 477,071 participants (70.2% female) of the European Investigation into Cancer and Nutrition (EPIC) cohort study were analyzed. At baseline (1992-2000) habitual (total, caffeinated and decaffeinated) coffee and tea consumption was assessed with dietary questionnaires. Cox proportional hazards models were used to estimate adjusted hazard ratio's (HR) and 95% confidence intervals (95% CI). Potential effect modification by genotype-based CYP1A2 and NAT2 activity was studied in a nested case-control set of 1,252 cases and 2,175 controls. After a median follow-up of 11.6 years, 4,234 participants developed CRC (mean age 64.7 ± 8.3 years). Total coffee consumption (high vs. non/low) was not associated with CRC risk (HR 1.06, 95% CI 0.95-1.18) or subsite cancers, and no significant associations were found for caffeinated (HR 1.10, 95% CI 0.97-1.26) and decaffeinated coffee (HR 0.96, 95% CI 0.84-1.11) and tea (HR 0.97, 95% CI 0.86-1.09). High coffee and tea consuming subjects with slow CYP1A2 or NAT2 activity had a similar CRC risk compared to non/low coffee and tea consuming subjects with a fast CYP1A2 or NAT2 activity, which suggests that caffeine metabolism does not affect the link between coffee and tea consumption and CRC risk. This study shows that coffee and tea consumption is not likely to be associated with overall CRC. PMID:24318358

  3. Biochemical signal transmitted by Fc gamma receptors: phospholipase A2 activity of Fc gamma 2b receptor of murine macrophage cell line P388D1.

    PubMed Central

    Suzuki, T; Saito-Taki, T; Sadasivan, R; Nitta, T

    1982-01-01

    The detergent lysate of the P388D1 macrophage cell line was subjected to affinity chromatography on two different media, Sepharose coupled to heat-aggregated human IgG (IgG-Sepharose) and Sepharose coupled to the phosphatidylcholine analog rac-1-(9-carboxyl)nonyl-2-hexadecylglycero-3-phosphocholine (PC-Sepharose). Both IgG- and phosphatidylcholine-binding proteins were further purified by Sephadex G-100 gel filtration and isoelectric focusing in the presence of 6 M urea. The isolated IgG-binding proteins specifically bound to IgG2a, but not to IgG2b, whereas the isolated phosphatidylcholine-binding proteins specifically bound to IgG2b but not to IgG2a. Phosphatidylcholine-binding proteins possessed a typical phospholipase A2 activity (phosphatide 2-acylhydrolase, EC 3.1.1.4), which was maximal (10 mumol/min per mg of protein) at pH 9.5, depended on Ca2+, and was specific for cleavage of fatty acid from the C-2 position of the glycerol backbone of phosphatidylcholine. The noted enzymatic activity was augmented 4-fold by preincubating phosphatidylcholine-binding proteins with heat-aggregated murine IgG2b but not with IgG2a. IgG-binding proteins, on the other hand, are devoid of any detectable phospholipase A2 activity. Thus, the functional significance of Fc gamma 2b receptor of P388D1 macrophage cell line would be the generation of phospholipase A2 activity at the cell surface upon specific binding to Fc gamma 2b fragment. PMID:6804944

  4. Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation.

    PubMed

    Hu, Jia; Chen, Zhong; Xia, Ding; Wu, Jia; Xu, Hua; Ye, Zhang-Qun

    2012-11-01

    Several recent reports have demonstrated that small activating dsRNA [double-stranded RNA; saRNA (small activating dsRNA)] complementary to promoter regions can up-regulate gene expression in mammalian cells, a phenomenon termed RNAa (RNA activation). However, the mechanism of RNAa remains obscure with regard to what is the target molecule for promoter-targeted saRNA and what are the proteins involved in this process. p21Waf1/Cip1 (p21) [CDKN1A (cyclin-dependent kinase inhibitor 1A)], an important tumour suppressor gene, is among the genes that can be activated by RNAa in tumour cells. In the present study, we provide direct evidence that p21 promoter-targeted saRNA interact with its intended target on the p21 promoter to activate p21 expression. This process is associated with recruitment of RNA polymerase II and AGO2 (argonaute 2) protein to the saRNA-target site. Additionally, we found that several hnRNPs (heterogeneous nuclear ribonucleoproteins) (A1, A2/B1 and C1/C2) are associated with saRNA. Further studies show that hnRNPA2/B1 interacts with the saRNA in vivo and in vitro and is required for RNAa activity. These findings indicate that RNAa results from specific targeting of promoters and reveals additional mechanistic details of RNAa. PMID:23035981

  5. Cellular responses to Pyrularia thionin are mediated by Ca2+ influx and phospholipase A2 activation and are inhibited by thionin tyrosine iodination.

    PubMed Central

    Evans, J; Wang, Y D; Shaw, K P; Vernon, L P

    1989-01-01

    Pyrularia thionin, isolated from nuts of Pyrularia pubera, is a strongly basic peptide of 47 amino acids. The amino acid sequence and configuration of its four disulfide bonds place this plant peptide, known to be hemolytic, cytotoxic, and neurotoxic, among the thionins. We report and compare several cellular responses mediated by Pyrularia thionin: hemolysis of human erythrocytes, activation of an endogenous phospholipase A2 in Swiss 3T3 cells, cytotoxicity toward HeLa and mouse B16 melanoma cells in culture, viability of rat hepatocytes and lymphocytes measured by trypan blue exclusion, and lethality in mice. Cellular responses related to ion movement include a toxin-mediated influx of Ca2+ into mouse P388 cells measured by Fura-2 fluorescence, depolarization of mouse P388 plasma membrane measured by fluorescence of bis(1,3-diethylthiobarbituric acid)trimethine oxonol (bisoxonol), and depolarization of frog (Rana pipiens) sartorius muscle determined by direct measurement of membrane potential. Graded iodination of Pyrularia thionin leads to a related loss of activity for hemolysis, phospholipase A2 activation, cytotoxicity, and lethality in mice. The mediated Ca2+ influx into and depolarization of P388 cells require Ca2+ in the external medium and are inhibited by 100 microM Ni2+. Depolarization of sartorius muscle by Pyrularia thionin also requires a functional Ca2+ channel, as shown by verapamil inhibition. This muscle depolarization also involves phospholipase A2 activation because dexamethasone and quinacrin, but not indomethacin, protect against depolarization. The IC50 values for viability of rat hepatocytes and splenic lymphocytes measured by trypan blue exclusion were 0.17 and 40 microM, respectively. The general response of cells to Pyrularia thionin involves a membrane alteration leading to depolarization and a channel-mediated influx of Ca2+. There is a related activation of phospholipase A2 that results in loss of membrane integrity, hemolysis in the

  6. Role of an aprotinin-sensitive protease in protein kinase Calpha-mediated activation of cytosolic phospholipase A2 by calcium ionophore (A23187) in pulmonary endothelium.

    PubMed

    Chakraborti, Sajal; Michael, John R; Chakraborti, Tapati

    2004-06-01

    Treatment of bovine pulmonary artery endothelial cells with the calcium ionophore, A23187, stimulates the cell membrane associated protease activity, phospholipase A2 (PLA2) activity, and arachidonic acid (AA) release from the cells. Pretreatment of the cells with arachidonyl-trifluomethylketone (AACOCF3), a cPLA2 inhibitor, but not bromoenollactone (BEL), a iPLA2 inhibitor, prevents A23187 stimulated PLA2 activity and AA release without producing an appreciable alteration of the protease activity. Pretreatment of the cells with aprotinin, an ambient protease inhibitor, prevents the increase in the protease activity and cPLA2 activity in the membrane and AA release from the cells caused by both low and high doses of A23187, and also inhibits protein kinase C (PKC) activity caused by high doses of A23187. Immunoblot study of the endothelial cell membrane isolated from A23187 (10 microM)-treated cells with polyclonal PKCalpha antibody elicited an increase in the 80 kDa immunoreactive protein band along with an additional 47 kDa immunoreactive fragment. Pretreatment of the cells with aprotinin abolished the 47 kDa immunoreactive fragment in the immunoblot. Immunoblot study of the endothelial membrane with polyclonal cPLA2 antibody revealed that treatment of the cells with A23187 dose-dependently increases cPLA2 immunoreactive protein profile in the membrane. It therefore appears from the present study that treatment of the cells with a low dose of A23187 (1 microM) causes a small increase in an aprotinin-sensitive protease activity and that stimulates cPLA2 activity in the cell membrane without an involvement of PKC. By contrast, treatment of the cells with a high dose of 10 microM of A23187 causes optimum increase in the protease activity and that plays an important role in activating PKCalpha, which subsequently stimulates cPLA2 activity in the cell membrane. Although pretreatment of the cells with pertussis toxin caused ADP ribosylation of a 41 kDa protein in the

  7. Anti-Adhesion Activity of A2-type Proanthocyanidins (a Cranberry Major Component) on Uropathogenic E. coli and P. mirabilis Strains

    PubMed Central

    Nicolosi, Daria; Tempera, Gianna; Genovese, Carlo; Furneri, Pio M.

    2014-01-01

    Urinary tract infections (UTIs) are relatively common in women and may be classified as uncomplicated or complicated, depending upon the urinary tract anatomy and physiology. Acute uncomplicated cystitis (AUC) occurs when urinary pathogens from the bowel or vagina colonize the periurethral mucosa and reach the bladder. The vast majority of episodes in healthy women involving the same bacterial strain that caused the initial infection are thought to be reinfections. About 90% of AUC are caused by uropathogenic Escherichia coli (UPEC), but Proteus mirabilis also plays an important role. Several studies support the importance of cranberry (Vaccinium macrocarpon) proanthocyanidins in preventing adhesion of P-fimbriated UPEC to uroepithelial cells. In this study, we evaluated the in vitro anti-adhesion activity of A2-linked proanthocyanidins from cranberry on a UPEC and Proteus mirabilis strains and their possible influence on urease activity of the latter. A significant reduction of UPEC adhesion (up to 75%) on the HT1376 cell line was observed vs. control. For the strains of P. mirabilis there was also a reduction of adhesion (up to 75%) compared to controls, as well as a reduction in motility and urease activity. These results suggest that A2-type cranberry proanthocyanidins could aid in maintaining urinary tract health. PMID:27025740

  8. Anti-Adhesion Activity of A2-type Proanthocyanidins (a Cranberry Major Component) on Uropathogenic E. coli and P. mirabilis Strains.

    PubMed

    Nicolosi, Daria; Tempera, Gianna; Genovese, Carlo; Furneri, Pio M

    2014-01-01

    Urinary tract infections (UTIs) are relatively common in women and may be classified as uncomplicated or complicated, depending upon the urinary tract anatomy and physiology. Acute uncomplicated cystitis (AUC) occurs when urinary pathogens from the bowel or vagina colonize the periurethral mucosa and reach the bladder. The vast majority of episodes in healthy women involving the same bacterial strain that caused the initial infection are thought to be reinfections. About 90% of AUC are caused by uropathogenic Escherichia coli (UPEC), but Proteus mirabilis also plays an important role. Several studies support the importance of cranberry (Vaccinium macrocarpon) proanthocyanidins in preventing adhesion of P-fimbriated UPEC to uroepithelial cells. In this study, we evaluated the in vitro anti-adhesion activity of A2-linked proanthocyanidins from cranberry on a UPEC and Proteus mirabilis strains and their possible influence on urease activity of the latter. A significant reduction of UPEC adhesion (up to 75%) on the HT1376 cell line was observed vs. control. For the strains of P. mirabilis there was also a reduction of adhesion (up to 75%) compared to controls, as well as a reduction in motility and urease activity. These results suggest that A2-type cranberry proanthocyanidins could aid in maintaining urinary tract health. PMID:27025740

  9. Activity of 8F4, a T-cell receptor-like anti-PR1/HLA-A2 antibody, against primary human AML in vivo.

    PubMed

    Sergeeva, A; He, H; Ruisaard, K; St John, L; Alatrash, G; Clise-Dwyer, K; Li, D; Patenia, R; Hong, R; Sukhumalchandra, P; You, M J; Gagea, M; Ma, Q; Molldrem, J J

    2016-07-01

    The PR1 peptide, derived from the leukemia-associated antigens proteinase 3 and neutrophil elastase, is overexpressed on HLA-A2 in acute myeloid leukemia (AML). We developed a high-affinity T-cell receptor-like murine monoclonal antibody, 8F4, that binds to the PR1/HLA-A2 complex, mediates lysis of AML and inhibits leukemia colony formation. Here, we explored whether 8F4 was active in vivo against chemotherapy-resistant AML, including secondary AML. In a screening model, coincubation of AML with 8F4 ex vivo prevented engraftment of all tested AML subtypes in immunodeficient NSG (NOD scid IL-2 receptor γ-chain knockout) mice. In a treatment model of established human AML, administration of 8F4 significantly reduced or eliminated AML xenografts and extended survival compared with isotype antibody-treated mice. Moreover, in secondary transfer experiments, mice inoculated with bone marrow from 8F4-treated mice showed no evidence of AML engraftment, supporting the possible activity of 8F4 against the subset of AML with self-renewing potential. Our data provide evidence that 8F4 antibody is highly active in AML, including chemotherapy-resistant disease, supporting its potential use as a therapeutic agent in patients with AML. PMID:27055866

  10. Construction of a 2D Graphene-Like MoS2 /C3 N4 Heterojunction with Enhanced Visible-Light Photocatalytic Activity and Photoelectrochemical Activity.

    PubMed

    Yan, Jia; Chen, Zhigang; Ji, Haiyan; Liu, Zheng; Wang, Xin; Xu, Yuanguo; She, Xiaojie; Huang, Liying; Xu, Li; Xu, Hui; Li, Huaming

    2016-03-24

    A novel graphene-like MoS2 /C3 N4 (GL-MoS2 /C3 N4 ) composite photocatalyst has been synthesized by a facile ethylene glycol (EG)-assisted solvothermal method. The structure and morphology of this GL-MoS2 /C3 N4 photocatalyst have been investigated by a wide range of characterization methods. The results showed that GL-MoS2 was uniformly distributed on the surface of GL-C3 N4 forming a heterostructure. The obtained composite exhibited strong absorbing ability in the ultraviolet (UV) and visible regions. When irradiated with visible light, the composite photocatalyst showed high activity superior to those of the respective individual components GL-MoS2 and GL-C3 N4 in the degradation of methyl orange. The enhanced photocatalytic activity of the composite may be attributed to the efficient separation of electron-hole pairs as a result of the matching band potentials between GL-MoS2 and GL-C3 N4 . Furthermore, a photocatalytic mechanism for the composite material has been proposed, and the photocatalytic reaction kinetics has been measured. Moreover, GL-MoS2 /C3 N4 could serve as a novel sensor for trace amounts of Cu(2+) since it exhibited good selectivity for Cu(2+) detection in water. PMID:26833499

  11. Effect of Chlorogenic Acid (5-Caffeoylquinic Acid) Isolated from Baccharis oxyodonta on the Structure and Pharmacological Activities of Secretory Phospholipase A2 from Crotalus durissus terrificus

    PubMed Central

    Toyama, Daniela O.; Ferreira, Marcelo J. P.; Romoff, Paulete; Fávero, Oriana A.; Gaeta, Henrique H.; Toyama, Marcos H.

    2014-01-01

    The aim of this paper was to investigate the effect of chlorogenic acid (5-caffeoylquinic acid, 5CQA), isolated from Baccharis oxyodonta, on the structure and pharmacological effect of secretory phospholipase A2 (sPLA2) from Crotalus durissus terrificus. All in vitro and in vivo experiments were conducted using a purified sPLA2 compared under the same experimental conditions with sPLA2 : 5CQA. 5CQA induced several discrete modifications in the secondary structure and the hydrophobic characteristics of native sPLA2 that induced slight changes in the α-helical content, increase in the random coil structure, and decrease of fluorescence of native sPLA2. Moreover, 5CQA significantly decreased the enzymatic activity and the oedema and myonecrosis induced by native sPLA2. As the catalytic activity of sPLA2 plays an important role in several of its biological and pharmacological properties, antibacterial activity was used to confirm the decrease in its enzymatic activity by 5CQA, which induced massive bacterial cell destruction. We found that 5CQA specifically abolished the enzymatic activity of sPLA2 and induced discrete protein unfolding that mainly involved the pharmacological site of sPLA2. These results showed the potential application of 5CQA in the snake poisoning treatment and modulation of the pathological effect of inflammation induced by secretory PLA2. PMID:25258715

  12. ABA renewal involves enhancements in both GluA2-lacking AMPA receptor activity and GluA1 phosphorylation in the lateral amygdala.

    PubMed

    Park, Kyungjoon; Song, Beomjong; Kim, Jeongyeon; Hong, Ingie; Song, Sangho; Lee, Junuk; Park, Sungmo; Kim, Jihye; An, Bobae; Lee, Hyun Woo; Lee, Seungbok; Kim, Hyun; Lee, Justin C; Lee, Sukwon; Choi, Sukwoo

    2014-01-01

    Fear renewal, the context-specific relapse of fear following fear extinction, is a leading animal model of post-traumatic stress disorders (PTSD) and fear-related disorders. Although fear extinction can diminish fear responses, this effect is restricted to the context where the extinction is carried out, and the extinguished fear strongly relapses when assessed in the original acquisition context (ABA renewal) or in a context distinct from the conditioning and extinction contexts (ABC renewal). We have previously identified Ser831 phosphorylation of GluA1 subunit in the lateral amygdala (LA) as a key molecular mechanism for ABC renewal. However, molecular mechanisms underlying ABA renewal remain to be elucidated. Here, we found that both the excitatory synaptic efficacy and GluA2-lacking AMPAR activity at thalamic input synapses onto the LA (T-LA synapses) were enhanced upon ABA renewal. GluA2-lacking AMPAR activity was also increased during low-threshold potentiation, a potential cellular substrate of renewal, at T-LA synapses. The microinjection of 1-naphtylacetyl-spermine (NASPM), a selective blocker of GluA2-lacking AMPARs, into the LA attenuated ABA renewal, suggesting a critical role of GluA2-lacking AMPARs in ABA renewal. We also found that Ser831 phosphorylation of GluA1 in the LA was increased upon ABA renewal. We developed a short peptide mimicking the Ser831-containing C-tail region of GluA1, which can be phosphorylated upon renewal (GluA1S); thus, the phosphorylated GluA1S may compete with Ser831-phosphorylated GluA1. This GluA1S peptide blocked the low-threshold potentiation when dialyzed into a recorded neuron. The microinjection of a cell-permeable form of GluA1S peptide into the LA attenuated ABA renewal. In support of the GluA1S experiments, a GluA1D peptide (in which the serine at 831 is replaced with a phosphomimetic amino acid, aspartate) attenuated ABA renewal when microinjected into the LA. These findings suggest that enhancements in both the

  13. Comparative studies on the inhibitory activities of selected benzoic acid derivatives against secretory phospholipase A2, a key enzyme involved in the inflammatory pathway.

    PubMed

    Dileep, K V; Remya, C; Cerezo, J; Fassihi, A; Pérez-Sánchez, H; Sadasivan, C

    2015-07-01

    Inflammation is considered to be a key factor in major diseases like cancer, Alzheimer's disease, Parkinson's disease, etc. For the past few decades, pharmaceutical companies have explored new effective medications against inflammation. As a part of their detailed studies, many drug targets and drugs have been introduced against inflammation. In the present study, the inhibiting capacities of selected benzoic acid derivatives like gallic acid, vannilic acid, syringic acid and protocatechuic acid against secretory phospholipase A2 (sPLA2), a major enzyme involved in the inflammatory pathway, have been investigated. The detailed in vitro, biophysical and in silico studies carried out on these benzoic acid derivatives revealed that all the selected compounds have a uniform mode of binding in the active site of sPLA2 and are inhibitory in micromolar concentrations. The study also focuses on the non-selective inhibitory activity of an NSAID, aspirin, against sPLA2. PMID:25927625

  14. Daboxin P, a Major Phospholipase A2 Enzyme from the Indian Daboia russelii russelii Venom Targets Factor X and Factor Xa for Its Anticoagulant Activity

    PubMed Central

    Iyer, Janaki Krishnamurthy; Shih, Norrapat; Majumder, Munmi; Mattaparthi, Venkata Satish Kumar; Mukhopadhyay, Rupak; Doley, Robin

    2016-01-01

    In the present study a major protein has been purified from the venom of Indian Daboia russelii russelii using gel filtration, ion exchange and Rp-HPLC techniques. The purified protein, named daboxin P accounts for ~24% of the total protein of the crude venom and has a molecular mass of 13.597 kDa. It exhibits strong anticoagulant and phospholipase A2 activity but is devoid of any cytotoxic effect on the tested normal or cancerous cell lines. Its primary structure was deduced by N-terminal sequencing and chemical cleavage using Edman degradation and tandem mass spectrometry. It is composed of 121 amino acids with 14 cysteine residues and catalytically active His48 -Asp49 pair. The secondary structure of daboxin P constitutes 42.73% of α-helix and 12.36% of β-sheet. It is found to be stable at acidic (pH 3.0) and neutral pH (pH 7.0) and has a Tm value of 71.59 ± 0.46°C. Daboxin P exhibits anticoagulant effect under in-vitro and in-vivo conditions. It does not inhibit the catalytic activity of the serine proteases but inhibits the activation of factor X to factor Xa by the tenase complexes both in the presence and absence of phospholipids. It also inhibits the tenase complexes when active site residue (His48) was alkylated suggesting its non-enzymatic mode of anticoagulant activity. Moreover, it also inhibits prothrombinase complex when pre-incubated with factor Xa prior to factor Va addition. Fluorescence emission spectroscopy and affinity chromatography suggest the probable interaction of daboxin P with factor X and factor Xa. Molecular docking analysis reveals the interaction of the Ca+2 binding loop; helix C; anticoagulant region and C-terminal region of daboxin P with the heavy chain of factor Xa. This is the first report of a phospholipase A2 enzyme from Indian viper venom which targets both factor X and factor Xa for its anticoagulant activity. PMID:27089306

  15. Leptin signalling and leptin-mediated activation of human platelets: importance of JAK2 and the phospholipases Cgamma2 and A2.

    PubMed

    Dellas, Claudia; Schäfer, Katrin; Rohm, Ilonka K; Lankeit, Mareike; Leifheit, Maren; Loskutoff, David J; Hasenfuss, Gerd; Konstantinides, Stavros V

    2007-11-01

    Leptin enhances agonist-induced platelet aggregation, and human platelets have been reported to express the leptin receptor. However, the pathways and mediators lying downstream of leptin binding to platelets remain, with few exceptions, unknown. In the present study, we sought to gain further insight into the possible role of leptin as a platelet agonist. Stimulation of platelets with leptin promoted thromboxane generation and activation of alpha(IIb)beta(3), as demonstrated by PAC-1 binding. Furthermore, it increased the adhesion to immobilised fibrinogen (p<0.001) and induced cytoskeletal rearrangement of both platelets and Meg01 cells. Leptin time- and dose-dependently phosphorylated the intracellular signalling molecules JAK2 and STAT3, although the importance of STAT3 for leptin-induced platelet activation remains to be determined. Important intracellular mediators and pathways activated by leptin downstream of JAK2 were found to include phosphatidylinositol-3 kinase, phospholipase Cgamma2 and protein kinase C, as well as the p38 MAP kinase-phospholipase A(2) axis. Accordingly, incubation with the specific inhibitors AG490, Ly294002, U73122, and SB203580 prevented leptin-mediated platelet activation. These results help delineate biologically relevant leptin signalling pathways in platelets and may improve our understanding of the mechanisms linking hyperleptinaemia to the increased thrombosis risk in human obesity. PMID:18000612

  16. Group IVA Cytosolic Phospholipase A2 Regulates the G2-to-M Transition by Modulating the Activity of Tumor Suppressor SIRT2

    PubMed Central

    Movahedi Naini, Said; Sheridan, Alice M.; Force, Thomas; Shah, Jagesh V.

    2015-01-01

    The G2-to-M transition (or prophase) checkpoint of the cell cycle is a critical regulator of mitotic entry. SIRT2, a tumor suppressor gene, contributes to the control of this checkpoint by blocking mitotic entry under cellular stress. However, the mechanism underlying both SIRT2 activation and regulation of the G2-to-M transition remains largely unknown. Here, we report the formation of a multiprotein complex at the G2-to-M transition in vitro and in vivo. Group IVA cytosolic phospholipase A2 (cPLA2α) acts as a bridge in this complex to promote binding of SIRT2 to cyclin A-Cdk2. Cyclin A-Cdk2 then phosphorylates SIRT2 at Ser331. This phosphorylation reduces SIRT2 catalytic activity and its binding affinity to centrosomes and mitotic spindles, promoting G2-to-M transition. We show that the inhibitory effect of cPLA2α on SIRT2 activity impacts various cellular processes, including cellular levels of histone H4 acetylated at K16 (Ac-H4K16) and Ac-α-tubulin. This regulatory effect of cPLA2α on SIRT2 defines a novel function of cPLA2α independent of its phospholipase activity and may have implications for the impact of SIRT2-related effects on tumorigenesis and age-related diseases. PMID:26303530

  17. α-Synuclein-induced synapse damage in cultured neurons is mediated by cholesterol-sensitive activation of cytoplasmic phospholipase A2.

    PubMed

    Bate, Clive; Williams, Alun

    2015-01-01

    The accumulation of aggregated forms of the α-synuclein (αSN) is associated with the pathogenesis of Parkinson's disease (PD) and Dementia with Lewy Bodies. The loss of synapses is an important event in the pathogenesis of these diseases. Here we show that aggregated recombinant human αSN, but not βSN, triggered synapse damage in cultured neurons as measured by the loss of synaptic proteins. Pre-treatment with the selective cytoplasmic phospholipase A2 (cPLA2) inhibitors AACOCF3 and MAFP protected neurons against αSN-induced synapse damage. Synapse damage was associated with the αSN-induced activation of synaptic cPLA2 and the production of prostaglandin E2. The activation of cPLA2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B or Hexa-PAF) also protect neurons against αSN-induced synapse damage. αSN-induced synapse damage was also reduced in neurons pre-treated with the cholesterol synthesis inhibitor (squalestatin). These results are consistent with the hypothesis that αSN triggered synapse damage via hyperactivation of cPLA2. They also indicate that αSN-induced activation of cPLA2 is influenced by the cholesterol content of membranes. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse damage seen during PD. PMID:25761116

  18. Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A(2A) receptor with novel biological activity.

    PubMed

    Chen, Dan; Errey, James C; Heitman, Laura H; Marshall, Fiona H; Ijzerman, Adriaan P; Siegal, Gregg

    2012-12-21

    Fragment-based drug discovery (FBDD) has proven a powerful method to develop novel drugs with excellent oral bioavailability against challenging pharmaceutical targets such as protein-protein interaction targets. Very recently the underlying biophysical techniques have begun to be successfully applied to membrane proteins. Here we show that novel, ligand efficient small molecules with a variety of biological activities can be found by screening a small fragment library using thermostabilized (StaR) G protein-coupled receptors (GPCRs) and target immobilized NMR screening (TINS). Detergent-solubilized StaR adenosine A(2A) receptor was immobilized with retention of functionality, and a screen of 531 fragments was performed. Hits from the screen were thoroughly characterized for biochemical activity using the wild-type receptor. Both orthosteric and allosteric modulatory activity has been demonstrated in biochemical validation assays. Allosteric activity was confirmed in cell-based functional assays. The validated fragment hits make excellent starting points for a subsequent hit-to-lead elaboration program. PMID:23013674

  19. Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury.

    PubMed

    Liu, Nai-Kui; Zhang, Yi Ping; Han, Shu; Pei, Jiong; Xu, Lisa Y; Lu, Pei-Hua; Shields, Christopher B; Xu, Xiao-Ming

    2007-10-01

    Annexin A1 (ANXA1) has been suggested to be a mediator of the anti-inflammatory actions of glucocorticoids and more recently an endogenous neuroprotective agent. In the present study, we investigated the anti-inflammatory and neuroprotective effects of ANXA1 in a model of contusive spinal cord injury (SCI). Here we report that injections of ANXA1 (Ac 2-26) into the acutely injured spinal cord at 2 concentrations (5 and 20 microg) inhibited SCI-induced increases in phospholipase A2 and myeloperoxidase activities. In addition, ANXA1 administration reduced the expression of interleukin-1beta and activated caspase-3 at 24 hours, and glial fibrillary acidic protein at 4 weeks postinjury. Furthermore, ANXA1 administration significantly reversed phospholipase A2-induced spinal cord neuronal death in vitro and reduced tissue damage and increased white matter sparing in vivo, compared to the vehicle-treated controls. Fluorogold retrograde tracing showed that ANXA1 administration protected axons of long descending pathways at 6 weeks post-SCI. ANXA1 administration also significantly increased the number of animals that responded to transcranial magnetic motor-evoked potentials. However, no measurable behavioral improvement was found after these treatments. These results, particularly the improvements obtained in tissue sparing and electrophysiologic measures, suggest a neuroprotective effect of ANXA1. PMID:17917587

  20. Antibacterial activity of an acidic phospholipase A2 (NN-XIb-PLA2) from the venom of Naja naja (Indian cobra).

    PubMed

    Sudarshan, S; Dhananjaya, B L

    2016-01-01

    The resistance of bacteria against the use of conventional antibiotics has become a serious threat to public health and considering the associated side effect with antibiotics; new strategies to find and develop new molecules with novel modes of action has received grate attention in recent years. In this study, when the antibacterial potential of an acidic protein-NN-XIb-PLA2 (Naja naja venom phospholipase A2 fraction-XIb) of Naja naja venom was evaluated, it showed significant bactericidal action against the human pathogenic strains tested. It inhibited more effectively the gram positive bacteria like Staphylococcus aureus and Bacillus subtilis, when compared to gram negative bacteria like Escherichia coli, Vibrio cholerae, Klebsiell pneumoniae and Salmonella paratyphi. It inhibited the bacterial growth, with a MIC values ranging from 17 to 20 µg/ml. It was interesting to observe that NN-XIb-PLA2 showed comparable antibacterial activity to the used standards antibiotics. It was found that their was a strong correlation between PLA2 activities, hemolytic and antibacterial activity. Furthermore, it is found that in the presence of p-bromophenacyl bromide (p-BPB), there is a significant decrease in enzymatic activity and associated antibacterial activities, suggesting that a strong association exists between catalytic activity and antimicrobial effects, which thereby destabilize the membrane bilayer. These studies encourage further in dept study on molecular mechanisms of bactericidal properties of NN-XIb-PLA2 and thereby help in development of this protein into a possible therapeutic lead molecule for treating bacterial infections. PMID:26885465

  1. Targeting the annulus fibrosus of the intervertebral disc: Col1a2-Cre(ER)T mice show specific activity of Cre recombinase in the outer annulus fibrosus.

    PubMed

    Bedore, Jake; Quesnel, Katherine; Quinonez, Diana; Séguin, Cheryle A; Leask, Andrew

    2016-06-01

    Degeneration of the intervertebral disc (IVD) is a major underlying contributor to back pain-the single leading cause of disability worldwide. However, we possess a limited understanding of the etiology underlying IVD degeneration. To date, there are a limited number of mouse models that have been used to target proteins in specific compartments of the IVD to explore their functions in disc development, homeostasis and disease. Furthermore, the majority of reports exploring the composition and function of the outer encapsulating annulus fibrosus (AF) of the IVD have considered it as one tissue, without considering the numerous structural and functional differences existing between the inner and outer AF. In addition, no mouse models have yet been reported that enable specific targeting of genes within the outer AF. In the current report, we discuss these issues and demonstrate the localized activity of Cre recombinase in the IVD of Col1a2-Cre(ER)T;ROSA26mTmG mice possessing a tamoxifen-dependent Cre recombinase driven by a Cola2 promoter and distal enhancer and the mTmG fluorescent reporter. Following tamoxifen injection of 3-week-old Col1a2-Cre(ER)T;ROSA26mTmG mice, we show Cre activity specifically in the outer AF of the IVD, as indicated by expression of the GFP reporter. Thus, Col1a2-Cre(ER)T;ROSA26mTmG mice may prove to be a valuable tool in delineating the function of proteins in this unique compartment of the IVD, and in further exploring the compositional differences between the inner and outer AF in disc homeostasis, aging and disease. PMID:27173473

  2. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract from P. fruticosa.

