Science.gov

Sample records for a2 mediated tumor

  1. EphrinA1-EphA2 interaction-mediated apoptosis and Flt3L-induced immunotherapy inhibits tumor growth in a breast cancer mouse model

    PubMed Central

    Tandon, Manish; Vemula, Sai V.; Sharma, Anurag; Ahi, Yadvinder S.; Mittal, Shalini; Bangari, Dinesh S.; Mittal, Suresh K.

    2014-01-01

    Background The receptor tyrosine kinase EphA2 is overexpressed in several types of cancers and is currently being pursued as a target for breast cancer therapeutics. The EphA2 ligand EphrinA1 induces EphA2 phosphorylation and intracellular internalization and degradation, thus inhibiting tumor progression. The hematopoietic growth factor, FMS-like tyrosine kinase receptor ligand (Flt3L), promotes expansion and mobilization of functional dendritic cells. Methods We tested the EphrinA1-EphA2 interaction in MDA-MB-231 breast cancer cells focusing on the receptor-ligand-mediated apoptosis of breast cancer cells. In order to determine whether the EphrinA1-EphA2 interaction-associated apoptosis and Flt3L-mediated immunotherapy would have an additive effect in inhibiting tumor growth, we used an immunocompetent mouse model of breast cancer to evaluate intratumoral (i.t.) inoculation strategies with human adenovirus (HAd) vectors expressing either EphrinA1 (HAd-EphrinA1-Fc), Flt3L (HAd-Flt3L) or a combination of EphrinA1-Fc + Flt3L (HAd-EphrinA1-Fc + HAd-Flt3L). Results In vitro analysis demonstrated that an EphrinA1-EphA2 interaction led to apoptosis-related changes in breast cancer cells. In vivo, three i.t. inoculations of HAd-EphrinA1-Fc showed potent inhibition of tumor growth. Furthermore, increased inhibition in tumor growth was observed with the combination of HAd-EphrinA1-Fc and HAd-Flt3L accompanied by the generation of an anti-tumor adaptive immune response. Conclusions The results indicating induction of apoptosis and inhibition of mammary tumor growth show the potential therapeutic benefits of HAd-EphrinA1-Fc. In combination with HAd-Flt3L, this represents a promising strategy to effectively induce mammary tumor regression by HAd vector-based therapy. PMID:22228563

  2. Transactivation of the Receptor-tyrosine Kinase Ephrin Receptor A2 Is Required for the Low Molecular Weight Hyaluronan-mediated Angiogenesis That Is implicated in Tumor Progression*

    PubMed Central

    Lennon, Frances E; Mirzapoiazova, Tamara; Mambetsariev, Nurbek; Mambetsariev, Bolot; Salgia, Ravi; Singleton, Patrick A.

    2014-01-01

    Angiogenesis or the formation of new blood vessels is important in the growth and metastatic potential of various cancers. Therefore, understanding the mechanism(s) by which angiogenesis occurs can have important therapeutic implications in numerous malignancies. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA, ∼2500 Da) promotes endothelial cell (EC) barrier disruption and angiogenesis. However, the mechanism(s) by which this occurs is poorly defined. Our data indicate that treatment of human EC with LMW-HA induced CD44v10 association with the receptor-tyrosine kinase, EphA2, transactivation (tyrosine phosphorylation) of EphA2, and recruitment of the PDZ domain scaffolding protein, PATJ, to the cell periphery. Silencing (siRNA) CD44, EphA2, PATJ, or Dbs (RhoGEF) expression blocked LMW-HA-mediated angiogenesis (EC proliferation, migration, and tubule formation). In addition, silencing EphA2, PATJ, Src, or Dbs expression blocked LMW-HA-mediated RhoA activation. To translate our in vitro findings, we utilized a novel anginex/liposomal targeting of murine angiogenic endothelium with either CD44 or EphA2 siRNA and observed inhibition of LMW-HA-induced angiogenesis in implanted Matrigel plugs. Taken together, these results indicate LMW-HA-mediated transactivation of EphA2 is required for PATJ and Dbs membrane recruitment and subsequent RhoA activation required for angiogenesis. These results suggest that targeting downstream effectors of LMW-HA could be a useful therapeutic intervention for angiogenesis-associated diseases including tumor progression. PMID:25023279

  3. HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice.

    PubMed

    Vertuani, Simona; Triulzi, Chiara; Roos, Anna Karin; Charo, Jehad; Norell, Håkan; Lemonnier, François; Pisa, Pavel; Seliger, Barbara; Kiessling, Rolf

    2009-05-01

    To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2(+) tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369-377, 435-443 and 689-697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4(+) T cells and antibodies are important components.

  4. Cytosolic Phospholipase A2 and Lysophospholipids in Tumor Angiogenesis

    PubMed Central

    Linkous, Amanda G.

    2010-01-01

    Background Lung cancer and glioblastoma multiforme are highly angiogenic and, despite advances in treatment, remain resistant to therapy. Cytosolic phospholipase A2 (cPLA2) activation contributes to treatment resistance through transduction of prosurvival signals. We investigated cPLA2 as a novel molecular target for antiangiogenesis therapy. Methods Glioblastoma (GL261) and Lewis lung carcinoma (LLC) heterotopic tumor models were used to study the effects of cPLA2 expression on tumor growth and vascularity in C57/BL6 mice wild type for (cPLA2α+/+) or deficient in (cPLA2α−/−) cPLA2α, the predominant isoform in endothelium (n = 6–7 mice per group). The effect of inhibiting cPLA2 activity on GL261 and LLC tumor growth was studied in mice treated with the chemical cPLA2 inhibitor 4-[2-[5-chloro-1-(diphenylmethyl)-2-methyl-1H-indol-3-yl]-ethoxy]benzoic acid (CDIBA). Endothelial cell proliferation and function were evaluated by Ki-67 immunofluorescence and migration assays in primary cultures of murine pulmonary microvascular endothelial cells (MPMEC) isolated from cPLA2α+/+ and cPLA2α−/− mice. Proliferation, invasive migration, and tubule formation were assayed in mouse vascular endothelial 3B-11 cells treated with CDIBA. Effects of lysophosphatidylcholine, arachidonic acid, and lysophosphatidic acid (lipid mediators of tumorigenesis and angiogenesis) on proliferation and migration were examined in 3B-11 cells and cPLA2α−/− MPMEC. All statistical tests were two-sided. Results GL261 tumor progression proceeded normally in cPLA2α+/+ mice, whereas no GL261 tumors formed in cPLA2α−/− mice. In the LLC tumor model, spontaneous tumor regression was observed in 50% of cPLA2α−/− mice. Immunohistochemical examination of the remaining tumors from cPLA2α−/− mice revealed attenuated vascularity (P ≤ .001) compared with tumors from cPLA2α+/+ mice. Inhibition of cPLA2 activity by CDIBA resulted in a delay in tumor growth (eg, LLC model: average

  5. Autocrine IL-6 mediates pituitary tumor senescence.

    PubMed

    Sapochnik, Melanie; Haedo, Mariana R; Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K; Arzt, Eduardo

    2017-01-17

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence.

  6. Autocrine IL-6 mediates pituitary tumor senescence

    PubMed Central

    Fuertes, Mariana; Ajler, Pablo; Carrizo, Guillermo; Cervio, Andrés; Sevlever, Gustavo; Stalla, Günter K.; Arzt, Eduardo

    2017-01-01

    Cellular senescence is a stable proliferative arrest state. Pituitary adenomas are frequent and mostly benign, but the mechanism for this remains unknown. IL-6 is involved in pituitary tumor progression and is produced by the tumoral cells. In a cell autonomous fashion, IL-6 participates in oncogene-induced senescence in transduced human melanocytes. Here we prove that autocrine IL-6 participates in pituitary tumor senescence. Endogenous IL-6 inhibition in somatotroph MtT/S shRNA stable clones results in decreased SA-β-gal activity and p16INK4a but increased pRb, proliferation and invasion. Nude mice injected with IL-6 silenced clones develop tumors contrary to MtT/S wild type that do not, demonstrating that clones that escape senescence are capable of becoming tumorigenic. When endogenous IL-6 is silenced, cell cultures derived from positive SA-β-gal human tumor samples decrease the expression of the senescence marker. Our results establish that IL-6 contributes to maintain senescence by its autocrine action, providing a natural model of IL-6 mediated benign adenoma senescence. PMID:27902467

  7. Reversal of tumor-mediated immunosuppression.

    PubMed

    Vieweg, Johannes; Su, Zhen; Dahm, Philipp; Kusmartsev, Sergei

    2007-01-15

    Therapeutic cancer vaccines, one form of active immunotherapy, have long been under investigation; consequently, several vaccine-based strategies have now moved from the bench to the clinical arena. Despite their tremendous promise, current vaccine strategies have shown only limited success in clinical settings, even in renal cell carcinoma (RCC), a prototypical malignancy for the application of immunotherapy. There is ample evidence that, especially in RCC, multiple immunosuppressive mechanisms exist that considerably dampen antitumor responses and weaken the activity of current immunotherapeutic regimens. Therefore, it will be necessary to reverse tumor-mediated immunosuppression before immunotherapies can successfully be applied. Recent insights into the nature and characteristics of the regulatory elements of the immune system have provided new opportunities to enhance vaccine-mediated antitumor immunity and, thereby, increase the chance for improving patient outcome. These new insights represent important considerations for the future design and application of more effective cancer vaccines against RCC and other cancers.

  8. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor.

    PubMed

    Eini, Hadar; Frishman, Valeria; Yulzari, Robert; Kachko, Leonid; Lewis, Eli C; Chaimovitz, Cidio; Douvdevani, Amos

    2015-11-01

    Epidemiologic studies depict a negative correlation between caffeine consumption and incidence of tumors in humans. The main pharmacological effects of caffeine are mediated by antagonism of the adenosine receptor, A2AR. Here, we examine whether the targeting of A2AR by caffeine plays a role in anti-tumor immunity. In particular, the effects of caffeine are studied in wild-type and A2AR knockout (A2AR(-/-)) mice. Tumor induction was achieved using the carcinogen 3-methylcholanthrene (3-MCA). Alternatively, tumor cells, comprised of 3-MCA-induced transformed cells or B16 melanoma cells, were inoculated into animal footpads. Cytokine release was determined in a mixed lymphocyte tumor reaction (MLTR). According to our findings, caffeine-consuming mice (0.1% in water) developed tumors at a lower rate compared to water-consuming mice (14% vs. 53%, respectively, p=0.0286, n=15/group). Within the caffeine-consuming mice, tumor-free mice displayed signs of autoimmune alopecia and pronounced leukocyte recruitment intocarcinogen injection sites. Similarly, A2AR(-/-) mice exhibited reduced rates of 3-MCA-induced tumors. In tumor inoculation studies, caffeine treatment resulted in inhibition of tumor growth and elevation in proinflammatory cytokine release over water-consuming mice, as depicted by MLTR. Addition of the adenosine receptor agonist, NECA, to MLTR resulted in a sharp decrease in IFNγ levels; this was reversed by the highly selective A2AR antagonist, ZM241385. Thus, immune response modulation through either caffeine or genetic deletion of A2AR leads to a Th1 immune profile and suppression of carcinogen-induced tumorigenesis. Taken together, our data suggest that the use of pharmacologic A2AR antagonists may hold therapeutic potential in diminishing the rate of cancer development.

  9. Hhip regulates tumor-stroma-mediated upregulation of tumor angiogenesis

    PubMed Central

    Agrawal, Vijayendra; Kim, Dong Young; Kwon, Young-Guen

    2017-01-01

    Tumor growth is governed by the coordinated action of various types of cells that are present in the tumor environment. Fibroblasts, which constitute a major fraction of the stroma, participate actively in various signaling events and regulate tumor development and metastasis. The Hedgehog (Hh) pathway plays an important role in promoting tumor malignancy via fibroblasts; however, the role of hedgehog interacting protein (hhip; inhibitor of Hh pathway) in tumor growth is poorly understood. Here we implanted B16F10 tumors in hhip+/− mice to study the tumor growth characteristics and the vascular phenotype. Furthermore, the mechanism involved in the observed phenomena was explored to reveal the role of hhip in tumor growth. The tumors that were implanted in hhip+/− mice exhibited accelerated growth and increased tumor angiogenesis. Although we observed a decrease in hypoxia, blood vessels still had abnormal phenotype. We found that increased Hh signaling in tumor fibroblasts induced a high expression of vascular endothelial growth factor (VEGF), which subsequently resulted in an increased proliferation of endothelial cells. Thus, the heterozygous knockdown of hhip in mice could affect Hh signaling in tumor fibroblasts, which could cause the increased production of the growth factor VEGF. This signaling, via a paracrine effect on endothelial cells, increased tumor vascular density. PMID:28127049

  10. KSHV-Mediated Angiogenesis in Tumor Progression

    PubMed Central

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  11. Exosomes and tumor-mediated immune suppression

    PubMed Central

    2016-01-01

    Tumor-derived exosomes (TEX) are harbingers of tumor-induced immune suppression: they carry immunosuppressive molecules and factors known to interfere with immune cell functions. By delivering suppressive cargos consisting of proteins similar to those in parent tumor cells to immune cells, TEX directly or indirectly influence the development, maturation, and antitumor activities of immune cells. TEX also deliver genomic DNA, mRNA, and microRNAs to immune cells, thereby reprogramming functions of responder cells to promote tumor progression. TEX carrying tumor-associated antigens can interfere with antitumor immunotherapies. TEX also have the potential to serve as noninvasive biomarkers of tumor progression. In the tumor microenvironment, TEX may be involved in operating numerous signaling pathways responsible for the downregulation of antitumor immunity. PMID:26927673

  12. Curcumin reverses breast tumor exosomes mediated immune suppression of NK cell tumor cytotoxicity

    PubMed Central

    Zhang, Huang-Ge; Kim, Helen; Liu, Cunren; Yu, Shaohua; Wang, Jianhua; Grizzle, William E.; Kimberly, Robert P.; Barnes, Stephen

    2007-01-01

    An important characteristic of tumors is that they at some point in their development overcome the surveillance of the immune system. Tumors secrete exosomes, multivesicular bodies containing a distinct set of proteins that can fuse with cells of the circulating immune system. Purified exosomes from TS/A breast cancer cells, but not non-exosomal fractions, inhibit (at concentrations of nanograms per ml protein) IL-2-induced natural killer (NK) cell cytotoxicity. The dietary polyphenol, curcumin (diferuloylmethane), partially reverses tumor exosome-mediated inhibition of natural killer cell activation, which is mediated through the impairment of the ubiquitin-proteasome system. Exposure of mouse breast tumor cells to curcumin causes a dose-dependent increase in ubiquitinated exosomal proteins compared to those in untreated TS/A breast tumor cells. Furthermore, exosomes isolated from tumor cells pretreated with curcumin have a much attenuated inhibition of IL-2 stimulated NK cell activation. Jak3-mediated activation of Stat5 is required for tumor cytotoxicity of IL-2 stimulated NK cells. TS/A tumor exosomes strongly inhibit activation of Stat5, whereas the tumor exosomes isolated from curcumin-pretreated tumor cells have a lowered potency for inhibition of IL-2 stimulated NK cell cytotoxicity. These data suggest that partial reversal of tumor exosome-mediated inhibition of NK cell tumor cytotoxicity may account for the anti-cancer properties curcumin. PMID:17555831

  13. Vitamin D3 Mediated Tumor Regression.

    DTIC Science & Technology

    1998-07-01

    1,25(OH)2D3 and its synthetic analog EB 1089 induce characteristic features of apoptosis in MCF-7 cells in vitro. To determine whether vitamin D3...after five weeks. The reduced growth of tumors from EB 1089 treated mice was associated with characteristic apoptotic morphology. After five weeks of...treatment with EB 1089 , MCF-7 tumors exhibited a six-fold increase in DNA fragmentation and a two-fold reduction in proliferation relative to control

  14. Adenovirus-mediated gene transfer to tumor cells.

    PubMed

    Cascalló, Manel; Alemany, Ramon

    2004-01-01

    Cell transduction in vitro is only the first step toward proving that a genetherapy vector can be useful to treat tumors. However, tumor targeting in vivo is now the milestone for gene therapy to succeed against disseminated cancer. Therefore, most valuable information is obtained from studies of vector biodistribution. Owing to the hepatotropism of adenoviral vectors, a particularly important parameter is the tumor/liver ratio. This ratio can be given at the level of gene expression if the amount of transgene expression is measured. To optimize the targeting, however, the levels of viral particles that reach the tumor compared to other organs must be studied. Most of this chapter deals with methods to quantify the virus fate in tumor-bearing animals. We present a radioactive labeling method that can be used to study biodistribution. After a small section dealing with tumor models, we describe methods to quantify different parameters related to adenovirus-mediated tumor targeting.

  15. Stem and progenitor cell-mediated tumor selective gene therapy.

    PubMed

    Aboody, K S; Najbauer, J; Danks, M K

    2008-05-01

    The poor prognosis for patients with aggressive or metastatic tumors and the toxic side effects of currently available treatments necessitate the development of more effective tumor-selective therapies. Stem/progenitor cells display inherent tumor-tropic properties that can be exploited for targeted delivery of anticancer genes to invasive and metastatic tumors. Therapeutic genes that have been inserted into stem cells and delivered to tumors with high selectivity include prodrug-activating enzymes (cytosine deaminase, carboxylesterase, thymidine kinase), interleukins (IL-2, IL-4, IL-12, IL-23), interferon-beta, apoptosis-promoting genes (tumor necrosis factor-related apoptosis-inducing ligand) and metalloproteinases (PEX). We and others have demonstrated that neural and mesenchymal stem cells can deliver therapeutic genes to elicit a significant antitumor response in animal models of intracranial glioma, medulloblastoma, melanoma brain metastasis, disseminated neuroblastoma and breast cancer lung metastasis. Most studies reported reduction in tumor volume (up to 90%) and increased survival of tumor-bearing animals. Complete cures have also been achieved (90% disease-free survival for >1 year of mice bearing disseminated neuroblastoma tumors). As we learn more about the biology of stem cells and the molecular mechanisms that mediate their tumor-tropism and we identify efficacious gene products for specific tumor types, the clinical utility of cell-based delivery strategies becomes increasingly evident.

  16. Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity

    PubMed Central

    1994-01-01

    A costimulatory signal through B7 to its counter-receptor CD28 on T cells enhances T cell activation. We have generated recombinant retroviruses containing cDNA for murine B7 and transduced a panel of murine tumor lines with varying immunogenicity to study the effect of B7 costimulation on antitumor immunity. In contrast to the progressive outgrowth of all wild-type (B7-) tumors in unimmunized syngeneic mice, four immunogenic tumors, lymphoma RMA, EL4, mastocytoma P815, and melanoma E6B2, regressed completely when transduced with the B7 gene. In contrast, four nonimmunogenic tumors, sarcomas MCA101, MCA102, and Ag104, and melanoma B16, remained tumorigenic after transduction of the B7 gene. Immunization with B7-transduced immunogenic tumors enhanced protective immunity and increased specific cytotoxic T lymphocyte (CTL) activity against the respective wild-type tumors as compared to immunization with nontransduced or mock-transduced tumors. Moreover, cocultivation of CTL with B7-transduced EL4 cells augmented the specificity of tumor-reactive CTL in long-term cultures. Treatment by injection of B7-transduced tumor cells cured 60% of mice with established wild-type EL4 lymphoma. In contrast, immunization with nonimmunogenic tumors transduced with B7 did not provide protective immunity and did not increase specific CTL activity. Our results show that tumor immunogenicity is critical to the outcome of costimulation of T cell-mediated tumor immunity by B7. PMID:7507508

  17. Penfluridol suppresses pancreatic tumor growth by autophagy-mediated apoptosis

    PubMed Central

    Ranjan, Alok; Srivastava, Sanjay K.

    2016-01-01

    Pancreatic tumors exhibit enhanced autophagy as compared to any other cancer, making it resistant to chemotherapy. We evaluated the effect of penfluridol against pancreatic cancer. Penfluridol treatment induced apoptosis and inhibited the growth of Panc-1, BxPC-3 and AsPC-1, pancreatic cancer cells with IC50 ranging between 6–7 μM after 24 h of treatment. Significant autophagy was induced by penfluridol treatment in pancreatic cancer cells. Punctate LC3B and autophagosomes staining confirmed autophagy. Inhibiting autophagy by chloroquine, bafilomycin, 3-methyladenine or LC3BsiRNA, significantly blocked penfluridol-induced apoptosis, suggesting that autophagy lead to apoptosis in our model. Penfluridol treatment suppressed the growth of BxPC-3 tumor xenografts by 48% as compared to 17% when treated in combination with chloroquine. Similarly, penfluridol suppressed the growth of AsPC-1 tumors by 40% versus 16% when given in combination with chloroquine. TUNEL staining and caspase-3 cleavage revealed less apoptosis in the tumors from mice treated with penfluridol and chloroquine as compared to penfluridol alone. Penfluridol treatment also suppressed the growth of orthotopically implanted Panc-1 tumors by 80% by inducing autophagy-mediated apoptosis in the tumors. These studies established that penfluridol inhibits pancreatic tumor growth by autophagy-mediated apoptosis. Since penfluridol is already in clinic, positive findings from our study will accelerate its clinical development. PMID:27189859

  18. The role IL-1 in tumor-mediated angiogenesis

    PubMed Central

    Voronov, Elena; Carmi, Yaron; Apte, Ron N.

    2014-01-01

    Tumor angiogenesis is one of the hallmarks of tumor progression and is essential for invasiveness and metastasis. Myeloid inflammatory cells, such as immature myeloid precursor cells, also termed myeloid-derived suppressor cells (MDSCs), neutrophils, and monocytes/macrophages, are recruited to the tumor microenvironment by factors released by the malignant cells that are subsequently “educated” in situ to acquire a pro-invasive, pro-angiogenic, and immunosuppressive phenotype. The proximity of myeloid cells to endothelial cells (ECs) lining blood vessels suggests that they play an important role in the angiogenic response, possibly by secreting a network of cytokines/chemokines and inflammatory mediators, as well as via activation of ECs for proliferation and secretion of pro-angiogenic factors. Interleukin-1 (IL-1) is an “alarm,” upstream, pro-inflammatory cytokine that is generated primarily by myeloid cells. IL-1 initiates and propagates inflammation, mainly by inducing a local cytokine network and enhancing inflammatory cell infiltration to affected sites and by augmenting adhesion molecule expression on ECs and leukocytes. Pro-inflammatory mediators were recently shown to play an important role in tumor-mediated angiogenesis and blocking their function may suppress tumor progression. In this review, we summarize the interactions between IL-1 and other pro-angiogenic factors during normal and pathological conditions. In addition, the feasibility of IL-1 neutralization approaches for anti-cancer therapy is discussed. PMID:24734023

  19. Exosome mediated communication within the tumor microenvironment.

    PubMed

    Milane, Lara; Singh, Amit; Mattheolabakis, George; Suresh, Megha; Amiji, Mansoor M

    2015-12-10

    It is clear that exosomes (endosome derived vesicles) serve important roles in cellular communication both locally and distally and that the exosomal process is abnormal in cancer. Cancer cells are not malicious cells; they are cells that represent 'survival of the fittest' at its finest. All of the mutations, abnormalities, and phenomenal adaptations to a hostile microenvironment, such as hypoxia and nutrient depletion, represent the astute ability of cancer cells to adapt to their environment and to intracellular changes to achieve a single goal - survival. The aberrant exosomal process in cancer represents yet another adaptation that promotes survival of cancer. Cancer cells can secrete more exosomes than healthy cells, but more importantly, the content of cancer cells is distinct. An illustrative distinction is that exosomes derived from cancer cells contain more microRNA than healthy cells and unlike exosomes released from healthy cells, this microRNA can be associated with the RNA-induced silencing complex (RISC) which is required for processing mature and biologically active microRNA. Cancer derived exosomes have the ability to transfer metastatic potential to a recipient cell and cancer exosomes function in the physical process of invasion. In this review we conceptualize the aberrant exosomal process (formation, content selection, loading, trafficking, and release) in cancer as being partially attributed to cancer specific differences in the endocytotic process of receptor recycling/degradation and plasma membrane remodeling and the function of the endosome as a signaling entity. We discuss this concept and, to advance comprehension of exosomal function in cancer as mediators of communication, we detail and discuss exosome biology, formation, and communication in health and cancer; exosomal content in cancer; exosomal biomarkers in cancer; exosome mediated communication in cancer metastasis, drug resistance, and interfacing with the immune system; and

  20. TWEAK mediates anti-tumor effect of tumor-infiltrating macrophage

    SciTech Connect

    Kaduka, Yuki; Takeda, Kazuyoshi . E-mail: ktakeda@med.juntendo.ac.jp; Nakayama, Masafumi; Kinoshita, Katsuyuki; Yagita, Hideo; Okumura, Ko

    2005-06-03

    TWEAK induces diverse cellular responses, including pro-inflammatory chemokine production, migration, proliferation, and cell death through the TWEAK receptor, Fn14. In the present study, we examined the effect of TWEAK or Fn14 expression in tumor cells on tumor outgrowth in vivo. Administration of neutralizing anti-TWEAK mAb significantly reduced the frequency of tumor rejection and shortened the survival of mice intraperitoneally inoculated with TWEAK-sensitive Fn14-expressing tumor cells. Moreover, anti-TWEAK mAb treatment promoted the subcutaneous growth of TWEAK-sensitive Fn14-expressing tumor cells, and this promotion was abolished by the inhibition of macrophage infiltration but not NK cell depletion. In contrast, administration of anti-TWEAK mAb had no apparent effect on the growth of TWEAK-resistant tumor cells, even if tumor cells expressed Fn14. On the other hand, TWEAK expression in tumor cells had no significant effect on subcutaneous tumor growth. These results indicate that TWEAK mediates anti-tumor effect of macrophages in vivo.

  1. The impact of stress on tumor growth: peripheral CRF mediates tumor-promoting effects of stress

    PubMed Central

    2010-01-01

    Introduction Stress has been shown to be a tumor promoting factor. Both clinical and laboratory studies have shown that chronic stress is associated with tumor growth in several types of cancer. Corticotropin Releasing Factor (CRF) is the major hypothalamic mediator of stress, but is also expressed in peripheral tissues. Earlier studies have shown that peripheral CRF affects breast cancer cell proliferation and motility. The aim of the present study was to assess the significance of peripheral CRF on tumor growth as a mediator of the response to stress in vivo. Methods For this purpose we used the 4T1 breast cancer cell line in cell culture and in vivo. Cells were treated with CRF in culture and gene specific arrays were performed to identify genes directly affected by CRF and involved in breast cancer cell growth. To assess the impact of peripheral CRF as a stress mediator in tumor growth, Balb/c mice were orthotopically injected with 4T1 cells in the mammary fat pad to induce breast tumors. Mice were subjected to repetitive immobilization stress as a model of chronic stress. To inhibit the action of CRF, the CRF antagonist antalarmin was injected intraperitoneally. Breast tissue samples were histologically analyzed and assessed for neoangiogenesis. Results Array analysis revealed among other genes that CRF induced the expression of SMAD2 and β-catenin, genes involved in breast cancer cell proliferation and cytoskeletal changes associated with metastasis. Cell transfection and luciferase assays confirmed the role of CRF in WNT- β-catenin signaling. CRF induced 4T1 cell proliferation and augmented the TGF-β action on proliferation confirming its impact on TGFβ/SMAD2 signaling. In addition, CRF promoted actin reorganization and cell migration, suggesting a direct tumor-promoting action. Chronic stress augmented tumor growth in 4T1 breast tumor bearing mice and peripheral administration of the CRF antagonist antalarmin suppressed this effect. Moreover, antalarmin

  2. Interferon-mediated Tumor Resistance to Oncolytic Virotherapy.

    PubMed

    Ebrahimi, Safieh; Ghorbani, Elnaz; Khazaei, Majid; Avan, Amir; Ryzhikov, Mikhail; Azadmanesh, Keyhan; Hassanian, Seyed Mahdi

    2017-01-30

    Interferons (INFs) elicit antiviral responses in tumor cells upon binding to cell surface receptors. Oncolytic virotherapy (OV) is an effective antitumor therapeutic approach which in combination with standard radiotherapy or chemotherapy regimens potentiates treatment responses in cancer patients. However, oncolytic viruses are susceptible to the IFN-induced antiviral state in the tumor microenvironment. A number of studies have therefore investigated the effects of combined therapy of IFN signaling pharmacological inhibitors with oncolytic viruses, which result in improved virus replication and oncolysis. This review summarizes the current knowledge of the mechanisms of interferon-mediated tumor resistance to oncolytic virotherapy and provides new insights regarding the effectiveness of combinatorial treatment strategies to attenuate INF-induced OV resistance for greater clinical significance in the treatment of cancer patients. This article is protected by copyright. All rights reserved.

  3. Activation of the A2B adenosine receptor in B16 melanomas induces CXCL12 expression in FAP-positive tumor stromal cells, enhancing tumor progression

    PubMed Central

    Sorrentino, Claudia; Miele, Lucio; Porta, Amalia; Pinto, Aldo; Morello, Silvana

    2016-01-01

    The A2B receptor (A2BR) can mediate adenosine-induced tumor proliferation, immunosuppression and angiogenesis. Targeting the A2BR has proved to be therapeutically effective in some murine tumor models, but the mechanisms of these effects are still incompletely understood. Here, we report that pharmacologic inhibition of A2BR with PSB1115, which inhibits tumor growth, decreased the number of fibroblast activation protein (FAP)-expressing cells in tumors in a mouse model of melanoma. This effect was associated with reduced expression of fibroblast growth factor (FGF)-2. Treatment of melanoma-associated fibroblasts with the A2BR agonist Bay60-6583 enhanced CXCL12 and FGF2 expression. This effect was abrogated by PSB1115. The A2AR agonist CGS21680 did not induce CXCL12 or FGF2 expression in tumor associated fibroblasts. Similar results were obtained under hypoxic conditions in skin-derived fibroblasts, which responded to Bay60-6583 in an A2BR-dependent manner, by stimulating pERK1/2. FGF2 produced by Bay60-6583-treated fibroblasts directly enhanced the proliferation of melanoma cells. This effect could be reversed by PSB1115 or an anti-FGF2 antibody. Interestingly, melanoma growth in mice receiving Bay60-6583 was attenuated by inhibition of the CXCL12/CXCR4 pathway with AMD3100. CXCL12 and its receptor CXCR4 are involved in angiogenesis and immune-suppression. Treatment of mice with AMD3100 reduced the number of CD31+ cells induced by Bay60-6583. Conversely, CXCR4 blockade did not affect the accumulation of tumor-infiltrating MDSCs or Tregs. Together, our data reveal an important role for A2BR in stimulating FGF2 and CXCL12 expression in melanoma-associated fibroblasts. These factors contribute to create a tumor-promoting microenvironment. Our findings support the therapeutic potential of PSB1115 for melanoma. PMID:27590504

  4. New insights into IL-12-mediated tumor suppression

    PubMed Central

    Tugues, S; Burkhard, S H; Ohs, I; Vrohlings, M; Nussbaum, K; vom Berg, J; Kulig, P; Becher, B

    2015-01-01

    During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects. PMID:25190142

  5. New insights into IL-12-mediated tumor suppression.

    PubMed

    Tugues, S; Burkhard, S H; Ohs, I; Vrohlings, M; Nussbaum, K; Vom Berg, J; Kulig, P; Becher, B

    2015-02-01

    During the past two decades, interleukin-12 (IL-12) has emerged as one of the most potent cytokines in mediating antitumor activity in a variety of preclinical models. Through pleiotropic effects on different immune cells that form the tumor microenvironment, IL-12 establishes a link between innate and adaptive immunity that involves different immune effector cells and cytokines depending on the type of tumor or the affected tissue. The robust antitumor response exerted by IL-12, however, has not yet been successfully translated into the clinics. The majority of clinical trials involving treatment with IL-12 failed to show sustained antitumor responses and were associated to toxic side effects. Here we discuss the therapeutic effects of IL-12 from preclinical to clinical studies, and will highlight promising strategies to take advantage of the antitumor activity of IL-12 while limiting adverse effects.

  6. Capacity of tumor necrosis factor to augment lymphocyte-mediated tumor cell lysis of malignant mesothelioma

    SciTech Connect

    Bowman, R.V.; Manning, L.S.; Davis, M.R.; Robinson, B.W. )

    1991-01-01

    Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by natural killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma.

  7. Role of adenosine A2b receptor overexpression in tumor progression.

    PubMed

    Sepúlveda, Cesar; Palomo, Iván; Fuentes, Eduardo

    2016-12-01

    The adenosine A2b receptor is a G-protein coupled receptor. Its activation occurs with high extracellular adenosine concentration, for example in inflammation or hypoxia. These conditions are generated in the tumor environment. Studies show that A2b receptor is overexpressed in various tumor lines and biopsies from patients with different cancers. This suggests that A2b receptor can be used by tumor cells to promote progression. Thus A2b participates in different events, such as angiogenesis and metastasis, besides exerting immunomodulatory effects that protect tumor cells. Therefore, adenosine A2b receptor appears as an interesting therapeutic target for cancer treatment.

  8. Differences and Similarities in TRAIL- and Tumor Necrosis Factor-Mediated Necroptotic Signaling in Cancer Cells

    PubMed Central

    Philipp, Stephan; Fuchslocher Chico, Johaiber; Saggau, Carina; Fritsch, Jürgen; Föll, Alexandra; Plenge, Johannes; Arenz, Christoph; Pinkert, Thomas; Kalthoff, Holger; Trauzold, Anna; Schmitz, Ingo; Schütze, Stefan; Adam, Dieter

    2016-01-01

    Recently, a type of regulated necrosis (RN) called necroptosis was identified to be involved in many pathophysiological processes and emerged as an alternative method to eliminate cancer cells. However, only a few studies have elucidated components of TRAIL-mediated necroptosis useful for anticancer therapy. Therefore, we have compared this type of cell death to tumor necrosis factor (TNF)-mediated necroptosis and found similar signaling through acid and neutral sphingomyelinases, the mitochondrial serine protease HtrA2/Omi, Atg5, and vacuolar H+-ATPase. Notably, executive mechanisms of both TRAIL- and TNF-mediated necroptosis are independent of poly(ADP-ribose) polymerase 1 (PARP-1), and depletion of p38α increases the levels of both types of cell death. Moreover, we found differences in signaling between TNF- and TRAIL-mediated necroptosis, e.g., a lack of involvement of ubiquitin carboxyl hydrolase L1 (UCH-L1) and Atg16L1 in executive mechanisms of TRAIL-mediated necroptosis. Furthermore, we discovered indications of an altered involvement of mitochondrial components, since overexpression of the mitochondrial protein Bcl-2 protected Jurkat cells from TRAIL- and TNF-mediated necroptosis, and overexpression of Bcl-XL diminished only TRAIL-induced necroptosis in Colo357 cells. Furthermore, TRAIL does not require receptor internalization and endosome-lysosome acidification to mediate necroptosis. Taken together, pathways described for TRAIL-mediated necroptosis and differences from those for TNF-mediated necroptosis might be unique targets to increase or modify necroptotic signaling and eliminate tumor cells more specifically in future anticancer approaches. PMID:27528614

  9. Autoradiographic and histopathological studies of boric acid-mediated BNCT in hepatic VX2 tumor-bearing rabbits: Specific boron retention and damage in tumor and tumor vessels.

    PubMed

    Yang, C H; Lin, Y T; Hung, Y H; Liao, J W; Peir, J J; Liu, H M; Lin, Y L; Liu, Y M; Chen, Y W; Chuang, K S; Chou, F I

    2015-12-01

    Hepatoma is a malignant tumor that responds poorly to conventional therapies. Boron neutron capture therapy (BNCT) may provide a better way for hepatoma therapy. In this research, (10)B-enriched boric acid (BA, 99% (10)B) was used as the boron drug. A multifocal hepatic VX2 tumor-bearing rabbit model was used to study the mechanisms of BA-mediated BNCT. Autoradiography demonstrated that BA was selectively targeted to tumors and tumor vessels. Histopathological examination revealed the radiation damage to tumor-bearing liver was concentrated in the tumor regions during BNCT treatment. The selective killing of tumor cells and the destruction of the blood vessels in tumor masses may be responsible for the success of BA-mediated BNCT for liver tumors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Mesenchymal Stem Cell-Mediated Effects of Tumor Support or Suppression

    PubMed Central

    Rhee, Ki-Jong; Lee, Jong In; Eom, Young Woo

    2015-01-01

    Mesenchymal stem cells (MSCs) can exhibit a marked tropism towards site of tumors. Many studies have reported that tumor progression and metastasis increase by MSCs. In contrast, other studies have shown that MSCs suppress growth of tumors. MSCs contribute to tumor growth promotion by several mechanisms: (1) transition to tumor-associated fibroblasts; (2) suppression of immune response; (3) promotion of angiogenesis; (4) stimulation of epithelial-mesenchymal transition (EMT); (5) contribution to the tumor microenvironment; (6) inhibition of tumor cell apoptosis; and (7) promotion of tumor metastasis. In contrast to the tumor-promoting properties, MSCs inhibit tumor growth by increasing inflammatory infiltration, inhibiting angiogenesis, suppressing Wnt signaling and AKT signaling, and inducing cell cycle arrest and apoptosis. In this review, we will discuss potential mechanisms by which MSC mediates tumor support or suppression and then the possible tumor-specific therapeutic strategies using MSCs as delivery vehicles, based on their homing potential to tumors. PMID:26694366

  11. Elevated Slit2 Activity Impairs VEGF-induced Angiogenesis and Tumor Neovascularization in EphA2-deficient Endothelium

    PubMed Central

    Youngblood, Victoria; Wang, Shan; Song, Wenqiang; Walter, Debra; Hwang, Yoonha; Chen, Jin; Brantley-Sieders, Dana M.

    2015-01-01

    Angiogenic remodeling during embryonic development and in adult tissue homeostasis is orchestrated by cooperative signaling between several distinct molecular pathways, which are often exploited by tumors. Indeed, tumors upregulate pro-angiogenic molecules while simultaneously suppressing angiostatic pathways in order to recruit blood vessels for growth, survival, and metastatic spread. Understanding how cancers exploit pro- and anti-angiogenic signals is a key step in developing new, molecularly targeted anti-angiogenic therapies. While EphA2, a receptor tyrosine kinase (RTK), is required for vascular endothelial growth factor (VEGF)-induced angiogenesis, the mechanism through which these pathways intersect remains unclear. Slit2 expression is elevated in EphA2-deficient endothelium, and here it is reported that inhibiting Slit activity rescues VEGF-induced angiogenesis in cell culture and in vivo, as well as VEGF-dependent tumor angiogenesis, in EphA2-deficient endothelial cells and animals. Moreover, blocking Slit activity or Slit2 expression in EphA2-deficient endothelial cells restores VEGF-induced activation of Src and Rac, both of which are required for VEGF-mediated angiogenesis. These data suggest that EphA2 suppression of Slit2 expression and Slit angiostatic activity enables VEGF-induced angiogenesis in vitro and in vivo, providing a plausible mechanism for impaired endothelial responses to VEGF in the absence of EphA2 function. PMID:25504371

  12. Cetuximab-mediated Tumor Regression Depends on Innate and Adaptive Immune Responses

    PubMed Central

    Yang, Xuanming; Zhang, Xunmin; Mortenson, Eric D; Radkevich-Brown, Olga; Wang, Yang; Fu, Yang-Xin

    2013-01-01

    Epidermal growth factor receptor (EGFR) over-signaling leads to more aggressive tumor growth. The antitumor effect of Cetuximab, an anti-EGFR antibody, depends on oncogenic-signal blockade leading to tumor cell apoptosis and antibody dependent cell-mediated cytotoxicity (ADCC). However, whether adaptive immunity plays a role in Cetuximab-mediated tumor inhibition is unclear, as current xenograft models lack adaptive immunity and human-EGFR–dependent mouse tumor cell lines are unavailable. Using a newly developed xenograft model with reconstituted immune cells, we demonstrate that the Cetuximab effect becomes more pronounced and reduces the EGFR+ human tumor burden when adaptive immunity is present. To further study this in a mouse tumor model, we created a novel EGFR+ mouse tumor cell line and demonstrated that Cetuximab-induced tumor regression depends on both innate and adaptive immunity components, including CD8+ T cells, MyD88, and FcγR. To test whether strong innate signals inside tumor tissues amplifies the Cetuximab-mediated therapeutic effect, Cetuximab was conjugated to CpG. This conjugate is more potent than Cetuximab alone for complete tumor regression and resistance to tumor rechallenge. Furthermore, Cetuximab-CpG conjugates can activate tumor-reactive T cells for tumor regression by increasing dendritic cell (DC) cross-presentation. Therefore, this study establishes new models to evaluate immune responses induced by antibody-based treatment, defines molecular mechanisms, and provides new tumor-regression strategies. PMID:22990672

  13. Adenosine A2B receptor blockade slows growth of bladder and breast tumors.

    PubMed

    Cekic, Caglar; Sag, Duygu; Li, Yuesheng; Theodorescu, Dan; Strieter, Robert M; Linden, Joel

    2012-01-01

    The accumulation of high levels of adenosine in tumors activates A(2A) and A(2B) receptors on immune cells and inhibits their ability to suppress tumor growth. Deletion of adenosine A(2A) receptors (A(2A)ARs) has been reported to activate antitumor T cells, stimulate dendritic cell (DC) function, and inhibit angiogenesis. In this study, we evaluated the effects of intermittent intratumor injection of a nonselective adenosine receptor antagonist, aminophylline (AMO; theophylline ethylenediamine) and, for the first time to our knowledge, a selective A(2B)AR antagonist, ATL801. AMO and ATL801 slowed the growth of MB49 bladder and 4T1 breast tumors in syngeneic mice and reduced by 85% metastasizes of breast cancer cells from mammary fat to lung. Based on experiments with A(2A)AR(-/-) or adenosine A(2B) receptor(-/-) mice, the effect of AMO injection was unexpectedly attributed to A(2B)AR and not to A(2A)AR blockade. AMO and ATL801 significantly increased tumor levels of IFN-γ and the IFN-inducible chemokine CXCL10, which is a ligand for CXCR3. This was associated with an increase in activated tumor-infiltrating CXCR3(+) T cells and a decrease in endothelial cell precursors within tumors. Tumor growth inhibition by AMO or ATL801 was eliminated in CXCR3(-/-) mice and RAG1(-/-) mice that lack mature T cells. In RAG1(-/-) mice, A(2B)AR deletion enhanced CD86 expression on CD11b(-) DCs. Bone marrow chimera experiments demonstrated that CXCR3 and A(2B)AR expression on bone marrow cells is required for the antitumor effects of AMO. The data suggest that blockade of A(2B)ARs enhances DC activation and CXCR3-dependent antitumor responses.

  14. Proteolysis of EphA2 converts it from a tumor suppressor to an oncoprotein

    PubMed Central

    KOSHIKAWA, Naohiko; HOSHINO, Daisuke; TANIGUCHI, Hiroaki; MINEGISHI, Tomoko; TOMARI, Taizo; NAM, Sung-Ouk; AOKI, Mikiko; SUETA, Takayuki; NAKAGAWA, Takashi; MIYAMOTO, Shingo; NABESHIMA, Kazuki; WEAVER, Alissa M.; SEIKI, Motoharu

    2015-01-01

    Eph receptor tyrosine kinases are considered candidate therapeutic targets in cancer, but they can exert opposing effects on cell growth. In presence of its ligands, Eph receptor EphA2 suppresses signaling by other growth factor receptors, including ErbB, whereas ligand-independent activation of EphA2 augments ErbB signaling. To deploy EphA2-targeting drugs effectively in tumors, the anti-oncogenic ligand-dependent activation state of EphA2 must be discriminated from its oncogenic ligand-independent state. Since the molecular basis for the latter is little understood, we investigated how the activation state of EphA2 can be switched in tumor tissue. We found that ligand-binding domain of EphA2 is cleaved frequently by the membrane metalloproteinase MT1-MMP, a powerful modulator of the pericellular environment in tumor cells. EphA2 immunostaining revealed a significant loss of the N-terminal portion of EphA2 in areas of tumor tissue that expressed MT1-MMP. Moreover, EphA2 phosphorylation patterns that signify ligand-independent activation were observed specifically in these areas of tumor tissue. Mechanistic experiments revealed that processing of EphA2 by MT1-MMP promoted ErbB signaling, anchorage-independent growth, and cell migration. Conversely, expression of a proteolysis-resistant mutant of EphA2 prevented tumorigenesis and metastasis of human tumor xenografts in mice. Overall, our results showed how the proteolytic state of EphA2 in tumors determines its effector function and influences its status as a candidate biomarker for targeted therapy. PMID:26130649

  15. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis.

    PubMed

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-07-03

    Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy.

  16. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis

    PubMed Central

    Li, Hui; Xu, Fangying; Li, Si; Zhong, Anjing; Meng, Xianwen; Lai, Maode

    2016-01-01

    ABSTRACT Tumor budding occurs at the invasive front of cancer; the tumor cells involved have metastatic and stemness features, indicating a poor prognosis. Tumor budding is partly responsible for cancer metastasis, and its initiation is based on the epithelial-mesenchymal transition (EMT) process. The EMT process involves the conversion of epithelial cells into migratory and invasive cells, and is a profound event in tumorigenesis. The EMT, associated with the formation of cancer stem cells (CSCs) and resistance to therapy, results from a combination of gene mutation, epigenetic regulation, and microenvironmental control. Tumor budding can be taken to represent the EMT in vivo. The EMT process is under the influence of the tumor microenvironment as well as tumor cells themselves. Here, we demonstrate that the tumor microenvironment dominates EMT development and impacts cancer metastasis, as well as promotes CSC formation and mediates drug resistance. In this review, we mainly discuss components of the microenvironment, such as the extracellular matrix (ECM), inflammatory cytokines, metabolic products, and hypoxia, that are involved in and impact on the acquisition of tumor-cell motility and dissemination, the EMT, metastatic tumor-cell formation, tumor budding and CSCs, and cancer metastasis, including subsequent chemo-resistance. From our point of view, the tumor microenvironment now constitutes a promising target for cancer therapy. PMID:26743180

  17. Development of drug loaded nanoparticles for tumor targeting. Part 2: Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models

    NASA Astrophysics Data System (ADS)

    El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei

    2013-04-01

    We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor models, presumably through tandem cycles of CD44 mediated endocytosis and exocytosis. When doxorubicin (DOX) was loaded onto the NPs, better penetration of multilayered tumor cells was observed with much improved cytotoxicities against both drug sensitive and drug resistant cancer spheroids compared to the free drug. Thus, targeting receptors such as CD44 that can readily undergo recycling between the cell surface and interior of the cells can become a useful strategy to enhance the tumor penetration potential of NPs and the efficiency of drug delivery through receptor mediated transcytosis.We report that receptor mediated transcytosis can be utilized to facilitate tumor penetration by drug loaded nanoparticles (NPs). We synthesized hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44 expressed on the cancer cell surface. Although prior studies have primarily focused on CD44 mediated endocytosis to facilitate cellular uptake of HA-NPs by cancer cells, we discovered that, once internalized, the HA-SNPs could be transported out of the cells with their cargo. The exported NPs could be taken up by neighboring cells. This enabled the HA-SNPs to penetrate deeper inside tumors and reach a much greater number of tumor cells in 3D tumor

  18. CD98hc (SLC3A2) Loss Protects Against Ras-Driven Tumorigenesis by Modulating Integrin-Mediated Mechanotransduction

    PubMed Central

    Estrach, Soline; Lee, Sin-Ae; Boulter, Etienne; Pisano, Sabrina; Errante, Aurélia; Tissot, Floriane S.; Cailleteau, Laurence; Pons, Catherine; Ginsberg, Mark H.; Féral, Chloé C.

    2016-01-01

    CD98hc (SLC3A2) is the heavy chain component of the dimeric transmembrane glycoprotein CD98, which comprises the large neutral amino acid transporter LAT1 (SLC7A5) in cells. Overexpression of CD98hc occurs widely in cancer cells, and is associated with poor prognosis clinically, but its exact contributions to tumorigenesis are uncertain. In this study, we showed that that genetic deficiency of CD98hc protects against Ras-driven skin carcinogenesis. Deleting CD98hc after tumor induction was also sufficient to cause regression of existing tumors. Investigations into the basis for these effects defined two new functions of CD98hc that contribute to epithelial cancer beyond an intrinsic effect on CD98hc on tumor cell proliferation. First, CD98hc increased the stiffness of the tumor microenvironment. Second, CD98hc amplified the capacity of cells to respond to matrix rigidity, an essential factor in tumor development. Mechanistically, CD98hc mediated this stiffness-sensing by increasing Rho kinase (ROCK) activity, resulting in increased transcription mediated by YAP/TAZ, a nuclear relay for mechanical signals. Our results suggest that CD98hc contributes to carcinogenesis by amplifying a positive feedback loop which increases both extracellular matrix stiffness and resulting cellular responses. This work supports a rationale to explore the use of CD98hc inhibitors as cancer therapeutics, PMID:25267066

  19. Immunodiagnosis of tumors in vivo using radiolabeled monoclonal antibody A2B5

    SciTech Connect

    Reintgen, D.S.; Shimizu, K.; Coleman, E.; Briner, W.; Kitzmiller, J.; Eisenbarth, G.; Seigler, H.F.

    1983-07-01

    Recently a murine monoclonal antibody (A2B5) has been described that reacts with a membrane associated GQ ganglioside common to peptide secreting normal cells and tumors. In vitro binding data demonstrated the presence of this ganglioside on neurons, adrenal medulla, and pancreatic islets, along with neuroendocrine tumors such as insulinomas, pheochromocytomas, melanomas and neuroblastomas. Negative binding has previously been shown for tissue sections from liver, kidney, colon, lung, stomach, and tumors not derived from the neural crest. Because of the specificity at A2B5 in vitro, this monoclonal antibody was labeled with /sup 131/I for in vivo tumor localization studies. Daily radionuclear scans were obtained in 5 KX rats bearing the radiation induced rat insulinoma with disappearance of the label from the blood pool and concentration in the tumor so that by the fourth day, the only activity present by scan was in the insulinoma. In addition A2B5 also localized to five different human melanoma cells lines grown in nude mice with high tumor/blood levels compared to normal tissues, while no localization is seen in nudes carrying osteosarcomas, colon, bladder, and renal cell carcinomas. In addition antibody A2B5 did not concentrate in any normal tissue though the antigen is present on several. The finding that A2B5 reacts across species lines (mouse, rat, man) lends itself to obvious diagnostic and therapeutic possibilities.

  20. Immunodiagnosis of tumors in vivo using radiolabeled monoclonal antibody A2B5.

    PubMed

    Reintgen, D S; Shimizu, K; Coleman, E; Briner, W; Kitzmiller, J; Eisenbarth, G; Seigler, H F

    1983-07-01

    Recently a murine monoclonal antibody (A2B5) has been described that reacts with a membrane associated GQ ganglioside common to peptide secreting normal cells and tumors. In vitro binding data demonstrated the presence of this ganglioside on neurons, adrenal medulla, and pancreatic islets, along with neuroendocrine tumors such as insulinomas, pheochromocytomas, melanomas and neuroblastomas. Negative binding has previously been shown for tissue sections from liver, kidney, colon, lung, stomach, and tumors not derived from the neural crest. Because of the specificity at A2B5 in vitro, this monoclonal antibody was labeled with 131I for in vivo tumor localization studies. Daily radionuclear scans were obtained in 5 KX rats bearing the radiation induced rat insulinoma with disappearance of the label from the blood pool and concentration in the tumor so that by the fourth day, the only activity present by scan was in the insulinoma. Tissue-counting data showed tumor/blood ratios (av +/- SE, 1.29 +/- 0.25) of A2B5 activity two to ten times the average activity found in other organs (0.28 +/- 0.05). No tumor concentration of the control nonspecific monoclonal antibody P3X63 was evident (0.27 +/- 0.04). In addition A2B5 also localized to five different human melanoma cells lines grown in nude mice with high tumor/blood levels (1.04 +/- 0.27) compared to normal tissues (0.32 +/- 0.05) (P = .0005), while no localization is seen in nudes carrying osteosarcomas, colon, bladder, and renal cell carcinomas. In addition antibody A2B5 did not concentrate in any normal tissue though the antigen is present on several. The finding that A2B5 reacts across species lines (mouse, rat, man) lends itself to obvious diagnostic and therapeutic possibilities.

  1. Application to BNCT to endocrine-mediated tumors

    SciTech Connect

    Binney, S.E.; Martsolf, S.W.; Albertson, B.D.

    1994-12-31

    Boron neutron capture therapy (BNCT) has been experiencing a recent resurgence in interest as a cancer treatment modality. Most of the focus involves brain tumors, specifically grade III/IV gliomas and metastatic melanoma. However, BNCT can also be considered for other tumors. Recent experiments by Oregon Health Sciences University and Oregon State University (OSU) investigators have explored the efficacy of BNCT for treating tumors found in endocrine glands. These tumors offer a unique advantage for BNCT because the tumor cells can be targeted by boron-loaded hormones through specific cell membrane receptors.

  2. Cathepsin B Mediates the pH-Dependent Proinvasive Activity of Tumor-Shed Microvesicles1

    PubMed Central

    Giusti, Ilaria; D'Ascenzo, Sandra; Millimaggi, Danilo; Taraboletti, Giulia; Carta, Gaspare; Franceschini, Nicola; Pavan, Antonio; Dolo, Vincenza

    2008-01-01

    Vesicles shed by cancer cells are known to mediate several tumor-host interactions. Tumor microenvironment may, in turn, influence the release and the activity of tumor-shed microvesicles. In this study, we investigated the molecular mediators of the pH-dependent proinvasive activity of tumor-shed vesicles. Gelatinase zymography showed increased microvesicle activity of matrix metalloproteinases 9 and 2 as a result of acid exposure (pH 5.6) compared to pH 7.4. Thus, we reasoned that the cysteine protease cathepsin B might play a role in mediating the pH-dependent activation of gelatinases. Cathepsin B expression in tumor-shed microvesicles was confirmed by Western blot analysis and zymography. The activity of vesicle-associated cathepsin B measured using Z-Arg-Arg-pNA as substrate was significantly increased at acidic pH values. Inhibition of protease activity by the cysteine protease inhibitor, E-64, and treatment of ovarian cancer cells with small interfering RNA against cathepsin B suppressed the ability of tumor-shed microvesicles to stimulate both gelatinase activation and the invasiveness of endothelial cells observed at low pH values. We conclude that microvesicle shedding is a major secretory pathway for cathepsin B release from tumor cells. Hence, the acidic microenvironment found in most solid tumors may contribute to cathepsin B-mediated proinvasive capabilities of tumor-shed vesicles. PMID:18472965

  3. Cutaneous tumors cease CXCL9/Mig production as a result of IFN-γ-mediated immunoediting.

    PubMed

    Petro, Marianne; Kish, Danielle; Guryanova, Olga A; Ilyinskaya, Galina; Kondratova, Anna; Fairchild, Robert L; Gorbachev, Anton V

    2013-01-15

    During growth in the host, tumor cells are subjected to the stresses of innate and adaptive immunity (immunoediting), which provoke epigenetic changes in the tumor and increase tumor resistance to these immune responses. Our recent studies in methylcholanthrene-induced fibrosarcomas have indicated the appearance and rapid growth of tumor variants deficient in producing the T cell chemoattractant chemokine CXCL9/Mig, an important component of antitumor immunity. In the current report, we demonstrate that highly tumorigenic Mig-deficient tumor variants arise in both cutaneous fibrosarcoma and melanoma as a result of immune stress imposed by IFN-γ and T cells. The consequence of the loss of tumor-derived Mig expression is the increased resistance of Mig-deficient tumors to T cell-mediated immunity, which promotes the accelerated growth of these tumor variants. Remarkably, the ability of Mig-deficient tumor cells to express another CXCR3 ligand, CXCL10/IFN-γ-inducible protein, does not compensate for the absent antitumor functions of Mig, suggesting a nonredundant role for this chemokine in the suppression of tumor growth. To our knowledge, these studies report for the first time that IFN-γ-mediated stress leads to the loss of specific chemokine expression by tumor cells, which in turn promotes tumor growth and evasion of the immune response.

  4. Tumor Vascular Changes Mediated by Inhibition of Oncogenic Signaling

    PubMed Central

    Qayum, Naseer; Muschel, Ruth J.; Im, Jae Hong; Balathasan, Lukxmi; Koch, Cameron J.; Patel, Sonal; McKenna, W. Gillies; Bernhard, Eric J.

    2009-01-01

    Many inhibitors of the EGFR-RAS-PI3 kinase-AKT signaling pathway are in clinical use or under development for cancer therapy. Here we show that treatment of mice bearing human tumor xenografts with inhibitors that block EGFR, RAS, PI3 kinase or AKT resulted in prolonged and durable enhancement of tumor vascular flow, perfusion and decreased tumor hypoxia. The vessels in the treated tumors had decreased tortuosity and increased internodal length accounting for the functional alterations. Inhibition of tumor growth cannot account for these results as the drugs were given at doses that did not alter tumor growth. The tumor cell itself was an essential target as HT1080 tumors that lack EGFR did not respond to an EGFR inhibitor, but did respond with vascular alterations to RAS or PI3 Kinase inhibition. We extended these observations to spontaneously arising tumors in MMTV-neu mice. These tumors also responded to PI3 kinase inhibition with decreased tumor hypoxia, increased vascular flow and morphological alterations of their vessels including increased vascular maturity and acquisition of pericyte markers. These changes are similar to the vascular normalization that has been described after anti-angiogenic treatment of xenografts. One difficulty in the use of vascular normalization as a therapeutic strategy has been its limited duration. In contrast, blocking tumor cell RAS-PI3K-AKT signaling led to persistent vascular changes that might be incorporated into clinical strategies based on improvement of vascular flow or decreased hypoxia. These results indicate that vascular alterations must be considered as a consequence of signaling inhibition in cancer therapy. PMID:19622766

  5. Immune response to UV-induced tumors: mediation of progressor tumor rejection by natural killer cells

    SciTech Connect

    Streeter, P.R.; Fortner, G.W.

    1986-03-01

    Skin tumors induced in mice by chronic ultraviolet (UV) irradiation are highly antigenic and can induce a state of transplantation immunity in syngeneic animals. In the present study, the authors compared the in vitro cytolytic activity of splenic lymphocytes from mice immunized with either regressor or progressor UV-tumors. The results of this comparison implicated tumor-specific cytolytic T (Tc) lymphocytes in rejection of regressor UV-tumors, and revealed that immunization with the progressor UV-tumor 2237 failed to elicit detectable levels of progressor tumor-specific Tc cells even as the tumors rejected. Following in vitro resensitization of spleen cells from either regressor or progressor tumor immune animals, the authors found NK-like lymphocytes with anti-tumor activity. As the authors had not detected cells with this activity in splenic lymphocyte preparations prior to in vitro resensitization, the authors examined lymphocytes from the local tumor environment during the course of progressor tumor rejection for this activity. This analysis revealed NK lymphocytes exhibiting significant levels of cytolytic activity against UV-tumors. These results implicate NK cells as potential effector cells in the rejection of progressor UV-tumors by immune animals, and suggests that these cells may be regulated by T lymphocytes.

  6. microRNA-mediated regulation of the tumor microenvironment

    PubMed Central

    Chou, Jonathan; Shahi, Payam; Werb, Zena

    2013-01-01

    The tumor microenvironment includes cells such as fibroblasts, immune cells, endothelial cells, as well as extracellular matrix (ECM), proteases, and cytokines. Together, these components participate in a complex crosstalk with neoplastic tumor cells that affects growth, angiogenesis, and metastasis. MicroRNAs (miRNAs) are small, non-coding RNAs involved in post-transcriptional regulation of gene expression and have recently emerged as important players involved in regulating multiple aspects of cancer biology and the tumor microenvironment. Differential miRNA expression in both the epithelial and stromal compartments of tumors compared with normal tissue suggests that miRNAs are important drivers of tumorigenesis and metastasis. This review article summarizes our current understanding of the diverse roles of miRNAs involved in tumor microenvironment regulation and underscores the importance of miRNAs within multiple cell types that contribute to the hallmarks of cancer. PMID:24036551

  7. Cytosolic PhospholipaseA2 Inhibition with PLA-695 Radiosensitizes Tumors in Lung Cancer Animal Models

    PubMed Central

    Ferraro, Daniel J.; Kotipatruni, Rama P.; Bhave, Sandeep R.; Jaboin, Jerry J.; Hallahan, Dennis E.

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted. PMID:23894523

  8. Cytosolic phospholipaseA2 inhibition with PLA-695 radiosensitizes tumors in lung cancer animal models.

    PubMed

    Thotala, Dinesh; Craft, Jeffrey M; Ferraro, Daniel J; Kotipatruni, Rama P; Bhave, Sandeep R; Jaboin, Jerry J; Hallahan, Dennis E

    2013-01-01

    Lung cancer remains the leading cause of cancer deaths in the United States and the rest of the world. The advent of molecularly directed therapies holds promise for improvement in therapeutic efficacy. Cytosolic phospholipase A2 (cPLA2) is associated with tumor progression and radioresistance in mouse tumor models. Utilizing the cPLA2 specific inhibitor PLA-695, we determined if cPLA2 inhibition radiosensitizes non small cell lung cancer (NSCLC) cells and tumors. Treatment with PLA-695 attenuated radiation induced increases of phospho-ERK and phospho-Akt in endothelial cells. NSCLC cells (LLC and A549) co-cultured with endothelial cells (bEND3 and HUVEC) and pre-treated with PLA-695 showed radiosensitization. PLA-695 in combination with irradiation (IR) significantly reduced migration and proliferation in endothelial cells (HUVEC & bEND3) and induced cell death and attenuated invasion by tumor cells (LLC &A549). In a heterotopic tumor model, the combination of PLA-695 and radiation delayed growth in both LLC and A549 tumors. LLC and A549 tumors treated with a combination of PLA-695 and radiation displayed reduced tumor vasculature. In a dorsal skin fold model of LLC tumors, inhibition of cPLA2 in combination with radiation led to enhanced destruction of tumor blood vessels. The anti-angiogenic effects of PLA-695 and its enhancement of the efficacy of radiotherapy in mouse models of NSCLC suggest that clinical trials for its capacity to improve radiotherapy outcomes are warranted.

  9. An Essential Role for Tumor Necrosis Factor in Natural Killer Cell–mediated Tumor Rejection in the Peritoneum

    PubMed Central

    Smyth, Mark J.; Kelly, Janice M.; Baxter, Alan G.; Körner, Heinrich; Sedgwick, Jonathon D.

    1998-01-01

    Natural killer (NK) cells are thought to provide the first line of defence against tumors, particularly major histocompatibility complex (MHC) class I− variants. We have confirmed in C57BL/6 (B6) mice lacking perforin that peritoneal growth of MHC class I− RMA-S tumor cells in unprimed mice is controlled by perforin-dependent cytotoxicity mediated by CD3− NK1.1+ cells. Furthermore, we demonstrate that B6 mice lacking tumor necrosis factor (TNF) are also significantly defective in their rejection of RMA-S, despite the fact that RMA-S is insensitive to TNF in vitro and that spleen NK cells from B6 and TNF-deficient mice are equally lytic towards RMA-S. NK cell recruitment into the peritoneum was abrogated in TNF-deficient mice challenged with RMA-S or RM-1, a B6 MHC class I− prostate carcinoma, compared with B6 or perforin-deficient mice. The reduced NK cell migration to the peritoneum of TNF-deficient mice correlated with the defective NK cell response to tumor in these mice. By contrast, a lack of TNF did not affect peptide-specific cytotoxic T lymphocyte–mediated rejection of tumor from the peritoneum of preimmunized mice. Overall, these data show that NK cells delivering perforin are the major effectors of class I− tumor rejection in the peritoneum, and that TNF is specifically critical for their recruitment to the peritoneum. PMID:9802973

  10. Differential potency of regulatory T cell-mediated immunosuppression in kidney tumors compared to subcutaneous tumors

    PubMed Central

    Devaud, Christel; Westwood, Jennifer A; Teng, Michele WL; John, Liza B; Yong, Carmen SM; Duong, Connie PM; Smyth, Mark J; Darcy, Phillip K; Kershaw, Michael H

    2014-01-01

    In many cancers, regulatory T cells (Treg) play a crucial role in suppressing the effector immune response thereby permitting tumor development. Indeed, in mouse models, their depletion can promote the regression of tumors of various origins, including renal cell carcinoma when located subcutaneous (SC). In the present study, we aimed to assess the importance of Treg immunosuppression in the physiologic context of metastatic renal carcinoma (Renca) disease. To that purpose we inoculated renal tumors orthotopically, intra-kidney (IK), in mice. Treg depletions were performed using anti-CD4 antibody in wild type mice or diphtheria toxin (DT) in Foxp3DTR transgenic mice. Our main observation was that Treg were not the key immunosuppressive component of the IK tumoral microenvironment, compared to the same tumors located SC. We demonstrated that the CD8+ effector immune response was still suppressed in IK tumors when compared to SC tumors, following Treg depletion. Furthermore, the level of program cell death protein (PD)-1 was increased on the surface of CD4+ T cells infiltrating IK tumors compared to SC tumors. Finally, the Treg-independent immunosuppression, occurring in IK tumors, was potent enough to inhibit regression of concomitant SC tumors, normally responsive to Treg depletion. Our findings provide further insight into the immunosuppressive nature of the immune response generated in the kidney microenvironment, suggesting that it can have additional mechanisms in addition to Treg. These observations might help to identify better targets from the kidney tumor microenvironment for future cancer therapies. PMID:25941590

  11. Differential potency of regulatory T cell-mediated immunosuppression in kidney tumors compared to subcutaneous tumors.

    PubMed

    Devaud, Christel; Westwood, Jennifer A; Teng, Michele Wl; John, Liza B; Yong, Carmen Sm; Duong, Connie Pm; Smyth, Mark J; Darcy, Phillip K; Kershaw, Michael H

    2014-11-01

    In many cancers, regulatory T cells (Treg) play a crucial role in suppressing the effector immune response thereby permitting tumor development. Indeed, in mouse models, their depletion can promote the regression of tumors of various origins, including renal cell carcinoma when located subcutaneous (SC). In the present study, we aimed to assess the importance of Treg immunosuppression in the physiologic context of metastatic renal carcinoma (Renca) disease. To that purpose we inoculated renal tumors orthotopically, intra-kidney (IK), in mice. Treg depletions were performed using anti-CD4 antibody in wild type mice or diphtheria toxin (DT) in Foxp3(DTR) transgenic mice. Our main observation was that Treg were not the key immunosuppressive component of the IK tumoral microenvironment, compared to the same tumors located SC. We demonstrated that the CD8(+) effector immune response was still suppressed in IK tumors when compared to SC tumors, following Treg depletion. Furthermore, the level of program cell death protein (PD)-1 was increased on the surface of CD4(+) T cells infiltrating IK tumors compared to SC tumors. Finally, the Treg-independent immunosuppression, occurring in IK tumors, was potent enough to inhibit regression of concomitant SC tumors, normally responsive to Treg depletion. Our findings provide further insight into the immunosuppressive nature of the immune response generated in the kidney microenvironment, suggesting that it can have additional mechanisms in addition to Treg. These observations might help to identify better targets from the kidney tumor microenvironment for future cancer therapies.

  12. Cathepsin S-mediated autophagic flux in tumor-associated macrophages accelerate tumor development by promoting M2 polarization

    PubMed Central

    2014-01-01

    Background Tumor-associated macrophages (TAMs) are the major component of tumor-infiltrating leukocytes. TAMs are heterogeneous, with distinct phenotypes influenced by the microenvironment surrounding tumor tissues, but relatively little is known about the key molecular in these cells that contribute to malignant phenotypes. Autophagic activity is a critical factor in tumor development that contributes to enhancing cellular fitness and survival in the hostile tumor microenvironment. However, the molecular basis and relations between autophagy and TAMs polarization remain unclear. Methods Cathepsin S (Cat S) expression was analyzed in human colon carcinoma and normal colon tissues. In vivo effects were evaluated using PancO2 subcutaneous tumor model and SL4 hepatic metastasis model. Immunofluorescence staining, flow cytometry and real-time PCR were done to examine TAMs polarization. Western blotting assay, transmission electron microscopy, mCherry-GFP-LC3 transfection and DQ-BSA degradation assays were carried out to determine its role in regulating autophagy. Results In the present study, we showed that the enhanced expression of Cat S correlated with the severity of histologic grade as well as clinical stage, metastasis, and recurrence, which are known indicators of a relatively poor prognosis of human colon carcinoma. Cat S knockout led to decreased tumor growth and metastasis. Moreover, Cat S knockout inhibited M2 macrophage polarization during tumor development. We further demonstrated that Cat S was required for not only autophagic flux but also the fusion processes of autophagosomes and lysosomes in TAMs. Importantly, we found that Cat S contributed to tumor development by regulating the M2 phenotype of TAMs through the activation of autophagy. Conclusions These results indicated that Cat S-mediated autophagic flux is an important mechanism for inducing M2-type polarization of TAMs, which leads to tumor development. These data provide strong evidence for a

  13. Tumor stroma interaction is mediated by monocarboxylate metabolism.

    PubMed

    Patel, Brijesh B; Ackerstaff, Ellen; Serganova, Inna S; Kerrigan, John E; Blasberg, Ronald G; Koutcher, Jason A; Banerjee, Debabrata

    2017-03-01

    Human breast tumors contain significant amounts of stromal cells. There exists strong evidence that these stromal cells support cancer development and progression by altering various pathways (e.g. downregulation of tumor suppressor genes or autocrine signaling loops). Here, we suggest that stromal carcinoma-associated fibroblasts (CAFs), shown to be generated from bone marrow-derived mesenchymal stem cells, may (i) recycle tumor-derived lactate for their own energetic requirements, thereby sparing glucose for neighboring glycolytic tumor cells, and (ii) subsequently secrete surplus energetically and biosynthetically valuable metabolites of lactate oxidation, such as pyruvate, to support tumor growth. Lactate, taken up by stromal CAFs, is converted to pyruvate, which is then utilized by CAFs for energy needs as well as excreted and shared with tumor cells. We have interrogated lactate oxidation in CAFs to determine what metabolites may be secreted, and how they may affect the metabolism and growth of MDA-MB-231 breast cancer cells. We found that CAFs secrete pyruvate as a metabolite of lactate oxidation. Further, we show that pyruvate is converted to lactate to promote glycolysis in MDA-MB-231 cells and helps to control elevated ROS levels in these tumor cells. Finally, we found that inhibiting or interfering with ROS management, using the naturally occurring flavonoid phloretin (found in apple tree leaves), adds to the cytotoxicity of the conventional chemotherapeutic agent doxorubicin. Our work demonstrates that a lactate-pyruvate, reciprocally-supportive metabolic relationship may be operative within the tumor microenvironment (TME) to support tumor growth, and may be a useful drug target.

  14. Real-time noninvasive optoacoustic monitoring of nanoparticle-mediated photothermal therapy of tumors

    NASA Astrophysics Data System (ADS)

    Esenaliev, R. O.; Petrov, Y. Y.; Cicenaite, I.; Chumakova, O. V.; Petrova, I. Y.; Patrikeev, I.; Liopo, A.

    2007-02-01

    We proposed and have been developing real-time, noninvasive monitoring of blood oxygenation, total hemoglobin concentration, and thermotherapy including hyperthermia, coagulation, and cryotherapy. In this paper we propose to use the optoacoustic technique for monitoring of nanoparticle-mediated photothermal therapy (NPT) of tumors. NPT is based on heating exogenous strongly-absorbing nanoparticles selectively delivered in tumors. Real-time monitoring of NPT is necessary for precise tumor therapy with minimal damage to normal tissues. In this study we injected PEGylated and non-PEGylated carbon nanoparticles in nude mice bearing human tumors (5-15 mm) and irradiated the tumors for 10 minutes with nanosecond Nd:YAG laser pulses which produced both thermal damage to the tumors and optoacoustic signals for monitoring NPT in real time. Irradiation of tumors was performed during or after (3 or 24 hours) nanoparticle injection. Amplitude and temporal parameters of optoacoustic signals (measured with a custom-made wide-band optoacoustic probe) correlated well with nanoparticle injection, temperature rise in tumors, and tumor coagulation. Substantial thermal damage in large areas of the tumors was produced when optimal irradiation parameters were used. Monte Carlo modeling of light distribution in tumors and optoacoustic theory were applied to study kinetics of nanoparticle concentration in the tumors. Our results demonstrated that the optoacoustic technique can be used for real-time monitoring of NTP and provide precise tumor therapy with minimal damage to normal tissues.

  15. Tumor-Mediated Suppression of Dendritic Cell Vaccines

    DTIC Science & Technology

    2005-03-01

    migration to DLNs. A B A 1.2- : .0 4000 rmDC 0., 3000 mDC+TGF-p S. . 0.- 2000 S 0.4m S0.2 Hi n 10000 0.0 CCR1 CCR4 CCR5 CCR6 CCR7 SLC MIP-3p Figure 4...containing tumor microenvironment. Mice bearing established mock transfected (4T1-N) or anti-sense TGF-p-expressing (4T1-asT) tumors received i.t...day Figure 9. Treatment of established 4T1 tumors with Smad7-overexpressing DC. Mice bearing established 4T1-N or 4T1-asT primary tumors received

  16. Noninvasive Dynamic Imaging of Tumor Early Response to Nanoparticle-mediated Photothermal Therapy

    PubMed Central

    Zhang, Fan; Cao, Jianbo; Chen, Xiao; Yang, Kai; Zhu, Lei; Fu, Guifeng; Huang, Xinglu; Chen, Xiaoyuan

    2015-01-01

    In spite of rapidly increasing interest in the use of nanoparticle-mediated photothermal therapy (PTT) for treatment of different types of tumors, very little is known on early treatment-related changes in tumor response. Using graphene oxide (GO) as a model nanoparticle (NP), in this study, we tracked the changes in tumors after GO NP-mediated PTT by magnetic resonance imaging (MRI) and quantitatively identified MRI multiple parameters to assess the dynamic changes of MRI signal in tumor at different heating levels and duration. We found a time- and temperature-dependent dynamic change of the MRI signal intensity in intratumor microenvironment prior to any morphological change of tumor, mainly due to quick and effective eradication of tumor blood vessels. Based on the distribution of GO particles, we also demonstrated that NP-medited PTT caused heterogeneous thermal injury of tumor. Overall, these new findings provide not only a clinical-related method for non-invasive early tracking, identifying, and monitoring treatment response of NP-mediated PTT but also show a new vision for better understanding mechanisms of NP-mediated PTT. PMID:26681988

  17. Noninvasive Dynamic Imaging of Tumor Early Response to Nanoparticle-mediated Photothermal Therapy.

    PubMed

    Zhang, Fan; Cao, Jianbo; Chen, Xiao; Yang, Kai; Zhu, Lei; Fu, Guifeng; Huang, Xinglu; Chen, Xiaoyuan

    2015-01-01

    In spite of rapidly increasing interest in the use of nanoparticle-mediated photothermal therapy (PTT) for treatment of different types of tumors, very little is known on early treatment-related changes in tumor response. Using graphene oxide (GO) as a model nanoparticle (NP), in this study, we tracked the changes in tumors after GO NP-mediated PTT by magnetic resonance imaging (MRI) and quantitatively identified MRI multiple parameters to assess the dynamic changes of MRI signal in tumor at different heating levels and duration. We found a time- and temperature-dependent dynamic change of the MRI signal intensity in intratumor microenvironment prior to any morphological change of tumor, mainly due to quick and effective eradication of tumor blood vessels. Based on the distribution of GO particles, we also demonstrated that NP-medited PTT caused heterogeneous thermal injury of tumor. Overall, these new findings provide not only a clinical-related method for non-invasive early tracking, identifying, and monitoring treatment response of NP-mediated PTT but also show a new vision for better understanding mechanisms of NP-mediated PTT.