    PubMed

    Thelingwani, Roslyn S; Dhansay, Kariema; Smith, Peter; Chibale, Kelly; Masimirembwa, Collen M

    2012-10-01

    1. Frutinone is an active ingredient extracted from the lipophilic fraction of the Polygala Fruticosa demonstrating various antibacterial and fungal properties. The aim of this study was to characterize its metabolism in an effort to understand metabolism based drug-herb interactions. 2. In vitro metabolic clearance and metabolite identification studies were done using cryopreserved hepatocytes. Reaction phenotyping and inhibition studies were done using human liver microsomes and recombinant cytochrome P450s (CYPs). Frutinone A-CYP1A2 interactions were rationalized using docking simulations. 3. Hepatic clearance was predicted to be low (7.17 mL/min/kg), with reaction phenotyping studies indicating no clearance by the enzymes tested. Frutinone was identified as a potent inhibitor of CYP1A2 with moderate effects on CYP2C19, 2C9, 2D6 and 3A4. CYP1A2 inhibition was reversible and characterised by an IC(50) of 0.56 µM. Inhibition was differential showing mixed (K(i) = 0.48 µM) and competitive (K(i) = 0.31 µM) inhibition with 3-cyano-7-ethoxycoumarin and ethoxyresorufin, respectively. Two binding sites, one for inhibitors and the other for substrates were identified in silico. 4. The potent CYP1A2 inhibition by Frutinone A could be predictive of the potential drug-herb interaction risk in the use of herbal extracts from P. fruticosa. The data suggest future pharmacological research on this chromocoumarin should take metabolic properties into account. PMID:22533317

  3. Peroxiredoxin 6 homodimerization and heterodimerization with glutathione S-transferase pi are required for its peroxidase but not phospholipase A2 activity.

    PubMed

    Zhou, Suiping; Sorokina, Elena M; Harper, Sandra; Li, Haitao; Ralat, Luis; Dodia, Chandra; Speicher, David W; Feinstein, Sheldon I; Fisher, Aron B

    2016-05-01

    Peroxiredoxin 6 (Prdx6) is a unique 1-Cys member of the peroxiredoxin family with both GSH peroxidase and phospholipase A2 (PLA2) activities. It is highly expressed in the lung where it plays an important role in antioxidant defense and lung surfactant metabolism. Glutathionylation of Prdx6 mediated by its heterodimerization with GSH S-transferase π (πGST) is required for its peroxidatic catalytic cycle. Recombinant human Prdx6 crystallizes as a homodimer and sedimentation equilibrium analysis confirmed that this protein exists as a high affinity dimer in solution. Based on measurement of molecular mass, dimeric Prdx6 that was oxidized to the sulfenic acid formed a sulfenylamide during storage. After examination of the dimer interface in the crystal structure, we postulated that the hydrophobic amino acids L145 and L148 play an important role in homodimerization of Prdx6 as well as in its heterodimerization with πGST. Oxidation of Prdx6 also was required for its heterodimerization. Sedimentation equilibrium analysis and the Duolink proximity ligation assay following mutation of the L145 and L148 residues of Prdx6 to Glu indicated greatly decreased dimerization propensity reflecting the loss of hydrophobic interactions between the protein monomers. Peroxidase activity was markedly reduced by mutation at either of the Leu sites and was essentially abolished by the double mutation, while PLA2 activity was unaffected. Decreased peroxidase activity following mutation of the interfacial leucines presumably is mediated via impaired heterodimerization of Prdx6 with πGST that is required for reduction and re-activation of the oxidized enzyme. PMID:26891882

  4. Both the isomerase and chaperone activities of protein disulfide isomerase are required for the reactivation of reduced and denatured acidic phospholipase A2.

    PubMed Central

    Yao, Y; Zhou, Y; Wang, C

    1997-01-01

    The spontaneous reactivation yield of acidic phospholipase A2 (APLA2), a protein containing seven disulfide bonds, after reduction and denaturation in guanidine hydrochloride is very low. Protein disulfide isomerase (PDI) markedly increases the reactivation yield and prevents the aggregation of APLA2 during refolding in a redox buffer containing GSH and GSSG. S-methylated PDI (mPDI), with no isomerase but as nearly full chaperone activity as native PDI, has no effect on either the reactivation or aggregation of APLA2. However, the simultaneous presence of PDI and mPDI in molar ratios to APLA2 of 0.1 and 0.9 respectively fully reactivates the denatured enzyme, as does PDI alone at a ratio of 1. At ratios of 0.1 and 0.15 respectively, they completely suppress APLA2 aggregation, as does PDI alone at a ratio of 0.25. Moreover, delayed addition of PDI to the refolding buffer greatly diminished the reactivation yield of APLA2, but this deteriorating effect can be alleviated markedly by the presence of mPDI in the refolding buffer. Without GSSG, mPDI prevents the aggregation of APLA2 during refolding. It is proposed that the in vitro action of PDI as a foldase consists of both isomerase and chaperone activities, and the latter activity can be fully replaced by mPDI. PMID:9034346

  5. Inactivation of the phospholipase B gene PLB5 in wild-type Candida albicans reduces cell-associated phospholipase A2 activity and attenuates virulence

    PubMed Central

    Theiss, Stephanie; Ishdorj, Ganchimeg; Brenot, Audrey; Kretschmar, Marianne; Lan, Chung-Yu; Nichterlein, Thomas; Hacker, Jörg; Nigam, Santosh; Agabian, Nina; Köhler, Gerwald A.

    2008-01-01

    Phospholipases are critical for modification and redistribution of lipid substrates, membrane remodeling and microbial virulence. Among the many different classes of phospholipases, fungal phospholipase B (Plb) proteins show the broadest range of substrate specificity and hydrolytic activity, hydrolyzing acyl ester bonds in phospholipids and lysophospholipids and further catalyzing lysophospholipase-transacylase reactions. The genome of the opportunistic fungal pathogen Candida albicans encodes a PLB multigene family with five putative members; we present the first characterization of this group of potential virulence determinants. CaPLB5, the third member of this multigene family characterized herein is a putative secretory protein with a predicted GPI-anchor attachment site. Real-time RT-PCR gene expression analysis of CaPLB5 and the additional CaPLB gene family members revealed that filamentous growth and physiologically relevant environmental conditions are associated with increased phospholipase B gene activity. The phenotypes expressed by null mutant and revertant strains of CaPLB5 indicate that this lipid hydrolase plays an important role for cell-associated phospholipase A2 activity and in vivo organ colonization. PMID:16759910

  6. Rubimetide, humanin, and MMK1 exert anxiolytic-like activities via the formyl peptide receptor 2 in mice followed by the successive activation of DP1, A2A, and GABAA receptors.

    PubMed

    Zhao, Hui; Sonada, Soushi; Yoshikawa, Akihiro; Ohinata, Kousaku; Yoshikawa, Masaaki

    2016-09-01

    Rubimetide (Met-Arg-Trp), which had been isolated as an antihypertensive peptide from an enzymatic digest of spinach ribulose-bisphosphate carboxylase/oxygenase (Rubisco), showed anxiolytic-like activity prostaglandin (PG) D2-dependent manner in the elevated plus-maze test after administration at a dose of 0.1mg/kg (ip.) or 1mg/kg (p.o.) in male mice of ddY strain. In this study, we found that rubimetide has weak affinities for the FPR1 and FPR2, subtypes of formyl peptide receptor (FPR). The anxiolytic-like activity of rubimetide (0.1mg/kg, ip.) was blocked by WRW4, an antagonist of FPR2, but not by Boc-FLFLF, an antagonist of FPR1, suggesting that the anxiolytic-like activity was mediated by the FPR2. Humanin, an endogenous agonist peptide of the FPR2, exerted an anxiolytic-like activity after intracerebroventricular (icv) administration, which was also blocked by WRW4. MMK1, a synthetic agonist peptide of the FPR2, also exerted anxiolytic-like activity. Thus, FPR2 proved to mediate anxiolytic-like effect as the first example of central effect exerted by FPR agonists. As well as the anxiolytic-like activity of rubimetide, that of MMK1 was blocked by BW A868C, an antagonist of the DP1-receptor. Furthermore, anxiolytic-like activity of rubimetide was blocked by SCH58251 and bicuculline, antagonists for adenosine A2A and GABAA receptors, respectively. From these results, it is concluded that the anxiolytic-like activities of rubimetide and typical agonist peptides of the FPR2 were mediated successively by the PGD2-DP1 receptor, adenosine-A2A receptor, and GABA-GABAA receptor systems downstream of the FPR2. PMID:27475912

  7. Comparative ability of various PCBs, PCDFs, and TCDD to induce cytochrome P450 1A1 and 1A2 activity following 4 weeks of treatment (short communication)

    SciTech Connect

    De Vito, M.J.; Maier, W.E.; Diliberto, J.J.; Birnbaum, L.S.

    1993-01-01

    The toxic equivalency factors (TEF) have been proposed for dibenzo-p-dioxins, dibenzofurans and polychlorinated biphenyls (PCBs). The proposed TEFs, which are presently being evaluated in the authors' laboratory are currently used to estimate the potential health risk associated with exposure to complex mixtures containing these chemicals. Hepatic cytochrome P-450 1A1 and 1A2 activities were determined for all chemicals tested and compared to those from TCDD treated mice. These initial studies indicate that the interim TEFs for the dibenzofurans adequately predict the relative induction potency for these compounds. However, the TEFs proposed for the dioxin-like PCBs overestimate the potency of these compounds by factors of 10-10,000. The present study indicates that more experimental data is required before TEFs for PCBs are used in regulatory decision making.

  8. Humanized-Single Domain Antibodies (VH/VHH) that Bound Specifically to Naja kaouthia Phospholipase A2 and Neutralized the Enzymatic Activity

    PubMed Central

    Chavanayarn, Charnwit; Thanongsaksrikul, Jeeraphong; Thueng-in, Kanyarat; Bangphoomi, Kunan; Sookrung, Nitat; Chaicumpa, Wanpen

    2012-01-01

    Naja kaouthia (monocled cobra) venom contains many isoforms of secreted phospholipase A2 (sPLA2). The PLA2 exerts several pharmacologic and toxic effects in the snake bitten subject, dependent or independent on the enzymatic activity. N. kaouthia venom appeared in two protein profiles, P3 and P5, after fractionating the venom by ion exchange column chromatography. In this study, phage clones displaying humanized-camel single domain antibodies (VH/VHH) that bound specifically to the P3 and P5 were selected from a humanized-camel VH/VHH phage display library. Two phagemid transfected E. coli clones (P3-1 and P3-3) produced humanized-VHH, while another clone (P3-7) produced humanized-VH. At the optimal venom:antibody ratio, the VH/VHH purified from the E. coli homogenates neutralized PLA2 enzyme activity comparable to the horse immune serum against the N. kaouthia holo-venom. Homology modeling and molecular docking revealed that the VH/VHH covered the areas around the PLA2 catalytic groove and inserted their Complementarity Determining Regions (CDRs) into the enzymatic cleft. It is envisaged that the VH/VHH would ameliorate/abrogate the principal toxicity of the venom PLA2 (membrane phospholipid catabolism leading to cellular and subcellular membrane damage which consequently causes hemolysis, hemorrhage, and dermo-/myo-necrosis), if they were used for passive immunotherapy of the cobra bitten victim. The speculation needs further investigations. PMID:22852068

  9. Interleukin-1beta-induced type IIA secreted phospholipase A2 gene expression and extracellular activity in rat vascular endothelial cells.

    PubMed

    Schwemmer, M; Aho, H; Michel, J B

    2001-06-01

    Two phospholipase A2 (PLA2) isoforms, secretory and cytosolic, have been implicated in inflammation. Secretory type IIA PLA2 (sPLA2-IIA), which hydrolyzes fatty acids bound at the sn-2 position of glycerophospholipids, has been detected universally in a variety of mammalian tissues and cells. The expression of the sPLA2-IIA gene and its extracellular activity were shown to be regulated by different factors such as hypoxia, cytokines and phorbol esters. In the present study, we examined the effects of interleukin-1beta (IL-1beta) on the expression of the 14kDa sPLA2-IIA, determined using reverse transcription polymerase chain reaction and radiometric Escherichia coli enzyme assay in primary cultures of rat endothelial cells and in two different rat endothelial cell lines (SVAREC and RBE4). These experiments revealed that IL-1beta induces sPLA2-IIa gene expression and secretion of the enzyme in endothelial cells in a dose- and time-dependent manner. The cAMP-elevator forskolin did not augment the cytokine-induced elevation of sPLA2-IIa enzyme activity but significantly increased the IL-1beta-stimulated sPLA2-IIa mRNA contents in endothelial cells. PMID:11469536

  10. The phospholipase A2 activity of peroxiredoxin 6 promotes cancer cell death induced by tumor necrosis factor alpha in hepatocellular carcinoma.

    PubMed

    Xu, Xiao; Lu, Di; Zhuang, Runzhou; Wei, Xuyong; Xie, Haiyang; Wang, Chao; Zhu, Yangbo; Wang, Jianguo; Zhong, Cheng; Zhang, Xuanyu; Wei, Qiang; He, Zenglei; Zhou, Lin; Zheng, Shusen

    2016-09-01

    In this study, we used proteomic profiling to compare hepatocellular carcinoma (HCC) and peri-tumoral tissues to identify potential tumor markers of HCC. We identified eight differentially expressed proteins (>3-fold), including Peroxiredoxin 6 (PRDX6). PRDX6 is a bifunctional enzyme with both peroxidase and calcium-independent phospholipase A2 (iPLA2) activity. We found that peri-tumoral tissues expressed higher levels of PRDX6 mRNA (n = 59, P = 0.018) and protein (n = 265, P < 0.001) than HCC tissues, and that decreased expression of PRDX6 in HCC tissues was an independent risk factor indicating a poor prognosis (n = 145, P = 0.007). Combining the examination of serum PRDX6 with α-fetoprotein improved the diagnostic sensitivity of tests for HCC compared to α-fetoprotein alone (85.0% vs 50.0%, n = 40). We found that PRDX6 induced S phase arrest in HCC cells and inhibited HCC tumorigenicity in mice injected with cancer cells. When treated with H2 O2 , PRDX6 inhibited apoptosis. When treated with tumor necrosis factor alpha (TNF-α), PRDX6 promoted apoptosis. Inhibition of iPLA2 activity of PRDX6 decreased the apoptosis induced by TNF-α. In conclusion, PRDX6 inhibited the carcinogenesis of HCC, and the iPLA2 activity of PRDX6 promoted cancer cell death induced by TNF-α. © 2015 Wiley Periodicals, Inc. PMID:26293541

  11. The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets.

    PubMed

    Uchida, Shin-ichi; Soshiroda, Kazuhiro; Okita, Eri; Kawai-Uchida, Mika; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2015-01-15

    The adenosine A2A receptor antagonist, istradefylline, enhances anti-parkinsonian activity in patients with advanced Parkinson׳s disease (PD) already treated with combinations of L-DOPA and dopamine agonist drugs but who are still exhibiting prolonged 'OFF' periods. In contrast, the effects of istradefylline on motor function when administered in combination with low dose dopamine agonist therapy in early PD are unknown. We now investigate whether istradefylline administered with a threshold dose of either the non-ergot dopamine agonist, ropinirole or the ergot dopamine agonist, pergolide enhances anti-parkinsonian activity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset. Both ropinirole (0.01-0.1mg/kg p.o.) and pergolide (0.003-0.1mg/kg p.o.) administered alone produced dose dependent increases in locomotor activity, a reduction in motor disability. Threshold doses of ropinirole (0.025-0.075mg/kg p.o.) and pergolide (0.01-0.075mg/kg p.o.) were then selected that in individual animals caused a small but non-significant anti-parkinsonian effect. Administration of istradefylline (10mg/kg p.o.) alone resulted in a decrease in motor disability and increase in 'ON' time but dyskinesia was not observed. Combined administration of pergolide or ropinirole with istradefylline resulted in an increase in the reversal of motor disability and increase in 'ON' time compared to that produced by either treatment alone but dyskinesia was still not observed. These results show that istradefylline is effective in improving motor function when combined with low dose dopamine agonist treatment. In early PD, this may avoid dose escalation or allow a reduction in dopamine agonist dosage without a loss of efficacy and prevent dopaminergic side-effects from becoming treatment limiting. PMID:25499739

  12. Disulfide-Trapping Identifies a New, Effective Chemical Probe for Activating the Nuclear Receptor Human LRH-1 (NR5A2)

    PubMed Central

    de Jesus Cortez, Felipe; Suzawa, Miyuki; Irvy, Sam; Bruning, John M.; Sablin, Elena; Jacobson, Matthew P.; Fletterick, Robert J.; Ingraham, Holly A.

    2016-01-01

    Conventional efforts relying on high-throughput physical and virtual screening of large compound libraries have failed to yield high-efficiency chemical probes for many of the 48 human nuclear receptors. Here, we investigated whether disulfide-trapping, an approach new to nuclear receptors, would provide effective lead compounds targeting human liver receptor homolog 1 (hLRH-1, NR5A2). Despite the fact that hLRH-1 contains a large ligand binding pocket and binds phospholipids with high affinity, existing synthetic hLRH-1 ligands are of limited utility due to poor solubility, low efficacy or significant off-target effects. Using disulfide-trapping, we identified a lead compound that conjugates with remarkably high-efficiency to a native cysteine residue (Cys346) lining the hydrophobic cavity in the ligand binding domain of hLRH-1. Guided by computational modeling and cellular assays, the lead compound was elaborated into ligands PME8 and PME9 that bind hLRH-1 reversibly (no cysteine reactivity) and increase hLRH-1 activity in cells. When compared with the existing hLRH-1 synthetic agonist RJW100, both PME8 and PME9 showed comparable induction of the LRH-1 dependent target gene CYP24A1 in human HepG2 cells, beginning as early as 3 h after drug treatment. The induction is specific as siRNA-mediated knock-down of hLRH-1 renders both PME8 and PME9 ineffective. These data show that PME8 and PME9 are potent activators of hLRH-1 and suggest that with further development this lead series may yield useful chemical probes for manipulating LRH-1 activity in vivo. PMID:27467220

  13. Clinical usefulness of autoantibodies to M-type phospholipase A2 receptor (PLA2R) for monitoring disease activity in idiopathic membranous nephropathy (IMN).

    PubMed

    Radice, Antonella; Trezzi, Barbara; Maggiore, Umberto; Pregnolato, Francesca; Stellato, Tiziana; Napodano, Pietro; Rolla, Davide; Pesce, Gianpaola; D'Amico, Marco; Santoro, Domenico; Londrino, Francesco; Ravera, Federica; Ortisi, Giuseppe; Sinico, Renato Alberto

    2016-02-01

    Autoantibodies to M-type phospholipase A2 receptor (PLA2R) are specific markers of idiopathic membranous nephropathy (IMN). They can differentiate IMN from other glomerular diseases and primary from secondary forms of MN. Preliminary data suggest that anti-PLA2R antibody titer correlates with disease activity but more solid evidence is needed. To evaluate the performance of anti-PLA2R antibody for monitoring nephropathy activity, 149 anti-PLA2R antibody measurements were performed during the follow-up of 42 biopsy proven IMN consecutive patients. Patients were enrolled either at time of diagnosis (33 cases, inception cohort) or after diagnosis (9 patients, non-inception cohort). Anti-PLA2R detection was performed using the highly sensitive transfected cell-based indirect immunofluorescence (IIFT). Over the follow-up there was a linear time-trend of decreasing proteinuria (P<0.001), increasing serum albumin (P<0.001) and decreasing PLA2R antibody levels (P=0.002). There was a statistically significant association between changes in PLA2R antibody levels and the clinical course of PLA2R-positive IMN. The positive PLA2R serum antibody status was linearly associated with increasing proteinuria and decreasing serum albumin over time, compared with negative antibody status. Moreover, the strong correlation between the clinical conditions and PLA2R antibody levels allowed the prediction of prevalence distribution of patients with active disease, partial and complete remission. Over the course of the follow-up, the probability of halving proteinuria increased 6.5 times after disappearance of PLA2R antibodies. Our data suggest that the serial evaluation of anti-PLA2R antibodies could help in optimal timing and duration of the immunosuppressive therapy, reducing over(under)-treatment and associated side-effects. PMID:26527329

  14. ASB14780, an Orally Active Inhibitor of Group IVA Phospholipase A2, Is a Pharmacotherapeutic Candidate for Nonalcoholic Fatty Liver Disease.

    PubMed

    Kanai, Shiho; Ishihara, Keiichi; Kawashita, Eri; Tomoo, Toshiyuki; Nagahira, Kazuhiro; Hayashi, Yasuhiro; Akiba, Satoshi

    2016-03-01

    We have previously shown that high-fat cholesterol diet (HFCD)-induced fatty liver and carbon tetrachloride (CCl4)-induced hepatic fibrosis are reduced in mice deficient in group IVA phospholipase A2 (IVA-PLA2), which plays a role in inflammation. We herein demonstrate the beneficial effects of ASB14780 (3-[1-(4-phenoxyphenyl)-3-(2-phenylethyl)-1H-indol-5-yl]propanoic acid 2-amino-2-(hydroxymethyl)propane-1,3-diol salt), an orally active IVA-PLA2 inhibitor, on the development of fatty liver and hepatic fibrosis in mice. The daily coadministration of ASB14780 markedly ameliorated liver injury and hepatic fibrosis following 6 weeks of treatment with CCl4. ASB14780 markedly attenuated the CCl4-induced expression of smooth muscle α-actin (α-SMA) protein and the mRNA expression of collagen 1a2, α-SMA, and transforming growth factor-β1 in the liver, and inhibited the expression of monocyte/macrophage markers, CD11b and monocyte chemotactic protein-1, while preventing the recruitment of monocytes/macrophages to the liver. Importantly, ASB14780 also reduced the development of fibrosis even in matured hepatic fibrosis. Additionally, ASB14780 also reduced HFCD-induced lipid deposition not only in the liver, but also in already established fatty liver. Furthermore, treatment with ASB14780 suppressed the HFCD-induced expression of lipogenic mRNAs. The present findings suggest that an IVA-PLA2 inhibitor, such as ASB14780, could be useful for the treatment of nonalcoholic fatty liver diseases, including fatty liver and hepatic fibrosis. PMID:26699145

  15. Wall stretch and thromboxane A2 activate NO synthase (eNOS) in pulmonary arterial smooth muscle cells via H2O2 and Akt-dependent phosphorylation.

    PubMed

    Kim, Hae Jin; Yoo, Hae Young; Jang, Ji Hyun; Lin, Hai Yue; Seo, Eun Yeong; Zhang, Yin Hua; Kim, Sung Joon

    2016-04-01

    Pulmonary arteries (PAs) have high compliance, buffering the wide ranges of blood flow. Here, we addressed a hypothesis that PA smooth muscle cells (PASMCs) express nitric oxide synthases (NOS) that might be activated by mechanical stress and vasoactive agonists. In the myograph study of endothelium-denuded rat PAs, NOS inhibition (L-NAME) induced strong contraction (96 % of 80 mM KCl-induced contraction (80K)) in the presence of 5 nM U46619 (thromboxane A2 (TXA2) analogue) with relatively high basal stretch (2.94 mN, S(+)). With lower basal stretch (0.98 mN, S(-)), however, L-NAME application following U46619 (TXA2/L-NAME) induced weak contraction (27 % of 80K). Inhibitors of nNOS and iNOS had no such effect in S(+) PAs. In endothelium-denuded S(+) mesenteric and renal arteries, TXA2/L-NAME-induced contraction was only 18 and 21 % of 80K, respectively. Expression of endothelial-type NOS (eNOS) in rat PASMCs was confirmed by RT-PCR and immunohistochemistry. Even in S(-) PAs, pretreatment with H2O2 (0.1-10 μM) effectively increased the sensitivity to TXA2/L-NAME (105 % of 80K). Vice versa, NADPH oxidase inhibitors, reactive oxygen species scavengers, or an Akt inhibitor (SC-66) suppressed TXA2/L-NAME-induced contraction in S(+) PAs. In a human PASMC line, immunoblot analysis showed the following: (1) eNOS expression, (2) Ser(1177) phosphorylation by U46619 and H2O2, and (3) Akt activation (Ser(473) phosphorylation) by U46619. In the cell-attached patch clamp study, H2O2 facilitated membrane stretch-activated cation channels in rat PASMCs. Taken together, the muscular eNOS in PAs can be activated by TXA2 and mechanical stress via H2O2 and Akt-mediated signaling, which may counterbalance the contractile signals from TXA2 and mechanical stimuli. PMID:26729266

  16. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53.

    PubMed

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena; Spiotto, Michael T

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  17. A High-Throughput Cell-Based Screen Identified a 2-[(E)-2-Phenylvinyl]-8-Quinolinol Core Structure That Activates p53

    PubMed Central

    Bechill, John; Zhong, Rong; Zhang, Chen; Solomaha, Elena

    2016-01-01

    p53 function is frequently inhibited in cancer either through mutations or by increased degradation via MDM2 and/or E6AP E3-ubiquitin ligases. Most agents that restore p53 expression act by binding MDM2 or E6AP to prevent p53 degradation. However, fewer compounds directly bind to and activate p53. Here, we identified compounds that shared a core structure that bound p53, caused nuclear localization of p53 and caused cell death. To identify these compounds, we developed a novel cell-based screen to redirect p53 degradation to the Skip-Cullin-F-box (SCF) ubiquitin ligase complex in cells expressing high levels of p53. In a multiplexed assay, we coupled p53 targeted degradation with Rb1 targeted degradation in order to identify compounds that prevented p53 degradation while not inhibiting degradation through the SCF complex or other proteolytic machinery. High-throughput screening identified several leads that shared a common 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that stabilized p53. Surface plasmon resonance analysis indicated that these compounds bound p53 with a KD of 200 ± 52 nM. Furthermore, these compounds increased p53 nuclear localization and transcription of the p53 target genes PUMA, BAX, p21 and FAS in cancer cells. Although p53-null cells had a 2.5±0.5-fold greater viability compared to p53 wild type cells after treatment with core compounds, loss of p53 did not completely rescue cell viability suggesting that compounds may target both p53-dependent and p53-independent pathways to inhibit cell proliferation. Thus, we present a novel, cell-based high-throughput screen to identify a 2-[(E)-2-phenylvinyl]-8-quinolinol core structure that bound to p53 and increased p53 activity in cancer cells. These compounds may serve as anti-neoplastic agents in part by targeting p53 as well as other potential pathways. PMID:27124407

  18. Association of arterial stiffness with coronary flow reserve in revascularized coronary artery disease patients

    PubMed Central

    Tritakis, Vlassis; Tzortzis, Stavros; Ikonomidis, Ignatios; Dima, Kleanthi; Pavlidis, Georgios; Trivilou, Paraskevi; Paraskevaidis, Ioannis; Katsimaglis, Giorgos; Parissis, John; Lekakis, John

    2016-01-01

    AIM: To investigate the association of arterial wave reflection with coronary flow reserve (CFR) in coronary artery disease (CAD) patients after successful revascularization. METHODS: We assessed 70 patients with angiographically documented CAD who had undergone recent successful revascularization. We measured (1) reactive hyperemia index (RHI) using fingertip peripheral arterial tonometry (RH-PAT Endo-PAT); (2) carotid to femoral pulse wave velocity (PWVc-Complior); (3) augmentation index (AIx), the diastolic area (DAI%) and diastolic reflection area (DRA) of the central aortic pulse wave (Arteriograph); (4) CFR using Doppler echocardiography; and (5) blood levels of lipoprotein-phospholipase A2 (Lp-PLA2). RESULTS: After adjustment for age, sex, blood pressure parameter, lipidemic, diabetic and smoking status, we found that coronary flow reserve was independently related to AIx (b = -0.38, r = 0.009), DAI (b = 0.36, P = 0.014), DRA (b = 0.39, P = 0.005) and RT (b = -0.29, P = 0.026). Additionally, patients with CFR < 2.5 had higher PWVc (11.6 ± 2.3 vs 10.2 ± 1.4 m/s, P = 0.019), SBPc (139.1 ± 17.8 vs 125.2 ± 19.1 mmHg, P = 0.026), AIx (38.2% ± 14.8% vs 29.4% ± 15.1%, P = 0.011) and lower RHI (1.26 ± 0.28 vs 1.50 ± 0.46, P = 0.012), DAI (44.3% ± 7.9% vs 53.9% ± 6.7%, P = 0.008), DRA (42.2 ± 9.6 vs 51.6 ± 11.4, P = 0.012) and LpPLA2 (268.1 ± 91.9 vs 199.5 ± 78.4 ng/mL, P = 0.002) compared with those with CFR ≥ 2.5. Elevated LpPLA2 was related with reduced CFR (r = -0.33, P = 0.001), RHI (r = -0.37, P < 0.001) and DRA (r = -0.35, P = 0.001) as well as increased PWVc (r = 0.34, P = 0.012) and AIx (r = 0.34, P = 0.001). CONCLUSION: Abnormal arterial wave reflections are related with impaired coronary flow reserve despite successful revascularization in CAD patients. There is a common inflammatory link between impaired aortic wall properties, endothelial dysfunction and coronary flow impairment in CAD. PMID:26981218

  19. A Comparison of Vanadate to a 2'-5' Linkage at the Active Site of a Small Ribozyme Suggests a Role for Water in Transition-State Stabilization

    SciTech Connect

    Torelli, A.T.; Krucinska, J.; Wedekind, J.E.

    2009-06-04

    The potential for water to participate in RNA catalyzed reactions has been the topic of several recent studies. Here, we report crystals of a minimal, hinged hairpin ribozyme in complex with the transition-state analog vanadate at 2.05 A resolution. Waters are present in the active site and are discussed in light of existing views of catalytic strategies employed by the hairpin ribozyme. A second structure harboring a 2',5'-phosphodiester linkage at the site of cleavage was also solved at 2.35 A resolution and corroborates the assignment of active site waters in the structure containing vanadate. A comparison of the two structures reveals that the 2',5' structure adopts a conformation that resembles the reaction intermediate in terms of (1) the positioning of its nonbridging oxygens and (2) the covalent attachment of the 2'-O nucleophile with the scissile G+1 phosphorus. The 2',5'-linked structure was then overlaid with scissile bonds of other small ribozymes including the glmS metabolite-sensing riboswitch and the hammerhead ribozyme, and suggests the potential of the 2',5' linkage to elicit a reaction-intermediate conformation without the need to form metalloenzyme complexes. The hairpin ribozyme structures presented here also suggest how water molecules bound at each of the nonbridging oxygens of G+1 may electrostatically stabilize the transition state in a manner that supplements nucleobase functional groups. Such coordination has not been reported for small ribozymes, but is consistent with the structures of protein enzymes. Overall, this work establishes significant parallels between the RNA and protein enzyme worlds.

  20. Humanized-single domain antibodies (VH/VHH) that bound specifically to Naja kaouthia phospholipase A2 and neutralized the enzymatic activity.

    PubMed

    Chavanayarn, Charnwit; Thanongsaksrikul, Jeeraphong; Thueng-In, Kanyarat; Bangphoomi, Kunan; Sookrung, Nitat; Chaicumpa, Wanpen

    2012-07-01

    Naja kaouthia (monocled cobra) venom contains many isoforms of secreted phospholipase A2 (sPLA(2)). The PLA(2) exerts several pharmacologic and toxic effects in the snake bitten subject, dependent or independent on the enzymatic activity. N. kaouthia venom appeared in two protein profiles, P3 and P5, after fractionating the venom by ion exchange column chromatography. In this study, phage clones displaying humanized-camel single domain antibodies (VH/V(H)H) that bound specifically to the P3 and P5 were selected from a humanized-camel VH/V(H)H phage display library. Two phagemid transfected E. coli clones (P3-1 and P3-3) produced humanized-V(H)H, while another clone (P3-7) produced humanized-VH. At the optimal venom:antibody ratio, the VH/V(H)H purified from the E. coli homogenates neutralized PLA(2) enzyme activity comparable to the horse immune serum against the N. kaouthia holo-venom. Homology modeling and molecular docking revealed that the VH/V(H)H covered the areas around the PLA(2) catalytic groove and inserted their Complementarity Determining Regions (CDRs) into the enzymatic cleft. It is envisaged that the VH/V(H)H would ameliorate/abrogate the principal toxicity of the venom PLA(2) (membrane phospholipid catabolism leading to cellular and subcellular membrane damage which consequently causes hemolysis, hemorrhage, and dermo-/myo-necrosis), if they were used for passive immunotherapy of the cobra bitten victim. The speculation needs further investigations. PMID:22852068

  1. Pathogenic LRRK2 mutations, through increased kinase activity, produce enlarged lysosomes with reduced degradative capacity and increase ATP13A2 expression.

    PubMed

    Henry, Anastasia G; Aghamohammadzadeh, Soheil; Samaroo, Harry; Chen, Yi; Mou, Kewa; Needle, Elie; Hirst, Warren D

    2015-11-01

    Lysosomal dysfunction plays a central role in the pathogenesis of several neurodegenerative disorders, including Parkinson's disease (PD). Several genes linked to genetic forms of PD, including leucine-rich repeat kinase 2 (LRRK2), functionally converge on the lysosomal system. While mutations in LRRK2 are commonly associated with autosomal-dominant PD, the physiological and pathological functions of this kinase remain poorly understood. Here, we demonstrate that LRRK2 regulates lysosome size, number and function in astrocytes, which endogenously express high levels of LRRK2. Expression of LRRK2 G2019S, the most common pathological mutation, produces enlarged lysosomes and diminishes the lysosomal capacity of these cells. Enlarged lysosomes appears to be a common phenotype associated with pathogenic LRRK2 mutations, as we also observed this effect in cells expressing other LRRK2 mutations; R1441C or Y1699C. The lysosomal defects associated with these mutations are dependent on both the catalytic activity of the kinase and autophosphorylation of LRRK2 at serine 1292. Further, we demonstrate that blocking LRRK2's kinase activity, with the potent and selective inhibitor PF-06447475, rescues the observed defects in lysosomal morphology and function. The present study also establishes that G2019S mutation leads to a reduction in lysosomal pH and increased expression of the lysosomal ATPase ATP13A2, a gene linked to a parkinsonian syndrome (Kufor-Rakeb syndrome), in brain samples from mouse and human LRRK2 G2019S carriers. Together, these results demonstrate that PD-associated LRRK2 mutations perturb lysosome function in a kinase-dependent manner, highlighting the therapeutic promise of LRRK2 kinase inhibitors in the treatment of PD. PMID:26251043

  2. Synthesis, structural study and biological activity of new derivatives of chrysin containing a 2-mercaptopyridyl or 5-(trifluoromethyl)-2-mercaptopyridyl fragments

    NASA Astrophysics Data System (ADS)

    Valdez-Calderón, Alejandro; González-Montiel, Simplicio; Martínez-Otero, Diego; Martínez-Torres, Ataulfo; Vásquez-Pérez, José Manuel; Molina-Vera, Carlos; Torres-Valencia, J. Martín; Alvarado-Rodríguez, José G.; Cruz-Borbolla, Julian

    2016-04-01

    New derivatives of chrysin containing 2-mercaptopyridine (2a-2e) or 5-(trifluoromethyl)-2-mercaptopyridine (3a-3e) moieties were prepared from the reaction between bromides (1a-1e) and 2-mercaptopyridine or 5-(trifluoromethyl)-2-mercaptopyridine, respectively. Their structures were elucidated by NMR, IR and elemental analysis. The molecular structure of compounds 1a, 1c-1e, 2b-2e and 3a was determined by single-crystal X-ray diffraction studies. All rings in these structures are nearly coplanar and they showed an intramolecular hydrogen bond between the phenolic hydroxyl H atom and the carbonyl O atom that forms a six membered ring. The crystal packing also showed a wide variety of intermolecular contacts such as C-H⋯A, π-π, C-H⋯π and lone pair⋯π interactions which were supported by quantum theory of atoms in molecules (QTAIM), Hirshfeld surface, and fingerprint plot analyses. Biological activity of all compounds was tested in growth assays of the nematode Caenorhabiditis elegans. Compounds 2e, 3b and 3c inhibited larval development.

  3. Nonstructural Proteins 7 and 8 of Feline Coronavirus Form a 2:1 Heterotrimer That Exhibits Primer-Independent RNA Polymerase Activity

    PubMed Central

    Xiao, Yibei; Ma, Qingjun; Restle, Tobias; Shang, Weifeng; Svergun, Dmitri I.; Ponnusamy, Rajesh; Sczakiel, Georg

    2012-01-01

    Nonstructural proteins 7 and 8 of severe acute respiratory syndrome coronavirus (SARS-CoV) have previously been shown by X-ray crystallography to form an 8:8 hexadecamer. In addition, it has been demonstrated that N-terminally His6-tagged SARS-CoV Nsp8 is a primase able to synthesize RNA oligonucleotides with a length of up to 6 nucleotides. We present here the 2.6-Å crystal structure of the feline coronavirus (FCoV) Nsp7:Nsp8 complex, which is a 2:1 heterotrimer containing two copies of the α-helical Nsp7 with conformational differences between them, and one copy of Nsp8 that consists of an α/β domain and a long-α-helix domain. The same stoichiometry is found for the Nsp7:Nsp8 complex in solution, as demonstrated by chemical cross-linking, size exclusion chromatography, and small-angle X-ray scattering. Furthermore, we show that FCoV Nsp8, like its SARS-CoV counterpart, is able to synthesize short oligoribonucleotides of up to 6 nucleotides in length when carrying an N-terminal His6 tag. Remarkably, the same protein harboring the sequence GPLG instead of the His6 tag at its N terminus exhibits a substantially increased, primer-independent RNA polymerase activity. Upon addition of Nsp7, the RNA polymerase activity is further enhanced so that RNA up to template length (67 nucleotides) can be synthesized. Further, we show that the unprocessed intermediate polyprotein Nsp7-10 of human coronavirus (HCoV) 229E is also capable of synthesizing oligoribonucleotides up to a chain length of six. These results indicate that in case of FCoV as well as of HCoV 229E, the formation of a hexadecameric Nsp7:Nsp8 complex is not necessary for RNA polymerase activity. Further, the FCoV Nsp7:Nsp8 complex functions as a noncanonical RNA polymerase capable of synthesizing RNA of up to template length. PMID:22318142

  4. 26 CFR 1.367(a)-2T - Exception for transfers of property for use in the active conduct of a trade or business...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., regardless of the level of activities carried on by the corporation. The following activities are not... giving rise to expenses that would be deductible only under section 212 if the activities were carried...

  5. Identification and characterization of a phospholipase A2 from the venom of the Saw-scaled viper: Novel bactericidal and membrane damaging activities.

    PubMed

    Perumal Samy, Ramar; Gopalakrishnakone, P; Bow, Ho; Puspharaj, Peter N; Chow, Vincent T K

    2010-12-01

    Phospholipase A(2) (PLA(2)), a common toxic component of snake venom, has been implicated in various pharmacological effects. In this study, a basic myotoxic PLA(2), named EcTx-I was isolated from Echis carinatus snake venom by using gel filtration on Superdex G-75, and reverse phase HPLC on C18 and C8 Sepharose columns. PLA(2), EcTx-I was 13,861.72 molecular weight as estimated by MALDI-TOF (15 kD by SDS-PAGE), and consisted of 121 amino acid residues cross-linked by seven disulfide bonds. The N-terminal sequences revealed significant homology with basic myotoxic PLA(2)s from other snake venoms. The purified PLA(2) EcTx-I was evaluated (250 μg/ml) for bactericidal activity of a wide variety of human pathogens against Burkholderia pseudomallei (KHW&TES), Enterobacter aerogenes, Escherichia coli, Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa and Staphylococcus aureus. EcTx-I showed strong antibacterial activity against B. pseudomallei (KHW) and E. aerogenes among the tested bacteria. Other Gram-negative and Gram-positive bacteria showed only a moderate effect. However, the Gram-positive bacterium E. aerogenes failed to show any effect on EcTx-I protein at tested doses. The most significant bacteriostatic and bactericidal effect of EcTx-I was observed at MICs of >15 μg/ml against (B. pseudomallei, KHW) and MICs >30 μg/ml against E. aerogenes. Mechanisms of bactericidal and membrane damaging effects were proved by ultra-structural analysis. EcTx-I was able to induce cytotoxicity on THP-1 cells in vitro as well as lethality in BALB/c mice. EcTx-I also induced mild myotoxic effects on mouse skin, but was devoid of hemolytic effects on human erythrocytes up to 500 μg/ml. It is shown that the toxic effect induced by E. carinatus venom is due to the presence of myotoxic PLA(2) (EcTx-I). The result also corroborates the hypothesis of an association between toxic and enzymatic domains. In conclusion, EcTx-I displays a heparin binding C-terminal region

  6. HsfA2 Controls the Activity of Developmentally and Stress-Regulated Heat Stress Protection Mechanisms in Tomato Male Reproductive Tissues1[OPEN

    PubMed Central

    Simm, Stefan; Paupière, Marine Josephine; Theres, Klaus; Bovy, Arnaud; Schleiff, Enrico; Scharf, Klaus-Dieter

    2016-01-01

    Male reproductive tissues are more sensitive to heat stress (HS) compared to vegetative tissues, but the basis of this phenomenon is poorly understood. Heat stress transcription factors (Hsfs) regulate the transcriptional changes required for protection from HS. In tomato (Solanum lycopersicum), HsfA2 acts as coactivator of HsfA1a and is one of the major Hsfs accumulating in response to elevated temperatures. The contribution of HsfA2 in heat stress response (HSR) and thermotolerance was investigated in different tissues of transgenic tomato plants with suppressed HsfA2 levels (A2AS). Global transcriptome analysis and immunodetection of two major Hsps in vegetative and reproductive tissues showed that HsfA2 regulates subsets of HS-induced genes in a tissue-specific manner. Accumulation of HsfA2 by a moderate HS treatment enhances the capacity of seedlings to cope with a subsequent severe HS, suggesting an important role for HsfA2 in regulating acquired thermotolerance. In pollen, HsfA2 is an important coactivator of HsfA1a during HSR. HsfA2 suppression reduces the viability and germination rate of pollen that received the stress during the stages of meiosis and microspore formation but had no effect on more advanced stages. In general, pollen meiocytes and microspores are characterized by increased susceptibility to HS due to their lower capacity to induce a strong HSR. This sensitivity is partially mitigated by the developmentally regulated expression of HsfA2 and several HS-responsive genes mediated by HsfA1a under nonstress conditions. Thereby, HsfA2 is an important factor for the priming process that sustains pollen thermotolerance during microsporogenesis. PMID:26917685

  7. Activation of the adenosine A2A receptor exacerbates experimental autoimmune neuritis in Lewis rats in association with enhanced humoral immunity.

    PubMed

    Zhang, Min; Li, Xiao-Li; Li, Heng; Wang, Shan; Wang, Cong-Cong; Yue, Long-Tao; Xu, Hua; Zhang, Peng; Chen, Hui; Yang, Bing; Duan, Rui-Sheng

    2016-04-15

    Accumulated evidence demonstrated that Adenosine A2A receptor (A2AR) is involved in the inflammatory diseases. In the present study, we showed that a selective A2AR agonist, CGS21680, exacerbated experimental autoimmune neuritis in Lewis rats induced with bovine peripheral myelin. The exacerbation was accompanied with reduced CD4(+)Foxp3(+) T cells, increased CD4(+)CXCR5(+) T cells, B cells, dendritic cells and antigen-specific autoantibodies, which is possibly due to the inhibition of IL-2 induced by CGS21680. Combined with previous studies, our data indicate that the effects of A2AR stimulation in vivo are variable in different diseases. Caution should be taken in the use of A2AR agonists. PMID:27049573

  8. Structure-activity relationship studies on 1-heteroaryl-3-phenoxypropan-2-ones acting as inhibitors of cytosolic phospholipase A2α and fatty acid amide hydrolase: replacement of the activated ketone group by other serine traps.

    PubMed

    Sundermann, Tom; Hanekamp, Walburga; Lehr, Matthias

    2016-08-01

    Cytosolic phospholipase A2α (cPLA2α) and fatty acid amide hydrolase (FAAH) are serine hydrolases. cPLA2α is involved in the generation of pro-inflammatory lipid mediators, FAAH terminates the anti-inflammatory effects of endocannabinoids. Therefore, inhibitors of these enzymes may represent new drug candidates for the treatment of inflammation. We have reported that certain 1-heteroarylpropan-2-ones are potent inhibitors of cPLA2α and FAAH. The serine reactive ketone group of these compounds, which is crucial for enzyme inhibition, is readily metabolized resulting in inactive alcohol derivatives. In order to obtain metabolically more stable inhibitors, we replaced this moiety by α-ketoheterocyle, cyanamide and nitrile serine traps. Investigations on activity and metabolic stability of these substances revealed that in all cases an increased metabolic stability was accompanied by a loss of inhibitory potency against cPLA2α and FAAH, respectively. PMID:26153239

  9. The stimulation by transmitter substances and putative transmitter substances of the net activity of phospholipase A2 of synaptic membranes of cortex of guinea-pig brain.

    PubMed Central

    Gullis, R J; Rowe, C E

    1975-01-01

    1. The distribution of the hydrolyses of phosphatidylcholine by phospholipase A2 and phospholipase A1, and the hydrolysis of lysophosphatidylcholine by lysophospholipase, in subcellular and subsynaptosomal fractions of cerebral cortices of guinea-pig brain, was determined. 2. Noradrenaline stimulated hydrolysis by phospholipase A2 in whole synaptosomes, synaptic membranes and fractions containing synaptic vesicles. 3. Stimulation of hydrolysis by phospholipase A2 in synaptic membranes by noradrenaline was enhanced by CaCl2, and by a mixture of ATP and MgCl2. The optimum concentration of CaCl2, in the presence of ATP and MgCl2, for stimulation by 10 muM-noradrenaline was in the range 1-10muM. The optimum concentration for ATP-2MgCl2 in the presence of 1 muM-CaCl2 was in the range 0.1-1mM. 4. Hydrolysis by phospholipase A2 of synaptic membranes was also stimulated by acetylcholine, carbamoylcholine, 5-hydroxytryptamine, dopamine (3,4-dihydroxyphenethylamine), histamine, psi-aminobutyric acid, glutamic acid and aspartic acid. With appropriate concentrations of cofactors, sigmoidal dose-response curves were obtained, half-maximum stimulations being obtained with concentrations of stimulant in the range 0.1-1muM. 5. Taurine also stimulated hydrolysis of phosphatidylcholine by phospholipase A2. There were only slight stimulations with methylamine, ethylenediamine or spermidine. No stimulation was obtained with glucagon. PMID:239707

  10. 26 CFR 1.367(a)-2T - Exception for transfers of property for use in the active conduct of a trade or business...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME... diversification into a new trade or business, future expansion of trade or business activities, future...

  11. 26 CFR 1.367(a)-2T - Exception for transfers of property for use in the active conduct of a trade or business...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME... diversification into a new trade or business, future expansion of trade or business activities, future...

  12. Cooperative interactions between PBX, PREP, and HOX proteins modulate the activity of the alpha 2(V) collagen (COL5A2) promoter.

    PubMed

    Penkov, D; Tanaka, S; Di Rocco, G; Berthelsen, J; Blasi, F; Ramirez, F

    2000-06-01

    Cell type-specific expression of the human alpha2(V) collagen (COL5A2) gene depends on a cis-acting element that consists of two contiguous protein binding sites (FPA and FPB) located between nucleotides -149 and -95, relative to the transcription start site. The present study focused on the characterization of the FPB-bound complex. DNA binding assays and cell transfection experiments revealed that the bipartite core sequence of FPB (5'-ATCAATCA-3') binds the PBX1/2, PREP1, and HOXB1 proteins, and this in turn leads to promoter transactivation. In the presence of all three nuclear factors, cooperative interactions between recombinant PBX1 and PREP1 or PBX1 and HOXB1 result in binding of the heterodimers to FPB in vitro. Similarly, overexpression of different combinations of PBX1, PREP1, and HOXB1 transactivates FPB-driven transcription. In contrast to the composition of the FPB complex purified from COL5A2-positive cells, the FPB complex from COL5A2-negative cells contains PBX2 and PREP1 but lacks PBX1. However, PBX1 exogenously introduced into COL5A2-negative cells cannot stimulate FPB-driven transcription unless co-expressed with PREP1. Within the intrinsic limitations of the experimental model, our results indicate that combinatorial interactions among PBX and PREP or HOX proteins are involved in regulating tissue-specific production of collagen V. PMID:10748126

  13. Asp-49 is not an absolute prerequisite for the enzymic activity of low-M(r) phospholipases A2: purification, characterization and computer modelling of an enzymically active Ser-49 phospholipase A2, ecarpholin S, from the venom of Echis carinatus sochureki (saw-scaled viper).

    PubMed

    Polgár, J; Magnenat, E M; Peitsch, M C; Wells, T N; Clemetson, K J

    1996-11-01

    Several studies have shown that Asp-49 is the residue that controls calcium binding in, and so plays a critical role in the calcium-mediated activation of, low-M(r) group I-III phospholipases A2 (PLA2s). The present paper provides experimental evidence that Asp-49 is not an absolute prerequisite for the enzymic activity of PLA2s, and that proteins with amino acid(s) other than Asp at position 49 can exhibit significant phospholipase activity. The purification, complete amino acid sequence and characterization of ecarpholin S, a PLA2 from Echis carinatus sochureki (saw-scaled viper) venom, is described. This single-chain, 122-amino-acid, basic (pI 7.9) protein is a group II PLA2. Although Asp-49 is replaced by Ser and Tyr-28 by Phe (both of these positions being involved in the Ca(2+)-binding site of PLA2s), the lipolysis of soybean phosphatidylcholine and egg yolk in the presence of 10 mM CaCl2 was 1.5 times and 2.9 times greater respectively with ecarpholin S than with recombinant human group II PLA2. The Ca(2+)-dependencies of the enzymic activities of ecarpholin S and rPLA2 were found to be similar. Ecarpholin S added to washed platelets induced aggregation; the presence of Ca2+ was a prerequisite for this platelet-aggregating effect. Computer modelling of the Ca(2+)-binding site of Ser-49 PLA2 compared with the Asp-49 and Lys-49 forms, for which crystallographic data exist, shows that the Ca(2+)-binding site is sterically blocked by Lys-49 but not by Ser-49; in the latter, the Ser hydroxy group may replace the Asp carboxylate in stabilization of Ca2+ binding. Sequence comparisons of ecarpholin S and other low-M(r) PLA2s predicts the presence of a Ser-49 group in the protein family of low-M(r) PLA2s that is distinct from the Asp-49 and Lys-49 groups. PMID:8921006

  14. Regulation of activator protein-1 by 8-iso-prostaglandin E2 in a thromboxane A2 receptor-dependent and -independent manner

    SciTech Connect

    Weber, Thomas J.; Markillie, Lye MENG.

    2003-05-01

    The thromboxane (TX) A{sub 2} receptor (TP) encompasses two alternatively spliced forms, termed the platelet/placental (TP-P) and endothelial (TP-E) type receptors. Experimental evidence suggests that TP activity may be modulated by novel ligands, termed the isoprostanes, that paradoxically act as TP agonists in smooth muscle and TP antagonists in platelet preparations. Here we have investigated whether prototypical isoprostanes 8-iso-prostaglandin (PG)F{sub 2{alpha}} and 8-iso-PGE{sub 2} regulate the activity of TP isoforms expressed in Chinese hamster ovary (CHO) cells using activator protein-1 (AP-1)-luciferase activity as a reporter. AP-1-luciferase activity was increased by a TP agonist [9,11-dideoxy-9{alpha},11{alpha}-methanoepoxy PGF{sub 2{alpha}} (U46619)] in CHO cells transfected with the human TP-P and TP-E receptors, and this response was fully inhibited by TP antagonists [1S-[1{alpha},2{beta}(Z),3{alpha},5{alpha}

  15. Active Site Mutations as a Suitable Tool Contributing to Explain a Mechanism of Aristolochic Acid I Nitroreduction by Cytochromes P450 1A1, 1A2 and 1B1

    PubMed Central

    Milichovský, Jan; Bárta, František; Schmeiser, Heinz H.; Arlt, Volker M.; Frei, Eva; Stiborová, Marie; Martínek, Václav

    2016-01-01

    Aristolochic acid I (AAI) is a plant drug found in Aristolochia species that causes aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is activated via nitroreduction producing genotoxic N-hydroxyaristolactam, which forms DNA adducts. The major enzymes responsible for the reductive bioactivation of AAI are NAD(P)H:quinone oxidoreductase and cytochromes P450 (CYP) 1A1 and 1A2. Using site-directed mutagenesis we investigated the possible mechanisms of CYP1A1/1A2/1B1-catalyzed AAI nitroreduction. Molecular modelling predicted that the hydroxyl groups of serine122/threonine124 (Ser122/Thr124) amino acids in the CYP1A1/1A2-AAI binary complexes located near to the nitro group of AAI, are mechanistically important as they provide the proton required for the stepwise reduction reaction. In contrast, the closely related CYP1B1 with no hydroxyl group containing residues in its active site is ineffective in catalyzing AAI nitroreduction. In order to construct an experimental model, mutant forms of CYP1A1 and 1A2 were prepared, where Ser122 and Thr124 were replaced by Ala (CYP1A1-S122A) and Val (CYP1A2-T124V), respectively. Similarly, a CYP1B1 mutant was prepared in which Ala133 was replaced by Ser (CYP1B1-A133S). Site-directed mutagenesis was performed using a quickchange approach. Wild and mutated forms of these enzymes were heterologously expressed in Escherichia coli and isolated enzymes characterized using UV-vis spectroscopy to verify correct protein folding. Their catalytic activity was confirmed with CYP1A1, 1A2 and 1B1 marker substrates. Using 32P-postlabelling we determined the efficiency of wild-type and mutant forms of CYP1A1, 1A2, and 1B1 reconstituted with NADPH:CYP oxidoreductase to bioactivate AAI to reactive intermediates forming covalent DNA adducts. The S122A and T124V mutations in CYP1A1 and 1A2, respectively, abolished the efficiency of CYP1A1 and 1A2 enzymes to generate AAI-DNA adducts. In contrast

  16. Activation of calcium-insensitive phospholipase A(2) (iPLA(2)) by P2X(7) receptors in murine peritoneal macrophages.

    PubMed

    El Ouaaliti, M; Seil, M; Dehaye, J P

    2012-12-01

    Free fatty acid releases are triggered by PLA2 activation and are substrates for many enzymes such as cyclooxygenases. These reactions are responsible for the production of many prostaglandins implicated in the inflammation yet many purinergic receptors have been implicated in diseases characterised by chronic inflammation. The role of P2X receptors was evaluated in LPS-primed murine peritoneal macrophages which were labelled with either [(3)H]-oleic acid or [(3)H]-arachidonic acid. Ten μmolar thapsigargin and 1mM ATP stimulated the release of both unsaturated acids. ATP had no effect at 10 μM and ivermectin had no effect on the response to ATP. The response to ATP was inhibited by magnesium and was not observed with cells from P2X(7)(-/-) mice. The response to ATP was not affected by the removal of extracellular calcium and was inhibited by arachidonyltrifluoromethyl ketone and bromoenol lactone but not by pyrrophenone. The release of the [(3)H]-fatty acids by ATP and thapsigargin was diminished by PD-98058, an inhibitor of MEK-1. It was concluded that in LPS-primed macrophages, P2X(7) receptors, not P2X(4) receptors, activated an iPLA(2) and promoted the release of unsaturated fatty acids secondary to the activation of a kinase. This response might contribute to the inflammation provoked by extracellular ATP. PMID:23041292

  17. A 2,5-Dihydroxybenzoic Acid–Gelatin Conjugate: The Synthesis, Antiviral Activity and Mechanism of Antiviral Action Against Two Alphaherpesviruses

    PubMed Central

    Lisov, Alexander; Vrublevskaya, Veronika; Lisova, Zoy; Leontievsky, Alexey; Morenkov, Oleg

    2015-01-01

    Various natural and synthetic polyanionic polymers with different chemical structures are known to exhibit potent antiviral activity in vitro toward a variety of enveloped viruses and may be considered as promising therapeutic agents. A water-soluble conjugate of 2,5-dihydroxybezoic acid (2,5-DHBA) with gelatin was synthesized by laccase-catalyzed oxidation of 2,5-DHBA in the presence of gelatin, and its antiviral activity against pseudorabies virus (PRV) and bovine herpesvirus type 1 (BoHV-1), two members of the Alphaherpesvirinae subfamily, was studied. The conjugate produced no direct cytotoxic effect on cells, and did not inhibit cell growth at concentrations up to 1000 µg/mL. It exhibited potent antiviral activity against PRV (IC50, 1.5–15 µg/mL for different virus strains) and BoHV-1 (IC50, 0.5–0.7 µg/mL). When present during virus adsorption, the conjugate strongly inhibited the attachment of PRV and BoHV-1 to cells. The 2,5-DHBA–gelatin conjugate had no direct virucidal effect on the viruses and did not influence their penetration into cells, cell-to-cell spread, production of infectious virus particles in cells, and expression of PRV glycoproteins E and B. The results indicated that the 2,5-DHBA–gelatin conjugate strongly inhibits the adsorption of alphaherpesviruses to cells and can be a promising synthetic polymer for the development of antiviral formulations against alphaherpesvirus infections. PMID:26501311

  18. Role of enzymatic activity in muscle damage and cytotoxicity induced by Bothrops asper Asp49 phospholipase A2 myotoxins: are there additional effector mechanisms involved?

    PubMed Central

    Mora-Obando, Diana; Díaz, Cecilia; Angulo, Yamileth; Gutiérrez, José María

    2014-01-01

    Viperid venoms often contain mixtures of Asp49 and Lys49 PLA2 myotoxin isoforms, relevant to development of myonecrosis. Given their difference in catalytic activity, mechanistic studies on each type require highly purified samples. Studies on Asp49 PLA2s have shown that enzyme inactivation using p-bromophenacyl bromide (p-BPB) drastically affects toxicity. However, based on the variable levels of residual toxicity observed in some studies, it has been suggested that effector mechanisms independent of catalysis may additionally be involved in the toxicity of these enzymes, possibly resembling those of the enzymatically inactive Lys49 myotoxins. A possibility that Lys49 isoforms could be present in Asp49 PLA2 preparations exists and, if undetected in previous studies, could explain the variable residual toxicity. This question is here addressed by using an enzyme preparation ascertained to be free of Lys49 myotoxins. In agreement with previous reports, inactivation of the catalytic activity of an Asp49 myotoxin preparation led to major inhibition of toxic effects in vitro and in vivo. The very low residual levels of myotoxicity (7%) and cytotoxicity (4%) observed can be attributed to the low, although detectable, enzyme remaining active after p-BPB treatment (2.7%), and would be difficult to reconcile with the proposed existence of additional catalytic-independent toxic mechanisms. These findings favor the concept that the effector mechanism of toxicity of Asp49 PLA2 myotoxins from viperids fundamentally relies on their ability to hydrolyze phospholipids, arguing against the proposal that membrane disruption may also be caused by additional mechanisms that are independent of catalysis. PMID:25276503

  19. Bisgma Stimulates Prostaglandin E2 Production in Macrophages via Cyclooxygenase-2, Cytosolic Phospholipase A2, and Mitogen-Activated Protein Kinases Family

    PubMed Central

    Lee, Shiuan-Shinn; Li, Yi-Ching; Chang, Yu-Chao

    2013-01-01

    Background Bisphenol A-glycidyl-methacrylate (BisGMA) employs as a monomer in dental resins. The leakage of BisGMA from composite resins into the peripheral environment can result in inflammation via macrophage activation. Prostaglandin E2 (PGE2) is a key regulator of immunopathology in inflammatory reactions. Little is known about the mechanisms of BisGMA-induced PGE2 expression in macrophage. The aim of this study was to evaluate the signal transduction pathways of BisGMA-induced PGE2 production in murine RAW264.7 macrophages. Methodology/Principal Findings Herein, we demonstrate that BisGMA can exhibit cytotoxicity to RAW264.7 macrophages in a dose- and time-dependent manner (p<0.05). In addition, PGE2 production, COX-2 expression, and cPLA2 phosphorylation were induced by BisGMA on RAW264.7 macrophages in a dose- and time-dependent manner (p<0.05). Moreover, BisGMA could induce the phosphorylation of ERK1/2 pathway (MEK1/2, ERK1/2, and Elk), p38 pathway (MEK3/6, p38, and MAPKAPK2), and JNK pathway (MEK4, JNK, and c-Jun) in a dose- and time-dependent manner (p<0.05). Pretreatment with AACOCF3, U0126, SB203580, and SP600125 significantly diminished the phosphorylation of cPLA2, ERK1/2, p38, and JNK stimulated by BisGMA, respectively (p<0.05). BisGMA-induced cytotoxicity, cPLA2 phosphorylation, PGE2 generation, and caspases activation were reduced by AACOCF3, U0126, SB203580, and SP600125, respectively (p<0.05). Conclusions These results suggest that BisGMA induced-PGE2 production may be via COX-2 expression, cPLA2 phosphorylation, and the phosphorylation of MAPK family. Cytotoxicity mediated by BisGMA may be due to caspases activation through the phosphorylation of cPLA2 and MAPKs family. PMID:24376609

  20. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli

    PubMed Central

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements. PMID:26539103

  1. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli.

    PubMed

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements. PMID:26539103

  2. Results of a 2-year randomized, controlled obesity prevention trial: Effects on diet, activity and sleep behaviors in an at-risk young adult population.

    PubMed

    Laska, Melissa N; Lytle, Leslie A; Nanney, Marilyn S; Moe, Stacey G; Linde, Jennifer A; Hannan, Peter J

    2016-08-01

    Excess weight gain tends to occur in young adulthood. However, research examining effective weight-related interventions for this age group has been limited. As one of seven trials in the EARLY Trials consortium (Early Adult Reduction of weight through LifestYle intervention), the CHOICES Study (Choosing Healthy Options in College Environments and Settings) tested effects of a technology-integrated, young adult weight gain prevention intervention. It was a randomized controlled trial with assessments at baseline (2011) and 4-, 12- and 24-months post-intervention initiation and included 441 participants (ages 18-35) who were students at three Minnesota community colleges. The 24-month intervention included a 1-credit academic course and social networking and support online intervention. This analysis examined effects on 12 secondary behavioral outcomes across three domains: diet (fast food, sugary beverages, breakfast, at-home meal preparation), physical activity/screen time (minutes and energy expenditure in leisure time physical activity, television viewing, leisure time computer use) and sleep (hours of sleep, time required to fall asleep, days not getting enough rest, difficulty staying awake). The intervention resulted in significant reductions in fast food (p=0.007) but increases in difficulty staying awake (p=0.015). There was limited evidence of other behavior changes at 4months (0.05

  3. Effect of dose and plasma concentration on liver uptake and pharmacologic activity of a 2'-methoxyethyl modified chimeric antisense oligonucleotide targeting PTEN.