  18. Ku80-deletion suppresses spontaneous tumors and induces a p53-mediated DNA damage response

    PubMed Central

    Holcomb, Valerie B.; Rodier, Francis; Choi, Yong Jun; Busuttil, Rita A.; Vogel, Hannes; Vijg, Jan; Campisi, Judith; Hasty, Paul

    2014-01-01

    Ku80 facilitates DNA repair and therefore should suppress cancer. However, ku80−/− mice exhibit reduced cancer, although they age prematurely and have a shortened life span. We tested the hypothesis that Ku80 deletion suppresses cancer by enhancing cellular tumor suppressive responses to inefficiently repaired DNA damage. In support of this hypothesis, Ku80 deletion ameliorated tumor burden in APCMIN mice, and increased a p53-mediated DNA damage response, DNA lesions, and chromosomal rearrangements. Thus, contrary to its assumed role as a caretaker tumor suppressor, Ku80 facilitates tumor growth most likely by dampening baseline cellular DNA damage responses. PMID:19010925

  19. Tumor microenvironment-mediated chemoresistance in breast cancer.

    PubMed

    Velaei, Kobra; Samadi, Nasser; Barazvan, Balal; Soleimani Rad, Jafar

    2016-12-01

    Therapy resistance or tumor relapse in cancer is common. Tumors develop resistance to chemotherapeutic through a variety of mechanisms, with tumor microenvironment (TM) serving pivotal roles. Using breast cancer as a paradigm, we propose that responses of cancer cells to drugs are not exclusively determined by their intrinsic characteristics but are also controlled by deriving signals from TM. Affected microenvironment by chemotherapy is an avenue to promote phenotype which tends to resist on to be ruined. Therefore, exclusively targeting cancer cells does not demolish tumor recurrence after chemotherapy. Regardless of tumor-microenvironment pathways and their profound influence on the responsiveness of treatment, diversity of molecular properties of breast cancer also behave differently in terms of response to chemotherapy. And also it is assumed that there is cross-talk between phenotypic diversity and TM. Collectively, raising complex signal from TM in chemotherapy condition often encourages cancer cells are not killed but strengthen. Here, we summarized how TM modifies responses to chemotherapy in breast cancer. We also discussed successful treatment strategies have been considered TM in breast cancer treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Novel tetrapeptide, RGDF, mediated tumor specific liposomal doxorubicin (DOX) preparations.

    PubMed

    Du, Huirui; Cui, Chunying; Wang, Lili; Liu, Hu; Cui, Guohui

    2011-08-01

    Arginine-glycine-aspartate (RGD) has been shown to possess a strong affinity for the integrins overexpressed in tumor cells, especially during tumor invasion, angiogenesis and metasis. Based on work from others, a novel tetrapeptide, arginine-glycine-aspartate-phenylanaline (RGDF), has been designed and studied as a homing device to direct liposomal doxorubicin (DOX) to tumor cells in this work. In order to incorporate RGDF into liposomal DOX preparations, RGDF was conjugated with three different fatty alcohols to achieve RGDF-fatty alcohol conjugates. Glycine-glycine-aspartate-phenylanaline (GGDF)-lauryl alcohol conjugate was synthesized as a negative control. RGDF-fatty alcohol conjugates (RGDFO(CH(2))(n)CH(3)) and GGDF-lauryl alcohol conjugate (L-GGDFC12-DOX) incorporated liposomal preparations were obtained by first preparing liposomes using the film dispersion method followed by loading DOX using a transmembrane pH gradient method. Because of their amphipathic nature, RGDF- or GGDF-fatty alcohol conjugates are expected to be readily incorporated into liposomes with their fatty alkanyl chains being intercalated between fatty acyl chains of liposomal bilayers and the hydrophilic peptide moiety (RGDF or GGDF) being anchored on the surface of liposomes. The particle size and zeta potential of liposomal DOX preparations containing RGDF-fatty alcohol conjugate (L-RGDF-DOXs) or L-GGDFC12-DOX were measured, and their morphology was studied using transmission electron microscopy. In vitro DOX release profile from RGDF incorporated liposomal DOX was measured. The antitumor activities of RGDF incorporated liposomal DOX preparations were evaluated in ICR mice inoculated with sarcoma S(180), which is known to express α(v)β(3) integrin. Both conventional liposomal DOX preparation (L-DOX) without RGDFO(CH(2))(n)CH(3) and L-GGDFC12-DOX were used as negative controls. Our results showed improved tumor growth inhibition with L-RGDF-DOXs over doxorubicin hydrochloride solution

  1. Genes Encoding Phospholipases A2 Mediate Insect Nodulation Reactions to Bacterial Challenge

    USDA-ARS?s Scientific Manuscript database

    We propose that expression of four genes encoding secretory phospholipases A2 (sPLA2) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis...

  2. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  3. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  4. CDK8-Mediated STAT1-S727 Phosphorylation Restrains NK Cell Cytotoxicity and Tumor Surveillance

    PubMed Central

    Putz, Eva Maria; Gotthardt, Dagmar; Hoermann, Gregor; Csiszar, Agnes; Wirth, Silvia; Berger, Angelika; Straka, Elisabeth; Rigler, Doris; Wallner, Barbara; Jamieson, Amanda M.; Pickl, Winfried F.; Zebedin-Brandl, Eva Maria; Müller, Mathias; Decker, Thomas; Sexl, Veronika

    2013-01-01

    Summary The transcription factor STAT1 is important in natural killer (NK) cells, which provide immediate defense against tumor and virally infected cells. We show that mutation of a single phosphorylation site (Stat1-S727A) enhances NK cell cytotoxicity against a range of tumor cells, accompanied by increased expression of perforin and granzyme B. Stat1-S727A mice display significantly delayed disease onset in NK cell-surveilled tumor models including melanoma, leukemia, and metastasizing breast cancer. Constitutive phosphorylation of S727 depends on cyclin-dependent kinase 8 (CDK8). Inhibition of CDK8-mediated STAT1-S727 phosphorylation may thus represent a therapeutic strategy for stimulating NK cell-mediated tumor surveillance. PMID:23933255

  5. Slit-Robo signaling mediates lymphangiogenesis and promotes tumor lymphatic metastasis.

    PubMed

    Yang, Xiao-Mei; Han, Hai-Xiong; Sui, Fei; Dai, Yu-Min; Chen, Ming; Geng, Jian-Guo

    2010-05-28

    The Slit family of guidance cues binds to Roundabout (Robo) receptors to modulate neuronal, leukocytic, and endothelial migration. Slit-Robo signaling had been reported to function as chemoattractive signal for vascular endothelial cells during angiogenesis. In this study, we found that Robo1 was expressed in lymphatic endothelial cells to mediate the migration and tube formation of these cells upon Slit2 stimulation, which were specifically inhibited by the function-blocking antibody R5 to Slit2/Robo1 interaction. To further explore the lymphangiogenic effect and significance mediated by Slit-Robo signaling, we intercrossed Slit2 transgenic mice with a non-metastatic RIP1-Tag2 mouse tumor model, and found that transgenic overexpression of Slit2 significantly enhanced tumor lymphangiogenesis and subsequently promoted mesenteric lymph node metastasis of pancreatic islet tumors. Taken together, our findings reveal that through interacting with Robo1, Slit2 is a novel and potent lymphangiogenic factor and contributes to tumor lymphatic metastasis.

  6. Targeting a novel domain in podoplanin for inhibiting platelet-mediated tumor metastasis

    PubMed Central

    Sekiguchi, Takaya; Takemoto, Ai; Takagi, Satoshi; Takatori, Kazuki; Sato, Shigeo; Takami, Miho; Fujita, Naoya

    2016-01-01

    Podoplanin/Aggrus is a sialoglycoprotein expressed in various cancers. We previously identified podoplanin as a key factor in tumor-induced platelet aggregation. Podoplanin-mediated platelet aggregation enhances tumor growth and metastasis by secreting growth factors and by forming tumor emboli in the microvasculature. Thus, precise analysis of the mechanisms of podoplanin-mediated platelet aggregation is critical for developing anti-tumor therapies. Here we report the discovery of a novel platelet aggregation-inducing domain, PLAG4 (81-EDLPT-85). PLAG4 has high homology to the previously reported PLAG3 and contributes to the binding of its platelet receptor CLEC-2. Mutant analyses indicated that PLAG4 exhibits a predominant platelet-aggregating function relative to PLAG3 and that conserved Glu81/Asp82/Thr85 residues in PLAG4 are indispensable for CLEC-2 binding. By establishing anti-PLAG4-neutralizing monoclonal antibodies, we confirmed its role in CLEC-2 binding, platelet aggregation, and tumor emboli formation. Our results suggest the requirement of simultaneous inhibition of PLAG3/4 for complete suppression of podoplanin-mediated tumor growth and metastasis. PMID:26684030

  7. Chemotherapy enhances tumor vascularization via Notch signaling-mediated formation of tumor-derived endothelium in breast cancer.

    PubMed

    Zhang, Peng; He, Dongxu; Chen, Zhen; Pan, Qiongxi; Du, Fangfang; Zang, Xian; Wang, Yan; Tang, Chunlei; Li, Hong; Lu, He; Yao, Xiaoqiang; Jin, Jian; Ma, Xin

    2016-10-15

    It is believed that tumor cells can give rise to endothelial cells and tumor endothelium has a neoplastic origin. Yet, the stimuli and underlying mechanism remain unclear. Here, we demonstrate that adriamycin or paclitaxel, first-line chemotherapy agent, induced breast cancer cells to generate morphological, phenotypical and functional features of endothelial cells in vitro. In xenografts models, challenges from adriamycin or paclitaxel induced cancer cells to generate the majority of microvessels. Importantly, in breast cancer specimens from patients with neoadjuvant anthracycline-based or taxane-based chemotherapy, tumor-derived endothelial microvessels, lined by EGFR-amplified or/and TP53(+)-CD31(+) endothelial cells, was significantly higher in patients with progressive or stable disease (PD/SD) than in those with a partial or complete response (PR/CR). Further, exposure to the Notch signaling inhibitor and gene silencing studies showed that Notch signaling inhibition or silencing Nothc4/Dll3 decreased endothelial markers and function of tumor-derived endothelial cells under chemotherapy treatment, which may be through VEGFR3. Thus, our findings demonstrate that chemotherapy induces functional tumor-derived endothelial microvessels by mediating Notch signaling and VEGF signaling, and may provide new targets for anti-angiogenesis therapy in breast cancer.

  8. Renalase expression by melanoma and tumor associated-macrophages promotes tumor growth through a STAT3-mediated mechanism

    PubMed Central

    Hollander, Lindsay; Guo, Xiaojia; Velazquez, Heino; Chang, John; Safirstein, Robert; Kluger, Harriet; Cha, Charles; Desir, Gary V.

    2016-01-01

    To sustain their proliferation cancer cells overcome negative-acting signals that restrain their growth and promote senescence and cell death. Renalase (RNLS) is a secreted flavoprotein that functions as a survival factor after ischemic and toxic injury, signaling through the plasma calcium channel PMCA4b to activate the PI3K/AKT and MAPK pathways. We show that RNLS expression is increased markedly in primary melanomas and CD163+ tumor associated macrophages (TAM). In clinical specimens, RNLS expression in the tumor correlated inversely with disease-specific survival, suggesting a pathogenic role for RNLS. Attenuation of RNLS by RNAi, blocking antibodies or an RNLS-derived inhibitory peptide decreased melanoma cell survival, and anti-RNLS therapy blocked tumor growth in vivo in murine xenograft assays. Mechanistic investigations showed that increased apoptosis in tumor cells was temporally related to p38 MAPK-mediated Bax activation and that increased cell growth arrest was associated with elevated expression of the cell cycle inhibitor p21. Overall, our results established a role for the secreted flavoprotein RNLS in promoting melanoma cell growth and CD163+ TAM in the tumor microenvironment, with potential therapeutic implications for the management of melanoma. PMID:27197188

  9. Tumor-targeted liposomal drug delivery mediated by a diseleno bond-stabilized cyclic peptide

    PubMed Central

    Li, Chong; Wang, Yixin; Zhang, Xiaolin; Deng, Li; Zhang, Yan; Chen, Zhangbao

    2013-01-01

    Peptide ligands have played an important role in tumor-targeted drug delivery as targeting moieties. The in vivo fate of peptide-mediated drug delivery systems and the following antitumor effects may greatly depend on the stability of the peptide ligand. In the current study, a tumor-targeting cyclic peptide screened by phage display, Lyp-1 (a peptide that specifically binds to tumor and endothelial cells of tumor lymphatics in certain tumors), was structurally modified by replacement of the original intramolecular disulfide bond with a diseleno bond. The produced analog Syp-1 (seleno derivative of Lyp-1) maintained specific binding ability to the target protein p32 (Kd = 18.54 nM), which is similar to that of Lyp-1 (Kd = 10.59 nM), indicated by surface plasmon resonance assay. Compared with Lyp-1, Syp-1 showed significantly improved stability against serum. After the peptide attached onto the surface of fluorophore-encapsulating liposomes, the more efficient tumor uptake of liposomal fluorophore mediated by Syp-1 was observed. Furthermore, Syp-1 modified liposomal doxorubicin presented the most potent tumor growth inhibitory ability among all the therapeutic groups, with a low half maximal inhibitory concentration of 588 nM against MDA-MB-435 cells in vitro and a high tumor inhibition rate of 73.5% in vivo. These findings clearly indicated that Syp-1 was a stable and effective tumor targeting ligand and suggest that the sulfur-to-selenium replacement strategy may help stabilize the phage-displayed cyclic peptide containing disulfide-bond under physiological conditions and strongly support the validity of peptide-mediated drug targeting. PMID:23515368

  10. Gene Targets in Prostate Tumor Cells that Mediate Aberrant Growth and Invasiveness

    DTIC Science & Technology

    2005-02-01

    Craig A. Hauser , Ph.D. Gabriele Foos, Ph.D. CONTRACTING ORGANIZATION: The Burnham Institute La Jolla, California 92037 REPORT DATE: February 2005 TYPE...NUMBERS Gene Targets in Prostate Tumor Cells that Mediate DAMD17-02-1-0019 Aberrant Growth and Invasiveness 6. AUTHOR(S) Craig A. Hauser , Ph.D. Gabriele...REPORTABLE OUTCOMES Foos G, Hauser CA (2004) The role of Ets transcription factors in mediating cellular transformation. In: Handbook of Experimental

  11. The Notch signaling pathway as a mediator of tumor survival.

    PubMed

    Capaccione, Kathleen M; Pine, Sharon R

    2013-07-01

    The Notch signaling pathway is evolutionarily conserved and responsible for cell fate determination in the developing embryo and mature tissue. At the molecular level, ligand binding activates Notch signaling by liberating the Notch intracellular domain, which then translocates into the nucleus and activates gene transcription. Despite the elegant simplicity of this pathway, which lacks secondary messengers or a signaling cascade, Notch regulates gene expression in a highly context- and cell-type-dependent manner. Notch signaling is frequently dysregulated, most commonly by overactivation, across many cancers and confers a survival advantage on tumors, leading to poorer outcomes for patients. Recent studies demonstrate how Notch signaling increases tumor cell proliferation and provide evidence that active Notch signaling maintains the cancer stem-cell pool, induces epithelial-mesenchymal transition and promotes chemoresistance. These studies imply that pharmacological inhibition of Notch signaling may refine control of cancer therapy and improve patient survival. Gamma secretase inhibitors (GSIs) are drugs that inhibit Notch signaling and may be successful in controlling cancer cell growth in conjunction with standard chemotherapy, but substantial side effects have hampered their widespread use. Recent efforts have been aimed at the development of antibodies against specific Notch receptors and ligands with the hope of limiting side effects while providing the same therapeutic benefit as GSIs. Together, studies characterizing Notch signaling and modulation have offered hope that refined methods targeting Notch may become powerful tools in anticancer therapeutics.

  12. BRCA1 tumor suppression occurs via heterochromatin mediated silencing

    PubMed Central

    Zhu, Quan; Pao, Gerald M.; Huynh, Alexis M.; Suh, Hoonkyo; Tonnu, Nina; Nederlof, Petra; Gage, Fred H.; Verma, Inder M.

    2011-01-01

    Mutations in tumor suppressor BRCA1 lead to breast and/or ovarian cancer. Here we show that loss of BRCA1 in mice results in transcriptional derepression of the tandemly repeated satellite DNA. BRCA1 deficiency is accompanied by reduction of condensed DNA regions in the genome and loss of ubiquitylation of histone H2A at satellite repeats. BRCA1 binds to satellite DNA regions in vivo and ubiquitylates H2A in vitro. Ectopic expression of an H2A fused to ubiquitin reverses the effects of BRCA1 loss, suggesting that BRCA1 maintains heterochromatin structure via ubiquitylation of histone H2A. Satellite DNA derepression was also observed mouse and human BRCA1 deficient breast cancers. Ectopic expression of satellite DNA can phenocopy BRCA1 loss in centrosome amplification, cell cycle checkpoint defects, DNA damage and genomic instability. We propose that the role of BRCA1 in maintaining global heterochromatin integrity accounts for many of its tumor suppressor functions. PMID:21901007

  13. VEGF-mediated angiogenesis links EMT-induced cancer stemness to tumor initiation.

    PubMed

    Fantozzi, Anna; Gruber, Dorothea C; Pisarsky, Laura; Heck, Chantal; Kunita, Akiko; Yilmaz, Mahmut; Meyer-Schaller, Nathalie; Cornille, Karen; Hopfer, Ulrike; Bentires-Alj, Mohamed; Christofori, Gerhard

    2014-03-01

    An epithelial-mesenchymal transition (EMT) underlies malignant tumor progression and metastatic spread by enabling cancer cells to depart from the primary tumor, invade surrounding tissue, and disseminate to distant organs. EMT also enriches for cancer stem cells (CSC) and increases the capacity of cancer cells to initiate and propagate tumors upon transplantation into immune-deficient mice, a major hallmark of CSCs. However, the molecular mechanisms promoting the tumorigenicity of cancer cells undergoing an EMT and of CSCs have remained widely elusive. We here report that EMT confers efficient tumorigenicity to murine breast cancer cells by the upregulated expression of the proangiogenic factor VEGF-A and by increased tumor angiogenesis. On the basis of these data, we propose a novel interpretation of the features of CSCs with EMT-induced, VEGF-A-mediated angiogenesis as the connecting mechanism between cancer cell stemness and tumor initiation.

  14. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion.

    PubMed

    Kusmartsev, Sergei; Gabrilovich, Dmitry I

    2005-04-15

    It is well established that tumor progression is associated with the accumulation of myeloid suppressive cells, which in mice include Gr-1+ immature myeloid cells and F4/80+ macrophages. The paradox is that with the exception of terminal stages of the disease or chemotherapy treatment, tumor-bearing mice or cancer patients do not display a profound systemic immune suppression. We therefore raised the question as to whether myeloid cell-mediated T cell suppression is controlled at a local level at the site of the tumor. We have demonstrated that after adoptive transfer to tumor-bearing recipients, Gr-1+ (immature myeloid cells) freshly isolated from spleens of tumor-bearing mice become F4/80+ tumor-associated macrophages (TAM). These TAM, but not F4/80+ macrophages or Gr-1+ cells freshly isolated from spleens of tumor-bearing or naive mice were able to inhibit T cell-mediated immune response in vitro via induction of T cell apoptosis. Arginase and NO were both responsible for the apoptotic mechanism, and were seen only in TAM, but not in freshly isolated Gr1+ cells. Using the analysis of STAT activity in combination with STAT knockout mice, we have determined that STAT1, but not STAT3 or STAT6, was responsible for TAM-suppressive activity.

  15. Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance.

    PubMed

    Putz, Eva Maria; Hoelzl, Maria Agnes; Baeck, Julia; Bago-Horvath, Zsuzsanna; Schuster, Christian; Reichholf, Brian; Kern, Daniela; Aberger, Fritz; Sexl, Veronika; Hoelbl-Kovacic, Andrea

    2014-01-27

    The transcription factors and proto-oncogenes STAT3 and STAT5 are highly activated in hematological malignancies and represent promising therapeutic targets. Whereas the importance of STAT5 as tumor promoter is beyond doubt, the role of STAT3 in hematological cancers is less well understood. Both, enforced as well as attenuated expression of STAT3 were reported in hematopoietic malignancies. Recent evidence implicates STAT3 as key player for tumor immune surveillance as it both mediates the production of and response to inflammatory cytokines. Here we investigated the effects of STAT3 deletion in a BCR/ABL-induced lymphoma model, which is tightly controlled by natural killer (NK) cells in vivo. Upon STAT3 deletion tumor growth is significantly enhanced when compared to STAT3-expressing controls. The increased tumor size upon loss of STAT3 was accompanied by reduced NK cell infiltration and decreased levels of the cytokine IFN-γ and the chemokine RANTES. Upon transplantation into NK cell-deficient mice differences in lymphoma size were abolished indicating that STAT3 expression in the tumor cells controls NK cell-dependent tumor surveillance. Our findings indicate that STAT3 inhibition in lymphoma patients will impair NK cell-mediated tumor surveillance, which needs to be taken into account when testing STAT3 inhibitors in preclinical or clinical trials.

  16. RNA nanoparticles harboring annexin A2 aptamer can target ovarian cancer for tumor-specific doxorubicin delivery.

    PubMed

    Pi, Fengmei; Zhang, Hui; Li, Hui; Thiviyanathan, Varatharasa; Gorenstein, David G; Sood, Anil K; Guo, Peixuan

    2017-04-01

    A novel modified nucleic acid nanoparticle harboring an annexin A2 aptamer for ovarian cancer cell targeting and a GC rich sequence for doxorubicin loading is designed and constructed. The system utilizes a highly stable three-way junction (3WJ) motif from phi29 packaging RNA as a core structure. A phosphorothioate-modified DNA aptamer targeting annexin A2, Endo28, was conjugated to one arm of the 3WJ. The pRNA-3WJ motif retains correct folding of attached aptamer, keeping its functions intact. It is of significant utility for aptamer-mediated targeted delivery. The DNA/RNA hybrid nanoparticles remained intact after systemic injection in mice and strongly bound to tumors with little accumulation in healthy organs 6 h post-injection. The Endo28-3WJ-Sph1/Dox intercalates selectively enhanced toxicity to annexin A2 positive ovarian cancer cells in vitro. The constructed RNA/DNA hybrid nanoparticles can potentially enhance the therapeutic efficiency of doxorubicin at low doses for ovarian cancer treatment through annexin A2 targeted drug delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Solid tumor penetration by integrin-mediated pegylated poly(trimethylene carbonate) nanoparticles loaded with paclitaxel.

    PubMed

    Jiang, Xinyi; Xin, Hongliang; Gu, Jijin; Xu, Ximing; Xia, Weiyi; Chen, Shuo; Xie, Yike; Chen, Liangcen; Chen, Yanzuo; Sha, Xianyi; Fang, Xiaoling

    2013-02-01

    Limited penetration of antineoplastic agents is one of the contributing factors for chemotherapy failure of many solid tumors. In order to enhance drug penetration into solid cancer, especially, into the avascular regions inside tumors, we proposed cyclic RGD peptide functionalized PEGylated poly(trimethylene carbonate) nanoparticles (c(RGDyK)-NP). By integrin-mediated transcytosis and enhanced drug permeation, c(RGDyK)-NP could access the neoplastic cells distant from blood vessels, and consequently, avoiding the capability of cancer regeneration from these tumor cells. In the present study, the solid tumor penetration, homing specificity and anticancer efficacy were evaluated both on the ex vivo 3D tumor spheroids and on the subcutaneous xenograft mice model. In comparison with conventional nanoparticles (NP/PTX) and Taxol, c(RGDyK)-NP/PTX showed the strongest penetration and accumulation into 3D tumor spheroids, a marked tumor-homing specificity in vivo and the greatest tumor growth inhibitory effect in vitro and in vivo. Histochemistry analysis revealed that no obvious histopathological abnormalities or lesions were observed in major organs after intravenous administration with the treatment doses. In conclusion, cyclic RGD peptide-conjugated PEG-PTMC nanoparticle could facilitate drug penetration and accumulation in tumor tissues and may be a promising vehicle for enhancing the chemotherapy of solid cancers.

  18. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    NASA Astrophysics Data System (ADS)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  19. Taxanes enhance trastuzumab-mediated ADCC on tumor cells through NKG2D-mediated NK cell recognition.

    PubMed

    Di Modica, Martina; Sfondrini, Lucia; Regondi, Viola; Varchetta, Stefania; Oliviero, Barbara; Mariani, Gabriella; Bianchi, Giulia Valeria; Generali, Daniele; Balsari, Andrea; Triulzi, Tiziana; Tagliabue, Elda

    2016-01-05

    Recent clinical data indicate a synergistic therapeutic effect between trastuzumab and taxanes in neoadjuvantly treated HER2-positive breast cancer (BC) patients. In HER2+ BC experimental models and patients, we investigated whether this synergy depends on the ability of drug-induced stress to improve NK cell effectiveness and thus trastuzumab-mediated ADCC. HER2+ BC cell lines BT474 and MDAMB361 treated with docetaxel showed up-modulation of NK activator ligands both in vitro and in vivo, accompanied by a 15-40% increase in in vitro trastuzumab-mediated ADCC; antibodies blocking the NKG2D receptor significantly reduced this enhancement. NKG2D receptor expression was increased by docetaxel treatment in circulating and splenic NK cells from mice xenografted with tumor cells, an increase related to expansion of the CD11b+Ly6G+ cell population. Accordingly, NK cells derived from HER2+ BC patients after treatment with taxane-containing therapy expressed higher levels of NKG2D receptor than before treatment. Moreover, plasma obtained from these patients recapitulated the modulation of NKG2D on healthy donors' NK cells, improving their trastuzumab-mediated activity in vitro. This enhancement occurred mainly using plasma from patients with low NKG2D basal expression. Our results indicate that taxanes increase tumor susceptibility to ADCC by acting on tumor and NK cells, and suggest that taxanes concomitantly administered with trastuzumab could maximize the antibody effect, especially in patients with low basal immune effector cytotoxic activity.

  20. Ultrasound mediated delivery of drugs and genes to solid tumors

    PubMed Central

    Frenkel, Victor

    2008-01-01

    It has long been shown that therapeutic ultrasound can be used effectively to ablate solid tumors, and a variety of cancers are presently being treated in the clinic using these types of ultrasound exposures. There is, however, an ever-increasing body of preclinical literature that demonstrates how ultrasound energy can also be used non-destructively for increasing the efficacy of drugs and genes for improving cancer treatment. In this review, a summary of the most important ultrasound mechanisms will be given with a detailed description of how each one can be employed for a variety of applications. This includes the manner by which acoustic energy deposition can be used to create changes in tissue permeability for enhancing the delivery of conventional agents, as well as for deploying and activating drugs and genes via specially tailored vehicles and formulations. PMID:18474406

  1. Ultrasound mediated delivery of drugs and genes to solid tumors.

    PubMed

    Frenkel, Victor

    2008-06-30

    It has long been shown that therapeutic ultrasound can be used effectively to ablate solid tumors, and a variety of cancers are presently being treated in the clinic using these types of ultrasound exposures. There is, however, an ever-increasing body of preclinical literature that demonstrates how ultrasound energy can also be used non-destructively for increasing the efficacy of drugs and genes for improving cancer treatment. In this review, a summary of the most important ultrasound mechanisms will be given with a detailed description of how each one can be employed for a variety of applications. This includes the manner by which acoustic energy deposition can be used to create changes in tissue permeability for enhancing the delivery of conventional agents, as well as for deploying and activating drugs and genes via specially tailored vehicles and formulations.

  2. Macrophages Mediate a Switch between Canonical and Non-Canonical Wnt Pathways in Canine Mammary Tumors

    PubMed Central

    Król, Magdalena; Mucha, Joanna; Majchrzak, Kinga; Homa, Agata; Bulkowska, Małgorzata; Majewska, Alicja; Gajewska, Małgorzata; Pietrzak, Marta; Perszko, Mikołaj; Romanowska, Karolina; Pawłowski, Karol; Manuali, Elisabetta; Hellmen, Eva; Motyl, Tomasz

    2014-01-01

    Objective According to the current hypothesis, tumor-associated macrophages (TAMs) are “corrupted” by cancer cells and subsequently facilitate, rather than inhibit, tumor metastasis. Because the molecular mechanisms of cancer cell–TAM interactions are complicated and controversial we aimed to better define this phenomenon. Methods and Results Using microRNA microarrays, Real-time qPCR and Western blot we showed that co-culture of canine mammary tumor cells with TAMs or treatment with macrophage-conditioned medium inhibited the canonical Wnt pathway and activated the non-canonical Wnt pathway in tumor cells. We also showed that co-culture of TAMs with tumor cells increased expression of canonical Wnt inhibitors in TAMs. Subsequently, we demonstrated macrophage-induced invasive growth patterns and epithelial–mesenchymal transition of tumor cells. Validation of these results in canine mammary carcinoma tissues (n = 50) and xenograft tumors indicated the activation of non-canonical and canonical Wnt pathways in metastatic tumors and non-metastatic malignancies, respectively. Activation of non-canonical Wnt pathway correlated with number of TAMs. Conclusions We demonstrated that TAMs mediate a “switch” between canonical and non-canonical Wnt signaling pathways in canine mammary tumors, leading to increased tumor invasion and metastasis. Interestingly, similar changes in neoplastic cells were observed in the presence of macrophage-conditioned medium or live macrophages. These observations indicate that rather than being “corrupted” by cancer cells, TAMs constitutively secrete canonical Wnt inhibitors that decrease tumor proliferation and development, but as a side effect, they induce the non-canonical Wnt pathway, which leads to tumor metastasis. These data challenge the conventional understanding of TAM–cancer cell interactions. PMID:24404146

  3. Size Dependent Kinetics of Gold Nanorods in EPR Mediated Tumor Delivery

    PubMed Central

    Tong, Xiao; Wang, Zhantong; Sun, Xiaolian; Song, Jibin; Jacobson, Orit; Niu, Gang; Kiesewetter, Dale O.; Chen, Xiaoyuan

    2016-01-01

    Gold nanorods (AuNR) have been intensively used in nanomedicine for cancer diagnostics and therapy, due to their excellent plasmonic photothermal properties. Tuning the size and aspect ratio of AuNR tailors the localized surface plasmon resonance (LSPR) in the NIR spectrum at which biological tissues are transparent, thus enables specific and effective treatment. The AuNR extravasates into tumor interstitium through enhanced permeation and retention (EPR) effect. Efficient AuNR based cancer therapy requires efficient AuNR tumor delivery. However, the size of AuNR can dramatically affect its blood circulation and tumor accumulation. Here we proposed for the first time a systematic framework to investigate the size-dependent kinetics of AuNRs during EPR mediated tumor delivery. By using 64Cu-labeled AuNRs with positron emission tomography (PET) and kinetic modeling, the in vivo uptake and kinetics of 64Cu-AuNR during its blood circulation, tumor accumulation and elimination were studied both in vitro and in vivo. The results of different sized AuNRs were compared and the optimum size of AuNR was suggested for EPR mediated tumor delivery. Our study provides a better understanding of the in vivo behavior of AuNR, which can help future design of nanomaterials for cancer imaging and therapy. PMID:27698939

  4. Phenotypically distinct helper NK cells are required for gp96-mediated anti-tumor immunity

    PubMed Central

    Sedlacek, Abigail L.; Kinner-Bibeau, Lauren B.; Binder, Robert J.

    2016-01-01

    A number of Heat Shock Proteins (HSPs), in the extracellular environment, are immunogenic. Following cross-presentation of HSP-chaperoned peptides by CD91+ antigen presenting cells (APCs), T cells are primed with specificity for the derivative antigen-bearing cell. Accordingly, tumor-derived HSPs are in clinical trials for cancer immunotherapy. We investigate the role of NK cells in gp96-mediated anti-tumor immune responses given their propensity to lyse tumor cells. We show that gp96-mediated rejection of tumors requires a unique and necessary helper role in NK cells. This helper role occurs during the effector phase of the anti-tumor immune response and is required for T cell and APC function. Gp96 activates NK cells indirectly via APCs to a phenotype distinct from NK cells activated by other mechanisms such as IL-2. While NK cells have both lytic and cytokine producing properties, we show that gp96 selectively activates cytokine production in NK cells, which is important in the HSP anti-tumor immune response, and leaves their cytotoxic capacity unchanged. PMID:27431727

  5. Nanoparticle-Mediated Photothermal Therapy of Brain Tumors

    NASA Astrophysics Data System (ADS)

    Makkouk, Amani R.; Madsen, Steen J.

    Nanoparticles (10-1,000 nm diameter) have been investigated for use in numerous diagnostic and therapeutic applications. Gold nanoparticles are particularly appealing due to their biological inertness and the ability to conjugate a wide variety of ligands to their surface. Additionally, their optical properties can be tuned through variations of their size, shape, and composition. For example, gold-silica nanoshells, consisting of a spherical dielectric silica core (100-120 nm diameter) surrounded by a 10-20 nm gold shell, have a strong resonant absorption at approximately 800 nm where light has significant penetration in biological tissues. Following light absorption, surface electrons are photoexcited and the resultant heated electron gas is dissipated to the surrounding medium causing thermal damage. The ability of nanoparticles to convert optical energy to thermal energy makes them ideally suited for photothermal therapy (PTT). This review focuses on the utility of gold-silica nanoshells in PTT of brain tumors. PTT has proven effective in a number of in vitro and in vivo studies. Of particular clinical relevance are results demonstrating PTT efficacy in an orthotopic canine model.

  6. Enzyme-triggered, cell penetrating peptide-mediated delivery of anti-tumor agents.

    PubMed

    He, Huining; Sun, Lu; Ye, Junxiao; Liu, Ergang; Chen, Sunhui; Liang, Qiuling; Shin, Meong Cheol; Yang, Victor C

    2016-10-28

    Conventional chemotherapy has little or no specificity for cancer cells, normally resulting in low drug accumulation at the tumor region (inefficacy) and drug-induced severe side effects (toxicity). Nowadays, new strategies have been developed to improve both the targeting ability and cellular drug uptake using active targeting ligands and drug internalization agents, which could recognize and interact with specific receptors overexpressed on tumor cells and then trigger a drug internalization process by transporting the cargos into cells. Among those strategies, enzyme-triggered cell penetrating peptide (CPP)-mediated systems seem to be a feasible approach. The expression level of specific enzymes like proteases, esterases or glycosidases is often higher in tumor cells than in normal tissues, and such concentration gradients can be exploited as a tool for targeted cancer therapy. CPPs are known to be effective in promoting membrane transportation of the drug cargos, rendering a deeper tumor permeation that could further enhance the therapeutic efficacy of the delivered drug. An enzyme-triggered, CPP-mediated system would combine these advantages to yield a system with the enhanced tumor targeting ability and internalization efficiency and so far many systems have been successfully exploited and applied to cancer therapy. In this review, typical enzymes applied in cancer theranostic systems were firstly reviewed, followed by analyzing pros and cons of cell penetrating peptides. Most importantly, different types of applications of enzyme-triggered CPP-mediated systems in tumor imaging were illustrated. Finally, the drug loaded applications, i.e. enzyme-triggered CPP-mediated systems in drug delivery were reviewed. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Strategies for improving chemotherapeutic delivery to solid tumors mediated by vascular permeability modulation

    NASA Astrophysics Data System (ADS)

    Roy Chaudhuri, Tista

    An essential mode of distribution of blood-borne chemotherapeutic agents within a solid tumor is via the micro-circulation. Poor tumor perfusion, because of a lack of functional vasculature or a lack of microvessels, as well as low tumor vascular permeability, can prevent adequate deposition of even low molecular-weight agents into the tumor. The modulation of tumor vascular function and density can provides numerous strategies for improving intratumor deposition of chemotherapeutic agents. Here we investigated strategies to improve drug delivery to two tumor types that share in common poor drug delivery, but differ in the underlying cause. First, in an angiogenesis-driven brain tumor model of Glioblastoma, the vascular permeability barrier, along with poorly-functional vasculature, hinders drug delivery. A strategy of nanoparticle-based tumor 'priming' to attack the vascular permeability barrier, employing sterically stabilized liposomal doxorubicin (SSL-DXR), was investigated. Functional and histological evaluation of tumor vasculature revealed that after an initial period of depressed vascular permeability and vascular pruning 3--4 days after SSL-DXR administration, vascular permeability and perfusion were restored and then elevated after 5--7 days. As a result of tumor priming, deposition of subsequently-administered nanoparticles was enhanced, and the efficacy of temozolomide (TMZ), if administered during the window of elevated permeability, was increased. The sequenced regimen resulted in a persistent reduction of the tumor proliferative index and a 40% suppression of tumor volume, compared to animals that received both agents simultaneously. Second, in a hypovascular, pancreatic ductal adenocarcinoma model, disruption of tumor-stromal communication via sonic hedgehog (sHH) signaling pathway inhibition mediated an indirect vascular proliferation and a more than 2-fold increase in intratumor nanoparticle deposition. Enhanced delivery of SSL-DXR in tumors pre

  8. Radio frequency-mediated local thermotherapy for destruction of pancreatic tumors using Ni-Au core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Hopkins, Xiaoping; Gill, Waqas Amin; Kringel, Rosemarie; Wang, Guankui; Hass, Jamie; Acharya, Suresh; Park, Jungrae; Tak Jeon, In; An, Boo Hyun; Lee, Ji Sung; Ryu, Jong Eun; Hill, Rod; McIlroy, David; Kim, Young Keun; Choi, Daniel S.

    2017-01-01

    We present a novel method of radio frequency (RF)-mediated thermotherapy in tumors by remotely heating nickel (Ni)-gold (Au) core-shell nanowires (CSNWs). Ectopic pancreatic tumors were developed in nude mice to evaluate the thermotherapeutic effects on tumor progression. Tumor ablation was produced by RF-mediated thermotherapy via activation of the paramagnetic properties of the Ni-Au CSNWs. Histopathology demonstrated that heat generated by RF irradiation caused significant cellular death with pyknotic nuclei and nuclear fragmentation dispersed throughout the tumors. These preliminary results suggest that thermotherapy ablation induced via RF activation of nanowires provides a potential alternative therapy for cancer treatment.

  9. Fasting-Mimicking Diet Reduces HO-1 to Promote T Cell-Mediated Tumor Cytotoxicity.

    PubMed

    Di Biase, Stefano; Lee, Changhan; Brandhorst, Sebastian; Manes, Brianna; Buono, Roberta; Cheng, Chia-Wei; Cacciottolo, Mafalda; Martin-Montalvo, Alejandro; de Cabo, Rafael; Wei, Min; Morgan, Todd E; Longo, Valter D

    2016-07-11

    Immune-based interventions are promising strategies to achieve long-term cancer-free survival. Fasting was previously shown to differentially sensitize tumors to chemotherapy while protecting normal cells, including hematopoietic stem and immune cells, from its toxic side effects. Here, we show that the combination of chemotherapy and a fasting-mimicking diet (FMD) increases the levels of bone marrow common lymphoid progenitor cells and cytotoxic CD8(+) tumor-infiltrating lymphocytes (TILs), leading to a major delay in breast cancer and melanoma progression. In breast tumors, this effect is partially mediated by the downregulation of the stress-responsive enzyme heme oxygenase-1 (HO-1). These data indicate that FMD cycles combined with chemotherapy can enhance T cell-dependent targeted killing of cancer cells both by stimulating the hematopoietic system and by enhancing CD8(+)-dependent tumor cytotoxicity.

  10. Combining Cytotoxic and Immune-Mediated Gene Therapy to Treat Brain Tumors

    PubMed Central

    Curtin, James F.; King, Gwendalyn D.; Candolfi, Marianela; Greeno, Remy B.; Kroeger, Kurt M.; Lowenstein, Pedro R.; Castro, Maria G.

    2006-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as ‘immune privileged’, brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another

  11. Combining cytotoxic and immune-mediated gene therapy to treat brain tumors.

    PubMed

    Curtin, James F; King, Gwendalyn D; Candolfi, Marianela; Greeno, Remy B; Kroeger, Kurt M; Lowenstein, Pedro R; Castro, Maria G

    2005-01-01

    Glioblastoma (GBM) is a type of intracranial brain tumor, for which there is no cure. In spite of advances in surgery, chemotherapy and radiotherapy, patients die within a year of diagnosis. Therefore, there is a critical need to develop novel therapeutic approaches for this disease. Gene therapy, which is the use of genes or other nucleic acids as drugs, is a powerful new treatment strategy which can be developed to treat GBM. Several treatment modalities are amenable for gene therapy implementation, e.g. conditional cytotoxic approaches, targeted delivery of toxins into the tumor mass, immune stimulatory strategies, and these will all be the focus of this review. Both conditional cytotoxicity and targeted toxin mediated tumor death, are aimed at eliminating an established tumor mass and preventing further growth. Tumors employ several defensive strategies that suppress and inhibit anti-tumor immune responses. A better understanding of the mechanisms involved in eliciting anti-tumor immune responses has identified promising targets for immunotherapy. Immunotherapy is designed to aid the immune system to recognize and destroy tumor cells in order to eliminate the tumor burden. Also, immune-therapeutic strategies have the added advantage that an activated immune system has the capability of recognizing tumor cells at distant sites from the primary tumor, therefore targeting metastasis distant from the primary tumor locale. Pre-clinical models and clinical trials have demonstrated that in spite of their location within the central nervous system (CNS), a tissue described as 'immune privileged', brain tumors can be effectively targeted by the activated immune system following various immunotherapeutic strategies. This review will highlight recent advances in brain tumor immunotherapy, with particular emphasis on advances made using gene therapy strategies, as well as reviewing other novel therapies that can be used in combination with immunotherapy. Another important

  12. Cancer stem cells as mediators of treatment resistance in brain tumors: status and controversies.

    PubMed

    Sakariassen, Per Ø; Immervoll, Heike; Chekenya, Martha

    2007-11-01

    Malignant primary brain tumors are characterized by a short median survival and an almost 100% tumor-related mortality. Despite the addition of new chemotherapy regimes, the overall survival has improved marginally, and radiotherapy is only transiently effective, illustrating the profound impact of treatment resistance on prognosis. Recent studies suggest that a small subpopulation of cancer stem cells (CSCs) has the capacity to repopulate tumors and drive malignant progression and mediate radio- and chemoresistance. This implies that future therapies should turn from the elimination of the rapidly dividing, but differentiated tumor cells, to specifically targeting the minority of tumor cells that repopulate the tumor. Although there exists some support for the CSC hypothesis, there remain many uncertainties regarding theoretical, technical, and interpretational aspects of the data supporting it. If correct, the CSC hypothesis could have profound implications for the way tumors are classified and treated. In this review of the literature, we provide original data and hypotheses supporting alternative explanations and outline some of the therapeutic implications that can be derived.

  13. Phenobarbital-mediated tumor promotion in transgenic mice with humanized CAR and PXR.

    PubMed

    Braeuning, Albert; Gavrilov, Alina; Brown, Susan; Wolf, C Roland; Henderson, Colin J; Schwarz, Michael

    2014-08-01

    The nuclear receptors CAR (constitutive androstane receptor) and possibly PXR (pregnane X receptor) mediate the hepatic effects of phenobarbital (PB) and similar-acting compounds. Although PB is a potent nongenotoxic tumor promoter in rodent liver, epidemiological data from epilepsy patients treated with phenobarbital do not show a specific role of PB in human liver cancer risk. That points to species differences in the susceptibility to tumor promotion by PB, which might be attributed to divergent functions of the PB receptors CAR and PXR in mice and humans. In the present study, male transgenic mice expressing human CAR and PXR were used to detect possible differences between wild-type (WT) and humanized mice in their response to CAR activation in a tumor initiation/promotion experiment with a single injection of the tumor initiator N-nitrosodiethylamine preceding chronic PB treatment for 10 months. Analysis of liver tumor burden revealed that PB strongly promoted the outgrowth of hepatocellular adenoma driven by activated β-catenin in WT mice, whereas the tumor-promoting effect of PB was much less pronounced in the humanized group. In conclusion, the present findings demonstrate that human CAR and PXR support tumor promotion by PB in mouse liver, but to a significantly lesser extent than the WT murine receptors. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Extracellular vesicle-mediated transfer of functional RNA in the tumor microenvironment

    PubMed Central

    Ridder, Kirsten; Sevko, Alexandra; Heide, Janina; Dams, Maria; Rupp, Anne-Kathleen; Macas, Jadranka; Starmann, Julia; Tjwa, Marc; Plate, Karl H; Sültmann, Holger; Altevogt, Peter; Umansky, Viktor; Momma, Stefan

    2015-01-01

    Extracellular vesicles (EVs) have been shown to transfer various molecules, including functional RNA between cells and this process has been suggested to be particularly relevant in tumor-host interactions. However, data on EV-mediated RNA transfer has been obtained primarily by in vitro experiments or involving ex vivo manipulations likely affecting its biology, leaving their physiological relevance unclear. We engineered glioma and carcinoma tumor cells to express Cre recombinase showing their release of EVs containing Cre mRNA in various EV subfractions including exosomes. Transplantation of these genetically modified tumor cells into mice with a Cre reporter background leads to frequent recombination events at the tumor site. In both tumor models the majority of recombined cells are CD45+ leukocytes, predominantly Gr1+CD11b+ myeloid-derived suppressor cells (MDSCs). In addition, multiple lineages of recombined cells can be observed in the glioma model. In the lung carcinoma model, recombined MDSCs display an enhanced immunosuppressive phenotype and an altered miRNA profile compared to their non-recombined counterparts. Cre-lox based tracing of tumor EV RNA transfer in vivo can therefore be used to identify individual target cells in the tumor microenvironment for further mechanistical or functional analysis. PMID:26155418

  15. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    PubMed Central

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001 PMID:27692066

  16. Dosimetry study of PHOTOFRIN-mediated photodynamic therapy in a mouse tumor model

    NASA Astrophysics Data System (ADS)

    Qiu, Haixia; Kim, Michele M.; Penjweini, Rozhin; Zhu, Timothy C.

    2016-03-01

    It is well known in photodynamic therapy (PDT) that there is a large variability between PDT light dose and therapeutic outcomes. An explicit dosimetry model using apparent reacted 1O2 concentration [1O2]rx has been developed as a PDT dosimetric quantity to improve the accuracy of the predicted ability of therapeutic efficacy. In this study, this explicit macroscopic singlet oxygen model was adopted to establish the correlation between calculated reacted [1O2]rx and the tumor growth using Photofrin-mediated PDT in a mouse tumor model. Mice with radiation-induced fibrosarcoma (RIF) tumors were injected with Photofrin at a dose of 5 mg/kg. PDT was performed 24h later with different fluence rates (50, 75 and 150 mW/cm2) and different fluences (50 and 135 J/cm2) using a collimated light applicator coupled to a 630nm laser. The tumor volume was monitored daily after PDT and correlated with the total light fluence and [1O2]rx. Photophysical parameters as well as the singlet oxygen threshold dose for this sensitizer and the RIF tumor model were determined previously. The result showed that tumor growth rate varied greatly with light fluence for different fluence rates while [1O2]rx had a good correlation with the PDT-induced tumor growth rate. This preliminary study indicated that [1O2]rx could serve as a better dosimetric predictor for predicting PDT outcome than PDT light dose.

  17. Receptor-mediated transcytosis: a mechanism for active extravascular transport of nanoparticles in solid tumors.

    PubMed

    Lu, Wei; Xiong, Chiyi; Zhang, Rui; Shi, Lifang; Huang, Miao; Zhang, Guodong; Song, Shaoli; Huang, Qian; Liu, Gang-Yu; Li, Chun

    2012-08-10

    Targeted nanoparticle-based delivery systems have been used extensively to develop effective cancer theranostics. However, how targeting ligands affect extravascular transport of nanoparticles in solid tumors remains unclear. Here, we show, using B16/F10 melanoma cells expressing melanocortin type-1 receptor (MC1R), that the nature of targeting ligands, i.e., whether they are agonists or antagonists, directs tumor uptake and intratumoral distribution after extravasation of nanoparticles from tumor vessels into the extravascular fluid space. Pegylated hollow gold nanospheres (HAuNS, diameter=40 nm) coated with MC1R agonist are internalized upon ligand-receptor binding, whereas MC1R antagonist-conjugated HAuNS remain attached on the cell surface. Transcellular transport of agonist-conjugated HAuNS was confirmed by a multilayer tumor cell model and by transmission electron microscopy. MC1R agonist- but not MC1R antagonist-conjugated nanoparticles exhibit significantly higher tumor uptake than nontargeted HAuNS and are quickly dispersed from tumor vessels via receptor-mediated endocytosis and subsequent transcytosis. These results confirm an active transport mechanism that can be used to overcome one of the major biological barriers for efficient nanoparticle delivery to solid tumors. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. MiR-30b suppresses tumor migration and invasion by targeting EIF5A2 in gastric cancer

    PubMed Central

    Tian, Shu-Bo; Yu, Jian-Chun; Liu, Yu-Qin; Kang, Wei-Ming; Ma, Zhi-Qiang; Ye, Xin; Yan, Chao

    2015-01-01

    AIM: To elucidate the potential biological role of miR-30b in gastric cancer and investigate the underlying molecular mechanisms of miR-30b to inhibit metastasis of gastric cancer cells. METHODS: The expression of miR-30b was detected in gastric cancer cell lines and samples by reverse transcription-polymerase chain reaction. CCK-8 assays were conducted to explore the impact of miR-30b overexpression on the proliferation of gastric cancer cells. Flow cytometry was used to examine the effect of miR-30b on the apoptosis. Transwell test was used for the migration and invasion assays. Luciferase reporter assays and Western blot were employed to validate regulation of putative target of miR-30b. RESULTS: The results showed that miR-30b was downregulated in gastric cancer tissues and cancer cell lines and functioned as a tumor suppressor. Overexpression of miR-30b promoted cell apoptosis, and suppressed proliferation, migration and invasion of the gastric cancer cell lines AGS and MGC803. Bioinformatic analysis identified the 3’-untranslated region of eukaryotic translation initiation factor 5A2 (EIF5A2) as a putative binding site of miR-30b. Luciferase reporter assays and Western blot analysis confirmed the EIF5A2 gene as a target of miR-30b. Moreover, expression levels of the EIF5A2 targets E-cadherin and Vimentin were altered following transfection of miR-30b mimics. CONCLUSION: Our findings describe a link between miR-30b and EIF5A2, which plays an important role in mediating epithelial-mesenchymal transition. PMID:26309359

  19. Phosphorylation of carbonic anhydrase IX controls its ability to mediate extracellular acidification in hypoxic tumors.

    PubMed

    Ditte, Peter; Dequiedt, Franck; Svastova, Eliska; Hulikova, Alzbeta; Ohradanova-Repic, Anna; Zatovicova, Miriam; Csaderova, Lucia; Kopacek, Juraj; Supuran, Claudiu T; Pastorekova, Silvia; Pastorek, Jaromir

    2011-12-15

    In the hypoxic regions of a tumor, carbonic anhydrase IX (CA IX) is an important transmembrane component of the pH regulatory machinery that participates in bicarbonate transport. Because tumor pH has implications for growth, invasion, and therapy, determining the basis for the contributions of CA IX to the hypoxic tumor microenvironment could lead to new fundamental and practical insights. Here, we report that Thr443 phosphorylation at the intracellular domain of CA IX by protein kinase A (PKA) is critical for its activation in hypoxic cells, with the fullest activity of CA IX also requiring dephosphorylation of Ser448. PKA is activated by cAMP, which is elevated by hypoxia, and we found that attenuating PKA in cells disrupted CA IX-mediated extracellular acidification. Moreover, following hypoxia induction, CA IX colocalized with the sodium-bicarbonate cotransporter and other PKA substrates in the leading edge membranes of migrating tumor cells, in support of the concept that bicarbonate metabolism is spatially regulated at cell surface sites with high local ion transport and pH control. Using chimeric CA IX proteins containing heterologous catalytic domains derived from related CA enzymes, we showed that CA IX activity was modulated chiefly by the intracellular domain where Thr443 is located. Our findings indicate that CA IX is a pivotal mediator of the hypoxia-cAMP-PKA axis, which regulates pH in the hypoxic tumor microenvironment.

  20. 2,3,7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)-MEDIATED OXIDATIVE STRESS IN FEMALE CYP1A-2 KNOCKOUT (CYP1A2-/-) MICE

    EPA Science Inventory

    2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD)-Mediated Oxidative Stress in Female CYP1A2 Knockout (CYP1A2-/-) Mice

    Deborah Burgin1, Janet Diliberto2, Linda Birnbaum2
    1UNC Toxicology; 2USEPA/ORD/NHEERL, RTP, NC

    Most of the effects due to TCDD exposure are mediated via...

  1. 2,3,7, 8-TETRACHLORODIBENZO-P-DIOXIN (TCDD)-MEDIATED OXIDATIVE STRESS IN FEMALE CYP1A-2 KNOCKOUT (CYP1A2-/-) MICE

    EPA Science Inventory

    2,3,7,8-Tetrachlordibenzo-p-dioxin (TCDD)-Mediated Oxidative Stress in Female CYP1A2 Knockout (CYP1A2-/-) Mice

    Deborah Burgin1, Janet Diliberto2, Linda Birnbaum2
    1UNC Toxicology; 2USEPA/ORD/NHEERL, RTP, NC

    Most of the effects due to TCDD exposure are mediated via...

  2. Tumor functional and molecular imaging utilizing ultrasound and ultrasound-mediated optical techniques.

    PubMed

    Yuan, Baohong; Rychak, Joshua

    2013-02-01

    Tumor functional and molecular imaging has significantly contributed to cancer preclinical research and clinical applications. Among typical imaging modalities, ultrasonic and optical techniques are two commonly used methods; both share several common features such as cost efficiency, absence of ionizing radiation, relatively inexpensive contrast agents, and comparable maximum-imaging depth. Ultrasonic and optical techniques are also complementary in imaging resolution, molecular sensitivity, and imaging space (vascular and extravascular). The marriage between ultrasonic and optical techniques takes advantages of both techniques. This review introduces tumor functional and molecular imaging using microbubble-based ultrasound and ultrasound-mediated optical imaging techniques.

  3. Temozolomide does not impair gene therapy-mediated antitumor immunity in syngeneic brain tumor models

    PubMed Central

    Wibowo, Mia; Ahlzadeh, Gabrielle E; Puntel, Mariana; Ghiasi, Homayon; Kamran, Neha; Paran, Christopher; Lowenstein, Pedro R; Castro, Maria G

    2014-01-01

    Purpose Glioblastoma multiforme (GBM) is the most common primary brain cancer in adults. Chemotherapy with temozolomide (TMZ) significantly prolongs the survival of GBM patients. However, the 3-year survival is still ~5%. Herein we combined intratumoral administration of an adenoviral vector expressing Flt3L (Ad-Flt3L) with systemic TMZ in order to assess its impact on therapeutic efficacy. Experimental Design Wild type or immunodeficient mice bearing intracranial GBM or metastatic melanoma were treated with an intratumoral injection of Ad-Flt3L alone or in combination with the conditionally cytotoxic enzyme thymidine kinase (Ad-TK), followed by systemic administration of ganciclovir and TMZ. We monitored survival and measured the tumor-infiltrating immune cells. Results While treatment with TMZ alone led to a small improvement in median survival, when used in combination with gene therapy-mediated immunotherapy it significantly increased the survival of tumor-bearing mice. The anti-tumor effect was further enhanced by concomitant intratumoral administration of Ad-TK, leading to 50–70% long-term survival in all tumor models. Although TMZ reduced the content of T cells in the tumor, this did not affect the therapeutic efficacy. The anti-tumor effect of Ad-Flt3L+Ad-TK+TMZ required an intact immune system, since the treatment failed when administered to KO mice that lacked lymphocytes or dendritic cells. Conclusions Our results challenge the notion that chemotherapy leads to a state of immune-suppression which impairs the ability of the immune system to mount an effective anti-tumor response. Our work indicates that TMZ does not inhibit antitumor immunity and supports its clinical implementation in combination with immune-mediated therapies. PMID:24501391

  4. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy.

    PubMed

    Highfill, Steven L; Cui, Yongzhi; Giles, Amber J; Smith, Jillian P; Zhang, Hua; Morse, Elizabeth; Kaplan, Rosandra N; Mackall, Crystal L

    2014-05-21

    Suppression of the host's immune system plays a major role in cancer progression. Tumor signaling of programmed death 1 (PD1) on T cells and expansion of myeloid-derived suppressor cells (MDSCs) are major mechanisms of tumor immune escape. We sought to target these pathways in rhabdomyosarcoma (RMS), the most common soft tissue sarcoma of childhood. Murine RMS showed high surface expression of PD-L1, and anti-PD1 prevented tumor growth if initiated early after tumor inoculation; however, delayed anti-PD1 had limited benefit. RMS induced robust expansion of CXCR2(+)CD11b(+)Ly6G(hi) MDSCs, and CXCR2 deficiency prevented CD11b(+)Ly6G(hi) MDSC trafficking to the tumor. When tumor trafficking of MDSCs was inhibited by CXCR2 deficiency, or after anti-CXCR2 monoclonal antibody therapy, delayed anti-PD1 treatment induced significant antitumor effects. Thus, CXCR2(+)CD11b(+)Ly6G(hi) MDSCs mediate local immunosuppression, which limits the efficacy of checkpoint blockade in murine RMS. Human pediatric sarcomas also produce CXCR2 ligands, including CXCL8. Patients with metastatic pediatric sarcomas display elevated serum CXCR2 ligands, and elevated CXCL8 is associated with diminished survival in this population. We conclude that accumulation of MDSCs in the tumor bed limits the efficacy of checkpoint blockade in cancer. We also identify CXCR2 as a novel target for modulating tumor immune escape and present evidence that CXCR2(+)CD11b(+)Ly6G(hi) MDSCs are an important suppressive myeloid subset in pediatric sarcomas. These findings present a translatable strategy to improve the efficacy of checkpoint blockade by preventing trafficking of MDSCs to the tumor site.

  5. Blockade of TGF-beta enhances tumor vaccine efficacy mediated by CD8(+) T cells.

    PubMed

    Takaku, Shun; Terabe, Masaki; Ambrosino, Elena; Peng, Judy; Lonning, Scott; McPherson, John M; Berzofsky, Jay A

    2010-04-01

    Though TGF-beta inhibition enhances antitumor immunity mediated by CD8(+) T cells in several tumor models, it is not always sufficient for rejection of tumors. In this study, to maximize the antitumor effect of TGF-beta blockade, we tested the effect of anti-TGF-beta combined with an irradiated tumor vaccine in a subcutaneous CT26 colon carcinoma tumor model. The irradiated tumor cell vaccine alone in prophylactic setting significantly delayed tumor growth, whereas anti-TGF-beta antibodies alone did not show any antitumor effect. However, tumor growth was inhibited significantly more in vaccinated mice treated with anti-TGF-beta antibodies compared to vaccinated mice without anti-TGF-beta, suggesting that anti-TGF-beta synergistically enhanced irradiated tumor vaccine efficacy. CD8(+) T-cell depletion completely abrogated the vaccine efficacy, and so protection required CD8(+) T cells. Depletion of CD25(+) T regulatory cells led to the almost complete rejection of tumors without the vaccine, whereas anti-TGF-beta did not change the number of CD25(+) T regulatory cells in unvaccinated and vaccinated mice. Though the abrogation of CD1d-restricted NKT cells, which have been reported to induce TGF-beta production by MDSC through an IL-13-IL-4R-STAT6 pathway, partially enhanced antitumor immunity regardless of vaccination, abrogation of the NKT cell-IL-13-IL-4R-STAT-6 immunoregulatory pathway did not enhance vaccine efficacy. Taken together, these data indicated that anti-TGF-beta enhances efficacy of a prophylactic vaccine in normal individuals despite their not having the elevated TGF-beta levels found in patients with cancer and that the effect is not dependent on TGF-beta solely from CD4(+)CD25(+) T regulatory cells or the NKT cell-IL-13-IL-4R-STAT-6 immunoregulatory pathway.

  6. Forced LIGHT expression in prostate tumors overcomes Treg mediated immunosuppression and synergizes with a prostate tumor therapeutic vaccine by recruiting effector T lymphocytes

    PubMed Central

    Yan, Lisa; Da Silva, Diane M.; Verma, Bhavna; Gray, Andrew; Brand, Heike E.; Skeate, Joseph G.; Porras, Tania B.; Kanodia, Shreya; Kast, W. Martin

    2014-01-01

    Background LIGHT, a ligand for lymphotoxin-β receptor (LTβR) and herpes virus entry mediator, is predominantly expressed on activated immune cells and LTβR signaling leads to the recruitment of lymphocytes. The interaction between LIGHT and LTβR has been previously shown in a virus induced tumor model to activate immune cells and result in tumor regression, but the role of LIGHT in tumor immunosuppression or in a prostate cancer setting, where self antigens exist, has not been explored. We hypothesized that forced expression of LIGHT in prostate tumors would shift the pattern of immune cell infiltration, would inhibit T regulatory cells (Tregs) and would induce prostate cancer tumor associated antigen (TAA) specific T cells that would eradicate tumors. Methods Real Time PCR was used to evaluate expression of forced LIGHT and various other genes in prostate tumors samples. Adenovirus encoding murine LIGHT was injected intratumorally into TRAMP C2 prostate cancer cell tumor bearing mice for in vivo studies. Chemokine and cytokine concentrations were determined by multiplex ELISA. Flow cytometry was used to phenotype tumor infiltrating lymphocytes and expression of LIGHT on the tumor cell surface. Tumor specific lymphocytes were quantified via an ELISpot assay. Treg induction and Treg suppression assays determined Treg functionality after LIGHT treatment. Results LIGHT expression peaked within 48 hours of infection, recruited effector T cells into the tumor microenvironment that recognized mouse prostate stem cell antigen (PSCA) and inhibited the infiltration of Tregs. Tregs isolated from tumor draining lymph nodes had impaired suppressive capability after LIGHT treatment. LIGHT in combination with a therapeutic vaccine, PSCA TriVax, reduced tumor burden. Conclusion Forced LIGHT treatment combined with PSCA TriVax therapeutic vaccination delays prostate cancer progression in mice by recruiting effector T lymphocytes to the tumor and inhibiting Treg mediated

  7. Computational modeling identifies key gene regulatory interactions underlying phenobarbital-mediated tumor promotion

    PubMed Central

    Luisier, Raphaëlle; Unterberger, Elif B.; Goodman, Jay I.; Schwarz, Michael; Moggs, Jonathan; Terranova, Rémi; van Nimwegen, Erik

    2014-01-01

    Gene regulatory interactions underlying the early stages of non-genotoxic carcinogenesis are poorly understood. Here, we have identified key candidate regulators of phenobarbital (PB)-mediated mouse liver tumorigenesis, a well-characterized model of non-genotoxic carcinogenesis, by applying a new computational modeling approach to a comprehensive collection of in vivo gene expression studies. We have combined our previously developed motif activity response analysis (MARA), which models gene expression patterns in terms of computationally predicted transcription factor binding sites with singular value decomposition (SVD) of the inferred motif activities, to disentangle the roles that different transcriptional regulators play in specific biological pathways of tumor promotion. Furthermore, transgenic mouse models enabled us to identify which of these regulatory activities was downstream of constitutive androstane receptor and β-catenin signaling, both crucial components of PB-mediated liver tumorigenesis. We propose novel roles for E2F and ZFP161 in PB-mediated hepatocyte proliferation and suggest that PB-mediated suppression of ESR1 activity contributes to the development of a tumor-prone environment. Our study shows that combining MARA with SVD allows for automated identification of independent transcription regulatory programs within a complex in vivo tissue environment and provides novel mechanistic insights into PB-mediated hepatocarcinogenesis. PMID:24464994

  8. NF-κB functions as a molecular link between tumor cells and Th1/Tc1 T cells in the tumor microenvironment to exert radiation-mediated tumor suppression.

    PubMed

    Simon, Priscilla S; Bardhan, Kankana; Chen, May R; Paschall, Amy V; Lu, Chunwan; Bollag, Roni J; Kong, Feng-Chong; Jin, JianYue; Kong, Feng-Ming; Waller, Jennifer L; Pollock, Raphael E; Liu, Kebin

    2016-04-26

    Radiation modulates both tumor cells and immune cells in the tumor microenvironment to exert its anti-tumor activity; however, the molecular connection between tumor cells and immune cells that mediates radiation-exerted tumor suppression activity in the tumor microenvironment is largely unknown. We report here that radiation induces rapid activation of the p65/p50 and p50/p50 NF-κB complexes in human soft tissue sarcoma (STS) cells. Radiation-activated p65/p50 and p50/p50 bind to the TNFα promoter to activate its transcription in STS cells. Radiation-induced TNFα induces tumor cell death in an autocrine manner. A sublethal dose of Smac mimetic BV6 induces cIAP1 and cIAP2 degradation to increase tumor cell sensitivity to radiation-induced cell death in vitro and to enhance radiation-mediated suppression of STS xenografts in vivo. Inhibition of caspases, RIP1, or RIP3 blocks radiation/TNFα-induced cell death, whereas inhibition of RIP1 blocks TNFα-induced caspase activation, suggesting that caspases and RIP1 act sequentially to mediate the non-compensatory cell death pathways. Furthermore, we determined in a syngeneic sarcoma mouse model that radiation up-regulates IRF3, IFNβ, and the T cell chemokines CCL2 and CCL5 in the tumor microenvironment, which are associated with activation and increased infiltration of Th1/Tc1 T cells in the tumor microenvironment. Moreover, tumor-infiltrating T cells are in their active form since both the perforin and FasL pathways are activated in irradiated tumor tissues. Consequently, combined BV6 and radiation completely suppressed tumor growth in vivo. Therefore, radiation-induced NF-κB functions as a molecular link between tumor cells and immune cells in the tumor microenvironment for radiation-mediated tumor suppression.

  9. Early membrane rupture events during neutrophil-mediated antibody-dependent tumor cell cytolysis.

    PubMed

    Kindzelskii, A L; Petty, H R

    1999-03-15

    Although cell-mediated cytolysis is a fundamental immune effector response, its mechanism remains poorly understood at the cellular level. In this report, we image for the first time transient ruptures, as inferred by cytoplasmic marker release, in tumor cell membranes during Ab-dependent cellular cytolysis. The cytosol of IgG-opsonized YAC tumor cells was labeled with tetra-methylrhodamine diacetate followed by the formation of tumor cell-neutrophil conjugates. We hypothesized that tumor cell cytolysis proceeds via a series of discrete membrane rupture/resealing events that contribute to marker release. To test this hypothesis, we occluded the fluorescence image of the labeled tumor cells by passing an opaque disk into a field-conjugated plane between the light source and the sample. Multiple small bursts of fluorescent label release from tumor cells could be detected using a photomultiplier tube. Similarly, multiple fluorescent plumes were observed at various sites around the perimeter of a target. These findings support a multihit model of target cytolysis and suggest that cytolytic release is not focused at specific sites. Cytolytic bursts were generally observed at 20-s intervals, which match the previously described reduced nicotinamide-adenine dinucleotide phosphate and superoxide release oscillation periods for neutrophils; we speculate that metabolic oscillations of the effector cell drive the membrane damage of the target.

  10. Aptamer-mediated blockade of IL4Rα triggers apoptosis of MDSCs and limits tumor progression.

    PubMed

    Roth, Felix; De La Fuente, Adriana C; Vella, Jennifer L; Zoso, Alessia; Inverardi, Luca; Serafini, Paolo

    2012-03-15

    In addition to promoting tumor progression and metastasis by enhancing angiogenesis and invasion, myeloid-derived suppressor cells (MDSC) and tumor-associated macrophage (TAM) also inhibit antitumor T-cell functions and limit the efficacy of immunotherapeutic interventions. Despite the importance of these leukocyte populations, a simple method for their specific depletion has not been developed. In this study, we generated an RNA aptamer that blocks the murine or human IL-4 receptor-α (IL4Rα or CD124) that is critical for MDSC suppression function. In tumor-bearing mice, this anti-IL4Rα aptamer preferentially targeted MDSCs and TAM and unexpectedly promoted their elimination, an effect that was associated with an increased number of tumor-infiltrating T cells and a reduction in tumor growth. Mechanistic investigations of aptamer-triggered apoptosis in MDSCs confirmed the importance of IL4Ra-STAT6 pathway activation in MDSC survival. Our findings define a straightforward strategy to deplete MDSCs and TAMs in vivo, and they strengthen the concept that IL4Rα signaling is pivotal for MDSC survival. More broadly, these findings suggest therapeutic strategies based on IL4Rα signaling blockades to arrest an important cellular mechanism of tumoral immune escape mediated by MDSCs and TAM in cancer.

  11. Argininosuccinate lyase interacts with cyclin A2 in cytoplasm and modulates growth of liver tumor cells.

    PubMed

    Hung, Yu-Hsuan; Huang, Hau-Lun; Chen, Wei-Ching; Yen, Meng-Chi; Cho, Chien-Yu; Weng, Tzu-Yang; Wang, Chih-Yang; Chen, Yi-Ling; Chen, Li-Tzong; Lai, Ming-Derg

    2017-02-01

    Arginine is a critical amino acid in specific cancer types including hepatocellular carcinoma (HCC) and melanoma. Novel molecular mechanisms and therapeutic targets in arginine metabolism-mediated cancer formation await further identification. Our laboratory has previously demonstrated that arginine metabolic enzyme argininosuccinate lyase (ASL) promoted HCC formation in part via maintenance of cyclin A2 protein expression and arginine production for channeling to nitric oxide synthase. In this study, we investigated the mechanism by which ASL regulates cyclin A2 expression. We found that ASL interacted with cyclin A2 in HCC cells and the localization of their interaction was in the cytoplasm. Mutation of essential residues for enzymatic activity of ASL did not affect the binding of ASL to cyclin A2. Moreover, the mutant ASL retained the ability to restore the decreased tumorigenicity caused by ASL shRNA. Furthermore, overexpression of ASL conferred resistance to arginine deprivation therapy. Finally, the important pathways and potential therapeutic targets in ASL-regulated HCC were identified by bioinformatics analyses with Metacore database and Connectivity Map database. Our analyses suggested that bisoprolol, celecoxib, and ipratropium bromide, are potential therapeutics for ASL-regulated HCC formation. Thus, ASL interacts with cyclin A2 in cytoplasm, and may promote HCC formation through this non-enzymatic function. Overexpression of ASL may be a contributing factor in drug resistance for arginine deprivation therapy.

  12. The Natural Product Honokiol Inhibits Calcineurin Inhibitor-induced and Ras-mediated Tumor Promoting Pathways

    PubMed Central

    Banerjee, Pallavi; Basu, Aninda; Arbiser, Jack L.; Pal, Soumitro

    2013-01-01

    Although calcineurin inhibitors (CNIs) are very useful in preventing allograft rejection, they can mediate a rapid progression of post-transplantation malignancies. The CNI cyclosporine A (CsA) can promote renal tumor growth through activation of the proto-oncogene ras and over-expression of the angiogenic cytokine VEGF; the ras activation also induces over-expression of the cytoprotective enzyme HO-1, which promotes survival of renal cancer cells. Here, we show that the natural product honokiol significantly inhibited CsA-induced and Ras-mediated survival of renal cancer cells through the down-regulations of VEGF and HO-1. Thus, honokiol treatment may help to prevent tumor-promoting effects of CsA in transplant patients. PMID:23752066

  13. The natural product honokiol inhibits calcineurin inhibitor-induced and Ras-mediated tumor promoting pathways.

    PubMed

    Banerjee, Pallavi; Basu, Aninda; Arbiser, Jack L; Pal, Soumitro

    2013-09-28

    Although calcineurin inhibitors (CNIs) are very useful in preventing allograft rejection, they can mediate a rapid progression of post-transplantation malignancies. The CNI cyclosporine A (CsA) can promote renal tumor growth through activation of the proto-oncogene ras and over-expression of the angiogenic cytokine VEGF; the ras activation also induces over-expression of the cytoprotective enzyme HO-1, which promotes survival of renal cancer cells. Here, we show that the natural product honokiol significantly inhibited CsA-induced and Ras-mediated survival of renal cancer cells through the down-regulations of VEGF and HO-1. Thus, honokiol treatment may help to prevent tumor-promoting effects of CsA in transplant patients. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. DNA methylation mediated control of gene expression is critical for development of crown gall tumors.

    PubMed

    Gohlke, Jochen; Scholz, Claus-Juergen; Kneitz, Susanne; Weber, Dana; Fuchs, Joerg; Hedrich, Rainer; Deeken, Rosalia

    2013-01-01

    Crown gall tumors develop after integration of the T-DNA of virulent Agrobacterium tumefaciens strains into the plant genome. Expression of the T-DNA-encoded oncogenes triggers proliferation and differentiation of transformed plant cells. Crown gall development is known to be accompanied by global changes in transcription, metabolite levels, and physiological processes. High levels of abscisic acid (ABA) in crown galls regulate expression of drought stress responsive genes and mediate drought stress acclimation, which is essential for wild-type-like tumor growth. An impact of epigenetic processes such as DNA methylation on crown gall development has been suggested; however, it has not yet been investigated comprehensively. In this study, the methylation pattern of Arabidopsis thaliana crown galls was analyzed on a genome-wide scale as well as at the single gene level. Bisulfite sequencing analysis revealed that the oncogenes Ipt, IaaH, and IaaM were unmethylated in crown galls. Nevertheless, the oncogenes were susceptible to siRNA-mediated methylation, which inhibited their expression and subsequently crown gall growth. Genome arrays, hybridized with methylated DNA obtained by immunoprecipitation, revealed a globally hypermethylated crown gall genome, while promoters were rather hypomethylated. Mutants with reduced non-CG methylation developed larger tumors than the wild-type controls, indicating that hypermethylation inhibits plant tumor growth. The differential methylation pattern of crown galls and the stem tissue from which they originate correlated with transcriptional changes. Genes known to be transcriptionally inhibited by ABA and methylated in crown galls became promoter methylated upon treatment of A. thaliana with ABA. This suggests that the high ABA levels in crown galls may mediate DNA methylation and regulate expression of genes involved in drought stress protection. In summary, our studies provide evidence that epigenetic processes regulate gene

  15. Targeting MUC1 mediated tumor stromal metabolic interaction in Triple negative Breast Cancer

    DTIC Science & Technology

    2016-11-01

    AWARD NUMBER: W81XWH-13-1-0315 TITLE: Targeting MUC1-mediated tumor-stromal metabolic interaction in Triple- negative breast cancer PRINCIPAL...interaction in Triple-negative Breast Cancer 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Pankaj Singh, PhD 5d. PROJECT NUMBER 5e. TASK NUMBER E-Mail...overexpressed in TNBC and facilitates growth and metastasis of triple negative breast cancer (TNBC) cells. This occurrence can be partially attributed

  16. Role of MicroRNA-26b in Glioma Development and Its Mediated Regulation on EphA2

    PubMed Central

    Wu, Ning; Zhao, Xiangzhong; Liu, Ming; Liu, Haizhou; Yao, Weicheng; Zhang, Yuyan; Cao, Shousong; Lin, Xiukun

    2011-01-01

    Background MicroRNAs (miRNAs) are short, non-coding RNAs that regulate the expression of multiple target genes. Deregulation of miRNAs is common in human tumorigenesis. Low level expression of miR-26b has been found in glioma cells. However, its underlying mechanism of action has not been determined. Methodology/Principal Findings Real-time PCR was employed to measure the expression level of miR-26b in glioma patients and cells. The level of miR-26b was inversely correlated with the grade of glioma. Ectopic expression of miR-26b inhibited the proliferation, migration and invasion of human glioma cells. A binding site for miR-26b was identified in the 3′UTR of EphA2. Over-expression of miR-26b in glioma cells repressed the endogenous level of EphA2 protein. Vasculogenic mimicry (VM) experiments were performed to further confirm the effects of miR-26b on the regulation of EphA2, and the results showed that miR-26b inhibited the VM processes which regulated by EphA2. Significance This study demonstrated that miR-26b may act as a tumor suppressor in glioma and it directly regulates EphA2 expression. EphA2 is a direct target of miR-26b, and the down-regulation of EphA2 mediated by miR-26b is dependent on the binding of miR-26b to a specific response element of microRNA in the 3′UTR region of EphA2 mRNA. PMID:21264258

  17. The C-kit receptor-mediated signal transduction and tumor-related diseases.

    PubMed

    Liang, Jing; Wu, Yan-Ling; Chen, Bing-Jia; Zhang, Wen; Tanaka, Yoshimasa; Sugiyama, Hiroshi

    2013-01-01

    As an important member of tyrosine kinase family, c-kit receptor causes specific expression of certain genes, regulates cell differentiation and proliferation, resists cell apoptosis, and plays a key role in tumor occurrence, development, migration and recurrence through activating the downstream signaling molecules following interaction with stem cell factor (SCF). The abnormality of SCF/c-kit signaling pathway is closely related to some certain tumors. The discovery of c-kit receptor-targeted drugs has promoted clinical-related cancer's diagnosis and treatment. In this paper, we review recent research progress on c-kit receptor-mediated signal transduction and its potential therapeutic application as a target in tumor-related diseases.

  18. Macrophage-mediated tumor cytotoxicity: role of macrophage surface sialic acid.

    PubMed

    Cameron, D J

    1983-02-01

    Cell surface sialic acid levels were compared for monocytes and macrophages obtained from normal volunteers and breast cancer patients. Equal quantities of sialic acid were found on the monocytes obtained from normal volunteers and breast cancer patients. Approximately 60% more cell surface sialic acid was found on the macrophages from breast cancer patients than was found on the macrophages from normal volunteers. In order to determine whether cell surface sialic acid had any effect on macrophage-mediated cytotoxicity, macrophages were pretreated with neuraminidase (NANAse) prior to co-cultivation with tumor cells. The normal macrophages, after neuraminidase treatment, no longer retained their ability to kill tumor cells. However, when macrophages from breast cancer patients were treated with NANAse, no difference was observed in the ability of untreated and NANAse treated macrophages to kill tumor cells.

  19. The C-Kit Receptor-Mediated Signal Transduction and Tumor-Related Diseases

    PubMed Central

    Liang, Jing; Wu, Yan-Ling; Chen, Bing-Jia; Zhang, Wen; Tanaka, Yoshimasa; Sugiyama, Hiroshi

    2013-01-01

    As an important member of tyrosine kinase family, c-kit receptor causes specific expression of certain genes, regulates cell differentiation and proliferation, resists cell apoptosis, and plays a key role in tumor occurrence, development, migration and recurrence through activating the downstream signaling molecules following interaction with stem cell factor (SCF). The abnormality of SCF/c-kit signaling pathway is closely related to some certain tumors. The discovery of c-kit receptor-targeted drugs has promoted clinical-related cancer's diagnosis and treatment. In this paper, we review recent research progress on c-kit receptor-mediated signal transduction and its potential therapeutic application as a target in tumor-related diseases. PMID:23678293

  20. Antisense oligonucleotide–mediated MDM4 exon 6 skipping impairs tumor growth

    PubMed Central

    Dewaele, Michael; Tabaglio, Tommaso; Willekens, Karen; Bezzi, Marco; Teo, Shun Xie; Low, Diana H.P.; Koh, Cheryl M.; Rambow, Florian; Fiers, Mark; Rogiers, Aljosja; Radaelli, Enrico; Al-Haddawi, Muthafar; Tan, Soo Yong; Hermans, Els; Amant, Frederic; Yan, Hualong; Lakshmanan, Manikandan; Koumar, Ratnacaram Chandrahas; Lim, Soon Thye; Derheimer, Frederick A.; Campbell, Robert M.; Bonday, Zahid; Tergaonkar, Vinay; Shackleton, Mark; Blattner, Christine; Marine, Jean-Christophe; Guccione, Ernesto

    2015-01-01

    MDM4 is a promising target for cancer therapy, as it is undetectable in most normal adult tissues but often upregulated in cancer cells to dampen p53 tumor-suppressor function. The mechanisms that underlie MDM4 upregulation in cancer cells are largely unknown. Here, we have shown that this key oncogenic event mainly depends on a specific alternative splicing switch. We determined that while a nonsense-mediated, decay-targeted isoform of MDM4 (MDM4-S) is produced in normal adult tissues as a result of exon 6 skipping, enhanced exon 6 inclusion leads to expression of full-length MDM4 in a large number of human cancers. Although this alternative splicing event is likely regulated by multiple splicing factors, we identified the SRSF3 oncoprotein as a key enhancer of exon 6 inclusion. In multiple human melanoma cell lines and in melanoma patient–derived xenograft (PDX) mouse models, antisense oligonucleotide–mediated (ASO-mediated) skipping of exon 6 decreased MDM4 abundance, inhibited melanoma growth, and enhanced sensitivity to MAPK-targeting therapeutics. Additionally, ASO-based MDM4 targeting reduced diffuse large B cell lymphoma PDX growth. As full-length MDM4 is enhanced in multiple human tumors, our data indicate that this strategy is applicable to a wide range of tumor types. We conclude that enhanced MDM4 exon 6 inclusion is a common oncogenic event and has potential as a clinically compatible therapeutic target. PMID:26595814

  1. Inhibition of tumor cell growth by Sigma1 ligand mediated translational repression

    SciTech Connect

    Kim, Felix J.; Schrock, Joel M.; Spino, Christina M.; Marino, Jacqueline C.; Pasternak, Gavril W.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer Sigma1 ligand treatment mediates decrease in tumor cell mass. Black-Right-Pointing-Pointer Identification of a Sigma1 ligand with reversible translational repressor actions. Black-Right-Pointing-Pointer Demonstration of a role for Sigma1 in cellular protein synthesis. -- Abstract: Treatment with sigma1 receptor (Sigma1) ligands can inhibit cell proliferation in vitro and tumor growth in vivo. However, the cellular pathways engaged in response to Sigma1 ligand treatment that contribute to these outcomes remain largely undefined. Here, we show that treatment with putative antagonists of Sigma1 decreases cell mass. This effect corresponds with repressed cap-dependent translation initiation in multiple breast and prostate cancer cell lines. Sigma1 antagonist treatment suppresses phosphorylation of translational regulator proteins p70S6K, S6, and 4E-BP1. RNAi-mediated knockdown of Sigma1 also results in translational repression, consistent with the effects of antagonist treatment. Sigma1 antagonist mediated translational repression and decreased cell size are both reversible. Together, these data reveal a role for Sigma1 in tumor cell protein synthesis, and demonstrate that small molecule Sigma1 ligands can be used as modulators of protein translation.

  2. Translationally Controlled Tumor Protein Stimulates Dopamine Release from PC12 Cells via Ca2+-Independent Phospholipase A2 Pathways

    PubMed Central

    Seo, Jihui; Maeng, Jeehye; Kim, Hwa-Jung

    2016-01-01

    The translationally controlled tumor protein (TCTP), initially identified as a tumor- and growth-related protein, is also known as a histamine-releasing factor (HRF). TCTP is widely distributed in the neuronal systems, but its function is largely uncharacterized. Here, we report a novel function of TCTP in the neurotransmitter release from a neurosecretory, pheochromocytoma (PC12) cells. Treatment with recombinant TCTP (rTCTP) enhanced both basal and depolarization (50 mM KCl)-evoked [3H]dopamine release in concentration- and time-dependent manners. Interestingly, even though rTCTP induced the increase in intracellular calcium levels ([Ca2+]i), the rTCTP-driven effect on dopamine release was mediated by a Ca2+-independent pathway, as evidenced by the fact that Ca2+-modulating agents such as Ca2+ chelators and a voltage-gated L-type Ca2+-channel blocker did not produce any changes in rTCTP-evoked dopamine release. In a study to investigate the involvement of phospholipase A2 (PLA2) in rTCTP-induced dopamine release, the inhibitor for Ca2+-independent PLA2 (iPLA2) produced a significant inhibitory effect on rTCTP-induced dopamine release, whereas this release was not significantly inhibited by Ca2+-dependent cytosolic PLA2 (cPLA2) and secretory PLA2 (sPLA2) inhibitors. We found that rTCTP-induced dopamine release from neuronal PC12 cells was modulated by a Ca2+-independent mechanism that involved PLA2 in the process, suggesting the regulatory role of TCTP in the neuronal functions. PMID:27783042

  3. NLRP3 suppresses NK cell-mediated responses to carcinogen-induced tumors and metastases.

    PubMed

    Chow, Melvyn T; Sceneay, Jaclyn; Paget, Christophe; Wong, Christina S F; Duret, Helene; Tschopp, Jürg; Möller, Andreas; Smyth, Mark J

    2012-11-15

    The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function.

  4. Combined RNAi-mediated suppression of Rictor and EGFR resulted in complete tumor regression in an orthotopic glioblastoma tumor model.

    PubMed

    Verreault, Maite; Weppler, Sherry A; Stegeman, Amelia; Warburton, Corinna; Strutt, Dita; Masin, Dana; Bally, Marcel B

    2013-01-01

    The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line's sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective

  5. Combined RNAi-Mediated Suppression of Rictor and EGFR Resulted in Complete Tumor Regression in an Orthotopic Glioblastoma Tumor Model

    PubMed Central

    Verreault, Maite; Weppler, Sherry A.; Stegeman, Amelia; Warburton, Corinna; Strutt, Dita; Masin, Dana; Bally, Marcel B.

    2013-01-01

    The PI3K/AKT/mTOR pathway is commonly over activated in glioblastoma (GBM), and Rictor was shown to be an important regulator downstream of this pathway. EGFR overexpression is also frequently found in GBM tumors, and both EGFR and Rictor are associated with increased proliferation, invasion, metastasis and poor prognosis. This research evaluated in vitro and in vivo whether the combined silencing of EGFR and Rictor would result in therapeutic benefits. The therapeutic potential of targeting these proteins in combination with conventional agents with proven activity in GBM patients was also assessed. In vitro validation studies were carried out using siRNA-based gene silencing methods in a panel of three commercially available human GBM cell lines, including two PTEN mutant lines (U251MG and U118MG) and one PTEN-wild type line (LN229). The impact of EGFR and/or Rictor silencing on cell migration and sensitivity to chemotherapeutic drugs in vitro was determined. In vivo validation of these studies was focused on EGFR and/or Rictor silencing achieved using doxycycline-inducible shRNA-expressing U251MG cells implanted orthotopically in Rag2M mice brains. Target silencing, tumor size and tumor cell proliferation were assessed by quantification of immunohistofluorescence-stained markers. siRNA-mediated silencing of EGFR and Rictor reduced U251MG cell migration and increased sensitivity of the cells to irinotecan, temozolomide and vincristine. In LN229, co-silencing of EGFR and Rictor resulted in reduced cell migration, and increased sensitivity to vincristine and temozolomide. In U118MG, silencing of Rictor alone was sufficient to increase this line’s sensitivity to vincristine and temozolomide. In vivo, while the silencing of EGFR or Rictor alone had no significant effect on U251MG tumor growth, silencing of EGFR and Rictor together resulted in a complete eradication of tumors. These data suggest that the combined silencing of EGFR and Rictor should be an effective

  6. Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection?

    PubMed

    Abello-Cáceres, Paula; Pizarro-Bauerle, Javier; Rosas, Carlos; Maldonado, Ismael; Aguilar-Guzmán, Lorena; González, Carlos; Ramírez, Galia; Ferreira, Jorge; Ferreira, Arturo

    2016-09-13

    For several decades now an antagonism between Trypanosoma cruzi infection and tumor development has been detected. The molecular basis of this phenomenon remained basically unknown until our proposal that T. cruzi Calreticulin (TcCRT), an endoplasmic reticulum-resident chaperone, translocated-externalized by the parasite, may mediate at least an important part of this effect. Thus, recombinant TcCRT (rTcCRT) has important in vivo antiangiogenic and antitumor activities. However, the relevant question whether the in vivo antitumor effect of T. cruzi infection is indeed mediated by the native chaperone (nTcCRT), remains open. Herein, by using specific modified anti-rTcCRT antibodies (Abs), we have neutralized the antitumor activity of T. cruzi infection and extracts thereof, thus identifying nTcCRT as a valid mediator of this effect. Polyclonal anti-rTcCRT F(ab')2 Ab fragments were used to reverse the capacity of rTcCRT to inhibit EAhy926 endothelial cell (EC) proliferation, as detected by BrdU uptake. Using these F(ab')2 fragments, we also challenged the capacity of nTcCRT, during T. cruzi infection, to inhibit the growth of an aggressive mammary adenocarcinoma cell line (TA3-MTXR) in mice. Moreover, we determined the capacity of anti-rTcCRT Abs to reverse the antitumor effect of an epimastigote extract (EE). Finally, the effects of these treatments on tumor histology were evaluated. The rTcCRT capacity to inhibit ECs proliferation was reversed by anti-rTcCRT F(ab')2 Ab fragments, thus defining them as valid probes to interfere in vivo with this important TcCRT function. Consequently, during infection, these Ab fragments also reversed the in vivo experimental mammary tumor growth. Moreover, anti-rTcCRT Abs also neutralized the antitumor effect of an EE, again identifying the chaperone protein as an important mediator of this anti mammary tumor effect. Finally, as determined by conventional histological parameters, in infected animals and in those treated with EE

  7. Heat shock protein 90-mediated peptide-selective presentation of cytosolic tumor antigen for direct recognition of tumors by CD4(+) T cells.

    PubMed

    Tsuji, Takemasa; Matsuzaki, Junko; Caballero, Otavia L; Jungbluth, Achim A; Ritter, Gerd; Odunsi, Kunle; Old, Lloyd J; Gnjatic, Sacha

    2012-04-15

    Tumor Ag-specific CD4(+) T cells play important functions in tumor immunosurveillance, and in certain cases they can directly recognize HLA class II-expressing tumor cells. However, the underlying mechanism of intracellular Ag presentation to CD4(+) T cells by tumor cells has not yet been well characterized. We analyzed two naturally occurring human CD4(+) T cell lines specific for different peptides from cytosolic tumor Ag NY-ESO-1. Whereas both lines had the same HLA restriction and a similar ability to recognize exogenous NY-ESO-1 protein, only one CD4(+) T cell line recognized NY-ESO-1(+) HLA class II-expressing melanoma cells. Modulation of Ag processing in melanoma cells using specific molecular inhibitors and small interfering RNA revealed a previously undescribed peptide-selective Ag-presentation pathway by HLA class II(+) melanoma cells. The presentation required both proteasome and endosomal protease-dependent processing mechanisms, as well as cytosolic heat shock protein 90-mediated chaperoning. Such tumor-specific pathway of endogenous HLA class II Ag presentation is expected to play an important role in immunosurveillance or immunosuppression mediated by various subsets of CD4(+) T cells at the tumor local site. Furthermore, targeted activation of tumor-recognizing CD4(+) T cells by vaccination or adoptive transfer could be a suitable strategy for enhancing the efficacy of tumor immunotherapy.

  8. Protein disulfide isomerases are antibody targets during immune-mediated tumor destruction

    PubMed Central

    Fonseca, Catia; Soiffer, Robert; Ho, Vincent; Vanneman, Matthew; Jinushi, Masahisa; Ritz, Jerome; Neuberg, Donna; Stone, Richard; DeAngelo, Dan

    2009-01-01

    The identification of cancer antigens that contribute to transformation and are linked with immune-mediated tumor destruction is an important goal for immunotherapy. Toward this end, we screened a murine renal cell carcinoma cDNA expression library with sera from mice vaccinated with irradiated tumor cells engineered to secrete granulocyte macrophage colony-stimulating factor (GM-CSF). Multiple nonmutated, overexpressed proteins that function in tumor cell migration, protein/nucleic acid homeostasis, metabolism, and stress responses were detected. Among these, the most frequently recognized clone was protein disulfide isomerase (PDI). High titer antibodies to human PDI were similarly induced in an acute myeloid leukemia patient who achieved a complete response after vac-cination with irradiated, autologous GM-CSF–secreting tumor cells in the setting of nonmyeloablative allogeneic bone marrow transplantation. Moreover, ERp5, a closely related disulfide isomerase involved in major histocompatibility complex (MHC) class I chain-related protein A (MICA) shedding, also evoked potent humoral reactions in diverse solid and hematologic malignancy patients who responded to GM-CSF–secreting tumor cell vaccines or antibody blockade of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4). Together, these findings reveal the unexpected immunogenicity of PDIs and raise the possibility that these gene products might serve as targets for therapeutic monoclonal antibodies. PMID:19008459

  9. Singlet oxygen explicit dosimetry to predict local tumor control for HPPH-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    This preclinical study examines four dosimetric quantities (light fluence, photosensitizer photobleaching ratio, PDT dose, and reacted singlet oxygen ([1O2]rx)) to predict local control rate (LCR) for 2-(1-Hexyloxyethyl)-2-devinyl pyropheophorbide (HPPH)-mediated photodynamic therapy (PDT). Mice bearing radiation-induced fibrosarcoma (RIF) tumors were treated with different in-air fluences (135, 250 and 350 J/cm2) and in-air fluence rates (50, 75 and 150 mW/cm2) at 0.25 mg/kg HPPH and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 665 nm wavelength. A macroscopic model was used to calculate ([1O2]rx)) based on in vivo explicit dosimetry of the initial tissue oxygenation, photosensitizer concentration, and tissue optical properties. PDT dose was defined as a temporal integral of drug concentration and fluence rate (φ) at a 3 mm tumor depth. Light fluence rate was calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. The tumor volume of each mouse was tracked for 30 days after PDT and Kaplan-Meier analyses for LCR were performed based on a tumor volume <=100 mm3, for four dose metrics: fluence, HPPH photobleaching rate, PDT dose, and ([1O2]rx)). The results of this study showed that ([1O2]rx)) is the best dosimetric quantity that can predict tumor response and correlate with LCR.

  10. CBP-mediated FOXO-1 acetylation inhibits pancreatic tumor growth by targeting SirT.

    PubMed

    Pramanik, Kartick C; Fofaria, Neel M; Gupta, Parul; Srivastava, Sanjay K

    2014-03-01

    Here, we investigated the potential mechanism of capsaicin-mediated apoptosis in pancreatic cancer cells. Capsaicin treatment phosphorylated c-jun-NH2-kinase (JNK); forkhead box transcription factor, class O (FOXO1); and BIM in BxPC-3, AsPC-1, and L3.6PL cells. The expression of BIM increased in response to capsaicin treatment. Capsaicin treatment caused cleavage of caspase-3 and PARP, indicating apoptosis. Antioxidants tiron and PEG-catalase blocked capsaicin-mediated JNK/FOXO/BIM activation and protected the cells from apoptosis. Furthermore, capsaicin treatment caused a steady increase in the nuclear expression of FOXO-1, leading to increased DNA binding. Capsaicin-mediated expression of BIM was found to be directly dependent on the acetylation of FOXO-1. The expression of CREB-binding protein (CBP) was increased, whereas SirT-1 was reduced by capsaicin treatment. Using acetylation mimic or defective mutants, our result demonstrated that phosphorylation of FOXO-1 was mediated through acetylation by capsaicin treatment. JNK inhibitor attenuated the phosphorylation of FOXO-1, activation of BIM, and abrogated capsaicin-induced apoptosis. Moreover, silencing FOXO1 by siRNA blocked capsaicin-mediated activation of BIM and apoptosis, whereas overexpression of FOXO-1 augmented its effects. Silencing Bim drastically reduced capsaicin-mediated cleavage of caspase-3 and PARP, indicating the role of BIM in apoptosis. Oral administration of 5 mg/kg capsaicin substantially suppressed the growth of BxPC-3 tumor xenografts in athymic nude mice. Tumors from capsaicin-treated mice showed an increase in the phosphorylation of JNK, FOXO-1, BIM, and levels of CBP, cleavage of caspase-3, PARP, and decreased SirT-1 expression. Taken together, our results suggest that capsaicin activated JNK and FOXO-1, leading to the acetylation of FOXO-1 through CBP and SirT-1. Acetylated FOXO1 induced apoptosis in pancreatic cancer cells through BIM activation.

  11. Tumor cell programmed death ligand 1-mediated T cell suppression is overcome by coexpression of CD80.

    PubMed

    Haile, Samuel T; Bosch, Jacobus J; Agu, Nnenna I; Zeender, Annette M; Somasundaram, Preethi; Srivastava, Minu K; Britting, Sabine; Wolf, Julie B; Ksander, Bruce R; Ostrand-Rosenberg, Suzanne

    2011-06-15

    Programmed death ligand 1 (PDL1, or B7-H1) is expressed constitutively or is induced by IFN-γ on the cell surface of most human cancer cells and acts as a "molecular shield" by protecting tumor cells from T cell-mediated destruction. Using seven cell lines representing four histologically distinct solid tumors (lung adenocarcinoma, mammary carcinoma, cutaneous melanoma, and uveal melanoma), we demonstrate that transfection of human tumor cells with the gene encoding the costimulatory molecule CD80 prevents PDL1-mediated immune suppression by tumor cells and restores T cell activation. Mechanistically, CD80 mediates its effects through its extracellular domain, which blocks the cell surface expression of PDL1 but does not prevent intracellular expression of PDL1 protein. These studies demonstrate a new role for CD80 in facilitating antitumor immunity and suggest new therapeutic avenues for preventing tumor cell PDL1-induced immune suppression.

  12. Dysregulation of Parkin-mediated mitophagy in thyroid Hürthle cell tumors.

    PubMed

    Lee, Junguee; Ham, Sujin; Lee, Min Hee; Kim, Soung Jung; Park, Ji Hoon; Lee, Seong Eun; Chang, Joon Young; Joung, Kyong Hye; Kim, Tae Yong; Kim, Jin Man; Sul, Hae Joung; Kweon, Gi Ryang; Jo, Young Suk; Kim, Koon Soon; Shong, Young Kee; Gasparre, Giuseppe; Chung, Jong Kyeong; Porcelli, Anna Maria; Shong, Minho

    2015-11-01

    Abnormal accumulation of defective mitochondria is the hallmark of oncocytes, which are frequently observed in thyroid Hürthle cell lesions. Autophagy is an essential cellular catabolic mechanism for the degradation of dysfunctional organelles and has been implicated in several human diseases. It is yet unknown how autophagic turnover of defective mitochondria in Hürthle cell tumors is regulated. We characterized the expression patterns of molecular markers including Beclin1, LC3, PINK1 and Parkin, which are required for autophagy or mitophagy, in human oncocytic lesions of the thyroid. To undertake mechanistic studies, we investigated autophagy and mitophagy using XTC.UC1 cells, the only in vitro model of Hürthle cell tumors. Beclin1 and LC3 were highly expressed in oncocytes of Hürthle cell tumors. XTC.UC1 showed autophagic responses to starvation and rapamycin treatment, whereas they displayed ineffective activation of mitophagy, which is triggered by the coordinated action of PINK1 and Parkin in response to CCCP. This resulted in a decreased turnover of abnormal mitochondria. The mechanisms underlying defective mitophagy and mitochondrial turnover were investigated by genetic analysis of the PARK2 gene in XTC.UC1 and Hürthle cell tumor tissues. XTC.UC1 and several tumors harbored the V380L mutation, resulting in dysfunctional autoubiquitination and decreased E3 ligase activity. Consistently, oncocytes in Hürthle cell tumors displayed comparable expression of PINK1 but decreased Parkin expression in comparison to normal thyrocytes. The introduction of wild-type Parkin sensitized XTC.UC1 to death induced by CCCP. This study provides a possible etiological basis for oncocytic formation in heterogeneous Hürthle cell tumors through insufficient mitophagy leading to ineffective turnover of aberrant mitochondria caused by dysfunctional Parkin-mediated pathways of mitochondria quality control. © The Author 2015. Published by Oxford University Press. All rights

  13. Low-intensity focused ultrasound mediated localized drug delivery for liver tumors in rabbits.

    PubMed

    Gong, Yuping; Wang, Zhigang; Dong, Guifang; Sun, Yang; Wang, Xi; Rong, Yue; Li, Maoping; Wang, Dong; Ran, Haitao

    2016-09-01

    To explore the antitumor effects of low-intensity focused ultrasound (LIFU) mediated localized drug delivery of adriamycin-microbubble-PLGA nanoparticle complexes on rabbits VX2 liver tumor. ADM-NMCs were prepared by covalent linking of ADM-PLGA nanoparticles (ADM-NPs) to the shell of the microbubbles. A fixed water bag filled with microbubbles was subjected to LIFU and non-focused ultrasound respectively, and the ultrasound images of which were recorded before and after ultrasonication. A total of 54 VX2 liver tumor-burdened rabbits were divided into six groups randomly, including control, ADM-NPs combined with LIFU, microbubbles combined with LIFU, ADM-NPs and microbubbles combined with LIFU, ADM-NMCs combined with LIFU and ADM-NMCs combined with Non-FUS. The tumor volume and volume inhibition rate (VIR) of tumor progression were calculated and compared. Apoptotic cells were labeled by terminal deoxyuridine nick end. Proliferating cell nuclear antigen was detected by immunohistochemistry. The median survival time of the animals were recorded and compared. ADM-NMCs were successfully prepared with an average diameter of 1721 nm. The highest VIR and apoptotic index (AI) were found in the group of ADM-NMCs combined with LIFU while the lowest proliferating index (PI) was simultaneously observed in this group. The median survival time of the rabbits in the ADM-NMCs combined with LIFU group was the longest (71days) among all groups. ADM-NMCs combined with LIFU could inhibit the rabbits VX2 liver tumor progress by delaying the tumor proliferation and accelerating apoptosis, which presents a novel process for liver tumor targeting chemotherapy.

  14. Histone deacetylase-3 mediates positive feedback relationship between anaphylaxis and tumor metastasis.

    PubMed

    Eom, Sangkyung; Kim, Youngmi; Park, Deokbum; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2014-04-25

    Allergic inflammation has been known to enhance the metastatic potential of tumor cells. The role of histone deacetylase-3 (HDAC3) in allergic skin inflammation was reported. We investigated HDAC3 involvement in the allergic inflammation-promotion of metastatic potential of tumor cells. Passive systemic anaphylaxis (PSA) induced HDAC3 expression and FcεRI signaling in BALB/c mice. PSA enhanced the tumorigenic and metastatic potential of mouse melanoma cells in HDAC3- and monocyte chemoattractant protein 1-(MCP1)-dependent manner. The PSA-mediated enhancement of metastatic potential involved the induction of HDAC3, MCP1, and CD11b (a macrophage marker) expression in the lung tumor tissues. We examined an interaction between anaphylaxis and tumor growth and metastasis at the molecular level. Conditioned medium from antigen-stimulated bone marrow-derived mouse mast cell cultures induced the expression of HDAC3, MCP1, and CCR2, a receptor for MCP1, in B16F1 mouse melanoma cells and enhanced migration and invasion potential of B16F1 cells. The conditioned medium from B16F10 cultures induced the activation of FcεRI signaling in lung mast cells in an HDAC3-dependent manner. FcεRI signaling was observed in lung tumors derived from B16F10 cells. Target scan analysis predicted HDAC3 to be as a target of miR-384, and miR-384 and HDAC3 were found to form a feedback regulatory loop. miR-384, which is decreased by PSA, negatively regulated HDAC3 expression, allergic inflammation, and the positive feedback regulatory loop between anaphylaxis and tumor metastasis. We show the miR-384/HDAC3 feedback loop to be a novel regulator of the positive feedback relationship between anaphylaxis and tumor metastasis.

  15. Activity levels of cathepsins B and L in tumor cells are a biomarker for efficacy of reovirus-mediated tumor cell killing.

    PubMed

    Terasawa, Y; Hotani, T; Katayama, Y; Tachibana, M; Mizuguchi, H; Sakurai, F

    2015-03-01

    Reovirus has gained much attention as an anticancer agent; however, the mechanism of the tumor cell-specific replication of reovirus is not fully understood. Although Ras activation is known to be crucial for tumor cell-specific replication of reovirus, it remains controversial which cellular factors are required for the reovirus-mediated tumor cell killing. In this study, we systematically investigated which cellular factors determined the efficiencies of reovirus-mediated tumor cell killing in various human cultured cell lines. The efficiency of reovirus-mediated cell killing varied widely among the cell lines. Junction adhesion molecule-A, a reovirus receptor, was highly expressed in almost all cell lines examined. Ras activation levels were largely different between the cell lines; however, there were no apparent correlations among the reovirus-mediated cell killing efficiencies and Ras activation status. On the other hand, activity levels of the cysteine proteases cathepsins B and L, which are crucial for proteolytic disassembly of the outer capsid proteins of reovirus, showed a tendency to be correlated with the efficiency of reovirus-mediated cell killing. These results indicate that the activity of cathepsins B and L is the most suitable as a biomarker for the efficacy of reovirus-mediated oncolysis among the factors examined in this study.

  16. Acetylation Is Crucial for p53-Mediated Ferroptosis and Tumor Suppression.

    PubMed

    Wang, Shang-Jui; Li, Dawei; Ou, Yang; Jiang, Le; Chen, Yue; Zhao, Yingming; Gu, Wei

    2016-10-04

    Although previous studies indicate that loss of p53-mediated cell cycle arrest, apoptosis, and senescence does not completely abrogate its tumor suppression function, it is unclear how the remaining activities of p53 are regulated. Here, we have identified an acetylation site at lysine K98 in mouse p53 (or K101 for human p53). Whereas the loss of K98 acetylation (p53(K98R)) alone has very modest effects on p53-mediated transactivation, simultaneous mutations at all four acetylation sites (p53(4KR): K98R+ 3KR[K117R+K161R+K162R]) completely abolish its ability to regulate metabolic targets, such as TIGAR and SLC7A11. Notably, in contrast to p53(3KR), p53(4KR) is severely defective in suppressing tumor growth in mouse xenograft models. Moreover, p53(4KR) is still capable of inducing the p53-Mdm2 feedback loop, but p53-dependent ferroptotic responses are markedly abrogated. Together, these data indicate the critical role of p53 acetylation in ferroptotic responses and its remaining tumor suppression activity.

  17. IL-17 promotes tumor angiogenesis through Stat3 pathway mediated upregulation of VEGF in gastric cancer.

    PubMed

    Wu, Xiaoqin; Yang, Tao; Liu, Xiang; Guo, Jia Nian; Xie, Tingting; Ding, Yuanwei; Lin, Manpeng; Yang, Hui

    2016-04-01

    Gastric cancer is the world's second most common malignancy and is a major threat to global health. IL-17, a CD4 T cell-derived mediator of angiogenesis, plays a major role in stimulating angiogenesis by regulating the production of a variety of proangiogenic factors, including the vascular endothelial growth factor (VEGF). The level of VEGF expression correlates with tumor progression and metastasis in gastric cancer tissues. Abnormal activation of signal transducer and activator of transcription 3 (Stat3) rendered the tumor cells highly angiogenic, which is manifested by an increased microvascular density (MVD) and considered it as a potential molecular marker for poor prognosis in gastric cancer angiogenesis. We determined that IL-17A-induced VEGF upregulation and neovascularization through a Stat3-mediated signaling pathway and hypothesized that blocking the Stat3 activation by using JSI-124, an inhibitor of phosphorylated Stat3, could significantly reduce the VEGF expression and can thus prevent angiogenesis. We showed an inhibition of angiogenesis and tumor progression when JSI-124 was treated with IL-17A in the cells and xenografts in an animal model and suggested that targeting the Stat pathway with JSI-124 could derive an effective therapeutic target for gastric cancers and could be a promising drug in gastric cancer treatment.

  18. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation

    PubMed Central

    Braun, Christian J.; Bruno, Peter M.; Horlbeck, Max A.; Gilbert, Luke A.; Weissman, Jonathan S.; Hemann, Michael T.

    2016-01-01

    Targeted transcriptional regulation is a powerful tool to study genetic mediators of cellular behavior. Here, we show that catalytically dead Cas9 (dCas9) targeted to genomic regions upstream or downstream of the transcription start site allows for specific and sustainable gene-expression level alterations in tumor cells in vitro and in syngeneic immune-competent mouse models. We used this approach for a high-coverage pooled gene-activation screen in vivo and discovered previously unidentified modulators of tumor growth and therapeutic response. Moreover, by using dCas9 linked to an activation domain, we can either enhance or suppress target gene expression simply by changing the genetic location of dCas9 binding relative to the transcription start site. We demonstrate that these directed changes in gene-transcription levels occur with minimal off-target effects. Our findings highlight the use of dCas9-mediated transcriptional regulation as a versatile tool to reproducibly interrogate tumor phenotypes in vivo. PMID:27325776

  19. Lymphoid tissue phospholipase A2 group IID resolves contact hypersensitivity by driving antiinflammatory lipid mediators

    PubMed Central

    Miki, Yoshimi; Yamamoto, Kei; Taketomi, Yoshitaka; Sato, Hiroyasu; Shimo, Kanako; Kobayashi, Tetsuyuki; Ishikawa, Yukio; Ishii, Toshiharu; Nakanishi, Hiroki; Ikeda, Kazutaka; Taguchi, Ryo; Kabashima, Kenji; Arita, Makoto; Arai, Hiroyuki; Lambeau, Gérard; Bollinger, James M.; Hara, Shuntaro; Gelb, Michael H.

    2013-01-01

    Resolution of inflammation is an active process that is mediated in part by antiinflammatory lipid mediators. Although phospholipase A2 (PLA2) enzymes have been implicated in the promotion of inflammation through mobilizing lipid mediators, the molecular entity of PLA2 subtypes acting upstream of antiinflammatory lipid mediators remains unknown. Herein, we show that secreted PLA2 group IID (PLA2G2D) is preferentially expressed in CD11c+ dendritic cells (DCs) and macrophages and displays a pro-resolving function. In hapten-induced contact dermatitis, resolution, not propagation, of inflammation was compromised in skin and LNs of PLA2G2D-deficient mice (Pla2g2d−/−), in which the immune balance was shifted toward a proinflammatory state over an antiinflammatory state. Bone marrow-derived DCs from Pla2g2d−/− mice were hyperactivated and elicited skin inflammation after intravenous transfer into mice. Lipidomics analysis revealed that PLA2G2D in the LNs contributed to mobilization of a pool of polyunsaturated fatty acids that could serve as precursors for antiinflammatory/pro-resolving lipid mediators such as resolvin D1 and 15-deoxy-Δ12,14-prostaglandin J2, which reduced Th1 cytokine production and surface MHC class II expression in LN cells or DCs. Altogether, our results highlight PLA2G2D as a “resolving sPLA2” that ameliorates inflammation through mobilizing pro-resolving lipid mediators and points to a potential use of this enzyme for treatment of inflammatory disorders. PMID:23690440

  20. Activated cytotoxic lymphocytes promote tumor progression by increasing the ability of 3LL tumor cells to mediate MDSC chemoattraction via Fas signaling.

    PubMed

    Yang, Fei; Wei, Yinxiang; Cai, Zhijian; Yu, Lei; Jiang, Lingling; Zhang, Chengyan; Yan, Huanmiao; Wang, Qingqing; Cao, Xuetao; Liang, Tingbo; Wang, Jianli

    2015-01-01

    The Fas/FasL system transmits intracellular apoptotic signaling, inducing cell apoptosis. However, Fas signaling also exerts non-apoptotic functions in addition to inducing tumor cell apoptosis. For example, Fas signaling induces lung cancer tumor cells to produce prostaglandin E2 (PGE2) and recruit myeloid-derived suppressor cells (MDSCs). Activated cytotoxic T lymphocytes (CTLs) induce and express high levels of FasL, but the effects of Fas activation initiated by FasL in CTLs on apoptosis-resistant tumor cells remain largely unclear. We purified activated CD8(+) T cells from OT-1 mice, evaluated the regulatory effects of Fas activation on tumor cell escape and investigated the relevant mechanisms. We found that CTLs induced tumor cells to secrete PGE2 and increase tumor cell-mediated chemoattraction of MDSCs via Fas signaling, which was favorable to tumor growth. Our results indicate that CTLs may participate in the tumor immune evasion process. To the best of our knowledge, this is a novel mechanism by which CTLs play a role in tumor escape. Our findings implicate a strategy to enhance the antitumor immune response via reduction of negative immune responses to tumors promoted by CTLs through Fas signaling.

  1. Radio-Photothermal Therapy Mediated by a Single Compartment Nanoplatform Depletes Tumor Initiating Cells and Reduces Lung Metastasis in Orthotopic 4T1 Breast Tumor Model

    PubMed Central

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2016-01-01

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and has demonstrated promising application in clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs is suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for suppression of tumor metastasis through localized RT/PTT therapy. PMID:26376843

  2. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model.

    PubMed

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2015-12-14

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([(64)Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [(64)Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.

  3. Decay-accelerating factor protects human tumor cells from complement-mediated cytotoxicity in vitro.

    PubMed Central

    Cheung, N K; Walter, E I; Smith-Mensah, W H; Ratnoff, W D; Tykocinski, M L; Medof, M E

    1988-01-01

    The disialoganglioside GD2 is expressed on a wide spectrum of human tumor types, including neuroblastomas and melanomas. Upon binding of 3F8, a murine monoclonal antibody (MAb) specific for GD2, neuroblastomas and some melanomas are sensitive to killing by human complement, whereas some melanomas are not. To investigate the mechanism underlying these differences in complement mediated cytotoxicity, complement-insensitive melanoma cell lines were compared with respect to expression of the decay-accelerating factor (DAF), a membrane regulatory protein that protects blood cells from autologous complement attack. While DAF was undetectable among neuroblastomas, it was present in complement-insensitive melanomas. When the function of DAF was blocked by anti-DAF MAb, C3 uptake and complement-mediated lysis of the insensitive melanoma lines were markedly enhanced. F(ab')2 fragments were as effective in enhancing lysis as intact anti-DAF MAb. The DAF-negative and DAF-positive melanoma cell lines were comparably resistant to passive lysis by cobra venom factor-treated serum. The data suggest that in some tumors, DAF activity accounts for their resistance to complement-mediated killing. The ability to render these cells complement-sensitive by blocking DAF function may have implications for immunotherapy. PMID:2450893

  4. BRAF inhibition generates a host/tumor niche that mediates therapeutic escape

    PubMed Central

    Fedorenko, Inna V.; Wargo, Jennifer A.; Flaherty, Keith T.; Messina, Jane L.; Smalley, Keiran S.M.

    2015-01-01

    The current study defines a fibroblast-derived niche that facilitates the therapeutic escape of melanoma cells from BRAF inhibition. Vemurafenib treatment led to the release of TGF-β from the melanoma cells that increased the differentiation state of the fibroblasts; an affect associated with fibronectin deposition, increase in α-smooth muscle actin (α–SMA) expression and the release of neuregulin (NRG). At the same time, vemurafenib directly activated the fibroblasts through paradoxical stimulation of the MAPK pathway, causing them to secrete hepatocyte growth factor (HGF). Treatment with the BRAF/MEK inhibitor combination reversed the release of HGF. Adhesion of melanoma cells to fibronectin was critical in amplifying the fibroblast-derived NRG and HGF-mediated PI3K/AKT survival signaling in the melanoma cells following BRAF inhibition. In co-culture studies, combination treatment with inhibitors of BRAF/MET/HER kinase was ineffective at reversing the fibroblast-mediated therapeutic escape from BRAF inhibition. Instead, it was noted that combined BRAF/PI3K inhibition overcame fibroblast-mediated drug resistance in vitro and was associated with enhanced anti-tumor effects in an in vivo xenograft model. Thus, we show melanoma cells and fibroblasts remodel their microenvironment in response to BRAF inhibition and that these adaptations allow tumor cells to evade therapy through increased PI3K/AKT survival signaling. PMID:26302068

  5. Siomycin A targets brain tumor stem cells partially through a MELK-mediated pathway.

    PubMed

    Nakano, Ichiro; Joshi, Kaushal; Visnyei, Koppany; Hu, Bin; Watanabe, Momoko; Lam, Diana; Wexler, Eric; Saigusa, Kuniyasu; Nakamura, Yuko; Laks, Dan R; Mischel, Paul S; Viapiano, Mariano; Kornblum, Harley I

    2011-06-01

    Glioblastoma multiforme (GBM) is a devastating disease, and the current therapies have only palliative effect. Evidence is mounting to indicate that brain tumor stem cells (BTSCs) are a minority of tumor cells that are responsible for cancer initiation, propagation, and maintenance. Therapies that fail to eradicate BTSCs may ultimately lead to regrowth of residual BTSCs. However, BTSCs are relatively resistant to the current treatments. Development of novel therapeutic strategies that effectively eradicate BTSC are, therefore, essential. In a previous study, we used patient-derived GBM sphere cells (stemlike GBM cells) to enrich for BTSC and identified maternal embryonic leucine-zipper kinase (MELK) as a key regulator of survival of stemlike GBM cells in vitro. Here, we demonstrate that a thiazole antibiotic, siomycin A, potently reduced MELK expression and inhibited tumor growth in vivo. Treatment of stemlike GBM cells with siomycin A resulted in arrested self-renewal, decreased invasion, and induced apoptosis but had little effect on growth of the nonstem cells of matched tumors or normal neural stem/progenitor cells. MELK overexpression partially rescued the phenotype of siomycin A-treated stemlike GBM cells. In vivo, siomycin A pretreatment abraded the sizes of stemlike GBM cell-derived tumors in immunodeficient mice. Treatment with siomycin A of mice harboring intracranial tumors significantly prolonged their survival period compared with the control mice. Together, this study may be the first model to partially target stemlike GBM cells through a MELK-mediated pathway with siomycin A to pave the way for effective treatment of GBM.

  6. Comparison of PDT parameters for RIF and H460 tumor models during HPPH-mediated PDT.

    PubMed

    Liu, Baochang; Kim, Michele M; Gallagher-Colombo, Shannon M; Busch, Theresa M; Zhu, Timothy C

    2014-03-05

    Singlet oxygen ((1)O2) is the major cytotoxic species producing PDT effects, but it is difficult to monitor in vivo due to its short life time in real biological environments. Mathematical models are then useful to calculate (1)O2 concentrations for PDT dosimetry. Our previously introduced macroscopic model has four PDT parameters: ξ, σ, β and g describing initial oxygen consumption rate, ratio of photobleaching to reaction between (1)O2 and cellular targets, ratio of triplet state (T) phosphorescence to reaction between T and oxygen ((3)O2), and oxygen supply rate to tissue, respectively. In addition, the model calculates a fifth parameter, threshold (1)O2 dose ([(1)O2]rx,sd). These PDT parameters have been investigated for HPPH using radiation-induced fibrosarcoma (RIF) tumors in an in-vivo C3H mouse model. In recent studies, we additionally investigated these parameters in human non-small cell lung carcinoma (H460) tumor xenografts, also using HPPH-mediated PDT. In-vivo studies are performed with nude female mice with H460 tumors grown intradermally on their right shoulders. HPPH (0.25 mg/kg) is injected i.v. at 24 hours prior to light delivery. Initial in vivo HPPH concentration is quantified via interstitial HPPH fluorescence measurements after correction for tissue optical properties. Light is delivered by a linear source at various light doses (12-50 J/cm) with powers ranging from 12 to 150 mW per cm length. The necrosis radius is quantified using ScanScope after tumor sectioning and hematoxylin and eosin (H&E) staining. The macroscopic optimization model is used to fit the results and generate four PDT parameters. Initial results of the parameters for H460 tumors will be reported and compared with those for the RIF tumor.

  7. CDK1-mediated SIRT3 Activation Enhances Mitochondrial Function and Tumor Radioresistance

    PubMed Central

    Liu, Rui; Fan, Ming; Candas, Demet; Qin, Lili; Zhang, Xiaodi; Eldridge, Angela; Zou, June X.; Zhang, Tieqiao; Juma, Shuaib; Jin, Cuihong; Li, Robert F.; Perks, Julian; Sun, Lun-Quan; Vaughan, Andrew T.M.; Hai, Chun-Xu; Gius, David R.; Li, Jian Jian

    2015-01-01

    The tumor adaptive resistance to therapeutic radiation remains to be a barrier for further improvement of local cancer control. SIRT3, a member of the sirtuin family of NAD+-dependent protein deacetylases in mitochondria, promotes metabolic homeostasis through regulation of mitochondrial protein deacetylation and plays a key role in prevention of cell aging. Here, we demonstrate that SIRT3 expression is induced in an array of radiation-treated human tumor cells and their corresponding xenograft tumors including colon cancer HCT-116, glioblastoma U87 and breast cancer MDA-MB231 cells. The SIRT3 transcriptional activation is due to SIRT3 promoter activation controlled by the stress transcription factor NF-κB. Post-transcriptionally, the SIRT3 enzymatic activity is further enhanced via Thr150/Ser159 phosphorylation by Cyclin B1/CDK1, which is also induced by radiation and relocated to mitochondria together with SIRT3. Cells expressing the Thr150Ala/Ser159Ala mutant SIRT3 show a reduction in the mitochondrial protein lysine deacetylation, ΔΨm, MnSOD activity and mitochondrial ATP generation. The clonogenicity of Thr150Ala/Ser159Ala mutant transfectants is lower and significantly decreased under radiation. Tumors harboring the Thr150Ala/Ser159Ala mutant SIRT3 show inhibited growth and sensitivity to in vivo local irradiation. These results demonstrate that enhanced SIRT3 transcription and post-translational modifications in mitochondria contribute to the adaptive radioresistance in tumor cells. The CDK1-mediated SIRT3 phosphorylation is a potential effective target to sensitize tumor cells to radiotherapy. PMID:26141949

  8. In vivo tumor transfection mediated by polyplexes based on biodegradable poly(DMAEA)-phosphazene.

    PubMed

    de Wolf, Holger K; Luten, Jordy; Snel, Cor J; Oussoren, Christien; Hennink, Wim E; Storm, Gert

    2005-12-05

    In recent years, increasing interest is being paid to the design of transfectants based on non-toxic and biodegradable polymers for gene therapy purposes. We recently reported on a novel, biodegradable polymer, poly(2-dimethylamino ethylamino)phosphazene (p(DMAEA)-ppz) for use in non-viral gene delivery. In this study, the biodistribution and in vivo transfection efficiency of polyplexes composed of plasmid DNA and p(DMAEA)-ppz were investigated after intravenous administration in tumor bearing mice. Data were compared with those of polyplexes based on the non-biodegradable polyethylenimine (PEI 22kDa). Both polyplex systems were rapidly cleared from the circulation (<7% ID, at 60 min after administration) and showed considerable disposition in the liver and the lung, all in line with earlier work on cationic polyplex systems. The lung disposition is attributed to aggregates formed by interaction of the polyplexes with blood constituents. Redistribution of the polyplexes from the lung was observed for both polyplex formulations. Importantly, both polyplex systems showed a substantial tumor accumulation of 5% and 8% ID/g for p(DMAEA)-ppz and PEI22 polyplexes, respectively, at 240 min after administration. The tumor disposition of the p(DMAEA)-ppz and PEI22 polyplexes was associated with considerable expression levels of the reporter gene. In contrast to PEI22 polyplexes, p(DMAEA)-ppz polyplexes did not display substantial gene expression in the lung or other organs (organ gene expression<1/100 of tumor gene expression). The observed preferential tumor gene expression mediated by the p(DMAEA)-ppz polyplexes enables the application of this polymer to deliver therapeutic genes to tumors.

  9. Hyaluronan-mediated CD44 activation of RhoGTPase signaling and cytoskeleton function promotes tumor progression.

    PubMed

    Bourguignon, Lilly Y W

    2008-08-01

    Hyaluronan (HA), a major component of the extracellular matrix (ECM), is enriched in many types of tumors. In cancer patients HA concentrations are usually higher in malignant tumors than in corresponding benign or normal tissues, and in some tumor types the level of HA is predictive of malignancy. HA is often bound to CD44 isoforms which are ubiquitous, abundant, and functionally important cell surface receptors. This article reviews the current evidence for HA/CD44-mediated activation of the ankyrin-based cytoskeleton and RhoGTPase signaling during tumor progression. A special focus is placed on the role of HA-mediated CD44 interaction with unique downstream effectors (e.g., the cytoskeletal protein, ankyrin and/or various GTPases (e.g., RhoA, Rac1 and Cdc42)) in coordinating intracellular signaling pathways (e.g., Ca(2+) mobilization, Rho signaling, PI3 kinase-AKT activation, NHE1-mediated cellular acidification, transcriptional upregulation and cytoskeletal function) and generating the concomitant onset of tumor cell activities (e.g., tumor cell adhesion, growth, survival, migration and invasion) and tumor progression. I believe this information will provide valuable new insights into poorly understood aspects of solid tumor malignancy. Furthermore, the new knowledge concerning HA/CD44-mediated oncogenic signaling events will have potentially important clinical utility, and could establish CD44 and its associated signaling molecules as important tumor markers for the early detection and evaluation of oncogenic potential. It could also serve as ground work for the future development of new drug targets to inhibit HA/CD44-mediated tumor metastasis and cancer progression.

  10. Hypoxia-inducible factor 1–mediated characteristic features of cancer cells for tumor radioresistance

    PubMed Central

    Harada, Hiroshi

    2016-01-01

    Tumor hypoxia has been attracting increasing attention in the fields of radiation biology and oncology since Thomlinson and Gray detected hypoxic cells in malignant solid tumors and showed that they exert a negative impact on the outcome of radiation therapy. This unfavorable influence has, at least partly, been attributed to cancer cells acquiring a radioresistant phenotype through the activation of the transcription factor, hypoxia-inducible factor 1 (HIF-1). On the other hand, accumulating evidence has recently revealed that, even though HIF-1 is recognized as an important regulator of cellular adaptive responses to hypoxia, it may not become active and induce tumor radioresistance under hypoxic conditions only. The mechanisms by which HIF-1 is activated in cancer cells not only under hypoxic conditions, but also under normoxic conditions, through cancer-specific genetic alterations and the resultant imbalance in intermediate metabolites have been summarized herein. The relevance of the HIF-1–mediated characteristic features of cancer cells, such as the production of antioxidants through reprogramming of the glucose metabolic pathway and cell cycle regulation, for tumor radioresistance has also been reviewed. PMID:26983985

  11. Enhanced Baculovirus-Mediated Transduction of Human Cancer Cells by Tumor-Homing Peptides

    PubMed Central

    Mäkelä, Anna R.; Matilainen, Heli; White, Daniel J.; Ruoslahti, Erkki; Oker-Blom, Christian

    2006-01-01

    Tumor cells and vasculature offer specific targets for the selective delivery of therapeutic genes. To achieve tumor-specific gene transfer, baculovirus tropism was manipulated by viral envelope modification using baculovirus display technology. LyP-1, F3, and CGKRK tumor-homing peptides, originally identified by in vivo screening of phage display libraries, were fused to the transmembrane anchor of vesicular stomatitis virus G protein and displayed on the baculoviral surface. The fusion proteins were successfully incorporated into budded virions, which showed two- to fivefold-improved binding to human breast carcinoma (MDA-MB-435) and hepatocarcinoma (HepG2) cells. The LyP-1 peptide inhibited viral binding to MDA-MB-435 cells with a greater magnitude and specificity than the CGKRK and F3 peptides. Maximal 7- and 24-fold increases in transduction, determined by transgene expression level, were achieved for the MDA-MB-435 and HepG2 cells, respectively. The internalization of each virus was inhibited by ammonium chloride treatment, suggesting the use of a similar endocytic entry route. The LyP-1 and F3 peptides showed an apparent inhibitory effect in transduction of HepG2 cells with the corresponding display viruses. Together, these results imply that the efficiency of baculovirus-mediated gene delivery can be significantly enhanced in vitro when tumor-targeting ligands are used and therefore highlight the potential of baculovirus vectors in cancer gene therapy. PMID:16775347

  12. A Comparison of Dose Metrics to Predict Local Tumor Control for Photofrin-mediated Photodynamic Therapy.

    PubMed

    Qiu, Haixia; Kim, Michele M; Penjweini, Rozhin; Finlay, Jarod C; Busch, Theresa M; Wang, Tianhao; Guo, Wensheng; Cengel, Keith A; Simone, Charles B; Glatstein, Eli; Zhu, Timothy C

    2017-01-13

    This preclinical study examines light fluence, photodynamic therapy (PDT) dose and "apparent reacted singlet oxygen," [(1) O2 ]rx , to predict local control rate (LCR) for Photofrin-mediated PDT of radiation-induced fibrosarcoma (RIF) tumors. Mice bearing RIF tumors were treated with in-air fluences (50-250 J cm(-2) ) and in-air fluence rates (50-150 mW cm(-2) ) at Photofrin dosages of 5 and 15 mg kg(-1) and a drug-light interval of 24 h using a 630-nm, 1-cm-diameter collimated laser. A macroscopic model was used to calculate [(1) O2 ]rx and PDT dose based on in vivo explicit dosimetry of the drug concentration, light fluence and tissue optical properties. PDT dose and [(1) O2 ]rx were defined as a temporal integral of drug concentration and fluence rate, and singlet oxygen concentration consumed divided by the singlet oxygen lifetime, respectively. LCR was stratified for different dose metrics for 74 mice (66 + 8 control). Complete tumor control at 14 days was observed for [(1) O2 ]rx ≥ 1.1 mm or PDT dose ≥1200 μm J cm(-2) but cannot be predicted with fluence alone. LCR increases with increasing [(1) O2 ]rx and PDT dose but is not well correlated with fluence. Comparing dosimetric quantities, [(1) O2 ]rx outperformed both PDT dose and fluence in predicting tumor response and correlating with LCR.

  13. Akt mediated ROS-dependent selective targeting of mutant KRAS tumors.

    PubMed

    Iskandar, Kartini; Rezlan, Majidah; Pervaiz, Shazib

    2014-10-01

    Reactive oxygen species (ROS) play a critical role in a variety of cellular processes, ranging from cell survival and proliferation to cell death. Previously, we reported the ability of a small molecule compound, C1, to induce ROS dependent autophagy associated apoptosis in human cancer cell lines and primary tumor cells (Wong C. et al. 2010). Our ongoing investigations have unraveled a hitherto undefined novel signaling network involving hyper-phosphorylation of Akt and Akt-mediated ROS production in cancer cell lines. Interestingly, drug-induced Akt activation is selectively seen in cell lines that carry mutant KRAS; HCT116 cells that carry the V13D KRAS mutation respond favorably to C1 while HT29 cells expressing wild type KRAS are relatively resistant. Of note, not only does the compound target mutant KRAS expressing cells but also induces RAS activation as evidenced by the PAK pull down assay. Corroborating this, pharmacological inhibition as well as siRNA mediated silencing of KRAS or Akt, blocked C1-induced ROS production and rescued tumor colony forming ability in HCT116 cells. To further confirm the involvement of KRAS, we made use of mutant KRAS transformed RWPE-1 prostate epithelial cells. Notably, drug-induced ROS generation and death sensitivity was significantly higher in RWPE-1-KRAS cells than the RWPE-1-vector cells, thus confirming the results obtained with mutant KRAS colorectal carcinoma cell line. Lastly, we made use of HCT116 mutant KRAS knockout cells (KO) where the mutant KRAS allele had been deleted, thus expressing a single wild-type KRAS allele. Exposure of the KO cells to C1 failed to induce Akt activation and mitochondrial ROS production. Taken together, results show the involvement of activated Akt in ROS-mediated selective targeting of mutant KRAS expressing tumors, which could have therapeutic implications given the paucity of chemotherapeutic strategies specifically targeting KRAS mutant cancers.

  14. Sleep-Mediated Heart Rate Variability after Bilateral Carotid Body Tumor Resection

    PubMed Central

    Niemeijer, Nicolasine D.; Corssmit, Eleonora P.M.; Reijntjes, Robert H.A.M.; Lammers, Gert Jan; van Dijk, J. Gert; Thijs, Roland D.

    2015-01-01

    Study Objectives: The carotid bodies are thought to play an important role in sleep-dependent autonomic changes. Patients who underwent resection of bilateral carotid body tumors have chronically attenuated baroreflex sensitivity. These subjects provide a unique opportunity to investigate the role of the baroreflex during sleep. Design: One-night ambulatory polysomnography (PSG) recording. Setting: Participants' homes. Participants: Nine patients with bilateral carotid body tumor resection (bCBR) (four women, mean age 50.4 ± 7.2 years) and nine controls matched for age, gender, and body mass index. Interventions: N/A. Measurements: Sleep parameters were obtained from PSG. Heart rate (HR) and its variability were calculated using 30-s epochs. Results: In bCBR patients, HR was slightly but not significantly increased during wake and all sleep stages. The effect of sleep on HR was similar for patients and controls. Low frequency (LF) power of the heart rate variability spectrum was significantly lower in bCBR patients in active wakefulness, sleep stage 1 and REM sleep. No differences were found between patients and controls for high frequency (HF) power and the LF/HF ratio. Conclusions: Bilateral carotid body tumor resection (bCBR) is associated with decreased low frequency power during sleep, suggesting impaired baroreflex function. Despite this, sleep-related heart rate changes were similar between bCBR patients and controls. These findings suggest that the effects of sleep on heart rate are predominantly generated through central, non-baroreflex mediated pathways. Citation: Niemeijer ND, Corssmit EP, Reijntjes RH, Lammers GJ, van Dijk JG, Thijs RD. Sleep-mediated heart rate variability after bilateral carotid body tumor resection. SLEEP 2015;38(4):633–639. PMID:25325476

  15. CXCL12 Mediates Trophic Interactions between Endothelial and Tumor Cells in Glioblastoma

    PubMed Central

    Choe, Eun Joo; Woerner, B. Mark; Jackson, Erin; Sun, Tao; Leonard, Jeffrey; Piwnica-Worms, David; Rubin, Joshua B.

    2012-01-01

    Emerging evidence suggests endothelial cells (EC) play a critical role in promoting Glioblastoma multiforme (GBM) cell proliferation and resistance to therapy. The molecular basis for GBM-EC interactions is incompletely understood. We hypothesized that the chemokine CXCL12 and its receptor CXCR4 could mediate direct interactions between GBM cells and tumor-associated endothelial cells and that disruption of this interaction might be the molecular basis for the anti-tumor effects of CXCR4 antagonists. We investigated this possibility in vivo and in an in vitro co-culture model that incorporated extracellular matrix, primary human brain microvascular ECs (HBMECs) and either an established GBM cell line or primary GBM specimens. Depletion of CXCR4 in U87 GBM cells blocked their growth as intracranial xenografts indicating that tumor cell CXCR4 is required for tumor growth in vivo. In vitro, co-culture of either U87 cells or primary GBM cells with HBMECs resulted in their co-localization and enhanced GBM cell growth. Genetic manipulation of CXCL12 expression and pharmacological inhibition of its receptors CXCR4 and CXCR7 revealed that the localizing and trophic effects of endothelial cells on GBM cells were dependent upon CXCL12 and CXCR4. These findings indicate that the CXCL12/CXCR4 pathway directly mediates endothelial cell trophic function in GBMs and that inhibition of CXCL12-CXCR4 signaling may uniquely target this activity. Therapeutic disruption of endothelial cell trophic functions could complement the structural disruption of anti-angiogenic regimens and, in combination, might also improve the efficacy of radiation and chemotherapy in treating GBMs. PMID:22427929

  16. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity.

    PubMed

    Giordano, Cinzia; Chemi, Francesca; Panza, Salvatore; Barone, Ines; Bonofiglio, Daniela; Lanzino, Marilena; Cordella, Angela; Campana, Antonella; Hashim, Adnan; Rizza, Pietro; Leggio, Antonella; Győrffy, Balázs; Simões, Bruno M; Clarke, Robert B; Weisz, Alessandro; Catalano, Stefania; Andò, Sebastiano

    2016-01-12

    Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome. Here, we investigated how leptin, as a mediator of tumor-stromal interactions, may affect BCSC activity using patient-derived samples (n = 16) and breast cancer cell lines, and determined the potential benefit of targeting leptin signaling in these model systems. Conditioned media (CM) from cancer-associated fibroblasts and breast adipocytes significantly increased mammosphere formation in breast cancer cells and depletion of leptin from CM completely abrogated this effect. Mammosphere cultures exhibited increased leptin receptor (OBR) expression and leptin exposure enhanced mammosphere formation. Microarray analyses revealed a similar expression profile of genes involved in stem cell biology among mammospheres treated with CM and leptin. Interestingly, leptin increased mammosphere formation in metastatic breast cancers and expression of OBR as well as HSP90, a target of leptin signaling, were directly correlated with mammosphere formation in metastatic samples (r = 0.68/p = 0.05; r = 0.71/p = 0.036, respectively). Kaplan-Meier survival curves indicated that OBR and HSP90 expression were associated with reduced overall survival in breast cancer patients (HR = 1.9/p = 0.022; HR = 2.2/p = 0.00017, respectively). Furthermore, blocking leptin signaling by using a full leptin receptor antagonist significantly reduced mammosphere formation in breast cancer cell lines and patient-derived samples. Our results suggest that leptin/leptin receptor signaling may represent a potential therapeutic target that can block the stromal-tumor interactions driving BCSC-mediated disease progression.

  17. Bufothionine induced the mitochondria-mediated apoptosis in H22 liver tumor and acute liver injury.

    PubMed

    Xie, Rui-Fang; Li, Zhi-Cheng; Chen, Pei-Pei; Zhou, Xin

    2015-01-01

    Bufothionine is an alkaloid in Cinobufacini (Huachansu). This study aims to investigate the effects of bufothionine on liver tumors and acute liver injury. In the hepatoprotective experiment, fifty rats were randomly divided into five groups (n = 10): normal saline group, model group, compound glycyrrhizin injection (9.14 mL/kg); cinobufacini injection (3.42 mL/kg) (InjA) and bufothionine (9.77 mL/kg) (BufoA) group. Liver weight indices were recorded to judge the degree of liver swelling, hematoxylin and eosin (H&E) staining of liver tissues was carried out to observe liver histological morphology injury and biochemical indicators including aspartate aminotransferase (AST); alanine aminotransferase (ALT); alkaline phosphatase (ALP); and total bilirubin (TBIL) were determined by modular auto-analyzer. In anti-tumor experiment, H22-tumor-bearing mice were randomly divided into five groups (n = 10): normal saline group, model group, cinobufacini injection (InjB) (5.14 mL/kg), bufothionine (8.02 mL/kg) (BufoB) and 5-fluorouracil (5-Fu) (3.42 mL/kg). Tumors were picked out and determined with vernier calipers. Histological morphology of tumors was observed by H&E staining. In SMMC-7721 cells, expressions of proteins related to mitochondria-mediated apoptosis pathway including Bcl-2, Bax, caspase-3, caspase-9, cyto-c, Bid, and p53 were analyzed by western blotting at low, medium, high concentrations of bufothione (3.62 μg/mL, 18.12 μg/mL,90.62 μg/mL). Butothionine relieved CCl4-induced liver morphology, decreased the level of ALT (P =2.46 × 10(-2)) and expressed tendency to decrease other biochemical markers including AST, ALP and TBIL. Butothionine could also promote necrosis of tumor tissue in H22-tumor-bearing mice and restrained tumor growth with 65.16% inhibition rate. Its mechanism might relate to up-regulation of p53 (at low, mediate and high concentration, corresponding P values were 0.142, 0.0257, 0.0162), caspase-3 (P = 0.246, 0

  18. Tumor antigen ROR1 targeted drug delivery mediated selective leukemic but not normal B cell cytotoxicity in chronic lymphocytic leukemia

    PubMed Central

    Mani, Rajeswaran; Mao, Yicheng; Frissora, Frank W.; Chiang, Chi-Ling; Wang, Jiang; Zhao, Yuan; Wu, Yun; Yu, Bo; Yan, Ribai; Mo, Xiaokui; Yu, Lianbo; Flynn, Joseph; Jones, Jeffrey; Andritsos, Leslie; Baskar, Sivasubramanian; Rader, Christoph; Phelps, Mitch A; Chen, Ching-Shih; Lee, Robert J.; Byrd, John C.; Lee, L. James; Muthusamy, Natarajan

    2014-01-01

    Selective cytotoxicity to cancer cells without compromising their normal counterparts pose a huge challenge for traditional drug design. Here we developed a tumor antigen targeted delivery of immunonanoparticle carrying a novel non-immunosuppressive FTY720 derivative OSU-2S with potent cytotoxicity against leukemic B cells. OSU-2S induces activation of protein phosphatase 2A, phosphorylation and nuclear translocation of SHP1S591 and deregulation of multiple cellular processes in chronic lymphocytic leukemia (CLL) resulting in potent cytotoxicity. To preclude OSU-2S mediated effects on these ubiquitous phosphatases in unintended cells and avoid potential adverse effects we developed a OSU-2S targeted delivery immunonanoparticles (2A2-OSU-2S-ILP), that mediated selective cytotoxicity of CLL but not normal B cells through targeting receptor tyrosine kinase ROR1 expressed in leukemic but not normal B cells. Developing a novel spontaneous CLL mouse model expressing human ROR1 (hROR1) in all leukemic B cells, we demonstrate the therapeutic benefit of enhanced survival with 2A2-OSU-2S-ILP in-vivo. The newly developed non-immunosuppressive OSU-2S, its delivery using human CLL directed immunonanoparticles and the novel transgenic mouse model of CLL that expresses hROR1 exclusively in leukemic B cell surface are highly innovative and can be applied to CLL and other ROR1+ malignancies including mantle cell lymphoma and acute lymphoblastic leukemia. PMID:24947019

  19. Molecular Basis for BRCA2-mediated DNA Repair and Breast Tumor Suppression

    DTIC Science & Technology

    2009-10-01

    breaks are mediated by the RAD51 recombinase . In catalyzing recombination reactions, RAD51 must first form a right-handed helical filament, termed the...analogs and poly(ADP-ribose) polymerase inhibitors, exploit the incapability of BRCA2-deficient cells to rely on HR for the repair of DSBs. Apparently...Instability and DNA repair in Taos, New Mexico (March 1-5, 2009). I am a coauthor on manuscript “Enhancement of the RAD51 Recombinase by the Tumor Suppressor

  20. MDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapy.

    PubMed

    Finke, James; Ko, Jennifer; Rini, Brian; Rayman, Pat; Ireland, Joanna; Cohen, Peter

    2011-07-01

    sunitinib treatment. Tumors from untreated patients showed suppressed T cell IFNγ response along with substantial expression of MDSCs (5% of total digested cells). Thus far, tumors from 5/8 neoadjuvant patients showed persistence of intratumor MDSCs and low T cell IFNγ production post sunitinib treatment, findings that parallel results from untreated tumors. In the remaining 3 neoadjuvant patients, intratumor MDSCs were detected at low levels which coincided with a T cell IFNγ response similar to that observed with normal donor peripheral T cells. GM-CSF's role in promoting MDSC survival in patient tumors is supported by the observation that GM-CSF is produced in short-term RCC cultures at levels capable of protecting MDSCs from sunitinib-induced cell death. Additionally, persistence of MDSC also may be associated with increased expression of proangiogenic proteins, such as MMP9, MMP8, and IL-8 produced by tumor stromal cells or infiltrating MDSCs. Indeed our findings suggest that the most dominate MDSC subset in RCC patients is the neutrophilic population that produces proangiogenic proteins. We propose that the development of sunitinib resistance is partly mediated by the survival of MDSCs intratumorally, thereby providing sustained immune suppression and angiogenesis.

  1. Leukocyte-mediated Delivery of Nanotherapeutics in Inflammatory and Tumor Sites

    PubMed Central

    Dong, Xinyue; Chu, Dafeng; Wang, Zhenjia

    2017-01-01

    Nanotechnology has become a powerful tool to potentially translate nanomedicine from bench to bedside. Nanotherapeutics are nanoparticles (NPs) loaded with drugs and possess the property of tissue targeting after surfaces of NPs are bio-functionalized. Designing smaller size of nanotherapeutics is presumed to increase tumor targeting based on the EPR (enhanced permeability and retention) effect. Since the immune systems possess a defence mechanism to fight diseases, there is an emerging concept that NPs selectively target immune cells to mediate the active delivery of drugs into sites of disease. In this review, we will focus on a key question of how nanotherapeutics specifically target immune cells and hijack them as a delivery vehicle to transport nanotherapeutics into disease tissues, thus possibly improving current therapies in inflammation, immune disorders and cancers. We will also discuss the challenges and opportunities for this new strategy of leukocyte-mediated delivery of nanotherapeutics. PMID:28255364

  2. Apoptosis triggered by pyropheophorbide-α methyl ester-mediated photodynamic therapy in a giant cell tumor in bone

    NASA Astrophysics Data System (ADS)

    Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.

    2014-06-01

    A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.

  3. Tumor necrosis factor gene expression is mediated by protein kinase C following activation by ionizing radiation.

    SciTech Connect

    Hallahan, D. E.; Virudachalam, S.; Sherman, M. L.; Huberman, E.; Kufe, D. W.; Weichselbaum, R. R.; Univ. of Chicago; Dana-Farber Cancer Inst.; Univ. of Chicago

    1991-01-01

    Tumor necrosis factor (TNF) production following X-irradiation has been implicated in the biological response to ionizing radiation. Protein kinase C (PKC) is suggested to participate in TNF transcriptional induction and X-ray-mediated gene expression. We therefore studied radiation-mediated TNF expression in HL-60 cells with diminished PKC activity produced by either pretreatment with protein kinase inhibitors or prolonged 12-O-tetradecanoylphorbol-13-acetate treatment. Both treatments resulted in attenuation of radiation-mediated TNF induction. Consistent with these results, we found no detectable induction of TNF expression following X-irradiation in the HL-60 variant deficient in PKC-mediated signal transduction. The rapid activation of PKC following {gamma}-irradiation was established using an in vitro assay measuring phosphorylation of a PKC specific substrate. A 4.5-fold increase in PKC activity occurred 15 to 30 s following irradiation, which declined to baseline at 60 s. Two-dimensional gel electrophoresis of phosphoproteins extracted from irradiated cells demonstrated in vivo phosphorylation of the PKC specific substrate Mr 80,000 protein at 45 s following X-irradiation. These findings indicate that signal transduction via the PKC pathway is required for the induction of TNF gene expression by ionizing radiation.

  4. Identification of Sleeping Beauty transposon insertions in solid tumors using linker-mediated PCR.

    PubMed

    Janik, Callie L; Starr, Timothy K

    2013-02-01

    Genomic, proteomic, transcriptomic, and epigenomic analyses of human tumors indicate that there are thousands of anomalies within each cancer genome compared to matched normal tissue. Based on these analyses it is evident that there are many undiscovered genetic drivers of cancer(1). Unfortunately these drivers are hidden within a much larger number of passenger anomalies in the genome that do not directly contribute to tumor formation. Another aspect of the cancer genome is that there is considerable genetic heterogeneity within similar tumor types. Each tumor can harbor different mutations that provide a selective advantage for tumor formation(2). Performing an unbiased forward genetic screen in mice provides the tools to generate tumors and analyze their genetic composition, while reducing the background of passenger mutations. The Sleeping Beauty (SB) transposon system is one such method(3). The SB system utilizes mobile vectors (transposons) that can be inserted throughout the genome by the transposase enzyme. Mutations are limited to a specific cell type through the use of a conditional transposase allele that is activated by Cre Recombinase. Many mouse lines exist that express Cre Recombinase in specific tissues. By crossing one of these lines to the conditional transposase allele (e.g. Lox-stop-Lox-SB11), the SB system is activated only in cells that express Cre Recombinase. The Cre Recombinase will excise a stop cassette that blocks expression of the transposase allele, thereby activating transposon mutagenesis within the designated cell type. An SB screen is initiated by breeding three strains of transgenic mice so that the experimental mice carry a conditional transposase allele, a concatamer of transposons, and a tissue-specific Cre Recombinase allele. These mice are allowed to age until tumors form and they become moribund. The mice are then necropsied and genomic DNA is isolated from the tumors. Next, the genomic DNA is subjected to linker-mediated

  5. Natural killer cells unleashed: Checkpoint receptor blockade and BiKE/TriKE utilization in NK-mediated anti-tumor immunotherapy.

    PubMed

    Davis, Zachary B; Vallera, Daniel A; Miller, Jeffrey S; Felices, Martin

    2017-09-04

    Natural killer (NK) cells have long been known to mediate anti-tumor responses without prior sensitization or recognition of specific tumor antigens. However, the tumor microenvironment can suppress NK cell function resulting in tumor escape and disease progression. Despite recent advances in cytokine therapy and NK cell adoptive transfer, tumor expression of ligands to NK - expressed checkpoint receptors can still suppress NK mediated tumor lysis. This review will explore many of the checkpoint receptors tumors utilize to manipulate the NK cell response as well as some of the current and upcoming pharmacological solutions to limit tumor suppression of NK cell function. Furthermore, we will discuss the potential to use these drugs in combinational therapies with novel antibody reagents such as bi- and tri-specific killer engagers (BiKEs and TriKEs) against tumor-specific antigens to enhance NK cell-mediated tumor rejection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Tumor necrosis factor and interleukin 1 as mediators of endotoxin-induced beneficial effects

    SciTech Connect

    Urbaschek, R.; Urbaschek, B.

    1987-09-01

    Bacterial lipopolysaccharides or endotoxins are known to induce tumor necrosis; enhanced nonspecific resistance to bacterial, viral, and parasitic infections and to radiation sickness; and tolerance to lethal doses of endotoxin. These beneficial effects are achieved by pretreatment with minute amounts of endotoxin. Recombinant tumor necrosis factor (TNF) and interleukin 1 (IL-1) are among the mediators capable of invoking radioprotection or resistance to the consequences of cecal ligation and puncture. Both cytokines are potent inducers of serum colony-stimulating factor (CSF) in C3H/HeJ mice (low responders to endotoxin). The number of splenic granulocyte-macrophage precursors was found to increase 5 days after injection of TNF in these mice. Although with IL-1 no increase in the number of granulocyte-macrophage colonies occurred in culture in the presence of serum CSF, a marked stimulation was observed when TNF was added. This stimulation of myelopoiesis observed in vivo and in vitro may be related to the radioprotective effect of TNF. The data presented suggest that TNF and IL-1 released after injection of endotoxin participate in the mediation of endotoxin-induced enhancement of nonspecific resistance and stimulation of hematopoiesis. 76 references.

  7. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response.

    PubMed

    Kim, Oh Youn; Park, Hyun Taek; Dinh, Nhung Thi Hong; Choi, Seng Jin; Lee, Jaewook; Kim, Ji Hyun; Lee, Seung-Woo; Gho, Yong Song

    2017-09-20

    Gram-negative bacteria actively secrete outer membrane vesicles, spherical nano-meter-sized proteolipids enriched with outer membrane proteins, to the surroundings. Outer membrane vesicles have gained wide interests as non-living complex vaccines or delivery vehicles. However, no study has used outer membrane vesicles in treating cancer thus far. Here we investigate the potential of bacterial outer membrane vesicles as therapeutic agents to treat cancer via immunotherapy. Our results show remarkable capability of bacterial outer membrane vesicles to effectively induce long-term antitumor immune responses that can fully eradicate established tumors without notable adverse effects. Moreover, systematically administered bacterial outer membrane vesicles specifically target and accumulate in the tumor tissue, and subsequently induce the production of antitumor cytokines CXCL10 and interferon-γ. This antitumor effect is interferon-γ dependent, as interferon-γ-deficient mice could not induce such outer membrane vesicle-mediated immune response. Together, our results herein demonstrate the potential of bacterial outer membrane vesicles as effective immunotherapeutic agent that can treat various cancers without apparent adverse effects.Bacterial outer membrane vesicles (OMVs) contain immunogens but no study has yet examined their potential in treating cancer. Here, the authors demonstrate that OMVs can suppress established tumours and prevent tumour metastasis by an interferon-γ mediated antitumor response.

  8. Hypoxia-mediated epigenetic regulation of stemness in brain tumor cells.

    PubMed

    Prasad, Authors Pankaj; Arora Mittal, Shivani; Chongtham, Jonita; Mohanty, Sujata; Srivastava, Tapasya

    2017-04-04

    Activation of pluripotency regulatory circuit is an important event in solid tumor progression and the hypoxic microenvironment is known to enhance the stemness feature of some cells. This distinct population of cancer stem cells (CSCs)/tumor initiating cells (TICs) exist in a niche and augment invasion, metastasis and drug resistance. Previously, studies have reported global hypomethylation and site-specific aberrant methylation in gliomas along with other epigenetic modifications as important contributors to genomic instability during glioma progression. Here, we have demonstrated the role of hypoxia-mediated epigenetic modifications in regulating expression of core pluripotency factors, OCT4 and NANOG, in glioma cells. We observe hypoxia-mediated induction of demethylases, TET1 and 3, but not TET2 in our cell-line model. Immunoprecipitation studies reveal active demethylation and direct binding of TET1 and 3 at the Oct4 and Nanog regulatory regions. Tet1 and 3 silencing assays further confirmed induction of the pluripotency pathway involving Oct4, Nanog and Stat3, by these paralogues, although with varying degrees. Knockdown of Tet1 and Tet3 inhibited the formation of neurospheres in hypoxic conditions. We observed independent roles of TET1 and TET3 in differentially regulating pluripotency and differentiation associated genes in hypoxia. Overall this study demonstrates an active demethylation in hypoxia by TET1 and 3 as a mechanism of Oct4 and Nanog overexpression thus contributing to the formation of CSCs in gliomas. This article is protected by copyright. All rights reserved.