    PubMed

    Geary, Richard S; Wancewicz, Ed; Matson, John; Pearce, Megan; Siwkowski, Andrew; Swayze, Eric; Bennett, Frank

    2009-08-01

    The role of dose and plasma concentration on liver tissue uptake and resulting antisense pharmacology using a chemically modified antisense oligonucleotide (ASO) targeting PTEN was assessed in mice. A single bolus s.c. dose of 60 mg/kg in mice showed a time-dependent reduction in liver PTEN mRNA that was maximal at 48-72 h and returned to near control levels by 20 days after administration. These pharmacodynamics are in good agreement with liver concentrations of ASO and are consistent with slow elimination (t(1/2)=8 days) of the PTEN ASO from Balb/C mouse liver. As expected, highest ASO concentrations in liver resulted from the s.c. slow infusion at all doses tested. Unexpectedly, the liver EC(50) for the 24-h s.c. slow infusion was approximately twofold higher than the two bolus routes of administration. Based on plasma concentration analysis it appears that 1-2 microg/mL ASO plasma concentration is a threshold that, if exceeded, results in robust antisense effects and below which there is reduced or complete loss of antisense pharmacology in liver even though bulk uptake in the organ is improved. Co-administration of a nonsense ASO competed for liver uptake, but unexpectedly increased pharmacodynamic response for the active oligonucleotide (ISIS 116847) supporting inhibition of a nonproductive bulk uptake pathway while simultaneously improving productive uptake (pharmacodynamics). This competition effect was similar whether the nonsense oligonucleotide was co-administered with ASO or administered up to 24 h prior to active ASO injection. PMID:19393225

  4. Isolation, properties and amino acid sequences of a phospholipase A2 and its homologue without activity from the venom of a sea snake, Laticauda colubrina, from the Solomon Islands.

    PubMed

    Takasaki, C; Kimura, S; Kokubun, Y; Tamiya, N

    1988-08-01

    A phospholipase A2, Laticauda colubrina phospholipase A2 II (LcPLA-II), and a phospholipase A2 homologue, Laticauda colubrina phospholipase A2 homologue I (LcPLH-I), were isolated from the venom of the yellow-lipped sea snake, Laticauda colubrina, from the Solomon Islands. LcPLA-II showed phospholipase A2 activity towards egg-yolk phosphatidylcholine (24 mumol/min per mg at optimal conditions at 37 degrees C) and lethal potency (LD50 45 micrograms/kg body wt. intravenously in mice). Both of the activities were lost by treatment with p-bromophenacyl bromide. LcPLH-I showed neither phospholipase A2 activity nor lethal potency at a dose of 4.5 mg/kg body wt. in mice. It was not modified by the treatment with p-bromophenacyl bromide. LcPLA-II and LcPLH-I bound Ca2+ at a 1:1 molar ratio with KCa values of 105 microM and 44 microM at pH 8.0 respectively. Elucidation of the amino acid sequences of these two proteins showed that each protein consisted of a single chain of 118 amino acid residues, including 14 half-cystine residues. The two sequences are different from each other at 22 residues and highly homologous to those from other sources. The essential histidine residue for the phospholipase A2 activity at position 48 is replaced by an asparagine residue in the homologue LcPLH-I. Details of the separation of the peptides obtained by proteinase digestions of LcPLA-II and LcPLA-I and the determination of their amino acid sequences are given in Supplementary Publication SUP 50145 (14 pages), which has been deposited at the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies can be obtained on the terms indicated in Biochem. J. (1988) 249, 5. PMID:3178739

  5. A participatory and capacity-building approach to healthy eating and physical activity – SCIP-school: a 2-year controlled trial

    PubMed Central

    2012-01-01

    Background Schools can be effective settings for improving eating habits and physical activity, whereas it is more difficult to prevent obesity. A key challenge is the “implementation gap”. Trade-off must be made between expert-driven programmes on the one hand and contextual relevance, flexibility, participation and capacity building on the other. The aim of the Stockholm County Implementation Programme was to improve eating habits, physical activity, self-esteem, and promote a healthy body weight in children aged 6–16 years. We describe the programme, intervention fidelity, impacts and outcomes after two years of intervention. Methods Nine out of 18 schools in a middle-class municipality in Sweden agreed to participate whereas the other nine schools served as the comparison group (quasi-experimental study). Tailored action plans were developed by school health teams on the basis of a self-assessment questionnaire called KEY assessing strengths and weaknesses of each school’s health practices and environments. Process evaluation was carried out by the research staff. Impacts at school level were assessed yearly by the KEY. Outcome measures at student level were anthropometry (measured), and health behaviours assessed by a questionnaire, at baseline and after 2 years. All children in grade 2, 4 and 7 were invited to participate (n=1359) of which 59.8% consented. The effect of the intervention on health behaviours, self-esteem, weight status and BMIsds was evaluated by unilevel and multilevel regression analysis adjusted for gender and baseline values. Results Programme fidelity was high demonstrating feasibility, but fidelity to school action plans was only 48% after two years. Positive and significant (p<.05) impacts were noted in school health practices and environments after 2 years. At student level no significant intervention effects were seen for the main outcomes. Conclusions School staff has the capacity to create their own solutions and make

  6. Role of the non-opioid dynorphin peptide des-Tyr-dynorphin (DYN-A(2-17)) in food intake and physical activity, and its interaction with orexin-A.

    PubMed

    Gac, L; Butterick, T A; Duffy, C M; Teske, J A; Perez-Leighton, C E

    2016-02-01

    Food intake and physical activity are regulated by multiple neuropeptides, including orexin and dynorphin (DYN). Orexin-A (OXA) is one of two orexin peptides with robust roles in regulation of food intake and spontaneous physical activity (SPA). DYN collectively refers to several peptides, some of which act through opioid receptors (opioid DYN) and some whose biological effects are not mediated by opioid receptors (non-opioid DYN). While opioid DYN is known to increase food intake, the effects of non-opioid DYN peptides on food intake and SPA are unknown. Neurons that co-express and release OXA and DYN are located within the lateral hypothalamus. Limited evidence suggests that OXA and opioid DYN peptides can interact to modulate some aspects of behaviors classically related to orexin peptide function. The paraventricular hypothalamic nucleus (PVN) is a brain area where OXA and DYN peptides might interact to modulate food intake and SPA. We demonstrate that injection of des-Tyr-dynorphin (DYN-A(2-17), a non opioid DYN peptide) into the PVN increases food intake and SPA in adult mice. Co-injection of DYN-A(2-17) and OXA in the PVN further increases food intake compared to DYN-A(2-17) or OXA alone. This is the first report describing the effects of non-opioid DYN-A(2-17) on food intake and SPA, and suggests that DYN-A(2-17) interacts with OXA in the PVN to modulate food intake. Our data suggest a novel function for non-opioid DYN-A(2-17) on food intake, supporting the concept that some behavioral effects of the orexin neurons result from combined actions of the orexin and DYN peptides. PMID:26654796

  7. Serum levels of osteoprotegerin and receptor activator of nuclear factor -κB ligand in children with early juvenile idiopathic arthritis: a 2-year prospective controlled study

    PubMed Central

    2010-01-01

    Background The clinical relevance of observations of serum levels of osteoprotegerin (OPG) and receptor activator of nuclear factor -κB ligand (RANKL) in juvenile idiopathic arthritis (JIA) is not clear. To elucidate the potential role of OPG and RANKL in JIA we determined serum levels of OPG and RANKL in patients with early JIA compared to healthy children, and prospectively explored changes in relation to radiographic score, bone and lean mass, severity of the disease, and treatment. Methods Ninety children with early oligoarticular or polyarticular JIA (ages 6-18 years; mean disease duration 19.4 months) and 90 healthy children individually matched for age, sex, race, and county of residence, were examined at baseline and 2-year follow-up. OPG and RANKL were quantified by enzyme-immunoassay. Data were analyzed with the use of t-tests, ANOVA, and multiple regression analyses. Results Serum OPG was significantly lower in patients than controls at baseline, and there was a trend towards higher RANKL and a lower OPG/RANKL ratio. Patients with polyarthritis had significantly higher increments in RANKL from baseline to follow-up, compared to patients with oligoarthritis. RANKL was a significant negative predictor for increments in total body lean mass. Patients who were receiving corticosteroids (CS) or disease-modifying antirheumatic drugs (DMARDs) at follow-up had higher OPG/RANKL ratio compared with patients who did not receive this medication. Conclusions The data supports that levels of OPG are lower in patients with JIA compared to healthy children, and higher levels of RANKL is associated with more serious disease. RANKL was a significant negative predictor of lean mass in patients with JIA. The OPG/RANKL ratio was higher in patients on DMARDs or CS treatment. PMID:21134287

  8. Molecular Characterization of Lys49 and Asp49 Phospholipases A2 from Snake Venom and Their Antiviral Activities against Dengue virus

    PubMed Central

    Cecilio, Alzira B.; Caldas, Sergio; De Oliveira, Raiana A.; Santos, Arthur S. B.; Richardson, Michael; Naumann, Gustavo B.; Schneider, Francisco S.; Alvarenga, Valeria G.; Estevão-Costa, Maria I.; Fuly, Andre L.; Eble, Johannes A.; Sanchez, Eladio F.

    2013-01-01

    We report the detailed molecular characterization of two PLA2s, Lys49 and Asp49 isolated from Bothrops leucurus venom, and examined their effects against Dengue virus (DENV). The Bl-PLA2s, named BlK-PLA2 and BlD-PLA2, are composed of 121 and 122 amino acids determined by automated sequencing of the native proteins and peptides produced by digestion with trypsin. They contain fourteen cysteines with pIs of 9.05 and 8.18 for BlK- and BlD-PLA2s, and show a high degree of sequence similarity to homologous snake venom PLA2s, but may display different biological effects. Molecular masses of 13,689.220 (Lys49) and 13,978.386 (Asp49) were determined by mass spectrometry. DENV causes a prevalent arboviral disease in humans, and no clinically approved antiviral therapy is currently available to treat DENV infections. The maximum non-toxic concentration of the proteins to LLC-MK2 cells determined by MTT assay was 40 µg/mL for Bl-PLA2s (pool) and 20 µg/mL for each isoform. Antiviral effects of Bl-PLA2s were assessed by quantitative Real-Time PCR. Bl-PLA2s were able to reduce DENV-1, DENV-2, and DENV-3 serotypes in LLC-MK2 cells infection. Our data provide further insight into the structural properties and their antiviral activity against DENV, opening up possibilities for biotechnological applications of these Bl-PLA2s as tools of research. PMID:24131891

  9. Juvenile exposure to a high fat diet promotes behavioral and limbic alterations in the absence of obesity.

    PubMed

    Vinuesa, Angeles; Pomilio, Carlos; Menafra, Martin; Bonaventura, Maria Marta; Garay, Laura; Mercogliano, María Florencia; Schillaci, Roxana; Lux Lantos, Victoria; Brites, Fernando; Beauquis, Juan; Saravia, Flavia

    2016-10-01

    The incidence of metabolic disorders including obesity, type 2 diabetes and metabolic syndrome have seriously increased in the last decades. These diseases - with growing impact in modern societies - constitute major risk factors for neurodegenerative disorders such as Alzheimer's disease (AD), sharing insulin resistance, inflammation and associated cognitive impairment. However, cerebral cellular and molecular pathways involved are not yet clearly understood. Thus, our aim was to study the impact of a non-severe high fat diet (HFD) that resembles western-like alimentary habits, particularly involving juvenile stages where the brain physiology and connectivity are in plain maturation. To this end, one-month-old C57BL/6J male mice were given either a control diet or HFD during 4 months. Exposure to HFD produced metabolic alterations along with changes in behavioral and central parameters, in the absence of obesity. Two-month-old HFD mice showed increased glycemia and plasmatic IL1β but these values normalized at the end of the HFD protocol at 5 months of age, probably representing an acute response that is compensated at later stages. After four months of HFD exposure, mice presented dyslipidemia, increased Lipoprotein-associated phospholipase A2 (Lp-PLA2) activity, hepatic insulin resistance and inflammation. Alterations in the behavioral profile of the HFD group were shown by the impediment in nest building behavior, deficiencies in short and mid-term spatial memories, anxious and depressive- like behavior. Regarding the latter disruptions in emotional processing, we found an increased neural activity in the amygdala, shown by a greater number of c-Fos+ nuclei. We found that hippocampal adult neurogenesis was decreased in HFD mice, showing diminished cell proliferation measured as Ki67+ cells and neuronal differentiation in SGZ by doublecortin labeling. These phenomena were accompanied by a neuroinflammatory and insulin-resistant state in the hippocampus

  10. Anticoagulant mechanism and platelet deaggregation property of a non-cytotoxic, acidic phospholipase A2 purified from Indian cobra (Naja naja) venom: inhibition of anticoagulant activity by low molecular weight heparin.

    PubMed

    Dutta, Sumita; Gogoi, Debananda; Mukherjee, Ashis K

    2015-03-01

    In the present study, anticoagulant and platelet modulating activities of an acidic phospholipase A2 (NnPLA2-I) purified from Indian cobra Naja naja venom was investigated. The NnPLA2-I displayed a mass of 15.2 kDa and 14,186.0 Da when analyzed by SDS-PAGE and MALDI-TOF-MS, respectively. Peptide mass fingerprinting analysis of the NnPLA2-I showed its significant similarity with phospholipase A2 enzymes purified from cobra venom. BLAST analysis of one tryptic peptide sequence of NnPLA2-I demonstrated putative conserved domains of the PLA2-like superfamily. The Km and Vmax values of NnPLA2-I toward hydrolysis of its most preferred substrate-phosphotidylcholine (PC)-were determined to be 0.72 mM and 29.3 μmol min(-1) mg(-1), respectively. The anticoagulant activity of NnPLA2-I was found to be higher than the anticoagulant activity of heparin/AT-III or warfarin. The histidine modifying reagent, monovalent and polyvalent antivenom differentially inhibited the catalytic and anticoagulant activities of NnPLA2-I. Low molecular weight heparin did not inhibit the catalytic and platelet deaggregation activity of NnPLA2-I, albeit its anticoagulant activity was significantly reduced. The NnPLA2-I showed a non-enzymatic, mixed inhibition of thrombin with a Ki value of 9.3 nM. Heparin significantly decreased, with an IC50 value of 15.23 mIU, the thrombin inhibitory activity of NnPLA2-I. The NnPLA2-I uniquely increased the amidolytic activity of FXa without influencing its prothrombin activating property. NnPLA2-I showed dose-dependent deaggregation of platelet rich plasma (PRP) and inhibited the collagen and thrombin-induced aggregation of PRP. However, deaggregation of washed platelets by NnPLA2-I demonstrated in presence of PC or platelet poor plasma. Alkylation of histidine residue of NnPLA2-I resulted in 95% and 21% reduction of its platelet deaggregation and platelet binding properties, respectively. NnPLA2-I did not show cytotoxicity against human glioblastoma U87MG cells

  11. Thromboxane A2 Receptor Inhibition Suppresses Multiple Myeloma Cell Proliferation by Inducing p38/c-Jun N-terminal Kinase (JNK) Mitogen-activated Protein Kinase (MAPK)-mediated G2/M Progression Delay and Cell Apoptosis.

    PubMed

    Liu, Qian; Tao, Bo; Liu, Guizhu; Chen, Guilin; Zhu, Qian; Yu, Ying; Yu, Yu; Xiong, Hong

    2016-02-26

    Multiple myeloma (MM) is a plasma cell malignancy without effective therapeutics. Thromboxane A2 (TxA2)/TxA2 receptor (T prostanoid receptor (TP)) modulates the progression of some carcinomas; however, its effects on MM cell proliferation remain unclear. In this study, we evaluated cyclooxygenase (COX) enzymes and downstream prostaglandin profiles in human myeloma cell lines RPMI-8226 and U-266 and analyzed the effects of COX-1/-2 inhibitors SC-560 and NS-398 on MM cell proliferation. Our observations implicate COX-2 as being involved in modulating cell proliferation. We further incubated MM cells with prostaglandin receptor antagonists or agonists and found that only the TP antagonist, SQ29548, suppressed MM cell proliferation. TP silencing and the TP agonist, U46619, further confirmed this finding. Moreover, SQ29548 and TP silencing promoted MM cell G2/M phase delay accompanied by reducing cyclin B1/cyclin-dependent kinase-1 (CDK1) mRNA and protein expression. Notably, cyclin B1 overexpression rescued MM cells from G2/M arrest. We also found that the TP agonist activated JNK and p38 MAPK phosphorylation, and inhibitors of JNK and p38 MAPK depressed U46619-induced proliferation and cyclin B1/CDK1 protein expression. In addition, SQ29548 and TP silencing led to the MM cell apoptotic rate increasing with improving caspase 3 activity. The knockdown of caspase 3 reversed the apoptotic rate. Taken together, our results suggest that TxA2/TP promotes MM cell proliferation by reducing cell delay at G2/M phase via elevating p38 MAPK/JNK-mediated cyclin B1/CDK1 expression and hindering cell apoptosis. The TP inhibitor has potential as a novel agent to target kinase cascades for MM therapy. PMID:26724804

  12. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration

    PubMed Central

    Koszałka, Patrycja; Gołuńska, Monika; Urban, Aleksandra; Stasiłojć, Grzegorz; Stanisławowski, Marcin; Majewski, Marceli; Składanowski, Andrzej C.; Bigda, Jacek

    2016-01-01

    CD73 (ecto-5'-nucleotidase), a cell surface enzyme hydrolyzing AMP to adenosine, was lately demonstrated to play a direct role in tumor progression including regulation of tumor vascularization. It was also shown to stimulate tumor macrophage infiltration. Interstitial adenosine, accumulating in solid tumors due to CD73 enzymatic activity, is recognized as a main mediator regulating the production of pro- and anti-angiogenic factors, but the engagement of specific adenosine receptors in tumor progression in vivo is still poorly researched. We have analyzed the role of high affinity adenosine receptors A1, A2A, and A3 in B16F10 melanoma progression using specific agonists (CCPA, CGS-21680 and IB-MECA, respectively). We limited endogenous extracellular adenosine background using CD73 knockout mice treated with CD73 chemical inhibitor, AOPCP (adenosine α,β-methylene 5’-diphosphate). Activation of any adenosine receptor significantly inhibited B16F10 melanoma growth but only at its early stage. At 14th day of growth, the decrease in tumor neovascularization and MAPK pathway activation induced by CD73 depletion was reversed by all agonists. Activation of A1AR primarily increased angiogenic activation measured by expression of VEGF-R2 on tumor blood vessels. However, mainly A3AR activation increased both the microvessel density and expression of pro-angiogenic factors. All agonists induced significant increase in macrophage tumor infiltration, with IB-MECA being most effective. This effect was accompanied by substantial changes in cytokines regulating macrophage polarization between pro-inflammatory and pro-angiogenic phenotype. Our results demonstrate an evidence that each of the analyzed receptors has a specific role in the stimulation of tumor angiogenesis and confirm significantly more multifaceted role of adenosine in its regulation than was already observed. They also reveal previously unexplored consequences to extracellular adenosine signaling depletion in

  13. 7 CFR 15a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Definitions. 15a.2 Section 15a.2 Agriculture Office of the Secretary of Agriculture EDUCATION PROGRAMS OR ACTIVITIES RECEIVING OR BENEFITTING FROM FEDERAL FINANCIAL ASSISTANCE Introduction § 15a.2 Definitions. As used in this part, the term: (a) Title IX means title IX of the Education Amendments...

  14. The Cytotoxic and Pro-Apoptotic Activities of the Novel Fluoropyrimidine F10 Towards Prostate Cancer Cells are Enhanced by Zn2+-Chelation and Inhibiting the Serine Protease Omi/HtrA2

    PubMed Central

    Gmeiner, William H.; Boyacioglu, Olcay; Stuart, Christopher H.; Jennings-Gee, Jamie; Balaji, K.C.

    2014-01-01

    BACKGROUND Intracellular Zn2+ levels decrease during prostate cancer progression and agents that modulate intracellular Zn2+ are cytotoxic to prostate cancer cells by an incompletely described mechanism. F10 is a new polymeric fluoropyrimidine drug-candidate that displays strong activity with minimal systemic toxicity in pre-clinical models of prostate cancer and other malignancies. The effects of exogenous Zn2+ or Zn2+ chelation for enhancing F10 cytotoxicity are investigated as is the role of Omi/HtrA2, a serine protease that promotes apoptosis in response to cellular stress. METHODS To test the hypothesis that the pro-apoptotic effects of F10 could be enhanced by modulating intracellular Zn2+ we investigated cell-permeable and cell-impermeable Zn2+ chelators and exogenous Zn2+ and evaluated cell viability and apoptosis in cellular models of castration-resistant prostate cancer (CRPC; PC3, C4-2). The role of Omi/HtrA2 for modulating apoptosis was evaluated by pharmacological inhibition and Western blotting. RESULTS Exogenous Zn2+ initially reduced prostate cancer cell viability but these effects were transitory and were ineffective at enhancing F10 cytotoxicity. The cell-permeable Zn2+-chelator tetrakis-(2-pyridylmethl)ethylenediamine (TPEN) induced apoptosis in prostate cancer cells and enhanced the pro-apoptotic effects of F10. The pro-apoptotic effects of Zn2+-chelation in combination with F10 treatment were enhanced by inhibiting Omi/HtrA2 implicating this serine protease as a novel target for prostate cancer treatment. CONCLUSIONS Zn2+-chelation enhances the pro-apoptotic effects of F10 and may be useful for enhancing the effectiveness of F10 for treatment of advanced prostate cancer. The serine protease Omi/HtrA2 modulates Zn2+-dependent apoptosis in prostate cancer cells and represents a new target for treatment of CRPC. PMID:25408502

  15. An Asp49 Phospholipase A2 from Snake Venom Induces Cyclooxygenase-2 Expression and Prostaglandin E2 Production via Activation of NF-κB, p38MAPK, and PKC in Macrophages

    PubMed Central

    Lomonte, Bruno; Vinolo, Marco Aurélio Ramirez; Curi, Rui; Gutiérrez, José María; Teixeira, Catarina

    2014-01-01

    Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins. PMID:24808633

  16. Endogenous 5-HT2C Receptors Phosphorylate the cAMP Response Element Binding Protein via Protein Kinase C-Promoted Activation of Extracellular-Regulated Kinases-1/2 in Hypothalamic mHypoA-2/10 Cells.

    PubMed

    Lauffer, Lisa; Glas, Evi; Gudermann, Thomas; Breit, Andreas

    2016-07-01

    Serotonin 5-HT2C receptors (5-HT2CR) activate Gq proteins and are expressed in the central nervous system (CNS). 5-HT2CR regulate emotion, feeding, reward, or cognition and may serve as promising drug targets to treat psychiatric disorders or obesity. Owing to technical difficulties in isolating cells from the CNS and the lack of suitable cell lines endogenously expressing 5-HT2CR, our knowledge about this receptor subtype in native environments is rather limited. The hypothalamic mHypoA-2/10 cell line was recently established and resembles appetite-regulating hypothalamic neurons of the paraventricular nucleus (PVN), where 5-HT2CR have been detected in vivo. Therefore, we tested mHypoA-2/10 cells for endogenous 5-HT2CR expression. Serotonin or the 5-HT2CR preferential agonist WAY-161,503 initiated cAMP response element (CRE)-dependent gene transcription with EC50 values of 15.5 ± 9.8 and 1.1 ± 0.9 nM, respectively. Both responses were blocked by two unrelated 5-HT2CR-selective antagonists (SB-242,084, RS-102,221) but not by a 5-HT2AR (EMD-281,014) or 5-HT2BR (RS-127,455) antagonists. By single-cell calcium imaging, we found that serotonin and WAY-161,503 induced robust calcium transients, which were also blunted by both 5-HT2CR antagonists. Additionally we revealed, first, that 5-HT2CR induced CRE activation via protein kinase C (PKC)-mediated engagement of extracellular-regulated kinases-1/2 and, second, that intrinsic activity of WAY-161,503 was in the range of 0.3-0.5 compared with serotonin, defining the frequently used 5-HT2CR agonist as a partial agonist of endogenous 5-HT2CR. In conclusion, we have shown that hypothalamic mHypoA-2/10 cells endogenously express 5-HT2CR and thus are the first cell line in which to analyze 5-HT2CR pharmacology, signaling, and regulation in its natural environment. PMID:27189964

  17. Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6 (b2a2) mRNA.

    PubMed

    Kuwabara, T; Warashina, M; Tanabe, T; Tani, K; Asano, S; Taira, K

    1997-08-01

    With the eventual goal of developing a treatment for chronic myelogenous leukemia (CML), attempts have been made to design hammerhead ribozymes that can specifically cleave BCR-ABL fusion mRNA. In the case of L6 BCR-ABL fusion mRNA (b2a2 type; BCR exon 2 is fused to ABL exon 2), which has no effective cleavage sites for conventional hammerhead ribozymes near the BCR-ABL junction, it has proved very difficult to cleave the chimeric mRNA specifically. Several hammerhead ribozymes with relatively long junction-recognition sequences have poor substrate-specificity. Therefore, we explored the possibility of using newly selected DNA enzymes that can cleave RNA molecules with high activity to cleave L6 BCR-ABL fusion (b2a2) mRNA. In contrast to the results with the conventional ribozymes, the newly designed DNA enzymes, having higher flexibility for selection of cleavage sites, were able to cleave this chimeric RNA molecule specifically at sites close to the junction. Cleavage occurred only within the abnormal BCR-ABL mRNA, without any cleavage of the normal ABL or BCR mRNA. Thus, these chemically synthesized DNA enzymes seem to be potentially useful for application in vivo , especially for the treatment of CML, if we can develop exogenous delivery strategies. PMID:9224607

  18. Potentiation of sulfonylurea action by an EPAC-selective cAMP analog in INS-1 cells: comparison of tolbutamide and gliclazide and a potential role for EPAC activation of a 2-APB-sensitive Ca2+ influx.

    PubMed

    Jarrard, Rachel E; Wang, Yuchen; Salyer, Amy E; Pratt, Evan P S; Soderling, Ian M; Guerra, Marcy L; Lange, Allison M; Broderick, Hilary J; Hockerman, Gregory H

    2013-01-01

    Tolbutamide and gliclazide block the K(ATP) channel K(ir)6.2/Sur1, causing membrane depolarization and stimulating insulin secretion in pancreatic beta cells. We examined the ability of the EPAC-selective cAMP analog 8-pCPT-2'-O-Me-cAMP-AM to potentiate the action of these drugs and the mechanism that might account for it. Insulin secretion stimulated by both 200 μM tolbutamide and 20 μM gliclazide, concentrations that had equivalent effects on membrane potential, was inhibited by thapsigargin (1 μM) or the L-type Ca(2+) channel blocker nicardipine (2 μM) and was potentiated by 8-pCPT-2'-O-Me-cAMP-AM at concentrations ≥2 μM in INS-1 cells. Ca(2+) transients stimulated by either tolbutamide or gliclazide were inhibited by thapsigargin or nicardipine and were significantly potentiated by 8-pCPT-2'-O-Me-cAMP-AM at 5 μM but not 1 μM. Both tolbutamide and gliclazide stimulated phospholipase C activity; however, only gliclazide did so independently of its activity at K(ATP) channels, and this activity was partially inhibited by pertussis toxin. 8-pCPT-2'-O-Me-cAMP-AM alone (5 μM) did not stimulate insulin secretion, but did increase intracellular Ca(2+) concentration significantly, and this activity was inhibited by 25 μM 2-aminoethoxydiphenylborate (2-APB) or the removal of extracellular Ca(2+). 8-pCPT-2'-O-Me-cAMP-AM potentiation of insulin secretion stimulated by tolbutamide was markedly inhibited by 2-APB (25 μM) and enhanced by the PKC inhibitor bisindolylmaleimide I (1 μM). Our data demonstrate that the actions of both tolbutamide and gliclazide are strongly potentiated by 8-pCPT-2'-O-Me-cAMP-AM, that gliclazide can stimulate phospholipase C activity via a partially pertussis toxin-sensitive mechanism, and that 8-pCPT-2'-O-Me-cAMP-AM potentiation of tolbutamide action may involve activation of a 2-APB-sensitive Ca(2+) influx. PMID:23071106

  19. Ectopically expressed pro-group X secretory phospholipase A2 is proteolytically activated in mouse adrenal cells by furin-like proprotein convertases: implications for the regulation of adrenal steroidogenesis.

    PubMed

    Layne, Joseph D; Shridas, Preetha; Webb, Nancy R

    2015-03-20

    Group X secretory phospholipase A2 (GX sPLA2) hydrolyzes mammalian cell membranes, liberating free fatty acids and lysophospholipids. GX sPLA2 is produced as a pro-enzyme (pro-GX sPLA2) that contains an N-terminal 11-amino acid propeptide ending in a dibasic motif, suggesting cleavage by a furin-like proprotein convertase (PC). Although propeptide cleavage is clearly required for enzymatic activity, the protease(s) responsible for pro-GX sPLA2 activation have not been identified. We previously reported that GX sPLA2 negatively regulates adrenal glucocorticoid production, likely by suppressing liver X receptor-mediated activation of steroidogenic acute regulatory protein expression. In this study, using a FLAG epitope-tagged pro-GX sPLA2 expression construct (FLAG-pro-GX sPLA2), we determined that adrenocorticotropic hormone (ACTH) enhanced FLAG-pro-GX sPLA2 processing and phospholipase activity secreted by Y1 adrenal cells. ACTH increased the expression of furin and PCSK6, but not other members of the PC family, in Y1 cells. Overexpression of furin and PCSK6 in HEK 293 cells significantly enhanced FLAG-pro-GX sPLA2 processing, whereas siRNA-mediated knockdown of both PCs almost completely abolished FLAG-pro-GX sPLA2 processing in Y1 cells. Expression of either furin or PCSK6 enhanced the ability of GX sPLA2 to suppress liver X receptor reporter activity. The PC inhibitor decanoyl-Arg-Val-Lys-Arg-chloromethyl ketone significantly suppressed FLAG-pro-GX sPLA2 processing and sPLA2 activity in Y1 cells, and it significantly attenuated GX sPLA2-dependent inhibition of steroidogenic acute regulatory protein expression and progesterone production. These findings provide strong evidence that pro-GX sPLA2 is a substrate for furin and PCSK6 proteolytic processing and define a novel mechanism for regulating corticosteroid production in adrenal cells. PMID:25623068

  20. Loss of Interdependent Binding by the FoxO1 and FoxA1/A2 Forkhead Transcription Factors Culminates in Perturbation of Active Chromatin Marks and Binding of Transcriptional Regulators at Insulin-sensitive Genes.

    PubMed

    Yalley, Akua; Schill, Daniel; Hatta, Mitsutoki; Johnson, Nicole; Cirillo, Lisa Ann

    2016-04-15

    FoxO1 binds to insulin response elements located in the promoters of insulin-like growth factor-binding protein 1 (IGFBP1) and glucose-6-phosphatase (G6Pase), activating their expression. Insulin-mediated phosphorylation of FoxO1 promotes cytoplasmic translocation, inhibiting FoxO1-mediated transactivation. We have previously demonstrated that FoxO1 opens and remodels chromatin assembled from the IGFBP1 promoter via a highly conserved winged helix motif. This finding, which established FoxO1 as a "pioneer" factor, suggested a model whereby FoxO1 chromatin remodeling at regulatory targets facilitates binding and recruitment of additional regulatory factors. However, the impact of FoxO1 phosphorylation on its ability to bind chromatin and the effect of FoxO1 loss on recruitment of neighboring transcription factors at its regulatory targets in liver chromatin is unknown. In this study, we demonstrate that an amino acid substitution that mimics insulin-mediated phosphorylation of a serine in the winged helix DNA binding motif curtails FoxO1 nucleosome binding. We also demonstrate that shRNA-mediated loss of FoxO1 binding to the IGFBP1 and G6Pase promoters in HepG2 cells significantly reduces binding of RNA polymerase II and the pioneer factors FoxA1/A2. Knockdown of FoxA1 similarly reduced binding of RNA polymerase II and FoxO1. Reduction in acetylation of histone H3 Lys-27 accompanies loss of FoxO1 and FoxA1/A2 binding. Interdependent binding of FoxO1 and FoxA1/A2 possibly entails cooperative binding because FoxO1 and FoxA1/A2 facilitate one another's binding to IGFPB1 promoter DNA. These results illustrate how transcription factors can nucleate transcriptional events in chromatin in response to signaling events and suggest a model for regulation of hepatic glucose metabolism through interdependent FoxO/FoxA binding. PMID:26929406

  1. Mechanism of in vivo anticoagulant and haemolytic activity by a neutral phospholipase A(2) purified from Daboia russelii russelii venom: correlation with clinical manifestations in Russell's Viper envenomed patients.