  9. HPV/E7 induces chemotherapy-mediated tumor suppression by ceramide-dependent mitophagy.

    PubMed

    Thomas, Raquela J; Oleinik, Natalia; Panneer Selvam, Shanmugam; Vaena, Silvia G; Dany, Mohammed; Nganga, Rose N; Depalma, Ryan; Baron, Kyla D; Kim, Jisun; Szulc, Zdzislaw M; Ogretmen, Besim

    2017-08-01

    Human papillomavirus (HPV) infection is linked to improved survival in response to chemo-radiotherapy for patients with oropharynx head and neck squamous cell carcinoma (HNSCC). However, mechanisms involved in increased HNSCC cell death by HPV signaling in response to therapy are largely unknown. Here, using molecular, pharmacologic and genetic tools, we show that HPV early protein 7 (E7) enhances ceramide-mediated lethal mitophagy in response to chemotherapy-induced cellular stress in HPV-positive HNSCC cells by selectively targeting retinoblastoma protein (RB). Inhibition of RB by HPV-E7 relieves E2F5, which then associates with DRP1, providing a scaffolding platform for Drp1 activation and mitochondrial translocation, leading to mitochondrial fission and increased lethal mitophagy. Ectopic expression of a constitutively active mutant RB, which is not inhibited by HPV-E7, attenuated ceramide-dependent mitophagy and cell death in HPV(+) HNSCC cells. Moreover, mutation of E2F5 to prevent Drp1 activation inhibited mitophagy in HPV(+) cells. Activation of Drp1 with E2F5-mimetic peptide for inducing Drp1 mitochondrial localization enhanced ceramide-mediated mitophagy and led to tumor suppression in HPV-negative HNSCC-derived xenograft tumors in response to cisplatin in SCID mice. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Sophoridinol derivative 05D induces tumor cells apoptosis by topoisomerase1-mediated DNA breakage

    PubMed Central

    Zhao, Wuli; Zhang, Caixia; Bi, Chongwen; Ye, Cheng; Song, Danqing; Liu, Xiujun; Shao, Rongguang

    2016-01-01

    Sophoridine is a quinolizidine natural product of Sophora alopecuroides and has been applied for treatment of malignant trophoblastic tumors. Although characterized by low toxicity, the limited-spectrum antitumor activity hinders its further applications. 05D, a derivative of sophoridine, exhibits a better anticancer activity on diverse cancer cells, including solid tumors, and hematologic malignancy. It could inhibit topoisomerase 1 (top1) activity by stabilizing DNA–top1 complex and induce mitochondria-mediated apoptosis by promoting DNA single- and double-strand breakage mediated by top1. Also, 05D induced HCT116 cells arrest at G1 phase by inactivating CDK2/CDK4–Rb–E2F and cyclinD1–CDK4–p21 checkpoint signal pathways. 05D suppressed the ataxia telangiectasia mutated (ATM) and ATM and Rad3-related (ATR) activation and decreased 53BP level, which contributed to DNA damage repair, suggesting that the novel compound 05D might be helpful to improve the antitumor activity of DNA damaging agent by repressing ATM and ATR activation and 53BP level. In addition, the priorities in molecular traits and druggability, such as a simple structure and formulation for oral administration, further prove 05D to be a promising targeting topoisomerase agent. PMID:27274276

  11. Downregulation of c-Myc is involved in TLR3-mediated tumor death of neuroblastoma xenografts.

    PubMed

    Lin, Li-Ling; Huang, Chao-Cheng; Wu, Chia-Ling; Wu, Min-Tsui; Hsu, Wen-Ming; Chuang, Jiin-Haur

    2016-07-01

    Neuroblastoma (NB) is the deadliest pediatric solid tumor due to its pleomorphic molecular characteristics. In the innate immune system, toll-like receptor 3 (TLR3) recognizes viral double-stranded RNAs to initiate immune signaling. Positive TLR3 expression indicates a favorable prognosis in NB patients, and is associated with MYCN-non-amplified. However, TLR3-mediated innate immune responses remain elusive in NB. In this study, we attempted to dissect the molecular mechanism underlying TLR3-agonist polyinosinic-polycytidylic acid [poly(I:C)] treatment in NB in vivo. We established NB xenograft models in non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mice with MYCN-amplified SK-N-DZ (DZ) cells or MYCN-non-amplified SK-N-AS (AS) cells. Poly(I:C) treatment led to significant tumor regression in AS xenografts, but not in DZ xenografts. Through immunohistochemical analysis, significant suppression of tumor proliferation, downregulation of c-Myc expression, and upregulation of TLR3 expression were found in the treatment group. Poly(I:C) inducing activation of TLR3/IRF3-mediated innate immunity associated with downregulation of c-Myc can be found in MYCN-non-amplified SK-N-AS cells, but not in MYCN-amplified BE(2)-M17 cells. Knockdown of TLR3 disturbed poly(I:C)-induced suppression of c-Myc and upregulation of p-IRF3 in AS cells. Furthermore, poly(I:C) treatment upregulated active NF-κB, mitochondrial antioxidant manganese superoxide dismutase and 8-hydroxydeoxyguanosine, which works with reactive oxygen species (ROS) generation and DNA damage. Upregulation of active caspase 3 and cleaved poly [ADP-ribose] polymerase 1 were found in poly(I:C)-treated AS xenografts, which indicates the induction of apoptosis. Thus, our results suggest that c-Myc overexpression may increase sensitivity to poly(I:C)-induced tumor growth arrest and ROS-mediated apoptosis in NB. This study demonstrates that c-Myc protein expression has an important role in TLR3-induced innate

  12. Hapten-Induced Contact Hypersensitivity, Autoimmune Reactions, and Tumor Regression: Plausibility of Mediating Antitumor Immunity

    PubMed Central

    Erkes, Dan A.; Selvan, Senthamil R.

    2014-01-01

    Haptens are small molecule irritants that bind to proteins and elicit an immune response. Haptens have been commonly used to study allergic contact dermatitis (ACD) using animal contact hypersensitivity (CHS) models. However, extensive research into contact hypersensitivity has offered a confusing and intriguing mechanism of allergic reactions occurring in the skin. The abilities of haptens to induce such reactions have been frequently utilized to study the mechanisms of inflammatory bowel disease (IBD) to induce autoimmune-like responses such as autoimmune hemolytic anemia and to elicit viral wart and tumor regression. Hapten-induced tumor regression has been studied since the mid-1900s and relies on four major concepts: (1) ex vivo haptenation, (2) in situ haptenation, (3) epifocal hapten application, and (4) antigen-hapten conjugate injection. Each of these approaches elicits unique responses in mice and humans. The present review attempts to provide a critical appraisal of the hapten-mediated tumor treatments and offers insights for future development of the field. PMID:24949488

  13. Sleep-mediated heart rate variability after bilateral carotid body tumor resection.

    PubMed

    Niemeijer, Nicolasine D; Corssmit, Eleonora P M; Reijntjes, Robert H A M; Lammers, Gert Jan; van Dijk, J Gert; Thijs, Roland D

    2015-04-01

    The carotid bodies are thought to play an important role in sleep-dependent autonomic changes. Patients who underwent resection of bilateral carotid body tumors have chronically attenuated baroreflex sensitivity. These subjects provide a unique opportunity to investigate the role of the baroreflex during sleep. One-night ambulatory polysomnography (PSG) recording. Participants' homes. Nine patients with bilateral carotid body tumor resection (bCBR) (four women, mean age 50.4 ± 7.2 years) and nine controls matched for age, gender, and body mass index. N/A. Sleep parameters were obtained from PSG. Heart rate (HR) and its variability were calculated using 30-s epochs. In bCBR patients, HR was slightly but not significantly increased during wake and all sleep stages. The effect of sleep on HR was similar for patients and controls. Low frequency (LF) power of the heart rate variability spectrum was significantly lower in bCBR patients in active wakefulness, sleep stage 1 and REM sleep. No differences were found between patients and controls for high frequency (HF) power and the LF/HF ratio. Bilateral carotid body tumor resection (bCBR) is associated with decreased low frequency power during sleep, suggesting impaired baroreflex function. Despite this, sleep-related heart rate changes were similar between bCBR patients and controls. These findings suggest that the effects of sleep on heart rate are predominantly generated through central, non-baroreflex mediated pathways. © 2015 Associated Professional Sleep Societies, LLC.

  14. RBPJ maintains brain tumor-initiating cells through CDK9-mediated transcriptional elongation.

    PubMed

    Xie, Qi; Wu, Qiulian; Kim, Leo; Miller, Tyler E; Liau, Brian B; Mack, Stephen C; Yang, Kailin; Factor, Daniel C; Fang, Xiaoguang; Huang, Zhi; Zhou, Wenchao; Alazem, Kareem; Wang, Xiuxing; Bernstein, Bradley E; Bao, Shideng; Rich, Jeremy N

    2016-07-01

    Glioblastomas co-opt stem cell regulatory pathways to maintain brain tumor-initiating cells (BTICs), also known as cancer stem cells. NOTCH signaling has been a molecular target in BTICs, but NOTCH antagonists have demonstrated limited efficacy in clinical trials. Recombining binding protein suppressor of hairless (RBPJ) is considered a central transcriptional mediator of NOTCH activity. Here, we report that pharmacologic NOTCH inhibitors were less effective than targeting RBPJ in suppressing tumor growth. While NOTCH inhibitors decreased canonical NOTCH gene expression, RBPJ regulated a distinct profile of genes critical to BTIC stemness and cell cycle progression. RBPJ was preferentially expressed by BTICs and required for BTIC self-renewal and tumor growth. MYC, a key BTIC regulator, bound the RBPJ promoter and treatment with a bromodomain and extraterminal domain (BET) family bromodomain inhibitor decreased MYC and RBPJ expression. Proteomic studies demonstrated that RBPJ binds CDK9, a component of positive transcription elongation factor b (P-TEFb), to target gene promoters, enhancing transcriptional elongation. Collectively, RBPJ links MYC and transcriptional control through CDK9, providing potential nodes of fragility for therapeutic intervention, potentially distinct from NOTCH.

  15. Bispecific T cell engager (BiTE®) antibody constructs can mediate bystander tumor cell killing

    PubMed Central

    Ross, Sandra L.; Sherman, Marika; McElroy, Patricia L.; Lofgren, Julie A.; Moody, Gordon; Baeuerle, Patrick A.; Coxon, Angela

    2017-01-01

    For targets that are homogenously expressed, such as CD19 on cells of the B lymphocyte lineage, immunotherapies can be highly effective. Targeting CD19 with blinatumomab, a CD19/CD3 bispecific antibody construct (BiTE®), or with chimeric antigen receptor T cells (CAR-T) has shown great promise for treating certain CD19-positive hematological malignancies. In contrast, solid tumors with heterogeneous expression of the tumor-associated antigen (TAA) may present a challenge for targeted therapies. To prevent escape of TAA-negative cancer cells, immunotherapies with a local bystander effect would be beneficial. As a model to investigate BiTE®-mediated bystander killing in the solid tumor setting, we used epidermal growth factor receptor (EGFR) as a target. We measured lysis of EGFR-negative populations in vitro and in vivo when co-cultured with EGFR-positive cells, human T cells and an EGFR/CD3 BiTE® antibody construct. Bystander EGFR-negative cells were efficiently lysed by BiTE®-activated T cells only when proximal to EGFR-positive cells. Our mechanistic analysis suggests that cytokines released by BiTE®-activated T-cells induced upregulation of ICAM-1 and FAS on EGFR-negative bystander cells, contributing to T cell-induced bystander cell lysis. PMID:28837681

  16. IgE/FcεRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses.

    PubMed

    Platzer, Barbara; Elpek, Kutlu G; Cremasco, Viviana; Baker, Kristi; Stout, Madeleine M; Schultz, Cornelia; Dehlink, Eleonora; Shade, Kai-Ting C; Anthony, Robert M; Blumberg, Richard S; Turley, Shannon J; Fiebiger, Edda

    2015-03-03

    Epidemiologic studies discovered an inverse association between immunoglobulin E (IgE)-mediated allergies and cancer, implying tumor-protective properties of IgE. However, the underlying immunologic mechanisms remain poorly understood. Antigen cross-presentation by dendritic cells (DCs) is of key importance for anti-tumor immunity because it induces the generation of cytotoxic CD8(+) T lymphocytes (CTLs) with specificity for tumor antigens. We demonstrate that DCs use IgE and FcεRI, the high-affinity IgE receptor, for cross-presentation and priming of CTLs in response to free soluble antigen at low doses. Importantly, IgE/FcεRI-mediated cross-presentation is a distinct receptor-mediated pathway because it does not require MyD88 signals or IL-12 induction in DCs. Using passive immunization with tumor antigen-specific IgE and DC-based vaccination experiments, we demonstrate that IgE-mediated cross-presentation significantly improves anti-tumor immunity and induces memory responses in vivo. Our findings suggest a cellular mechanism for the tumor-protective features of IgE and expand the known physiological functions of this immunoglobulin. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Feasibility of Affibody Molecule-Based PNA-Mediated Radionuclide Pretargeting of Malignant Tumors

    PubMed Central

    Honarvar, Hadis; Westerlund, Kristina; Altai, Mohamed; Sandström, Mattias; Orlova, Anna; Tolmachev, Vladimir; Karlström, Amelie Eriksson

    2016-01-01

    Affibody molecules are small (7 kDa), non-immunoglobulin scaffold proteins with a potential as targeting agents for radionuclide imaging of cancer. However, high renal re-absorption of Affibody molecules prevents their use for radionuclide therapy with residualizing radiometals. We hypothesized that the use of Affibody-based peptide nucleic acid (PNA)-mediated pretargeting would enable higher accumulation of radiometals in tumors than in kidneys. To test this hypothesis, we designed an Affibody-PNA chimera ZHER2:342-SR-HP1 containing a 15-mer HP1 PNA recognition tag and a complementary HP2 hybridization probe permitting labeling with both 125I and 111In. 111In-ZHER2:342-SR-HP1 bound specifically to HER2-expressing BT474 and SKOV-3 cancer cells in vitro, with a KD of 6±2 pM for binding to SKOV-3 cells. Specific high affinity binding of the radiolabeled complementary PNA probe 111In-/125I-HP2 to ZHER2:342-SR-HP1 pre-treated cells was demonstrated. 111In-ZHER2:342-SR-HP1 demonstrated specific accumulation in SKOV-3 xenografts in BALB/C nu/nu mice and rapid clearance from blood. Pre-saturation of SKOV-3 with non-labeled anti-HER2 Affibody or the use of HER2-negative Ramos xenografts resulted in significantly lower tumor uptake of 111In-ZHER2:342-SR-HP1. The complementary PNA probe 111In/125I-HP2 accumulated in SKOV-3 xenografts when ZHER2:342-SR-HP1 was injected 4 h earlier. The tumor accumulation of 111In/125I-HP2 was negligible without ZHER2:342-SR-HP1 pre-injection. The uptake of 111In-HP2 in SKOV-3 xenografts was 19±2 %ID/g at 1 h after injection. The uptake in blood and kidneys was approximately 50- and 2-fold lower, respectively. In conclusion, we have shown that the use of Affibody-based PNA-mediated pretargeting enables specific delivery of radiometals to tumors and provides higher radiometal concentration in tumors than in kidneys. PMID:26722376

  18. Nitric oxide-mediated sensitization of resistant tumor cells to apoptosis by chemo-immunotherapeutics☆

    PubMed Central

    Bonavida, Benjamin; Garban, Hermes

    2015-01-01

    The generation of NO by the various NO synthases in normal and malignant tissues is manifested by various biological effects that are involved in the regulation of cell survival, differentiation and cell death. The role of NO in the cytotoxic immune response was first revealed by demonstrating the induction of iNOS in target cells by immune cytokines (e.g. IFN-γ, IL-1, TNF-α, etc.) and resulting in the sensitization of resistant tumor cells to death ligands-induced apoptosis. Endogenous/exogenous NO mediated its immune sensitizing effect by inhibiting NF-κΒ activity and downstream, inactivating the repressor transcription factor YY1, which inhibited both Fas and DR5 expressions. In addition, NO-mediated inhibition of NF-κΒ activity and inhibition downstream of its anti-apoptotic gene targets sensitized the tumor cells to apoptosis by chemotherapeutic drugs. We have identified in tumor cells a dysregulated pro-survival/anti-apoptotic loop consisting of NF-κB/Snail/YY1/RKIP/PTEN and its modification by NO was responsible, in large, for the reversal of chemo and immune resistance and sensitization to apoptotic mechanisms by cytotoxic agents. Moreover, tumor cells treated with exogenous NO donors resulted in the inhibition of NF-κΒ activity via S-nitrosylation of p50 and p65, inhibition of Snail (NF-κΒ target gene), inhibition of transcription repression by S-nitrosylation of YY1 and subsequent inhibition of epithelial–mesenchymal transition (EMT), induction of RKIP (inhibition of the transcription repressor Snail), and induction of PTEN (inhibition of the repressors Snail and YY1). Further, each gene product modified by NO in the loop was involved in chemo-immunosensitization. These above findings demonstrated that NO donors interference in the regulatory circuitry result in chemo-immunosensitization and inhibition of EMT. Overall, these observations suggest the potential anti-tumor therapeutic effect of NO donors in combination with subtoxic chemo

  19. Genes encoding phospholipases A2 mediate insect nodulation reactions to bacterial challenge.

    PubMed

    Shrestha, Sony; Park, Yoonseong; Stanley, David; Kim, Yonggyun

    2010-03-01

    We propose that expression of four genes encoding secretory phospholipases A(2) (sPLA(2)) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA(2)-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA(2) activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA(2) and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA(2)s. The recombinant sPLA(2)s were inhibited by sPLA(2) inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA(2) genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA(2)s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA(2)s showed the presence of the sPLA(2) enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA(2) genes that mediate nodulation reactions strongly supports our hypothesis that sPLA(2)s are central enzymes in insect cellular immune reactions. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. E2f8 mediates tumor suppression in postnatal liver development

    PubMed Central

    Kent, Lindsey N.; Rakijas, Jessica B.; Pandit, Shusil K.; Westendorp, Bart; Chen, Hui-Zi; Huntington, Justin T.; Tang, Xing; Bae, Sooin; Srivastava, Arunima; Senapati, Shantibhusan; Martin, Chelsea K.; Cuitino, Maria C.; Perez, Miguel; Clouse, Julian M.; Chokshi, Veda; Shinde, Neelam; Kladney, Raleigh; Sun, Daokun; Perez-Castro, Antonio; Matondo, Ramadhan B.; Nantasanti, Sathidpak; Mokry, Michal; Machiraju, Raghu; Fernandez, Soledad; Rosol, Thomas J.; Pohar, Kamal S.; Pipas, James M.; Schmidt, Carl R.; de Bruin, Alain

    2016-01-01

    E2F-mediated transcriptional repression of cell cycle–dependent gene expression is critical for the control of cellular proliferation, survival, and development. E2F signaling also interacts with transcriptional programs that are downstream of genetic predictors for cancer development, including hepatocellular carcinoma (HCC). Here, we evaluated the function of the atypical repressor genes E2f7 and E2f8 in adult liver physiology. Using several loss-of-function alleles in mice, we determined that combined deletion of E2f7 and E2f8 in hepatocytes leads to HCC. Temporal-specific ablation strategies revealed that E2f8’s tumor suppressor role is critical during the first 2 weeks of life, which correspond to a highly proliferative stage of postnatal liver development. Disruption of E2F8’s DNA binding activity phenocopied the effects of an E2f8 null allele and led to HCC. Finally, a profile of chromatin occupancy and gene expression in young and tumor-bearing mice identified a set of shared targets for E2F7 and E2F8 whose increased expression during early postnatal liver development is associated with HCC progression in mice. Increased expression of E2F8-specific target genes was also observed in human liver biopsies from HCC patients compared to healthy patients. In summary, these studies suggest that E2F8-mediated transcriptional repression is a critical tumor suppressor mechanism during postnatal liver development. PMID:27454291

  1. Soluble CD80 restores T cell activation and overcomes tumor cell programmed death ligand 1-mediated immune suppression.

    PubMed

    Haile, Samuel T; Dalal, Sonia P; Clements, Virginia; Tamada, Koji; Ostrand-Rosenberg, Suzanne

    2013-09-01

    Many tumor cells escape anti-tumor immunity through their expression of programmed death ligand-1 (PDL1 or B7-H1), which interacts with T cell-expressed PD1 and results in T cell apoptosis. We previously reported that transfection of human tumor cells with a membrane-bound form of the human costimulatory molecule CD80 prevented PD1 binding and restored T cell activation. We now report that a membrane-bound form of murine CD80 similarly reduces PDL1-PD1-mediated suppression by mouse tumor cells and that a soluble protein consisting of the extracellular domains of human or mouse CD80 fused to the Fc domain of IgG1 (CD80-Fc) overcomes PDL1-mediated suppression by human and mouse tumor cells, respectively. T cell activation experiments with human and mouse tumor cells indicate that CD80-Fc facilitates T cell activation by binding to PDL1 to inhibit PDL1-PD1 interactions and by costimulating through CD28. CD80-Fc is more effective in preventing PD1-PDL1-mediated suppression and restoring T cell activation compared with treatment with mAb to either PD1 or PDL1. These studies identify CD80-Fc as an alternative and potentially more efficacious therapeutic agent for overcoming PDL1-induced immune suppression and facilitating tumor-specific immunity.

  2. Critical tumor suppressor function mediated by epithelial Mig-6 in endometrial cancer.

    PubMed

    Kim, Tae Hoon; Lee, Dong-Kee; Cho, Sung-Nam; Orvis, Grant D; Behringer, Richard R; Lydon, John P; Ku, Bon Jeong; McCampbell, Adrienne S; Broaddus, Russell R; Jeong, Jae-Wook

    2013-08-15

    Endometrial cancer is preceded by endometrial hyperplasia, unopposed estrogen exposure, and genetic alterations, but the precise causes of endometrial cancer remain uncertain. Mig-6, mainly known as a negative regulator of the EGF receptor, is an important mediator of progesterone signaling in the uterus, where it mediates tumor suppression by modulating endometrial stromal-epithelial communications. In this study, we investigated the function of Mig-6 in the uterine epithelium using a tissue-specific gene knockout strategy, in which floxed Mig-6 (Mig-6(f/f)) mice were crossed to Wnt7a-Cre mice (Wnt7a(cre+)Mig-6(f/f)). Wnt7a(cre+)Mig-6(f/f) mice developed endometrial hyperplasia and estrogen-dependent endometrial cancer, exhibiting increased proliferation in epithelial cells as well as apoptosis in subepithelial stromal cells. We documented increased expression of NOTCH1 and BIRC3 in epithelial cells of Wnt7a(cre+)Mig-6(f/f) mice and decreased expression of the progesterone receptor (PR) in stromal cells. Progesterone therapy controls endometrial growth and prevents endometrial cancer, but the effectiveness of progesterone as a treatment for women with endometrial cancer is less clear. We noted that the hyperplasic phenotype of Wnt7a(cre+)Mig-6(f/f) mice was prevented by progesterone treatment, whereas this treatment had no effect in PR(cre/+)Mig-6(f/f) mice where Mig-6 was deleted in both the epithelial and stromal compartments of the uterus. In contrast, activation of progesterone signaling in the stroma regulated proliferation and apoptosis in the epithelium via suppression of ERα signaling. In summary, our results establish that epithelial Mig-6 functions as a critical tumor suppressor that mediates the ability of progesterone to prevent the development of endometrial cancer.

  3. Critical tumor suppressor function mediated by epithelial Mig-6 in endometrial cancer

    PubMed Central

    Kim, Tae Hoon; Lee, Dong-Kee; Cho, Sung-Nam; Orvis, Grant D.; Behringer, Richard R.; Lydon, John P.; Ku, Bon Jeong; McCampbell, Adrienne S.; Broaddus, Russell R.; Jeong, Jae-Wook

    2013-01-01

    Endometrial cancer is preceded by endometrial hyperplasia, unopposed estrogen exposure and genetic alterations, but the precise causes of endometrial cancer remain uncertain. Mig-6, mainly known as a negative regulator of the EGF receptor, is an important mediator of progesterone signaling in the uterus, where it mediates tumor suppression by modulating endometrial stromal-epithelial communications. In this study, we investigated the function of Mig-6 in the uterine epithelium using a tissue-specific gene knockout strategy, in which floxed Mig-6 (Mig-6f/f) mice were crossed to Wnt7a-Cre mice (Wnt7acre+ Mig-6f/f). Wnt7acre+ Mig-6f/f mice developed endometrial hyperplasia and estrogen-dependent endometrial cancer, exhibiting increased proliferation in epithelial cells as well as apoptosis in sub-epithelial stromal cells. We documented increased expression of NOTCH1 and BIRC3 in epithelial cells of Wnt7acre+ Mig-6f/f mice and decreased expression of the progesterone receptor (PR) in stromal cells. Progesterone therapy controls endometrial growth and prevents endometrial cancer, but the effectiveness of progesterone as a treatment for women with endometrial cancer is less clear. We noted that the hyperplasic phenotype of Wnt7acre+ Mig-6f/f mice was prevented by progesterone treatment, whereas this treatment had no effect in PRcre/+ Mig-6f/f mice where Mig-6 was deleted in both the epithelial and stromal compartments of the uterus. In contrast, activation of progesterone signaling in the stroma regulated proliferation and apoptosis in the epithelium via suppression of ERα signaling there. In summary, our results establish that epithelial Mig-6 functions as a critical tumor suppressor that mediates the ability of progesterone to prevent the development of endometrial cancer. PMID:23811943

  4. Protective role of p21(Waf1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells.

    PubMed Central

    Gorospe, M; Wang, X; Guyton, K Z; Holbrook, N J

    1996-01-01

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence. PMID:8943319

  5. Mouse mammary tumor virus suppresses apoptosis of mammary epithelial cells through ITAM-mediated signaling.

    PubMed

    Kim, Hyoung H; Grande, Shannon M; Monroe, John G; Ross, Susan R

    2012-12-01

    Many receptors in hematopoietic cells use a common signaling pathway that relies on a highly conserved immunoreceptor tyrosine-based activation motif (ITAM), which signals through Src family tyrosine kinases. ITAM-bearing proteins are also found in many oncogenic viruses, including the mouse mammary tumor virus (MMTV) envelope (Env). We previously showed that MMTV Env expression transformed normal mammary epithelial cells and that Src kinases were important mediators in this transformation. To study how ITAM signaling affects mammary cell transformation, we utilized mammary cell lines expressing two different ITAM-containing proteins, one encoding a MMTV provirus and the other a B cell receptor fusion protein. ITAM-expressing cells were resistant to both serum starvation- and chemotherapeutic drug-induced apoptosis, whereas cells transduced with these molecules bearing ITAM mutations were indistinguishable from untransduced cells in their sensitivity to these treatments. We also found that Src kinase was activated in the MMTV-expressing cells and that MMTV-induced apoptosis resistance was completely restored by the Src inhibitor PP2. In vivo, MMTV infection delayed involution-induced apoptosis in the mouse mammary gland. Our results show that MMTV suppresses apoptosis through ITAM-mediated Src tyrosine kinase signaling. These studies could lead to the development of effective treatment of nonhematopoietic cell cancers in which ITAM-mediated signaling plays a role.

  6. Radio-photothermal therapy mediated by a single compartment nanoplatform depletes tumor initiating cells and reduces lung metastasis in the orthotopic 4T1 breast tumor model

    NASA Astrophysics Data System (ADS)

    Zhou, Min; Zhao, Jun; Tian, Mei; Song, Shaoli; Zhang, Rui; Gupta, Sanjay; Tan, Dongfeng; Shen, Haifa; Ferrari, Mauro; Li, Chun

    2015-11-01

    Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress breast tumor metastasis through eradication of TICs. Positron electron tomography (PET) imaging and biodistribution studies showed that more than 90% of [64Cu]CuS NPs was retained in subcutaneously grown BT474 breast tumor 24 h after intratumoral (i.t.) injection, indicating the NPs are suitable for the combination therapy. Combined RT/PTT therapy resulted in significant tumor growth delay in the subcutaneous BT474 breast cancer model. Moreover, RT/PTT treatment significantly prolonged the survival of mice bearing orthotopic 4T1 breast tumors compared to no treatment, RT alone, or PTT alone. The RT/PTT combination therapy significantly reduced the number of tumor nodules in the lung and the formation of tumor mammospheres from treated 4T1 tumors. No obvious side effects of the CuS NPs were noted in the treated mice in a pilot toxicity study. Taken together, our data support the feasibility of a therapeutic approach for the suppression of tumor metastasis through localized RT/PTT therapy.Tumor Initiating Cells (TICs) are resistant to radiotherapy and chemotherapy, and are believed to be responsible for tumor recurrence and metastasis. Combination therapies can overcome the limitation of conventional cancer treatments, and have demonstrated promising application in the clinic. Here, we show that dual modality radiotherapy (RT) and photothermal therapy (PTT) mediated by a single compartment nanosystem copper-64-labeled copper sulfide nanoparticles ([64Cu]CuS NPs) could suppress

  7. Murine Dendritic Cells Pulsed with Whole Tumor Lysates Mediate Potent Antitumor Immune Responses in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Fields, R. C.; Shimizu, K.; Mule, J. J.

    1998-08-01

    The highly efficient nature of dendritic cells (DC) as antigen-presenting cells raises the possibility of uncovering in tumor-bearing hosts very low levels of T cell reactivity to poorly immunogenic tumors that are virtually undetectable by other means. Here, we demonstrate the in vitro and in vivo capacities of murine bone marrow-derived, cytokine-driven DC to elicit potent and specific anti-tumor responses when pulsed with whole tumor lysates. Stimulation of naive spleen-derived T cells by tumor lysate-pulsed DC generated tumor-specific proliferative cytokine release and cytolytic reactivities in vitro. In addition, in two separate strains of mice with histologically distinct tumors, s.c. injections of DC pulsed with whole tumor lysates effectively primed these animals to reject subsequent lethal challenges with viable parental tumor cells and, important to note, also mediated significant reductions in the number of metastases established in the lungs. Tumor rejection depended on host-derived CD8+ T cells and, to a lesser extent, CD4+ T cells. Spleens from mice that had rejected their tumors contained specific precursor cytotoxic T lymphocytes. The use of whole tumor lysates as a source of tumor-associated antigen(s) for pulsing of DC circumvents several limitations encountered with other methods as well as provides certain distinct advantages, which are discussed. These data serve as rationale for our recent initiation of a phase I clinical trial of immunization with autologous tumor lysate-pulsed DC in adult and pediatric cancer patients.

  8. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells.

    PubMed

    Hix, Laura M; Karavitis, John; Khan, Mohammad W; Shi, Yihui H; Khazaie, Khashayarsha; Zhang, Ming

    2013-04-26

    Previous studies had implicated the IFN-γ transcription factor signal transducer and activator of transcription 1 (STAT1) as a tumor suppressor. However, accumulating evidence has correlated increased STAT1 activation with increased tumor progression in multiple types of cancer, including breast cancer. Indeed, we present evidence that tumor up-regulation of STAT1 activity in human and mouse mammary tumors correlates with increasing disease progression to invasive carcinoma. A microarray analysis comparing low aggressive TM40D and highly aggressive TM40D-MB mouse mammary carcinoma cells revealed significantly higher STAT1 activity in the TM40D-MB cells. Ectopic overexpression of constitutively active STAT1 in TM40D cells promoted mobilization of myeloid-derived suppressor cells (MDSCs) and inhibition of antitumor T cells, resulting in aggressive tumor growth in tumor-transplanted, immunocompetent mice. Conversely, gene knockdown of STAT1 in the metastatic TM40D-MB cells reversed these events and attenuated tumor progression. Importantly, we demonstrate that in human breast cancer, the presence of tumor STAT1 activity and tumor-recruited CD33(+) myeloid cells correlates with increasing disease progression from ductal carcinoma in situ to invasive carcinoma. We conclude that STAT1 activity in breast cancer cells is responsible for shaping an immunosuppressive tumor microenvironment, and inhibiting STAT1 activity is a promising immune therapeutic approach.

  9. Induction of CD4(+) and CD8(+) anti-tumor effector T cell responses by bacteria mediated tumor therapy.

    PubMed

    Stern, Christian; Kasnitz, Nadine; Kocijancic, Dino; Trittel, Stephanie; Riese, Peggy; Guzman, Carlos A; Leschner, Sara; Weiss, Siegfried

    2015-10-15

    Facultative anaerobic bacteria like E. coli can colonize solid tumors often resulting in tumor growth retardation or even clearance. Little mechanistic knowledge is available for this phenomenon which is however crucial for optimization and further implementation in the clinic. Here, we show that intravenous injections with E. coli TOP10 can induce clearance of CT26 tumors in BALB/c mice. Importantly, re-challenging mice which had cleared tumors showed that clearance was due to a specific immune reaction. Accordingly, lymphopenic mice never showed tumor clearance after infection. Depletion experiments revealed that during induction phase, CD8(+) T cells are the sole effectors responsible for tumor clearance while in the memory phase CD8(+) and CD4(+) T cells were involved. This was confirmed by adoptive transfer. CD4(+) and CD8(+) T cells could reject newly set tumors while CD8(+) T cells could even reject established tumors. Detailed analysis of adoptively transferred CD4(+) T cells during tumor challenge revealed expression of granzyme B, FasL, TNF-α and IFN-γ in such T cells that might be involved in the anti-tumor activity. Our findings should pave the way for further optimization steps of this promising therapy.

  10. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1994-01-01

    1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC50 > 10 microM). The presence of 0.5 microM dipyridamole, an adenosine uptake blocker, had no effect on the potency of adenosine. 3. The response to 10 microM NECA was antagonized in a concentration-dependent manner by the non-selective adenosine receptor antagonists, xanthine amine congener (apparent KD = 12 nM), PD 115,199 (apparent KD = 134 nM) and 8-phenyltheophylline (apparent KD = 126 nM). However, the A1-receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, had no significant effect on the responses to NECA or 2-chloroadenosine at concentrations up to 1 microM. 4. Stimulation of A1-receptors with the selective agonist, N6-cyclopentyladenosine, did not alter the basal accumulation of [3H]-cyclic AMP but inhibited a forskolin-mediated elevation of [3H]-cyclic AMP accumulation by a maximal value of 42%. This inhibition was fully reversed in the presence of 0.1 microM, 8-cyclopentyl-1,3-dipropylxanthine. 5. The time course for NECA-mediated [3H]-cyclic AMP accumulation was investigated. The results suggest that there is a substantial efflux of cyclic AMP from the cells in addition to the rapid and sustained elevation of intracellular cyclic AMP (5 fold over basal) which was also observed. 6. These data indicate that rat astrocytes in primary culture express an A2B-adenosine receptor coupled positively to adenylyl cyclase. Furthermore, the presence of A1-receptors negatively coupled to adenylyl cyclase appears to have no significant effect on the A2B-receptor-mediated

  11. Riluzole mediates anti-tumor properties in breast cancer cells independent of metabotropic glutamate receptor-1.

    PubMed

    Speyer, Cecilia L; Nassar, Mahdy A; Hachem, Ali H; Bukhsh, Miriam A; Jafry, Waris S; Khansa, Rafa M; Gorski, David H

    2016-06-01

    Riluzole, the only drug approved by the FDA for treating amyotrophic lateral sclerosis, inhibits melanoma proliferation through its inhibitory effect on glutamatergic signaling. We demonstrated that riluzole also inhibits the growth of triple-negative breast cancer (TNBC) and described a role for metabotropic glutamate receptor-1 (GRM1) in regulating TNBC cell growth and progression. However, the role of GRM1 in mediating riluzole's effects in breast cancer has not been fully elucidated. In this study, we seek to determine how much of riluzole's action in breast cancer is mediated through GRM1. We investigated anti-tumor properties of riluzole in TNBC and ER+ cells using cell growth, invasion, and soft-agar assays and compared riluzole activity with GRM1 levels. Using Lentiviral vectors expressing GRM1 or shGRM1, these studies were repeated in cells expressing high or low GRM1 levels where the gene was either silenced or overexpressed. Riluzole inhibited proliferation, invasion, and colony formation in both TNBC and ER+ cells. There was a trend between GRM1 expression in TNBC cells and their response to riluzole in both cell proliferation and invasion assays. However, silencing and overexpression studies had no effect on cell sensitivity to riluzole. Our results clearly suggest a GRM1-independent mechanism through which riluzole mediates its effects on breast cancer cells. Understanding the mechanism by which riluzole mediates breast cancer progression will be useful in identifying new therapeutic targets for treating TNBC and in facilitating stratification of patients in clinical trials using riluzole in conjunction with conventional therapy.

  12. Overcoming Hypoxia-Mediated Tumor Progression: Combinatorial Approaches Targeting pH Regulation, Angiogenesis and Immune Dysfunction

    PubMed Central

    McDonald, Paul C.; Chafe, Shawn C.; Dedhar, Shoukat

    2016-01-01

    Hypoxia is an important contributor to the heterogeneity of the microenvironment of solid tumors and is a significant environmental stressor that drives adaptations which are essential for the survival and metastatic capabilities of tumor cells. Critical adaptive mechanisms include altered metabolism, pH regulation, epithelial-mesenchymal transition, angiogenesis, migration/invasion, diminished response to immune cells and resistance to chemotherapy and radiation therapy. In particular, pH regulation by hypoxic tumor cells, through the modulation of cell surface molecules such as extracellular carbonic anhydrases (CAIX and CAXII) and monocarboxylate transporters (MCT-1 and MCT-4) functions to increase cancer cell survival and enhance cell invasion while also contributing to immune evasion. Indeed, CAIX is a vital regulator of hypoxia mediated tumor progression, and targeted inhibition of its function results in reduced tumor growth, metastasis, and cancer stem cell function. However, the integrated contributions of the repertoire of hypoxia-induced effectors of pH regulation for tumor survival and invasion remain to be fully explored and exploited as therapeutic avenues. For example, the clinical use of anti-angiogenic agents has identified a conundrum whereby this treatment increases hypoxia and cancer stem cell components of tumors, and accelerates metastasis. Furthermore, hypoxia results in the infiltration of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Treg) and Tumor Associated Macrophages (TAMs), and also stimulates the expression of PD-L1 on tumor cells, which collectively suppress T-cell mediated tumor cell killing. Therefore, combinatorial targeting of angiogenesis, the immune system and pH regulation in the context of hypoxia may lead to more effective strategies for curbing tumor progression and therapeutic resistance, thereby increasing therapeutic efficacy and leading to more effective strategies for the treatment of patients with

  13. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model.

    PubMed

    Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K P; Fong, Wing-Ping

    2017-02-01

    In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity.

  14. Anti-tumor immunity of BAM-SiPc-mediated vascular photodynamic therapy in a BALB/c mouse model

    PubMed Central

    Yeung, Hing-Yuen; Lo, Pui-Chi; Ng, Dennis K.P.; Fong, Wing-Ping

    2017-01-01

    In recent decades, accumulating evidence from both animal and clinical studies has suggested that a sufficiently activated immune system may strongly augment various types of cancer treatment, including photodynamic therapy (PDT). Through the generation of reactive oxygen species, PDT eradicates tumors by triggering localized tumor damage and inducing anti-tumor immunity. As the major component of anti-tumor immunity, the involvement of a cell-mediated immune response in PDT has been well investigated in the past decade, whereas the role of humoral immunity has remained relatively unexplored. In the present investigation, using the photosensitizer BAM-SiPc and the CT26 tumor-bearing BALB/c mouse model, it was demonstrated that both cell-mediated and humoral adaptive immune components could be involved in PDT. With a vascular PDT (VPDT) regimen, BAM-SiPc could eradicate the tumors of ∼70% of tumor-bearing mice and trigger an anti-tumor immune response that could last for more than 1 year. An elevation of Th2 cytokines was detected ex vivo after VPDT, indicating the potential involvement of a humoral response. An analysis of serum from the VPDT-cured mice also revealed elevated levels of tumor-specific antibodies. Moreover, this serum could effectively hinder tumor growth and protect the mice against further re-challenge in a T-cell-dependent manner. Taken together, these results show that the humoral components induced after BAM-SiPc-VPDT could assist the development of anti-tumor immunity. PMID:26388236

  15. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    PubMed

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Dextran-functionalized magnetic fluid mediating magnetohyperthermia for treatment of Ehrlich-solid-tumor-bearing mice: toxicological and histopathological evaluations.

    PubMed

    Miranda-Vilela, Ana Luisa; Yamamoto, Kelly Reis; Miranda, Kely Lopes Caiado; Matos, Breno Noronha; de Almeida, Marcos Célio; Longo, João Paulo Figueiró; de Souza Filho, José; Fernandes, Juliana Menezes Soares; Sartoratto, Patrícia Pommé Confessori; Lacava, Zulmira Guerrero Marques

    2014-04-01

    Dextran-functionalized maghemite fluid (DexMF) has been tested to treat Ehrlich-solid-tumor-bearing mice, evidencing its potential use in mediating magnetohyperthermia in breast cancer treatment. However, although magnetic nanoparticles tend to accumulate in tumor tissues, part of the nanomaterial can reach the blood stream, and then the organism. The aim of this study was to investigate the acute systemic effects of the intratumoral injection of DexMF mediating magnetohyperthermia in the treatment of an advanced clinical Ehrlich-solid-tumor, assessed through histopathological analyses of liver, kidneys, heart and spleen, comet assay, micronucleus test, hemogram, and serum levels of bilirubin, aspartate aminotransferase, alanine aminotransferase, gamma glutamyl transferase, alkaline phosphatase, creatinine, and urea. The tumor's histopathology and morphometry were used to assess its aggressiveness and regression. DexMF mediating hyperthermia was effective in containing tumor aggressiveness and in inducing tumor regression, besides showing no toxic effects. Its physical characteristics also suggest that it is safe to use in other biomedical applications.

  17. BdorOBP83a-2 Mediates Responses of the Oriental Fruit Fly to Semiochemicals

    PubMed Central

    Wu, Zhongzhen; Lin, Jintian; Zhang, He; Zeng, Xinnian

    2016-01-01

    The oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), is one of the most destructive pests throughout tropical and subtropical regions in Asia. This insect displays remarkable changes during different developmental phases in olfactory behavior between sexually immature and mated adults. The olfactory behavioral changes provide clues to examine physiological and molecular bases of olfactory perception in this insect. We comparatively analyzed behavioral and neuronal responses of B. dorsalis adults to attractant semiochemicals, and the expression profiles of antenna chemosensory genes. We found that some odorant-binding proteins (OBPs) were upregulated in mated adults in association with their behavioral and neuronal responses. Ligand-binding assays further showed that one of OBP83a orthologs, BdorOBP83a-2, binds with high affinity to attractant semiochemicals. Functional analyses confirmed that the reduction in BdorOBP83a-2 transcript abundance led to a decrease in neuronal and behavioral responses to selected attractants. This study suggests that BdorOBP83a-2 mediates behavioral responses to attractant semiochemicals and could be a potential efficient target for pest control. PMID:27761116

  18. Role of Eosinophils and Tumor Necrosis Factor Alpha in Interleukin-25-Mediated Protection from Amebic Colitis

    PubMed Central

    Noor, Zannatun; Watanabe, Koji; Abhyankar, Mayuresh M.; Burgess, Stacey L.; Buonomo, Erica L.

    2017-01-01

    ABSTRACT The parasite Entamoeba histolytica is a cause of diarrhea in infants in low-income countries. Previously, it was shown that tumor necrosis factor alpha (TNF-α) production was associated with increased risk of E. histolytica diarrhea in children. Interleukin-25 (IL-25) is a cytokine that is produced by intestinal epithelial cells that has a role in maintenance of gut barrier function and inhibition of TNF-α production. IL-25 expression was decreased in humans and in the mouse model of amebic colitis. Repletion of IL-25 blocked E. histolytica infection and barrier disruption in mice, increased gut eosinophils, and suppressed colonic TNF-α. Depletion of eosinophils with anti-Siglec-F antibody prevented IL-25-mediated protection. In contrast, depletion of TNF-α resulted in resistance to amebic infection. We concluded that IL-25 provides protection from amebiasis, which is dependent upon intestinal eosinophils and suppression of TNF-α. PMID:28246365

  19. Gab3 overexpression in human glioma mediates Akt activation and tumor cell proliferation

    PubMed Central

    Gu, Weiting; Zhang, Weifeng

    2017-01-01

    This current study tested expression and potential biological functions of Gab3 in human glioma. Gab3 mRNA and protein expression was significantly elevated in human glioma tissues and glioma cells. Its level was however low in normal brain tissues and primary human astrocytes. In both established (U251MG cell line) and primary human glioma cells, Gab3 knockdown by shRNA/siRNA significantly inhibited Akt activation and cell proliferation. Reversely, forced Gab3 overexpression in U251MG cells promoted Akt activation and cell proliferation. In vivo, the growth of U251MG tumors in nude mice was inhibited following expressing Gab3 shRNA. Akt activation in cancer tissues was also suppressed by Gab3 shRNA. Together, we conclude that Gab3 overexpression in human glioma mediates Akt activation and cancer cell proliferation. PMID:28291820

  20. EPAS-1 mediates SP-1-dependent FBI-1 expression and regulates tumor cell survival and proliferation.

    PubMed

    Wang, Xiaogang; Cao, Peng; Li, Zhiqing; Wu, Dongyang; Wang, Xi; Liang, Guobiao

    2014-09-04

    Factor binding IST-1 (FBI-1) plays an important role in oncogenic transformation and tumorigenesis. As FBI-1 is over-expressed in multiple human cancers, the regulation of itself would provide new effective options for cancer intervention. In this work, we aimed to study the role that EPAS-1 plays in regulating FBI-1. We use the fact that specificity protein-1 (SP-1) is one of the crucial transcription factors of FBI-1, and that SP-1 can interact with the endothelial pas domain protein-1 (EPAS-1) for the induction of hypoxia related genes. The study showed that EPAS-1 plays an indispensible role in SP-1 transcription factor-mediated FBI-1 induction, and participated in tumor cell survival and proliferation. Thus, EPAS-1 could be a novel target for cancer therapeutics.

  1. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53

    PubMed Central

    Yoon, Kyoung Wan; Byun, Sanguine; Kwon, Eunjeong; Hwang, So-Young; Chu, Kiki; Hiraki, Masatsugu; Jo, Seung-Hee; Weins, Astrid; Hakroush, Samy; Cebulla, Angelika; Sykes, David B.; Greka, Anna; Mundel, Peter; Fisher, David E.; Mandinova, Anna; Lee, Sam W.

    2016-01-01

    The inefficient clearance of dying cells can lead to abnormal immune responses, such as unresolved inflammation and autoimmune conditions. We show that tumor suppressor p53 controls signaling-mediated phagocytosis of apoptotic cells through its target, Death Domain1α (DD1α), which suggests that p53 promotes both the proapoptotic pathway and postapoptotic events. DD1α appears to function as an engulfment ligand or receptor that engages in homophilic intermolecular interaction at intercellular junctions of apoptotic cells and macrophages, unlike other typical scavenger receptors that recognize phosphatidylserine on the surface of dead cells. DD1α-deficient mice showed in vivo defects in clearing dying cells, which led to multiple organ damage indicative of immune dysfunction. p53-induced expression of DD1α thus prevents persistence of cell corpses and ensures efficient generation of precise immune responses. PMID:26228159

  2. Inhibition of KIT RNAi mediated with adenovirus in gastrointestinal stromal tumor xenograft.

    PubMed

    Wang, Tian-Bao; Huang, Wen-Sheng; Lin, Wei-Hao; Shi, Han-Ping; Dong, Wen-Guang

    2010-10-28

    To investigate a therapeutic method for gastrointestinal stromal tumor (GIST) based on KIT RNA interference (RNAi) with AdMax adenovirus. KIT short hairpin RNA (shRNA), whose lateral sides were decorated with restriction endonuclease sequences, was designed. T(4) DNA ligase catalyzed the joint of the KIT shRNA and the green fluorescent protein-containing PDC316-EGFP-U6 to form PDC316-EGFP-U6-KIT. Homologous recombination of AdEGFP-U6-KIT was performed with the AdMax system. Heterotopically transplanted GISTs were established in nude mice. AdEGFP-U6-KIT was intratumorally injected. The volume, inhibition ratio of tumor and CD117 expression of GIST graft tumor in nude mice were compared between test and control groups. The length of KIT shRNA was determined to be about 50bp by agarose electrophoresis. Gene sequencing detected the designed KIT RNAi sequence in PDC316-EGFP-U6-KIT. After transfection with AdEGFP-U6-KIT, 293 cells displayed green fluorescence. The physical and infective titers of AdEGFP-U6-KIT were 5 × 10(11) viral particles/mL and 5.67 × 10(7) plaque forming units/mL, respectively. The mean volume of the grafted tumor was significantly smaller in test mice than in control mice (75.3 ± 22.9 mm(3) vs 988.6 ± 30.5 mm(3), t = -18.132, P < 0.05). The inhibition ratio of the tumors was 59.6% in the test group. CD117 positive expression was evident in two cases (20%) in the test group and 10 cases (100%) in the control group (χ(2) = 10.2083, P < 0.005). AdEGFP-U6-KIT is successfully constructed, and KIT RNAi mediated with Admax vector system can effectively inhibit the expression of the KIT gene and the growth of GIST in nude mice.

  3. Overcoming photodynamic resistance and tumor targeting dual-therapy mediated by indocyanine green conjugated gold nanospheres.

    PubMed

    Li, Wei; Guo, Xiaomeng; Kong, Fenfen; Zhang, Hanbo; Luo, Lihua; Li, Qingpo; Zhu, Chunqi; Yang, Jie; Du, Yongzhong; You, Jian

    2017-07-28

    Photodynamic therapy (PDT) and photothermal therapy (PTT) have captured much attention due to the great potential to cure malignant tumor. Nevertheless, photodynamic resistance of cancer cells has limited the further efficacy of PDT. Unfortunately, the resistance mechanism and efforts to overcome the resistance still have been rarely reported so far. Here, we report a nanosystem with specific tumor targeting for combined PDT and PTT mediated by near-infrared (NIR) light, which was established by covalently conjugating indocyanine green (ICG) and TNYL peptide onto the surface of hollow gold nanospheres (HAuNS). Our nanosystem (TNYL-ICG-HAuNS) was proved to possess significantly increased light stability, reactive oxygen species (ROS) production and photothermal effect under NIR light irradiation, thus presenting a remarkably enhanced antitumor efficacy. The up-regulation of nuclear factor erythroid 2-related factor 2 (NFE2L2, Nrf2) in cancer cells during PDT induced a significant increase of ABCG2, NQO-1 and HIF-1α expression, causing PDT resistance of the cells. Interestingly, ABCG2 expression could almost keep a normal level in the whole PDT process mediated by TNYL-ICG-HAuNS. After repeated irradiations, TNYL-ICG-HAuNS could still produce almost constant ROS in cells while the Nrf2 expression reduced significantly. Furthermore, PDT resistance induced an obvious decrease of the internalization of free ICG, but didn't influence the cell uptake of TNYL-ICG-HAuNS. Our data explained that TNYL-ICG-HAuNS could overcome the photodynamic resistance of cancer cells, acting as a promising modality for simultaneous photothermal and photodynamic cancer therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The potential role of COX-2 in cancer stem cell-mediated canine mammary tumor initiation: an immunohistochemical study.

    PubMed

    Huang, Jian; Zhang, Di; Xie, Fuqiang; Lin, Degui

    2015-01-01

    Increasing evidence suggests that cancer stem cells (CSCs) are responsible for tumor initiation and maintenance. Additionally, it is becoming apparent that cyclooxygenase (COX) signaling is associated with canine mammary tumor development. The goals of the present study were to investigate COX-2 expression patterns and their effect on CSC-mediated tumor initiation in primary canine mammary tissues and tumorsphere models using immunohistochemistry. Patterns of COX-2, CD44, octamer-binding transcription factor (Oct)-3/4, and epidermal growth factor receptor (EGFR) expression were examined in malignant mammary tumor (MMT) samples and analyzed in terms of clinicopathological characteristics. COX-2 and Oct-3/4 expression was higher in MMTs compared to other histological samples with heterogeneous patterns. In MMTs, COX-2 expression correlated with tumor malignancy features. Significant associations between COX-2, CD44, and EGFR were observed in low-differentiated MMTs. Comparative analysis showed that the levels of COX-2, CD44, and Oct-3/4 expression varied significantly among TSs of three histological grades. Enhanced COX-2 staining was consistently observed in TSs. Similar levels of staining intensity were found for CD44 and Oct-3/4, but EGFR expression was weak. Our findings indicate the potential role of COX-2 in CSC-mediated tumor initiation, and suggest that COX-2 inhibition may help treat canine mammary tumors by targeting CSCs.

  5. Tumor necrosis factor-alpha mediates changes in tissue protein turnover in a rat cancer cachexia model.

    PubMed Central

    Costelli, P; Carbó, N; Tessitore, L; Bagby, G J; Lopez-Soriano, F J; Argilés, J M; Baccino, F M

    1993-01-01

    Rats bearing the Yoshida AH-130 ascites hepatoma showed enhanced fractional rates of protein degradation in gastrocnemius muscle, heart, and liver, while fractional synthesis rates were similar to those in non-tumor bearing rats. This hypercatabolic pattern was associated with marked perturbations of the hormonal homeostasis and presence of tumor necrosis factor in the circulation. The daily administration of a goat anti-murine TNF IgG to tumor-bearing rats decreased protein degradation rates in skeletal muscle, heart, and liver as compared with tumor-bearing rats receiving a nonimmune goat IgG. The anti-TNF treatment was also effective in attenuating early perturbations in insulin and corticosterone homeostasis. Although these results suggest that tumor necrosis factor plays a significant role in mediating the changes in protein turnover and hormone levels elicited by tumor growth, the inability of such treatment to prevent a reduction in body weight implies that other mediators or tumor-related events were also involved. PMID:8254032

  6. PLGA Nanoparticles for Ultrasound-Mediated Gene Delivery to Solid Tumors

    PubMed Central

    Figueiredo, Marxa; Esenaliev, Rinat

    2012-01-01

    This paper focuses on novel approaches in the field of nanotechnology-based carriers utilizing ultrasound stimuli as a means to spatially target gene delivery in vivo, using nanoparticles made with either poly(lactic-co-glycolic acid) (PLGA) or other polymers. We specifically discuss the potential for gene delivery by particles that are echogenic (amenable to destruction by ultrasound) composed either of polymers (PLGA, polystyrene) or other contrast agent materials (Optison, SonoVue microbubbles). The use of ultrasound is an efficient tool to further enhance gene delivery by PLGA or other echogenic particles in vivo. Echogenic PLGA nanoparticles are an attractive strategy for ultrasound-mediated gene delivery since this polymer is currently approved by the US Food and Drug Administration for drug delivery and diagnostics in cancer, cardiovascular disease, and also other applications such as vaccines and tissue engineering. This paper will review recent successes and the potential of applying PLGA nanoparticles for gene delivery, which include (a) echogenic PLGA used with ultrasound to enhance local gene delivery in tumors or muscle and (b) PLGA nanoparticles currently under development, which could benefit in the future from ultrasound-enhanced tumor targeted gene delivery. PMID:22506124

  7. Two photon microscopy intravital study of DC-mediated anti-tumor response of NK cells

    NASA Astrophysics Data System (ADS)

    Caccia, Michele; Gorletta, Tatiana; Sironi, Laura; Zanoni, Ivan; Salvetti, Cristina; Collini, Maddalena; Granucci, Francesca; Chirico, Giuseppe

    2010-02-01

    Recent studies have demonstrated that dendritic cells (DCs) play a crucial role in the activation of Natural Killer cells (NKs) that are responsible for anti-tumor innate immune responses. The focus of this report is on the role of pathogen associated molecular pattern (PAMP) activated-DCs in inducing NK cell-mediated anti-tumor responses. Mice transplanted sub-cute (s.c.) with AK7 cells, a mesothelioma cell line sensitive to NK cell responses, are injected with fluorescent NK cells and DC activation is then induced by s.c. injection of Lipopolysaccharide (LPS). Using 4 dimensional tracking we follow the kinetic behavior of NK cells at the Draining Lymph-Node (DLN). As control, noninflammatory conditions are also evaluated. Our data suggest that NK cells are recruited to the DLN where they can interact with activated-DCs with a peculiar kinetic behavior: short lived interactions interleaved by rarer longer ones. We also found that the changes in the NK dynamic behavior in inflammatory conditions clearly affect relevant motility parameters such as the instantaneous and average velocity and the effective diffusion coefficient. This observation suggests that NK cells and activated-DCs might efficiently interact in the DLN, where cells could be activated. Therefore the interaction between activated-DCs and NK cells in DLN is not only a reality but it may be also crucial for the start of the immune response of the NKs.

  8. Cloned transgenic farm animals produce a bispecific antibody for T cell-mediated tumor cell killing

    PubMed Central

    Grosse-Hovest, Ludger; Müller, Sigrid; Minoia, Rosa; Wolf, Eckhard; Zakhartchenko, Valeri; Wenigerkind, Hendrik; Lassnig, Caroline; Besenfelder, Urban; Müller, Mathias; Lytton, Simon D.; Jung, Gundram; Brem, Gottfried

    2004-01-01

    Complex recombinant antibody fragments for modulation of immune function such as tumor cell destruction have emerged at a rapid pace and diverse anticancer strategies are being developed to benefit patients. Despite improvements in molecule design and expression systems, the quantity and stability, e.g., of single-chain antibodies produced in cell culture, is often insufficient for treatment of human disease, and the costs of scale-up, labor, and fermentation facilities are prohibitive. The ability to yield mg/ml levels of recombinant antibodies and the scale-up flexibility make transgenic production in plants and livestock an attractive alternative to mammalian cell culture as a source of large quantities of biotherapeutics. Here, we report on the efficient production of a bispecific single-chain antibody in the serum of transgenic rabbits and a herd of nine cloned, transgenic cattle. The bispecific protein, designated r28M, is directed to a melanoma-associated proteoglycan and the human CD28 molecule on T cells. Purified from the serum of transgenic animals, the protein is stable and fully active in mediating target cell-restricted T cell stimulation and tumor cell killing. PMID:15105446

  9. Tumor necrosis factor receptor-associated factor 5 is an essential mediator of ischemic brain infarction.

    PubMed

    Wang, Lang; Lu, Yanyun; Guan, Hongjing; Jiang, Dingsheng; Guan, Yu; Zhang, Xin; Nakano, Hiroyasu; Zhou, Yan; Zhang, Yan; Yang, Li; Li, Hongliang

    2013-08-01

    Tumor necrosis factor receptor-associated factor 5 (TRAF5) is an adaptor protein of the tumor necrosis factor (TNF) receptor superfamily and the interleukin-1 receptor/Toll-like receptor superfamily and plays important roles in regulating multiple signaling pathways. This study was conducted to investigate the role of TRAF5 in the context of brain ischemia/reperfusion (I/R) injury. Transient occlusion of the middle cerebral artery was performed on TRAF5 knockout mice (KO), neuron-specific TRAF5 transgene (TG), and the appropriate controls. Compared with the WT mice, the TRAF5 KO mice showed lower infarct volumes and better outcomes in the neurological tests. A low neuronal apoptosis level, an attenuated blood-brain barrier (BBB) disruption and an inhibited inflammatory response were exhibited in TRAF5 KO mice. TRAF5 TG mice exhibited an opposite phenotype. Moreover, the Akt/FoxO1 signaling pathway was enhanced in the ischemic brains of the TRAF5 KO mice. These results provide the first demonstration that TRAF5 is a critical mediator of I/R injury in an experimental stroke model. The Akt /FoxO1 signaling pathway probably plays an important role in the biological function of TRAF5 in this model. © 2013 International Society for Neurochemistry.

  10. Newcomers to the WW Domain-Mediated Network of the Hippo Tumor Suppressor Pathway.

    PubMed

    Sudol, Marius

    2010-11-01

    The Hippo tumor suppressor pathway regulates the size of organs by controlling 2 opposing processes: proliferation and apoptosis. The pathway was originally defined in Drosophila, but it is well conserved in mammals. One of the unique features of Hippo signaling is the unusually wide occurrence of WW domains and its cognate PPxY ligand motifs within components of this pathway. Recently, it was proposed that the prevalence of WW domain-mediated complexes in the Hippo signaling pathway should facilitate its molecular analysis and help in the identification of new components of the Hippo-centered network. Indeed, several new members of the Hippo pathway, which form functional complexes with WW domains of YAP and TAZ effectors, were recently described. We focus here on 2 families of such proteins, angiomotins and SMADs, plus 1 regulatory factor, WBP-2, which together shed new light on the rapidly expanding Hippo network. Since the Hippo pathway acts as a tumor suppressor pathway, the complexes described here, which assemble on WW domains of YAP and TAZ, represent potential targets of cancer therapy.

  11. ShRNA-mediated silencing of the RFC3 gene suppress ovarian tumor cells proliferation

    PubMed Central

    Shen, Huimin; Xu, Juan; Zhao, Shanshan; Shi, Haijuan; Yao, Shuzhong; Jiang, Nan

    2015-01-01

    Ovarian carcinoma is one of the most common and lethal malignancies in the world. Replication factor C (RFC) plays an important role in DNA replication, DNA damage repair, and checkpoint control during cell cycle progression in all eukaryotes. Our previous study found that one unit of RFC complex, RFC3, is over-expressed in ovarian tumor tissues. However, its role in the development of ovarian carcinoma remains unclear. Western blot and real-time RT-PCR analysis were used to measure the expression of RFC3 in ovarian cancer cells. Lentivirus-mediated RFC3-specific shRNA was used to knock down RFC3 expression in ovarian cancer cells. Furthermore, the effect of RFC3 on tumor cellular proliferation and growth were examined, respectively. The expression level of RFC3 was remarkably up-regulated in ovarian cancer OVCAR-3 cells. With MTS and cell growth assays, the viability and proliferation of RFC3 knocking-down OVCAR-3 cell line were shown to be effectively restrained. Down-regulation of RFC3 expression arrested the cell cycle of OVCAR-3 cell in the S-phase and induced apoptosis. This study suggests that RFC3 may play an important role in the the process of ovarian carcinoma, and that it may be a potential biological treatment target in the future. PMID:26464638

  12. A Mediator Role For Metallothionein in Tumor Necrosis Factor–induced Lethal Shock

    PubMed Central

    Waelput, Wim; Broekaert, Daniël; Vandekerckhove, Joël; Brouckaert, Peter; Tavernier, Jan; Libert, Claude

    2001-01-01

    Tumor necrosis factor (TNF) is a proinflammatory cytokine, which is centrally involved in several inflammatory disorders. Administration of TNF leads to a potentially lethal systemic inflammatory response syndrome (SIRS). We observed that (a) mice lacking functional genes for metallothionein 1 and 2 (MT-null) were protected compared with wild-type controls (P = 0.0078), and (b) mice overexpressing MT-1 (MT-TG) were more sensitized for the lethal effect of TNF than control mice (P = 0.0003), indicating a mediating role for MT in TNF induced SIRS. As MT is involved in the body zinc homeostasis, we tested whether zinc-deprivation or -supplementation alters the response to TNF. Although zinc-depletion strongly sensitized (P = 0.036), and pretreatment with zinc sulfate (ZnSO4) conferred protection against the deleterious effects of TNF (P < 0.0002), it was also found that the protection provided by zinc is independent of MT. Our observation that hsp70 is strongly induced in jejunum after ZnSO4 treatment, suggests a contribution of hsp70 in the protection against TNF. In addition, ZnSO4 cotreatment allowed complete regression of inoculated tumors with TNF and interferon γ, leading to a significantly better survival (P = 0.0045). PMID:11733576

  13. Expression of the hyaluronan-mediated motility receptor RHAMM in tumor budding cells identifies aggressive colorectal cancers.

    PubMed

    Koelzer, Viktor Hendrik; Huber, Bettina; Mele, Valentina; Iezzi, Giandomenica; Trippel, Mafalda; Karamitopoulou, Eva; Zlobec, Inti; Lugli, Alessandro

    2015-11-01

    Expression of the hyaluronan-mediated motility receptor (RHAMM, CD168) predicts adverse clinicopathological features and decreased survival for colorectal cancer (CRC) patients. Using full tissue sections, we investigated the expression of RHAMM in tumor budding cells of 103 primary CRCs to characterize the biological processes driving single-cell invasion and early metastatic dissemination. RHAMM expression in tumor buds was analyzed with clinicopathological data, molecular features and survival. Tumor budding cells at the invasive front of CRC expressed RHAMM in 68% of cases. Detection of RHAMM-positive tumor budding cells was significantly associated with poor survival outcome (P = .0312), independent of TNM stage and adjuvant therapy in multivariate analysis (P = .0201). RHAMM-positive tumor buds were associated with frequent lymphatic invasion (P = .0007), higher tumor grade (P = .0296), and nodal metastasis (P = .0364). Importantly, the prognostic impact of RHAMM expression in tumor buds was maintained independently of the number of tumor buds found in an individual case (P = .0246). No impact of KRAS/BRAF mutation, mismatch repair deficiency and CpG island methylation was observed. RHAMM expression identifies an aggressive subpopulation of tumor budding cells and is an independent adverse prognostic factor for CRC patients. These data support ongoing efforts to develop RHAMM as a target for precision therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effect of cadmium exposure on primary tumor growth and cell-mediated cytotoxicity in mice bearing MSB sarcomas.

    PubMed

    Kerkvliet, N I; Koller, L D; Baecher, L G; Brauner, J A

    1979-08-01

    In vivo MSB tumor growth and cell-mediated cytotoxicity (CMC) to MSB tumor cells in vitro were studied in male C57BL/6 mice exposed to 0, 3, 30, or 300 ppm Cd as CdCl2 in their drinking water for 21 weeks prior to and during tumor growth. CMC was assessed on days 5, 12, and 19 post injection with the use of both a 51Cr release assay and a 51Cr post-label assay. Cd exposure significantly inhibited the growth of MSB tumors in vivo and enhanced the levels of CMC in the tumor-bearing hosts. Peak levels of CMC on day 12 post tumor injection were significantly increased in Cd-exposed animals. However, whereas the inhibition of tumor growth was directly dependent on the dose of Cd, the enhancement of CMC was inversely related to dosage. These data suggested that other mechanisms in addition to increased CMC were involved in tumor growth inhibition. Possible factors such as direct inhibition of tumor growth by Cd and decreased serum blocking levels in Cd-exposed animals are discussed.

  15. Ultrasound-Mediated Tumor Imaging and Nanotherapy using Drug Loaded, Block Copolymer Stabilized Perfluorocarbon Nanoemulsions

    PubMed Central

    Rapoport, Natalya; Nam, Kweon-Ho; Gupta, Roohi; Gao, Zhongao; Mohan, Praveena; Payne, Allison; Todd, Nick; Liu, Xin; Kim, Taeho; Shea, Jill; Scaife, Courtney; Parker, Dennis L.; Jeong, Eun-Kee; Kennedy, Anne M.

    2011-01-01

    Perfluorocarbon nanoemulsions can deliver lipophilic therapeutic agents to solid tumors and simultaneously provide for monitoring nanocarrier biodistribution via ultrasonography and/or 19F MRI. In the first generation of block copolymer stabilized perfluorocarbon nanoemulsions, perfluoropentane (PFP) was used as the droplet forming compound. Although manifesting excellent therapeutic and ultrasound imaging properties, PFP nanoemulsions were unstable at storage, difficult to handle, and underwent hard to control phenomenon of irreversible droplet-to-bubble transition upon injection. To solve the above problems, perfluoro-15-crown-5-ether (PFCE) was used as a core forming compound in the second generation of block copolymer stabilized perfluorocarbon nanoemulsions. PFCE nanodroplets manifest both ultrasound and fluorine (19F) MR contrast properties, which allows using multimodal imaging and 19F MR spectroscopy for monitoring nanodroplet pharmacokinetics and biodistribution. In the present paper, acoustic, imaging, and therapeutic properties of unloaded and paclitaxel (PTX) loaded PFCE nanoemulsions are reported. As manifested by the 19F MR spectroscopy, PFCE nanodroplets are long circulating, with about 50% of the injected dose remaining in circulation two hours after the systemic injection. Sonication with 1-MHz therapeutic ultrasound triggered reversible droplet-to-bubble transition in PFCE nanoemulsions. Microbubbles formed by acoustic vaporization of nanodroplets underwent stable cavitation. The nanodroplet size (200 nm to 350 nm depending on a type of the shell and conditions of emulsification) as well as long residence in circulation favored their passive accumulation in tumor tissue that was confirmed by ultrasonography. In the breast and pancreatic cancer animal models, ultrasound-mediated therapy with paclitaxel-loaded PFCE nanoemulsions showed excellent therapeutic properties characterized by tumor regression and suppression of metastasis. Anticipated

  16. Innate immune recognition of breast tumor cells mediates CCL22 secretion favoring Treg recruitment within tumor environment.

    PubMed

    Ménétrier-Caux, Christine; Faget, Julien; Biota, Cathy; Gobert, Michael; Blay, Jean-Yves; Caux, Christophe

    2012-08-01

    Regulatory T cells (Treg) have been reported of poor prognosis for overall survival in primary breast tumors (BT). As CCL22 plays a major role in Treg recruitment within primary BT we deciphered the mechanisms involved in the CCL22 production by breast epithelial tumor cells and propose herein the major role of their innate immune recognition in this production.

  17. Innate immune recognition of breast tumor cells mediates CCL22 secretion favoring Treg recruitment within tumor environment

    PubMed Central

    Ménétrier-Caux, Christine; Faget, Julien; Biota, Cathy; Gobert, Michael; Blay, Jean-Yves; Caux, Christophe

    2012-01-01

    Regulatory T cells (Treg) have been reported of poor prognosis for overall survival in primary breast tumors (BT). As CCL22 plays a major role in Treg recruitment within primary BT we deciphered the mechanisms involved in the CCL22 production by breast epithelial tumor cells and propose herein the major role of their innate immune recognition in this production. PMID:22934274

  18. Defining the Molecular Signature of Chemotherapy-Mediated Lung Tumor Phenotype Modulation and Increased Susceptibility to T-Cell Killing

    PubMed Central

    Gameiro, Sofia R.; Caballero, Jorge A.

    2012-01-01

    Abstract Chemotherapy with platinum doublets, including cisplatin plus vinorelbine, is standard of care for non–small-cell lung cancer. Sublethal exposure to certain chemotherapeutic agents has been demonstrated to alter the phenotype or biology of human tumor cells, rendering them more susceptible to cytotoxic T lymphocyte (CTL)–mediated lysis. The effects of cisplatin/vinorelbine on tumor sensitivity to T-cell cytotoxicity and its molecular mechanisms, however, have not been fully elucidated. We examined the effect of this chemotherapy on growth, cell-surface phenotype, and CTL-mediated lysis of five distinct human lung carcinoma cell lines in vitro and examined the molecular mechanisms associated with enhanced CTL sensitivity. These studies demonstrate that sublethal exposure of human lung tumor cells to the platinum doublet modulates tumor cell phenotype and increases sensitivity to major histocompatibility complex–restricted perforin/granzyme–mediated CTL killing. These studies also demonstrate that exposure to chemotherapy markedly decreased the protein secretion ratio of transforming growth factor-β/interleukin (IL)-8. We examined the gene expression profile of two lung tumor cell lines to identify a shared gene signature in response to sublethal cisplatin/vinorelbine and found coordinate expression of only 16 transcripts, including those for cytokine/chemokine expression and apoptosis such as tumor necrosis factor-α, IL8, CXCL5, and B cell lymphoma-2–like genes (BCL-2). Overall, these results suggest that sublethal exposure to cisplatin/vinorelbine increases sensitivity to perforin/granzyme–mediated CTL killing by modulation of (a) tumor phenotype, (b) cytokine/chemokine milieu, and (c) the proapoptotic/antiapoptotic gene ratio. The data presented here propose a complex mechanism that is distinct from and complementary to that of immunogenic cell death. This molecular signature may be useful in predicting responses to immunotherapy as well as

  19. CHIP-mediated degradation of transglutaminase 2 negatively regulates tumor growth and angiogenesis in renal cancer.

    PubMed

    Min, B; Park, H; Lee, S; Li, Y; Choi, J-M; Lee, J Y; Kim, J; Choi, Y D; Kwon, Y-G; Lee, H-W; Bae, S-C; Yun, C-O; Chung, K C

    2016-07-14

    The multifunctional enzyme transglutaminase 2 (TG2) primarily catalyzes cross-linking reactions of proteins via (γ-glutamyl) lysine bonds. Several recent findings indicate that altered regulation of intracellular TG2 levels affects renal cancer. Elevated TG2 expression is observed in renal cancer. However, the molecular mechanism underlying TG2 degradation is not completely understood. Carboxyl-terminus of Hsp70-interacting protein (CHIP) functions as an ubiquitin E3 ligase. Previous studies reveal that CHIP deficiency mice displayed a reduced life span with accelerated aging in kidney tissues. Here we show that CHIP promotes polyubiquitination of TG2 and its subsequent proteasomal degradation. In addition, TG2 upregulation contributes to enhanced kidney tumorigenesis. Furthermore, CHIP-mediated TG2 downregulation is critical for the suppression of kidney tumor growth and angiogenesis. Notably, our findings are further supported by decreased CHIP expression in human renal cancer tissues and renal cancer cells. The present work reveals that CHIP-mediated TG2 ubiquitination and proteasomal degradation represent a novel regulatory mechanism that controls intracellular TG2 levels. Alterations in this pathway result in TG2 hyperexpression and consequently contribute to renal cancer.

  20. High avidity autoreactive CD4+ T cells induce host CTL, overcome Tregs and mediate tumor destruction

    PubMed Central

    Brandmaier, Andrew G.; Leitner, Wolfgang W.; Ha, Sung P.; Sidney, John; Restifo, Nicholas P.; Touloukian, Christopher E.

    2009-01-01

    Despite progress made over the past 25 years, existing immunotherapies have limited clinical effectiveness in patients with cancer. Immune tolerance consistently blunts the generated immune response, and the largely solitary focus on CD8+ T cell immunity has proven ineffective in the absence of CD4+ T cell help. To address these twin-tier deficiencies, we developed a translational model of melanoma immunotherapy focused on the exploitation of high avidity CD4+ T cells that become generated in germline antigen deficient mice. We had previously identified a TRP-1 specific HLA-DRB1*0401-restricted epitope. Using this epitope in conjunction with a newly described TRP-1 germline-knockout, we demonstrate that endogenous TRP-1 expression alters the functionality of the auto-reactive T cell repertoire. More importantly, we show, by using MHC-mismatched combinations, that CD4+ T cells derived from the self-antigen deficient host indirectly triggers the eradication of established B16 lung metastases. We demonstrate that the treatment effect is mediated entirely by endogenous CD8+ T cells and is not affected by the depletion of host Tregs. These findings suggest that high avidity CD4+ T cells can overcome endogenous conditions and mediate their anti-tumor effects exclusively through the elicitation of CD8+ T cell immunity. PMID:19561540

  1. Virus-stimulated neutrophils in the tumor microenvironment enhance T cell-mediated anti-tumor immunity

    PubMed Central

    Chang, Chin Yang; Tai, Jiayu A.; Li, Sumin; Nishikawa, Tomoyuki; Kaneda, Yasufumi

    2016-01-01

    The tumor microenvironment (TME) fosters tumors by attenuating anti-tumor immunity, reinforcing tumor cell survival and increasing angiogenesis. Among the constituents of the TME, here, we focused on tumor-associated neutrophils (TANs). First, we found that the combination of poly I:C and inactivated Sendai virus particles (hemagglutinating virus of Japan envelope; HVJ-E) synergistically suppressed tumor growth in the B16-F10 melanoma mouse model. In this model, poly I:C contributed to the recruitment of CD11b+Ly6G+ neutrophils to the TME, and co-injection of poly I:C and HVJ-E increased CD11b+Ly6G+FAS+ TAN in the TME. Depletion of neutrophils abolished the synergistic anti-tumor effect of HVJ-E and poly I:C in B16-F10 tumors. We revealed that C-X-C motif chemokine ligand 2 (CXCL2) is produced in the TME by poly I:C, but HVJ-E enhanced neutrophil infiltration of the TME does not occur. An anti-CXCL2 antibody inhibited the tumor suppression by HVJ-E+poly I:C. HVJ-E in combination with recombinant CXCL2 protein or CXCL2 pDNA suppressed mouse melanoma by increasing cytotoxic T lymphocyte activity against B16-F10 melanoma, which was abolished by an anti-Ly6G antibody. HVJ-E directly and indirectly increased FAS and ICAM-1 expression in cultured bone marrow-derived naïve neutrophils. Thus, HVJ-E activates anti-tumor immunity via anti-tumorigenic neutrophils in the TME. An HVJ-E vector containing the CXCL2 gene may be applicable as a novel cancer gene therapy strategy. PMID:27259252

  2. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis.