    PubMed

    Saikia, Debashree; Majumdar, Sourav; Mukherjee, Ashis K

    2013-12-15

    A 13.0 kDa neutral phospholipase A2 (NEUPHOLIPASE) purified from venom of Daboia russelii russelii from eastern India was identified by peptide mass fingerprinting analysis. It exerted dose-dependent PLA2, anticoagulant and indirect haemolytic activities. NEUPHOLIPASE showed preferential binding followed by hydrolysis of phosphatidylserine > phosphatidylcholine > phosphatidylethanolamine. Circular dichroism analysis of NEUPHOLIPASE showed a high content of alpha helix (54.6%) followed by beta-turn (29.7%) in its secondary structure. Gas-chromatographic analysis of plasma from PLA2-treated mice suggested preferential hydrolysis of pro-coagulant phospholipid PS was the primary mechanism to account for in vivo anticoagulant effect of NEUPHOLIPASE. The NEUPHOLIPASE-treated mice blood showed a significant decrease (p < 0.01) in WBC as well as RBC counts with a corresponding decline in Hb content due to indirect damage to erythrocyte membranes by plasma phospholipids hydrolysis products rather than the direct haemolytic activity of PLA2 under study. NEUPHOLIPASE was non-lethal to BALB/c mice, however; it was detrimental to liver of treated-mice. Pathological symptoms observed in NEUPHOLIPASE-treated mice were correlated with the actual clinical manifestations in Russell's Viper envenomed patients from eastern India indicating some contribution of NEUPHOLIPASE in Russell's Viper venom induced toxicity and pathogenesis. PMID:24125661

  2. Regulation of cyclooxygenase-2 and cytosolic phospholipase A2 gene expression by lipopolysaccharide through the RNA-binding protein HuR: involvement of NADPH oxidase, reactive oxygen species and mitogen-activated protein kinases

    PubMed Central

    Lin, Wei-Ning; Lin, Chih-Chung; Cheng, Hsin-Yi; Yang, Chuen-Mao

    2011-01-01

    BACKGROUND AND PURPOSE Lipopolysaccharide (LPS)-induced expression of cyclooxygenase-2 (COX-2) and cytosolic phospholipase A2 (cPLA2) has been implicated in several respiratory diseases. HuR is known to enhance the expression of genes by binding to 3′-untranslated region (3′-UTR) of mRNA and stabilizing mRNA. However, the exact mechanisms by which HuR affects the stability of mRNA and modulates LPS-induced COX-2 and cPLA2 expression in human tracheal smooth muscle cells (HTSMCs) are not known. EXPERIMENTAL APPROACH The expression of prostaglandin E2 (PGE2) was measured by ELISA, and pro-inflammatory proteins were determined by use of a promoter assay, PCR or Western blot analysis. Overexpression of siRNAs to knock down the target components was used to manipulate the expression of HuR. Release of reactive oxygen species (ROS) was detected by fluorescence dye. The activation of signalling components was assessed by comparing phosphorylation levels, localization of protein kinases or coimmunoprecipitation assay. KEY RESULTS LPS induced COX-2 and cPLA2 expression via post-translational regulation of mRNA stabilization, which were attenuated by transfection with HuR siRNA in HTSMCs. In addition, LPS-stimulated NADPH oxidase activation and ROS generation were attenuated by the NADPH oxidase inhibitors diphenyleneiodonium chloride (DPI) and apocynin (APO). Generation of ROS induced phosphorylation of p42/p44 mitogen-activated protein kinase (MAPK), p38 MAPK and JNK1/2, which was attenuated by DPI and APO and the ROS scavenger N-acetylcysteine. CONCLUSIONS AND IMPLICATIONS These results suggested that in HTSMCs, LPS-induced COX-2 and cPLA2 expression is mediated through NADPH oxidase/ROS-dependent MAPKs associated with HuR accumulation in the cytoplasm. Activated MAPKs may regulate the nucleocytoplasmic shuttling of HuR, and thus induce the cytoplasmic accumulation of HuR. PMID:21391979

  3. Activity.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents three activities: (1) investigating succession in a schoolground; (2) investigating oak galls; and (3) making sun prints (photographs made without camera or darkroom). Each activity includes a list of materials needed and procedures used. (JN)

  4. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities

    PubMed Central

    Kurogochi, Masaki; Mori, Masako; Osumi, Kenji; Tojino, Mami; Sugawara, Shu-ichi; Takashima, Shou; Hirose, Yuriko; Tsukimura, Wataru; Mizuno, Mamoru; Amano, Junko; Matsuda, Akio; Tomita, Masahiro; Takayanagi, Atsushi; Shoda, Shin-Ichiro; Shirai, Takashi

    2015-01-01

    Many therapeutic antibodies have been developed, and IgG antibodies have been extensively generated in various cell expression systems. IgG antibodies contain N-glycans at the constant region of the heavy chain (Fc domain), and their N-glycosylation patterns differ during various processes or among cell expression systems. The Fc N-glycan can modulate the effector functions of IgG antibodies, such as antibody-dependent cellular cytotoxicity (ADCC) and complement dependent cytotoxicity (CDC). To control Fc N-glycans, we performed a rearrangement of Fc N-glycans from a heterogeneous N-glycosylation pattern to homogeneous N-glycans using chemoenzymatic approaches with two types of endo-β-N-acetyl glucosaminidases (ENG’ases), one that works as a hydrolase to cleave all heterogeneous N-glycans, another that is used as a glycosynthase to generate homogeneous N-glycans. As starting materials, we used an anti-Her2 antibody produced in transgenic silkworm cocoon, which consists of non-fucosylated pauci-mannose type (Man2-3GlcNAc2), high-mannose type (Man4-9GlcNAc2), and complex type (Man3GlcNAc3-4) N-glycans. As a result of the cleavage of several ENG’ases (endoS, endoM, endoD, endoH, and endoLL), the heterogeneous glycans on antibodies were fully transformed into homogeneous-GlcNAc by a combination of endoS, endoD, and endoLL. Next, the desired N-glycans (M3; Man3GlcNAc1, G0; GlcNAc2Man3GlcNAc1, G2; Gal2GlcNAc2Man3GlcNAc1, A2; NeuAc2Gal2GlcNAc2Man3GlcNAc1) were transferred from the corresponding oxazolines to the GlcNAc residue on the intact anti-Her2 antibody with an ENG’ase mutant (endoS-D233Q), and the glycoengineered anti-Her2 antibody was obtained. The binding assay of anti-Her2 antibody with homogenous N-glycans with FcγRIIIa-V158 showed that the glycoform influenced the affinity for FcγRIIIa-V158. In addition, the ADCC assay for the glycoengineered anti-Her2 antibody (mAb-M3, mAb-G0, mAb-G2, and mAb-A2) was performed using SKBR-3 and BT-474 as target cells

  5. Activities.

    ERIC Educational Resources Information Center

    Moody, Mally

    1992-01-01

    A series of four activities are presented to enhance students' abilities to appreciate and use trigonometry as a tool in problem solving. Activities cover problems applying the law of sines, the law of cosines, and matching equivalent trigonometric expressions. A teacher's guide, worksheets, and answers are provided. (MDH)

  6. IgG4 anti-phospholipase A2 receptor might activate lectin and alternative complement pathway meanwhile in idiopathic membranous nephropathy: an inspiration from a cross-sectional study.

    PubMed

    Yang, Yang; Wang, Chao; Jin, Liping; He, Fagui; Li, Changchun; Gao, Qingman; Chen, Guanglei; He, Zhijun; Song, Minghui; Zhou, Zhuliang; Shan, Fujun; Qi, Ka; Ma, Lu

    2016-08-01

    The deposition of IgG4 of antibodies against phospholipase A2 receptor (anti-PLA2R) is predominating in the kidneys of patients with idiopathic membranous nephropathy, while its predictive value has not been determined. It was a retrospective study, and 438 patients were included. Serum samples of two time points [before intervention (baseline) and after 1.5-year treatment (endpoint)] were detected for total and IgG4 anti-PLA2R. IgG4 <0.26 RU/mL or total <20 RU/mL was considered as seronegativity. Bi-positivity/bi-negativity was defined when patients'antibodies were found positive or negative both at the baseline and endpoint. Completed remission (CR) was a major clinical outcome. A series of complement ingredients (MASP-1/2, MBL, C3a, C5a, Factor B, Ba, Bb and C5b-9) were measured in the patients of bi-positivity and bi-negativity: (1) meta-analysis based on six papers conducted seropositivity of anti-PLA2R was a useful predictor for achieving CR, but there was a high heterogeneity; (2) there was significant correlation between the baseline and decrease in IgG4 subclass and the achievement of CR; (3) bi-negativity of IgG4 has a high accuracy of predicting CR compared with total antibodies; (4) in patients of bi-positivity, those achieving CR showed lower MASP-1/2, MBL, C3a, C5a, FB, Ba and Bb than patients failing to achieve CR; (5) the titers of endpoint and decrease in Ba and Bb were associated with improvement of 24 h-UP in those of bi-positivity; and (6) the decrease in Ba was a significant factor for achieving CR in those of bi-positivity. Continuous IgG4 negativity was a useful tool to predict the achievement of CR; however, in patients of continuous IgG4 positivity, those with lower activation of lectin and alternative pathways would still more probably achieve CR. PMID:26837241

  7. Activities.

    ERIC Educational Resources Information Center

    Kincaid, Charlene; And Others

    1993-01-01

    Presents an activity in which students collect and organize data from a real-world simulation of the scientific concept of half life. Students collect data using a marble sifter, analyze the data using a graphing calculator, and determine an appropriate mathematical model. Includes reproducible worksheets. (MDH)

  8. Rare Autosomal Recessive Cardiac Valvular Form of Ehlers-Danlos Syndrome Results from Mutations in the COL1A2 Gene That Activate the Nonsense-Mediated RNA Decay Pathway

    PubMed Central

    Schwarze, Ulrike; Hata, Ryu-Ichiro; McKusick, Victor A.; Shinkai, Hiroshi; Hoyme, H. Eugene; Pyeritz, Reed E.; Byers, Peter H.

    2004-01-01

    Splice site mutations in the COL1A2 gene of type I collagen can give rise to forms of Ehlers-Danlos syndrome (EDS) because of partial or complete skipping of exon 6, as well as to mild, moderate, or lethal forms of osteogenesis imperfecta as a consequence of skipping of other exons. We identified three unrelated individuals with a rare recessively inherited form of EDS (characterized by joint hypermobility, skin hyperextensibility, and cardiac valvular defects); in two of them, COL1A2 messenger RNA (mRNA) instability results from compound heterozygosity for splice site mutations in the COL1A2 gene, and, in the third, it results from homozygosity for a nonsense codon. The splice site mutations led to use of cryptic splice donor sites, creation of a downstream premature termination codon, and extremely unstable mRNA. In the wild-type allele, the two introns (IVS11 and IVS24) in which these mutations occurred were usually spliced slowly in relation to their respective immediate upstream introns. In the mutant alleles, the upstream intron was removed, so that exon skipping could not occur. In the context of the mutation in IVS24, computer-generated folding of a short stretch of mRNA surrounding the mutation site demonstrated realignment of the relationships between the donor and acceptor sites that could facilitate use of a cryptic donor site. These findings suggest that the order of intron removal is an important variable in prediction of mutation outcome at splice sites and that folding of the nascent mRNA could be one element that contributes to determination of order of splicing. The complete absence of proα2(I) chains has the surprising effect of producing cardiac valvular disease without bone involvement. PMID:15077201

  9. Review and Assessment of the Impact on Occupational Education Resulting from the Research and Development Activities Supported by the Division of Vocational and Technical Education of Illinois, Project RDC-A2-078.

    ERIC Educational Resources Information Center

    Carvell, Fred; Draheim, Kirk

    A 4-phase study was conducted to provide an objective third-party assessment of the effectiveness of research and development (R. & D.) projects supported by the Research and Development Unit (RDU) of the Illinois Division of Vocational and Technical Education. Activities during the four phases consisted of: (1) a preliminary review to obtain…

  10. The Role of Thoracic Medial Branch Blocks in Managing Chronic Mid and Upper Back Pain: A Randomized, Double-Blind, Active-Control Trial with a 2-Year Followup

    PubMed Central

    Manchikanti, Laxmaiah; Singh, Vijay; Falco, Frank J. E.; Cash, Kimberly A.; Pampati, Vidyasagar; Fellows, Bert

    2012-01-01

    Study Design. A randomized, double-blind, active-control trial. Objective. To determine the clinical effectiveness of therapeutic thoracic facet joint nerve blocks with or without steroids in managing chronic mid back and upper back pain. Summary of Background Data. The prevalence of thoracic facet joint pain has been established as 34% to 42%. Multiple therapeutic techniques utilized in managing chronic thoracic pain of facet joint origin include medial branch blocks, radiofrequency neurotomy, and intraarticular injections. Methods. This randomized double-blind active controlled trial was performed in 100 patients with 50 patients in each group who received medial branch blocks with local anesthetic alone or local anesthetic and steroids. Outcome measures included the numeric rating scale (NRS), Oswestry Disability Index (ODI), opioid intake, and work status, at baseline, 3, 6, 12, 18, and 24 months. Results. Significant improvement with significant pain relief and functional status improvement of 50% or more were observed in 80% of the patients in Group I and 84% of the patients in Group II at 2-year followup. Conclusions. Therapeutic medial branch blocks of thoracic facets with or without steroids may provide a management option for chronic function-limiting thoracic pain of facet joint origin. PMID:22851967

  11. The A2 Experiment Program at MAMI

    NASA Astrophysics Data System (ADS)

    Briscoe, William; A2 Collaboration

    2014-09-01

    The Mainz Microtron MAMI is an accelerator for electron beams run by the Institut für Kernphysik of the Johannes Gutenberg-Universität Mainz used for hadron physics experiments. Of it's three active experimental halls, the A2 facility, which features the presence of the SLAC Crystal Ball detector, has produced a plethora of experimental results, which has contributed to the understanding of the structure of the nucleon. An overview and update of the current A2 program will be presented. The Mainz Microtron MAMI is an accelerator for electron beams run by the Institut für Kernphysik of the Johannes Gutenberg-Universität Mainz used for hadron physics experiments. Of it's three active experimental halls, the A2 facility, which features the presence of the SLAC Crystal Ball detector, has produced a plethora of experimental results, which has contributed to the understanding of the structure of the nucleon. An overview and update of the current A2 program will be presented. Funded in part by SFB 1044. US collaborators funded by USDOE and USNSF.

  12. A2E and Lipofuscin.

    PubMed

    Crouch, Rosalie K; Koutalos, Yiannis; Kono, Masahiro; Schey, Kevin; Ablonczy, Zsolt

    2015-01-01

    Lipofuscin is highly fluorescent material, formed in several tissues but best studied in the eye. The accumulation of lipofuscin in the retinal pigment epithelium (RPE) is a hallmark of aging in the eye and has been implicated in various retinal degenerations, including age-related macular degeneration. The bis-retinoid N-retinyl-N-retinylidene ethanolamine (A2E), formed from retinal, has been identified as a byproduct of the visual cycle, and numerous in vitro studies have found toxicity associated with this compound. The compound is known to accumulate in the RPE with age and was the first identified compound extracted from lipofuscin. Our studies have correlated the distribution of lipofuscin and A2E across the human and mouse RPE. Lipofuscin fluorescence was imaged in the RPE from human donors of various ages and from assorted mouse models. The spatial distribution of A2E was determined using matrix-assisted laser desorption-ionization imaging mass spectrometry on both flat-mounted and transversally sectioned RPE tissue. Our data support the clinical observations in humans of strong RPE fluorescence, increasing with age, in the central area of the RPE. However, there was no correlation between the distribution of A2E and lipofuscin, as the levels of A2E were highest in the far periphery and decreased toward the central region. Interestingly, in all the mouse models, A2E distribution and lipofuscin fluorescence correlate well. These data demonstrate that the accumulation of A2E is not responsible for the increase in lipofuscin fluorescence observed in the central RPE with aging in humans. PMID:26310170

  13. The adenosine A2A receptor antagonist, istradefylline enhances anti-parkinsonian activity induced by combined treatment with low doses of L-DOPA and dopamine agonists in MPTP-treated common marmosets.

    PubMed

    Uchida, Shin-ichi; Soshiroda, Kazuhiro; Okita, Eri; Kawai-Uchida, Mika; Mori, Akihisa; Jenner, Peter; Kanda, Tomoyuki

    2015-11-01

    The adenosine A2A receptor antagonist, istradefylline improves motor function in patients with advanced Parkinson's disease (PD) optimally treated with a combination of L-DOPA and a dopamine agonist without increasing the risk of troublesome dyskinesia. However, the effects of istradefylline on motor function when administered in combination with low dose of L-DOPA and dopamine agonists as occurs in early PD are unknown. We investigated whether istradefylline enhances the combined anti-parkinsonian effects of a suboptimal dose of L-DOPA and a threshold dose of either the non-ergot dopamine agonist, ropinirole or the ergot dopamine agonist, pergolide in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmoset. Threshold doses of ropinirole (0.025-0.075 mg/kg p.o.) and pergolide (0.01 mg/kg p.o.) produced a weak anti-parkinsonian effect. Co-administration of a suboptimal dose of L-DOPA (2.5mg/kg p.o.) with threshold doses of the dopamine agonists enhanced their anti-parkinsonian effect that led to increased 'ON' time without dyskinesia appearing. Administering istradefylline (10mg/kg p.o.) with the threshold doses of dopamine agonists and the suboptimal dose of L-DOPA in a triple combination caused a further enhancement of the anti-parkinsonian response but dyskinesia was still absent. In early PD, dopamine agonists are often used as first-line monotherapy, but efficacy is usually lost within a few years, at which time L-DOPA is added but with the risk of dyskinesia appearance. These results show that istradefylline is effective in improving motor function in combination with low dose dopaminergic drug treatment without provoking dyskinesia. PMID:26415982

  14. La cometa 2001 A2 (LINEAR)

    NASA Astrophysics Data System (ADS)

    Milani, Giannantonio; Ligustri, Rolando; Facchini, Mauro; Tirelli, Diego

    2002-05-01

    The Comet C/2001 A2 (LINEAR) was expected as a relatively faint object for early summer 2001, but in March an outburst increased its brightness by more than 5 magnitudes with the development both of a diffuse coma and of a plasma tail. A dust tail was really evident only after perihelion. The comet was observed actively by the northern hemisphere before and after the perihelion passage, while in the southern hemisphere it was an easy naked eye object around the epoch of the perihelion passage. The behaviour of the light curve is dominated by the presence of several outbursts that are also related to the partial fragmentation of the nucleus. This had a strong influence in the development end extension of the coma and the tail. A relevant jet activity, documented by several observers,was detected within the coma in July.

  15. In vitro studies on the influence of L-ascorbic acid 2-[3,4-dihydro- 2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-benzopyran-6yl-hy drogen phosphate] potassium salt on lipid peroxidation and phospholipase A2 activity.

    PubMed

    Kuribayashi, Y; Yoshida, K; Sakaue, T; Okumura, A

    1992-09-01

    The effects of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2- (4,8,12-trimethyltridecyl)-2H-1-benzopyran-6yl-hydrogen phosphate] potassium salt (EPC-K1, CAS 127061-56-7), a new compound for ischemia-reperfusion injuries, on lipid peroxidation and phospholipase A2 activity were studied in vitro using rat brain homogenates and human plasma. EPC-K1 inhibited phospholipase A2 activity in human plasma in a concentration-dependent manner (IC50 = 7.3 x 10(-4) mol/l), whereas a mixture of alpha-tocopherol and ascorbic acid did not exhibit this effect. In rat brain homogenates, EPC-K1 also inhibited lipid peroxidation in a concentration-dependent manner (IC50 = 2.3 x 10(-6) mol/l). alpha-Tocopherol was less active than EPC-K1. These properties of EPC-K1 suggest that EPC-K1 may prove useful in the treatment of ischemia-reperfusion injuries. PMID:1445471

  16. 3D-pharmacophore models for selective A2A and A2B adenosine receptor antagonists.

    PubMed

    Wei, Jing; Wang, Songqing; Gao, Shaofen; Dai, Xuedong; Gao, Qingzhi

    2007-01-01

    Three-dimensional pharmacophore models were generated for A2A and A2B adenosine receptors (ARs) based on highly selective A2A and A2B antagonists using the Catalyst program. The best pharmacophore model for selective A2A antagonists (Hypo-A2A) was obtained through a careful validation process. Four features contained in Hypo-A2A (one ring aromatic feature (R), one positively ionizable feature (P), one hydrogen bond acceptor lipid feature (L), and one hydrophobic feature (H)) seem to be essential for antagonists in terms of binding activity and A2A AR selectivity. The best pharmacophore model for selective A2B antagonists (Hypo-A2B) was elaborated by modifying the Catalyst common features (HipHop) hypotheses generated from the selective A2B antagonists training set. Hypo-A2B also consists of four features: one ring aromatic feature (R), one hydrophobic aliphatic feature (Z), and two hydrogen bond acceptor lipid features (L). All features play an important role in A2B AR binding affinity and are essential for A2B selectivity. Both A2A and A2B pharmacophore models have been validated toward a wide set of test molecules containing structurally diverse selective antagonists of all AR subtypes. They are capable of identifying correspondingly high potent antagonists and differentiating antagonists between subtypes. The results of our study will act as a valuable tool for retrieving structurally diverse compounds with desired biological activities and designing novel selective adenosine receptor ligands. PMID:17330954

  17. Annexin A2: biology and relevance to the antiphospholipid syndrome

    PubMed Central

    Cockrell, E; Espinola, RG; McCrae, KR

    2012-01-01

    Antiphospholipid antibodies (aPL), the majority of which are directed against β2-glycoprotein I (β2GPI), are associated with an increased incidence of venous and arterial thrombosis. The pathogenesis of antiphospholipid/anti-β2GPI-associated thrombosis has not been defined, and is likely multifactorial. However, accumulating evidence suggests an important role for endothelial cell activation with the acquisition of a procoagulant phenotype by the activated endothelial cell. Previous work demonstrated that endothelial activation by antiphospholipid/anti-β2GPI antibodies is β2GPI-dependent. We extended these observations by defining annexin A2 as an endothelial β2GPI binding site. We also observed that annexin A2 plays a critical role in endothelial cell activation induced by anti-β2GPI antibodies, and others have described direct endothelial activation by anti-annexin A2 antibodies in patients with aPL. Similar findings have been reported using human monocytes, which also express annexin A2. Because annexin A2 is not a transmembrane protein, how binding of β2GPI/anti-β2GPI antibodies, or anti-annexin A2 antibodies, to endothelial annexin A2 causes cellular activation is unknown. Recent studies, however, suggest an important role for the Toll-like receptor family, particularly TLR4. In this article, we review the role of these interactions in the activation of endothelial cells by aPL. The influence of these antibodies on the ability of annexin A2 to enhance t-PA-mediated plasminogen activation is also discussed. PMID:18827060

  18. Phospholipase A2 as a mechanosensor.

    PubMed Central

    Lehtonen, J Y; Kinnunen, P K

    1995-01-01

    Osmotic swelling of large unilamellar vesicles (LUVs) causes membrane stretching and thus reduces the lateral packing of lipids. This is demonstrated to modulate strongly the catalytic activity of phospholipase A2 (PLA2) toward a fluorescent phospholipid, 1-palmitoyl-2-[(6-pyren-1-yl)]decanoyl-sn-glycero-3-phosphocholine (PPDPC) residing in LUVs composed of different unsaturated and saturated phosphatidylcholines. The magnitude of the osmotic pressure gradient delta omega required for maximal PLA2 activity as well as the extent of activation depend on the degree of saturation of the membrane phospholipid acyl chains. More specifically, delta omega needed for maximal hydrolytic activity increases in the sequence DOPC < SOPC < DMPC in accordance with the increment in the intensity of chain-chain van der Waals interactions. Previous studies on the hydrolysis of substrate monolayers by C. adamanteus and N. naja PLA2 revealed maximal hydrolytic rates for these two enzymes to be achieved at lipid packing densities corresponding to surface pressures of 12 and 18 mN m-1, respectively. In keeping with the above the magnitudes of delta omega producing maximal activity of Crotalus adamanteus and Naja naja toward PPDPC/DMPC LUVs were 40 and 20 mOsm/kg, respectively. Our findings suggest a novel possibility of regulating the activity of PLA2 and perhaps also other lipid packing density-dependent enzymes in vivo by osmotic forces applied on cellular membranes. Importantly, our results reveal serendipitously that the responsiveness of membranes to osmotic stress is modulated by the acyl chain composition of the lipids. PMID:7612831

  19. Scutellarin inhibits cytochrome P450 isoenzyme 1A2 (CYP1A2) in rats.

    PubMed

    Jian, Tun-Yu; He, Jian-Chang; He, Gong-Hao; Feng, En-Fu; Li, Hong-Liang; Bai, Min; Xu, Gui-Li

    2012-08-01

    Scutellarin is the most important flavone glycoside in the herbal drug Erigeron breviscapus (Vant.) Hand.-Mazz. It is used frequently in the clinic to treat ischemic vascular diseases in China. However, the direct relationship between scutellarin and cytochrome P450 (CYP450) is unclear. The present study investigated the in vitro and in vivo effects of scutellarin on cytochrome P450 1A2 (CYP 1A2) metabolism. According to in vitro experiments, scutellarin (10-250 µM) decreased the formation of 4-acetamidophenol in a concentration-dependent manner, with an IC₅₀ value of 108.20 ± 0.657 µM. Furthermore, scutellarin exhibited a weak mixed-type inhibition against the activity of CYP1A2 in rat liver microsomes, with a K(i) value of 95.2 µM. Whereas in whole animal studies, scutellarin treatment for 7 days (at 5, 15, 30 mg/kg, i.p.) decreased the clearance (CL), and increased the T(1/2) (at 15, 30 mg/kg, i.p.), it did not affect the V(d) of phenacetin. Scutellarin treatment (at 5, 15, 30 mg/kg, i.p.) increased the AUC(0-∞) by 14.3%, 67.3% and 159.2%, respectively. Scutellarin at 30 mg/kg also weakly inhibited CYP1A2 activity, in accordance with our in vitro study. Thus, the results indicate that CYP1A2 is inhibited directly, but weakly, by scutellarin in vivo, and provide useful information on the safe and effective use of scutellarin in clinical practice. PMID:22228482

  20. Chromomycin A2 induces autophagy in melanoma cells.

    PubMed

    Guimarães, Larissa Alves; Jimenez, Paula Christine; Sousa, Thiciana da Silva; Freitas, Hozana Patrícia S; Rocha, Danilo Damasceno; Wilke, Diego Veras; Martín, Jesús; Reyes, Fernando; Deusdênia Loiola Pessoa, Otília; Costa-Lotufo, Letícia Veras

    2014-12-01

    The present study highlights the biological effects of chromomycin A2 toward metastatic melanoma cells in culture. Besides chromomycin A2, chromomycin A3 and demethylchromomycin A2 were also identified from the extract derived from Streptomyces sp., recovered from Paracuru Beach, located in the northeast region of Brazil. The cytotoxic activity of chromomycin A2 was evaluated across a panel of human tumor cell lines, which found IC50 values in the nM-range for exposures of 48 and 72 h. MALME-3M, a metastatic melanoma cell line, showed the highest sensitivity to chromomycin A2 after 48h incubation, and was chosen as a model to investigate this potent cytotoxic effect. Treatment with chromomycin A2 at 30 nM reduced cell proliferation, but had no significant effect upon cell viability. Additionally, chromomycin A2 induced accumulation of cells in G0/G1 phase of the cell cycle, with consequent reduction of S and G2/M and unbalanced expression of cyclins. Chromomycin A2 treated cells depicted several cellular fragments resembling autophagosomes and increased expression of proteins LC3-A and LC3-B. Moreover, exposure to chromomycin A2 also induced the appearance of acidic vacuolar organelles in treated cells. These features combined are suggestive of the induction of autophagy promoted by chromomycin A2, a feature not previously described for chromomycins. PMID:25486109

  1. 42 CFR 5a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Applicability. 5a.2 Section 5a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS RURAL PHYSICIAN... Public Health Service Act....

  2. 42 CFR 5a.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Applicability. 5a.2 Section 5a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS RURAL PHYSICIAN... Public Health Service Act....

  3. 42 CFR 5a.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Applicability. 5a.2 Section 5a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS RURAL PHYSICIAN... Public Health Service Act....

  4. 42 CFR 5a.2 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Applicability. 5a.2 Section 5a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS RURAL PHYSICIAN... Public Health Service Act....

  5. 42 CFR 5a.2 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Applicability. 5a.2 Section 5a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS RURAL PHYSICIAN... Public Health Service Act....

  6. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  7. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  8. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  9. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  10. 42 CFR 63a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Definitions. 63a.2 Section 63a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES FELLOWSHIPS, INTERNSHIPS, TRAINING NATIONAL INSTITUTES OF HEALTH TRAINING GRANTS § 63a.2 Definitions. As used in this part: Act means...

  11. 18 CFR 3a.2 - Authority.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Authority. 3a.2 Section 3a.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION General § 3a.2 Authority. Official information...

  12. 18 CFR 3a.2 - Authority.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Authority. 3a.2 Section 3a.2 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES NATIONAL SECURITY INFORMATION General § 3a.2 Authority. Official information...

  13. 32 CFR 352a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Applicability. 352a.2 Section 352a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE FINANCE AND ACCOUNTING SERVICE (DFAS) § 352a.2 Applicability. This part applies to the Office of the Secretary of Defense...

  14. 42 CFR 51a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Definitions. 51a.2 Section 51a.2 Public Health... CHILD HEALTH § 51a.2 Definitions. Act means the Social Security Act, as amended. Genetic diseases means.... Hemophilia means a genetically transmitted bleeding disorder resulting from a deficiency of a plasma...

  15. 7 CFR 1a.2 - Authorization.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Authorization. 1a.2 Section 1a.2 Agriculture Office of the Secretary of Agriculture LAW ENFORCEMENT AUTHORITIES § 1a.2 Authorization. Any official of the Office of Inspector General who is designated by the Inspector General according to §§ 1a.3 and 1a.5...

  16. 42 CFR 2a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Definitions. 2a.2 Section 2a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.2 Definitions. (a) Secretary means the Secretary of Health and Human Services...

  17. 42 CFR 2a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Definitions. 2a.2 Section 2a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.2 Definitions. (a) Secretary means the Secretary of Health and Human Services...

  18. 42 CFR 2a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Definitions. 2a.2 Section 2a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL PROVISIONS PROTECTION OF IDENTITY-RESEARCH SUBJECTS § 2a.2 Definitions. (a) Secretary means the Secretary of Health and Human Services...

  19. 14 CFR 374a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Applicability. 374a.2 Section 374a.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES § 374a.2 Applicability....