    PubMed

    Liu, Zhiping; Yan, Siyuan; Wang, Jiaojiao; Xu, Yiming; Wang, Yong; Zhang, Shuya; Xu, Xizhen; Yang, Qiuhua; Zeng, Xianqiu; Zhou, Yaqi; Gu, Xuejiao; Lu, Sarah; Fu, Zhongjie; Fulton, David J; Weintraub, Neal L; Caldwell, Ruth B; Zhang, Wenbo; Wu, Chaodong; Liu, Xiao-Ling; Chen, Jiang-Fan; Ahmad, Aftab; Kaddour-Djebbar, Ismail; Al-Shabrawey, Mohamed; Li, Qinkai; Jiang, Xuejun; Sun, Ye; Sodhi, Akrit; Smith, Lois; Hong, Mei; Huo, Yuqing

    2017-09-19

    Adenosine/adenosine receptor-mediated signaling has been implicated in the development of various ischemic diseases, including ischemic retinopathies. Here, we show that the adenosine A2a receptor (ADORA2A) promotes hypoxia-inducible transcription factor-1 (HIF-1)-dependent endothelial cell glycolysis, which is crucial for pathological angiogenesis in proliferative retinopathies. Adora2a expression is markedly increased in the retina of mice with oxygen-induced retinopathy (OIR). Endothelial cell-specific, but not macrophage-specific Adora2a deletion decreases key glycolytic enzymes and reduces pathological neovascularization in the OIR mice. In human primary retinal microvascular endothelial cells, hypoxia induces the expression of ADORA2A by activating HIF-2α. ADORA2A knockdown decreases hypoxia-induced glycolytic enzyme expression, glycolytic flux, and endothelial cell proliferation, sprouting and tubule formation. Mechanistically, ADORA2A activation promotes the transcriptional induction of glycolytic enzymes via ERK- and Akt-dependent translational activation of HIF-1α protein. Taken together, these findings advance translation of ADORA2A as a therapeutic target in the treatment of proliferative retinopathies and other diseases dependent on pathological angiogenesis.Pathological angiogenesis in the retina is a major cause of blindness. Here the authors show that adenosine receptor A2A drives pathological angiogenesis in the oxygen-induced retinopathy mouse model by promoting glycolysis in endothelial cells via the ERK/Akt/HIF-1α pathway, thereby suggesting new therapeutic targets for disease treatment.

  3. Nitric oxide mediates insect cellular immunity via phospholipase A2 activation

    USDA-ARS?s Scientific Manuscript database

    After infection or invasion is recognized, biochemical mediators act in signaling insect immune functions. These include biogenic amines, insect cytokines, eicosanoids and nitric oxide (NO). Treating insects or isolated hemocyte populations with different mediators often leads to similar results. Se...

  4. The tumor suppressor semaphorin 3B triggers a prometastatic program mediated by interleukin 8 and the tumor microenvironment

    PubMed Central

    Rolny, Charlotte; Capparuccia, Lorena; Casazza, Andrea; Mazzone, Massimiliano; Vallario, Antonella; Cignetti, Alessandro; Medico, Enzo; Carmeliet, Peter; Comoglio, Paolo M.; Tamagnone, Luca

    2008-01-01

    Semaphorins are a large family of evolutionarily conserved morphogenetic molecules originally identified for their repelling role in axonal guidance. Intriguingly, semaphorins have recently been implicated in cancer progression (Neufeld, G., T. Lange, A. Varshavsky, and O. Kessler. 2007. Adv. Exp. Med. Biol. 600:118–131). In particular, semaphorin 3B (SEMA3B) is considered a putative tumor suppressor, and yet we found that it is expressed at high levels in many invasive and metastatic human cancers. By investigating experimental tumor models, we confirmed that SEMA3B expression inhibited tumor growth, whereas metastatic dissemination was surprisingly increased. We found that SEMA3B induced the production of interleukin (IL) 8 by tumor cells by activating the p38–mitogen-activated protein kinase pathway in a neuropilin 1–dependent manner. Silencing the expression of endogenous SEMA3B in tumor cells impaired IL-8 transcription. The release of IL-8, in turn, induced the recruitment of tumor-associated macrophages and metastatic dissemination to the lung, which could be rescued by blocking IL-8 with neutralizing antibodies. In conclusion, we report that SEMA3B exerts unexpected functions in cancer progression by fostering a prometastatic environment through elevated IL-8 secretion and recruitment of macrophages coupled to the suppression of tumor growth. PMID:18458115

  5. The tumor suppressor semaphorin 3B triggers a prometastatic program mediated by interleukin 8 and the tumor microenvironment.

    PubMed

    Rolny, Charlotte; Capparuccia, Lorena; Casazza, Andrea; Mazzone, Massimiliano; Vallario, Antonella; Cignetti, Alessandro; Medico, Enzo; Carmeliet, Peter; Comoglio, Paolo M; Tamagnone, Luca

    2008-05-12

    Semaphorins are a large family of evolutionarily conserved morphogenetic molecules originally identified for their repelling role in axonal guidance. Intriguingly, semaphorins have recently been implicated in cancer progression (Neufeld, G., T. Lange, A. Varshavsky, and O. Kessler. 2007. Adv. Exp. Med. Biol. 600:118-131). In particular, semaphorin 3B (SEMA3B) is considered a putative tumor suppressor, and yet we found that it is expressed at high levels in many invasive and metastatic human cancers. By investigating experimental tumor models, we confirmed that SEMA3B expression inhibited tumor growth, whereas metastatic dissemination was surprisingly increased. We found that SEMA3B induced the production of interleukin (IL) 8 by tumor cells by activating the p38-mitogen-activated protein kinase pathway in a neuropilin 1-dependent manner. Silencing the expression of endogenous SEMA3B in tumor cells impaired IL-8 transcription. The release of IL-8, in turn, induced the recruitment of tumor-associated macrophages and metastatic dissemination to the lung, which could be rescued by blocking IL-8 with neutralizing antibodies. In conclusion, we report that SEMA3B exerts unexpected functions in cancer progression by fostering a prometastatic environment through elevated IL-8 secretion and recruitment of macrophages coupled to the suppression of tumor growth.

  6. High Affinity Binders to EphA2 Isolated from Abdurin Scaffold Libraries; Characterization, Binding and Tumor Targeting

    PubMed Central

    Ullman, Christopher; Mathonet, Pascale; Oleksy, Arkadiusz; Diamandakis, Agata; Tomei, Licia; Demartis, Anna; Nardi, Chiara; Sambucini, Sonia; Missineo, Antonino; Alt, Karen; Hagemeyer, Christoph E.; Harris, Matt; Hedt, Amos; Weis, Roland; Gehlsen, Kurt R.

    2015-01-01

    Abdurins are a novel antibody-like scaffold derived from the engineering of a single isolated CH2 domain of human IgG. Previous studies established the prolonged serum half-life of Abdurins, the result of a retained FcRn binding motif. Here we present data on the construction of large, diverse, phage-display and cell-free DNA display libraries and the isolation of high affinity binders to the cancer target, membrane-bound ephrin receptor tyrosine kinase class A2 (EphA2). Antigen binding regions were created by designing combinatorial libraries into the structural loops and Abdurins were selected using phage display methods. Initial binders were reformatted into new maturation libraries and low nanomolar binders were isolated using cell-free DNA display, CIS display. Further characterization confirmed binding of the Abdurins to both human and murine EphA2 proteins and exclusively to cell lines that expressed EphA2, followed by rapid internalization. Two different EphA2 binders were labeled with 64Cu, using a bifunctional MeCOSar chelator, and administered to mice bearing tumors from transplanted human prostate cancer cells, followed by PET/CT imaging. The anti-EphA2 Abdurins localized in the tumors as early as 4 hours after injection and continued to accumulate up to 48 hours when the imaging was completed. These data demonstrate the ability to isolate high affinity binders from the engineered Abdurin scaffold, which retain a long serum half-life, and specifically target tumors in a xenograft model. PMID:26313909

  7. SLC45A2: A Melanoma Antigen with High Tumor Selectivity and Reduced Potential for Autoimmune Toxicity.

    PubMed

    Park, Jungsun; Talukder, Amjad H; Lim, Seon A; Kim, Kwanghee; Pan, Ke; Melendez, Brenda; Bradley, Sherille D; Jackson, Kyle R; Khalili, Jahan S; Wang, Junmei; Creasy, Caitlin; Pan, Bih-Fang; Woodman, Scott E; Bernatchez, Chantale; Hawke, David; Hwu, Patrick; Lee, Kyung-Mi; Roszik, Jason; Lizée, Gregory; Yee, Cassian

    2017-08-01

    Cytotoxic T lymphocyte (CTL)-based immunotherapies have had remarkable success at generating objective clinical responses in patients with advanced metastatic melanoma. Although the melanocyte differentiation antigens (MDA) MART-1, PMEL, and tyrosinase were among the first melanoma tumor-associated antigens identified and targeted with immunotherapy, expression within normal melanocytes of the eye and inner ear can elicit serious autoimmune side effects, thus limiting their clinical potential as CTL targets. Using a tandem mass spectrometry (MS) approach to analyze the immunopeptidomes of 55 melanoma patient-derived cell lines, we identified a number of shared HLA class I-bound peptides derived from the melanocyte-specific transporter protein SLC45A2. Antigen-specific CTLs generated against HLA-A*0201- and HLA-A*2402-restricted SLC45A2 peptides effectively killed a majority of HLA-matched cutaneous, uveal, and mucosal melanoma cell lines tested (18/25). CTLs specific for SLC45A2 showed significantly reduced recognition of HLA-matched primary melanocytes that were, conversely, robustly killed by MART1- and PMEL-specific T cells. Transcriptome analysis revealed that SLC45A2 mRNA expression in normal melanocytes was less than 2% that of other MDAs, therefore providing a more favorable melanoma-to-melanocyte expression ratio. Expression of SLC45A2 and CTL sensitivity could be further upregulated in BRAF(V600E)-mutant melanoma cells upon treatment with BRAF or MEK inhibitors, similarly to other MDAs. Taken together, our study demonstrates the feasibility of using tandem MS as a means of discovering shared immunogenic tumor-associated epitopes and identifies SLC45A2 as a promising immunotherapeutic target for melanoma with high tumor selectivity and reduced potential for autoimmune toxicity. Cancer Immunol Res; 5(8); 618-29. ©2017 AACR. ©2017 American Association for Cancer Research.

  8. Efficient soluble expression of active recombinant human cyclin A2 mediated by E. coli molecular chaperones.

    PubMed

    Grigoroudis, Asterios I; McInnes, Campbell; Premnath, Padmavathy Nandha; Kontopidis, George

    2015-09-01

    Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes. The studies involve implementation of a His-tagged heterologous expression system under conditions of auto-induction and mediated by molecular chaperone-expressing plasmids. A high yield of human cyclin A2 was obtained in natively folded and soluble form, through co-expression with groups of molecular chaperones from E. coli in various combinations. A one-step affinity chromatography method was utilized to purify the fusion protein products to homogeneity, and the biological activity confirmed through ligand-binding affinity to inhibitory peptides, representing alternatives for the key determinants of the CDK2 substrate recruitment site on the cyclin regulatory subunit. As a whole, obtaining the active cyclin A without the CDK partner (referred to as monomeric in this work) in a straightforward and facile manner will obviate protein--production issues with the CDK2/cyclin A complex and enable drug discovery efforts for non-ATP competitive CDK inhibition through the cyclin groove. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Efficient Soluble Expression of Active Recombinant Human Cyclin A2 Mediated by E. coli Molecular Chaperones

    PubMed Central

    Grigoroudis, Asterios I.; McInnes, Campbell; Premnath, Padmavathy Nandha; Kontopidis, George

    2015-01-01

    Bacterial expression of human proteins continues to present a critical challenge in protein crystallography and drug design. While human cyclin A constructs have been extensively characterized in complex with cyclin dependent kinase 2 (CDK2), efforts to express the monomeric human cyclin A2 in Escherichia coli in a stable form, without the kinase subunit, have been laden with technical difficulties, including solubility, yield and purity. Here, optimized conditions are described with the aim of generating for first time, sufficient quantities of human recombinant cyclin A2 in a soluble and active form for crystallization and ligand characterization purposes. The studies involve implementation of a His-tagged heterologous expression system under conditions of auto-induction and mediated by molecular chaperone-expressing plasmids. A high yield of human cyclin A2 was obtained in natively folded and soluble form, through co-expression with groups of molecular chaperones from E. coli in various combinations. A one-step affinity chromatography method was utilized to purify the fusion protein products to homogeneity, and the biological activity confirmed through ligand-binding affinity to inhibitory peptides, representing alternatives for the key determinants of the CDK2 substrate recruitment site on the cyclin regulatory subunit. As a whole, obtaining the active cyclin A without the CDK partner (referred as monomeric in this work) in a straightforward and facile manner will obviate protein –production issues with the CDK2/cyclin A complex and enable drug discovery efforts for non-ATP competitive CDK inhibition through the cyclin groove. PMID:25956535

  10. Cytosolic phospholipase A(2) alpha mediates electrophysiologic responses of hippocampal pyramidal neurons to neurotoxic NMDA treatment.

    PubMed

    Shen, Ying; Kishimoto, Koji; Linden, David J; Sapirstein, Adam

    2007-04-03

    The arachidonic acid-generating enzyme cytosolic phospholipase A(2) alpha (cPLA(2)alpha) has been implicated in the progression of excitotoxic neuronal injury. However, the mechanisms of cPLA(2)alpha toxicity have yet to be determined. Here, we used a model system exposing mouse hippocampal slices to NMDA as an excitotoxic injury, in combination with simultaneous patch-clamp recording and confocal Ca(2+) imaging of CA1 pyramidal neurons. NMDA treatment caused significantly greater injury in wild-type (WT) than in cPLA(2)alpha null CA1 neurons. Bath application of NMDA evoked a slow inward current in voltage-clamped neurons (composed of both NMDA receptor-mediated and other conductances) that was smaller in cPLA(2)alpha null than in WT slices. This was not due to down-regulation of NMDA receptor function because NMDA receptor-mediated currents were equivalent in each genotype following brief photolysis of caged glutamate. Current-clamp recordings were made during and following NMDA exposure by eliciting a single action potential with a brief current injection. After NMDA exposure, WT CA1 neurons developed a spike-evoked plateau potential and an increased spike-evoked dendritic Ca(2+) transient. These effects were absent in CA1 neurons from cPLA(2)alpha null mice and WT neurons treated with a cPLA(2)alpha inhibitor. The Ca-sensitive K-channel toxins, apamin and paxilline, caused spike broadening and Ca(2+) enhancement in WT and cPLA(2)alpha null slices. NMDA application in WT and arachidonate applied to cPLA(2)alpha null cells occluded the effects of apamin/paxilline. These results indicate that cPLA(2)alpha activity is required for development of aberrant electrophysiologic events triggered by NMDA receptor activation, in part through attenuation of K-channel function.

  11. Eosinophil Cysteinyl Leukotriene Synthesis Mediated by Exogenous Secreted Phospholipase A2 Group X*

    PubMed Central

    Lai, Ying; Oslund, Rob C.; Bollinger, James G.; Henderson, William R.; Santana, Luis F.; Altemeier, William A.; Gelb, Michael H.; Hallstrand, Teal S.

    2010-01-01

    Secreted phospholipase A2 group X (sPLA2-X) has recently been identified in the airways of patients with asthma and may participate in cysteinyl leukotriene (CysLT; C4, D4, and E4) synthesis. We examined CysLT synthesis and arachidonic acid (AA) and lysophospholipid release by eosinophils mediated by recombinant human sPLA2-X. We found that recombinant sPLA2-X caused marked AA release and a rapid onset of CysLT synthesis in human eosinophils that was blocked by a selective sPLA2-X inhibitor. Exogenous sPLA2-X released lysophospholipid species that arise from phospholipids enriched in AA in eosinophils, including phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine as well as plasmenyl phosphatidylcholine and phosphatidylethanolamine. CysLT synthesis mediated by sPLA2-X but not AA release could be suppressed by inhibition of cPLA2α. Exogenous sPLA2-X initiated Ser505 phosphorylation of cPLA2α, an intracellular Ca2+ flux, and translocation of cPLA2α and 5-lipoxygenase in eosinophils. Synthesis of CysLTs in response to sPLA2-X or lysophosphatidylcholine was inhibited by p38 or JNK inhibitors but not by a MEK 1/2 inhibitor. A further increase in CysLT synthesis was induced by the addition of sPLA2-X to eosinophils under conditions of N-formyl-methionyl-leucyl-phenylalanine-mediated cPLA2α activation. These results indicate that sPLA2-X participates in AA and lysophospholipid release, resulting in CysLT synthesis in eosinophils through a mechanism involving p38 and JNK MAPK, cPLA2α, and 5-lipoxygenase activation and resulting in the amplification of CysLT synthesis during cPLA2α activation. Transactivation of eosinophils by sPLA2-X may be an important mechanism leading to CysLT formation in the airways of patients with asthma. PMID:20974857

  12. Au@Pt nanoparticles as catalase mimics to attenuate tumor hypoxia and enhance immune cell-mediated cytotoxicity.

    PubMed

    Li, Juan; Liang, Hong; Wu, Ying; Ou, Xiang-Yu; Li, Jingying

    2017-09-19

    Hypoxic tumor microenvironment (TME) is closely linked to tumor progression, heterogeneity and immune suppression. Therefore, the development of effective methods to overcome hypoxia and substantially enhance the immunotherapy efficacy remains a desirable goal. Herein, we engineered a biocompatible Au core/Pt shell nanoparticles (Au@Pt NPs) to reoxygenate the TME by reacting with endogenous H2O2. Treatment with Au@Pt NPs appeared to improve oxygen in intracellular environments and decrease hypoxia-inducible factor (HIF)-1α expression. Furthermore, the integration of high catalytic efficiency of Au@Pt NPs with cytokine-induced killer (CIK) cell immunotherapy, could lead to significantly improve the effect of CIK cell-mediated cytotoxicity. These results suggest great potential of Au@Pt NPs for regulation of the hypoxic TME and enhance immune cell mediated anti-tumor immunity. © 2017 IOP Publishing Ltd.

  13. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis.

    PubMed

    Nokin, Marie-Julie; Durieux, Florence; Peixoto, Paul; Chiavarina, Barbara; Peulen, Olivier; Blomme, Arnaud; Turtoi, Andrei; Costanza, Brunella; Smargiasso, Nicolas; Baiwir, Dominique; Scheijen, Jean L; Schalkwijk, Casper G; Leenders, Justine; De Tullio, Pascal; Bianchi, Elettra; Thiry, Marc; Uchida, Koji; Spiegel, David A; Cochrane, James R; Hutton, Craig A; De Pauw, Edwin; Delvenne, Philippe; Belpomme, Dominique; Castronovo, Vincent; Bellahcène, Akeila

    2016-10-19

    Metabolic reprogramming toward aerobic glycolysis unavoidably induces methylglyoxal (MG) formation in cancer cells. MG mediates the glycation of proteins to form advanced glycation end products (AGEs). We have recently demonstrated that MG-induced AGEs are a common feature of breast cancer. Little is known regarding the impact of MG-mediated carbonyl stress on tumor progression. Breast tumors with MG stress presented with high nuclear YAP, a key transcriptional co-activator regulating tumor growth and invasion. Elevated MG levels resulted in sustained YAP nuclear localization/activity that could be reverted using Carnosine, a scavenger for MG. MG treatment affected Hsp90 chaperone activity and decreased its binding to LATS1, a key kinase of the Hippo pathway. Cancer cells with high MG stress showed enhanced growth and metastatic potential in vivo. These findings reinforce the cumulative evidence pointing to hyperglycemia as a risk factor for cancer incidence and bring renewed interest in MG scavengers for cancer treatment.

  14. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor

    PubMed Central

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S.; Zhau, Haiyen E.; Chung, Leland W.K.

    2016-01-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic aniontransporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors. PMID:26197410

  15. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor.

    PubMed

    Wu, Jason Boyang; Shi, Changhong; Chu, Gina Chia-Yi; Xu, Qijin; Zhang, Yi; Li, Qinlong; Yu, John S; Zhau, Haiyen E; Chung, Leland W K

    2015-10-01

    Brain tumors and brain metastases are among the deadliest malignancies of all human cancers, largely due to the cellular blood-brain and blood-tumor barriers that limit the delivery of imaging and therapeutic agents from the systemic circulation to tumors. Thus, improved strategies for brain tumor visualization and targeted treatment are critically needed. Here we identified and synthesized a group of near-infrared fluorescence (NIRF) heptamethine carbocyanine dyes and derivative NIRF dye-drug conjugates for effective imaging and therapeutic targeting of brain tumors of either primary or metastatic origin in mice, which is mechanistically mediated by tumor hypoxia and organic anion-transporting polypeptide genes. We also demonstrate that these dyes, when conjugated to chemotherapeutic agents such as gemcitabine, significantly restricted the growth of both intracranial glioma xenografts and prostate tumor brain metastases and prolonged survival in mice. These results show promise in the application of NIRF dyes as novel theranostic agents for the detection and treatment of brain tumors.

  16. Tumortropic monocyte-mediated delivery of echogenic polymer bubbles and therapeutic vesicles for chemotherapy of tumor hypoxia.

    PubMed

    Huang, Wen-Chia; Chiang, Wen-Hsuan; Cheng, Ya-Hui; Lin, Wan-Chi; Yu, Ching-Fang; Yen, Chia-Yi; Yeh, Chih-Kuang; Chern, Chorng-Shyan; Chiang, Chi-Shiun; Chiu, Hsin-Cheng

    2015-12-01

    Overcoming limitations often experienced in nanomedicine delivery toward hypoxia regions of malignant tumors remains a great challenge. In this study, a promising modality for active hypoxia drug delivery was developed by adopting tumortropic monocytes/macrophages as a cellular vehicle for co-delivery of echogenic polymer/C5F12 bubbles and doxorubicin-loaded polymer vesicles. Through the remote-controlled focused ultrasound (FUS)-triggered drug liberation, therapeutic monocytes show prominent capability of inducing apoptosis of cancer cells. The in vivo and ex vivo fluorescence imaging shows appreciable accumulation of cell-mediated therapeutics in tumor as compared to the nanoparticle counterpart residing mostly in liver. Inhibition of tumor recurrence with γ-ray pre-irradiated Tramp-C1-bearing mice receiving therapeutic monocytes intravenously alongside the FUS activation at tumor site was significantly observed. Immunohistochemical examination of tumor sections confirms successful cellular transport of therapeutic payloads to hypoxic regions and pronounced cytotoxic action against hypoxic cells. Following the intravenous administration, the cellular-mediated therapeutics can penetrate easily to a depth beyond 150 μm from the nearest blood vessels within pre-irradiated tumor while nanoparticles are severely limited to a depth of ca 10-15 μm. This work demonstrates the great promise of cellular delivery to carry therapeutic payloads for improving chemotherapy in hypoxia by combining external trigger for drug release.

  17. Social Competence in Childhood Brain Tumor Survivors: Feasibility and Preliminary Outcomes of a Peer-Mediated Intervention

    PubMed Central

    Devine, Katie A.; Bukowski, William M.; Sahler, Olle Jane Z.; Ohman-Strickland, Pamela; Smith, Tristram H.; Lown, E. Anne; Patenaude, Andrea Farkas; Korones, David N.; Noll, Robert B.

    2016-01-01

    Objective Evaluate the acceptability, feasibility, and preliminary outcomes of a peer-mediated intervention to improve social competence of brain tumor survivors and classmates. Methods Twelve childhood brain tumor survivors and 217 classroom peers in intervention (n = 8) or comparison (n = 4) classrooms completed measures of social acceptance and reputation at two time points in the year. The intervention (5–8 sessions over 4–6 weeks) taught peer leaders skills for engaging classmates. Individual and classroom outcomes were analyzed with ANCOVA. Results Recruitment rates of families of brain tumor survivors (81%) and schools (100%) were adequate. Peer leaders reported satisfaction with the intervention. Preliminary outcome data trended toward some benefit in increasing the number of friend nominations for survivors of brain tumors but no changes in other peer-reported metrics. Preliminary results also suggested some positive effects on classroom levels of victimization and rejection. Conclusions A peer-mediated intervention was acceptable to families of brain tumor survivors and feasible to implement in schools. Findings warrant a larger trial to evaluate improvements for children with brain tumors and their peers. PMID:27355881

  18. Caloric restriction maintains OX40 agonist-mediated tumor immunity and CD4 T cell priming during aging.

    PubMed

    Farazi, Michelle; Nguyen, Justine; Goldufsky, Josef; Linnane, Stephanie; Lukaesko, Lisa; Weinberg, Andrew D; Ruby, Carl E

    2014-06-01

    Immune responses wane during aging, posing challenges to the potential effectiveness of cancer immunotherapies. We previously demonstrated that in the context of a promising immunotherapeutic, OX40 agonist (αOX40), older animals exhibited impaired anti-tumor immune responses and diminished CD4 T cell effector differentiation. In this study, we hypothesized that tumor immune responses could be maintained during aging through caloric restriction (CR) or dietary supplementation with resveratrol (RES), a CR mimetic. Mice were placed on either a calorically restricted diet or a RES-formulated diet starting between 4 and 6 months of age and continued until mice reached 12 months of age. Tumor immune responses were assessed after challenging with either sarcoma or breast tumor cells followed by αOX40 treatment. Our results show that CR, but not RES, maintained OX40-mediated anti-tumor immunity. In addition, CR fully sustained antigen-specific CD4 T cell priming in aged hosts (12 months old), whereas tumor-specific CD8 T cell priming was not fully maintained compared to young reference animals (2 months old). Thus, CR appears to maintain immunological fitness of the CD4 T cell priming environment during aging, which is critical for optimal OX40-mediated responses.

  19. Tumor penetrability and anti-angiogenesis using iRGD-mediated delivery of doxorubicin-polymer conjugates.

    PubMed

    Wang, Ke; Zhang, Xiaofeng; Liu, Yang; Liu, Chang; Jiang, Baohong; Jiang, Yanyan

    2014-10-01

    Tumor-penetrating peptide, iRGD (internalizing RGD, CRGDK/RGPD/EC) with the similar affinity to αv integrins as conventional RGD cyclopeptide could enhance the tumor penetrability of drugs by binding to neuropilin-1 (NRP-1) that over-expressed on both angiogenic blood vessels and tumor cells. Comparing with our previous study, in which a RGD cyclopeptide (RGDyC) was bound to PEGylated polyamidoamine (PAMAM) dendrimer with doxorubicin (DOX) by acid-sensitive cis-aconityl linkage (PEG-PAMAM-cis-aconityl-DOX, PPCD), the present study selected iRGD instead of previous RGD to produce iRGD-PPCD conjugate. The effect of iRGD-mediated PPCD on tumor penetration was compared with the conventional RGD ones via administration of RGDs-modified PPCD (iRGD/RGDs-PPCD) and co-administration of RGDs and PPCD (iRGD/RGD + PPCD). C6 cells were selected as the cell model owing to the highest expression of αv integrins and NRP-1 among four tumor cell lines. In vitro cytotoxicity and cellular uptake showed no significant difference between RGD-PPCD and iRGD-PPCD, but glioma spheroid penetration study showed that RGD-PPCD, iRGD-PPCD and iRGD + PPCD penetrated into C6 spheroids with a depth of 115 μm, 144 μm and 150 μm, respectively, indicating that the iRGD-mediated PPCD delivery system had a stronger penetrating ability than the RGD ones. In vivo results also demonstrated the superiority of iRGD system over RGD ones. After systemic administration, iRGD-mediated PPCD increased tumor vascular permeability, decreased tumor vascular density and average vascular diameter. Correspondingly, the iRGD system exhibited stronger penetration ability, higher accumulation in brain tumor. The median survival time of iRGD + PPCD, iRGD-PPCD and RGD-PPCD treatment groups were 61, 57.5 and 43.5 days. The present findings strongly suggested that the iRGD-mediated drug delivery system could significantly improve the efficacy of tumor therapy through enhancing tumor accumulation and penetration as

  20. Nanoparticle-mediated drug delivery to tumor neovasculature to combat P-gp expressing multidrug resistant cancer.

    PubMed

    Bai, Fan; Wang, Chao; Lu, Qin; Zhao, Mei; Ban, Fu-Qiang; Yu, De-Hong; Guan, Ying-Yun; Luan, Xin; Liu, Ya-Rong; Chen, Hong-Zhuan; Fang, Chao

    2013-08-01

    Anticancer drug resistance is a common intractable obstacle in clinical cancer chemotherapy. Here, we hypothesize that antiangiogenic cancer therapy through the targeted delivery of antiangiogenic agents to the tumor endothelial cells (EC), not the resistant cancer cells, may have the potential of combating multidrug resistant cancer. The K237 peptide-conjugated paclitaxel loaded nanoparticles (K237-PTX-NP), which can target KDR receptors highly expressed in the tumor vasculature, were fabricated for this investigation and the human colorectal adenocarcinoma HCT-15 with naturally expressed P-gp on the cell surface was adopted as the resistant tumor model. The human umbilical vein endothelial cells (HUVEC, a classical cell model mimicking tumor EC) were much more sensitive, in the cytotoxicity and apoptosis test, to K237-PTX-NP than Taxol and non-targeted PTX-NP. The enhanced antiangiogenic feature of K237-PTX-NP can be ascribed to the active internalization mediated by the interaction of K237 and KDR specifically highly expressed on the HUVEC, and the significantly extended intracellular drug retention. The tumor vessel targeting of K237-PTX-NP led to increased nanoparticle accumulation in HCT-15 tumors, and more importantly, induced significant apoptosis of tumor vascular EC and necrosis of tumor tissues. Low dose paclitaxel formulated in K237-PTX-NP (1 mg/kg) achieved significant anticancer efficacy of inhibiting the growth of HCT-15 tumors, but the same efficacy could be only obtained with 8 fold dose paclitaxel (8 mg/kg) in Taxol plus XR9576, a potent P-gp inhibitor. The anticancer efficacy of K237-PTX-NP was well related with the improved antiangiogenic effect shown in the dramatically decreased intratumoral microvessel density and pronouncedly increased apoptotic tumor cells, and such approach did not lead to obvious toxicity in the mice. These results suggest that the nanoparticles targeting drug to tumor neovasculature may be a promising strategy for the

  1. Transdifferentiation mediated tumor suppression by the endoplasmic reticulum stress sensor IRE-1 in C. elegans

    PubMed Central

    Levi-Ferber, Mor; Gian, Hai; Dudkevich, Reut; Henis-Korenblit, Sivan

    2015-01-01

    Deciphering effective ways to suppress tumor progression and to overcome acquired apoptosis resistance of tumor cells are major challenges in the tumor therapy field. We propose a new concept by which tumor progression can be suppressed by manipulating tumor cell identity. In this study, we examined the effect of ER stress on apoptosis resistant tumorous cells in a Caenorhabditis elegans germline tumor model. We discovered that ER stress suppressed the progression of the lethal germline tumor by activating the ER stress sensor IRE-1. This suppression was associated with the induction of germ cell transdifferentiation into ectopic somatic cells. Strikingly, transdifferentiation of the tumorous germ cells restored their ability to execute apoptosis and enabled their subsequent removal from the gonad. Our results indicate that tumor cell transdifferentiation has the potential to combat cancer and overcome the escape of tumor cells from the cell death machinery. DOI: http://dx.doi.org/10.7554/eLife.08005.001 PMID:26192965

  2. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment*

    PubMed Central

    Rattigan, Yanique I.; Patel, Brijesh B.; Ackerstaff, Ellen; Sukenick, George; Koutcher, Jason A.; Glod, John W.; Banerjee, Debabrata

    2012-01-01

    Human mesenchymal stem cells (hMSCs) are bone marrow-derived stromal cells, which play a role in tumor progression. We have shown earlier that breast cancer cells secrete higher levels of interleukin-6 (IL-6) under hypoxia, leading to the recruitment of hMSCs towards hypoxic tumor cells. We found that (i) MDA-MB-231 cells secrete significantly higher levels of lactate (3-fold more) under hypoxia (1% O2) than under 20% O2 and (ii) lactate recruits hMSCs towards tumor cells by activating signaling pathways to enhance migration. The mRNA and protein expression of functional MCT1 in hMSCs is increased in response to lactate exposure. Thus, we hypothesized that hMSCs and stromal carcinoma associated fibroblasts (CAFs) in the tumor microenvironment have the capacity to take up lactate expelled from tumor cells and use it as a source of energy. Our 13C NMR spectroscopic measurements indicate that 13C-lactate is converted to 13C-alpha ketoglutarate in hMSCs and CAFs supporting this hypothesis. To our knowledge this is the first in vitro model system demonstrating that hMSCs and CAFs can utilize lactate produced by tumor cells. PMID:22178238

  3. Lactate is a mediator of metabolic cooperation between stromal carcinoma associated fibroblasts and glycolytic tumor cells in the tumor microenvironment

    SciTech Connect

    Rattigan, Yanique I.; Patel, Brijesh B.; Ackerstaff, Ellen; Sukenick, George; Koutcher, Jason A.; Glod, John W.; and others

    2012-02-15

    Human mesenchymal stem cells (hMSCs) are bone marrow-derived stromal cells, which play a role in tumor progression. We have shown earlier that breast cancer cells secrete higher levels of interleukin-6 (IL-6) under hypoxia, leading to the recruitment of hMSCs towards hypoxic tumor cells. We found that (i) MDA-MB-231 cells secrete significantly higher levels of lactate (3-fold more) under hypoxia (1% O{sub 2}) than under 20% O{sub 2} and (ii) lactate recruits hMSCs towards tumor cells by activating signaling pathways to enhance migration. The mRNA and protein expression of functional MCT1 in hMSCs is increased in response to lactate exposure. Thus, we hypothesized that hMSCs and stromal carcinoma associated fibroblasts (CAFs) in the tumor microenvironment have the capacity to take up lactate expelled from tumor cells and use it as a source of energy. Our {sup 13}C NMR spectroscopic measurements indicate that {sup 13}C-lactate is converted to {sup 13}C-alpha ketoglutarate in hMSCs and CAFs supporting this hypothesis. To our knowledge this is the first in vitro model system demonstrating that hMSCs and CAFs can utilize lactate produced by tumor cells.

  4. Direct tumor recognition by a human CD4+ T-cell subset potently mediates tumor growth inhibition and orchestrates anti-tumor immune responses

    PubMed Central

    Matsuzaki, Junko; Tsuji, Takemasa; Luescher, Immanuel F.; Shiku, Hiroshi; Mineno, Junichi; Okamoto, Sachiko; Old, Lloyd J.; Shrikant, Protul; Gnjatic, Sacha; Odunsi, Kunle

    2015-01-01

    Tumor antigen-specific CD4+ T cells generally orchestrate and regulate immune cells to provide immune surveillance against malignancy. However, activation of antigen-specific CD4+ T cells is restricted at local tumor sites where antigen-presenting cells (APCs) are frequently dysfunctional, which can cause rapid exhaustion of anti-tumor immune responses. Herein, we characterize anti-tumor effects of a unique human CD4+ helper T-cell subset that directly recognizes the cytoplasmic tumor antigen, NY-ESO-1, presented by MHC class II on cancer cells. Upon direct recognition of cancer cells, tumor-recognizing CD4+ T cells (TR-CD4) potently induced IFN-γ-dependent growth arrest in cancer cells. In addition, direct recognition of cancer cells triggers TR-CD4 to provide help to NY-ESO-1-specific CD8+ T cells by enhancing cytotoxic activity, and improving viability and proliferation in the absence of APCs. Notably, the TR-CD4 either alone or in collaboration with CD8+ T cells significantly inhibited tumor growth in vivo in a xenograft model. Finally, retroviral gene-engineering with T cell receptor (TCR) derived from TR-CD4 produced large numbers of functional TR-CD4. These observations provide mechanistic insights into the role of TR-CD4 in tumor immunity, and suggest that approaches to utilize TR-CD4 will augment anti-tumor immune responses for durable therapeutic efficacy in cancer patients. PMID:26447332

  5. Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells.

    PubMed

    Cilenti, Lucia; Kyriazis, George A; Soundarapandian, Mangala M; Stratico, Valerie; Yerkes, Adam; Park, Kwon Moo; Sheridan, Alice M; Alnemri, Emad S; Bonventre, Joseph V; Zervos, Antonis S

    2005-02-01

    Omi/HtrA2 is a mitochondrial proapoptotic serine protease that is able to induce both caspase-dependent and caspase-independent cell death. After apoptotic stimuli, Omi is released to the cytoplasm where it binds and cleaves inhibitor of apoptosis proteins. In this report, we investigated the role of Omi in renal cell death following cisplatin treatment. Using primary mouse proximal tubule cells, as well as established renal cell lines, we show that the level of Omi protein is upregulated after treatment with cisplatin. This upregulation is followed by the release of Omi from mitochondria to the cytoplasm and degradation of XIAP. Reducing the endogenous level of Omi protein using RNA interference renders renal cells resistant to cisplatin-induced cell death. Furthermore, we show that the proteolytic activity of Omi is necessary and essential for cisplatin-induced cell death in this system. When renal cells are treated with Omi's specific inhibitor, ucf-101, they become significantly resistant to cisplatin-induced cell death. Ucf-101 was also able to minimize cisplatin-induced nephrotoxic injury in animals. Our results demonstrate that Omi is a major mediator of cisplatin-induced cell death in renal cells and suggest a way to limit renal injury by specifically inhibiting its proteolytic activity.

  6. Myo9b is a key player in SLIT/ROBO-mediated lung tumor suppression.

    PubMed

    Kong, Ruirui; Yi, Fengshuang; Wen, Pushuai; Liu, Jianghong; Chen, Xiaoping; Ren, Jinqi; Li, Xiaofei; Shang, Yulong; Nie, Yongzhan; Wu, Kaichun; Fan, Daiming; Zhu, Li; Feng, Wei; Wu, Jane Y

    2015-11-03

    Emerging evidence indicates that the neuronal guidance molecule SLIT plays a role in tumor suppression, as SLIT-encoding genes are inactivated in several types of cancer, including lung cancer; however, it is not clear how SLIT functions in lung cancer. Here, our data show that SLIT inhibits cancer cell migration by activating RhoA and that myosin 9b (Myo9b) is a ROBO-interacting protein that suppresses RhoA activity in lung cancer cells. Structural analyses revealed that the RhoGAP domain of Myo9b contains a unique patch that specifically recognizes RhoA. We also determined that the ROBO intracellular domain interacts with the Myo9b RhoGAP domain and inhibits its activity; therefore, SLIT-dependent activation of RhoA is mediated by ROBO inhibition of Myo9b. In a murine model, compared with control lung cancer cells, SLIT-expressing cells had a decreased capacity for tumor formation and lung metastasis. Evaluation of human lung cancer and adjacent nontumor tissues revealed that Myo9b is upregulated in the cancer tissue. Moreover, elevated Myo9b expression was associated with lung cancer progression and poor prognosis. Together, our data identify Myo9b as a key player in lung cancer and as a ROBO-interacting protein in what is, to the best of our knowledge, a newly defined SLIT/ROBO/Myo9b/RhoA signaling pathway that restricts lung cancer progression and metastasis. Additionally, our work suggests that targeting the SLIT/ROBO/Myo9b/RhoA pathway has potential as a diagnostic and therapeutic strategy for lung cancer.

  7. Extracellular signal regulated kinase 5 mediates signals triggered by the novel tumor promoter palytoxin

    SciTech Connect

    Charlson, Aaron T.; Zeliadt, Nicholette A.; Wattenberg, Elizabeth V.

    2009-12-01

    Palytoxin is classified as a non-12-O-tetradecanoylphorbol-13-acetate (TPA)-type skin tumor because it does not bind to or activate protein kinase C. Palytoxin is thus a novel tool for investigating alternative signaling pathways that may affect carcinogenesis. We previously showed that palytoxin activates three major members of the mitogen activated protein kinase (MAPK) family, extracellular signal regulated kinase 1 and 2 (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. Here we report that palytoxin also activates another MAPK family member, called ERK5, in HeLa cells and in keratinocytes derived from initiated mouse skin (308 cells). By contrast, TPA does not activate ERK5 in these cell lines. The major cell surface receptor for palytoxin is the Na+,K+-ATPase. Accordingly, ouabain blocked the ability of palytoxin to activate ERK5. Ouabain alone did not activate ERK5. ERK5 thus represents a divergence in the signaling pathways activated by these two agents that bind to the Na+,K+-ATPase. Cycloheximide, okadaic acid, and sodium orthovanadate did not mimic the effect of palytoxin on ERK5. These results indicate that the stimulation of ERK5 by palytoxin is not simply due to inhibition of protein synthesis or inhibition of serine/threonine or tyrosine phosphatases. Therefore, the mechanism by which palytoxin activates ERK5 differs from that by which it activates ERK1/2, JNK, and p38. Finally, studies that used pharmacological inhibitors and shRNA to block ERK5 action indicate that ERK5 contributes to palytoxin-stimulated c-Fos gene expression. These results suggest that ERK5 can act as an alternative mediator for transmitting diverse tumor promoter-stimulated signals.

  8. Molecular study on copper-mediated tumor proteasome inhibition and cell death

    PubMed Central

    ZHANG, XIA; CUI, QIUZHI; FAN, YUHUA; BI, CAIFENG; DOU, Q. PING

    2013-01-01

    The metal ion copper is a cofactor essential for maintaining normal biological and physical functions in human beings. High copper levels have been found in variety of tumor tissues and are involved in tumor angiogenesis processes. The ubiquitin-proteasome system plays an important role in cell growth and apoptosis and has been shown as a novel target for cancer therapy. We previously reported that some organic copper complexes can inhibit the proteasomal chymotrypsin-like activity and induce apoptosis in human cancer cells and xenograft models. In the current study, we investigated the effect of oxidation status of copper, Cu(I) or Cu(II), on inhibition of proteasome activity, induction of apoptosis, and induction of reactive oxygen species (ROS) in human cancer cells. We report four major findings here: i) both Cu(I) and Cu(II) could inhibit the chymotrypsin-like activity of purified 20S proteasome, but Cu(I) was more potent than Cu(II), ii) purified 20S proteasome protein was able to reduce Cu(II) to Cu(I), suggesting that Cu(I) is the oxidation status of copper that directly reacts with the proteasome, iii) when complexed with the copper ligand neocuproine, Cu(I) showed higher ability to induce ROS production in cancer cells, compared with Cu(II), iv) addition of a ROS scavenger in the cancer cell culture-blocked copper-induced ROS generation, but did not overcome copper-mediated proteasome-inhibitory and cell death-inducing events, demonstrating the ROS-independent proteasome-inhibitory property of copper complexes. PMID:20514399

  9. Nicotine-mediated cell proliferation and tumor progression in smoking-related cancers

    PubMed Central

    Schaal, Courtney; Chellappan, Srikumar P.

    2014-01-01

    Tobacco smoke contains multiple classes of established carcinogens including benzo(a)pyrenes, polycyclic aromatic hydrocarbons, and tobacco specific nitrosamines. Most of these compounds exert their genotoxic effects by forming DNA adducts and generation of reactive oxygen species, causing mutations in vital genes like K-Ras and p53. In addition, tobacco specific nitrosamines can activate nicotinic acetylcholine receptors (nAChRs) and to a certain extent β-Adrenergic receptors (β-ARs), promoting cell proliferation. Further, it has been demonstrated that nicotine, the major addictive component of tobacco smoke, can induce cell cycle progression, angiogenesis, and metastasis of lung and pancreatic cancers. These effects occur mainly through the α7-nAChRs, with possible contribution from the β-ARs and/or epidermal growth factor receptors (EGFRs). This review article will discuss the molecular mechanisms by which nicotine and its oncogenic derivatives such as NNK (4-methylnitrosamino)-1-(3-pyridyl)-1-butanone) and NNN (N-nitrosonornicotine) induce cell cycle progression and promote tumor growth. A variety of signaling cascades are induced by nicotine through nAChRs, including the MAPK/ERK pathway, PI3K/AKT pathway and JAK/STAT signaling. In addition, studies have shown that nAChR activation induces Src kinase in a β-arrestin-1 dependent manner, leading to the inactivation of Rb protein and resulting in the expression of E2F1-regulated proliferative genes. Such nAChR-mediated signaling events enhance the proliferation of cells and render them resistant to apoptosis induced by various agents. These observations highlight the role of nAChRs in promoting the growth and metastasis of tumors and raise the possibility of targeting them for cancer therapy. PMID:24398389

  10. Polyclonal HER2-specific antibodies induced by vaccination mediate receptor internalization and degradation in tumor cells

    PubMed Central

    2012-01-01

    Introduction Sustained HER2 signaling at the cell surface is an oncogenic mechanism in a significant proportion of breast cancers. While clinically effective therapies targeting HER2 such as mAbs and tyrosine kinase inhibitors exist, tumors overexpressing HER2 eventually progress despite treatment. Thus, abrogation of persistent HER2 expression at the plasma membrane to synergize with current approaches may represent a novel therapeutic strategy. Methods We generated polyclonal anti-HER2 antibodies (HER2-VIA) by vaccinating mice with an adenovirus expressing human HER2, and assessed their signaling effects in vitro and anti-tumor effects in a xenograft model. In addition, we studied the signaling effects of human HER2-specific antibodies induced by vaccinating breast cancer patients with a HER2 protein vaccine. Results HER2-VIA bound HER2 at the plasma membrane, initially activating the downstream kinases extracellular signal-regulated protein kinase 1/2 and Akt, but subsequently inducing receptor internalization in clathrin-coated pits in a HER2 kinase-independent manner, followed by ubiquitination and degradation of HER2 into a 130 kDa fragment phosphorylated at tyrosine residues 1,221/1,222 and 1,248. Following vaccination of breast cancer patients with the HER2 protein vaccine, HER2-specific antibodies were detectable and these antibodies bound to cell surface-expressed HER2 and inhibited HER2 signaling through blocking tyrosine 877 phosphorylation of HER2. In contrast to the murine antibodies, human anti-HER2 antibodies induced by protein vaccination did not mediate receptor internalization and degradation. Conclusion These data provide new insight into HER2 trafficking at the plasma membrane and the changes induced by polyclonal HER2-specific antibodies. The reduction of HER2 membrane expression and HER2 signaling by polyclonal antibodies induced by adenoviral HER2 vaccines supports human clinical trials with this strategy for those breast cancer patients

  11. Chemotherapy-Induced IL34 Enhances Immunosuppression by Tumor-Associated Macrophages and Mediates Survival of Chemoresistant Lung Cancer Cells.

    PubMed

    Baghdadi, Muhammad; Wada, Haruka; Nakanishi, Sayaka; Abe, Hirotake; Han, Nanumi; Putra, Wira Eka; Endo, Daisuke; Watari, Hidemichi; Sakuragi, Noriaki; Hida, Yasuhiro; Kaga, Kichizo; Miyagi, Yohei; Yokose, Tomoyuki; Takano, Atsushi; Daigo, Yataro; Seino, Ken-Ichiro

    2016-10-15

    The ability of tumor cells to escape immune destruction and their acquired resistance to chemotherapy are major obstacles to effective cancer therapy. Although immune checkpoint therapies such as anti-PD-1 address these issues in part, clinical responses remain limited to a subpopulation of patients. In this report, we identified IL34 produced by cancer cells as a driver of chemoresistance. In particular, we found that IL34 modulated the functions of tumor-associated macrophages to enhance local immunosuppression and to promote the survival of chemoresistant cancer cells by activating AKT signaling. Targeting IL34 in chemoresistant tumors resulted in a remarkable inhibition of tumor growth when accompanied with chemotherapy. Our results define a pathogenic role for IL34 in mediating immunosuppression and chemoresistance and identify it as a tractable target for anticancer therapy. Cancer Res; 76(20); 6030-42. ©2016 AACR. ©2016 American Association for Cancer Research.

  12. The Tumor Suppressive Effects of HPP1 Are Mediated Through JAK-STAT-Interferon Signaling Pathways

    PubMed Central

    Hernandez, Jonathan M.; Elahi, Abul; Clark, Whalen; Humphries, Leigh Ann; Wang, Jian; Achille, Alex; Seto, Ed

    2015-01-01

    HPP1, a novel tumor suppressive epidermal growth factor (EGF)-like ligand, mediates its effects through signal transducer and activators of transcription (STAT) activation. We previously demonstrated the importance of STAT1 activation for HPP1 function; however the contribution of STAT2 remains unclear. We sought to delineate the components of JAK-STAT-interferon (IFN) signaling specifically associated with HPP1s biological effects. Using stable HPP1-HCT116 transfectants, expression analyses were performed by polymerase chain reaction (PCR)/western blotting while expression knockdowns were achieved using siRNA. Growth parameters evaluated included proliferation, cell cycle distribution, and anchorage-independent growth. STAT dimerization, translocation, and DNA binding were examined by reporter assays, fluorescent microscopy, and chromatin immunoprecipitation (ChIP), respectively. Forced expression of HPP1 in colon cancer cell lines results in the upregulation of total and activated levels of STAT2. We have also determined that JAK1 and JAK2 are activated in response to HPP1 overexpression, and are necessary for subsequent STAT activation. Overexpression of HPP1 was associated with significant increases in STAT1:STAT1 (p=0.007) and STAT1:STAT2 (p=0.036) dimer formation, as well as subsequent nuclear translocation. By ChIP, binding of activated STAT1 and STAT2 to the interferon-signaling regulatory element promoter sites of the selected genes, protein kinase RNA-activated (PKR), IFI44, and OAS1 was demonstrated. STAT2 knockdown resulted in partial abrogation of HPP1s growth suppressive activity with increased proliferation (p<0.0001), reduced G1/G0 phase cell cycle fraction, and a restoration of growth potential in soft agar (p<0.01). Presumably as a consequence of upregulation of IFN signaling elements, HPP1 overexpression resulted in an acquisition of exogenous IFN sensitivity. Physiologic doses of IFN-α resulted in a significant reduction in proliferation (p<0

  13. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy

    PubMed Central

    Huang, Qian; Li, Fang; Liu, Xinjian; Li, Wenrong; Shi, Wei; Liu, Fei-Fei; O’Sullivan, Brian; He, Zhimin; Peng, Yuanlin; Tan, Aik-Choon; Zhou, Ling; Shen, Jingping; Han, Gangwen; Wang, Xiao-Jing; Thorburn, Jackie; Thorburn, Andrew; Jimeno, Antonio; Raben, David; Bedford, Joel S.; Li, Chuan-Yuan

    2011-01-01

    Summary In cancer treatment, apoptosis is a well-recognized cell death mechanism through which cytotoxic agents kill tumor cells. Here we report that dying tumor cells use the apoptotic process to generate potent growth-stimulating signals to stimulate the repopulation of tumors undergoing radiotherapy. Surprisingly, activated caspase 3, a key executioner of apoptosis, plays key roles in the growth stimulation. One downstream effector that caspase 3 regulates is prostaglandin E2, which can potently stimulates growth of surviving tumor cells. Deficiency of caspase 3 either in tumor cells or in tumor stroma caused significant tumor sensitivity to radiotherapy in xenograft or mouse tumors. In human cancer patients, higher levels of activated caspase 3 in tumor tissues are correlated with significantly increased rate of recurrence and deaths. We propose the existence of a “Phoenix Rising” pathway of cell death-induced tumor repopulation in which caspase 3 plays key roles. PMID:21725296

  14. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates

    PubMed Central

    Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi

    2017-01-01

    Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design. PMID:28467806

  15. Tumor necrosis factor-α mediates JNK activation response to intestinal ischemia-reperfusion injury

    PubMed Central

    Yang, Qi; Zheng, Feng-Ping; Zhan, Ya-Shi; Tao, Jin; Tan, Si-Wei; Liu, Hui-Ling; Wu, Bin

    2013-01-01

    AIM: To investigate whether tumor necrosis factor-α (TNF-α) mediates ischemia-reperfusion (I/R)-induced intestinal mucosal injury through c-Jun N-terminal kinase (JNK) activation. METHODS: In this study, intestinal I/R was induced by 60-min occlusion of the superior mesenteric artery in rats followed by 60-min reperfusion, and the rats were pretreated with a TNF-α inhibitor, pentoxifylline, or the TNF-α antibody infliximab. After surgery, part of the intestine was collected for histological analysis. The mucosal layer was harvested for RNA and protein extraction, which were used for further real-time polymerase chain reaction, enzyme-linked immunosorbent assay and Western blotting analyses. The TNF-α expression, intestinal mucosal injury, cell apoptosis, activation of apoptotic protein and JNK signaling pathway were analyzed. RESULTS: I/R significantly enhanced expression of mucosal TNF-α at both the mRNA and protein levels, induced severe mucosal injury and cell apoptosis, activated caspase-9/caspase-3, and activated the JNK signaling pathway. Pretreatment with pentoxifylline markedly downregulated TNF-α at both the mRNA and protein levels, whereas infliximab pretreatment did not affect the expression of TNF-α induced by I/R. However, pretreatment with pentoxifylline or infliximab dramatically suppressed I/R-induced mucosal injury and cell apoptosis and significantly inhibited the activation of caspase-9/3 and JNK signaling. CONCLUSION: The results indicate there was a TNF-α-mediated JNK activation response to intestinal I/R injury. PMID:23946597

  16. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.

    PubMed

    Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi

    2017-06-13

    Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.

  17. Tumor

    MedlinePlus

    ... excessively in the body. Normally, the body controls cell growth and division. New cells are created to replace ... room for healthy replacements. If the balance of cell growth and death is disturbed, a tumor may form. ...

  18. Translocator protein (18 kDa) mediates the pro-growth effects of diazepam on Ehrlich tumor cells in vivo.

    PubMed

    Sakai, M; Ferraz-de-Paula, V; Pinheiro, M L; Ribeiro, A; Quinteiro-Filho, W M; Rone, M B; Martinez-Arguelles, D B; Dagli, M L Z; Papadopoulos, V; Palermo-Neto, J

    2010-01-25

    The Translocator Protein (TSPO), previously known as the peripheral-type benzodiazepine receptor, is a ubiquitous drug- and cholesterol-binding protein that is up regulated in several types of cancer cells. TSPO drug ligands (e.g., diazepam) induce or inhibit tumor cell proliferation, depending on the dose and tissue origin. We have previously shown that TSPO is expressed in Ehrlich tumor cells and that diazepam increases proliferation of these cells in vitro. Here, we investigated the in vivo effects of diazepam on Ehrlich tumor growth and the role of TSPO in mediating this process. Oral administration of diazepam to mice (3.0mg/kg/day for 7 days) produced plasma and ascitic fluid drug concentrations of 83.83 and 54.12 nM, respectively. Diazepam increased Ehrlich tumor growth, likely due to its ability to increase tumor cell proliferation and Reactive Oxygen Species production. Radioligand binding assays and nucleotide sequencing revealed that Ehrlich tumor cell TSPO had the same pharmacological and biochemical properties as TSPO described in other tumor cells. The estimated K(d) for PK 11195 in Ehrlich tumor cells was 0.44 nM and 8.70 nM (low and high binding site, respectively). Structurally diverse TSPO drug ligands with exclusive affinity for TSPO (i.e., 4-chlordiazepam, Ro5-4864, and isoquinoline-carboxamide PK 11195) also increased Ehrlich tumor growth. However, clonazepam, a GABA(A)-specific ligand with no affinity for TSPO, failed to do so. Taken together, these data suggest that diazepam induces in vivo Ehrlich tumor growth in a TSPO-dependent manner.

  19. Cadm1 is a metastasis susceptibility gene that suppresses metastasis by modifying tumor interaction with the cell-mediated immunity.

    PubMed

    Faraji, Farhoud; Pang, Yanli; Walker, Renard C; Nieves Borges, Rosan; Yang, Li; Hunter, Kent W

    2012-09-01

    Metastasis is a complex process utilizing both tumor-cell-autonomous properties and host-derived factors, including cellular immunity. We have previously shown that germline polymorphisms can modify tumor cell metastatic capabilities through cell-autonomous mechanisms. However, how metastasis susceptibility genes interact with the tumor stroma is incompletely understood. Here, we employ a complex genetic screen to identify Cadm1 as a novel modifier of metastasis. We demonstrate that Cadm1 can specifically suppress metastasis without affecting primary tumor growth. Unexpectedly, Cadm1 did not alter tumor-cell-autonomous properties such as proliferation or invasion, but required the host's adaptive immune system to affect metastasis. The metastasis-suppressing effect of Cadm1 was lost in mice lacking T cell-mediated immunity, which was partially phenocopied by depleting CD8(+) T cells in immune-competent mice. Our data show a novel function for Cadm1 in suppressing metastasis by sensitizing tumor cells to immune surveillance mechanisms, and this is the first report of a heritable metastasis susceptibility gene engaging tumor non-autonomous factors.

  20. Indoleamine 2,3-dioxygenase mediates immune-independent human tumor cell resistance to olaparib, gamma radiation, and cisplatin

    PubMed Central

    Vareki, Saman Maleki; Rytelewski, Mateusz; Figueredo, Rene; Chen, Di; Ferguson, Peter J.; Vincent, Mark; Min, Weiping; Zheng, Xiufen; Koropatnick, James

    2014-01-01

    Indoleamine 2,3-dioxygenase-1 (IDO) is an immunosuppressive molecule expressed by most human tumors. IDO levels correlate with poor prognosis in cancer patients and IDO inhibitors are under investigation to enhance endogenous anticancer immunosurveillance. Little is known of immune-independent functions of IDO relevant to cancer therapy. We show, for the first time, that IDO mediates human tumor cell resistance to a PARP inhibitor (olaparib), gamma radiation, cisplatin, and combined treatment with olaparib and radiation, in the absence of immune cells. Antisense-mediated reduction of IDO, alone and (in a synthetic lethal approach) in combination with antisense to the DNA repair protein BRCA2 sensitizes human lung cancer cells to olaparib and cisplatin. Antisense reduction of IDO decreased NAD+ in human tumor cells. NAD+ is essential for PARP activity and these data suggest that IDO mediates treatment resistance independent of immunity and at least partially due to a previously unrecognized role for IDO in DNA repair. Furthermore, IDO levels correlated with accumulation of tumor cells in G1 and depletion of cells in G2/M of the cell cycle, suggesting that IDO effects on cell cycle may also modulate sensitivity to radiation and chemotherapeutic agents. IDO is a potentially valuable therapeutic target in cancer treatment, independent of immune function and in combination with other therapies. PMID:24784564

  1. Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors

    PubMed Central

    Mehtala, Jonathan G; Torregrosa-Allen, Sandra; Elzey, Bennett D; Jeon, Mansik; Kim, Chulhong; Wei, Alexander

    2014-01-01

    Aim The synergistic effects of gold nanorod (GNR)-mediated mild hyperthermia (MHT; 42–43°C) and cisplatin (CP) activity was evaluated against chemoresistant SKOV3 cells in vitro and with a tumor xenograft model. Materials & methods In vitro studies were performed using CP at cytostatic concentrations (5 μM) and polyethylene glycol-stabilized GNRs, using near-infrared laser excitation for MHT. Results The amount of polyethylene glycol-GNRs used for environmental MHT was 1 μg/ml, several times lower than the loadings used in tumor tissue ablation. GNR-mediated MHT increased CP-mediated cytotoxicity by 80%, relative to the projected additive effect, and flow cytometry analysis suggested MHT also enhanced CP-induced apoptosis. In a pilot in vivo study, systemically administered polyethylene glycol-GNRs generated sufficient levels of MHT to enhance CP-induced reductions in tumor volume, despite their heterogeneous distribution in tumor tissue. Conclusion These studies imply that effective chemotherapies can be developed in combination with low loadings of nanoparticles for localized MHT. PMID:24498890

  2. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells.

    PubMed

    Rupp, Levi J; Schumann, Kathrin; Roybal, Kole T; Gate, Rachel E; Ye, Chun J; Lim, Wendell A; Marson, Alexander

    2017-04-07

    Immunotherapies with chimeric antigen receptor (CAR) T cells and checkpoint inhibitors (including antibodies that antagonize programmed cell death protein 1 [PD-1]) have both opened new avenues for cancer treatment, but the clinical potential of combined disruption of inhibitory checkpoints and CAR T cell therapy remains incompletely explored. Here we show that programmed death ligand 1 (PD-L1) expression on tumor cells can render human CAR T cells (anti-CD19 4-1BBζ) hypo-functional, resulting in impaired tumor clearance in a sub-cutaneous xenograft model. To overcome this suppressed anti-tumor response, we developed a protocol for combined Cas9 ribonucleoprotein (Cas9 RNP)-mediated gene editing and lentiviral transduction to generate PD-1 deficient anti-CD19 CAR T cells. Pdcd1 (PD-1) disruption augmented CAR T cell mediated killing of tumor cells in vitro and enhanced clearance of PD-L1+ tumor xenografts in vivo. This study demonstrates improved therapeutic efficacy of Cas9-edited CAR T cells and highlights the potential of precision genome engineering to enhance next-generation cell therapies.

  3. Nanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Yu, Xiwei; Su, Chang; Shi, Yijie; Zhao, Liang

    2017-06-01

    Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells, its anti-tumor effects were undesirable and limited. To obtain better anti-tumor effects, in this study, we took advantage of a new nanotechnology to design novel artesunate-loaded bovine serum albumin nanoparticles to achieve the mitochondrial accumulation of artesunate and induce mitochondrial-mediated apoptosis. The results showed that when compared with free artesunate's reliance on oncotic death, artesunate-loaded bovine serum albumin nanoparticles showed higher cytotoxicity and their significant apoptotic effects were induced through the distribution of artesunate in the mitochondria. This finding indicated that artesunate-loaded bovine serum albumin nanoparticles damaged the mitochondrial integrity and activated mitochondrial-mediated cell apoptosis by upregulating apoptosis-related proteins and facilitating the rapid release of cytochrome C.

  4. Nanoparticle Delivery of Artesunate Enhances the Anti-tumor Efficiency by Activating Mitochondria-Mediated Cell Apoptosis.

    PubMed

    Liu, Rui; Yu, Xiwei; Su, Chang; Shi, Yijie; Zhao, Liang

    2017-12-01

    Artemisinin and its derivatives were considered to exert a broad spectrum of anti-cancer activities, and they induced significant anti-cancer effects in tumor cells. Artemisinin and its derivatives could be absorbed quickly, and they were widely distributed, selectively killing tumor cells. Since low concentrations of artesunate primarily depended on oncosis to induce cell death in tumor cells, its anti-tumor effects were undesirable and limited. To obtain better anti-tumor effects, in this study, we took advantage of a new nanotechnology to design novel artesunate-loaded bovine serum albumin nanoparticles to achieve the mitochondrial accumulation of artesunate and induce mitochondrial-mediated apoptosis. The results showed that when compared with free artesunate's reliance on oncotic death, artesunate-loaded bovine serum albumin nanoparticles showed higher cytotoxicity and their significant apoptotic effects were induced through the distribution of artesunate in the mitochondria. This finding indicated that artesunate-loaded bovine serum albumin nanoparticles damaged the mitochondrial integrity and activated mitochondrial-mediated cell apoptosis by upregulating apoptosis-related proteins and facilitating the rapid release of cytochrome C.

  5. Fas-ligand-mediated paracrine T cell regulation by the receptor NKG2D in tumor immunity.

    PubMed

    Groh, Veronika; Smythe, Kimberly; Dai, Zhenpeng; Spies, Thomas

    2006-07-01

    Tumor-associated ligands of the activating NKG2D receptor can effectively stimulate T cell responses at early but not late stages of tumor growth. In late-stage human tumor settings, we observed MIC-driven proliferation of NKG2D(+)CD4(+) T cells that produced the cytokine Fas ligand (FasL) as a result of NKG2D costimulation but were themselves protected from Fas-mediated growth arrest. In contrast, FasL suppressed proliferation of T cells in vitro that did not receive NKG2D costimulation. Similar observations with normal peripheral blood NKG2D(+)CD8(+) T cells demonstrated unrecognized NKG2D-mediated immune functions, whereby FasL release promotes tumor cell death and NKG2D costimulation prolongs T cell survival. These effects, beneficial in conditions of limited NKG2D ligand expression, may be counterweighed when massive expression and shedding of MIC occurs, such as in some late-stage tumors, that causes sustained NKG2D costimulation and population expansion of immunosuppressive T cells.

  6. Interleukin-17D mediates tumor rejection through recruitment of natural killer cells

    PubMed Central

    O'Sullivan, Timothy; Saddawi-Konefka, Robert; Gross, Emilie; Tran, Miller; Mayfield, Stephen P.; Ikeda, Hiroaki; Bui, Jack D.

    2014-01-01

    The process of cancer immunoediting generates a repertoire of cancer cells that can persist in immune competent hosts. In its most complex form, this process begins with the elimination of highly immunogenic unedited tumor cells followed by the escape of less immunogenic, edited cells. Although edited tumors can release immunosuppressive factors, it is unknown whether unedited tumors produce cytokines that enhance antitumor function. Utilizing gene microarray analysis, we found the cytokine interleukin 17D (IL-17D) was highly expressed in certain unedited tumors but not edited mouse tumor cell lines. Moreover, forced expression of IL-17D in edited tumor cells induced rejection by stimulating CCL2 production from tumor endothelial cells leading to the recruitment of natural killer (NK) cells. NK cells promoted M1 macrophage development leading to adaptive immune responses. IL-17D expression was also decreased in certain high-grade and metastatic human tumors, suggesting that it can be targeted for tumor immune therapy. PMID:24794441

  7. Downregulation of adenine nucleotide translocator 1 exacerbates tumor necrosis factor-α-mediated cardiac inflammatory responses.

    PubMed

    Pan, Shi; Wang, Nadan; Bisetto, Sara; Yi, Bing; Sheu, Shey-Shing

    2015-01-01

    Inflammation contributes significantly to cardiac dysfunction. Although the initial phase of inflammation is essential for repair and healing, excessive proinflammatory cytokines are detrimental to the heart. We found that adenine nucleotide translocator isoform-1 (ANT1) protein levels were significantly decreased in the inflamed heart of C57BL/6 mice following cecal ligation and puncture. To understand the molecular mechanisms involved, we performed small-interfering RNA-mediated knockdown of ANT1 and studied tumor necrosis factor-α (TNFα)-induced inflammatory responses in myocardium-derived H9c2 cells and cardiomyocytes. ANT1 knockdown significantly increased swollen mitochondria and mitochondrial reactive oxygen species, concomitant with increased TNFα-induced NF-κB reporter gene activity and interleukin-6 and TNFα expression. A mitochondrial-targeted antioxidant mito-TEMPO attenuated TNFα-induced mitochondrial reactive oxygen species, NF-κB reporter gene activity, and cytokine expression in ANT1 knockdown cells. Interestingly, TNFα or lipopolysaccharide (LPS) treatment significantly decreased ANT1 protein levels, suggesting a feed-forward regulation of proinflammatory cytokine expression activated by ANT1 downregulation. These data suggest that ANT1 downregulation contributes to cardiac inflammation post-cecal ligation and puncture. Preventing ANT1 downregulation could provide a novel molecular target to temper cardiac inflammation. Copyright © 2015 the American Physiological Society.

  8. Downregulation of adenine nucleotide translocator 1 exacerbates tumor necrosis factor-α-mediated cardiac inflammatory responses

    PubMed Central

    Pan, Shi; Wang, Nadan; Bisetto, Sara; Yi, Bing

    2014-01-01

    Inflammation contributes significantly to cardiac dysfunction. Although the initial phase of inflammation is essential for repair and healing, excessive proinflammatory cytokines are detrimental to the heart. We found that adenine nucleotide translocator isoform-1 (ANT1) protein levels were significantly decreased in the inflamed heart of C57BL/6 mice following cecal ligation and puncture. To understand the molecular mechanisms involved, we performed small-interfering RNA-mediated knockdown of ANT1 and studied tumor necrosis factor-α (TNFα)-induced inflammatory responses in myocardium-derived H9c2 cells and cardiomyocytes. ANT1 knockdown significantly increased swollen mitochondria and mitochondrial reactive oxygen species, concomitant with increased TNFα-induced NF-κB reporter gene activity and interleukin-6 and TNFα expression. A mitochondrial-targeted antioxidant mito-TEMPO attenuated TNFα-induced mitochondrial reactive oxygen species, NF-κB reporter gene activity, and cytokine expression in ANT1 knockdown cells. Interestingly, TNFα or lipopolysaccharide (LPS) treatment significantly decreased ANT1 protein levels, suggesting a feed-forward regulation of proinflammatory cytokine expression activated by ANT1 downregulation. These data suggest that ANT1 downregulation contributes to cardiac inflammation post-cecal ligation and puncture. Preventing ANT1 downregulation could provide a novel molecular target to temper cardiac inflammation. PMID:25380814

  9. Role of Eosinophils and Tumor Necrosis Factor Alpha in Interleukin-25-Mediated Protection from Amebic Colitis.

    PubMed

    Noor, Zannatun; Watanabe, Koji; Abhyankar, Mayuresh M; Burgess, Stacey L; Buonomo, Erica L; Cowardin, Carrie A; Petri, William A

    2017-02-28

    The parasite Entamoeba histolytica is a cause of diarrhea in infants in low-income countries. Previously, it was shown that tumor necrosis factor alpha (TNF-α) production was associated with increased risk of E. histolytica diarrhea in children. Interleukin-25 (IL-25) is a cytokine that is produced by intestinal epithelial cells that has a role in maintenance of gut barrier function and inhibition of TNF-α production. IL-25 expression was decreased in humans and in the mouse model of amebic colitis. Repletion of IL-25 blocked E. histolytica infection and barrier disruption in mice, increased gut eosinophils, and suppressed colonic TNF-α. Depletion of eosinophils with anti-Siglec-F antibody prevented IL-25-mediated protection. In contrast, depletion of TNF-α resulted in resistance to amebic infection. We concluded that IL-25 provides protection from amebiasis, which is dependent upon intestinal eosinophils and suppression of TNF-α.IMPORTANCE The intestinal epithelial barrier is important for protection from intestinal amebiasis. We discovered that the intestinal epithelial cytokine IL-25 was suppressed during amebic colitis in humans and that protection could be restored in the mouse model by IL-25 administration. IL-25 acted via eosinophils and suppressed TNF-α. This work illustrates a previously unrecognized pathway of innate mucosal immune response. Copyright © 2017 Noor et al.

  10. Immune-mediated inflammatory reactions and tumors as skin side effects of inflammatory bowel disease therapy.

    PubMed

    Marzano, Angelo V; Borghi, Alessandro; Meroni, Pier Luigi; Crosti, Carlo; Cugno, Massimo

    2014-05-01

    All drugs currently used for treating patients with inflammatory bowel disease (IBD - including Crohn's disease and ulcerative colitis) have the potential to induce skin lesions ranging from mild eruptions to more serious and widespread clinical presentations. The number of cutaneous adverse reactions due to IBD therapies is progressively increasing and the most frequently involved drugs are thiopurines and biologics like tumor necrosis factor (TNF)-α antagonists. The main drug-induced cutaneous manifestations are non-melanoma skin cancer (NMSC), notably basal cell and squamous cell carcinomas, and viral skin infections for thiopurines and psoriasiform, eczematoid and lichenoid eruptions as well as skin infections and cutaneous lupus erythematosus for biologics. Cutaneous manifestations should be promptly recognized and correctly diagnosed in order to quickly establish an adequate therapy. The main treatment for NMSC is surgical excision whereas the management of immune-mediated inflammatory skin reactions varies from topical therapy for mild presentations to the shift to another drug alone or in combination with corticosteroids for extensive eruptions.

  11. E1A RNA transcripts amplify adenovirus-mediated tumor reduction.

    PubMed

    Dion, L D; Goldsmith, K T; Strong, T V; Bilbao, G; Curiel, D T; Garver, R I

    1996-11-01

    Previous work by this group has established that E1-defective, recombinant adenoviruses can be replication-enabled by the codelivery of a plasmid encoding the deleted E1 functions, a strategy now designated conditional replication-enablement system for adenovirus (CRESA). In the studies reported here, the original replication-enabling plasmid was replaced by two separate plasmids that encoded the necessary E1A and E1B functions, respectively. An RNA transcript encoding the requisite E1A functions was shown to substitute functionally for the E1A plasmid without significant loss of new adenovirus production in in vitro experiments. No replication competent adenovirus was detectable in the cells treated with the plasmids, or the RNA and plasmid combinations. Subcutaneous human tumor nodules containing a fraction of cells cotransduced with the replication-enabling RNA + DNA and an adenovirus containing a herpes simplex virus thymidine kinase (HSVtk) expression cassette were reduced to a greater extent than control nodules containing the same fraction of cells cotransduced with the virus and an irrelevant plasmid. These experiments show that an E1-defective adenovirus can be conditionally replication-enabled by an RNA transcript encoding the required E1 functions, and that the replication-enablement is sufficient to produce an augmentation of an adenovirus-mediated therapeutic effect in vivo.

  12. Up-regulation of clusterin during phthalocyanine 4 photodynamic therapy-mediated apoptosis of tumor cells and ablation of mouse skin tumors.

    PubMed

    Kalka, K; Ahmad, N; Criswell, T; Boothman, D; Mukhtar, H

    2000-11-01

    Photodynamic therapy (PDT) using the silicon phthalocyanine photo-sensitizer Pc 4 is an oxidative stress associated with the induction of apoptosis in many cancer cells in vitro and in vivo. The mechanisms of PDT-induced tumor cell killing leading to apoptosis are incompletely understood. Clusterin, a widely expressed glycoprotein, is induced in tissues regressing as a consequence of oxidative stress-mediated cell death. Treatment of apoptosis-sensitive human epidermoid carcinoma cells (A431) with PDT resulted in significant up-regulation of clusterin with a maximum at 12 h after treatment, whereas clusterin levels in Pc 4-PDT-treated, apoptosis-resistant, radiation-induced fibrosarcoma (RIF-1) cells remained unchanged. The i.v. administration of Pc 4 to mice bearing chemically or UVB radiation-induced skin papillomas, followed by light application, led to increased clusterin protein expression, peaking 24 h after the treatment, when tumor regression was apparently visible. These data, for the first time, demonstrate the involvement of clusterin in PDT-mediated cell death and during tumor regression. This may have relevance in improving the efficacy of PDT using pharmacological inducers of clusterin.

  13. Adenovirus-mediated ING4 Gene Transfer in Osteosarcoma Suppresses Tumor Growth via Induction of Apoptosis and Inhibition of Tumor Angiogenesis.

    PubMed

    Xu, Ming; Xie, Yufeng; Sheng, Weihua; Miao, Jingcheng; Yang, Jicheng

    2015-10-01

    The inhibitor of growth (ING) family proteins have been defined as candidate tumor suppressors. ING4 as a novel member of ING family has potential tumor-suppressive effects via multiple pathways. However, the therapeutic effect of adenovirus-mediated ING4 (Ad-ING4) gene transfer in human osteosarcoma is still unknown. In this study, we explored the in vitro and in vivo antitumor activity of Ad-ING4 in human osteosarcoma and its potential mechanism using a MG-63 human osteosarcoma cell line. We demonstrated that Ad-ING4 induced significant growth inhibition and apoptosis, upregulated the expression of P21, P27 and Bax, downregulated the Bcl-2 expression and activated Caspase-3 in MG-63 human osteosarcoma cells. Moreover, intratumoral injections of Ad-ING4 in athymic nude mice bearing MG-63 human osteosarcoma tumors significantly suppressed osteosarcoma xenografted tumor growth, increased the expression of P21, P27 and Bax, reduced the Bcl-2 and CD34 expression and microvessel density (MVD) in tumors. This retarded MG-63 osteosarcoma growth in vitro and in vivo in an athymic nude mouse model elicited by Ad-ING4 was closely associated with the increase in the expression of cell cycle-related molecules P21 and P27, decrease in the ratio of anti- to pro-apoptotic molecules Bcl-2/Bax followed by the activation of Caspase-3 leading to apoptosis via intrinsic apoptotic pathways, and the inhibition of tumor angiogenesis. Thus, our results indicate that Ad-ING4 is a potential candidate for human osteosarcoma gene therapy. © The Author(s) 2014.

  14. Characterization of a novel bispecific antibody that mediates Fcgamma receptor type I-dependent killing of tumor-associated glycoprotein-72-expressing tumor cells.

    PubMed

    Russoniello, C; Somasundaram, C; Schlom, J; Deo, Y M; Keler, T

    1998-09-01

    A bispecific antibody was made by chemical conjugation of Fab' fragments from humanized antibodies specific for tumor-associated glycoprotein-72 (TAG-72) and high-affinity immunoglobulin receptor, FcgammaA receptor type I (FcgammaRI). The purified anti-TAG-72 x anti-FcgammaRI (HCC49xH22) bispecific antibody had an approximate Mr of 111,000, consistent with a F(ab')2, and bound specifically to KLEB and LS174T tumor cell lines, which express the TAG-72 tumor antigen. Furthermore, HCC49x H22 was shown to simultaneously bind to KLEB cells and a soluble FcgammaRI fusion protein, demonstrating the bifunctional nature of the molecule. Using IFN-gamma-treated monocytes as effector cells, concentrations of the bispecific antibody in the range of 1-10,000 ng/ml mediated specific lysis of TAG-72-positive tumor cells. In contrast, the bispecific antibody did not promote antibody-dependent cellular cytotoxicity of a cell line that was negative for TAG-72 antigen. Importantly, the antibody-dependent cellular cytotoxicity activity of the bispecific antibody was significantly greater than that of the monoclonal antibody HCC49. These in vitro data indicate that the humanized bispecific antibody HCC49xH22 has the appropriate specificity and functional activity for further evaluation as potential immunotherapy for TAG-72-positive malignancies.

  15. Stereotactic Radiation Therapy Augments Antigen-Specific PD-1-Mediated Anti-Tumor Immune Responses via Cross-Presentation of Tumor Antigen

    PubMed Central

    Sharabi, Andrew B.; Nirschl, Christopher J.; Kochel, Christina M.; Nirschl, Thomas R.; Francisca, Brian J.; Velarde, Esteban; Deweese, Theodore L.; Drake, Charles G.

    2014-01-01

    The immune-modulating effects of radiation therapy have gained considerable interest recently and there have been multiple reports of synergy between radiation and immunotherapy. However, additional pre-clinical studies are needed to demonstrate the antigen-specific nature of radiation-induced immune responses and elucidate potential mechanisms of synergy with immunotherapy. Here we demonstrate the ability of stereotactic radiotherapy to induce endogenous antigen-specific immune responses when combined with anti-PD-1 checkpoint blockade immunotherapy. Using the small animal radiation research platform (SARRP), image-guided stereotactic radiotherapy delivered to B16-OVA melanoma or 4T1-HA breast carcinoma tumors resulted in the development of antigen-specific T and B cell-mediated immune responses. These immune-stimulating effects of radiotherapy were significantly increased when combined with either anti-PD-1 therapy or regulatory T cell (Treg) depletion, resulting in improved local tumor control. Phenotypic analyses of antigen-specific CD8 T cells revealed that radiotherapy increased the percentage of antigen-experienced T cells and effector memory T cells. Mechanistically we found that radiotherapy up-regulates tumor-associated antigen-MHC complexes, enhances antigen cross-presentation in the draining lymph node, and increased T-cell infiltration into tumors. These findings demonstrate the ability of radiotherapy to prime an endogenous antigen-specific immune response and provide additional mechanistic rationale for combining radiation with PD-1 blockade in the clinic. PMID:25527358

  16. Expression of tumor necrosis factor-alpha-mediated genes predicts recurrence-free survival in lung cancer.

    PubMed

    Wang, Baohua; Song, Ning; Yu, Tong; Zhou, Lianya; Zhang, Helin; Duan, Lin; He, Wenshu; Zhu, Yihua; Bai, Yunfei; Zhu, Miao

    2014-01-01

    In this study, we conducted a meta-analysis on high-throughput gene expression data to identify TNF-α-mediated genes implicated in lung cancer. We first investigated the gene expression profiles of two independent TNF-α/TNFR KO murine models. The EGF receptor signaling pathway was the top pathway associated with genes mediated by TNF-α. After matching the TNF-α-mediated mouse genes to their human orthologs, we compared the expression patterns of the TNF-α-mediated genes in normal and tumor lung tissues obtained from humans. Based on the TNF-α-mediated genes that were dysregulated in lung tumors, we developed a prognostic gene signature that effectively predicted recurrence-free survival in lung cancer in two validation cohorts. Resampling tests suggested that the prognostic power of the gene signature was not by chance, and multivariate analysis suggested that this gene signature was independent of the traditional clinical factors and enhanced the identification of lung cancer patients at greater risk for recurrence.

  17. Adenosine A2A Receptors Mediate Anti-Inflammatory Effects of Electroacupuncture on Synovitis in Mice with Collagen-Induced Arthritis

    PubMed Central

    Li, Qi-hui; Xie, Wen-xia; Li, Xiao-pei; Huang, Ka-te; Du, Zhong-heng; Cong, Wen-jie; Zhou, Long-hua; Ye, Tian-shen; Chen, Jiang-Fan

    2015-01-01

    To study the role of adenosine A2A receptor (A2AR) in mediating the anti-inflammatory effect of electroacupuncture (EA) on synovitis in collagen-induced arthritis (CIA), C57BL/6 mice were divided into five treatment groups: Sham-control, CIA-control, CIA-EA, CIA-SCH58261 (A2AR antagonist), and CIA-EA-SCH58261. All mice except those in the Sham-control group were immunized with collagen II for arthritis induction. EA treatment was administered using the stomach 36 and spleen 6 points, and stimulated with a continuous rectangular wave for 30 min daily. EA treatment and SCH58261 were administered daily from days 35 to 49 (n = 10). After treatment, X-ray radiography of joint bone morphology was established at day 60 and mouse blood was collected for ELISA determination of tumor necrosis factor alpha (TNF-α) levels. Mice were sacrificed and processed for histological examination of pathological changes of joint tissue, including hematoxylin-eosin staining and immunohistochemistry of A2AR expression. EA treatment resulted in significantly reduced pathological scores, TNF-α concentrations, and bone damage X-ray scores. Importantly, the anti-inflammatory and tissue-protective effect of EA treatment was reversed by coadministration of SCH58261. Thus, EA treatment exerts an anti-inflammatory effect resulting in significant protection of cartilage by activation of A2AR in the synovial tissue of CIA. PMID:25784951

  18. DNA Alkylating Therapy Induces Tumor Regression through an HMGB1-Mediated Activation of Innate Immunity

    PubMed Central

    Guerriero, Jennifer L.; Ditsworth, Dara; Catanzaro, Joseph M.; Sabino, Gregory; Furie, Martha B.; Kew, Richard R.; Crawford, Howard C.; Zong, Wei-Xing

    2011-01-01

    Dysregulation of apoptosis is associated with the development of human cancer and resistance to anticancer therapy. We have previously shown in tumor xenografts that DNA alkylating agents induce sporadic cell necrosis and regression of apoptosis-deficient tumors. Sporadic tumor cell necrosis is associated with extracellular release of cellular content such as the high mobility group box 1 (HMGB1) protein and subsequent recruitment of innate immune cells into the tumor tissue. It remained unclear whether HMGB1 and the activation of innate immunity played a role in tumor response to chemotherapy. In this study, we show that whereas DNA alkylating therapy leads to a complete tumor regression in an athymic mouse tumor xenograft model, it fails to do so in tumors deficient in HMGB1. The HMGB1-deficient tumors have an impaired ability to recruit innate immune cells including macrophages, neutrophils, and NK cells into the treated tumor tissue. Cytokine array analysis reveals that whereas DNA alkylating treatment leads to suppression of protumor cytokines such as IL-4, IL-10, and IL-13, loss of HMGB1 leads to elevated levels of these cytokines upon treatment. Suppression of innate immunity and HMGB1 using depleting Abs leads to a failure in tumor regression. Taken together, these results indicate that HMGB1 plays an essential role in activation of innate immunity and tumor clearance in response to DNA alkylating agents. PMID:21300822

  19. Cancer-induced defective cytotoxic T lymphocyte effector function: another mechanism how antigenic tumors escape immune-mediated killing.

    PubMed Central

    Radoja, S.; Frey, A. B.

    2000-01-01

    BACKGROUND: The notion that a deficit in immune cell functions permits tumor growth has received experimental support with the discovery of several different biochemical defects in T lymphocytes that infiltrate cancers. Decreased levels of enzymes involved with T-cell signal transduction have been reported by several laboratories, suggesting that tumors or host cells recruited to the tumor site actively down-regulate antitumor T-cell immune response. This permits tumor escape from immune-mediated killing. The possibility that defects in T-cell signal transduction can be reversed, which would potentially permit successful vaccination or adoptive immunotherapy, motivates renewed interest in the field. Summarizing the literature concerning tumor-induced T-cell dysfunction, we focus on the end stage of immune response to human cancer, that of defective cytotoxic T lymphocyte killing function. Based on the data from several laboratories, we hypothesize a biochemical mechanism that accounts for the unusual phenotype of antitumor T-cell accumulation in tumors, but with defective killing function. PMID:10972084

  20. Inhibition of T-lymphocyte-mediated tumor-specific lysis by alloantisera directed against the H-2 serological specificities of the tumor.

    PubMed

    Germain, R N; Dorf, M E; Benacerraf, B

    1975-10-01

    After appropriate in vivo or in vitro immunization, cytotoxic T lymphocytes (CTL) are generated which efficiently kill cells bearing particular membrane antigens in common with the immunizing cell (reviewed in reference 1). Such CTL have been most thoroughly studied in mice, employing alloimmunization with cells differing at the major histocompatibility locus, H-2. in such cases, the predominant cell surface antigens recognized by the CTL appear to be the molecules carrying the serologically defined H-2 specificities, coded for by the K and D regions of the H-2 complex (2). In other syngeneic models of cell-mediated specific cytolysis, involving lymphocyte chariomeningitis (LCM) virus- or ectromelia virus-infected cells or TNP-modified lymphoid cells, thymus-derived cells also constitute the main effector cell type. The CTL generated in these latter systems function most efficiently when virus-infected or TNP-modified target cells share identitites at the H-2K or H-2D loci with the effector CTL and stimulator cells (3-5). Another set of experimental systems in which CTL are generated and play a significant biological role is that of immunity to tumor-associated antigens (TAA) (6). The nature of the TAA which the CTL recognize is only beginning to be understood. Several recent reports indicated the existence of physiochemical and/or antigenic relationships between TAA and H-2 antigens (7,8). These relationships, together with the genetic restrictions cited above in the generation of CTL involving products of the H-2K or H-2D loci suggested the possibility that in certain tumor systems, the TAA which are able to most effectively stimulate CTL responses might be structurally similar to, or linked with, the H-2K or H- 2D molecules on the tumor surface. It has been previously demonstrated in allogenic models that antisera specific for the appropriate H-2K or H-2D products present on a target cell could specifically block CTL-mediated lysis (1,9). This report

  1. Inhibition of T-lymphocyte-mediated tumor-specific lysis by alloantisera directed against the H-2 serological specificities of the tumor

    PubMed Central

    Germain, RN; Dorf, ME; Benacerraf, B

    1975-01-01

    After appropriate in vivo or in vitro immunization, cytotoxic T lymphocytes (CTL) are generated which efficiently kill cells bearing particular membrane antigens in common with the immunizing cell (reviewed in reference 1). Such CTL have been most thoroughly studied in mice, employing alloimmunization with cells differing at the major histocompatibility locus, H-2. in such cases, the predominant cell surface antigens recognized by the CTL appear to be the molecules carrying the serologically defined H-2 specificities, coded for by the K and D regions of the H-2 complex (2). In other syngeneic models of cell-mediated specific cytolysis, involving lymphocyte chariomeningitis (LCM) virus- or ectromelia virus-infected cells or TNP-modified lymphoid cells, thymus-derived cells also constitute the main effector cell type. The CTL generated in these latter systems function most efficiently when virus-infected or TNP-modified target cells share identitites at the H-2K or H-2D loci with the effector CTL and stimulator cells (3-5). Another set of experimental systems in which CTL are generated and play a significant biological role is that of immunity to tumor-associated antigens (TAA) (6). The nature of the TAA which the CTL recognize is only beginning to be understood. Several recent reports indicated the existence of physiochemical and/or antigenic relationships between TAA and H-2 antigens (7,8). These relationships, together with the genetic restrictions cited above in the generation of CTL involving products of the H-2K or H-2D loci suggested the possibility that in certain tumor systems, the TAA which are able to most effectively stimulate CTL responses might be structurally similar to, or linked with, the H-2K or H- 2D molecules on the tumor surface. It has been previously demonstrated in allogenic models that antisera specific for the appropriate H-2K or H-2D products present on a target cell could specifically block CTL-mediated lysis (1,9). This report

  2. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition

    PubMed Central

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S.; Jones, David R.; Sadelain, Michel; Adusumilli, Prasad S.

    2016-01-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1–mediated (PD-1–mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB–based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies. PMID:27454297

  3. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition.

    PubMed

    Cherkassky, Leonid; Morello, Aurore; Villena-Vargas, Jonathan; Feng, Yang; Dimitrov, Dimiter S; Jones, David R; Sadelain, Michel; Adusumilli, Prasad S

    2016-08-01

    Following immune attack, solid tumors upregulate coinhibitory ligands that bind to inhibitory receptors on T cells. This adaptive resistance compromises the efficacy of chimeric antigen receptor (CAR) T cell therapies, which redirect T cells to solid tumors. Here, we investigated whether programmed death-1-mediated (PD-1-mediated) T cell exhaustion affects mesothelin-targeted CAR T cells and explored cell-intrinsic strategies to overcome inhibition of CAR T cells. Using an orthotopic mouse model of pleural mesothelioma, we determined that relatively high doses of both CD28- and 4-1BB-based second-generation CAR T cells achieved tumor eradication. CAR-mediated CD28 and 4-1BB costimulation resulted in similar levels of T cell persistence in animals treated with low T cell doses; however, PD-1 upregulation within the tumor microenvironment inhibited T cell function. At lower doses, 4-1BB CAR T cells retained their cytotoxic and cytokine secretion functions longer than CD28 CAR T cells. The prolonged function of 4-1BB CAR T cells correlated with improved survival. PD-1/PD-1 ligand [PD-L1] pathway interference, through PD-1 antibody checkpoint blockade, cell-intrinsic PD-1 shRNA blockade, or a PD-1 dominant negative receptor, restored the effector function of CD28 CAR T cells. These findings provide mechanistic insights into human CAR T cell exhaustion in solid tumors and suggest that PD-1/PD-L1 blockade may be an effective strategy for improving the potency of CAR T cell therapies.

  4. Inhibitor of Apoptosis Protein-1 Regulates Tumor Necrosis Factor-Mediated Destruction of Intestinal Epithelial Cells.

    PubMed

    Grabinger, Thomas; Bode, Konstantin J; Demgenski, Janine; Seitz, Carina; Delgado, M Eugenia; Kostadinova, Feodora; Reinhold, Cindy; Etemadi, Nima; Wilhelm, Sabine; Schweinlin, Matthias; Hänggi, Kay; Knop, Janin; Hauck, Christof; Walles, Heike; Silke, John; Wajant, Harald; Nachbur, Ueli; W Wei-Lynn, Wong; Brunner, Thomas

    2017-03-01

    Tumor necrosis factor (TNF) is a cytokine that promotes inflammation and contributes to pathogenesis of inflammatory bowel diseases. Unlike other cells and tissues, intestinal epithelial cells undergo rapid cell death upon exposure to TNF, by unclear mechanisms. We investigated the roles of inhibitor of apoptosis proteins (IAPs) in the regulation of TNF-induced cell death in the intestinal epithelium of mice and intestinal organoids. RNA from cell lines and tissues was analyzed by quantitative polymerase chain reaction, protein levels were analyzed by immunoblot assays. BIRC2 (also called cIAP1) was expressed upon induction from lentiviral vectors in young adult mouse colon (YAMC) cells. YAMC cells, the mouse colon carcinoma cell line MC38, the mouse macrophage cell line RAW 264.7, or mouse and human organoids were incubated with second mitochondrial activator of caspases (Smac)-mimetic compound LCL161 or recombinant TNF-like weak inducer of apoptosis (TNFSF12) along with TNF, and cell death was quantified. C57BL/6 mice with disruption of Xiap, Birc2 (encodes cIAP1), Birc3 (encodes cIAP2), Tnfrsf1a, or Tnfrsf1b (Tnfrsf1a and b encode TNF receptors) were injected with TNF or saline (control); liver and intestinal tissues were collected and analyzed for apoptosis induction by cleaved caspase 3 immunohistochemistry. We also measured levels of TNF and alanine aminotransferase in serum from mice. YAMC cells, and mouse and human intestinal organoids, died rapidly in response to TNF. YAMC and intestinal crypts expressed lower levels of XIAP, cIAP1, cIAP2, and cFLIP than liver tissue. Smac-mimetics reduced levels of cIAP1 and XIAP in MC38 and YAMC cells, and Smac-mimetics and TNF-related weak inducer of apoptosis increased TNF-induced cell death in YAMC cells and organoids-most likely by sequestering and degrading cIAP1. Injection of TNF greatly increased levels of cell death in intestinal tissue of cIAP1-null mice, compared with wild-type C57BL/6 mice, cIAP2-null mice, or

  5. Metalloprotease-mediated tumor cell shedding of B7-H6, the ligand of the natural killer cell-activating receptor NKp30.

    PubMed

    Schlecker, Eva; Fiegler, Nathalie; Arnold, Annette; Altevogt, Peter; Rose-John, Stefan; Moldenhauer, Gerhard; Sucker, Antje; Paschen, Annette; von Strandmann, Elke Pogge; Textor, Sonja; Cerwenka, Adelheid

    2014-07-01

    Natural killer (NK) cells are potent immune effector cells capable of mediating antitumor responses. Thus, during immunoediting, tumor cell populations evolve strategies to escape NK-cell-mediated recognition. In this study, we report a novel mechanism of immune escape involving tumor cell shedding of B7-H6, a ligand for the activating receptor NKp30 that mediates NK-cell binding and NK-cell-mediated killing. Tumor cells from different cancer entities released B7-H6 by ectodomain shedding mediated by the cell surface proteases "a disintegrin and metalloproteases" (ADAM)-10 and ADAM-17, as demonstrated through the use of pharmacologic inhibitors or siRNA-mediated gene attenuation. Inhibiting this proteolytic shedding process increased the levels of B7-H6 expressed on the surface of tumor cells, enhancing NKp30-mediated activation of NK cells. Notably, we documented elevated levels of soluble B7-H6 levels in blood sera obtained from a subset of patients with malignant melanoma, compared with healthy control individuals, along with evidence of elevated B7-H6 expression in melanoma specimens in situ. Taken together, our results illustrated a novel mechanism of immune escape in which tumor cells impede NK-mediated recognition by metalloprotease-mediated shedding of B7-H6. One implication of our findings is that therapeutic inhibition of specific metalloproteases may help support NK-cell-based cancer therapy.

  6. Involvement of NADPH oxidase in A2A adenosine receptor-mediated increase in coronary flow in isolated mouse hearts.

    PubMed

    Zhou, Zhichao; Rajamani, Uthra; Labazi, Hicham; Tilley, Stephen L; Ledent, Catherine; Teng, Bunyen; Mustafa, S Jamal

    2015-06-01

    Adenosine increases coronary flow mainly through the activation of A2A and A2B adenosine receptors (ARs). However, the mechanisms for the regulation of coronary flow are not fully understood. We previously demonstrated that adenosine-induced increase in coronary flow is in part through NADPH oxidase (Nox) activation, which is independent of activation of either A1 or A3ARs. In this study, we hypothesize that adenosine-mediated increase in coronary flow through Nox activation depends on A2A but not A2BARs. Functional studies were conducted using isolated Langendorff-perfused mouse hearts. Hydrogen peroxide (H2O2) production was measured in isolated coronary arteries from WT, A2AAR knockout (KO), and A2BAR KO mice using dichlorofluorescein immunofluorescence. Adenosine-induced concentration-dependent increase in coronary flow was attenuated by the specific Nox2 inhibitor gp91 ds-tat or reactive oxygen species (ROS) scavenger EUK134 in both WT and A2B but not A2AAR KO isolated hearts. Similarly, the A2AAR selective agonist CGS-21680-induced increase in coronary flow was significantly blunted by Nox2 inhibition in both WT and A2BAR KO, while the A2BAR selective agonist BAY 60-6583-induced increase in coronary flow was not affected by Nox2 inhibition in WT. In intact isolated coronary arteries, adenosine-induced (10 μM) increase in H2O2 formation in both WT and A2BAR KO mice was attenuated by Nox2 inhibition, whereas adenosine failed to increase H2O2 production in A2AAR KO mice. In conclusion, adenosine-induced increase in coronary flow is partially mediated by Nox2-derived H2O2, which critically depends upon the presence of A2AAR.

  7. Annexin A2 is involved in antiphospholipid antibody-mediated pathogenic effects in vitro and in vivo.

    PubMed

    Romay-Penabad, Zurina; Montiel-Manzano, Maria Guadalupe; Shilagard, Tuya; Papalardo, Elizabeth; Vargas, Gracie; Deora, Arun B; Wang, Michael; Jacovina, Andrew T; Garcia-Latorre, Ethel; Reyes-Maldonado, Elba; Hajjar, Katherine A; Pierangeli, Silvia S

    2009-10-01

    Antiphospholipid (aPL) antibodies recognize receptor-bound beta(2) glycoprotein I (beta(2)GPI) on target cells, and induce an intracellular signaling and a procoagulant/proinflammatory phenotype that leads to thrombosis. Evidence indicates that annexin A2 (A2), a receptor for tissue plasminogen activator and plasminogen, binds beta(2)GPI on target cells. However, whether A2 mediates pathogenic effects of aPL antibodies in vivo is unknown. In this work, we studied the effects of human aPL antibodies in A2-deficient (A2(-/-)) mice. A2(-/-) and A2(+/+) mice were injected with immunoglobulin G (IgG) isolated from either a patient with antiphospholipid syndrome (IgG-APS), a healthy control subject (IgG-normal human serum), a monoclonal anti-beta(2)GPI antibody (4C5), an anti-A2 monoclonal antibody, or monoclonal antibody of irrelevant specificity as control. We found that, after IgG-APS or 4C5 injections and vascular injury, mean thrombus size was significantly smaller and tissue factor activity was significantly less in A2(-/-) mice compared with A2(+/+) mice. The expression of vascular cell adhesion molecule-1 induced by IgG-APS or 4C5 in explanted A2(-/-) aorta was also significantly reduced compared with A2(+/+) mice. Interestingly, anti-A2 monoclonal antibody significantly decreased aPL-induced expression of intercellular cell adhesion molecule-1, E-selectin, and tissue factor activity on cultured endothelial cells. Together, these data indicate for the first time that A2 mediates the pathogenic effects of aPL antibodies in vivo and in vitro APS.

  8. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response.

    PubMed

    Surace, Laura; Lysenko, Veronika; Fontana, Andrea Orlando; Cecconi, Virginia; Janssen, Hans; Bicvic, Antonela; Okoniewski, Michal; Pruschy, Martin; Dummer, Reinhard; Neefjes, Jacques; Knuth, Alexander; Gupta, Anurag; van den Broek, Maries

    2015-04-21

    Radiotherapy induces DNA damage and cell death, but recent data suggest that concomitant immune stimulation is an integral part of the therapeutic action of ionizing radiation. It is poorly understood how radiotherapy supports tumor-specific immunity. Here we report that radiotherapy induced tumor cell death and transiently activated complement both in murine and human tumors. The local production of pro-inflammatory anaphylatoxins C3a and C5a was crucial to the tumor response to radiotherapy and concomitant stimulation of tumor-specific immunity. Dexamethasone, a drug frequently given during radiotherapy, limited complement activation and the anti-tumor effects of the immune system. Overall, our findings indicate that anaphylatoxins are key players in radiotherapy-induced tumor-specific immunity and the ensuing clinical responses.

  9. Fusogenic-oligoarginine peptide-mediated silencing of the CIP2A oncogene suppresses oral cancer tumor growth in vivo.

    PubMed

    Alexander-Bryant, Angela A; Dumitriu, Anca; Attaway, Christopher C; Yu, Hong; Jakymiw, Andrew

    2015-11-28

    Intracellular delivery and endosomal escape of functional small interfering RNAs (siRNAs) remain major barriers limiting the clinical translation of RNA interference (RNAi)-based therapeutics. Recently, we demonstrated that a cell-penetrating endosome-disruptive peptide we synthesized, termed 599, enhanced the intracellular delivery and bioavailability of siRNAs designed to target the CIP2A oncoprotein (siCIP2A) into oral cancer cells and consequently inhibited oral cancer cell invasiveness and anchorage-independent growth in vitro. Thus, to further assess the therapeutic potential of the 599 peptide in mediating RNAi-based therapeutics for oral cancer and its prospective applicability in clinical settings, the objective of the current study was to determine whether intratumoral dosing of the 599 peptide-siCIP2A complex could induce silencing of CIP2A and consequently impair tumor growth using a xenograft oral cancer mouse model. Our results demonstrate that the 599 peptide is able to protect siRNAs from degradation by serum and ribonucleases in vitro and upon intratumoral injection in vivo, confirming the stability of the 599 peptide-siRNA complex and its potential for therapeutic utility. Moreover, 599 peptide-mediated delivery of siCIP2A to tumor tissue induces CIP2A silencing without any associated toxicity, consequently resulting in reduction of the mitotic index and significant inhibition of tumor growth. Together, these data suggest that the 599 peptide carrier is a clinically effective mediator of RNAi-based cancer therapeutics.

  10. Hypoxia-induced angiotensin II by the lactate-chymase-dependent mechanism mediates radioresistance of hypoxic tumor cells

    PubMed Central

    Xie, Guozhu; Liu, Ying; Yao, Qiwei; Zheng, Rong; Zhang, Lanfang; Lin, Jie; Guo, Zhaoze; Du, Shasha; Ren, Chen; Yuan, Quan; Yuan, Yawei

    2017-01-01

    The renin-angiotensin system (RAS) is a principal determinant of arterial blood pressure and fluid and electrolyte balance. RAS component dysregulation was recently found in some malignancies and correlated with poor patient outcomes. However, the exact mechanism of local RAS activation in tumors is still unclear. Here, we find that the local angiotensin II predominantly exists in the hypoxic regions of tumor formed by nasopharyngeal carcinoma CNE2 cells and breast cancer MDA-MB-231 cells, where these tumor cells autocrinely produce angiotensin II by a chymase-dependent rather than an angiotensin converting enzyme-dependent mechanism. We further demonstrate in nasopharyngeal carcinoma CNE2 and 5–8F cells that this chymase-dependent effect is mediated by increased levels of lactate, a by-product of glycolytic metabolism. Finally, we show that the enhanced angiotensin II plays an important role in the intracellular accumulation of HIF-1α of hypoxic nasopharyngeal carcinoma cells and mediates the radiation-resistant phenotype of these nasopharyngeal carcinoma cells. Thus, our findings reveal the critical role of hypoxia in producing local angiotensin II by a lactate-chymase-dependent mechanism and highlight the importance of local angiotensin II in regulating radioresistance of hypoxic tumor cells. PMID:28205588

  11. Vitamin D-mediated regulation of CYP21A2 transcription - a novel mechanism for vitamin D action.

    PubMed

    Lundqvist, Johan; Wikvall, Kjell; Norlin, Maria

    2012-10-01

    1α,25-Dihydroxyvitamin D(3) has recently been reported to decrease expression and activity of CYP21A2. In this paper, we have studied the mechanisms for the 1α,25-dihydroxyvitamin D(3)-mediated effect on CYP21A2 transcriptional rate. We have studied the effects of 1α,25-dihydroxyvitamin D(3) using luciferase reporter constructs containing different lengths of the CYP21A2 promoter. These constructs were transfected into cell lines derived from human and mouse adrenal cortex. The mechanism for the effects of vitamin D on the CYP21A2 promoter was studied using chromatin immunoprecipitation assay, mutagenesis and gene silencing by siRNA. 1α,25-Dihydroxyvitamin D(3) was found to alter the promoter activity via a VDR-mediated mechanism, including the comodulators VDR interacting repressor (VDIR) and Williams syndrome transcription factor (WSTF). The involvement of comodulator VDIR was confirmed by gene silencing. We identified a vitamin D response element in the CYP21A2 promoter. Interaction between this novel response element and VDR, WSTF and VDIR was shown by chromatin immunoprecipitation assay. When this sequence was deleted, the effect of 1α,25-dihydroxyvitamin D(3) was abolished, indicating that this sequence in the CYP21A2 promoter functions as a vitamin D response element. Interestingly, an altered balance between nuclear receptors and comodulators reversed the suppressing effect of vitamin D to a stimulatory effect. This paper reports data important for the understanding of the mechanisms for vitamin D-mediated suppression of gene expression as well as for the vitamin D-mediated effects on CYP21A2. We report a novel mechanism for effects of 1α,25-dihydroxyvitamin D(3). Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression.

    PubMed

    Yang, H; Pellegrini, L; Napolitano, A; Giorgi, C; Jube, S; Preti, A; Jennings, C J; De Marchis, F; Flores, E G; Larson, D; Pagano, I; Tanji, M; Powers, A; Kanodia, S; Gaudino, G; Pastorino, S; Pass, H I; Pinton, P; Bianchi, M E; Carbone, M

    2015-06-11

    High-mobility group box 1 (HMGB1) is an inflammatory molecule that has a critical role in the initiation and progression of malignant mesothelioma (MM). Aspirin (acetylsalicylic acid, ASA) is the most widely used nonsteroidal anti-inflammatory drug that reduces the incidence, metastatic potential and mortality of many inflammation-induced cancers. We hypothesized that ASA may exert anticancer properties in MM by abrogating the carcinogenic effects of HMGB1. Using HMGB1-secreting and -non-secreting human MM cell lines, we determined whether aspirin inhibited the hallmarks of HMGB1-induced MM cell growth in vitro and in vivo. Our data demonstrated that ASA and its metabolite, salicylic acid (SA), inhibit motility, migration, invasion and anchorage-independent colony formation of MM cells via a novel HMGB1-mediated mechanism. ASA/SA, at serum concentrations comparable to those achieved in humans taking therapeutic doses of aspirin, and BoxA, a specific inhibitor of HMGB1, markedly reduced MM growth in xenograft mice and significantly improved survival of treated animals. The effects of ASA and BoxA were cyclooxygenase-2 independent and were not additive, consistent with both acting via inhibition of HMGB1 activity. Our findings provide a rationale for the well documented, yet poorly understood antitumorigenic activity of aspirin, which we show proceeds via HMGB1 inhibition. Moreover, the use of BoxA appears to allow a more efficient HMGB1 targeting while eluding the known gastrointestinal side effects of ASA. Our findings are directly relevant to MM. Given the emerging importance of HMGB1 and its tumor-promoting functions in many cancer types, and of aspirin in cancer prevention and therapy, our investigation is poised to provide broadly applicable information.

  13. DR3 signaling protects against cisplatin nephrotoxicity mediated by tumor necrosis factor.

    PubMed

    Al-Lamki, Rafia S; Lu, WanHua; Finlay, Sarah; Twohig, Jason P; Wang, Eddie C Y; Tolkovsky, Aviva M; Bradley, John R

    2012-04-01

    The expression of death receptor 3 (DR3), a member of the tumor necrosis factor (TNF) receptor superfamily, is up-regulated in human tubular epithelial cells (TECs) during renal injury, but its function in this setting remains unknown. We used cisplatin to induce renal injury in wild-type (DR3(+/+)) or congenitally deficient DR3(-/-) mice to examine the in vivo role of DR3. Cisplatin induced the expression of DR3, its ligand, TNF-like ligand 1A (TL1A), and TNF in TECs, as observed in human renal injury. Cisplatin increased apoptotic death of DR3(-/-) TECs by twofold compared with DR3(+/+) TECs, whereas it reduced the number of tubules expressing phospho-NF-κBp65(Ser276) by 50% at 72 hours. Similar degrees of induction of DR3, TL1A, and TNF, and changes in apoptosis and phospho-NF-κBp65(Ser276), were obtained in mouse kidney organ cultures treated with cisplatin for 3 hours, suggesting a direct effect on TECs. TNF was implicated in mediating cisplatin-induced tubular damage given that the in vivo co-administration of GM6001, an inhibitor of TNF maturation and release, significantly reduced TNF production and tubular damage. Moreover, TNF exacerbated, whereas TL1A reduced, cisplatin-induced apoptosis in the DR3(+/+) mouse proximal tubule cell line, TKPTS. Our data demonstrate that cisplatin-induced nephrotoxicity is mitigated by DR3 signaling, suggesting that this occurs by antagonizing pro-apoptotic signals induced by TNF. Therefore, activating DR3 may be beneficial in reducing acute kidney injury. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Tumor protein 53-induced nuclear protein 1 is a major mediator of p53 antioxidant function.

    PubMed

    Cano, Carla E; Gommeaux, Julien; Pietri, Sylvia; Culcasi, Marcel; Garcia, Stéphane; Seux, Mylène; Barelier, Sarah; Vasseur, Sophie; Spoto, Rose P; Pébusque, Marie-Josèphe; Dusetti, Nelson J; Iovanna, Juan L; Carrier, Alice

    2009-01-01

    p53 exerts its tumor suppressor function mainly through transcriptional induction of target genes involved in several processes, including cell cycle checkpoints, apoptosis, and regulation of cell redox status. p53 antioxidant function is dependent on its transcriptional activity and proceeds by sequential induction of antioxidant and proapoptotic targets. However, none of the thus far renowned p53 targets have proved able to abolish on their own the intracellular reactive oxygen species (ROS) accumulation caused by p53 deficiency, therefore pointing to the existence of other prominent and yet unknown p53 antioxidant targets. Here, we show that TP53INP1 represents such a target. Indeed, TP53INP1 transcript induction on oxidative stress is strictly dependent on p53. Mouse embryonic fibroblasts (MEF) and splenocytes derived from TP53INP1-deficient (inp1(-/-)) mice accumulate intracellular ROS, whereas overexpression of TP53INP1 in p53-deficient MEFs rescues ROS levels to those of p53-proficient cells, indicating that TP53INP1 antioxidant function is p53 independent. Furthermore, accumulation of ROS in inp1(-/-) cells on oxidant challenge is associated with decreased expression of p53 targets p21/Cdkn1a, Sesn2, TAp73, Puma, and Bax. Mutation of p53 Ser(58) (equivalent to human p53 Ser(46)) abrogates transcription of these genes, indicating that TP53INP1-mediated p53 Ser(58) phosphorylation is implicated in this process. In addition, TP53INP1 deficiency results in an antioxidant (N-acetylcysteine)-sensitive acceleration of cell proliferation. Finally, TP53INP1 deficiency increases oxidative stress-related lymphoma incidence and decreases survival of p53(+/-) mice. In conclusion, our data show that TP53INP1 is a major actor of p53-driven oxidative stress response that possesses both a p53-independent intracellular ROS regulatory function and a p53-dependent transcription regulatory function.

  15. Prevention of KLF4-mediated tumor initiation and malignant transformation by UAB30 rexinoid

    PubMed Central

    Jiang, Wen; Deng, Wentao; Bailey, Sarah K.; Nail, Clint D.; Frost, Andra R.; Brouillette, Wayne J.; Muccio, Donald D.; Grubbs, Clinton J.; Ruppert, J. Michael; Lobo-Ruppert, Susan M.

    2009-01-01

    The transcription factor KLF4 acts in post-mitotic epithelial cells to promote differentiation, and functions in a context-dependent fashion as an oncogene. In the skin KLF4 is co-expressed with the nuclear receptors RARγ and RXRα, and formation of the skin permeability barrier is a shared function of these three proteins. We utilized a KLF4-transgenic mouse model of skin cancer in combination with cultured epithelial cells to examine functional interactions between KLF4 and retinoic acid receptors. In cultured cells, activation of a conditional, KLF4-estrogen receptor fusion protein by 4-hydroxytamoxifen resulted in rapid upregulation of transcripts for nuclear receptors including RARγ and RXRα. We tested retinoids in epithelial cell transformation assays, including an RAR-selective agonist (all-trans RA), an RXR-selective agonist (9-cis UAB30, rexinoid), and a pan agonist (9-cis RA). Unlike for several other genes, transformation by KLF4 was inhibited by each retinoid, implicating distinct nuclear receptor heterodimers as modulators of KLF4 transforming activity. When RXRα expression was suppressed by RNAi in cultured cells, transformation was promoted and the inhibitory effect of 9-cis UAB30 was attenuated. Similarly as shown for other mouse models of skin cancer, rexinoid prevented skin tumor initiation resulting from induction of KLF4 in basal keratinocytes. Rexinoid permitted KLF4 expression and KLF4-induced cell cycling, but attenuated the KLF4-induced misexpression of cytokeratin 1 in basal cells. Neoplastic lesions including hyperplasia, dysplasia and squamous cell carcinoma-like lesions were prevented for up to 30 days. Taken together, the results identify retinoid receptors including RXRα as ligand-dependent inhibitors of KLF4-mediated transformation or tumorigenesis. PMID:19197145

  16. Prevention of KLF4-mediated tumor initiation and malignant transformation by UAB30 rexinoid.

    PubMed

    Jiang, Wen; Deng, Wentao; Bailey, Sarah K; Nail, Clint D; Frost, Andra R; Brouillette, Wayne J; Muccio, Donald D; Grubbs, Clinton J; Ruppert, J Michael; Lobo-Ruppert, Susan M

    2009-02-01

    The transcription factor KLF4 acts in post-mitotic epithelial cells to promote differentiation and functions in a context-dependent fashion as an oncogene. In the skin KLF4 is co-expressed with the nuclear receptors RARgamma and RXRalpha, and formation of the skin permeability barrier is a shared function of these three proteins. We utilized a KLF4-transgenic mouse model of skin cancer in combination with cultured epithelial cells to examine functional interactions between KLF4 and retinoic acid receptors. In cultured cells, activation of a conditional, KLF4-estrogen receptor fusion protein by 4-hydroxytamoxifen resulted in rapid upregulation of transcripts for nuclear receptors including RARgamma and RXRalpha. We tested retinoids in epithelial cell transformation assays, including an RAR-selective agonist (all-trans RA), an RXR-selective agonist (9-cis UAB30, rexinoid), and a pan agonist (9-cis RA). Unlike for several other genes, transformation by KLF4 was inhibited by each retinoid, implicating distinct nuclear receptor heterodimers as modulators of KLF4 transforming activity. When RXRalpha expression was suppressed by RNAi in cultured cells, transformation was promoted and the inhibitory effect of 9-cis UAB30 was attenuated. Similarly as shown for other mouse models of skin cancer, rexinoid prevented skin tumor initiation resulting from induction of KLF4 in basal keratinocytes. Rexinoid permitted KLF4 expression and KLF4-induced cell cycling, but attenuated the KLF4-induced misexpression of cytokeratin 1 in basal cells. Neoplastic lesions including hyperplasia, dysplasia and squamous cell carcinoma-like lesions were prevented for up to 30 days. Taken together, the results identify retinoid receptors including RXRalpha as ligand-dependent inhibitors of KLF4-mediated transformation or tumorigenesis.

  17. Cytosolic phospholipase A2 regulates alcohol-mediated astrocyte inflammatory responses in HIV-associated neurocognitive disorders

    PubMed Central

    Pandey, R; Ghorpade, A

    2015-01-01

    Alcohol (EtOH) abuse and HIV-1 infection remain leading public health problems not only in the United States but also across the world. Alcohol abusers have a significantly greater risk of HIV-1 infection than non-drinkers globally. In the United States, prevalence of EtOH abuse is over two-fold higher in HIV-1-positive individuals than that of the general population. Although alcohol abusers show neurodegeneration, exacerbated neuroinflammation and oxidative damage, the mechanism(s) by which EtOH regulates astrocyte inflammatory responses in HIV-associated neurocognitive disorders is unknown. Thus, we explored signaling pathway(s) involved in EtOH-mediated activation of human astrocytes with HIV-1 and subsequent alterations in their inflammatory functions. Alcohol exposure altered the morphology of astrocytes, proinflammatory responses and induced cytotoxicity in a dose-dependent manner. Time-dependent changes were also evaluated. EtOH and HIV-1 cotreatment decreased cell viability and proliferation, while increasing apoptosis and mitochondrial depolarization. EtOH and HIV-1 together increased the levels of proinflammatory molecules, interleukin-1β, tumor necrosis factor-α, CXCL8, tissue inhibitor of metalloproteinases-1 and more importantly, arachidonic acid, a known downstream target of cytosolic phospholipase A2 (cPLA2). Consistent with this observation, phospho-cPLA2 levels were augmented in HIV-1 and EtOH cotreatment as compared with HIV-1 or EtOH alone. Cyclooxygenase 2 was upregulated as measured by real-time PCR and western blot, whereas cotreatment of HIV-1 and EtOH decreased cytochrome P450-2E1 levels as compared with EtOH alone. Furthermore, we confirmed that blocking cPLA2 with arachidonyl tri floro methyl ketone, a cPLA2-specific inhibitor, effectively prevented cPLA2 phosphorylation and downstream outcomes. Thus, the present findings suggest that cPLA2 has a critical role in alcohol and HIV-induced astrocyte inflammation. In the future, cPLA2

  18. Overexpressed Ly-6A.2 mediates cell-cell adhesion by binding a ligand expressed on lymphoid cells.

    PubMed Central

    Bamezai, A; Rock, K L

    1995-01-01

    The Ly-6 locus encodes several cell surface proteins whose functions are unknown. Although it is hypothesized that these proteins may be receptors, there is no direct evidence that they bind a ligand. Herein we present evidence that Ly-6A.2, a Ly-6 protein expressed on T lymphocytes, binds a ligand expressed on normal thymocytes and splenic B and T cells. We find that transgenic thymocytes that overexpress Ly-6A.2 spontaneously aggregate in culture. This homotypic adhesion requires the overexpression of Ly-6A.2 because it is not observed in cultures of nontransgenic thymocytes. The aggregation of Ly-6A.2 transgenic thymocytes is inhibited by phosphatidylinositol-specific phospholipase C (which removes Ly-6A.2 and other glycosylphosphatidylinositol-anchored proteins from the membrane). Some anti-Ly-6A.2 monoclonal antibodies, including nonactivating ones and Fab' fragments, inhibit this aggregation. In contrast, other anti-Ly-6A.2 monoclonal antibodies increase the aggregation of transgenic but not nontransgenic thymocytes. To further examine whether Ly-6A.2 mediates adhesion (versus inducing another adhesion pathway) reaggregation assays were performed with paraformaldehyde-fixed Tg+ thymocytes. Paraformaldehyde-fixed Tg+ thymocytes reaggregate in culture and this aggregation is also blocked by phosphatidyl-inositol-specific phospholipase C and anti-Ly-6A.2 monoclonal antibodies. These results indicate that the homotypic adhesion of cultured Ly-6A.2 transgenic thymocytes is directly mediated by Ly-6A.2 and, more importantly, strongly suggests that Ly-6A.2 binds a ligand that is expressed on thymocytes. Tg+ thymocytes also bind to nontransgenic thymocytes, B cells, and T cells, indicating that normal cells naturally express the Ly-6A.2 ligand. Images Fig. 1 Fig. 2 PMID:7753800

  19. Pre-synaptic adenosine A2A receptors control cannabinoid CB1 receptor-mediated inhibition of striatal glutamatergic neurotransmission.

    PubMed

    Martire, Alberto; Tebano, Maria Teresa; Chiodi, Valentina; Ferreira, Samira G; Cunha, Rodrigo A; Köfalvi, Attila; Popoli, Patrizia

    2011-01-01

    An interaction between adenosine A(2A) receptors (A(2A) Rs) and cannabinoid CB(1) receptors (CB(1) Rs) has been consistently reported to occur in the striatum, although the precise mechanisms are not completely understood. As both receptors control striatal glutamatergic transmission, we now probed the putative interaction between pre-synaptic CB(1) R and A(2A) R in the striatum. In extracellular field potentials recordings in corticostriatal slices from Wistar rats, A(2A) R activation by CGS21680 inhibited CB(1) R-mediated effects (depression of synaptic response and increase in paired-pulse facilitation). Moreover, in superfused rat striatal nerve terminals, A(2A) R activation prevented, while A(2A) R inhibition facilitated, the CB(1) R-mediated inhibition of 4-aminopyridine-evoked glutamate release. In summary, the present study provides converging neurochemical and electrophysiological support for the occurrence of a tight control of CB(1) R function by A(2A) Rs in glutamatergic terminals of the striatum. In view of the key role of glutamate to trigger the recruitment of striatal circuits, this pre-synaptic interaction between CB(1) R and A(2A) R may be of relevance for the pathogenesis and the treatment of neuropsychiatric disorders affecting the basal ganglia.

  20. 2,3,7,8-Tetrachlorodibenzo-p-dioxin-mediated oxidative stress in CYP1A2 knockout (CYP1A2-/-) mice.

    PubMed

    Slezak, B P; Diliberto, J J; Birnbaum, L S

    1999-10-22

    The objective of the study was to compare alterations in indicators of oxidative stress following 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure in cytochrome P4501A2 (CYP1A2) knockout mice and their parental lineage strains (C57BL/6N and 129/Sv). This study will aid in determining the role, if any, of CYP1A2 in TCDD-mediated oxidative stress. Formation of thiobarbituric acid-reactive substances (TBARS) as a measurement of lipid peroxidation, production of reactive oxygen species (ROS) via the in vitro reduction of cytochrome c in tissue homogenate, and changes in the biochemical antioxidant glutathione were monitored to determine oxidative stress 7 days following a single oral dose of 25 microg TCDD/kg. TBARS, reduction of cytochrome c, and changes in glutathione demonstrated a similar response in CYP1A2 knockout and parental strains. These data suggest that CYP1A2 does not play a critical role in the acute oxidative stress response following TCDD exposure.

  1. Racial and Ethnic Differences in Breast Cancer Survival: Mediating Effect of Tumor Characteristics and Sociodemographic and Treatment Factors

    PubMed Central

    Warner, Erica T.; Tamimi, Rulla M.; Hughes, Melissa E.; Ottesen, Rebecca A.; Wong, Yu-Ning; Edge, Stephen B.; Theriault, Richard L.; Blayney, Douglas W.; Niland, Joyce C.; Winer, Eric P.; Weeks, Jane C.; Partridge, Ann H.

    2015-01-01

    Purpose To evaluate the relationship between race/ethnicity and breast cancer–specific survival according to subtype and explore mediating factors. Patients and Methods Participants were women presenting with stage I to III breast cancer between January 2000 and December 2007 at National Comprehensive Cancer Network centers with survival follow-up through December 2009. Cox proportional hazards regression was used to compare breast cancer–specific survival among Asians (n = 533), Hispanics (n = 1,122), and blacks (n = 1,345) with that among whites (n = 14,268), overall and stratified by subtype (luminal A like, luminal B like, human epidermal growth factor receptor 2 type, and triple negative). Model estimates were used to derive mediation proportion and 95% CI for selected risk factors. Results In multivariable adjusted models, overall, blacks had 21% higher risk of breast cancer–specific death (hazard ratio [HR], 1.21; 95% CI, 1.00 to 1.45). For estrogen receptor–positive tumors, black and white survival differences were greatest within 2 years of diagnosis (years 0 to 2: HR, 2.65; 95% CI, 1.34 to 5.24; year 2 to end of follow-up: HR, 1.50; 95% CI, 1.12 to 2.00). Blacks were 76% and 56% more likely to die as a result of luminal A–like and luminal B–like tumors, respectively. No disparities were observed for triple-negative or human epidermal growth factor receptor 2–type tumors. Asians and Hispanics were less likely to die as a result of breast cancer compared with whites (Asians: HR, 0.56; 95% CI, 0.37 to 0.85; Hispanics: HR, 0.74; 95% CI, 0.58 to 0.95). For blacks, tumor characteristics and stage at diagnosis were significant disparity mediators. Body mass index was an important mediator for blacks and Asians. Conclusion Racial disparities in breast cancer survival vary by tumor subtype. Interventions are needed to reduce disparities, particularly in the first 2 years after diagnosis among black women with estrogen receptor–positive tumors. PMID

  2. Altered RNA editing in 3′ UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors

    PubMed Central

    Zhang, Liye; Yang, Chih-Sheng; Varelas, Xaralabos; Monti, Stefano

    2016-01-01

    RNA editing is a molecular event that alters specific nucleotides in RNA post-transcriptionally. RNA editing has the potential to impact a variety of cellular processes and is implicated in diseases such as cancer. Yet, the precise mechanisms by which RNA editing controls cellular processes are poorly understood. Here, we characterize sequences altered by RNA editing in patient samples from lymphoma, neuroblastoma and head and neck cancers. We show that A-to-I RNA editing sites are highly conserved across samples of the same tissue type and that most editing sites identified in tumors are also detectable in normal tissues. Next, we identify the significant changes in editing levels of known sites between tumor and paired “normal” tissues across 14 cancer types (627 pairs) from The Cancer Genome Atlas project and show that the complexity of RNA editing regulation cannot be captured by the activity of ADAR family genes alone. Our pan-cancer analysis confirms previous results on individual tumor types and suggests that changes of RNA editing levels in coding and 3′UTR regions could be a general mechanism to promote tumor growth. We also propose a model explaining how altered RNA editing levels affect microRNA-mediated post-transcriptional regulation of oncogenes and tumor-suppressors. PMID:26980570

  3. Altered RNA editing in 3' UTR perturbs microRNA-mediated regulation of oncogenes and tumor-suppressors.

    PubMed

    Zhang, Liye; Yang, Chih-Sheng; Varelas, Xaralabos; Monti, Stefano

    2016-03-16

    RNA editing is a molecular event that alters specific nucleotides in RNA post-transcriptionally. RNA editing has the potential to impact a variety of cellular processes and is implicated in diseases such as cancer. Yet, the precise mechanisms by which RNA editing controls cellular processes are poorly understood. Here, we characterize sequences altered by RNA editing in patient samples from lymphoma, neuroblastoma and head and neck cancers. We show that A-to-I RNA editing sites are highly conserved across samples of the same tissue type and that most editing sites identified in tumors are also detectable in normal tissues. Next, we identify the significant changes in editing levels of known sites between tumor and paired "normal" tissues across 14 cancer types (627 pairs) from The Cancer Genome Atlas project and show that the complexity of RNA editing regulation cannot be captured by the activity of ADAR family genes alone. Our pan-cancer analysis confirms previous results on individual tumor types and suggests that changes of RNA editing levels in coding and 3'UTR regions could be a general mechanism to promote tumor growth. We also propose a model explaining how altered RNA editing levels affect microRNA-mediated post-transcriptional regulation of oncogenes and tumor-suppressors.

  4. RAGE mediates S100A7-induced breast cancer growth and metastasis by modulating the tumor microenvironment

    PubMed Central

    Nasser, Mohd W.; Wani, Nissar Ahmad; Ahirwar, Dinesh K.; Powell, Catherine A.; Ravi, Janani; Elbaz, Mohamad; Zhao, Helong; Padilla, Laura; Zhang, Xiaoli; Shilo, Konstantin; Ostrowski, Michael; Shapiro, Charles; Carson, William E.; Ganju, Ramesh K.

    2015-01-01

    RAGE is a multi-functional receptor implicated in diverse processes including inflammation and cancer. In this study, we report that RAGE expression is upregulated widely in aggressive triple-negative breast cancer cells, both in primary tumors and lymph node metastases. In evaluating the functional contributions of RAGE in breast cancer, we found RAGE-deficient mice displayed a reduced propensity for breast tumor growth. In an established model of lung metastasis, systemic blockade by injection of a RAGE neutralizing antibody inhibited metastasis development. Mechanistic investigations revealed that RAGE bound to the pro-inflammatory ligand S100A7 and mediated its ability to activate ERK, NF-κB and cell migration. In an S100A7 transgenic mouse model of breast cancer (mS100a7a15 mice), administration of either RAGE neutralizing antibody or soluble RAGE was sufficient to inhibit tumor progression and metastasis. In this model, we found that RAGE/S100A7 conditioned the tumor microenvironment by driving the recruitment of MMP9-positive tumor-associated macrophages. Overall, our results highlight RAGE as a candidate biomarker for triple-negative breast cancers and they reveal a functional role for RAGE/S100A7 signaling in linking inflammation to aggressive breast cancer development. PMID:25572331

  5. Transient Mild Hyperthermia Induces E-selectin Mediated Localization of Mesoporous Silicon Vectors in Solid Tumors

    PubMed Central

    Kirui, Dickson K.; Mai, Juahua; Palange, Anna-Lisa; Qin, Guoting; van de Ven, Anne L.; Liu, Xuewu; Shen, Haifa; Ferrari, Mauro

    2014-01-01

    Background Hyperthermia treatment has been explored as a strategy to overcome biological barriers that hinder effective drug delivery in solid tumors. Most studies have used mild hyperthermia treatment (MHT) to target the delivery of thermo-sensitive liposomes carriers. Others have studied its application to permeabilize tumor vessels and improve tumor interstitial transport. However, the role of MHT in altering tumor vessel interfacial and adhesion properties and its relationship to improved delivery has not been established. In the present study, we evaluated effects of MHT treatment on tumor vessel flow dynamics and expression of adhesion molecules and assessed enhancement in particle localization using mesoporous silicon vectors (MSVs). We also determined the optimal time window at which maximal accumulation occur. Results In this study, using intravital microscopy analyses, we showed that temporal mild hyperthermia (∼1 W/cm2) amplified delivery and accumulation of MSVs in orthotopic breast cancer tumors. The number of discoidal MSVs (1000×400 nm) adhering to tumor vasculature increased 6-fold for SUM159 tumors and 3-fold for MCF-7 breast cancer tumors. By flow chamber experiments and Western blotting, we established that a temporal increase in E-selectin expression correlated with enhanced particle accumulation. Furthermore, MHT treatment was shown to increase tumor perfusion in a time-dependent fashion. Conclusions Our findings reveal that well-timed mild hyperthermia treatment can transiently elevate tumor transport and alter vascular adhesion properties and thereby provides a means to enhance tumor localization of non-thermally sensitive particles such as MSVs. Such enhancement in accumulation could be leveraged to increase therapeutic efficacy and reduce drug dosing in cancer therapy. PMID:24558362

  6. Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide

    PubMed Central

    Jacob, Laurent; Goetz, Jacky; Vermot, Julien; Fernandez, Aurore; Baumlin, Nadège; Aci-Sèche, Samia; Orend, Gertraud; Roussel, Guy; Crémel, Gérard; Genest, Monique; Hubert, Pierre; Bagnard, Dominique

    2016-01-01

    The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients. We next identified a developmental and tumor-associated pro-angiogenic role of Plexin-A1. Hence, by using molecular simulations and a two-hybrid like assay in parallel with biochemical and cellular assays we developed a specific Plexin-A1 peptidic antagonist disrupting transmembrane domain-mediated oligomerization of the receptor and subsequent signaling and functional activity. We found that this peptide exhibits anti-tumor activity in vivo on different human glioblastoma models including glioma cancer stem cells. Thus, screening Plexin-A1 expression and targeting Plexin-A1 in glioblastoma patients exhibit diagnostic and therapeutic value. PMID:27506939

  7. Inhibition of PlexA1-mediated brain tumor growth and tumor-associated angiogenesis using a transmembrane domain targeting peptide.

    PubMed

    Jacob, Laurent; Sawma, Paul; Garnier, Norbert; Meyer, Lionel A T; Fritz, Justine; Hussenet, Thomas; Spenlé, Caroline; Goetz, Jacky; Vermot, Julien; Fernandez, Aurore; Baumlin, Nadège; Aci-Sèche, Samia; Orend, Gertraud; Roussel, Guy; Crémel, Gérard; Genest, Monique; Hubert, Pierre; Bagnard, Dominique

    2016-09-06

    The neuropilin-plexin receptor complex regulates tumor cell migration and proliferation and thus is an interesting therapeutic target. High expression of neuropilin-1 is indeed associated with a bad prognosis in glioma patients. Q-RTPCR and tissue-array analyses showed here that Plexin-A1 is highly expressed in glioblastoma and that the highest level of expression correlates with the worse survival of patients. We next identified a developmental and tumor-associated pro-angiogenic role of Plexin-A1. Hence, by using molecular simulations and a two-hybrid like assay in parallel with biochemical and cellular assays we developed a specific Plexin-A1 peptidic antagonist disrupting transmembrane domain-mediated oligomerization of the receptor and subsequent signaling and functional activity. We found that this peptide exhibits anti-tumor activity in vivo on different human glioblastoma models including glioma cancer stem cells. Thus, screening Plexin-A1 expression and targeting Plexin-A1 in glioblastoma patients exhibit diagnostic and therapeutic value.

  8. A lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors.

    PubMed

    Chen, Zeming; Patel, Jaymin M; Noble, Philip W; Garcia, Cesar; Hong, Zhangyong; Hansen, James E; Zhou, Jiangbing

    2016-09-13

    Strategies to target nanoparticles to tumors that rely on surface modification with ligands that bind molecules overexpressed on cancer cells or the tumor neovasculature suffer from a major limitation: with delivery of toxic agents the amount of molecules available for targeting decreases with time; consequently, the efficiency of nanoparticle delivery is reduced. To overcome this limitation, here we propose an autocatalytic tumor-targeting mechanism based on targeting extracellular DNA (exDNA). exDNA is enriched in the tumor microenviroment and increases with treatment with cytotoxic agents, such as doxorubicin (DOX), due to release of DNA by dying tumor cells. We tested this approach using poly(lactic-co-glycolic acid) (PLGA) nanoparticles surface-conjugated with fragments of 3E10 (3E10EN), a lupus anti-DNA autoantibody. We demonstrated that 3E10EN-conjugated nanoparticles bound to DNA and preferentially localized to tumors in vivo. The efficiency of tumor localization of 3E10EN-conjugated, DOX-loaded nanoparticles increased with time and subsequent treatments, demonstrating an autocatalytic effect. 3E10EN-conjugated DOX-loaded nanoparticles exhibited a significant anti-tumor effect that was superior to all controls. This work demonstrates the promise of autocatalytic drug delivery mechanisms and establishes proof of concept for a new anti-DNA autoantibody-based approach for enhancing delivery of nanoparticles to tumors.

  9. A lupus anti-DNA autoantibody mediates autocatalytic, targeted delivery of nanoparticles to tumors

    PubMed Central

    Chen, Zeming; Patel, Jaymin M.; Noble, Philip W.; Garcia, Cesar; Hong, Zhangyong; Hansen, James E.; Zhou, Jiangbing

    2016-01-01

    Strategies to target nanoparticles to tumors that rely on surface modification with ligands that bind molecules overexpressed on cancer cells or the tumor neovasculature suffer from a major limitation: with delivery of toxic agents the amount of molecules available for targeting decreases with time; consequently, the efficiency of nanoparticle delivery is reduced. To overcome this limitation, here we propose an autocatalytic tumor-targeting mechanism based on targeting extracellular DNA (exDNA). exDNA is enriched in the tumor microenviroment and increases with treatment with cytotoxic agents, such as doxorubicin (DOX), due to release of DNA by dying tumor cells. We tested this approach using poly(lactic-co-glycolic acid) (PLGA) nanoparticles surface-conjugated with fragments of 3E10 (3E10EN), a lupus anti-DNA autoantibody. We demonstrated that 3E10EN-conjugated nanoparticles bound to DNA and preferentially localized to tumors in vivo. The efficiency of tumor localization of 3E10EN-conjugated, DOX-loaded nanoparticles increased with time and subsequent treatments, demonstrating an autocatalytic effect. 3E10EN-conjugated DOX-loaded nanoparticles exhibited a significant anti-tumor effect that was superior to all controls. This work demonstrates the promise of autocatalytic drug delivery mechanisms and establishes proof of concept for a new anti-DNA autoantibody-based approach for enhancing delivery of nanoparticles to tumors. PMID:27494868

  10. Fermented Noni exudate (fNE): a mediator between immune system and anti-tumor activity.

    PubMed

    Li, Jinhua; Stickel, Sara L; Bouton-Verville, Hilary; Burgin, Kelly E; Yu, Xianzhong; Wong, Desmond K W; Wagner, Thomas E; Wei, Yanzhang

    2008-12-01

    The anti-tumor activity of Morinda citrifolia fruit juice (Noni) has been previously reported. However, the mechanism behind this activity remains unknown. In the present study, we studied the anti-tumor activity of fermented Noni exudate (fNE) and demonstrated that intraperitoneal injection of this material significantly increased the percentages of granulocytes and NK cells in the peripheral blood, peritoneum, and spleen. Furthermore, in preventive and treatment settings, fNE injection induced complete tumor rejection in normal C57BL/6J mice, partial tumor rejection in C57 nude mice lacking functional lymphocytes, and no tumor rejection in NK cell deficient beige mice. Over 85% of the C57BL/6J mice that received fNE survived the first tumor injection and rejected up to 5 x 10(6) tumor cells when re-challenged. The anti-tumor activity remains in the heat-inactivated and filtrated supernatant of fNE. These data demonstrate that fNE appears to be able to stimulate the innate immune system and the adaptive immune system to reject tumor cells. NK cells respond quickly and appear to be among the major players of the innate immune system, while the adaptive immune system reacts later with a retained memory.

  11. Tumor necrosis factor-mediated release of platelet-derived growth factor from cultured endothelial cells

    PubMed Central

    1987-01-01

    Platelet-derived growth factor (PDGF) is a 30,000-Mr glycoprotein that is chemotactic and mitogenic for vascular smooth muscle cells (SMC). It is also a potent vasoconstrictor. In the present study, we found that the macrophage-derived polypeptide, tumor necrosis factor (TNF), releases a factor from human umbilical vein endothelial cells (EC) that is mitogenic for SMC. Postculture medium from TNF-stimulated EC induced a 90% increase in mitogenesis is compared with controls. This effect was half-maximal at a TNF dose of 114 pM, reflected a 2.5-fold increase in PDGF-specific mRNA synthesis, and peaked at 15 h of TNF stimulation. Mitogenic activity was completely abrogated by preincubation of postculture medium with antibody to platelet PDGF. Stimulation of EC with IL-1 (60-240 pM) led to the release of similar mitogenic activity. Thus, in addition to its effects on the hemostatic and adhesive properties of EC, TNF also promotes release of PDGF, which may serve to modulate proliferation of vascular SMC during wound healing, inflammation, and atherogenesis. PMID:3598461

  12. Sulindac inhibits tumor cell invasion by suppressing NF-κB mediated transcription of microRNAs

    PubMed Central

    Li, Xiaobo; Gao, Lin; Cui, Qinghua; Gary, Bernard D.; Dyess, Donna Lynn; Taylor, William; Shevde-Samant, Lalita R.; Samant, Rajeev S.; Dean-Colomb, Windy; Piazza, Gary A.; Xi, Yaguang

    2012-01-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely reported to display strong efficacy for cancer chemoprevention, although their mechanism of action is poorly understood. The most well documented effects of NSAIDs include inhibition of tumor cell proliferation and induction of apoptosis, but their effect on tumor cell invasion has not been well studied. Here we show that the NSAID, sulindac sulfide (SS) can potently inhibit the invasion of human MDA-MB-231 breast and HCT116 colon tumor cells in vitro at concentrations less than those required to inhibit tumor cell growth. To study the molecular basis for this activity, we investigated the involvement of microRNA (miRNA). A total of 132 miRNAs were found to be altered in response to SS treatment including miR-10b, miR-17, miR-21, and miR-9, which have been previously implicated in tumor invasion and metastasis. We confirmed that these miRNA can stimulate tumor cell invasion and show that SS can attenuate their invasive effects by down-regulating their expression. Employing luciferase and chromatin immunoprecipitation assays, NF-κB was found to bind the promoters of all four miRNAs to suppress their expression at the transcriptional level. We show that SS can inhibit the translocation of NF-κB to the nucleus by decreasing the phosphorylation of IKKβ and IκB. Analysis of the promoter sequences of the miRNAs suppressed by SS revealed that 81 of 115 sequences contained NF-κB binding sites. These results show that SS can inhibit tumor cell invasion by suppressing NF-κB mediated transcription of miRNAs. PMID:22286762

  13. Orai1 mediates tumor-promoting store-operated Ca(2+) entry in human gastrointestinal stromal tumors via c-KIT and the extracellular signal-regulated kinase pathway.

    PubMed

    Wang, Lei; Hao, Jiaqi; Zhang, Yijian; Yang, Ziyi; Cao, Yang; Lu, Wei; Shu, Yijun; Jiang, Lin; Hu, Yunping; Lv, Wenjie; Liu, Yingbin; Dong, Ping

    2017-02-01

    Gastrointestinal stromal tumors originate from interstitial cells of Cajal, the pacemaker cells of the gut. Ca(2+) regulates the pacemaker activity of interstitial cells of Cajal. Store-operated Ca(2+) entry mediates the majority of Ca(2+) entry in most cancer cells and may be a factor in regulating intracellular Ca(2+) in interstitial cells of Cajal and gastrointestinal stromal tumors. Therefore, a blockade of this mechanism may affect the progression of gastrointestinal stromal tumors. Orai1 is the pore subunit of store-operated Ca(2+) channels. Here, we reported that Orai1 was overexpressed in gastrointestinal stromal tumor tissues and was positively correlated with a high-risk grade in gastrointestinal stromal tumor patients. Furthermore, upon Orai1 silencing, the functional store-operated Ca(2+) entry in gastrointestinal stromal tumor cells was decreased, indicating that the function of store-operated Ca(2+) entry was mediated by Orai1. Inhibition of Orai1-mediated store-operated Ca(2+) entry by Orai1 silencing or store-operated Ca(2+) entry blockers (SKF-96365 and 2-aminoethyl diphenylborate) induced obvious cell proliferation suppression, cell-cycle distribution, and apoptosis stimulation in GIST-T1 cells. Conversely, Orai1 overexpression increased store-operated Ca(2+) entry and cell proliferation in GIST882 cells. In addition, we found that activation of c-KIT and the extracellular signal-regulated kinase pathway participated in the oncogenic functions of Orai1-mediated store-operated Ca(2+) entry in gastrointestinal stromal tumor cells. These results revealed that Orai1-mediated store-operated Ca(2+) entry is critical for gastrointestinal stromal tumor cell proliferation via c-KIT and ERK signaling pathway activation. Orai1-mediated store-operated Ca(2+) entry plays an oncogenic role and may be a novel prognostic factor and therapeutic target for patients with gastrointestinal stromal tumors.

  14. Ah receptor- and TCDD-mediated liver tumor promotion: clonal selection and expansion of cells evading growth arrest and apoptosis.

    PubMed

    Bock, Karl Walter; Köhle, Christoph

    2005-05-15

    The Ah receptor (AhR) has been characterized as a ligand-activated transcription factor which belongs to the bHLH/PAS (basic helix-loop-helix/Per-Arnt-Sim) family of chemosensors. Transgenic mouse models revealed adaptive and developmental functions of the AhR in the absence of exogenous ligands. Use of persistent agonists such as dioxins including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds demonstrated that the AhR mediates a plethora of species- and tissue-dependent toxicities, including chloracne, wasting, teratogenicity, immunotoxicity, liver tumor promotion and carcinogenicity. However, molecular mechanisms underlying most aspects of these toxic responses as well as biological functions of the AhR are currently unknown. Previous studies of liver tumor promotion in the two-stage hepatocarcinogenesis model indicated that TCDD mediates clonal expansion of 'initiated' preneoplastic hepatocytes, identified as enzyme-altered foci (EAF) by inhibiting apoptosis and bypassing AhR-mediated growth arrest. In contrast, the Ah receptor has been shown in cell models to stimulate growth arrest and apoptosis. Possible underlying mechanisms of these AhR responses are discussed, including enhanced metabolism of retinoic acid which attenuates TGFbeta-mediated apoptosis and interaction of the Ah receptor with the hypophosphorylated retinoblastoma tumor suppressor protein. The discrepancy between in vivo findings in EAF and AhR functions may be solved by hypothesizing that sustained activation of the Ah receptor generates a strong selective pressure in liver treated with genotoxic carcinogens leading to selection and expansion of clones evading growth arrest and apoptosis. Models are discussed which may facilitate verification of this hypothesis.

  15. Hyperoxygenation enhances the direct tumor cell killing of photofrin-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Huang, Zheng; Chen, Qun; Shakil, Abdus; Chen, Hua; Beckers, Jill; Shapiro, Howard; Hetzel, Fred W.

    2003-06-01

    Tumor hypoxia, either pre-existing or as a result of oxygen bleaching during Photodynamic Therapy (PDT) light irradiation, can significantly reduce the effectiveness of PDT induced cell killing. To overcome the effect of tumor hypoxia and improve tumor cell killing, we propose using supplemental hyperoxygenation during Photofrin PDT. Our previous study has demonstrated that, in an in vivo model, tumor control can be improved by normobaric or hyperbaric 100% oxygen supply. The mechanism for the tumor cure enhancement of the hyperoxygenation-PDT combined therapy is investigated in this study by using an in vivo/in vitro technique. A hypoxic tumor model was established by implanting mammary adenocarcinoma (MCA) in hind legs of C3H mice. Light irradiation (200 J/cm2 at either 75 or 150 mW/cm2), under various oxygen supplemental conditions (room air or carbogen or 100% normobaric or hyperbaric 100% oxygen), was delivered through an optical fiber with a microlens to animals who received 12.5 mg/kg Photofrin 24 hours prior to light irradiation. Tumors treated with PDT were harvested and grown in vitro for colony formation analysis. Treated tumors were also analyzed histologically. The results show that, when combined with hyperoxygenation, the cell killing rate immediately after a PDT treatment is significantly improved over that treated without hyperoxygenation, suggesting an enhanced direct cell killing. This study further confirms our earlier observation that when a PDT treatment is combined with hyperoxygenation, it can be more effective in controlling hypoxic tumors. H&E stain revealed that PDT induced tumor necrosis and hemorrhage. In conclusion, by using an in vivo/in vitro assay, we have shown that PDT combined with hyper-oxygenation can enhance direct cell killing and improve tumor cure.

  16. [Influence of c-kit RNA interference mediated by AdMax adenovirus upon gastrointestinal stromal tumor in nude mice].

    PubMed

    Wang, Tian-bao; Shi, Han-ping; Huang, Wen-sheng; Lin, Wei-hao; Dong, Wen-guang

    2011-03-01

    To investigate a novel therapeutic regiment for gastrointestinal stromal tumor (GIST) based on c-kit RNA interference (RNAi) under the mediation of AdMax adenovirus. c-kit shRNA, whose lateral sides were decorated with restriction endonuclease sequences, was designed. The joining of c-kit shRNA and PDC316-EGFP-U6 was catalyzed by T4 DNA ligase to construct PDC316-EGFP-U6-C-KIT. Homologous recombination of AdEGFP-U6-C-KIT was performed with AdMax system. Heterotopic transplantation of GIST in nude mice was established. AdEGFP-U6-C-KIT was intratumorally injected in experimental group while blank admax adenovirus AdEGFP-U6 in control group. The volume, inhibition ratio of tumor and CD117 expression of graft tumor were compared between test and control groups. The length of c-kit shRNA was around 50 bp in agarose electrophoresis. Gene sequencing revealed the designed c-kit RNAi sequence in PDC316-EGFP-U6-C-KIT. After transfection with AdEGFP-U6-C-KIT, 293 cells presented green fluorescence. The physical and infective titer of AdEGFP-U6-C-KIT was 5 × 10(11)vp/ml and 5.67 × 10(7) pfu/ml respectively. At the end of test, the mean volume of graft tumor was significantly smaller in test group than in control group [(75 ± 23) vs (989 ± 31) mm(3), P = 0.000]. The inhibition ratio of tumor was 59.6% in test group. Two cases (20%) in test group and 10 (100%) in control group had a positive expression of CD117 (P = 0.001). c-kit RNAi mediated by Admax vector system can inhibit effectively the expression of c-kit gene and the growth of GIST in nude mice.

  17. The Host Defense Peptide Cathelicidin Is Required for NK Cell-Mediated Suppression of Tumor Growth

    PubMed Central

    Büchau, Amanda S.; Morizane, Shin; Trowbridge, Janet; Schauber, Jürgen; Kotol, Paul; Bui, Jack D.; Gallo, Richard L.

    2010-01-01

    Tumor surveillance requires the interaction of multiple molecules and cells that participate in innate and the adaptive immunity. Cathelicidin was initially identified as an antimicrobial peptide, although it is now clear that it fulfills a variety of immune functions beyond microbial killing. Recent data have suggested contrasting roles for cathelicidin in tumor development. Because its role in tumor surveillance is not well understood, we investigated the requirement of cathelicidin in controlling transplantable tumors in mice. Cathelicidin was observed to be abundant in tumor-infiltrating NK1.1+ cells in mice. The importance of this finding was demonstrated by the fact that cathelicidin knockout mice (Camp−/−) permitted faster tumor growth than wild type controls in two different xenograft tumor mouse models (B16.F10 and RMA-S). Functional in vitro analyses found that NK cells derived from Camp−/− versus wild type mice showed impaired cytotoxic activity toward tumor targets. These findings could not be solely attributed to an observed perforin deficiency in freshly isolated Camp−/− NK cells, because this deficiency could be partially restored by IL-2 treatment, whereas cytotoxic activity was still defective in IL-2-activated Camp−/− NK cells. Thus, we demonstrate a previously unrecognized role of cathelicidin in NK cell antitumor function. PMID:19949065

  18. Selective alpha-particle mediated depletion of tumor vasculature with vascular normalization.

    PubMed

    Singh Jaggi, Jaspreet; Henke, Erik; Seshan, Surya V; Kappel, Barry J; Chattopadhyay, Debjit; May, Chad; McDevitt, Michael R; Nolan, Daniel; Mittal, Vivek; Benezra, Robert; Scheinberg, David A

    2007-03-07

    Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. Actinium-225 ((225)Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, (225)Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in (225)Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following (225)Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following (225)Ac-E4G10 therapy. The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy.

  19. Sulindac reversal of 15-PGDH-mediated resistance to colon tumor chemoprevention with NSAIDs

    PubMed Central

    Fink, Stephen P.; Dawson, Dawn M.; Zhang, Yongyou; Kresak, Adam; Lawrence, Earl G.; Yang, Peiying; Chen, Yanwen; Barnholtz-Sloan, Jill S.; Willis, Joseph E.; Kopelovich, Levy; Markowitz, Sanford D.