  20. 32 CFR 383a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Applicability. 383a.2 Section 383a.2 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) ORGANIZATIONAL CHARTERS DEFENSE COMMISSARY AGENCY (DeCA) § 383a.2 Applicability. This part applies to the Office of...

  1. 32 CFR 168a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Applicability. 168a.2 Section 168a.2 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.2 Applicability. This part applies to the Office...

  2. 32 CFR 168a.2 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Applicability. 168a.2 Section 168a.2 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.2 Applicability. This part applies to the Office...

  3. 32 CFR 168a.2 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Applicability. 168a.2 Section 168a.2 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.2 Applicability. This part applies to the Office...

  4. 32 CFR 168a.2 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Applicability. 168a.2 Section 168a.2 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.2 Applicability. This part applies to the Office...

  5. 32 CFR 168a.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Applicability. 168a.2 Section 168a.2 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DEFENSE CONTRACTING NATIONAL DEFENSE SCIENCE AND ENGINEERING GRADUATE FELLOWSHIPS § 168a.2 Applicability. This part applies to the Office...

  6. 42 CFR 59a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Definitions. 59a.2 Section 59a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Grants for Establishing, Expanding, and Improving Basic Resources § 59a.2 Definitions. Undefined...

  7. 42 CFR 59a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Definitions. 59a.2 Section 59a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Grants for Establishing, Expanding, and Improving Basic Resources § 59a.2 Definitions. Undefined...

  8. 42 CFR 59a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Definitions. 59a.2 Section 59a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Grants for Establishing, Expanding, and Improving Basic Resources § 59a.2 Definitions. Undefined...

  9. 42 CFR 59a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Definitions. 59a.2 Section 59a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Grants for Establishing, Expanding, and Improving Basic Resources § 59a.2 Definitions. Undefined...

  10. 42 CFR 59a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Definitions. 59a.2 Section 59a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL LIBRARY OF MEDICINE GRANTS Grants for Establishing, Expanding, and Improving Basic Resources § 59a.2 Definitions. Undefined...

  11. 14 CFR 374a.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Applicability. 374a.2 Section 374a.2 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS EXTENSION OF CREDIT BY AIRLINES TO FEDERAL POLITICAL CANDIDATES § 374a.2 Applicability....

  12. The effect of the CYP1A2 *1F mutation on CYP1A2 inducibility in pregnant women

    PubMed Central

    Nordmark, Anna; Lundgren, Stefan; Ask, Birgitta; Granath, Fredrik; Rane, Anders

    2002-01-01

    Aims To investigate the influence of the CYP1A2*1F mutation on CYP1A2 activity in smoking and nonsmoking pregnant women. Methods Pregnant women (n = 904) who served as control subjects in a case-control study of early fetal loss were investigated. They were phenotyped for CYP1A2 using dietary caffeine and the urinary ratio AFMU + 1X + 1 U/1,7 U. An assay for CYP1A2*1F using 5′-nuclease assay (Taqman) was developed to genotype the population. Results The frequencies of *1 A and *1F alleles among Swedish women were 0.29 and 0.71, respectively. There was no statistically significant difference in CYP1A2 activity between the genotypes, although a trend towards enhanced activity was observed in *1F/*1F (log MRc 0.77) and *1F/*1 A (log MRc 0.82) genotypes compared with the *1 A/*1 A genotype (log MRc 0.71) (anovaP = 0.07). The mean difference between the *1 A homozygotes and the heterozygotes was 0.11 [95% confidence interval of the difference: (−0.21, −0.01)] and that between the *1 A and *1F homozygotes was 0.05 [95% confidence interval of the difference: (−0.13, 0.03)]. No significant effect (P = 0.22) of the *1F on CYP1A2 activity was observed in smokers, tested using an interaction term (smoking * genotype) in the anova model (*1F/*1F log MRc 0.79, *1F/*1 A log MRc 0.86, and *1 A/*1 A log MRc 0.73). In smokers, there was no difference in ratio between homozygotes for the *1 A and *1F alleles [mean difference −0.06; 95% confidence interval of the difference: −0.22, 0.11] or between *1 A/*1 A and *1 A/*1F genotypes [mean difference −0.13; 95% confidence interval of the difference: −0.29, 0.04]. Conclusions The effect of the CYP1A2*1F mutation on CYP1A2 activity in smoking pregnant women could not be confirmed. PMID:12445029

  13. 12 CFR 261a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 3 2011-01-01 2011-01-01 false Definitions. 261a.2 Section 261a.2 Banks and... citizen of the United States or an alien lawfully admitted for permanent residence. (d) Maintain includes... print, or photograph. (f) Routine use means, with respect to disclosure of a record, the use of...

  14. 42 CFR 85a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Definitions. 85a.2 Section 85a.2 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH... Health of the Centers for Disease Control and Prevention, Department of Health and Human Services....

  15. 45 CFR 12a.2 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... military requirement. (3) Properties subject to special legislation directing a particular action. (4... subject to section 202(a)(2) of the Federal Property and Administrative Service Act of 1949, as amended... HOMELESS § 12a.2 Applicability. (a) This part applies to Federal real property which has been designated...

  16. 45 CFR 12a.2 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... military requirement. (3) Properties subject to special legislation directing a particular action. (4... subject to section 202(a)(2) of the Federal Property and Administrative Service Act of 1949, as amended... HOMELESS § 12a.2 Applicability. (a) This part applies to Federal real property which has been designated...

  17. Dnmt3a2: a hub for enhancing cognitive functions.

    PubMed

    Oliveira, A M M; Hemstedt, T J; Freitag, H E; Bading, H

    2016-08-01

    The mechanisms responsible for fear memory formation and extinction are far from being understood. Uncovering the molecules and mechanisms regulating these processes is vital for identifying molecular targets for the development of novel therapeutic strategies for anxiety and fear disorders. Cognitive abilities require the activation of gene expression necessary to the consolidation of lasting changes in neuronal function. In this study we established a key role for an epigenetic factor, the de novo DNA methyltransferase, Dnmt3a2, in memory formation and extinction. We found that Dnmt3a2 overexpression in the hippocampus of young adult mice induced memory enhancements in a variety of situations; it converted a weak learning experience into long-term memory, enhanced fear memory formation and facilitated fear memory extinction. Dnmt3a2 overexpression was also associated with the increased expression of plasticity-related genes. Furthermore, the knockdown of Dnmt3a2 expression impaired the animals' ability to extinguish memories, identifying Dnmt3a2 as a key player in extinction. Thus, Dnmt3a2 is at the core of memory processes and represents a novel target for cognition-enhancing therapies to ameliorate anxiety and fear disorders and boost memory consolidation. PMID:26598069

  18. Enzymatic Comparisons of Aspergillus niger PhyA and Escherichia coli AppA2 Phytases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was to compare three phytase activity assays and kinetics of Aspergillus niger PhyA and Escherichia coli AppA2 phytases expressed in Pichia pastoris at the observed stomach pH of 3.5. In Experiment 1, equivalent phytase activities in the crude preparations of PhyA and AppA2 were tested ...

  19. 42 CFR 51a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... CHILD HEALTH § 51a.2 Definitions. Act means the Social Security Act, as amended. Genetic diseases means.... Hemophilia means a genetically transmitted bleeding disorder resulting from a deficiency of a plasma...

  20. 42 CFR 51a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... CHILD HEALTH § 51a.2 Definitions. Act means the Social Security Act, as amended. Genetic diseases means.... Hemophilia means a genetically transmitted bleeding disorder resulting from a deficiency of a plasma...

  1. 42 CFR 51a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... CHILD HEALTH § 51a.2 Definitions. Act means the Social Security Act, as amended. Genetic diseases means.... Hemophilia means a genetically transmitted bleeding disorder resulting from a deficiency of a plasma...

  2. 42 CFR 51a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... CHILD HEALTH § 51a.2 Definitions. Act means the Social Security Act, as amended. Genetic diseases means.... Hemophilia means a genetically transmitted bleeding disorder resulting from a deficiency of a plasma...

  3. METSAT: Advanced Microwave Sounding Unit-A2 (AMSU-A2) structural mathematical model

    NASA Technical Reports Server (NTRS)

    Ely, Wayne

    1995-01-01

    This plan describes the Structural Mathematical Model of the METSAT AMSU-A2 instrument. The model is used to verify the structural adequacy of the AMSU-A2 instrument for the specified loading environments.

  4. [RPE melanosomes bind A2E fluorophore of lipofuscin granules and products of its photooxidation].

    PubMed

    Sakina, N L; Koromyslova, A D; Dontsov, A E; Ostrovskiĭ, M A

    2013-05-01

    The ability of melanosomes from human, bovine and frog retinal pigment epithelium cells (RPE) to bind A2E fluorophore of RPE lipofuscin granules and products of A2E photooxidation is investigated. RPE melanosomes are found to bind A2E molecules themselves as well as the molecules formed after A2E irradiation by visible light. In our experiments single melanosome was able to bind up to 0.08 fmol A2E. Antioxidant activity of melanosomes is compared to antioxidant activity of their complexes with A2E. It is shown by luminal chemiluminescence quenching in the presence of hydrogen peroxide that in A2E/melanosomes complex the chemiluminescence quenching is not significantly reduced. Comparison of inhibitory activity of melanosomes and their complexes with A2E on UV-induced (light conditions) and Fe(2+)-ascorbate-induced (dark conditions) peroxidation of photoreceptor outer segments (POS) demonstrated that bound A2E does not affect inhibitory ability of melanosomes in both systems. Thus, binding of A2E to RPE melanosomes in concentrations from 0.01 to 0.1 fmol A2E per melanosome does not significantly alter their antioxidant properties. It is supposed that both A2E and hydrophilic products of its photooxidation could be bound by RPE melanosomes and, thus, it lost the ability to exhibit toxic properties. PMID:24459874

  5. 44 CFR Appendix A(2) to Part 61 - Appendix A(2) to Part 61

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Appendix A(2) to Part 61 A(2) Appendix A(2) to Part 61 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY, DEPARTMENT OF HOMELAND SECURITY INSURANCE AND HAZARD MITIGATION National Flood Insurance Program INSURANCE COVERAGE AND RATES Pt. 61, App....

  6. 42 CFR 52a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., psychological, prevention and treatment research and related activities on breast cancer; (d) For purposes of..., prevention and treatment methods for cancer; (c) For purposes of grants authorized by section 417 of the Act..., and related activities on prostate cancer; (e) For purposes of grants authorized by section 422 of...

  7. 42 CFR 52a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., psychological, prevention and treatment research and related activities on breast cancer; (d) For purposes of..., prevention and treatment methods for cancer; (c) For purposes of grants authorized by section 417 of the Act..., and related activities on prostate cancer; (e) For purposes of grants authorized by section 422 of...

  8. 42 CFR 52a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., psychological, prevention and treatment research and related activities on breast cancer; (d) For purposes of..., prevention and treatment methods for cancer; (c) For purposes of grants authorized by section 417 of the Act..., and related activities on prostate cancer; (e) For purposes of grants authorized by section 422 of...

  9. 42 CFR 52a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., psychological, prevention and treatment research and related activities on breast cancer; (d) For purposes of..., prevention and treatment methods for cancer; (c) For purposes of grants authorized by section 417 of the Act..., and related activities on prostate cancer; (e) For purposes of grants authorized by section 422 of...

  10. 42 CFR 52a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., psychological, prevention and treatment research and related activities on breast cancer; (d) For purposes of..., prevention and treatment methods for cancer; (c) For purposes of grants authorized by section 417 of the Act..., and related activities on prostate cancer; (e) For purposes of grants authorized by section 422 of...

  11. Annexin A2 System in Human Biology: Cell Surface and Beyond

    PubMed Central

    Luo, Min; Hajjar, Katherine A.

    2013-01-01

    Annexin A2 (A2) is a multicompartmental, multifunctional protein that orchestrates a growing spectrum of biologic processes. At the endothelial cell surface, A2 and S100A10 (p11) form a heterotetramer, which accelerates tissue plasminogen activator–dependent activation of the fibrinolytic protease, plasmin. In antiphospholipid syndrome, anti-A2 antibodies are associated with clinical thrombosis, whereas overexpression of A2 in acute promyelocytic leukemia promotes hyperfibrinolytic bleeding. A2 is upregulated in hypoxia, and mice deficient in A2 are resistant to oxygen-induced retinal neovascularization, suggesting a role for A2 in human retinal vascular proliferation. In solid malignancies, the (A2•p11)2 tetramer may promote cancer cell invasion, whereas in multiple myeloma A2 enables malignant plasmacyte growth and predicts prognosis. In the central nervous system, the p11 enables membrane insertion of serotonin receptors that govern mood. In the peripheral nervous system, p11 directs sodium channels to the plasma membrane, enabling pain perception. In cerebral cortex neurons, A2 stabilizes the microtubule-associated tau protein, which, when mutated, is associated with frontotemporal dementia. In inflammatory dendritic cells, A2 maintains late endosomal/lysosomal membrane integrity, thus modulating inflammasome activation and cytokine secretion in a model of aseptic arthritis. Together, these findings suggest an emerging, multifaceted role for A2 in human health and disease. PMID:23483454

  12. 42 CFR 2a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-RESEARCH SUBJECTS § 2a.2 Definitions. (a) Secretary means the Secretary of Health and Human Services and... subdivision or agency, business trust, partnership, association, or other legal entity. (c) Research means... includes, but is not limited to, behavioral science studies, surveys, evaluations, and...

  13. 42 CFR 2a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-RESEARCH SUBJECTS § 2a.2 Definitions. (a) Secretary means the Secretary of Health and Human Services and... subdivision or agency, business trust, partnership, association, or other legal entity. (c) Research means... includes, but is not limited to, behavioral science studies, surveys, evaluations, and...

  14. 29 CFR 1912a.2 - Membership.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) NATIONAL ADVISORY COMMITTEE ON OCCUPATIONAL SAFETY AND HEALTH § 1912a.2 Membership. The Committee is a... labor, two members will represent the occupational health professions, two members will represent...

  15. 29 CFR 1912a.2 - Membership.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) NATIONAL ADVISORY COMMITTEE ON OCCUPATIONAL SAFETY AND HEALTH § 1912a.2 Membership. The Committee is a... labor, two members will represent the occupational health professions, two members will represent...

  16. 29 CFR 4041A.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... plan year, available resources as described in section 4245(b)(3) of ERISA. Benefits subject to... Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION PLAN TERMINATIONS TERMINATION OF MULTIEMPLOYER PLANS General Provisions § 4041A.2 Definitions. The following terms are defined in § 4001.1...

  17. 29 CFR 4041A.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... plan year, available resources as described in section 4245(b)(3) of ERISA. Benefits subject to... Relating to Labor (Continued) PENSION BENEFIT GUARANTY CORPORATION PLAN TERMINATIONS TERMINATION OF MULTIEMPLOYER PLANS General Provisions § 4041A.2 Definitions. The following terms are defined in § 4001.1...

  18. 42 CFR 65a.2 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH AND TRAINING GRANTS § 65a.2 Definitions. As used in this part: Act means the Comprehensive Environmental Response... of the National Institute of Environmental Health Sciences, or the Director's delegate. HHS means...

  19. 42 CFR 65a.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH AND TRAINING GRANTS § 65a.2 Definitions. As used in this part: Act means the Comprehensive Environmental Response... of the National Institute of Environmental Health Sciences, or the Director's delegate. HHS means...

  20. 42 CFR 65a.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH AND TRAINING GRANTS § 65a.2 Definitions. As used in this part: Act means the Comprehensive Environmental Response... of the National Institute of Environmental Health Sciences, or the Director's delegate. HHS means...

  1. 42 CFR 65a.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH AND TRAINING GRANTS § 65a.2 Definitions. As used in this part: Act means the Comprehensive Environmental Response... of the National Institute of Environmental Health Sciences, or the Director's delegate. HHS means...

  2. Are events after endotoxemia related to circulating phospholipase A2?

    PubMed Central

    Santos, A A; Browning, J L; Scheltinga, M R; Lynch, E A; Brown, E F; Lawton, P; Chambers, E; Dougas, I; Benjamin, C D; Dinarello, C A

    1994-01-01

    OBJECTIVE: The authors sought to determine whether the signs and symptoms of endotoxemia were related to the endotoxin-stimulated increase in circulating phospholipase A2 (PLA2) activity. BACKGROUND: Because hypotension and pulmonary injury have been associated with elevated PLA2 activity in septic shock and PLA2 levels are reduced with the administration of glucocorticoids, the PLA2 response to endotoxin was investigated in volunteers pretreated with and without hydrocortisone. METHODS: Carefully screened human subjects were studied under four conditions: (1) saline, (2) hydrocortisone, (3) endotoxin, and (4) hydrocortisone administration before endotoxin exposure. Pulse rate, blood pressure, temperature, and symptoms of endotoxemia were serially measured. Plasma for tumor necrosis factor concentrations and PLA2 activity was obtained. RESULTS: After lipopolysaccharide, pulse rate and tumor necrosis factor concentrations rose at 1 to 2 hours; temperature increased maximally at 4 hours. PLA2 activity reached peak levels at 24 hours. With hydrocortisone pretreatment, a 50% reduction in the concentrations of tumor necrosis factor and PLA2 occurred. Significant correlations between other variables and PLA2 activity were not observed. The enzyme identified by monoclonal antibody was the secreted nonpancreatic PLA2 (SNP-PLA2). CONCLUSIONS: The results of this study suggest that elevations in circulating SNP-PLA2 activity and systemic events associated with intravenous endotoxin administration are unrelated. PMID:8129489

  3. Comparison of CYP1A2 and NAT2 Phenotypes between Black and White Smokers

    PubMed Central

    Muscat, Joshua E.; Pittman, Brian; Kleinman, Wayne; Lazarus, Philip; Stellman, Steven D.; Richie, John P.

    2008-01-01

    The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X + 1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2–0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites. PMID:18703023

  4. Comparison of CYP1A2 and NAT2 phenotypes between black and white smokers.

    PubMed

    Muscat, Joshua E; Pittman, Brian; Kleinman, Wayne; Lazarus, Philip; Stellman, Steven D; Richie, John P

    2008-10-01

    The lower incidence rate of transitional cell carcinoma of the urinary bladder in blacks than in whites may be due to racial differences in the catalytic activity of enzymes that metabolize carcinogenic arylamines in tobacco smoke. To examine this, we compared cytochrome P4501A2 (CYP1A2) and N-acetyltransferase-2 activities (NAT2) in black and white smokers using urinary caffeine metabolites as a probe for enzyme activity in a community-based study of 165 black and 183 white cigarette smokers. The paraxanthine (1,7-dimethylxanthine, 17X)/caffeine (trimethylxanthine, 137X) ratio or [17X+1,7-dimethyluric acid (17U)]/137X ratio was used as an indicator of CYP1A2 activity. The 5-acetyl-amino-6-formylamino-3-methyluracil (AFMU)/1-methylxanthine (1X) ratio indicated NAT2 activity. The odds ratio for the slow NAT2 phenotype associated with black race was 0.4; 95% confidence intervals 0.2-0.7. The putative combined low risk phenotype (slow CYP1A2/rapid NAT2) was more common in blacks than in whites (25% vs. 15%, P<0.02). There were no significant racial differences in slow and rapid CYP1A2 phenotypes, and in the combined slow NAT2/rapid CYP1A2 phenotype. Age, education, cigarette smoking amount, body mass index, GSTM1 and GSTM3 genotypes were unrelated to CYP1A2 and NAT2 activity. Intake of cruciferous vegetables (primarily broccoli), red meat, carrots, grapefruit and onions predicted CYP1A2 activity either for all subjects or in race-specific analyses. Carrot and grapefruit consumption was related to NAT2 activity. Collectively, these results indicated that phenotypic differences in NAT2 alone or in combination with CYP1A2 might help explain the higher incidence rates of transitional cell bladder cancer in whites. PMID:18703023

  5. Synaptic mechanisms of adenosine A2A receptor-mediated hyperexcitability in the hippocampus.

    PubMed

    Rombo, Diogo M; Newton, Kathryn; Nissen, Wiebke; Badurek, Sylvia; Horn, Jacqueline M; Minichiello, Liliana; Jefferys, John G R; Sebastiao, Ana M; Lamsa, Karri P

    2015-05-01

    Adenosine inhibits excitatory neurons widely in the brain through adenosine A1 receptor, but activation of adenosine A2A receptor (A2A R) has an opposite effect promoting discharge in neuronal networks. In the hippocampus A2A R expression level is low, and the receptor's effect on identified neuronal circuits is unknown. Using optogenetic afferent stimulation and whole-cell recording from identified postsynaptic neurons we show that A2A R facilitates excitatory glutamatergic Schaffer collateral synapses to CA1 pyramidal cells, but not to GABAergic inhibitory interneurons. In addition, A2A R enhances GABAergic inhibitory transmission between CA1 area interneurons leading to disinhibition of pyramidal cells. Adenosine A2A R has no direct modulatory effect on GABAergic synapses to pyramidal cells. As a result adenosine A2A R activation alters the synaptic excitation - inhibition balance in the CA1 area resulting in increased pyramidal cell discharge to glutamatergic Schaffer collateral stimulation. In line with this, we show that A2A R promotes synchronous pyramidal cell firing in hyperexcitable conditions where extracellular potassium is elevated or following high-frequency electrical stimulation. Our results revealed selective synapse- and cell type specific adenosine A2A R effects in hippocampal CA1 area. The uncovered mechanisms help our understanding of A2A R's facilitatory effect on cortical network activity. PMID:25402014

  6. Foci of cyclin A2 interact with actin and RhoA in mitosis

    PubMed Central

    Loukil, Abdelhalim; Izard, Fanny; Georgieva, Mariya; Mashayekhan, Shaereh; Blanchard, Jean-Marie; Parmeggiani, Andrea; Peter, Marion

    2016-01-01

    Cyclin A2 is a key player in the regulation of the cell cycle. Its degradation in mid-mitosis depends primarily on the ubiquitin-proteasome system (UPS), while autophagy also contributes. However, a fraction of cyclin A2 persists beyond metaphase. In this work, we focus on cyclin A2-rich foci detected in mitosis by high resolution imaging and analyse their movements. We demonstrate that cyclin A2 interacts with actin and RhoA during mitosis, and that cyclin A2 depletion induces a dramatic decrease in active RhoA in mitosis. Our data suggest cyclin A2 participation in RhoA activation in late mitosis. PMID:27279564

  7. 42 CFR 65a.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the grant application and approved by the Director, who is responsible for the scientific and... NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES HAZARDOUS SUBSTANCES BASIC RESEARCH AND TRAINING GRANTS... the Public Health Service. Program means the activity to carry out research and training supported...

  8. Characterization of dihydro-A2PE: an Intermediate in the A2E Biosynthetic Pathway†

    PubMed Central

    Kim, So R.; He, Jiangtao; Yanase, Emiko; Jang, Young P.; Berova, Nina; Nakanishi, Koji; Sparrow, Janet R.

    2008-01-01

    Bisretinoid lipofuscin pigments that accumulate in retinal pigment epithelial cells are implicated in the etiology of several forms of macular degeneration including juvenile onset Stargardt disease, Best vitelliform macular degeneration and age-related macular degeneration. One of these compounds, A2E, is generated by phosphate hydrolysis of a phosphatidylpyridinium bisretinoid (A2PE) that forms within photoreceptor outer segments. Here we demonstrate that the formation of the aromatic pyridinium ring of A2PE follows from the oxidation of a dihydropyridinium intermediate. Time-dependent density functional theory calculation, based on the structure of dihydro-A2E, produced a simulated UV-visible absorbance spectrum characterized by maxima of 494 and 344 nm. Subsequently, a compound exhibiting similar UV-visible absorbance maxima (λmax 490 and 330 nm) was identified in the A2E biomimetic reaction mixture. By liquid chromatography-mass spectrometry (LC-MS) this bischromophore had the expected mass of the dihydro-pyridinium bisretinoid. The compound also exhibited the behavior of a biosynthetic intermediate, since it formed in advance of the final product A2E and was consumed as A2E accumulated. Moreover, under deoxygenated conditions, conversion to the aromatic pyridinium bisretinoid was inhibited. Taken together, these findings indicate that A2E biosynthesis involves the oxidation of a dihydropyridinium intermediate dihydro-A2PE. An understanding of the biosynthetic pathways of retinal pigment epithelial lipofuscin pigments is critical to the development of therapies for macular degeneration that are based on limiting the formation of these damaging compounds. PMID:17685561

  9. INHIBITION OF HUMAN AND RAT CYP1A2 BY TCDD AND DIOXIN-LIKE CHEMICALS

    EPA Science Inventory

    Dioxins have been shown to bind and induce rodent CYP1A2, producing a dose-dependent hepatic sequestration in vivo. The induction of CYP1A2 activity has been used as a noninvasive biomarker for human exposure to dioxins; while there is a consistent relationship between exposure ...

  10. A novel function for Cyclin A2: Control of cell invasion via RhoA signaling

    PubMed Central

    Arsic, Nikola; Bendris, Nawal; Peter, Marion; Begon-Pescia, Christina; Rebouissou, Cosette; Gadéa, Gilles; Bouquier, Nathalie; Bibeau, Frédéric

    2012-01-01

    Cyclin A2 plays a key role in cell cycle regulation. It is essential in embryonic cells and in the hematopoietic lineage yet dispensable in fibroblasts. In this paper, we demonstrate that Cyclin A2–depleted cells display a cortical distribution of actin filaments and increased migration. These defects are rescued by restoration of wild-type Cyclin A2, which directly interacts with RhoA, or by a Cyclin A2 mutant unable to associate with Cdk. In vitro, Cyclin A2 potentiates the exchange activity of a RhoA-specific guanine nucleotide exchange factor. Consistent with this, Cyclin A2 depletion enhances migration of fibroblasts and invasiveness of transformed cells via down-regulation of RhoA activity. Moreover, Cyclin A2 expression is lower in metastases relative to primary colon adenocarcinoma in matched human tumors. All together, these data show that Cyclin A2 negatively controls cell motility by promoting RhoA activation, thus demonstrating a novel Cyclin A2 function in cytoskeletal rearrangements and cell migration. PMID:22232705

  11. A 2 X 2 achievement goal framework.

    PubMed

    Elliot, A J; McGregor, H A

    2001-03-01

    A 2 x 2 achievement goal framework comprising mastery-approach, mastery-avoidance, performance-approach, and performance-avoidance goals was proposed and tested in 3 studies. Factor analytic results supported the independence of the 4 achievement goal constructs. The goals were examined with respect to several important antecedents (e.g., motive dispositions, implicit theories, socialization histories) and consequences (e.g., anticipatory test anxiety, exam performance, health center visits), with particular attention allocated to the new mastery-avoidance goal construct. The results revealed distinct empirical profiles for each of the achievement goals; the pattern for mastery-avoidance goals was, as anticipated, more negative than that for mastery-approach goals and more positive than that for performance-avoidance goals. Implications of the present work for future theoretical development in the achievement goal literature are discussed. PMID:11300582

  12. Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking.

    PubMed

    Chan, Ting; Cheung, Florence Shin Gee; Zheng, Jian; Lu, Xiaoxi; Zhu, Ling; Grewal, Thomas; Murray, Michael; Zhou, Fanfan

    2016-01-01

    Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated. PMID:26580496

  13. A lipid switch unlocks Parkinson’s disease-associated ATP13A2

    PubMed Central

    Holemans, Tine; Sørensen, Danny Mollerup; van Veen, Sarah; Martin, Shaun; Hermans, Diane; Kemmer, Gerdi Christine; Van den Haute, Chris; Baekelandt, Veerle; Günther Pomorski, Thomas; Agostinis, Patrizia; Wuytack, Frank; Palmgren, Michael; Eggermont, Jan; Vangheluwe, Peter

    2015-01-01

    ATP13A2 is a lysosomal P-type transport ATPase that has been implicated in Kufor–Rakeb syndrome and Parkinson’s disease (PD), providing protection against α-synuclein, Mn2+, and Zn2+ toxicity in various model systems. So far, the molecular function and regulation of ATP13A2 remains undetermined. Here, we demonstrate that ATP13A2 contains a unique N-terminal hydrophobic extension that lies on the cytosolic membrane surface of the lysosome, where it interacts with the lysosomal signaling lipids phosphatidic acid (PA) and phosphatidylinositol(3,5)bisphosphate [PI(3,5)P2]. We further demonstrate that ATP13A2 accumulates in an inactive autophosphorylated state and that PA and PI(3,5)P2 stimulate the autophosphorylation of ATP13A2. In a cellular model of PD, only catalytically active ATP13A2 offers cellular protection against rotenone-induced mitochondrial stress, which relies on the availability of PA and PI(3,5)P2. Thus, the N-terminal binding of PA and PI(3,5)P2 emerges as a key to unlock the activity of ATP13A2, which may offer a therapeutic strategy to activate ATP13A2 and thereby reduce α-synuclein toxicity or mitochondrial stress in PD or related disorders. PMID:26134396

  14. Annexin A2 facilitates endocytic trafficking of antisense oligonucleotides

    PubMed Central

    Wang, Shiyu; Sun, Hong; Tanowitz, Michael; Liang, Xue-hai; Crooke, Stanley T.

    2016-01-01

    Chemically modified antisense oligonucleotides (ASOs) designed to mediate site-specific cleavage of RNA by RNase H1 are used as research tools and as therapeutics. ASOs modified with phosphorothioate (PS) linkages enter cells via endocytotic pathways. The mechanisms by which PS-ASOs are released from membrane-enclosed endocytotic organelles to reach target RNAs remain largely unknown. We recently found that annexin A2 (ANXA2) co-localizes with PS-ASOs in late endosomes (LEs) and enhances ASO activity. Here, we show that co-localization of ANXA2 with PS-ASO is not dependent on their direct interactions or mediated by ANXA2 partner protein S100A10. Instead, ANXA2 accompanies the transport of PS-ASOs to LEs, as ANXA2/PS-ASO co-localization was observed inside LEs. Although ANXA2 appears not to affect levels of PS-ASO internalization, ANXA2 reduction caused significant accumulation of ASOs in early endosomes (EEs) and reduced localization in LEs and decreased PS-ASO activity. Importantly, the kinetics of PS-ASO activity upon free uptake show that target mRNA reduction occurs at least 4 hrs after PS-ASOs exit from EEs and is coincident with release from LEs. Taken together, our results indicate that ANXA2 facilitates PS-ASO trafficking from early to late endosomes where it may also contribute to PS-ASO release. PMID:27378781

  15. 3D pharmacophore models for thromboxane A(2) receptor antagonists.

    PubMed

    Wei, Jing; Liu, Yixi; Wang, Songqing

    2009-10-01

    Thromboxane A(2) (TXA(2)) is an endogenous arachidonic acid derivative closely correlated to thrombosis and other cardiovascular diseases. The action of TXA(2) can be effectively inhibited with TXA(2) receptor antagonists (TXRAs). Previous studies have attempted to describe the interactions between the TXA(2) receptor and its ligands, but their conclusions are still controversial. In this study, ligand-based computational drug design is used as a new and effective way to investigate the structure-activity relationship of TXRAs. Three-dimensional pharmacophore models of TXRAs were built with HypoGenRefine and HipHop modules in CATALYST software. The optimal HypoGenRefine model was developed on the basis of 25 TXRAs. It consists of two hydrophobic groups, one aromatic ring, one hydrogen-bond acceptor and four excluded volumes. The optimal HipHop model contains two hydrophobic groups and two hydrogen-bond acceptors. These models describe the key structure-activity relationship of TXRAs, can predict their activities, and can thus be used to design novel antagonists. PMID:19263096

  16. Stability of soybean oil degumming using immobilized phospholipase A(2).

    PubMed

    Yu, Dianyu; Ma, Ying; Jiang, Lianzhou; Walid, Elfalleh; He, Shenghua; He, Yanming; Xiaoyu, Zhou; Zhang, Jianing; Hu, Lizhi

    2014-01-01

    The aim of this study was evaluation of stability of immobilized phospholipase A2 (PLA2) for soybean oil degumming. Also, the effect of reaction time on residual phosphorus levels was investigated according to the optimum pH and temperature. The free PLA2 and three immobilized PLA2 demonstrated significant differences in optimum operation conditions. pH, temperature and reaction time increased upon immobilization for three different immobilized PLA2 (PLA2-CA, PLA2-CAC and PLA2-CAG). Immobilized PLA2 showed enhanced thermal stability and retained more than 74% of relative activity after 1 h of incubation at 60°C, while the free PLA2 retained only 33%. The three immobilized PLA2 retained 30% to 60% of initial activities after 7 recycles. In particular, PLA2-CAC has more significant profiles in pH, temperature, reaction time and showed the highest remaining activity, thermal stability, reusability. Therefore, PLA2-CAC is a suitable immobilized enzyme for soybean oil degumming process. PMID:24371193

  17. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease.

    PubMed

    Tyebji, Shiraz; Saavedra, Ana; Canas, Paula M; Pliassova, Anna; Delgado-García, José M; Alberch, Jordi; Cunha, Rodrigo A; Gruart, Agnès; Pérez-Navarro, Esther

    2015-02-01

    Stimulation of dopamine D1 receptor (D1R) and adenosine A2A receptor (A2AR) increases cAMP-dependent protein kinase (PKA) activity in the brain. In Huntington's disease, by essentially unknown mechanisms, PKA activity is increased in the hippocampus of mouse models and patients and contributes to hippocampal-dependent cognitive impairment in R6 mice. Here, we show for the first time that D1R and A2AR density and functional efficiency are increased in hippocampal nerve terminals from R6/1 mice, which accounts for increased cAMP levels and PKA signaling. In contrast, PKA signaling was not altered in the hippocampus of Hdh(Q7/Q111) mice, a full-length HD model. In line with these findings, chronic (but not acute) combined treatment with D1R plus A2AR antagonists (SCH23390 and SCH58261, respectively) normalizes PKA activity in the hippocampus, facilitates long-term potentiation in behaving R6/1 mice, and ameliorates cognitive dysfunction. By contrast, chronic treatment with either D1R or A2AR antagonist alone does not modify PKA activity or improve cognitive dysfunction in R6/1 mice. Hyperactivation of both D1R and A2AR occurs in HD striatum and chronic treatment with D1R plus A2AR antagonists normalizes striatal PKA activity but it does not affect motor dysfunction in R6/1 mice. In conclusion, we show that parallel alterations in dopaminergic and adenosinergic signaling in the hippocampus contribute to increase PKA activity, which in turn selectively participates in hippocampal-dependent learning and memory deficits in HD. In addition, our results point to the chronic inhibition of both D1R and A2AR as a novel therapeutic strategy to manage early cognitive impairment in this neurodegenerative disease. PMID:25449908

  18. Estimation of crop gross primary production (GPP): fAPAR_chl versus MOD15A2 FPAR

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within leaf chloroplasts chlorophylls absorb photosynthetically active radiation (PAR) for photosynthesis (PSN). The MOD15A2 FPAR (fraction of PAR absorbed by canopy, i.e., fAPARcanopy) product has been widely used to compute absorbed PAR for PSN (APARPSN). The MOD17A2 algorithm uses MOD15A2 FPAR i...

  19. Stabilization of EphA2 dimers as a novel anti-cancer strategy

    NASA Astrophysics Data System (ADS)

    Singh, Deo; Ahmed, Fozia; Salloto, Matt; Hristova, Kalina

    We have recently shown that EphA2 receptors exist in a monomer-dimer equilibrium in the absence of ligand. The monomers promote tumorigenic activity and thus a therapeutic strategy that minimizes the monomer population may be beneficial in the clinic. The YSA peptide is an EphA2-targeting peptide that effectively delivers anticancer agents to cancer tumors. The quantitative measurements of the dimerization of EphA2 receptors in the presence of these peptides using quantitative spectral Forster resonance transfer (QS-FRET) methodology in conjunction with two-photon microscopy that has been developed recently in our lab suggests that this peptide stabilizes the EphA2 dimers. Thus, such peptides that stabilize the EphA2 dimers may be used for the treatment of some cancers that overexpress EphA2.

  20. Diagnosis of snake envenomation using a simple phospholipase A2 assay

    PubMed Central

    Maduwage, Kalana; O'Leary, Margaret A.; Isbister, Geoffrey K.

    2014-01-01

    Diagnosis of snake envenomation is challenging but critical for deciding on antivenom use. Phospholipase A2 enzymes occur commonly in snake venoms and we hypothesized that phospholipase activity detected in human blood post-bite may be indicative of envenomation. Using a simple assay, potentially a bedside test, we detected high phospholipase activity in sera of patients with viper and elapid envenomation compared to minimal activity in non-envenomed patients. PMID:24777205

  1. Involvement of free radicals followed by the activation of phospholipase A2 in the mechanism that underlies the combined effects of methamphetamine and morphine on subacute toxicity or lethality in mice: comparison of the therapeutic potential of fullerene, mepacrine, and cooling.

    PubMed

    Mori, Tomohisa; Ito, Shinobu; Namiki, Mizuho; Suzuki, Tadashi; Kobayashi, Shizuko; Matsubayashi, Kenji; Sawaguchi, Toshiko

    2007-07-17

    An increase in polydrug abuse is a major problem worldwide. The coadministration of methamphetamine and morphine increased subacute toxicity or lethality in rodents. However, the underlying mechanisms by which lethality is increased by the coadministration of methamphetamine and morphine are not yet fully understood. Coadministered methamphetamine and morphine induced lethality by more than 80% in BALB/c mice, accompanied by the rupture of cells in the kidney and liver, and an increase in poly (ADP-ribose) polymerase (PARP)-immunoreactive cells in the heart, kidney and liver. The lethal effect and the increase in the incidence of rupture or PARP-immunoreactive cells induced by the coadministration of methamphetamine and morphine was significantly attenuated by pretreatment with mepacrine (phospholipase A(2) inhibitor) or fullerene (a radical scavenger), or by cooling from 30 to 90 min after drug administration. Furthermore, based on the results of the electron spin resonance spin-trapping technique, hydroxyl radicals were increased by the administration of methamphetamine and morphine, and these increased hydroxyl radicals were potently attenuated by fullerene and cooling. These results suggest that hydroxyl radicals plays an important role in the increased lethality induced by the coadministration of methamphetamine plus morphine. The potency of cooling or drugs for decreasing the subacute toxicity or lethality induced by the coadministration of methamphetamine and morphine was in the order fullerene=cooling>mepacrine. These results indicate that fullerene and cooling are beneficial for preventing death that is induced by the coadministration of methamphetamine and morphine. PMID:17553606

  2. Effects of Phospholipase A2 Inhibitors on Bilayer Lipid Membranes.

    PubMed

    Dubinin, Mikhail V; Astashev, Maxim E; Penkov, Nikita V; Gudkov, Sergey V; Dyachenko, Igor A; Samartsev, Victor N; Belosludtsev, Konstantin N

    2016-06-01

    The work examines the effect of inhibitors of cytosolic Ca(2+)-dependent and Ca(2+)-independent phospholipases A2 on bilayer lipid membranes. It was established that trifluoroperazine (TFP) and, to a lesser extent, arachidonyl trifluoromethyl ketone (AACOCF3) and palmitoyl trifluoromethyl ketone (PACOCF3) were able to permeabilize artificial lipid membranes (BLM and liposomes). It was shown that AACOCF3 lowered the temperature of phase transition of DMPC liposomes, inducing disordering of the hydrophobic region of lipid bilayer. TFP disordered membranes both in the hydrophobic region and in the region of hydrophilic heads, this being accompanied by changes in the membrane permeability: appearance of a channel-like BLM activity and leakage of sulforhodamine B from liposomes. In contrast to AACOCF3 and TFP, PACOCF3 increased membrane orderliness in the hydrophobic region (heightened the temperature of phase transition of DMPC liposomes) and in the region of lipid heads. The effectiveness of AACOCF3 and PACOCF3 as inductors of BLM and liposome permeabilization was considerably lower comparatively to TFP. As revealed by dynamic light scattering, incorporation of TFP, AACOCF3 and PACOCF3 into the membrane of liposomes resulted in the increase of the average size of particles in the suspension, presumably due to their aggregation or fusion. The paper discusses possible mechanisms of the influence of phospholipase A2 inhibitors on bilayer lipid membranes. PMID:26762382

  3. History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents.

    PubMed

    Preti, Delia; Baraldi, Pier Giovanni; Moorman, Allan R; Borea, Pier Andrea; Varani, Katia

    2015-07-01

    Growing evidence emphasizes that the purine nucleoside adenosine plays an active role as a local regulator in different pathologies. Adenosine is a ubiquitous nucleoside involved in various physiological and pathological functions by stimulating A1 , A2A , A2B , and A3 adenosine receptors (ARs). At the present time, the role of A2A ARs is well known in physiological conditions and in a variety of pathologies, including inflammatory tissue damage and neurodegenerative disorders. In particular, the use of selective A2A antagonists has been reported to be potentially useful in the treatment of Parkinson's disease (PD). In this review, A2A AR signal transduction pathways, together with an analysis of the structure-activity relationships of A2A antagonists, and their corresponding pharmacological roles and therapeutic potential have been presented. The initial results from an emerging polypharmacological approach are also analyzed. This approach is based on the optimization of the affinity and/or functional activity of the examined compounds toward multiple targets, such as A1 /A2A ARs and monoamine oxidase-B (MAO-B), both closely implicated in the pathogenesis of PD. PMID:25821194

  4. Ligand Targeting of EphA2 Enhances Keratinocyte Adhesion and Differentiation via Desmoglein 1

    PubMed Central

    Lin, Samantha; Gordon, Kristin; Kaplan, Nihal

    2010-01-01

    EphA2 is a receptor tyrosine kinase that is engaged and activated by membrane-linked ephrin-A ligands residing on adjacent cell surfaces. Ligand targeting of EphA2 has been implicated in epithelial growth regulation by inhibiting the extracellular signal-regulated kinase 1/2 (Erk1/2)-mitogen activated protein kinase (MAPK) pathway. Although contact-dependent EphA2 activation was required for dampening Erk1/2-MAPK signaling after a calcium switch in primary human epidermal keratinocytes, the loss of this receptor did not prevent exit from the cell cycle. Incubating keratinocytes with a soluble ephrin-A1-Fc peptide mimetic to target EphA2 further increased receptor activation leading to its down-regulation. Moreover, soluble ligand targeting of EphA2 restricted the lateral expansion of epidermal cell colonies without limiting proliferation in these primary cultures. Rather, ephrin-A1-Fc peptide treatment promoted epidermal cell colony compaction and stratification in a manner that was associated with increased keratinocyte differentiation. The ligand-dependent increase in keratinocyte adhesion and differentiation relied largely upon the up-regulation of desmoglein 1, a desmosomal cadherin that maintains the integrity and differentiated state of suprabasal keratinocytes in the epidermis. These data suggest that keratinocytes expressing EphA2 in the basal layer may respond to ephrin-A1–based cues from their neighbors to facilitate entry into a terminal differentiation pathway. PMID:20861311

  5. Nucleus tractus solitarii A(2a) adenosine receptors inhibit cardiopulmonary chemoreflex control of sympathetic outputs.

    PubMed

    Minic, Zeljka; O'Leary, Donal S; Scislo, Tadeusz J

    2014-02-01

    Previously we have shown that stimulation of inhibitory A1 adenosine receptors located in the nucleus tractus solitarii (NTS) attenuates cardiopulmonary chemoreflex (CCR) evoked inhibition of renal, adrenal and lumbar sympathetic nerve activity and reflex decreases in arterial pressure and heart rate. Activation of facilitatory A2a adenosine receptors, which dominate over A1 receptors in the NTS, contrastingly alters baseline activity of regional sympathetic outputs: it decreases renal, increases adrenal and does not change lumbar nerve activity. Considering that NTS A2a receptors may facilitate release of inhibitory transmitters we hypothesized that A2a receptors will act in concert with A1 receptors differentially inhibiting regional sympathetic CCR responses (adrenal>lumbar>renal). In urethane/chloralose anesthetized rats (n=38) we compared regional sympathetic responses evoked by stimulation of the CCR with right atrial injections of serotonin 5HT3 receptor agonist, phenylbiguanide, (1-8μg/kg) before and after selective stimulation, blockade or combined blockade and stimulation of NTS A2a adenosine receptors (microinjections into the NTS of CGS-21680 0.2-20pmol/50nl, ZM-241385 40pmol/100nl or ZM-241385+CGS-21680, respectively). We found that stimulation of A2a adenosine receptors uniformly inhibited the regional sympathetic and hemodynamic reflex responses and this effect was abolished by the selective blockade of NTS A2a receptors. This indicates that A2a receptor triggered inhibition of CCR responses and the contrasting shifts in baseline sympathetic activity are mediated via different mechanisms. These data implicate that stimulation of NTS A2a receptors triggers unknown inhibitory mechanism(s) which in turn inhibit transmission in the CCR pathway when adenosine is released into the NTS during severe hypotension. PMID:24216055

  6. GPR88 in A2AR Neurons Enhances Anxiety-Like Behaviors

    PubMed Central

    Meirsman, Aura Carole; Robé, Anne

    2016-01-01

    Abstract GPR88 is an orphan G-protein-coupled receptor highly expressed in striatal dopamine D1 (receptor) R- and D2R-expressing medium spiny neurons. This receptor is involved in activity and motor responses, and we previously showed that this receptor also regulates anxiety-like behaviors. To determine whether GPR88 in D2R-expressing neurons contributes to this emotional phenotype, we generated conditional Gpr88 knock-out mice using adenosine A2AR (A2AR)-Cre-driven recombination, and compared anxiety-related responses in both total and A2AR-Gpr88 KO mice. A2AR-Gpr88 KO mice showed a selective reduction of Gpr88 mRNA in D2R-expressing, but not D1R-expressing, neurons. These mutant mice showed increased locomotor activity and decreased anxiety-like behaviors in light/dark and elevated plus maze tests. These phenotypes were superimposable on those observed in total Gpr88 KO mice, demonstrating that the previously reported anxiogenic activity of GPR88 operates at the level of A2AR-expressing neurons. Further, A2AR-Gpr88 KO mice showed no change in novelty preference and novelty-suppressed feeding, while these responses were increased and decreased, respectively, in the total Gpr88 KO mice. Also, A2AR-Gpr88 KO mice showed intact fear conditioning, while the fear responses were decreased in total Gpr88 KO. We therefore also show for the first time that GPR88 activity regulates approach behaviors and conditional fear; however, these behaviors do not seem mediated by receptors in A2AR neurons. We conclude that Gpr88 expressed in A2AR neurons enhances ethological anxiety-like behaviors without affecting conflict anxiety and fear responses. PMID:27570825

  7. GPR88 in A2AR Neurons Enhances Anxiety-Like Behaviors.

    PubMed

    Meirsman, Aura Carole; Robé, Anne; de Kerchove d'Exaerde, Alban; Kieffer, Brigitte Lina

    2016-01-01

    GPR88 is an orphan G-protein-coupled receptor highly expressed in striatal dopamine D1 (receptor) R- and D2R-expressing medium spiny neurons. This receptor is involved in activity and motor responses, and we previously showed that this receptor also regulates anxiety-like behaviors. To determine whether GPR88 in D2R-expressing neurons contributes to this emotional phenotype, we generated conditional Gpr88 knock-out mice using adenosine A2AR (A2AR)-Cre-driven recombination, and compared anxiety-related responses in both total and A2AR-Gpr88 KO mice. A2AR-Gpr88 KO mice showed a selective reduction of Gpr88 mRNA in D2R-expressing, but not D1R-expressing, neurons. These mutant mice showed increased locomotor activity and decreased anxiety-like behaviors in light/dark and elevated plus maze tests. These phenotypes were superimposable on those observed in total Gpr88 KO mice, demonstrating that the previously reported anxiogenic activity of GPR88 operates at the level of A2AR-expressing neurons. Further, A2AR-Gpr88 KO mice showed no change in novelty preference and novelty-suppressed feeding, while these responses were increased and decreased, respectively, in the total Gpr88 KO mice. Also, A2AR-Gpr88 KO mice showed intact fear conditioning, while the fear responses were decreased in total Gpr88 KO. We therefore also show for the first time that GPR88 activity regulates approach behaviors and conditional fear; however, these behaviors do not seem mediated by receptors in A2AR neurons. We conclude that Gpr88 expressed in A2AR neurons enhances ethological anxiety-like behaviors without affecting conflict anxiety and fear responses. PMID:27570825

  8. Adenosine A2a receptors and O2 sensing in development

    PubMed Central

    2011-01-01

    Reduced mitochondrial oxidative phosphorylation, via activation of adenylate kinase and the resulting exponential rise in the cellular AMP/ATP ratio, appears to be a critical factor underlying O2 sensing in many chemoreceptive tissues in mammals. The elevated AMP/ATP ratio, in turn, activates key enzymes that are involved in physiologic adjustments that tend to balance ATP supply and demand. An example is the conversion of AMP to adenosine via 5′-nucleotidase and the resulting activation of adenosine A2A receptors, which are involved in acute oxygen sensing by both carotid bodies and the brain. In fetal sheep, A2A receptors associated with carotid bodies trigger hypoxic cardiovascular chemoreflexes, while central A2A receptors mediate hypoxic inhibition of breathing and rapid eye movements. A2A receptors are also involved in hypoxic regulation of fetal endocrine systems, metabolism, and vascular tone. In developing lambs, A2A receptors play virtually no role in O2 sensing by the carotid bodies, but brain A2A receptors remain critically involved in the roll-off ventilatory response to hypoxia. In adult mammals, A2A receptors have been implicated in O2 sensing by carotid glomus cells, while central A2A receptors likely blunt hypoxic hyperventilation. In conclusion, A2A receptors are crucially involved in the transduction mechanisms of O2 sensing in fetal carotid bodies and brains. Postnatally, central A2A receptors remain key mediators of hypoxic respiratory depression, but they are less critical for O2 sensing in carotid chemoreceptors, particularly in developing lambs. PMID:21677265

  9. A 2E''-X2A2' transition of NO3 trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2010-04-15

    NO(3) has been stabilized in a neon matrix at 4.3 K in sufficient yield for detection of the absorptions between 7000 and 10,000 cm(-1), which arise from vibronically allowed transitions from the ground state to levels of the A (2)E'' state. The results confirm and somewhat extend previous gas-phase observations for (14)N(16)O(3). Additional spectra are presented for six other isotopologues of NO(3), four of which possess C(2v) symmetry. The splitting patterns for these species support the previous assignments. Alternations in the spacings of the nu(4) progression are consistent with the occurrence of weak to moderate Jahn-Teller interaction in the A 2E state of NO(3). PMID:19957977

  10. The Major Prognostic Features of Nuclear Receptor NR5A2 in Infiltrating Ductal Breast Carcinomas

    PubMed Central

    Chang, Li-Yun; Liu, Li-Yu D.; Roth, Don A.; Kuo, Wen-Hung; Hwa, Hsiao-Lin; Chang, King-Jen; Hsieh, Fon-Jou

    2015-01-01

    Background. Gene expression profiles of 181 breast cancer samples were analyzed to identify prognostic features of nuclear receptors NR5A1 and NR5A2 based upon their associated transcriptional networks. Methods. A supervised network analysis approach was used to build the NR5A-mediated transcriptional regulatory network. Other bioinformatic tools and statistical methods were utilized to confirm and extend results from the network analysis methodology. Results. NR5A2 expression is a negative factor in breast cancer prognosis in both ER(−) and ER(−)/ER(+) mixed cohorts. The clinical and cohort significance of NR5A2-mediated transcriptional activities indicates that it may have a significant role in attenuating grade development and cancer related signal transduction pathways. NR5A2 signature that conditions poor prognosis was identified based upon results from 15 distinct probes. Alternatively, the expression of NR5A1 predicts favorable prognosis when concurrent NR5A2 expression is low. A favorable signature of eight transcription factors mediated by NR5A1 was also identified. Conclusions. Correlation of poor prognosis and NR5A2 activity is identified by NR5A2-mediated 15-gene signature. NR5A2 may be a potential drug target for treating a subset of breast cancer tumors across breast cancer subtypes, especially ER(−) breast tumors. The favorable prognostic feature of NR5A1 is predicted by NR5A1-mediated 8-gene signature. PMID:26366408

  11. Cytosolic phospholipase A2: physiological function and role in disease

    PubMed Central

    Leslie, Christina C.

    2015-01-01

    The group IV phospholipase A2 (PLA2) family is comprised of six intracellular enzymes (GIVA, -B, -C, -D, -E, and -F) commonly referred to as cytosolic PLA2 (cPLA2)α, -β, -γ, -δ, -ε, and -ζ. They contain a Ser-Asp catalytic dyad and all except cPLA2γ have a C2 domain, but differences in their catalytic activities and subcellular localization suggest unique regulation and function. With the exception of cPLA2α, the focus of this review, little is known about the in vivo function of group IV enzymes. cPLA2α catalyzes the hydrolysis of phospholipids to arachidonic acid and lysophospholipids that are precursors of numerous bioactive lipids. The regulation of cPLA2α is complex, involving transcriptional and posttranslational processes, particularly increases in calcium and phosphorylation. cPLA2α is a highly conserved widely expressed enzyme that promotes lipid mediator production in human and rodent cells from a variety of tissues. The diverse bioactive lipids produced as a result of cPLA2α activation regulate normal physiological processes and disease pathogenesis in many organ systems, as shown using cPLA2α KO mice. However, humans recently identified with cPLA2α deficiency exhibit more pronounced effects on health than observed in mice lacking cPLA2α, indicating that much remains to be learned about this interesting enzyme. PMID:25838312

  12. Actinin-1 binds to the C-terminus of A2B adenosine receptor (A2BAR) and enhances A2BAR cell-surface expression.

    PubMed

    Sun, Ying; Hu, Wenbao; Yu, Xiaojie; Liu, Zhengzhao; Tarran, Robert; Ravid, Katya; Huang, Pingbo

    2016-07-15

    A2BAR (A2B adenosine receptor) has been implicated in several physiological conditions, such as allergic or inflammatory disorders, vasodilation, cell growth and epithelial electrolyte secretion. For mediating the protein-protein interactions of A2BAR, the receptor's C-terminus is recognized to be crucial. In the present study, we unexpectedly found that two point mutations in the A2BAR C-terminus (F297A and R298A) drastically impaired the expression of A2BAR protein by accelerating its degradation. Thus we tested the hypothesis that these two point mutations disrupt A2BAR's interaction with a protein essential for A2BAR stability. Our results show that both mutations disrupted the interaction of A2BAR with actinin-1, an actin-associated protein. Furthermore, actinin-1 binding stabilized the global and cell-surface expression of A2BAR. By contrast, actinin-4, another non-muscle actinin isoform, did not bind to A2BAR. Thus our findings reveal a previously unidentified regulatory mechanism of A2BAR abundance. PMID:27208173

  13. Higher minor hemoglobin A2 levels in multiple sclerosis patients correlate with lesser disease severity

    PubMed Central

    Ozcan, Muhammed Emin; Ince, Bahri; Karadeli, Hasan Huseyin; Gedikbasi, Asuman; Asil, Talip; Altinoz, Meric A

    2016-01-01

    Objective To define whether minor adult hemoglobin A2 (HbA2, α2δ2) exerts any protective activity in multiple sclerosis (MS). Methods HbA2 levels were measured in 146 MS patients with high performance liquid chromatography and association with MS Severity Scores (MSSS) were determined. HbA2 associations with blood count parameters were also studied using blood counts evaluated on the same day of high performance liquid chromatography sampling. Routine biochemical parameters were also determined to rule out elusively influential factors, such as anemia and thyroid disorders. Results HbA2 levels negatively correlated with MSSS (Spearman correlation, R: −0.186, P=0.025). Exclusion of confounding factors with a generalized linear model revealed an even stronger negative correlation between HbA2 and MSSS (P<0.001). HbA2 positively correlated with red blood cells (RBCs) (R=0.350, P<0.001) and in turn, RBCs negatively correlated with MSSS (R=−0.180, P=0.031). Average HbA2 levels were highest among patients treated with interferon β1a. Conclusion RBC fragility is increased in MS, and recent data suggest that circulating free Hb contributes to neural injury in MS. HbA2 and its oxidative denaturation product hemichrome A2 enhance RBC membrane stability to a greater extent than do major HbA or hemichrome A. Reductions in ischemic cerebrovascular vascular events are reported in β-thalassemia carriers and HbA2 levels are considerably higher in this population. Episodic declines of cerebral blood flow were shown in bipolar disorder, and we have recently shown a protective role of HbA2 against postpartum episodes in females with bipolar disorder. HbA2’s erythroprotective functions may reduce free Hb and long-term neural injury in MS. PMID:27578976

  14. Cloning and characterization of HsfA2 from Lily (Lilium longiflorum).

    PubMed

    Xin, Haibo; Zhang, Hua; Chen, Li; Li, Xiaoxin; Lian, Qinglong; Yuan, Xue; Hu, Xiaoyan; Cao, Li; He, Xiuli; Yi, Mingfang

    2010-08-01

    Heat shock transcription factors (Hsfs) are the terminal components of the signal transduction chain mediating the activation of genes responsive to both heat stress and a large number of chemical stressors. This paper aims to clone Hsf from lily and characterize its function by analyses of mRNA expression, transactivation activity and thermotolerance of transgenic Arabidopsis. In this study, the gene encoding HsfA2 with 1,053 bp open reading frame (ORF) was cloned by rapid amplification of cDNA ends (RACE) technique from Lilium longiflorum 'White heaven'. Multiple alignment and phylogenetic analyses showed that the deduced protein was a novel member of the Hsf class A2. Expression analyses by RT-PCR indicated that LlHsfA2 expression was induced by heat shock and H(2)O(2) treatment, but not by NaCl. It was also found that the expression of LlHsfA2 correlated with thermotolerance in Lilium longiflorum 'White heaven' and Oriental hybrid 'Acapulco' under heat stress. Furthermore, yeast one-hybrid assay showed that LlHsfA2 had transactivation activity. In addition, overexpression of LlHsfA2 activated the downstream genes including Hsp101, Hsp70, Hsp25.3 and Apx2 and enhanced the thermotolerance of transgenic Arabidopsis plants. Taken together, our data suggest that LlHsfA2 is a novel and functional HsfA2, involved in heat signaling pathway in lily and useful for improvement of thermotolerance in transgenic plants. PMID:20499070

  15. 44 CFR Appendix A(2) to Part 61 - Appendix A(2) to Part 61

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... covering property in a community that has been placed on probation under the provisions of 44 CFR 59.24. 24... Federal Regulations at 44 CFR 60.3. We pay for compliance activities that exceed those standards under.... c. Under the minimum NFIP criteria at 44 CFR 60.3(b)(4), States and communities must require...

  16. 44 CFR Appendix A(2) to Part 61 - Appendix A(2) to Part 61

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... covering property in a community that has been placed on probation under the provisions of 44 CFR 59.24. 24... Federal Regulations at 44 CFR 60.3. We pay for compliance activities that exceed those standards under.... c. Under the minimum NFIP criteria at 44 CFR 60.3(b)(4), States and communities must require...

  17. 44 CFR Appendix A(2) to Part 61 - Appendix A(2) to Part 61

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... covering property in a community that has been placed on probation under the provisions of 44 CFR 59.24. 24... Federal Regulations at 44 CFR 60.3. We pay for compliance activities that exceed those standards under.... c. Under the minimum NFIP criteria at 44 CFR 60.3(b)(4), States and communities must require...

  18. 44 CFR Appendix A(2) to Part 61 - Appendix A(2) to Part 61

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... covering property in a community that has been placed on probation under the provisions of 44 CFR 59.24. 24... Federal Regulations at 44 CFR 60.3. We pay for compliance activities that exceed those standards under.... c. Under the minimum NFIP criteria at 44 CFR 60.3(b)(4), States and communities must require...

  19. Cyclin A2 modulates EMT via β-catenin and phospholipase C pathways.

    PubMed

    Cheung, Caroline T; Bendris, Nawal; Paul, Conception; Hamieh, Abdallah; Anouar, Youssef; Hahne, Michael; Blanchard, Jean-Marie; Lemmers, Bénédicte

    2015-08-01

    We have previously demonstrated that Cyclin A2 is involved in cytoskeletal dynamics, epithelial-mesenchymal transition (EMT) and metastasis. This phenotype was potentiated by activated oncogenic H-Ras. However, the mechanisms governing EMT in these cells have not yet been elucidated. Here, we dissected the pathways that are responsible for EMT in cells deficient for Cyclin A2. In Cyclin A2-depleted normal murine mammary gland (NMuMG) cells expressing RasV12, we found that β-catenin was liberated from the cell membrane and cell-cell junctions and underwent nuclear translocation and activation. Components of the canonical wingless (WNT) pathway, including WNT8b, WNT10a, WNT10b, frizzled 1 and 2 and TCF4 were upregulated at the messenger RNA and protein levels following Cyclin A2 depletion. However, suppression of the WNT pathway using the acetyltransferase porcupine inhibitor C59 did not reverse EMT whereas a dominant negative form of TCF4 as well as inhibition of phospholipase C using U73122 were able to do so. This suggests that a WNT-independent mechanism of β-catenin activation via phospholipase C is involved in the EMT induced by Cyclin A2 depletion. Our findings will broaden our knowledge on how Cyclin A2 contributes to EMT and metastasis. PMID:25993989

  20. [Immobilization of phospholipase A2 from Central Asian cobra venom on polyamide sorbents].

    PubMed

    Akhmedzhanov, R A; Salikhova, Z T; Aripov, T F; Rakhimov, M M

    1988-01-01

    The effect of the immobilization technique and the ligand nature on catalytic properties of phospholipase A2 from the cobra venom was studied. Preparations of phospholipase A2 adsorbed on and covalently bound to polyamide sorbents were obtained. The enzyme was coupled to polyamide beads modified with glutaraldehyde. In this case only 9% of the enzyme activity was retained. The enzyme adsorbed on polyamide modified with phosphatidylethanolamine retained up to 20% of the initial activity. The binding selectivity of phospholipase A2 was maximum in case of the sorbent with a binary ligand, e. g. phosphatidylethanolamine+cytotoxin, the sorbent capacity for the bound enzyme increased 2-3 times (460-600 units/g sorbent. The specific activity of the adsorbed phospholipase A2 was 17-40 units/g sorbent in contrast to 8.6 units/g sorbent for the covalently bound enzyme. Immobilization of the enzyme on polyamide sorbents resulted in changes of the pH-optimum, sensitivity to Ca2+ ions and the character of the enzyme-substrate interactions. Heart stability of the adsorbed phospholipase A2 was lower than that of the covalently bound enzyme. However, the adsorbed enzyme can be used, for example, in affinity chromatography due to its higher specific activity, selectivity and reversibility of the sorption. PMID:3244675

  1. Solute Carrier Family 26 Member a2 (Slc26a2) Protein Functions as an Electroneutral SO42−/OH−/Cl− Exchanger Regulated by Extracellular Cl−*

    PubMed Central

    Ohana, Ehud; Shcheynikov, Nikolay; Park, Meeyoung; Muallem, Shmuel

    2012-01-01

    Slc26a2 is a ubiquitously expressed SO42− transporter with high expression levels in cartilage and several epithelia. Mutations in SLC26A2 are associated with diastrophic dysplasia. The mechanism by which Slc26a2 transports SO42− and the ion gradients that mediate SO42− uptake are poorly understood. We report here that Slc26a2 functions as an SO42−/2OH−, SO42−/2Cl−, and SO42−/OH−/Cl− exchanger, depending on the Cl− and OH− gradients. At inward Cl− and outward pH gradients (high Cl−o and low pHo) Slc26a2 functions primarily as an SO42−o/2OH−i exchanger. At low Cl−o and high pHo Slc26a2 functions increasingly as an SO42−o/2Cl−i exchanger. The reverse is observed for SO42−i/2OH−o and SO42−i/2Cl−o exchange. Slc26a2 also exchanges Cl− for I−, Br−, and NO3− and Cl−o competes with SO42− on the transport site. Interestingly, Slc26a2 is regulated by an extracellular anion site, required to activate SO42−i/2OH−o exchange. Slc26a2 can transport oxalate in exchange for OH− and/or Cl− with properties similar to SO42− transport. Modeling of the Slc26a2 transmembrane domain (TMD) structure identified a conserved extracellular sequence 367GFXXP371 between TMD7 and TMD8 close to the conserved Glu417 in the permeation pathway. Mutation of Glu417 eliminated transport by Slc26a2, whereas mutation of Phe368 increased the affinity for SO42−o 8-fold while reducing the affinity for Cl−o 2 fold, but without affecting regulation by Cl−o. These findings clarify the mechanism of net SO42− transport and describe a novel regulation of Slc26a2 by an extracellular anion binding site and should help in further understanding aberrant SLC26A2 function in diastrophic dysplasia. PMID:22190686

  2. The role of Ile87 of CYP158A2 in oxidative coupling reaction

    SciTech Connect

    Zhao, Bin; Bellamine, Aouatef; Lei, Li; Waterman, Michael R.