    2015-01-01

    Non-steroidal anti-inflammatory drugs prevent colorectal cancer by inhibiting cyclooxygenase (COX) enzymes that synthesize tumor-promoting prostaglandins. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is a tumor suppressor that degrades tumor-promoting prostaglandins. Murine knockout of 15-PGDH increases susceptibility to azoxymethane-induced colon tumors. It also renders these mice resistant to celecoxib, a selective inhibitor of inducible COX-2 during colon neoplasia. Similarly, humans with low colonic 15-PGDH are also resistant to colon adenoma prevention with celecoxib. Here, we used aspirin and sulindac, which inhibit both COX-1 and COX-2, in order to determine if these broader COX inhibitors can prevent colon tumors in 15-PGDH knockout (KO) mice. Unlike celecoxib, sulindac proved highly effective in colon tumor prevention of 15-PGDH KO mice. Significantly, however, aspirin demonstrated no effect on colon tumor incidence in either 15-PGDH wild-type or KO mice, despite a comparable reduction in colonic mucosal Prostaglandin E2 (PGE2) levels by both sulindac and aspirin. Notably, colon tumor prevention activity by sulindac was accompanied by a marked induction of lymphoid aggregates and proximal colonic inflammatory mass lesions, a side effect seen to a lesser degree with celecoxib, but not with aspirin. These findings suggest that sulindac may be the most effective agent for colon cancer prevention in humans with low 15-PGDH, but its use may also be associated with inflammatory lesions in the colon. PMID:25503930

  20. HER2-specific immunoligands engaging NKp30 or NKp80 trigger NK-cell-mediated lysis of tumor cells and enhance antibody-dependent cell-mediated cytotoxicity.

    PubMed

    Peipp, Matthias; Derer, Stefanie; Lohse, Stefan; Staudinger, Matthias; Klausz, Katja; Valerius, Thomas; Gramatzki, Martin; Kellner, Christian

    2015-10-13

    NK cells detect tumors through activating surface receptors, which bind self-antigens that are frequently expressed upon malignant transformation. To increase the recognition of tumor cells, the extracellular domains of ligands of the activating NK cell receptors NKp30, NKp80 and DNAM-1 (i.e. B7-H6, AICL and PVR, respectively) were fused to a single-chain fragment variable (scFv) targeting the human epidermal growth factor receptor 2 (HER2), which is displayed by various solid tumors. The resulting immunoligands, designated B7-H6:HER2-scFv, AICL:HER2-scFv, and PVR:HER2-scFv, respectively, bound HER2 and the addressed NK cell receptor. However, whereas B7-H6:HER2-scFv and AICL:HER2-scFv triggered NK cells to kill HER2-positive breast cancer cells at nanomolar concentrations, PVR:HER2-scFv was not efficacious. Moreover, NK cell cytotoxicity was enhanced synergistically when B7-H6:HER2-scFv or AICL:HER2-scFv were applied in combination with another HER2-specific immunoligand engaging the stimulatory receptor NKG2D. In contrast, no improvements were achieved by combining B7-H6:HER2-scFv with AICL:HER2-scFv. Additionally, B7-H6:HER2-scFv and AICL:HER2-scFv enhanced antibody-dependent cell-mediated cytotoxicity (ADCC) by the therapeutic antibodies trastuzumab and cetuximab synergistically, with B7-H6:HER2-scFv exhibiting a higher efficacy. In summary, antibody-derived proteins engaging NKp30 or NKp80 may represent attractive biologics to further enhance anti-tumor NK cell responses and may provide an innovative approach to sensitize tumor cells for antibody-based immunotherapy.

  1. Sepsis-induced suppression of skeletal muscle translation initiation mediated by tumor necrosis factor alpha.

    PubMed

    Lang, Charles H; Frost, Robert A

    2007-01-01

    Inhibition of translational efficiency is responsible at least in part for the sepsis-induced decrease in protein synthesis observed in skeletal muscle. Moreover, infusion of the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) into naive rats produces a comparable decrement. Therefore, the purpose of the present study was to determine whether inhibition of TNF action under in vivo conditions could prevent the sepsis-induced decrease in translation initiation observed in the postabsorptive state. To address this aim, sepsis was produced by cecal ligation and puncture (CLP) and rats were studied in the fasted condition 20 to 24 hours thereafter. Both septic and time-matched nonseptic control rats were pretreated with TNF-binding protein (TNF(BP)) before CLP or sham surgery to neutralize endogenously produced TNF. Sepsis altered the distribution of eukaryotic initiation factor 4E (eIF4E) in the gastrocnemius by increasing the amount associated with 4E-BP1 (inactive complex) and decreasing the amount bound to eIF4G (active complex). This change in eIF4E availability was associated with a decreased phosphorylation of 4E-BP1. Furthermore, the phosphorylation of ribosomal protein S6 and mammalian target of rapamycin (mTOR) was also decreased in the gastrocnemius from septic rats. Pretreatment of septic rats with TNF(BP) largely ameliorated the altered distribution of eIF4E as well as the reduced phosphorylation of 4E-BP1, S6, and mTOR. In contrast, sepsis did not change either the total amount or the phosphorylation state of eIF2alpha or eIF2Bepsilon. Furthermore, no sepsis-induced change in eIFs was detected in the slow-twitch soleus muscle. The ability of TNF(BP) to prevent the sepsis-induced alterations in translation initiation was independent of change in plasma insulin and proportional to the insulinlike growth factor I content in blood and muscle but was associated with a reduction in plasma corticosterone. Hence, the decreased constitutive protein

  2. CD8+ T Cell-Independent Immune-Mediated Mechanisms of Anti-Tumor Activity

    PubMed Central

    Pluhar, G. Elizabeth; Pennell, Christopher A.; Olin, Michael R.

    2016-01-01

    Despite the growing number of preclinical and clinical trials focused on immunotherapy for the treatment of malignant gliomas, the prognosis for this disease remains grim. Cancer immunotherapy seeks to recruit an effective immune response to eliminate tumor cells. To date, cancer vaccines have shown only limited effectiveness because of our incomplete understanding of the necessary effector cells and mechanisms that yield efficient tumor clearance. CD8+ T cell cytotoxic activity has long been proposed as the primary effector function necessary for tumor regression. However, there is increasing evidence that indicates that components of the immune system other than CD8+ T cells play important roles in tumor eradication and control. The following review should provide an understanding of the mechanisms involved in an effective antitumor response to guide future therapeutic designs. The information provided suggests an alternate means of effective tumor clearance in malignant glioma to the canonical CD8+ cytotoxic T cell mechanism. PMID:26351148

  3. Early detection of tumor masses by in vivo hematoporphyrin-mediated fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Autiero, Maddalena; Celentano, Luigi; Cozzolino, Rosanna; Laccetti, Paolo; Marotta, Marcello; Mettivier, Giovanni; Cristina Montesi, Maria; Quarto, Maria; Riccio, Patrizia; Roberti, Giuseppe; Russo, Paolo

    2007-02-01

    We investigated the capability of fluorescence reflectance imaging (FRI) for the early detection of surface tumors in mice. We used a hematoporphyrin (HP) compound (HP dichlorohydrate) as a red fluorescent marker and a low noise, high sensitivity, digital CCD camera for fluorescence imaging. In this preliminary study, highly malignant anaplastic human thyroid carcinoma cells were implanted subcutaneously in one mouse and their growth was monitored daily for 5 days by FRI. The selective HP uptake by the tumor tissues was successfully observed: we observed the fluorescence of tumor only 3 days after cancer cells injection, i.e. when the tumor mass was neither visible (to the naked eye) or palpable. These measurements indicate that FRI is a suitable technique to detect minute subcutaneous tumor masses. This FRI system will be coupled to a radionuclide imaging system based on a CdTe detector for in vivo multimodal imaging in mice.

  4. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release

    SciTech Connect

    Chen, S.; Wong, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Ojima, I.

    2010-05-01

    An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate, drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This mechanism

  5. Methylglyoxal, a glycolysis side-product, induces Hsp90 glycation and YAP-mediated tumor growth and metastasis

    PubMed Central

    Nokin, Marie-Julie; Durieux, Florence; Peixoto, Paul; Chiavarina, Barbara; Peulen, Olivier; Blomme, Arnaud; Turtoi, Andrei; Costanza, Brunella; Smargiasso, Nicolas; Baiwir, Dominique; Scheijen, Jean L; Schalkwijk, Casper G; Leenders, Justine; De Tullio, Pascal; Bianchi, Elettra; Thiry, Marc; Uchida, Koji; Spiegel, David A; Cochrane, James R; Hutton, Craig A; De Pauw, Edwin; Delvenne, Philippe; Belpomme, Dominique; Castronovo, Vincent; Bellahcène, Akeila

    2016-01-01

    Metabolic reprogramming toward aerobic glycolysis unavoidably induces methylglyoxal (MG) formation in cancer cells. MG mediates the glycation of proteins to form advanced glycation end products (AGEs). We have recently demonstrated that MG-induced AGEs are a common feature of breast cancer. Little is known regarding the impact of MG-mediated carbonyl stress on tumor progression. Breast tumors with MG stress presented with high nuclear YAP, a key transcriptional co-activator regulating tumor growth and invasion. Elevated MG levels resulted in sustained YAP nuclear localization/activity that could be reverted using Carnosine, a scavenger for MG. MG treatment affected Hsp90 chaperone activity and decreased its binding to LATS1, a key kinase of the Hippo pathway. Cancer cells with high MG stress showed enhanced growth and metastatic potential in vivo. These findings reinforce the cumulative evidence pointing to hyperglycemia as a risk factor for cancer incidence and bring renewed interest in MG scavengers for cancer treatment. DOI: http://dx.doi.org/10.7554/eLife.19375.001 PMID:27759563

  6. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway.

    PubMed

    Daurkin, Irina; Eruslanov, Evgeniy; Stoffs, Taryn; Perrin, George Q; Algood, Chester; Gilbert, Scott M; Rosser, Charles J; Su, Li-Ming; Vieweg, Johannes; Kusmartsev, Sergei

    2011-10-15

    Renal cell carcinoma (RCC), the most common human kidney cancer, is frequently infiltrated with tumor-associated macrophages (TAM) that can promote malignant progression. Here, we show that TAMs isolated from human RCC produce substantial amounts of the proinflammatory chemokine CCL2 and immunosuppressive cytokine IL-10, in addition to enhanced eicosanoid production via an activated 15-lipoxygenase-2 (15-LOX2) pathway. TAMs isolated from RCC tumors had a high 15-LOX2 expression and secreted substantial amounts of 15(S)-hydroxyeicosatetraenoic acid, its major bioactive lipid product. Inhibition of lipoxygenase activity significantly reduced production of CCL2 and IL-10 by RCC TAMs. In addition, TAMs isolated from RCC were capable of inducing in T lymphocytes, the pivotal T regulatory cell transcription factor forkhead box P3 (FOXP3), and the inhibitory cytotoxic T-lymphocyte antigen 4 (CTLA-4) coreceptor. However, this TAM-mediated induction of FOXP3 and CTLA-4 in T cells was independent of lipoxygenase and could not be reversed by inhibiting lipoxygenase activity. Collectively, our results show that TAMs, often present in RCCs, display enhanced 15-LOX2 activity that contributes to RCC-related inflammation, immunosuppression, and malignant progression. Furthermore, we show that TAMs mediate the development of immune tolerance through both 15-LOX2-dependent and 15-LOX2-independent pathways. We propose that manipulating LOX-dependent arachidonic acid metabolism in the tumor microenvironment could offer new strategies to block cancer-related inflammation and immune escape in patients with RCC.

  7. Tumor suppressor KAI1 affects integrin {alpha}v{beta}3-mediated ovarian cancer cell adhesion, motility, and proliferation

    SciTech Connect

    Ruseva, Zlatna; Geiger, Pamina Xenia Charlotte; Hutzler, Peter; Kotzsch, Matthias; Luber, Birgit; Schmitt, Manfred; Gross, Eva; Reuning, Ute

    2009-06-10

    The tetraspanin KAI1 had been described as a metastasis suppressor in many different cancer types, a function for which associations of KAI1 with adhesion and signaling receptors of the integrin superfamily likely play a role. In ovarian cancer, integrin {alpha}v{beta}3 correlates with tumor progression and its elevation in vitro provoked enhanced cell adhesion accompanied by significant increases in cell motility and proliferation in the presence of its major ligand vitronectin. In the present study, we characterized integrin {alpha}v{beta}3-mediated tumor biological effects as a function of cellular KAI1 restoration and proved for the first time that KAI1, besides its already known physical crosstalk with {beta}1-integrins, also colocalizes with integrin {alpha}v{beta}3. Functionally, elevated KAI1 levels drastically increased integrin {alpha}v{beta}3/vitronectin-dependent ovarian cancer cell adhesion. Since an intermediate level of cell adhesive strength is required for optimal cell migration, we next studied ovarian cancer cell motility as a function of KAI1 restoration. By time lapse video microscopy, we found impaired integrin {alpha}v{beta}3/vitronectin-mediated cell migration most probably due to strongly enhanced cellular immobilization onto the adhesion-supporting matrix. Moreover, KAI1 reexpression significantly diminished cell proliferation. These data strongly indicate that KAI1 may suppress ovarian cancer progression by inhibiting integrin {alpha}v{beta}3/vitronectin-provoked tumor cell motility and proliferation as important hallmarks of the oncogenic process.

  8. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis.

    PubMed

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Shi, Changhong; Li, Qinlong; Hu, Peizhen; Chen, Yi-Ting; Dou, Xiaoliang; Sahu, Divya; Li, Wei; Harada, Hiroshi; Zhang, Yi; Wang, Ruoxiang; Zhau, Haiyen E; Chung, Leland W K

    2014-09-01

    Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy.

  9. Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis

    PubMed Central

    Wu, Jason Boyang; Shao, Chen; Li, Xiangyan; Shi, Changhong; Li, Qinlong; Hu, Peizhen; Chen, Yi-Ting; Dou, Xiaoliang; Sahu, Divya; Li, Wei; Harada, Hiroshi; Zhang, Yi; Wang, Ruoxiang; Zhau, Haiyen E.; Chung, Leland W.K.

    2014-01-01

    Near-infrared fluorescence (NIRF) imaging agents are promising tools for noninvasive cancer imaging. Here, we explored the mechanistic properties of a specific group of NIR heptamethine carbocyanines including MHI-148 dye we identified and synthesized, and demonstrated these dyes to achieve cancer-specific imaging and targeting via a hypoxia-mediated mechanism. We found that cancer cells and tumor xenografts exhibited hypoxia-dependent MHI-148 dye uptake in vitro and in vivo, which was directly mediated by hypoxia-inducible factor 1α (HIF1α). Microarray analysis and dye uptake assay further revealed a group of hypoxia-inducible organic anion-transporting polypeptides (OATPs) responsible for dye uptake, and the correlation between OATPs and HIF1α was manifested in progressive clinical cancer specimens. Finally, we demonstrated increased uptake of MHI-148 dye in situ in perfused clinical tumor samples with activated HIF1α/OATPs signaling. Our results establish these NIRF dyes as potential tumor hypoxia-dependent cancer-targeting agents and provide a mechanistic rationale for continued development of NIRF imaging agents for improved cancer detection, prognosis and therapy. PMID:24957295

  10. Annexin A2 Mediates Mycoplasma pneumoniae Community-Acquired Respiratory Distress Syndrome Toxin Binding to Eukaryotic Cells

    PubMed Central

    Somarajan, Sudha R.; Al-Asadi, Fadi; Ramasamy, Kumaraguruparan; Pandranki, Lavanya

    2014-01-01

    ABSTRACT Mycoplasma pneumoniae synthesizes a novel human surfactant protein A (SP-A)-binding cytotoxin, designated community-acquired respiratory distress syndrome (CARDS) toxin, that exhibits ADP-ribosylating and vacuolating activities in mammalian cells and is directly linked to a range of acute and chronic airway diseases, including asthma. In our attempt to detect additional CARDS toxin-binding proteins, we subjected the membrane fraction of human A549 airway cells to affinity chromatography using recombinant CARDS toxin as bait. A 36-kDa A549 cell membrane protein bound to CARDS toxin and was identified by time of flight (TOF) mass spectroscopy as annexin A2 (AnxA2) and verified by immunoblotting with anti-AnxA2 monoclonal antibody. Dose-dependent binding of CARDS toxin to recombinant AnxA2 reinforced the specificity of the interaction, and further studies revealed that the carboxy terminus of CARDS toxin mediated binding to AnxA2. In addition, pretreatment of viable A549 cells with anti-AnxA2 monoclonal antibody or AnxA2 small interfering RNA (siRNA) reduced toxin binding and internalization. Immunofluorescence analysis of CARDS toxin-treated A549 cells demonstrated the colocalization of CARDS toxin with cell surface-associated AnxA2 upon initial binding and with intracellular AnxA2 following toxin internalization. HepG2 cells, which express low levels of AnxA2, were transfected with a plasmid expressing AnxA2 protein, resulting in enhanced binding of CARDS toxin and increased vacuolization. In addition, NCI-H441 cells, which express both AnxA2 and SP-A, upon AnxA2 siRNA transfection, showed decreased binding and subsequent vacuolization. These results indicate that CARDS toxin recognizes AnxA2 as a functional receptor, leading to CARDS toxin-induced changes in mammalian cells. PMID:25139904

  11. Enhanced Efficacy of Doxorubicin by microRNA-499-Mediated Improvement of Tumor Blood Flow

    PubMed Central

    Okamoto, Ayaka; Asai, Tomohiro; Ryu, Sho; Ando, Hidenori; Maeda, Noriyuki; Dewa, Takehisa; Oku, Naoto

    2016-01-01

    Genetic therapy using microRNA-499 (miR-499) was combined with chemotherapy for the advanced treatment of cancer. Our previous study showed that miR-499 suppressed tumor growth through the inhibition of vascular endothelial growth factor (VEGF) production and subsequent angiogenesis. In the present study, we focused on blood flow in tumors treated with miR499, since some angiogenic vessels are known to lack blood flow. Tetraethylenepentamine-based polycation liposomes (TEPA-PCL) were prepared and modified with Ala-Pro-Arg-Pro-Gly peptide (APRPG) for targeted delivery of miR-499 (APRPG-miR-499) to angiogenic vessels and tumor cells. The tumor blood flow was significantly improved, so-called normalized, after systemic administration of APRPG-miR-499 to Colon 26 NL-17 carcinoma–bearing mice. In addition, the accumulation of doxorubicin (DOX) in the tumors was increased by pre-treatment with APRPG-miR-499. Moreover, the combination therapy of APRPG-miR-499 and DOX resulted in significant suppression of the tumors. Taken together, our present data indicate that miR-499 delivered with APRPG-modified-TEPA-PCL normalized tumor vessels, resulting in enhancement of intratumoral accumulation of DOX. Our findings suggest that APRPG-miR-499 may be a therapeutic, or a combination therapeutic, candidate for cancer treatment. PMID:26797645

  12. Enhanced Efficacy of Doxorubicin by microRNA-499-Mediated Improvement of Tumor Blood Flow.

    PubMed

    Okamoto, Ayaka; Asai, Tomohiro; Ryu, Sho; Ando, Hidenori; Maeda, Noriyuki; Dewa, Takehisa; Oku, Naoto

    2016-01-19

    Genetic therapy using microRNA-499 (miR-499) was combined with chemotherapy for the advanced treatment of cancer. Our previous study showed that miR-499 suppressed tumor growth through the inhibition of vascular endothelial growth factor (VEGF) production and subsequent angiogenesis. In the present study, we focused on blood flow in tumors treated with miR499, since some angiogenic vessels are known to lack blood flow. Tetraethylenepentamine-based polycation liposomes (TEPA-PCL) were prepared and modified with Ala-Pro-Arg-Pro-Gly peptide (APRPG) for targeted delivery of miR-499 (APRPG-miR-499) to angiogenic vessels and tumor cells. The tumor blood flow was significantly improved, so-called normalized, after systemic administration of APRPG-miR-499 to Colon 26 NL-17 carcinoma-bearing mice. In addition, the accumulation of doxorubicin (DOX) in the tumors was increased by pre-treatment with APRPG-miR-499. Moreover, the combination therapy of APRPG-miR-499 and DOX resulted in significant suppression of the tumors. Taken together, our present data indicate that miR-499 delivered with APRPG-modified-TEPA-PCL normalized tumor vessels, resulting in enhancement of intratumoral accumulation of DOX. Our findings suggest that APRPG-miR-499 may be a therapeutic, or a combination therapeutic, candidate for cancer treatment.

  13. PDGF-AA mediates mesenchymal stromal cell chemotaxis to the head and neck squamous cell carcinoma tumor microenvironment.

    PubMed

    Watts, Tammara L; Cui, Ruwen; Szaniszlo, Peter; Resto, Vicente A; Powell, Don W; Pinchuk, Irina V

    2016-12-08

    The robust desmoplasia associated with head and neck squamous cell carcinoma (HNSCC) suggests that the tumor microenvironment may be an important component in the pathophysiology of this cancer. Moreover, the high recurrence rate and poor clinical response to chemotherapy and radiation treatment further underscores that the non-cancerous cells of the microenvironment, such as mesenchymal stromal cells (MSCs), cancer associated fibroblasts (CAFs), and pericytes, may be important in the pathophysiology of HNSCC. Confocal microscopy and immunohistomchemistry approaches were used to identify MSCs tumor microenvironment from patients with oral cavity and oral pharyngeal squamous cell carcinoma (SCC). In vitro Boyden chamber assays and multiplex magnetic bead assays were used to measure MSC chemotaxis and to identify the chemokines secreted by JHU-011, -012, -019, three cells lines derived from patients with oral pharyngeal SCC. We show here that MSCs reside in the tumor microenvironment of patients with oral cavity and oral pharyngeal SCC and are recruited via paracrine mediated tumor cell secretion of (platelet derived growth factor) PDGF-AA. The MSC markers CD90(+), CD105(+), and gremlin-1(+) were found to co-localize on cells within the tumor microenvironment in oral cavity SCC specimens distinct from α-smooth muscle actin staining CAFs. The conditioned media from JHU-011, -012, and -019 caused a significant increase in MSC migration (>60%) and invasion (>50%; p < 0.0001) compared to oral keratinocyte (OKT) controls. Tumor cell induced MSC chemotaxis appears to be mediated through paracrine secretion of PDGF-AA as inhibition of the PDGF-AA receptor, PDGFR-α but not PDGFR-β, resulted in near arrest of MSC chemotaxis (p < 0.0001). Tumor microenvironment expression of PDGFR-α has been shown to correlate with a worse prognosis in patients with prostate, breast, ovarian, non-small cell lung cancer and osteosarcoma. This is the first evidence that a similar

  14. Genetic Vaccines to Potentiate the Effective CD103+DC-mediated Cross-priming of Anti-tumor Immunity

    PubMed Central

    Zhang, Yi; Chen, Guo; Liu, Zuqiang; Tian, Shenghe; Zhang, Jiying; Carey, Cara D.; Murphy, Kenneth M.; Storkus, Walter J.; Falo, Louis D.; You, Zhaoyang

    2015-01-01

    The development of effective cancer vaccines remains an urgent, but as yet unmet, clinical need. This deficiency is in part due to an incomplete understanding of how to best invoke dendritic cells (DC) that are crucial for the induction of tumor-specific CD8+T cells capable of mediating durable protective immunity. In this regard, elevated expression of the transcription factor X-box-binding protein (XBP1) in DC appears to play a decisive role in promoting the ability of DC to cross-present antigens (Ag) to CD8+T cells in the therapeutic setting. Delivery of DNA vaccines encoding XBP1 and tumor Ag to skin DC resulted in increased IFN-α production by plasmacytoid DC (pDC) from skin/tumor draining lymph nodes (dLN) and the cross-priming of Ag-specific CD8+T cell responses associated with therapeutic benefit. Anti-tumor protection was dependent on cross-presenting Batf3+DC, pDC and CD8+T cells. CD103+DC from the skin/tumor dLN of the immunized mice appeared responsible for activation of Ag-specific naïve CD8+T cells, but were dependent on pDC for optimal effectiveness. Similarly, human XBP1 improved the capacity of human blood- and skin-derived DC to activate human T cells. These data support an important intrinsic role for XBP1 in DC for effective cross-priming and orchestration of Batf3+DC–pDC interactions, thereby enabling effective vaccine induction of protective anti-tumor immunity. PMID:25972487

  15. CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway.

    PubMed

    Jijiwa, Mayumi; Demir, Habibe; Gupta, Snehalata; Leung, Crystal; Joshi, Kaushal; Orozco, Nicholas; Huang, Tiffany; Yildiz, Vedat O; Shibahara, Ichiyo; de Jesus, Jason A; Yong, William H; Mischel, Paul S; Fernandez, Soledad; Kornblum, Harley I; Nakano, Ichiro

    2011-01-01

    Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM). Patients with CD44(high) GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44(high) GBM but not from CD44(low) GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of phosphorylated AKT in CD44(high) GBM, but not in CD44(low) GBM. Lastly, in a mouse spontaneous intracranial tumor model, CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKT pathway.

  16. Bypassing STAT3-mediated inhibition of the transcriptional regulator ID2 improves the anti-tumor efficacy of dendritic cells*

    PubMed Central

    Li, Haiyan S.; Liu, Chengwen; Xiao, Yichuan; Chu, Fuliang; Liang, Xiaoxuan; Peng, Weiyi; Hu, Jianhua; Neelapu, Sattva S.; Sun, Shao-Cong; Hwu, Patrick; Watowich, Stephanie S.

    2016-01-01

    Despite the potent ability of dendritic cells (DCs) to stimulate lymphocyte responses and host immunity, granulocyte-macrophage colony-stimulating factor (GM-CSF)-derived DCs (GM-DCs) used as antitumor vaccines have demonstrated relatively modest success in cancer immunotherapy. We found that injecting GM-DCs into melanoma tumors in mice, or culturing GM-DCs with melanoma-secreted cytokines or melanoma-conditioned medium, rapidly suppressed DC-intrinsic expression of the gene encoding inhibitor of differentiation 2 (ID2), a transcriptional regulator. Melanoma-associated cytokines repressed Id2 transcription in murine DCs through the activation of signal transducer and activator of transcription 3 (STAT3). Enforced expression of ID2 in GM-DCs (ID2-GM-DCs) suppressed their production of the pro-inflammatory cytokine TNF-α. Vaccination with ID2-GM-DCs slowed the progression of melanoma tumors and enhanced animal survival, which was associated with an increased abundance of tumor-infiltrating interferon-γ-positive CD4+ effector and CD8+ cytotoxic T cells and a decreased number of tumor-infiltrating regulatory CD4+ T cells. The efficacy of the ID2-GM-DC vaccine was improved by combinatorial treatment with a blocking antibody to programmed cell death protein 1 (PD-1), a current immunotherapy that overcomes suppressive immune checkpoint signaling. Collectively, our data reveal a previously unrecognized STAT3-mediated immunosuppressive mechanism in DCs and indicate that DC-intrinsic ID2 promotes tumor immunity by modulating tumor-associated CD4+ T cell responses. Thus inhibiting STAT3 or overexpressing ID2 selectively in DCs may improve the efficiency of DC vaccines in cancer therapy. PMID:27678219

  17. Functional balance between T cell chimeric receptor density and tumor associated antigen density: CTL mediated cytolysis and lymphokine production.

    PubMed

    Weijtens, M E; Hart, E H; Bolhuis, R L

    2000-01-01

    Genetically engineered expression of tumor-specific single chain antibody chimeric receptors (ch-Rec) on human T lymphocytes endow these cells with the parental monoclonal antibody (mAb) dictated tumor specificity and may be useful for clinical immuno-genetherapy. Therefore it was of importance to assess how the densities of tumor-specific receptors and tumor associated antigens (TAA), respectively, affect primary human T lymphocyte functions in relation to target cell susceptibilities to lysis. We therefore studied the functional balance between ch-Rec densities on human T lymphocytes and TAA on tumor cells. The gene construct encoding a ch-Rec derived from (1) a renal carcinoma cell (RCC) specific mouse mAb (G250), and (2) the human signal transducing Fc(epsilon)RI gamma-chain was used. To obtain ch-RecHIGH-POS and ch-RecLOW-POS T lymphocytes, two distinct retroviral vectors were used to introduce the gene constructs into primary human T lymphocytes. Levels of ch-Rec-redirected T lymphocyte mediated tumor cell lysis, as well as lymphokine production were determined using RCC lines as target/stimulator cells, which express either no or increasing densities of the TAA. A functional and dynamic balance between ch-Rec densities on cytotoxic T lymphocytes (CTLs) on the one hand and TAA densities on RCCs on the other, was found. In short, ch-RecHIGH-POS CTLs are triggered by TAAHIGH-POS as well as TAALOW-POS RCCs to lyse tumor cells and produce (IFN-gamma and TNF-alpha) lymphokine. In contrast, ch-RecLOW-POS T lymphocytes are only triggered for cytolysis and lymphokine production by relatively TAAHIGH-POS RCCs. In conclusion, (1) the activation of T lymphocyte responses is co-determined by the expression levels of the ch-Rec on T lymphocytes and the TAA on tumor cells and (2) at relatively high T lymphocyte ch-Rec expression levels the CTLs lyse tumor cells with a wide range of TAA densities. Gene Therapy (2000) 7, 35-42.

  18. [Anionic long circulation liposomes mediated antisense scintigraphy in tumor-bearing rats].

    PubMed

    Ma, Chao; Kuang, Anren; Huang, Rui; Tang, Gongshun

    2011-04-01

    This paper was aimed to investigate the biodistribution and ability of free 131-bcl-2/bcl-xl ASON (FA) and anionic long circulation liposomes encapsulated with 131I-bcl-2/bcl-xlASON (NA), in tumor-bearing rats, to image breast cancer. We investigated the tissue distribution of NA in virgin female Sprague-Dawley (SD) rats with n-methyl nitrosourea (MNU)-induced breast cancers in situ. The percentage of the injected dose per gram (%ID/g) was calculated, with the maximum ratios of tumor to blood and tumor to muscle, after injections of NA and FA for 0.5 h, 1 h, 2 h, 3 h, 4 h, 6 h, 12 h and 24 h, respectively. The ability of NA to image breast cancer in tumor-bearing rats was determined using emission computed tomography (ECT). Seventy percent (90/130) SD rats in the study developed mammary tumors after MNU injection with the average latency (NA) (96 +/- 1.2)days. The %ID/g of NA in breast cancer tissue, tumor bearing rats in liver and spleen tumor tissues after 10 hours were (6.23 +/- 0.23) %ID/g, (12.00 +/- 0.26) %ID/g and (18.25 +/- 1.33)% ID/g, respectively. The ratios of tumor to blood 6.29 +/- 0.76 and tumor to muscle 10.55 +/- 0.68 in tumor bearing rats slowly maximized at 10 h post injection of NA, most probably due to the enhanced permeability and retention effect. Hence in radionuclide antisense scintigraphy, the breast cancer in rat was clearly displayed at 10h after iv administration of NA-D. However, tumors were not visualized in rats with the iv injection of NS and NN even at the delayed time. Due to the inhibition of rapid uptake of NA by the reticulo-endothelial system, NA displays valuable pharmacologic properties characterized by the enhanced accumulation in tumor.

  19. A 2D suspension of active agents: the role of fluid mediated interactions.

    PubMed

    Behmadi, Hojjat; Fazli, Zahra; Najafi, Ali

    2017-03-22

    Taking into account both the Vicsek short-range ordering and the far-field hydrodynamic interactions mediated by the ambient fluid, we investigate the role of long-range interactions in the ordering phenomena in a quasi 2-dimensional active suspension. By studying the number fluctuations, the velocity correlation functions and cluster size distribution function, we show that depending on the number density of swimmers and the strength of noise, the hydrodynamic interactions can have significant effects in a suspension. For a fixed value of noise, at larger density of particles, long-range interactions enhance the particle pairing and cluster formation in the system.

  20. A 2D suspension of active agents: the role of fluid mediated interactions

    NASA Astrophysics Data System (ADS)

    Behmadi, Hojjat; Fazli, Zahra; Najafi, Ali

    2017-03-01

    Taking into account both the Vicsek short-range ordering and the far-field hydrodynamic interactions mediated by the ambient fluid, we investigate the role of long-range interactions in the ordering phenomena in a quasi 2-dimensional active suspension. By studying the number fluctuations, the velocity correlation functions and cluster size distribution function, we show that depending on the number density of swimmers and the strength of noise, the hydrodynamic interactions can have significant effects in a suspension. For a fixed value of noise, at larger density of particles, long-range interactions enhance the particle pairing and cluster formation in the system.

  1. Human gene transfer: Characterization of human tumor-infiltrating lymphocytes as vehicles for retroviral-mediated gene transfer in man

    SciTech Connect

    Kasid, A.; Morecki, S.; Aebersold, P.; Cornetta, K.; Culver, K.; Freeman, S.; Director, E.; Lotze, M.T.; Blaese, R.M.; Anderson, W.F.; Rosenberg, S.A. )

    1990-01-01

    Tumor-infiltrating lymphocytes (TILs) are cells generated from tumor suspensions cultured in interleukin 2 that can mediate cancer regression when adoptively transferred into mice or humans. Since TILs proliferate rapidly in vitro, recirculate, and preferentially localize at the tumor site in vivo, they provide an attractive model for delivery of exogenous genetic material into man. To determine whether efficient gene transfer into TILs is feasible. The authors transduced human TILs with the bacterial gene for neomycin-resistance (Neo{sup R}) using the retroviral vector N2. The transduced TIL populations were stable and polyclonal with respect to the intact Neo{sup R} gene integration and expressed high levels of neomycin phosphotransferase activity. The Neo{sup R} gene insertion did not alter the in vitro growth pattern and interleukin 2 dependence of the transduced TILs. Analyses of T-cell receptor gene rearrangement for {beta}- and {gamma}-chain genes revealed the oligoclonal nature of the TIL populations with no major change in the DNA rearrangement patterns or the levels of mRNA expression of the {beta} and {gamma} chains following transduction and selection of TILs in the neomycin analog G418. Human TILs expressed mRNA for tumor necrosis factors ({alpha} and {beta}) and interleukin 2 receptor P55. This pattern of cytokine-mRNA expression was not significantly altered following the transduction of TILs. The studies demonstrate the feasibility of TILs as suitable cellular vehicles for the introduction of therapeutic genes into patients receiving autologous TILs.

  2. Down-regulation of tumor endothelial marker 8 suppresses cell proliferation mediated by ERK1/2 activity

    PubMed Central

    Cao, Chuangjie; Wang, Zhuo; Huang, Leilei; Bai, Lihong; Wang, Yuefeng; Liang, Yingjie; Dou, Chengyun; Wang, Liantang

    2016-01-01

    Tumor endothelial marker 8 (TEM8) was recently suggested as a putative anti-tumor target in several types of human cancer based on its selective overexpression in tumor versus normal endothelial cells. The objective of this study was to detect the potential functions of TEM8 in osteosarcoma. Overall, TEM8 was mainly located in cytoplasm and was up-regulated in osteosarcoma compared to benign bone lesions and adjacent non tumor tissue (ANT). High TEM8 expression group had a significant lower overall survival rate than that in the low TEM8 expression group. TEM8 knock-down by siRNA or shRNA results in significant reduction of osteosarcoma cell growth and proliferation both in vitro and in vivo. Ablation of TEM8 led to increasing of p21 and p27 and suppression of cyclin D1 mediated by Erk1/2 activity. These findings suggest that down-regulation of TEM8 play an important role in the inhibition of tumorigenesis and development of osteosarcoma. PMID:26996335

  3. Inhibition of PARP1-dependent end-joining contributes to Olaparib-mediated radiosensitization in tumor cells.

    PubMed

    Kötter, Annika; Cornils, Kerstin; Borgmann, Kerstin; Dahm-Daphi, Jochen; Petersen, Cordula; Dikomey, Ekkehard; Mansour, Wael Y

    2014-12-01

    Poly-ADP-ribose-polymerase inhibitors (PARPi) are considered to be optimal tools for specifically enhancing radiosensitivity. This effect has been shown to be replication-dependent and more profound in HR-deficient tumors. Here, we present a new mode of PARPi-mediated radiosensitization which was observed in four out of six HR-proficient tumor cell lines (responders) investigated, but not in normal cells. This effect is replication-independent, as the radiosensitization remained unaffected following the inhibition of replication using aphidicolin. We showed that responders are radiosensitized by Olaparib because their DSB-repair is switched to PARP1-dependent end-joining (PARP1-EJ), as evident by (i) the significant increase in the number of residual γH2AX foci following irradiation with 3Gy and treatment with Olaparib, (ii) the enhanced enrichment of PARP1 at the chromatin after 3Gy and (iii) the inhibition of end-joining activity measured by a specific reporter substrate upon Olaparib treatment. This is the first study which directly demonstrates the switch to PARP1-EJ in tumor cells and its contribution to the response to Olaparib as a radiosensitizer, findings which could widen the scope of application of PARPi in tumor therapy. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  4. AAV-Mediated angiotensin 1-7 overexpression inhibits tumor growth of lung cancer in vitro and in vivo

    PubMed Central

    Mao, Yingying; Wang, Shengyao; Yan, Renhe; Bai, Na; Li, Andrew; Zhang, Yanling; Du, Hongyan; Chen, Baihong; Sumners, Colin; Li, Jinlong; Li, Hongwei

    2017-01-01

    Ang-(1-7) inhibits lung cancer cell growth both in vitro and in vivo. However, the molecular mechanism of action is unclear and also the rapid degradation of Ang-(1-7) in vivo limits its clinical application. Here, we have demonstrated that Ang- (1-7) inhibits lung cancer cell growth by interrupting pre-replicative complex assembly and restrains epithelial-mesenchymal transition via Cdc6 inhibition. Furthermore, we constructed a mutant adeno-associated viral vector AAV8 (Y733F) that produced stable and high efficient Ang-(1-7) expression in a xenograft tumor model. The results show that AAV8-mediated Ang-(1-7) over-expression can remarkably suppress tumor growth in vivo by down-regulating Cdc6 and anti-angiogenesis. Ang-(1-7) over-expression via the AAV8 method may be a promising strategy for lung cancer treatment. PMID:27861149

  5. Proposal of a 2-tier histologic grading system for canine cutaneous mast cell tumors to more accurately predict biological behavior.

    PubMed

    Kiupel, M; Webster, J D; Bailey, K L; Best, S; DeLay, J; Detrisac, C J; Fitzgerald, S D; Gamble, D; Ginn, P E; Goldschmidt, M H; Hendrick, M J; Howerth, E W; Janovitz, E B; Langohr, I; Lenz, S D; Lipscomb, T P; Miller, M A; Misdorp, W; Moroff, S; Mullaney, T P; Neyens, I; O'Toole, D; Ramos-Vara, J; Scase, T J; Schulman, F Y; Sledge, D; Smedley, R C; Smith, K; W Snyder, P; Southorn, E; Stedman, N L; Steficek, B A; Stromberg, P C; Valli, V E; Weisbrode, S E; Yager, J; Heller, J; Miller, R

    2011-01-01

    Currently, prognostic and therapeutic determinations for canine cutaneous mast cell tumors (MCTs) are primarily based on histologic grade. However, the use of different grading systems by veterinary pathologists and institutional modifications make the prognostic value of histologic grading highly questionable. To evaluate the consistency of microscopic grading among veterinary pathologists and the prognostic significance of the Patnaik grading system, 95 cutaneous MCTs from 95 dogs were graded in a blinded study by 28 veterinary pathologists from 16 institutions. Concordance among veterinary pathologists was 75% for the diagnosis of grade 3 MCTs and less than 64% for the diagnosis of grade 1 and 2 MCTs. To improve concordance among pathologists and to provide better prognostic significance, a 2-tier histologic grading system was devised. The diagnosis of high-grade MCTs is based on the presence of any one of the following criteria: at least 7 mitotic figures in 10 high-power fields (hpf); at least 3 multinucleated (3 or more nuclei) cells in 10 hpf; at least 3 bizarre nuclei in 10 hpf; karyomegaly (ie, nuclear diameters of at least 10% of neoplastic cells vary by at least two-fold). Fields with the highest mitotic activity or with the highest degree of anisokaryosis were selected to assess the different parameters. According to the novel grading system, high-grade MCTs were significantly associated with shorter time to metastasis or new tumor development, and with shorter survival time. The median survival time was less than 4 months for high-grade MCTs but more than 2 years for low-grade MCTs.

  6. Folic acid-mediated targeting of cowpea mosaic virus particles to tumor cells

    PubMed Central

    Destito, Giuseppe; Yeh, Robert; Rae, Chris S.; Finn, M. G.; Manchester, Marianne

    2007-01-01

    Summary Cowpea mosaic virus (CPMV) is a well-characterized nanoparticle that has been used for a variety of nanobiotechnology applications. CPMV interacts with several mammalian cell lines and tissues in vivo. To overcome natural CPMV targeting and re-direct CPMV particles to cells of interest, we attached a novel folic acid-PEG conjugate using the copper-catalyzed azide-alkyne cycloaddition reaction. PEGylation of CPMV completely eliminated background binding of the virus to tumor cells. The PEG-folate moiety allowed CPMV specific recognition of tumor cells bearing the folate receptor. In addition, by testing CPMV formulations with different amounts of the PEG-FA moiety displayed on the surface, we show that higher-density loading of targeting ligands on CPMV may not be necessary for efficient targeting to tumor cells. These studies help to define the requirements for efficiently targeting nanoparticles and protein cages to tumors. PMID:17961827

  7. Preventing inflammation inhibits biopsy-mediated changes in tumor cell behavior.

    PubMed

    Alieva, Maria; Margarido, Andreia S; Wieles, Tamara; Abels, Erik R; Colak, Burcin; Boquetale, Carla; Jan Noordmans, Herke; Snijders, Tom J; Broekman, Marike L; van Rheenen, Jacco

    2017-08-08

    Although biopsies and tumor resection are prognostically beneficial for glioblastomas (GBM), potential negative effects have also been suggested. Here, using retrospective study of patients and intravital imaging of mice, we identify some of these negative aspects, including stimulation of proliferation and migration of non-resected tumor cells, and provide a strategy to prevent these adverse effects. By repeated high-resolution intravital microscopy, we show that biopsy-like injury in GBM induces migration and proliferation of tumor cells through chemokine (C-C motif) ligand 2 (CCL-2)-dependent recruitment of macrophages. Blocking macrophage recruitment or administrating dexamethasone, a commonly used glucocorticoid to prevent brain edema in GBM patients, suppressed the observed inflammatory response and subsequent tumor growth upon biopsy both in mice and in multifocal GBM patients. Taken together, our study suggests that inhibiting CCL-2-dependent recruitment of macrophages may further increase the clinical benefits from surgical and biopsy procedures.

  8. microRNAs as mediators and communicators between cancer cells and the tumor micro-environment

    PubMed Central

    Kohlhapp, Frederick J.; Mitra, Anirban K.; Lengyel, Ernst; Peter, Marcus E.

    2015-01-01

    Cancer cells grow in an environment comprised of multiple components that support tumor growth and contribute to therapy resistance. Major cell types in the tumor micro-environment are fibroblasts, endothelial cells and infiltrating immune cells all of which communicate with cancer cells. One way that these cell types promote cancer progression is by altering expression of miRNAs, small noncoding RNAs that negatively regulate protein expression, either in the cancer cells or in associated normal cells. Changes in miRNA expression can be brought about by direct interaction between the stromal cells and cancer cells, by paracrine factors secreted by any of the cell types, or even through direct communication between cells through secreted miRNAs. Understanding the role of miRNAs in the complex interactions between the tumor and cells in its micro-environment is necessary if we are to understand tumor progression and devise new treatments. PMID:25867073

  9. X-linked inhibitor of apoptosis protein mediates tumor cell resistance to antibody-dependent cellular cytotoxicity

    PubMed Central

    Evans, M K; Sauer, S J; Nath, S; Robinson, T J; Morse, M A; Devi, G R

    2016-01-01

    Inflammatory breast cancer (IBC) is the deadliest, distinct subtype of breast cancer. High expression of epidermal growth factor receptors [EGFR or human epidermal growth factor receptor 2 (HER2)] in IBC tumors has prompted trials of anti-EGFR/HER2 monoclonal antibodies to inhibit oncogenic signaling; however, de novo and acquired therapeutic resistance is common. Another critical function of these antibodies is to mediate antibody-dependent cellular cytotoxicity (ADCC), which enables immune effector cells to engage tumors and deliver granzymes, activating executioner caspases. We hypothesized that high expression of anti-apoptotic molecules in tumors would render them resistant to ADCC. Herein, we demonstrate that the most potent caspase inhibitor, X-linked inhibitor of apoptosis protein (XIAP), overexpressed in IBC, drives resistance to ADCC mediated by cetuximab (anti-EGFR) and trastuzumab (anti-HER2). Overexpression of XIAP in parental IBC cell lines enhances resistance to ADCC; conversely, targeted downregulation of XIAP in ADCC-resistant IBC cells renders them sensitive. As hypothesized, this ADCC resistance is in part a result of the ability of XIAP to inhibit caspase activity; however, we also unexpectedly found that resistance was dependent on XIAP-mediated, caspase-independent suppression of reactive oxygen species (ROS) accumulation, which otherwise occurs during ADCC. Transcriptome analysis supported these observations by revealing modulation of genes involved in immunosuppression and oxidative stress response in XIAP-overexpressing, ADCC-resistant cells. We conclude that XIAP is a critical modulator of ADCC responsiveness, operating through both caspase-dependent and -independent mechanisms. These results suggest that strategies targeting the effects of XIAP on caspase activation and ROS suppression have the potential to enhance the activity of monoclonal antibody-based immunotherapy. PMID:26821068

  10. Systemic Tolerance Mediated by Melanoma Brain Tumors is Reversible by Radiotherapy and Vaccination

    PubMed Central

    Jackson, Christopher M.; Kochel, Christina M.; Nirschl, Christopher J.; Durham, Nicholas M.; Ruzevick, Jacob; Alme, Angela; Francica, Brian J.; Elias, Jimmy; Daniels, Andrew; Dubensky, Thomas W.; Lauer, Peter; Brockstedt, Dirk G.; Baxi, Emily G.; Calabresi, Peter A.; Taube, Janis M.; Pardo, Carlos A.; Brem, Henry; Pardoll, Drew M.; Lim, Michael; Drake, Charles G.

    2016-01-01

    Purpose Immune responses to antigens originating in the CNS are generally attenuated, since collateral damage can have devastating consequences. The significance of this finding for the efficacy of tumor-targeted immunotherapies is largely unknown. Experimental Design The B16 murine melanoma model was used to compare cytotoxic responses against established tumors in the CNS and in the periphery. Cytokine analysis of tissues from brain tumor-bearing mice detected elevated TGF-β secretion from microglia and in the serum and TGF-β signaling blockade reversed tolerance of tumor antigen-directed CD8 T cells. Additionally, a treatment regimen using focal radiation therapy and recombinant Listeria monocytogenes was evaluated for immunologic activity and efficacy in this model. Results CNS melanomas were more tolerogenic than equivalently progressed tumors outside the CNS as antigen-specific CD8 T cells were deleted and exhibited impaired cytotoxicity. Tumor-bearing mice had elevated serum levels of TGF-β; however, blocking TGF-β signaling with a small molecule inhibitor or a monoclonal antibody did not improve survival. Conversely, tumor antigen-specific vaccination in combination with focal radiation therapy reversed tolerance and improved survival. This treatment regimen was associated with increased polyfunctionality of CD8 T cells, elevated T effector to T regulatory cell ratios and decreased TGF-β secretion from microglia. Conclusions These data suggest that CNS tumors may impair systemic antitumor immunity and consequently accelerate cancer progression locally as well as outside the CNS while antitumor immunity may be restored by combining vaccination with radiation therapy. These findings are hypothesis-generating and warrant further study in more contemporary melanoma models as well as human trials. PMID:26490306

  11. Selective Alpha-Particle Mediated Depletion of Tumor Vasculature with Vascular Normalization

    PubMed Central

    Seshan, Surya V.; Kappel, Barry J.; Chattopadhyay, Debjit; May, Chad; McDevitt, Michael R.; Nolan, Daniel; Mittal, Vivek; Benezra, Robert; Scheinberg, David A.

    2007-01-01

    Background Abnormal regulation of angiogenesis in tumors results in the formation of vessels that are necessary for tumor growth, but compromised in structure and function. Abnormal tumor vasculature impairs oxygen and drug delivery and results in radiotherapy and chemotherapy resistance, respectively. Alpha particles are extraordinarily potent, short-ranged radiations with geometry uniquely suitable for selectively killing neovasculature. Methodology and Principal Findings Actinium-225 (225Ac)-E4G10, an alpha-emitting antibody construct reactive with the unengaged form of vascular endothelial cadherin, is capable of potent, selective killing of tumor neovascular endothelium and late endothelial progenitors in bone-marrow and blood. No specific normal-tissue uptake of E4G10 was seen by imaging or post-mortem biodistribution studies in mice. In a mouse-model of prostatic carcinoma, 225Ac-E4G10 treatment resulted in inhibition of tumor growth, lower serum prostate specific antigen level and markedly prolonged survival, which was further enhanced by subsequent administration of paclitaxel. Immunohistochemistry revealed lower vessel density and enhanced tumor cell apoptosis in 225Ac-E4G10 treated tumors. Additionally, the residual tumor vasculature appeared normalized as evident by enhanced pericyte coverage following 225Ac-E4G10 therapy. However, no toxicity was observed in vascularized normal organs following 225Ac-E4G10 therapy. Conclusions The data suggest that alpha-particle immunotherapy to neovasculature, alone or in combination with sequential chemotherapy, is an effective approach to cancer therapy. PMID:17342201

  12. Sulindac reversal of 15-PGDH-mediated resistance to colon tumor chemoprevention with NSAIDs.

    PubMed

    Fink, Stephen P; Dawson, Dawn M; Zhang, Yongyou; Kresak, Adam; Lawrence, Earl G; Yang, Peiying; Chen, Yanwen; Barnholtz-Sloan, Jill S; Willis, Joseph E; Kopelovich, Levy; Markowitz, Sanford D

    2015-02-01

    Non-steroidal anti-inflammatory drugs prevent colorectal cancer by inhibiting cyclooxygenase (COX) enzymes that synthesize tumor-promoting prostaglandins. 15-hydroxyprostaglandin dehydrogenase (15-PGDH) is a tumor suppressor that degrades tumor-promoting prostaglandins. Murine knockout of 15-PGDH increases susceptibility to azoxymethane-induced colon tumors. It also renders these mice resistant to celecoxib, a selective inhibitor of inducible COX-2 during colon neoplasia. Similarly, humans with low colonic 15-PGDH are also resistant to colon adenoma prevention with celecoxib. Here, we used aspirin and sulindac, which inhibit both COX-1 and COX-2, in order to determine if these broader COX inhibitors can prevent colon tumors in 15-PGDH knockout (KO) mice. Unlike celecoxib, sulindac proved highly effective in colon tumor prevention of 15-PGDH KO mice. Significantly, however, aspirin demonstrated no effect on colon tumor incidence in either 15-PGDH wild-type or KO mice, despite a comparable reduction in colonic mucosal Prostaglandin E₂ (PGE₂) levels by both sulindac and aspirin. Notably, colon tumor prevention activity by sulindac was accompanied by a marked induction of lymphoid aggregates and proximal colonic inflammatory mass lesions, a side effect seen to a lesser degree with celecoxib, but not with aspirin. These findings suggest that sulindac may be the most effective agent for colon cancer prevention in humans with low 15-PGDH, but its use may also be associated with inflammatory lesions in the colon. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Redirecting NK cells mediated tumor cell lysis by a new recombinant bifunctional protein

    PubMed Central

    Germain, Claire; Campigna, Emmanuelle; Salhi, Imed; Morisseau, Sébastien; Navarro-Teulon, Isabelle; Mach, Jean-Pierre; Pèlegrin, André; Robert, Bruno

    2008-01-01

    Natural killer (NK) cells are at the crossroad between innate and adaptive immunity and play a major role in cancer immunosurveillance. NK cell stimulation depends on a balance between inhibitory and activating receptors, such as the stimulatory lectinlike receptor NKG2D. To redirect NK cells against tumor cells we designed bifunctional proteins able to specifically bind tumor cells and to induce their lysis by NK cells, after NKG2D engagement. To this aim, we used the “knob into hole” heterodimerization strategy, in which “knob” and “hole” variants were generated by directed mutagenesis within the CH3 domain of human IgG1 Fc fragments fused to an anti-CEA or anti-HER2 scFv or to the H60 murine ligand of NKG2D, respectively. We demonstrated the capacity of the bifunctional proteins produced to specifically coat tumor cells surface with H60 ligand. Most importantly, we demonstrated that these bifunctional proteins were able to induce an NKG2D-dependent and antibody-specific tumor cell lysis by murine NK cells. Overall, the results show the possibility to redirect NK cytotoxicity to tumor cells by a new format of recombinant bispecific antibody, opening the way of potential NK cell-based cancer immunotherapies by specific activation of the NKG2D receptor at the tumor site. PMID:18790793

  14. Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis

    PubMed Central

    Zhang, Zhengxiang; Yu, Yang; Cheng, Jin; Gong, Yanping; Li, Chuan-Yuan; Huang, Qian

    2015-01-01

    Cytotoxic radiotherapy unfavorably induces tumor cells to generate various proangiogenic substances, promoting post-irradiation angiogenesis (PIA), which is one of major causes of radiotherapy failure. Though several studies have reported some mechanisms behind PIA, they have not yet described the beginning proangiogenic motivator buried in the irradiated microenvironment. In this work, we revealed that dying tumor cells induced by irradiation prompted PIA via a caspase 3 dependent mechanism. Proteolytic inactivation of caspase 3 in dying tumor cells by transducing a dominant-negative version weakened proangiogenic effects in vitro and in vivo. In addition, inhibition of caspase 3 activity suppressed tumor angiogenesis and tumorigenesis in xenograft mouse model. Importantly, we identified vascular endothelial growth factor (VEGF)-A as a downstream proangiogenic factor regulated by caspase 3 possibly through Akt signaling. Collectively, these findings indicated that besides acting as a key executioner in apoptosis, caspase 3 in dying tumor cells may play a central role in driving proangiogenic response after irradiation. Thus, radiotherapy in combination with caspase 3 inhibitors may be a novel promising therapeutic strategy to reduce tumor recurrence due to restrained PIA. PMID:26431328

  15. Bacteria-mediated in vivo delivery of quantum dots into solid tumor

    SciTech Connect

    Liu, Ying; Zhou, Mei; Luo, Dan; Wang, Lijun; Hong, Yuankai; Yang, Yepeng; Sha, Yinlin

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer New approach using the probiotic Bifidobacterium bifidum as a vehicle to deliver QDs into the deep tissue of solid tumors in vivo was achieved. Black-Right-Pointing-Pointer Bifidobacterium bifidum delivery system has intrinsic biocompatibility. Black-Right-Pointing-Pointer The targeting efficacy was improved by folic acids. -- Abstract: Semiconductor nanocrystals, so-called quantum dots (QDs), promise potential application in bioimaging and diagnosis in vitro and in vivo owing to their high-quality photoluminescence and excellent photostability as well as size-tunable spectra. Here, we describe a biocompatible, comparatively safe bacteria-based system that can deliver QDs specifically into solid tumor of living animals. In our strategy, anaerobic bacterium Bifidobacterium bifidum (B. bifidum) that colonizes selectively in hypoxic regions of animal body was successfully used as a vehicle to load with QDs and transported into the deep tissue of solid tumors. The internalization of lipid-encapsuled QDs into B. bifidum was conveniently carried by electroporation. To improve the efficacy and specificity of tumor targeting, the QDs-carrying bacterium surface was further conjugated with folic acids (FAs) that can bind to the folic acid receptor overexpressed tumor cells. This new approach opens a pathway for delivering different types of functional cargos such as nanoparticles and drugs into solid tumor of live animals for imaging, diagnosis and therapy.

  16. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while enhancing radiation-mediated control of tumor vasculature

    PubMed Central

    Geng, Ling; Rachakonda, Girish; Morré, D. James; Morré, Dorothy M.; Crooks, Peter A.; Sonar, Vijayakumar N.; Roti, Joseph L. Roti; Rogers, Buck E.; Greco, Suellen; Ye, Fei; Salleng, Kenneth J.; Sasi, Soumya; Freeman, Michael L.; Sekhar, Konjeti R.

    2009-01-01

    There is a need for novel strategies that target tumor vasculature, specifically those that synergize with cytotoxic therapy, in order to overcome resistance that can develop with current therapeutics. A chemistry-driven drug discovery screen was employed to identify novel compounds that inhibit endothelial cell tubule formation. Cell-based phenotypic screening revealed that noncytotoxic concentrations of (Z)-(±)-2-(1-benzenesulfonylindol-3-ylmethylene)-1-azabicyclo[2. 2.2]octan-3-ol (analog I) and (Z)-(±)-2-(1-benzylindol-3-ylmethylene)-1-azabicyclo[2.2.2]octan-3-ol (analog II) inhibited endothelial cell migration and the ability to form capillary-like structures in Matrigel by ≥70%. The ability to undergo neoangiogenesis, as measured in a window-chamber model, was also inhibited by 70%. Screening of biochemical pathways revealed that analog II inhibited the enzyme ENOX1 (EC50 = 10 μM). Retroviral-mediated shRNA suppression of endothelial ENOX1 expression inhibited cell migration and tubule formation, recapitulating the effects observed with the small-molecule analogs. Genetic or chemical suppression of ENOX1 significantly increased radiation-mediated Caspase3-activated apoptosis, coincident with suppression of p70S6K1 phosphorylation. Administration of analog II prior to fractionated X-irradiation significantly diminished the number and density of tumor microvessels, as well as delayed syngeneic and xenograft tumor growth compared to results obtained with radiation alone. Analysis of necropsies suggests that the analog was well tolerated. These results suggest that targeting ENOX1 activity represents a novel therapeutic strategy for enhancing the radiation response of tumors.—Geng, L., Rachakonda, G., Morré, D. J., Morré, D. M., Crooks, P. A., Sonar, V. N., Roti Roti, J. L., Rogers, B. E., Greco, S., Ye, F., Salleng, K. J., Sasi, S., Freeman, M. L., Sekhar, K. R. Indolyl-quinuclidinols inhibit ENOX activity and endothelial cell morphogenesis while

  17. Avidity-mediated enhancement of in vivo tumor targeting by single-chain Fv dimers.

    PubMed

    Adams, Gregory P; Tai, Mei-Sheng; McCartney, John E; Marks, James D; Stafford, Walter F; Houston, L L; Huston, James S; Weiner, Louis M

    2006-03-01

    Radiolabeled single-chain Fv (sFv) molecules display highly specific tumor retention in the severe combined immunodeficient (SCID) mouse model; however, the absolute quantity of sFv retained in the tumors is diminished by the rapid renal elimination resulting from the small size of the sFv molecules (Mr 27,000) and by dissociation of the monovalent sFv from tumor-associated antigen. We previously reported significant improvement in tumor retention without a loss of targeting specificity on converting monovalent sFv into divalent [(sFv')2] dimers, linked by a disulfide bond between COOH-terminal cysteinyl peptides engineered into the sFv'. However, our data for enhanced dimer localization in tumors could not distinguish between the contributions of enhanced avidity and increased systemic retention associated with the larger size of 54 kDa [(sFv')2] dimers relative to 27-kDa sFv. In this investigation, we have compared tumor targeting of divalent anti-c-erbB-2/HER2/neu 741F8-1 (sFv')2 homodimers with monovalent 741F8/26-10 (sFv')2 heterodimers (Mr 54,000) and 741F8 sFv monomers (741F8 sFv has binding specificity for erbB-2/HER2/neu and 26-10 sFv specificity for digoxin and related cardiac glycosides). These studies allowed us to distinguish the dominant effect of valency over molecular weight in accounting for the superior tumor retention of 741F8-1 (sFv')2 homodimers. Each of the radioiodinated species was administered i.v. to SCID mice bearing SK-OV-3 human tumor xenografts and tumor localization at 24 hours post i.v. injection was determined for 125I-741F8-1 (sFv')2 (3.57 %ID/g), 125I-741F8/26-10 (sFv')2 (1.13 %ID/g), and 125I-741F8-1 sFv (1.25 %ID/g). These findings substantiate that the improved tumor retention of (sFv')2 homodimers over sFv monomers results from the availability of dual binding sites rather than from the slower systemic clearance of homodimers.

  18. Inhibitory effects of subcutaneous tumors in nude mice mediated by low-frequency ultrasound and microbubbles

    PubMed Central

    SHEN, ZHI-YONG; SHEN, E.; DIAO, XUE-HONG; BAI, WEN-KUN; ZENG, MIN-XIA; LUAN, YAN YAN; NAN, SHU-LIANG; LIN, YAN-DUAN; WEI, CONG; CHEN, LI; SUN, DI; HU, BING

    2014-01-01

    The aim of the present study was to investigate the sonication effects of 21-kHz ultrasound (US) with microbubbles (MBs) on the subcutaneous prostate tumors of nude mice. In total, 15 tumor-bearing nude mice were divided into three groups: The control group, the low-frequency US group and the US+MB group. The MBs used were from US contrast agent SonoVue. The parameters of the US were as follows: 21 kHz, 26 mW/cm2 and a 40% duty cycle (2 sec on, 3 sec off) for 3 min, once every other day for 2 weeks. Color Doppler flow imaging, hematoxylin and eosin (HE) staining, immunoblotting and transmission electron microscopy (TEM) were used to evaluate the results. Following 2 weeks of treatment, the blood flow signal disappeared in the US+MB group only, and the tumor size was smaller when compared with the control and US groups. For the immunoblotting, the intensity of cyclooxygenase-2 and vascular endothelial growth factor in the US+MB group was lower compared with the other two groups. Tumor necrosis was present and the nucleus disappeared upon HE staining in the US+MB group. Upon TEM analysis, increased cytoplasmic vacuolation and dilatation of the perinuclear cisternae of the tumor cells were found in the US+MB group. In the control and US groups, the tumors had intact vascular endothelia and vessel lumens. However, lumen occlusion of the vessels was observed in the US+MB group. In conclusion, 21-kHz low-intensity US with MBs may result in vessel occlusion and growth inhibitory effects in the subcutaneous tumors of nude mice. PMID:24765142

  19. Singlet oxygen explicit dosimetry to predict long-term local tumor control for Photofrin-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Penjweini, Rozhin; Kim, Michele M.; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Although photodynamic therapy (PDT) is an established modality for the treatment of cancer, current dosimetric quantities do not account for the variations in PDT oxygen consumption for different fluence rates (φ). In this study we examine the efficacy of reacted singlet oxygen concentration ([1O2]rx) to predict long-term local control rate (LCR) for Photofrin-mediated PDT. Radiation-induced fibrosarcoma (RIF) tumors in the right shoulders of female C3H mice are treated with different in-air fluences of 225-540 J/cm2 and in-air fluence rate (φair) of 50 and 75 mW/cm2 at 5 mg/kg Photofrin and a drug-light interval of 24 hours using a 1 cm diameter collimated laser beam at 630 nm wavelength. [1O2]rx is calculated by using a macroscopic model based on explicit dosimetry of Photofrin concentration, tissue optical properties, tissue oxygenation and blood flow changes during PDT. The tumor volume of each mouse is tracked for 90 days after PDT and Kaplan-Meier analyses for LCR are performed based on a tumor volume <=100 mm3, for the four dose metrics light fluence, photosensitizer photobleaching rate, PDT dose and [1O2]rx. PDT dose is defined as a temporal integral of photosensitizer concentration and Φ at a 3 mm tumor depth. φ is calculated throughout the treatment volume based on Monte-Carlo simulation and measured tissue optical properties. Our preliminary studies show that [1O2]rx is the best dosimetric quantity that can predict tumor response and correlate with LCR. Moreover, [1O2]rx calculated using the blood flow changes was in agreement with [1O2]rx calculated based on the actual tissue oxygenation.

  20. Hypoxic Tumor Kinase Signaling Mediated by STAT5A in Development of Castration-Resistant Prostate Cancer

    PubMed Central

    Røe, Kathrine; Bratland, Åse; Vlatkovic, Ljiljana; Ragnum, Harald Bull; Saelen, Marie Grøn; Olsen, Dag Rune; Marignol, Laure; Ree, Anne Hansen

    2013-01-01

    In this study, we hypothesized that androgen-deprivation therapy (ADT) in prostate cancer, although initially efficient, induces changes in the tumor kinome, which subsequently promote development of castration-resistant (CR) disease. Recognizing the correlation between tumor hypoxia and poor prognosis in prostate cancer, we further hypothesized that such changes might be influenced by hypoxia. Microarrays with 144 kinase peptide substrates were applied to analyze CWR22 prostate carcinoma xenograft samples from ADT-naïve, androgen-deprived (AD), long-term AD (ADL), and CR disease stages. The impact of hypoxia was assessed by matching the xenograft kinase activity profiles with those acquired from hypoxic and normoxic prostate carcinoma cell cultures, whereas the clinical relevance was evaluated by analyzing prostatectomy tumor samples from patients with locally advanced disease, either in ADT-naïve or early CR disease stages. By using this novel peptide substrate microarray method we revealed high kinase activity mediated by signal transducer and activator of transcription 5A (STAT5A) in CR prostate cancer. Additionally, we uncovered high STAT5A kinase activity already in regressing ADL xenografts, before renewed CR growth was evidenced. Finally, since increased STAT5A kinase activity also was detected after exposing prostate carcinoma cells to hypoxia, we propose long-term ADT to induce tumor hypoxia and stimulate STAT5A kinase activity, subsequently leading to renewed CR tumor growth. Hence, the study detected STAT5A as a candidate to be further investigated for its potential as marker of advanced prostate cancer and as possible therapeutic target protein. PMID:23675504

  1. Doxycycline potentiates antitumor effect of 5-aminolevulinic acid-mediated photodynamic therapy in malignant peripheral nerve sheath tumor cells

    PubMed Central

    Lee, Ming-Jen; Hung, Shih-Hsuan; Huang, Mu-Ching; Tsai, Tsuimin

    2017-01-01

    Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous disorders. Some NF1 patients develop benign large plexiform neurofibroma(s) at birth, which can then transform into a malignant peripheral nerve sheath tumor (MPNST). There is no curative treatment for this rapidly progressive and easily metastatic neurofibrosarcoma. Photodynamic therapy (PDT) has been developed as an anti-cancer treatment, and 5-aminolevulinic (ALA) mediated PDT (ALA-PDT) has been used to treat cutaneous skin and oral neoplasms. Doxycycline, a tetracycline derivative, can substantially reduce the tumor burden in human and animal models, in addition to its antimicrobial effects. The purpose of this study was to evaluate the effect and to investigate the mechanism of action of combined doxycycline and ALA-PDT treatment of MPNST cells. An 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the combination of ALA-PDT and doxycycline significantly reduce MPNST survival rate, compared to cells treated with each therapy alone. Isobologram analysis showed that the combined treatment had a synergistic effect. The increased cytotoxic activity could be seen by an increase in cellular protoporphyrin IX (PpIX) accumulation. Furthermore, we found that the higher retention of PpIX was mainly due to increasing ALA uptake, rather than activity changes of the enzymes porphobilinogen deaminase and ferrochelatase. The combined treatment inhibited tumor growth in different tumor cell lines, but not in normal human Schwann cells or fibroblasts. Similarly, a synergistic interaction was also found in cells treated with ALA-PDT combined with minocycline, but not tetracycline. In summary, doxycycline can potentiate the effect of ALA-PDT to kill tumor cells. This increased potency allows for a dose reduction of doxycycline and photodynamic radiation, reducing the occurrence of toxic side effects in vivo. PMID:28558025

  2. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors.

    PubMed

    Ganesh, Shanthi; Iyer, Arun K; Morrissey, David V; Amiji, Mansoor M

    2013-04-01

    Anticancer therapeutics employing RNA interference mechanism holds promising potentials for sequence-specific silencing of target genes. However targeted delivery of siRNAs to tumor tissues and cells and more importantly, their intracellular release at sites of interest still remains a major challenge that needs to be addressed before this technique could become a clinically viable option. In the current study, we have engineered and screened a series of CD44 targeting hyaluronic acid (HA) based self-assembling nanosystems for targeted siRNA delivery. The HA polymer was functionalized with lipids of varying carbon chain lengths/nitrogen content, as well as polyamines for assessing siRNA encapsulation. From the screens, several HA-derivatives were identified that could stably encapsulate/complex siRNAs and form self-assembled nanosystems, as determined by gel retardation assays and dynamic light scattering. Many HA derivatives could transfect siRNAs into cancer cells overexpressing CD44 receptors. Interestingly, blocking the CD44 receptors on the cells using free excess soluble HA prior to incubation of cy3-labeled-siRNA loaded HA nano-assemblies resulted in >90% inhibition of the receptor mediated uptake, confirming target specificity. In addition, SSB/PLK1 siRNA encapsulated in HA-PEI/PEG nanosystems demonstrated dose dependent and target specific gene knockdown in both sensitive and resistant A549 lung cancer cells overexpressing CD44 receptors. More importantly, these siRNA encapsulated nanosystems demonstrated tumor selective uptake and target specific gene knock down in vivo in solid tumors as well as in metastatic tumors. The HA based nanosystems thus portend to be promising siRNA delivery vectors for systemic targeting of CD44 overexpressing cancers including tumor initiating (stem-) cells and metastatic lesions.

  3. Hypoxic tumor kinase signaling mediated by STAT5A in development of castration-resistant prostate cancer.

    PubMed

    Røe, Kathrine; Bratland, Åse; Vlatkovic, Ljiljana; Ragnum, Harald Bull; Saelen, Marie Grøn; Olsen, Dag Rune; Marignol, Laure; Ree, Anne Hansen

    2013-01-01

    In this study, we hypothesized that androgen-deprivation therapy (ADT) in prostate cancer, although initially efficient, induces changes in the tumor kinome, which subsequently promote development of castration-resistant (CR) disease. Recognizing the correlation between tumor hypoxia and poor prognosis in prostate cancer, we further hypothesized that such changes might be influenced by hypoxia. Microarrays with 144 kinase peptide substrates were applied to analyze CWR22 prostate carcinoma xenograft samples from ADT-naïve, androgen-deprived (AD), long-term AD (ADL), and CR disease stages. The impact of hypoxia was assessed by matching the xenograft kinase activity profiles with those acquired from hypoxic and normoxic prostate carcinoma cell cultures, whereas the clinical relevance was evaluated by analyzing prostatectomy tumor samples from patients with locally advanced disease, either in ADT-naïve or early CR disease stages. By using this novel peptide substrate microarray method we revealed high kinase activity mediated by signal transducer and activator of transcription 5A (STAT5A) in CR prostate cancer. Additionally, we uncovered high STAT5A kinase activity already in regressing ADL xenografts, before renewed CR growth was evidenced. Finally, since increased STAT5A kinase activity also was detected after exposing prostate carcinoma cells to hypoxia, we propose long-term ADT to induce tumor hypoxia and stimulate STAT5A kinase activity, subsequently leading to renewed CR tumor growth. Hence, the study detected STAT5A as a candidate to be further investigated for its potential as marker of advanced prostate cancer and as possible therapeutic target protein.

  4. Modulation of the leptin receptor mediates tumor growth and migration of pancreatic cancer cells.

    PubMed

    Mendonsa, Alisha M; Chalfant, Madeleine C; Gorden, Lee D; VanSaun, Michael N

    2015-01-01

    Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration.

  5. Modulation of the Leptin Receptor Mediates Tumor Growth and Migration of Pancreatic Cancer Cells

    PubMed Central

    Chalfant, Madeleine C.; Gorden, Lee D.

    2015-01-01

    Obesity has been implicated as a significant risk factor for development of pancreatic cancer. In the setting of obesity, a systemic chronic inflammatory response is characterized by alterations in the production and secretion of a wide variety of growth factors. Leptin is a hormone whose level increases drastically in the serum of obese patients. High fat diet induced obesity in mice leads to an overall increased body weight, pancreatic weight, serum leptin, and pancreatic tissue leptin levels. Here we report the contribution of obesity and leptin to pancreatic cancer growth utilizing an in vivo orthotopic murine pancreatic cancer model, which resulted in increased tumor proliferation with concomitant increased tumor burden in the diet induced obese mice compared to lean mice. Human and murine pancreatic cancer cell lines were found to express the short as well as the long form of the leptin receptor and functionally responded to leptin induced activation through an increased phosphorylation of AKT473. In vitro, leptin stimulation increased cellular migration which was blocked by addition of a PI3K inhibitor. In vivo, depletion of the leptin receptor through shRNA knockdown partially abrogated increased orthotopic tumor growth in obese mice. These findings suggest that leptin contributes to pancreatic tumor growth through activation of the PI3K/AKT pathway, which promotes pancreatic tumor cell migration. PMID:25919692

  6. Targeting Tumor Microenvironment: Effects of Chinese Herbal Formulae on Macrophage-Mediated Lung Cancer in Mice

    PubMed Central

    Xu, Fei; Cui, Wenqiang; Zhao, Zhengxiao; Gong, Weiyi; Liu, Jiaqi; Li, Mihui; Li, Qiuping; Yan, Chen; Qiu, Jian

    2017-01-01

    Our previous studies have shown that Qing-Re-Huo-Xue (QRHX) formulae had significant anti-inflammatory effects in chronic airway diseases such as asthma and chronic obstructive lung disease. Here, we examined the effects of QRHX on lung cancer cell invasion and the potential associated mechanism(s), mainly polarization of macrophages in the tumor microenvironment. In vivo, QRHX both inhibited tumor growth and decreased the number of tumor-associated macrophages (TAMs) in mice with lung cancer. Further study indicated that QRHX inhibited cancer-related inflammation in tumor by decreasing infiltration of TAMs and IL-6 and TNF-α production and meanwhile decreased arginase 1 (Arg-1) expression and increased inducible NO synthase (iNOS) expression. QRHX could markedly inhibit CD31 and VEGF protein expression. Additionally, CXCL12/CXCR4 expression and JAK2/STAT3 phosphorylation were reduced in QRHX treatment group. Thus, we draw that QRHX played a more important role in inhibiting tumor growth by regulating TAMs in mice, which was found to be associated with the inhibition of inflammation and the CXCL12/CXCR4/JAK2/STAT3 signaling pathway. PMID:28630636

  7. Methylglyoxal-Mediated Stress Correlates with High Metabolic Activity and Promotes Tumor Growth in Colorectal Cancer

    PubMed Central

    Chiavarina, Barbara; Nokin, Marie-Julie; Bellier, Justine; Durieux, Florence; Bletard, Noëlla; Sherer, Félicie; Lovinfosse, Pierre; Peulen, Olivier; Verset, Laurine; Dehon, Romain; Demetter, Pieter; Turtoi, Andrei; Uchida, Koji; Goldman, Serge; Hustinx, Roland; Delvenne, Philippe; Castronovo, Vincent; Bellahcène, Akeila

    2017-01-01

    Cancer cells generally rely on aerobic glycolysis as a major source of energy. Methylglyoxal (MG), a dicarbonyl compound that is produced as a side product during glycolysis, is highly reactive and induces the formation of advanced glycation end-products that are implicated in several pathologies including cancer. All mammalian cells have an enzymatic defense against MG composed by glyoxalases GLO1 and GLO2 that converts MG to d-lactate. Colorectal cancer (CRC) is one of the most frequently occurring cancers with high morbidity and mortality. In this study, we used immunohistochemistry to examine the level of MG protein adducts, in a series of 102 CRC human tumors divided into four clinical stages. We consistently detected a high level of MG adducts and low GLO1 activity in high stage tumors compared to low stage ones suggesting a pro-tumor role for dicarbonyl stress. Accordingly, GLO1 depletion in CRC cells promoted tumor growth in vivo that was efficiently reversed using carnosine, a potent MG scavenger. Our study represents the first demonstration that MG adducts accumulation is a consistent feature of high stage CRC tumors. Our data point to MG production and detoxification levels as an important molecular link between exacerbated glycolytic activity and CRC progression. PMID:28117708

  8. Methylglyoxal-Mediated Stress Correlates with High Metabolic Activity and Promotes Tumor Growth in Colorectal Cancer.

    PubMed

    Chiavarina, Barbara; Nokin, Marie-Julie; Bellier, Justine; Durieux, Florence; Bletard, Noëlla; Sherer, Félicie; Lovinfosse, Pierre; Peulen, Olivier; Verset, Laurine; Dehon, Romain; Demetter, Pieter; Turtoi, Andrei; Uchida, Koji; Goldman, Serge; Hustinx, Roland; Delvenne, Philippe; Castronovo, Vincent; Bellahcène, Akeila

    2017-01-21

    Cancer cells generally rely on aerobic glycolysis as a major source of energy. Methylglyoxal (MG), a dicarbonyl compound that is produced as a side product during glycolysis, is highly reactive and induces the formation of advanced glycation end-products that are implicated in several pathologies including cancer. All mammalian cells have an enzymatic defense against MG composed by glyoxalases GLO1 and GLO2 that converts MG to d-lactate. Colorectal cancer (CRC) is one of the most frequently occurring cancers with high morbidity and mortality. In this study, we used immunohistochemistry to examine the level of MG protein adducts, in a series of 102 CRC human tumors divided into four clinical stages. We consistently detected a high level of MG adducts and low GLO1 activity in high stage tumors compared to low stage ones suggesting a pro-tumor role for dicarbonyl stress. Accordingly, GLO1 depletion in CRC cells promoted tumor growth in vivo that was efficiently reversed using carnosine, a potent MG scavenger. Our study represents the first demonstration that MG adducts accumulation is a consistent feature of high stage CRC tumors. Our data point to MG production and detoxification levels as an important molecular link between exacerbated glycolytic activity and CRC progression.

  9. Aptamer-Mediated Transparent-Biocompatible Nanostructured Surfaces for Hepotocellular Circulating Tumor Cells Enrichment

    PubMed Central

    Wang, Shuyi; Zhang, Chunxiao; Wang, Guozhou; Cheng, Boran; Wang, Yulei; Chen, Fangfang; Chen, Yuanyuan; Feng, Maohui; Xiong, Bin

    2016-01-01

    Circulating tumor cells (CTCs) have been considered as the origin of cancer metastasis. Thus, detection of CTCs in peripheral blood is of great value in different types of solid tumors. However, owing to extremely low abundance of CTCs, detection of them has been technically challenging. To establish a simple and efficient method for CTCs detection in patients with hepatocellular carcinoma (HCC), we applied biocompatible and transparent HA/CTS (Hydroxyapatite/chitosan) nanofilm to achieve enhanced topographic interactions with nanoscale cellular surface components, and we used sLex-AP (aptamer for carbohydrate sialyl Lewis X) to coat onto HA/CTS nanofilm for efficient capture of HCC CTCs, these two functional components combined to form our CTC-BioTChip platform. Using this platform, we realized HCC CTCs' capture and identification, the average recovery rate was 61.6% or more at each spiking level. Importantly, our platform identified CTCs (2±2 per 2 mL) in 25 of 42 (59.5%) HCC patients. Moreover, both the positivity rate and the number of detected CTCs were significantly correlated with tumor size, portal vein tumor thrombus, and the TNM (tumor-node-metastasis) stage. In summary, our CTC-BioTChip platform provides a new method allowing for simple but efficient detection of CTCs in HCC patients, and it holds potential of clinically usefulness in monitoring HCC prognosis and guiding individualized treatment in the future. PMID:27570557

  10. Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated.

    PubMed

    Castellví, Quim; Ginestà, Mireia M; Capellà, Gabriel; Ivorra, Antoni

    2015-10-01

    Delivery of the so-called Tumor Treatment Fields (TTFields) has been proposed as a cancer therapy. These are low magnitude alternating electric fields at frequencies from 100 to 300 kHz which are applied continuously in a non-invasive manner. Electric field delivery may produce an increase in temperature which cannot be neglected. We hypothesized that the reported results obtained by applying TTFields in vivo could be due to heat rather than to electrical forces as previously suggested. Here, an in vivo study is presented in which pancreatic tumors subcutaneously implanted in nude mice were treated for a week either with mild hyperthermia (41 °C) or with TTFields (6 V/cm, 150 kHz) and tumor growth was assessed. Although the TTFields applied singly did not produce any significant effect, the combination with chemotherapy did show a delay in tumor growth in comparison to animals treated only with chemotherapy (median relative reduction=47%). We conclude that concomitant chemotherapy and TTFields delivery show a beneficial impact on pancreatic tumor growth. Contrary to our hypothesis, this impact is non-related with the induced temperature increase.

  11. Adenosine A2 receptor-mediated regulation of renal hemodynamics and glomerular filtration rate is abolished in diabetes.

    PubMed

    Persson, Patrik; Hansell, Peter; Palm, Fredrik

    2013-01-01

    Alterations in glomerular filtration rate (GFR) are one of the earliest indications of altered kidney function in diabetes. Adenosine regulates GFR through tubuloglomerular feedback mechanism acting on adenosine A1 receptor. In addition, adenosine can directly regulate vascular tone by acting on A1 and A2 receptors expressed in afferent and efferent arterioles. Opposite to A1 receptors, A2 receptors mediate vasorelaxation. This study investigates the involvement of adenosine A2 receptors in regulation of renal blood flow (RBF) and GFR in control and diabetic kidneys. GFR was measured by inulin clearance and RBF by a transonic flow probe placed around the renal artery. Measurements were performed in isoflurane-anesthetized normoglycemic and alloxan-diabetic C57BL/6 mice during baseline and after acute administration of 3,7-dimethyl-1-propargylxanthine (DMPX), a selective A2 receptor antagonist. GFR and RBF were lower in diabetic mice compared to control (258 ± 61 vs. 443 ± 33 μl min(-1) and 1,083 ± 51 vs. 1,405 ± 78 μl min(-1)). In control animals, DMPX decreased RBF by -6%, whereas GFR increased +44%. DMPX had no effects on GFR and RBF in diabetic mice. Sodium excretion increased in diabetic mice after A2 receptor blockade (+78%). In conclusion, adenosine acting on A2 receptors mediates an efferent arteriolar dilatation which reduces filtration fraction (FF) and maintains GFR within normal range in normoglycemic mice. However, this regulation is absent in diabetic mice, which may contribute to reduced oxygen availability in the diabetic kidney.

  12. Near-infrared mediated tumor destruction by photothermal effect of PANI-Np in vivo

    NASA Astrophysics Data System (ADS)

    Ibarra, L. E.; Yslas, E. I.; Molina, M. A.; Rivarola, C. R.; Romanini, S.; Barbero, C. A.; Rivarola, V. A.; Bertuzzi, M. L.

    2013-06-01

    Photothermal therapy is a therapy in which photon energy is converted into heat to kill cancer. The purpose of this study is to evaluate the in vivo efficacy of photothermal therapy, toxicity and hepatic and renal function of polyaniline nanoparticles (PANI-Np) in a tumor-bearing mice model. The in vivo efficacy of nanoparticles, following NIR light exposure, was assessed by examining tumor growth over time compared to the untreated control. Signs of drug toxicity and the histopathology and morphology of tumor and tissues, after intratumoral injection treatment, were examined or monitored. Excellent photothermal therapy efficacy is achieved upon intratumoral injection of PANI-Np followed by near-infrared light exposure. These results suggest that PANI-Np could be considered as an effective photothermal agent and pave the way to future cancer therapeutics.

  13. Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors.

    PubMed

    Chang, En-Ling; Ting, Chien-Yu; Hsu, Po-Hong; Lin, Yu-Chun; Liao, En-Chi; Huang, Chiung-Yin; Chang, Yuan-Chih; Chan, Hong-Lin; Chiang, Chi-Shiun; Liu, Hao-Li; Wei, Kuo-Chen; Fan, Ching-Hsiang; Yeh, Chih-Kuang

    2017-04-10

    The major challenges in gene therapy for brain cancer are poor transgene expression due to the blood-brain barrier (BBB) and neurologic damage caused by conventional intracerebral injection. Non-viral gene delivery using ultrasound-targeted microbubble (MB) oscillation via the systematic transvascular route is attractive, but there is currently no high-yielding and targeted gene expression method. In this study, we developed a non-viral and angiogenesis-targeting gene delivery approach for efficient brain tumor gene therapy without brain damage. We developed a VEGFR2-targeted and cationic microbubble (VCMB) gene vector for use with transcranial focused ultrasound (FUS) exposure to allow transient gene delivery. The system was tested in a brain tumor model using the firefly luciferase gene and herpes simplex virus type 1 thymidine kinase/ganciclovir (pHSV-TK/GCV) with VCMBs under FUS exposure for transgene expression and anti-tumor effect. In vitro data showed that VCMBs have a high DNA-loading efficiency and high affinity for cancer cells. In vivo data confirmed that this technique enhanced gene delivery into tumor tissues without affecting normal brain tissues. The VCMB group resulted in higher luciferase expression (3.8 fold) relative to the CMB group (1.9 fold), and the direct injection group. The tumor volume on day 25 was significantly smaller in rats treated with the pHSV-TK/GCV system using VCMBs under FUS (9.7±5.2mm(3)) than in the direct injection group (40.1±4.3mm(3)). We demonstrated the successful use of DNA-loaded VCMBs and FUS for non-viral, non-invasive and targeted gene delivery to brain tumors.

  14. Ultraslow Water-Mediated Transmembrane Interactions Regulate the Activation of A2A Adenosine Receptor

    NASA Astrophysics Data System (ADS)

    Lee, Yoonji; Kim, Songmi; Choi, Sun; Hyeon, Changbong

    2016-09-01

    Water molecules inside G-protein coupled receptor have recently been spotlighted in a series of crystal structures. To decipher the dynamics and functional roles of internal waters in GPCR activity, we studied A$_{\\text{2A}}$ adenosine receptor using $\\mu$sec-molecular dynamics simulations. Our study finds that the amount of water flux across the transmembrane (TM) domain varies depending on the receptor state, and that the water molecules of the TM channel in the active state flow three times slower than those in the inactive state. Depending on the location in solvent-protein interface as well as the receptor state, the average residence time of water in each residue varies from $\\sim\\mathcal{O}(10^2)$ psec to $\\sim\\mathcal{O}(10^2)$ nsec. Especially, water molecules, exhibiting ultraslow relaxation ($\\sim\\mathcal{O}(10^2)$ nsec) in the active state, are found around the microswitch residues that are considered activity hotspots for GPCR function. A continuous allosteric network spanning the TM domain, arising from water-mediated contacts, is unique in the active state, underscoring the importance of slow waters in the GPCR activation.

  15. Novel action of FOXL2 as mediator of Col1a2 gene autoregulation.

    PubMed

    Marongiu, Mara; Deiana, Manila; Marcia, Loredana; Sbardellati, Andrea; Asunis, Isadora; Meloni, Alessandra; Angius, Andrea; Cusano, Roberto; Loi, Angela; Crobu, Francesca; Fotia, Giorgio; Cucca, Francesco; Schlessinger, David; Crisponi, Laura

    2016-08-01

    FOXL2 belongs to the evolutionarily conserved forkhead box (FOX) superfamily and is a master transcription factor in a spectrum of developmental pathways, including ovarian and eyelid development and bone, cartilage and uterine maturation. To analyse its action, we searched for proteins that interact with FOXL2. We found that FOXL2 interacts with specific C-terminal propeptides of several fibrillary collagens. Because these propeptides can participate in feedback regulation of collagen biosynthesis, we inferred that FOXL2 could thereby affect the transcription of the cognate collagen genes. Focusing on COL1A2, we found that FOXL2 indeed affects collagen synthesis, by binding to a DNA response element located about 65Kb upstream of this gene. According to our hypothesis we found that in Foxl2(-/-) mouse ovaries, Col1a2 was elevated from birth to adulthood. The extracellular matrix (ECM) compartmentalizes the ovary during folliculogenesis, (with type I, type III and type IV collagens as primary components), and ECM composition changes during the reproductive lifespan. In Foxl2(-/-) mouse ovaries, in addition to up-regulation of Col1a2, Col3a1, Col4a1 and fibronectin were also upregulated, while laminin expression was reduced. Thus, by regulating levels of extracellular matrix components, FOXL2 may contribute to both ovarian histogenesis and the fibrosis attendant on depletion of the follicle reserve during reproductive aging and menopause. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice.

    PubMed

    Xie, Xiaona; Sun, Wanchun; Wang, Jun; Li, Xiaoou; Liu, Xiaofeng; Liu, Ning

    2017-01-01

    Diabetes is one of high-risk factors for cardiovascular disease. Improvement of endothelial dysfunction in diabetes reduces vascular complications. However, the underlying mechanism needs to be uncovered. This study was conducted to elucidate whether and how thromboxane A2 receptor (TPr) activation contributes to endothelial dysfunction in diabetes. Exposure of human umbilical vein endothelial cells (HUVECs) to either TPr agonists, two structurally related thromboxane A2 (TxA2) mimetics, significantly reduced phosphorylations of endothelial nitric oxide synthase (eNOS) at Ser(1177) and Akt at Ser(473). These effects were abolished by pharmacological or genetic inhibitors of TPr. TPr-induced suppression of eNOS and Akt phosphorylation was accompanied by upregulation of PTEN (phosphatase and tension homolog deleted on chromosome 10) and Ser(380)/Thr(382/383) PTEN phosphorylation. PTEN-specific siRNA restored Akt-eNOS signaling in the face of TPr activation. The small GTPase, Rho, was also activated by TPr stimulation, and pretreatment of HUVECs with Y27632, a Rho-associated kinase (ROCK) inhibitor, rescued TPr-impaired Akt-eNOS signaling. In mice, streptozotocin-induced diabetes was associated with aortic PTEN upregulation, PTEN-Ser(380)/Thr(382/383) phosphorylation, and dephosphorylation of Akt (at Ser(473)) and eNOS (at Ser(1177)). Importantly, administration of TPr antagonist blocked these changes. We conclude that TPr activation impairs endothelial function by selectively inactivating the ROCK-PTEN-Akt-eNOS pathway in diabetic mice.

  17. Enhancing cancer immunotherapy through nanotechnology-mediated tumor infiltration and activation of immune cells.

    PubMed

    Shen, Haifa; Sun, Tong; Hoang, Hanh H; Burchfield, Jana S; Hamilton, Gillian F; Mittendorf, Elizabeth A; Ferrari, Mauro

    2017-09-22

    Cancer immunotherapy has become arguably the most promising advancement in cancer research and therapy in recent years. The efficacy of cancer immunotherapy is critically dependent on specific physiological and physical processes - collectively referred to as transport barriers - including the activation of T cells by antigen presenting cells, T cells migration to and penetration into the tumor microenvironment, and movement of nutrients and other immune cells through the tumor microenvironment. Nanotechnology-based approaches have great potential to help overcome these transport barriers. In this review, we discuss the ways that nanotechnology is being leveraged to improve the efficacy and potency of various cancer immunotherapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Increased brain edema following 5-aminolevulinic acid mediated photodynamic in normal and tumor bearing rats

    NASA Astrophysics Data System (ADS)

    Hirschberg, Henry; Angell-Petersen, Even; Spetalen, Signe; Mathews, Marlon; Madsen, Steen J.

    2007-02-01

    Introduction: Failure of treatment for high grade gliomas is usually due to local recurrence at the site of surgical resection indicating that a more aggressive form of local therapy, such as PDT, could be of benefit. PDT causes damage to both tumor cells as well as cerebral blood vessels leading to degradation of the blood brain barrier with subsequent increase of brain edema. The increase in brain edema following ALA-PDT was evaluated in terms of animal survival, histopatological changes in normal brain and tumor tissue and MRI scanning. The effect of steroid treatment, to reduce post-treatment PDT induced edema, was also examined. Methods:Tumors were established in the brains of inbred BD-IX and Fisher rats. At various times following tumor induction the animals were injected with ALA ip. and four hours later light treatment at escalating fluences and fluence rates were given. Nontumor bearing control animals were also exposed to ALA-PDT in a similar manner to evaluate damage to normal brain and degree of blood brain barrier (BBB) disruption. Results: Despite a very low level of PpIX production in normal brain, with a 200:1 tumor to normal tissue selectivity ratio measured at a distance of 2 mm from the tumor border, many animals succumbed shortly after treatment. A total radiant energy of 54 J to non-tumor bearing animals resulted in 50% mortality within 5 days of treatment. Treatment of tumor bearing animals with moderate fluence levels produced similar brain edema compared to higher fluence levels. ALA PDT in nontumor bearing animals produced edema that was light dose dependent. PDT appeared to open the BBB for a period of 24-48 hrs after which it was restored. The addition of post operative steroid treatment reduced the incident of post treatment morbidity and mortality. Conclusions: T2 and contrast enhanced T1 MRI scanning proved to be a highly effective and non-evasive modality in following the development of the edema reaction and the degree and time

  19. Vitamin B12-mediated transport: a potential tool for tumor targeting of antineoplastic drugs and imaging agents.

    PubMed

    Gupta, Yashwant; Kohli, Dharm Veer; Jain, Sanjay K

    2008-01-01

    The uptake of vitamin B12 (cyanocobalamin, Cbl/VB12) in mammalian cells is mediated by specific, high-affinity receptors for the vitamin B12-binding protein, transcobalamin II, which is expressed on the plasma membrane. The receptor for vitamin B12 is overexpressed on a number of human tumors, including cancers of the ovary, kidney, uterus, testis, brain, colon, lung, and myelocytic blood cells. Furthermore, the affinity of cyanocobalamin conjugates for cell surface transcobalamin II receptors seems to be high enough so that vitamin B12 derivatization with the cytotoxic agent or carriers bearing cytotoxic drugs allows the selective delivery of diagnostic and therapeutic agents to cancer cells. Thus, conjugates of vitamin B12 enter receptor-expressing cancer cells via receptor-mediated endocytosis, and targeting may be accomplished by multiple mechanisms, depending on the drug-delivery strategy. This review summarizes the applications of vitamin B12 as a targeting ligand and highlights the various methods being developed for delivery of therapeutic and imaging agents to cancer cells in vitro and in vivo. This review reflects the potentiality of vitamin B12 for tumor targeting of chemotherapeutic and diagnostic agents.

  20. Phospholipase A2 inhibitors protect against prion and Aβ mediated synapse degeneration

    PubMed Central

    2010-01-01

    Background An early event in the neuropathology of prion and Alzheimer's diseases is the loss of synapses and a corresponding reduction in the level of synaptophysin, a pre-synaptic membrane protein essential for neurotransmission. The molecular mechanisms involved in synapse degeneration in these diseases are poorly understood. In this study the process of synapse degeneration was investigated by measuring the synaptophysin content of cultured neurones incubated with the prion derived peptide (PrP82-146) or with Aβ1-42, a peptide thought to trigger pathogenesis in Alzheimer's disease. A pharmacological approach was used to screen cell signalling pathways involved in synapse degeneration. Results Pre-treatment with phospholipase A2 inhibitors (AACOCF3, MAFP and aristolochic acids) protected against synapse degeneration in cultured cortical and hippocampal neurones incubated with PrP82-146 or Aβ1-42. Synapse degeneration was also observed following the addition of a specific phospholipase A2 activating peptide (PLAP) and the addition of PrP82-146 or Aβ1-42 activated cytoplasmic phospholipase A2 within synapses. Activation of phospholipase A2 is the first step in the generation of platelet-activating factor (PAF) and PAF receptor antagonists (ginkgolide B, Hexa-PAF and CV6029) protected against synapse degeneration induced by PrP82-146, Aβ1-42 and PLAP. PAF facilitated the production of prostaglandin E2, which also caused synapse degeneration and pre-treatment with the prostanoid E receptor antagonist AH13205 protected against PrP82-146, Aβ1-42 and PAF induced synapse degeneration. Conclusions Our results are consistent with the hypothesis that PrP82-146 and Aβ1-42trigger abnormal activation of cytoplasmic phospholipase A2 resident within synapses, resulting in elevated levels of PAF and prostaglandin E2that cause synapse degeneration. Inhibitors of this pathway that can cross the blood brain barrier may protect against the synapse degeneration seen during

  1. Hyperthermia-mediated local drug delivery by a bubble-generating liposomal system for tumor-specific chemotherapy.

    PubMed

    Chen, Ko-Jie; Chaung, Er-Yuan; Wey, Shiaw-Pyng; Lin, Kun-Ju; Cheng, Felice; Lin, Chia-Chen; Liu, Hao-Li; Tseng, Hsiang-Wen; Liu, Chih-Peng; Wei, Ming-Cheng; Liu, Chun-Min; Sung, Hsing-Wen

    2014-05-27

    As is widely suspected, lysolipid dissociation from liposomes contributes to the intravenous instability of ThermoDox (lysolipid liposomes), thereby impeding its antitumor efficacy. This work evaluates the feasibility of a thermoresponsive bubble-generating liposomal system without lysolipids for tumor-specific chemotherapy. The key component in this liposomal formulation is its encapsulated ammonium bicarbonate (ABC), which is used to actively load doxorubicin (DOX) into liposomes and trigger a drug release when heated locally. Incubating ABC liposomes with whole blood results in a significantly smaller decrease in the retention of encapsulated DOX than that by lysolipid liposomes, indicating superior plasma stability. Biodistribution analysis results indicate that the ABC formulation circulates longer than its lysolipid counterpart. Following the injection of ABC liposome suspension into mice with tumors heated locally, decomposition of the ABC encapsulated in liposomes facilitates the immediate thermal activation of CO2 bubble generation, subsequently increasing the intratumoral DOX accumulation. Consequently, the antitumor efficacy of the ABC liposomes is superior to that of their lysolipid counterparts. Results of this study demonstrate that this thermoresponsive bubble-generating liposomal system is a highly promising carrier for tumor-specific chemotherapy, especially for local drug delivery mediated at hyperthermic temperatures.

  2. IL-7 inhibits tumor growth by promoting T cell-mediated antitumor immunity in Meth A model.

    PubMed

    Tang, Jian-Cai; Shen, Guo-Bo; Wang, Shi-Min; Wan, Yong-Sheng; Wei, Yu-Quan

    2014-01-01

    Immune suppression is well documented during tumor progression, which includes loss of effect of T cells and expansion of T regulatory (Treg) cells. IL-7 plays a key role in the proliferation, survival and homeostasis of T cells and displays a potent antitumor activity in vivo. In the present study, we investigated the antitumor effect of IL-7 in Meth A model. IL-7 inhibited tumor growth and prolonged the survival of tumor-bearing mice with corresponding increases in the frequency of CD4 and CD8 T cells, Th1 (CD4(+)IFN-γ(+)), Tc1 (CD8(+)IFN-γ(+)) and T cells cytolytic activity against Meth A cells. Neutralization of CD4 or CD8 T cells reversed the antitumor benefit of IL-7. Furthermore, IL-7 decreased regulatory T Foxp3 as well as cells suppressive activity with a reciprocal increase in SMAD7. In addition, we observed an increase of the serum concentrations of IL-6 and IFN-γ, and a significant decrease of TGF-β and IL-10 after IL-7 treatment. Taken together, these results indicate that IL-7 augments T cell-mediated antitumor immunity and improves the effect of antitumor in Meth A model.

  3. Interactions between responses mediated by activation of adenosine A2 receptors and alpha 1-adrenoceptors in the rabbit isolated aorta.

    PubMed

    Wiener, H L; Thalody, G P; Maayani, S

    1993-06-01

    1. This paper describes aspects of the functional antagonism between the responses mediated by activated alpha 1-adrenoceptors and adenosine A2 receptors in the adventitia- and endothelium-denuded aorta of the rabbit. 2. Adenosine A2 receptor agonists relaxed aortic rings pre-contracted with phenylephrine. The relaxation response was agonist concentration-dependent and saturable. The respective contractile and relaxation responses were stable, reproducible, and reversible. 3. Increasing the phenylephrine concentration caused a progressive attenuation of the action of adenosine A2 receptor agonists, consisting of a decreased maximal response and a dextral shift of the adenosine agonist concentration-response curve. This functional antagonism could be completely reversed upon removal of adenosine by either the addition of adenosine deaminase or by wash-out of the adenosine agonist from the tissue. The relaxation response to the adenosine A2 receptor partial agonists, N6-cyclohexyladenosine and R-(-)-N6-(2-phenylisopropyl)adenosine, was abolished at higher phenylephrine concentrations (e.g. 30 EC50). 4. A 1000 fold increase in the adenosine concentration was required to shift the value of the EC50 of phenylephrine six fold, while a similar increase in the value of the EC50 of adenosine could be elicited by only a 32 fold increase in the phenylephrine concentration. A 30 fold increase in the phenylephrine concentration shifted the value of the EC50 of 5'-N-ethylcarboxamidoadenosine four fold. 5. Analysis of the functional antagonism between the responses mediated by these receptors using the Black & Leff (1983) operational model of agonism allowed for the estimation of the agonist dissociation constant, KA, and the apparent efficacy, tau, for both phenylephrine and adenosine A2 receptor agonists. Increasing the concentration of phenylephrine reduced the value of tau for adenosine agonists in a concentration-dependent and saturable manner. Similarly, increasing the

  4. Interactions between responses mediated by activation of adenosine A2 receptors and alpha 1-adrenoceptors in the rabbit isolated aorta.

    PubMed Central

    Wiener, H. L.; Thalody, G. P.; Maayani, S.

    1993-01-01

    1. This paper describes aspects of the functional antagonism between the responses mediated by activated alpha 1-adrenoceptors and adenosine A2 receptors in the adventitia- and endothelium-denuded aorta of the rabbit. 2. Adenosine A2 receptor agonists relaxed aortic rings pre-contracted with phenylephrine. The relaxation response was agonist concentration-dependent and saturable. The respective contractile and relaxation responses were stable, reproducible, and reversible. 3. Increasing the phenylephrine concentration caused a progressive attenuation of the action of adenosine A2 receptor agonists, consisting of a decreased maximal response and a dextral shift of the adenosine agonist concentration-response curve. This functional antagonism could be completely reversed upon removal of adenosine by either the addition of adenosine deaminase or by wash-out of the adenosine agonist from the tissue. The relaxation response to the adenosine A2 receptor partial agonists, N6-cyclohexyladenosine and R-(-)-N6-(2-phenylisopropyl)adenosine, was abolished at higher phenylephrine concentrations (e.g. 30 EC50). 4. A 1000 fold increase in the adenosine concentration was required to shift the value of the EC50 of phenylephrine six fold, while a similar increase in the value of the EC50 of adenosine could be elicited by only a 32 fold increase in the phenylephrine concentration. A 30 fold increase in the phenylephrine concentration shifted the value of the EC50 of 5'-N-ethylcarboxamidoadenosine four fold. 5. Analysis of the functional antagonism between the responses mediated by these receptors using the Black & Leff (1983) operational model of agonism allowed for the estimation of the agonist dissociation constant, KA, and the apparent efficacy, tau, for both phenylephrine and adenosine A2 receptor agonists. Increasing the concentration of phenylephrine reduced the value of tau for adenosine agonists in a concentration-dependent and saturable manner. Similarly, increasing the

  5. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    PubMed

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  6. Mechanistic modeling identifies drug-uptake history as predictor of tumor drug resistance and nano-carrier-mediated response.

    PubMed

    Pascal, Jennifer; Ashley, Carlee E; Wang, Zhihui; Brocato, Terisse A; Butner, Joseph D; Carnes, Eric C; Koay, Eugene J; Brinker, C Jeffrey; Cristini, Vittorio

    2013-12-23

    A quantitative understanding of the advantages of nanoparticle-based drug delivery vis-à-vis conventional free drug chemotherapy has yet to be established for cancer or other diseases despite numerous investigations. Here, we employ first-principles cell biophysics, drug pharmaco-kinetics, and drug pharmaco-dynamics to model the delivery of doxorubicin (DOX) to hepatocellular carcinoma (HCC) tumor cells and predict the resultant experimental cytotoxicity data. The fundamental, mechanistic hypothesis of our mathematical model is that the integrated history of drug uptake by the cells over time of exposure, which sets the cell death rate parameter, and the uptake rate are the sole determinants of the dose response relationship. A universal solution of the model equations is capable of predicting the entire, nonlinear dose response of the cells to any drug concentration based on just two separate measurements of these cellular parameters. This analysis reveals that nanocarrier-mediated delivery overcomes resistance to the free drug because of improved cellular uptake rates, and that dose response curves to nanocarrier mediated drug delivery are equivalent to those for free-drug, but "shifted to the left;" that is, lower amounts of drug achieve the same cell kill. We then demonstrate the model's general applicability to different tumor and drug types, and cell-exposure time courses by investigating HCC cells exposed to cisplatin and 5-fluorouracil, breast cancer MCF-7 cells exposed to DOX, and pancreatic adenocarcinoma PANC-1 cells exposed to gemcitabine. The model will help in the optimal design of nanocarriers for clinical applications and improve the current, largely empirical understanding of in vivo drug transport and tumor response.

  7. Mechanistic Modeling Identifies Drug-Uptake History as Predictor of Tumor Drug Resistance and Nano-Carrier-Mediated Response

    PubMed Central

    Brocato, Terisse A.; Butner, Joseph D.; Carnes, Eric C.; Koay, Eugene J.; Brinker, C. Jeffrey; Cristini, Vittorio

    2013-01-01

    A quantitative understanding of the advantages of nanoparticle-based drug delivery vis-à-vis conventional free drug chemotherapy has yet to be established for cancer or other disease despite numerous investigations. Here, we employ first-principles cell biophysics, drug pharmaco-kinetics and drug pharmaco-dynamics to model the delivery of doxorubicin (DOX) to hepatocellular carcinoma (HCC) tumor cells and predict the resultant experimental cytotoxicity data. The fundamental, mechanistic hypothesis of our mathematical model is that the integrated history of drug uptake by the cells over time of exposure, which sets the cell death rate parameter, and the uptake rate are the sole determinants of dose response relationship. A universal solution of the model equations is capable of predicting the entire, nonlinear dose response of the cells to any drug concentration based on just two separate measurements of these cellular parameters. This analysis reveals that nanocarrier-mediated delivery overcomes resistance to free drug because of improved cellular uptake rates, and that dose response curves to nanocarrier mediated drug delivery are equivalent to those for free-drug, but “shifted to the left,” i.e., lower amounts of drug achieve the same cell kill. We then demonstrate the model’s general applicability to different tumor and drug types, and cell-exposure time courses by investigating HCC cells exposed to cisplatin and 5-fluorouracil, breast cancer MCF-7 cells exposed to DOX, and pancreatic adenocarcinoma PANC-1 cells exposed to gemcitabine. The model will help in the optimal design of nanocarriers for clinical applications and improve the current, largely empirical understanding of in vivo drug transport and tumor response. PMID:24187963

  8. Experimental and clinical results of mTHPC (Foscan)-mediated photodynamic therapy for malignant brain tumors

    NASA Astrophysics Data System (ADS)

    Kostron, Herwig; Obwegeser, Alois; Jakober, Rosanna; Zimmermann, Andreas; Rueck, Angelika C.

    1998-05-01

    M-THPC, a second generation photosensitizer, has greater potential of phototoxicity than the first generation PS hematoporphyrinderivative because of greater light penetration depth into tissue and higher therapeutic index. The uptake, selectivity and kinetics of C-14 labeled mTHPC was investigated in a C6 glioma induced rat model. The highest amount was detected at 48 to 96 hours after intraperitoneal injection with a ratio of 150:1 of tumor to normal brain concentration (0.53 vs. 0.003 (mu) g/g tissue). A high selectivity was also confirmed by confocal laserscanning microscope in frozen sections of the human glioblastoma. Up to now 15 patients underwent mTHPC-mediated PDT presenting with primary (n equals 2), recurrent (n equals 8) glioblastoma multiform or recurrent metastatic disease of the brain (n equals 3) and of the scull base (n equals 2). After sensitization with 0.15 FoscanR mg/kg i.v. a gross tumor removal was performed on day 4 followed by intraoperative PDT by a KTP pumped dye laser or a diode laser emitting at 652 nm (light dose of 20 J/cm2). Patients with primary glioblastomas underwent additional radiation therapy with one progressing after 5 months, the other is surviving for 6 months, patients with recurrent glioblastomas demonstrated a median time to progression of 4 months and a median survival of 6 months, patients with metastasis faired better with only one progressing after 6 months the remaining 4 patients are alive demonstrating a complete response with a median survival time of 7 months. Our first clinical results of mTHPC mediated PDT in brain tumors demonstrate that the survival time of our patients are not superior as compared to the first generation sensitizer. Due to its superior photophysical properties however, mTHPC should be intensely investigated for its use in neurosurgery.

  9. Measurement of ventilation- and perfusion-mediated cooling during laser ablation in ex vivo human lung tumors.

    PubMed

    Vietze, Andrea; Koch, Franziska; Laskowski, Ulrich; Linder, Albert; Hosten, Norbert

    2011-11-01

    Perfusion-mediated tissue cooling has often been described in the literature for thermal ablation therapies of liver tumors. The objective of this study was to investigate the cooling effects of both perfusion and ventilation during laser ablation of lung malignancies. An ex vivo lung model was used to maintain near physiological conditions for the specimens. Fourteen human lung lobes containing only primary lung tumors (non-small cell lung cancer) were used. Laser ablation was carried out using a Nd:YAG laser with a wavelength of 1064 nm and laser fibers with 30 mm diffusing tips. Continuous invasive temperature measurement in 10 mm distance from the laser fiber was performed. Laser power was increased at 2 W increments starting at 10 W up to a maximum power of 12-20 W until a temperature plateau around 60 °C was reached at one sensor. Ventilation and perfusion were discontinued for 6 min each to assess their effects on temperature development. The experiments lead to 25 usable temperature profiles. A significant temperature increase was observed for both discontinued ventilation and perfusion. In 6 min without perfusion, the temperature rose about 5.5 °C (mean value, P<0.05); without ventilation it increased about 7.0 °C (mean value, P<0.05). Ventilation- and perfusion-mediated tissue cooling are significant influencing factors on temperature development during thermal ablation. They should be taken into account during the planning and preparation of minimally invasive lung tumor treatment in order to achieve complete ablation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  10. FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression.

    PubMed

    Heuer, Timothy S; Ventura, Richard; Mordec, Kasia; Lai, Julie; Fridlib, Marina; Buckley, Douglas; Kemble, George

    2017-02-01

    Palmitate, the enzymatic product of FASN, and palmitate-derived lipids support cell metabolism, membrane architecture, protein localization, and intracellular signaling. Tubulins are among many proteins that are modified post-translationally by acylation with palmitate. We show that FASN inhibition with TVB-3166 or TVB-3664 significantly reduces tubulin palmitoylation and mRNA expression. Disrupted microtubule organization in tumor cells is an additional consequence of FASN inhibition. FASN inhibition combined with taxane treatment enhances inhibition of in vitro tumor cell growth compared to treatment with either agent alone. In lung, ovarian, prostate, and pancreatic tumor xenograft studies, FASN inhibition and paclitaxel or docetaxel combine to inhibit xenograft tumor growth with significantly enhanced anti-tumor activity. Tumor regression was observed in 3 of 6 tumor xenograft models. FASN inhibition does not affect cellular taxane concentration in vitro. Our data suggest a mechanism of enhanced anti-tumor activity of the FASN and taxane drug combination that includes inhibition of tubulin palmitoylation and disruption of microtubule organization in tumor cells, as well as a sensitization of tumor cells to FASN inhibition-mediated effects that include gene expression changes and inhibition of β-catenin. Together, the results strongly support investigation of combined FASN inhibition and taxane treatment as a therapy for a variety of human cancers. Copyright © 2016 3-V Biosciences. Published by Elsevier B.V. All rights reserved.

  11. HIF-1α mediates tumor hypoxia to confer a perpetual mesenchymal phenotype for malignant progression.

    PubMed

    Yoo, Young-Gun; Christensen, Jared; Gu, Jie; Huang, L Eric

    2011-06-21

    Although tumor progression involves genetic and epigenetic alterations to normal cellular biology, the underlying mechanisms of these changes remain obscure. Numerous studies have shown that hypoxia-inducible factor 1α (HIF-1α) is overexpressed in many human cancers and up-regulates a host of hypoxia-responsive genes for cancer growth and survival. We recently identified an alternative mechanism of HIF-1α function that induces genetic alterations by suppressing DNA repair. Here, we show that long-term hypoxia, which mimics the tumor microenvironment, drives a perpetual epithelial-mesenchymal transition (EMT) through up-regulation of the zinc finger E-box binding homeobox protein ZEB2, whereas short-term hypoxia induces a reversible EMT that requires the transcription factor Twist1. Moreover, we show that the perpetual EMT driven by chronic hypoxia depends on HIF-1α induction of genetic alterations rather than its canonical transcriptional activator function. These mesenchymal tumor cells not only acquire tumorigenicity but also display characteristics of advanced cancers, including necrosis, aggressive invasion, and metastasis. Hence, these results reveal a mechanism by which HIF-1α promotes a perpetual mesenchymal phenotype, thereby advancing tumor progression.

  12. Blocking c-Met-mediated PARP1 phosphorylation enhances anti-tumor effects of PARP inhibitors

    PubMed Central

    Du, Yi; Yamaguchi, Hirohito; Wei, Yongkun; Hsu, Jennifer L.; Wang, Hung-Ling; Hsu, Yi-Hsin; Lin, Wan-Chi; Yu, Wen-Hsuan; Leonard, Paul G.; Lee, Gilbert R.; Chen, Mei-Kuang; Nakai, Katsuya; Hsu, Ming-Chuan; Chen, Chun-Te; Sun, Ye; Wu, Yun; Chang, Wei-Chao; Huang, Wen-Chien; Liu, Chien-Liang; Chang, Yuan-Ching; Chen, Chung-Hsuan; Park, Morag; Jones, Philip; Hortobagyi, Gabriel N.; Hung, Mien-Chie

    2016-01-01

    Poly (ADP-ribose) polymerase (PARP) inhibitors have emerged as promising therapeutics for many diseases, including cancer, in clinical trials1. One PARP inhibitor, olaparib (Lynparza™, AstraZeneca), was recently approved by the FDA to treat ovarian cancer with BRCA mutations. BRCA1 and BRCA2 play essential roles in repairing DNA double strand breaks, and a deficiency of BRCA proteins sensitizes cancer cells to PARP inhibition2,3. Here we show that receptor tyrosine kinase c-Met associates with and phosphorylates PARP1 at Tyr907. Phosphorylation of PARP1 Tyr907 increases PARP1 enzymatic activity and reduces binding to a PARP inhibitor, thereby rendering cancer cells resistant to PARP inhibition. Combining c-Met and PARP1 inhibitors synergized to suppress growth of breast cancer cells in vitro and xenograft tumor models. Similar synergistic effects were observed in a lung cancer xenograft tumor model. These results suggest that PARP1 pTyr907 abundance may predict tumor resistance to PARP inhibitors, and that treatment with a combination of c-Met and PARP inhibitors may benefit patients bearing tumors with high c-Met expression who do not respond to PARP inhibition alone. PMID:26779812

  13. T-Cell Tumor Elimination as a Result of T-Cell Receptor-Mediated Activation

    NASA Astrophysics Data System (ADS)

    Ashwell, Jonathan D.; Longo, Dan L.; Bridges, Sandra H.

    1987-07-01

    It has recently been shown that activation of murine T-cell hybridomas with antigen inhibits their growth in vitro. The ``suicide'' of these neoplastic T cells upon stimulation with antigen suggested the possibility that activation via the antigen-specific receptor could also inhibit the growth of neoplastic T cells in vivo. To test this, mice were subcutaneously inoculated with antigen-specific T-cell hybridomas and then treated intraperitoneally with antigen. Administration of the appropriate antigen immediately after inoculation with the T-cell hybridoma abrogated tumor formation; antigen administered after tumors had become established decreased the tumor burden and, in a substantial fraction of animals, led to long-term survival. The efficacy of antigen therapy was due to both a direct inhibitory effect on tumor growth and the induction of host immunity. These studies demonstrate the utility of cellular activation as a means of inhibiting neoplastic T-cell growth in vivo and provide a rationale for studying the use of less selective reagents that can mimic the activating properties of antigen, such as monoclonal antibodies, in the treatment of T-cell neoplasms of unknown antigen specificity.

  14. mTHPC-mediated photodynamic detection for fluorescence-guided resection of brain tumors

    NASA Astrophysics Data System (ADS)

    Kostron, Herwig; Zimmermann, Andreas; Obwegeser, Alois

    1998-06-01

    A most radical resection is of great importance in the treatment of brain tumors, however they can hardly be differentiated from normal brain parenchyma by the naked eye of the neurosurgeon. Photosensitizers are highly selective taken up into malignant tissues, therefore the fluorescence properties of photosensitizers could be utilized for optical differentiation of normal and malignant tissue. Ten patients presenting with brain malignancies were sensitized for photodynamic diagnosis (PDD) and photodynamic treatment (PDT) with 0.15 mg/kg b.w. m-THPC. On day 4 intraoperative PDD and fluorescence guided tumor resection (FGR) was performed, followed by intraoperative PDT. The fluorescence was induced by a xenon lamp at an excitation wavelength ranging from 370 to 440 nm. A sensitive CCD camera was employed for imaging, equipped with a long pass filter to shut off the excitation wavelength and to improve the signal to noise ratio. The pictures are converted digitally by a standard frame grabber and processed in real time and calculated for the tissue auto fluorescence in the emission band of m-THPC at 652 nm. Out of 10 0bservations, two were false negative and 2 were false positive. Our preliminary results indicate that fluorescence guided surgery is feasible and proved to be of significant help in delineating tumor margins and in resection of residual tumor that could not be detected by the surgeon, however the sensitivity and specificity needs to be further improved.

  15. Cationic lipid guided short-hairpin RNA interference of annexin A2 attenuates tumor growth and metastasis in a mouse lung cancer stem cell model

    PubMed Central

    Andey, Terrick; Marepally, Srujan; Patel, Apurva; Jackson, Tanise; Sarkar, Shubhashish; O’Connell, Malaney; Reddy, Rakesh C; Chellappan, Srikumar; Singh, Pomila; Singh, Mandip

    2015-01-01

    The role of side populations (SP) or cancer stem-like cells (CSC) in promoting the resistance phenotype presents a viable anticancer target. Human-derived H1650 SP cells over-express annexin A2 (AnxA2) and SOX2, and are resistant to conventional cytotoxic chemotherapeutics. AnxA2 and SOX2 bind to proto-oncogenes, c-Myc and c-Src, and AnxA2 forms a functional heterotetramer with S100A10 to promote tumor motility. However, the combined role of AnxA2, S100A10 and SOX2 in promoting the resistant phenotype of SP cells has not been investigated. In the current studies, we examined for the first time a possible role of AnxA2 in regulating SA100A10 and SOX2 in promoting a resistant phenotype of lung tumors derived from H1650 SP cells. The resistance of H1650 SP cells to chemotherapy compared to H1650 MP cells was investigated by cell viability studies. A short hairpin RNA targeting AnxA2 (shAnxA2) was formulated in a liposomal (cationic ligand-guided, CLG) carrier and characterized for size, charge and entrapment and loading efficiencies; CLG carrier uptake by H1650 SP cells was demonstrated by fluorescence microscopy, and knockdown of AnxA2 confirmed by qRT-PCR and Western blot. Targeting of xenograft and orthotopic lung tumors was demonstrated with fluorescent (DiR) CLG carriers in mice. The therapeutic efficacy of CLG-AnxA2, compared to that of placebo, was investigated after 2 weeks of treatment in terms of tumor weights and tumor burden in vivo. Compared to mixed population cells, H1650 SP cells showed exponential resistance to docetaxel (15-fold), cisplatin (13-fold), 5-fluorouracil (31-fold), camptothecin (7-fold), and gemcitabine (16-fold). CLG carriers were nanoparticulate (199 nm) with a slight positive charge (21.82 mV); CLG-shAnx2 was of similar size (217 nm) with decreased charge (12.11 mV), and entrapment and loading efficiencies of 97% and 6.13% respectively. Fluorescence microscopy showed high uptake of CLG-shAnxA2 in H1650 SP cells after 2 h resulting in a

  16. A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis

    PubMed Central

    Boilard, Eric; Lai, Ying; Larabee, Katherine; Balestrieri, Barbara; Ghomashchi, Farideh; Fujioka, Daisuke; Gobezie, Reuben; Coblyn, Jonathan S; Weinblatt, Michael E; Massarotti, Elena M; Thornhill, Thomas S; Divangahi, Maziar; Remold, Heinz; Lambeau, Gérard; Gelb, Michael H; Arm, Jonathan P; Lee, David M

    2010-01-01

    Phospholipase A2 (PLA2) catalyses the release of arachidonic acid for generation of lipid mediators of inflammation and is crucial in diverse inflammatory processes. The functions of the secretory PLA2 enzymes (sPLA2), numbering nine members in humans, are poorly understood, though they have been shown to participate in lipid mediator generation and the associated inflammation. To further understand the roles of sPLA2 in disease, we quantified the expression of these enzymes in the synovial fluid in rheumatoid arthritis and used gene-deleted mice to examine their contribution in a mouse model of autoimmune erosive inflammatory arthritis. Contrary to expectation, we find that the group V sPLA2 isoform plays a novel anti-inflammatory role that opposes the pro-inflammatory activity of group IIA sPLA2. Mechanistically, group V sPLA2 counter-regulation includes promotion of immune complex clearance by regulating cysteinyl leukotriene synthesis. These observations identify a novel anti-inflammatory function for a PLA2 and identify group V sPLA2 as a potential biotherapeutic for treatment of immune-complex-mediated inflammation. PMID:20432503

  17. A novel anti-inflammatory role for secretory phospholipase A2 in immune complex-mediated arthritis.

    PubMed

    Boilard, Eric; Lai, Ying; Larabee, Katherine; Balestrieri, Barbara; Ghomashchi, Farideh; Fujioka, Daisuke; Gobezie, Reuben; Coblyn, Jonathan S; Weinblatt, Michael E; Massarotti, Elena M; Thornhill, Thomas S; Divangahi, Maziar; Remold, Heinz; Lambeau, Gérard; Gelb, Michael H; Arm, Jonathan P; Lee, David M

    2010-05-01

    Phospholipase A2 (PLA2) catalyses the release of arachidonic acid for generation of lipid mediators of inflammation and is crucial in diverse inflammatory processes. The functions of the secretory PLA2 enzymes (sPLA2), numbering nine members in humans, are poorly understood, though they have been shown to participate in lipid mediator generation and the associated inflammation. To further understand the roles of sPLA2 in disease, we quantified the expression of these enzymes in the synovial fluid in rheumatoid arthritis and used gene-deleted mice to examine their contribution in a mouse model of autoimmune erosive inflammatory arthritis. Contrary to expectation, we find that the group V sPLA2 isoform plays a novel anti-inflammatory role that opposes the pro-inflammatory activity of group IIA sPLA2. Mechanistically, group V sPLA2 counter-regulation includes promotion of immune complex clearance by regulating cysteinyl leukotriene synthesis. These observations identify a novel anti-inflammatory function for a PLA2 and identify group V sPLA2 as a potential biotherapeutic for treatment of immune-complex-mediated inflammation.

  18. α-SMA-Cre-mediated excision of PDK1 reveals an essential role of PDK1 in regulating morphology of cardiomyocyte and tumor progression in tissue microenvironment.

    PubMed

    Qian, X-J; Li, X-L; Xu, X; Wang, X; Feng, Q-T; Yang, C-J

    2015-04-01

    The phosphoinositide-3 kinase (PI3K) - phosphoinositide-dependent protein kinase 1 (PDK1)-Akt/protein kinase B (PKB) cascade plays a critical role in cardiovascular development and tumor genesis. But the role of PDK1 in the microenvironment of heart and tumor remains unknown. To clarify the effects of PDK1 on tissue microenvironment in vivo, here, we created α-SMA-Cre-mediated excision of PDK1 mice. And the mice were injected subcutaneously with Lewis lung carcinoma (LLC) cells. We found PDK1-deficient mice had post-natal praecox dilated cardiomyopathy, decelerated tumor growth and severe tumor metastasis. Histopathological analysis revealed abnormality of vascular microenvironment in heart and primary tumor. In conclusion, PDK1 plays a pivotal role in regulating cardiac function and tumor metastasis by interfering with microenvironment. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. F-Box Protein FBXO22 Mediates Polyubiquitination and Degradation of CD147 to Reverse Cisplatin Resistance of Tumor Cells

    PubMed Central

    Wu, Bo; Liu, Zhen-Yu; Cui, Jian; Yang, Xiang-Min; Jing, Lin; Zhou, Yang; Chen, Zhi-Nan; Jiang, Jian-Li

    2017-01-01

    Drug resistance remains a major clinical obstacle to successful treatment of cancer. As posttranslational modification is becoming widely recognized to affect the function of oncoproteins, targeting specific posttranslational protein modification provides an attractive strategy for anticancer drug development. CD147 is a transmembrane glycoprotein contributing to chemo-resistance of cancer cells in a variety of human malignancies. Ubiquitination is an important posttranslational modification mediating protein degradation. Degradation of oncoproteins, CD147 included, emerges as an attractive alternative for tumor inhibition. However, the ubiquitination of CD147 remains elusive. Here in this study, we found that deletion of the CD147 intracellular domain (CD147-ICD) prolonged the half-life of CD147 in HEK293T cells, and we identified that CD147-ICD interacts with FBXO22 using mass spectrometry and Western blot. Then, we demonstrated that FBXO22 mediates the polyubiquitination and degradation of CD147 by recognizing CD147-ICD. While knocking down of FBXO22 prolonged the half-life of CD147 in HEK293T cells, we found that FBXO22 regulates CD147 protein turnover in SMMC-7721, Huh-7 and A549 cells. Moreover, we found that the low level of FBXO22 contributes to the accumulation of CD147 and thereafter the cisplatin resistance of A549/DDP cells. To conclude, our study demonstrated that FBXO22 mediated the polyubiquitination and degradation of CD147 by interacting with CD147-ICD, and CD147 polyubiquitination by FBXO22 reversed cisplatin resistance of tumor cells. PMID:28117675

  20. Ligand independent EphA2 signaling drives the adoption of a targeted therapy-mediated metastatic melanoma phenotype

    PubMed Central

    Paraiso, Kim H. T.; Thakur, Meghna Das; Fang, Bin; Koomen, John M.; Fedorenko, Inna V.; John, Jobin K.; Tsao, Hensin; Flaherty, Keith T.; Sondak, Vernon K.; Messina, Jane L.; Pasquale, Elena B.; Villagra, Alejandro; Rao, Uma N.; Kirkwood, John M.; Meier, Friedegund; Sloot, Sarah; Gibney, Geoffrey T.; Stuart, Darrin; Tawbi, Hussein; Smalley, Keiran S.M.

    2014-01-01

    Many patients with BRAF inhibitor resistance can develop disease at new sites, suggesting that drug-induced selection pressure drives metastasis. Here we used mass spectrometry-based phosphoproteomic screening to uncover ligand-independent EphA2 signaling as an adaptation to BRAF inhibitor therapy that led to the adoption of a metastatic phenotype. The EphA2-mediated invasion was AKT-dependent and readily reversible upon removal of drug as well as through PI3K and AKT inhibition. In xenograft models, BRAF inhibition led to the development of EphA2 positive metastases. A retrospective analysis of melanoma patients on BRAF inhibitor therapy showed that 68% of those failing therapy develop metastases at new disease sites, compared to 35% in patients on dacarbazine. Further IHC staining of melanoma specimens taken from patients on BRAF inhibitor therapy as well as metastatic samples taken from patients failing therapy showed increased EphA2 staining. We suggest that inhibition of ligand-independent EphA2 signaling may limit metastases associated with BRAF inhibitor therapy. PMID:25542447

  1. HLA-A2 Alleles Mediate Alzheimer's Disease by Altering Hippocampal Volume.

    PubMed

    Wang, Zi-Xuan; Wang, Hui-Fu; Tan, Lin; Sun, Fu-Rong; Tan, Meng-Shan; Tan, Chen-Chen; Jiang, Teng; Tan, Lan; Yu, Jin-Tai

    2017-05-01

    HLA-A is a locus of the major histocompatibility complex situated on chromosome 6p21.3. HLA-A has been shown to be associated with susceptibility to Alzheimer's disease (AD). In this study, we firstly investigated the association of gene variants in HLA-A and brain structures on MRI in a large sample from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to explore the effects of HLA-A on AD pathogenesis. We selected the hippocampus, parahippocampus, posterior cingulate, precuneus, middle temporal, entorhinal cortex, and amygdala as regions of interest (ROIs). In hybrid population analysis, our results showed a marginally significant association between rs9260168 and the atrophy of the left parahippocampus (P = 0.007, Pc = 0.054), rs3823342 and the atrophy of the left parahippocampus (P = 0.014, Pc = 0.054), rs76475517, which only exists in Caucasians with HLA-A23 or HLA-A24 alleles, and the atrophy of the right amygdala (P = 0.010, Pc = 0.085) at baseline. In particular, the haplotype (TGACAAGG), as a surrogate marker of HLA-A2, was founded to be positively associated with the atrophy of the right hippocampus (P = 0.047) at baseline. Furthermore, we detected the above four associations in mild cognitive impairment (MCI) subpopulation analysis. Our study provided preliminary evidences supporting HLA-A2 in Caucasians contribute to the risk of AD by modulating the alteration of hippocampal volume and HLA-A gene variants appear to play a role in altering AD-related brain structures on MRI.

  2. A novel T cell receptor single-chain signaling complex mediates antigen-specific T cell activity and tumor control

    PubMed Central

    Stone, Jennifer D.; Harris, Daniel T.; Soto, Carolina M.; Chervin, Adam S.; Aggen, David H.; Roy, Edward J.; Kranz, David M.

    2014-01-01

    Adoptive transfer of genetically modified T cells to treat cancer has shown promise in several clinical trials. Two main strategies have been applied to redirect T cells against cancer: 1) introduction of a full-length T cell receptor (TCR) specific for a tumor-associated peptide-MHC, or 2) introduction of a chimeric antigen receptor (CAR), including an antibody fragment specific for a tumor cell surface antigen, linked intracellularly to T cell signaling domains. Each strategy has advantages and disadvantages for clinical applications. Here, we present data on the in vitro and in vivo effectiveness of a single-chain signaling receptor incorporating a TCR variable fragment as the targeting element (referred to as TCR-SCS). This receptor contained a single-chain TCR (Vβ-linker-Vα) from a high-affinity TCR called m33, linked to the intracellular signaling domains of CD28 and CD3ζ. This format avoided mispairing with endogenous TCR chains, and mediated specific T cell activity when expressed in either CD4 or CD8 T cells. TCR-SCS-transduced CD8-negative cells showed an intriguing sensitivity, compared to full-length TCRs, to higher densities of less stable pepMHC targets. T cells that expressed this peptide-specific receptor persisted in vivo, and exhibited polyfunctional responses. Growth of metastatic antigen-positive tumors was significantly inhibited by T cells that expressed this receptor, and tumor cells that escaped were antigen loss variants. TCR-SCS receptors represent an alternative targeting receptor strategy that combines the advantages of single-chain expression, avoidance of TCR chain mispairing, and targeting of intracellular antigens presented in complex with MHC proteins. PMID:25082071

  3. Singlet oxygen explicit dosimetry to predict long-term local tumor control for BPD-mediated photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Kim, Michele M.; Penjweini, Rozhin; Ong, Yi Hong; Zhu, Timothy C.

    2017-02-01

    Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence, photosensitizer photobleaching rate, and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (Φ) effects are not accounted for, which has a large effect on the oxygen consumption rate. In this preclinical study, reacted singlet oxygen [1O2]rx was investigated as a dosimetric quantity for PDT outcome. The ability of [1O2]rx to predict the long-term local tumor control rate (LCR) for BPD-mediated PDT was examined. Mice bearing radioactivelyinduced fibrosarcoma (RIF) tumors were treated with different in-air fluences (250, 300, and 350 J/cm2) and in-air ϕ (75, 100, and150 mW/cm2) with a BPD dose of 1 mg/kg and a drug-light interval of 3 hours. Treatment was delivered with a collimated laser beam of 1 cm diameter at 690 nm. Explicit dosimetry of initial tissue oxygen concentration, tissue optical properties, and BPD concentration was used to calculate [1O2]rx. Φ was calculated for the treatment volume based on Monte-Carlo simulations and measured tissue optical properties. Kaplan-Meier analyses for LCR were done for an endpoint of tumor volume <= 100 mm3 using four dose metrics: light fluence, photosensitizer photobleaching rate, PDT dose, and [1O2]rx. PDT dose was defined as the product of the timeintegral of photosensitizer concentration and Φ at a 3 mm tumor depth. Preliminary studies show that [1O2]rx better correlates with LCR and is an effective dosimetric quantity that can predict treatment outcome.

  4. Elevation of c-MYC disrupts HLA class II-mediated immune recognition of human B cell tumors.

    PubMed

    God, Jason M; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W; Stuart, Robert K; Blum, Janice S; Haque, Azizul

    2015-02-15

    Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B cell lymphomas. Although many of c-MYC's functions have been elucidated, its effect on the presentation of Ag through the HLA class II pathway has not been reported previously. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report in this paper that increased c-MYC expression has a negative effect on the ability of B cell lymphomas to functionally present Ags/peptides to CD4(+) T cells. This defect was associated with alterations in the expression of distinct cofactors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt's lymphoma (BL) tumors and transformed cells, we show that compared with B lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47-kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation, which contribute to the immunoevasive properties of BL tumors.

  5. Peroxisome Proliferator Activated Receptor-γ Activation Inhibits Tumor Metastasis by Antagonizing Smad3 Mediated Epithelial Mesenchymal Transition

    PubMed Central

    Reka, Ajaya Kumar; Kurapati, Himabindu; Narala, Venkata R; Bommer, Guido; Chen, Jun; Standiford, Theodore J.; Keshamouni, Venkateshwar G.

    2011-01-01

    Epithelial-mesenchymal transition (EMT) was shown to confer tumor cells with abilities essential for metastasis, including migratory phenotype, invasiveness, and resistance to apoptosis, evading immune surveillance and tumor stem cell traits. Therefore, inhibition of EMT can be an important therapeutic strategy to inhibit tumor metastasis. Here we demonstrate that activation of peroxisome proliferator activated receptor (PPAR) -γ inhibits TGF-β-induced EMT in lung cancer cells and prevents metastasis by antagonizing Smad3 function. Activation of PPAR-γ by synthetic ligands (Troglitazone and Rosiglitazone) or by a constitutively-active form of PPAR-γ prevents TGF-β-induced loss of E-cadherin expression and inhibited the induction of mesenchymal markers (vimentin, N-cadherin, fibronectin) and MMPs. Consistently, activation of PPAR-γ also inhibited EMT-induced migration and invasion of lung cancer cells. Furthermore, effects of PPAR-γ ligands were attenuated by siRNA mediated knockdown of PPAR-γ, indicating that the ligand induced responses are PPAR-γ dependent. Selective knockdown of Smad2 and Smad3 by siRNA demonstrated that TGF-β-induced EMT is Smad3 dependent in lung cancer cells. Activation of PPAR-γ inhibits TGF-β-induced Smad transcriptional activity but had no effect on the phosphorylation or nuclear translocation of Smads. Consistently PPAR-γ activation prevented TGF-ß-induced transcriptional repression of E-cadherin promoter and inhibited transcriptional activation of N-cadherin promoter. Finally, treatment of mice with troglitazone or knockdown of Smad3 in tumor cells both significantly inhibited TGF-β-induced experimental metastasis in Scid-Beige mice. Together, with the low toxicity profile of PPAR-γ ligands, our data demonstrates that these ligands may serve as potential therapeutic agents to inhibit metastasis. PMID:21159608

  6. Elevation of c-MYC Disrupts HLA Class II-mediated Immune Recognition of Human B-cell Tumors1

    PubMed Central

    God, Jason M.; Cameron, Christine; Figueroa, Janette; Amria, Shereen; Hossain, Azim; Kempkes, Bettina; Bornkamm, Georg W.; Stuart, Robert K.; Blum, Janice S.; Haque, Azizul

    2014-01-01

    Elevated levels of the transcription factor c-myc are strongly associated with various cancers, and in particular B-cell lymphomas. While many of c-MYC’s functions have been elucidated, its effect on the presentation of antigen (Ag) through the HLA class II pathway has not previously been reported. This is an issue of considerable importance, given the low immunogenicity of many c-MYC-positive tumors. We report here that increased c-MYC expression has a negative effect on the ability of B-cell lymphomas to functionally present Ags/peptides to CD4+ T cells. This defect was associated with alterations in the expression of distinct co-factors as well as interactions of antigenic peptides with class II molecules required for the presentation of class II-peptide complexes and T cell engagement. Using early passage Burkitt’s lymphoma (BL) tumors and transformed cells, we show that compared to B-lymphoblasts, BL cells express decreased levels of the class II editor HLA-DM, lysosomal thiol-reductase GILT, and a 47kDa enolase-like protein. Functional Ag presentation was partially restored in BL cells treated with a c-MYC inhibitor, demonstrating the impact of this oncogene on Ag recognition. This restoration of HLA class II-mediated Ag presentation in early passage BL tumors/cells was linked to enhanced HLA-DM expression and a concurrent decrease in HLA-DO in BL cells. Taken together, these results reveal c-MYC exerts suppressive effects at several critical checkpoints in Ag presentation which contribute to the immunoevasive properties of BL tumors. PMID:25595783

  7. Toll-like Receptor 4 Mediates Morphine-Induced Neuroinflammation and Tolerance via Soluble Tumor Necrosis Factor Signaling.

    PubMed

    Eidson, Lori N; Inoue, Kiyoshi; Young, Larry J; Tansey, Malu G; Murphy, Anne Z

    2017-02-01

    Opioid tolerance and the potential for addiction is a significant burden associated with pain management, yet its precise underlying mechanism and prevention remain elusive. Immune signaling contributes to the decreased efficacy of opioids, and we recently demonstrated that Toll-like receptor 4 (TLR4)-mediated neuroinflammation in the periaqueductal gray (PAG) drives tolerance. Tumor necrosis factor (TNF), a product of TLR4 signaling, promotes inflammation and facilitates glutamatergic signaling, key components of opioid tolerance. Therefore, we hypothesize that TLR4-mediated opioid tolerance requires TNF signaling. By expression of a dominant-negative TNF peptide via lentiviral vector injection in rat PAG to sequester soluble TNF (solTNF), we demonstrate that solTNF mediates morphine tolerance induced by TLR4 signaling, stimulates neuroinflammation (increased IL-1β and TLR4 mRNA), and disrupts glutamate reuptake (decreased GLT-1 and GLAST mRNA). We further demonstrate the efficacy of the brain-permeant PEGylated version of the anti-solTNF peptide, XPro1595, injected systemically, to normalize morphine-induced CNS neuroinflammation and morphine- and endotoxin-induced changes in glutamate transport, effectively preserving the efficacy of morphine analgesia and eliminating tolerance. Our findings provide a novel pharmacological target for the prevention of opioid-induced immune signaling, tolerance, and addiction.

  8. JNK–NQO1 axis drives TAp73-mediated tumor suppression upon oxidative and proteasomal stress

    PubMed Central

    Kostecka, A; Sznarkowska, A; Meller, K; Acedo, P; Shi, Y; Mohammad Sakil, H A; Kawiak, A; Lion, M; Królicka, A; Wilhelm, M; Inga, A; Zawacka-Pankau, J

    2014-01-01

    Hyperproliferating cancer cells produce energy mainly from aerobic glycolysis, which results in elevated ROS levels. Thus aggressive tumors often possess enhanced anti-oxidant capacity that impedes many current anti-cancer therapies. Additionally, in ROS-compromised cancer cells ubiquitin proteasome system (UPS) is often deregulated for timely removal of oxidized proteins, thus enabling cell survival. Taken that UPS maintains the turnover of factors controlling cell cycle and apoptosis – such as p53 or p73, it represents a promising target for pharmaceutical intervention. Enhancing oxidative insult in already ROS-compromised cancer cells appears as an attractive anti-tumor scenario. TAp73 is a bona fide tumor suppressor that drives the chemosensitivity of some cancers to cisplatin or γ-radiation. It is an important drug target in tumors where p53 is lost or mutated. Here we discovered a novel synergistic mechanism leading to potent p73 activation and cancer cell death by oxidative stress and inhibition of 20S proteasomes. Using a small-molecule inhibitor of 20S proteasome and ROS-inducer – withaferin A (WA), we found that WA-induced ROS activates JNK kinase and stabilizes phase II anti-oxidant response effector NF-E2-related transcription factor (NRF2). This results in activation of Nrf2 target – NQO1 (NADPH quinone oxidoreductase), and TAp73 protein stabilization. The observed effect was ablated by the ROS scavenger – NAC. Concurrently, stress-activated JNK phosphorylates TAp73 at multiple serine and threonine residues, which is crucial to ablate TAp73/MDM2 complex and to promote TAp73 transcriptional function and induction of robust apoptosis. Taken together our data demonstrate that ROS insult in combination with the inhibition of 20S proteasome and TAp73 activation endows synthetic lethality in cancer cells. Thus, our results may enable the establishment of a novel pharmacological strategy to exploit the enhanced sensitivity of tumors to elevated ROS

  9. Augmented IFN-γ and TNF-α Induced by Probiotic Bacteria in NK Cells Mediate Differentiation of Stem-Like Tumors Leading to Inhibition of Tumor Growth and Reduction in Inflammatory Cytokine Release; Regulation by IL-10

    PubMed Central

    Bui, Vickie T.; Tseng, Han-Ching; Kozlowska, Anna; Maung, Phyu Ou; Kaur, Kawaljit; Topchyan, Paytsar; Jewett, Anahid

    2015-01-01

    Our previous reports demonstrated that the magnitude of natural killer (NK) cell-mediated cytotoxicity correlate directly with the stage and level of differentiation of tumor cells. In addition, we have shown previously that activated NK cells inhibit growth of cancer cells through induction of differentiation, resulting in the resistance of tumor cells to NK cell-mediated cytotoxicity through secreted cytokines, as well as direct NK-tumor cell contact. In this report, we show that in comparison to IL-2 + anti-CD16mAb-treated NK cells, activation of NK cells by probiotic bacteria (sAJ2) in combination with IL-2 and anti-CD16mAb substantially decreases tumor growth and induces maturation, differentiation, and resistance of oral squamous cancer stem cells, MIA PaCa-2 stem-like/poorly differentiated pancreatic tumors, and healthy stem cells of apical papillae through increased secretion of IFN-γ and TNF-α, as well as direct NK-tumor cell contact. Tumor resistance to NK cell-mediated killing induced by IL-2 + anti-CD16mAb + sAJ2-treated NK cells is induced by combination of IFN-γ and TNF-α since antibodies to both, and not each cytokine alone, were able to restore tumor sensitivity to NK cells. Increased surface expression of CD54, B7H1, and MHC-I on NK-differentiated tumors was mediated by IFN-γ since the addition of anti-IFN-γ abolished their increase and restored the ability of NK cells to trigger cytokine and chemokine release; whereas differentiated tumors inhibited cytokine release by the NK cells. Monocytes synergize with NK cells in the presence of probiotic bacteria to induce regulated differentiation of stem cells through secretion of IL-10 resulting in resistance to NK cell-mediated cytotoxicity and inhibition of cytokine release. Therefore, probiotic bacteria condition activated NK cells to provide augmented differentiation of cancer stem cells resulting in inhibition of tumor growth, and decreased inflammatory cytokine release. PMID

  10. Baculovirus Vector-Mediated Transfer of Sodium Iodide Symporter and Plasminogen Kringle 5 Genes for Tumor Radioiodide Therapy

    PubMed Central

    Zhang, Min; Guo, Rui; Shi, Shuo; Miao, Yin; Zhang, Yifan; Li, Biao

    2014-01-01

    Background Both tumor cells and their supporting endothelial cells should be considered for targeted cell killing when designing cancer treatments. Here we investigated the feasibility of combining radioiodide and antiangiogenic therapies after baculovirus-mediated transfer of genes encoding the sodium iodide symporter (NIS) and plasminogen kringle 5 (K5). Methods A recombinant baculovirus containing the NIS gene under control of the human telomerase reverse transcriptase (hTERT) promoter and the K5 gene driven by the early growth response 1 (Egr1) promoter was developed. Dual-luciferase reporter assay was performed to confirm the activation of hTERT transcription. NIS and K5 gene expression were identified by Western blot and Real-Time PCR. Functional NIS activity in baculovirus-infected Hela cells was confirmed by the uptake of 125I and cytotoxicity of 131I. The apoptotic effect of 131I-induced K5 on baculovirus-infected human umbilical vein endothelial cells (HUVECs) was analyzed by a flow cytometry-based assay. In vivo, NIS reporter gene imaging and therapeutic experiments with 131I were performed. Finally, the microvessel density (MVD) in tumors after treatment was determined by CD31 immunostaining. Results The activation of hTERT transcription was specifically up-regulated in tumor cells. NIS gene expression markedly increased in baculovirus-infected HeLa cells, but not in MRC5 cells. The Hela cells showed a significant increase of 125I uptake, which was inhibited by NaClO4, and a notably decreased cell survival rate by 131I treatment. Expression of the K5 gene induced by 131I was elevated in a dose- and time-dependent manner and resulted in the apoptosis of HUVECs. Furthermore, 131I SPECT imaging clearly showed cervical tumor xenografts infected with recombinant baculovirus. Following therapy, tumor growth was significantly retarded. CD31 immunostaining confirmed a significant decrease of MVD. Conclusion The recombinant baculovirus supports a promising

  11. Nanoparticle-mediated binning and profiling of heterogeneous circulating tumor cell subpopulations.

    PubMed

    Mohamadi, Reza M; Besant, Justin D; Mepham, Adam; Green, Brenda; Mahmoudian, Laili; Gibbs, Thaddeus; Ivanov, Ivaylo; Malvea, Anahita; Stojcic, Jessica; Allan, Alison L; Lowes, Lori E; Sargent, Edward H; Nam, Robert K; Kelley, Shana O

    2015-01-02

    The analysis of circulating tumor cells (CTCs) is an important capability that may lead to new approaches for cancer management. CTC capture devices developed to date isolate a bulk population of CTCs and do not differentiate subpopulations that may have varying phenotypes with different levels of clinical relevance. Here, we present a new device for CTC spatial sorting and profiling that sequesters blood-borne tumor cells with different phenotypes into discrete spatial bins. Validation data are presented showing that cancer cell lines with varying surface expression generate different binning profiles within the device. Working with patient blood samples, we obtain profiles that elucidate the heterogeneity of CTC populations present in cancer patients and also report on the status of CTCs within the epithelial-to-mesenchymal transition (EMT).

  12. Denervation Induces Cytosolic Phospholipase A2-mediated Fatty Acid Hydroperoxide Generation by Muscle Mitochondria*

    PubMed Central

    Bhattacharya, Arunabh; Muller, Florian L.; Liu, Yuhong; Sabia, Marian; Liang, Hanyu; Song, Wook; Jang, Youngmok C.; Ran, Qitao; Van Remmen, Holly

    2009-01-01

    Previously, we demonstrated that mitochondria from denervated muscle exhibited dramatically higher Amplex Red dependent fluorescence (thought to be highly specific for hydrogen peroxide) compared with control muscle mitochondria. We now demonstrate that catalase only partially inhibits the Amplex Red signal in mitochondria from denervated muscle. In contrast, ebselen (a glutathione peroxidase mimetic and inhibitor of fatty acid hydroperoxides) significantly inhibits the Amplex Red signal. This suggests that the majority of the Amplex Red signal in mitochondria from denervated muscle is not derived from hydrogen peroxide. Because Amplex Red cannot react with substrates in the lipid environment, we hypothesize that lipid hydroperoxides formed within the mitochondrial lipid bilayer are released as fatty acid hydroperoxides and react with the Amplex Red probe. We also suggest that the release of fatty acid hydroperoxides from denervated muscle mitochondria may be an important determinant of muscle atrophy. In support of this, muscle atrophy and the Amplex Red signal are inhibited in caloric restricted mice and in transgenic mice that overexpress the lipid hydroperoxide-detoxifying enzyme glutathione peroxidase 4. Finally, we propose that cytosolic phospholipase A2 may be a potential source of these hydroperoxides. PMID:19001413

  13. Integrative Modeling Reveals Annexin A2-mediated Epigenetic Control of Mesenchymal Glioblastoma.

    PubMed

    Kling, Teresia; Ferrarese, Roberto; Ó hAilín, Darren; Johansson, Patrik; Heiland, Dieter Henrik; Dai, Fangping; Vasilikos, Ioannis; Weyerbrock, Astrid; Jörnsten, Rebecka; Carro, Maria Stella; Nelander, Sven

    2016-10-01

    Glioblastomas are characterized by transcriptionally distinct subtypes, but despite possible clinical relevance, their regulation remains poorly understood. The commonly used molecular classification systems for GBM all identify a subtype with high expression of mesenchymal marker transcripts, strongly associated with invasive growth. We used a comprehensive data-driven network modeling technique (augmented sparse inverse covariance selection, aSICS) to define separate genomic, epigenetic, and transcriptional regulators of glioblastoma subtypes. Our model identified Annexin A2 (ANXA2) as a novel methylation-controlled positive regulator of the mesenchymal subtype. Subsequent evaluation in two independent cohorts established ANXA2 expression as a prognostic factor that is dependent on ANXA2 promoter methylation. ANXA2 knockdown in primary glioblastoma stem cell-like cultures suppressed known mesenchymal master regulators, and abrogated cell proliferation and invasion. Our results place ANXA2 at the apex of a regulatory cascade that determines glioblastoma mesenchymal transformation and validate aSICS as a general methodology to uncover regulators of cancer subtypes.

  14. Immobilized Surfactant-Nanotube Complexes Support Selectin-Mediated Capture of Viable Circulating Tumor Cells in the Absence of Capture Antibodies

    PubMed Central

    Mitchell, Michael J.; Castellanos, Carlos A.; King, Michael R.

    2015-01-01

    The metastatic spread of tumor cells from the primary site to anatomically distant organs leads to a poor patient prognosis. Increasing evidence has linked adhesive interactions between circulating tumor cells (CTCs) and endothelial cells to metastatic dissemination. Microscale biomimetic flow devices hold promise as a diagnostic tool to isolate CTCs and develop metastatic therapies, utilizing E-selectin (ES) to trigger the initial rolling adhesion of tumor cells under flow. To trigger firm adhesion and capture under flow, such devices also typically require antibodies against biomarkers thought to be expressed on CTCs. This approach is challenged by the fact that CTCs are now known to exhibit heterogeneous expression of conventional biomarkers. Here, we describe surfactant-nanotube complexes to enhance ES-mediated capture and isolation of tumor cells without the use of capture antibodies. While the majority of tumor cells exhibited weaker rolling adhesion on halloysite nanotubes (HNT) coated with ES, HNT functionalization with the sodium dodecanoate (NaL) surfactant induced a switch to firm cellular adhesion under flow. Conversely, surfactant-nanotube complexes significantly reduced the number of primary human leukocytes captured via ES-mediated adhesion under flow. The switch in tumor cell adhesion was exploited to capture and isolate tumor cells in the absence of EpCAM antibodies, commonly utilized as the gold standard for CTC isolation. Additionally, HNT-NaL complexes were shown to capture tumor cells with low to negligible EpCAM expression, that are not efficiently captured using conventional approaches. PMID:25761664

  15. CAR mediates efficient tumor engraftment of mesenchymal type lung cancer cells.

    PubMed

    Veena, Mysore S; Qin, Min; Andersson, Asa; Sharma, Sherven; Batra, Raj K

    2009-08-01

    The coxsackie-adenovirus receptor (CAR) is a developmentally regulated intercellular adhesion molecule that was previously observed to be required for efficient tumor formation. To confirm that observation, we compared the tumorigenicity of clonally derived test and control cell subsets that were genetically modified for CAR. Silencing CAR in lung cancer cells with high constitutive expression reduced engraftment efficiency. Conversely, overexpressing CAR in lung cancer cells with low constitutive expression did not affect tumor formation or growth kinetics. A blocking antibody to the extracellular domain of CAR inhibited tumor engraftment, implicating that domain as being important to this process. However, differences in adhesion properties attributable to this domain (barrier function and aggregation) could not be distinguished in the test groups in vitro, and the mechanisms underlying CAR's contribution to tumor engraftment remain elusive. Because high CAR cells displayed a spindle-shaped morphology at baseline, we considered whether this expression was an accompaniment of other mesenchymal features in these lung cancer cells. Molecular correlates of CAR were compared in model epithelial and mesenchymal type lung cancer cells. CAR expression is associated with an absence of E-cadherin, diminished expression of alpha- and gamma-catenin, and increased Zeb1, Snail, and vimentin expression in lung cancer cells. In contrast, epithelial type (NCI-H292, Calu3) lung cancer cells show comparatively low CAR expression. These data suggest that if the mesenchymal cell phenotype is an accurate measure of an undifferentiated and invasive state, then CAR expression may be more closely aligned with this phenotype of lung cancer cells.