    2012-05-15

    Both CYP158A1 and CYP158A2 are able to catalyze an oxidative C-C coupling reaction producing biflaviolin or triflaviolin in Streptomyces coelicolor A3(2). The substrate-bound crystal structures of CYP158A2 and CYP158A1 reveal that the side chain of Ile87 in CYP158A2 points to the active site contacting the distal flaviolin molecule, however, the bulkier side chain of Lys90 in CYP158A1 (corresponding to Ile87 in CYP158A2) is toward the distal surface of the protein. These results suggest that these residues could be important in determining product regiospecificity. In order to explore the role of the two residues in catalysis, the reciprocal mutants, Ile87Lys and Lys90Ile, of CYP158A2 and CYP158A1, respectively, were generated and characterized. The mutant Ile87Lys enzyme forms two isomers of biflaviolin instead of three isomers of biflaviolin in wild-type CYP158A2. CYP158A1 containing the substitution of lysine with isoleucine has the same catalytic activity compared with the wild-type CYP158A1. The crystal structure of Ile87Lys showed that the BC loop in the mutant is in a very different orientation compared with the BC loop in both CYP158A1/A2 structures. These results shed light on the mechanism of the oxidative coupling reaction catalyzed by cytochrome P450.

  3. Adenosine A2A receptor deficiency alleviates blast-induced cognitive dysfunction

    PubMed Central

    Ning, Ya-Lei; Yang, Nan; Chen, Xing; Xiong, Ren-Ping; Zhang, Xiu-Zhu; Li, Ping; Zhao, Yan; Chen, Xing-Yun; Liu, Ping; Peng, Yan; Wang, Zheng-Guo; Chen, Jiang-Fan; Zhou, Yuan-Guo

    2013-01-01

    Traumatic brain injury (TBI), particularly explosive blast-induced TBI (bTBI), has become the most prevalent injury among military personnel. The disruption of cognitive function is one of the most serious consequences of bTBI because its long-lasting effects prevent survivors fulfilling their active duty and resuming normal civilian life. However, the mechanisms are poorly understood and there is no treatment available. This study investigated the effects of adenosine A2A receptor (A2AR) on bTBI-induced cognitive deficit, and explored the underlying mechanisms. After being subjected to moderate whole-body blast injury, mice lacking the A2AR (A2AR knockout (KO)) showed less severity and shorter duration of impaired spatial reference memory and working memory than wild-type mice did. In addition, bTBI-induced cortical and hippocampal lesions, as well as proinflammatory cytokine expression, glutamate release, edema, cell loss, and gliosis in both early and prolonged phases of the injury, were significantly attenuated in A2AR KO mice. The results suggest that early injury and chronic neuropathological damages are important mechanisms of bTBI-induced cognitive impairment, and that the impairment can be attenuated by preventing A2AR activation. These findings suggest that A2AR antagonism is a potential therapeutic strategy for mild-to-moderate bTBI and consequent cognitive impairment. PMID:23921902

  4. The Role of Ile87 of CYP158A2 in Oxidative Coupling Reaction

    PubMed Central

    Zhao, Bin; Bellamine, Aouatef; Lei, Li; Waterman, Michael R.

    2012-01-01

    Both CYP158A1 and CYP158A2 are able to catalyze an oxidative C-C coupling reaction producing biflaviolin or triflaviolin in Streptomyces coelicolor A3(2). The substrate-bound crystal structures of CYP158A2 and CYP158A1 reveal that the side chain of Ile87 in CYP158A2 points to the active site contacting the distal flaviolin molecule, however, the bulkier side chain of Lys90 in CYP158A1 (corresponding to Ile87 in CYP158A2) is toward the distal surface of the protein. These results suggest that these residues could be important in determining product regiospecificity. In order to explore the role of the two residues in catalysis, the reciprocal mutants, Ile87Lys and Lys90Ile, of CYP158A2 and CYP158A1, respectively, were generated and characterized. The mutant Ile87Lys enzyme forms two isomers of biflaviolin instead of three isomers of biflaviolin in wild-type CYP158A2. CYP158A1 containing the substitution of lysine with isoleucine has the same catalytic activity compared with the wild-type CYP158A1. The crystal structure of Ile87Lys showed that the BC loop in the mutant is in a very different orientation compared with the BC loop in both CYP158A1/A2 structures. These results shed light on the mechanism of the oxidative coupling reaction catalyzed by cytochrome P450. PMID:22203090

  5. Striatal adenosine-cannabinoid receptor interactions in rats over-expressing adenosine A2A receptors.

    PubMed

    Chiodi, Valentina; Ferrante, Antonella; Ferraro, Luca; Potenza, Rosa Luisa; Armida, Monica; Beggiato, Sarah; Pèzzola, Antonella; Bader, Michael; Fuxe, Kjell; Popoli, Patrizia; Domenici, Maria Rosaria

    2016-03-01

    Adenosine A2A receptors (A2 A Rs) and cannabinoid CB1 receptors (CB1 Rs) are highly expressed in the striatum, where they functionally interact and form A2A /CB1 heteroreceptor complexes. We investigated the effects of CB1 R stimulation in a transgenic rat strain over-expressing A2 A Rs under the control of the neural-specific enolase promoter (NSEA2A rats) and in age-matched wild-type (WT) animals. The effects of the CB1 R agonist WIN 55,212-2 (WIN) were significantly lower in NSEA2A rats than in WT animals, as demonstrated by i) electrophysiological recordings of synaptic transmission in corticostriatal slices; ii) the measurement of glutamate outflow from striatal synaptosomes and iii) in vivo experiments on locomotor activity. Moreover, while the effects of WIN were modulated by both A2 A R agonist (CGS 21680) and antagonists (ZM 241385, KW-6002 and SCH-442416) in WT animals, the A2 A R antagonists failed to influence WIN-mediated effects in NSEA2A rats. The present results demonstrate that in rats with genetic neuronal over-expression of A2 A Rs, the effects mediated by CB1 R activation in the striatum are significantly reduced, suggesting a change in the stoichiometry of A2A and CB1 receptors and providing a strategy to dissect the involvement of A2 A R forming or not forming heteromers in the modulation of striatal functions. These findings add additional evidence for the existence of an interaction between striatal A2 A Rs and CB1 Rs, playing a fundamental role in the regulation of striatal functions. We studied A2A -CB1 receptor interaction in transgenic rats over-expressing adenosine A2A receptors under the control of the neuron-specific enolase promoter (NSEA2A ). In these rats, we demonstrated a reduced effect of the CB1 receptor agonist WIN 55,212-2 in the modulation of corticostriatal synaptic transmission and locomotor activity, while CB1 receptor expression level did not change with respect to WT rats. A reduction in the expression of A2A -CB1

  6. Pharmacogenetics of the organic anion transporting polypeptide 1A2

    PubMed Central

    Franke, Ryan M; Scherkenbach, Lisa A; Sparreboom, Alex

    2016-01-01

    The solute carrier, human organic anion transporting polypeptide 1A2 (OATP1A2, OATP-A, OATP1 and OATP) is highly expressed in the intestine, kidney, cholangiocytes and the blood–brain barrier. This localization suggests that OATP1A2 may be vitally important in the absorption, distribution and excretion of a broad array of clinically important drugs. Several nonsynonymous polymorphisms have been identified in the gene encoding OATP1A2, SLCO1A2 (SLC21A3), with some of these variants demonstrating functional changes in the transport of OATP1A2 substrates. PMID:19290786

  7. Multi-Inhibitory Effects of A2A Adenosine Receptor Signaling on Neutrophil Adhesion Under Flow.

    PubMed

    Yago, Tadayuki; Tsukamoto, Hiroki; Liu, Zhenghui; Wang, Ying; Thompson, Linda F; McEver, Rodger P

    2015-10-15

    A2A adenosine receptor (A2AAR) signaling negatively regulates inflammatory responses in many disease models, but the detailed mechanisms remain unclear. We used the selective A2AAR agonist, ATL313, to examine how A2AAR signaling affects human and murine neutrophil adhesion under flow. Treating neutrophils with ATL313 inhibited selectin-induced, β2 integrin-dependent slow rolling and chemokine-induced, β2 integrin-dependent arrest on ICAM-1. ATL313 inhibited selectin-induced β2 integrin extension, which supports slow rolling, and chemokine-induced hybrid domain "swing-out," which supports arrest. Furthermore, ATL313 inhibited integrin outside-in signaling as revealed by reduced neutrophil superoxide production and spreading on immobilized anti-β2 integrin Ab. ATL313 suppressed selectin-triggered activation of Src family kinases (SFKs) and p38 MAPK, chemokine-triggered activation of Ras-related protein 1, and β2 integrin-triggered activation of SFKs and Vav cytoskeletal regulatory proteins. ATL313 activated protein kinase A and its substrate C-terminal Src kinase, an inhibitor of SFKs. Treating neutrophils with a protein kinase A inhibitor blocked the actions of ATL313. In vivo, ATL313-treated neutrophils rolled faster and arrested much less frequently in postcapillary venules of the murine cremaster muscle after TNF-α challenge. Furthermore, ATL313 markedly suppressed neutrophil migration into the peritoneum challenged with thioglycollate. ATL313 did not affect A2AAR-deficient neutrophils, confirming its specificity. Our findings provide new insights into the anti-inflammatory mechanisms of A2AAR signaling and the potential utility of A2AAR agonists in inflammatory diseases. PMID:26355151

  8. Validation of a 2-day water maze protocol in mice.

    PubMed

    Gulinello, Maria; Gertner, Michael; Mendoza, Guadalupe; Schoenfeld, Brian P; Oddo, Salvatore; LaFerla, Frank; Choi, Catherine H; McBride, Sean M J; Faber, Donald S

    2009-01-23

    We present a 2-day water maze protocol that addresses some of potential confounds present in the water maze when using the aged subjects typical of studies of neurodegenerative disorders, such as Alzheimer's disease. This protocol is based on an initial series of training trials with a visible platform, followed by a memory test with a hidden platform 24h later. We validated this procedure using aged (15-18m) mice expressing three Alzheimer's disease-related transgenes, PS1(M146 V), APP(Swe), and tau(P301L). We also tested these triple transgenic mice (3xTG) and age and sex-matched wild-type (WT) in a behavioral battery consisting of tests of motor coordination (balance beam), spatial memory (object displacement task) visual acuity (novel object recognition task) and locomotor activity (open field). 3xTG mice had significantly longer escape latencies in the memory trial of the 2-day water maze test than WT and than their own baseline performance in the last visible platform trial. In addition, this protocol had improved sensitivity compared to a typical probe trial, since no significant differences between genotypes were evident in a probe trial conducted 24h after the final training trial. The 2-day procedure also resulted in good reliability between cohorts, and controlled for non-cognitive factors that can confound water maze assessments of memory, such as the significantly lower locomotor activity evident in the 3xTG mice. A further benefit of this method is that large numbers of animals can be tested in a short time. PMID:18831990

  9. Androgen deprivation-induced NCoA2 promotes metastatic and castration-resistant prostate cancer.

    PubMed

    Qin, Jun; Lee, Hui-Ju; Wu, San-Pin; Lin, Shih-Chieh; Lanz, Rainer B; Creighton, Chad J; DeMayo, Francesco J; Tsai, Sophia Y; Tsai, Ming-Jer

    2014-11-01

    A major clinical hurdle for the management of advanced prostate cancer (PCa) in patients is the resistance of tumors to androgen deprivation therapy (ADT) and their subsequent development into castration-resistant prostate cancer (CRPC). While recent studies have identified potential pathways involved in CRPC development, the drivers of CRPC remain largely undefined. Here we determined that nuclear receptor coactivator 2 (NCoA2, also known as SRC-2), which is frequently amplified or overexpressed in patients with metastatic PCa, mediates development of CRPC. In a murine model, overexpression of NCoA2 in the prostate epithelium resulted in neoplasia and, in combination with Pten deletion, promoted the development of metastasis-prone cancer. Moreover, depletion of NCoA2 in PTEN-deficient mice prevented the development of CRPC. In human androgen-sensitive prostate cancer cells, androgen signaling suppressed NCoA2 expression, and NCoA2 overexpression in murine prostate tumors resulted in hyperactivation of PI3K/AKT and MAPK signaling, promoting tumor malignance. Analysis of PCa patient samples revealed a strong correlation among NCoA2-mediated signaling, disease progression, and PCa recurrence. Taken together, our findings indicate that androgen deprivation induces NCoA2, which in turn mediates activation of PI3K signaling and promotes PCa metastasis and CRPC development. Moreover, these results suggest that the inhibition of NCoA2 has potential for PCa therapy. PMID:25295534

  10. Gene expression and function of adenosine A(2A) receptor in the rat carotid body.

    PubMed

    Kobayashi, S; Conforti, L; Millhorn, D E

    2000-08-01

    The present study was undertaken to determine whether rat carotid bodies express adenosine (Ado) A(2A) receptors and whether this receptor is involved in the cellular response to hypoxia. Our results demonstrate that rat carotid bodies express the A(2A) and A(2B) Ado receptor mRNAs but not the A(1) or A(3) receptor mRNAs as determined by reverse transcriptase-polymerase chain reaction. In situ hybridization confirmed the expression of the A(2A) receptor mRNA. Immunohistochemical studies further showed that the A(2A) receptor is expressed in the carotid body and that it is colocalized with tyrosine hydroxylase in type I cells. Whole cell voltage-clamp studies using isolated type I cells showed that Ado inhibited the voltage-dependent Ca(2+) currents and that this inhibition was abolished by the selective A(2A) receptor antagonist ZM-241385. Ca(2+) imaging studies using fura 2 revealed that exposure to severe hypoxia induced elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in type I cells and that extracellularly applied Ado significantly attenuated the hypoxia-induced elevation of [Ca(2+)](i). Taken together, our findings indicate that A(2A) receptors are present in type I cells and that activation of A(2A) receptors modulates Ca(2+) accumulation during hypoxia. This mechanism may play a role in regulating intracellular Ca(2+) homeostasis and cellular excitability during hypoxia. PMID:10926550

  11. Androgen deprivation–induced NCoA2 promotes metastatic and castration-resistant prostate cancer

    PubMed Central

    Qin, Jun; Lee, Hui-Ju; Wu, San-Pin; Lin, Shih-Chieh; Lanz, Rainer B.; Creighton, Chad J.; DeMayo, Francesco J.; Tsai, Sophia Y.; Tsai, Ming-Jer

    2014-01-01

    A major clinical hurdle for the management of advanced prostate cancer (PCa) in patients is the resistance of tumors to androgen deprivation therapy (ADT) and their subsequent development into castration-resistant prostate cancer (CRPC). While recent studies have identified potential pathways involved in CRPC development, the drivers of CRPC remain largely undefined. Here we determined that nuclear receptor coactivator 2 (NCoA2, also known as SRC-2), which is frequently amplified or overexpressed in patients with metastatic PCa, mediates development of CRPC. In a murine model, overexpression of NCoA2 in the prostate epithelium resulted in neoplasia and, in combination with Pten deletion, promoted the development of metastasis-prone cancer. Moreover, depletion of NCoA2 in PTEN-deficient mice prevented the development of CRPC. In human androgen-sensitive prostate cancer cells, androgen signaling suppressed NCoA2 expression, and NCoA2 overexpression in murine prostate tumors resulted in hyperactivation of PI3K/AKT and MAPK signaling, promoting tumor malignance. Analysis of PCa patient samples revealed a strong correlation among NCoA2-mediated signaling, disease progression, and PCa recurrence. Taken together, our findings indicate that androgen deprivation induces NCoA2, which in turn mediates activation of PI3K signaling and promotes PCa metastasis and CRPC development. Moreover, these results suggest that the inhibition of NCoA2 has potential for PCa therapy. PMID:25295534

  12. Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling.

    PubMed

    Ge, Guanqun; Zhou, Can; Ren, Yu; Tang, Xiaojiang; Wang, Ke; Zhang, Wei; Niu, Ligang; Zhou, Yuhui; Yan, Yu; He, Jianjun

    2016-04-01

    Even though early detection methods and treatment options are greatly improved, chemoresistance is still a tremendous challenge for breast cancer therapy. Breast cancer stem cells (BCSCs) represent a subpopulation that is central to chemoresistance. We aim to investigate the relationship between SLC34A2 and chemoresistance in BCSCs and identify the underlying mechanisms by which SLC34A2 regulates chemoresistance in BCSCs. Fluorescence Activated Cell Sorting (FACS) analysis showed the presence of a variable fraction of CD44(+)CD24(-) cells in 25 out of 25 breast cancer samples. We cultured primary breast cancer sample cells and breast cancer cell line cells to induce sphere formation in serum-free medium. Following sorting of CD44(+)CD24(-) cells from spheres, we showed that CD44(+)CD24(-) cells displayed stem cell-like features and were resistant to chemotherapy drug doxorubicin. Significantly, enhanced SLC34A2 expression correlated with chemoresponse and survival of breast cancer patients. We subsequently indicated that increased SLC34A2 expression in BCSCs directly contributed to their chemoresistance by a series of in vitro and in vivo experiments. Furthermore, we demonstrated that SLC34A2 induced chemoresistance in BCSCs via SLC34A2-Bmi1-ABCC5 signaling. Finally, we showed that ABCC5 was a direct transcriptional target of Bmi1 by chromatin immunoprecipitation (ChIP). In conclusion, our work indicated that decreased SLC34A2 expression sensitized BCSCs to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling and shed new light on understanding the mechanism of chemoresistance in BCSCs. This study not only bridges the missing link between stem cell-related transcription factor (Bmi1) and ABC transporter (ABCC5) but also contributes to development of potential therapeutics against breast cancer. PMID:26546432

  13. 26 CFR 1.663(a)-2 - Charitable, etc., distributions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 8 2011-04-01 2011-04-01 false Charitable, etc., distributions. 1.663(a)-2 Section 1.663(a)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED... Distribute Corpus § 1.663(a)-2 Charitable, etc., distributions. Any amount paid, permanently set aside, or...

  14. 26 CFR 1.663(a)-2 - Charitable, etc., distributions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Charitable, etc., distributions. 1.663(a)-2 Section 1.663(a)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED... Corpus § 1.663(a)-2 Charitable, etc., distributions. Any amount paid, permanently set aside, or to...

  15. 26 CFR 1.409A-2 - Deferral elections.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 5 2011-04-01 2011-04-01 false Deferral elections. 1.409A-2 Section 1.409A-2...) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.409A-2 Deferral elections. (a) Initial elections as to the time and form of payment—(1) In general. A plan that is,...

  16. 26 CFR 1.409A-2 - Deferral elections.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Deferral elections. 1.409A-2 Section 1.409A-2...) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.409A-2 Deferral elections. (a) Initial elections as to the time and form of payment—(1) In general. A plan that is,...

  17. 26 CFR 1.409A-2 - Deferral elections.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 5 2013-04-01 2013-04-01 false Deferral elections. 1.409A-2 Section 1.409A-2...) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.409A-2 Deferral elections. (a) Initial elections as to the time and form of payment—(1) In general. A plan that is,...

  18. 26 CFR 1.6038A-2 - Requirement of return.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 13 2011-04-01 2011-04-01 false Requirement of return. 1.6038A-2 Section 1.6038A-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6038A-2 Requirement of return. (a) Form 5472 required—(1) In general. Each...

  19. 26 CFR 1.6038A-2 - Requirement of return.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 13 2014-04-01 2014-04-01 false Requirement of return. 1.6038A-2 Section 1.6038A-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6038A-2 Requirement of return. (a) Form 5472 required—(1) In general. Each...

  20. 26 CFR 1.6038A-2 - Requirement of return.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Requirement of return. 1.6038A-2 Section 1.6038A-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6038A-2 Requirement of return. (a) Form 5472 required—(1) In general. Each...

  1. 26 CFR 1.6038A-2 - Requirement of return.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 13 2013-04-01 2013-04-01 false Requirement of return. 1.6038A-2 Section 1.6038A-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Information Returns § 1.6038A-2 Requirement of return. (a) Form 5472 required—(1) In general. Each...

  2. EphA2 overexpression promotes ovarian cancer growth

    PubMed Central

    Lu, Chunhua; Shahzad, Mian M.K.; Wang, Hua; Landen, Charles N.; Kim, Seung W.; Allen, Julie; Nick, Alpa M.; Jennings, Nicholas; Kinch, Michael S.; Bar-Eli, Menashe; Sood, Anil K.

    2009-01-01

    Background Silencing EphA2 has been shown to result in anti-tumor efficacy. However, it is not known whether increasing EphA2 expression specifically results in increased tumor growth and progression. We examined the effects of stable EphA2 transfection into poorly invasive ovarian cancer cells with regard to in vitro invasive and in vivo metastatic potential. Results In low cell density, EphA2-overexpressing A2780 cells (A2780-EphA2) displayed less cell-cell contact, increased cell-extracellular matrix (ECM) attachment and anchorage-independent cell growth compared to empty vector controls. There was no significant effect on anchorage-dependent cell proliferation, migration or invasion. Increased expression of EphA2 promoted tumor growth and enhanced the metastatic potential in A2780-EphA2 human ovarian cancer xenografts. The overexpression of EphA2 resulted in enhanced microvessel density (MVD), but had no effect on tumor cell proliferation. Methods EphA2 gene was introduced into A2780 cells by retroviral infection. The effects of increased EphA2 expression were examined on cellular morphology, and anchorage-dependent and independent cell growth. Furthermore, the effect of EphA2 overexpression on metastatic ability was determined using an orthotopic nude mouse model of ovarian carcinoma. Conclusions EphA2 promotes tumor growth by enhancing cell-ECM adhesion, increasing anchorage-independent growth and promoting angiogenesis. PMID:18443431

  3. 26 CFR 1.103A-2 - Qualified mortgage bond.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Qualified mortgage bond. 1.103A-2 Section 1.103A-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Excluded from Gross Income § 1.103A-2 Qualified mortgage bond. (a)-(j) (k) Information...

  4. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  5. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  6. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  7. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  8. 40 CFR 721.4585 - Lecithins, phospholipase A2-hydrolyzed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Lecithins, phospholipase A2-hydrolyzed... Substances § 721.4585 Lecithins, phospholipase A2-hydrolyzed. (a) Chemical substances and significant new..., phospholipase A2-hydrolyzed (PMN P-93-333) is subject to reporting under this section for the significant...

  9. 26 CFR 48.4161(a)-2 - Meaning of terms.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Meaning of terms. 48.4161(a)-2 Section 48.4161(a)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Sporting Goods § 48.4161(a)-2 Meaning of terms....

  10. 26 CFR 48.4161(a)-2 - Meaning of terms.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Meaning of terms. 48.4161(a)-2 Section 48.4161(a)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Sporting Goods § 48.4161(a)-2 Meaning of terms....

  11. 26 CFR 48.4161(a)-2 - Meaning of terms.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Meaning of terms. 48.4161(a)-2 Section 48.4161(a)-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES MANUFACTURERS AND RETAILERS EXCISE TAXES Sporting Goods § 48.4161(a)-2 Meaning of terms....

  12. 32 CFR 809a.2 - Military responsibility and authority.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Military responsibility and authority. 809a.2 Section 809a.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Entry Policy § 809a.2 Military responsibility and authority. (a) Air Force installation commanders...

  13. 32 CFR 809a.2 - Military responsibility and authority.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Military responsibility and authority. 809a.2 Section 809a.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Entry Policy § 809a.2 Military responsibility and authority. (a) Air Force installation commanders...

  14. 32 CFR 809a.2 - Military responsibility and authority.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Military responsibility and authority. 809a.2 Section 809a.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Entry Policy § 809a.2 Military responsibility and authority. (a) Air Force installation commanders...

  15. 12 CFR 708a.2 - Authority to convert.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 12 Banks and Banking 6 2011-01-01 2011-01-01 false Authority to convert. 708a.2 Section 708a.2 Banks and Banking NATIONAL CREDIT UNION ADMINISTRATION REGULATIONS AFFECTING CREDIT UNIONS BANK CONVERSIONS AND MERGERS Conversion of Insured Credit Unions to Mutual Savings Banks § 708a.2 Authority to convert. A credit union, with the approval of...

  16. 32 CFR 809a.2 - Military responsibility and authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Military responsibility and authority. 809a.2 Section 809a.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Entry Policy § 809a.2 Military responsibility and authority. (a) Air Force installation commanders...

  17. 32 CFR 809a.2 - Military responsibility and authority.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Military responsibility and authority. 809a.2 Section 809a.2 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Entry Policy § 809a.2 Military responsibility and authority. (a) Air Force installation commanders...

  18. Probing phospholipase a(2) with fluorescent phospholipid substrates.

    PubMed

    Wichmann, Oliver; Gelb, Michael H; Schultz, Carsten

    2007-09-01

    The Foerster resonance energy transfer-based sensor, PENN, measures intracellular phospholipase A(2) (PLA(2)) activity in living cells and small organisms. In an attempt to modify the probe for the detection of particular isoforms, we altered the sn-2 fatty acid in such a way that either one or three of the Z double bonds in arachidonic acid were present in the sensor molecule. Arachidonic-acid-mimicking fatty acids were prepared by copper-mediated coupling reactions. Probes with a single double bond in the 5-position exhibited favorable substrate properties for secretory PLA(2)s. In vitro experiments with the novel unsaturated doubly labeled phosphatidylethanolamine derivatives showed preferred cleavage of the sensor PENN2 (one double bond) by the physiologically important group V sPLA(2), while the O-methyl-derivative PMNN2 was accepted best by the isoform from hog pancreas. For experiments in living cells, we demonstrated that bioactivation via S-acetylthioethyl (SATE) groups is essential for probe performance. Surprisingly, membrane-permeant versions of the new sensors that contained double bonds, PENN2 and PENN3, were only cleaved to a minor extent in HeLa cells while the saturated form, PENN, was well accepted. PMID:17661302

  19. Secretory Phospholipase A2-IIA and Cardiovascular Disease

    PubMed Central

    Holmes, Michael V.; Simon, Tabassome; Exeter, Holly J.; Folkersen, Lasse; Asselbergs, Folkert W.; Guardiola, Montse; Cooper, Jackie A.; Palmen, Jutta; Hubacek, Jaroslav A.; Carruthers, Kathryn F.; Horne, Benjamin D.; Brunisholz, Kimberly D.; Mega, Jessica L.; van Iperen, Erik P.A.; Li, Mingyao; Leusink, Maarten; Trompet, Stella; Verschuren, Jeffrey J.W.; Hovingh, G. Kees; Dehghan, Abbas; Nelson, Christopher P.; Kotti, Salma; Danchin, Nicolas; Scholz, Markus; Haase, Christiane L.; Rothenbacher, Dietrich; Swerdlow, Daniel I.; Kuchenbaecker, Karoline B.; Staines-Urias, Eleonora; Goel, Anuj; van 't Hooft, Ferdinand; Gertow, Karl; de Faire, Ulf; Panayiotou, Andrie G.; Tremoli, Elena; Baldassarre, Damiano; Veglia, Fabrizio; Holdt, Lesca M.; Beutner, Frank; Gansevoort, Ron T.; Navis, Gerjan J.; Mateo Leach, Irene; Breitling, Lutz P.; Brenner, Hermann; Thiery, Joachim; Dallmeier, Dhayana; Franco-Cereceda, Anders; Boer, Jolanda M.A.; Stephens, Jeffrey W.; Hofker, Marten H.; Tedgui, Alain; Hofman, Albert; Uitterlinden, André G.; Adamkova, Vera; Pitha, Jan; Onland-Moret, N. Charlotte; Cramer, Maarten J.; Nathoe, Hendrik M.; Spiering, Wilko; Klungel, Olaf H.; Kumari, Meena; Whincup, Peter H.; Morrow, David A.; Braund, Peter S.; Hall, Alistair S.; Olsson, Anders G.; Doevendans, Pieter A.; Trip, Mieke D.; Tobin, Martin D.; Hamsten, Anders; Watkins, Hugh; Koenig, Wolfgang; Nicolaides, Andrew N.; Teupser, Daniel; Day, Ian N.M.; Carlquist, John F.; Gaunt, Tom R.; Ford, Ian; Sattar, Naveed; Tsimikas, Sotirios; Schwartz, Gregory G.; Lawlor, Debbie A.; Morris, Richard W.; Sandhu, Manjinder S.; Poledne, Rudolf; Maitland-van der Zee, Anke H.; Khaw, Kay-Tee; Keating, Brendan J.; van der Harst, Pim; Price, Jackie F.; Mehta, Shamir R.; Yusuf, Salim; Witteman, Jaqueline C.M.; Franco, Oscar H.; Jukema, J. Wouter; de Knijff, Peter; Tybjaerg-Hansen, Anne; Rader, Daniel J.; Farrall, Martin; Samani, Nilesh J.; Kivimaki, Mika; Fox, Keith A.A.; Humphries, Steve E.; Anderson, Jeffrey L.; Boekholdt, S. Matthijs; Palmer, Tom M.; Eriksson, Per; Paré, Guillaume; Hingorani, Aroon D.; Sabatine, Marc S.; Mallat, Ziad; Casas, Juan P.; Talmud, Philippa J.

    2013-01-01

    Objectives This study sought to investigate the role of secretory phospholipase A2 (sPLA2)-IIA in cardiovascular disease. Background Higher circulating levels of sPLA2-IIA mass or sPLA2 enzyme activity have been associated with increased risk of cardiovascular events. However, it is not clear if this association is causal. A recent phase III clinical trial of an sPLA2 inhibitor (varespladib) was stopped prematurely for lack of efficacy. Methods We conducted a Mendelian randomization meta-analysis of 19 general population studies (8,021 incident, 7,513 prevalent major vascular events [MVE] in 74,683 individuals) and 10 acute coronary syndrome (ACS) cohorts (2,520 recurrent MVE in 18,355 individuals) using rs11573156, a variant in PLA2G2A encoding the sPLA2-IIA isoenzyme, as an instrumental variable. Results PLA2G2A rs11573156 C allele associated with lower circulating sPLA2-IIA mass (38% to 44%) and sPLA2 enzyme activity (3% to 23%) per C allele. The odds ratio (OR) for MVE per rs11573156 C allele was 1.02 (95% confidence interval [CI]: 0.98 to 1.06) in general populations and 0.96 (95% CI: 0.90 to 1.03) in ACS co